WorldWideScience

Sample records for coronagraph laboratory system

  1. The PIAA Coronagraph Prototype: First Laboratory Results.

    Science.gov (United States)

    Pluzhnik, Eugene; Guyon, O.; Colley, S.; Gallet, B.; Ridgway, S.; Woodruff, R.; Tanaka, S.; Warren, M.

    2006-12-01

    The phase-induced amplitude apodization (PIAA) coronagraph combines the main advantages of classical pupil apodization with high throughput ( 100%), high angular resolution ( 2λ/D) and low chromaticity. These advantages can allow direct imaging of nearby extrasolar planets with a 4-meter telescope. The PIAA coronagraph laboratory prototype has been successfully manufactured and starts to operate at the Subary Telescope facility. We present here our first laboratory results with this prototype where we have achieved 2x10-6 contrast within 2 λ/D. We also discuss the main constrains limiting the contrast and describe our future efforts. This work was carried out under JPL contract numbers 1254445 and 1257767 for Development of Technologies for the Terrestrial Planet Finder Mission, with the support and hospitality of the National Astronomical Observatory of Japan.

  2. TESTING THE APODIZED PUPIL LYOT CORONAGRAPH ON THE LABORATORY FOR ADAPTIVE OPTICS EXTREME ADAPTIVE OPTICS TESTBED

    International Nuclear Information System (INIS)

    Thomas, Sandrine J.; Dillon, Daren; Gavel, Donald; Soummer, Remi; Macintosh, Bruce; Sivaramakrishnan, Anand

    2011-01-01

    We present testbed results of the Apodized Pupil Lyot Coronagraph (APLC) at the Laboratory for Adaptive Optics (LAO). These results are part of the validation and tests of the coronagraph and of the Extreme Adaptive Optics (ExAO) for the Gemini Planet Imager (GPI). The apodizer component is manufactured with a halftone technique using black chrome microdots on glass. Testing this APLC (like any other coronagraph) requires extremely good wavefront correction, which is obtained to the 1 nm rms level using the microelectricalmechanical systems (MEMS) technology, on the ExAO visible testbed of the LAO at the University of Santa Cruz. We used an APLC coronagraph without central obstruction, both with a reference super-polished flat mirror and with the MEMS to obtain one of the first images of a dark zone in a coronagraphic image with classical adaptive optics using a MEMS deformable mirror (without involving dark hole algorithms). This was done as a complementary test to the GPI coronagraph testbed at American Museum of Natural History, which studied the coronagraph itself without wavefront correction. Because we needed a full aperture, the coronagraph design is very different from the GPI design. We also tested a coronagraph with central obstruction similar to that of GPI. We investigated the performance of the APLC coronagraph and more particularly the effect of the apodizer profile accuracy on the contrast. Finally, we compared the resulting contrast to predictions made with a wavefront propagation model of the testbed to understand the effects of phase and amplitude errors on the final contrast.

  3. Laboratory demonstration of an optical vortex mask coronagraph using photonic crystal

    Science.gov (United States)

    Murakami, N.; Baba, N.; Ise, A.; Sakamoto, M.; Oka, K.

    2010-10-01

    Photonic crystal, artificial periodic nanostructure, is an attractive device for constructing focal-plane phase-mask coronagraphs such as segmented phase masks (four-quadrant, eight-octant, and 4N-segmented ones) and an optical vortex mask (OVM), because of its extremely small manufacturing defect. Recently, speckle-noise limited contrast has been demonstrated for two monochromatic lasers by using the eight-octant phase-mask made of the photonic crystal (Murakami et al. 2010, ApJ, 714, 772). We applied the photonic-crystal device to the OVM coronagraph. The OVM is more advantageous over the segmented phase masks because it does not have discontinuities other than a central singular point and provides a full on-sky field of view. For generating an achromatic optical vortex, we manufactured an axially-symmetric half-wave plate (ASHWP). It is expected that a size of the manufacturing defect due to the central singularity is an order of several hundreds nanometers. The ASHWP is placed between two circular polarizers for modulating a Pancharatnam phase. A continuous spiral phase modulation is then implemented achromatically. We carried out preliminary laboratory demonstration of the OVM coronagraph using two monochromatic lasers as a model star (wavelengths of 532 nm and 633 nm). We report a principle of the achromatic optical-vortex generation, and results of the laboratory demonstration of the OVM coronagraph.

  4. ACCESS - A Science and Engineering Assessment of Space Coronagraph Concepts for the Direct Imaging and Spectroscopy of Exoplanetary Systems

    Science.gov (United States)

    Trauger, John

    2008-01-01

    Topics include and overview, science objectives, study objectives, coronagraph types, metrics, ACCESS observatory, laboratory validations, and summary. Individual slides examine ACCESS engineering approach, ACCESS gamut of coronagraph types, coronagraph metrics, ACCESS Discovery Space, coronagraph optical layout, wavefront control on the "level playing field", deformable mirror development for HCIT, laboratory testbed demonstrations, high contract imaging with the HCIT, laboratory coronagraph contrast and stability, model validation and performance predictions, HCIT coronagraph optical layout, Lyot coronagraph on the HCIT, pupil mapping (PIAA), shaped pupils, and vortex phase mask experiments on the HCIT.

  5. WFIRST: Coronagraph Systems Engineering and Performance Budgets

    Science.gov (United States)

    Poberezhskiy, Ilya; cady, eric; Frerking, Margaret A.; Kern, Brian; Nemati, Bijan; Noecker, Martin; Seo, Byoung-Joon; Zhao, Feng; Zhou, Hanying

    2018-01-01

    The WFIRST coronagraph instrument (CGI) will be the first in-space coronagraph using active wavefront control to directly image and characterize mature exoplanets and zodiacal disks in reflected starlight. For CGI systems engineering, including requirements development, CGI performance is predicted using a hierarchy of performance budgets to estimate various noise components — spatial and temporal flux variations — that obscure exoplanet signals in direct imaging and spectroscopy configurations. These performance budgets are validated through a robust integrated modeling and testbed model validation efforts.We present the performance budgeting framework used by WFIRST for the flow-down of coronagraph science requirements, mission constraints, and observatory interfaces to measurable instrument engineering parameters.

  6. The JWST/NIRCam Coronagraph: Mask Design and Fabrication

    Science.gov (United States)

    Krista, John E.; Balasubramanian, Kunjithapatha; Beichman, Charles A.; Echternach, Pierre M.; Green, Joseph J.; Liewer, Kurt M.; Muller, Richard E.; Serabyn, Eugene; Shaklan, Stuart B.; Trauger, John T.; hide

    2009-01-01

    The NIRCam instrument on the James Webb Space Telescope will provide coronagraphic imaging from lambda =1-5 microns of high contrast sources such as extrasolar planets and circumstellar disks. A Lyot coronagraph with a variety of circular and wedge-shaped occulting masks and matching Lyot pupil stops will be implemented. The occulters approximate grayscale transmission profiles using halftone binary patterns comprising wavelength-sized metal dots on anti-reflection coated sapphire substrates. The mask patterns are being created in the Micro Devices Laboratory at the Jet Propulsion Laboratory using electron beam lithography. Samples of these occulters have been successfully evaluated in a coronagraphic testbed. In a separate process, the complex apertures that form the Lyot stops will be deposited onto optical wedges. The NIRCam coronagraph flight components are expected to be completed this year.

  7. Extrasolar Planetary Imaging Coronagraph: Visible Nulling Coronagraph Testbed Results

    Science.gov (United States)

    Lyon, Richard G.

    2008-01-01

    The Extrasolar Planetary Imaging Coronagraph (EPIC) is a proposed NASA Discovery mission to image and characterize extrasolar giant planets in orbits with semi-major axes between 2 and 10 AU. EPIC will provide insights into the physical nature of a variety of planets in other solar systems complimenting radial velocity (RV) and astrometric planet searches. It will detect and characterize the atmospheres of planets identified by radial velocity surveys, determine orbital inclinations and masses, characterize the atmospheres around A and F stars, observed the inner spatial structure and colors of inner Spitzer selected debris disks. EPIC would be launched to heliocentric Earth trailing drift-away orbit, with a 3-year mission lifetime ( 5 year goal) and will revisit planets at least three times at intervals of 9 months. The starlight suppression approach consists of a visible nulling coronagraph (VNC) that enables high order starlight suppression in broadband light. To demonstrate the VNC approach and advance it's technology readiness the NASA Goddard Space Flight Center and Lockheed-Martin have developed a laboratory VNC and have demonstrated white light nulling. We will discuss our ongoing VNC work and show the latest results from the VNC testbed,

  8. Coronagraph Focal-Plane Phase Masks Based on Photonic Crystal Technology: Recent Progress and Observational Strategy

    Science.gov (United States)

    Murakami, Naoshi; Nishikawa, Jun; Sakamoto, Moritsugu; Ise, Akitoshi; Oka, Kazuhiko; Baba, Naoshi; Murakami, Hiroshi; Tamura, Motohide; Traub, Wesley A.; Mawet, Dimitri; hide

    2012-01-01

    Photonic crystal, an artificial periodic nanostructure of refractive indices, is one of the attractive technologies for coronagraph focal-plane masks aiming at direct imaging and characterization of terrestrial extrasolar planets. We manufactured the eight-octant phase mask (8OPM) and the vector vortex mask (VVM) very precisely using the photonic crystal technology. Fully achromatic phase-mask coronagraphs can be realized by applying appropriate polarization filters to the masks. We carried out laboratory experiments of the polarization-filtered 8OPM coronagraph using the High-Contrast Imaging Testbed (HCIT), a state-of-the-art coronagraph simulator at the Jet Propulsion Laboratory (JPL). We report the experimental results of 10-8-level contrast across several wavelengths over 10% bandwidth around 800nm. In addition, we present future prospects and observational strategy for the photonic-crystal mask coronagraphs combined with differential imaging techniques to reach higher contrast. We proposed to apply a polarization-differential imaging (PDI) technique to the VVM coronagraph, in which we built a two-channel coronagraph using polarizing beam splitters to avoid a loss of intensity due to the polarization filters. We also proposed to apply an angular-differential imaging (ADI) technique to the 8OPM coronagraph. The 8OPM/ADI mode avoids an intensity loss due to a phase transition of the mask and provides a full field of view around central stars. We present results of preliminary laboratory demonstrations of the PDI and ADI observational modes with the phase-mask coronagraphs.

  9. NIRCam Coronagraphic Observations of Disks and Planetary Systems

    Science.gov (United States)

    Beichman, Charles A.; Ygouf, Marie; Gaspar, Andras; NIRCam Science Team

    2017-06-01

    The NIRCam coronagraph offers a dramatic increase in sensitivity at wavelengths of 3-5 um where young planets are brightest. While large ground-based telescopes with Extreme Adaptive Optics have an advantage in inner working angle, NIRCam's sensitivity will allow high precision photometry for known planets and searches for planets with masses below that of Saturn. For debris disk science NIRCam observations will address the scattering properties of dust, look for evidence of ices and tholins, and search for planets which affect the structure of the disk itself.The NIRCam team's GTO program includes medium-band filter observations of known young planets having 1-5 Jupiter masses. A collaborative program with the MIRI team will provide coronagraphic observations at longer wavelengths. The combined dataset will yield the exoplanet’s total luminosity and effective temperature, an estimate of the initial entropy of the newly-formed planet, and the retrieval of atmospheric properties.The program will also make deep searches for lower mass planets toward known planetary systems, nearby young M stars and debris disk systems. Achievable mass limits range from ~1 Jupiter mass beyond 20 AU for the brightest A stars to perhaps a Uranus mass within 10 AU for the closest M stars.We will discuss details of the coronagraphic program for both the exoplanet and debris disk cases with an emphasis on using APT to optimize the observations of target and reference stars.

  10. METIS: the visible and UV coronagraph for solar orbiter

    Science.gov (United States)

    Romoli, M.; Landini, F.; Antonucci, E.; Andretta, V.; Berlicki, A.; Fineschi, S.; Moses, J. D.; Naletto, G.; Nicolosi, P.; Nicolini, G.; Spadaro, D.; Teriaca, L.; Baccani, C.; Focardi, M.; Pancrazzi, M.; Pucci, S.; Abbo, L.; Bemporad, A.; Capobianco, G.; Massone, G.; Telloni, D.; Magli, E.; Da Deppo, V.; Frassetto, F.; Pelizzo, M. G.; Poletto, L.; Uslenghi, M.; Vives, S.; Malvezzi, M.

    2017-11-01

    METIS coronagraph is designed to observe the solar corona with an annular field of view from 1.5 to 2.9 degrees in the visible broadband (580-640 nm) and in the UV HI Lyman-alpha, during the Sun close approaching and high latitude tilting orbit of Solar Orbiter. The big challenge for a coronagraph is the stray light rejection. In this paper after a description of the present METIS optical design, the stray light rejection design is presented in detail together with METIS off-pointing strategies throughout the mission. Data shown in this paper derive from the optimization of the optical design performed with Zemax ray tracing and from laboratory breadboards of the occultation system and of the polarimeter.

  11. Recent developments with the visible nulling coronagraph

    Science.gov (United States)

    Hicks, Brian A.; Lyon, Richard G.; Bolcar, Matthew R.; Clampin, Mark; Petrone, Peter; Helmbrecht, Michael A.; Howard, Joseph M.; Miller, Ian J.

    2016-08-01

    A wide array of general astrophysics studies including detecting and characterizing habitable exoplanets could be enabled by a future large segmented telescope with sensitivity in the UV, optical, and infrared bands. When paired with a starshade or coronagraph, such an observatory could enable direct imaging and detailed spectroscopic observations of nearby Earth-like habitable zone planets. Over the past several years, a laboratory-based Visible Nulling Coronagraph (VNC) has evolved to reach requisite contrasts over a 1 nm bandwidth at narrow source angle separation using a segmented deformable mirror in one arm of a Mach-Zehnder layout. More recent efforts targeted broadband performance following the addition of two sets of half-wave Fresnel rhomb achromatic phase shifters (APS) with the goal of reaching 10-9 contrast, at a separation of 2λ/D, using a 40 nm (6%) bandwidth single mode fiber source. Here we present updates on the VNC broadband nulling effort, including approaches to addressing system contrast limitations.

  12. The ExtraSolar Planetary Imaging Coronagraph

    Science.gov (United States)

    Clampin, M.; Lyon, R.

    2010-10-01

    The Extrasolar Planetary Imaging Coronagraph (EPIC) is a 1.65-m telescope employing a visible nulling coronagraph (VNC) to deliver high-contrast images of extrasolar system architectures. EPIC will survey the architectures of exosolar systems, and investigate the physical nature of planets in these solar systems. EPIC will employ a Visible Nulling Coronagraph (VNC), featuring an inner working angle of ≤2λ/D, and offers the ideal balance between performance and feasibility of implementation, while not sacrificing science return. The VNC does not demand unrealistic thermal stability from its telescope optics, achieving its primary mirror surface figure requires no new technology, and pointing stability is within state of the art. The EPIC mission will be launched into a drift-away orbit with a five-year mission lifetime.

  13. Scaled-model guidelines for formation-flying solar coronagraph missions.

    Science.gov (United States)

    Landini, Federico; Romoli, Marco; Baccani, Cristian; Focardi, Mauro; Pancrazzi, Maurizio; Galano, Damien; Kirschner, Volker

    2016-02-15

    Stray light suppression is the main concern in designing a solar coronagraph. The main contribution to the stray light for an externally occulted space-borne solar coronagraph is the light diffracted by the occulter and scattered by the optics. It is mandatory to carefully evaluate the diffraction generated by an external occulter and the impact that it has on the stray light signal on the focal plane. The scientific need for observations to cover a large portion of the heliosphere with an inner field of view as close as possible to the photospheric limb supports the ambition of launching formation-flying giant solar coronagraphs. Their dimension prevents the possibility of replicating the flight geometry in a clean laboratory environment, and the strong need for a scaled model is thus envisaged. The problem of scaling a coronagraph has already been faced for exoplanets, for a single point source on axis at infinity. We face the problem here by adopting an original approach and by introducing the scaling of the solar disk as an extended source.

  14. A coronagraph for operational space weather predication

    Science.gov (United States)

    Middleton, Kevin F.

    2017-09-01

    Accurate prediction of the arrival of solar wind phenomena, in particular coronal mass ejections (CMEs), at Earth, and possibly elsewhere in the heliosphere, is becoming increasingly important given our ever-increasing reliance on technology. The potentially severe impact on human technological systems of such phenomena is termed space weather. A coronagraph is arguably the instrument that provides the earliest definitive evidence of CME eruption; from a vantage point on or near the Sun-Earth line, a coronagraph can provide near-definitive identification of an Earth-bound CME. Currently, prediction of CME arrival is critically dependent on ageing science coronagraphs whose design and operation were not optimized for space weather services. We describe the early stages of the conceptual design of SCOPE (the Solar Coronagraph for OPErations), optimized to support operational space weather services.

  15. Fine Guidance Sensing for Coronagraphic Observatories

    Science.gov (United States)

    Brugarolas, Paul; Alexander, James W.; Trauger, John T.; Moody, Dwight C.

    2011-01-01

    Three options have been developed for Fine Guidance Sensing (FGS) for coronagraphic observatories using a Fine Guidance Camera within a coronagraphic instrument. Coronagraphic observatories require very fine precision pointing in order to image faint objects at very small distances from a target star. The Fine Guidance Camera measures the direction to the target star. The first option, referred to as Spot, was to collect all of the light reflected from a coronagraph occulter onto a focal plane, producing an Airy-type point spread function (PSF). This would allow almost all of the starlight from the central star to be used for centroiding. The second approach, referred to as Punctured Disk, collects the light that bypasses a central obscuration, producing a PSF with a punctured central disk. The final approach, referred to as Lyot, collects light after passing through the occulter at the Lyot stop. The study includes generation of representative images for each option by the science team, followed by an engineering evaluation of a centroiding or a photometric algorithm for each option. After the alignment of the coronagraph to the fine guidance system, a "nulling" point on the FGS focal point is determined by calibration. This alignment is implemented by a fine alignment mechanism that is part of the fine guidance camera selection mirror. If the star images meet the modeling assumptions, and the star "centroid" can be driven to that nulling point, the contrast for the coronagraph will be maximized.

  16. Prototype Imaging Spectrograph for Coronagraphic Exoplanet Studies (PISCES) for WFIRST-AFTA

    Science.gov (United States)

    Gong, Qian; Mcelwain, Michael; Greeley, Bradford; Grammer, Bryan; Marx, Catherine; Memarsadeghi, Nargess; Stapelfeldt, Karl; Hilton, George; Sayson, Jorge Llop; Perrin, Marshall; hide

    2015-01-01

    Prototype Imaging Spectrograph for Coronagraphic Exoplanet Studies (PISCES) is a lenslet array based integral field spectrometer (IFS) designed for high contrast imaging of extrasolar planets. PISCES will be used to advance the technology readiness of the high contrast IFS baselined on the Wide-Field InfraRed Survey Telescope/Astrophysics Focused Telescope Assets (WFIRST-AFTA) coronagraph instrument. PISCES will be integrated into the high contrast imaging testbed (HCIT) at the Jet Propulsion Laboratory (JPL) and will work with both the Hybrid Lyot Coronagraph (HLC) and the Shaped Pupil Coronagraph (SPC) configurations. We discuss why the lenslet array based IFS was selected for PISCES. We present the PISCES optical design, including the similarities and differences of lenslet based IFSs to normal spectrometers, the trade-off between a refractive design and reflective design, as well as the specific function of our pinhole mask on the back surface of the lenslet array to reduce the diffraction from the edge of the lenslets. The optical analysis, alignment plan, and mechanical design of the instrument will be discussed.

  17. Prototype Imaging Spectrograph for Coronagraphic Exoplanet Studies (PISCES) for WFIRST/AFTA

    Science.gov (United States)

    Gong, Qian; Mcelwain, Michael; Greeley, Bradford; Grammer, Bryan; Marx, Catherine; Memarsadeghi, Nargess; Stapelfeldt, Karl; Hilton, George; Sayson, Jorge Llop; Perrin, Marshall; hide

    2015-01-01

    Prototype Imaging Spectrograph for Coronagraphic Exoplanet Studies (PISCES) is a lenslet array based integral field spectrometer (IFS) designed for high contrast imaging of extrasolar planets. PISCES will be used to advance the technology readiness of the high contrast IFS baselined on the Wide-Field InfraRed Survey Telescope/Astrophysics Focused Telescope Assets (WFIRST/AFTA) coronagraph instrument. PISCES will be integrated into the high contrast imaging testbed (HCIT) at the Jet Propulsion Laboratory and will work with both the Hybrid Lyot Coronagraph (HLC) and the Shaped Pupil Coronagraph (SPC) cofigurations. We discuss why the lenslet array based IFS is selected for PISCES. We present the PISCES optical design, including the similarities and differences of lenslet based IFSs to normal spectrometers, the trade-off between a refractive design and reflective design, as well as the specific function of our pinhole mask on the back surface of the lenslet array to further suppress star light introduced speckles. The optical analysis, alignment plan, and mechanical design of the instrument will be discussed.

  18. Improved achromatization of phase mask coronagraphs using colored apodization

    Science.gov (United States)

    N'diaye, M.; Dohlen, K.; Cuevas, S.; Soummer, R.; Sánchez-Pérez, C.; Zamkotsian, F.

    2012-02-01

    Context. For direct imaging of exoplanets, a stellar coronagraph helps to remove the image of an observed bright star by attenuating the diffraction effects caused by the telescope aperture of diameter D. The dual zone phase mask (DZPM) coronagraph constitutes a promising concept since it theoretically offers a small inner working angle (IWA ~ λ0/D where λ0 denotes the central wavelength of the spectral range Δλ), good achromaticity, and high starlight rejection, typically reaching a 106 contrast at 5 λ0/D from the star over a spectral bandwidth Δλ/λ0 of 25% (similar to H-band). This last value proves to be encouraging for broadband imaging of young and warm Jupiter-like planets. Aims: Contrast levels higher than 106 are, however, required for observing older and/or less massive companions over a finite spectral bandwidth. An achromatization improvement of the DZPM coronagraph is therefore mandatory to reach such good performance. Methods: In its design, the DZPM coronagraph uses a gray (or achromatic) apodization. We replaced it by a colored apodization to increase the performance of this coronagraphic system over a wide spectral range. This innovative concept, called colored apodizer phase mask (CAPM) coronagraph, is defined to reach the highest contrast in the exoplanet search area. Once this has been done, we study the performance of the CAPM coronagraph in the presence of different errors to evaluate the sensitivity of our concept. Results: A 2.5 contrast gain is estimated from the performance provided by the CAPM coronagraph with respect to that of the DZPM coronagraph. A 2.2 × 10-8 intensity level at 5 λ0/D separation is then theoretically achieved with the CAPM coronagraph in the presence of a clear circular aperture and a 25% bandwidth. In addition, our studies show that our concept is less sensitive to low than to high-order aberrations for a given value of rms wavefront errors.

  19. Extrasolar Planetary Imaging Coronagraph

    Science.gov (United States)

    Clampin, M.

    2007-06-01

    The Extrasolar Planetary Imaging Coronagraph (EPIC) is a proposed NASA Discovery mission to image and characterize extrasolar giant planets in orbits with semi-major axes between 2 and 10 AU. EPIC will provide insights into the physical nature of a variety of planets in other solar systems complimenting radial velocity (RV) and astrometric planet searches. It will detect and characterize the atmospheres of planets identified by radial velocity surveys, determine orbital inclinations and masses, characterize the atmospheres around A and F type stars which cannot be found with RV techniques, and observe the inner spatial structure and colors of debris disks. The robust mission design is simple and flexible ensuring mission success while minimizing cost and risk. The science payload consists of a heritage optical telescope assembly (OTA), and visible nulling coronagraph (VNC) instrument.

  20. Visible Nulling Coronagraph Progress Report

    Science.gov (United States)

    Lyon, R. G.; Clampin, M.; Woodruff, R. A.; Vasudevan, G.; Thompson, P.; Petrone, P.; Madison, T.; Rizzo, M.; Melnick, G.; Tolls, V.

    2010-10-01

    We report on recent laboratory results with the NASA Goddard Space Flight Center Visible Nulling Coronagraph (VNC) testbed. We have achieved focal plane contrasts of 108 and approaching 109 at inner working angles of 2 λ/D and 4 λ/D, respectively. Results were obtained with a broadband source and 40 nm filter centered on 630 nm. A null control breadboard (NCB) was also developed to assess and quantify MEMS based deformable mirror technology (DM), and to develop and assess closed-loop null control algorithms. We have demonstrated closed-loop performance at 27 Hz.

  1. Linear-constraint wavefront control for exoplanet coronagraphic imaging systems

    Science.gov (United States)

    Sun, He; Eldorado Riggs, A. J.; Kasdin, N. Jeremy; Vanderbei, Robert J.; Groff, Tyler Dean

    2017-01-01

    A coronagraph is a leading technology for achieving high-contrast imaging of exoplanets in a space telescope. It uses a system of several masks to modify the diffraction and achieve extremely high contrast in the image plane around target stars. However, coronagraphic imaging systems are very sensitive to optical aberrations, so wavefront correction using deformable mirrors (DMs) is necessary to avoid contrast degradation in the image plane. Electric field conjugation (EFC) and Stroke minimization (SM) are two primary high-contrast wavefront controllers explored in the past decade. EFC minimizes the average contrast in the search areas while regularizing the strength of the control inputs. Stroke minimization calculates the minimum DM commands under the constraint that a target average contrast is achieved. Recently in the High Contrast Imaging Lab at Princeton University (HCIL), a new linear-constraint wavefront controller based on stroke minimization was developed and demonstrated using numerical simulation. Instead of only constraining the average contrast over the entire search area, the new controller constrains the electric field of each single pixel using linear programming, which could led to significant increases in speed of the wavefront correction and also create more uniform dark holes. As a follow-up of this work, another linear-constraint controller modified from EFC is demonstrated theoretically and numerically and the lab verification of the linear-constraint controllers is reported. Based on the simulation and lab results, the pros and cons of linear-constraint controllers are carefully compared with EFC and stroke minimization.

  2. CORONAGRAPHIC OBSERVATIONS OF FOMALHAUT AT SOLAR SYSTEM SCALES

    International Nuclear Information System (INIS)

    Kenworthy, Matthew A.; Meshkat, Tiffany; Quanz, Sascha P.; Meyer, Michael R.; Girard, Julien H.; Kasper, Markus

    2013-01-01

    We report on a search for low mass companions within 10 AU of the star Fomalhaut, using narrowband observations at 4.05 μm obtained with the Apodizing Phase Plate coronagraph on the VLT/NaCo. Our observations place a model-dependent upper mass limit of 12-20 M jup from 4 to 10 AU, covering the semimajor axis search space between interferometric imaging measurements and other direct imaging non-detections. These observations rule out models where the large semimajor axis for the putative candidate companion Fomalhaut b is explained by dynamical scattering from a more massive companion in the inner stellar system, where such giant planets are thought to form.

  3. Visible nulling coronagraph testbed results

    Science.gov (United States)

    Lyon, Richard G.; Clampin, Mark; Woodruff, Robert A.; Vasudevan, Gopal; Thompson, Patrick; Petrone, Peter; Madison, Timothy; Rizzo, Maxime; Melnick, Gary; Tolls, Volker

    2009-08-01

    We report on our recent laboratory results with the NASA/Goddard Space Flight Center (GSFC) Visible Nulling Coronagraph (VNC) testbed. We have experimentally achieved focal plane contrasts of 1 x 108 and approaching 109 at inner working angles of 2 * wavelength/D and 4 * wavelength/D respectively where D is the aperture diameter. The result was obtained using a broadband source with a narrowband spectral filter of width 10 nm centered on 630 nm. To date this is the deepest nulling result with a visible nulling coronagraph yet obtained. Developed also is a Null Control Breadboard (NCB) to assess and quantify MEMS based segmented deformable mirror technology and develop and assess closed-loop null sensing and control algorithm performance from both the pupil and focal planes. We have demonstrated closed-loop control at 27 Hz in the laboratory environment. Efforts are underway to first bring the contrast to > 109 necessary for the direct detection and characterization of jovian (Jupiter-like) and then to > 1010 necessary for terrestrial (Earth-like) exosolar planets. Short term advancements are expected to both broaden the spectral passband from 10 nm to 100 nm and to increase both the long-term stability to > 2 hours and the extent of the null out to a ~ 10 * wavelength / D via the use of MEMS based segmented deformable mirror technology, a coherent fiber bundle, achromatic phase shifters, all in a vacuum chamber at the GSFC VNC facility. Additionally an extreme stability textbook sized compact VNC is under development.

  4. High-contrast visible nulling coronagraph for segmented and arbitrary telescope apertures

    Science.gov (United States)

    Hicks, Brian A.; Lyon, Richard G.; Bolcar, Matthew R.; Clampin, Mark; Petrone, Peter

    2014-08-01

    Exoplanet coronagraphy will be driven by the telescope architectures available and thus the system designer must have available one or more suitable coronagraphic instrument choices that spans the set of telescope apertures, including filled (off-axis), obscured (e.g. with secondary mirror spiders and struts), segmented apertures, such as JWST, and interferometric apertures. In this work we present one such choice of coronagraph, known as the visible nulling coronagraph (VNC), that spans all four types of aperture and also employs differential sensing and control.

  5. Scaled model guidelines for solar coronagraphs' external occulters with an optimized shape.

    Science.gov (United States)

    Landini, Federico; Baccani, Cristian; Schweitzer, Hagen; Asoubar, Daniel; Romoli, Marco; Taccola, Matteo; Focardi, Mauro; Pancrazzi, Maurizio; Fineschi, Silvano

    2017-12-01

    One of the major challenges faced by externally occulted solar coronagraphs is the suppression of the light diffracted by the occulter edge. It is a contribution to the stray light that overwhelms the coronal signal on the focal plane and must be reduced by modifying the geometrical shape of the occulter. There is a rich literature, mostly experimental, on the appropriate choice of the most suitable shape. The problem arises when huge coronagraphs, such as those in formation flight, shall be tested in a laboratory. A recent contribution [Opt. Lett.41, 757 (2016)OPLEDP0146-959210.1364/OL.41.000757] provides the guidelines for scaling the geometry and replicate in the laboratory the flight diffraction pattern as produced by the whole solar disk and a flight occulter but leaves the conclusion on the occulter scale law somehow unjustified. This paper provides the numerical support for validating that conclusion and presents the first-ever simulation of the diffraction behind an occulter with an optimized shape along the optical axis with the solar disk as a source. This paper, together with Opt. Lett.41, 757 (2016)OPLEDP0146-959210.1364/OL.41.000757, aims at constituting a complete guide for scaling the coronagraphs' geometry.

  6. Coronagraph for astronomical imaging and spectrophotometry

    Science.gov (United States)

    Vilas, Faith; Smith, Bradford A.

    1987-01-01

    A coronagraph designed to minimize scattered light in astronomical observations caused by the structure of the primary mirror, secondary mirror, and secondary support structure of a Cassegrainian telescope is described. Direct (1:1) and reducing (2.7:1) imaging of astronomical fields are possible. High-quality images are produced. The coronagraph can be used with either a two-dimensional charge-coupled device or photographic film camera. The addition of transmission dispersing optics converts the coronagraph into a low-resolution spectrograph. The instrument is modular and portable for transport to different observatories.

  7. Study of a coronagraphic mask using evanescent waves.

    Science.gov (United States)

    Buisset, Christophe; Rabbia, Yves; Lepine, Thierry; Alagao, Mary-Angelie; Ducrot, Elsa; Poshyachinda, Saran; Soonthornthum, Boonrucksar

    2017-04-03

    The evanescent wave coronagraph (EvWaCo) is a specific kind of band-limited coronagraph using the frustrated total internal reflection phenomenon to produce the coronagraphic effect (removing starlight from the image plane in order to make the stellar environment detectable). In this paper, we present a theoretical and experimental study of the EvWaCo coronagraphic mask. First, we calculate the theoretical transmission and we show that this mask is partially achromatic. Then, we present the experimental results obtained in unpolarized light at the wavelength λ≈900 nm and relative spectral bandwidth Δλ/λ≈6%. In particular, we show that the coronagraph provides a contrast down to a few 10-6 at an angular distance of about ten Airy radii.

  8. Extrasolar Planetary Imaging Coronagraph (EPIC): visible nulling cornagraph testbed results

    Science.gov (United States)

    Lyon, Richard G.; Clampin, Mark; Melnick, Gary; Tolls, Volker; Woodruff, Robert; Vasudevan, Gopal

    2008-07-01

    The Extrasolar Planetary Imaging Coronagraph (EPIC) is a NASA Astrophysics Strategic Mission Concept under study for the upcoming Exoplanet Probe. EPIC's mission would be to image and characterize extrasolar giant planets, and potential super-Earths, in orbits with semi-major axes between 2 and 10 AU. EPIC will provide insights into the physical nature of a variety of planets in other solar systems complimenting radial velocity (RV) and astrometric planet searches. It will detect and characterize the atmospheres of planets identified by radial velocity surveys and potentially some transits, determine orbital inclinations and masses, characterize the atmospheres of gas giants around A and F stars, observed the inner spatial structure and colors of inner Spitzer selected debris disks. EPIC would be launched into a heliocentric Earth trailing drift-away orbit, with a 3-year mission lifetime (5 year goal) and will revisit planets at least three times. The starlight suppression approach consists of a visible nulling coronagraph (VNC) that enables high order starlight suppression in broadband light. To demonstrate the VNC approach and advance it's technology readiness the NASA/Goddard Space Flight Center and Lockheed-Martin have developed a laboratory VNC and have demonstrated white light nulling. We will discuss our ongoing VNC work and show the latest results from the VNC testbed.

  9. Beach Ball Coronagraph

    Data.gov (United States)

    National Aeronautics and Space Administration — A precision formation flying coronagraph with an inflatable, passive ‘beach ball’ occulter has the chance to make possible the next generation of advances in coronal...

  10. Coronagraphic Wavefront Control for the ATLAST-9.2m Telescope

    Science.gov (United States)

    Lyon, RIchard G.; Oegerle, William R.; Feinberg, Lee D.; Bolcar, Matthew R.; Dean, Bruce H.; Mosier, Gary E.; Postman, Marc

    2010-01-01

    The Advanced Technology for Large Aperture Space Telescope (ATLAST) concept was assessed as one of the NASA Astrophysics Strategic Mission Concepts (ASMC) studies. Herein we discuss the 9.2-meter diameter segmented aperture version and its wavefront sensing and control (WFSC) with regards to coronagraphic detection and spectroscopic characterization of exoplanets. The WFSC would consist of at least two levels of sensing and control: (i) an outer coarser level of sensing and control to phase and control the segments and secondary mirror in a manner similar to the James Webb Space Telescope but operating at higher temporal bandwidth, and (ii) an inner, coronagraphic instrument based, fine level of sensing and control for both amplitude and wavefront errors operating at higher temporal bandwidths. The outer loop would control rigid-body actuators on the primary and secondary mirrors while the inner loop would control one or more segmented deformable mirror to suppress the starlight within the coronagraphic field-of view. Herein we discuss the visible nulling coronagraph (VNC) and the requirements it levies on wavefront sensing and control and show the results of closed-loop simulations to assess performance and evaluate the trade space of system level stability versus control bandwidth.

  11. Coronagraphic wavefront control for the ATLAST 9.2m telescope

    Science.gov (United States)

    Lyon, Richard G.; Oegerle, William R.; Feinberg, Lee D.; Bolcar, Matthew R.; Dean, Bruce H.; Mosier, Gary E.; Postman, Marc

    2010-07-01

    The Advanced Technology for Large Aperture Space Telescope (ATLAST) concept was assessed as one of the NASA Astrophysics Strategic Mission Concepts (ASMC) studies. Herein we discuss the 9.2-meter diameter segmented aperture version and its wavefront sensing and control (WFSC) with regards to coronagraphic detection and spectroscopic characterization of exoplanets. The WFSC would consist of at least two levels of sensing and control: (i) an outer coarser level of sensing and control to phase and control the segments and secondary mirror in a manner similar to the James Webb Space Telescope but operating at higher temporal bandwidth, and (ii) an inner, coronagraphic instrument based, fine level of sensing and control for both amplitude and wavefront errors operating at higher temporal bandwidths. The outer loop would control rigid-body actuators on the primary and secondary mirrors while the inner loop would control one or more segmented deformable mirror to suppress the starlight within the coronagraphic field-of-view. Herein we discuss the visible nulling coronagraph (VNC) and the requirements it levies on wavefront sensing and control and show the results of closed-loop simulations to assess performance and evaluate the trade space of system level stability versus control bandwidth.

  12. Apodized Pupil Lyot Coronagraphs designs for future segmented space telescopes

    Science.gov (United States)

    St. Laurent, Kathryn; Fogarty, Kevin; Zimmerman, Neil; N’Diaye, Mamadou; Stark, Chris; Sivaramakrishnan, Anand; Pueyo, Laurent; Vanderbei, Robert; Soummer, Remi

    2018-01-01

    A coronagraphic starlight suppression system situated on a future flagship space observatory offers a promising avenue to image Earth-like exoplanets and search for biomarkers in their atmospheric spectra. One NASA mission concept that could serve as the platform to realize this scientific breakthrough is the Large UV/Optical/IR Surveyor (LUVOIR). Such a mission would also address a broad range of topics in astrophysics with a multi-wavelength suite of instruments.In support of the community’s assessment of the scientific capability of a LUVOIR mission, the Exoplanet Exploration Program (ExEP) has launched a multi-team technical study: Segmented Coronagraph Design and Analysis (SCDA). The goal of this study is to develop viable coronagraph instrument concepts for a LUVOIR-type mission. Results of the SCDA effort will directly inform the mission concept evaluation being carried out by the LUVOIR Science and Technology Definition Team. The apodized pupil Lyot coronagraph (APLC) is one of several coronagraph design families that the SCDA study is assessing. The APLC is a Lyot-style coronagraph that suppresses starlight through a series of amplitude operations on the on-axis field. Given a suite of seven plausible segmented telescope apertures, we have developed an object-oriented software toolkit to automate the exploration of thousands of APLC design parameter combinations. In the course of exploring this parameter space we have established relationships between APLC throughput and telescope aperture geometry, Lyot stop, inner working angle, bandwidth, and contrast level. In parallel with the parameter space exploration, we have investigated several strategies to improve the robustness of APLC designs to fabrication and alignment errors and integrated a Design Reference Mission framework to evaluate designs with scientific yield metrics.

  13. Realistic Simulations of Coronagraphic Observations with WFIRST

    Science.gov (United States)

    Rizzo, Maxime; Zimmerman, Neil; Roberge, Aki; Lincowski, Andrew; Arney, Giada; Stark, Chris; Jansen, Tiffany; Turnbull, Margaret; WFIRST Science Investigation Team (Turnbull)

    2018-01-01

    We present a framework to simulate observing scenarios with the WFIRST Coronagraphic Instrument (CGI). The Coronagraph and Rapid Imaging Spectrograph in Python (crispy) is an open-source package that can be used to create CGI data products for analysis and development of post-processing routines. The software convolves time-varying coronagraphic PSFs with realistic astrophysical scenes which contain a planetary architecture, a consistent dust structure, and a background field composed of stars and galaxies. The focal plane can be read out by a WFIRST electron-multiplying CCD model directly, or passed through a WFIRST integral field spectrograph model first. Several elementary post-processing routines are provided as part of the package.

  14. Electric field conjugation for ground-based high-contrast imaging: robustness study and tests with the Project 1640 coronagraph

    Science.gov (United States)

    Matthews, Christopher T.; Crepp, Justin R.; Vasisht, Gautam; Cady, Eric

    2017-10-01

    The electric field conjugation (EFC) algorithm has shown promise for removing scattered starlight from high-contrast imaging measurements, both in numerical simulations and laboratory experiments. To prepare for the deployment of EFC using ground-based telescopes, we investigate the response of EFC to unaccounted for deviations from an ideal optical model. We explore the linear nature of the algorithm by assessing its response to a range of inaccuracies in the optical model generally present in real systems. We find that the algorithm is particularly sensitive to unresponsive deformable mirror (DM) actuators, misalignment of the Lyot stop, and misalignment of the focal plane mask. Vibrations and DM registration appear to be less of a concern compared to values expected at the telescope. We quantify how accurately one must model these core coronagraph components to ensure successful EFC corrections. We conclude that while the condition of the DM can limit contrast, EFC may still be used to improve the sensitivity of high-contrast imaging observations. Our results have informed the development of a full EFC implementation using the Project 1640 coronagraph at Palomar observatory. While focused on a specific instrument, our results are applicable to the many coronagraphs that may be interested in employing EFC.

  15. Lessons from Coronagraphic Imaging with HST that may apply to JWST

    Science.gov (United States)

    Grady, C. A.; Hines, Dean C.; Schneider, Glenn; McElwain, Michael W.

    2017-06-01

    One of the major capabilities offered by JWST is coronagraphic imaging from space, covering the near through mid-IR and optimized for study of planet formation and the evolution of planetary systems. Planning for JWST has resulted in expectations for instrument performance, observation strategies and data reduction approaches. HST with 20 years of coronagraphic imaging offers some experience which may be useful to those planning for JWST. 1) Real astronomical sources do not necessarily conform to expectations. Debris disks may be accompanied by more distant material, and some systems may be conspicuous in scattered light when offering only modest IR excesses. Proto-planetary disks are not constantly illuminated, and thus a single epoch observation of the source may not be sufficient to reveal everything about it. 2) The early expectation with NICMOS was that shallow, 2-roll observations would reveal a wealth of debris disks imaged in scattered light, and that only a limited set of PSF observations would be required. Instead, building up a library of spatially resolved disks in scattered light has proven to require alternate observing strategies, is still on-going, and has taken far longer than expected. 3) A wealth of coronagraphic options with an instrument may not be scientifically informative, unless there is a similar time investment in acquisition of calibration data in support of the science observations. 4) Finally, no one anticipated what can be gleaned from coronagraphic imaging. We should expect similar, unexpected, and ultimately revolutionary discoveries with JWST.

  16. Optimization of coronagraph design for segmented aperture telescopes

    Science.gov (United States)

    Jewell, Jeffrey; Ruane, Garreth; Shaklan, Stuart; Mawet, Dimitri; Redding, Dave

    2017-09-01

    The goal of directly imaging Earth-like planets in the habitable zone of other stars has motivated the design of coronagraphs for use with large segmented aperture space telescopes. In order to achieve an optimal trade-off between planet light throughput and diffracted starlight suppression, we consider coronagraphs comprised of a stage of phase control implemented with deformable mirrors (or other optical elements), pupil plane apodization masks (gray scale or complex valued), and focal plane masks (either amplitude only or complex-valued, including phase only such as the vector vortex coronagraph). The optimization of these optical elements, with the goal of achieving 10 or more orders of magnitude in the suppression of on-axis (starlight) diffracted light, represents a challenging non-convex optimization problem with a nonlinear dependence on control degrees of freedom. We develop a new algorithmic approach to the design optimization problem, which we call the "Auxiliary Field Optimization" (AFO) algorithm. The central idea of the algorithm is to embed the original optimization problem, for either phase or amplitude (apodization) in various planes of the coronagraph, into a problem containing additional degrees of freedom, specifically fictitious "auxiliary" electric fields which serve as targets to inform the variation of our phase or amplitude parameters leading to good feasible designs. We present the algorithm, discuss details of its numerical implementation, and prove convergence to local minima of the objective function (here taken to be the intensity of the on-axis source in a "dark hole" region in the science focal plane). Finally, we present results showing application of the algorithm to both unobscured off-axis and obscured on-axis segmented telescope aperture designs. The application of the AFO algorithm to the coronagraph design problem has produced solutions which are capable of directly imaging planets in the habitable zone, provided end

  17. Optimization of the occulter for the Solar Orbiter/METIS coronagraph

    Science.gov (United States)

    Landini, Federico; Vivès, Sébastien; Romoli, Marco; Guillon, Christophe; Pancrazzi, Maurizio; Escolle, Clement; Focardi, Mauro; Antonucci, Ester; Fineschi, Silvano; Naletto, Giampiero; Nicolini, Gianalfredo; Nicolosi, Piergiorgio; Spadaro, Daniele

    2012-09-01

    METIS (Multi Element Telescope for Imaging and Spectroscopy investigation), selected to fly aboard the Solar Orbiter ESA/NASA mission, is conceived to perform imaging (in visible, UV and EUV) and spectroscopy (in EUV) of the solar corona, by means of an integrated instrument suite located on a single optical bench and sharing the same aperture on the satellite heat shield. As every coronagraph, METIS is highly demanding in terms of stray light suppression. Coronagraphs history teaches that a particular attention must be dedicated to the occulter optimization. The METIS occulting system is of particular interest due to its innovative concept. In order to meet the strict thermal requirements of Solar Orbiter, METIS optical design has been optimized by moving the entrance pupil at the level of the external occulter on the S/C thermal shield, thus reducing the size of the external aperture. The scheme is based on an inverted external-occulter (IEO). The IEO consists of a circular aperture on the Solar Orbiter thermal shield. A spherical mirror rejects back the disk-light through the IEO. A breadboard of the occulting assembly (BOA) has been manufactured in order to perform stray light tests in front of two solar simulators (in Marseille, France and in Torino, Italy). A first measurement campaign has been carried on at the Laboratoire d'Astrophysique de Marseille. In this paper we describe the BOA design, the laboratory set-up and the preliminary results.

  18. Requirements and design reference mission for the WFIRST/AFTA coronagraph instrument

    Science.gov (United States)

    Demers, Richard T.; Dekens, Frank; Calvet, Rob; Chang, Zensheu; Effinger, Robert; Ek, Eric; Hovland, Larry; Jones, Laura; Loc, Anthony; Nemati, Bijan; Noecker, Charley; Neville, Timothy; Pham, Hung; Rud, Mike; Tang, Hong; Villalvazo, Juan

    2015-09-01

    The WFIRST-AFTA coronagraph instrument takes advantage of AFTAs 2.4-meter aperture to provide novel exoplanet imaging science at approximately the same instrument cost as an Explorer mission. The AFTA coronagraph also matures direct imaging technologies to high TRL for an Exo-Earth Imager in the next decade. The coronagraph Design Reference Mission (DRM) optical design is based on the highly successful High Contrast Imaging Testbed (HCIT), with modifications to accommodate the AFTA telescope design, service-ability, volume constraints, and the addition of an Integral Field Spectrograph (IFS). In order to optimally satisfy the three science objectives of planet imaging, planet spectral characterization and dust debris imaging, the coronagraph is designed to operate in two different modes: Hybrid Lyot Coronagraph or Shaped Pupil Coronagraph. Active mechanisms change pupil masks, focal plane masks, Lyot masks, and bandpass filters to shift between modes. A single optical beam train can thus operate alternatively as two different coronagraph architectures. Structural Thermal Optical Performance (STOP) analysis predicts the instrument contrast with the Low Order Wave Front Control loop closed. The STOP analysis was also used to verify that the optical/structural/thermal design provides the extreme stability required for planet characterization in the presence of thermal disturbances expected in a typical observing scenario. This paper describes the instrument design and the flow down from science requirements to high level engineering requirements.

  19. Requirements and Design Reference Mission for the WFIRST-AFTA Coronagraph Instrument

    Science.gov (United States)

    Demers, Richard T.; Dekens, Frank; Calvet, Rob; Chang, Zensheu; Effinger, Robert; Ek, Eric; Hovland, Larry; Jones, Laura; Loc, Anthony; Nemati, Bijan; hide

    2015-01-01

    The WFIRST-AFTA coronagraph instrument take s advantage of AFTA s 2.4 -meter aperture to provide novel exoplanet imaging science at approximately the same instrument cost as an Explorer mission. The AFTA coronagraph also matures direct imaging technologies to high TRL for an Exo-Earth Imager in the next decade. The coronagraph Design Reference Mission (DRM) optical design is based on the highly successful High Contrast Imaging Testbed (HCIT), with modifications to accommodate the AFTA telescope design, service-ability, volume constraints, and the addition of an Integral Field Spectrograph (IFS). In order to optimally satisfy the three science objectives of planet imaging, planet spectral characterization and dust debris imaging, the coronagraph is designed to operate in two different modes : Hybrid Lyot Coronagraph or Shaped Pupil Coronagraph. Active mechanisms change pupil masks, focal plane masks, yot masks, and bandpass filters to shift between modes. A single optical beam train can thus operate alternatively as two different coronagraph architecture s. Structural Thermal Optical Performance (STOP) analysis predict s the instrument contrast with the Low Order Wave Front Control loop closed. The STOP analysis was also used to verify that the optical/structural/thermal design provides the extreme stability required for planet characterization in the presence of thermal disturbances expected in a typical observing scenario. This paper describes the instrument design and the flow down from science requirements to high level engineering requirements.

  20. Extrasolar Planetary Imaging Coronagraph (EPIC)

    Science.gov (United States)

    Clampin, Mark

    2009-01-01

    The Extrasolar Planetary Imaging Coronagraph (EPIC) is a proposed NASA Exoplanet Probe mission to image and characterize extrasolar giant planets. EPIC will provide insights into the physical nature and architecture of a variety of planets in other solar systems. Initially, it will detect and characterize the atmospheres of planets identified by radial velocity surveys, determine orbital inclinations and masses and characterize the atmospheres around A and F type stars which cannot be found with RV techniques. It will also observe the inner spatial structure of exozodiacal disks. EPIC has a heliocentric Earth trailing drift-away orbit, with a 5 year mission lifetime. The robust mission design is simple and flexible ensuring mission success while minimizing cost and risk. The science payload consists of a heritage optical telescope assembly (OTA), and visible nulling coronagraph (VNC) instrument. The instrument achieves a contrast ratio of 10^9 over a 5 arcsecond field-of-view with an unprecedented inner working angle of 0.13 arcseconds over the spectral range of 440-880 nm. The telescope is a 1.65 meter off-axis Cassegrain with an OTA wavefront error of lambda/9, which when coupled to the VNC greatly reduces the requirements on the large scale optics.

  1. SCORE - Sounding-rocket Coronagraphic Experiment

    Science.gov (United States)

    Fineschi, Silvano; Moses, Dan; Romoli, Marco

    The Sounding-rocket Coronagraphic Experiment - SCORE - is a The Sounding-rocket Coronagraphic Experiment - SCORE - is a coronagraph for multi-wavelength imaging of the coronal Lyman-alpha lines, HeII 30.4 nm and HI 121.6 nm, and for the broad.band visible-light emission of the polarized K-corona. SCORE has flown successfully in 2009 acquiring the first images of the HeII line-emission from the extended corona. The simultaneous observation of the coronal Lyman-alpha HI 121.6 nm, has allowed the first determination of the absolute helium abundance in the extended corona. This presentation will describe the lesson learned from the first flight and will illustrate the preparations and the science perspectives for the second re-flight approved by NASA and scheduled for 2016. The SCORE optical design is flexible enough to be able to accommodate different experimental configurations with minor modifications. This presentation will describe one of such configurations that could include a polarimeter for the observation the expected Hanle effect in the coronal Lyman-alpha HI line. The linear polarization by resonance scattering of coronal permitted line-emission in the ultraviolet (UV) can be modified by magnetic fields through the Hanle effect. Thus, space-based UV spectro-polarimetry would provide an additional new tool for the diagnostics of coronal magnetism.

  2. Extra Solar Planetary Imaging Coronagraph and Science Requirements for the James Webb Telescope Observatory

    Science.gov (United States)

    Clampin, Mark

    2004-01-01

    1) Extra solar planetary imaging coronagraph. Direct detection and characterization of Jovian planets, and other gas giants, in orbit around nearby stars is a necessary precursor to Terrestrial Planet Finder 0 in order to estimate the probability of Terrestrial planets in our stellar neighborhood. Ground based indirect methods are biased towards large close in Jovian planets in solar systems unlikely io harbor Earthlike planets. Thus to estimate the relative abundances of terrestrial planets and to determine optimal observing strategies for TPF a pathfinder mission would be desired. The Extra-Solar Planetary Imaging Coronagraph (EPIC) is such a pathfinder mission. Upto 83 stellar systems are accessible with a 1.5 meter unobscured telescope and coronagraph combination located at the Earth-Sun L2 point. Incorporating radiometric and angular resolution considerations show that Jovians could be directly detected (5 sigma) in the 0.5 - 1.0 micron band outside of an inner working distance of 5/D with integration times of -10 - 100 hours per observation. The primary considerations for a planet imager are optical wavefront quality due to manufacturing, alignment, structural and thermal considerations. pointing stability and control, and manufacturability of coronagraphic masks and stops to increase the planetary-to- stellar contrast and mitigate against straylight. Previously proposed coronagraphic concepts are driven to extreme tolerances. however. we have developed and studied a mission, telescope and coronagraphic detection concept, which is achievable in the time frame of a Discovery class NASA mission. 2) Science requirements for the James Webb Space Telescope observatory. The James Webb Space Observatory (JWST) is an infrared observatory, which will be launched in 201 1 to an orbit at L2. JWST is a segmented, 18 mirror segment telescope with a diameter of 6.5 meters, and a clear aperture of 25 mA2. The telescope is designed to conduct imaging and spectroscopic

  3. A dual-mask coronagraph for observing faint companions to binary stars

    NARCIS (Netherlands)

    Cady, E.; McElwain, M.; Kasdin, N.J.; Thalmann, C.

    2011-01-01

    Observations of binary stars for faint companions with conventional coronagraphic methods are challenging, as both targets will be bright enough to obscure any nearby faint companions if their scattered light is not suppressed. We propose coronagraphic examination of binary stars using an

  4. Effect of DM Actuator Errors on the WFIRST/AFTA Coronagraph Contrast Performance

    Science.gov (United States)

    Sidick, Erkin; Shi, Fang

    2015-01-01

    The WFIRST/AFTA 2.4 m space telescope currently under study includes a stellar coronagraph for the imaging and the spectral characterization of extrasolar planets. The coronagraph employs two sequential deformable mirrors (DMs) to compensate for phase and amplitude errors in creating dark holes. DMs are critical elements in high contrast coronagraphs, requiring precision and stability measured in picometers to enable detection of Earth-like exoplanets. Working with a low-order wavefront-sensor the DM that is conjugate to a pupil can also be used to correct low-order wavefront drift during a scientific observation. However, not all actuators in a DM have the same gain. When using such a DM in low-order wavefront sensing and control subsystem, the actuator gain errors introduce high-spatial frequency errors to the DM surface and thus worsen the contrast performance of the coronagraph. We have investigated the effects of actuator gain errors and the actuator command digitization errors on the contrast performance of the coronagraph through modeling and simulations, and will present our results in this paper.

  5. White light coronagraph in OSO-7

    International Nuclear Information System (INIS)

    Koomen, M.J.; Detwiler, C.R.; Brueckner, G.E.; Cooper, H.W.; Tousey, R.

    1975-01-01

    A small, externally occulted Lyot-type coronagraph, designated for use in the seventh unmanned Orbiting Solar Observatory (OSO-7), is described. Optical configuration, suppression of stray light, SEC vidicon detector, and data system are discussed, as well as integration of the instrument into the spacecraft and operation in orbit. Orbital operation produced daily images of the white light corona, from 2.8 to 10 solar radii, at least once per day for 2 3/4 yr. The first records of white light coronal transient events were obtained, and the corona was shown to be constantly changing

  6. Project Blue: Optical Coronagraphic Imaging Search for Terrestrial-class Exoplanets in Alpha Centauri

    Science.gov (United States)

    Morse, Jon; Project Blue team

    2018-01-01

    Project Blue is a coronagraphic imaging space telescope mission designed to search for habitable worlds orbiting the nearest Sun-like stars in the Alpha Centauri system. With a 45-50 cm baseline primary mirror size, Project Blue will perform a reconnaissance of the habitable zones of Alpha Centauri A and B in blue light and one or two longer wavelength bands to determine the hue of any planets discovered. Light passing through the off-axis telescope feeds into a coronagraphic instrument that forms the heart of the mission. Various coronagraph designs are being considered, such as phase induced amplitude apodization (PIAA), vector vortex, etc. Differential orbital image processing techniques will be employed to analyze the data for faint planets embedded in the residual glare of the parent star. Project Blue will advance our knowledge about the presence or absence of terrestrial-class exoplanets in the habitable zones and measure the brightness of zodiacal dust around each star, which will aid future missions in planning their observational surveys of exoplanets. It also provides on-orbit demonstration of high-contrast coronagraphic imaging technologies and techniques that will be useful for planning and implementing future space missions by NASA and other space agencies. We present an overview of the science goals, mission concept and development schedule. As part of our cooperative agreement with NASA, the Project Blue team intends to make the data available in a publicly accessible archive.

  7. Linear Thermal Expansion Measurements of Lead Magnesium Niobate (PMN) Electroceramic Material for the Terrestrial Planet Finder Coronagraph

    Science.gov (United States)

    Karlmann, Paul B.; Halverson, Peter G.; Peters, Robert D.; Levine, Marie B.; VanBuren, David; Dudik, Matthew J.

    2005-01-01

    Linear thermal expansion measurements of nine samples of Lead Magnesium Niobate (PMN) electroceramic material were recently performed in support of NASA's Terrestrial Planet Finder Coronagraph (TPF-C) mission. The TPF-C mission is a visible light coronagraph designed to look at roughly 50 stars pre- selected as good candidates for possessing earth-like planets. Upon detection of an earth-like planet, TPF-C will analyze the visible-light signature of the planet's atmosphere for specific spectroscopic indicators that life may exist there. With this focus, the project's primary interest in PMN material is for use as a solid-state actuator for deformable mirrors or compensating optics. The nine test samples were machined from three distinct boules of PMN ceramic manufactured by Xinetics Inc. Thermal expansion measurements were performed in 2005 at NASA Jet Propulsion Laboratory (JPL) in their Cryogenic Dilatometer Facility. All measurements were performed in vacuum with sample temperature actively controlled over the range of 270K to 3 10K. Expansion and contraction of the test samples with temperature was measured using a JPL developed interferometric system capable of sub-nanometer accuracy. Presented in this paper is a discussion of the sample configuration, test facilities, test method, data analysis, test results, and future plans.

  8. High-contrast imaging in multi-star systems: progress in technology development and lab results

    Science.gov (United States)

    Belikov, Ruslan; Pluzhnik, Eugene; Bendek, Eduardo; Sirbu, Dan

    2017-09-01

    We present the continued progress and laboratory results advancing the technology readiness of Multi-Star Wavefront Control (MSWC), a method to directly image planets and disks in multi-star systems such as Alpha Centauri. This method works with almost any coronagraph (or external occulter with a DM) and requires little or no change to existing and mature hardware. In particular, it works with single-star coronagraphs and does not require the off-axis star(s) to be coronagraphically suppressed. Because of the ubiquity of multistar systems, this method increases the science yield of many missions and concepts such as WFIRST, Exo-C/S, HabEx, LUVOIR, and potentially enables the detection of Earthlike planets (if they exist) around our nearest neighbor star, Alpha Centauri, with a small and low-cost space telescope such as ACESat. Our lab demonstrations were conducted at the Ames Coronagraph Experiment (ACE) laboratory and show both the feasibility as well as the trade-offs involved in using MSWC. We show several simulations and laboratory tests at roughly TRL-3 corresponding to representative targets and missions, including Alpha Centauri with WFIRST. In particular, we demonstrate MSWC in Super-Nyquist mode, where the distance between the desired dark zone and the off-axis star is larger than the conventional (sub-Nyquist) control range of the DM. Our laboratory tests did not yet include a coronagraph, but did demonstrate significant speckle suppression from two independent light sources at sub- as well as super-Nyquist separations.

  9. SMM coronagraph observations of particulate contamination

    Science.gov (United States)

    St. Cyr, O. C.; Warner, T.

    1991-01-01

    Some recent images taken by the white light coronagraph telescope aboard the Solar Maximum Mission (SMM) observatory show bright streaks that are apparently caused by particles associated with the spacecraft. In this report we describe these observations, and we analyze the times of their occurrence. We demonstrate that the sightings occur most often near SMM's orbital dawn, and we speculate that thermal shock is the mechanism that produces the particles. Although these sightings have not seriously affected the coronagraph's scientific operations, the unexpected passage of bright material through the field of view of sensitive spaceborne telescopes can lead to data loss or, in some cases, serious detector damage. The topic of space debris has become a significant concern for designers of both manned and unmanned orbiting platforms. The returned samples from the SMM spacecraft and the observations reported here provide a baseline of experience for future orbital platforms that plan long duration missions.

  10. Design, fabrication, and testing of stellar coronagraphs for exoplanet imaging

    Science.gov (United States)

    Knight, Justin M.; Brewer, John; Hamilton, Ryan; Ward, Karen; Milster, Tom D.; Guyon, Olivier

    2017-09-01

    Complex-mask coronagraphs destructively interfere unwanted starlight with itself to enable direct imaging of exoplanets. This is accomplished using a focal plane mask (FPM); a FPM can be a simple occulter mask, or in the case of a complex-mask, is a multi-zoned device designed to phase-shift starlight over multiple wavelengths to create a deep achromatic null in the stellar point spread function. Creating these masks requires microfabrication techniques, yet many such methods remain largely unexplored in this context. We explore methods of fabrication of complex FPMs for a Phased-Induced Amplitude Apodization Complex-Mask Coronagraph (PIAACMC). Previous FPM fabrication efforts for PIAACMC have concentrated on mask manufacturability while modeling science yield, as well as assessing broadband wavelength operation. Moreover current fabrication efforts are concentrated on assessing coronagraph performance given a single approach. We present FPMs fabricated using several process paths, including deep reactive ion etching and focused ion beam etching using a silicon substrate. The characteristic size of the mask features is 5μm with depths ranging over 1μm. The masks are characterized for manufacturing quality using an optical interferometer and a scanning electron microscope. Initial testing is performed at the Subaru Extreme Adaptive Optics testbed, providing a baseline for future experiments to determine and improve coronagraph performance within fabrication tolerances.

  11. Enhnacing the science of the WFIRST coronagraph instrument with post-processing.

    Science.gov (United States)

    Pueyo, Laurent; WFIRST CGI data analysis and post-processing WG

    2018-01-01

    We summarize the results of a three years effort investigating how to apply to the WFIRST coronagraph instrument (CGI) modern image analysis methods, now routinely used with ground-based coronagraphs. In this post we quantify the gain associated post-processing for WFIRST-CGI observing scenarios simulated between 2013 and 2017. We also show based one simulations that spectrum of planet can be confidently retrieved using these processing tools with and Integral Field Spectrograph. We then discuss our work using CGI experimental data and quantify coronagraph post-processing testbed gains. We finally introduce stability metrics that are simple to define and measure, and place useful lower bound and upper bounds on the achievable RDI post-processing contrast gain. We show that our bounds hold in the case of the testbed data.

  12. The Visible Nulling Coronagraph--Architecture Definition and Technology Development

    Science.gov (United States)

    Shao, Michael; Levine, B. Martin; Wallace, J. Kent; Liu, Duncan T.; Schmidtlin, Edouard; Serabyn, Eugene; Mennesson, Bertrand; Green, Joseph J.; Aguayo, Francisco; Fregoso, S. Felipe; hide

    2005-01-01

    This paper describes the advantages of visible direct detection and spectroscopy of Earth-like extrasolar planets using a nulling coronagraph instrument behind a moderately sized single aperture space telescope. Our concept synthesizes a nulling interferometer by shearing the telescope pupil, with the resultant producing a deep null. We describe nulling configurations that also include methods to mitigate stellar leakage, such as spatial filtering by a coherent array of single mode fibers, and post-starlight suppression wavefront sensing and control. With diffraction limited telescope optics and similar quality components in the optical train (lambda/20), suppression of the starlight to 1e-10 is readily achievable. We describe key features of the architecture and analysis, present latest results of laboratory measurements demonstrating achievable null depth and component development, and discuss future key technical milestones.

  13. Stochastic parallel gradient descent based adaptive optics used for a high contrast imaging coronagraph

    International Nuclear Information System (INIS)

    Dong Bing; Ren Deqing; Zhang Xi

    2011-01-01

    An adaptive optics (AO) system based on a stochastic parallel gradient descent (SPGD) algorithm is proposed to reduce the speckle noises in the optical system of a stellar coronagraph in order to further improve the contrast. The principle of the SPGD algorithm is described briefly and a metric suitable for point source imaging optimization is given. The feasibility and good performance of the SPGD algorithm is demonstrated by an experimental system featured with a 140-actuator deformable mirror and a Hartmann-Shark wavefront sensor. Then the SPGD based AO is applied to a liquid crystal array (LCA) based coronagraph to improve the contrast. The LCA can modulate the incoming light to generate a pupil apodization mask of any pattern. A circular stepped pattern is used in our preliminary experiment and the image contrast shows improvement from 10 -3 to 10 -4.5 at an angular distance of 2λ/D after being corrected by SPGD based AO.

  14. Additive Manufactured Coronagraph Bench for Detection of Exoplanets

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to use additive manufacturing (AM) to build a Coronagraph Bench engineering test unit.  The versatility inherent in the 3D-printing process allows for a...

  15. Next Generation UV Coronagraph Instrumentation for Solar Cycle ...

    Indian Academy of Sciences (India)

    ultraviolet coronagraph observations provide the constraints needed to test ... and suprathermal seed particle populations needed for CME shock acceleration ... region magnetic loops, is it ambient coronal gas compressed by a shock, or is it a.

  16. WFIRST: Managing Telescope Wavefront Stability to Meet Coronagraph Performance

    Science.gov (United States)

    Noecker, Martin; Poberezhskiy, Ilya; Kern, Brian; Krist, John; WFIRST System Engineering Team

    2018-01-01

    The WFIRST coronagraph instrument (CGI) needs a stable telescope and active wavefront control to perform coronagraph science with an expected sensitivity of 8x10-9 in the exoplanet-star flux ratio (SNR=10) at 200 milliarcseconds angular separation. With its subnanometer requirements on the stability of its input wavefront error (WFE), the CGI employs a combination of pointing and wavefront control loops and thermo-mechanical stability to meet budget allocations for beam-walk and low-order WFE, which enable stable starlight speckles on the science detector that can be removed by image subtraction. We describe the control strategy and the budget framework for estimating and budgeting the elements of wavefront stability, and the modeling strategy to evaluate it.

  17. Wavefront control performance modeling with WFIRST shaped pupil coronagraph testbed

    Science.gov (United States)

    Zhou, Hanying; Nemati, Bijian; Krist, John; Cady, Eric; Kern, Brian; Poberezhskiy, Ilya

    2017-09-01

    NASA's WFIRST mission includes a coronagraph instrument (CGI) for direct imaging of exoplanets. Significant improvement in CGI model fidelity has been made recently, alongside a testbed high contrast demonstration in a simulated dynamic environment at JPL. We present our modeling method and results of comparisons to testbed's high order wavefront correction performance for the shaped pupil coronagraph. Agreement between model prediction and testbed result at better than a factor of 2 has been consistently achieved in raw contrast (contrast floor, chromaticity, and convergence), and with that comes good agreement in contrast sensitivity to wavefront perturbations and mask lateral shear.

  18. Preliminary optical design of the coronagraph for the ASPIICS formation flying mission

    Science.gov (United States)

    Vivès, S.; Lamy, P.; Saisse, M.; Boit, J.-L.; Koutchmy, S.

    2017-11-01

    Formation flyers open new perspectives and allow to conceive giant, externally-occulted coronagraphs using a two-component space system with the external occulter on one spacecraft and the optical instrument on the other spacecraft at approximately 100-150 m from the first one. ASPIICS (Association de Satellites Pour l'Imagerie et l'Interfromtrie de la Couronne Solaire) is a mission proposed to ESA in the framework of the PROBA-3 program of formation flying which is presently in phase A to exploit this technique for coronal observations. ASPIICS is composed of a single coronagraph which performs high spatial resolution imaging of the corona as well as 2-dimensional spectroscopy of several emission lines from the coronal base out to 3 R. The selected lines allow to address different coronal regions: the forbidden line of Fe XIV at 530.285 nm (coronal matter), Fe IX/X at 637.4 nm (coronal holes), HeI at 587.6 nm (cold matter). An additional broad spectral channel will image the white light corona so as to derive electron densities. The classical design of an externally occulted coronagraph is adapted to the detection of the very inner corona as close as 1.01 R and the addition of a Fabry-Perot interferometer using a so-called "etalon". This paper is dedicated to the description of the optical design and its critical components: the entrance optics and the FabryPerot interferometer.

  19. The PIAA Coronagraph: Optical design and Diffraction Effects

    Science.gov (United States)

    Pluzhnik, E. A.; Guyon, O.; Ridgway, S.; Martinache, F.; Woodruff, R.; Blain, C.; Galicher, R.

    2005-12-01

    Properly apodized pupils are suitable for high dynamical range imaging of extrasolar terrestrial planets. Phase-induced amplitude apodization (PIAA) of the telescope pupil (Guyon 2003) combines the advantages of classical pupil apodization with full throughput, no loss of angular resolution and low chromaticity. Diffraction propagation effects can decrease both the achieved contrast and the spectral bandwidth of the coronagraph. We show here how the diffraction effects in the PIAA optics can be corrected by an appropriate optical design. The proposed hybrid coronagraph design preserves the 10-10 PSF contrast at ≈ 1.5 λ /d required for efficient exoplanet imaging over the whole visible spectrum. This work was carried out under JPL contract numbers 1254445 and 1257767 for Development of Technologies for the Terrestrial Planet Finder Mission, with the support and hospitality of the National Astronomical Observatory of Japan.

  20. High-contrast coronagraph performance in the presence of focal plane mask defects

    Science.gov (United States)

    Sidick, Erkin; Shaklan, Stuart; Balasubramanian, Kunjithapatham; Cady, Eric

    2014-08-01

    We have carried out a study of the performance of high-contrast coronagraphs in the presence of mask defects. We have considered the effects of opaque and dielectric particles of various dimensions, as well as systematic mask fabrication errors and the limitations of material properties in creating dark holes. We employ sequential deformable mirrors to compensate for phase and amplitude errors, and show the limitations of this approach in the presence of coronagraph image-mask defects.

  1. The COronal Solar Magnetism Observatory (COSMO) Large Aperture Coronagraph

    Science.gov (United States)

    Tomczyk, Steve; Gallagher, Dennis; Wu, Zhen; Zhang, Haiying; Nelson, Pete; Burkepile, Joan; Kolinksi, Don; Sutherland, Lee

    2013-04-01

    The COSMO is a facility dedicated to observing coronal and chromospheric magnetic fields. It will be located on a mountaintop in the Hawaiian Islands and will replace the current Mauna Loa Solar Observatory (MLSO). COSMO will provide unique observations of the global coronal magnetic fields and its environment to enhance the value of data collected by other observatories on the ground (e.g. SOLIS, BBO NST, Gregor, ATST, EST, Chinese Giant Solar Telescope, NLST, FASR) and in space (e.g. SDO, Hinode, SOHO, GOES, STEREO, Solar-C, Solar Probe+, Solar Orbiter). COSMO will employ a fleet of instruments to cover many aspects of measuring magnetic fields in the solar atmosphere. The dynamics and energy flow in the corona are dominated by magnetic fields. To understand the formation of CMEs, their relation to other forms of solar activity, and their progression out into the solar wind requires measurements of coronal magnetic fields. The large aperture coronagraph, the Chromospheric and Prominence Magnetometer and the K-Coronagraph form the COSMO instrument suite to measure magnetic fields and the polarization brightness of the low corona used to infer electron density. The large aperture coronagraph will employ a 1.5 meter fuse silica singlet lens, birefringent filters, and a spectropolarimeter to cover fields of view of up to 1 degree. It will observe the corona over a wide range of emission lines from 530.3 nm through 1083.0 nm allowing for magnetic field measurements over a wide range of coronal temperatures (e.g. FeXIV at 530.3 nm, Fe X at 637.4 nm, Fe XIII at 1074.7 and 1079.8 nm. These lines are faint and require the very large aperture. NCAR and NSF have provided funding to bring the large aperture coronagraph to a preliminary design review state by the end of 2013. As with all data from Mauna Loa, the data products from COSMO will be available to the community via the Mauna Loa website: http://mlso.hao.ucar.edu

  2. On the 3-D reconstruction of Coronal Mass Ejections using coronagraph data

    Directory of Open Access Journals (Sweden)

    M. Mierla

    2010-01-01

    Full Text Available Coronal Mass ejections (CMEs are enormous eruptions of magnetized plasma expelled from the Sun into the interplanetary space, over the course of hours to days. They can create major disturbances in the interplanetary medium and trigger severe magnetic storms when they collide with the Earth's magnetosphere. It is important to know their real speed, propagation direction and 3-D configuration in order to accurately predict their arrival time at the Earth. Using data from the SECCHI coronagraphs onboard the STEREO mission, which was launched in October 2006, we can infer the propagation direction and the 3-D structure of such events. In this review, we first describe different techniques that were used to model the 3-D configuration of CMEs in the coronagraph field of view (up to 15 R⊙. Then, we apply these techniques to different CMEs observed by various coronagraphs. A comparison of results obtained from the application of different reconstruction algorithms is presented and discussed.

  3. THE W. M. KECK OBSERVATORY INFRARED VORTEX CORONAGRAPH AND A FIRST IMAGE OF HIP 79124 B

    Energy Technology Data Exchange (ETDEWEB)

    Serabyn, E.; Liewer, K. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Huby, E.; Absil, O.; Carlomagno, B.; Defrère, D.; Delacroix, C.; Gonzalez, C. Gomez; Habraken, S.; Jolivet, A.; Piron, P. [Space Sciences, Technologies, and Astrophysics (STAR) Institute, Université de Liège, 19c allée du Six Août, B-4000 Liège (Belgium); Matthews, K.; Mawet, D.; Bottom, M. [California Institute of Technology, Division of Physics, Mathematics and Astronomy, Pasadena, CA 91125 (United States); Femenia, B.; Wizinowich, P.; Campbell, R.; Lilley, S. [W. M. Keck Observatory, 65-1120 Mamalahoa Hwy, Kamuela, HI (United States); Karlsson, M.; Forsberg, P., E-mail: gene.serabyn@jpl.nasa.gov [Department of Engineering Sciences, Ångström Laboratory, Uppsala University, Box 534, SE-751 21 Uppsala (Sweden); and others

    2017-01-01

    An optical vortex coronagraph has been implemented within the NIRC2 camera on the Keck II telescope and used to carry out on-sky tests and observations. The development of this new L ′-band observational mode is described, and an initial demonstration of the new capability is presented: a resolved image of the low-mass companion to HIP 79124, which had previously been detected by means of interferometry. With HIP 79124 B at a projected separation of 186.5 mas, both the small inner working angle of the vortex coronagraph and the related imaging improvements were crucial in imaging this close companion directly. Due to higher Strehl ratios and more relaxed contrasts in L ′ band versus H band, this new coronagraphic capability will enable high-contrast, small-angle observations of nearby young exoplanets and disks on a par with those of shorter-wavelength extreme adaptive optics coronagraphs.

  4. Science yield estimation for AFTA coronagraphs

    Science.gov (United States)

    Traub, Wesley A.; Belikov, Ruslan; Guyon, Olivier; Kasdin, N. Jeremy; Krist, John; Macintosh, Bruce; Mennesson, Bertrand; Savransky, Dmitry; Shao, Michael; Serabyn, Eugene; Trauger, John

    2014-08-01

    We describe the algorithms and results of an estimation of the science yield for five candidate coronagraph designs for the WFIRST-AFTA space mission. The targets considered are of three types, known radial-velocity planets, expected but as yet undiscovered exoplanets, and debris disks, all around nearby stars. The results of the original estimation are given, as well as those from subsequently updated designs that take advantage of experience from the initial estimates.

  5. Computer vision applications for coronagraphic optical alignment and image processing.

    Science.gov (United States)

    Savransky, Dmitry; Thomas, Sandrine J; Poyneer, Lisa A; Macintosh, Bruce A

    2013-05-10

    Modern coronagraphic systems require very precise alignment between optical components and can benefit greatly from automated image processing. We discuss three techniques commonly employed in the fields of computer vision and image analysis as applied to the Gemini Planet Imager, a new facility instrument for the Gemini South Observatory. We describe how feature extraction and clustering methods can be used to aid in automated system alignment tasks, and also present a search algorithm for finding regular features in science images used for calibration and data processing. Along with discussions of each technique, we present our specific implementation and show results of each one in operation.

  6. High Contrast Internal and External Coronagraph Masks Produced by Various Techniques

    Science.gov (United States)

    Balasubramanian, Kunjithapatha; Wilson, Daniel; White, Victor; Muller, Richard; Dickie, Matthew; Yee, Karl; Ruiz, Ronald; Shaklan, Stuart; Cady, Eric; Kern, Brian; hide

    2013-01-01

    Masks for high contrast internal and external coronagraphic imaging require a variety of masks depending on different architectures to suppress star light. Various fabrication technologies are required to address a wide range of needs including gradient amplitude transmission, tunable phase profiles, ultra-low reflectivity, precise small scale features, and low-chromaticity. We present the approaches employed at JPL to produce pupil plane and image plane coronagraph masks, and lab-scale external occulter type masks by various techniques including electron beam, ion beam, deep reactive ion etching, and black silicon technologies with illustrative examples of each. Further development is in progress to produce circular masks of various kinds for obscured aperture telescopes.

  7. High-contrast coronagraph performance in the presence of DM actuator defects

    Science.gov (United States)

    Sidick, Erkin; Shaklan, Stuart; Cady, Eric

    2015-09-01

    Deformable Mirrors (DMs) are critical elements in high contrast coronagraphs, requiring precision and stability measured in picometers to enable detection of Earth-like exoplanets. Occasionally DM actuators or their associated cables or electronics fail, requiring a wavefront control algorithm to compensate for actuators that may be displaced from their neighbors by hundreds of nanometers. We have carried out experiments on our High-Contrast Imaging Testbed (HCIT) to study the impact of failed actuators in partial fulfilment of the Terrestrial Planet Finder Coronagraph optical model validation milestone. We show that the wavefront control algorithm adapts to several broken actuators and maintains dark-hole contrast in broadband light.

  8. High-Contrast Coronagraph Performance in the Presence of DM Actuator Defects

    Science.gov (United States)

    Sidick, Erkin; Shaklan, Stuart; Cady, Eric

    2015-01-01

    Deformable Mirrors (DMs) are critical elements in high contrast coronagraphs, requiring precision and stability measured in picometers to enable detection of Earth-like exoplanets. Occasionally DM actuators or their associated cables or electronics fail, requiring a wavefront control algorithm to compensate for actuators that may be displaced from their neighbors by hundreds of nanometers. We have carried out experiments on our High-Contrast Imaging Testbed (HCIT) to study the impact of failed actuators in partial fulfillment of the Terrestrial Planet Finder Coronagraph optical model validation milestone. We show that the wavefront control algorithm adapts to several broken actuators and maintains dark-hole contrast in broadband light.

  9. On the 3-D reconstruction of Coronal Mass Ejections using coronagraph data

    Directory of Open Access Journals (Sweden)

    M. Mierla

    2010-01-01

    Full Text Available Coronal Mass ejections (CMEs are enormous eruptions of magnetized plasma expelled from the Sun into the interplanetary space, over the course of hours to days. They can create major disturbances in the interplanetary medium and trigger severe magnetic storms when they collide with the Earth's magnetosphere. It is important to know their real speed, propagation direction and 3-D configuration in order to accurately predict their arrival time at the Earth. Using data from the SECCHI coronagraphs onboard the STEREO mission, which was launched in October 2006, we can infer the propagation direction and the 3-D structure of such events. In this review, we first describe different techniques that were used to model the 3-D configuration of CMEs in the coronagraph field of view (up to 15 R⊙. Then, we apply these techniques to different CMEs observed by various coronagraphs. A comparison of results obtained from the application of different reconstruction algorithms is presented and discussed.

  10. Next Generation UV Coronagraph Instrumentation for Solar Cycle-24

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... New concepts for next generation instrumentation include imaging ultraviolet spectrocoronagraphs and large aperture ultraviolet coronagraph spectrometers. An imaging instrument would be the first to obtain absolute spectral line intensities of the extended corona over a wide field of view. Such images ...

  11. Closing the contrast gap between testbed and model prediction with WFIRST-CGI shaped pupil coronagraph

    Science.gov (United States)

    Zhou, Hanying; Nemati, Bijan; Krist, John; Cady, Eric; Prada, Camilo M.; Kern, Brian; Poberezhskiy, Ilya

    2016-07-01

    JPL has recently passed an important milestone in its technology development for a proposed NASA WFIRST mission coronagraph: demonstration of better than 1x10-8 contrast over broad bandwidth (10%) on both shaped pupil coronagraph (SPC) and hybrid Lyot coronagraph (HLC) testbeds with the WFIRST obscuration pattern. Challenges remain, however, in the technology readiness for the proposed mission. One is the discrepancies between the achieved contrasts on the testbeds and their corresponding model predictions. A series of testbed diagnoses and modeling activities were planned and carried out on the SPC testbed in order to close the gap. A very useful tool we developed was a derived "measured" testbed wavefront control Jacobian matrix that could be compared with the model-predicted "control" version that was used to generate the high contrast dark hole region in the image plane. The difference between these two is an estimate of the error in the control Jacobian. When the control matrix, which includes both amplitude and phase, was modified to reproduce the error, the simulated performance closely matched the SPC testbed behavior in both contrast floor and contrast convergence speed. This is a step closer toward model validation for high contrast coronagraphs. Further Jacobian analysis and modeling provided clues to the possible sources for the mismatch: DM misregistration and testbed optical wavefront error (WFE) and the deformable mirror (DM) setting for correcting this WFE. These analyses suggested that a high contrast coronagraph has a tight tolerance in the accuracy of its control Jacobian. Modifications to both testbed control model as well as prediction model are being implemented, and future works are discussed.

  12. Photographic coronagraph, Skylab particulate experiment T025. [earth atmospheric pollution and Kohoutek Comet monitoring

    Science.gov (United States)

    Giovane, F.; Schuerman, D. W.; Greenberg, J. M.

    1977-01-01

    A photographic coronagraph, built to monitor Skylab's extravehicular contamination, is described. This versatile instrument was used to observe the earth's vertical aerosol distribution and Comet Kohoutek (1973f) near perihelion. Although originally designed for deployment from the solar airlock, the instrument was modified for EVA operation when the airlock was rendered unusable. The results of the observations made in four EVA's were almost completely ruined by the failure of a Skylab operational camera used with the coronagraph. Nevertheless, an aerosol layer at 48 km was discovered in the southern hemisphere from the few useful photographs.

  13. Mathematical modelling of the complete metrology of the PROBA-3/ASPIICS formation flying solar coronagraph

    Science.gov (United States)

    Stathopoulos, F.; Vives, S.; Damé, L.; Tsinganos, K.

    2017-11-01

    Formation flying, with ESA's mission PROBA-3, is providing the chance of creating a giant solar coronagraph in Space. The scientific payload, the solar coronagraph ASPIICS, has been selected in January 2009 [1]. The advantages of formation flying are: 1) larger dimensions for the coronagraph, which leads to better spatial resolution and lower straylight level and 2) possibility of continuous observations of the inner corona. The PROBA-3/ASPIICS mission is composed of two spacecrafts (S/Cs) at 150 meters distance, the Occulter-S/C (O-S/C) which holds the external occulter, and the Coronagraph-S/C (C-S/C) which holds the main instrument, i.e. the telescope. In addition of the scientific capabilities of the instrument, it will continuously monitor the exact position and pointing of both S/Cs in 3D space, via two additional metrology units: the Shadow Position Sensor (SPS) and the Occulter Position Sensor (OPS). In this paper we are presenting the metrology of this formation flying mission combining the outputs of the above mentioned sensors, SPS and OPS. This study has been conducted in the framework of an ESA "STARTIGER" initiative, a novel approach aimed at demonstrating the feasibility of a new and promising technology concept (in our case formation flying applied to solar coronagraphy, cf. [2, 3]) on a short time scale (six months study).

  14. ALICE Data Release: A Revaluation of HST-NICMOS Coronagraphic Images

    Science.gov (United States)

    Hagan, J. Brendan; Choquet, Élodie; Soummer, Rémi; Vigan, Arthur

    2018-04-01

    The Hubble Space Telescope NICMOS instrument was used from 1997 to 2008 to perform coronagraphic observations of about 400 targets. Most of them were part of surveys looking for substellar companions or resolved circumstellar disks to young nearby stars, making the NICMOS coronagraphic archive a valuable database for exoplanets and disks studies. As part of the Archival Legacy Investigations of Circumstellar Environments program, we have consistently reprocessed a large fraction of the NICMOS coronagrahic archive using advanced starlight subtraction methods. We present here the high-level science products of these re-analyzed data, which we delivered back to the community through the Mikulski Archive for Space Telescopes: doi:10.17909/T9W89V. We also present the second version of the HCI-FITS format (for High-Contrast Imaging FITS format), which we developed as a standard format for data exchange of imaging reduced science products. These re-analyzed products are openly available for population statistics studies, characterization of specific targets, or detected point-source identification.

  15. Laboratory and On-sky Validation of the Shaped Pupil Coronagraph’s Sensitivity to Low-order Aberrations With Active Wavefront Control

    Science.gov (United States)

    Currie, Thayne; Kasdin, N. Jeremy; Groff, Tyler D.; Lozi, Julien; Jovanovic, Nemanja; Guyon, Olivier; Brandt, Timothy; Martinache, Frantz; Chilcote, Jeffrey; Skaf, Nour; Kuhn, Jonas; Pathak, Prashant; Kudo, Tomoyuki

    2018-04-01

    We present early laboratory simulations and extensive on-sky tests validating of the performance of a shaped pupil coronagraph (SPC) behind an extreme-AO corrected beam of the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system. In tests with the SCExAO internal source/wavefront error simulator, the normalized intensity profile for the SPC degrades more slowly than for the Lyot coronagraph as low-order aberrations reduce the Strehl ratio from extremely high values (S.R. ∼ 0.93–0.99) to those characteristic of current ground-based extreme AO systems (S.R. ∼ 0.74–0.93) and then slightly lower values down to S.R. ∼ 0.57. On-sky SCExAO data taken with the SPC and other coronagraphs for brown dwarf/planet-hosting stars HD 1160 and HR 8799 provide further evidence for the SPC’s robustness to low-order aberrations. From H-band Strehl ratios of 80% to 70%, the Lyot coronagraph’s performance versus that of the SPC may degrade even faster on sky than is seen in our internal source simulations. The 5-σ contrast also degrades faster (by a factor of two) for the Lyot than the SPC. The SPC we use was designed as a technology demonstrator only, with a contrast floor, throughput, and outer working angle poorly matched for SCExAO’s current AO performance and poorly tuned for imaging the HR 8799 planets. Nevertheless, we detect HR 8799 cde with SCExAO/CHARIS using the SPC in broadband mode, where the S/N for planet e is within 30% of that obtained using the vortex coronagraph. The shaped-pupil coronagraph is a promising design demonstrated to be robust in the presence of low-order aberrations and may be well-suited for future ground and space-based direct imaging observations, especially those focused on follow-up exoplanet characterization and technology demonstration of deep contrast within well-defined regions of the image plane.

  16. WFIRST: Update on the Coronagraph Science Requirements

    Science.gov (United States)

    Douglas, Ewan S.; Cahoy, Kerri; Carlton, Ashley; Macintosh, Bruce; Turnbull, Margaret; Kasdin, Jeremy; WFIRST Coronagraph Science Investigation Teams

    2018-01-01

    The WFIRST Coronagraph instrument (CGI) will enable direct imaging and low resolution spectroscopy of exoplanets in reflected light and imaging polarimetry of circumstellar disks. The CGI science investigation teams were tasked with developing a set of science requirements which advance our knowledge of exoplanet occurrence and atmospheric composition, as well as the composition and morphology of exozodiacal debris disks, cold Kuiper Belt analogs, and protoplanetary systems. We present the initial content, rationales, validation, and verification plans for the WFIRST CGI, informed by detailed and still-evolving instrument and observatory performance models. We also discuss our approach to the requirements development and management process, including the collection and organization of science inputs, open source approach to managing the requirements database, and the range of models used for requirements validation. These tools can be applied to requirements development processes for other astrophysical space missions, and may ease their management and maintenance. These WFIRST CGI science requirements allow the community to learn about and provide insights and feedback on the expected instrument performance and science return.

  17. The Phase-Induced Amplitude Apodization Coronagraph (PIAAC): A High Performance Coronagraph for Exoplanet Imaging

    Science.gov (United States)

    Guyon, O.; Pluzhnik, E.; Martinache, F.; Ridgway, S.; Galicher, R.

    2004-12-01

    Using 2 aspheric mirrors, it is possible to achromatically apodize a telescope beam without losing light (Phase-Induced Amplitude Apodization, PIAA). We propose a coronagraph concept using this technique: the telescope pupil is first apodized to yield a high contrast focal plane image, on which an occulting mask is placed. The exit pupil is then de-apodized to regain a large field of view. We show that the PIAAC combines all the qualities needed for efficient exoplanet imaging: full throughput, small inner working angle (1.2 l/d), high angular resolution (l/d), low sensitivity to tip-tilt, and large field of view (more than 200 l/d in diameter). We conclude that PIAAC is well adapted for exoplanet imaging with a 4m to 6m space telescope (TPF mission). This work was carried out under JPL contract numbers 1254445 and 1257767 for Development of Technologies for the Terrestrial Planet Finder Mission, with the support and hospitality of the National Astronomical Observatory of Japan.

  18. Intercomparison of the LASCO-C2, SECCHI-COR1, SECCHI-COR2, and Mk4 Coronagraphs

    Science.gov (United States)

    Frazin, Richard A.; Vasquez, Alberto M.; Thompson, William T.; Hewett, Russell J.; Lamy, Philippe; Llebaria, Antoine; Vourlidas, Angelos; Burkepile, Joan

    2012-01-01

    In order to assess the reliability and consistency of white-light coronagraph measurements, we report on quantitative comparisons between polarized brightness [pB] and total brightness [B] images taken by the following white-light coronagraphs: LASCO-C2 on SOHO, SECCHI-COR1 and -COR2 on STEREO, and the ground-based MLSO-Mk4. The data for this comparison were taken on 16 April 2007, when both STEREO spacecraft were within 3.1 deg. of Earth’s heliographic longitude, affording essentially the same view of the Sun for all of the instruments. Due to the difficulties of estimating stray-light backgrounds in COR1 and COR2, only Mk4 and C2 produce reliable coronal-hole values (but not at overlapping heights), and these cannot be validated without rocket flights or ground-based eclipse measurements. Generally, the agreement between all of the instruments’ pB values is within the uncertainties in bright streamer structures, implying that measurements of bright CMEs also should be trustworthy. Dominant sources of uncertainty and stray light are discussed, as is the design of future coronagraphs from the perspective of the experiences with these instruments.

  19. Influence of misalignments on the performance of externally occulted solar coronagraphs. Application to PROBA-3/ASPIICS

    Science.gov (United States)

    Shestov, S. V.; Zhukov, A. N.

    2018-05-01

    Context. The ASPIICS instrument is a novel externally occulted coronagraph that will be launched on board the PROBA-3 mission of the European Space Agency. The external occulter will be placed on one satellite 150 m ahead of the second satellite that will carry an optical instrument. During 6 h out of 19.38 h of orbit, the satellites will fly in a precise (accuracy around a few millimeters) formation, constituting a giant externally occulted coronagraph. The large distance between the external occulter and the primary objective will allow observations of the white-light solar corona starting from extremely low heights 1.1R⊙. Aims: We intend to analyze influence of shifts of the satellites and misalignments of optical elements on the ASPIICS performance in terms of diffracted light. Based on the quantitative influence of misalignments on diffracted light, we provide a recipe for choosing the size of the internal occulter (IO) to achieve a trade-off between the minimal height of observations and sustainability to possible misalignments. Methods: We considered different types of misalignments and analyzed their influence from optical and computational points of view. We implemented a numerical model of the diffracted light and its propagation through the optical system and computed intensities of diffracted light throughout the instrument. Our numerical approach is based on a model from the literature that considered the axisymmetrical case. Here we extend the model to include nonsymmetrical cases and possible misalignments. Results: The numerical computations fully confirm the main properties of the diffracted light that we obtained from semi-analytical consideration. We obtain that relative influences of various misalignments are significantly different. We show that the internal occulter with RIO = 1.694 mm = 1.1R⊙ is large enough to compensate possible misalignments expected to occur in PROBA-3/ASPIICS. Besides that we show that apodizing the edge of the

  20. Technology Advancement of the Visible Nulling Coronagraph

    Science.gov (United States)

    Lyon, Richard G.; Clampin, Mark; Petrone, Peter; Thompson, Patrick; Bolcar, Matt; Madison, Timothy; Woodruff, Robert; Noecker, Charley; Kendrick, Steve

    2010-01-01

    The critical high contrast imaging technology for the Extrasolar Planetary Imaging Coronagraph (EPIC) mission concept is the visible nulling coronagraph (VNC). EPIC would be capable of imaging jovian planets, dust/debris disks, and potentially super-Earths and contribute to answering how bright the debris disks are for candidate stars. The contrast requirement for EPIC is 10(exp 9) contrast at 125 milli-arseconds inner working angle. To advance the VNC technology NASA/Goddard Space Flight Center, in collaboration with Lockheed-Martin, previously developed a vacuum VNC testbed, and achieved narrowband and broadband suppression of the core of the Airy disk. Recently our group was awarded a NASA Technology Development for Exoplanet Missions to achieve two milestones: (i) 10(exp 8) contrast in narrowband light, and, (ii) 10(ecp 9) contrast in broader band light; one milestone per year, and both at 2 Lambda/D inner working angle. These will be achieved with our 2nd generation testbed known as the visible nulling testbed (VNT). It contains a MEMS based hex-packed segmented deformable mirror known as the multiple mirror array (MMA) and coherent fiber bundle, i.e. a spatial filter array (SFA). The MMA is in one interferometric arm and works to set the wavefront differences between the arms to zero. Each of the MMA segments is optically mapped to a single mode fiber of the SFA, and the SFA passively cleans the sub-aperture wavefront error leaving only piston, tip and tilt error to be controlled. The piston degree of freedom on each segment is used to correct the wavefront errors, while the tip/tilt is used to simultaneously correct the amplitude errors. Thus the VNT controls both amplitude and wavefront errors with a single MMA in closed-loop in a vacuum tank at approx.20 Hz. Herein we will discuss our ongoing progress with the VNT.

  1. Demonstration of Broadband Contrast at 1.2 Lambda/D for the EXCEDE Phase-Induced Amplitude Apodization Coronagraph

    Science.gov (United States)

    Sirbu, Dan; Thomas, Sandrine J.; Belikov, Ruslan; Lozi, Julien; Bendek, Eduardo; Pluzhnik, Eugene; Lynch, Dana H.; Hix, Troy; Zell, Peter; Schneider, Glenn; hide

    2015-01-01

    The proposed coronagraph instrument on the EXCEDE (EXoplanetary Circumstellar Environments and Disk Explorer) mission study uses a Phase-Induced Amplitude Apodization (PIAA) coronagraph architecture to enable high-contrast imaging of circumstellar debris disks and giant planets at angular separations as close in as the habitable zone of nearby host stars. We report on the experimental results obtained in the vacuum chamber at the Lockheed Martin Advanced Technology Center in 10 percent broadband light centered about 650 nanometers, with a median contrast of 1 x 10 (sup -5) between 1.2 and 2.0 lambda /D simultaneously with 3 x 10 (sup -7) contrast between 2 and 11 =D between 2 and 11 lambda/D for a single-sided dark hole using a deformable mirror (DM) upstream of the PIAA coronagraph. The results are stable and repeatable as demonstrated by three measurements runs with DM settings set from scratch and maintained on the best 90 percent out of the 1000 collected frames. We compare the reduced experimental data with simulation results from modeling observed experimental limits; performance is consistent with uncorrected low-order modes not estimated by the Low Order Wavefront Sensor (LOWFS). Modeled sensitivity to bandwidth and residual tip/tilt modes is well-matched to the experiment.

  2. High-contrast imager for Complex Aperture Telescopes (HiCAT): testbed design and coronagraph developments

    Science.gov (United States)

    N'Diaye, Mamadou; Choquet, E.; Pueyo, L.; Elliot, E.; Perrin, M. D.; Wallace, J.; Anderson, R. E.; Carlotti, A.; Groff, T. D.; Hartig, G. F.; Kasdin, J.; Lajoie, C.; Levecq, O.; Long, C.; Macintosh, B.; Mawet, D.; Norman, C. A.; Shaklan, S.; Sheckells, M.; Sivaramakrishnan, A.; Soummer, R.

    2014-01-01

    We present a new high-contrast imaging testbed designed to provide complete solutions for wavefront sensing and control and starlight suppression with complex aperture telescopes (NASA APRA; Soummer PI). This includes geometries with central obstruction, support structures, and/or primary mirror segmentation. Complex aperture telescopes are often associated with large telescope designs, which are considered for future space missions. However, these designs makes high-contrast imaging challenging because of additional diffraction features in the point spread function. We present a novel optimization approach for the testbed optical and opto-mechanical design that minimizes the impact of both phase and amplitude errors from the wave propagation of testbed optics surface errors. This design approach allows us to define the specification for the bench optics, which we then compare to the manufactured parts. We discuss the testbed alignment and first results. We also present our coronagraph design for different testbed pupil shapes (AFTA or ATLAST), which involves a new method for the optimization of Apodized Pupil Lyot Coronagraphs (APLC).

  3. Neural Systems Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — As part of the Electrical and Computer Engineering Department and The Institute for System Research, the Neural Systems Laboratory studies the functionality of the...

  4. Power Systems Integration Laboratory | Energy Systems Integration Facility

    Science.gov (United States)

    | NREL Power Systems Integration Laboratory Power Systems Integration Laboratory Research in the Energy System Integration Facility's Power Systems Integration Laboratory focuses on the microgrid applications. Photo of engineers testing an inverter in the Power Systems Integration Laboratory

  5. Optical design of visible emission line coronagraph on Indian space solar mission Aditya-L1

    Science.gov (United States)

    Raj Kumar, N.; Raghavendra Prasad, B.; Singh, Jagdev; Venkata, Suresh

    2018-03-01

    The ground based observations of the coronal emission lines using a coronagraph are affected by the short duration of clear sky and varying sky transparency. These conditions do not permit to study small amplitude variations in the coronal emission reliably necessary to investigate the process or processes involved in heating the coronal plasma and dynamics of solar corona. The proposed Visible Emission Line Coronagraph (VELC) over comes these limitations and will provide continuous observation 24 h a day needed for detailed studies of solar corona and drivers for space weather predictions. VELC payload onboard India's Aditya-L1 space mission is an internally occulted solar coronagraph for studying the temperature, velocity, density and heating of solar corona. To achieve the proposed science goals, an instrument which is capable of carrying out simultaneous imaging, spectroscopy and spectro-polarimetric observations of the solar corona close to the solar limb is required. VELC is designed with salient features of (a) Imaging solar corona at 500 nm with an angular resolution of 5 arcsec over a FOV of 1.05Ro to 3Ro (Ro:Solar radius) (b) Simultaneous multi-slit spectroscopy at 530.3 nm [Fe XIV],789.2 nm [Fe XI] and 1074.7 nm [Fe XIII] with spectral dispersion of 28mÅ, 31mÅ and 202mÅ per pixel respectively, over a FOV of 1.05Ro to 1.5Ro. (c) Multi-slit dual beam spectro-polarimetry at 1074.7 nm. All the components of instrument have been optimized in view of the scientific objectives and requirements of space payloads. In this paper we present the details of optical configuration and the expected performance of the payload.

  6. Optical design of visible emission line coronagraph on Indian space solar mission Aditya-L1

    Science.gov (United States)

    Raj Kumar, N.; Raghavendra Prasad, B.; Singh, Jagdev; Venkata, Suresh

    2018-04-01

    The ground based observations of the coronal emission lines using a coronagraph are affected by the short duration of clear sky and varying sky transparency. These conditions do not permit to study small amplitude variations in the coronal emission reliably necessary to investigate the process or processes involved in heating the coronal plasma and dynamics of solar corona. The proposed Visible Emission Line Coronagraph (VELC) over comes these limitations and will provide continuous observation 24 h a day needed for detailed studies of solar corona and drivers for space weather predictions. VELC payload onboard India's Aditya-L1 space mission is an internally occulted solar coronagraph for studying the temperature, velocity, density and heating of solar corona. To achieve the proposed science goals, an instrument which is capable of carrying out simultaneous imaging, spectroscopy and spectro-polarimetric observations of the solar corona close to the solar limb is required. VELC is designed with salient features of (a) Imaging solar corona at 500 nm with an angular resolution of 5 arcsec over a FOV of 1.05Ro to 3Ro (Ro:Solar radius) (b) Simultaneous multi-slit spectroscopy at 530.3 nm [Fe XIV],789.2 nm [Fe XI] and 1074.7 nm [Fe XIII] with spectral dispersion of 28mÅ, 31mÅ and 202mÅ per pixel respectively, over a FOV of 1.05Ro to 1.5Ro. (c) Multi-slit dual beam spectro-polarimetry at 1074.7 nm. All the components of instrument have been optimized in view of the scientific objectives and requirements of space payloads. In this paper we present the details of optical configuration and the expected performance of the payload.

  7. On advanced estimation techniques for exoplanet detection and characterization using ground-based coronagraphs

    Science.gov (United States)

    Lawson, Peter R.; Poyneer, Lisa; Barrett, Harrison; Frazin, Richard; Caucci, Luca; Devaney, Nicholas; Furenlid, Lars; Gładysz, Szymon; Guyon, Olivier; Krist, John; Maire, Jérôme; Marois, Christian; Mawet, Dimitri; Mouillet, David; Mugnier, Laurent; Pearson, Iain; Perrin, Marshall; Pueyo, Laurent; Savransky, Dmitry

    2012-07-01

    The direct imaging of planets around nearby stars is exceedingly difficult. Only about 14 exoplanets have been imaged to date that have masses less than 13 times that of Jupiter. The next generation of planet-finding coronagraphs, including VLT-SPHERE, the Gemini Planet Imager, Palomar P1640, and Subaru HiCIAO have predicted contrast performance of roughly a thousand times less than would be needed to detect Earth-like planets. In this paper we review the state of the art in exoplanet imaging, most notably the method of Locally Optimized Combination of Images (LOCI), and we investigate the potential of improving the detectability of faint exoplanets through the use of advanced statistical methods based on the concepts of the ideal observer and the Hotelling observer. We propose a formal comparison of techniques using a blind data challenge with an evaluation of performance using the Receiver Operating Characteristic (ROC) and Localization ROC (LROC) curves. We place particular emphasis on the understanding and modeling of realistic sources of measurement noise in ground-based AO-corrected coronagraphs. The work reported in this paper is the result of interactions between the co-authors during a week-long workshop on exoplanet imaging that was held in Squaw Valley, California, in March of 2012.

  8. AUTOMATICALLY DETECTING AND TRACKING CORONAL MASS EJECTIONS. I. SEPARATION OF DYNAMIC AND QUIESCENT COMPONENTS IN CORONAGRAPH IMAGES

    International Nuclear Information System (INIS)

    Morgan, Huw; Byrne, Jason P.; Habbal, Shadia Rifai

    2012-01-01

    Automated techniques for detecting and tracking coronal mass ejections (CMEs) in coronagraph data are of ever increasing importance for space weather monitoring and forecasting. They serve to remove the biases and tedium of human interpretation, and provide the robust analysis necessary for statistical studies across large numbers of observations. An important requirement in their operation is that they satisfactorily distinguish the CME structure from the background quiescent coronal structure (streamers, coronal holes). Many studies resort to some form of time differencing to achieve this, despite the errors inherent in such an approach—notably spatiotemporal crosstalk. This article describes a new deconvolution technique that separates coronagraph images into quiescent and dynamic components. A set of synthetic observations made from a sophisticated model corona and CME demonstrates the validity and effectiveness of the technique in isolating the CME signal. Applied to observations by the LASCO C2 and C3 coronagraphs, the structure of a faint CME is revealed in detail despite the presence of background streamers that are several times brighter than the CME. The technique is also demonstrated to work on SECCHI/COR2 data, and new possibilities for estimating the three-dimensional structure of CMEs using the multiple viewing angles are discussed. Although quiescent coronal structures and CMEs are intrinsically linked, and although their interaction is an unavoidable source of error in any separation process, we show in a companion paper that the deconvolution approach outlined here is a robust and accurate method for rigorous CME analysis. Such an approach is a prerequisite to the higher-level detection and classification of CME structure and kinematics.

  9. High performance coronagraphy for direct imaging of exoplanets

    Directory of Open Access Journals (Sweden)

    Guyon O.

    2011-07-01

    Full Text Available Coronagraphy has recently been an extremely active field of research, with several high performance concepts proposed, and several new coronagraphs tested in laboratories and telescopes. Coronagraph concepts can be grouped in a few broad categories: Lyot-type coronagraphs, pupil apodization and nulling interferometers. Among existing coronagraph concepts, several approach the fundamental performance limit imposed by the physical nature of light. To achieve their full potential, coronagraphs require exquisite wavefront control and calibration. This has been, and still is, the main bottleneck for the scientifically productive use of coronagraphs on ground-based telescopes. New and promising wavefront sensing techniques suitable for high contrast imaging have however been developed in the last few years and are started to be realized in laboratories. I will review some of these enabling technologies, and show that coronagraphs are now ready for “prime time” on existing and future telescopes.

  10. ASPIICS: a giant, white light and emission line coronagraph for the ESA proba-3 formation flight mission

    Science.gov (United States)

    Lamy, P. L.; Vivès, S.; Curdt, W.; Damé, L.; Davila, J.; Defise, J.-M.; Fineschi, S.; Heinzel, P.; Howard, Russel; Kuzin, S.; Schmutz, W.; Tsinganos, K.; Zhukov, A.

    2017-11-01

    Classical externally-occulted coronagraphs are presently limited in their performances by the distance between the external occulter and the front objective. The diffraction fringe from the occulter and the vignetted pupil which degrades the spatial resolution prevent useful observations of the white light corona inside typically 2-2.5 solar radii (Rsun). Formation flying offers and elegant solution to these limitations and allows conceiving giant, externally-occulted coronagraphs using a two-component space system with the external occulter on one spacecraft and the optical instrument on the other spacecraft at a distance of hundred meters [1, 2]. Such an instrument ASPIICS (Association de Satellites Pour l'Imagerie et l'Interférométrie de la Couronne Solaire) has been selected by the European Space Agency (ESA) to fly on its PROBA-3 mission of formation flying demonstration which is presently in phase B (Fig. 1). The classical design of an externally-occulted coronagraph is adapted to the formation flying configuration allowing the detection of the very inner corona as close as 0.04 solar radii from the solar limb. By tuning the position of the occulter spacecraft, it may even be possible to reach the chromosphere and the upper part of the spicules [3]. ASPIICS will perform (i) high spatial resolution imaging of the continuum K+F corona in photometric and polarimetric modes, (ii) high spatial resolution imaging of the E-corona in two coronal emission lines (CEL): Fe XIV and He I D3, and (iii) two-dimensional spectrophotometry of the Fe XIV emission line. ASPIICS will address the question of the coronal heating and the role of waves by characterizing propagating fluctuations (waves and turbulence) in the solar wind acceleration region and by looking for oscillations in the intensity and Doppler shift of spectral lines. The combined imaging and spectral diagnostics capabilities available with ASPIICS will allow mapping the velocity field of the corona both in the

  11. Off-limb EUV observations of the solar corona and transients with the CORONAS-F/SPIRIT telescope-coronagraph

    Directory of Open Access Journals (Sweden)

    V. Slemzin

    2008-10-01

    Full Text Available The SPIRIT telescope aboard the CORONAS-F satellite (in orbit from 26 July 2001 to 5 December 2005, observed the off-limb solar corona in the 175 Å (Fe IX, X and XI lines and 304 Å (He II and Si XI lines bands. In the coronagraphic mode the mirror was tilted to image the corona at the distance of 1.1...5 Rsun from the solar center, the outer occulter blocked the disk radiation and the detector sensitivity was enhanced. This intermediate region between the fields of view of ordinary extreme-ultraviolet (EUV telescopes and most of the white-light (WL coronagraphs is responsible for forming the streamer belt, acceleration of ejected matter and emergence of slow and fast solar wind. We present here the results of continuous coronagraphic EUV observations of the solar corona carried out during two weeks in June and December 2002. The images showed a "diffuse" (unresolved component of the corona seen in both bands, and non-radial, ray-like structures seen only in the 175 Å band, which can be associated with a streamer base. The correlations between latitudinal distributions of the EUV brightness in the corona and at the limb were found to be high in 304 Å at all distances and in 175 Å only below 1.5 Rsun. The temporal correlation of the coronal brightness along the west radial line, with the brightness at the underlying limb region was significant in both bands, independent of the distance. On 2 February 2003 SPIRIT observed an expansion of a transient associated with a prominence eruption seen only in the 304 Å band. The SPIRIT data have been compared with the corresponding data of the SOHO LASCO, EIT and UVCS instruments.

  12. Energy Systems Integration Laboratory | Energy Systems Integration Facility

    Science.gov (United States)

    | NREL Integration Laboratory Energy Systems Integration Laboratory Research in the Energy Systems Integration Laboratory is advancing engineering knowledge and market deployment of hydrogen technologies. Applications include microgrids, energy storage for renewables integration, and home- and station

  13. THE INNER DISK STRUCTURE, DISK-PLANET INTERACTIONS, AND TEMPORAL EVOLUTION IN THE β PICTORIS SYSTEM: A TWO-EPOCH HST/STIS CORONAGRAPHIC STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Apai, Dániel; Schneider, Glenn [Department of Astronomy and Steward Observatory, The University of Arizona, Tucson, AZ 85721 (United States); Grady, Carol A. [Eureka Scientific, 2452 Delmer, Suite 100, Oakland CA 96002 (United States); Wyatt, Mark C. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Lagrange, Anne-Marie [Université Grenoble Alpes, IPAG, F-38000, Grenoble (France); Kuchner, Marc J.; Stark, Christopher J. [NASA Goddard Space Flight Center, Exoplanets and Stellar Astrophysics Laboratory, Code 667, Greenbelt, MD 20771 (United States); Lubow, Stephen H., E-mail: apai@arizona.edu [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2015-02-20

    We present deep Hubble Space Telescope/Space Telescope Imaging Spectrograph coronagraphic images of the β Pic debris disk obtained at two epochs separated by 15 yr. The new images and the re-reduction of the 1997 data provide the most sensitive and detailed views of the disk at optical wavelengths as well as the yet smallest inner working angle optical coronagraphic image of the disk. Our observations characterize the large-scale and inner-disk asymmetries and we identify multiple breaks in the disk radial surface brightness profile. We study in detail the radial and vertical disk structure and show that the disk is warped. We explore the disk at the location of the β Pic b super-Jupiter and find that the disk surface brightness slope is continuous between 0.''5 and 2.''0, arguing for no change at the separations where β Pic b orbits. The two epoch images constrain the disk's surface brightness evolution on orbital and radiation pressure blow-out timescales. We place an upper limit of 3% on the disk surface brightness change between 3'' and 5'', including the locations of the disk warp, and the CO and dust clumps. We discuss the new observations in the context of high-resolution multi-wavelength images and divide the disk asymmetries in two groups: axisymmetric and non-axisymmetric. The axisymmetric structures (warp, large-scale butterfly, etc.) are consistent with disk structure models that include interactions of a planetesimal belt and a non-coplanar giant planet. The non-axisymmetric features, however, require a different explanation.

  14. Ground-based adaptive optics coronagraphic performance under closed-loop predictive control

    Science.gov (United States)

    Males, Jared R.; Guyon, Olivier

    2018-01-01

    The discovery of the exoplanet Proxima b highlights the potential for the coming generation of giant segmented mirror telescopes (GSMTs) to characterize terrestrial-potentially habitable-planets orbiting nearby stars with direct imaging. This will require continued development and implementation of optimized adaptive optics systems feeding coronagraphs on the GSMTs. Such development should proceed with an understanding of the fundamental limits imposed by atmospheric turbulence. Here, we seek to address this question with a semianalytic framework for calculating the postcoronagraph contrast in a closed-loop adaptive optics system. We do this starting with the temporal power spectra of the Fourier basis calculated assuming frozen flow turbulence, and then apply closed-loop transfer functions. We include the benefits of a simple predictive controller, which we show could provide over a factor of 1400 gain in raw point spread function contrast at 1 λ/D on bright stars, and more than a factor of 30 gain on an I=7.5 mag star such as Proxima. More sophisticated predictive control can be expected to improve this even further. Assuming a photon-noise limited observing technique such as high-dispersion coronagraphy, these gains in raw contrast will decrease integration times by the same large factors. Predictive control of atmospheric turbulence should therefore be seen as one of the key technologies that will enable ground-based telescopes to characterize terrestrial planets.

  15. Tactical Systems Integration Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Tactical Systems Integration Laboratory is used to design and integrate computer hardware and software and related electronic subsystems for tactical vehicles....

  16. Direct imaging of extra-solar planetary systems with the Circumstellar Imaging Telescope (CIT)

    International Nuclear Information System (INIS)

    Terrile, R.J.

    1988-01-01

    In a joint study conducted by the Jet Propulsion Laboratory and the Perkin-Elmer Corporation it was found that an earth orbital, 1.5 meter diameter low scattered light coronagraphic telescope can achieve a broad range of scientific objectives including the direct detection of Jupiter-sized planets around the nearby stars. Recent major advances in the understanding of coronagraphic performance and in the field of super smooth mirror fabrication allow such an instrument to be designed and built within current technology. Such a project, called the Circumstellar Imaging Telescope (CIT), is currently being proposed. 10 references

  17. The State Public Health Laboratory System.

    Science.gov (United States)

    Inhorn, Stanley L; Astles, J Rex; Gradus, Stephen; Malmberg, Veronica; Snippes, Paula M; Wilcke, Burton W; White, Vanessa A

    2010-01-01

    This article describes the development since 2000 of the State Public Health Laboratory System in the United States. These state systems collectively are related to several other recent public health laboratory (PHL) initiatives. The first is the Core Functions and Capabilities of State Public Health Laboratories, a white paper that defined the basic responsibilities of the state PHL. Another is the Centers for Disease Control and Prevention National Laboratory System (NLS) initiative, the goal of which is to promote public-private collaboration to assure quality laboratory services and public health surveillance. To enhance the realization of the NLS, the Association of Public Health Laboratories (APHL) launched in 2004 a State Public Health Laboratory System Improvement Program. In the same year, APHL developed a Comprehensive Laboratory Services Survey, a tool to measure improvement through the decade to assure that essential PHL services are provided.

  18. Energy Systems High-Pressure Test Laboratory | Energy Systems Integration

    Science.gov (United States)

    Facility | NREL Energy Systems High-Pressure Test Laboratory Energy Systems High-Pressure Test Laboratory In the Energy Systems Integration Facility's High-Pressure Test Laboratory, researchers can safely test high-pressure hydrogen components. Photo of researchers running an experiment with a hydrogen fuel

  19. The ideal laboratory information system.

    Science.gov (United States)

    Sepulveda, Jorge L; Young, Donald S

    2013-08-01

    Laboratory information systems (LIS) are critical components of the operation of clinical laboratories. However, the functionalities of LIS have lagged significantly behind the capacities of current hardware and software technologies, while the complexity of the information produced by clinical laboratories has been increasing over time and will soon undergo rapid expansion with the use of new, high-throughput and high-dimensionality laboratory tests. In the broadest sense, LIS are essential to manage the flow of information between health care providers, patients, and laboratories and should be designed to optimize not only laboratory operations but also personalized clinical care. To list suggestions for designing LIS with the goal of optimizing the operation of clinical laboratories while improving clinical care by intelligent management of laboratory information. Literature review, interviews with laboratory users, and personal experience and opinion. Laboratory information systems can improve laboratory operations and improve patient care. Specific suggestions for improving the function of LIS are listed under the following sections: (1) Information Security, (2) Test Ordering, (3) Specimen Collection, Accessioning, and Processing, (4) Analytic Phase, (5) Result Entry and Validation, (6) Result Reporting, (7) Notification Management, (8) Data Mining and Cross-sectional Reports, (9) Method Validation, (10) Quality Management, (11) Administrative and Financial Issues, and (12) Other Operational Issues.

  20. Road Transportable Analytical Laboratory (RTAL) system

    International Nuclear Information System (INIS)

    1993-01-01

    The goal of this contractual effort is the development and demonstration of a Road Transportable Analytical Laboratory (RTAL) system to meet the unique needs of the Department of Energy (DOE) for rapid, accurate analysis of a wide variety of hazardous and radioactive contaminants in soil, groundwater, and surface waters. This laboratory system will be designed to provide the field and laboratory analytical equipment necessary to detect and quantify radionuclides, organics, heavy metals and other inorganics, and explosive materials. The planned laboratory system will consist of a set of individual laboratory modules deployable independently or as an interconnected group to meet each DOE site's specific needs

  1. Semi-Autonomous Systems Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — VisionThe Semi-Autonomous Systems Lab focuses on developing a comprehensive framework for semi-autonomous coordination of networked robotic systems. Semi-autonomous...

  2. ELAN - expert system supported information and management system for analytical laboratories

    International Nuclear Information System (INIS)

    Jaeschke, A.; Orth, H.; Zilly, G.

    1990-08-01

    The demand for high efficiency and short response time calls for the use of computer support in chemico-analytical laboratories. This is usually achieved by laboratory information and management systems covering the three levels of analytical instrument automation, laboratory operation support and laboratory management. The management component of the systems implemented up to now suffers from a lack of flexibility as far as unforeseen analytical investigations outside the laboratory routine work are concerned. Another drawback is the lack of adaptability with respect to structural changes in laboratory organization. It can be eliminated by the application of expert system structures and methods for the implementation of this system level. The ELAN laboratory information and management system has been developed on the basis of this concept. (orig.) [de

  3. Propulsion Systems Laboratory, Bldg. 125

    Data.gov (United States)

    Federal Laboratory Consortium — The Propulsion Systems Laboratory (PSL) is NASAs only ground test facility capable of providing true altitude and flight speed simulation for testing full scale gas...

  4. [The future of clinical laboratory database management system].

    Science.gov (United States)

    Kambe, M; Imidy, D; Matsubara, A; Sugimoto, Y

    1999-09-01

    To assess the present status of the clinical laboratory database management system, the difference between the Clinical Laboratory Information System and Clinical Laboratory System was explained in this study. Although three kinds of database management systems (DBMS) were shown including the relational model, tree model and network model, the relational model was found to be the best DBMS for the clinical laboratory database based on our experience and developments of some clinical laboratory expert systems. As a future clinical laboratory database management system, the IC card system connected to an automatic chemical analyzer was proposed for personal health data management and a microscope/video system was proposed for dynamic data management of leukocytes or bacteria.

  5. Strengthening laboratory systems in resource-limited settings.

    Science.gov (United States)

    Olmsted, Stuart S; Moore, Melinda; Meili, Robin C; Duber, Herbert C; Wasserman, Jeffrey; Sama, Preethi; Mundell, Ben; Hilborne, Lee H

    2010-09-01

    Considerable resources have been invested in recent years to improve laboratory systems in resource-limited settings. We reviewed published reports, interviewed major donor organizations, and conducted case studies of laboratory systems in 3 countries to assess how countries and donors have worked together to improve laboratory services. While infrastructure and the provision of services have seen improvement, important opportunities remain for further advancement. Implementation of national laboratory plans is inconsistent, human resources are limited, and quality laboratory services rarely extend to lower tier laboratories (eg, health clinics, district hospitals). Coordination within, between, and among governments and donor organizations is also frequently problematic. Laboratory standardization and quality control are improving but remain challenging, making accreditation a difficult goal. Host country governments and their external funding partners should coordinate their efforts effectively around a host country's own national laboratory plan to advance sustainable capacity development throughout a country's laboratory system.

  6. Demonstrating Broadband Billion-to-One Contrast with the Visible Nulling Coronagraph

    Science.gov (United States)

    Hicks, Brian A.; Lyon, Richard G.; Petrone, Peter, III; Miller, Ian J.; Bolcar, Matthew R.; Clampin, Mark; Helmbrecht, Michael A.; Mallik, Udayan

    2015-01-01

    The key to broadband operation of the Visible Nulling Coronagraph (VNC) is achieving a condition of quasi- achromatic destructive interference between combined beams. Here we present efforts towards meeting this goal using Fresnel rhombs in each interferometric arm as orthogonally aligned half wave phase retarders. The milestone goal of the demonstration is to achieve 1 × 10-9 contrast at 2/D over a 40 nm bandpass centered at 633 nm. Rhombs have been designed and fabricated, and a multi-step approach to alignment using coarse positioners for each rhomb and pair has been developed to get within range of piezo stages used for fine positioning. The previously demonstrated narrowband VNC sensing and control approach that uses a segmented deformable mirror is being adapted to broadband to include fine positioning of the piezo-mounted rhombs, all demonstrated in a low-pressure environment.

  7. Demonstrating broadband billion-to-one contrast with the Visible Nulling Coronagraph

    Science.gov (United States)

    Hicks, Brian A.; Lyon, Richard G.; Petrone, Peter; Miller, Ian J.; Bolcar, Matthew R.; Clampin, Mark; Helmbrecht, Michael A.; Mallik, Udayan

    2015-09-01

    The key to broadband operation of the Visible Nulling Coronagraph (VNC) is achieving a condition of quasi-achromatic destructive interference between combined beams. Here we present efforts towards meeting this goal using Fresnel rhombs in each interferometric arm as orthogonally aligned half wave phase retarders. The milestone goal of the demonstration is to achieve 1 × 10-9 contrast at 2λ/D over a 40 nm bandpass centered at 633 nm. Rhombs have been designed and fabricated, and a multi-step approach to alignment using coarse positioners for each rhomb and pair has been developed to get within range of piezo stages used for fine positioning. The previously demonstrated narrowband VNC sensing and control approach that uses a segmented deformable mirror is being adapted to broadband to include fine positioning of the piezo-mounted rhombs, all demonstrated in a low-pressure environment.

  8. Region 7 Laboratory Information Management System

    Data.gov (United States)

    U.S. Environmental Protection Agency — This is metadata documentation for the Region 7 Laboratory Information Management System (R7LIMS) which maintains records for the Regional Laboratory. Any Laboratory...

  9. Electric Field Reconstruction in the Image Plane of a High-Contrast Coronagraph Using a Set of Pinholes Around the Lyot Plane

    Science.gov (United States)

    Giveon, Amir; Kern, Brian; Shaklan, Stuart; Wallace, Kent; Noecker, Charley

    2012-01-01

    The pair-wise estimation has been used now on various testbeds with different coronagraphs with the best contrast results to date. Pinholes estimate has been implemented and ready to be tested in closed loop correction. Pinholes estimate offers an independent method. We hope to improve the calibration process to gain better estimates.

  10. Laboratory Testing and Performance Verification of the CHARIS Integral Field Spectrograph

    Science.gov (United States)

    Groff, Tyler D.; Chilcote, Jeffrey; Kasdin, N. Jeremy; Galvin, Michael; Loomis, Craig; Carr, Michael A.; Brandt, Timothy; Knapp, Gillian; Limbach, Mary Anne; Guyon, Olivier; hide

    2016-01-01

    The Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS) is an integral field spectrograph (IFS) that has been built for the Subaru telescope. CHARIS has two imaging modes; the high-resolution mode is R82, R69, and R82 in J, H, and K bands respectively while the low-resolution discovery mode uses a second low-resolution prism with R19 spanning 1.15-2.37 microns (J+H+K bands). The discovery mode is meant to augment the low inner working angle of the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) adaptive optics system, which feeds CHARIS a coronagraphic image. The goal is to detect and characterize brown dwarfs and hot Jovian planets down to contrasts five orders of magnitude dimmer than their parent star at an inner working angle as low as 80 milliarcseconds. CHARIS constrains spectral crosstalk through several key aspects of the optical design. Additionally, the repeatability of alignment of certain optical components is critical to the calibrations required for the data pipeline. Specifically the relative alignment of the lens let array, prism, and detector must be highly stable and repeatable between imaging modes. We report on the measured repeatability and stability of these mechanisms, measurements of spectral crosstalk in the instrument, and the propagation of these errors through the data pipeline. Another key design feature of CHARIS is the prism, which pairs Barium Fluoride with Ohara L-BBH2 high index glass. The dispersion of the prism is significantly more uniform than other glass choices, and the CHARIS prisms represent the first NIR astronomical instrument that uses L-BBH2as the high index material. This material choice was key to the utility of the discovery mode, so significant efforts were put into cryogenic characterization of the material. The final performance of the prism assemblies in their operating environment is described in detail. The spectrograph is going through final alignment, cryogenic cycling, and is being

  11. NEOCE: a new external occulting coronagraph experiment for ultimate observations of the chromosphere, corona and interface

    Science.gov (United States)

    Damé, Luc; Fineschi, Silvano; Kuzin, Sergey; Von Fay-Siebenburgen, Erdélyi Robert

    Several ground facilities and space missions are currently dedicated to the study of the Sun at high resolution and of the solar corona in particular. However, and despite significant progress with the advent of space missions and UV, EUV and XUV direct observations of the hot chromosphere and million-degrees coronal plasma, much is yet to be achieved in the understanding of these high temperatures, fine dynamic dissipative structures and of the coronal heating in general. Recent missions have shown the definite role of a wide range of waves and of the magnetic field deep in the inner corona, at the chromosphere-corona interface, where dramatic and physically fundamental changes occur. The dynamics of the chromosphere and corona is controlled and governed by the emerging magnetic field. Accordingly, the direct measurement of the chromospheric and coronal magnetic fields is of prime importance. The solar corona consists of many localised loop-like structures or threads with the plasmas brightening and fading independently. The plasma evolution in each thread is believed to be related to the formation of filaments, each one being dynamic, in a non-equilibrium state. The mechanism sustaining this dynamics, oscillations or waves (Alfvén or other magneto-plasma waves), requires both very high-cadence, multi-spectral observations, and high resolution and coronal magnetometry. This is foreseen in the future Space Mission NEOCE (New External Occulting Coronagraph Experiment), the ultimate new generation high-resolution coronagraphic heliospheric mission, to be proposed for ESA M4. NEOCE, an evolution of the HiRISE mission, is ideally placed at the L5 Lagrangian point (for a better follow-up of CMEs), and provides FUV imaging and spectro-imaging, EUV and XUV imaging and spectroscopy, and ultimate coronagraphy by a remote external occulter (two satellites in formation flying 375 m apart minimizing scattered light) allowing to characterize temperature, densities and

  12. Road Transportable Analytical Laboratory system

    International Nuclear Information System (INIS)

    Finger, S.M.; Keith, V.F.; Spertzel, R.O.; De Avila, J.C.; O'Donnell, M.; Vann, R.L.

    1993-09-01

    This developmental effort clearly shows that a Road Transportable Analytical Laboratory System is a worthwhile and achievable goal. The RTAL is designed to fully analyze (radioanalytes, and organic and inorganic chemical analytes) 20 samples per day at the highest levels of quality assurance and quality control. It dramatically reduces the turnaround time for environmental sample analysis from 45 days (at a central commercial laboratory) to 1 day. At the same time each RTAL system will save the DOE over $12 million per year in sample analysis costs compared to the costs at a central commercial laboratory. If RTAL systems were used at the eight largest DOE facilities (at Hanford, Savannah River, Fernald, Oak Ridge, Idaho, Rocky Flats, Los Alamos, and the Nevada Test Site), the annual savings would be $96,589,000. The DOE's internal study of sample analysis needs projects 130,000 environmental samples requiring analysis in FY 1994, clearly supporting the need for the RTAL system. The cost and time savings achievable with the RTAL system will accelerate and improve the efficiency of cleanup and remediation operations throughout the DOE complex

  13. Laboratory automation in clinical bacteriology: what system to choose?

    Science.gov (United States)

    Croxatto, A; Prod'hom, G; Faverjon, F; Rochais, Y; Greub, G

    2016-03-01

    Automation was introduced many years ago in several diagnostic disciplines such as chemistry, haematology and molecular biology. The first laboratory automation system for clinical bacteriology was released in 2006, and it rapidly proved its value by increasing productivity, allowing a continuous increase in sample volumes despite limited budgets and personnel shortages. Today, two major manufacturers, BD Kiestra and Copan, are commercializing partial or complete laboratory automation systems for bacteriology. The laboratory automation systems are rapidly evolving to provide improved hardware and software solutions to optimize laboratory efficiency. However, the complex parameters of the laboratory and automation systems must be considered to determine the best system for each given laboratory. We address several topics on laboratory automation that may help clinical bacteriologists to understand the particularities and operative modalities of the different systems. We present (a) a comparison of the engineering and technical features of the various elements composing the two different automated systems currently available, (b) the system workflows of partial and complete laboratory automation, which define the basis for laboratory reorganization required to optimize system efficiency, (c) the concept of digital imaging and telebacteriology, (d) the connectivity of laboratory automation to the laboratory information system, (e) the general advantages and disadvantages as well as the expected impacts provided by laboratory automation and (f) the laboratory data required to conduct a workflow assessment to determine the best configuration of an automated system for the laboratory activities and specificities. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Region 7 Laboratory Information Management System

    Science.gov (United States)

    This is metadata documentation for the Region 7 Laboratory Information Management System (R7LIMS) which maintains records for the Regional Laboratory. Any Laboratory analytical work performed is stored in this system which replaces LIMS-Lite, and before that LAST. The EPA and its contractors may use this database. The Office of Policy & Management (PLMG) Division at EPA Region 7 is the primary managing entity; contractors can access this database but it is not accessible to the public.

  15. SHARK-NIR system design analysis overview

    Science.gov (United States)

    Viotto, Valentina; Farinato, Jacopo; Greggio, Davide; Vassallo, Daniele; Carolo, Elena; Baruffolo, Andrea; Bergomi, Maria; Carlotti, Alexis; De Pascale, Marco; D'Orazi, Valentina; Fantinel, Daniela; Magrin, Demetrio; Marafatto, Luca; Mohr, Lars; Ragazzoni, Roberto; Salasnich, Bernardo; Verinaud, Christophe

    2016-08-01

    In this paper, we present an overview of the System Design Analysis carried on for SHARK-NIR, the coronagraphic camera designed to take advantage of the outstanding performance that can be obtained with the FLAO facility at the LBT, in the near infrared regime. Born as a fast-track project, the system now foresees both coronagraphic direct imaging and spectroscopic observing mode, together with a first order wavefront correction tool. The analysis we here report includes several trade-offs for the selection of the baseline design, in terms of optical and mechanical engineering, and the choice of the coronagraphic techniques to be implemented, to satisfy both the main scientific drivers and the technical requirements set at the level of the telescope. Further care has been taken on the possible exploitation of the synergy with other LBT instrumentation, like LBTI. A set of system specifications is then flown down from the upper level requirements to finally ensure the fulfillment of the science drivers. The preliminary performance budgets are presented, both in terms of the main optical planes stability and of the image quality, including the contributions of the main error sources in different observing modes.

  16. HCIT Contrast Performance Sensitivity Studies: Simulation Versus Experiment

    Science.gov (United States)

    Sidick, Erkin; Shaklan, Stuart; Krist, John; Cady, Eric J.; Kern, Brian; Balasubramanian, Kunjithapatham

    2013-01-01

    Using NASA's High Contrast Imaging Testbed (HCIT) at the Jet Propulsion Laboratory, we have experimentally investigated the sensitivity of dark hole contrast in a Lyot coronagraph for the following factors: 1) Lateral and longitudinal translation of an occulting mask; 2) An opaque spot on the occulting mask; 3) Sizes of the controlled dark hole area. Also, we compared the measured results with simulations obtained using both MACOS (Modeling and Analysis for Controlled Optical Systems) and PROPER optical analysis programs with full three-dimensional near-field diffraction analysis to model HCIT's optical train and coronagraph.

  17. A Laboratory Notebook System

    OpenAIRE

    Schreiber, Andreas

    2012-01-01

    Many scientists are using a laboratory notebook when conducting experiments. The scientist documents each step, either taken in the experiment or afterwards when processing data. Due to computerized research systems, acquired data increases in volume and becomes more elaborate. This increases the need to migrate from originally paper-based to electronic notebooks with data storage, computational features and reliable electronic documentation. This talks describes a laboratory notebook bas...

  18. The Phase-Induced Amplitude Apodization Coronagraph (PIAAC): Performance for Imaging of Earth-like Exoplanets.

    Science.gov (United States)

    Martinache, F.; Guyon, O.; Pluzhnik, E.; Ridgway, S.; Galicher, R.

    2004-12-01

    PIAA is one of the powerful applications of pupil remapping. A set of two aspheric mirrors changes the distribution of light and provides an apodized pupil, suitable for coronagraphy, without light loss on an absorbing mask. Deployed on to a space telescope with coronagraphic quality optics, it may allow planet detection from a 1.2 λ /d inner working distance and a full working field. We describe the performance of a PIAA version of NASA's Terrestrial Planet Finder (TPF) in terms of Signal to Noise Ratio and compare it to Classical Pupil Apodization (CPA) performance. We also discuss the necessity of using different occulting masks and give an estimate of the total exposure time for the planet detection phase of the TPF mission. This study is based on realistic Monte Carlo simulations of terrestrial planets orbiting around F, G, K stars within 30 pc around the solar system and includes planet phase and angular separation probabilities. This work was carried out under JPL contract numbers 1254445 and 1257767 for Development of Technologies for the Terrestrial Planet Finder Mission, with the support and hospitality of the National Astronomical Observatory of Japan.

  19. The Computational Sensorimotor Systems Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Computational Sensorimotor Systems Lab focuses on the exploration, analysis, modeling and implementation of biological sensorimotor systems for both scientific...

  20. Aviation Information Systems Development Laboratory (AISDL)

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose:The Aviation Information Systems Development Laboratory (AISDL) provides the tools, reconfigurability and support to ensure the quality and integrity of new...

  1. Potential of Laboratory Execution Systems (LESs) to Simplify the Application of Business Process Management Systems (BPMSs) in Laboratory Automation.

    Science.gov (United States)

    Neubert, Sebastian; Göde, Bernd; Gu, Xiangyu; Stoll, Norbert; Thurow, Kerstin

    2017-04-01

    Modern business process management (BPM) is increasingly interesting for laboratory automation. End-to-end workflow automation and improved top-level systems integration for information technology (IT) and automation systems are especially prominent objectives. With the ISO Standard Business Process Model and Notation (BPMN) 2.X, a system-independent and interdisciplinary accepted graphical process control notation is provided, allowing process analysis, while also being executable. The transfer of BPM solutions to structured laboratory automation places novel demands, for example, concerning the real-time-critical process and systems integration. The article discusses the potential of laboratory execution systems (LESs) for an easier implementation of the business process management system (BPMS) in hierarchical laboratory automation. In particular, complex application scenarios, including long process chains based on, for example, several distributed automation islands and mobile laboratory robots for a material transport, are difficult to handle in BPMSs. The presented approach deals with the displacement of workflow control tasks into life science specialized LESs, the reduction of numerous different interfaces between BPMSs and subsystems, and the simplification of complex process modelings. Thus, the integration effort for complex laboratory workflows can be significantly reduced for strictly structured automation solutions. An example application, consisting of a mixture of manual and automated subprocesses, is demonstrated by the presented BPMS-LES approach.

  2. Road Transportable Analytical Laboratory (RTAL) system

    International Nuclear Information System (INIS)

    Finger, S.M.

    1995-01-01

    U.S. Department of Energy (DOE) facilities around the country have, over the years, become contaminated with radionuclides and a range of organic and inorganic wastes. Many of the DOE sites encompass large land areas and were originally sited in relatively unpopulated regions of the country to minimize risk to surrounding populations. In addition, wastes were sometimes stored underground at the sites in 55-gallon drums, wood boxes or other containers until final disposal methods could be determined. Over the years, these containers have deteriorated, releasing contaminants into the surrounding environment. This contamination has spread, in some cases polluting extensive areas. Remediation of these sites requires extensive sampling to determine the extent of the contamination, to monitor clean-up and remediation progress, and for post-closure monitoring of facilities. The DOE would benefit greatly if it had reliable, road transportable, fully independent laboratory systems that could perform on-site the full range of analyses required. Such systems would accelerate and thereby reduce the cost of clean-up and remediation efforts by (1) providing critical analytical data more rapidly, and (2) eliminating the handling, shipping and manpower associated with sample shipments. The goal of the Road Transportable Analytical Laboratory (RTAL) Project is the development and demonstration of a system to meet the unique needs of the DOE for rapid, accurate analysis of a wide variety of hazardous and radioactive contaminants in soil, groundwater, and surface waters. This laboratory system has been designed to provide the field and laboratory analytical equipment necessary to detect and quantify radionuclides, organics, heavy metals and other inorganic compounds. The laboratory system consists of a set of individual laboratory modules deployable independently or as an interconnected group to meet each DOE site's specific needs

  3. Evidence for a current sheet forming in the wake of a coronal mass ejection from multi-viewpoint coronagraph observations

    Science.gov (United States)

    Patsourakos, S.; Vourlidas, A.

    2011-01-01

    Context. Ray-like features observed by coronagraphs in the wake of coronal mass ejections (CMEs) are sometimes interpreted as the white light counterparts of current sheets (CSs) produced by the eruption. The 3D geometry of these ray-like features is largely unknown and its knowledge should clarify their association to the CS and place constraints on CME physics and coronal conditions. Aims: If these rays are related to field relaxation behind CMEs, therefore representing current sheets, then they should be aligned to the CME axis. With this study we test these important implications for the first time. Methods: An example of such a post-CME ray was observed by various coronagraphs, including these of the Sun Earth Connection Coronal and Heliospheric investigation (SECCHI) onboard the Solar Terrestrial Relations Observatory (STEREO) twin spacecraft and the Large Angle Spectrometric Coronagraph (LASCO) onboard the Solar and Heliospheric Observatory (SOHO). The ray was observed in the aftermath of a CME which occurred on 9 April 2008. The twin STEREO spacecraft were separated by about 48° on that day. This significant separation combined with a third “eye” view supplied by LASCO allow for a truly multi-viewpoint observation of the ray and of the CME. We applied 3D forward geometrical modeling to the CME and to the ray as simultaneously viewed by SECCHI-A and B and by SECCHI-A and LASCO, respectively. Results: We found that the ray can be approximated by a rectangular slab, nearly aligned with the CME axis, and much smaller than the CME in both terms of thickness and depth (≈0.05 and 0.15 R⊙ respectively). The ray electron density and temperature were substantially higher than their values in the ambient corona. We found that the ray and CME are significantly displaced from the associated post-CME flaring loops. Conclusions: The properties and location of the ray are fully consistent with the expectations of the standard CME theories for post-CME current

  4. Assessment of laboratory logistics management information system ...

    African Journals Online (AJOL)

    Introduction: Logistics management information system for health commodities remained poorly implemented in most of developing countries. To assess the status of laboratory logistics management information system for HIV/AIDS and tuberculosis laboratory commodities in public health facilities in Addis Ababa. Methods: ...

  5. Intelligent Acquisition System Used in Mechanical Laboratory

    Directory of Open Access Journals (Sweden)

    Rob Raluca

    2016-01-01

    Full Text Available The main purpose of this paper consists in determining of the parameters which characterize the functioning of the Teves MK 60 as an ABS-ESP braking laboratory stand. This braking system model is used by the Volkswagen Golf and Bora the since 2002. The braking laboratory stand is able to simulate many operations which are able to give information concerning the ABS-ESP braking system comparing to the classical braking system. An application designed in LabVIEW comes to acquire and to process in real time the electrical signals generated by the Teves MK 60 laboratory stand.

  6. Purdue Hydrogen Systems Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Jay P Gore; Robert Kramer; Timothee L Pourpoint; P. V. Ramachandran; Arvind Varma; Yuan Zheng

    2011-12-28

    The Hydrogen Systems Laboratory in a unique partnership between Purdue University's main campus in West Lafayette and the Calumet campus was established and its capabilities were enhanced towards technology demonstrators. The laboratory engaged in basic research in hydrogen production and storage and initiated engineering systems research with performance goals established as per the USDOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program. In the chemical storage and recycling part of the project, we worked towards maximum recycling yield via novel chemical selection and novel recycling pathways. With the basic potential of a large hydrogen yield from AB, we used it as an example chemical but have also discovered its limitations. Further, we discovered alternate storage chemicals that appear to have advantages over AB. We improved the slurry hydrolysis approach by using advanced slurry/solution mixing techniques. We demonstrated vehicle scale aqueous and non-aqueous slurry reactors to address various engineering issues in on-board chemical hydrogen storage systems. We measured the thermal properties of raw and spent AB. Further, we conducted experiments to determine reaction mechanisms and kinetics of hydrothermolysis in hydride-rich solutions and slurries. We also developed a continuous flow reactor and a laboratory scale fuel cell power generation system. The biological hydrogen production work summarized as Task 4.0 below, included investigating optimal hydrogen production cultures for different substrates, reducing the water content in the substrate, and integrating results from vacuum tube solar collector based pre and post processing tests into an enhanced energy system model. An automated testing device was used to finalize optimal hydrogen production conditions using statistical procedures. A 3 L commercial fermentor (New Brunswick, BioFlo 115) was used to finalize testing of larger samples and to consider issues related to scale up

  7. Purdue Hydrogen Systems Laboratory

    International Nuclear Information System (INIS)

    Gore, Jay P.; Kramer, Robert; Pourpoint, Timothee L.; Ramachandran, P.V.; Varma, Arvind; Zheng, Yuan

    2011-01-01

    The Hydrogen Systems Laboratory in a unique partnership between Purdue University's main campus in West Lafayette and the Calumet campus was established and its capabilities were enhanced towards technology demonstrators. The laboratory engaged in basic research in hydrogen production and storage and initiated engineering systems research with performance goals established as per the USDOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program. In the chemical storage and recycling part of the project, we worked towards maximum recycling yield via novel chemical selection and novel recycling pathways. With the basic potential of a large hydrogen yield from AB, we used it as an example chemical but have also discovered its limitations. Further, we discovered alternate storage chemicals that appear to have advantages over AB. We improved the slurry hydrolysis approach by using advanced slurry/solution mixing techniques. We demonstrated vehicle scale aqueous and non-aqueous slurry reactors to address various engineering issues in on-board chemical hydrogen storage systems. We measured the thermal properties of raw and spent AB. Further, we conducted experiments to determine reaction mechanisms and kinetics of hydrothermolysis in hydride-rich solutions and slurries. We also developed a continuous flow reactor and a laboratory scale fuel cell power generation system. The biological hydrogen production work summarized as Task 4.0 below, included investigating optimal hydrogen production cultures for different substrates, reducing the water content in the substrate, and integrating results from vacuum tube solar collector based pre and post processing tests into an enhanced energy system model. An automated testing device was used to finalize optimal hydrogen production conditions using statistical procedures. A 3 L commercial fermentor (New Brunswick, BioFlo 115) was used to finalize testing of larger samples and to consider issues related to scale up. Efforts

  8. BIOPLUS: An eclectic laboratory information management system for the ORNL Radiobioassay Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, R.L.; Hwang, H.L.; Bishop, C.P.; Blair, R.L.; Cornett, R.L.; Gonzalez, B.D.; Hotchandani, M.; Keaton, J.A.; Miller, J.L.; Myers, R.D.; Ohnesorge, M.J.; Thein, M.

    1992-12-31

    Data management activities in analytical laboratories can include sample scheduling, logging, and tracking, as well as results collection and reporting. In the Radiobioassay Laboratory (RBL) such activities were formerly accomplished by entering data in log books and on forms followed by manual entry of data into a computer database. As sample load has increased and further emphasis has been placed on improving efficiency and on error reduction, it has become worthwhile to automate the laboratory`s information management. In addition, a Bioassay Data Management System (BDMS) has developed for use by all five of the DOE sites managed by Martin Marietta Energy Systems in order to centralize bioassay data management for internal dosimetry purposes. BIOPLUS, the LIMS described in this paper, provides an interface with BDMS and automates RBL information management to a large extent. The system provides for downloading personnel data from a central computer, logging in samples, and bar-code sample tracking, as well as recording, reporting, archiving, and trending of analysis results. Sketches of the hardware and software are presented along with some details of the instrument interface modules.

  9. 78 FR 60245 - Privacy Act Systems of Records; LabWare Laboratory Information Management System

    Science.gov (United States)

    2013-10-01

    ... of Records; LabWare Laboratory Information Management System AGENCY: Animal and Plant Health... system of records, entitled LabWare Laboratory Information Management System (LabWare LIMS), to maintain... Affairs, OMB. Thomas J. Vilsack, Secretary. SYSTEM NAME: LabWare Laboratory Information Management System...

  10. Monitoring system of the Tritium Research Laboratory, Sandia Laboratories, Livermore, CA

    International Nuclear Information System (INIS)

    Wall, W.R.; Hafner, R.S.; Westfall, D.L.; Ristau, R.D.

    1978-11-01

    Automated tritium monitoring is now in use at the Tritium Research Laboratory (TRL). Betatec 100 tritium monitors, along with several Sandia-designed accessories, have been combined with a PDP 11/40 computer to automatically read and record tritium concentrations of room air, containment, and cleanup systems. Each individual monitoring system, in addition to a local display in the area of interest, has a visible/audible display in the control room. Each system is then channeled into the PDP 11/40 computer, providing immediate assessment of the status of the entire laboratory from a central location. Measurement capability ranges from μCi/m 3 levels for room air monitoring to kCi/m 3 levels for glove box and cleanup systems monitoring. In this report the overall monitoring system and its capabilities are discussed, with detailed descriptions given of monitors and their components

  11. Quality assurance system in gamma spectrometry laboratory

    International Nuclear Information System (INIS)

    Mielnikow, A.; Michalik, B.; Chalupnik, S.; Lebecka, J.

    1996-01-01

    On basis of guidelines for development of QUALITY SYSTEM for a testing laboratory (European Standard Series EN 45000) a quality assurance system was implemented in gamma spectroscopy laboratory, where routine measurements of natural (mainly Ra-226, Ra-228, Ra-224, K-40) and artificial (mainly Cs-137 and Cs-134) isotopes are performed. We measure a variety of samples, but mainly coal, vaste rock, ashe, deposits, vegetation and air filters. Laboratory of gamma spectroscopy in Central Mining Institute has three HPGe detectors. There is one coaxial detector with 45% relative efficiency, one detector for low energy region and one detector with extended range). We have also two Ge(Li) detectors from former Czechoslovakia. Shielding is made mainly of steel (40 cm) with the interior covered with lead and copper. The electronics and software (Genie-PC) was bought at 'Canberra' and 'Silena'. The paper describes not only the system of quality assurance but also main problems met by its implementation and results of intercomparison measurements. The QAS has been introduced in 1992. In 1993 the Accreditation Certificate of Testing Laboratory for our Laboratory has been obtained from the Polish Bureau of Research and Certification as a fifth laboratory in Poland. (author)

  12. Laboratory Modelling of Volcano Plumbing Systems: a review

    Science.gov (United States)

    Galland, Olivier; Holohan, Eoghan P.; van Wyk de Vries, Benjamin; Burchardt, Steffi

    2015-04-01

    Earth scientists have, since the XIX century, tried to replicate or model geological processes in controlled laboratory experiments. In particular, laboratory modelling has been used study the development of volcanic plumbing systems, which sets the stage for volcanic eruptions. Volcanic plumbing systems involve complex processes that act at length scales of microns to thousands of kilometres and at time scales from milliseconds to billions of years, and laboratory models appear very suitable to address them. This contribution reviews laboratory models dedicated to study the dynamics of volcano plumbing systems (Galland et al., Accepted). The foundation of laboratory models is the choice of relevant model materials, both for rock and magma. We outline a broad range of suitable model materials used in the literature. These materials exhibit very diverse rheological behaviours, so their careful choice is a crucial first step for the proper experiment design. The second step is model scaling, which successively calls upon: (1) the principle of dimensional analysis, and (2) the principle of similarity. The dimensional analysis aims to identify the dimensionless physical parameters that govern the underlying processes. The principle of similarity states that "a laboratory model is equivalent to his geological analogue if the dimensionless parameters identified in the dimensional analysis are identical, even if the values of the governing dimensional parameters differ greatly" (Barenblatt, 2003). The application of these two steps ensures a solid understanding and geological relevance of the laboratory models. In addition, this procedure shows that laboratory models are not designed to exactly mimic a given geological system, but to understand underlying generic processes, either individually or in combination, and to identify or demonstrate physical laws that govern these processes. From this perspective, we review the numerous applications of laboratory models to

  13. Challenges in small screening laboratories: implementing an on-demand laboratory information management system.

    Science.gov (United States)

    Lemmon, Vance P; Jia, Yuanyuan; Shi, Yan; Holbrook, S Douglas; Bixby, John L; Buchser, William

    2011-11-01

    The Miami Project to Cure Paralysis, part of the University of Miami Miller School of Medicine, includes a laboratory devoted to High Content Analysis (HCA) of neurons. The goal of the laboratory is to uncover signaling pathways, genes, compounds, or drugs that can be used to promote nerve growth. HCA permits the quantification of neuronal morphology, including the lengths and numbers of axons. HCA of various libraries on primary neurons requires a team-based approach, a variety of process steps and complex manipulations of cells and libraries to obtain meaningful results. HCA itself produces vast amounts of information including images, well-based data and cell-based phenotypic measures. Documenting and integrating the experimental workflows, library data and extensive experimental results is challenging. For academic laboratories generating large data sets from experiments involving thousands of perturbagens, a Laboratory Information Management System (LIMS) is the data tracking solution of choice. With both productivity and efficiency as driving rationales, the Miami Project has equipped its HCA laboratory with an On Demand or Software As A Service (SaaS) LIMS to ensure the quality of its experiments and workflows. The article discusses how the system was selected and integrated into the laboratory. The advantages of a SaaS based LIMS over a client-server based system are described. © 2011 Bentham Science Publishers

  14. Simulation-Based System Design Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The research objective is to develop, test, and implement effective and efficient simulation techniques for modeling, evaluating, and optimizing systems in order to...

  15. Deep Imaging Search for Planets Forming in the TW Hya Protoplanetary Disk with the Keck/NIRC2 Vortex Coronagraph

    Science.gov (United States)

    Ruane, G.; Mawet, D.; Kastner, J.; Meshkat, T.; Bottom, M.; Femenía Castellá, B.; Absil, O.; Gomez Gonzalez, C.; Huby, E.; Zhu, Z.; Jenson-Clem, R.; Choquet, É.; Serabyn, E.

    2017-08-01

    Distinct gap features in the nearest protoplanetary disk, TW Hya (distance of 59.5 ± 0.9 pc), may be signposts of ongoing planet formation. We performed long-exposure thermal infrared coronagraphic imaging observations to search for accreting planets, especially within dust gaps previously detected in scattered light and submillimeter-wave thermal emission. Three nights of observations with the Keck/NIRC2 vortex coronagraph in L‧ (3.4-4.1 μm) did not reveal any statistically significant point sources. We thereby set strict upper limits on the masses of non-accreting planets. In the four most prominent disk gaps at 24, 41, 47, and 88 au, we obtain upper mass limits of 1.6-2.3, 1.1-1.6, 1.1-1.5, and 1.0-1.2 Jupiter masses (M J), assuming an age range of 7-10 Myr for TW Hya. These limits correspond to the contrast at 95% completeness (true positive fraction of 0.95) with a 1% chance of a false positive within 1″ of the star. We also approximate an upper limit on the product of the planet mass and planetary accretion rate of {M}{{p}}\\dot{M}≲ {10}-8 {M}{{J}}2 {{yr}}-1 implying that any putative ˜0.1 M J planet, which could be responsible for opening the 24 au gap, is presently accreting at rates insufficient to build up a Jupiter mass within TW Hya’s pre-main-sequence lifetime.

  16. Commissioning Ventilated Containment Systems in the Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    2008-08-01

    This Best Practices Guide focuses on the specialized approaches required for ventilated containment systems, understood to be all components that drive and control ventilated enclosures and local exhaust systems within the laboratory. Geared toward architects, engineers, and facility managers, this guide provides information about technologies and practices to use in designing, constructing, and operating operating safe, sustainable, high-performance laboratories.

  17. AUTOMATION OF THE SYSTEM OF INTERNAL LABORATORY QUALITY CONTROL

    Directory of Open Access Journals (Sweden)

    V. Z. Stetsyuk

    2015-05-01

    Full Text Available Quality control system base d on the principles of standardi zation of all phases of laboratory testing and analysis of internal laboratory quality control and external quality assessment. For the detection accuracy of the results of laboratory tests, carried out internally between the laboratory and laboratory quality control. Under internal laboratory quality control we understand measurement results of each analysis in each anal ytical series rendered directly in the lab every day. The purpose of internal laboratory control - identifying and eliminating unacceptable deviations from standard perfor mance test in the laboratory, i.e. identifying and eliminating harmful analytical errors. The solutions to these problems by implementing automated systems - software that allows you to optimize analytical laboratory research stage of the procedure by automatically creating process control charts was shown.

  18. Quality system for Medical laboratories

    Directory of Open Access Journals (Sweden)

    Shiva Raj K.C.

    2015-03-01

    Full Text Available According to William Edwards Deming “Good quality does not necessarily mean high quality. Instead it means a predicable degree of uniformity and dependability at low cost with a quality suited to the market.” Whereas according to famous engineer and management consultant Joseph M. Juran quality is “fitness for purpose”. It should meet the customers’ expectations and requirements, should be cost effective.ISO began in 1926 as the International Federation of the National Standardizing Associations (ISA. The name, "ISO" was derived from the Greek word "isos" meaning "equal". (The relation to standards is that if two objects meet the same standard, they should be equal. This name eliminates any confusion that could result from the translation of "International Organization for Standardization" into different languages which would lead to different acronyms.In health sector, quality plays pivotal role, as it is directly related to patient’s care. Earlier time, health service was simple, quite safe but ineffective. Now health care system is an organizational system with more complex processes to deliver care. Medical laboratory service is an integral part in patient’s management system. So, for everyone involved in the treatment of the patient, the accuracy, reliability and safety of those services must be the primary concerns. Accreditation is a significant enabler of quality, thereby delivering confidence to healthcare providers, clinicians, the medical laboratories and the patients themselves.ISO announced meeting in Philadelphia to form a technical committee to develop a new standard for medical laboratory quality. It took 7 years for the creation of a new Quality standard for medical laboratories. It was named as “ISO 15189” and was first published in 2003. The ISO has released three versions of the standard. The first two were released in 2003 and 2007. In 2012, a revised and updated version of the standard, ISO 15189

  19. The monitoring system of the Tritium Research Laboratory, Sandia Laboratories, Livermore, California

    International Nuclear Information System (INIS)

    Hafner, R.S.; Westfall, D.L.; Ristau, R.D.

    1978-01-01

    Computerized tritium monitoring is now in use at the Tritium Research Laboratory (TRL). Betatec 100 tritium monitors, along with several Sandia designed accessories, have been combined with a PDP 11/40 computer to provide maximum personnel and environmental protection. Each individual monitoring system, in addition to a local display in the area of interest, has a visual/audible display in the control room. Each system is then channeled into the PDP 11/40 computer, providing immediate assessment of the status of the entire laboratory from a central location. Measurement capability ranges from uCi/m 3 levels for room air monitoring to KCi/m 3 levels for glove box and process system monitoring. The overall monitoring system and its capabilities will be presented

  20. [Knowledge management system for laboratory work and clinical decision support].

    Science.gov (United States)

    Inada, Masanori; Sato, Mayumi; Yoneyama, Akiko

    2011-05-01

    This paper discusses a knowledge management system for clinical laboratories. In the clinical laboratory of Toranomon Hospital, we receive about 20 questions relevant to laboratory tests per day from medical doctors or co-medical staff. These questions mostly involve the essence to appropriately accomplish laboratory tests. We have to answer them carefully and suitably because an incorrect answer may cause a medical accident. Up to now, no method has been in place to achieve a rapid response and standardized answers. For this reason, the laboratory staff have responded to various questions based on their individual knowledge. We began to develop a knowledge management system to promote the knowledge of staff working for the laboratory. This system is a type of knowledge base for assisting the work, such as inquiry management, laboratory consultation, process management, and clinical support. It consists of several functions: guiding laboratory test information, managing inquiries from medical staff, reporting results of patient consultation, distributing laboratory staffs notes, and recording guidelines for laboratory medicine. The laboratory test information guide has 2,000 records of medical test information registered in the database with flexible retrieval. The inquiry management tool provides a methos to record all questions, answer easily, and retrieve cases. It helps staff to respond appropriately in a short period of time. The consulting report system treats patients' claims regarding medical tests. The laboratory staffs notes enter a file management system so they can be accessed to aid in clinical support. Knowledge sharing using this function can achieve the transition from individual to organizational learning. Storing guidelines for laboratory medicine will support EBM. Finally, it is expected that this system will support intellectual activity concerning laboratory work and contribute to the practice of knowledge management for clinical work support.

  1. VIRTUAL LABORATORY IN DISTANCE LEARNING SYSTEM

    Directory of Open Access Journals (Sweden)

    Е. Kozlovsky

    2011-11-01

    Full Text Available Questions of designing and a choice of technologies of creation of virtual laboratory for the distance learning system are considered. Distance learning system «Kherson Virtual University» is used as illustration.

  2. CMDS System Integration and IAMD End-to-End Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Cruise Missile Defense Systems (CMDS) Project Office is establishing a secure System Integration Laboratory at the AMRDEC. This lab will contain tactical Signal...

  3. BIOPLUS: An eclectic laboratory information management system for the ORNL Radiobioassay Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, R.L.; Hwang, H.L.; Bishop, C.P.; Blair, R.L.; Cornett, R.L.; Gonzalez, B.D.; Hotchandani, M.; Keaton, J.A.; Miller, J.L.; Myers, R.D.; Ohnesorge, M.J.; Thein, M.

    1992-01-01

    Data management activities in analytical laboratories can include sample scheduling, logging, and tracking, as well as results collection and reporting. In the Radiobioassay Laboratory (RBL) such activities were formerly accomplished by entering data in log books and on forms followed by manual entry of data into a computer database. As sample load has increased and further emphasis has been placed on improving efficiency and on error reduction, it has become worthwhile to automate the laboratory's information management. In addition, a Bioassay Data Management System (BDMS) has developed for use by all five of the DOE sites managed by Martin Marietta Energy Systems in order to centralize bioassay data management for internal dosimetry purposes. BIOPLUS, the LIMS described in this paper, provides an interface with BDMS and automates RBL information management to a large extent. The system provides for downloading personnel data from a central computer, logging in samples, and bar-code sample tracking, as well as recording, reporting, archiving, and trending of analysis results. Sketches of the hardware and software are presented along with some details of the instrument interface modules.

  4. BIOPLUS: An eclectic laboratory information management system for the ORNL Radiobioassay Laboratory

    International Nuclear Information System (INIS)

    Ferguson, R.L.; Hwang, H.L.; Bishop, C.P.; Blair, R.L.; Cornett, R.L.; Gonzalez, B.D.; Hotchandani, M.; Keaton, J.A.; Miller, J.L.; Myers, R.D.; Ohnesorge, M.J.; Thein, M.

    1992-01-01

    Data management activities in analytical laboratories can include sample scheduling, logging, and tracking, as well as results collection and reporting. In the Radiobioassay Laboratory (RBL) such activities were formerly accomplished by entering data in log books and on forms followed by manual entry of data into a computer database. As sample load has increased and further emphasis has been placed on improving efficiency and on error reduction, it has become worthwhile to automate the laboratory's information management. In addition, a Bioassay Data Management System (BDMS) has developed for use by all five of the DOE sites managed by Martin Marietta Energy Systems in order to centralize bioassay data management for internal dosimetry purposes. BIOPLUS, the LIMS described in this paper, provides an interface with BDMS and automates RBL information management to a large extent. The system provides for downloading personnel data from a central computer, logging in samples, and bar-code sample tracking, as well as recording, reporting, archiving, and trending of analysis results. Sketches of the hardware and software are presented along with some details of the instrument interface modules

  5. Towards an evaluation framework for Laboratory Information Systems.

    Science.gov (United States)

    Yusof, Maryati M; Arifin, Azila

    Laboratory testing and reporting are error-prone and redundant due to repeated, unnecessary requests and delayed or missed reactions to laboratory reports. Occurring errors may negatively affect the patient treatment process and clinical decision making. Evaluation on laboratory testing and Laboratory Information System (LIS) may explain the root cause to improve the testing process and enhance LIS in supporting the process. This paper discusses a new evaluation framework for LIS that encompasses the laboratory testing cycle and the socio-technical part of LIS. Literature review on discourses, dimensions and evaluation methods of laboratory testing and LIS. A critical appraisal of the Total Testing Process (TTP) and the human, organization, technology-fit factors (HOT-fit) evaluation frameworks was undertaken in order to identify error incident, its contributing factors and preventive action pertinent to laboratory testing process and LIS. A new evaluation framework for LIS using a comprehensive and socio-technical approach is outlined. Positive relationship between laboratory and clinical staff resulted in a smooth laboratory testing process, reduced errors and increased process efficiency whilst effective use of LIS streamlined the testing processes. The TTP-LIS framework could serve as an assessment as well as a problem-solving tool for the laboratory testing process and system. Copyright © 2016 King Saud Bin Abdulaziz University for Health Sciences. Published by Elsevier Ltd. All rights reserved.

  6. Validation of a laboratory and hospital information system in a medical laboratory accredited according to ISO 15189.

    Science.gov (United States)

    Biljak, Vanja Radisic; Ozvald, Ivan; Radeljak, Andrea; Majdenic, Kresimir; Lasic, Branka; Siftar, Zoran; Lovrencic, Marijana Vucic; Flegar-Mestric, Zlata

    2012-01-01

    The aim of the study was to present a protocol for laboratory information system (LIS) and hospital information system (HIS) validation at the Institute of Clinical Chemistry and Laboratory Medicine of the Merkur University Hospital, Zagreb, Croatia. Validity of data traceability was checked by entering all test requests for virtual patient into HIS/LIS and printing corresponding barcoded labels that provided laboratory analyzers with the information on requested tests. The original printouts of the test results from laboratory analyzer(s) were compared with the data obtained from LIS and entered into the provided template. Transfer of data from LIS to HIS was examined by requesting all tests in HIS and creating real data in a finding generated in LIS. Data obtained from LIS and HIS were entered into a corresponding template. The main outcome measure was the accuracy of transfer obtained from laboratory analyzers and results transferred from LIS and HIS expressed as percentage (%). The accuracy of data transfer from laboratory analyzers to LIS was 99.5% and of that from LIS to HIS 100%. We presented our established validation protocol for laboratory information system and demonstrated that a system meets its intended purpose.

  7. Deep UV to NIR Space Telescopes and Exoplanet Coronagraphs: A Trade Study on Throughput, Polarization, Mirror Coating Options and Requirements

    Science.gov (United States)

    Balasubramanian, Kunjithapatham; Shaklan, Stuart; Give'on, Amir; Cady, Eric; Marchen, Luis

    2011-01-01

    The NASA Exoplanet program and the Cosmic Origins program are exploring technical options to combine the visible to NIR performance requirements of a space coronagraph with the general astrophysics requirements of a space telescope covering the deep UV spectrum. Are there compatible options in terms of mirror coatings and telescope architecture to satisfy both goals? In this paper, we address some of the main concerns, particularly relating to polarization in the visible and throughput in the UV. Telescope architectures employing different coating options compatible with current technology are considered in this trade study.

  8. Implementing a Quality Management System in the Medical Microbiology Laboratory.

    Science.gov (United States)

    Carey, Roberta B; Bhattacharyya, Sanjib; Kehl, Sue C; Matukas, Larissa M; Pentella, Michael A; Salfinger, Max; Schuetz, Audrey N

    2018-07-01

    This document outlines a comprehensive practical approach to a laboratory quality management system (QMS) by describing how to operationalize the management and technical requirements described in the ISO 15189 international standard. It provides a crosswalk of the ISO requirements for quality and competence for medical laboratories to the 12 quality system essentials delineated by the Clinical and Laboratory Standards Institute. The quality principles are organized under three main categories: quality infrastructure, laboratory operations, and quality assurance and continual improvement. The roles and responsibilities to establish and sustain a QMS are outlined for microbiology laboratory staff, laboratory management personnel, and the institution's leadership. Examples and forms are included to assist in the real-world implementation of this system and to allow the adaptation of the system for each laboratory's unique environment. Errors and nonconforming events are acknowledged and embraced as an opportunity to improve the quality of the laboratory, a culture shift from blaming individuals. An effective QMS encourages "systems thinking" by providing a process to think globally of the effects of any type of change. Ultimately, a successful QMS is achieved when its principles are adopted as part of daily practice throughout the total testing process continuum. Copyright © 2018 American Society for Microbiology.

  9. Road Transportable Analytical Laboratory system. Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Finger, S.M.; Keith, V.F.; Spertzel, R.O.; De Avila, J.C.; O`Donnell, M.; Vann, R.L.

    1993-09-01

    This developmental effort clearly shows that a Road Transportable Analytical Laboratory System is a worthwhile and achievable goal. The RTAL is designed to fully analyze (radioanalytes, and organic and inorganic chemical analytes) 20 samples per day at the highest levels of quality assurance and quality control. It dramatically reduces the turnaround time for environmental sample analysis from 45 days (at a central commercial laboratory) to 1 day. At the same time each RTAL system will save the DOE over $12 million per year in sample analysis costs compared to the costs at a central commercial laboratory. If RTAL systems were used at the eight largest DOE facilities (at Hanford, Savannah River, Fernald, Oak Ridge, Idaho, Rocky Flats, Los Alamos, and the Nevada Test Site), the annual savings would be $96,589,000. The DOE`s internal study of sample analysis needs projects 130,000 environmental samples requiring analysis in FY 1994, clearly supporting the need for the RTAL system. The cost and time savings achievable with the RTAL system will accelerate and improve the efficiency of cleanup and remediation operations throughout the DOE complex.

  10. Laboratory information management system proposal

    Energy Technology Data Exchange (ETDEWEB)

    Brown, B.; Schweitzer, S.; Adams, C.; White, S. [Tennessee Univ., Knoxville, TN (United States)

    1992-08-01

    The objectives of this paper is design a user friendly information management system using a relational database in order to: allow customers direct access to the system; provide customers with direct sample tracking capabilities; provide customers with more timely, consistent reporting; better allocate costs for analyses to appropriate customers; eliminate cumbersome and costly papertrails; and enhance facility utilization by laboratory personnel. The resultant savings through increased efficiency provided by this system should more than offset its cost in the long-term.

  11. Laboratory information management system proposal

    Energy Technology Data Exchange (ETDEWEB)

    Brown, B.; Schweitzer, S.; Adams, C.; White, S. (Tennessee Univ., Knoxville, TN (United States))

    1992-01-01

    The objectives of this paper is design a user friendly information management system using a relational database in order to: allow customers direct access to the system; provide customers with direct sample tracking capabilities; provide customers with more timely, consistent reporting; better allocate costs for analyses to appropriate customers; eliminate cumbersome and costly papertrails; and enhance facility utilization by laboratory personnel. The resultant savings through increased efficiency provided by this system should more than offset its cost in the long-term.

  12. A Consistent System for Coding Laboratory Samples

    Science.gov (United States)

    Sih, John C.

    1996-07-01

    A formal laboratory coding system is presented to keep track of laboratory samples. Preliminary useful information regarding the sample (origin and history) is gained without consulting a research notebook. Since this system uses and retains the same research notebook page number for each new experiment (reaction), finding and distinguishing products (samples) of the same or different reactions becomes an easy task. Using this system multiple products generated from a single reaction can be identified and classified in a uniform fashion. Samples can be stored and filed according to stage and degree of purification, e.g. crude reaction mixtures, recrystallized samples, chromatographed or distilled products.

  13. Enabling Technologies for Characterizing Exoplanet Systems with Exo-C

    Science.gov (United States)

    Cahoy, Kerri Lynn; Belikov, Ruslan; Stapelfeldt, Karl R.; Chakrabarti, Supriya; Trauger, John T.; Serabyn, Eugene; McElwain, Michael W.; Pong, Christopher M.; Brugarolas, Paul

    2015-01-01

    The Exoplanet Science and Technology Definition Team's Internal Coronagraph mission design, called 'Exo-C', utilizes several technologies that have advanced over the past decade with support from the Exoplanet Exploration Program. Following the flow of photons through the telescope, the science measurement is enabled by (i) a precision pointing system to keep the target exoplanet system precisely positioned on the detector during the integration time, (ii) high-performance coronagraphs to block the parent star's light so that the planet's reflected light can be detected, (iii) a wavefront control system to compensate for any wavefront errors such as those due to thermal or mechanical deformations in the optical path, especially errors with high spatial frequencies that could cause contrast-reducing speckles, and (iv) an integral field spectrograph (IFS) that provides moderate resolution spectra of the target exoplanets, permitting their characterization and comparison with models and other data sets. Technologies such as the wavefront control system and coronagraphs will also benefit from other funded efforts in progress, such as the Wide Field Infrared Survey Telescope Astrophysics Focused Telescope Assets (WFIRST-AFTA) program. Similarly, the Exo-C IFS will benefit from the Prototype Imaging Spectrograph for Coronagraphic Exoplanet Studies (PISCES) demonstration. We present specific examples for each of these technologies showing that the state of the art has advanced to levels that will meet the overall scientific, cost, and schedule requirements of the Exo-C mission. These capabilities have matured with testbed and/or ground-telescope demonstrations and have reached a technological readiness level (TRL) that supports their inclusion in the baseline design for potential flight at the end of this decade. While additional work remains to build and test flight-like components (that concurrently meet science as well as size, weight, power, and environmental

  14. Sandia Laboratories plutonium protection system

    International Nuclear Information System (INIS)

    Bernard, E.A.; Miyoshi, D.S.; Gutierrez, F.D.

    1977-01-01

    Sandia Laboratories is developing an improved plutonium protection system (PPS) to demonstrate new concepts for enhancing special nuclear materials safeguards. PPS concepts include separation of functions, real-time item accountability and improved means for control of materials, activities and personnel access. Physical barriers and a secure communications network are designed into the system to offer greater protection against sabotage, diversion and theft attempts. Prototype systems are being constructed at Hanford, Washington and Albuquerque, New Mexico and will be subjected to a comprehensive testing and evaluation program

  15. Road Transportable Analytical Laboratory (RTAL) system

    International Nuclear Information System (INIS)

    Finger, S.M.

    1995-01-01

    U.S. Department of Energy (DOE) facilities around the country have, over the years, become contaminated with radionuclides and a range of organic and inorganic wastes. Many of the DOE sites encompass large land areas and were originally sited in relatively unpopulated regions of the country to minimize risk to surrounding populations. In addition, wastes were sometimes stored underground at the sites in 55-gallon drums, wood boxes or other containers until final disposal methods could be determined. Over the years, these containers have deteriorated, releasing contaminants into the surrounding environment. This contamination has spread, in some cases polluting extensive areas. The DOE would benefit greatly if it had reliable, road transportable, fully independent laboratory systems that could perform on-site the full range of analyses required. The goal of the Road Transportable Analytical Laboratory (RTAL) project is the development and demonstration of a system to meet the unique needs of the DOE for rapid, accurate analysis of a wide variety of hazardous and radioactive contaminants in soils, ground water and surface waters. This document describes the requirements for such a laboratory

  16. Laboratory system strengthening and quality improvement in Ethiopia

    Directory of Open Access Journals (Sweden)

    Tilahun M. Hiwotu

    2014-11-01

    Full Text Available Background: In 2010, a National Laboratory Strategic Plan was set forth in Ethiopia to strengthen laboratory quality systems and set the stage for laboratory accreditation. As a result, the Strengthening Laboratory Management Toward Accreditation (SLMTA programme was initiated in 45 Ethiopian laboratories. Objectives: This article discusses the implementation of the programme, the findings from the evaluation process and key challenges. Methods: The 45 laboratories were divided into two consecutive cohorts and staff from each laboratory participated in SLMTA training and improvement projects. The average amount of supportive supervision conducted in the laboratories was 68 hours for cohort I and two hoursfor cohort II. Baseline and exit audits were conducted in 44 of the laboratories and percent compliance was determined using a checklist with scores divided into zero- to five-star ratinglevels. Results: Improvements, ranging from < 1 to 51 percentage points, were noted in 42 laboratories, whilst decreases were recorded in two. The average scores at the baseline and exit audits were 40% and 58% for cohort I (p < 0.01; and 42% and 53% for cohort II (p < 0.01,respectively. The p-value for difference between cohorts was 0.07. At the exit audit, 61% ofthe first and 48% of the second cohort laboratories achieved an increase in star rating. Poor awareness, lack of harmonisation with other facility activities and the absence of a quality manual were challenges identified. Conclusion: Improvements resulting from SLMTA implementation are encouraging. Continuous advocacy at all levels of the health system is needed to ensure involvement of stakeholders and integration with other improvement initiatives and routine activities.

  17. Hazardous waste systems analysis at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Urioste, J.

    1997-01-01

    Los Alamos National Laboratory produces routine and non-routine hazardous waste as a by-product of mission operations. Hazardous waste commonly generated at the Laboratory includes many types of laboratory research chemicals, solvents, acids, bases, carcinogens, compressed gases, metals, and other solid waste contaminated with hazardous waste. The Los Alamos National Laboratory Environmental Stewardship Office has established a Hazardous Waste Minimization Coordinator to specifically focus on routine and non-routine RCRA, TSCA, and other administratively controlled wastes. In this process, the Waste Minimization Coordinator has developed and implemented a systems approach to define waste streams, estimate waste management costs and develop plans to implement avoidance practices, and develop projects to reduce or eliminate the waste streams at the Laboratory. The paper describes this systems approach

  18. Automatic Image Processing Workflow for the Keck/NIRC2 Vortex Coronagraph

    Science.gov (United States)

    Xuan, Wenhao; Cook, Therese; Ngo, Henry; Zawol, Zoe; Ruane, Garreth; Mawet, Dimitri

    2018-01-01

    The Keck/NIRC2 camera, equipped with the vortex coronagraph, is an instrument targeted at the high contrast imaging of extrasolar planets. To uncover a faint planet signal from the overwhelming starlight, we utilize the Vortex Image Processing (VIP) library, which carries out principal component analysis to model and remove the stellar point spread function. To bridge the gap between data acquisition and data reduction, we implement a workflow that 1) downloads, sorts, and processes data with VIP, 2) stores the analysis products into a database, and 3) displays the reduced images, contrast curves, and auxiliary information on a web interface. Both angular differential imaging and reference star differential imaging are implemented in the analysis module. A real-time version of the workflow runs during observations, allowing observers to make educated decisions about time distribution on different targets, hence optimizing science yield. The post-night version performs a standardized reduction after the observation, building up a valuable database that not only helps uncover new discoveries, but also enables a statistical study of the instrument itself. We present the workflow, and an examination of the contrast performance of the NIRC2 vortex with respect to factors including target star properties and observing conditions.

  19. Fuel Cell Development and Test Laboratory | Energy Systems Integration

    Science.gov (United States)

    Facility | NREL Fuel Cell Development and Test Laboratory Fuel Cell Development and Test Laboratory The Energy System Integration Facility's Fuel Cell Development and Test Laboratory supports fuel cell research and development projects through in-situ fuel cell testing. Photo of a researcher running

  20. ELAN - expert system supported information and management system for analytical laboratories. ELAN - Expertengestuetztes Informationssystem fuer die Laboranalytik

    Energy Technology Data Exchange (ETDEWEB)

    Orth, H.; Zilly, G.

    1990-05-01

    The demand for high efficiency and short response time calls for the use of computer support in chemico-analytical laboratories. This is usually achieved by laboratory information and management systems covering the three levels of analytical instrument automation, laboratory operation support and laboratory management. The management component of the systems implemented up to now suffers from a lack of flexibility as far as unforeseen analytical investigations outside the laboratory routine work are concerned. Another drawback is the lack of adaptability with respect to structural changes in laboratory organization. It can be eliminated by the application of expert system structures and methods for the implementation of this system level. The ELAN laboratory information and management system has been developed on the basis of this concept. (orig.).

  1. Laboratory Information System – Where are we Today?

    Directory of Open Access Journals (Sweden)

    Lukić Vera

    2017-09-01

    Full Text Available Wider implementation of laboratory information systems (LIS in clinical laboratories in Serbia has been initiated ten years ago. The first LIS in the Railway Health Care Institute has been implemented nine years ago. Before the LIS was initiated, manual admission procedures limited daily output of patients. Moreover, manual entering of patients data and ordering tests on analyzers was problematic and time consuming. After completing tests, laboratory personnel had to write results in patient register (with potential errors and provide invoices for health insurance organisation. First LIS brought forward some advantages with regards to these obstacles, but it also showed various weaknesses. These can be summarised in rigidity of system and inability to fulfil user expectation. After 4 years of use, we replaced this system with another LIS. Hence, the main aim of this paper is to evaluate advant ages of using LIS in laboratory of the Railway Health Care Institute and also to discuss further possibilities for its application. After implementing LIS, admission procedure has proven to be much faster. LIS enabled electronic requests, barcoded specimens prevent identification errors, bidirectional interface replaces redundant data entry steps, QC data are transferred automatically, results are electronically validated and automatically archived in data base, billing information is transferred electronically, and more. We also use some advanced options, like delta check, HIL feature, quality indicators and various types of reports. All steps in total testing process are drastically improved after the implementation of LIS, which had a positive impact on the quality of issued laboratory results. However, we expect development of some new features in the future, for example auto-verification and inventory management. On the example of the laboratory of the Railway Health Care Institute, we show that it is crucial that laboratory specialists have the main

  2. Mobile User Objective Systems (MUOS) Reference Implementation Laboratory (MRIL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Mobile User Objective Systems (MUOS) Reference Implementation Laboratory (MRIL) performs verification and validation testing of various MUOS terminals. MRIL also...

  3. Sandia Laboratories technical capabilities: systems analysis

    International Nuclear Information System (INIS)

    Lundergan, C.D.

    1975-06-01

    The systems analysis capabilities at Sandia Laboratories are summarized. Selected applications of these capabilities are presented to illustrate the extent to which they can be applied in research and development programs. (U.S.)

  4. Seawater circulating system in an aquaculture laboratory

    Digital Repository Service at National Institute of Oceanography (India)

    Chatterji, A.; Ingole, B.S.; Parulekar, A.H.

    The note gives an account, for the first time in India, of an Aquaculture Laboratory with open type seawater circulating system developed at the National Institute of Oceanography, Goa, India. Besides describing the details of the system...

  5. Recirculating ventilation system for radioactive laboratories

    International Nuclear Information System (INIS)

    Kotrappa, P.; Menon, V.B.; Dingankar, M.V.; Chandramoleshwar, K.; Bhargava, B.L.

    1980-01-01

    Radioactive laboratories designed to handle toxic substances such as plutonium are required to have ''once through'' ventilation scheme. This is an expensive proposition particularly when conditioned air is required. A recent approach is to have recirculatory system with exhausted air passing through absolute (HEPA) filters. This scheme not only drastically reduces capital costs but also substantially cuts down maintenance and running costs. Experiments emplyoing aerosol clearance techniques were conducted to specifically establish that this new scheme meets all the health physics safety stipulations laid down for such installations. It is shown that the ''once through'' system is three times more expensive compared to the recirculation system adopted in Purnima Laboratories. Further a saving of 70% is also achieved in running and operating costs. Therefore the new approach deserves serious consideration in future planning of similar projects, particularly in view of the fact that the considerable savings achievable both in terms of money and energy are without in any way compromising on safety. (auth.)

  6. Laboratory Information Management System (LIMS): A case study

    Science.gov (United States)

    Crandall, Karen S.; Auping, Judith V.; Megargle, Robert G.

    1987-01-01

    In the late 70's, a refurbishment of the analytical laboratories serving the Materials Division at NASA Lewis Research Center was undertaken. As part of the modernization efforts, a Laboratory Information Management System (LIMS) was to be included. Preliminary studies indicated a custom-designed system as the best choice in order to satisfy all of the requirements. A scaled down version of the original design has been in operation since 1984. The LIMS, a combination of computer hardware, provides the chemical characterization laboratory with an information data base, a report generator, a user interface, and networking capabilities. This paper is an account of the processes involved in designing and implementing that LIMS.

  7. Improving performance in the ED through laboratory information exchange systems.

    Science.gov (United States)

    Raymond, Louis; Paré, Guy; Maillet, Éric; Ortiz de Guinea, Ana; Trudel, Marie-Claude; Marsan, Josianne

    2018-03-12

    The accessibility of laboratory test results is crucial to the performance of emergency departments and to the safety of patients. This study aims to develop a better understanding of which laboratory information exchange (LIE) systems emergency care physicians (ECPs) are using to consult their patients' laboratory test results and which benefits they derive from such use. A survey of 163 (36%) ECPs in Quebec was conducted in collaboration with the Quebec's Department of Health and Social Services. Descriptive statistics, chi-square tests, cluster analyses, and ANOVAs were conducted. The great majority of respondents indicated that they use several LIE systems including interoperable electronic health record (iEHR) systems, laboratory results viewers (LRVs), and emergency department information systems (EDIS) to consult their patients' laboratory results. Three distinct profiles of LIE users were observed. The extent of LIE usage was found to be primarily determined by the functional design differences between LIE systems available in the EDs. Our findings also indicate that the more widespread LIE usage, the higher the perceived benefits. More specifically, physicians who make extensive use of iEHR systems and LRVs obtain the widest range of benefits in terms of efficiency, quality, and safety of emergency care. Extensive use of LIE systems allows ECPs to better determine and monitor the health status of their patients, verify their diagnostic assumptions, and apply evidence-based practices in laboratory medicine. But for such benefits to be possible, ECPs must be provided with LIE systems that produce accurate, up-to-date, complete, and easy-to-interpret information.

  8. Customizable Electronic Laboratory Online (CELO): A Web-based Data Management System Builder for Biomedical Research Laboratories

    Science.gov (United States)

    Fong, Christine; Brinkley, James F.

    2006-01-01

    A common challenge among today’s biomedical research labs is managing growing amounts of research data. In order to reduce the time and resource costs of building data management tools, we designed the Customizable Electronic Laboratory Online (CELO) system. CELO automatically creates a generic database and web interface for laboratories that submit a simple web registration form. Laboratories can then use a collection of predefined XML templates to assist with the design of a database schema. Users can immediately utilize the web-based system to query data, manage multimedia files, and securely share data remotely over the internet. PMID:17238541

  9. Planning an Automatic Fire Detection, Alarm, and Extinguishing System for Research Laboratories

    Directory of Open Access Journals (Sweden)

    Rostam Golmohamadi

    2014-04-01

    Full Text Available Background & Objectives: Educational and research laboratories in universities have a high risk of fire, because they have a variety of materials and equipment. The aim of this study was to provide a technical plan for safety improvement in educational and research laboratories of a university based on the design of automatic detection, alarm, and extinguishing systems . Methods : In this study, fire risk assessment was performed based on the standard of Military Risk Assessment method (MIL-STD-882. For all laboratories, detection and fire alarm systems and optimal fixed fire extinguishing systems were designed. Results : Maximum and minimum risks of fire were in chemical water and wastewater (81.2% and physical agents (62.5% laboratories, respectively. For studied laboratories, we designed fire detection systems based on heat and smoke detectors. Also in these places, fire-extinguishing systems based on CO2 were designed . Conclusion : Due to high risk of fire in studied laboratories, the best control method for fire prevention and protection based on special features of these laboratories is using automatic detection, warning and fire extinguishing systems using CO2 .

  10. Culturing Security System of Chemical Laboratory in Indonesia

    Directory of Open Access Journals (Sweden)

    Eka Dian Pusfitasari

    2017-04-01

    Full Text Available Indonesia has experiences on the lack of chemical security such as: a number of bombing terrors and hazardous chemicals found in food. Bomb used in terror is a homemade bomb made from chemicals which are widely spread in the research laboratories such as a mixture of pottasium chlorate, sulphur, and alumunium. Therefore, security of chemicals should be implemented to avoid the misused of the chemicals. Although it has experienced many cases of the misuse of chemicals, and many regulations and seminars related to chemical security have been held, but the implementation of chemical security is still a new thing for Indonesian citizens. The evident is coming from the interviews conducted in this study. Questions asked in this interview/survey included: the implementation of chemical safety and chemical security in laboratory; chemical inventory system and its regulation; and training needed for chemical security implementation. Respondents were basically a researcher from Government Research Institutes, University laboratories, senior high school laboratories, and service laboratories were still ambiguous in distinguishing chemical safety and chemical security. Because of this condition, most Indonesia chemical laboratories did not totally apply chemical security system. Education is very important step to raise people awareness and address this problem. Law and regulations should be sustained by all laboratory personnel activities to avoid chemical diversion to be used for harming people and environment. The Indonesia Government could also develop practical guidelines and standards to be applied to all chemical laboratories in Indonesia. These acts can help Government’s efforts to promote chemical security best practices which usually conducted by doing seminars and workshop.

  11. Protective Systems Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory is a 40 by 28 by 9 foot facility that is equipped with tools for the development of various items of control technology related to the transmission...

  12. Impact of laboratory accreditation on patient care and the health system.

    Science.gov (United States)

    Peter, Trevor F; Rotz, Philip D; Blair, Duncan H; Khine, Aye-Aye; Freeman, Richard R; Murtagh, Maurine M

    2010-10-01

    Accreditation is emerging as a preferred framework for building quality medical laboratory systems in resource-limited settings. Despite the low numbers of laboratories accredited to date, accreditation has the potential to improve the quality of health care for patients through the reduction of testing errors and attendant decreases in inappropriate treatment. Accredited laboratories can become more accountable and less dependent on external support. Efforts made to achieve accreditation may also lead to improvements in the management of laboratory networks by focusing attention on areas of greatest need and accelerating improvement in areas such as supply chain, training, and instrument maintenance. Laboratory accreditation may also have a positive influence on performance in other areas of health care systems by allowing laboratories to demonstrate high standards of service delivery. Accreditation may, thus, provide an effective mechanism for health system improvement yielding long-term benefits in the quality, cost-effectiveness, and sustainability of public health programs. Further studies are needed to strengthen the evidence on the benefits of accreditation and to justify the resources needed to implement accreditation programs aimed at improving the performance of laboratory systems.

  13. Activity status and future plans for the Optical Laboratory of the National Astronomical Research Institute of Thailand

    Science.gov (United States)

    Buisset, Christophe; Poshyachinda, Saran; Soonthornthum, Boonrucksar; Prasit, Apirat; Alagao, Mary Angelie; Choochalerm, Piyamas; Wanajaroen, Weerapot; Lepine, Thierry; Rabbia, Yves; Aukkaravittayapun, Suparerk; Leckngam, Apichat; Thummasorn, Griangsak; Ngernsujja, Surin; Inpan, Anuphong; Kaewsamoet, Pimon; Lhospice, Esther; Meemon, Panomsak; Artsang, Pornapa; Suwansukho, Kajpanya; Sirichote, Wichit; Paenoi, Jitsupa

    2018-03-01

    The National Astronomical Research Institute of Thailand (NARIT) has developed since June 2014 an optical laboratory that comprises all the activities and facilities related to the research and development of new instruments in the following areas: telescope design, high dynamic and high resolution imaging systems and spectrographs. The facilities include ZEMAX and Solidwork software for design and simulation activities as well as an optical room with all the equipment required to develop optical setup with cutting-edge performance. The current projects include: i) the development of a focal reducer for the 2.3 m Thai National Telescope (TNT), ii) the development of the Evanescent Wave Coronagraph dedicated to the high contrast observations of star close environment and iii) the development of low resolution spectrographs for the Thai National Telescope and for the 0.7 m telescopes of NARIT regional observatories. In each project, our activities start from the instrument optical and mechanical design to the simulation of the performance, the development of the prototype and finally to the final system integration, alignment and tests. Most of the mechanical parts are manufactured by using the facilities of NARIT precision mechanical workshop that includes a 3-axis Computer Numerical Control (CNC) to machine the mechanical structures and a Coordinate Measuring Machine (CMM) to verify the dimensions. In this paper, we give an overview of the optical laboratory activities and of the associated facilities. We also describe the objective of the current projects, present the specifications and the design of the instruments and establish the status of development and we present our future plans.

  14. Environmental Molecular Sciences Laboratory Operations System: Version 4.0 - system requirements specification

    Energy Technology Data Exchange (ETDEWEB)

    Kashporenko, D.

    1996-07-01

    This document is intended to provide an operations standard for the Environmental Molecular Sciences Laboratory OPerations System (EMSL OPS). It is directed toward three primary audiences: (1) Environmental Molecular Sciences Laboratory (EMSL) facility and operations personnel; (2) laboratory line managers and staff; and (3) researchers, equipment operators, and laboratory users. It is also a statement of system requirements for software developers of EMSL OPS. The need for a finely tuned, superior research environment as provided by the US Department of Energy`s (DOE) Environmental Molecular Sciences Laboratory has never been greater. The abrupt end of the Cold War and the realignment of national priorities caused major US and competing overseas laboratories to reposition themselves in a highly competitive research marketplace. For a new laboratory such as the EMSL, this means coming into existence in a rapidly changing external environment. For any major laboratory, these changes create funding uncertainties and increasing global competition along with concomitant demands for higher standards of research product quality and innovation. While more laboratories are chasing fewer funding dollars, research ideas and proposals, especially for molecular-level research in the materials and biological sciences, are burgeoning. In such an economically constrained atmosphere, reduced costs, improved productivity, and strategic research project portfolio building become essential to establish and maintain any distinct competitive advantage. For EMSL, this environment and these demands require clear operational objectives, specific goals, and a well-crafted strategy. Specific goals will evolve and change with the evolution of the nature and definition of DOE`s environmental research needs. Hence, EMSL OPS is designed to facilitate migration of these changes with ease into every pertinent job function, creating a facile {open_quotes}learning organization.{close_quotes}

  15. Quality system implementation in the Radiotoxicology Laboratory of IPEN, Brazil

    International Nuclear Information System (INIS)

    Gaburo, J.C.; Caldeira Filho, J.S.; Todo, A.S.; Sanches, M.; Campos, L.L.

    2002-01-01

    The perception of assured quality is getting more transparence in the research and development areas. The Radiotoxicology Laboratory, LRT, of IPEN, operating since 1978, has as main attribution the development and implantation of analytical techniques for the measurements of different radionuclides in biological samples. Thus, the LRT considers being of extreme importance to have a management of the quality system to guarantee the reliability of the results and to obtain Accreditation Certificate of the National Institute of Metrology, INMETRO. With this objective the LRT has participated of projects of quality assurance for analytical laboratories since 1997, promoted by International Atomic Energy Agency, IAEA. Currently the quality system of the LRT is in implementation phase, operating in compliance with the quality system of IPEN (consistent pair ISO 9001-9004:2000) and with NBR ISO/IEC 17025. The quality system implemented in the LRT is described in its Quality Manual, MQ-LRT and in complementary procedures that are in their first revision. The participation of the laboratory in intercomparison programs among national as international laboratories and the analysis of the results of internal as well as external audits has demonstrated that the LRT laboratory presents good performance and with suitable methodology and accurate and precise results. With the implementation of the quality system it was possible to verify the effectiveness and efficiency of the tests carried out in the Radiotoxicology Laboratory. The project ARCAL XXVI was concluded in November 2001 and the LRT earned the Certificate of Recognition by IAEA. (author)

  16. Laboratory information management system: an example of international cooperation in Namibia.

    Science.gov (United States)

    Colangeli, Patrizia; Ferrilli, Monica; Quaranta, Fabrizio; Malizia, Elio; Mbulu, Rosa-Stella; Mukete, Esther; Iipumbu, Lukas; Kamhulu, Anna; Tjipura-Zaire, Georgina; Di Francesco, Cesare; Lelli, Rossella; Scacchia, Massimo

    2012-01-01

    The authors describe the project undertaken by the Istituto G. Caporale to provide a laboratory information management system (LIMS) to the Central Veterinary Laboratory (CVL) in Windhoek, Namibia. This robust laboratory management tool satisfies Namibia's information obligations under international quality standard ISO 17025:2005. The Laboratory Information Management System (LIMS) for Africa was designed to collect and manage all necessary information on samples, tests and test results. The system involves the entry of sample data on arrival, as required by Namibian sampling plans, the tracking of samples through the various sections of the CVL, the collection of test results, generation of test reports and monitoring of outbreaks through data interrogation functions, eliminating multiple registrations of the same data on paper records. It is a fundamental component of the Namibian veterinary information system.

  17. Debris Disks in Aggregate: Using Hubble Space Telescope Coronagraphic Imagery to Understand the Scattered-Light Disk Detection Rate

    Science.gov (United States)

    Grady, Carol A.

    2011-01-01

    Despite more than a decade of coronagraphic imaging of debris disk candidate stars, only 16 have been imaged in scattered light. Since imaged disks provide our best insight into processes which sculpt disks, and can provide signposts of the presence of giant planets at distances which would elude radial velocity and transit surveys, we need to understand under what conditions we detect the disks in scattered light, how these disks differ from the majority of debris disks, and how to increase the yield of disks which are imaged with 0.1" angular resolution. In this talk, I will review what we have learned from a shallow HSTINICMOS NIR survey of debris disks, and present first results from our on-going HST /STIS optical imaging of bright scattered-light disks.

  18. The laboratory efficiencies initiative: partnership for building a sustainable national public health laboratory system.

    Science.gov (United States)

    Ridderhof, John C; Moulton, Anthony D; Ned, Renée M; Nicholson, Janet K A; Chu, May C; Becker, Scott J; Blank, Eric C; Breckenridge, Karen J; Waddell, Victor; Brokopp, Charles

    2013-01-01

    Beginning in early 2011, the Centers for Disease Control and Prevention and the Association of Public Health Laboratories launched the Laboratory Efficiencies Initiative (LEI) to help public health laboratories (PHLs) and the nation's entire PHL system achieve and maintain sustainability to continue to conduct vital services in the face of unprecedented financial and other pressures. The LEI focuses on stimulating substantial gains in laboratories' operating efficiency and cost efficiency through the adoption of proven and promising management practices. In its first year, the LEI generated a strategic plan and a number of resources that PHL directors can use toward achieving LEI goals. Additionally, the first year saw the formation of a dynamic community of practitioners committed to implementing the LEI strategic plan in coordination with state and local public health executives, program officials, foundations, and other key partners.

  19. Table of solar activity associated with coronal mass ejections observed by the SMM coronagraph/polarimeter in 1980. Technical note

    International Nuclear Information System (INIS)

    Webb, D.F.

    1987-10-01

    This report is the description and presentation of a table of solar activity considered to be associated with coronal mass ejections (CMEs) as observed during 1980 with the High Altitude Observatory's Coronagraph/Polarimeter (C/P) on the SMM spacecraft. The list has formed the basic data set for several studies, most prominently a study of CME associations published by Webb and Hundhausen (1987). An attendant source of CME data is the unpublished C/P Event List for 1980, which co-evolved with the association list under the guidance of Art Hundhausen. Discussions of the details of the selection and verification of the list of SMM CMEs are contained in the above paper as well as in this papers of Hundhausen et al. (1984) and Hundhausen (1987)

  20. Laboratory Information Management System Chain of Custody: Reliability and Security

    Science.gov (United States)

    Tomlinson, J. J.; Elliott-Smith, W.; Radosta, T.

    2006-01-01

    A chain of custody (COC) is required in many laboratories that handle forensics, drugs of abuse, environmental, clinical, and DNA testing, as well as other laboratories that want to assure reliability of reported results. Maintaining a dependable COC can be laborious, but with the recent establishment of the criteria for electronic records and signatures by US regulatory agencies, laboratory information management systems (LIMSs) are now being developed to fully automate COCs. The extent of automation and of data reliability can vary, and FDA- and EPA-compliant electronic signatures and system security are rare. PMID:17671623

  1. Information systems as a quality management tool in clinical laboratories

    Science.gov (United States)

    Schmitz, Vanessa; Rosecler Bez el Boukhari, Marta

    2007-11-01

    This article describes information systems as a quality management tool in clinical laboratories. The quality of laboratory analyses is of fundamental importance for health professionals in aiding appropriate diagnosis and treatment. Information systems allow the automation of internal quality management processes, using standard sample tests, Levey-Jennings charts and Westgard multirule analysis. This simplifies evaluation and interpretation of quality tests and reduces the possibility of human error. This study proposes the development of an information system with appropriate functions and costs for the automation of internal quality control in small and medium-sized clinical laboratories. To this end, it evaluates the functions and usability of two commercial software products designed for this purpose, identifying the positive features of each, so that these can be taken into account during the development of the proposed system.

  2. Information systems as a quality management tool in clinical laboratories

    International Nuclear Information System (INIS)

    Schmitz, Vanessa; Boukhari, Marta Rosecler Bez el

    2007-01-01

    This article describes information systems as a quality management tool in clinical laboratories. The quality of laboratory analyses is of fundamental importance for health professionals in aiding appropriate diagnosis and treatment. Information systems allow the automation of internal quality management processes, using standard sample tests, Levey-Jennings charts and Westgard multirule analysis. This simplifies evaluation and interpretation of quality tests and reduces the possibility of human error. This study proposes the development of an information system with appropriate functions and costs for the automation of internal quality control in small and medium-sized clinical laboratories. To this end, it evaluates the functions and usability of two commercial software products designed for this purpose, identifying the positive features of each, so that these can be taken into account during the development of the proposed system

  3. Laboratory information management system: an example of international cooperation in Namibia

    Directory of Open Access Journals (Sweden)

    Patrizia Colangeli

    2012-09-01

    Full Text Available The authors describe the project undertaken by the Istituto G. Caporale to provide a laboratory information management system (LIMS to the Central Veterinary Laboratory (CVL in Windhoek, Namibia. This robust laboratory management tool satisfies Namibia’s information obligations under international quality standard ISO 17025:2005. The Laboratory Information Management System (LIMS for Africa was designed to collect and manage all necessary information on samples, tests and test results. The system involves the entry of sample data on arrival, as required by Namibian sampling plans, the tracking of samples through the various sections of the CVL, the collection of test results, generation of test reports and monitoring of outbreaks through data interrogation functions, eliminating multiple registrations of the same data on paper records. It is a fundamental component of the Namibian veterinary information system.

  4. Design of a Clinical Information Management System to Support DNA Analysis Laboratory Operation

    Science.gov (United States)

    Dubay, Christopher J.; Zimmerman, David; Popovich, Bradley

    1995-01-01

    The LabDirector system has been developed at the Oregon Health Sciences University to support the operation of our clinical DNA analysis laboratory. Through an iterative design process which has spanned two years, we have produced a system that is both highly tailored to a clinical genetics production laboratory and flexible in its implementation, to support the rapid growth and change of protocols and methodologies in use in the field. The administrative aspects of the system are integrated with an enterprise schedule management system. The laboratory side of the system is driven by a protocol modeling and execution system. The close integration between these two aspects of the clinical laboratory facilitates smooth operations, and allows management to accurately measure costs and performance. The entire application has been designed and documented to provide utility to a wide range of clinical laboratory environments.

  5. The LLNL Multiuser Tandem Laboratory computer-controlled radiation monitoring system

    International Nuclear Information System (INIS)

    Homann, S.G.

    1992-01-01

    The Physics Department of the Lawrence Livermore National Laboratory (LLNL) recently constructed a Multiuser Tandem Laboratory (MTL) to perform a variety of basic and applied measurement programs. The laboratory and its research equipment were constructed with support from a consortium of LLNL Divisions, Sandia National Laboratories Livermore, and the University of California. Primary design goals for the facility were inexpensive construction and operation, high beam quality at a large number of experimental stations, and versatility in adapting to new experimental needs. To accomplish these goals, our main design decisions were to place the accelerator in an unshielded structure, to make use of reconfigured cyclotrons as effective switching magnets, and to rely on computer control systems for both radiological protection and highly reproducible and well-characterized accelerator operation. This paper addresses the radiological control computer system

  6. Electrons in the solar corona. Pt. 3. Coronal streamers analysis from balloon-borne coronagraph

    Energy Technology Data Exchange (ETDEWEB)

    Dollfus, A; Mouradian, Z [Observatoire de Paris, Section de Meudon, 92 (France)

    1981-03-01

    During a balloon flight in France on September 13, 1971, at altitude 32 000 m, the solar corona was cinematographed from 2 to 5 Rsub(sun) during 5 hr, with an externally occulted coronagraph. Motions in coronal features, when they occur, exhibit deformations of structures with velocities not exceeding a few 10 km s/sup -1/; several streamers were often involved simultaneously; these variations are compatible with magnetic changes or sudden reorganizations of lines of forces. Intensity and polarization measurements give the electron density with height in the quiet corona above the equator. Electron density gradient for one of the streamers gives a temperature of 1.6 x 10/sup 6/ K and comparisons with the on-board Apollo 16 coronal observation of 31 July, 1971 are compatible with the extension of this temperature up to 25 Rsub(sun). Three-dimensional structures and localizations of the streamers are deduced from combined photometry, polarimetry and ground-based K coronametry. Three of the four coronal streamers analysed have their axis bent with height towards the direction of the solar rotation, as if the upper corona has a rotation slightly faster than the chromosphere.

  7. A data acquisition system for a radionuclide laboratory

    International Nuclear Information System (INIS)

    Reher, D.; Idzerda, A.B.

    1984-01-01

    The concept and installation of a computer system for use in a radionuclide laboratory is described. It consists of a hierarchical star network of distributed intelligence. The system installation was spread over several years in three phases which made an economical solution possible. (orig.)

  8. Expert Assessment of Conditions for Accredited Quality Management System Functioning in Testing Laboratories

    Science.gov (United States)

    Mytych, Joanna; Ligarski, Mariusz J.

    2018-03-01

    The quality management systems compliant with the ISO 9001:2009 have been thoroughly researched and described in detail in the world literature. The accredited management systems used in the testing laboratories and compliant with the ISO/IEC 17025:2005 have been mainly described in terms of the system design and implementation. They have also been investigated from the analytical point of view. Unfortunately, a low number of studies concerned the management system functioning in the accredited testing laboratories. The aim of following study was to assess the management system functioning in the accredited testing laboratories in Poland. On 8 October 2015, 1,213 accredited testing laboratories were present in Poland. They investigated various scientific areas and substances/objects. There are more and more such laboratories that have various problems and different long-term experience when it comes to the implementation, maintenance and improvement of the management systems. The article describes the results of the conducted expert assessment (survey) carried out to examine the conditions for the functioning of a management system in an accredited laboratory. It also focuses on the characteristics of the accredited research laboratories in Poland. The authors discuss the selection of the external and internal conditions that may affect the accredited management system. They show how the experts assessing the selected conditions were chosen. The survey results are also presented.

  9. Solar Radiation Research Laboratory | Energy Systems Integration Facility |

    Science.gov (United States)

    Solar Radiation Research Laboratory (SRRL) has been collecting continuous measurements of basic solar continuous operation. More than 75 instruments contribute to the Baseline Measurement System by recording

  10. Experiential learning in control systems laboratories and engineering project management

    Science.gov (United States)

    Reck, Rebecca Marie

    Experiential learning is a process by which a student creates knowledge through the insights gained from an experience. Kolb's model of experiential learning is a cycle of four modes: (1) concrete experience, (2) reflective observation, (3) abstract conceptualization, and (4) active experimentation. His model is used in each of the three studies presented in this dissertation. Laboratories are a popular way to apply the experiential learning modes in STEM courses. Laboratory kits allow students to take home laboratory equipment to complete experiments on their own time. Although students like laboratory kits, no previous studies compared student learning outcomes on assignments using laboratory kits with existing laboratory equipment. In this study, we examined the similarities and differences between the experiences of students who used a portable laboratory kit and students who used the traditional equipment. During the 2014- 2015 academic year, we conducted a quasi-experiment to compare students' achievement of learning outcomes and their experiences in the instructional laboratory for an introductory control systems course. Half of the laboratory sections in each semester used the existing equipment, while the other sections used a new kit. We collected both quantitative data and qualitative data. We did not identify any major differences in the student experience based on the equipment they used. Course objectives, like research objectives and product requirements, help provide clarity and direction for faculty and students. Unfortunately, course and laboratory objectives are not always clearly stated. Without a clear set of objectives, it can be hard to design a learning experience and determine whether students are achieving the intended outcomes of the course or laboratory. In this study, I identified a common set of laboratory objectives, concepts, and components of a laboratory apparatus for undergraduate control systems laboratories. During the summer of

  11. Wet chemical analysis with a laboratory robotic system

    International Nuclear Information System (INIS)

    Burkett, S.D.; Dyches, G.M.; Spencer, W.A.

    1984-01-01

    Emphasis on laboratory automation has increased in recent years. The desire to improve analytical reliability, increase productivity, and reduce exposure of personnel to hazardous materials has been fundamental to this increase. The Savannah River Laboratory (SRL) performs research and development on nuclear materials. Development of methods to increase efficiency and safety and to reduce exposure of personnel to radioactive materials is an ongoing process at our site. Robotic systems offer a potentially attractive way to achieve these goals

  12. Onsite Distributed Generation Systems For Laboratories, Laboratories for the 21st Century: Best Practices (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2011-09-01

    This guide provides general information on implementing onsite distributed generation systems in laboratory environments. Specific technology applications, general performance information, and cost data are provided to educate and encourage laboratory energy managers to consider onsite power generation or combined heat and power (CHP) systems for their facilities. After conducting an initial screening, energy managers are encouraged to conduct a detailed feasibility study with actual cost and performance data for technologies that look promising. Onsite distributed generation systems are small, modular, decentralized, grid-connected, or off-grid energy systems. These systems are located at or near the place where the energy is used. These systems are also known as distributed energy or distributed power systems. DG technologies are generally considered those that produce less than 20 megawatts (MW) of power. A number of technologies can be applied as effective onsite DG systems, including: (1) Diesel, natural gas, and dual-fuel reciprocating engines; (2) Combustion turbines and steam turbines; (3) Fuel cells; (4) Biomass heating; (5) Biomass combined heat and power; (6) Photovoltaics; and (7) Wind turbines. These systems can provide a number of potential benefits to an individual laboratory facility or campus, including: (1) High-quality, reliable, and potentially dispatchable power; (2) Low-cost energy and long-term utility cost assurance, especially where electricity and/or fuel costs are high; (3) Significantly reduced greenhouse gas (GHG) emissions. Typical CHP plants reduce onsite GHG by 40 to 60 percent; (4) Peak demand shaving where demand costs are high; (5) CHP where thermal energy can be used in addition to electricity; (6) The ability to meet standby power needs, especially where utility-supplied power is interrupted frequently or for long periods and where standby power is required for safety or emergencies; and (7) Use for standalone or off

  13. Pre-Ebola virus disease laboratory system and related challenges in Liberia

    Directory of Open Access Journals (Sweden)

    Stephen B. Kennedy

    2016-10-01

    Full Text Available Prior to the Ebola virus disease outbreak in Liberia, the laboratory system was duplicativefragmented and minimally coordinated. The National Reference Laboratory was conceptualisedto address the existing challenges by promoting the implementation of effective and sustainablelaboratory services in Liberia. However, in a resource-limited environment such as Liberiaprogress regarding the rebuilding of the health system can be relatively slow, while efforts tosustain the transient gains remain a key challenge for the Ministry of Health. In this paper, wedescribe the pre-Ebola virus disease laboratory system in Liberia and its prevailing efforts toaddress future emerging infectious diseases, as well as current Infectious diseases, all of whichare exacerbated by poverty. We conclude that laboratory and diagnostic services in Liberiahave encountered numerous challenges regarding its efforts to strengthen the healthcaredelivery system. These challenges include limited trained human resource capacity, inadequateinfrastructure, and a lack of coordination. As with most countries in sub-Saharan Africa, whencomparing urban and rural settings, diagnostic and clinical services are generally skewedtoward urban health facilities and private, faith-based health facilities. We recommend thatstructured policy be directed at these challenges for national institutions to develop guidelinesto improve, strengthen and sustain diagnostic and curative laboratory services to effectivelyaddress current infectious diseases and prepare for future emerging and re-emerging infectiousdiseases.

  14. Integrated management system best practices in radioecological laboratories

    International Nuclear Information System (INIS)

    Carvalho, Claudia Aparecida Zerbinatti de

    2010-01-01

    The research aims to study the best practices to support a conceptual proposal for IMS - Integrated Management System (quality, environment, safety and health) applicable to Radioecology laboratories. The research design is organized into the following steps: in a first step, it was developed the bibliographic and documentary research in IMS, survey and study of standards (QMS ISO 9000 (2005), ISO 9001 (2008), ISO 9004 (2000), EMS ISO 14001 (2004) and OHSMS OHSAS 18001 (2007) and OHSAS 18002 (2008)), identification and characterization of processes in Radioecology Laboratories and study of best practices methodology and benchmarking; in the second stage of the research it was developed a case study (qualitative research, with questionnaires via e-mail and interviews, when possible), preceded by a survey and selection of international and national radioecology laboratories and then these laboratories were contacted and some of them agreed to participate in this research; in the third stage of the research it was built the framework of best practices that showed results that could support the conceptual proposal for the IMS Radioecology Laboratory; the fourth and final stage of research consisted in the construction of the proposed conceptual framework of SGI for Radioecology Laboratory, being then achieved the initial objective of the research. (author)

  15. Evaluation of the enterovirus laboratory surveillance system in Denmark, 2010 to 2013.

    Science.gov (United States)

    Condell, Orla; Midgley, Sofie; Christiansen, Claus Bohn; Chen, Ming; Chen Nielsen, Xiaohui; Ellermann-Eriksen, Svend; Mølvadgaard, Mette; Schønning, Kristian; Vermedal Hoegh, Silje; Andersen, Peter Henrik; Voldstedlund, Marianne; Fischer, Thea Kølsen

    2016-05-05

    The primary aim of the Danish enterovirus (EV) surveillance system is to document absence of poliovirus infection. The conflict in Syria has left many children unvaccinated and movement from areas with polio cases to Europe calls for increased awareness to detect and respond to virus-transmission in a timely manner. We evaluate the national EV laboratory surveillance, to generate recommendations for system strengthening. The system was analysed for completeness of viral typing analysis and clinical information and timeliness of specimen collection, laboratory results and reporting of clinical information. Of 23,720 specimens screened, 2,202 (9.3%) were EV-positive. Submission of cerebrospinal fluid and faecal specimens from primary diagnostic laboratories was 79.5% complete (845/1,063), and varied by laboratory and patient age. EV genotypes were determined in 68.5% (979/1,430) of laboratory-confirmed cases, clinical information was available for 63.1% (903/1,430). Primary diagnostic results were available after a median of 1.4 days, typing results after 17 days, detailed clinical information after 33 days. The large number of samples typed demonstrated continued monitoring of EV-circulation in Denmark. The system could be strengthened by increasing the collection of supplementary faecal specimens, improving communication with primary diagnostic laboratories, adapting the laboratory typing methodology and collecting clinical information with electronic forms.

  16. Accreditation of Medical LaboratoriesSystem, Process, Benefits for Labs

    Directory of Open Access Journals (Sweden)

    Zima Tomáš

    2017-09-01

    Full Text Available One and key of the priorities in laboratory medicine is improvement of quality management system for patient safety. Quality in the health care is tightly connected to the level of excellence of the health care provided in relation to the current level of knowledge and technical development. Accreditation is an effective way to demonstrate competence of the laboratory, a tool to recognize laboratories world-wide, is linked to periodical audits, to stimulate the maintenance and improvement of the quality, which leads to high standard of services for clients (patients, health care providers, etc.. The strategic plans of IFCC and EFLM include focusing on accreditation of labs based on ISO standards and cooperation with European Accreditation and national accreditation bodies. IFCC and EFLM recognised that ISO 15189:2012 Medical laboratories – Requirements for quality and competence, encompasses all the assessment criteria specified in the policy of quality. The last version is oriented to process approach with detailed division and clearly defined requirements. The accreditation of labs improves facilitation of accurate and rapid diagnostics, efficiency of treatment and reduction of errors in the laboratory process. Accreditation is not about who the best is, but who has a system of standard procedures with aim to improve the quality and patient safety. Quality system is about people, with people and for people.

  17. MULTIMEDIA EDITOR OF VIRTUAL PHYSICAL LABORATORY IN DISTANCE LEARNING SYSTEM «KHERSON VIRTUAL UNIVERSITY»

    Directory of Open Access Journals (Sweden)

    Kravtsov H.

    2017-12-01

    Full Text Available The questions of modeling the structure of the objects of the system, the design of software modules and technologies for creating the editor of a virtual laboratory are considered. The relevance of the study is due to the lack in existing distance learning systems of support for the creation and use of virtual laboratory work on disciplines of the natural-science profile. The subject of the study is a software module for creating and using virtual laboratory work in a distance learning system. The purpose of the study is the development of a system model and a description of the software development technology of a virtual laboratory for physics for a distance learning system. The information technologies of designing the structure of the virtual laboratory and the main modes of the program module of the editor of the virtual laboratory work are described. At the heart of the structure of the software module "Virtual Laboratory" is the multimedia Web-editor of virtual laboratory works, which is created using object-oriented design technology. The program library of multimedia 3D objects created in the development environment of interactive graphic objects Unity3D. It unifies the process of creation and processing of virtual laboratory works. The basic mathematical package for supporting calculations is the mathematical processor Waterloo Maple. The application of the developed software interface will allow teachers to create laboratory works and use them in their distance courses. Students, in turn, will be able to conduct research, performing virtual laboratory work. As an example, the editor of the virtual laboratory for physics in the distance learning system "Kherson Virtual University" is considered.

  18. Evaluation of the enterovirus laboratory surveillance system in Denmark, 2010 to 2013

    DEFF Research Database (Denmark)

    Condell, Orla; Midgley, Sofie E; Christiansen, Claus Bohn

    2016-01-01

    The primary aim of the Danish enterovirus (EV) surveillance system is to document absence of poliovirus infection. The conflict in Syria has left many children unvaccinated and movement from areas with polio cases to Europe calls for increased awareness to detect and respond to virus-transmission......The primary aim of the Danish enterovirus (EV) surveillance system is to document absence of poliovirus infection. The conflict in Syria has left many children unvaccinated and movement from areas with polio cases to Europe calls for increased awareness to detect and respond to virus......-transmission in a timely manner. We evaluate the national EV laboratory surveillance, to generate recommendations for system strengthening. The system was analysed for completeness of viral typing analysis and clinical information and timeliness of specimen collection, laboratory results and reporting of clinical...... information. Of 23,720 specimens screened, 2,202 (9.3%) were EV-positive. Submission of cerebrospinal fluid and faecal specimens from primary diagnostic laboratories was 79.5% complete (845/1,063), and varied by laboratory and patient age. EV genotypes were determined in 68.5% (979/1,430) of laboratory...

  19. Using the Human Systems Simulation Laboratory at Idaho National Laboratory for Safety Focused Research

    Energy Technology Data Exchange (ETDEWEB)

    Joe, Jeffrey .C; Boring, Ronald L.

    2016-07-01

    Under the United States (U.S.) Department of Energy (DOE) Light Water Reactor Sustainability (LWRS) program, researchers at Idaho National Laboratory (INL) have been using the Human Systems Simulation Laboratory (HSSL) to conduct critical safety focused Human Factors research and development (R&D) for the nuclear industry. The LWRS program has the overall objective to develop the scientific basis to extend existing nuclear power plant (NPP) operating life beyond the current 60-year licensing period and to ensure their long-term reliability, productivity, safety, and security. One focus area for LWRS is the NPP main control room (MCR), because many of the instrumentation and control (I&C) system technologies installed in the MCR, while highly reliable and safe, are now difficult to replace and are therefore limiting the operating life of the NPP. This paper describes how INL researchers use the HSSL to conduct Human Factors R&D on modernizing or upgrading these I&C systems in a step-wise manner, and how the HSSL has addressed a significant gap in how to upgrade systems and technologies that are built to last, and therefore require careful integration of analog and new advanced digital technologies.

  20. Laboratory Information Management System Chain of Custody: Reliability and Security

    OpenAIRE

    Tomlinson, J. J.; Elliott-Smith, W.; Radosta, T.

    2006-01-01

    A chain of custody (COC) is required in many laboratories that handle forensics, drugs of abuse, environmental, clinical, and DNA testing, as well as other laboratories that want to assure reliability of reported results. Maintaining a dependable COC can be laborious, but with the recent establishment of the criteria for electronic records and signatures by US regulatory agencies, laboratory information management systems (LIMSs) are now being developed to fully automate COCs. The extent of a...

  1. Large Angle and Spectrometric Coronagraph (LASCO)

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Designed to answer some fundamental questions: How is the corona heated? Where and how is the solar wind accelerated? What causes coronal mass ejections,...

  2. Integrated management system best practices in radioecological laboratories

    International Nuclear Information System (INIS)

    Carvalho, Claudia Aparecida Zerbinatti de

    2009-01-01

    This paper presents a Master dissertation advancements with the target of studying the best practices, in order to give support to an IMS conceptual model ?Integrated Management System (quality, environment, work safety and health), applied to radioecological laboratories. The planning of the proposed research comprises the following stages: first stage - the bibliographic and documental survey in IMS; a survey and study of the applied standards (QMS NBR ISO 9000 (2005), NBR ISO 9001 (2008), NBR ISO 9004 (2000), EMS 14001(2004) and OHSMS OHSAS 18001 (2007) and OHSAS 18002 (2008)); identification and characterization in radioecological laboratories processes; a methodological study of better practices and benchmarking is carried out. In the second stage of the research, the development of a case study is forecast (qualitative research, with electronic questionnaires and personal interviews, when possible), preceded by a survey and selection of international and national radioecological laboratories to be studied and, in sequence, these laboratories should be contacted and agree to participate in the research; in a third stage, the construction of a matrix of better practices, which incur in the results able to subside an IMS conceptual model proposition for radioecological laboratories; the fourth and last stage of the research comprises the construction of a conceptual proposal of an IMS structure for radioecological laboratories. The first stage of the research results are presented concisely, as well as a preliminary selection of laboratories to be studied. (author)

  3. Integrated management system best practices in radioecological laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Claudia Aparecida Zerbinatti de [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), SP (Brazil). Dept. da Qualidade], e-mail: clau.zerbina@gmail.com; Zouain, Desiree Moraes [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)], e-mail: dmzouain@ipen.br

    2009-07-01

    This paper presents a Master dissertation advancements with the target of studying the best practices, in order to give support to an IMS conceptual model ?Integrated Management System (quality, environment, work safety and health), applied to radioecological laboratories. The planning of the proposed research comprises the following stages: first stage - the bibliographic and documental survey in IMS; a survey and study of the applied standards (QMS NBR ISO 9000 (2005), NBR ISO 9001 (2008), NBR ISO 9004 (2000), EMS 14001(2004) and OHSMS OHSAS 18001 (2007) and OHSAS 18002 (2008)); identification and characterization in radioecological laboratories processes; a methodological study of better practices and benchmarking is carried out. In the second stage of the research, the development of a case study is forecast (qualitative research, with electronic questionnaires and personal interviews, when possible), preceded by a survey and selection of international and national radioecological laboratories to be studied and, in sequence, these laboratories should be contacted and agree to participate in the research; in a third stage, the construction of a matrix of better practices, which incur in the results able to subside an IMS conceptual model proposition for radioecological laboratories; the fourth and last stage of the research comprises the construction of a conceptual proposal of an IMS structure for radioecological laboratories. The first stage of the research results are presented concisely, as well as a preliminary selection of laboratories to be studied. (author)

  4. The low-order wavefront control system for the PICTURE-C mission: high-speed image acquisition and processing

    Science.gov (United States)

    Hewawasam, Kuravi; Mendillo, Christopher B.; Howe, Glenn A.; Martel, Jason; Finn, Susanna C.; Cook, Timothy A.; Chakrabarti, Supriya

    2017-09-01

    The Planetary Imaging Concept Testbed Using a Recoverable Experiment - Coronagraph (PICTURE-C) mission will directly image debris disks and exozodiacal dust around nearby stars from a high-altitude balloon using a vector vortex coronagraph. The PICTURE-C low-order wavefront control (LOWC) system will be used to correct time-varying low-order aberrations due to pointing jitter, gravity sag, thermal deformation, and the gondola pendulum motion. We present the hardware and software implementation of the low-order ShackHartmann and reflective Lyot stop sensors. Development of the high-speed image acquisition and processing system is discussed with the emphasis on the reduction of hardware and computational latencies through the use of a real-time operating system and optimized data handling. By characterizing all of the LOWC latencies, we describe techniques to achieve a framerate of 200 Hz with a mean latency of ˜378 μs

  5. GESCAL: Quality management automated system for a calibration and test laboratory

    International Nuclear Information System (INIS)

    Manzano de Armas, J.; Valdes Ramos, M.; Morales Monzon, J.A.

    1998-01-01

    GESCAL is a software created to automate all elements composing the quality system in a calibration and test laboratory. It also evaluates quality according to its objectives and policies. This integrated data system decreases considerably the amount of time devoted to manage quality. It is speedier in searching and evaluating information registers thus notably in reducing the workload for laboratory staff

  6. Laboratory diagnostic methods, system of quality and validation

    Directory of Open Access Journals (Sweden)

    Ašanin Ružica

    2005-01-01

    Full Text Available It is known that laboratory investigations secure safe and reliable results that provide a final confirmation of the quality of work. Ideas, planning, knowledge, skills, experience, and environment, along with good laboratory practice, quality control and reliability of quality, make the area of biological investigations very complex. In recent years, quality control, including the control of work in the laboratory, is based on international standards and is used at that level. The implementation of widely recognized international standards, such as the International Standard ISO/IEC 17025 (1 and the implementing of the quality system series ISO/IEC 9000 (2 have become the imperative on the grounds of which laboratories have a formal, visible and corresponding system of quality. The diagnostic methods that are used must constantly yield results which identify the animal as positive or negative, and the precise status of the animal is determined with a predefined degree of statistical significance. Methods applied on a selected population reduce the risk of obtaining falsely positive or falsely negative results. A condition for this are well conceived and documented methods, with the application of the corresponding reagents, and work with professional and skilled staff. This process requires also a consistent implementation of the most rigorous experimental plans, epidemiological and statistical data and estimations, with constant monitoring of the validity of the applied methods. Such an approach is necessary in order to cut down the number of misconceptions and accidental mistakes, for a referent population of animals on which the validity of a method is tested. Once a valid method is included in daily routine investigations, it is necessary to apply constant monitoring for the purpose of internal quality control, in order adequately to evaluate its reproducibility and reliability. Consequently, it is necessary at least twice yearly to conduct

  7. Sandia Laboratories technical capabilities: instrumentation and data systems

    International Nuclear Information System (INIS)

    Lundergain, C.D.; Mead, P.L.

    1975-12-01

    This report characterizes the instrumentation and data systems capabilities at Sandia Laboratories. Selected applications of these capabilities are presented to illustrate the extent to which they can be applied in research and development programs

  8. Customizing Laboratory Information Systems: Closing the Functionality Gap.

    Science.gov (United States)

    Gershkovich, Peter; Sinard, John H

    2015-09-01

    Highly customizable laboratory information systems help to address great variations in laboratory workflows, typical in Pathology. Often, however, built-in customization tools are not sufficient to add all of the desired functionality and improve systems interoperability. Emerging technologies and advances in medicine often create a void in functionality that we call a functionality gap. These gaps have distinct characteristics—a persuasive need to change the way a pathology group operates, the general availability of technology to address the missing functionality, the absence of this technology from your laboratory information system, and inability of built-in customization tools to address it. We emphasize the pervasive nature of these gaps, the role of pathology informatics in closing them, and suggest methods on how to achieve that. We found that a large number of the papers in the Journal of Pathology Informatics are concerned with these functionality gaps, and an even larger proportion of electronic posters and abstracts presented at the Pathology Informatics Summit conference each year deal directly with these unmet needs in pathology practice. A rapid, continuous, and sustainable approach to closing these gaps is critical for Pathology to provide the highest quality of care, adopt new technologies, and meet regulatory and financial challenges. The key element of successfully addressing functionality gaps is gap ownership—the ability to control the entire pathology information infrastructure with access to complementary systems and components. In addition, software developers with detailed domain expertise, equipped with right tools and methodology can effectively address these needs as they emerge.

  9. Environmental monitoring systems: a new type of mobile laboratory

    International Nuclear Information System (INIS)

    Bruecher, L.; Langmueller, G.; Tuerschmann, G.

    1999-01-01

    Nuclear facilities are obligated to monitor the environmental radiation in their vicinity, which is often fulfilled by monitoring cars, combined with fixed monitoring stations. The MOLAR Mobile Laboratory for Environmental Radiation Monitoring as described here is being used under normal and accident conditions as a spot check monitoring system or to perform continuous measurements along a driving track. The mobile laboratories are continuously connected with the control centre's CRCS Central Radiological Computer System, where the RIS Radiological Information System provides corresponding evaluation functions. The mobile labs contain measuring and controlling units like γ-dose rate monitors, γ-spectrometer with a HpGe High Purity Germanium detector, a lead shielded measuring cell and MCA Multi-Channel Analyser, portable β-contamination monitor, α/β/γ multipurpose quick measuring unit, aerosol and iodine sampling units. The collected samples are safely stored for the transport to the environmental laboratory for being analysed later. The geographical location of the moving car is continuously determined by the satellite based GPS Global Positioning System and transferred in the on-board rack mounted computer system for being stored and locally displayed. Real-time data transmission via radio and mobile phone is continuously performed to supply the RIS Radiological Information System in the control centre via radio and mobile phone. The latter also serves for voice communication. Currently three MOLAR systems can be operated parallel and independent from the control centre. The system is ready to be extended to more mobile labs. This combination of mobile monitoring, sample analysis and radiological assessment of environmental data in combination with process occurrences has turned out to be a powerful instrument for emergency preparedness and environmental supervising. (orig.) [de

  10. Computer-based nuclear radiation detection and instrumentation teaching laboratory system

    International Nuclear Information System (INIS)

    Ellis, W.H.; He, Q.

    1993-01-01

    The integration of computers into the University of Florida's Nuclear Engineering Sciences teaching laboratories is based on the innovative use of MacIntosh 2 microcomputers, IEEE-488 (GPIB) communication and control bus system and protocol, compatible modular nuclear instrumentation (NIM) and test equipment, LabVIEW graphics and applications software, with locally prepared, interactive, menu-driven, HyperCard based multi-exercise laboratory instruction sets and procedures. Results thus far have been highly successful with the majority of the laboratory exercises having been implemented

  11. Development of a Modular Laboratory Information Management System (LIMS) for NAA Laboratories Using Open-Source Developing Tools

    International Nuclear Information System (INIS)

    Bounakhla, Moussa; Amsil, Hamid; Embarch, K.; Bounouira, Hamid

    2018-01-01

    CNESTEN designed and developed a modular Laboratory Information Management System (LIMS) for the NAA Laboratory using open-source developing tools. This LIMS ensures a personalized management web space for sample acquisition and preparation, spectra processing and for final analysis of the sample. The system helps also dematerializing process for irradiation requests and for the acquisition of new equipments and samples. It allows managing circulating documents between different actors of the LIMS. Modules for concentration determination, facilities characterization are also included in this LIMS. New modules such as spectra fitting, true coincidence and attenuation corrections can be developed and integrated individually in this system. All data, including nuclear data libraries, are stored in a unique distant database via intranet network to allow instantaneous multi-user access. (author)

  12. Implementing an integrated standards-based management system to ensure compliance at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Hjeresen, D.; Roybal, S.; Bertino, P.; Gherman, C.; Hosteny, B.

    1995-01-01

    Los Alamos National Laboratory (LANL or the Laboratory) is developing and implementing a comprehensive, Integrated Standards-Based Management System (ISBMS) to enhance environmental, safety, and health (ESH) compliance efforts and streamline management of ESH throughout the Laboratory. The Laboratory recognizes that to be competitive in today's business environment and attractive to potential Partnerships, Laboratory operations must be efficient and cost-effective. The Laboratory also realizes potential growth opportunities for developing ESH as a strength in providing new or improved services to its customers. Overall, the Laboratory desires to establish and build upon an ESH management system which ensures continuous improvement in protecting public health and safety and the environment and which fosters a working relationship with stakeholders. A team of process experts from the LANL Environmental Management (EM) Program Office, worked with management system consultants, and the Department of Energy (DOE) to develop an ESH management systems process to compare current LANL ESH management Systems and programs against leading industry standards. The process enabled the Laboratory to gauge its performance in each of the following areas: Planning and Policy Setting; Systems and Procedures; Implementation and Education; and Monitoring and Reporting. The information gathered on ESH management systems enabled LANL to pinpoint and prioritize opportunities for improvement in the provision of ESH services throughout the Laboratory and ultimately overall ESH compliance

  13. On-line computer system applied in a nuclear chemistry laboratory

    International Nuclear Information System (INIS)

    Banasik, Z.; Kierzek, J.; Parus, J.; Zoltowski, T.; Zalewski, J.

    1980-01-01

    A PDP-11/45 based computer system used in a radioanalytical chemical laboratory is described. It is mainly concerned with spectrometry of ionizing radiation and remote measurement of physico-chemical properties. The objectives in mind when constructing the hardware inter-connections and developing the software of the system were to minimize the work of the electronics and computer personnel and to provide maximum flexibility for the users. For the hardware interfacing, 3 categories of equipment are used: - LPS-11 Laboratory Peripheral System - CAMAC system with CA11F-P controller - interfaces from instrument manufacturers. Flexible operation has been achieved by using a 3-level programming structure: - data transfer by assembly language programs - data formatting using bit operations in FORTRAN - data evaluation by procedures written in FORTRAN. (Auth.)

  14. Sandia National Laboratories, California Environmental Management System program manual.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2013-04-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004 and Department of Energy (DOE) Order 436.1.

  15. Sandia National Laboratories, California Environmental Management System program manual

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2014-04-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004 and Department of Energy (DOE) Order 436.1.

  16. A Project-Based Laboratory for Learning Embedded System Design with Industry Support

    Science.gov (United States)

    Lee, Chyi-Shyong; Su, Juing-Huei; Lin, Kuo-En; Chang, Jia-Hao; Lin, Gu-Hong

    2010-01-01

    A project-based laboratory for learning embedded system design with support from industry is presented in this paper. The aim of this laboratory is to motivate students to learn the building blocks of embedded systems and practical control algorithms by constructing a line-following robot using the quadratic interpolation technique to predict the…

  17. Laboratory quality management system: Road to accreditation and beyond

    Directory of Open Access Journals (Sweden)

    V Wadhwa

    2012-01-01

    Full Text Available This review attempts to clarify the concepts of Laboratory Quality Management System (Lab QMS for a medical testing and diagnostic laboratory in a holistic way and hopes to expand the horizon beyond quality control (QC and quality assurance. It provides an insight on accreditation bodies and highlights a glimpse of existing laboratory practices but essentially it takes the reader through the journey of accreditation and during the course of reading and understanding this document, prepares the laboratory for the same. Some of the areas which have not been highlighted previously include: requirement for accreditation consultants, laboratory infrastructure and scope, applying for accreditation, document preparation. This section is well supported with practical illustrations and necessary tables and exhaustive details like preparation of a standard operating procedure and a quality manual. Concept of training and privileging of staff has been clarified and a few of the QC exercises have been dealt with in a novel way. Finally, a practical advice for facing an actual third party assessment and caution needed to prevent post-assessment pitfalls has been dealt with.

  18. Employee Engagement Is Vital for the Successful Selection of a Total Laboratory Automation System.

    Science.gov (United States)

    Yu, Hoi-Ying E; Wilkerson, Myra L

    2017-11-08

    To concretely outline a process for selecting a total laboratory automation system that connects clinical chemistry, hematology, and coagulation analyzers and to serve as a reference for other laboratories. In Phase I, a committee including the laboratory's directors and technologists conducted a review of 5 systems based on formal request for information process, site visits, and vendor presentations. We developed evaluation criteria and selected the 2 highest performing systems. In Phase II, we executed a detailed comparison of the 2 vendors based on cost, instrument layout, workflow design, and future potential. In addition to selecting a laboratory automation system, we used the process to ensure employee engagement in preparation for implementation. Selecting a total laboratory automation system is a complicated process. This paper provides practical guide in how a thorough selection process can be done with participation of key stakeholders. © American Society for Clinical Pathology, 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  19. Usability evaluation of Laboratory and Radiology Information Systems integrated into a hospital information system.

    Science.gov (United States)

    Nabovati, Ehsan; Vakili-Arki, Hasan; Eslami, Saeid; Khajouei, Reza

    2014-04-01

    This study was conducted to evaluate the usability of widely used laboratory and radiology information systems. Three usability experts independently evaluated the user interfaces of Laboratory and Radiology Information Systems using heuristic evaluation method. They applied Nielsen's heuristics to identify and classify usability problems and Nielsen's severity rating to judge their severity. Overall, 116 unique heuristic violations were identified as usability problems. In terms of severity, 67 % of problems were rated as major and catastrophic. Among 10 heuristics, "consistency and standards" was violated most frequently. Moreover, mean severity of problems concerning "error prevention" and "help and documentation" heuristics was higher than of the others. Despite widespread use of specific healthcare information systems, they suffer from usability problems. Improving the usability of systems by following existing design standards and principles from the early phased of system development life cycle is recommended. Especially, it is recommended that the designers design systems that inhibit the initiation of erroneous actions and provide sufficient guidance to users.

  20. [Information system of the national network of public health laboratories in Peru (Netlab)].

    Science.gov (United States)

    Vargas-Herrera, Javier; Segovia-Juarez, José; Garro Nuñez, Gladys María

    2015-01-01

    Clinical laboratory information systems produce improvements in the quality of information, reduce service costs, and diminish wait times for results, among other things. In the construction process of this information system, the National Institute of Health (NIH) of Peru has developed and implemented a web-based application to communicate to health personnel (laboratory workers, epidemiologists, health strategy managers, physicians, etc.) the results of laboratory tests performed at the Peruvian NIH or in the laboratories of the National Network of Public Health Laboratories which is called NETLAB. This article presents the experience of implementing NETLAB, its current situation, perspectives of its use, and its contribution to the prevention and control of diseases in Peru.

  1. Laboratory testing of the in-well vapor-stripping system

    International Nuclear Information System (INIS)

    Gilmore, T.J.; Francois, O.

    1996-03-01

    The Volatile organic Compounds-Arid Integrated Demonstration (VOC-Arid ID) was implemented by the US Department of Energy's (DOE's) Office of Technology Development to develop and test new technologies for the remediation of organic chemicals in the subsurface. One of the technologies being tested under the VOC-Arid ID is the in-well vapor-stripping system. The in-well vapor-stripping concept was initially proposed by researchers at Stanford University and is currently under development through a collaboration between workers at Stanford University and DOE's Pacific Northwest National Laboratory. The project to demonstrate the in-well vapor-stripping technology is divided into three phases: (1) conceptual model and computer simulation, (2) laboratory testing, and (3) field demonstration. This report provides the methods and results of the laboratory testing in which a full-scale replica was constructed and tested above ground in a test facility located at DOE's Hanford Site, Washington. The system is a remediation technology designed to preferentially extract volatile organic compounds (VOCs) from contaminated groundwater by converting them to a vapor phase

  2. Brookhaven National Laboratory's multiparticle spectrometer drift chamber system

    International Nuclear Information System (INIS)

    Etkin, A.; Kramer, M.A.

    1979-01-01

    A system of drift chambers is being built to replace the present spark chambers in the Brookhaven National Laboratory's Multiparticle Spectrometer. This system will handle a beam of approx. 3 million particles per second and have a resolution of 200 μm. A summary of the status of the chambers and the custom integrated circuits is presented. The data acquisition system is described. Prototype chambers have been built and tested with results that are consistent with the expected chamber properties

  3. Modification and testing of the Sandia Laboratories Livermore tritium decontamination systems

    International Nuclear Information System (INIS)

    Gildea, P.D.; Birnbaum, H.G.; Wall, W.R.

    1978-08-01

    Sandia Laboratories, Livermore, has put into operation a new facility, the Tritium Research Laboratory. The laboratory incorporates containment and cleanup facilities such that any tritium accidentally released is captured rather than vented to the atmosphere. This containment is achieved with hermetically sealed glove boxes that are connected on demand by manifolds to two central decontamination systems called the Gas Purification System (GPS) and the Vacuum Effluent Recovery System (VERS). The primary function of the GPS is to remove tritium and tritiated water vapor from the glove box atmosphere. The primary function of the VERS is to decontaminate the gas exhausted from the glove box pressure control systems and vacuum pumps in the building before venting the gas to the stack. Both of these systems are designed to remove tritium to the few parts per billion range. Acceptance tests at the manufacturer's plant and preoperational testing at Livermore demonstrated that the systems met their design specifications. After preoperational testing the Gas Purification System was modified to enhance the safety of maintanance operations. Both the Gas Purification System and the Vacuum Effluent Recovery System were performance tested with tritium. Results show that concentraion reduction factors (ratio of inlet to exhaust concentrations) much in excess of 1000 per pass have been achieved for both systems at inlet concentrations of 1 ppM or less

  4. Modification and testing of the Sandia Laboratories Livermore tritium decontamination systems

    International Nuclear Information System (INIS)

    Gildea, P.D.; Birnbaum, H.G.; Wall, W.R.

    1979-01-01

    Sandia Laboratories, Livermore, has put into operation a new facility, the Tritium Research Laboratory. The laboratory incorporates containment and cleanup facilities such that any tritium accidentally released is captured rather than vented to the atmosphere. This containment is achieved with hermetically sealed glove boxes that are connected on demand by manifolds to two central decontamination systems called the Gas Purification System (GPS) and the Vacuum Effluent Recovery System (VERS). The primary function of the GPS is to remove tritium and tritiated water vapor from the glove box atmosphere. The primary function of the VERS is to decontaminate the gas exhausted from the glove box pressure control systems and vacuum pumps in the building before venting the gas to the stack. Both of these systems are designed to remove tritium to the few parts per billion range. Acceptance tests at the manufacturer's plant and preoperational testing at Livermore demonstrated that the systems met their design specifications. After preoperational testing the Gas Purification System was modified to enhance the safety of maintanance operations. Both the Gas Purification System and the Vacuum Effluent Recovery System were performance tested with tritium. Results show that concentration reduction factors (ratio of inlet to exhaust concentrations) much in excess of 1000 per pass have been achieved for both systems at inlet concentrations of 1 ppM or less

  5. Laboratory challenges in the scaling up of HIV, TB, and malaria programs: The interaction of health and laboratory systems, clinical research, and service delivery.

    Science.gov (United States)

    Birx, Deborah; de Souza, Mark; Nkengasong, John N

    2009-06-01

    Strengthening national health laboratory systems in resource-poor countries is critical to meeting the United Nations Millennium Development Goals. Despite strong commitment from the international community to fight major infectious diseases, weak laboratory infrastructure remains a huge rate-limiting step. Some major challenges facing laboratory systems in resource-poor settings include dilapidated infrastructure; lack of human capacity, laboratory policies, and strategic plans; and limited synergies between clinical and research laboratories. Together, these factors compromise the quality of test results and impact patient management. With increased funding, the target of laboratory strengthening efforts in resource-poor countries should be the integrating of laboratory services across major diseases to leverage resources with respect to physical infrastructure; types of assays; supply chain management of reagents and equipment; and maintenance of equipment.

  6. Laboratory Information Systems in Molecular Diagnostics: Why Molecular Diagnostics Data are Different.

    Science.gov (United States)

    Lee, Roy E; Henricks, Walter H; Sirintrapun, Sahussapont J

    2016-03-01

    Molecular diagnostic testing presents new challenges to information management that are yet to be sufficiently addressed by currently available information systems for the molecular laboratory. These challenges relate to unique aspects of molecular genetic testing: molecular test ordering, informed consent issues, diverse specimen types that encompass the full breadth of specimens handled by traditional anatomic and clinical pathology information systems, data structures and data elements specific to molecular testing, varied testing workflows and protocols, diverse instrument outputs, unique needs and requirements of molecular test reporting, and nuances related to the dissemination of molecular pathology test reports. By satisfactorily addressing these needs in molecular test data management, a laboratory information system designed for the unique needs of molecular diagnostics presents a compelling reason to migrate away from the current paper and spreadsheet information management that many molecular laboratories currently use. This paper reviews the issues and challenges of information management in the molecular diagnostics laboratory.

  7. The impact of SLMTA in improving laboratory quality systems in the Caribbean Region.

    Science.gov (United States)

    Guevara, Giselle; Gordon, Floris; Irving, Yvette; Whyms, Ismae; Parris, Keith; Beckles, Songee; Maruta, Talkmore; Ndlovu, Nqobile; Albalak, Rachel; Alemnji, George

    Past efforts to improve laboratory quality systems and to achieve accreditation for better patient care in the Caribbean Region have been slow. To describe the impact of the Strengthening of Laboratory Management Toward Accreditation (SLMTA) training programme and mentorship amongst five clinical laboratories in the Caribbean after 18 months. Five national reference laboratories from four countries participated in the SLMTA programme that incorporated classroom teaching and implementation of improvement projects. Mentors were assigned to the laboratories to guide trainees on their improvement projects and to assist in the development of Quality Management Systems (QMS). Audits were conducted at baseline, six months, exit (at 12 months) and post-SLMTA (at 18 months) using the Stepwise Laboratory Quality Improvement Process Towards Accreditation (SLIPTA) checklist to measure changes in implementation of the QMS during the period. At the end of each audit, a comprehensive implementation plan was developed in order to address gaps. Baseline audit scores ranged from 19% to 52%, corresponding to 0 stars on the SLIPTA five-star scale. After 18 months, one laboratory reached four stars, two reached three stars and two reached two stars. There was a corresponding decrease in nonconformities and development of over 100 management and technical standard operating procedures in each of the five laboratories. The tremendous improvement in these five Caribbean laboratories shows that SLMTA coupled with mentorship is an effective, user-friendly, flexible and customisable approach to the implementation of laboratory QMS. It is recommended that other laboratories in the region consider using the SLMTA training programme as they engage in quality systems improvement and preparation for accreditation.

  8. An e-health driven laboratory information system to support HIV treatment in Peru: E-quity for laboratory personnel, health providers and people living with HIV

    Directory of Open Access Journals (Sweden)

    Caballero N Patricia

    2009-12-01

    Full Text Available Abstract Background Peru has a concentrated HIV epidemic with an estimated 76,000 people living with HIV (PLHIV. Access to highly active antiretroviral therapy (HAART expanded between 2004-2006 and the Peruvian National Institute of Health was named by the Ministry of Health as the institution responsible for carrying out testing to monitor the effectiveness of HAART. However, a national public health laboratory information system did not exist. We describe the design and implementation of an e-health driven, web-based laboratory information system - NETLAB - to communicate laboratory results for monitoring HAART to laboratory personnel, health providers and PLHIV. Methods We carried out a needs assessment of the existing public health laboratory system, which included the generation and subsequent review of flowcharts of laboratory testing processes to generate better, more efficient streamlined processes, improving them and eliminating duplications. Next, we designed NETLAB as a modular system, integrating key security functions. The system was implemented and evaluated. Results The three main components of the NETLAB system, registration, reporting and education, began operating in early 2007. The number of PLHIV with recorded CD4 counts and viral loads increased by 1.5 times, to reach 18,907. Publication of test results with NETLAB took an average of 1 day, compared to a pre-NETLAB average of 60 days. NETLAB reached 2,037 users, including 944 PLHIV and 1,093 health providers, during its first year and a half. The percentage of overall PLHIV and health providers who were aware of NETLAB and had a NETLAB password has also increased substantially. Conclusion NETLAB is an effective laboratory management tool since it is directly integrated into the national laboratory system and streamlined existing processes at the local, regional and national levels. The system also represents the best possible source of timely laboratory information for

  9. A Computerized Clinical Support System and Psychological Laboratory.

    Science.gov (United States)

    Cassel, Russell N.

    1978-01-01

    Advocating "holistic" medicine, this article details the benefits to be derived from using a computerized clinical support system in a psychological laboratory focusing on internal healing where the client/patient becomes a committed partner utilizing biofeedback equipment, gaming, and simulation to achieve self-understanding and…

  10. Robotics and Autonomous Systems Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides an environment for developing and evaluating intelligent software for both actual and simulated autonomous vehicles. Laboratory computers provide...

  11. Laboratory Information Systems Management and Operations.

    Science.gov (United States)

    Cucoranu, Ioan C

    2015-06-01

    The main mission of a laboratory information system (LIS) is to manage workflow and deliver accurate results for clinical management. Successful selection and implementation of an anatomic pathology LIS is not complete unless it is complemented by specialized information technology support and maintenance. LIS is required to remain continuously operational with minimal or no downtime and the LIS team has to ensure that all operations are compliant with the mandated rules and regulations. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. MASTR-MS: a web-based collaborative laboratory information management system (LIMS) for metabolomics.

    Science.gov (United States)

    Hunter, Adam; Dayalan, Saravanan; De Souza, David; Power, Brad; Lorrimar, Rodney; Szabo, Tamas; Nguyen, Thu; O'Callaghan, Sean; Hack, Jeremy; Pyke, James; Nahid, Amsha; Barrero, Roberto; Roessner, Ute; Likic, Vladimir; Tull, Dedreia; Bacic, Antony; McConville, Malcolm; Bellgard, Matthew

    2017-01-01

    An increasing number of research laboratories and core analytical facilities around the world are developing high throughput metabolomic analytical and data processing pipelines that are capable of handling hundreds to thousands of individual samples per year, often over multiple projects, collaborations and sample types. At present, there are no Laboratory Information Management Systems (LIMS) that are specifically tailored for metabolomics laboratories that are capable of tracking samples and associated metadata from the beginning to the end of an experiment, including data processing and archiving, and which are also suitable for use in large institutional core facilities or multi-laboratory consortia as well as single laboratory environments. Here we present MASTR-MS, a downloadable and installable LIMS solution that can be deployed either within a single laboratory or used to link workflows across a multisite network. It comprises a Node Management System that can be used to link and manage projects across one or multiple collaborating laboratories; a User Management System which defines different user groups and privileges of users; a Quote Management System where client quotes are managed; a Project Management System in which metadata is stored and all aspects of project management, including experimental setup, sample tracking and instrument analysis, are defined, and a Data Management System that allows the automatic capture and storage of raw and processed data from the analytical instruments to the LIMS. MASTR-MS is a comprehensive LIMS solution specifically designed for metabolomics. It captures the entire lifecycle of a sample starting from project and experiment design to sample analysis, data capture and storage. It acts as an electronic notebook, facilitating project management within a single laboratory or a multi-node collaborative environment. This software is being developed in close consultation with members of the metabolomics research

  13. Status of Data Base Management Systems at Argonne National Laboratory

    International Nuclear Information System (INIS)

    Fuja, P.M.; Lindeman, A.J.

    1978-01-01

    Argonne National Laboratory has been using the System 2000 data base management system for the past two years. It has been used for technical as well as administrative applications. This paper describes some of the experience gained relating to advantages and disadvantages of data base management systems as well as of System 2000 in particular

  14. Optical Coronagraphic Spectroscopy of AU Mic: Evidence of Time Variable Colors?

    Science.gov (United States)

    Lomax, Jamie R.; Wisniewski, John P.; Roberge, Aki; Donaldson, Jessica K.; Debes, John H.; Malumuth, Eliot M.; Weinberger, Alycia J.

    2018-02-01

    We present coronagraphic long slit spectra of AU Mic’s debris disk taken with the STIS instrument aboard the Hubble Space Telescope. Our spectra are the first spatially-resolved, scattered light spectra of the system’s disk, which we detect at projected distances between approximately 10 and 45 au. Our spectra cover a wavelength range between 5200 and 10200 Å. We find that the color of AU Mic’s debris disk is bluest at small (12–17 au) projected separations. These results both confirm and quantify the findings qualitatively noted by Krist et al. and are different than IR observations that suggested a uniform blue or gray color as a function of projected separation in this region of the disk. Unlike previous literature, which reported that the color of AU Mic’s disk became increasingly more blue as a function of projected separation beyond ∼30 au, we find the disk’s optical color between 35 and 45 au to be uniformly blue on the southeast side of the disk and decreasingly blue on the northwest side. We note that this apparent change in disk color at larger projected separations coincides with several fast, outward moving “features” that are passing through this region of the southeast side of the disk. We speculate that these phenomenon might be related and that the fast moving features could be changing the localized distribution of sub-micron-sized grains as they pass by, thereby reducing the blue color of the disk in the process. We encourage follow-up optical spectroscopic observations of AU Mic to both confirm this result and search for further modifications of the disk color caused by additional fast moving features propagating through the disk.

  15. Proceedings of the National Renewable Energy Laboratory Wind Energy Systems Engineering Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Dykes, K.

    2014-12-01

    The second National Renewable Energy Laboratory (NREL) Wind Energy Systems Engineering Workshop was held in Broomfield, Colorado, from January 29 to February 1, 2013. The event included a day-and-a-half workshop exploring a wide variety of topics related to system modeling and design of wind turbines and plants. Following the workshop, 2 days of tutorials were held at NREL, showcasing software developed at Sandia National Laboratories, the National Aeronautics and Space Administration's Glenn Laboratories, and NREL. This document provides a brief summary of the various workshop activities and includes a review of the content and evaluation results from attendees.

  16. Earth System Research Laboratory Long-Term Surface Aerosol Measurements

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Aerosol measurements began at the NOAA Earth System Research Laboratory (ESRL) Global Monitoring Division (GMD) baseline observatories in the mid-1970's with the...

  17. Design and installation of a laboratory-scale system for radioactive waste treatment

    International Nuclear Information System (INIS)

    Berger, D.N.; Knox, C.A.; Siemens, D.H.

    1980-05-01

    Described are the mechanical design features and remote installation of a laboratory-scale radiochemical immobilization system which is to provide a means at Pacific Northwest Laboratory of studying effluents generated during solidification of high-level liquid radioactive waste. Detailed are the hot cell, instrumentation, two 4-in. and 12-in. service racks, the immobilization system modules - waste feed, spray calciner unit, and effluent - and a gamma emission monitor system for viewing calcine powder buildup in the spray calciner/in-can melter

  18. Real-Time Rocket/Vehicle System Integrated Health Management Laboratory For Development and Testing of Health Monitoring/Management Systems

    Science.gov (United States)

    Aguilar, R.

    2006-01-01

    Pratt & Whitney Rocketdyne has developed a real-time engine/vehicle system integrated health management laboratory, or testbed, for developing and testing health management system concepts. This laboratory simulates components of an integrated system such as the rocket engine, rocket engine controller, vehicle or test controller, as well as a health management computer on separate general purpose computers. These general purpose computers can be replaced with more realistic components such as actual electronic controllers and valve actuators for hardware-in-the-loop simulation. Various engine configurations and propellant combinations are available. Fault or failure insertion capability on-the-fly using direct memory insertion from a user console is used to test system detection and response. The laboratory is currently capable of simulating the flow-path of a single rocket engine but work is underway to include structural and multiengine simulation capability as well as a dedicated data acquisition system. The ultimate goal is to simulate as accurately and realistically as possible the environment in which the health management system will operate including noise, dynamic response of the engine/engine controller, sensor time delays, and asynchronous operation of the various components. The rationale for the laboratory is also discussed including limited alternatives for demonstrating the effectiveness and safety of a flight system.

  19. Laboratory use of industrial control systems

    International Nuclear Information System (INIS)

    Rijllart, A.; Avot, L.; Brahy, D.; Jegou, D.; Saban, R.

    1994-01-01

    Industrial control system manufacturers supply the building blocks for the control of industrial equipment or specific process control applications. Although the laboratory environment is different in many aspects (prototyping, evolution and frequent reconfiguration), the use of these building blocks remain attractive because of their general purpose nature, their cost and the large spectrum of available types. In this paper we present three projects which have been implemented using both industrial control system building blocks (PLCs, controllers, digital and analogue plug-in I/O cards) and commercial software packages (LabView and VisualBasic) for the man-machine interface, the data acquisition and archiving, and the process control. This approach has proved to be economical, easy and fast to implement. ((orig.))

  20. Building a Laboratory Information Management System Using Windows4GL

    International Nuclear Information System (INIS)

    Pickens, M.A.; Shaieb, M.R.

    1996-05-01

    The system discussed is currently implemented at LLNL in the Environmental Services program which operates out of the Chemistry ampersand Materials Science (C ampersand MS) directorate. Responsibility is to provide the C ampersand MS Environmental Services (CES) program with an enterprise-wide information system which will aid CES. The specific portion of the information system is the Sample Tracking, Analysis and Reporting System (STARS). Since CES was formed by merging two analytical laboratory organizations in May 1995, a new Laboratory Information Management System (LIMS) had to be developed. The development of a LIMS in Windows4GL was found to be satisfactory. The product STARS was well received by the user community, and it has improved business practices and efficiency in CES. The CES management staff has seen increased personnel productivity since STARS was release. We look forward to upgrading to CA-OpenROAD and taking advantage of its many improved and innovative features to further enhance STARS

  1. Building a Laboratory Information Management System Using Windows4GL

    Energy Technology Data Exchange (ETDEWEB)

    Pickens, M.A.; Shaieb, M.R.

    1996-05-01

    The system discussed is currently implemented at LLNL in the Environmental Services program which operates out of the Chemistry & Materials Science (C&MS) directorate. Responsibility is to provide the C&MS Environmental Services (CES) program with an enterprise-wide information system which will aid CES. The specific portion of the information system is the Sample Tracking, Analysis and Reporting System (STARS). Since CES was formed by merging two analytical laboratory organizations in May 1995, a new Laboratory Information Management System (LIMS) had to be developed. The development of a LIMS in Windows4GL was found to be satisfactory. The product STARS was well received by the user community, and it has improved business practices and efficiency in CES. The CES management staff has seen increased personnel productivity since STARS was release. We look forward to upgrading to CA-OpenROAD and taking advantage of its many improved and innovative features to further enhance STARS.

  2. Sandia National Laboratories, California Environmental Management System Program Manual.

    Energy Technology Data Exchange (ETDEWEB)

    2009-04-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004 and Department of Energy (DOE) Order 450.1. Sandia National Laboratories, California (SNL/CA) has maintained functional environmental programs to assist with regulatory compliance for more than 30 years. During 2005, these existing programs were rolled into a formal environmental management system (EMS) that expands beyond the traditional compliance focus to managing and improving environmental performance and stewardship practices for all site activities. An EMS is a set of inter-related elements that represent a continuing cycle of planning, implementing, evaluating, and improving processes and actions undertaken to achieve environmental policy and goals. The SNL/CA EMS Program conforms to the International Standard for Environmental Management Systems, ISO 14001:2004 (ISO 2004). The site received ISO 14001 certification in September 2006. SNL/CA's EMS Program is applicable to the Sandia, Livermore site only. Although SNL/CA operates as one organizational division of the overall Sandia National Laboratories, the EMS Program is site-specific, with site-specific objectives and targets. SNL/CA (Division 8000) benefits from the organizational structure as it provides corporate level policies, procedures, and standards, and established processes that connect to and support elements of the SNL/CA EMS Program. Additionally, SNL/CA's EMS Program benefits from two corporate functional programs (Facilities Energy Management and Fleet Services Environmental programs) that maintain responsibility for energy management and fleet services for all Sandia locations. Each EMS element is further enhanced with site-specific processes and standards. Division 8000 has several groups operating at Sandia

  3. Sandia National Laboratories, California Environmental Management System program manual.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2012-03-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004and Department of Energy (DOE) Order 436.1. Sandia National Laboratories, California (SNL/CA) has maintained functional environmental programs to assist with regulatory compliance for more than 30 years. During 2005, these existing programs were rolled into a formal environmental management system (EMS) that expands beyond the traditional compliance focus to managing and improving environmental performance and stewardship practices for all site activities. An EMS is a set of inter-related elements that represent a continuing cycle of planning, implementing, evaluating, and improving processes and actions undertaken to achieve environmental policy and goals. The SNL/CA EMS Program conforms to the International Standard for Environmental Management Systems, ISO 14001:2004 (ISO 2004). The site first received ISO 14001 certification in September 2006 and recertification in 2009. SNL/CA's EMS Program is applicable to the Sandia, Livermore site only. Although SNL/CA operates as one organizational division of the overall Sandia National Laboratories, the EMS Program is site-specific, with site-specific objectives and targets. SNL/CA (Division 8000) benefits from the organizational structure as it provides corporate level policies, procedures, and standards, and established processes that connect to and support elements of the SNL/CA EMS Program. Additionally, SNL/CA's EMS Program benefits from two corporate functional programs (Facilities Energy and Water Resource Management and Fleet Services programs) that maintain responsibility for energy management and fleet services for all Sandia locations. Each EMS element is further enhanced with site-specific processes and standards. Division 8000 has

  4. Sandia National Laboratories, California Environmental Management System Program Manual.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2011-04-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004and Department of Energy (DOE) Order 450.1. Sandia National Laboratories, California (SNL/CA) has maintained functional environmental programs to assist with regulatory compliance for more than 30 years. During 2005, these existing programs were rolled into a formal environmental management system (EMS) that expands beyond the traditional compliance focus to managing and improving environmental performance and stewardship practices for all site activities. An EMS is a set of inter-related elements that represent a continuing cycle of planning, implementing, evaluating, and improving processes and actions undertaken to achieve environmental policy and goals. The SNL/CA EMS Program conforms to the International Standard for Environmental Management Systems, ISO 14001:2004 (ISO 2004). The site received ISO 14001 certification in September 2006. SNL/CA's EMS Program is applicable to the Sandia, Livermore site only. Although SNL/CA operates as one organizational division of the overall Sandia National Laboratories, the EMS Program is site-specific, with site-specific objectives and targets. SNL/CA (Division 8000) benefits from the organizational structure as it provides corporate level policies, procedures, and standards, and established processes that connect to and support elements of the SNL/CA EMS Program. Additionally, SNL/CA's EMS Program benefits from two corporate functional programs (Facilities Energy Management and Fleet Services programs) that maintain responsibility for energy management and fleet services for all Sandia locations. Each EMS element is further enhanced with site-specific processes and standards. Division 8000 has several groups operating at Sandia National Laboratories

  5. Spacecraft contamination programs within the Air Force Systems Command Laboratories

    Science.gov (United States)

    Murad, Edmond

    1990-01-01

    Spacecraft contamination programs exist in five independent AFSC organizations: Geophysics Laboratory (GL), Arnold Engineering and Development Center (AEDC), Rome Air Development Center (RADC/OSCE), Wright Research and Development Center (MLBT), Armament Laboratory (ATL/SAI), and Space Systems Division (SSD/OL-AW). In addition, a sizable program exists at Aerospace Corp. These programs are complementary, each effort addressing a specific area of expertise: GL's effort is aimed at addressing the effects of on-orbit contamination; AEDC's effort is aimed at ground simulation and measurement of optical contamination; RADC's effort addresses the accumulation, measurement, and removal of contamination on large optics; MLBT's effort is aimed at understanding the effect of contamination on materials; ATL's effort is aimed at understanding the effect of plume contamination on systems; SSD's effort is confined to the integration of some contamination experiments sponsored by SSD/CLT; and Aerospace Corp.'s effort is aimed at supporting the needs of the using System Program Offices (SPO) in specific areas, such as contamination during ground handling, ascent phase, laboratory measurements aimed at understanding on-orbit contamination, and mass loss and mass gain in on-orbit operations. These programs are described in some detail, with emphasis on GL's program.

  6. System Quality Management in Software Testing Laboratory that Chooses Accreditation

    Directory of Open Access Journals (Sweden)

    Yanet Brito R.

    2013-12-01

    Full Text Available The evaluation of software products will reach full maturity when executed by the scheme and provides third party certification. For the validity of the certification, the independent laboratory must be accredited for that function, using internationally recognized standards. This brings with it a challenge for the Industrial Laboratory Testing Software (LIPS, responsible for testing the products developed in Cuban Software Industry, define strategies that will permit it to offer services with a high level of quality. Therefore it is necessary to establish a system of quality management according to NC-ISO/IEC 17025: 2006 to continuously improve the operational capacity and technical competence of the laboratory, with a view to future accreditation of tests performed. This article discusses the process defined in the LIPS for the implementation of a Management System of Quality, from the current standards and trends, as a necessary step to opt for the accreditation of the tests performed.

  7. The evolution of a LIMS [laboratory information management system

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Changes in the world and United Kingdom markets for nuclear fuels during the 1990s have prompted British Nuclear Fuels (BNFL) to maximise cost effectiveness in its Chemical and Metallurgical Services department. A laboratory information management system (LIMS) was introduced in order to keep records of analytical techniques and equipment up to date by coordinating various computer systems. Wherever possible automated systems have replaced traditional, labour intensive techniques. So successful has the LIMS system been, that the team now hopes to expand into expert systems. (UK)

  8. A data automation system at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Betts, S.E.; Schneider, C.M.; Pickrell, M.M.

    2001-01-01

    Idaho National Engineering and Environmental Laboratory (INEEL) has developed an automated computer program, Data Review Expert System (DRXS), for reviewing nondestructive assay (NDA) data. DRXS significantly reduces the data review time needed to meet characterization requirements for the Waste Isolation Pilot Plant (WIPP). Los Alamos National Laboratory (LANL) is in the process of developing a computer program, Software System Logic for Intelligent Certification (SSLIC), to automate other tasks associa ted with characterization of Transuranic Waste (TRU) samples. LANL has incorporated a version of DRXS specific to LANL's isotopic data into SSLIC. This version of SSLIC was audited by the National Transuranic Program on October, 24, 2001. This paper will present the results of the audit, and discuss future plans for SSLIC including the integration on the INEELLANL developed Rule Editor.

  9. Laboratory Information Management Systems for Forensic Laboratories: A White Paper for Directors and Decision Makers

    Energy Technology Data Exchange (ETDEWEB)

    Anthony Hendrickson; Brian Mennecke; Kevin Scheibe; Anthony Townsend

    2005-10-01

    Modern, forensics laboratories need Laboratory Information Management Systems (LIMS) implementations that allow the lab to track evidentiary items through their examination lifecycle and also serve all pertinent laboratory personnel. The research presented here presents LIMS core requirements as viewed by respondents serving in different forensic laboratory capacities as well as different forensic laboratory environments. A product-development methodology was employed to evaluate the relative value of the key features that constitute a LIMS, in order to develop a set of relative values for these features and the specifics of their implementation. In addition to the results of the product development analysis, this paper also provides an extensive review of LIMS and provides an overview of the preparation and planning process for the successful upgrade or implementation of a LIMS. Analysis of the data indicate that the relative value of LIMS components are viewed differently depending upon respondents' job roles (i.e., evidence technicians, scientists, and lab management), as well as by laboratory size. Specifically, the data show that: (1) Evidence technicians place the most value on chain of evidence capabilities and on chain of custody tracking; (2) Scientists generally place greatest value on report writing and generation, and on tracking daughter evidence that develops during their analyses; (3) Lab. Managers place the greatest value on chain of custody, daughter evidence, and not surprisingly, management reporting capabilities; and (4) Lab size affects LIMS preference in that, while all labs place daughter evidence tracking, chain of custody, and management and analyst report generation as their top three priorities, the order of this prioritization is size dependent.

  10. Quality management systems for your in vitro fertilization clinic's laboratory: Why bother?

    Science.gov (United States)

    Olofsson, Jan I; Banker, Manish R; Sjoblom, Late Peter

    2013-01-01

    Several countries have in recent years introduced prescribed requirements for treatment and monitoring of outcomes, as well as a licensing or accreditation requirement for in vitro fertilization (IVF) clinics and their laboratories. It is commonplace for Assisted Reproductive Technology (ART) laboratories to be required to have a quality control system. However, more effective Total Quality Management systems are now being implemented by an increasing number of ART clinics. In India, it is now a requirement to have a quality management system in order to be accredited and to help meet customer demand for improved delivery of ART services. This review contains the proceedings a quality management session at the Indian Fertility Experts Meet (IFEM) 2010 and focuses on the creation of a patient-oriented best-in-class IVF laboratory.

  11. Optimization Of The Efficiency Of A Pre And Post Apodized Piaa Coronagraph Using A Numerical Propagator.

    Science.gov (United States)

    Carlotti, Alexis; Pueyo, L.; Kasdin, N. J.

    2011-01-01

    Using a numerical propagator based on the Huygens integral, we study the apodization profiles (and PSFs) provided by a set of two PIAA mirrors that follow a square geometry. This choice is made as deformable mirrors could potentially be used as pupil mappers. A pre-apodizer and a post-apodizer are needed to improve the contrast and relax the manufacturing constraints of the mirrors. The stroke, minimum radius of curvature and diameter of the mirrors altogether with the parameters that define the pre and post apodizers’ properties are connected to the performances of the coronagraph in term of contrast, throughput and inner working angle. Characterizing these relations allows us to invert some of them. For example, we are able to set a specific value for the final throughput and to find out, for a particular mirror's diameter and stroke, the distance between the mirrors as well as the characteristics of the pre and post apodizers that need to be used. Contrast maps are given as functions of the stroke, the diameter, the radius of curvature and the throughput. All these numerical tools help us to understand the trade-offs that exist behind the design of a PIAA system. There is a direct relation between the diameter, stroke, maximum radius of curvature of the mirrors and the strength of the post-apodizer. Increasing the diameter improves the contrast but asks for a higher stroke and bigger distance. For a given set of mirrors, a better contrast can then be obtained by strengthening the pre and post apodizers at the expense of the throughput and the inner working angle. The post-apodizer could either be a transmittive, continuous apodizer or a binary apodizer. The latter case is explored and optimized binary apodizers are found for several PIAA cases. This work is supported by a NASA APRA grant.

  12. US Department of Energy Laboratory Accredition Program (DOELAP) for personnel dosimetry systems

    Energy Technology Data Exchange (ETDEWEB)

    Cummings, F.M.; Carlson, R.D.; Loesch, R.M.

    1993-12-31

    Accreditation of personnel dosimetry systems is required for laboratories that conduct personnel dosimetry for the U.S. Department of Energy (DOE). Accreditation is a two-step process which requires the participant to pass a proficiency test and an onsite assessment. The DOE Laboratory Accreditation Program (DOELAP) is a measurement quality assurance program for DOE laboratories. Currently, the DOELAP addresses only dosimetry systems used to assess the whole body dose to personnel. A pilot extremity DOELAP has been completed and routine testing is expected to begin in January 1994. It is expected that participation in the extremity program will be a regulatory requirement by January 1996.

  13. Laboratory QA/QC improvements for small drinking water systems at Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Turner, R.D.

    1995-12-01

    The Savannah River Site (SRS), a 310 square mile facility located near Aiken, S.C., is operated by Westinghouse Savannah River Company for the US Department of Energy. SRS has 28 separate drinking water systems with average daily demands ranging from 0.0002 to 0.5 MGD. All systems utilize treated groundwater. Until recently, the water laboratories for each system operated independently. As a result, equipment, reagents, chemicals, procedures, personnel, and quality control practices differed from location to location. Due to this inconsistency, and a lack of extensive laboratory OA/QC practices at some locations, SRS auditors were not confident in the accuracy of daily water quality analyses results. The Site`s Water Services Department addressed these concerns by developing and implementing a practical laboratory QA/QC program. Basic changes were made which can be readily adopted by most small drinking water systems. Key features of the program include: Standardized and upgraded laboratory instrumentation and equipment; standardized analytical procedures based on vendor manuals and site requirements; periodic accuracy checks for all instrumentation; creation of a centralized laboratory to perform metals digestions and chlorine colorimeter accuracy checks; off-site and on-site operator training; proper storage, inventory and shelf life monitoring for reagents and chemicals. This program has enhanced the credibility and accuracy of SRS drinking water system analyses results.

  14. [Construction and operation status of management system of laboratories of schistosomiasis control institutions in Hubei Province].

    Science.gov (United States)

    Zhao-Hui, Zheng; Jun, Qin; Li, Chen; Hong, Zhu; Li, Tang; Zu-Wu, Tu; Ming-Xing, Zeng; Qian, Sun; Shun-Xiang, Cai

    2016-10-09

    To analyze the construction and operation status of management system of laboratories of schistosomiasis control institutions in Hubei Province, so as to provide the reference for the standardized detection and management of schistosomiasis laboratories. According to the laboratory standard of schistosomiasis at provincial, municipal and county levels, the management system construction and operation status of 60 schistosomiasis control institutions was assessed by the acceptance examination method from 2013 to 2015. The management system was already occupied over all the laboratories of schistosomiasis control institutions and was officially running. There were 588 non-conformities and the inconsistency rate was 19.60%. The non-conformity rate of the management system of laboratory quality control was 38.10% (224 cases) and the non-conformity rate of requirements of instrument and equipment was 23.81% (140 cases). The management system has played an important role in the standardized management of schistosomiasis laboratories.

  15. Design and construction of the SSCL magnet test laboratory cryogenic systems

    International Nuclear Information System (INIS)

    Freeman, M.A.; Kobel, T.A.

    1992-01-01

    The intent of this document is to provide a brief summary of the execution, by Process Systems International, Inc. (PSI), of the Design and Construction of the SSCL Magnet Test Laboratory Cryogenic Systems. This $30 million project requires the expenditure of over 200,000 manhours and the procurement of $17 million in materials within a two year period. SSC magnets will be performance tested at the Magnet Test Laboratory (MTL) and the Accelerator System String Test (ASST) facility under conditions simulating the environment of the SSC main ring. The cryogenic system consists of test stands (five for MTL, one for ASST) and the associated equipment including cryogenic storage, purification, thermal conditioning, and helium refrigeration necessary to support the test program

  16. Introduction to ISO 15189: a blueprint for quality systems in veterinary laboratories.

    Science.gov (United States)

    Freeman, Kathleen P; Bauer, Natali; Jensen, Asger L; Thoresen, Stein

    2006-06-01

    A trend in human and veterinary medical laboratory management is to achieve accreditation based on international standards. The International Organization for Standardization (ISO) 15189 standard is the first developed especially for accreditation of medical laboratories, and emphasizes the laboratory-client interface. European veterinary laboratories seeking to train candidates for the certification examination of the European College of Veterinary Clinical Pathology (ECVCP) require approval by the ECVCP Laboratory Standards Committee, which bases its evaluation in part on adherence to quality systems described in the ISO 15189 standards. The purpose of this article was to introduce the latest ISO quality standard and describe its application to veterinary laboratories in Europe, specifically as pertains to accreditation of laboratories involved in training veterinary clinical pathologists. Between 2003 and 2006, the Laboratory Standards Committee reviewed 12 applications from laboratories (3 commercial and 9 university) involved in training veterinary clinical pathologists. Applicants were asked to provide a description of the facilities for training and testing, current methodology and technology, health and safety policy, quality assurance policy (including internal quality control and participation in an external quality assurance program), written standard operating procedures (SOPs) and policies, a description of the laboratory information system, and personnel and training. Also during this time period multiple informal and formal discussions among ECVCP diplomates took place as to current practices and perceived areas of concern with regard to laboratory accreditation requirements. Areas in which improvement most often was needed in veterinary laboratories applying for ECVCP accreditation were the written quality plan, defined quality requirements for the tests performed, written SOPs and policies, training records, ongoing audits and competency

  17. PR-PR: cross-platform laboratory automation system.

    Science.gov (United States)

    Linshiz, Gregory; Stawski, Nina; Goyal, Garima; Bi, Changhao; Poust, Sean; Sharma, Monica; Mutalik, Vivek; Keasling, Jay D; Hillson, Nathan J

    2014-08-15

    To enable protocol standardization, sharing, and efficient implementation across laboratory automation platforms, we have further developed the PR-PR open-source high-level biology-friendly robot programming language as a cross-platform laboratory automation system. Beyond liquid-handling robotics, PR-PR now supports microfluidic and microscopy platforms, as well as protocol translation into human languages, such as English. While the same set of basic PR-PR commands and features are available for each supported platform, the underlying optimization and translation modules vary from platform to platform. Here, we describe these further developments to PR-PR, and demonstrate the experimental implementation and validation of PR-PR protocols for combinatorial modified Golden Gate DNA assembly across liquid-handling robotic, microfluidic, and manual platforms. To further test PR-PR cross-platform performance, we then implement and assess PR-PR protocols for Kunkel DNA mutagenesis and hierarchical Gibson DNA assembly for microfluidic and manual platforms.

  18. Assessing the outcome of Strengthening Laboratory Management Towards Accreditation (SLMTA) on laboratory quality management system in city government of Addis Ababa, Ethiopia.

    Science.gov (United States)

    Sisay, Abay; Mindaye, Tedla; Tesfaye, Abrham; Abera, Eyob; Desale, Adino

    2015-01-01

    Strengthening Laboratory Management Toward Accreditation (SLMTA) is a competency-based management training programme designed to bring about immediate and measurable laboratory improvement. The aim of this study is to assess the outcome of SLMTA on laboratory quality management system in Addis Ababa, Ethiopia. The study used an Institutional based cross sectional study design that employed a secondary and primary data collection approach on the participated institution of medical laboratory in SLMTA. The study was conducted in Addis Ababa city government and the data was collected from February 'April 2014 and data was entered in to EPI-data version 3.1 and was analyzed by SPSS version 20. The assessment finding indicate that there was a significant improvement in average scores (141.4; range of 65-196, 95%CI=86.275-115.5, p=0.000) at final with 3 laboratories become 3 star, 6 laboratories were at 2 star, 11 were 1 star. Laboratory facilities respondents which thought getting adequate and timely manner mentorship were found 2.5 times more likely to get good success in the final score(AOR=2.501, 95% CI=1.109-4.602) than which did not get it. At the end of SLMTA implementation,3 laboratories score 3 star, 6 laboratories were at 2 star, 11 were at 1 star. The most important contributing factor for not scoring star in the final outcome of SLMTA were not conducting their customer satisfaction survey, poor staff motivation, and lack of regular equipment service maintenance. Mentorship, onsite and offsite coaching and training activities had shown a great improvement on laboratory quality management system in most laboratories.

  19. Design of an electronic performance support system for food chemistry laboratory classes

    NARCIS (Netherlands)

    Kolk, van der J.

    2013-01-01

    The design oriented research described in this thesis aims at designing an realizing an electronic performance support system for food chemistry laboratory classes (labEPSS). Four design goals related to food chemistry laboratory classes were identified. Firstly, labEPSS should avoid extraneous

  20. A Solar System Perspective on Laboratory Astrophysics

    Science.gov (United States)

    Cruikshank, Dale P.

    2002-01-01

    Planetary science deals with a wide variety of natural materials in a wide variety of environments. These materials include metals, minerals, ices, gases, plasmas, and organic chemicals. In addition, the newly defined discipline of astrobiology introduces biological materials to planetary science. The environments range from the interiors of planets with megapascal pressures to planetary magnetospheres, encompassing planetary mantles, surfaces, atmospheres, and ionospheres. The interplanetary environment includes magnetic and electrical fields, plasma, and dust. In order to understand planetary processes over these vast ranges, the properties of materials must be known, and most of the necessary information comes from the laboratory. Observations of the bodies and materials in the Solar System are accomplished over the full range of the electromagnetic spectrum by remote sensing from Earth or spacecraft. Comets exemplify this; molecular and atomic identifications are made from the hard ultraviolet to radio wavelengths, while X-rays are emitted as comets interact with the solar wind. Gamma rays from the surfaces of the Moon and asteroids are diagnostic of the mineral and ice content of those bodies; eventually, gamma rays will also be observed by probes to comets. A number of planetary materials are available in the laboratory for extensive Study: rocks from the Moon, Mars, several asteroids, as well as dust from comets (and perhaps the Kuiper Belt) are closely studied at every level, including atomic (isotopic). Even pre-solar interstellar grains isolated from meteorites are scrutinized for composition and crystalline structure. Beyond the materials themselves, various agents and processes have altered them over the 4.6-Gy age of the Solar System. Solar radiation, solar wind particles, trapped magnetospheric particles, cosmic rays, and micrometeoroid impacts have produced chemical, physical, and morphological changes in the atmospheres and on the surfaces of all

  1. The impact of SLMTA in improving laboratory quality systems in the Caribbean Region

    Directory of Open Access Journals (Sweden)

    Giselle Guevara

    2014-11-01

    Objective: To describe the impact of the Strengthening of Laboratory Management Toward Accreditation (SLMTA training programme and mentorship amongst five clinical laboratories in the Caribbean after 18 months. Method: Five national reference laboratories from four countries participated in the SLMTA programme that incorporated classroom teaching and implementation of improvement projects. Mentors were assigned to the laboratories to guide trainees on their improvement projects and to assist in the development of Quality Management Systems (QMS. Audits were conducted at baseline, six months, exit (at 12 months and post-SLMTA (at 18 months using the Stepwise Laboratory Quality Improvement Process Towards Accreditation (SLIPTA checklist to measure changes in implementation of the QMS during the period. At the end of each audit, a comprehensive implementation plan was developed in order to address gaps. Results: Baseline audit scores ranged from 19% to 52%, corresponding to 0 stars on the SLIPTA five-star scale. After 18 months, one laboratory reached four stars, two reached three stars and two reached two stars. There was a corresponding decrease in nonconformities and development of over 100 management and technical standard operating procedures in each of the five laboratories. Conclusion: The tremendous improvement in these five Caribbean laboratories shows that SLMTA coupled with mentorship is an effective, user-friendly, flexible and customisable approach to the implementation of laboratory QMS. It is recommended that other laboratories in the region consider using the SLMTA training programme as they engage in quality systems improvement and preparation for accreditation.

  2. Assessment of laboratory logistics management information system practice for HIV/AIDS and tuberculosis laboratory commodities in selected public health facilities in Addis Ababa, Ethiopia.

    Science.gov (United States)

    Desale, Adino; Taye, Bineyam; Belay, Getachew; Nigatu, Alemayehu

    2013-01-01

    Logistics management information system for health commodities remained poorly implemented in most of developing countries. To assess the status of laboratory logistics management information system for HIV/AIDS and tuberculosis laboratory commodities in public health facilities in Addis Ababa. A cross-sectional descriptive study was conducted from September 2010-January 2011 at selected public health facilities. A stratified random sampling method was used to include a total of 43 facilities which, were investigated through quantitative methods using structured questionnaires interviews. Focus group discussion with the designated supply chain managers and key informant interviews were conducted for the qualitative method. There exists a well-designed logistics system for laboratory commodities with trained pharmacy personnel, distributed standard LMIS formats and established inventory control procedures. However, majority of laboratory professionals were not trained in LMIS. Majority of the facilities (60.5%) were stocked out for at least one ART monitoring and TB laboratory reagents and the highest stock out rate was for chemistry reagents. Expired ART monitoring laboratory commodities were found in 25 (73.5%) of facilities. Fifty percent (50%) of the assessed hospitals and 54% of health centers were currently using stock/bin cards for all HIV/AIDS and TB laboratory commodities in main pharmacy store, among these only 25% and 20.8% of them were updated with accurate information matching with the physical count done at the time of visit for hospitals and health centers respectively. Even though there exists a well designed laboratory LMIS, keeping quality stock/bin cards and LMIS reports were very low. Key ART monitoring laboratory commodities were stock out at many facilities at the day of visit and during the past six months. Based on findings, training of laboratory personnel's managing laboratory commodities and keeping accurate inventory control procedures

  3. Assessment of laboratory logistics management information system practice for HIV/AIDS and tuberculosis laboratory commodities in selected public health facilities in Addis Ababa, Ethiopia

    Science.gov (United States)

    Desale, Adino; Taye, Bineyam; Belay, Getachew; Nigatu, Alemayehu

    2013-01-01

    Introduction Logistics management information system for health commodities remained poorly implemented in most of developing countries. To assess the status of laboratory logistics management information system for HIV/AIDS and tuberculosis laboratory commodities in public health facilities in Addis Ababa. Methods A cross-sectional descriptive study was conducted from September 2010-January 2011 at selected public health facilities. A stratified random sampling method was used to include a total of 43 facilities which, were investigated through quantitative methods using structured questionnaires interviews. Focus group discussion with the designated supply chain managers and key informant interviews were conducted for the qualitative method. Results There exists a well-designed logistics system for laboratory commodities with trained pharmacy personnel, distributed standard LMIS formats and established inventory control procedures. However, majority of laboratory professionals were not trained in LMIS. Majority of the facilities (60.5%) were stocked out for at least one ART monitoring and TB laboratory reagents and the highest stock out rate was for chemistry reagents. Expired ART monitoring laboratory commodities were found in 25 (73.5%) of facilities. Fifty percent (50%) of the assessed hospitals and 54% of health centers were currently using stock/bin cards for all HIV/AIDS and TB laboratory commodities in main pharmacy store, among these only 25% and 20.8% of them were updated with accurate information matching with the physical count done at the time of visit for hospitals and health centers respectively. Conclusion Even though there exists a well designed laboratory LMIS, keeping quality stock/bin cards and LMIS reports were very low. Key ART monitoring laboratory commodities were stock out at many facilities at the day of visit and during the past six months. Based on findings, training of laboratory personnel's managing laboratory commodities and keeping

  4. Wavefront error measurement of the concave ellipsoidal mirrors of the METIS coronagraph on ESA Solar Orbiter mission

    Science.gov (United States)

    Sandri, P.

    2017-12-01

    The paper describes the alignment technique developed for the wavefront error measurement of ellipsoidal mirrors presenting a central hole. The achievement of a good alignment with a classic setup at the finite conjugates when mirrors are uncoated cannot be based on the identification and materialization at naked eye of the retro-reflected spot by the mirror under test as the intensity of the retro-reflected spot results to be ≈1E-3 of the intensity of the injected laser beam of the interferometer. We present the technique developed for the achievement of an accurate alignment in the setup at the finite conjugate even in condition of low intensity based on the use of an autocollimator adjustable in focus position and a small polished flat surface on the rear side of the mirror. The technique for the alignment has successfully been used for the optical test of the concave ellipsoidal mirrors of the METIS coronagraph of the ESA Solar Orbiter mission. The presented method results to be advantageous in terms of precision and of time saving also when the mirrors are reflective coated and integrated into their mechanical hardware.

  5. Strengthening systems for communicable disease surveillance: creating a laboratory network in Rwanda

    Directory of Open Access Journals (Sweden)

    Ndihokubwayo Jean B

    2011-06-01

    Full Text Available Abstract Background The recent emergence of a novel strain of influenza virus with pandemic potential underscores the need for quality surveillance and laboratory services to contribute to the timely detection and confirmation of public health threats. To provide a framework for strengthening disease surveillance and response capacities in African countries, the World Health Organization Regional Headquarters for Africa (AFRO developed Integrated Disease Surveillance and Response (IDSR aimed at improving national surveillance and laboratory systems. IDSR emphasizes the linkage of information provided by public health laboratories to the selection of relevant, appropriate and effective public health responses to disease outbreaks. Methods We reviewed the development of Rwanda's National Reference Laboratory (NRL to understand essential structures involved in creating a national public health laboratory network. We reviewed documents describing the NRL's organization and record of test results, conducted site visits, and interviewed health staff in the Ministry of Health and in partner agencies. Findings were developed by organizing thematic categories and grouping examples within them. We purposefully sought to identify success factors as well as challenges inherent in developing a national public health laboratory system. Results Among the identified success factors were: a structured governing framework for public health surveillance; political commitment to promote leadership for stronger laboratory capacities in Rwanda; defined roles and responsibilities for each level; coordinated approaches between technical and funding partners; collaboration with external laboratories; and use of performance results in advocacy with national stakeholders. Major challenges involved general infrastructure, human resources, and budgetary constraints. Conclusions Rwanda's experience with collaborative partnerships contributed to creation of a functional

  6. DB4US: A Decision Support System for Laboratory Information Management.

    Science.gov (United States)

    Carmona-Cejudo, José M; Hortas, Maria Luisa; Baena-García, Manuel; Lana-Linati, Jorge; González, Carlos; Redondo, Maximino; Morales-Bueno, Rafael

    2012-11-14

    Until recently, laboratory automation has focused primarily on improving hardware. Future advances are concentrated on intelligent software since laboratories performing clinical diagnostic testing require improved information systems to address their data processing needs. In this paper, we propose DB4US, an application that automates information related to laboratory quality indicators information. Currently, there is a lack of ready-to-use management quality measures. This application addresses this deficiency through the extraction, consolidation, statistical analysis, and visualization of data related to the use of demographics, reagents, and turn-around times. The design and implementation issues, as well as the technologies used for the implementation of this system, are discussed in this paper. To develop a general methodology that integrates the computation of ready-to-use management quality measures and a dashboard to easily analyze the overall performance of a laboratory, as well as automatically detect anomalies or errors. The novelty of our approach lies in the application of integrated web-based dashboards as an information management system in hospital laboratories. We propose a new methodology for laboratory information management based on the extraction, consolidation, statistical analysis, and visualization of data related to demographics, reagents, and turn-around times, offering a dashboard-like user web interface to the laboratory manager. The methodology comprises a unified data warehouse that stores and consolidates multidimensional data from different data sources. The methodology is illustrated through the implementation and validation of DB4US, a novel web application based on this methodology that constructs an interface to obtain ready-to-use indicators, and offers the possibility to drill down from high-level metrics to more detailed summaries. The offered indicators are calculated beforehand so that they are ready to use when the user

  7. Design of a Clinical Information Management System to Support DNA Analysis Laboratory Operation

    OpenAIRE

    Dubay, Christopher J.; Zimmerman, David; Popovich, Bradley

    1995-01-01

    The LabDirector system has been developed at the Oregon Health Sciences University to support the operation of our clinical DNA analysis laboratory. Through an iterative design process which has spanned two years, we have produced a system that is both highly tailored to a clinical genetics production laboratory and flexible in its implementation, to support the rapid growth and change of protocols and methodologies in use in the field. The administrative aspects of the system are integrated ...

  8. Laboratory tests of overpressure differential systems for smoke protection of lobbies

    Science.gov (United States)

    Szałański, Paweł; Misiński, Jacek

    2017-11-01

    Paper presents the methodology of laboratory tests for ventilation overpressure differential systems for smoke protection of lobbies. Research area consists of two spaces representing the lobby and the area under fire equipped with proper ventilation installation. This allows testing of overpressure differential systems for smoke protection of lobbies. Moreover, piece of laboratory tests results for two selected smoke protection systems for lobbies are presented. First one is standard system with constantly opened transfer-damper mounted between lobby and area under fire. Second one - system with so called "electronic transfer" based on two dampers (supplying air to a lobby and to unprotected area alternatively). Opening and closing both dampers is electronically controlled. Changes of pressure difference between lobby and fire affected area during closing and opening doors between those spaces is presented. Conclusions, concerning the possibility of meeting the time period criteria of pressure difference stabilization required by standards, are presented and discussed for both systems.

  9. Microlens Array/Pinhole Mask to Suppress Starlight for Direct Exoplanet Detection

    Science.gov (United States)

    Zimmerman, Neil

    Direct imaging of habitable exoplanets is a key priority of NASA’s Astrophysics roadmap, “Enduring Quests, Daring Visions.” A coronagraphic starlight suppression system situated on a large space telescope offers a viable path to achieving this goal. This type of instrument is central to both the LUVOIR and HabEx mission concepts currently under study for the 2020 Decadal Survey. To directly image an Earth-like exoplanet, an instrument must be sensitive to objects ten billion times dimmer than their parent star. Advanced coronagraphs are designed to modify the shape of the star’s image so that it does not overwhelm the planet's light. Coronagraphs are complex to design and fabricate, tend to sacrifice a significant portion of the exoplanet light entering the telescope, and are highly sensitive to errors in the telescope. The proposed work reduces the demands on the coronagraph and its sensitivity to errors in the telescope, by changing how we implement optics in the spectrograph following the coronagraph. Through optical analysis and modeling, we have found that a microlens array with a specially arranged pattern of pinholes can suppress residual starlight in the scientific image after the coronagraph by more than two orders of magnitude. This added layer of starlight rejection could be used to relax the extreme observatory stability requirements for exo-Earth imaging applications, for example shifting the wavefront stability requirement from a few picometers to a few nanometers. Ultimately this translates to the instrument detecting and spectrally characterizing more exoplanets than a conventional coronagraph system. This microlens/pinhole concept is also compatible with starshadebased starlight suppression systems. The proposed microlens/pinhole device is entirely passive and augments the performance of existing coronagraph designs, while potentially reducing their cost and risk for mission implementation. Our APRA proposal would support a testbed

  10. Electronic laboratory system reduces errors in National Tuberculosis Program: a cluster randomized controlled trial.

    Science.gov (United States)

    Blaya, J A; Shin, S S; Yale, G; Suarez, C; Asencios, L; Contreras, C; Rodriguez, P; Kim, J; Cegielski, P; Fraser, H S F

    2010-08-01

    To evaluate the impact of the e-Chasqui laboratory information system in reducing reporting errors compared to the current paper system. Cluster randomized controlled trial in 76 health centers (HCs) between 2004 and 2008. Baseline data were collected every 4 months for 12 months. HCs were then randomly assigned to intervention (e-Chasqui) or control (paper). Further data were collected for the same months the following year. Comparisons were made between intervention and control HCs, and before and after the intervention. Intervention HCs had respectively 82% and 87% fewer errors in reporting results for drug susceptibility tests (2.1% vs. 11.9%, P = 0.001, OR 0.17, 95%CI 0.09-0.31) and cultures (2.0% vs. 15.1%, P Chasqui users sent on average three electronic error reports per week to the laboratories. e-Chasqui reduced the number of missing laboratory results at point-of-care health centers. Clinical users confirmed viewing electronic results not available on paper. Reporting errors to the laboratory using e-Chasqui promoted continuous quality improvement. The e-Chasqui laboratory information system is an important part of laboratory infrastructure improvements to support multidrug-resistant tuberculosis care in Peru.

  11. 'LABNOTE', a laboratory notebook system designed for academic genomics groups.

    Science.gov (United States)

    Imbert, M C; Nguyen, V K; Granjeaud, S; Nguyen, C; Jordan, B R

    1999-01-15

    We have developed a relational laboratory database system, adapted to the daily book-keeping needs of laboratories that must keep track of information acquired on hundreds or thousands of clones in an effective and user-friendly fashion. Data, whether final or related to experiments in progress, can be accessed in many different ways, e.g. by clone name, by gene, by experiment or through DNA sequence. Updating, import and export of results is made easier by specially developed tools. This system, in network version, serves several groups in our Institute and (over the Internet) elsewhere, and is instrumental in collaborative studies based on expression profiling. It can be used in many similar situations involving progressiveaccumulation of information on sets of clones or related objects.

  12. Quality systems in veterinary diagnostics laboratories.

    Science.gov (United States)

    de Branco, Freitas Maia L M

    2007-01-01

    Quality assurance of services provided by veterinary diagnostics laboratories is a fundamental element promoted by international animal health organizations to establish trust, confidence and transparency needed for the trade of animals and their products at domestic and international levels. It requires, among other things, trained personnel, consistent and rigorous methodology, choice of suitable methods as well as appropriate calibration and traceability procedures. An important part of laboratory quality management is addressed by ISO/IEC 17025, which aims to facilitate cooperation among laboratories and their associated parties by assuring the generation of credible and consistent information derived from analytical results. Currently, according to OIE recommendation, veterinary diagnostics laboratories are only subject to voluntary compliance with standard ISO/IEC 17025; however, it is proposed here that OIE reference laboratories and collaboration centres strongly consider its adoption.

  13. The Protein Information Management System (PiMS): a generic tool for any structural biology research laboratory

    International Nuclear Information System (INIS)

    Morris, Chris; Pajon, Anne; Griffiths, Susanne L.; Daniel, Ed; Savitsky, Marc; Lin, Bill; Diprose, Jonathan M.; Wilter da Silva, Alan; Pilicheva, Katya; Troshin, Peter; Niekerk, Johannes van; Isaacs, Neil; Naismith, James; Nave, Colin; Blake, Richard; Wilson, Keith S.; Stuart, David I.; Henrick, Kim; Esnouf, Robert M.

    2011-01-01

    The Protein Information Management System (PiMS) is described together with a discussion of how its features make it well suited to laboratories of all sizes. The techniques used in protein production and structural biology have been developing rapidly, but techniques for recording the laboratory information produced have not kept pace. One approach is the development of laboratory information-management systems (LIMS), which typically use a relational database schema to model and store results from a laboratory workflow. The underlying philosophy and implementation of the Protein Information Management System (PiMS), a LIMS development specifically targeted at the flexible and unpredictable workflows of protein-production research laboratories of all scales, is described. PiMS is a web-based Java application that uses either Postgres or Oracle as the underlying relational database-management system. PiMS is available under a free licence to all academic laboratories either for local installation or for use as a managed service

  14. The Protein Information Management System (PiMS): a generic tool for any structural biology research laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Morris, Chris [STFC Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Pajon, Anne [Wellcome Trust Genome Campus, Hinxton CB10 1SD (United Kingdom); Griffiths, Susanne L. [University of York, Heslington, York YO10 5DD (United Kingdom); Daniel, Ed [STFC Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Savitsky, Marc [University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Lin, Bill [STFC Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Diprose, Jonathan M. [University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Wilter da Silva, Alan [Wellcome Trust Genome Campus, Hinxton CB10 1SD (United Kingdom); Pilicheva, Katya [University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Troshin, Peter [STFC Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Niekerk, Johannes van [University of Dundee, Dundee DD1 5EH, Scotland (United Kingdom); Isaacs, Neil [University of Glasgow, Glasgow G12 8QQ, Scotland (United Kingdom); Naismith, James [University of St Andrews, St Andrews, Fife KY16 9ST, Scotland (United Kingdom); Nave, Colin; Blake, Richard [STFC Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Wilson, Keith S. [University of York, Heslington, York YO10 5DD (United Kingdom); Stuart, David I. [University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Henrick, Kim [Wellcome Trust Genome Campus, Hinxton CB10 1SD (United Kingdom); Esnouf, Robert M., E-mail: robert@strubi.ox.ac.uk [University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); STFC Daresbury Laboratory, Warrington WA4 4AD (United Kingdom)

    2011-04-01

    The Protein Information Management System (PiMS) is described together with a discussion of how its features make it well suited to laboratories of all sizes. The techniques used in protein production and structural biology have been developing rapidly, but techniques for recording the laboratory information produced have not kept pace. One approach is the development of laboratory information-management systems (LIMS), which typically use a relational database schema to model and store results from a laboratory workflow. The underlying philosophy and implementation of the Protein Information Management System (PiMS), a LIMS development specifically targeted at the flexible and unpredictable workflows of protein-production research laboratories of all scales, is described. PiMS is a web-based Java application that uses either Postgres or Oracle as the underlying relational database-management system. PiMS is available under a free licence to all academic laboratories either for local installation or for use as a managed service.

  15. A laboratory information management system for DNA barcoding workflows

    NARCIS (Netherlands)

    Vu, D.; Eberhardt, U.; Szöke, S.; Groenewald, M.; Robert, V.

    2012-01-01

    This paper presents a laboratory information management system for DNA sequences (LIMS) created and based on the needs of a DNA barcoding project at the CBS-KNAW Fungal Biodiversity Centre (Utrecht, the Netherlands). DNA barcoding is a global initiative for species identification through simple DNA

  16. MULTIMEDIA EDITOR OF VIRTUAL PHYSICAL LABORATORY IN DISTANCE LEARNING SYSTEM «KHERSON VIRTUAL UNIVERSITY»

    OpenAIRE

    Kravtsov H.; Baiev A.; Lemeshchuk O.; Orlov V.

    2017-01-01

    The questions of modeling the structure of the objects of the system, the design of software modules and technologies for creating the editor of a virtual laboratory are considered. The relevance of the study is due to the lack in existing distance learning systems of support for the creation and use of virtual laboratory work on disciplines of the natural-science profile. The subject of the study is a software module for creating and using virtual laboratory work in a distance learning syste...

  17. Laboratory information management system at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Leggett, W.; Barth, D.; Ibsen, T.; Newman, B.

    1994-03-01

    In January of 1994 an important new technology was brought on line to help in the monumental waste management and environmental restoration work at the Hanford Site. Cleanup at the Hanford Site depends on analytical chemistry information to identify contaminates, design and monitor cleanup processes, assure worker safety, evaluate progress, and prove completion. The new technology, a laboratory information management system (LIMS) called ``LABCORE,`` provides the latest systems to organize and communicate the analytical tasks: track work and samples; collect and process data, prepare reports, and store data in readily accessible electronic form.

  18. Laboratory information management system at the Hanford Site

    International Nuclear Information System (INIS)

    Leggett, W.; Barth, D.; Ibsen, T.; Newman, B.

    1994-03-01

    In January of 1994 an important new technology was brought on line to help in the monumental waste management and environmental restoration work at the Hanford Site. Cleanup at the Hanford Site depends on analytical chemistry information to identify contaminates, design and monitor cleanup processes, assure worker safety, evaluate progress, and prove completion. The new technology, a laboratory information management system (LIMS) called ''LABCORE,'' provides the latest systems to organize and communicate the analytical tasks: track work and samples; collect and process data, prepare reports, and store data in readily accessible electronic form

  19. Baobab Laboratory Information Management System: Development of an Open-Source Laboratory Information Management System for Biobanking.

    Science.gov (United States)

    Bendou, Hocine; Sizani, Lunga; Reid, Tim; Swanepoel, Carmen; Ademuyiwa, Toluwaleke; Merino-Martinez, Roxana; Meuller, Heimo; Abayomi, Akin; Christoffels, Alan

    2017-04-01

    A laboratory information management system (LIMS) is central to the informatics infrastructure that underlies biobanking activities. To date, a wide range of commercial and open-source LIMSs are available and the decision to opt for one LIMS over another is often influenced by the needs of the biobank clients and researchers, as well as available financial resources. The Baobab LIMS was developed by customizing the Bika LIMS software ( www.bikalims.org ) to meet the requirements of biobanking best practices. The need to implement biobank standard operation procedures as well as stimulate the use of standards for biobank data representation motivated the implementation of Baobab LIMS, an open-source LIMS for Biobanking. Baobab LIMS comprises modules for biospecimen kit assembly, shipping of biospecimen kits, storage management, analysis requests, reporting, and invoicing. The Baobab LIMS is based on the Plone web-content management framework. All the system requirements for Plone are applicable to Baobab LIMS, including the need for a server with at least 8 GB RAM and 120 GB hard disk space. Baobab LIMS is a server-client-based system, whereby the end user is able to access the system securely through the internet on a standard web browser, thereby eliminating the need for standalone installations on all machines.

  20. Model-based fuzzy control solutions for a laboratory Antilock Braking System

    DEFF Research Database (Denmark)

    Precup, Radu-Emil; Spataru, Sergiu; Rǎdac, Mircea-Bogdan

    2010-01-01

    This paper gives two original model-based fuzzy control solutions dedicated to the longitudinal slip control of Antilock Braking System laboratory equipment. The parallel distributed compensation leads to linear matrix inequalities which guarantee the global stability of the fuzzy control systems...

  1. Quality management systems for your in vitro fertilization clinic′s laboratory: Why bother?

    Directory of Open Access Journals (Sweden)

    Jan I Olofsson

    2013-01-01

    Full Text Available Several countries have in recent years introduced prescribed requirements for treatment and monitoring of outcomes, as well as a licensing or accreditation requirement for in vitro fertilization (IVF clinics and their laboratories. It is commonplace for Assisted Reproductive Technology (ART laboratories to be required to have a quality control system. However, more effective Total Quality Management systems are now being implemented by an increasing number of ART clinics. In India, it is now a requirement to have a quality management system in order to be accredited and to help meet customer demand for improved delivery of ART services. This review contains the proceedings a quality management session at the Indian Fertility Experts Meet (IFEM 2010 and focuses on the creation of a patient-oriented best-in-class IVF laboratory.

  2. SSCL magnet systems quality program implementation for laboratory and industry

    International Nuclear Information System (INIS)

    Warner, D.G.; Bever, D.L.

    1992-01-01

    The development and delivery of reliable and producible magnets for the Superconducting Super Collider Laboratory (SSCL) require the teamwork of a large and diverse workforce composed of personnel with backgrounds in laboratory research, defense, and energy. The SSCL Magnet Quality Program is being implemented with focus on three definitive objectives: (1) communication of requirements, (2) teamwork, and (3) verification. Examination of the SSCL Magnet Systems Division's (MSD) current and planned approach to implementation of the SSCL Magnet Quality Program utilizing these objectives is discussed

  3. An open microcomputer-based laboratory system for perceptional experimentality

    Science.gov (United States)

    Hamalainen, Ari

    A computer, equipped with hardware for acquiring data about the properties of a physical system and programs for processing that data, is a powerful tool for physics research and instruction. There is strong evidence that utilizing microcomputer-based laboratories (MBLs) in instruction can lead to significantly improved learning. The perceptional approach is a method for physics instruction, developed at the Department of Physics, University of Helsinki. Its main arguments are that the meanings of the concepts must be learnt before their formal definitions and adoption, and that learning and research are fundamentally similar concept formation processes. Applying the perceptional approach requires the ability to perform quantitative experiments, either as students' laboratory exercises or as lecture demonstrations, and to process their results. MBL tools are essential for this. In student's laboratory exercises, they reduce the routine work and leave more time for the actual learning. In lecture demonstrations, they make it possible to perform the experiments in the tight time limits. At a previous stage of the research, a set of requirements was found that the perceptional approach places on MBL systems. The primary goal of this thesis is to build a prototype of a MBL system that would fulfil these requirements. A secondary goal is to describe technical aspects of a computerized measurement system from the standpoint of educational use. The prototype was built using mostly commercial sensors and data acquisition units. The software was written with a visual programming language, designed for instrumentation applications. The prototype system was developed and tested with a set of demonstrations of various topics in the Finnish high school physics curriculum, which were implemented according to the perceptional approach. Limited usability tests were also performed. The prototype was improved, until it could perform the test demonstrations. It was found to meet the

  4. Systems integration for the Kennedy Space Center (KSC) Robotics Applications Development Laboratory (RADL)

    Science.gov (United States)

    Davis, V. Leon; Nordeen, Ross

    1988-01-01

    A laboratory for developing robotics technology for hazardous and repetitive Shuttle and payload processing activities is discussed. An overview of the computer hardware and software responsible for integrating the laboratory systems is given. The center's anthropomorphic robot is placed on a track allowing it to be moved to different stations. Various aspects of the laboratory equipment are described, including industrial robot arm control, smart systems integration, the supervisory computer, programmable process controller, real-time tracking controller, image processing hardware, and control display graphics. Topics of research include: automated loading and unloading of hypergolics for space vehicles and payloads; the use of mobile robotics for security, fire fighting, and hazardous spill operations; nondestructive testing for SRB joint and seal verification; Shuttle Orbiter radiator damage inspection; and Orbiter contour measurements. The possibility of expanding the laboratory in the future is examined.

  5. Developing an Affordable and Portable Control Systems Laboratory Kit with a Raspberry Pi

    Directory of Open Access Journals (Sweden)

    Rebecca M. Reck

    2016-07-01

    Full Text Available Instructional laboratories are common in engineering programs. Instructional laboratories should evolve with technology and support the changes in higher education, like the increased popularity of online courses. In this study, an affordable and portable laboratory kit was designed to replace the expensive on-campus equipment for two control systems courses. The complete kit costs under $135 and weighs under 0.68 kilograms. It is comprised of off-the-shelf components (e.g., Raspberry Pi, DC motor and 3D printed parts. The kit has two different configurations. The first (base configuration is a DC motor system with a position and speed sensor. The second configuration adds a Furuta inverted pendulum attachment with another position sensor. These configurations replicate most of the student learning outcomes for the two control systems courses for which they were designed.

  6. Factors Influencing Laboratory Information System Effectiveness Through Strategic Planning in Shiraz Teaching Hospitals.

    Science.gov (United States)

    Bahador, Fateme; Sharifian, Roxana; Farhadi, Payam; Jafari, Abdosaleh; Nematolahi, Mohtram; Shokrpour, Nasrin

    This study aimed to develop and test a research model that examined 7effective factors on the effectiveness of laboratory information system (LIS) through strategic planning. This research was carried out on total laboratory staff, information technology staff, and laboratory managers in Shiraz (a city in the south of Iran) teaching hospitals by structural equation modeling approach in 2015. The results revealed that there was no significant positive relationship between decisions based on cost-benefit analysis and LIS functionality with LIS effectiveness, but there was a significant positive relationship between other factors and LIS effectiveness. As expected, high levels of strategic information system planning result in increasing LIS effectiveness. The results also showed that the relationship between cost-benefit analysis, LIS functionality, end-user involvement, and information technology-business alignment with strategic information system planning was significant and positive.

  7. Source Code Analysis Laboratory (SCALe) for Energy Delivery Systems

    Science.gov (United States)

    2010-12-01

    technical competence for the type of tests and calibrations SCALe undertakes. Testing and calibration laboratories that comply with ISO / IEC 17025 ...and exec t [ ISO / IEC 2005]. f a software system indicates that the SCALe analysis di by a CERT secure coding standard. Successful conforma antees that...to be more secure than non- systems. However, no study has yet been performed to p t ssment in accordance with ISO / IEC 17000: “a demonstr g to a

  8. An overview of Quality Management System implementation in a research laboratory

    Science.gov (United States)

    Molinéro-Demilly, Valérie; Charki, Abdérafi; Jeoffrion, Christine; Lyonnet, Barbara; O'Brien, Steve; Martin, Luc

    2018-02-01

    The aim of this paper is to show the advantages of implementing a Quality Management System (QMS) in a research laboratory in order to improve the management of risks specific to research programmes and to increase the reliability of results. This paper also presents experience gained from feedback following the implementation of the Quality process in a research laboratory at INRA, the French National Institute for Agronomic Research and details the various challenges encountered and solutions proposed to help achieve smoother adoption of a QMS process. The 7Ms (Management, Measurement, Manpower, Methods, Materials, Machinery, Mother-nature) methodology based on the Ishikawa `Fishbone' diagram is used to show the effectiveness of the actions considered by a QMS, which involve both the organization and the activities of the laboratory. Practical examples illustrate the benefits and improvements observed in the laboratory.

  9. Results of tritium tests performed on Sandia Laboratories decontamination system

    International Nuclear Information System (INIS)

    Gildea, P.D.; Wall, W.R.; Gede, V.P.

    1978-05-01

    The Tritium Research Laboratory (TRL), a facility for performing experiments using gram amounts of tritium, became operational on October 1, 1977. As secondary containment, the TRL employs sealed glove boxes connected on demand to two central decontamination systems, the Gas Purification System and the Vacuum Effluent Recovery System. Performance tests on these systems show the tritium removal systems can achieve concentration reduction factors (ratio of inlet to exhaust concentrations) much in excess of 1000 per pass at inlet concentrations of 1 part per million or less for both tritium and tritiated methane

  10. The Protein Information Management System (PiMS): a generic tool for any structural biology research laboratory.

    Science.gov (United States)

    Morris, Chris; Pajon, Anne; Griffiths, Susanne L; Daniel, Ed; Savitsky, Marc; Lin, Bill; Diprose, Jonathan M; da Silva, Alan Wilter; Pilicheva, Katya; Troshin, Peter; van Niekerk, Johannes; Isaacs, Neil; Naismith, James; Nave, Colin; Blake, Richard; Wilson, Keith S; Stuart, David I; Henrick, Kim; Esnouf, Robert M

    2011-04-01

    The techniques used in protein production and structural biology have been developing rapidly, but techniques for recording the laboratory information produced have not kept pace. One approach is the development of laboratory information-management systems (LIMS), which typically use a relational database schema to model and store results from a laboratory workflow. The underlying philosophy and implementation of the Protein Information Management System (PiMS), a LIMS development specifically targeted at the flexible and unpredictable workflows of protein-production research laboratories of all scales, is described. PiMS is a web-based Java application that uses either Postgres or Oracle as the underlying relational database-management system. PiMS is available under a free licence to all academic laboratories either for local installation or for use as a managed service.

  11. Retrofitting Combined Space and Water Heating Systems: Laboratory Tests

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbauer, B.; Bohac, D.; Huelman, P.; Olson, R.; Hewitt, M.

    2012-10-01

    Better insulated and tighter homes can often use a single heating plant for both space and domestic water heating. These systems, called dual integrated appliances (DIA) or combination systems, can operate at high efficiency and eliminate combustion safety issues associated by using a condensing, sealed combustion heating plant. Funds were received to install 400 DIAs in Minnesota low-income homes. The NorthernSTAR DIA laboratory was created to identify proper system components, designs, operating parameters, and installation procedures to assure high efficiency of field installed systems. Tests verified that heating loads up to 57,000 Btu/hr can be achieved with acceptable return water temperatures and supply air temperatures.

  12. Retrofitting Combined Space and Water Heating Systems. Laboratory Tests

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbauer, B. [NorthernStar Building America Partnership, St. Paul, MN (United States); Bohac, D. [NorthernStar Building America Partnership, St. Paul, MN (United States); Huelman, P. [NorthernStar Building America Partnership, St. Paul, MN (United States); Olsen, R. [NorthernStar Building America Partnership, St. Paul, MN (United States); Hewett, M. [NorthernStar Building America Partnership, St. Paul, MN (United States)

    2012-10-01

    Better insulated and tighter homes can often use a single heating plant for both space and domestic water heating. These systems, called dual integrated appliances (DIA) or combination systems, can operate at high efficiency and eliminate combustion safety issues associated by using a condensing, sealed combustion heating plant. Funds were received to install 400 DIAs in Minnesota low-income homes. The NorthernSTAR DIA laboratory was created to identify proper system components, designs, operating parameters, and installation procedures to assure high efficiency of field installed systems. Tests verified that heating loads up to 57,000 Btu/hr can be achieved with acceptable return water temperatures and supply air temperatures.

  13. Computerized plutonium laboratory-stack monitoring system

    International Nuclear Information System (INIS)

    Stafford, R.G.; DeVore, R.K.

    1977-01-01

    The Los Alamos Scientific Laboratory has recently designed and constructed a Plutonium Research and Development Facility to meet design criteria imposed by the United States Energy Research and Development Administration. A primary objective of the design criteria is to assure environmental protection and to reliably monitor plutonium effluent via the ventilation exhaust systems. A state-of-the-art facility exhaust air monitoring system is described which establishes near ideal conditions for evaluating plutonium activity in the stack effluent. Total and static pressure sensing manifolds are incorporated to measure average velocity and integrated total discharge air volume. These data are logged at a computer which receives instrument data through a multiplex scanning system. A multipoint isokinetic sampling assembly with associated instrumentation is described. Continuous air monitors have been designed to sample from the isokinetic sampling assembly and transmit both instantaneous and integrated stack effluent concentration data to the computer and various cathode ray tube displays. The continuous air monitors also serve as room air monitors in the plutonium facility with the primary objective of timely evacuation of personnel if an above tolerance airborne plutonium concentration is detected. Several continuous air monitors are incorporated in the ventilation system to assist in identification of release problem areas

  14. A comparative study of the systems for neutronics calculations used in Los Alamos Scientific Laboratory (LASL) and Argonne National Laboratory (ANL)

    International Nuclear Information System (INIS)

    Amorim, E.S. do; D'Oliveira, A.B.; Oliveira, E.C. de.

    1980-11-01

    A comparative study of the systems for neutronics calculations used in Los Alamos Scientific Laboratory (LASL) and Argonne National Laboratory (ANL) has been performed using benchmark results available in the literature, in order to analyse tghe convenience of using the respective codes MINX/NJOY and ETOE/MC 2 -2 for performing neutronics calculations in course at the Divisao de Estudos Avancados. (Author) [pt

  15. DEMONSTRATION BULLETIN: IN SITU ELECTROKINETIC EXTRACTION SYSTEM - SANDIA NATIONAL LABORATORIES

    Science.gov (United States)

    Sandia National Laboratories (SNL) has developed an in situ soil remediation system that uses electrokinetic principles to remediate hexavalent chromium-contaminated unsaturated or partially saturated soils. The technology involves the in situ application of direct current to the...

  16. Mars Science Laboratory Rover System Thermal Test

    Science.gov (United States)

    Novak, Keith S.; Kempenaar, Joshua E.; Liu, Yuanming; Bhandari, Pradeep; Dudik, Brenda A.

    2012-01-01

    On November 26, 2011, NASA launched a large (900 kg) rover as part of the Mars Science Laboratory (MSL) mission to Mars. The MSL rover is scheduled to land on Mars on August 5, 2012. Prior to launch, the Rover was successfully operated in simulated mission extreme environments during a 16-day long Rover System Thermal Test (STT). This paper describes the MSL Rover STT, test planning, test execution, test results, thermal model correlation and flight predictions. The rover was tested in the JPL 25-Foot Diameter Space Simulator Facility at the Jet Propulsion Laboratory (JPL). The Rover operated in simulated Cruise (vacuum) and Mars Surface environments (8 Torr nitrogen gas) with mission extreme hot and cold boundary conditions. A Xenon lamp solar simulator was used to impose simulated solar loads on the rover during a bounding hot case and during a simulated Mars diurnal test case. All thermal hardware was exercised and performed nominally. The Rover Heat Rejection System, a liquid-phase fluid loop used to transport heat in and out of the electronics boxes inside the rover chassis, performed better than predicted. Steady state and transient data were collected to allow correlation of analytical thermal models. These thermal models were subsequently used to predict rover thermal performance for the MSL Gale Crater landing site. Models predict that critical hardware temperatures will be maintained within allowable flight limits over the entire 669 Sol surface mission.

  17. QUALITY MANAGEMENT SYSTEM IN CLINICAL LABORATORIES ACCORDING TO THE ISO 15189:2007 STANDARD - EVALUATION OF THE BENEFITS OF IMPLEMENTATION IN AN ASSISTED REPRODUCTION LABORATORY

    Directory of Open Access Journals (Sweden)

    A.D. Sialakouma

    2011-03-01

    Full Text Available Biomedical science is a sensitive discipline and presents unique challenges due to its social character, continuous development and competitiveness. The issue of quality management systems and accreditation is gaining increasing interest in this sector. All over Europe, Health Services Units have started to introduce quality management systems and harmonization of criteria for accreditation is of increasing importance. Moreover, clinical laboratories, like the Assisted Reproduction laboratories and biochemical laboratories are required to apply a Quality Management System in order to ensure their correct, scientific and effective operation. Ultimately, it is a moral obligation for every health care organisation to supply the best possible care for the patient. The specific features and the diversity of clinical laboratories led to the introduction (2003 and, recently to the revision (2007 of the international standard ISO 15189, which is the first international standard developed specifically to address the requirements for accreditation of this type of laboratory. The basic principles for the quality assurance in the clinical laboratories are: x Complete and unambiguous standardized operating procedures. x Complete and unambiguous directives of operation. x Obligatory detailed written documentation, i.e., how each action is done, who will do it, where will this action take place and when. x Suitable scheduling of calibration/control/preventive maintenance of laboratory equipment and recording of each activity. x Distribution of responsibilities among the staff and continuous education and briefing according to current scientific data. x Complete and informed record file keeping. x Continuous improvement which is monitored with the adoption of quantified indicators. x Internal and external audit of all activities. x Troubleshooting. All these principles should be supported by the Management in order that the necessary adaptations should be made

  18. Strengthening Laboratory Capacity for Early Warning Alert and Response System (EWARS) in Indonesia

    OpenAIRE

    Kandel, Nirmal; Hapsari, Ratna Budi; Riana, Dyah Armi; Setiawaty, Vivi; Larasati, Wita; Wulandari, Endang; Purwanto, Edy

    2017-01-01

    Background: Establishment of Early Warning Alert and Response System (EWARS) in Indonesia was initiated since 2009 in few selected provinces and government was planning to roll out in other provinces. Before initiating this roll out the assessment of performance of EWARS in 2012 was conducted. The aim of the assessment is to strengthen laboratory for supporting to EWARS for alerts testing. Methods: Laboratory capacity mapping tool and laboratory algorithm for twenty two priority diseases of ...

  19. Developing an Affordable and Portable Control Systems Laboratory Kit with a Raspberry Pi

    OpenAIRE

    Rebecca M. Reck; R. S. Sreenivas

    2016-01-01

    Instructional laboratories are common in engineering programs. Instructional laboratories should evolve with technology and support the changes in higher education, like the increased popularity of online courses. In this study, an affordable and portable laboratory kit was designed to replace the expensive on-campus equipment for two control systems courses. The complete kit costs under $135 and weighs under 0.68 kilograms. It is comprised of off-the-shelf components (e.g., Raspberry Pi, DC ...

  20. Leaf LIMS: A Flexible Laboratory Information Management System with a Synthetic Biology Focus.

    Science.gov (United States)

    Craig, Thomas; Holland, Richard; D'Amore, Rosalinda; Johnson, James R; McCue, Hannah V; West, Anthony; Zulkower, Valentin; Tekotte, Hille; Cai, Yizhi; Swan, Daniel; Davey, Robert P; Hertz-Fowler, Christiane; Hall, Anthony; Caddick, Mark

    2017-12-15

    This paper presents Leaf LIMS, a flexible laboratory information management system (LIMS) designed to address the complexity of synthetic biology workflows. At the project's inception there was a lack of a LIMS designed specifically to address synthetic biology processes, with most systems focused on either next generation sequencing or biobanks and clinical sample handling. Leaf LIMS implements integrated project, item, and laboratory stock tracking, offering complete sample and construct genealogy, materials and lot tracking, and modular assay data capture. Hence, it enables highly configurable task-based workflows and supports data capture from project inception to completion. As such, in addition to it supporting synthetic biology it is ideal for many laboratory environments with multiple projects and users. The system is deployed as a web application through Docker and is provided under a permissive MIT license. It is freely available for download at https://leaflims.github.io .

  1. Treatment systems for liquid wastes generated in chemical analysis laboratories

    International Nuclear Information System (INIS)

    Linda Berrio; Oscar Beltran; Edison Agudelo; Santiago Cardona

    2012-01-01

    Nowadays, handling of liquid wastes from chemical analysis laboratories is posing problems to different public and private organizations because of its requirements of an integrated management. This article reviews various treatment technologies and its removal efficiencies in order to establish criteria for selecting the system and the appropriate variables to achieve research objectives as well as environmental sustainability. Review begins with a description of the problem and continues with the study of treatments for laboratory wastes. These technologies are segregated into physicochemical and biological treatments that comprise a variety of processes, some of which are considered in this review.

  2. The Binary System Laboratory Activities Based on Students Mental Model

    Science.gov (United States)

    Albaiti, A.; Liliasari, S.; Sumarna, O.; Martoprawiro, M. A.

    2017-09-01

    Generic science skills (GSS) are required to develop student conception in learning binary system. The aim of this research was to know the improvement of students GSS through the binary system labotoratory activities based on their mental model using hypothetical-deductive learning cycle. It was a mixed methods embedded experimental model research design. This research involved 15 students of a university in Papua, Indonesia. Essay test of 7 items was used to analyze the improvement of students GSS. Each items was designed to interconnect macroscopic, sub-microscopic and symbolic levels. Students worksheet was used to explore students mental model during investigation in laboratory. The increase of students GSS could be seen in their N-Gain of each GSS indicators. The results were then analyzed descriptively. Students mental model and GSS have been improved from this study. They were interconnect macroscopic and symbolic levels to explain binary systems phenomena. Furthermore, they reconstructed their mental model with interconnecting the three levels of representation in Physical Chemistry. It necessary to integrate the Physical Chemistry Laboratory into a Physical Chemistry course for effectiveness and efficiency.

  3. A laboratory based x-ray reflectivity system

    International Nuclear Information System (INIS)

    Holt, S.A.; Creagh, D.C.; Jamie, I.M.; Dowling, T.L.; Brown, A.S.

    1996-01-01

    Full text: X-ray Reflectivity (XRR) over the last decade has proved to be a versatile and powerful technique by which the thickness of thin films, surface roughness and interface roughness can be determined. The systems amenable to study range from organic monolayers (liquid or solid substrates) to layered metal or semiconductor systems. Access to XRR has been limited by the requirement for synchrotron radiation sources. The development of XRR systems for the laboratory environment was pioneered by Weiss. An X-ray Reflectometer has been constructed by the Department of Physics (Australian Defence Force Academy) and the Research School of Chemistry (Australian National University). The general principles of the design were similar to those described by Weiss. The reflectometer is currently in the early stages of commissioning, with encouraging results thus far. The diffraction pattern of Mobil Catalytic Material (MCM), consisting primarily of SiO 2 . The poster will describe the reflectometer, its operation and present a summary of the most important results obtained to date

  4. Downtime procedures for the 21st century: using a fully integrated health record for uninterrupted electronic reporting of laboratory results during laboratory information system downtimes.

    Science.gov (United States)

    Oral, Bulent; Cullen, Regina M; Diaz, Danny L; Hod, Eldad A; Kratz, Alexander

    2015-01-01

    Downtimes of the laboratory information system (LIS) or its interface to the electronic medical record (EMR) disrupt the reporting of laboratory results. Traditionally, laboratories have relied on paper-based or phone-based reporting methods during these events. We developed a novel downtime procedure that combines advance placement of orders by clinicians for planned downtimes, the printing of laboratory results from instruments, and scanning of the instrument printouts into our EMR. The new procedure allows the analysis of samples from planned phlebotomies with no delays, even during LIS downtimes. It also enables the electronic reporting of all clinically urgent results during downtimes, including intensive care and emergency department samples, thereby largely avoiding paper- and phone-based communication of laboratory results. With the capabilities of EMRs and LISs rapidly evolving, information technology (IT) teams, laboratories, and clinicians need to collaborate closely, review their systems' capabilities, and design innovative ways to apply all available IT functions to optimize patient care during downtimes. Copyright© by the American Society for Clinical Pathology.

  5. Assessment of laboratory logistics management information system practice for HIV/AIDS and tuberculosis laboratory commodities in selected public health facilities in Addis Ababa, Ethiopia

    OpenAIRE

    Desale, Adino; Taye, Bineyam; Belay, Getachew; Nigatu, Alemayehu

    2013-01-01

    Introduction Logistics management information system for health commodities remained poorly implemented in most of developing countries. To assess the status of laboratory logistics management information system for HIV/AIDS and tuberculosis laboratory commodities in public health facilities in Addis Ababa. Methods A cross-sectional descriptive study was conducted from September 2010-January 2011 at selected public health facilities. A stratified random sampling method was used to include a t...

  6. The laboratory health system and its response to the Ebola virus disease outbreak in Liberia

    Directory of Open Access Journals (Sweden)

    Stephen B. Kennedy

    2016-10-01

    Full Text Available The laboratory system in Liberia has generally been fragmented and uncoordinatedAccordingly, the country’s Ministry of Health established the National Reference Laboratoryto strengthen and sustain laboratory services. However, diagnostic testing services were oftenlimited to clinical tests performed in health facilities, with the functionality of the NationaReference Laboratory restricted to performing testing services for a limited number ofepidemic-prone diseases. The lack of testing capacity in-country for Lassa fever and otherhaemorrhagic fevers affected the response of the country’s health system during the onset ofthe Ebola virus disease (EVD outbreak. Based on the experiences of the EVD outbreak, effortswere initiated to strengthen the laboratory system and infrastructure, enhance human resourcecapacity, and invest in diagnostic services and public health surveillance to inform admittancetreatment, and discharge decisions. In this article, we briefly describe the pre-EVD laboratorycapability in Liberia, and extensively explore the post-EVD strengthening initiatives to enhancecapacity, mobilise resources and coordinate disaster response with international partners torebuild the laboratory infrastructure in the country. Now that the EVD outbreak has endedadditional initiatives are needed to revise the laboratory strategic and operational plan forpost-EVD relevance, promote continual human resource capacity, institute accreditation andvalidation programmes, and coordinate the investment strategy to strengthen and sustain thepreparedness of the laboratory sector to mitigate future emerging and re-emerging infectiousdiseases.

  7. Combustion Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Combustion Research Laboratory facilitates the development of new combustion systems or improves the operation of existing systems to meet the Army's mission for...

  8. [Building and implementation of management system in laboratories of the National Institute of Hygiene].

    Science.gov (United States)

    Rozbicka, Beata; Brulińska-Ostrowska, Elzbieta

    2008-01-01

    The rules of good laboratory practice have always been observed in the laboratories of National Institute of Hygiene (NIH) and the reliability of the results has been carefully cared after when performing tests for clients. In 2003 the laboratories performing analyses related to food safety were designated as the national reference laboratories. This, added to the necessity of compliance with work standards and requirements of EU legislation and to the need of confirmation of competence by an independent organisation, led to a decision to seek accreditation of Polish Centre of Accreditation (PCA). The following stages of building and implementation of management system were presented: training, modifications of Institute's organisational structure, elaboration of management system's documentation, renovation and refurbishment of laboratory facilities, implementation of measuring and test equipment's supervision, internal audits and management review. The importance of earlier experiences and achievements with regard to validation of analytical methods and guarding of the quality of the results through organisation and participation in proficiency tests was highlighted. Current status of accreditation of testing procedures used in NIH laboratories that perform analyses in the field of chemistry, microbiology, radiobiology and medical diagnostic tests was presented.

  9. Role of a quality management system in improving patient safety - laboratory aspects.

    Science.gov (United States)

    Allen, Lynn C

    2013-09-01

    The aim of this study is to describe how implementation of a quality management system (QMS) based on ISO 15189 enhances patient safety. A literature review showed that several European hospitals implemented a QMS based on ISO 9001 and assessed the impact on patient safety. An Internet search showed that problems affecting patient safety have occurred in a number of laboratories across Canada. The requirements of a QMS based on ISO 15189 are outlined, and the impact of the implementation of each requirement on patient safety is summarized. The Quality Management Program - Laboratory Services in Ontario is briefly described, and the experience of Ontario laboratories with Ontario Laboratory Accreditation, based on ISO 15189, is outlined. Several hospitals that implemented ISO 9001 reported either a positive impact or no impact on patient safety. Patient safety problems in Canadian laboratories are described. Implementation of each requirement of the QMS can be seen to have a positive effect on patient safety. Average laboratory conformance on Ontario Laboratory Accreditation is very high, and laboratories must address and resolve any nonconformities. Other standards, practices, and quality requirements may also contribute to patient safety. Implementation of a QMS based on ISO 15189 provides a solid foundation for quality in the laboratory and enhances patient safety. It helps to prevent patient safety issues; when such issues do occur, effective processes are in place for investigation and resolution. Patient safety problems in Canadian laboratories might have been prevented had effective QMSs been in place. Ontario Laboratory Accreditation has had a positive impact on quality in Ontario laboratories. Copyright © 2013 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  10. Laboratory tests in support of the MSRE reactive gas removal system

    International Nuclear Information System (INIS)

    Rudolph, J.C.; Del Cul, G.D.; Caja, J.; Toth, L.M.; Williams, D.F.; Thomas, K.S.; Clark, D.E.

    1997-07-01

    The Molten Salt Reactor Experiment (MSRE) at Oak Ridge National Laboratory has been shut down since December 1969, at which time the molten salt mixture of LiF-BeF 2 -ZrF 4 - 233 UF 4 (64.5-30.3-5.0-0.13 mol%) was transferred to fuel salt drain tanks for storage. In the late 1980s, increased radiation in one of the gas lines from the drain tank was attributed to 233 UF 6 . In 1994 two gas samples were withdraw (from a gas line in the Vent House connecting to the drain tanks) and analyzed. Surprisingly, 350 mm Hg of F 2 , 70 mm Hg of UF 6 , and smaller amounts of other gases were found in both of the samples. To remote this gas from above the drain tanks and all of the associated piping, the reactive gas removal system (RGRS) was designed. This report details the laboratory testing of the RGRS, using natural uranium, prior to its implementation at the MSRE facility. The testing was performed to ensure that the equipment functioned properly and was sufficient to perform the task while minimizing exposure to personnel. In addition, the laboratory work provided the research and development effort necessary to maximize the performance of the system. Throughout this work technicians and staff who were to be involved in RGRS operation at the MSRE site worked directly with the research staff in completing the laboratory testing phase. Consequently, at the end of the laboratory work, the personnel who were to be involved in the actual operations had acquired all of the training and experience necessary to continue with the process of reactive gas removal

  11. Developing Learning Tool of Control System Engineering Using Matrix Laboratory Software Oriented on Industrial Needs

    Science.gov (United States)

    Isnur Haryudo, Subuh; Imam Agung, Achmad; Firmansyah, Rifqi

    2018-04-01

    The purpose of this research is to develop learning media of control technique using Matrix Laboratory software with industry requirement approach. Learning media serves as a tool for creating a better and effective teaching and learning situation because it can accelerate the learning process in order to enhance the quality of learning. Control Techniques using Matrix Laboratory software can enlarge the interest and attention of students, with real experience and can grow independent attitude. This research design refers to the use of research and development (R & D) methods that have been modified by multi-disciplinary team-based researchers. This research used Computer based learning method consisting of computer and Matrix Laboratory software which was integrated with props. Matrix Laboratory has the ability to visualize the theory and analysis of the Control System which is an integration of computing, visualization and programming which is easy to use. The result of this instructional media development is to use mathematical equations using Matrix Laboratory software on control system application with DC motor plant and PID (Proportional-Integral-Derivative). Considering that manufacturing in the field of Distributed Control systems (DCSs), Programmable Controllers (PLCs), and Microcontrollers (MCUs) use PID systems in production processes are widely used in industry.

  12. CNEA's (Comision Nacional de Energia Atomica) experience in the preparation of a national system for laboratory accreditation

    International Nuclear Information System (INIS)

    Piacquadio, N.H.; Palacios, T.A.; Casa, V.A.; Koll, J.H.

    1993-01-01

    Within the regional markets, as it is the case of MERCOSUR , the laboratories which are suppliers of test and calibration results, are mutually recognized through the National Accreditation Systems. In Argentina there is a project to create a Center for the Accreditation of Test Laboratories. CNEA, which is involved in the execution of large projects and has adopted quality assurance criteria for a long time, requires for internal and external laboratories to be qualified. At the beginning of this year, a Committee for the Qualification of Laboratories was created in the Research and Development and Fuel Cycle Areas. Its objective was planning, management of documents, coordination, evaluation and quantification of laboratories, according to national IRAM and international ISO standards. This paper analyzes the organization of the system and the methods to evaluate and qualify laboratories as a process of growing up leading to the future National Accreditation System. (author). 3 figs

  13. Progress in Harmonizing Tiered HIV Laboratory Systems: Challenges and Opportunities in 8 African Countries.

    Science.gov (United States)

    Williams, Jason; Umaru, Farouk; Edgil, Dianna; Kuritsky, Joel

    2016-09-28

    In 2014, the Joint United Nations Programme on HIV/AIDS released its 90-90-90 targets, which make laboratory diagnostics a cornerstone for measuring efforts toward the epidemic control of HIV. A data-driven laboratory harmonization and standardization approach is one way to create efficiencies and ensure optimal laboratory procurements. Following the 2008 "Maputo Declaration on Strengthening of Laboratory Systems"-a call for government leadership in harmonizing tiered laboratory networks and standardizing testing services-several national ministries of health requested that the United States Government and in-country partners help implement the recommendations by facilitating laboratory harmonization and standardization workshops, with a primary focus on improving HIV laboratory service delivery. Between 2007 and 2015, harmonization and standardization workshops were held in 8 African countries. This article reviews progress in the harmonization of laboratory systems in these 8 countries. We examined agreed-upon instrument lists established at the workshops and compared them against instrument data from laboratory quantification exercises over time. We used this measure as an indicator of adherence to national procurement policies. We found high levels of diversity across laboratories' diagnostic instruments, equipment, and services. This diversity contributes to different levels of compliance with expected service delivery standards. We believe the following challenges to be the most important to address: (1) lack of adherence to procurement policies, (2) absence or limited influence of a coordinating body to fully implement harmonization proposals, and (3) misalignment of laboratory policies with minimum packages of care and with national HIV care and treatment guidelines. Overall, the effort to implement the recommendations from the Maputo Declaration has had mixed success and is a work in progress. Program managers should continue efforts to advance the

  14. Importance of implementing an analytical quality control system in a core laboratory.

    Science.gov (United States)

    Marques-Garcia, F; Garcia-Codesal, M F; Caro-Narros, M R; Contreras-SanFeliciano, T

    2015-01-01

    The aim of the clinical laboratory is to provide useful information for screening, diagnosis and monitoring of disease. The laboratory should ensure the quality of extra-analytical and analytical process, based on set criteria. To do this, it develops and implements a system of internal quality control, designed to detect errors, and compare its data with other laboratories, through external quality control. In this way it has a tool to detect the fulfillment of the objectives set, and in case of errors, allowing corrective actions to be made, and ensure the reliability of the results. This article sets out to describe the design and implementation of an internal quality control protocol, as well as its periodical assessment intervals (6 months) to determine compliance with pre-determined specifications (Stockholm Consensus(1)). A total of 40 biochemical and 15 immunochemical methods were evaluated using three different control materials. Next, a standard operation procedure was planned to develop a system of internal quality control that included calculating the error of the analytical process, setting quality specifications, and verifying compliance. The quality control data were then statistically depicted as means, standard deviations, and coefficients of variation, as well as systematic, random, and total errors. The quality specifications were then fixed and the operational rules to apply in the analytical process were calculated. Finally, our data were compared with those of other laboratories through an external quality assurance program. The development of an analytical quality control system is a highly structured process. This should be designed to detect errors that compromise the stability of the analytical process. The laboratory should review its quality indicators, systematic, random and total error at regular intervals, in order to ensure that they are meeting pre-determined specifications, and if not, apply the appropriate corrective actions

  15. Critical role of developing national strategic plans as a guide to strengthen laboratory health systems in resource-poor settings.

    Science.gov (United States)

    Nkengasong, John N; Mesele, Tsehaynesh; Orloff, Sherry; Kebede, Yenew; Fonjungo, Peter N; Timperi, Ralph; Birx, Deborah

    2009-06-01

    Medical laboratory services are an essential, yet often neglected, component of health systems in developing countries. Their central role in public health, disease control and surveillance, and patient management is often poorly recognized by governments and donors. However, medical laboratory services in developing countries can be strengthened by leveraging funding from other sources of HIV/AIDS prevention, care, surveillance, and treatment programs. Strengthening these services will require coordinated efforts by national governments and partners and can be achieved by establishing and implementing national laboratory strategic plans and policies that integrate laboratory systems to combat major infectious diseases. These plans should take into account policy, legal, and regulatory frameworks; the administrative and technical management structure of the laboratories; human resources and retention strategies; laboratory quality management systems; monitoring and evaluation systems; procurement and maintenance of equipment; and laboratory infrastructure enhancement. Several countries have developed or are in the process of developing their laboratory plans, and others, such as Ethiopia, have implemented and evaluated their plan.

  16. Lincoln Laboratory Grid

    Data.gov (United States)

    Federal Laboratory Consortium — The Lincoln Laboratory Grid (LLGrid) is an interactive, on-demand parallel computing system that uses a large computing cluster to enable Laboratory researchers to...

  17. Laboratory technical services provides business opportunities for supervisory control and data acquisition systems

    International Nuclear Information System (INIS)

    Ballard, W.

    1994-01-01

    The author presents some additional information about what he considers are some really great opportunities for the business community to participate in developing the greatest scientific project in the history of mankind. Facility Engineering Services is part of Laboratory Technical Services. As part of this group, it has the responsibility to direct the construction of interim facilities, scientific labs, production process, cooling towers, cooling ponds and the operation and control of SSC Laboratory conventional support systems. These operations and controls will be accomplished through the employment of a Supervisory Control and Data Acquisition system (SCADA)

  18. Use of artificial intelligence in analytical systems for the clinical laboratory.

    Science.gov (United States)

    Place, J F; Truchaud, A; Ozawa, K; Pardue, H; Schnipelsky, P

    1995-01-01

    The incorporation of information-processing technology into analytical systems in the form of standard computing software has recently been advanced by the introduction of artificial intelligence (AI), both as expert systems and as neural networks.This paper considers the role of software in system operation, control and automation, and attempts to define intelligence. AI is characterized by its ability to deal with incomplete and imprecise information and to accumulate knowledge. Expert systems, building on standard computing techniques, depend heavily on the domain experts and knowledge engineers that have programmed them to represent the real world. Neural networks are intended to emulate the pattern-recognition and parallel processing capabilities of the human brain and are taught rather than programmed. The future may lie in a combination of the recognition ability of the neural network and the rationalization capability of the expert system.In the second part of the paper, examples are given of applications of AI in stand-alone systems for knowledge engineering and medical diagnosis and in embedded systems for failure detection, image analysis, user interfacing, natural language processing, robotics and machine learning, as related to clinical laboratories.It is concluded that AI constitutes a collective form of intellectual propery, and that there is a need for better documentation, evaluation and regulation of the systems already being used in clinical laboratories.

  19. Automatic opening system for radioactive source in teaching laboratory

    International Nuclear Information System (INIS)

    Seren, Maria Emilia Gibin; Gaal, Vladimir; Rodrigues, Varlei; Morais, Sergio Luiz de

    2013-01-01

    Compton scattering phenomenon is experimentally studied during the medical physics laboratory course at the University of Campinas (UNICAMP). The Teaching Laboratory of Medical Physics from IFGW/UNICAMP has a structure for its development: a fixed 137 Cs sealed source with activity 610.5MBq, whose emitted radiation collides on a target, and a scintillation detector that turns around the target and detects scattered photons spectrum. 137 Cs source is stored in a lead shield with a collimating window for the gamma radiation emitted with energy of 0.662MeV. This source is exposed only when attenuation barrier protecting the collimating window is opened. The process of opening and closing the attenuation barrier may deliver radiation dose to users when done manually. Taking into account the stochastic harmful effects of ionizing radiation, the objective of this project was to develop an automatic exposure system of the radioactive source in order to reduce the dose during the Compton scattering experiment. The developed system is micro controlled and performs standard operating routines and responds to emergencies. Electromagnetic lock enables quick closing barrier by gravity in case of interruption of electrical current circuit. Besides reducing the total dose of lab users, the system adds more security in the routine since it limits access to the source and prevents accidental exposure. (author)

  20. The computerised accountancy system (MYDAS) for irradiated components in RNL's Mayfair Laboratory at Culcheth

    International Nuclear Information System (INIS)

    Stansfield, R.G.; Baker, A.R.

    1985-09-01

    The computerised Mayfair Accountancy System (MYDAS) has been developed to account for irradiated components in the Mayfair Laboratory at Culcheth and supersedes a card-index system. The computerised system greatly improves the availability of the data held and it ensures, by means of extensive data validation programs, that the data accurately represent the current inventory of irradiated components in the Laboratory. The system has been implemented on the Risley ICL 2966 main-frame computer and uses an IDMS database to store the data. The computer is accessed through the facilities of the Transaction Processing Management System (TPMS) providing rapid and secure access to the database from several visual display units and printers simultaneously. (author)

  1. High-charge and multiple-star vortex coronagraphy from stacked vector vortex phase masks.

    Science.gov (United States)

    Aleksanyan, Artur; Brasselet, Etienne

    2018-02-01

    Optical vortex phase masks are now installed at many ground-based large telescopes for high-contrast astronomical imaging. To date, such instrumental advances have been restricted to the use of helical phase masks of the lowest even order, while future giant telescopes will require high-order masks. Here we propose a single-stage on-axis scheme to create high-order vortex coronagraphs based on second-order vortex phase masks. By extending our approach to an off-axis design, we also explore the implementation of multiple-star vortex coronagraphy. An experimental laboratory demonstration is reported and supported by numerical simulations. These results offer a practical roadmap to the development of future coronagraphic tools with enhanced performances.

  2. Development of space simulation / net-laboratory system

    Science.gov (United States)

    Usui, H.; Matsumoto, H.; Ogino, T.; Fujimoto, M.; Omura, Y.; Okada, M.; Ueda, H. O.; Murata, T.; Kamide, Y.; Shinagawa, H.; Watanabe, S.; Machida, S.; Hada, T.

    A research project for the development of space simulation / net-laboratory system was approved by Japan Science and Technology Corporation (JST) in the category of Research and Development for Applying Advanced Computational Science and Technology(ACT-JST) in 2000. This research project, which continues for three years, is a collaboration with an astrophysical simulation group as well as other space simulation groups which use MHD and hybrid models. In this project, we develop a proto type of unique simulation system which enables us to perform simulation runs by providing or selecting plasma parameters through Web-based interface on the internet. We are also developing an on-line database system for space simulation from which we will be able to search and extract various information such as simulation method and program, manuals, and typical simulation results in graphic or ascii format. This unique system will help the simulation beginners to start simulation study without much difficulty or effort, and contribute to the promotion of simulation studies in the STP field. In this presentation, we will report the overview and the current status of the project.

  3. The EnzymeTracker: an open-source laboratory information management system for sample tracking.

    Science.gov (United States)

    Triplet, Thomas; Butler, Gregory

    2012-01-26

    In many laboratories, researchers store experimental data on their own workstation using spreadsheets. However, this approach poses a number of problems, ranging from sharing issues to inefficient data-mining. Standard spreadsheets are also error-prone, as data do not undergo any validation process. To overcome spreadsheets inherent limitations, a number of proprietary systems have been developed, which laboratories need to pay expensive license fees for. Those costs are usually prohibitive for most laboratories and prevent scientists from benefiting from more sophisticated data management systems. In this paper, we propose the EnzymeTracker, a web-based laboratory information management system for sample tracking, as an open-source and flexible alternative that aims at facilitating entry, mining and sharing of experimental biological data. The EnzymeTracker features online spreadsheets and tools for monitoring numerous experiments conducted by several collaborators to identify and characterize samples. It also provides libraries of shared data such as protocols, and administration tools for data access control using OpenID and user/team management. Our system relies on a database management system for efficient data indexing and management and a user-friendly AJAX interface that can be accessed over the Internet. The EnzymeTracker facilitates data entry by dynamically suggesting entries and providing smart data-mining tools to effectively retrieve data. Our system features a number of tools to visualize and annotate experimental data, and export highly customizable reports. It also supports QR matrix barcoding to facilitate sample tracking. The EnzymeTracker was designed to be easy to use and offers many benefits over spreadsheets, thus presenting the characteristics required to facilitate acceptance by the scientific community. It has been successfully used for 20 months on a daily basis by over 50 scientists. The EnzymeTracker is freely available online at http

  4. Developing a customised approach for strengthening tuberculosis laboratory quality management systems toward accreditation

    Directory of Open Access Journals (Sweden)

    Heidi Albert

    2017-03-01

    Full Text Available Background: Quality-assured tuberculosis laboratory services are critical to achieve global and national goals for tuberculosis prevention and care. Implementation of a quality management system (QMS in laboratories leads to improved quality of diagnostic tests and better patient care. The Strengthening Laboratory Management Toward Accreditation (SLMTA programme has led to measurable improvements in the QMS of clinical laboratories. However, progress in tuberculosis laboratories has been slower, which may be attributed to the need for a structured tuberculosis-specific approach to implementing QMS. We describe the development and early implementation of the Strengthening Tuberculosis Laboratory Management Toward Accreditation (TB SLMTA programme. Development: The TB SLMTA curriculum was developed by customizing the SLMTA curriculum to include specific tools, job aids and supplementary materials specific to the tuberculosis laboratory. The TB SLMTA Harmonized Checklist was developed from the World Health Organisation Regional Office for Africa Stepwise Laboratory Quality Improvement Process Towards Accreditation checklist, and incorporated tuberculosis-specific requirements from the Global Laboratory Initiative Stepwise Process Towards Tuberculosis Laboratory Accreditation online tool. Implementation: Four regional training-of-trainers workshops have been conducted since 2013. The TB SLMTA programme has been rolled out in 37 tuberculosis laboratories in 10 countries using the Workshop approach in 32 laboratories in five countries and the Facility based approach in five tuberculosis laboratories in five countries. Conclusion: Lessons learnt from early implementation of TB SLMTA suggest that a structured training and mentoring programme can build a foundation towards further quality improvement in tuberculosis laboratories. Structured mentoring, and institutionalisation of QMS into country programmes, is needed to support tuberculosis laboratories

  5. Note: Measurement system for the radiative forcing of greenhouse gases in a laboratory scale

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Yoshiyuki [Department of Intelligent Mechanical Engineering, Fukuoka Institute of Technology, 3-30-1 Wajirohigashi, Higashiku, Fukuoka 811-0295 (Japan)

    2016-01-15

    The radiative forcing of the greenhouse gases has been studied being based on computational simulations or the observation of the real atmosphere meteorologically. In order to know the greenhouse effect more deeply and to study it from various viewpoints, the study on it in a laboratory scale is important. We have developed a direct measurement system for the infrared back radiation from the carbon dioxide (CO{sub 2}) gas. The system configuration is similar with that of the practical earth-atmosphere-space system. Using this system, the back radiation from the CO{sub 2} gas was directly measured in a laboratory scale, which roughly coincides with meteorologically predicted value.

  6. Note: Measurement system for the radiative forcing of greenhouse gases in a laboratory scale.

    Science.gov (United States)

    Kawamura, Yoshiyuki

    2016-01-01

    The radiative forcing of the greenhouse gases has been studied being based on computational simulations or the observation of the real atmosphere meteorologically. In order to know the greenhouse effect more deeply and to study it from various viewpoints, the study on it in a laboratory scale is important. We have developed a direct measurement system for the infrared back radiation from the carbon dioxide (CO2) gas. The system configuration is similar with that of the practical earth-atmosphere-space system. Using this system, the back radiation from the CO2 gas was directly measured in a laboratory scale, which roughly coincides with meteorologically predicted value.

  7. Sandia National Laboratories: Sandia National Laboratories: Missions:

    Science.gov (United States)

    Defense Systems & Assessments: About Us Sandia National Laboratories Exceptional service in ; Security Weapons Science & Technology Defense Systems & Assessments About Defense Systems & Information Construction & Facilities Contract Audit Sandia's Economic Impact Licensing & Technology

  8. Laboratory information system data demonstrate successful ...

    African Journals Online (AJOL)

    The National Health Laboratory Service (NHLS) performs the PCR tests for the public health sector and stores test data in a corporate data warehouse (CDW). Objectives. To demonstrate the utility of laboratory data for monitoring trends in EID coverage and early vertical transmission rates and to describe the scale-up of the ...

  9. Assessing sexual conflict in the Drosophila melanogaster laboratory model system

    Science.gov (United States)

    Rice, William R; Stewart, Andrew D; Morrow, Edward H; Linder, Jodell E; Orteiza, Nicole; Byrne, Phillip G

    2006-01-01

    We describe a graphical model of interlocus coevolution used to distinguish between the interlocus sexual conflict that leads to sexually antagonistic coevolution, and the intrinsic conflict over mating rate that is an integral part of traditional models of sexual selection. We next distinguish the ‘laboratory island’ approach from the study of both inbred lines and laboratory populations that are newly derived from nature, discuss why we consider it to be one of the most fitting forms of laboratory analysis to study interlocus sexual conflict, and then describe four experiments using this approach with Drosophila melanogaster. The first experiment evaluates the efficacy of the laboratory model system to study interlocus sexual conflict by comparing remating rates of females when they are, or are not, provided with a spatial refuge from persistent male courtship. The second experiment tests for a lag-load in males that is due to adaptations that have accumulated in females, which diminish male-induced harm while simultaneously interfering with a male's ability to compete in the context of sexual selection. The third and fourth experiments test for a lag-load in females owing to direct costs from their interactions with males, and for the capacity for indirect benefits to compensate for these direct costs. PMID:16612888

  10. Achromatic Focal Plane Mask for Exoplanet Imaging Coronagraphy

    Science.gov (United States)

    Newman, Kevin Edward; Belikov, Ruslan; Guyon, Olivier; Balasubramanian, Kunjithapatham; Wilson, Dan

    2013-01-01

    Recent advances in coronagraph technologies for exoplanet imaging have achieved contrasts close to 1e10 at 4 lambda/D and 1e-9 at 2 lambda/D in monochromatic light. A remaining technological challenge is to achieve high contrast in broadband light; a challenge that is largely limited by chromaticity of the focal plane mask. The size of a star image scales linearly with wavelength. Focal plane masks are typically the same size at all wavelengths, and must be sized for the longest wavelength in the observational band to avoid starlight leakage. However, this oversized mask blocks useful discovery space from the shorter wavelengths. We present here the design, development, and testing of an achromatic focal plane mask based on the concept of optical filtering by a diffractive optical element (DOE). The mask consists of an array of DOE cells, the combination of which functions as a wavelength filter with any desired amplitude and phase transmission. The effective size of the mask scales nearly linearly with wavelength, and allows significant improvement in the inner working angle of the coronagraph at shorter wavelengths. The design is applicable to almost any coronagraph configuration, and enables operation in a wider band of wavelengths than would otherwise be possible. We include initial results from a laboratory demonstration of the mask with the Phase Induced Amplitude Apodization coronagraph.

  11. A High-Availability, Distributed Hardware Control System Using Java

    Science.gov (United States)

    Niessner, Albert F.

    2011-01-01

    Two independent coronagraph experiments that require 24/7 availability with different optical layouts and different motion control requirements are commanded and controlled with the same Java software system executing on many geographically scattered computer systems interconnected via TCP/IP. High availability of a distributed system requires that the computers have a robust communication messaging system making the mix of TCP/IP (a robust transport), and XML (a robust message) a natural choice. XML also adds the configuration flexibility. Java then adds object-oriented paradigms, exception handling, heavily tested libraries, and many third party tools for implementation robustness. The result is a software system that provides users 24/7 access to two diverse experiments with XML files defining the differences

  12. Los Alamos Scientific Laboratory long-range alarm system

    International Nuclear Information System (INIS)

    DesJardin, R.; Machanik, J.

    1980-01-01

    The Los Alamos Scientific Laboratory (LASL) Long-Range Alarm System is described. The last few years have brought significant changes in the Department of Energy regulations for protection of classified documents and special nuclear material. These changes in regulations have forced a complete redesign of the LASL security alarm system. LASL covers many square miles of varying terrain and consists of separate technical areas connected by public roads and communications. A design study over a period of 2 years produced functional specifications for a distributed intelligence, expandable alarm system that will handle 30,000 alarm points from hundreds of data concentrators spread over a 250-km 2 area. Emphasis in the design was on nonstop operation, data security, data communication, and upward expandability to incorporate fire alarms and the computer-aided dispatching of security and fire vehicles. All aspects of the alarm system were to be fault tolerant from the central computer system down to but not including the individual data concentrators. Redundant communications lines travel over public domain from the alarmed area to the central alarm station

  13. Observation and control system of the thermohydraulic assays laboratory

    International Nuclear Information System (INIS)

    Santome, D.; Hualde, R.

    1990-01-01

    The Thermohydraulic Assays Laboratory (L.E.T.) is an installation whose purpose will be the components testing and the CAREM-25 reactor thermohydraulic processes operation dynamics. This plant is located at Pilcaniyeu, province of Rio Negro. Part of the tests which will be carried out consist in the use of different control strategies. The control of the systems by digital processors (control by software) has been decided to proceed with a maximum flexibility and capacity to make changes in the algorithms. This work describes the design and implementation of a digital control system to command the three circuits of the installation. (Author) [es

  14. Mixed Methods Student Evaluation of an Online Systemic Human Anatomy Course with Laboratory

    Science.gov (United States)

    Attardi, Stefanie M.; Choi, Suwhan; Barnett, John; Rogers, Kem A.

    2016-01-01

    A fully online section of an existing face-to-face (F2F) systemic human anatomy course with a prosection laboratory was offered for the first time in 2012-2013. Lectures for F2F students (N = 365) were broadcast in both live and archived format to online students (N = 40) using virtual classroom software. Laboratories were delivered online by a…

  15. [Clinical governance and patient safety culture in clinical laboratories in the Spanish National Health System].

    Science.gov (United States)

    Giménez-Marín, Á; Rivas-Ruiz, F

    To conduct a situational analysis of patient safety culture in public laboratories in the Spanish National Health System and to determine the clinical governance variables that most strongly influence patient safety. A descriptive cross-sectional study was carried out, in which a Survey of Patient Safety in Clinical Laboratories was addressed to workers in 26 participating laboratories. In this survey, which consisted of 45 items grouped into 6 areas, scores were assigned on a scale from 0 to 100 (where 0 is the lowest perception of patient safety). Laboratory managers were asked specific questions about quality management systems and technology. The mean scores for the 26 participating hospitals were evaluated, and the following results observed: in 4of the 6areas, the mean score was higher than 70 points. In the third area (equipment and resources) and the fourth area (working conditions), the scores were lower than 60 points. Every hospital had a digital medical record system. This 100% level of provision was followed by that of an electronic request management system, which was implemented in 82.6% of the hospitals. The results obtained show that the culture of security is homogeneous and of high quality in health service laboratories, probably due to the steady improvement observed. However, in terms of clinical governance, there is still some way to go, as shown by the presence of weaknesses in crucial dimensions of safety culture, together with variable levels of implementation of fail-safe technologies and quality management systems. Copyright © 2017 SECA. Publicado por Elsevier España, S.L.U. All rights reserved.

  16. Implementation of a configurable laboratory information management system for use in cellular process development and manufacturing.

    Science.gov (United States)

    Russom, Diana; Ahmed, Amira; Gonzalez, Nancy; Alvarnas, Joseph; DiGiusto, David

    2012-01-01

    Regulatory requirements for the manufacturing of cell products for clinical investigation require a significant level of record-keeping, starting early in process development and continuing through to the execution and requisite follow-up of patients on clinical trials. Central to record-keeping is the management of documentation related to patients, raw materials, processes, assays and facilities. To support these requirements, we evaluated several laboratory information management systems (LIMS), including their cost, flexibility, regulatory compliance, ongoing programming requirements and ability to integrate with laboratory equipment. After selecting a system, we performed a pilot study to develop a user-configurable LIMS for our laboratory in support of our pre-clinical and clinical cell-production activities. We report here on the design and utilization of this system to manage accrual with a healthy blood-donor protocol, as well as manufacturing operations for the production of a master cell bank and several patient-specific stem cell products. The system was used successfully to manage blood donor eligibility, recruiting, appointments, billing and serology, and to provide annual accrual reports. Quality management reporting features of the system were used to capture, report and investigate process and equipment deviations that occurred during the production of a master cell bank and patient products. Overall the system has served to support the compliance requirements of process development and phase I/II clinical trial activities for our laboratory and can be easily modified to meet the needs of similar laboratories.

  17. APPLICATION OF A PLC TO A LABORATORY COMPRESSOR WORKSHOP CONTROL SYSTEM

    Directory of Open Access Journals (Sweden)

    Wojciech GÓRA

    2016-06-01

    Full Text Available In this paper a control system of air compressors in a university laboratory is presented. The control system, which is built using the Astraada RCC972 and the GE 90-20 drivers, is an extension of the two states’ inputs and outputs of Astraada. To visualize the work stand, the PC computer class and the Proficy Machine Edition (ME View software were applied. Selected results from the tests of the built control system are presented.

  18. Mining of hospital laboratory information systems

    DEFF Research Database (Denmark)

    Søeby, Karen; Jensen, Peter Bjødstrup; Werge, Thomas

    2015-01-01

    of hospital laboratory data as a source of information, we analyzed enzymatic plasma creatinine as a model analyte in two large pediatric hospital samples. Methods: Plasma creatinine measurements from 9700 children aged 0-18 years were obtained from hospital laboratory databases and partitioned into high...... in creatinine levels at different time points after birth and around the early teens, which challenges the establishment and usefulness of reference intervals in those age groups. Conclusions: The study documents that hospital laboratory data may inform on the developmental aspects of creatinine, on periods...... with pronounced heterogeneity and valid reference intervals. Furthermore, part of the heterogeneity in creatinine distribution is likely due to differences in biological and chronological age of children and should be considered when using age-specific reference intervals....

  19. Realtime speckle sensing and suppression with project 1640 at Palomar

    Science.gov (United States)

    Vasisht, Gautam; Cady, Eric; Zhai, Chengxing; Lockhart, Thomas; Oppenheimer, Ben

    2014-08-01

    Palomar's Project 1640 (P1640) is the first stellar coronagraph to regularly use active coronagraphic wavefront control (CWFC). For this it has a hierarchy of offset wavefront sensors (WFS), the most important of which is the higher-order WFS (called CAL), which tracks quasi-static modes between 2-35 cycles-per-aperture. The wavefront is measured in the coronagraph at 0.01 Hz rates, providing slope targets to the upstream Palm 3000 adaptive optics (AO) system. The CWFC handles all non-common path distortions up to the coronagraphic focal plane mask, but does not sense second order modes between the WFSs and the science integral field unit (IFU); these modes determine the system's current limit. We have two CWFC operating modes: (1) P-mode, where we only control phases, generating double-sided darkholes by correcting to the largest controllable spatial frequencies, and (2) E-mode, where we can control amplitudes and phases, generating single-sided dark-holes in specified regions-of-interest. We describe the performance and limitations of both these modes, and discuss the improvements we are considering going forward.

  20. System for Informatics in the Molecular Pathology Laboratory: An Open-Source End-to-End Solution for Next-Generation Sequencing Clinical Data Management.

    Science.gov (United States)

    Kang, Wenjun; Kadri, Sabah; Puranik, Rutika; Wurst, Michelle N; Patil, Sushant A; Mujacic, Ibro; Benhamed, Sonia; Niu, Nifang; Zhen, Chao Jie; Ameti, Bekim; Long, Bradley C; Galbo, Filipo; Montes, David; Iracheta, Crystal; Gamboa, Venessa L; Lopez, Daisy; Yourshaw, Michael; Lawrence, Carolyn A; Aisner, Dara L; Fitzpatrick, Carrie; McNerney, Megan E; Wang, Y Lynn; Andrade, Jorge; Volchenboum, Samuel L; Furtado, Larissa V; Ritterhouse, Lauren L; Segal, Jeremy P

    2018-04-24

    Next-generation sequencing (NGS) diagnostic assays increasingly are becoming the standard of care in oncology practice. As the scale of an NGS laboratory grows, management of these assays requires organizing large amounts of information, including patient data, laboratory processes, genomic data, as well as variant interpretation and reporting. Although several Laboratory Information Systems and/or Laboratory Information Management Systems are commercially available, they may not meet all of the needs of a given laboratory, in addition to being frequently cost-prohibitive. Herein, we present the System for Informatics in the Molecular Pathology Laboratory, a free and open-source Laboratory Information System/Laboratory Information Management System for academic and nonprofit molecular pathology NGS laboratories, developed at the Genomic and Molecular Pathology Division at the University of Chicago Medicine. The System for Informatics in the Molecular Pathology Laboratory was designed as a modular end-to-end information system to handle all stages of the NGS laboratory workload from test order to reporting. We describe the features of the system, its clinical validation at the Genomic and Molecular Pathology Division at the University of Chicago Medicine, and its installation and testing within a different academic center laboratory (University of Colorado), and we propose a platform for future community co-development and interlaboratory data sharing. Copyright © 2018. Published by Elsevier Inc.

  1. Design and implementation of an online systemic human anatomy course with laboratory.

    Science.gov (United States)

    Attardi, Stefanie M; Rogers, Kem A

    2015-01-01

    Systemic Human Anatomy is a full credit, upper year undergraduate course with a (prosection) laboratory component at Western University Canada. To meet enrollment demands beyond the physical space of the laboratory facility, a fully online section was developed to run concurrently with the traditional face to face (F2F) course. Lectures given to F2F students are simultaneously broadcasted to online students using collaborative software (Blackboard Collaborate). The same collaborative software is used by a teaching assistant to deliver laboratory demonstrations in which three-dimensional (3D) virtual anatomical models are manipulated. Ten commercial software programs were reviewed to determine their suitability for demonstrating the virtual models, resulting in the selection of Netter's 3D Interactive Anatomy. Supplementary online materials for the central nervous system were developed by creating 360° images of plastinated prosected brain specimens and a website through which they could be accessed. This is the first description of a fully online undergraduate anatomy course with a live, interactive laboratory component. Preliminary data comparing the online and F2F student grades suggest that previous student academic performance, and not course delivery format, predicts performance in anatomy. Future qualitative studies will reveal student perceptions about their learning experiences in both of the course delivery formats. © 2014 American Association of Anatomists.

  2. Application of the Toyota Production System improves core laboratory operations.

    Science.gov (United States)

    Rutledge, Joe; Xu, Min; Simpson, Joanne

    2010-01-01

    To meet the increased clinical demands of our hospital expansion, improve quality, and reduce costs, our tertiary care, pediatric core laboratory used the Toyota Production System lean processing to reorganize our 24-hour, 7 d/wk core laboratory. A 4-month, consultant-driven process removed waste, led to a physical reset of the space to match the work flow, and developed a work cell for our random access analyzers. In addition, visual controls, single piece flow, standard work, and "5S" were instituted. The new design met our goals as reflected by achieving and maintaining improved turnaround time (TAT; mean for creatinine reduced from 54 to 23 minutes) with increased testing volume (20%), monetary savings (4 full-time equivalents), decreased variability in TAT, and better space utilization (25% gain). The project had the unanticipated consequence of eliminating STAT testing because our in-laboratory TAT for routine testing was less than our prior STAT turnaround goal. The viability of this approach is demonstrated by sustained gains and further PDCA (Plan, Do, Check, Act) improvements during the 4 years after completion of the project.

  3. A Laboratory Goniometer System for Measuring Reflectance and Emittance Anisotropy

    Directory of Open Access Journals (Sweden)

    Arjan de Jong

    2012-12-01

    Full Text Available In this paper, a laboratory goniometer system for performing multi-angular measurements under controlled illumination conditions is described. A commercially available robotic arm enables the acquisition of a large number of measurements over the full hemisphere within a short time span making it much faster than other goniometers. In addition, the presented set-up enables assessment of anisotropic reflectance and emittance behaviour of soils, leaves and small canopies. Mounting a spectrometer enables acquisition of either hemispherical measurements or measurements in the horizontal plane. Mounting a thermal camera allows directional observations of the thermal emittance. This paper also presents three showcases of these different measurement set-ups in order to illustrate its possibilities. Finally, suggestions for applying this instrument and for future research directions are given, including linking the measured reflectance anisotropy with physically-based anisotropy models on the one hand and combining them with field goniometry measurements for joint analysis with remote sensing data on the other hand. The speed and flexibility of the system offer a large added value to the existing pool of laboratory goniometers.

  4. Description of the EDF research and development laboratory's radiographic picture processing system

    International Nuclear Information System (INIS)

    Brillault, B.

    1985-01-01

    A digital radiographic picture processing system has been developed at the EDF Research and Development Laboratory to be supplied to EDF radiography experts. We describe it in pointing out the difficulties of radiograph digitization but also the numerous processing possibilities. The final goal of the Laboratory work is to extract the information from industrial radiographs by digital means. Our study is divided into three parts: digitization by a microdensitometer; display, processing and quantization of flaws; and, digital storing. 5 refs

  5. Statement of Work Electrical Energy Storage System Installation at Sandia National Laboratories.

    Energy Technology Data Exchange (ETDEWEB)

    Schenkman, Benjamin L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-03-01

    Sandia is seeking to procure a 1 MWh energy storage system. It will be installed at the existing Energy Storage Test Pad, which is located at Sandia National Laboratories in Albuquerque, New Mexico. This energy storage system will be a daily operational system, but will also be used as a tool in our Research and development work. The system will be part of a showcase of Sandia distributed energy technologies viewed by many distinguished delegates.

  6. Polio Eradication Initiative (PEI) contribution in strengthening public health laboratories systems in the African region.

    Science.gov (United States)

    Gumede, Nicksy; Coulibaly, Sheick Oumar; Yahaya, Ali Ahmed; Ndihokubwayo, Jean-Bosco; Nsubuga, Peter; Okeibunor, Joseph; Dosseh, Annick; Salla, Mbaye; Mihigo, Richard; Mkanda, Pascal; Byabamazima, Charles

    2016-10-10

    The laboratory has always played a very critical role in diagnosis of the diseases. The success of any disease programme is based on a functional laboratory network. Health laboratory services are an integral component of the health system. Efficiency and effectiveness of both clinical and public health functions including surveillance, diagnosis, prevention, treatment, research and health promotion are influenced by reliable laboratory services. The establishment of the African Regional polio laboratory for the Polio Eradication Initiative (PEI) has contributed in supporting countries in their efforts to strengthen laboratory capacity. On the eve of the closing of the program, we have shown through this article, examples of this contribution in two countries of the African region: Côte d'Ivoire and the Democratic Republic of Congo. Descriptive studies were carried out in Côte d'Ivoire (RCI) and Democratic Republic of Congo (DRC) from October to December 2014. Questionnaires and self-administered and in-depth interviews and group discussions as well as records and observation were used to collect information during laboratory visits and assessments. The PEI financial support allows to maintain the majority of the 14 (DRC) and 12 (RCI) staff involved in the polio laboratory as full or in part time members. Through laboratory technical staff training supported by the PEI, skills and knowledge were gained to reinforce laboratories capacity and performance in quality laboratory functioning, processes and techniques such as cell culture. In the same way, infrastructure was improved and equipment provided. General laboratory quality standards, including the entire laboratory key elements was improved through the PEI accreditation process. The Polio Eradication Initiative (PEI) is a good example of contribution in strengthening public health laboratories systems in the African region. It has established strong Polio Laboratory network that contributed to the

  7. Control code for laboratory adaptive optics teaching system

    Science.gov (United States)

    Jin, Moonseob; Luder, Ryan; Sanchez, Lucas; Hart, Michael

    2017-09-01

    By sensing and compensating wavefront aberration, adaptive optics (AO) systems have proven themselves crucial in large astronomical telescopes, retinal imaging, and holographic coherent imaging. Commercial AO systems for laboratory use are now available in the market. One such is the ThorLabs AO kit built around a Boston Micromachines deformable mirror. However, there are limitations in applying these systems to research and pedagogical projects since the software is written with limited flexibility. In this paper, we describe a MATLAB-based software suite to interface with the ThorLabs AO kit by using the MATLAB Engine API and Visual Studio. The software is designed to offer complete access to the wavefront sensor data, through the various levels of processing, to the command signals to the deformable mirror and fast steering mirror. In this way, through a MATLAB GUI, an operator can experiment with every aspect of the AO system's functioning. This is particularly valuable for tests of new control algorithms as well as to support student engagement in an academic environment. We plan to make the code freely available to the community.

  8. The EnzymeTracker: an open-source laboratory information management system for sample tracking

    Directory of Open Access Journals (Sweden)

    Triplet Thomas

    2012-01-01

    Full Text Available Abstract Background In many laboratories, researchers store experimental data on their own workstation using spreadsheets. However, this approach poses a number of problems, ranging from sharing issues to inefficient data-mining. Standard spreadsheets are also error-prone, as data do not undergo any validation process. To overcome spreadsheets inherent limitations, a number of proprietary systems have been developed, which laboratories need to pay expensive license fees for. Those costs are usually prohibitive for most laboratories and prevent scientists from benefiting from more sophisticated data management systems. Results In this paper, we propose the EnzymeTracker, a web-based laboratory information management system for sample tracking, as an open-source and flexible alternative that aims at facilitating entry, mining and sharing of experimental biological data. The EnzymeTracker features online spreadsheets and tools for monitoring numerous experiments conducted by several collaborators to identify and characterize samples. It also provides libraries of shared data such as protocols, and administration tools for data access control using OpenID and user/team management. Our system relies on a database management system for efficient data indexing and management and a user-friendly AJAX interface that can be accessed over the Internet. The EnzymeTracker facilitates data entry by dynamically suggesting entries and providing smart data-mining tools to effectively retrieve data. Our system features a number of tools to visualize and annotate experimental data, and export highly customizable reports. It also supports QR matrix barcoding to facilitate sample tracking. Conclusions The EnzymeTracker was designed to be easy to use and offers many benefits over spreadsheets, thus presenting the characteristics required to facilitate acceptance by the scientific community. It has been successfully used for 20 months on a daily basis by over 50

  9. Distributed Energy Technology Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Distributed Energy Technologies Laboratory (DETL) is an extension of the power electronics testing capabilities of the Photovoltaic System Evaluation Laboratory...

  10. Evaluation of the implementation of a quality system in a basic research laboratory: viability and impacts.

    Science.gov (United States)

    Fraga, Hilda Carolina de Jesus Rios; Fukutani, Kiyoshi Ferreira; Celes, Fabiana Santana; Barral, Aldina Maria Prado; Oliveira, Camila Indiani de

    2012-01-01

    To evaluate the process of implementing a quality management system in a basic research laboratory of a public institution, particularly considering the feasibility and impacts of this improvement. This was a prospective and qualitative study. We employed the norm "NIT DICLA 035--Princípios das Boas Práticas de Laboratório (BPL)" and auxiliary documents of Organisation for Economic Co-operation and Development to complement the planning and implementation of a Quality System, in a basic research laboratory. In parallel, we used the PDCA tool to define the goals of each phase of the implementation process. This study enabled the laboratory to comply with the NIT DICLA 035 norm and to implement this norm during execution of a research study. Accordingly, documents were prepared and routines were established such as the registration of non-conformities, traceability of research data and equipment calibration. The implementation of a quality system, the setting of a laboratory focused on basic research is feasible once certain structural changes are made. Importantly, impacts were noticed during the process, which could be related to several improvements in the laboratory routine.

  11. A direct probe of dark energy interactions with a solar System laboratory

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a mission concept for direct detection of dark energy interactions with normal matter in a Solar System laboratory. Dark energy is the leading proposal to...

  12. Vehicle Development Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Supports the development of prototype deployment platform vehicles for offboard countermeasure systems.DESCRIPTION: The Vehicle Development Laboratory is...

  13. A tracking system for laboratory mice to support medical researchers in behavioral analysis.

    Science.gov (United States)

    Macrì, S; Mainetti, L; Patrono, L; Pieretti, S; Secco, A; Sergi, I

    2015-08-01

    The behavioral analysis of laboratory mice plays a key role in several medical and scientific research areas, such as biology, toxicology, pharmacology, and so on. Important information on mice behavior and their reaction to a particular stimulus is deduced from a careful analysis of their movements. Moreover, behavioral analysis of genetically modified mice allows obtaining important information about particular genes, phenotypes or drug effects. The techniques commonly adopted to support such analysis have many limitations, which make the related systems particularly ineffective. Currently, the engineering community is working to explore innovative identification and sensing technologies to develop new tracking systems able to guarantee benefits to animals' behavior analysis. This work presents a tracking solution based on passive Radio Frequency Identification Technology (RFID) in Ultra High Frequency (UHF) band. Much emphasis is given to the software component of the system, based on a Web-oriented solution, able to process the raw tracking data coming from a hardware system, and offer 2D and 3D tracking information as well as reports and dashboards about mice behavior. The system has been widely tested using laboratory mice and compared with an automated video-tracking software (i.e., EthoVision). The obtained results have demonstrated the effectiveness and reliability of the proposed solution, which is able to correctly detect the events occurring in the animals' cage, and to offer a complete and user-friendly tool to support researchers in behavioral analysis of laboratory mice.

  14. [Laboratory accreditation and proficiency testing].

    Science.gov (United States)

    Kuwa, Katsuhiko

    2003-05-01

    ISO/TC 212 covering clinical laboratory testing and in vitro diagnostic test systems will issue the international standard for medical laboratory quality and competence requirements, ISO 15189. This standard is based on the ISO/IEC 17025, general requirements for competence of testing and calibration laboratories and ISO 9001, quality management systems-requirements. Clinical laboratory services are essential to patient care and therefore should be available to meet the needs of all patients and clinical personnel responsible for human health care. If a laboratory seeks accreditation, it should select an accreditation body that operates according to this international standard and in a manner which takes into account the particular requirements of clinical laboratories. Proficiency testing should be available to evaluate the calibration laboratories and reference measurement laboratories in clinical medicine. Reference measurement procedures should be of precise and the analytical principle of measurement applied should ensure reliability. We should be prepared to establish a quality management system and proficiency testing in clinical laboratories.

  15. Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System

    Energy Technology Data Exchange (ETDEWEB)

    Wei-Ping Pan; Yan Cao; John Smith

    2008-05-31

    On February 14, 2002, President Bush announced the Clear Skies Initiative, a legislative proposal to control the emissions of nitrogen oxides (NO{sub x}), sulfur dioxide (SO{sub 2}), and mercury from power plants. In response to this initiative, the National Energy Technology Laboratory organized a Combustion Technology University Alliance and hosted a Solid Fuel Combustion Technology Alliance Workshop. The workshop identified multi-pollutant control; improved sorbents and catalysts; mercury monitoring and capture; and improved understanding of the underlying reaction chemistry occurring during combustion as the most pressing research needs related to controlling environmental emissions from fossil-fueled power plants. The Environmental Control Technology Laboratory will help meet these challenges and offer solutions for problems associated with emissions from fossil-fueled power plants. The goal of this project was to develop the capability and technology database needed to support municipal, regional, and national electric power generating facilities to improve the efficiency of operation and solve operational and environmental problems. In order to effectively provide the scientific data and the methodologies required to address these issues, the project included the following aspects: (1) Establishing an Environmental Control Technology Laboratory using a laboratory-scale, simulated fluidized-bed combustion (FBC) system; (2) Designing, constructing, and operating a bench-scale (0.6 MW{sub th}), circulating fluidized-bed combustion (CFBC) system as the main component of the Environmental Control Technology Laboratory; (3) Developing a combustion technology for co-firing municipal solid waste (MSW), agricultural waste, and refuse-derived fuel (RDF) with high sulfur coals; (4) Developing a control strategy for gaseous emissions, including NO{sub x}, SO{sub 2}, organic compounds, and heavy metals; and (5) Developing new mercury capturing sorbents and new

  16. Development and implementation of the Caribbean Laboratory Quality Management Systems Stepwise Improvement Process (LQMS-SIP) Towards Accreditation.

    Science.gov (United States)

    Alemnji, George; Edghill, Lisa; Guevara, Giselle; Wallace-Sankarsingh, Sacha; Albalak, Rachel; Cognat, Sebastien; Nkengasong, John; Gabastou, Jean-Marc

    2017-01-01

    Implementing quality management systems and accrediting laboratories in the Caribbean has been a challenge. We report the development of a stepwise process for quality systems improvement in the Caribbean Region. The Caribbean Laboratory Stakeholders met under a joint Pan American Health Organization/US Centers for Disease Control and Prevention initiative and developed a user-friendly framework called 'Laboratory Quality Management System - Stepwise Improvement Process (LQMS-SIP) Towards Accreditation' to support countries in strengthening laboratory services through a stepwise approach toward fulfilling the ISO 15189: 2012 requirements. This approach consists of a three-tiered framework. Tier 1 represents the minimum requirements corresponding to the mandatory criteria for obtaining a licence from the Ministry of Health of the participating country. The next two tiers are quality improvement milestones that are achieved through the implementation of specific quality management system requirements. Laboratories that meet the requirements of the three tiers will be encouraged to apply for accreditation. The Caribbean Regional Organisation for Standards and Quality hosts the LQMS-SIP Secretariat and will work with countries, including the Ministry of Health and stakeholders, including laboratory staff, to coordinate and implement LQMS-SIP activities. The Caribbean Public Health Agency will coordinate and advocate for the LQMS-SIP implementation. This article presents the Caribbean LQMS-SIP framework and describes how it will be implemented among various countries in the region to achieve quality improvement.

  17. Quality management system in hospital radiopharmacy laboratory

    International Nuclear Information System (INIS)

    Poch, Carolina; Rabiller, Graciela; Basualdo, Daniel A.; El Tamer, Elias A.

    2009-01-01

    Objective: 1) To determine the necessary conditions for increasing the complexity of the Radiopharmacy Laboratory and reach an operational level defined by the IAEA as 3a (Operational Guidance on Hospital Radiopharmacy). Our aim is that, within a framework of quality, last generation radiopharmaceuticals can be used, by sophisticated techniques such as labeling with bifunctional chelating agents, like HYNIC; 2) Consequently, we decided to implement a Quality Management System (QMS) in the field of Hospital Radiopharmacy in order to guarantee the safe and effective preparation and handling of radiopharmaceuticals for the diagnosis of patients, based on recommendations of the IAEA. Procedure For the implementation of the QMS, the sector of Radiopharmacy was capacitated in the application of ISO 9001. In a first stage it had begun with the formulation of the main documents and their enumeration. According to the recommendations of the IAEA Operational Guide, this year we proceeded to the optimization of the documents produced in the first stage and formulation of new documents essential to the improvement of work in the Radiopharmacy Laboratory. Results: Corrections were made to the performed procedures, and new ones were composed such as: Reception of raw materials, Control dose calibrator (Activity meter), General procedure of dosage, Procedure for decontamination, for Using the bio safety cabinet, for Cleaning the hot laboratory, etc. The Quality Controls were added to each of the Work Instructions of radiopharmaceuticals to be undertaken and how and when to carry out, with their respective references. Records were modified and new ones incorporated, in order to ensure traceability of the results before and after injection. Finally, the require documentation has been completed with the addition of the Staff Training Plan, and other records such as Nonconformance and Corrective and Preventive Actions. Conclusion: With the application of a QMS correctly implemented

  18. [Measures to prevent patient identification errors in blood collection/physiological function testing utilizing a laboratory information system].

    Science.gov (United States)

    Shimazu, Chisato; Hoshino, Satoshi; Furukawa, Taiji

    2013-08-01

    We constructed an integrated personal identification workflow chart using both bar code reading and an all in-one laboratory information system. The information system not only handles test data but also the information needed for patient guidance in the laboratory department. The reception terminals at the entrance, displays for patient guidance and patient identification tools at blood-sampling booths are all controlled by the information system. The number of patient identification errors was greatly reduced by the system. However, identification errors have not been abolished in the ultrasound department. After re-evaluation of the patient identification process in this department, we recognized that the major reason for the errors came from excessive identification workflow. Ordinarily, an ultrasound test requires patient identification 3 times, because 3 different systems are required during the entire test process, i.e. ultrasound modality system, laboratory information system and a system for producing reports. We are trying to connect the 3 different systems to develop a one-time identification workflow, but it is not a simple task and has not been completed yet. Utilization of the laboratory information system is effective, but is not yet perfect for patient identification. The most fundamental procedure for patient identification is to ask a person's name even today. Everyday checks in the ordinary workflow and everyone's participation in safety-management activity are important for the prevention of patient identification errors.

  19. Creating and Using a Computer Networking and Systems Administration Laboratory Built under Relaxed Financial Constraints

    Science.gov (United States)

    Conlon, Michael P.; Mullins, Paul

    2011-01-01

    The Computer Science Department at Slippery Rock University created a laboratory for its Computer Networks and System Administration and Security courses under relaxed financial constraints. This paper describes the department's experience designing and using this laboratory, including lessons learned and descriptions of some student projects…

  20. MDAS2: A Data Acquisition System for the Soil Mechanic Laboratory

    International Nuclear Information System (INIS)

    Alberdi, J.; Barcala, J. M.

    2000-01-01

    The Soil Mechanic Laboratory in CIEMAT is working to characterize a bentonite which may be use in the storage of radioactive waste. The bentonite is studied with several tests, frequently used in soil mechanics. This document describes the data acquisition system used in one of these experiments

  1. Research System Integration Laboratory (SIL)

    Data.gov (United States)

    Federal Laboratory Consortium — The VEA Research SIL (VRS) is essential to the success of the TARDEC 30-Year Strategy. The vast majority of the TARDEC Capability Sets face challenging electronics...

  2. Implementation of ISO 28218 quality system in the laboratory of body radioactivity counter CIEMAT

    International Nuclear Information System (INIS)

    Navarro Amaro, J. F.; Perez Lopez, B.; Lopez Ponte, M. A.; Perez Jimenez, C.

    2011-01-01

    The laboratory of body radioactivity counter has implemented IS0 28218 standard Performance Criteria for Radio bioassay in all measured in vivo techniques of internal contamination in the human organism in monitoring programs defined by the Personal Dosimetry Service Internal CIEMAT. The application of this rule in the laboratory's quality system is essential to meet the technical requirements of the standard IS0/IEC 17025 with the purpose of obtaining ENAC accreditation as a testing laboratory and calibration within the framework of the accreditation of Service CIEMAT Radiation Dosimetry. (Author)

  3. The Lawrence Livermore National Laboratory Intelligent Actinide Analysis System

    International Nuclear Information System (INIS)

    Buckley, W.M.; Carlson, J.B.; Koenig, Z.M.

    1993-01-01

    The authors have developed an Intelligent Actinide Analysis System (IAAS) for Materials Management to use in the Plutonium Facility at the Lawrence Livermore National Laboratory. The IAAS will measure isotopic ratios for plutonium and other actinides non-destructively by high-resolution gamma-ray spectrometry. This system will measure samples in a variety of matrices and containers. It will provide automated control of many aspects of the instrument that previously required manual intervention and/or control. The IAAS is a second-generation instrument, based on experience in fielding gamma isotopic systems, that is intended to advance non-destructive actinide analysis for nuclear safeguards in performance, automation, ease of use, adaptability, systems integration and extensibility to robotics. It uses a client-server distributed monitoring and control architecture. The IAAS uses MGA as the isotopic analysis code. The design of the IAAS reduces the need for operator intervention, operator training, and operator exposure

  4. Deriving and Constraining 3D CME Kinematic Parameters from Multi-Viewpoint Coronagraph Images

    Science.gov (United States)

    Thompson, B. J.; Mei, H. F.; Barnes, D.; Colaninno, R. C.; Kwon, R.; Mays, M. L.; Mierla, M.; Moestl, C.; Richardson, I. G.; Verbeke, C.

    2017-12-01

    Determining the 3D properties of a coronal mass ejection using multi-viewpoint coronagraph observations can be a tremendously complicated process. There are many factors that inhibit the ability to unambiguously identify the speed, direction and shape of a CME. These factors include the need to separate the "true" CME mass from shock-associated brightenings, distinguish between non-radial or deflected trajectories, and identify asymmetric CME structures. Additionally, different measurement methods can produce different results, sometimes with great variations. Part of the reason for the wide range of values that can be reported for a single CME is due to the difficulty in determining the CME's longitude since uncertainty in the angle of the CME relative to the observing image planes results in errors in the speed and topology of the CME. Often the errors quoted in an individual study are remarkably small when compared to the range of values that are reported by different authors for the same CME. For example, two authors may report speeds of 700 +- 50 km/sec and 500+-50 km/sec for the same CME. Clearly a better understanding of the accuracy of CME measurements, and an improved assessment of the limitations of the different methods, would be of benefit. We report on a survey of CME measurements, wherein we compare the values reported by different authors and catalogs. The survey will allow us to establish typical errors for the parameters that are commonly used as inputs for CME propagation models such as ENLIL and EUHFORIA. One way modelers handle inaccuracies in CME parameters is to use an ensemble of CMEs, sampled across ranges of latitude, longitude, speed and width. The CMEs simulated in order to determine the probability of a "direct hit" and, for the cases with a "hit," derive a range of possible arrival times. Our study will provide improved guidelines for generating CME ensembles that more accurately sample across the range of plausible values.

  5. Medical laboratory scientist

    DEFF Research Database (Denmark)

    Smith, Julie; Qvist, Camilla Christine; Jacobsen, Katja Kemp

    2017-01-01

    Previously, biomarker research and development was performed by laboratory technicians working as craftsmen in laboratories under the guidance of medical doctors. This hierarchical structure based on professional boundaries appears to be outdated if we want to keep up with the high performance...... of our healthcare system, and take advantage of the vast potential of future biomarkers and personalized medicine. We ask the question; does our healthcare system benefit from giving the modern medical laboratory scientist (MLS) a stronger academic training in biomarker research, development...

  6. Embedded Processor Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Embedded Processor Laboratory provides the means to design, develop, fabricate, and test embedded computers for missile guidance electronics systems in support...

  7. Develop virtual joint laboratory for education like distance engineering system for robotic applications

    Science.gov (United States)

    Latinovic, T. S.; Deaconu, S. I.; Latinović, M. T.; Malešević, N.; Barz, C.

    2015-06-01

    This paper work with a new system that provides distance learning and online training engineers. The purpose of this paper is to develop and provide web-based system for the handling and control of remote devices via the Internet. Remote devices are currently the industry or mobile robots [13]. For future product development machine in the factory will be included in the system. This article also discusses the current use of virtual reality tools in the fields of science and engineering education. One programming tool in particular, virtual reality modeling language (VRML) is presented in the light of its applications and capabilities in the development of computer visualization tool for education. One contribution of this paper is to present the software tools and examples that can encourage educators to develop a virtual reality model to improve teaching in their discipline. [12] This paper aims to introduce a software platform, called VALIP where users can build, share, and manipulate 3D content in cooperation with the interaction processes in a 3D context, while participating hardware and software devices can be physical and / or logical distributed and connected together via the Internet. VALIP the integration of virtual laboratories to appropriate partners; therefore, allowing access to all laboratories in any of the partners in the project. VALIP provides advanced laboratory for training and research within robotics and production engineering, and thus, provides a great laboratory facilities with only having to invest a limited amount of resources at the local level to the partner site.

  8. Evaluation of the Argonne National Laboratory servo-controlled calorimeter system

    International Nuclear Information System (INIS)

    Foster, L.A.

    1997-01-01

    The control system of a replacement mode, twin-bridge, water-bath calorimeter originally built by Mound EG ampersand G Applied Technologies was modified by Argonne National Laboratory. The calorimeter was upgraded with a PC-based computer control and data acquisition system. The system was redesigned to operate in a servo-control mode, and a preheater was constructed to allow pre-equilibration of samples. The instrument was sent to the Plutonium Facility at Los Alamos National Laboratory for testing and evaluation of its performance in the field using heat source standards and plutonium process materials. The important parameters for calorimeter operation necessary to satisfy the nuclear materials control and accountability requirements of the Plutonium Facility were evaluated over a period of several months. These parameters include calorimeter stability, measurement precision and accuracy, and average measurement time. The observed measurement precision and accuracy were found to be acceptable for most accountability measurements, although they were slightly larger than the values for calorimeters in routine use at the Plutonium Facility. Average measurement times were significantly shorter than measurement times for identical items in the Plutonium Facility calorimeters. Unexplained shifts in the baseline measurements were observed on numerous occasions. These shifts could lead to substantial measurement errors if they are not very carefully monitored by the operating facility. Detailed results of the experimental evaluation are presented in this report

  9. Computer system architecture for laboratory automation

    International Nuclear Information System (INIS)

    Penney, B.K.

    1978-01-01

    This paper describes the various approaches that may be taken to provide computing resources for laboratory automation. Three distinct approaches are identified, the single dedicated small computer, shared use of a larger computer, and a distributed approach in which resources are provided by a number of computers, linked together, and working in some cooperative way. The significance of the microprocessor in laboratory automation is discussed, and it is shown that it is not simply a cheap replacement of the minicomputer. (Auth.)

  10. Thermogravimetric Analysis Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — At NETL’s Thermogravimetric Analysis Laboratory in Morgantown, WV, researchers study how chemical looping combustion (CLC) can be applied to fossil energy systems....

  11. A Multi-User Remote Academic Laboratory System

    Science.gov (United States)

    Barrios, Arquimedes; Panche, Stifen; Duque, Mauricio; Grisales, Victor H.; Prieto, Flavio; Villa, Jose L.; Chevrel, Philippe; Canu, Michael

    2013-01-01

    This article describes the development, implementation and preliminary operation assessment of Multiuser Network Architecture to integrate a number of Remote Academic Laboratories for educational purposes on automatic control. Through the Internet, real processes or physical experiments conducted at the control engineering laboratories of four…

  12. The Virtual Robotics Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kress, R.L.; Love, L.J.

    1999-09-01

    The growth of the Internet has provided a unique opportunity to expand research collaborations between industry, universities, and the national laboratories. The Virtual Robotics Laboratory (VRL) is an innovative program at Oak Ridge National Laboratory (ORNL) that is focusing on the issues related to collaborative research through controlled access of laboratory equipment using the World Wide Web. The VRL will provide different levels of access to selected ORNL laboratory secondary education programs. In the past, the ORNL Robotics and Process Systems Division has developed state-of-the-art robotic systems for the Army, NASA, Department of Energy, Department of Defense, as well as many other clients. After proof of concept, many of these systems sit dormant in the laboratories. This is not out of completion of all possible research topics. but from completion of contracts and generation of new programs. In the past, a number of visiting professors have used this equipment for their own research. However, this requires that the professor, and possibly his/her students, spend extended periods at the laboratory facility. In addition, only a very exclusive group of faculty can gain access to the laboratory and hardware. The VRL is a tool that enables extended collaborative efforts without regard to geographic limitations.

  13. The Virtual Robotics Laboratory

    International Nuclear Information System (INIS)

    Kress, R.L.; Love, L.J.

    1997-01-01

    The growth of the Internet has provided a unique opportunity to expand research collaborations between industry, universities, and the national laboratories. The Virtual Robotics Laboratory (VRL) is an innovative program at Oak Ridge National Laboratory (ORNL) that is focusing on the issues related to collaborative research through controlled access of laboratory equipment using the World Wide Web. The VRL will provide different levels of access to selected ORNL laboratory equipment to outside universities, industrial researchers, and elementary and secondary education programs. In the past, the ORNL Robotics and Process Systems Division (RPSD) has developed state-of-the-art robotic systems for the Army, NASA, Department of Energy, Department of Defense, as well as many other clients. After proof of concept, many of these systems sit dormant in the laboratories. This is not out of completion of all possible research topics, but from completion of contracts and generation of new programs. In the past, a number of visiting professors have used this equipment for their own research. However, this requires that the professor, and possibly his students, spend extended periods at the laboratory facility. In addition, only a very exclusive group of faculty can gain access to the laboratory and hardware. The VRL is a tool that enables extended collaborative efforts without regard to geographic limitations

  14. Clinical laboratory evaluation of the Auto-Microbic system for rapid identification of Enterobacteriaceae.

    OpenAIRE

    Hasyn, J J; Cundy, K R; Dietz, C C; Wong, W

    1981-01-01

    The capability of the Auto-Microbic system (Vitek Systems, Inc., Hazelwood, Mo.) has been expanded to identify members of the family Enterobacteriaceae with the use of a sealed, disposable accessory card (the Enterobacteriaceae Biochemical Card) containing 26 biochemical tests. To judge the accuracy of the AutoMicrobic system's identification in a hospital laboratory, 933 Enterobacteriaceae isolates were studied. The AutoMicrobic system provided the correct identification for 905 of the isola...

  15. The Lawrence Livermore National Laboratory Intelligent Actinide Analysis System

    International Nuclear Information System (INIS)

    Buckley, W.M.; Carlson, J.B.; Koenig, Z.M.

    1993-07-01

    The authors have developed an Intelligent Actinide Analysis System (IAAS) for Materials Management to use in the Plutonium Facility at the Lawrence Livermore National Laboratory. The IAAS will measure isotopic ratios for plutonium and other actinides non-destructively by high-resolution gamma-ray spectrometry. This system will measure samples in a variety of matrices and containers. It will provide automated control of many aspects of the instrument that previously required manual intervention and/or control. The IAAS is a second-generation instrument, based on the authors' experience in fielding gamma isotopic systems, that is intended to advance non-destructive actinide analysis for nuclear safeguards in performance, automation, ease of use, adaptability, systems integration and extensibility to robotics. It uses a client-server distributed monitoring and control architecture. The IAAS uses MGA 3 as the isotopic analysis code. The design of the IAAS reduces the need for operator intervention, operator training, and operator exposure

  16. Application node system image manager subsystem within a distributed function laboratory computer system

    International Nuclear Information System (INIS)

    Stubblefield, F.W.; Beck, R.D.

    1978-10-01

    A computer system to control and acquire data from one x-ray diffraction, five neutron scattering, and four neutron diffraction experiments located at the Brookhaven National Laboratory High Flux Beam Reactor has operated in a routine manner for over three years. The computer system is configured as a network of computer processors with the processor interconnections assuming a star-like structure. At the points of the star are the ten experiment control-data acquisition computers, referred to as application nodes. At the center of the star is a shared service node which supplies a set of shared services utilized by all of the application nodes. A program development node occupies one additional point of the star. The design and implementation of a network subsystem to support development and execution of operating systems for the application nodes is described. 6 figures, 1 table

  17. The radiological services laboratory

    International Nuclear Information System (INIS)

    Hardt, T.L.; Schutt, S.M.; Doran, K.S.; Dihel, D.L.; Lucas, R.O. II; Eifert, T.K.

    1992-01-01

    A new state of the art radiochemistry laboratory incorporating advanced design and environmental control elements has been constructed in Atlanta, Georgia. The design of the facility is oriented to the efficient production of analytical sample results which meet regulatory requirements while at the same time provides an atmosphere that is pleasurable for analysts and visitors alike. The laboratory building contains two separate and distinct laboratories under one roof. This allows the facility to handle samples with low levels of radioactivity on one side of the lab without fear of contamination of environmental work on the other side. Unlike most laboratories, this facility utilizes a scrubber system and liquid waste holdup system to prevent accidental releases to the environment. The potential spread of radioactive contamination is controlled through the use of negative pressure ventillation zones. Construction techniques, laboratory systems, instrumentation and ergonomic considerations will also be discussed. (author) 1 fig

  18. Power supplies for space systems quality assurance by Sandia Laboratories

    International Nuclear Information System (INIS)

    Hannigan, R.L.; Harnar, R.R.

    1976-07-01

    The Sandia Laboratories' participation in Quality Assurance programs for Radioisotopic Thermoelectric Generators which have been used in space systems over the past 10 years is summarized. Basic elements of this QA program are briefly described and recognition of assistance from other Sandia organizations is included. Descriptions of the various systems for which Sandia has had the QA responsibility are presented, including SNAP 19 (Nimbus, Pioneer, Viking), SNAP 27 (Apollo), Transit, Multi-Hundred Watt (LES 8/9 and MJS), and a new program, High-Performance Generator Mod 3. The outlook for Sandia participation in RTG programs for the next several years is noted

  19. Design and laboratory calibration of the compact pushbroom hyperspectral imaging system

    Science.gov (United States)

    Zhou, Jiankang; Ji, Yiqun; Chen, Yuheng; Chen, Xinhua; Shen, Weimin

    2009-11-01

    The designed hyperspectral imaging system is composed of three main parts, that is, optical subsystem, electronic subsystem and capturing subsystem. And a three-dimensional "image cube" can be obtained through push-broom. The fore-optics is commercial-off-the-shelf with high speed and three continuous zoom ratios. Since the dispersive imaging part is based on Offner relay configuration with an aberration-corrected convex grating, high power of light collection and variable view field are obtained. The holographic recording parameters of the convex grating are optimized, and the aberration of the Offner configuration dispersive system is balanced. The electronic system adopts module design, which can minimize size, mass, and power consumption. Frame transfer area-array CCD is chosen as the image sensor and the spectral line can be binned to achieve better SNR and sensitivity without any deterioration in spatial resolution. The capturing system based on the computer can set the capturing parameters, calibrate the spectrometer, process and display spectral imaging data. Laboratory calibrations are prerequisite for using precise spectral data. The spatial and spectral calibration minimize smile and keystone distortion caused by optical system, assembly and so on and fix positions of spatial and spectral line on the frame area-array CCD. Gases excitation lamp is used in smile calibration and the keystone calculation is carried out by different viewing field point source created by a series of narrow slit. The laboratory and field imaging results show that this pushbroom hyperspectral imaging system can acquire high quality spectral images.

  20. Design of mirrors and apodization functions in phase-induced amplitude apodization (PIAA) systems

    OpenAIRE

    Cady, E.

    2012-01-01

    Phase-induced amplitude apodization (PIAA) coronagraphs are a promising technology for imaging exoplanets, with the potential to detect Earth-like planets around Sun-like stars. A PIAA system nominally consists of a pair of mirrors which reshape incident light without attenuation, coupled with one or more apodizers to mitigate diffraction effects or provide additional beam-shaping to produce a desired output profile. We present a set of equations that allow apodizers to be chosen for any give...

  1. Using the e-Chasqui, web-based information system, to determine laboratory guidelines and data available to clinical staff.

    Science.gov (United States)

    Blaya, Joaquin A; Yagui, Martin; Contreras, Carmen C; Palma, Betty; Shin, Sonya S; Yale, Gloria; Suarez, Carmen; Fraser, Hamish S F

    2008-11-06

    13% of all drug susceptibility tests (DSTs) performed at a public laboratory in Peru were duplicate. To determine reasons for duplicate requests an online survey was implemented in the e-Chasqui laboratory information system. Results showed that 59.6% of tests were ordered because clinical staff was unaware of ordering guidelines or of a previous result. This shows a benefit of using a web-based system and the lack of laboratory information available to clinical staff in Peru.

  2. A Decade of Experience in Implementing Quality Management System at Radiochemistry and Environmental Laboratory (RAS)

    International Nuclear Information System (INIS)

    Norfaizal Mohamed; Nita Salina Abu Bakar; Zal U'yun Wan Mahmood; Wo, Y.M.; Abdul Kadir Ishak; Nurrul Assyikeen Md Jaffary; Noor Fadzilah Yusof

    2016-01-01

    Quality management system has been introduced to a few laboratories in the Malaysian Nuclear Agency (Nuclear Malaysia) for the purpose to enhance the delivery of quality services to customers. Radiochemistry and Environmental Laboratory (RAS) is a service center in Nuclear Malaysia has implemented a quality management system in procedures carried out and has obtained accreditation for MS ISO/ IEC 17025 since 8 December 2005. This paper is intended to share experiences RAS in implementing a quality management system in accordance with standard MS ISO/ IEC 17025 accreditation and managed to keep it to this day. In addition, the RAS achievements including issues and challenges in implementing the quality management system in the past 10 years will also be discussed. (author)

  3. Virtual Earth System Laboratory (VESL): A Virtual Research Environment for The Visualization of Earth System Data and Process Simulations

    Science.gov (United States)

    Cheng, D. L. C.; Quinn, J. D.; Larour, E. Y.; Halkides, D. J.

    2017-12-01

    The Virtual Earth System Laboratory (VESL) is a Web application, under continued development at the Jet Propulsion Laboratory and UC Irvine, for the visualization of Earth System data and process simulations. As with any project of its size, we have encountered both successes and challenges during the course of development. Our principal point of success is the fact that VESL users can interact seamlessly with our earth science simulations within their own Web browser. Some of the challenges we have faced include retrofitting the VESL Web application to respond to touch gestures, reducing page load time (especially as the application has grown), and accounting for the differences between the various Web browsers and computing platforms.

  4. Maui Space Surveillance System Satellite Categorization Laboratory

    Science.gov (United States)

    Deiotte, R.; Guyote, M.; Kelecy, T.; Hall, D.; Africano, J.; Kervin, P.

    The MSSS satellite categorization laboratory is a fusion of robotics and digital imaging processes that aims to decompose satellite photometric characteristics and behavior in a controlled setting. By combining a robot, light source and camera to acquire non-resolved images of a model satellite, detailed photometric analyses can be performed to extract relevant information about shape features, elemental makeup, and ultimately attitude and function. Using the laboratory setting a detailed analysis can be done on any type of material or design and the results cataloged in a database that will facilitate object identification by "curve-fitting" individual elements in the basis set to observational data that might otherwise be unidentifiable. Currently the laboratory has created, an ST-Robotics five degree of freedom robotic arm, collimated light source and non-focused Apogee camera have all been integrated into a MATLAB based software package that facilitates automatic data acquisition and analysis. Efforts to date have been aimed at construction of the lab as well as validation and verification of simple geometric objects. Simple tests on spheres, cubes and simple satellites show promising results that could lead to a much better understanding of non-resolvable space object characteristics. This paper presents a description of the laboratory configuration and validation test results with emphasis on the non-resolved photometric characteristics for a variety of object shapes, spin dynamics and orientations. The future vision, utility and benefits of the laboratory to the SSA community as a whole are also discussed.

  5. An improved data acquisition system at the Saskatchewan Accelerator Laboratory

    International Nuclear Information System (INIS)

    Norum, W.E.

    1994-01-01

    An improved data acquisition system has been in service at the Saskatchewan Accelerator Laboratory for the past 14 months. The system has shown itself to be reliable and easy to use having collected over 800 gigabytes of data for a number of experiments. The system is based on a VME front end computer acquiring data from CAMAC and FASTBUS modules and forwarding the data via an Ethernet connection to an acquisition workstation for archiving and on-line analysis. A multiprocessor real-time operating system in the front end computer makes increasing the performance of the system a simple matter of adding an additional processor to the VME chassis. Experimenters need only write a high-level description of their experiment which is transformed into a C program for the front end computer by a translation program. Special requirements are met by facilities for direct inclusion of user C or FORTRAN code

  6. Establishing Ebola Virus Disease (EVD diagnostics using GeneXpert technology at a mobile laboratory in Liberia: Impact on outbreak response, case management and laboratory systems strengthening.

    Directory of Open Access Journals (Sweden)

    Philomena Raftery

    2018-01-01

    Full Text Available The 2014-16 Ebola Virus Disease (EVD outbreak in West Africa highlighted the necessity for readily available, accurate and rapid diagnostics. The magnitude of the outbreak and the re-emergence of clusters of EVD cases following the declaration of interrupted transmission in Liberia, reinforced the need for sustained diagnostics to support surveillance and emergency preparedness. We describe implementation of the Xpert Ebola Assay, a rapid molecular diagnostic test run on the GeneXpert platform, at a mobile laboratory in Liberia and the subsequent impact on EVD outbreak response, case management and laboratory system strengthening. During the period of operation, site coordination, management and operational capacity was supported through a successful collaboration between Ministry of Health (MoH, World Health Organization (WHO and international partners. A team of Liberian laboratory technicians were trained to conduct EVD diagnostics and the laboratory had capacity to test 64-100 blood specimens per day. Establishment of the laboratory significantly increased the daily testing capacity for EVD in Liberia, from 180 to 250 specimens at a time when the effectiveness of the surveillance system was threatened by insufficient diagnostic capacity. During the 18 months of operation, the laboratory tested a total of 9,063 blood specimens, including 21 EVD positives from six confirmed cases during two outbreaks. Following clearance of the significant backlog of untested EVD specimens in November 2015, a new cluster of EVD cases was detected at the laboratory. Collaboration between surveillance and laboratory coordination teams during this and a later outbreak in March 2016, facilitated timely and targeted response interventions. Specimens taken from cases during both outbreaks were analysed at the laboratory with results informing clinical management of patients and discharge decisions. The GeneXpert platform is easy to use, has relatively low running

  7. Establishing Ebola Virus Disease (EVD) diagnostics using GeneXpert technology at a mobile laboratory in Liberia: Impact on outbreak response, case management and laboratory systems strengthening.

    Science.gov (United States)

    Raftery, Philomena; Condell, Orla; Wasunna, Christine; Kpaka, Jonathan; Zwizwai, Ruth; Nuha, Mahmood; Fallah, Mosoka; Freeman, Maxwell; Harris, Victoria; Miller, Mark; Baller, April; Massaquoi, Moses; Katawera, Victoria; Saindon, John; Bemah, Philip; Hamblion, Esther; Castle, Evelyn; Williams, Desmond; Gasasira, Alex; Nyenswah, Tolbert

    2018-01-01

    The 2014-16 Ebola Virus Disease (EVD) outbreak in West Africa highlighted the necessity for readily available, accurate and rapid diagnostics. The magnitude of the outbreak and the re-emergence of clusters of EVD cases following the declaration of interrupted transmission in Liberia, reinforced the need for sustained diagnostics to support surveillance and emergency preparedness. We describe implementation of the Xpert Ebola Assay, a rapid molecular diagnostic test run on the GeneXpert platform, at a mobile laboratory in Liberia and the subsequent impact on EVD outbreak response, case management and laboratory system strengthening. During the period of operation, site coordination, management and operational capacity was supported through a successful collaboration between Ministry of Health (MoH), World Health Organization (WHO) and international partners. A team of Liberian laboratory technicians were trained to conduct EVD diagnostics and the laboratory had capacity to test 64-100 blood specimens per day. Establishment of the laboratory significantly increased the daily testing capacity for EVD in Liberia, from 180 to 250 specimens at a time when the effectiveness of the surveillance system was threatened by insufficient diagnostic capacity. During the 18 months of operation, the laboratory tested a total of 9,063 blood specimens, including 21 EVD positives from six confirmed cases during two outbreaks. Following clearance of the significant backlog of untested EVD specimens in November 2015, a new cluster of EVD cases was detected at the laboratory. Collaboration between surveillance and laboratory coordination teams during this and a later outbreak in March 2016, facilitated timely and targeted response interventions. Specimens taken from cases during both outbreaks were analysed at the laboratory with results informing clinical management of patients and discharge decisions. The GeneXpert platform is easy to use, has relatively low running costs and can be

  8. Establishing Ebola Virus Disease (EVD) diagnostics using GeneXpert technology at a mobile laboratory in Liberia: Impact on outbreak response, case management and laboratory systems strengthening

    Science.gov (United States)

    Condell, Orla; Wasunna, Christine; Kpaka, Jonathan; Zwizwai, Ruth; Nuha, Mahmood; Fallah, Mosoka; Freeman, Maxwell; Harris, Victoria; Miller, Mark; Baller, April; Massaquoi, Moses; Katawera, Victoria; Saindon, John; Bemah, Philip; Hamblion, Esther; Castle, Evelyn; Williams, Desmond; Gasasira, Alex; Nyenswah, Tolbert

    2018-01-01

    The 2014–16 Ebola Virus Disease (EVD) outbreak in West Africa highlighted the necessity for readily available, accurate and rapid diagnostics. The magnitude of the outbreak and the re-emergence of clusters of EVD cases following the declaration of interrupted transmission in Liberia, reinforced the need for sustained diagnostics to support surveillance and emergency preparedness. We describe implementation of the Xpert Ebola Assay, a rapid molecular diagnostic test run on the GeneXpert platform, at a mobile laboratory in Liberia and the subsequent impact on EVD outbreak response, case management and laboratory system strengthening. During the period of operation, site coordination, management and operational capacity was supported through a successful collaboration between Ministry of Health (MoH), World Health Organization (WHO) and international partners. A team of Liberian laboratory technicians were trained to conduct EVD diagnostics and the laboratory had capacity to test 64–100 blood specimens per day. Establishment of the laboratory significantly increased the daily testing capacity for EVD in Liberia, from 180 to 250 specimens at a time when the effectiveness of the surveillance system was threatened by insufficient diagnostic capacity. During the 18 months of operation, the laboratory tested a total of 9,063 blood specimens, including 21 EVD positives from six confirmed cases during two outbreaks. Following clearance of the significant backlog of untested EVD specimens in November 2015, a new cluster of EVD cases was detected at the laboratory. Collaboration between surveillance and laboratory coordination teams during this and a later outbreak in March 2016, facilitated timely and targeted response interventions. Specimens taken from cases during both outbreaks were analysed at the laboratory with results informing clinical management of patients and discharge decisions. The GeneXpert platform is easy to use, has relatively low running costs and can

  9. Managing laboratory automation

    OpenAIRE

    Saboe, Thomas J.

    1995-01-01

    This paper discusses the process of managing automated systems through their life cycles within the quality-control (QC) laboratory environment. The focus is on the process of directing and managing the evolving automation of a laboratory; system examples are given. The author shows how both task and data systems have evolved, and how they interrelate. A BIG picture, or continuum view, is presented and some of the reasons for success or failure of the various examples cited are explored. Fina...

  10. Customized laboratory information management system for a clinical and research leukemia cytogenetics laboratory.

    Science.gov (United States)

    Bakshi, Sonal R; Shukla, Shilin N; Shah, Pankaj M

    2009-01-01

    We developed a Microsoft Access-based laboratory management system to facilitate database management of leukemia patients referred for cytogenetic tests in regards to karyotyping and fluorescence in situ hybridization (FISH). The database is custom-made for entry of patient data, clinical details, sample details, cytogenetics test results, and data mining for various ongoing research areas. A number of clinical research laboratoryrelated tasks are carried out faster using specific "queries." The tasks include tracking clinical progression of a particular patient for multiple visits, treatment response, morphological and cytogenetics response, survival time, automatic grouping of patient inclusion criteria in a research project, tracking various processing steps of samples, turn-around time, and revenue generated. Since 2005 we have collected of over 5,000 samples. The database is easily updated and is being adapted for various data maintenance and mining needs.

  11. Stardust in Laboratory & Evolution of Early Solar System f y S Sy

    Indian Academy of Sciences (India)

    kkmarhas

    2008-09-13

    Sep 13, 2008 ... Picture book of presolar grains! Graphite grains. Silicon carbide. Corundum. 500nm. Spinel grains. Silicate grain. Silicon Nitride. Spinel grains. Silicate grain. Silicon Nitride. Presolar Grains &. Evolution of Early Solar System. Kuljeet K. Marhas. 13th September 2008. Physical Research Laboratory ...

  12. Radioanalytical laboratory quality control: Current status at Tennessee Valley Authority's western area radiological laboratory

    International Nuclear Information System (INIS)

    Rogers, W.J.

    1986-01-01

    The Tennessee Valley Authority operates a laboratory for radiological analysis of nuclear plant environmental monitoring samples and also for analysis of environmental samples from uranium mining and milling decommissioning activities. The laboratory analyzes some 9,000 samples per year and employs approximately 20 people as analysts, sample collectors, and supervisory staff members. The laboratory is supported by a quality control section of four people involved in computer support, production of radioactive standards, quality control data assessment and reporting, and internal reviews of compliance. The entire laboratory effort is controlled by 60 written procedures or standards. An HP-1000 computer and data base software are used to schedule samples for collection, assign and schedule samples within the laboratory for preparation and analysis, calculate sample activity, review data, and report data outside the laboratory. Gamma spectroscopy systems with nine germanium detectors, an alpha spectroscopy system, five alpha/beta counters, two liquid scintillation counters, four beta-gamma coincidence systems, two sodium iodide single-channel systems, and four photomultipliers for counting Lucas cells are all employed. Each device has various calibration and quality control checks performed on it routinely. Logbooks and control charts are in use for each instrument

  13. Seismic evaluation of existing liquid low level waste system at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Hammond, C.R.; Holmes, R.M.; Kincaid, J.H.; Singhal, M.K.; Stockdale, B.I.; Walls, J.C.; Webb, D.S.

    1993-01-01

    The existing liquid low level waste (LLLW) system at the Oak Ridge National Laboratory is used to collect, neutralize, concentrate, and store the radioactive and toxic waste from various sources at the Laboratory. The waste solutions are discharged from source facilities to individual collection tanks, transferred by underground piping to an evaporator facility for concentration, and pumped through the underground piping to storage in underground tanks. The existing LLLW system was installed in the 1950s with several system additions up to the present. The worst-case accident postulated is an earthquake of sufficient magnitude to rupture the tanks and/or piping so as to damage the containment integrity to the surrounding soil and environment. The objective of an analysis of the system is to provide a level of confidence in the seismic resistance of the LLLW system to withstand the postulated earthquake

  14. Laboratory and software applications for clinical trials: the global laboratory environment.

    Science.gov (United States)

    Briscoe, Chad

    2011-11-01

    The Applied Pharmaceutical Software Meeting is held annually. It is sponsored by The Boston Society, a not-for-profit organization that coordinates a series of meetings within the global pharmaceutical industry. The meeting generally focuses on laboratory applications, but in recent years has expanded to include some software applications for clinical trials. The 2011 meeting emphasized the global laboratory environment. Global clinical trials generate massive amounts of data in many locations that must be centralized and processed for efficient analysis. Thus, the meeting had a strong focus on establishing networks and systems for dealing with the computer infrastructure to support such environments. In addition to the globally installed laboratory information management system, electronic laboratory notebook and other traditional laboratory applications, cloud computing is quickly becoming the answer to provide efficient, inexpensive options for managing the large volumes of data and computing power, and thus it served as a central theme for the meeting.

  15. Improved Specimen-Referral System and Increased Access to Quality Laboratory Services in Ethiopia: The Role of the Public-Private Partnership.

    Science.gov (United States)

    Kebede, Yenew; Fonjungo, Peter N; Tibesso, Gudeta; Shrivastava, Ritu; Nkengasong, John N; Kenyon, Thomas; Kebede, Amha; Gadde, Renuka; Ayana, Gonfa

    2016-04-15

    Nonstandardized specimen-transport logistics, lack of laboratory personnel to transport specimens, lack of standard specimen containers, and long turnaround time (TAT) hindered access to quality laboratory services. The objective of the Becton, Dickinson, and Company (BD)-US President's Emergency Plan for AIDS Relief (PEPFAR) Public-Private Partnership (PPP) was to support country-specific programs to develop integrated laboratory systems, services, and quality improvement strategies, with an emphasis on strengthening the specimen-referral system (SRS). In 2007, through the Centers for Disease Control and Prevention (CDC), the Ethiopian Public Health Institute (EPHI) joined with the BD-PEPFAR PPP to strengthen laboratory systems. A joint planning and assessment committee identified gaps in the SRS for prioritization and intervention and piloted the system in Addis Ababa and Amhara Region. The PPP established standardized, streamlined specimen logistics, using the Ethiopian Postal Service Enterprise to support a laboratory network in which 554 facilities referred specimens to 160 laboratories. The PPP supported procuring 400 standard specimen containers and the training of 586 laboratory personnel and 81 postal workers. The average TAT was reduced from 7 days (range, 2-14 days) to 2 days (range, 1-3 days) in Addis Ababa and from 10 days (range, 6-21 days) to 5 days (range, 2-6 days) in Amhara Region. This study highlights the feasibility and untapped potential of PPPs to strengthen laboratory systems. This planned and structured approach to improving specimen referral enhanced access to quality laboratory services. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  16. The mechanical design of CHARIS: an exoplanet IFS for the Subaru Telescope

    Science.gov (United States)

    Galvin, Michael B.; Carr, Michael A.; Groff, Tyler D.; Kasdin, N. Jeremy; Fagan, Radford; Hayashi, Masahiko; Takato, Naruhisa

    2014-07-01

    Princeton University is designing and building an integral field spectrograph (IFS), the Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS), for integration with the Subaru Corona Extreme Adaptive Optics (SCExAO) system and the AO188 adaptive optics system on the Subaru Telescope. CHARIS and SCExAO will measure spectra of hot, young Jovian planets in a coronagraphic image across J, H, and K bands down to an 80 milliarcsecond inner working angle. Here we present the current status of the mechanical design of the CHARIS instrument.

  17. The evolution of a LIMS (laboratory information management system). [Chemical analyses at BNFL

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1992-04-01

    Changes in the world and United Kingdom markets for nuclear fuels during the 1990s have prompted British Nuclear Fuels (BNFL) to maximise cost effectiveness in its Chemical and Metallurgical Services department. A laboratory information management system (LIMS) was introduced in order to keep records of analytical techniques and equipment up to date by coordinating various computer systems. Wherever possible automated systems have replaced traditional, labour intensive techniques. So successful has the LIMS system been, that the team now hopes to expand into expert systems. (UK).

  18. Regional Educational Laboratory Electronic Network Phase 2 System

    Science.gov (United States)

    Cradler, John

    1995-01-01

    The Far West Laboratory in collaboration with the other regional educational laboratories is establishing a regionally coordinated telecommunication network to electronically interconnect each of the ten regional laboratories with educators and education stakeholders from the school to the state level. For the national distributed information database, each lab is working with mid-level networks to establish a common interface for networking throughout the country and include topics of importance to education reform as assessment and technology planning.

  19. Motion control system of MAX IV Laboratory soft x-ray beamlines

    International Nuclear Information System (INIS)

    Sjöblom, Peter; Lindberg, Mirjam; Forsberg, Johan; Persson, Andreas G.; Urpelainen, Samuli; Såthe, Conny

    2016-01-01

    At the MAX IV Laboratory, five new soft x-ray beamlines are under development. The first is Species and it will be used to develop and set the standard of the control system, which will be common across the facility. All motion axes at MAX IV will be motorized using stepper motors steered by the IcePAP motion controller and a mixture of absolute and incremental encoders following a predefined coordinate system. The control system software is built in Tango and uses the Python-based Sardana framework. The user controls the entire beamline through a synoptic overview and Sardana is used to run the scans.

  20. Motion control system of MAX IV Laboratory soft x-ray beamlines

    Energy Technology Data Exchange (ETDEWEB)

    Sjöblom, Peter, E-mail: peter.sjoblom@maxlab.lu.se; Lindberg, Mirjam, E-mail: mirjam.lindberg@maxlab.lu.se; Forsberg, Johan, E-mail: johan.forsberg@maxlab.lu.se; Persson, Andreas G., E-mail: andreas-g.persson@maxlab.lu.se; Urpelainen, Samuli, E-mail: samuli.urpelainen@maxlab.lu.se; Såthe, Conny, E-mail: conny.sathe@maxlab.lu.se [MAX IV Laboratory, Photongatan 2, 225 92 Lund (Sweden)

    2016-07-27

    At the MAX IV Laboratory, five new soft x-ray beamlines are under development. The first is Species and it will be used to develop and set the standard of the control system, which will be common across the facility. All motion axes at MAX IV will be motorized using stepper motors steered by the IcePAP motion controller and a mixture of absolute and incremental encoders following a predefined coordinate system. The control system software is built in Tango and uses the Python-based Sardana framework. The user controls the entire beamline through a synoptic overview and Sardana is used to run the scans.

  1. [Future roles of clinical laboratories and clinical laboratory technologists in university hospitals].

    Science.gov (United States)

    Yokota, Hiromitsu; Yatomi, Yutaka

    2013-08-01

    Clinical laboratories in university hospitals should be operated with a good balance of medical practice, education, research, and management. The role of a clinical laboratory is to promptly provide highly reliable laboratory data to satisfy the needs of clinicians involved in medical practice and health maintenance of patients. Improvement and maintenance of the quality of the laboratory staff and environment are essential to achieve this goal. In order to implement these requirements efficiently, an appropriate quality management system should be introduced and established, and evaluated objectively by a third party (e.g. by obtaining ISO 15189 certification). ISO 15189 is an international standard regarding the quality and competence of clinical laboratories, and specifies a review of the efficient operational system and technical requirements such as competence in implementing practical tests and calibration. This means the results of laboratory tests reported by accredited laboratories withstand any international evaluation, which is very important to assure the future importance of the existence and management of clinical laboratories as well as internationalization of medical practice. "Education" and "research" have important implications in addition to "medical practice" and "management", as the roles that clinical laboratories should play in university hospitals. University hospital laboratories should be operated by keeping these four factors in good balance. Why are "education" and "research" required in addition to "medical practice" services? If individual clinical laboratory technologists can provide an appropriate response to this question, the importance of the existence of clinical laboratories would be reinforced, without being compromised.

  2. Development of the environmental management integrated baseline at the Idaho National Engineering Laboratory using systems engineering

    International Nuclear Information System (INIS)

    Murphy, J.A.; Caliva, R.M.; Wixson, J.R.

    1997-01-01

    The Idaho National Engineering Laboratory (INEL) is one of many Department of Energy (DOE) national laboratories that has been performing environmental cleanup and stabilization, which was accelerated upon the end of the cold war. In fact, the INEL currently receives two-thirds of its scope to perform these functions. However, the cleanup is a highly interactive system that creates an opportunity for systems engineering methodology to be employed. At the INEL, a group called EM (Environmental Management) Integration has been given this charter along with a small core of systems engineers. This paper discusses the progress to date of converting the INEL legacy system into one that uses the systems engineering discipline as the method to ensure that external requirements are met

  3. Mapping the solar wind HI outflow velocity in the inner heliosphere by coronagraphic ultraviolet and visible-light observations

    Science.gov (United States)

    Dolei, S.; Susino, R.; Sasso, C.; Bemporad, A.; Andretta, V.; Spadaro, D.; Ventura, R.; Antonucci, E.; Abbo, L.; Da Deppo, V.; Fineschi, S.; Focardi, M.; Frassetto, F.; Giordano, S.; Landini, F.; Naletto, G.; Nicolini, G.; Nicolosi, P.; Pancrazzi, M.; Romoli, M.; Telloni, D.

    2018-05-01

    We investigated the capability of mapping the solar wind outflow velocity of neutral hydrogen atoms by using synergistic visible-light and ultraviolet observations. We used polarised brightness images acquired by the LASCO/SOHO and Mk3/MLSO coronagraphs, and synoptic Lyα line observations of the UVCS/SOHO spectrometer to obtain daily maps of solar wind H I outflow velocity between 1.5 and 4.0 R⊙ on the SOHO plane of the sky during a complete solar rotation (from 1997 June 1 to 1997 June 28). The 28-days data sequence allows us to construct coronal off-limb Carrington maps of the resulting velocities at different heliocentric distances to investigate the space and time evolution of the outflowing solar plasma. In addition, we performed a parameter space exploration in order to study the dependence of the derived outflow velocities on the physical quantities characterising the Lyα emitting process in the corona. Our results are important in anticipation of the future science with the Metis instrument, selected to be part of the Solar Orbiter scientific payload. It was conceived to carry out near-sun coronagraphy, performing for the first time simultaneous imaging in polarised visible-light and ultraviolet H I Lyα line, so providing an unprecedented view of the solar wind acceleration region in the inner corona. The movie (see Sect. 4.2) is available at https://www.aanda.org

  4. Space-based Coronagraphic Imaging Polarimetry of the TW Hydrae Disk: Shedding New Light on Self-shadowing Effects

    Science.gov (United States)

    Poteet, Charles A.; Chen, Christine H.; Hines, Dean C.; Perrin, Marshall D.; Debes, John H.; Pueyo, Laurent; Schneider, Glenn; Mazoyer, Johan; Kolokolova, Ludmilla

    2018-06-01

    We present Hubble Space Telescope Near-Infrared Camera and Multi-Object Spectrometer coronagraphic imaging polarimetry of the TW Hydrae protoplanetary disk. These observations simultaneously measure the total and polarized intensity, allowing direct measurement of the polarization fraction across the disk. In accord with the self-shadowing hypothesis recently proposed by Debes et al., we find that the total and polarized intensity of the disk exhibits strong azimuthal asymmetries at projected distances consistent with the previously reported bright and dark ring-shaped structures (∼45–99 au). The sinusoidal-like variations possess a maximum brightness at position angles near ∼268°–300° and are up to ∼28% stronger in total intensity. Furthermore, significant radial and azimuthal variations are also detected in the polarization fraction of the disk. In particular, we find that regions of lower polarization fraction are associated with annuli of increased surface brightness, suggesting that the relative proportion of multiple-to-single scattering is greater along the ring and gap structures. Moreover, we find strong (∼20%) azimuthal variation in the polarization fraction along the shadowed region of the disk. Further investigation reveals that the azimuthal variation is not the result of disk flaring effects, but is instead from a decrease in the relative contribution of multiple-to-single scattering within the shadowed region. Employing a two-layer scattering surface, we hypothesize that the diminished contribution in multiple scattering may result from shadowing by an inclined inner disk, which prevents direct stellar light from reaching the optically thick underlying surface component.

  5. Reliability research on nuclear I and C system at KAIST NIC laboratory

    International Nuclear Information System (INIS)

    Seong, Poong-Hyun

    1996-01-01

    As the use of computer systems becomes popular in nuclear industry, reliability assurance of digitized nuclear instrumentation and control systems is becoming one of hot issues. Some issues on this are S/W verification and validation, reliability estimation of digital systems, development strategy of high integrity knowledge base for expert systems, and so on. In order to address these issues, the Nuclear Instrumentation and Control (NIC) laboratory at KAIST is conducting some research projects. This paper describes some highlights of these research activities. The final goal of these research activities is to develop some useful methodologies and tools for development of dependable digital nuclear instrument and control systems. (author)

  6. Segmented Aperture Interferometric Nulling Testbed (SAINT) II: component systems update

    Science.gov (United States)

    Hicks, Brian A.; Bolcar, Matthew R.; Helmbrecht, Michael A.; Petrone, Peter; Burke, Elliot; Corsetti, James; Dillon, Thomas; Lea, Andrew; Pellicori, Samuel; Sheets, Teresa; Shiri, Ron; Agolli, Jack; DeVries, John; Eberhardt, Andrew; McCabe, Tyler

    2017-09-01

    This work presents updates to the coronagraph and telescope components of the Segmented Aperture Interferometric Nulling Testbed (SAINT). The project pairs an actively-controlled macro-scale segmented mirror with the Visible Nulling Coronagraph (VNC) towards demonstrating capabilities for the future space observatories needed to directly detect and characterize a significant sample of Earth-sized worlds around nearby stars in the quest for identifying those which may be habitable and possibly harbor life. Efforts to improve the VNC wavefront control optics and mechanisms towards repeating narrowband results are described. A narrative is provided for the design of new optical components aimed at enabling broadband performance. Initial work with the hardware and software interface for controlling the segmented telescope mirror is also presented.

  7. A laboratory information management system for DNA barcoding workflows.

    Science.gov (United States)

    Vu, Thuy Duong; Eberhardt, Ursula; Szöke, Szániszló; Groenewald, Marizeth; Robert, Vincent

    2012-07-01

    This paper presents a laboratory information management system for DNA sequences (LIMS) created and based on the needs of a DNA barcoding project at the CBS-KNAW Fungal Biodiversity Centre (Utrecht, the Netherlands). DNA barcoding is a global initiative for species identification through simple DNA sequence markers. We aim at generating barcode data for all strains (or specimens) included in the collection (currently ca. 80 k). The LIMS has been developed to better manage large amounts of sequence data and to keep track of the whole experimental procedure. The system has allowed us to classify strains more efficiently as the quality of sequence data has improved, and as a result, up-to-date taxonomic names have been given to strains and more accurate correlation analyses have been carried out.

  8. A new and compact system at the AMS laboratory in Bucharest

    Science.gov (United States)

    Stan-Sion, C.; Enachescu, M.; Petre, A. R.; Simion, C. A.; Calinescu, C. I.; Ghita, D. G.

    2015-10-01

    AMS research started more than 15 years ago at our National Institute for Physics and Nuclear Engineering (IFIN-HH), Bucharest. A first facility was constructed based on our multipurpose 9 MV tandem accelerator and was upgraded several times. In May 2012 a new Cockcroft Walton type 1 MV HVEE tandetron AMS system, was commissioned. Two chemistry laboratories were constructed and are routinely performing the target preparation for carbon dating and for other isotope applications such as for geology, environment physics, medicine and forensic physics. Performance parameters of the new system are shown.

  9. A new and compact system at the AMS laboratory in Bucharest

    Energy Technology Data Exchange (ETDEWEB)

    Stan-Sion, C.; Enachescu, M.; Petre, A.R.; Simion, C.A.; Calinescu, C.I.; Ghita, D.G.

    2015-10-15

    AMS research started more than 15 years ago at our National Institute for Physics and Nuclear Engineering (IFIN-HH), Bucharest. A first facility was constructed based on our multipurpose 9 MV tandem accelerator and was upgraded several times. In May 2012 a new Cockcroft Walton type 1 MV HVEE tandetron AMS system, was commissioned. Two chemistry laboratories were constructed and are routinely performing the target preparation for carbon dating and for other isotope applications such as for geology, environment physics, medicine and forensic physics. Performance parameters of the new system are shown.

  10. Design demonstrations for Category B tank systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1992-07-01

    This document presents design demonstrations conducted of liquid low-level waste (LLLW) storage tank systems located at the Oak Ridge National Laboratory (ORNL). ORNL has conducted research in energy related fields since 1943. The facilities used to conduct the research include nuclear reactors, chemical pilot plants, research laboratories, radioisotope production laboratories, and support facilities. These facilities have produced a variety of radioactive and/or hazardous wastes. These wastes have been stored and transported through an extensive network of piping and tankage. Demonstration of the design of these tank systems has been stipulated by the Federal Facility Agreement (FFA) between the US Environmental Protection Agency (EPA) - Region IV; the Tennessee Department of Environment and Conservation (TDEC); and the DOE. The FFA establishes four categories of tanks. These are: Category A -- New or Replacement Tank Systems with Secondary Containment; Category B -- Existing Tank Systems with Secondary Containment; Category C -- Existing Tank Systems without Secondary Containment; and Category D -- Existing Tank Systems without Secondary Containment that are; Removed from Service. This document provides a design demonstration of the secondary containment and ancillary equipment of 11 tank systems listed in the FFA as Category ''B.'' The design demonstration for each tank is presented in Section 2. The design demonstrations were developed using information obtained from the design drawings (as-built when available), construction specifications, and interviews with facility operators. The assessments assume that each tank system was constructed in accordance with the design drawings and construction specifications for that system unless specified otherwise. Each design demonstration addresses system conformance to the requirements of the FFA (Appendix F, Subsection C)

  11. Integrating a FISH imaging system into the cytology laboratory

    Directory of Open Access Journals (Sweden)

    Denice Smith G

    2010-01-01

    Full Text Available We have implemented an interactive imaging system for the interpretation of UroVysion fluorescence in situ hybridization (FISH to improve throughput, productivity, quality control and diagnostic accuracy. We describe the Duet imaging system, our experiences with implementation, and outline the financial investment, space requirements, information technology needs, validation, and training of cytotechnologists needed to integrate such a system into a cytology laboratory. Before purchasing the imaging system, we evaluated and validated the instrument at our facility. Implementation required slide preparation changes, IT modifications, development of training programs, and revision of job descriptions for cytotechnologists. A darkened room was built to house the automated scanning station and microscope, as well as two imaging stations. IT changes included generation of storage for archival images on the LAN, addition of external hard drives for back-up, and changes to cable connections for communication between remote locations. Training programs for cytotechnologists, and pathologists/fellows/residents were developed, and cytotechnologists were integrated into multiple steps of the process. The imaging system has resulted in increased productivity for pathologists, concomitant with an expanded role of cytotechnologists in multiple critical steps, including FISH, scan setup, reclassification, and initial interpretation.

  12. Los Alamos National Laboratory's Mobile Real Time Radiography System

    International Nuclear Information System (INIS)

    Vigil, J.; Taggart, D.; Betts, S.; Mendez, J.; Rael, C.; Martinez, F.

    1997-01-01

    A 450-KeV Mobile Real Time Radiography (RTR) System was delivered to Los Alamos National Laboratory (LANL) in January 1996. It was purchased to inspect containers of radioactive waste produced at (LANL). Since its delivery it has been used to radiograph greater than 600 drums of radioactive waste at various LANL sites. It has the capability of inspecting waste containers of various sizes. It has three independent X-Ray acquisition formats. The primary system used is a 12 in. image intensifier, the second is a 36 in. linear diode array (LDA) and the last is an open system. It is fully self contained with on board generator, HVAC and a fire suppression system. It is on a 53 ft long X 8 ft. wide X 14 ft. high trailer that can be moved over any highway requiring only a easily obtainable overweight permit because it weighs approximately 38 tons. It was built to conform to industry standards for a cabinet system which does not require an exclusion zone. The fact that this unit is mobile has allowed us to operate where the waste is stored, rather than having to move the waste to a fixed facility

  13. Development of waste chargeback systems at the Idaho National Engineering Laboratory (INEL)

    International Nuclear Information System (INIS)

    Piscitella, R.R.

    1996-02-01

    Chargeback systems have been discussed (and cussed), tried, modified, and in some cases, successfully implemented in the DOE complex over the years. With the current emphasis on ''Doing business like a private company,'' there has been renewed interest at the Idaho National Engineering Laboratory (INEL) in implementing chargeback systems for waste management activities. The most recent activities relating to chargeback at the INEL started the summer of 1995 with direction from waste operations management to develop and pilot test a chargeback system. This paper presents the results of this effort to date

  14. Microgravity Emissions Laboratory (MEL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Microgravity Emissions Laboratory (MEL) utilizes a low-frequency acceleration measurement system for the characterization of rigid body inertial forces generated...

  15. Federal laboratories for the 21st century

    Energy Technology Data Exchange (ETDEWEB)

    Gover, J. [Sandia National Labs., Albuquerque, NM (United States); Huray, P.G. [Univ. of South Carolina, Columbia, SC (United States)

    1998-04-01

    Federal laboratories have successfully filled many roles for the public; however, as the 21st Century nears it is time to rethink and reevaluate how Federal laboratories can better support the public and identify new roles for this class of publicly-owned institutions. The productivity of the Federal laboratory system can be increased by making use of public outcome metrics, by benchmarking laboratories, by deploying innovative new governance models, by partnerships of Federal laboratories with universities and companies, and by accelerating the transition of federal laboratories and the agencies that own them into learning organizations. The authors must learn how government-owned laboratories in other countries serve their public. Taiwan`s government laboratory, Industrial Technology Research Institute, has been particularly successful in promoting economic growth. It is time to stop operating Federal laboratories as monopoly institutions; therefore, competition between Federal laboratories must be promoted. Additionally, Federal laboratories capable of addressing emerging 21st century public problems must be identified and given the challenge of serving the public in innovative new ways. Increased investment in case studies of particular programs at Federal laboratories and research on the public utility of a system of Federal laboratories could lead to increased productivity of laboratories. Elimination of risk-averse Federal laboratory and agency bureaucracies would also have dramatic impact on the productivity of the Federal laboratory system. Appropriately used, the US Federal laboratory system offers the US an innovative advantage over other nations.

  16. [Quality use of commercial laboratory for clinical testing services - considering laboratory's role].

    Science.gov (United States)

    Ogawa, Shinji

    2014-12-01

    The number of commercial laboratories for clinical testing in Japan run privately has decreased to about 30 companies, and their business is getting tougher. Branch Lab. and FMS businesses have not expanded recently due to the new reimbursement system which adds an additional sample management fee, becoming effective in 2010. This presentation gives an outline of each role for hospital and commercial laboratories, and their pros & cons considering the current medical situation. Commercial laboratories have investigated how to utilize ICT systems for sharing test information between hospitals and our facilities. It would be very helpful to clarify issues for each hospital. We will develop and create new values for clinical laboratory testing services and forge mutually beneficial relationships with medical institutions. (Review).

  17. Managing laboratory automation.

    Science.gov (United States)

    Saboe, T J

    1995-01-01

    This paper discusses the process of managing automated systems through their life cycles within the quality-control (QC) laboratory environment. The focus is on the process of directing and managing the evolving automation of a laboratory; system examples are given. The author shows how both task and data systems have evolved, and how they interrelate. A BIG picture, or continuum view, is presented and some of the reasons for success or failure of the various examples cited are explored. Finally, some comments on future automation need are discussed.

  18. Laboratory versus industrial cutting force sensor in tool condition monitoring system

    International Nuclear Information System (INIS)

    Szwajka, K

    2005-01-01

    Research works concerning the utilisation of cutting force measures in tool condition monitoring usually present results and deliberations based on laboratory sensors. These sensors are too fragile to be used in industrial practice. Industrial sensors employed on the factory floor are less accurate, and this must be taken into account when creating a tool condition monitoring strategy. Another drawback of most of these works is that constant cutting parameters are used for the entire tool life. This does not reflect industrial practice where the same tool is used at different feeds and depths of cut in sequential passes. This paper presents a comparison of signals originating from laboratory and industrial cutting force sensors. The usability of the sensor output was studied during a laboratory simulation of industrial cutting conditions. Instead of building mathematical models for the correlation between tool wear and cutting force, an FFBP artificial neural network was used to find which combination of input data would provide an acceptable estimation of tool wear. The results obtained proved that cross talk between channels has an important influence on cutting force measurements, however this input configuration can be used for a tool condition monitoring system

  19. Summarizing documentation of the laboratory automation system RADAR for the analytical services of a nuclear fuel reprocessing facility

    International Nuclear Information System (INIS)

    Brandenburg, G.; Brocke, W.; Brodda, B.G.; Buerger, K.; Halling, H.; Heer, H.; Puetz, K.; Schaedlich, W.; Watzlawik, K.H.

    1981-12-01

    The essential tasks of the system are on-line open-loop process control based on in-line measurements and automation of the off-line analytical laboratory. The in-line measurements (at 55 tanks of the chemical process area) provide density-, liquid-, level-, and temperature values. The concentration value of a single component may easily be determined, if the solution consists of no more than two phases. The automation of the off-line analytical laboratory contains laboratory organization including sample management and data organization and computer-aided sample transportation control, data acquisition and data processing at chemical and nuclear analytical devices. The computer system consists of two computer-subsystems: a front end system for sample central registration and in-line process control and a central size system for the off-line analytical tasks. The organization of the application oriented system uses a centralized data base. Similar data processing functions concerning different analytical management tasks are structured into the following subsystem: man machine interface, interrupt- and data acquisition system, data base, protocol service and data processing. The procedures for the laboratory management (organization and experiment sequences) are defined by application data bases. Following the project phases, engineering requirements-, design-, assembly-, start up- and test run phase are described. In addition figures on expenditure and experiences are given and the system concept is discussed. (orig./HP) [de

  20. Laboratory robotics projects in the Analytical Development Division at the Savannah River Laboratory

    International Nuclear Information System (INIS)

    Lien, O.G.; Steele, A.W.

    1986-01-01

    To encourage the application of robotics technology for routine radiobench applications, a laboratory dedicated to the research and development of contained robotic systems is being constructed. The facility will have several robots located in laminar flow hoods, and the hoods are being designed to allow the possibility for multiple robots to work together. This paper presents both the design features of the hoods and the general layout of the laboratory, and also discusses an application of a robotic system for the routine nuclear counting of gamma tube samples. The gamma tube system is presently operating in one of the routine analysis laboratories. 5 figs

  1. Laboratory information management system for membrane protein structure initiative--from gene to crystal.

    Science.gov (United States)

    Troshin, Petr V; Morris, Chris; Prince, Stephen M; Papiz, Miroslav Z

    2008-12-01

    Membrane Protein Structure Initiative (MPSI) exploits laboratory competencies to work collaboratively and distribute work among the different sites. This is possible as protein structure determination requires a series of steps, starting with target selection, through cloning, expression, purification, crystallization and finally structure determination. Distributed sites create a unique set of challenges for integrating and passing on information on the progress of targets. This role is played by the Protein Information Management System (PIMS), which is a laboratory information management system (LIMS), serving as a hub for MPSI, allowing collaborative structural proteomics to be carried out in a distributed fashion. It holds key information on the progress of cloning, expression, purification and crystallization of proteins. PIMS is employed to track the status of protein targets and to manage constructs, primers, experiments, protocols, sample locations and their detailed histories: thus playing a key role in MPSI data exchange. It also serves as the centre of a federation of interoperable information resources such as local laboratory information systems and international archival resources, like PDB or NCBI. During the challenging task of PIMS integration, within the MPSI, we discovered a number of prerequisites for successful PIMS integration. In this article we share our experiences and provide invaluable insights into the process of LIMS adaptation. This information should be of interest to partners who are thinking about using LIMS as a data centre for their collaborative efforts.

  2. Upgrading the control system for the Accelerators at the Svedberg Laboratory

    International Nuclear Information System (INIS)

    Gajewski, K.J.; Thuresson, L.; Johansson, O.

    1992-01-01

    Two accelerators at The Svedberg Laboratory in Uppsala, the Gustaf Werner cyclotron and the CELSIUS ring, will get a new control system. At present both the cyclotron and the ring have their own control systems based on S99 and PDP-11 minicomputers respectively. There are also a number of subsystems which are controlled separately from the stand-alone PC based consoles (ECR ion source, electron cooler, vacuum system). The goal of the rejuvenation is to integrate all existing control systems and provide the new system with an uniform operators interface based on workstations. The obsolete S99 microcomputers will be substituted with a VME system and all subsystems will be connected to the Ethernet. The upgrade strategy enabling the transformation of the system without any long shut-down period is discussed. Hardware and software planned for the upgrade is presented together with a discussion of expected problems. (author)

  3. Importance of Public-Private Partnerships: Strengthening Laboratory Medicine Systems and Clinical Practice in Africa.

    Science.gov (United States)

    Shrivastava, Ritu; Gadde, Renuka; Nkengasong, John N

    2016-04-15

    After the launch of the US President's Emergency Plan for AIDS Relief in 2003, it became evident that inadequate laboratory systems and services would severely limit the scale-up of human immunodeficiency virus infection prevention, care, and treatment programs. Thus, the Office of the US Global AIDS Coordinator, Centers for Disease Control and Prevention, and Becton, Dickinson and Company developed a public-private partnership (PPP). Between October 2007 and July 2012, the PPP combined the competencies of the public and private sectors to boost sustainable laboratory systems and develop workforce skills in 4 African countries. Key accomplishments of the initiative include measurable and scalable outcomes to strengthen national capacities to build technical skills, develop sample referral networks, map disease prevalence, support evidence-based health programming, and drive continuous quality improvement in laboratories. This report details lessons learned from our experience and a series of recommendations on how to achieve successful PPPs. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  4. Pacific Northwest National Laboratory Facility Radionuclide Emissions Units and Sampling Systems

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, J. Matthew; Brown, Jason H.; Walker, Brian A.

    2012-04-01

    Battelle–Pacific Northwest Division operates numerous research and development (R&D) laboratories in Richland, WA, including those associated with Pacific Northwest National Laboratory (PNNL) on the U.S. Department of Energy (DOE)’s Hanford Site and PNNL Site that have the potential for radionuclide air emissions. The National Emission Standard for Hazardous Air Pollutants (NESHAP 40 CFR 61, Subparts H and I) requires an assessment of all emission units that have the potential for radionuclide air emissions. Potential emissions are assessed annually by PNNL staff members. Sampling, monitoring, and other regulatory compliance requirements are designated based upon the potential-to-emit dose criteria found in the regulations. The purpose of this document is to describe the facility radionuclide air emission sampling program and provide current and historical facility emission unit system performance, operation, and design information. For sampled systems, a description of the buildings, exhaust units, control technologies, and sample extraction details is provided for each registered emission unit. Additionally, applicable stack sampler configuration drawings, figures, and photographs are provided. Deregistered emission unit details are provided as necessary for up to 5 years post closure.

  5. [View of a Laboratory Physician on the Present and Future of Clinical Laboratories].

    Science.gov (United States)

    Matsuo, Shuji

    2014-10-01

    It is meaningful to discuss the "present and future of laboratories" for the development of laboratories and education of medical technologists. Laboratory staff must be able to perform urgent high-quality tests and take part in so-called team-based medicine and should be proud of devising systems that efficiently provide laboratory data for all medical staff. On the other hand, there may be staff with a poor sense of professionalism who work no more than is expected and too readily ask firms and commercial laboratories to solve problems. Overwork caused by providing team-based medicine and a decrease in numbers of clinical chemists are concerns. The following are hoped for in the future. Firstly, laboratory staff will become conscious of their own high-level abilities and expand their areas of work, for example, bioscience, proteomics, and reproductive medicine. Secondly, a consultation system for medical staff and patients will be established. Thirdly, clinical research will be advanced, such as investigating unknown pathophysiologies using laboratory data and samples, and developing new methods of measurement. Lastly, it is of overriding importance that staff of laboratory and educational facilities will cooperate with each other to train the next generation. In conclusion, each laboratory should be appreciated, attractive, positive regarding its contribution to society, and show individuality.

  6. The Segmented Aperture Interferometric Nulling Testbed (SAINT) I: overview and air-side system description

    Science.gov (United States)

    Hicks, Brian A.; Lyon, Richard G.; Petrone, Peter; Ballard, Marlin; Bolcar, Matthew R.; Bolognese, Jeff; Clampin, Mark; Dogoda, Peter; Dworzanski, Daniel; Helmbrecht, Michael A.; Koca, Corina; Shiri, Ron

    2016-07-01

    This work presents an overview of the Segmented Aperture Interferometric Nulling Testbed (SAINT), a project that will pair an actively-controlled macro-scale segmented mirror with the Visible Nulling Coronagraph (VNC). SAINT will incorporate the VNC's demonstrated wavefront sensing and control system to refine and quantify end-to-end high-contrast starlight suppression performance. This pathfinder testbed will be used as a tool to study and refine approaches to mitigating instabilities and complex diffraction expected from future large segmented aperture telescopes.

  7. The Virtual Robotics Laboratory; TOPICAL

    International Nuclear Information System (INIS)

    Kress, R.L.; Love, L.J.

    1999-01-01

    The growth of the Internet has provided a unique opportunity to expand research collaborations between industry, universities, and the national laboratories. The Virtual Robotics Laboratory (VRL) is an innovative program at Oak Ridge National Laboratory (ORNL) that is focusing on the issues related to collaborative research through controlled access of laboratory equipment using the World Wide Web. The VRL will provide different levels of access to selected ORNL laboratory secondary education programs. In the past, the ORNL Robotics and Process Systems Division has developed state-of-the-art robotic systems for the Army, NASA, Department of Energy, Department of Defense, as well as many other clients. After proof of concept, many of these systems sit dormant in the laboratories. This is not out of completion of all possible research topics. but from completion of contracts and generation of new programs. In the past, a number of visiting professors have used this equipment for their own research. However, this requires that the professor, and possibly his/her students, spend extended periods at the laboratory facility. In addition, only a very exclusive group of faculty can gain access to the laboratory and hardware. The VRL is a tool that enables extended collaborative efforts without regard to geographic limitations

  8. A pollution prevention chargeback system at Sandia National Laboratories, New Mexico

    International Nuclear Information System (INIS)

    Davis, R.; Fish, J.; Brown, C.

    1994-08-01

    Sandia National Laboratories, New Mexico (Sandia/NM) has successfully developed and implemented a chargeback system to fund the implementation of Pollution Prevention activities. In the process of establishing this system, many valuable lessons have been learned. This paper describes how the chargeback system currently functions, the benefits and drawbacks of implementing such a system, and recommendations for implementing a chargeback system at other facilities. The initial goals in establishing a chargeback system were to create (1) funding for pollution prevention implementation, including specific pollution prevention projects; and (2) awareness on the part of the line organizations of the quantities and types of waste that they generate, thus providing them with a direct incentive to reduce that waste. The chargeback system inputs waste generation data and then filters and sorts the data to serve two purposes: (1) the operation of the chargeback system; and (2) the detailed waste generation reporting used for assessing processes and identifying pollution prevention opportunities

  9. Near Field UHF RFID Antenna System Enabling the Tracking of Small Laboratory Animals

    Directory of Open Access Journals (Sweden)

    Luca Catarinucci

    2013-01-01

    Full Text Available Radio frequency identification (RFID technology is more and more adopted in a wide range of applicative scenarios. In many cases, such as the tracking of small-size living animals for behaviour analysis purposes, the straightforward use of commercial solutions does not ensure adequate performance. Consequently, both RFID hardware and the control software should be tailored for the particular application. In this work, a novel RFID-based approach enabling an effective localization and tracking of small-sized laboratory animals is proposed. It is mainly based on a UHF Near Field RFID multiantenna system, to be placed under the animals’ cage, and able to rigorously identify the NF RFID tags implanted in laboratory animals (e.g., mice. Once the requirements of the reader antenna have been individuated, the antenna system has been designed and realized. Moreover, an algorithm based on the measured Received Signal Strength Indication (RSSI aiming at removing potential ambiguities in data captured by the multiantenna system has been developed and integrated. The animal tracking system has been largely tested on phantom mice in order to verify its ability to precisely localize each subject and to reconstruct its path. The achieved and discussed results demonstrate the effectiveness of the proposed tracking system.

  10. Progress in Harmonizing Tiered HIV Laboratory Systems: Challenges and Opportunities in 8 African Countries

    Science.gov (United States)

    Williams, Jason; Umaru, Farouk; Edgil, Dianna; Kuritsky, Joel

    2016-01-01

    ABSTRACT In 2014, the Joint United Nations Programme on HIV/AIDS released its 90-90-90 targets, which make laboratory diagnostics a cornerstone for measuring efforts toward the epidemic control of HIV. A data-driven laboratory harmonization and standardization approach is one way to create efficiencies and ensure optimal laboratory procurements. Following the 2008 “Maputo Declaration on Strengthening of Laboratory Systems”—a call for government leadership in harmonizing tiered laboratory networks and standardizing testing services—several national ministries of health requested that the United States Government and in-country partners help implement the recommendations by facilitating laboratory harmonization and standardization workshops, with a primary focus on improving HIV laboratory service delivery. Between 2007 and 2015, harmonization and standardization workshops were held in 8 African countries. This article reviews progress in the harmonization of laboratory systems in these 8 countries. We examined agreed-upon instrument lists established at the workshops and compared them against instrument data from laboratory quantification exercises over time. We used this measure as an indicator of adherence to national procurement policies. We found high levels of diversity across laboratories’ diagnostic instruments, equipment, and services. This diversity contributes to different levels of compliance with expected service delivery standards. We believe the following challenges to be the most important to address: (1) lack of adherence to procurement policies, (2) absence or limited influence of a coordinating body to fully implement harmonization proposals, and (3) misalignment of laboratory policies with minimum packages of care and with national HIV care and treatment guidelines. Overall, the effort to implement the recommendations from the Maputo Declaration has had mixed success and is a work in progress. Program managers should continue efforts to

  11. ARTIFICIAL INCOHERENT SPECKLES ENABLE PRECISION ASTROMETRY AND PHOTOMETRY IN HIGH-CONTRAST IMAGING

    Energy Technology Data Exchange (ETDEWEB)

    Jovanovic, N.; Guyon, O.; Pathak, P.; Kudo, T. [National Astronomical Observatory of Japan, Subaru Telescope, 650 North A’Ohoku Place, Hilo, HI, 96720 (United States); Martinache, F. [Observatoire de la Cote d’Azur, Boulevard de l’Observatoire, F-06304 Nice (France); Hagelberg, J., E-mail: jovanovic.nem@gmail.com [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States)

    2015-11-10

    State-of-the-art coronagraphs employed on extreme adaptive optics enabled instruments are constantly improving the contrast detection limit for companions at ever-closer separations from the host star. In order to constrain their properties and, ultimately, compositions, it is important to precisely determine orbital parameters and contrasts with respect to the stars they orbit. This can be difficult in the post-coronagraphic image plane, as by definition the central star has been occulted by the coronagraph. We demonstrate the flexibility of utilizing the deformable mirror in the adaptive optics system of the Subaru Coronagraphic Extreme Adaptive Optics system to generate a field of speckles for the purposes of calibration. Speckles can be placed up to 22.5 λ/D from the star, with any position angle, brightness, and abundance required. Most importantly, we show that a fast modulation of the added speckle phase, between 0 and π, during a long science integration renders these speckles effectively incoherent with the underlying halo. We quantitatively show for the first time that this incoherence, in turn, increases the robustness and stability of the adaptive speckles, which will improve the precision of astrometric and photometric calibration procedures. This technique will be valuable for high-contrast imaging observations with imagers and integral field spectrographs alike.

  12. The impact of laboratory quality assurance standards on laboratory operational performance

    Directory of Open Access Journals (Sweden)

    E Ratseou

    2014-01-01

    Full Text Available It has become a trend for companies to implement and be certified to various quality management systems so as to improve consistency, reliability, and quality of product delivery to customers. The most common quality management systems adopted are the ISO 9000 series of standards for manufacturing and services related organisations, with ISO 17025 and Good Laboratory Practices (GLP standards adopted specifically by laboratories as quality assurance initiatives. There are various reports on the impact of the ISO 9000 series on organisational performance but no studies or reports have been done on the performance of laboratory standards. Therefore this article reports on a study conducted to investigate the impact of ISO 17025 and GLP on the operational performance of both commercial and non-commercial laboratories. A qualitative research study was conducted to examine the impact standards on the aspects of health and safety, supplier selection and performance, human resources, customer satisfaction and profitability of the laboratory. The data collected suggest that there is no difference in laboratory operational performance with or without the standards. In other words it appears that the basic fundamental requirements inherent with laboratories are sufficient to perform both operationally and optimally. This leads to the view that standards are implemented as a customer requirement and not as an operational requirement.

  13. Aircraft Fire Protection Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Navy Aircraft Protection Laboratory provides complete test support for all Navy air vehicle fire protection systems.The facility allows for the simulation of a...

  14. A web-based laboratory information system to improve quality of care of tuberculosis patients in Peru: functional requirements, implementation and usage statistics.

    Science.gov (United States)

    Blaya, Joaquin A; Shin, Sonya S; Yagui, Martin J A; Yale, Gloria; Suarez, Carmen Z; Asencios, Luis L; Cegielski, J Peter; Fraser, Hamish S F

    2007-10-28

    Multi-drug resistant tuberculosis patients in resource-poor settings experience large delays in starting appropriate treatment and may not be monitored appropriately due to an overburdened laboratory system, delays in communication of results, and missing or error-prone laboratory data. The objective of this paper is to describe an electronic laboratory information system implemented to alleviate these problems and its expanding use by the Peruvian public sector, as well as examine the broader issues of implementing such systems in resource-poor settings. A web-based laboratory information system "e-Chasqui" has been designed and implemented in Peru to improve the timeliness and quality of laboratory data. It was deployed in the national TB laboratory, two regional laboratories and twelve pilot health centres. Using needs assessment and workflow analysis tools, e-Chasqui was designed to provide for improved patient care, increased quality control, and more efficient laboratory monitoring and reporting. Since its full implementation in March 2006, 29,944 smear microscopy, 31,797 culture and 7,675 drug susceptibility test results have been entered. Over 99% of these results have been viewed online by the health centres. High user satisfaction and heavy use have led to the expansion of e-Chasqui to additional institutions. In total, e-Chasqui will serve a network of institutions providing medical care for over 3.1 million people. The cost to maintain this system is approximately US$0.53 per sample or 1% of the National Peruvian TB program's 2006 budget. Electronic laboratory information systems have a large potential to improve patient care and public health monitoring in resource-poor settings. Some of the challenges faced in these settings, such as lack of trained personnel, limited transportation, and large coverage areas, are obstacles that a well-designed system can overcome. e-Chasqui has the potential to provide a national TB laboratory network in Peru

  15. Quality system of the Chemical Analysis Laboratory to fulfill the requirements with Certification Organizations

    International Nuclear Information System (INIS)

    Merlo S, L.; Rodriguez L, R.; Cota S, G.

    1996-01-01

    In the present work was described the Quality System established in the Chemical Analysis Department to fulfill with the Organization requirements, personnel, measurement equipment, calibration, working procedures, etc. to get official acknowledgment by the National Assurance System for Testing laboratories, dependent of the General Standards Direction. There are described the available resources, the performance and control of each of one principal points of the system. (Author)

  16. Implementation of Software Tools for Hybrid Control Rooms in the Human Systems Simulation Laboratory

    International Nuclear Information System (INIS)

    Jokstad, Håkon; Berntsson, Olof; McDonald, Robert; Boring, Ronald; Hallbert, Bruce; Fitzgerald, Kirk

    2014-01-01

    The Institute for Energy Technology (IFE) and Idaho National Laboratory have designed, implemented, tested and installed a functioning prototype of a set of large screen overview and procedure support displays for the Generic Pressurized Water Reactor (GPWR) simulator in the U.S. Department of Energy's Human Systems Simulation Laboratory. The overview display is based on IFE's extensive experiences with large screen overview displays in the Halden Man-Machine Laboratory (HAMMLAB), and presents the main control room indicators on a combined three-screen display. The procedure support displays are designed and implemented to provide a compact but still comprehensive overview of the relevant process measurements and indicators to support operators' good situational awareness during the performance of various types of procedures and plant conditions.

  17. Implementation of Software Tools for Hybrid Control Rooms in the Human Systems Simulation Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Jokstad, Håkon [Halden Reactor Project, Halden (Norway); Berntsson, Olof [Halden Reactor Project, Halden (Norway); McDonald, Robert [Halden Reactor Project, Halden (Norway); Boring, Ronald [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hallbert, Bruce [Idaho National Lab. (INL), Idaho Falls, ID (United States); Fitzgerald, Kirk [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-11-01

    The Institute for Energy Technology (IFE) and Idaho National Laboratory have designed, implemented, tested and installed a functioning prototype of a set of large screen overview and procedure support displays for the Generic Pressurized Water Reactor (GPWR) simulator in the U.S. Department of Energy’s Human Systems Simulation Laboratory. The overview display is based on IFE’s extensive experiences with large screen overview displays in the Halden Man-Machine Laboratory (HAMMLAB), and presents the main control room indicators on a combined three-screen display. The procedure support displays are designed and implemented to provide a compact but still comprehensive overview of the relevant process measurements and indicators to support operators' good situational awareness during the performance of various types of procedures and plant conditions.

  18. Optimization of Broadband Wavefront Correction at the Princeton High Contrast Imaging Laboratory

    Science.gov (United States)

    Groff, Tyler Dean; Kasdin, N.; Carlotti, A.

    2011-01-01

    Wavefront control for imaging of terrestrial planets using coronagraphic techniques requires improving the performance of the wavefront control techniques to expand the correction bandwidth and the size of the dark hole over which it is effective. At the Princeton High Contrast Imaging Laboratory we have focused on increasing the search area using two deformable mirrors (DMs) in series to achieve symmetric correction by correcting both amplitude and phase aberrations. Here we are concerned with increasing the bandwidth of light over which this correction is effective so we include a finite bandwidth into the optimization problem to generate a new stroke minimization algorithm. This allows us to minimize the actuator stroke on the DMs given contrast constraints at multiple wavelengths which define a window over which the dark hole will persist. This windowed stroke minimization algorithm is written in such a way that a weight may be applied to dictate the relative importance of the outer wavelengths to the central wavelength. In order to supply the estimates at multiple wavelengths a functional relationship to a central estimation wavelength is formed. Computational overhead and new experimental results of this windowed stroke minimization algorithm are discussed. The tradeoff between symmetric correction and achievable bandwidth is compared to the observed contrast degradation with wavelength in the experimental results. This work is supported by NASA APRA Grant #NNX09AB96G. The author is also supported under an NESSF Fellowship.

  19. Integration of scanned document management with the anatomic pathology laboratory information system: analysis of benefits.

    Science.gov (United States)

    Schmidt, Rodney A; Simmons, Kim; Grimm, Erin E; Middlebrooks, Michael; Changchien, Rosy

    2006-11-01

    Electronic document management systems (EDMSs) have the potential to improve the efficiency of anatomic pathology laboratories. We implemented a novel but simple EDMS for scanned documents as part of our laboratory information system (AP-LIS) and collected cost-benefit data with the intention of discerning the value of such a system in general and whether integration with the AP-LIS is advantageous. We found that the direct financial benefits are modest but the indirect and intangible benefits are large. Benefits of time savings and access to data particularly accrued to pathologists and residents (3.8 h/d saved for 26 pathologists and residents). Integrating the scanned document management system (SDMS) into the AP-LIS has major advantages in terms of workflow and overall simplicity. This simple, integrated SDMS is an excellent value in a practice like ours, and many of the benefits likely apply in other practice settings.

  20. Project and implementation of the human/system interface laboratory

    International Nuclear Information System (INIS)

    Carvalho, Paulo Victor R. de; Obadia, Isaac Jose; Vidal, Mario Cesar Rodriguez

    2002-01-01

    Analog instrumentation is being increasingly replaced by digital technology in new nuclear power plants, such as Angra III, as well as in existing operating plants, such as Angra I and II, for modernization and life-extension projects. In this new technological environment human factors issues aims to minimize failures in nuclear power plants operation due to human error. It is well known that 30% to 50% of the detected unforeseen problems involve human errors. Presently, human factors issues must be considered during the development of advanced human-system interfaces for the plant. IAEA has considered the importance of those issues and has published TECDOC's and Safety Series Issues on the matter. Thus, there is a need to develop methods and criteria to asses, compare, optimize and validate the human-system interface associated with totally new or hybrid control rooms. Also, the use of computer based operator aids is en evolving area. In order to assist on the development of methods and criteria and to evaluate the effects of the new design concepts and computerized support systems on operator performance, research simulators with advanced control rooms technology, such the IEN's Human System Interface Laboratory, will provide the necessary setting. (author)

  1. The Laboratory for Laser Energetics’ Hydrogen Isotope Separation System

    Energy Technology Data Exchange (ETDEWEB)

    Shmayda, W.T., E-mail: wshm@lle.rochester.edu; Wittman, M.D.; Earley, R.F.; Reid, J.L.; Redden, N.P.

    2016-11-01

    The University of Rochester’s Laboratory for Laser Energetics has commissioned a hydrogen Isotope Separation System (ISS). The ISS uses two columns—palladium on kieselguhr and molecular sieve—that act in a complementary manner to separate the hydrogen species by mass. The 4-sL per day throughput system is compact and has no moving parts. The columns and the attendant gas storage and handling subsystems are housed in a 0.8 -m{sup 3} glovebox. The glovebox uses a helium cover gas that is continuously processed to extract oxygen and water vapor that permeates through the glovebox gloves and any tritium that is released while attaching or detaching vessels to add feedstock to or drawing product from the system. The isotopic separation process is automated and does not require manual intervention. A total of 315 TBq of tritium was extracted from 23.6 sL of hydrogen with tritium purities reaching 99.5%. Deuterium was the sole residual component in the processed gas. Raffinate contained 0.2 TBq of activity was captured for reprocessing. The total emission from the system to the environment was 0.4 GBq over three weeks.

  2. Developing a system to predict laboratory-confirmed chlamydial and/or gonococcal urethritis in adult male emergency department patients.

    Science.gov (United States)

    Merchant, Roland C; DePalo, Dina M; Liu, Tao; Rich, Josiah D; Stein, Michael D

    2010-01-01

    We aimed to create a system for predicting which male emergency department (ED) patients with suspected chlamydial and/or gonococcal urethritis would have laboratory-confirmed infections based on clinical factors available at the initial ED encounter. We used statistical models to develop a system to predict either the presence or absence of laboratory-confirmed chlamydial and/or gonorrheal urethritis based on patient demographics and presenting symptoms. Data for the system were extracted from a retrospective chart review of adult male patients who were suspected of having, and were tested for, chlamydial and/or gonococcal urethritis at an adult, urban, northeastern United States, academic ED from January 1998 to December 2004. Among the 822 patients tested, 29.2% had chlamydia, gonorrhea, or both infections; 13.8% were infected with chlamydia alone, 12.1% were infected with gonorrhea alone, and 3.3% were infected with both. From the statistical models, the following factors were predictive of a positive laboratory test for chlamydia and/or gonorrhea: age urethritis, paired with baseline ED prevalence of these infections, was confirmed through internal validation testing to modestly predict which patients had or did not have a laboratory-confirmed infection. This system of a combination of risk factors available during the clinical encounter in the ED modestly predicts which adult male patients suspected of having chlamydial and/or gonorrheal urethritis are more likely to have or not have a laboratory-confirmed infection. A prospective study is needed to create and validate a clinical prediction rule based on the results of this system.

  3. Idaho National Laboratory Integrated Safety Management System 2011 Effectiveness Review and Declaration Report

    Energy Technology Data Exchange (ETDEWEB)

    Farren Hunt

    2011-12-01

    Idaho National Laboratory (INL) performed an annual Integrated Safety Management System (ISMS) effectiveness review per 48 Code of Federal Regulations (CFR) 970.5223-1, 'Integration of Environment, Safety and Health into Work Planning and Execution.' The annual review assessed Integrated Safety Management (ISM) effectiveness, provided feedback to maintain system integrity, and helped identify target areas for focused improvements and assessments for fiscal year (FY) 2012. The information presented in this review of FY 2011 shows that the INL has performed many corrective actions and improvement activities, which are starting to show some of the desired results. These corrective actions and improvement activities will continue to help change culture that will lead to better implementation of defined programs, resulting in moving the Laboratory's performance from the categorization of 'Needs Improvement' to the desired results of 'Effective Performance.'

  4. Role of WhatsApp Messenger in the Laboratory Management System: A Boon to Communication.

    Science.gov (United States)

    Dorwal, Pranav; Sachdev, Ritesh; Gautam, Dheeraj; Jain, Dharmendra; Sharma, Pooja; Tiwari, Assem Kumar; Raina, Vimarsh

    2016-01-01

    The revolution of internet and specifically mobile internet has occurred at a blinding pace over the last decade. With the advent of smart phones, the hand held device has become much more than a medium of voice calling. Healthcare has been catching up with the digital revolution in the form of Hospital Information System and Laboratory Information System. However, the advent of instant messaging services, which are abundantly used by the youth, can be used to improve communication and coordination among the various stake holders in the healthcare sector. We have tried to look at the impact of using the WhatsApp messenger service in the laboratory management system, by forming multiple groups of the various subsections of the laboratory. A total of 35 members used this service for a period of 3 months and their response was taken on a scale of 1 to 10. There was significant improvement in the communication in the form of sharing photographic evidence, information about accidents, critical alerts, duty rosters, academic activities and getting directives from seniors. There was also some increase in the load of adding information to the application and disturbance in the routine activities; but the benefits far outweighed the minor hassles. We thereby suggest and foresee another communication revolution which will change the way information is shared in a healthcare sector, with hospital specific dedicated apps.

  5. Photovoltaic Device Performance Evaluation Using an Open-Hardware System and Standard Calibrated Laboratory Instruments

    Directory of Open Access Journals (Sweden)

    Jesús Montes-Romero

    2017-11-01

    Full Text Available This article describes a complete characterization system for photovoltaic devices designed to acquire the current-voltage curve and to process the obtained data. The proposed system can be replicated for educational or research purposes without having wide knowledge about electronic engineering. Using standard calibrated instrumentation, commonly available in any laboratory, the accuracy of measurements is ensured. A capacitive load is used to bias the device due to its versatility and simplicity. The system includes a common part and an interchangeable part that must be designed depending on the electrical characteristics of each PV device. Control software, developed in LabVIEW, controls the equipment, performs automatic campaigns of measurements, and performs additional calculations in real time. These include different procedures to extrapolate the measurements to standard test conditions and methods to obtain the intrinsic parameters of the single diode model. A deep analysis of the uncertainty of measurement is also provided. Finally, the proposed system is validated by comparing the results obtained from some commercial photovoltaic modules to the measurements given by an independently accredited laboratory.

  6. Monitoring and information management system at the Underground Research Laboratory

    International Nuclear Information System (INIS)

    Strobel, G.S.; Chernis, P.J.; Bushman, A.T.; Spinney, M.H.; Backer, R.J.

    1996-01-01

    Atomic Energy of Canada Limited (AECL) has developed a customer oriented monitoring and information management system at the Underground Research Laboratory (URL) near Lac du Bonnet, Manitoba. The system is used to monitor instruments and manage, process, and distribute data. It consists of signal conditioners and remote loggers, central schedule and control systems, computer aided design and drafting work centres, and the communications linking them. The monitoring and communications elements are designed to meet the harsh demands of underground conditions while providing accurate monitoring of sensitive instruments to rigorous quality assured specifications. These instruments are used for testing of the concept for the deep geological disposal of nuclear fuel waste as part of the Canadian Nuclear Fuel Waste Management Program. Many of the tests are done in situ and at full-scale. The monitoring and information management system services engineering, research, and support staff working to design, develop, and demonstrate and present the concept. Experience gained during development of the monitoring and information management system at the URL, can be directly applied at the final disposal site. (author)

  7. Monitoring and information management system at the Underground Research Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Strobel, G.S.; Chernis, P.J.; Bushman, A.T.; Spinney, M.H.; Backer, R.J. [Atomic Energy of Canada Limited, Pinawa, Manitoba (Canada)

    1996-07-01

    Atomic Energy of Canada Limited (AECL) has developed a customer oriented monitoring and information management system at the Underground Research Laboratory (URL) near Lac du Bonnet, Manitoba. The system is used to monitor instruments and manage, process, and distribute data. It consists of signal conditioners and remote loggers, central schedule and control systems, computer aided design and drafting work centres, and the communications linking them. The monitoring and communications elements are designed to meet the harsh demands of underground conditions while providing accurate monitoring of sensitive instruments to rigorous quality assured specifications. These instruments are used for testing of the concept for the deep geological disposal of nuclear fuel waste as part of the Canadian Nuclear Fuel Waste Management Program. Many of the tests are done in situ and at full-scale. The monitoring and information management system services engineering, research, and support staff working to design, develop, and demonstrate and present the concept. Experience gained during development of the monitoring and information management system at the URL, can be directly applied at the final disposal site. (author)

  8. ISO 15189 accreditation: Requirements for quality and competence of medical laboratories, experience of a laboratory I.

    Science.gov (United States)

    Guzel, Omer; Guner, Ebru Ilhan

    2009-03-01

    Medical laboratories are the key partners in patient safety. Laboratory results influence 70% of medical diagnoses. Quality of laboratory service is the major factor which directly affects the quality of health care. The clinical laboratory as a whole has to provide the best patient care promoting excellence. International Standard ISO 15189, based upon ISO 17025 and ISO 9001 standards, provides requirements for competence and quality of medical laboratories. Accredited medical laboratories enhance credibility and competency of their testing services. Our group of laboratories, one of the leading institutions in the area, had previous experience with ISO 9001 and ISO 17025 Accreditation at non-medical sections. We started to prepared for ISO 15189 Accreditation at the beginning of 2006 and were certified in March, 2007. We spent more than a year to prepare for accreditation. Accreditation scopes of our laboratory were as follows: clinical chemistry, hematology, immunology, allergology, microbiology, parasitology, molecular biology of infection serology and transfusion medicine. The total number of accredited tests is 531. We participate in five different PT programs. Inter Laboratory Comparison (ILC) protocols are performed with reputable laboratories. 82 different PT Program modules, 277 cycles per year for 451 tests and 72 ILC program organizations for remaining tests have been performed. Our laboratory also organizes a PT program for flow cytometry. 22 laboratories participate in this program, 2 cycles per year. Our laboratory has had its own custom made WEB based LIS system since 2001. We serve more than 500 customers on a real time basis. Our quality management system is also documented and processed electronically, Document Management System (DMS), via our intranet. Preparatory phase for accreditation, data management, external quality control programs, personnel related issues before, during and after accreditation process are presented. Every laboratory has

  9. Comprehensive nuclear counting and detector characterisation system for the radiochemistry laboratory

    International Nuclear Information System (INIS)

    Parthasarathy, R.; Saisubalakshmi, D.; Mishra, G.K.; Srinivas, K.C.; Venkatasubramani, C.R.

    2004-01-01

    The paper describes a comprehensive nuclear pulse counting system that can cater to up to seven nuclear detector set-ups located in different places in the laboratory. Each detector set up has an interfacing module that conditions the amplifier pulses and transmits them to a common counting system. The microcontroller-based system receives these pulses through a multiplexer and counts the pulses for a user specified preset time. The system has a routine to determine detector plateau characteristics and fix the detector operating voltage. In this mode, the system collects the EHT-versus- counts data in a EHT programmed sequence and plots the profile. The system conducts the counting routine for a stipulated number of times and does all necessary statistical tests to ensure the proper functioning of the detector under test. The system also includes a test routine that checks the performance of the counting system by connecting it to a local pulse generator. The microcontroller based system interacts with a PC through RS232 communication for user interaction and reporting. (author)

  10. Quality Management Systems in the Clinical Laboratories in Latin America

    Science.gov (United States)

    2015-01-01

    The implementation of management systems in accordance with standards like ISO 9001:2008 (1,2) in the clinical laboratories has conferred and added value of reliability and therefore a very significant input to patient safety. As we know the ISO 9001:2008 (1) a certification standard, and ISO 15189:2012 (2) an accreditation standard, both, at the time have generated institutional memory where they have been implemented, the transformation of culture focused on correct execution, control and following, evidence needed and the importance of register. PMID:27683495

  11. Exploring the Inner Acceleration Region of Solar Wind: A Study Based on Coronagraphic UV and Visible Light Data

    Science.gov (United States)

    Bemporad, A.

    2017-09-01

    This work combined coronagraphic visible light (VL) and UV data to provide with an unprecedented view of the inner corona where the nascent solar wind is accelerated. The UV (H I Lyα) and VL (polarized brightness) images (reconstructed with SOHO/UVCS, LASCO, and Mauna Loa data) have been analyzed with the Doppler dimming technique to provide for the first time daily 2D images of the radial wind speed between 1 and 6 R ⊙ over 1 month of observations. Results show that both polar and equatorial regions are characterized at the base of the corona by plasma outflows at speeds > 100 km s-1. The plasma is then decelerated within ˜1.5 R ⊙ at the poles and ˜2.0 R ⊙ at the equator, where local minima of the expansion speeds are reached, and gently reaccelerated higher up, reaching speeds typical of fast and slow wind components. The mass flux is highly variable with latitude and time at the equator and more uniform and stable over the poles. The polar flow is asymmetric, with speeds above the south pole lower than those above the north pole. A correlation (anticorrelation) between the wind speed and its density is found below (above) ˜1.8 R ⊙. The 2D distribution of forces responsible for deceleration and reacceleration of solar wind is provided and interpreted in terms of Alfvén waves. These results provide a possible connection between small-scale outflows reported with other instruments at the base of the corona and bulk wind flows measured higher up.

  12. Laboratory hemostasis: milestones in Clinical Chemistry and Laboratory Medicine.

    Science.gov (United States)

    Lippi, Giuseppe; Favaloro, Emmanuel J

    2013-01-01

    Hemostasis is a delicate, dynamic and intricate system, in which pro- and anti-coagulant forces cooperate for either maintaining blood fluidity under normal conditions, or else will prompt blood clot generation to limit the bleeding when the integrity of blood vessels is jeopardized. Excessive prevalence of anticoagulant forces leads to hemorrhage, whereas excessive activation of procoagulant forces triggers excessive coagulation and thrombosis. The hemostasis laboratory performs a variety of first, second and third line tests, and plays a pivotal role in diagnostic and monitoring of most hemostasis disturbances. Since the leading targets of Clinical Chemistry and Laboratory Medicine include promotion of progress in fundamental and applied research, along with publication of guidelines and recommendations in laboratory diagnostics, this journal is an ideal source of information on current developments in the laboratory technology of hemostasis, and this article is aimed to celebrate some of the most important and popular articles ever published by the journal in the filed of laboratory hemostasis.

  13. Laboratory equipment maintenance: a critical bottleneck for strengthening health systems in sub-Saharan Africa?

    Science.gov (United States)

    Fonjungo, Peter N; Kebede, Yenew; Messele, Tsehaynesh; Ayana, Gonfa; Tibesso, Gudeta; Abebe, Almaz; Nkengasong, John N; Kenyon, Thomas

    2012-02-01

    Properly functioning laboratory equipment is a critical component for strengthening health systems in developing countries. The laboratory can be an entry point to improve population health and care of individuals for targeted diseases - prevention, care, and treatment of TB, HIV/AIDS, and malaria, plus maternal and neonatal health - as well as those lacking specific attention and funding. We review the benefits and persistent challenges associated with sustaining laboratory equipment maintenance. We propose equipment management policies as well as a comprehensive equipment maintenance strategy that would involve equipment manufacturers and strengthen local capacity through pre-service training of biomedical engineers. Strong country leadership and commitment are needed to assure development and sustained implementation of policies and strategies for standardization of equipment, and regulation of its procurement, donation, disposal, and replacement.

  14. Stepwise approach to establishing multiple outreach laboratory information system-electronic medical record interfaces.

    Science.gov (United States)

    Pantanowitz, Liron; Labranche, Wayne; Lareau, William

    2010-05-26

    Clinical laboratory outreach business is changing as more physician practices adopt an electronic medical record (EMR). Physician connectivity with the laboratory information system (LIS) is consequently becoming more important. However, there are no reports available to assist the informatician with establishing and maintaining outreach LIS-EMR connectivity. A four-stage scheme is presented that was successfully employed to establish unidirectional and bidirectional interfaces with multiple physician EMRs. This approach involves planning (step 1), followed by interface building (step 2) with subsequent testing (step 3), and finally ongoing maintenance (step 4). The role of organized project management, software as a service (SAAS), and alternate solutions for outreach connectivity are discussed.

  15. Visualization Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Evaluates and improves the operational effectiveness of existing and emerging electronic warfare systems. By analyzing and visualizing simulation results...

  16. SOFTICE: Facilitating both Adoption of Linux Undergraduate Operating Systems Laboratories and Students' Immersion in Kernel Code

    Directory of Open Access Journals (Sweden)

    Alessio Gaspar

    2007-06-01

    Full Text Available This paper discusses how Linux clustering and virtual machine technologies can improve undergraduate students' hands-on experience in operating systems laboratories. Like similar projects, SOFTICE relies on User Mode Linux (UML to provide students with privileged access to a Linux system without creating security breaches on the hosting network. We extend such approaches in two aspects. First, we propose to facilitate adoption of Linux-based laboratories by using a load-balancing cluster made of recycled classroom PCs to remotely serve access to virtual machines. Secondly, we propose a new approach for students to interact with the kernel code.

  17. The significance of a usability evaluation of an emerging laboratory order entry system

    NARCIS (Netherlands)

    Peute, Linda W. P.; Jaspers, Monique W. M.

    2007-01-01

    OBJECTIVES: To assess the usability of an emerging POE system, OM/Lab, for the computer-supported ordering of laboratory tests. We were more specifically interested in the relation of the usability problems detected in the user testing sessions with the order behaviour in terms of efficiency and

  18. Double-shell target designs for the Los Alamos Scientific Laboratory eight-beam laser system

    International Nuclear Information System (INIS)

    Kindel, J.M.; Stroscio, M.A.

    1978-03-01

    We investigate two double-pusher laser fusion targets, one that incorporates an outer exploding pusher shell and another that uses velocity multiplication. Specific designs are presented for the Los Alamos Scientific Laboratory Eight-Beam Laser System

  19. [CAP quality management system in clinical laboratory and its issue].

    Science.gov (United States)

    Tazawa, Hiromitsu

    2004-03-01

    The CAP (College of American Pathologists) was established in 1962 and, at present, CAP-accredited laboratories include about 6000 institutions all over the world, mainly in the U.S. The essential purpose of CAP accreditation is high quality reservation and improvement of clinical laboratory services for patient care, and is based on seven points, listed below. (1) Establishment of a laboratory management program and laboratory techniques to assure accuracy and improve overall quality of laboratory services. (2) Maintenance and improvement of accuracy objectively by centering on a CAP survey. (3) Thoroughness in safety and health administration. (4) Reservation of the performance of laboratory services by personnel and proficiency management. (5) Provision of appropriate information to physicians, and contribution to improved quality of patient care by close communication with physicians (improvement in patient care). (6) Reduction of running costs and personnel costs based on evidence by employing the above-mentioned criteria. (7) Reduction of laboratory error. In the future, accreditation and/or certification by organizations such as CAP, ISO, etc., may become a requirement for providing any clinical laboratory services in Japan. Taking the essence of the CAP and the characteristics of the new international standard, ISO151589, into consideration, it is important to choose the best suited accreditation and/or certification depending of the purpose of clinical laboratory.

  20. Intelligent Optical Systems Using Adaptive Optics

    Science.gov (United States)

    Clark, Natalie

    2012-01-01

    Until recently, the phrase adaptive optics generally conjured images of large deformable mirrors being integrated into telescopes to compensate for atmospheric turbulence. However, the development of smaller, cheaper devices has sparked interest for other aerospace and commercial applications. Variable focal length lenses, liquid crystal spatial light modulators, tunable filters, phase compensators, polarization compensation, and deformable mirrors are becoming increasingly useful for other imaging applications including guidance navigation and control (GNC), coronagraphs, foveated imaging, situational awareness, autonomous rendezvous and docking, non-mechanical zoom, phase diversity, and enhanced multi-spectral imaging. The active components presented here allow flexibility in the optical design, increasing performance. In addition, the intelligent optical systems presented offer advantages in size and weight and radiation tolerance.

  1. Computer simulation of thermal and fluid systems for MIUS integration and subsystems test /MIST/ laboratory. [Modular Integrated Utility System

    Science.gov (United States)

    Rochelle, W. C.; Liu, D. K.; Nunnery, W. J., Jr.; Brandli, A. E.

    1975-01-01

    This paper describes the application of the SINDA (systems improved numerical differencing analyzer) computer program to simulate the operation of the NASA/JSC MIUS integration and subsystems test (MIST) laboratory. The MIST laboratory is designed to test the integration capability of the following subsystems of a modular integrated utility system (MIUS): (1) electric power generation, (2) space heating and cooling, (3) solid waste disposal, (4) potable water supply, and (5) waste water treatment. The SINDA/MIST computer model is designed to simulate the response of these subsystems to externally impressed loads. The computer model determines the amount of recovered waste heat from the prime mover exhaust, water jacket and oil/aftercooler and from the incinerator. This recovered waste heat is used in the model to heat potable water, for space heating, absorption air conditioning, waste water sterilization, and to provide for thermal storage. The details of the thermal and fluid simulation of MIST including the system configuration, modes of operation modeled, SINDA model characteristics and the results of several analyses are described.

  2. Consolidated clinical microbiology laboratories.

    Science.gov (United States)

    Sautter, Robert L; Thomson, Richard B

    2015-05-01

    The manner in which medical care is reimbursed in the United States has resulted in significant consolidation in the U.S. health care system. One of the consequences of this has been the development of centralized clinical microbiology laboratories that provide services to patients receiving care in multiple off-site, often remote, locations. Microbiology specimens are unique among clinical specimens in that optimal analysis may require the maintenance of viable organisms. Centralized laboratories may be located hours from patient care settings, and transport conditions need to be such that organism viability can be maintained under a variety of transport conditions. Further, since the provision of rapid results has been shown to enhance patient care, effective and timely means for generating and then reporting the results of clinical microbiology analyses must be in place. In addition, today, increasing numbers of patients are found to have infection caused by pathogens that were either very uncommon in the past or even completely unrecognized. As a result, infectious disease specialists, in particular, are more dependent than ever on access to high-quality diagnostic information from clinical microbiology laboratories. In this point-counterpoint discussion, Robert Sautter, who directs a Charlotte, NC, clinical microbiology laboratory that provides services for a 40-hospital system spread over 3 states in the southeastern United States explains how an integrated clinical microbiology laboratory service has been established in a multihospital system. Richard (Tom) Thomson of the NorthShore University HealthSystem in Evanston, IL, discusses some of the problems and pitfalls associated with large-scale laboratory consolidation. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  3. MendeLIMS: a web-based laboratory information management system for clinical genome sequencing.

    Science.gov (United States)

    Grimes, Susan M; Ji, Hanlee P

    2014-08-27

    Large clinical genomics studies using next generation DNA sequencing require the ability to select and track samples from a large population of patients through many experimental steps. With the number of clinical genome sequencing studies increasing, it is critical to maintain adequate laboratory information management systems to manage the thousands of patient samples that are subject to this type of genetic analysis. To meet the needs of clinical population studies using genome sequencing, we developed a web-based laboratory information management system (LIMS) with a flexible configuration that is adaptable to continuously evolving experimental protocols of next generation DNA sequencing technologies. Our system is referred to as MendeLIMS, is easily implemented with open source tools and is also highly configurable and extensible. MendeLIMS has been invaluable in the management of our clinical genome sequencing studies. We maintain a publicly available demonstration version of the application for evaluation purposes at http://mendelims.stanford.edu. MendeLIMS is programmed in Ruby on Rails (RoR) and accesses data stored in SQL-compliant relational databases. Software is freely available for non-commercial use at http://dna-discovery.stanford.edu/software/mendelims/.

  4. A real-time data acquisition and processing system for the analytical laboratory automation of a HTR spent fuel reprocessing facility

    International Nuclear Information System (INIS)

    Watzlawik, K.H.

    1979-12-01

    A real-time data acquisition and processing system for the analytical laboratory of an experimental HTR spent fuel reprocessing facility is presented. The on-line open-loop system combines in-line and off-line analytical measurement procedures including data acquisition and evaluation as well as analytical laboratory organisation under the control of a computer-supported laboratory automation system. In-line measurements are performed for density, volume and temperature in process tanks and registration of samples for off-line measurements. Off-line computer-coupled experiments are potentiometric titration, gas chromatography and X-ray fluorescence analysis. Organisational sections like sample registration, magazining, distribution and identification, multiple data assignment and especially calibrations of analytical devices are performed by the data processing system. (orig.) [de

  5. Radiation detectors laboratory

    International Nuclear Information System (INIS)

    Ramirez J, F.J.

    1997-01-01

    The Radiation detectors laboratory was established with the assistance of the International Atomic Energy Agency which gave this the responsibility to provide its services at National and regional level for Latin America and it is located at the ININ. The more expensive and delicate radiation detectors are those made of semiconductor, so it has been put emphasis in the use and repairing of these detectors type. The supplied services by this laboratory are: selection consultant, detectors installation and handling and associated systems. Installation training, preventive and corrective maintenance of detectors and detection systems calibration. (Author)

  6. Energy | Argonne National Laboratory

    Science.gov (United States)

    Skip to main content Argonne National Laboratory Toggle Navigation Toggle Search Energy Batteries and Energy Storage Energy Systems Modeling Materials for Energy Nuclear Energy Renewable Energy Smart Laboratory About Safety News Careers Education Community Diversity Directory Energy Environment National

  7. Manually-Operated Crate Dismantlement System for Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Laffitte, John; Lagos, Leo; Morales, Miguel

    2002-01-01

    Los Alamos National Laboratory currently possesses between 500 and 800 fiberglass-reinforced plywood crates that contain hazardous materials that need to be decontaminated. To access the hazardous material, a system is needed to dismantle the crate. Currently, crates are dismantled by workers using hand-held tools. This technique has numerous disadvantages. One disadvantage is that it is difficult for a worker to hold the tool for an extended period of time in the awkward angles and positions necessary to fully size-reduce the crate. Other disadvantages of using hand tools include managing power cords and vacuum hoses, which become entangled or can act as tripping hazards. In order to improve the crate opening and size-reduction task, Florida International University's Hemispheric Center for Environmental Technology (HCET) is developing a manually operated crate dismantlement system. This versatile system is expected to greatly increase worker efficiency while decreasing fatigue and the possibility of accidents. (authors)

  8. Effects of earthquake induced rock shear on containment system integrity. Laboratory testing plan development

    International Nuclear Information System (INIS)

    Read, Rodney S.

    2011-07-01

    This report describes a laboratory-scale testing program plan to address the issue of earthquake induced rock shear effects on containment system integrity. The document contains a review of relevant literature from SKB covering laboratory testing of bentonite clay buffer material, scaled analogue tests, and the development of related material models to simulate rock shear effects. The proposed testing program includes standard single component tests, new two-component constant volume tests, and new scaled analogue tests. Conceptual drawings of equipment required to undertake these tests are presented along with a schedule of tests. The information in this document is considered sufficient to engage qualified testing facilities, and to guide implementation of laboratory testing of rock shear effects. This document was completed as part of a collaborative agreement between SKB and Nuclear Waste Management Organization (NWMO) in Canada

  9. Effects of earthquake induced rock shear on containment system integrity. Laboratory testing plan development

    Energy Technology Data Exchange (ETDEWEB)

    Read, Rodney S. (RSRead Consulting Inc. (Canada))

    2011-07-15

    This report describes a laboratory-scale testing program plan to address the issue of earthquake induced rock shear effects on containment system integrity. The document contains a review of relevant literature from SKB covering laboratory testing of bentonite clay buffer material, scaled analogue tests, and the development of related material models to simulate rock shear effects. The proposed testing program includes standard single component tests, new two-component constant volume tests, and new scaled analogue tests. Conceptual drawings of equipment required to undertake these tests are presented along with a schedule of tests. The information in this document is considered sufficient to engage qualified testing facilities, and to guide implementation of laboratory testing of rock shear effects. This document was completed as part of a collaborative agreement between SKB and Nuclear Waste Management Organization (NWMO) in Canada

  10. Argonne National Laboratory's photo-oxidation organic mixed waste treatment system - installation and startup testing

    International Nuclear Information System (INIS)

    Shearer, T.L.; Nelson, R.A.; Torres, T.; Conner, C.; Wygmans, D.

    1997-01-01

    This paper describes the installation and startup testing of the Argonne National Laboratory (ANL-E) Photo-Oxidation Organic Mixed Waste Treatment System. This system will treat organic mixed (i.e., radioactive and hazardous) waste by oxidizing the organics to carbon dioxide and inorganic salts in an aqueous media. The residue will be treated in the existing radwaste evaporators. The system is installed in the Waste Management Facility at the ANL-E site in Argonne, Illinois. 1 fig

  11. A manual for a Laboratory Information Management System (LIMS) for light stable isotopes

    Science.gov (United States)

    Coplen, Tyler B.

    1998-01-01

    The reliability and accuracy of isotopic data can be improved by utilizing database software to (i) store information about samples, (ii) store the results of mass spectrometric isotope-ratio analyses of samples, (iii) calculate analytical results using standardized algorithms stored in a database, (iv) normalize stable isotopic data to international scales using isotopic reference materials, and (v) generate multi-sheet paper templates for convenient sample loading of automated mass-spectrometer sample preparation manifolds. Such a database program is presented herein. Major benefits of this system include (i) an increase in laboratory efficiency, (ii) reduction in the use of paper, (iii) reduction in workload due to the elimination or reduction of retyping of data by laboratory personnel, and (iv) decreased errors in data reported to sample submitters. Such a database provides a complete record of when and how often laboratory reference materials have been analyzed and provides a record of what correction factors have been used through time. It provides an audit trail for stable isotope laboratories. Since the original publication of the manual for LIMS for Light Stable Isotopes, the isotopes 3 H, 3 He, and 14 C, and the chlorofluorocarbons (CFCs), CFC-11, CFC-12, and CFC-113, have been added to this program.

  12. Pacific Northwest National Laboratory Facility Radionuclide Emission Points and Sampling Systems

    International Nuclear Information System (INIS)

    Barfuss, Brad C.; Barnett, J. M.; Ballinger, Marcel Y.

    2009-01-01

    Battelle-Pacific Northwest Division operates numerous research and development laboratories in Richland, Washington, including those associated with the Pacific Northwest National Laboratory (PNNL) on the Department of Energy's Hanford Site that have the potential for radionuclide air emissions. The National Emission Standard for Hazardous Air Pollutants (NESHAP 40 CFR 61, Subparts H and I) requires an assessment of all effluent release points that have the potential for radionuclide emissions. Potential emissions are assessed annually. Sampling, monitoring, and other regulatory compliance requirements are designated based upon the potential-to-emit dose criteria found in the regulations. The purpose of this document is to describe the facility radionuclide air emission sampling program and provide current and historical facility emission point system performance, operation, and design information. A description of the buildings, exhaust points, control technologies, and sample extraction details is provided for each registered or deregistered facility emission point. Additionally, applicable stack sampler configuration drawings, figures, and photographs are provided

  13. Pacific Northwest National Laboratory Facility Radionuclide Emission Points and Sampling Systems

    Energy Technology Data Exchange (ETDEWEB)

    Barfuss, Brad C.; Barnett, J. Matthew; Ballinger, Marcel Y.

    2009-04-08

    Battelle—Pacific Northwest Division operates numerous research and development laboratories in Richland, Washington, including those associated with the Pacific Northwest National Laboratory (PNNL) on the Department of Energy’s Hanford Site that have the potential for radionuclide air emissions. The National Emission Standard for Hazardous Air Pollutants (NESHAP 40 CFR 61, Subparts H and I) requires an assessment of all effluent release points that have the potential for radionuclide emissions. Potential emissions are assessed annually. Sampling, monitoring, and other regulatory compliance requirements are designated based upon the potential-to-emit dose criteria found in the regulations. The purpose of this document is to describe the facility radionuclide air emission sampling program and provide current and historical facility emission point system performance, operation, and design information. A description of the buildings, exhaust points, control technologies, and sample extraction details is provided for each registered or deregistered facility emission point. Additionally, applicable stack sampler configuration drawings, figures, and photographs are provided.

  14. Planetary optical and infrared imaging

    International Nuclear Information System (INIS)

    Terrile, R.J.

    1988-01-01

    The purpose of this investigation is to obtain and analyze high spatial resolution charge coupled device (CCD) coronagraphic images of extra-solar planetary material and solar system objects. These data will provide information on the distribution of planetary and proto-planetary material around nearby stars leading to a better understanding of the origin and evolution of the solar system. Imaging within our solar system will provide information on the current cloud configurations on the outer planets, search for new objects around the outer planets, and provide direct support for Voyager, Galileo, and CRAF by imaging material around asteroids and clouds on Neptune. Over the last year this program acquired multispectral and polarization images of the disk of material around the nearby star Beta Pictoris. This material is believed to be associated with the formation of planets and provides a first look at a planetary system much younger than our own. Preliminary color and polarization data suggest that the material is very low albedo and similar to dark outer solar system carbon rich material. A coronagraphic search for other systems is underway and has already examined over 100 nearby stars. Coronagraphic imaging provided the first clear look at the rings of Uranus and albedo limits for the ring arcs around Neptune

  15. Remote Systems Experience at the Oak Ridge National Laboratory--A Summary of Lessons Learned

    International Nuclear Information System (INIS)

    Noakes, Mark W.; Burgess, Thomas W.; Rowe, John C.

    2011-01-01

    Oak Ridge National Laboratory (ORNL) has a long history in the development of remote systems to support the nuclear environment. ORNL, working in conjunction with Central Research Laboratories, created what is believed to be the first microcomputer-based implementation of dual-arm master-slave remote manipulation. As part of the Consolidated Fuel Reprocessing Program, ORNL developed the dual-arm advanced servomanipulator focusing on remote maintainability for systems exposed to high radiation fields. ORNL also participated in almost all of the various technical areas of the U.S. Department of Energy s Robotics Technology Development Program, while leading the Decontamination and Decommissioning and Tank Waste Retrieval categories. Over the course of this involvement, ORNL has developed a substantial base of working knowledge as to what works when and under what circumstances for many types of remote systems tasks as well as operator interface modes, control bandwidth, and sensing requirements to name a few. By using a select list of manipulator systems that is not meant to be exhaustive, this paper will discuss history and outcome of development, field-testing, deployment, and operations from a lessons learned perspective. The final outcome is a summary paper outlining ORNL experiences and guidelines for transition of developmental remote systems to real-world hazardous environments.

  16. Small-Engine Research Laboratory (SERL)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: The Small-Engine Research Laboratory (SERL) is a facility designed to conduct experimental small-scale propulsion and power generation systems research....

  17. The Tanzania experience: clinical laboratory testing harmonization and equipment standardization at different levels of a tiered health laboratory system.

    Science.gov (United States)

    Massambu, Charles; Mwangi, Christina

    2009-06-01

    The rapid scale-up of the care and treatment programs in Tanzania during the preceding 4 years has greatly increased the demand for quality laboratory services for diagnosis of HIV and monitoring patients during antiretroviral therapy. Laboratory services were not in a position to cope with this demand owing to poor infrastructure, lack of human resources, erratic and/or lack of reagent supply and commodities, and slow manual technologies. With the limited human resources in the laboratory and the need for scaling up the care and treatment program, it became necessary to install automated equipment and train personnel for the increased volume of testing and new tests across all laboratory levels. With the numerous partners procuring equipment, the possibility of a multitude of equipment platforms with attendant challenges for procurement of reagents, maintenance of equipment, and quality assurance arose. Tanzania, therefore, had to harmonize laboratory tests and standardize laboratory equipment at different levels of the laboratory network. The process of harmonization of tests and standardization of equipment included assessment of laboratories, review of guidelines, development of a national laboratory operational plan, and stakeholder advocacy. This document outlines this process.

  18. Validating the Technology Acceptance Model in the Context of the Laboratory Information System-Electronic Health Record Interface System

    Science.gov (United States)

    Aquino, Cesar A.

    2014-01-01

    This study represents a research validating the efficacy of Davis' Technology Acceptance Model (TAM) by pairing it with the Organizational Change Readiness Theory (OCRT) to develop another extension to the TAM, using the medical Laboratory Information Systems (LIS)--Electronic Health Records (EHR) interface as the medium. The TAM posits that it is…

  19. A CAMAC-based laboratory computer system

    International Nuclear Information System (INIS)

    Westphal, G.P.

    1975-01-01

    A CAMAC-based laboratory computer network is described by sharing a common mass memory this offers distinct advantages over slow and core-consuming single-processor installations. A fast compiler-BASIC, with extensions for CAMAC and real-time, provides a convenient means for interactive experiment control

  20. Stepwise approach to establishing multiple outreach laboratory information system-electronic medical record interfaces

    Directory of Open Access Journals (Sweden)

    Liron Pantanowitz

    2010-01-01

    Full Text Available Clinical laboratory outreach business is changing as more physician practices adopt an electronic medical record (EMR. Physician connectivity with the laboratory information system (LIS is consequently becoming more important. However, there are no reports available to assist the informatician with establishing and maintaining outreach LIS-EMR connectivity. A four-stage scheme is presented that was successfully employed to establish unidirectional and bidirectional interfaces with multiple physician EMRs. This approach involves planning (step 1, followed by interface building (step 2 with subsequent testing (step 3, and finally ongoing maintenance (step 4. The role of organized project management, software as a service (SAAS, and alternate solutions for outreach connectivity are discussed.

  1. Experimental Bleaching of a Reef-Building Coral Using a Simplified Recirculating Laboratory Exposure System

    Science.gov (United States)

    Determining stressor-response relationships in reef building corals is a critical need for researchers because of global declines in coral reef ecosystems. A simplified recirculating coral exposure system for laboratory testing of a diversity of species and morphologies of reef b...

  2. Quality control of calibration system for area monitors at National Laboratory of Metrology from Ionizing Radiations (LNMRI)

    International Nuclear Information System (INIS)

    Ramos, M.M.O.; Freitas, L.C. de

    1992-01-01

    The quality control of equipment used in calibration from the National Laboratory of Metrology on Ionizing Radiations is presented, with results of standard measure systems and irradiation system. Tables and graphics with the quality of systems are also shown. (C.G.C.)

  3. Implementation of quality control systems in laboratories in Paraguay by the participants of ARCAL LXXVI project

    International Nuclear Information System (INIS)

    Villanueva, Z.

    2004-12-01

    In the Project ARCAL LXXVII, was realized the National Course of Control of Quality of Analytic Laboratories, from 12 to 16 of April in the CNEA, Paraguay, as a result of the one mentioned course was elaborated this project whose purpose is to elaborate the necessary documentation to fulfill the requirements of administration in the Analytic Laboratories to be adapted to the system of quality according to the ISO 17025 [es

  4. Real-Time Hardware-in-the-Loop Laboratory Testing for Multisensor Sense and Avoid Systems

    Directory of Open Access Journals (Sweden)

    Giancarmine Fasano

    2013-01-01

    Full Text Available This paper focuses on a hardware-in-the-loop facility aimed at real-time testing of architectures and algorithms of multisensor sense and avoid systems. It was developed within a research project aimed at flight demonstration of autonomous non-cooperative collision avoidance for Unmanned Aircraft Systems. In this framework, an optionally piloted Very Light Aircraft was used as experimental platform. The flight system is based on multiple-sensor data integration and it includes a Ka-band radar, four electro-optical sensors, and two dedicated processing units. The laboratory test system was developed with the primary aim of prototype validation before multi-sensor tracking and collision avoidance flight tests. System concept, hardware/software components, and operating modes are described in the paper. The facility has been built with a modular approach including both flight hardware and simulated systems and can work on the basis of experimentally tested or synthetically generated scenarios. Indeed, hybrid operating modes are also foreseen which enable performance assessment also in the case of alternative sensing architectures and flight scenarios that are hardly reproducible during flight tests. Real-time multisensor tracking results based on flight data are reported, which demonstrate reliability of the laboratory simulation while also showing the effectiveness of radar/electro-optical fusion in a non-cooperative collision avoidance architecture.

  5. Laboratory automation: trajectory, technology, and tactics.

    Science.gov (United States)

    Markin, R S; Whalen, S A

    2000-05-01

    Laboratory automation is in its infancy, following a path parallel to the development of laboratory information systems in the late 1970s and early 1980s. Changes on the horizon in healthcare and clinical laboratory service that affect the delivery of laboratory results include the increasing age of the population in North America, the implementation of the Balanced Budget Act (1997), and the creation of disease management companies. Major technology drivers include outcomes optimization and phenotypically targeted drugs. Constant cost pressures in the clinical laboratory have forced diagnostic manufacturers into less than optimal profitability states. Laboratory automation can be a tool for the improvement of laboratory services and may decrease costs. The key to improvement of laboratory services is implementation of the correct automation technology. The design of this technology should be driven by required functionality. Automation design issues should be centered on the understanding of the laboratory and its relationship to healthcare delivery and the business and operational processes in the clinical laboratory. Automation design philosophy has evolved from a hardware-based approach to a software-based approach. Process control software to support repeat testing, reflex testing, and transportation management, and overall computer-integrated manufacturing approaches to laboratory automation implementation are rapidly expanding areas. It is clear that hardware and software are functionally interdependent and that the interface between the laboratory automation system and the laboratory information system is a key component. The cost-effectiveness of automation solutions suggested by vendors, however, has been difficult to evaluate because the number of automation installations are few and the precision with which operational data have been collected to determine payback is suboptimal. The trend in automation has moved from total laboratory automation to a

  6. Visual Landing Aids (VLA) Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose:The Visual Landing Aids (VLA) Laboratory serves to support fleet VLA systems by maintaining the latest service change configuration of currently deployed VLA...

  7. Selecting automation for the clinical chemistry laboratory.

    Science.gov (United States)

    Melanson, Stacy E F; Lindeman, Neal I; Jarolim, Petr

    2007-07-01

    Laboratory automation proposes to improve the quality and efficiency of laboratory operations, and may provide a solution to the quality demands and staff shortages faced by today's clinical laboratories. Several vendors offer automation systems in the United States, with both subtle and obvious differences. Arriving at a decision to automate, and the ensuing evaluation of available products, can be time-consuming and challenging. Although considerable discussion concerning the decision to automate has been published, relatively little attention has been paid to the process of evaluating and selecting automation systems. To outline a process for evaluating and selecting automation systems as a reference for laboratories contemplating laboratory automation. Our Clinical Chemistry Laboratory staff recently evaluated all major laboratory automation systems in the United States, with their respective chemistry and immunochemistry analyzers. Our experience is described and organized according to the selection process, the important considerations in clinical chemistry automation, decisions and implementation, and we give conclusions pertaining to this experience. Including the formation of a committee, workflow analysis, submitting a request for proposal, site visits, and making a final decision, the process of selecting chemistry automation took approximately 14 months. We outline important considerations in automation design, preanalytical processing, analyzer selection, postanalytical storage, and data management. Selecting clinical chemistry laboratory automation is a complex, time-consuming process. Laboratories considering laboratory automation may benefit from the concise overview and narrative and tabular suggestions provided.

  8. Design demonstrations for the remaining 19 Category B tank systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1993-06-01

    This document presents design demonstrations conducted of liquid low-level waste (LLLW) storage tank systems located at the Oak Ridge National Laboratory (ORNL). ORNL has conducted research in energy related fields since 1943. The facilities used to conduct the research include nuclear reactors, chemical pilot plants, research laboratories, radioisotope production laboratories, and support facilities. These facilities have produced a variety of radioactive and/or hazardous wastes that have been transported and stored through an extensive network of piping and tankage. Demonstration of the design of these tank systems has been stipulated by the Federal Facility Agreement (FFA) between the EPA (United States Environmental Protection Agency)-Region IV; the Tennessee Department of Environment and Conservation (TDEC); and the DOE. The FFA establishes four categories of tank systems: Category A-New or Replacement Tank Systems with Secondary Containment; Category B-Existing Tank Systems with Secondary Containment; Category C-Existing Tank Systems Without Secondary Containment, and Category D-Existing Tank Systems Without Secondary Containment That are Removed from Service. This document provides a design demonstration of the secondary containment and ancillary equipment of 19 tank systems listed in the FFA as Category B. The design demonstration for each tank is presented in Section 2. The assessments assume that each tank system was constructed in accordance with the design drawings and construction specifications for that system unless specified otherwise. Each design demonstration addresses system conformance to the requirements of the FFA (Appendix F, Section C)

  9. Idaho National Laboratory Integrated Safety Management System FY 2016 Effectiveness Review and Declaration Report

    International Nuclear Information System (INIS)

    Hunt, Farren J.

    2016-01-01

    Idaho National Laboratory's (INL's) Integrated Safety Management System (ISMS) effectiveness review of fiscal year (FY) 2016 shows that INL has integrated management programs and safety elements throughout the oversight and operational activities performed at INL. The significant maturity of Contractor Assurance System (CAS) processes, as demonstrated across INL's management systems and periodic reporting through the Management Review Meeting process, over the past two years has provided INL with current real-time understanding and knowledge pertaining to the health of the institution. INL's sustained excellence of the Integrated Safety and effective implementation of the Worker Safety and Health Program is also evidenced by other external validations and key indicators. In particular, external validations include VPP, ISO 14001, DOELAP accreditation, and key Laboratory level indicators such as ORPS (number, event frequency and severity); injury/illness indicators such as Days Away, Restricted and Transfer (DART) case rate, back & shoulder metric and open reporting indicators, demonstrate a continuous positive trend and therefore improved operational performance over the last few years. These indicators are also reflective of the Laboratory's overall organizational and safety culture improvement. Notably, there has also been a step change in ESH&Q Leadership actions that have been recognized both locally and complex-wide. Notwithstanding, Laboratory management continues to monitor and take action on lower level negative trends in numerous areas including: Conduct of Operations, Work Control, Work Site Analysis, Risk Assessment, LO/TO, Fire Protection, and Life Safety Systems, to mention a few. While the number of severe injury cases has decreased, as evidenced by the reduction in the DART case rate, the two hand injuries and the fire truck/ambulance accident were of particular concern. Aggressive actions continue in order to understand the causes and define actions

  10. ESTABLISHMENT OF AN ENVIRONMENTAL CONTROL TECHNOLOGY LABORATORY WITH A CIRCULATING FLUIDIZED-BED COMBUSTION SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Wei-Ping Pan; Andy Wu; John T. Riley

    2004-10-30

    This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period July 1, 2004 through September 30, 2004. The following tasks have been completed. First, renovation of the new Combustion Laboratory and the construction of the Circulating Fluidized-Bed (CFB) Combustor Building have started. Second, the design if the component parts of the CFBC system have been reviewed and finalized so that the drawings may be released to the manufacturers during the next quarter. Third, the experiments for solid waste (chicken litter) incineration have been conducted using a Thermogravimetric Analyzer (TGA). This is in preparation for testing in the simulated fluidized-bed combustor. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter has been outlined in this report.

  11. Laboratory Studies of Ethane Ice Relevant to Outer Solar System Surfaces

    Science.gov (United States)

    Moore, Marla H.; Hudson, Reggie; Raines, Lily

    2009-01-01

    Oort Cloud comets, as well as TNOs Makemake (2045 FYg), Quaoar, and Pluto, are known to contain ethane. However, even though this molecule is found on several outer Solar System objects relatively little information is available about its amorphous and crystalline phases. In new experiments, we have prepared ethane ices at temperatures applicable to the outer Solar System, and have heated and ion-irradiated these ices to study phase changes and ethane's radiation chemistry using mid-IR spectroscopy (2.2 - 16.6 microns). Included in our work is the meta-stable phase that exists at 35 - 55 K. These results, including newly obtained optical constants, are relevant to ground-based observational campaigns, the New Horizons mission, and supporting laboratory work. An improved understanding of solid-phase ethane may contribute to future searches for this and other hydrocarbons in the outer Solar System.

  12. Lawrence Berkeley laboratory neutral-beam engineering test facility power-supply system

    International Nuclear Information System (INIS)

    Lutz, I.C.; Arthur, C.A.; deVries, G.J.; Owren, H.M.

    1981-10-01

    The Lawrence Berkeley Laboratory is upgrading the neutral beam source test facility (NBSTF) into a neutral beam engineering test facility (NBETF) with increased capabilities for the development of neutral beam systems. The NBETF will have an accel power supply capable of 170 kV, 70 A, 30 sec pulse length, 10% duty cycle; and the auxiliary power supplies required for the sources. This paper describes the major components, their ratings and capabilities, and the flexibility designed to accomodate the needs of source development

  13. Lawrence Livermore National Laboratory low-level waste systems performance assessment

    International Nuclear Information System (INIS)

    1990-11-01

    This Low-Level Radioactive Waste (LLW) Systems Performance Assessment (PA) presents a systematic analysis of the potential risks posed by the Lawrence Livermore National Laboratory (LLNL) waste management system. Potential risks to the public and environment are compared to established performance objectives as required by DOE Order 5820.2A. The report determines the associated maximum individual committed effective dose equivalent (CEDE) to a member of the public from LLW and mixed waste. A maximum annual CEDE of 0.01 mrem could result from routine radioactive liquid effluents. A maximum annual CEDE of 0.003 mrem could result from routine radioactive gaseous effluents. No other pathways for radiation exposure of the public indicated detectable levels of exposure. The dose rate, monitoring, and waste acceptance performance objectives were found to be adequately addressed by the LLNL Program. 88 refs., 3 figs., 17 tabs

  14. Medical Laboratory Assistant. Laboratory Occupations Cluster.

    Science.gov (United States)

    Michigan State Univ., East Lansing. Coll. of Agriculture and Natural Resources Education Inst.

    This task-based curriculum guide for medical laboratory assistant is intended to help the teacher develop a classroom management system where students learn by doing. Introductory materials include a Dictionary of Occupational Titles job code and title sheet, a career ladder, a matrix relating duty/task numbers to job titles, and a task list. Each…

  15. Intercomparison of in vivo monitoring systems in Europe. Results from Risoe National Laboratory

    International Nuclear Information System (INIS)

    Lauridsen, B.; Soegaard-Hansen, J.

    1996-12-01

    This report contains the contribution from Risoe National Laboratory to the European project: 'Intercomparison of in Vivo Monitoring Systems in Europe'. The whole-body counter at Risoe and the measurement on a phantom used as an intercalibration object in the project is described. In four case studies, prepared by the project coordinator, intakes of radionuclides and resulting doses are calculated. These calculations are based on informations on the radioactive materials taken into the body, routes of intake and on body contents of radionuclides from simulated single or multiple whole-body measurement. The answer from Risoe National Laboratory to two questionnaires - one on the whole-body counting facility and calibration methods and one on the legal requirements is the country - is listed. (au)

  16. 75 FR 50987 - Privacy Act System of Records; National Animal Health Laboratory Network (NAHLN)

    Science.gov (United States)

    2010-08-18

    ...The U.S. Department of Agriculture (USDA) proposes to add a new Privacy Act system of records to its inventory of records systems subject to the Privacy Act of 1974, as amended, and invites public comment on this new records system. The system of records being proposed is the National Animal Health Laboratory Network. This notice is necessary to meet the requirements of the Privacy Act to publish in the Federal Register notice of the existence and character of record systems maintained by the agency. Although the Privacy Act requires only that the portion of the system that describes ``routine uses'' of the system be published for comment, USDA invites comment on all portions of this notice.

  17. International Federation of Clinical Chemistry. Use of artificial intelligence in analytical systems for the clinical laboratory. IFCC Committee on Analytical Systems.

    Science.gov (United States)

    Place, J F; Truchaud, A; Ozawa, K; Pardue, H; Schnipelsky, P

    1994-12-16

    The incorporation of information-processing technology into analytical systems in the form of standard computing software has recently been advanced by the introduction of artificial intelligence (AI) both as expert systems and as neural networks. This paper considers the role of software in system operation, control and automation and attempts to define intelligence. AI is characterized by its ability to deal with incomplete and imprecise information and to accumulate knowledge. Expert systems, building on standard computing techniques, depend heavily on the domain experts and knowledge engineers that have programmed them to represent the real world. Neural networks are intended to emulate the pattern-recognition and parallel-processing capabilities of the human brain and are taught rather than programmed. The future may lie in a combination of the recognition ability of the neural network and the rationalization capability of the expert system. In the second part of this paper, examples are given of applications of AI in stand-alone systems for knowledge engineering and medical diagnosis and in embedded systems for failure detection, image analysis, user interfacing, natural language processing, robotics and machine learning, as related to clinical laboratories. It is concluded that AI constitutes a collective form of intellectual property and that there is a need for better documentation, evaluation and regulation of the systems already being used widely in clinical laboratories.

  18. Public health laboratory quality management in a developing country.

    Science.gov (United States)

    Wangkahat, Khwanjai; Nookhai, Somboon; Pobkeeree, Vallerut

    2012-01-01

    The article aims to give an overview of the system of public health laboratory quality management in Thailand and to produce a strengths, weaknesses, opportunities and threats (SWOT) analysis that is relevant to public health laboratories in the country. The systems for managing laboratory quality that are currently employed were described in the first component. The second component was a SWOT analysis, which used the opinions of laboratory professionals to identify any areas that could be improved to meet quality management systems. Various quality management systems were identified and the number of laboratories that met both international and national quality management requirements was different. The SWOT analysis found the opportunities and strengths factors offered the best chance to improve laboratory quality management in the country. The results are based on observations and brainstorming with medical laboratory professionals who can assist laboratories in accomplishing quality management. The factors derived from the analysis can help improve laboratory quality management in the country. This paper provides viewpoints and evidence-based approaches for the development of best possible practice of services in public health laboratories.

  19. Open-circuit respirometry: real-time, laboratory-based systems.

    Science.gov (United States)

    Ward, Susan A

    2018-05-04

    This review explores the conceptual and technological factors integral to the development of laboratory-based, automated real-time open-circuit mixing-chamber and breath-by-breath (B × B) gas-exchange systems, together with considerations of assumptions and limitations. Advances in sensor technology, signal analysis, and digital computation led to the emergence of these technologies in the mid-20th century, at a time when investigators were beginning to recognise the interpretational advantages of nonsteady-state physiological-system interrogation in understanding the aetiology of exercise (in)tolerance in health, sport, and disease. Key milestones include the 'Auchincloss' description of an off-line system to estimate alveolar O 2 uptake B × B during exercise. This was followed by the first descriptions of real-time automated O 2 uptake and CO 2 output B × B measurement by Beaver and colleagues and by Linnarsson and Lindborg, and mixing-chamber measurement by Wilmore and colleagues. Challenges to both approaches soon emerged: e.g., the influence of mixing-chamber washout kinetics on mixed-expired gas concentration determination, and B × B alignment of gas-concentration signals with respired flow. The challenging algorithmic and technical refinements required for gas-exchange estimation at the alveolar level have also been extensively explored. In conclusion, while the technology (both hardware and software) underpinning real-time automated gas-exchange measurement has progressively advanced, there are still concerns regarding accuracy especially under the challenging conditions of changing metabolic rate.

  20. Remote Experiments in Control Engineering Education Laboratory

    Directory of Open Access Journals (Sweden)

    Milica B Naumović

    2008-05-01

    Full Text Available This paper presents Automatic Control Engineering Laboratory (ACEL - WebLab, an under-developed, internet-based remote laboratory for control engineering education at the Faculty of Electronic Engineering in Niš. Up to now, the remote laboratory integrates two physical systems (velocity servo system and magnetic levitation system and enables some levels of measurement and control. To perform experiments in ACEL-WebLab, the "LabVIEW Run Time Engine"and a standard web browser are needed.