WorldWideScience

Sample records for corona solar

  1. Solar Indices - Solar Corona

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  2. Viking solar corona experiment

    International Nuclear Information System (INIS)

    Tyler, G.L.; Brenkle, J.P.; Komarek, T.A.; Zygielbaum, A.I.

    1977-01-01

    The 1976 Mars solar conjunction resulted in complete occulations of the Viking spacecraft by the sun at solar minimum. During the conjunction period, coherent 3.5- and 13-cm wavelength radio waves from the orbiters passed through the solar corona and were received with the 64-m antennas of the NASA Deep Space Network. Data were obtained within at least 0.3 and 0.8 R/sub s/ of the photosphere at the 3.5- and 13-cm wavelengths, respectively. The data can be used to determine the plasma density integrated along the radio path, the velocity of density irregularities in the coronal plasma, and the spectrum of the density fluctuations in the plasma. Observations of integrated plasma density near the south pole of the sun generally agree with a model of the corona which has an 8:1 decrease in plasma density from the equator to the pole. Power spectra of the 3.5- and 13-cm signals at a heliocentric radial distance of about 2 R/sub s/ have a 1/2-power width of several hundred hertz and vary sharply with proximate geometric miss distance. Spectral broadening indicates a marked progressive increase in plasma irregularities with decreasing ray altitude at scales between about 1 and 100 km

  3. Skylab investigations of solar corona

    International Nuclear Information System (INIS)

    Krivsky, L.

    1976-01-01

    The findings are reported obtained by the observation of the Sun and its corona from Skylab. The most important findings include the discovery of explosive loop structures induced by eruptive phenomena below the corona, in the chromosphere. The front edge of the explosive loop structure was observed at a distance of 1,700,000 to 2,800,000 km from the Sun. The rate of prominence was around 500 km/s. The loop structure disturbed the original shape of the corona above the solar disk edge. A graph was plotted of the variation of the release of the expanding loop structure from the solar surface in millions of kilometers with time. The graph aided in refuting the erroneous assumption that the prominence was not associated with radio bursts similar to those induced by plasma shock waves. It was also shown that a prominent shock wave is present in the vicinity of the expanding structure front which, at lower levels, got released from the eruptive flare above the solar ''surface''. The knowledge obtained does not involve the Sun alone but is also valuable from the point of view of the prognosis of consequent magnetic anomalies in the interstellar space and geomagnetic disturbances on the Earth. (Z.S.)

  4. Solar corona electron density distribution

    International Nuclear Information System (INIS)

    Esposito, P.B.; Edenhofer, P.; Lueneburg, E.

    1980-01-01

    Three and one-half months of single-frequency (f= 0 2.2 x 10 9 Hz) time delay data (earth-to-spacecraft and return signal travel time) were acquired from the Helios 2 spacecraft around the time of its solar occupation (May 16, 1976). Following the determination of the spacecraft trajectory the excess time delay due to the integrated effect of free electrons along the signal's ray path could be separated and modeled. An average solar corona, equatorial, electron density profile, during solar minimum, was deduced from time delay measurements acquired within 5--60 solar radii (R/sub S/) of the sun. As a point of reference, at 10 R/sub S/ from the sun we find an average electron density of 4500 el cm -3 . However, there appears to be an asymmtry in the electron density as the ray path moved from the west (preoccultation) to east (post-occulation) solar limb. This may be related to the fact that during entry into occulation the heliographic latitude of the ray path (at closes approach to the sun) was about 6 0 , whereas during exit it became -7 0 . The Helios electron density model is compared with similar models deduced from a variety of different experimental techniques. Within 5--20 R/sub S/ of the sun the models separate according to solar minimum or maximum conditions; however, anomalies are evident

  5. A guide to the solar corona

    CERN Document Server

    Billings, Donald E

    1966-01-01

    A Guide to the Solar Corona is specifically directed to the space scientist or engineer who is not a specialist in solar physics, but whose work requires a fairly detailed knowledge of the corona. It is hoped that the material may prove useful to most graduate students in astrophysics, while solar physicists may find some topics of interest and value to them. The book contains 12 chapters and begins with three descriptive chapters that provide the casual reader with a concept of the corona as it is evident through more or less direct observation. Topics covered include the development of coron

  6. The Faraday rotation experiment. [solar corona

    Science.gov (United States)

    Volland, H.; Levy, G. S.; Bird, M. K.; Stelzried, C. T.; Seidel, B. L.

    1984-01-01

    The magnetized plasma of the solar corona was remotely sounded using the Faraday rotation effect. The solar magnetic field together with the electrons of the coronal plasma cause a measurable Faraday rotation effect, since the radio waves of Helios are linearly polarized. The measurement is performed at the ground stations. Alfven waves traveling from the Sun's surface through the corona into interplanetary space are observed. Helios 2 signals penetrating through a region where coronal mass is ejected show wavelike structures.

  7. Nanoflare heating model for collisionless solar corona

    Indian Academy of Sciences (India)

    Magnetic reconnection plays a significant role in heating the solar corona. When two oppositely directed magnetic fields come closer to form a current sheet, the current density of the plasma increases due to which magnetic reconnection and conversion of magnetic energy into thermal energy takes place. The present ...

  8. MASC: Magnetic Activity of the Solar Corona

    Science.gov (United States)

    Auchere, Frederic; Fineschi, Silvano; Gan, Weiqun; Peter, Hardi; Vial, Jean-Claude; Zhukov, Andrei; Parenti, Susanna; Li, Hui; Romoli, Marco

    We present MASC, an innovative payload designed to explore the magnetic activity of the solar corona. It is composed of three complementary instruments: a Hard-X-ray spectrometer, a UV / EUV imager, and a Visible Light / UV polarimetric coronagraph able to measure the coronal magnetic field. The solar corona is structured in magnetically closed and open structures from which slow and fast solar winds are respectively released. In spite of much progress brought by two decades of almost uninterrupted observations from several space missions, the sources and acceleration mechanisms of both types are still not understood. This continuous expansion of the solar atmosphere is disturbed by sporadic but frequent and violent events. Coronal mass ejections (CMEs) are large-scale massive eruptions of magnetic structures out of the corona, while solar flares trace the sudden heating of coronal plasma and the acceleration of electrons and ions to high, sometimes relativistic, energies. Both phenomena are most probably driven by instabilities of the magnetic field in the corona. The relations between flares and CMEs are still not understood in terms of initiation and energy partition between large-scale motions, small-scale heating and particle acceleration. The initiation is probably related to magnetic reconnection which itself results magnetic topological changes due to e.g. flux emergence, footpoints motions, etc. Acceleration and heating are also strongly coupled since the atmospheric heating is thought to result from the impact of accelerated particles. The measurement of both physical processes and their outputs is consequently of major importance. However, despite its fundamental importance as a driver for the physics of the Sun and of the heliosphere, the magnetic field of our star’s outer atmosphere remains poorly understood. This is due in large part to the fact that the magnetic field is a very difficult quantity to measure. Our knowledge of its strength and

  9. Geometry of solar corona expansion and solar wind parameters

    International Nuclear Information System (INIS)

    Krajnev, M.B.

    1980-01-01

    The character of the parameter chanqe of solar wind plasma in the region of the Earth orbit is studied. The main regularities in the parametep behaviour of solar wind (plasma velocity and density) are qualitatively explained in the framework of a model according to which solar corona expansion stronqly differs from radial expansion, that is: the solar wind current lines are focused towards helioequator during the period of low solar activity with gradual transfer to radial expansion during the years of high solar activity. It is shown that the geometry of the solar wind current tubes and its change with the solar activity cycle can not serve an explanation of the observed change of the solar wind parameters

  10. Kinetic Physics of the Solar Corona and Solar Wind

    Directory of Open Access Journals (Sweden)

    Marsch Eckart

    2006-07-01

    Full Text Available Kinetic plasma physics of the solar corona and solar wind are reviewed with emphasis on the theoretical understanding of the in situ measurements of solar wind particles and waves, as well as on the remote-sensing observations of the solar corona made by means of ultraviolet spectroscopy and imaging. In order to explain coronal and interplanetary heating, the microphysics of the dissipation of various forms of mechanical, electric and magnetic energy at small scales (e.g., contained in plasma waves, turbulences or non-uniform flows must be addressed. We therefore scrutinise the basic assumptions underlying the classical transport theory and the related collisional heating rates, and also describe alternatives associated with wave-particle interactions. We elucidate the kinetic aspects of heating the solar corona and interplanetary plasma through Landau- and cyclotron-resonant damping of plasma waves, and analyse in detail wave absorption and micro instabilities. Important aspects (virtues and limitations of fluid models, either single- and multi-species or magnetohydrodynamic and multi-moment models, for coronal heating and solar wind acceleration are critically discussed. Also, kinetic model results which were recently obtained by numerically solving the Vlasov–Boltzmann equation in a coronal funnel and hole are presented. Promising areas and perspectives for future research are outlined finally.

  11. Joint Soviet-French studies of the solar corona. II - Photometry of the solar corona on June 30, 1973

    Science.gov (United States)

    Vsekhsvyatsky, S. K.; Dzyubenko, N. I.; Ivanchuk, V. I.; Popov, O. S.; Rubo, G. A.; Koutchmy, S.; Koutchmy, O.; Shtelmacher, G.

    1981-04-01

    Results are presented of a study of negatives obtained on June 30, 1973 during the total solar eclipse in Africa; the study was part of a joint Soviet-French experiment on white corona dynamics, carried out by expeditions of Kiev University (Atar, Mauritania) and the Paris Astrophysical Institute (Moussoro, Chad). The distribution of total corona brightness up to 4.5 solar radii and its K and F corona components for east and north directions were found on the basis of novel methods of photometry and colorimetry using star images up to 8.5m as the photometry standards. Neither the color effect nor flattening is found in the inner part (less than 2.5 solar radii) of the F corona. Integral corona brightness in the standard zone of 1.03-6.00 solar radii was found to be 0.64 x 10 to the -6th solar-E.

  12. Double Arc Instability in the Solar Corona

    Energy Technology Data Exchange (ETDEWEB)

    Ishiguro, N.; Kusano, K., E-mail: n-ishiguro@isee.nagoya-u.ac.jp [Institute for Space-Earth Environmental Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601 Japan (Japan)

    2017-07-10

    The stability of the magnetic field in the solar corona is important for understanding the causes of solar eruptions. Although various scenarios have been suggested to date, the tether-cutting reconnection scenario proposed by Moore et al. is one of the widely accepted models to explain the onset process of solar eruptions. Although the tether-cutting reconnection scenario proposes that the sigmoidal field formed by internal reconnection is the magnetic field in the pre-eruptive state, the stability of the sigmoidal field has not yet been investigated quantitatively. In this paper, in order to elucidate the stability problem of the pre-eruptive state, we developed a simple numerical analysis in which the sigmoidal field is modeled by a double arc electric current loop and its stability is analyzed. As a result, we found that the double arc loop is more easily destabilized than the axisymmetric torus, and it becomes unstable even if the external field does not decay with altitude, which is in contrast to the axisymmetric torus instability. This suggests that tether-cutting reconnection may well work as the onset mechanism of solar eruptions, and if so, the critical condition for eruption under a certain geometry may be determined by a new type of instability rather than by the torus instability. Based on them, we propose a new type of instability called double arc instability (DAI). We discuss the critical conditions for DAI and derive a new parameter κ , defined as the product of the magnetic twist and the normalized flux of the tether-cutting reconnection.

  13. TESIS experiment on study of solar corona in EUV spectral range (CORONAS-PHOTON project)

    International Nuclear Information System (INIS)

    Kuzin, S.V.; Zhitnik, I.A.; Ignat'ev, A.P.; Mitrofanov, A.V.; Pertsov, A.A.; Bugaenko, O.I.

    2005-01-01

    A new orbital station, namely: the CORONAS-PHOTON one (to be launched in 2006) equipped with systems to explore Sun at the intensification period of the solar activity 24-th cycle and at its peak is being designed within the framework of the CORONAS National Sun Space Exploration Program. The station equipment consists of systems to observe Sun within the spectral soft X-ray and vacuum ultraviolet bands. Paper lists and describes the TESIS experiment tools designed for the CORONAS-PHOTON Project to ensure the Sun atmospheric research within short-wave band [ru

  14. Compensating Faraday Depolarization by Magnetic Helicity in the Solar Corona

    Energy Technology Data Exchange (ETDEWEB)

    Brandenburg, Axel; Ashurova, Mohira B. [Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80303 (United States); Jabbari, Sarah, E-mail: brandenb@nordita.org [School of Mathematical Sciences and Monash Centre for Astrophysics, Monash University, Clayton, VIC 3800 (Australia)

    2017-08-20

    A turbulent dynamo in spherical geometry with an outer corona is simulated to study the sign of magnetic helicity in the outer parts. In agreement with earlier studies, the sign in the outer corona is found to be opposite to that inside the dynamo. Line-of-sight observations of polarized emission are synthesized to explore the feasibility of using the local reduction of Faraday depolarization to infer the sign of helicity of magnetic fields in the solar corona. This approach was previously identified as an observational diagnostic in the context of galactic magnetic fields. Based on our simulations, we show that this method can be successful in the solar context if sufficient statistics are gathered by using averages over ring segments in the corona separately for the regions north and south of the solar equator.

  15. Bright point study. [of solar corona

    Science.gov (United States)

    Tang, F.; Harvey, K.; Bruner, M.; Kent, B.; Antonucci, E.

    1982-01-01

    Transition region and coronal observations of bright points by instruments aboard the Solar Maximum Mission and high resolution photospheric magnetograph observations on September 11, 1980 are presented. A total of 31 bipolar ephemeral regions were found in the photosphere from birth in 9.3 hours of combined magnetograph observations from three observatories. Two of the three ephemeral regions present in the field of view of the Ultraviolet Spectrometer-Polarimeter were observed in the C IV 1548 line. The unobserved ephemeral region was determined to be the shortest-lived (2.5 hr) and lowest in magnetic flux density (13G) of the three regions. The Flat Crystal Spectrometer observed only low level signals in the O VIII 18.969 A line, which were not statistically significant to be positively identified with any of the 16 ephemeral regions detected in the photosphere. In addition, the data indicate that at any given time there lacked a one-to-one correspondence between observable bright points and photospheric ephemeral regions, while more ephemeral regions were observed than their counterparts in the transition region and the corona.

  16. Soviet-France cooperative study of the solar corona

    International Nuclear Information System (INIS)

    Vsekhvsyatskij, S.K.; Dzyubenko, N.I.; Ivanchuk, V.I.; Popov, O.S.; Rubo, G.A.; Kuchmij, S.; Kuchmij, O.; Shtel'makher, G.

    1981-01-01

    The study continues the investigations on the solar corona performed according to the program of the Soviet-France experiment ''The white corona dynamics'' during total solar eclipses on July 10 1972 and June 30, 1973 by the expeditions of Kiev University and Paris Astrophysical Institute. The results of the study of eclipse negatives obtained on June 30 1973 in Africa are given. On the basis of new methods of photometry and colorimetry using star images up to 8.5sup(m) as the photometry standards it has been found with high accuracy the distribution of the total corona brightness up to r approximately equal to 4.5 Rsub(S) and its K- and F-corona components for E and N directions. Neither color effect nor flattening is found in the dust component (r -6 Esub(S)

  17. Meteoric ions in the corona and solar wind

    International Nuclear Information System (INIS)

    Lemaire, J.

    1990-01-01

    The total mass of refractory material of interplanetary origin penetrating and evaporated in the meltosphere surrounding the sun has been inferred from observations of meteoroids and fireballs falling in earth's atmosphere. The amount of iron atoms deposited this way in the solar corona is of the order of 3000 t/s or larger. The measured flux of outflowing solar wind iron ions is equal to 2200 t/s. The close agreement of both fluxes is evidence that a significant fraction of iron ions observed in the solar wind and in the corona must be of meteoric origin. A similar accord is also obtained for silicon ions. The mean velocity of meteoroid ions formed in the solar corona is equal to the free-fall velocity: i.e., independent of their atomic mass as the thermal speed of heavy ion measured in low-density solar wind streams at 1 AU. Furthermore, the heavy ions of meteoric origin escape out of the corona with a larger bulk velocity than the protons which are mainly of solar origin. These differences of heavy ion and proton bulk velocities are also observed in the solar wind. 52 refs

  18. HIGH SPATIAL RESOLUTION OBSERVATIONS OF LOOPS IN THE SOLAR CORONA

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, David H.; Ugarte-Urra, Ignacio [College of Science, George Mason University, 4400 University Drive, Fairfax, VA 22030 (United States); Warren, Harry P. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Winebarger, Amy R. [NASA Marshall Space Flight Center, ZP 13, Huntsville, AL 35812 (United States)

    2013-08-01

    Understanding how the solar corona is structured is of fundamental importance to determine how the Sun's upper atmosphere is heated to high temperatures. Recent spectroscopic studies have suggested that an instrument with a spatial resolution of 200 km or better is necessary to resolve coronal loops. The High Resolution Coronal Imager (Hi-C) achieved this performance on a rocket flight in 2012 July. We use Hi-C data to measure the Gaussian widths of 91 loops observed in the solar corona and find a distribution that peaks at about 270 km. We also use Atmospheric Imaging Assembly data for a subset of these loops and find temperature distributions that are generally very narrow. These observations provide further evidence that loops in the solar corona are often structured at a scale of several hundred kilometers, well above the spatial scale of many proposed physical mechanisms.

  19. New Views of the Solar Corona from STEREO and SDO

    Science.gov (United States)

    Vourlidas, A.

    2012-01-01

    In the last few years, we have been treated to an unusual visual feast of solar observations of the corona in EUV wavelengths. The observations from the two vantage points of STEREO/SECCHI are now capturing the entire solar atmosphere simultaneously in four wavelengths. The SDO/AIA images provide us with arcsecond resolution images of the full visible disk in ten wavelengths. All these data are captured with cadences of a few seconds to a few minutes. In this talk, I review some intriguing results from our first attempts to deal with these observations which touch upon the problems of coronal mass ejection initiation and solar wind generation. I will also discuss data processing techniques that may help us recover even more information from the images. The talk will contain a generous portion of beautiful EUV images and movies of the solar corona.

  20. The heating of the solar corona. Pt. 2

    International Nuclear Information System (INIS)

    McWhirter, R.W.P.; Thonemann, P.C.; Wilson, R.

    1975-01-01

    The density and temperature distribution of the solar corona is calculated assuming an energy balance between thermal conduction and radiated power loss with the primary heating of the corona by the dissipation of sound-waves propagated upwards from below the sun's surface. A sharp transition region is found and the calculated results are compared with observations. A detailed model atmosphere for the transition region and corona is derived using the Harvard Smithsonian Reference Atmosphere (for the chromosphere) as starting point. Hydrostatic equilibrium is assumed in the calculations but it is also shown that a pressure arises because of the sound-waves which is of comparable magnitude to hydrostatic pressure. The inclusion of this pressure introduces difficulties that are discussed. (orig.) [de

  1. Comparison of reconnection in magnetosphere and solar corona

    Science.gov (United States)

    Imada, Shinsuke; Hirai, Mariko; Isobe, Hiroaki; Oka, Mitsuo; Watanabe, Kyoko; Minoshima, Takashi

    One of the most famous rapid energy conversion mechanisms in space is a magnetic reconnec-tion. The general concept of a magnetic reconnection is that the rapid energy conversion from magnetic field energy to thermal energy, kinetic energy or non-thermal particle energy. The understanding of rapid energy conversion rates from magnetic field energy to other energy is the fundamental and essential problem in the space physics. One of the important goals for studying magnetic reconnection is to answer what plasma condition/parameter controls the energy conversion rates. Earth's magnetotail has been paid much attention to discuss a mag-netic reconnection, because we can discuss magnetic reconnection characteristics in detail with direct in-situ observation. Recently, solar atmosphere has been focused as a space laboratory for magnetic reconnection because of its variety in plasma condition. So far considerable effort has been devoted toward understanding the energy conversion rates of magnetic reconnection, and various typical features associated with magnetic reconnection have been observed in the Earth's magnetotail and the solar corona. In this talk, we first introduce the variety of plasma condition/parameter in solar corona and Earth's magnetotail. Later, we discuss what plasma condition/parameter controls the energy conversion from magnetic field to especially non-thermal particle. To compare non-thermal electron and ion acceleration in magnetic reconnection, we used Hard X-ray (electron) /Neu-tron monitor (ion) for solar corona and Geotail in-situ measurement (electron and ion) for magnetoatil. We found both of electron and ion accelerations are roughly controlled by re-connection electric field (reconnection rate). However, some detail points are different in ion and electron acceleration. Further, we will discuss what is the major difference between solar corona and Earth's magnetotail for particle acceleration.

  2. Photometric intensity and polarization measurements of the solar corona.

    Science.gov (United States)

    Mcdougal, D. S.

    1971-01-01

    Use of a satellite photometric observatory (SPO) to measure the solar corona from Miahuatlan, Mexico during the Mar. 7, 1970, total eclipse of the sun. The SPO is equipped with a 24-in. Cassegrainian telescope, a four-channel photoelectric photometer, a Wollaston prism, and a rotating half-wave plate. Simultaneous measurements were made of the two orthogonal components of coronal light in the B and R bands of the UBVRI system. A 1-minute arc aperture was scanned from the lunar disk center out to five solar radii in a series of spirals of gradually increasing radius. For the first time, simultaneous multicolor intensity, degree, and angle of polarization profiles are computed from photoelectric measurements. Comparison of the variations of the measurements for each spiral scan yield a detailed picture of the intensity and polarization features in the K corona.

  3. Observational capabilities of solar satellite "Coronas-Photon"

    Science.gov (United States)

    Kotov, Yu.

    Coronas-Photon mission is the third satellite of the Russian Coronas program on solar activity observation The main goal of the Coronas-Photon is the study of solar hard electromagnetic radiation in the wide energy range from UV up to high energy gamma-radiation sim 2000MeV Scientific payload for solar radiation observation consists of three type of instruments 1 monitors Natalya-2M Konus-RF RT-2 Penguin-M BRM Phoka Sphin-X Sokol for spectral and timing measurements of full solar disk radiation with timing in flare burst mode up to one msec Instruments Natalya-2M Konus-RF RT-2 will cover the wide energy range of hard X-rays and soft Gamma rays 15keV to 2000MeV and will together constitute the largest area detectors ever used for solar observations Detectors of gamma-ray monitors are based on structured inorganic scintillators with energy resolution sim 5 for nuclear gamma-line band to 35 for GeV-band PSD analysis is used for gamma neutron separation for solar neutron registration T 30MeV Penguin-M has capability to measure linear polarization of hard X-rays using azimuth are measured by Compton scattering asymmetry in case of polarization of an incident flux For X-ray and EUV monitors the scintillation phoswich detectors gas proportional counter CZT assembly and Filter-covered Si-diodes are used 2 Telescope-spectrometer TESIS for imaging solar spectroscopy in X-rays with angular resolution up to 1 in three spectral lines and RT-2 CZT assembly of CZT

  4. Magnetic tornadoes as energy channels into the solar corona.

    Science.gov (United States)

    Wedemeyer-Böhm, Sven; Scullion, Eamon; Steiner, Oskar; van der Voort, Luc Rouppe; de la Cruz Rodriguez, Jaime; Fedun, Viktor; Erdélyi, Robert

    2012-06-27

    Heating the outer layers of the magnetically quiet solar atmosphere to more than one million kelvin and accelerating the solar wind requires an energy flux of approximately 100 to 300 watts per square metre, but how this energy is transferred and dissipated there is a puzzle and several alternative solutions have been proposed. Braiding and twisting of magnetic field structures, which is caused by the convective flows at the solar surface, was suggested as an efficient mechanism for atmospheric heating. Convectively driven vortex flows that harbour magnetic fields are observed to be abundant in the photosphere (the visible surface of the Sun). Recently, corresponding swirling motions have been discovered in the chromosphere, the atmospheric layer sandwiched between the photosphere and the corona. Here we report the imprints of these chromospheric swirls in the transition region and low corona, and identify them as observational signatures of rapidly rotating magnetic structures. These ubiquitous structures, which resemble super-tornadoes under solar conditions, reach from the convection zone into the upper solar atmosphere and provide an alternative mechanism for channelling energy from the lower into the upper solar atmosphere.

  5. Energy distribution of nanoflares in the quiet solar corona

    Science.gov (United States)

    Ulyanov, Artyom

    2012-07-01

    We present a detailed statistical analysis of flare-like events in low layer of solar corona detected with TESIS instrument onboard CORONAS-PHOTON satellite in 171 {Å} during high-cadence (5 sec) time-series. The estimated thermal energies of these small events amount to 10^{23} - 10^{26} erg. According to modern classification flare-like events with such energies are usually referred to as nanoflares. The big number of registered events (above 2000) allowed us to obtain precise distributions of geometric and physical parameters of nanoflares, the most intriguing being energy distribution. Following Aschwanden et al. (2000) and other authors we approximated the calculated energy distribution with a single power law slope: N(E)dE ˜ N^{-α}dE. The power law index was derived to be α = 2.4 ± 0.2, which is very close to the value reported by Krucker & Benz (1998): α ≈ 2.3 - 2.4. The total energy input from registered events constitute about 10^4 erg \\cdot cm^{-2} \\cdot s^{-1}, which is well beyond net losses in quiet corona (3 \\cdot 10^5 erg \\cdot cm^{-2} \\cdot s^{-1}). However, the value of α > 2 indicates that nanoflares with lower energies dominate over nanoflares with bigger energies and could contribute considerably to quiet corona heating.

  6. Catastrophic cooling and cessation of heating in the solar corona

    Science.gov (United States)

    Peter, H.; Bingert, S.; Kamio, S.

    2012-01-01

    Context. Condensations in the more than 106 K hot corona of the Sun are commonly observed in the extreme ultraviolet (EUV). While their contribution to the total solar EUV radiation is still a matter of debate, these condensations certainly provide a valuable tool for studying the dynamic response of the corona to the heating processes. Aims: We investigate different distributions of energy input in time and space to investigate which process is most relevant for understanding these coronal condensations. Methods: For a comparison to observations we synthesize EUV emission from a time-dependent, one-dimensional model for coronal loops, where we employ two heating scenarios: simply shutting down the heating and a model where the heating is very concentrated at the loop footpoints, while keeping the total heat input constant. Results: The heating off/on model does not lead to significant EUV count rates that one observes with SDO/AIA. In contrast, the concentration of the heating near the footpoints leads to thermal non-equilibrium near the loop top resulting in the well-known catastrophic cooling. This process gives a good match to observations of coronal condensations. Conclusions: This shows that the corona needs a steady supply of energy to support the coronal plasma, even during coronal condensations. Otherwise the corona would drain very fast, too fast to even form a condensation. Movies are available in electronic form at http://www.aanda.org

  7. Synoptic, Global Mhd Model For The Solar Corona

    Science.gov (United States)

    Cohen, Ofer; Sokolov, I. V.; Roussev, I. I.; Gombosi, T. I.

    2007-05-01

    The common techniques for mimic the solar corona heating and the solar wind acceleration in global MHD models are as follow. 1) Additional terms in the momentum and energy equations derived from the WKB approximation for the Alfv’en wave turbulence; 2) some empirical heat source in the energy equation; 3) a non-uniform distribution of the polytropic index, γ, used in the energy equation. In our model, we choose the latter approach. However, in order to get a more realistic distribution of γ, we use the empirical Wang-Sheeley-Arge (WSA) model to constrain the MHD solution. The WSA model provides the distribution of the asymptotic solar wind speed from the potential field approximation; therefore it also provides the distribution of the kinetic energy. Assuming that far from the Sun the total energy is dominated by the energy of the bulk motion and assuming the conservation of the Bernoulli integral, we can trace the total energy along a magnetic field line to the solar surface. On the surface the gravity is known and the kinetic energy is negligible. Therefore, we can get the surface distribution of γ as a function of the final speed originating from this point. By interpolation γ to spherically uniform value on the source surface, we use this spatial distribution of γ in the energy equation to obtain a self-consistent, steady state MHD solution for the solar corona. We present the model result for different Carrington Rotations.

  8. The Mechanism for Energy Buildup in the Solar Corona

    Science.gov (United States)

    Antiochos, Spiro; Knizhnik, Kalman; DeVore, Richard

    2017-10-01

    Magnetic reconnection and helicity conservation are two of the most important basic processes determining the structure and dynamics of laboratory and space plasmas. The most energetic dynamics in the solar system are the giant CMEs/flares that produce the most dangerous space weather at Earth, yet may also have been essential for the origin of life. The origin of these explosions is that the lowest-lying magnetic flux in the Sun's corona undergoes the continual buildup of stress and free energy that can be released only through explosive ejection. We perform MHD simulations of a coronal volume driven by quasi-random boundary flows designed to model the processes by which the solar interior drives the corona. Our simulations are uniquely accurate in preserving magnetic helicity. We show that even though small-scale stress is injected randomly throughout the corona, the net result of magnetic reconnection is a coherent stressing of the lowest-lying field lines. This highly counter-intuitive result - magnetic stress builds up locally rather than spreading out to a minimum energy state - is the fundamental mechanism responsible for the Sun's magnetic explosions. It is likely to be a mechanism that is ubiquitous throughout laboratory and space plasmas. This work was supported by the NASA LWS and SR Programs.

  9. Radiative origins of the solar corona

    International Nuclear Information System (INIS)

    Koch, P.

    1978-01-01

    Within observational accuracy, the radiation pressure aT 4 /3 at the effective solar temperature is equal to the coronal gas pressure nkT. This suggests a radiative gas discontinuity between optically thick and optically thin regions. Ideal transitions of this nature are studied and the applicability of this model to the Sun is explored. Further empirical corroboration is obtained if the gas pressure anomalies of Gulyaev are resolved by postulating a corrective gradient of radiation pressure possibly caused by Lyman-α opacity. (Auth.)

  10. Intermittent heating of the solar corona by MHD turbulence

    Directory of Open Access Journals (Sweden)

    É. Buchlin

    2007-10-01

    Full Text Available As the dissipation mechanisms considered for the heating of the solar corona would be sufficiently efficient only in the presence of small scales, turbulence is thought to be a key player in the coronal heating processes: it allows indeed to transfer energy from the large scales to these small scales. While Direct numerical simulations which have been performed to investigate the properties of magnetohydrodynamic turbulence in the corona have provided interesting results, they are limited to small Reynolds numbers. We present here a model of coronal loop turbulence involving shell-models and Alfvén waves propagation, allowing the much faster computation of spectra and turbulence statistics at higher Reynolds numbers. We also present first results of the forward-modelling of spectroscopic observables in the UV.

  11. The coronas-F space mission key results for solar terrestrial physics

    CERN Document Server

    2014-01-01

    This volume is the updated and extended translation of the Russian original. It presents the results of observations of solar activity and its effects in the Earth space environment carried out from July 2001 to December 2005 on board the CORONAS-F space mission. The general characteristics of the CORONAS-F scientific payload are provided with a description of the principal experiments. The main results focus on the global oscillations of the Sun (p-modes), solar corona, solar flares, solar cosmic rays, Earth’s radiation belts, and upper atmosphere. The book will be welcomed by students, post-graduates, and scientists working in the field of solar and solar-terrestrial physics. This English edition is supplemented by sections presenting new results of the SPIRIT and TESIS experiments under the CORONAS solar program, as well as from the SONG experiment onboard the CORONAS-F satellite.

  12. Mass ejections from the solar corona into interplanetary space

    International Nuclear Information System (INIS)

    Hildner, E.

    1977-01-01

    Mass ejections from the corona are common occurrances, as observations with the High Altitude Observatory's white light coronagraph aboard Skylab showed. During 227 days of operation in 1973 and 1974 at least 77 mass ejections were observed and as many more probably occurred unobserved. It is suggested that the frequency of ejections varies with the solar cycle and that ejections may contribute 10 percent or more of the total solar mass efflux to the interplanetary medium at solar maximum. Since ejections are confined to relatively low latitudes, their fractional mass flux contribution is greater near the ecliptic than far from it. From the behavior of ejecta, we can estimate the magnitude of the force driving them through the corona. It is also suggested that loop-shaped ejection - the largest fraction of ejections - are driven, primarily, by magnetic forces. By comparison, gas pressure forces are negligible, and forces due to wave pressure are completely inadequate. That magnetic forces are important is consistent with observation that ejections seem to come, primarily, from regions where the magnetic field is more intense and more complex than elsewhere. Indeed, ejections are associated with phenomena (flares and eruptive prominences) which occur over lines separating regions of opposite polarities. (Auth.)

  13. Neutral Hydrogen and Its Emission Lines in the Solar Corona

    Science.gov (United States)

    Vial, Jean-Claude; Chane-Yook, Martine

    2016-12-01

    Since the Lyman-α rocket observations of Gabriel ( Solar Phys. 21, 392, 1971), it has been realized that the hydrogen (H) lines could be observed in the corona and that they offer an interesting diagnostic for the temperature, density, and radial velocity of the coronal plasma. Moreover, various space missions have been proposed to measure the coronal magnetic and velocity fields through polarimetry in H lines. A necessary condition for such measurements is to benefit from a sufficient signal-to-noise ratio. The aim of this article is to evaluate the emission in three representative lines of H for three different coronal structures. The computations have been performed with a full non-local thermodynamic-equilibrium (non-LTE) code and its simplified version without radiative transfer. Since all collisional and radiative quantities (including incident ionizing and exciting radiation) are taken into account, the ionization is treated exactly. Profiles are presented at two heights (1.05 and 1.9 solar radii, from Sun center) in the corona, and the integrated intensities are computed at heights up to five solar radii. We compare our results with previous computations and observations ( e.g. Lα from Ultraviolet Coronal Spectrometer) and find a rough (model-dependent) agreement. Since the Hα line is a possible candidate for ground-based polarimetry, we show that in order to detect its emission in various coronal structures, it is necessary to use a very narrow (less than 2 Å wide) bandpass filter.

  14. Structure of the solar transition region and inner corona

    International Nuclear Information System (INIS)

    Mariska, J.T.

    1977-01-01

    Emission gradient curves for extreme ultraviolet (EUV) resonance lines of lithium-like ions were constructed from spectroheliograms of quiet limb regions and a north polar coronal hole observed with the Harvard experiment on Skylab. The observations are interpreted with simple coronal models. Comparison of the theoretical and observed emission gradients for quiet regions indicates that for these areas the temperature rises throughout the inner corona (1.03 less than or equal to r less than or equal to 1.20 R/sub mass/). In the coronal hole the temperature rises in a manner consistent with a constant conductive flux to an isothermal corona at a temperature of 1.1 x 10 6 K at 1.08/sub mass/. The geometry of the coronal hole boundary is also determined. The boundary geometry and density distribution are combined with typical solar wind parameters at the north to determine an outflow velocity of 15 km s -1 at 1.08 R/sub mass/. The energy balance implications of the models are examined. It was found that in the transition region both conduction and radiation are important in determining the energy balance in network regions in both quiet areas and coronal holes. Additional energy sources are required in the network in coronal holes. In the corona it is found that, to within the errors of the determination, the energy losses, and hence the requirements for mechanical heating, are the same in quiet regions and coronal holes

  15. Anomalous energy transport in hot plasmas: solar corona and Tokamak

    International Nuclear Information System (INIS)

    Beaufume, P.

    1992-04-01

    Anomalous energy transport is studied in two hot plasmas and appears to be associated with a heating of the solar corona and with a plasma deconfining process in tokamaks. The magnetic structure is shown to play a fundamental role in this phenomenon through small scale instabilities which are modelized by means of a nonlinear dynamical system: the Beasts' Model. Four behavior classes are found for this system, which are automatically classified in the parameter space thanks to a neural network. We use a compilation of experimental results relative to the solar corona to discuss current-based heating processes. We find that a simple Joule effect cannot provide the required heating rates, and therefore propose a dimensional model involving a resistive reconnective instability which leads to an efficient and discontinuous heating mechanism. Results are in good agreement with the observations. We give an analytical expression for a diffusion coefficient in tokamaks when magnetic turbulence is perturbing the topology, which we validate thanks to the standard mapping. A realistic version of the Beasts' Model allows to test a candidate to anomalous transport: the thermal filamentation instability

  16. Characteristics of shocks in the solar corona, as inferred from radio, optical, and theoretical investigations

    Science.gov (United States)

    Maxwell, A.; Dryer, M.

    1982-01-01

    Solar radio bursts of spectral type II provide one of the chief diagnostics for the propagation of shocks through the solar corona. Radio data on the shocks are compared with computer models for propagation of fast-mode MHD shocks through the solar corona. Data on coronal shocks and high-velocity ejecta from solar flares are then discussed in terms of a general model consisting of three main velocity regimes.

  17. Off-limb EUV observations of the solar corona and transients with the CORONAS-F/SPIRIT telescope-coronagraph

    Directory of Open Access Journals (Sweden)

    V. Slemzin

    2008-10-01

    Full Text Available The SPIRIT telescope aboard the CORONAS-F satellite (in orbit from 26 July 2001 to 5 December 2005, observed the off-limb solar corona in the 175 Å (Fe IX, X and XI lines and 304 Å (He II and Si XI lines bands. In the coronagraphic mode the mirror was tilted to image the corona at the distance of 1.1...5 Rsun from the solar center, the outer occulter blocked the disk radiation and the detector sensitivity was enhanced. This intermediate region between the fields of view of ordinary extreme-ultraviolet (EUV telescopes and most of the white-light (WL coronagraphs is responsible for forming the streamer belt, acceleration of ejected matter and emergence of slow and fast solar wind. We present here the results of continuous coronagraphic EUV observations of the solar corona carried out during two weeks in June and December 2002. The images showed a "diffuse" (unresolved component of the corona seen in both bands, and non-radial, ray-like structures seen only in the 175 Å band, which can be associated with a streamer base. The correlations between latitudinal distributions of the EUV brightness in the corona and at the limb were found to be high in 304 Å at all distances and in 175 Å only below 1.5 Rsun. The temporal correlation of the coronal brightness along the west radial line, with the brightness at the underlying limb region was significant in both bands, independent of the distance. On 2 February 2003 SPIRIT observed an expansion of a transient associated with a prominence eruption seen only in the 304 Å band. The SPIRIT data have been compared with the corresponding data of the SOHO LASCO, EIT and UVCS instruments.

  18. Clementine Observes the Moon, Solar Corona, and Venus

    Science.gov (United States)

    1997-01-01

    In 1994, during its flight, the Clementine spacecraft returned images of the Moon. In addition to the geologic mapping cameras, the Clementine spacecraft also carried two Star Tracker cameras for navigation. These lightweight (0.3 kg) cameras kept the spacecraft on track by constantly observing the positions of stars, reminiscent of the age-old seafaring tradition of sextant/star navigation. These navigation cameras were also to take some spectacular wide angle images of the Moon.In this picture the Moon is seen illuminated solely by light reflected from the Earth--Earthshine! The bright glow on the lunar horizon is caused by light from the solar corona; the sun is just behind the lunar limb. Caught in this image is the planet Venus at the top of the frame.

  19. Simultaneous Observation of High Temperature Plasma of Solar Corona By TESIS CORONAS-PHOTON and XRT Hinode.

    Science.gov (United States)

    Reva, A.; Kuzin, S.; Bogachev, S.; Shestov, S.

    2012-05-01

    The Mg XII spectroheliograph is a part of instrumentation complex TESIS (satellite CORONAS-PHOTON). This instrument builds monochromatic images of hot plasma of the solar corona (λ = 8.42 Å, T>5 MK). The Mg XII spectroheliograph observed hot plasma in the non-flaring active-region NOAA 11019 during nine days. We reconstructed DEM of this active region with the help of genetic algorithm (we used data of the Mg XII spectroheliograph, XRT and EIT). Emission measure of the hot component amounts 1 % of the emission measure of the cool component.

  20. Ubiquitous and Continuous Propagating Disturbances in the Solar Corona

    Science.gov (United States)

    Morgan, Huw; Hutton, Joseph

    2018-02-01

    A new processing method applied to Atmospheric Imaging Assembly/Solar Dynamic Observatory observations reveals continuous propagating faint motions throughout the corona. The amplitudes are small, typically 2% of the background intensity. An hour’s data are processed from four AIA channels for a region near disk center, and the motions are characterized using an optical flow method. The motions trace the underlying large-scale magnetic field. The motion vector field describes large-scale coherent regions that tend to converge at narrow corridors. Large-scale vortices can also be seen. The hotter channels have larger-scale regions of coherent motion compared to the cooler channels, interpreted as the typical length of magnetic loops at different heights. Regions of low mean and high time variance in velocity are where the dominant motion component is along the line of sight as a result of a largely vertical magnetic field. The mean apparent magnitude of the optical velocities are a few tens of km s‑1, with different distributions in different channels. Over time, the velocities vary smoothly between a few km s‑1 to 100 km s‑1 or higher, varying on timescales of minutes. A clear bias of a few km s‑1 toward positive x-velocities is due to solar rotation and may be used as calibration in future work. All regions of the low corona thus experience a continuous stream of propagating disturbances at the limit of both spatial resolution and signal level. The method provides a powerful new diagnostic tool for tracing the magnetic field, and to probe motions at sub-pixel scales, with important implications for models of heating and of the magnetic field.

  1. Electron beams by shock waves in the solar corona

    International Nuclear Information System (INIS)

    Mann, G.; Klassen, A.

    2005-07-01

    Beams of energetic electrons can be generated by shock waves in the solar corona. At the Sun shock waves are produced either by flares and/or by coronal mass ejections (CMEs). They can be observed as type II bursts in the solar radio radiation. Shock accelerated electron beams appear as rapidly drifting emission stripes (so-called ''herringbones'') in dynamic radio spectra of type II bursts. A large sample of type II bursts showing ''herringbones'' was statistically analysed with respect to their properties in dynamic radio spectra. The electron beams associated with the ''herringbones'' are considered to be generated by shock drift acceleration. Then, the accelerated electrons establish a shifted loss-cone distribution in the upstream region of the associated shock wave. Such a distribution causes plasma instabilities leading to the emission of radio waves observed as ''herringbones''. Consequences of a shifted loss-cone distribution of the shock accelerated electrons are discussed in comparison with the observations of ''herringbones'' within solar type II radio bursts. (orig.)

  2. Global Fluxon Modeling of the Solar Corona and Inner Heliosphere

    Science.gov (United States)

    Lamb, D. A.; DeForest, C. E.

    2017-12-01

    The fluxon approach to MHD modeling enables simulations of low-beta plasmas in the absence of undesirable numerical effects such as diffusion and magnetic reconnection. The magnetic field can be modeled as a collection of discrete field lines ("fluxons") containing a set amount of magnetic flux in a prescribed field topology. Due to the fluxon model's pseudo-Lagrangian grid, simulations can be completed in a fraction of the time of traditional grid-based simulations, enabling near-real-time simulations of the global magnetic field structure and its influence on solar wind properties. Using SDO/HMI synoptic magnetograms as lower magnetic boundary conditions, and a separate one-dimensional fluid flow model attached to each fluxon, we compare the resulting fluxon relaxations with other commonly-used global models (such as PFSS), and with white-light images of the corona (including the August 2017 total solar eclipse). Finally, we show the computed magnetic field expansion ratio, and the modeled solar wind speed near the coronal-heliospheric transition. Development of the fluxon MHD model FLUX (the Field Line Universal relaXer), has been funded by NASA's Living with a Star program and by Southwest Research Institute.

  3. Signature of open magnetic field lines in the extended solar corona and of solar wind acceleration

    Science.gov (United States)

    Antonucci, E.; Giordano, S.; Benna, C.; Kohl, J. L.; Noci, G.; Michels, J.; Fineschi, S.

    1997-01-01

    The observations carried out with the ultraviolet coronagraph spectrometer onboard the Solar and Heliospheric Observatory (SOHO) are discussed. The purpose of the observations was to determine the line of sight and radial velocity fields in coronal regions with different magnetic topology. The results showed that the regions where the high speed solar wind flows along open field lines are characterized by O VI 1032 and HI Lyman alpha 1216 lines. The global coronal maps of the line of sight velocity were reconstructed. The corona height, where the solar wind reaches 100 km/s, was determined.

  4. Diagnostics of the solar corona from comparison between Faraday rotation measurements and magnetohydrodynamic simulations

    International Nuclear Information System (INIS)

    Le Chat, G.; Cohen, O.; Kasper, J. C.; Spangler, S. R.

    2014-01-01

    Polarized natural radio sources passing behind the Sun experience Faraday rotation as a consequence of the electron density and magnetic field strength in coronal plasma. Since Faraday rotation is proportional to the product of the density and the component of the magnetic field along the line of sight of the observer, a model is required to interpret the observations and infer coronal structures. Faraday rotation observations have been compared with relatively ad hoc models of the corona. Here for the first time we compare these observations with magnetohydrodynamic (MHD) models of the solar corona driven by measurements of the photospheric magnetic field. We use observations made with the NRAO Very Large Array of 34 polarized radio sources occulted by the solar corona between 5 and 14 solar radii. The measurements were made during 1997 May, and 2005 March and April. We compare the observed Faraday rotation values with values extracted from MHD steady-state simulations of the solar corona. We find that (1) using a synoptic map of the solar magnetic field just one Carrington rotation off produces poorer agreements, meaning that the outer corona changes in the course of one month, even in solar minimum; (2) global MHD models of the solar corona driven by photospheric magnetic field measurements are generally able to reproduce Faraday rotation observations; and (3) some sources show significant disagreement between the model and the observations, which appears to be a function of the proximity of the line of sight to the large-scale heliospheric current sheet.

  5. Destruction of Sun-Grazing Comet C-2011 N3 (SOHO) Within the Low Solar Corona

    Science.gov (United States)

    Schrijver, C. J.; Brown, J. C.; Battams, K.; Saint-Hilaire, P.; Liu, W.; Hudson, H.; Pesnell, W. D.

    2012-01-01

    Observations of comets in Sun-grazing orbits that survive solar insolation long enough to penetrate into the Suns inner corona provide information on the solar atmosphere and magnetic field as well as on the makeup of the comet. On 6 July 2011, the Solar Dynamics Observatory (SDO) observed the demise of comet C2011 N3 (SOHO) within the low solar corona in five wavelength bands in the extreme ultraviolet (EUV). The comet penetrated to within 0.146 solarradius (100,000 kilometers) of the solar surface before its EUV signal disappeared.

  6. Co-existence of two plasma phases in solar and AGN coronas

    Directory of Open Access Journals (Sweden)

    Kubičela A.

    1998-01-01

    Full Text Available Here we have juxtaposed two distant cosmic locations of the Sun and AGN where neutral hydrogen appears in a close connection with hot coronas. Besides the solar photosphere, chromosphere and prominences where the presence of neutral hydrogen is well established, its emission quite high in hot solar corona is still puzzling. Some of earlier observations where Hα emission in solar corona was detected in eclipse and in daily coronagraphic observations are reviewed. A proper theoretical explanation of this cold chromospheric-type emission in the hot corona does not exist yet. On the other side, a similar emission of hydrogen lines is present in Active Galactic Nuclei (AGNs. Much research work is currently being done in this field. We outline some of the concepts of the AGN structure prevailing in the astrophysics today.

  7. A cone-like enhancement of polar solar corona plasma and its influence on heliospheric particles

    Science.gov (United States)

    Grzedzielski, Stan; Sokół, Justyna M.

    2017-04-01

    We will present results of the study of the properties of the solar wind plasma due to rotation of the polar solar corona. We focus in our study on the solar minimum conditions, when the polar coronal holes are well formed and the magnetic field in the solar polar corona exhibit almost regular "ray-like" structure. The solar rotation twists the magnetic field lines of the expanding fast polar solar wind and the resulting toroidal component of the field induces a force directed towards the rotation axis. This phenomenon is tantamount to a (weak) zeta pinch, known also in other astrophysical contexts (e.g. like in AGN jets). The pinch compresses the polar solar corona plasma and forms a cone-like enhancement of the solar wind density aligned with the rotation axis in the spherically symmetric case. The effect is likely very dynamic due to fast changing conditions in the solar corona, however in the study presented here, we assume a time independent description to get an order-of-magnitude estimate. The weak pinch is treated as a first-order perturbation to the zeroth-order radial flow. Following the assumptions based on the available knowledge about the plasma properties in the polar solar corona we estimated the most typical density enhancements. The cone like structure may extend as far from the Sun as tens of AU and thus will influence the heliospheric particles inside the heliosphere. An increase of the solar wind density in the polar region may be related with a decrease of the solar wind speed. Such changes of the solar wind plasma at high latitudes may modify the charge-exchange and electron impact ionization rates of heliospheric particles in interplanetary space. We will present their influence on the interstellar neutral gas and energetic neutral atoms observed by IBEX.

  8. On ion-cyclotron-resonance heating of the corona and solar wind

    Directory of Open Access Journals (Sweden)

    E. Marsch

    2003-01-01

    Full Text Available This paper concisely summarizes and critically reviews recent work by the authors on models of the heating of the solar corona by resonance of ions with high-frequency waves (up to the proton cyclotron frequency. The quasi-linear theory of pitch angle diffusion is presented in connection with relevant solar wind proton observations. Hybrid fluid-kinetic model equations, which include wave-particle interactions and collisions, are derived. Numerical solutions are discussed, representative of the inner corona and near-Sun solar wind. A semi-kinetic model for reduced velocity distributions is presented, yielding kinetic results for heavy ions in the solar corona. It is concluded that a self-consistent treatment of particle distributions and wave spectra is required, in order to adequately describe coronal physics and to obtain agreement with observations.

  9. Tomographic Validation of the AWSoM Model of the Inner Corona During Solar Minima

    Science.gov (United States)

    Manchester, W.; Vásquez, A. M.; Lloveras, D. G.; Mac Cormack, C.; Nuevo, F.; Lopez-Fuentes, M.; Frazin, R. A.; van der Holst, B.; Landi, E.; Gombosi, T. I.

    2017-12-01

    Continuous improvement of MHD three-dimensional (3D) models of the global solar corona, such as the Alfven Wave Solar Model (AWSoM) of the Space Weather Modeling Framework (SWMF), requires testing their ability to reproduce observational constraints at a global scale. To that end, solar rotational tomography based on EUV image time-series can be used to reconstruct the 3D distribution of the electron density and temperature in the inner solar corona (r used to validate steady-state 3D MHD simulations of the inner corona using the latest version of the AWSoM model. We perform the study for selected rotations representative of solar minimum conditions, when the global structure of the corona is more axisymmetric. We analyse in particular the ability of the MHD simulation to match the tomographic results across the boundary region between the equatorial streamer belt and the surrounding coronal holes. The region is of particular interest as the plasma flow from that zone is thought to be related to the origin of the slow component of the solar wind.

  10. Results of Spectral Corona Observations in Solar Activity Cycles 17-24

    Science.gov (United States)

    Aliev, A. Kh.; Guseva, S. A.; Tlatov, A. G.

    2017-12-01

    The results of the work of the global observation network are considered, and a comparative analysis of the data of various coronal observatories is performed. The coronal activity index has been reconstructed for the period 1939-2016 based on the data of various observatories in Kislovodsk system. For this purpose, the corona daily intensity maps from the Sacramento Peak and Lomnický Štít observatories according to the Solar-Geophysical Data journal have been digitized; they supplement the data of other observatories. The homogeneity and continuity of the corona observations at the Kislovodsk station, including activity cycle 24, is confirmed. Unfortunately, the only observatory at present that continues observation of the spectral corona in Fe XIV 5303 Å and Fe XIV 6374 Å lines is the Kislovodsk astronomical station Mountain Astronomical Station (MAS) of the Central Astronomical Observatory, Russian Academy of Sciences (Pulkovo). The data on the combined corona in 5303 Å line are analyzed. It is shown that there is a high correlation of the intensity index of green corona with solar radiation measurements in the vacuum UV region. Data on the beginning of the new 25th activity cycle in the corona at high latitudes are presented.

  11. Empirical models of the Solar Wind : Extrapolations from the Helios & Ulysses observations back to the corona

    Science.gov (United States)

    Maksimovic, M.; Zaslavsky, A.

    2017-12-01

    We will present extrapolation of the HELIOS & Ulysses proton density, temperature & bulk velocities back to the corona. Using simple mass flux conservations we show a very good agreement between these extrapolations and the current state knowledge of these parameters in the corona, based on SOHO mesurements. These simple extrapolations could potentially be very useful for the science planning of both the Parker Solar Probe and Solar Orbiter missions. Finally will also present some modelling considerations, based on simple energy balance equations which arise from these empirical observationnal models.

  12. Configuration of and Motions in the Solar Corona at the 2017 Total Solar Eclipse

    Science.gov (United States)

    Pasachoff, Jay M.; Rusin, Vojtech; Vanur, Roman; Economou, Thanasis; Voulgaris, Aristeidis; Seiradakis, John H.; Seaton, Daniel; Dantowitz, Ronald; Lockwood, Christian A.; Nagle-McNaughton, Timothy; Perez, Cielo; Meadors, Erin N.; Marti, Connor J.; Yu, Ross; Rosseau, Brendan; Ide, Charles A.; Daly, Declan M.; Davis, Allen Bradford; Lu, Muzhou; Steele, Amy; Lee, Duane; Freeman, Marcus J.; Sliski, David; Rousseva, Ana; Greek Salem (Oregon) Team; Voulgaris, Aristeidis; Seiradakis, John Hugh; Koukioglou, Stavros; Kyriakou, Nikos; Vasileiadou, Anna; Greek Carbondale (Illinois) Team; Economou, Thanasis; Kanouras, Spyros; Irakleous, Christina; Golemis, Adrianos; Tsioumpanika, Nikoleta; Plexidas, Nikos; Tzimkas, Nikos; Kokkinidou, Ourania

    2018-06-01

    We report on high-contrast data reduction of white-light images from the August 21, 2017, total solar eclipse. We show the configuration of the solar corona at this declining phase of the solar-activity cycle, with the projection onto the plane of the sky of the three-dimensional coronal streamers plus extensive polar plumes. We discuss the relation of the white-light coronal loops visible in our observations with extreme-ultraviolet observations from NASA’s Solar Dynamics Observatory Atmospheric Imaging Assembly (AIA) and NOAA’s GOES-16 Solar Ultraviolet Imager (SUVI). We show differences and motions over a 65-minute interval between observations from our main site at Willamette University in Salem, Oregon, and a subsidiary site in Carbondale, Illinois. We discuss, in particular, a giant demarcation about 1 solar radius outward in the southwest that crosses the radial streamers.Our observations of the eclipse were sponsored in large part by the Committee for Research and Exploration of the National Geographic Society and by the Solar Terrestrial Program of the National Geographic Society. Additional support was received from the NASA Massachusetts Space Grant Consortium, the Sigma Xi honorary scientific society, the University of Pennsylvania (for DS), the Slovak Academy of Sciences VEGA project 2/0003/16, and the Freeman Foote Expeditionary and Brandi funds at Williams College. We thank Stephen Thorsett, Rick Watkins, and Honey Wilson of Willamette University for their hospitality. See http://totalsolareclipse.org or http://sites.williams.edu/eclipse/2017-usa/.

  13. Threaded-Field-Line Model for the Transition Region and Solar Corona

    Science.gov (United States)

    Sokolov, I.; van der Holst, B.; Gombosi, T. I.

    2014-12-01

    In numerical simulations of the solar corona, both for the ambient state and especially for dynamical processes the most computational resources are spent for maintaining the numerical solution in the Low Solar Corona and in the transition region, where the temperature gradients are very sharp and the magnetic field has a complicated topology. The degraded computational efficiency is caused by the need in a highest resolution as well as the use of the fully three-dimensional implicit solver for electron heat conduction. On the other hand, the physical nature of the processes involved is rather simple (which still does not facilitate the numerical methods) as long as the heat fluxes as well as slow plasma motional velocities are aligned with the magnetic field. The Alfven wave turbulence, which is often believed to be the main driver of the solar wind and the main source of the coronal heating, is characterized by the Poynting flux of the waves, which is also aligned with the magnetic field. Therefore, the plasma state in any point of the three-dimensional grid in the Low Solar Corona can be found by solving a set of one-dimensional equations for the magnetic field line ("thread"), which passes through this point and connects it to the chromosphere and to the global Solar Corona. In the present paper we describe an innovative computational technology based upon the use of the magnetic-field-line-threads to forlmulate the boundary condition for the global solar corona model which traces the connection of each boundary point to the cromosphere along the threads.

  14. Signatures of Slow Solar Wind Streams from Active Regions in the Inner Corona

    Science.gov (United States)

    Slemzin, V.; Harra, L.; Urnov, A.; Kuzin, S.; Goryaev, F.; Berghmans, D.

    2013-08-01

    The identification of solar-wind sources is an important question in solar physics. The existing solar-wind models ( e.g., the Wang-Sheeley-Arge model) provide the approximate locations of the solar wind sources based on magnetic field extrapolations. It has been suggested recently that plasma outflows observed at the edges of active regions may be a source of the slow solar wind. To explore this we analyze an isolated active region (AR) adjacent to small coronal hole (CH) in July/August 2009. On 1 August, Hinode/EUV Imaging Spectrometer observations showed two compact outflow regions in the corona. Coronal rays were observed above the active-region coronal hole (ARCH) region on the eastern limb on 31 July by STEREO-A/EUVI and at the western limb on 7 August by CORONAS- Photon/TESIS telescopes. In both cases the coronal rays were co-aligned with open magnetic-field lines given by the potential field source surface model, which expanded into the streamer. The solar-wind parameters measured by STEREO-B, ACE, Wind, and STEREO-A confirmed the identification of the ARCH as a source region of the slow solar wind. The results of the study support the suggestion that coronal rays can represent signatures of outflows from ARs propagating in the inner corona along open field lines into the heliosphere.

  15. Joint Soviet--French investigations of the solar corona. 2. Photometry of solar corona of June 30, 1973

    International Nuclear Information System (INIS)

    Vsekhsvyatskii, S.; Dzyubenko, N.; Ivanchuk, V.; Popov, O.; Rubo, G.; Koutchmy, S.; Koutchmy, O.; Stellmacher, G.

    1981-01-01

    The results are presented on a study of eclipse negative obtained on June 30, 1973, in Africa in the program of the Soviet--French experiment ''Dynamics of the White Corona'' by expeditions of Kiev University (Atar, Mauritania) and the Paris Astropysical Institute (Moussoro, Chad). The distributions of the total brightness of the corona out to rapprox. =4.5 R/sub sun/ and of its K and F components for the E and N directions are found with high accuracy on the basis of a new method of photometry and colorimetry using the images of stars down to 8.5/sup m/ as photometric standards. Neither reddening nor flattening of the dusty F component were detected at r -6 E/sub sun/

  16. An MHD simulation model of time-dependent global solar corona with temporally varying solar-surface magnetic field maps

    Science.gov (United States)

    Hayashi, K.

    2013-11-01

    We present a model of a time-dependent three-dimensional magnetohydrodynamics simulation of the sub-Alfvenic solar corona and super-Alfvenic solar wind with temporally varying solar-surface boundary magnetic field data. To (i) accommodate observational data with a somewhat arbitrarily evolving solar photospheric magnetic field as the boundary value and (ii) keep the divergence-free condition, we developed a boundary model, here named Confined Differential Potential Field model, that calculates the horizontal components of the magnetic field, from changes in the vertical component, as a potential field confined in a thin shell. The projected normal characteristic method robustly simulates the solar corona and solar wind, in response to the temporal variation of the boundary Br. We conduct test MHD simulations for two periods, from Carrington Rotation number 2009 to 2010 and from Carrington Rotation 2074 to 2075 at solar maximum and minimum of Cycle 23, respectively. We obtained several coronal features that a fixed boundary condition cannot yield, such as twisted magnetic field lines at the lower corona and the transition from an open-field coronal hole to a closed-field streamer. We also obtained slight improvements of the interplanetary magnetic field, including the latitudinal component, at Earth.

  17. Absolute photometry of the corona of July 10, 1972 total solar eclipse

    Energy Technology Data Exchange (ETDEWEB)

    Khetsuriani, Ts.S.; Tetruashvili, Eh.I.

    1985-01-01

    The observations were carried out by the Abastumani astrophysical observatory expedition at July 10.1972 total solar eclipse from a site of the Chukotka Peninsula. The photometry of the corona images is performed by the equidensity method having expressed the intensities in absolute units. The F and K components of the corona are separated on the basis of photometric and polarisation data. The variations of the electron concentration with the distance from the centre of the Sun and tempeatures at various distances are calculated.

  18. EIT: Solar corona synoptic observations from SOHO with an Extreme-ultraviolet Imaging Telescope

    Science.gov (United States)

    Delaboudiniere, J. P.; Gabriel, A. H.; Artzner, G. E.; Michels, D. J.; Dere, K. P.; Howard, R. A.; Catura, R.; Stern, R.; Lemen, J.; Neupert, W.

    1988-01-01

    The Extreme-ultraviolet Imaging Telescope (EIT) of SOHO (solar and heliospheric observatory) will provide full disk images in emission lines formed at temperatures that map solar structures ranging from the chromospheric network to the hot magnetically confined plasma in the corona. Images in four narrow bandpasses will be obtained using normal incidence multilayered optics deposited on quadrants of a Ritchey-Chretien telescope. The EIT is capable of providing a uniform one arc second resolution over its entire 50 by 50 arc min field of view. Data from the EIT will be extremely valuable for identifying and interpreting the spatial and temperature fine structures of the solar atmosphere. Temporal analysis will provide information on the stability of these structures and identify dynamical processes. EIT images, issued daily, will provide the global corona context for aid in unifying the investigations and in forming the observing plans for SOHO coronal instruments.

  19. Global solar magetic field organization in the extended corona: influence on the solar wind speed and density over the cycle.

    Science.gov (United States)

    Réville, V.; Velli, M.; Brun, S.

    2017-12-01

    The dynamics of the solar wind depends intrinsically on the structure of the global solar magnetic field, which undergoes fundamental changes over the 11yr solar cycle. For instance, the wind terminal velocity is thought to be anti-correlated with the expansion factor, a measure of how the magnetic field varies with height in the solar corona, usually computed at a fixed height (≈ 2.5 Rȯ, the source surface radius which approximates the distance at which all magnetic field lines become open). However, the magnetic field expansion affects the solar wind in a more detailed way, its influence on the solar wind properties remaining significant well beyond the source surface: we demonstrate this using 3D global MHD simulations of the solar corona, constrained by surface magnetograms over half a solar cycle (1989-2001). For models to comply with the constraints provided by observed characteristics of the solar wind, namely, that the radial magnetic field intensity becomes latitude independent at some distance from the Sun (Ulysses observations beyond 1 AU), and that the terminal wind speed is anti-correlated with the mass flux, they must accurately describe expansion beyond the solar wind critical point (even up to 10Rȯ and higher in our model). We also show that near activity minimum, expansion in the higher corona beyond 2.5 Rȯ is actually the dominant process affecting the wind speed. We discuss the consequences of this result on the necessary acceleration profile of the solar wind, the location of the sonic point and of the energy deposition by Alfvén waves.

  20. Spatiotemporal Organization of Energy Release Events in the Quiet Solar Corona

    Science.gov (United States)

    Uritsky, Vadim M.; Davila, Joseph M.

    2014-01-01

    Using data from the STEREO and SOHO spacecraft, we show that temporal organization of energy release events in the quiet solar corona is close to random, in contrast to the clustered behavior of flaring times in solar active regions. The locations of the quiet-Sun events follow the meso- and supergranulation pattern of the underling photosphere. Together with earlier reports of the scale-free event size statistics, our findings suggest that quiet solar regions responsible for bulk coronal heating operate in a driven self-organized critical state, possibly involving long-range Alfvenic interactions.

  1. Discovery of Finely Structured Dynamic Solar Corona Observed in the Hi-C Telescope

    Science.gov (United States)

    Winebarger, A.; Cirtain, J.; Golub, L.; DeLuca, E.; Savage, S.; Alexander, C.; Schuler, T.

    2014-01-01

    In the summer of 2012, the High-resolution Coronal Imager (Hi-C) flew aboard a NASA sounding rocket and collected the highest spatial resolution images ever obtained of the solar corona. One of the goals of the Hi-C flight was to characterize the substructure of the solar corona. We therefore examine how the intensity scales from AIA resolution to Hi-C resolution. For each low-resolution pixel, we calculate the standard deviation in the contributing high-resolution pixel intensities and compare that to the expected standard deviation calculated from the noise. If these numbers are approximately equal, the corona can be assumed to be smoothly varying, i.e. have no evidence of substructure in the Hi-C image to within Hi-C's ability to measure it given its throughput and readout noise. A standard deviation much larger than the noise value indicates the presence of substructure. We calculate these values for each low-resolution pixel for each frame of the Hi-C data. On average, 70 percent of the pixels in each Hi-C image show no evidence of substructure. The locations where substructure is prevalent is in the moss regions and in regions of sheared magnetic field. We also find that the level of substructure varies significantly over the roughly 160 s of the Hi-C data analyzed here. This result indicates that the finely structured corona is concentrated in regions of heating and is highly time dependent.

  2. The Substructure of the Solar Corona Observed in the Hi-C Telescope

    Science.gov (United States)

    Winebarger, A.; Cirtain, J.; Golub, L.; DeLuca, E.; Savage, S.; Alexander, C.; Schuler, T.

    2014-01-01

    In the summer of 2012, the High-resolution Coronal Imager (Hi-C) flew aboard a NASA sounding rocket and collected the highest spatial resolution images ever obtained of the solar corona. One of the goals of the Hi-C flight was to characterize the substructure of the solar corona. We therefore calculate how the intensity scales from a low-resolution (AIA) pixels to high-resolution (Hi-C) pixels for both the dynamic events and "background" emission (meaning, the steady emission over the 5 minutes of data acquisition time). We find there is no evidence of substructure in the background corona; the intensity scales smoothly from low-resolution to high-resolution Hi-C pixels. In transient events, however, the intensity observed with Hi-C is, on average, 2.6 times larger than observed with AIA. This increase in intensity suggests that AIA is not resolving these events. This result suggests a finely structured dynamic corona embedded in a smoothly varying background.

  3. Periodicities in the X-ray Emission from the Solar Corona: SphinX and SOXS Observations

    Science.gov (United States)

    Steślicki, M.; Awasthi, A. K.; Gryciuk, M.; Jain, R.

    The structure and evolution of the solar magnetic field is driven by a magnetohydrodynamic dynamo operating in the solar interior, which induces various solar activities that exhibit periodic variations on different timescales. Therefore, probing the periodic nature of emission originating from the solar corona may provide insights of the convection-zone-photosphere-corona coupling processes. We present the study of the mid-range periodicities, between rotation period (˜27 days) and the Schwabe cycle period (˜11 yr), in the solar soft X-ray emission, based on the data obtained by two instruments: SphinX and SOXS in various energy bands.

  4. The nonuniform magnetohydrodynamic nature of the solar corona. III. Cylindrical geometry

    International Nuclear Information System (INIS)

    De ville, A.; Priest, E.R.

    1989-01-01

    The method developed by Priest in 1988 for modeling steady MHD disturbances in the solar corona is extended to a cylindrical geometry, which is more realistic for three-dimensional structures, such as plumes and coronal holes, which are observed in the corona. Both axial symmetric and nonaxial magnetic fields are treated. The basic characteristics of the axisymmetric solutions are found to be similar to the previous Cartesian case. Quantitatively, the interactions are stronger in the central region and weaker at the outer boundary. Pressure gradients are also found to be smaller. Solutions dependent on all three spatial variables exhibit an asymmetry because of the angular dependence. They depend upon the azimuthal magnetic field imposed at the coronal base. The solutions found in this paper may be useful in interpreting the physics of MHD interactions observed in numerical experiments and also in the solar atmosphere

  5. Skylab and solar exploration. [chromosphere-corona structure, energy production and heat transport processes

    Science.gov (United States)

    Von Puttkamer, J.

    1973-01-01

    Review of some of the findings concerning solar structure, energy production, and heat transport obtained with the aid of the manned Skylab space station observatory launched on May 14, 1973. Among the topics discussed are the observation of thermonuclear fusion processes which cannot be simulated on earth, the observation of short-wave solar radiation not visible to observers on earth, and the investigation of energy-transport processes occurring in the photosphere, chromosphere, and corona. An apparent paradox is noted in that the cooler chromosphere is heating the hotter corona, seemingly in defiance of the second law of thermodynamics, thus suggesting that a nonthermal mechanism underlies the energy transport. Understanding of this nonthermal mechanism is regarded as an indispensable prerequisite for future development of plasma systems for terrestrial applications.

  6. Magnetic Reconnection and Particle Acceleration in the Solar Corona

    Science.gov (United States)

    Neukirch, Thomas

    Reconnection plays a major role for the magnetic activity of the solar atmosphere, for example solar flares. An interesting open problem is how magnetic reconnection acts to redistribute the stored magnetic energy released during an eruption into other energy forms, e.g. gener-ating bulk flows, plasma heating and non-thermal energetic particles. In particular, finding a theoretical explanation for the observed acceleration of a large number of charged particles to high energies during solar flares is presently one of the most challenging problems in solar physics. One difficulty is the vast difference between the microscopic (kinetic) and the macro-scopic (MHD) scales involved. Whereas the phenomena observed to occur on large scales are reasonably well explained by the so-called standard model, this does not seem to be the case for the small-scale (kinetic) aspects of flares. Over the past years, observations, in particular by RHESSI, have provided evidence that a naive interpretation of the data in terms of the standard solar flare/thick target model is problematic. As a consequence, the role played by magnetic reconnection in the particle acceleration process during solar flares may have to be reconsidered.

  7. Laboratory Experiments to Simulate and Investigate the Physics Underlying the Dynamics of Merging Solar Corona Structures

    Science.gov (United States)

    2016-06-05

    efficiently by using current density rather than electric field as the fundamental wave quantity. 3. Moser & Bellan (2012) showed that the effective gravity...there is effectively a magnetic bubble. This is relevant to interplanetary magnetic clouds spawned by the eruptions of solar corona structures. 10...release. Haw, Magnus , & Bellan, Paul. 2015. 1D fast coded aperture camera. Review of Scientific Instruments, 86(4). 043506. Moser, Auna L., & Bellan

  8. Magnetic Untwisting in Jets that Go into the Outer Solar Corona in Polar Coronal Holes

    Science.gov (United States)

    Moore, Ronald L.; Sterling, Alphonse C.; Falconer, David

    2014-06-01

    We present results from a study of 14 jets that were observed in SDO/AIA EUV movies to erupt in the Sun’s polar coronal holes. These jets were similar to the many other jets that erupt in coronal holes, but reached higher than the vast majority, high enough to be observed in the outer corona beyond 2 solar radii from Sun center by the SOHO/LASCO/C2 coronagraph. We illustrate the characteristic structure and motion of these high-reaching jets by showing observations of two representative jets. We find that (1) the speed of the jet front from the base of the corona out to 2-3 solar radii is typically several times the sound speed in jets in coronal holes, (2) each high-reaching jet displays unusually large rotation about its axis (spin) as it erupts, and (3) in the outer corona, many jets display lateral swaying and bending of the jet axis with an amplitude of a few degrees and a period of order 1 hour. From these observations we infer that these jets are magnetically driven, propose that the driver is a magnetic-untwisting wave that is basically a large-amplitude (non-linear) torsional Alfven wave that is put into the open magnetic field in the jet by interchange reconnection as the jet erupts, and estimate that the magnetic-untwisting wave loses most of its energy before reaching the outer corona. These observations of high-reaching coronal jets suggest that the torsional magnetic waves observed in Type-II spicules can similarly dissipate in the corona and thereby power much of the coronal heating in coronal holes and quiet regions. This work is funded by the NASA/SMD Heliophysics Division’s Living With a Star Targeted Research & Technology Program.

  9. Solar activity and its evolution across the corona: recent advances

    Directory of Open Access Journals (Sweden)

    Rodriguez Luciano

    2013-04-01

    Full Text Available Solar magnetism is responsible for the several active phenomena that occur in the solar atmosphere. The consequences of these phenomena on the solar-terrestrial environment and on Space Weather are nowadays clearly recognized, even if not yet fully understood. In order to shed light on the mechanisms that are at the basis of the Space Weather, it is necessary to investigate the sequence of phenomena starting in the solar atmosphere and developing across the outer layers of the Sun and along the path from the Sun to the Earth. This goal can be reached by a combined multi-disciplinary, multi-instrument, multi-wavelength study of these phenomena, starting with the very first manifestation of solar active region formation and evolution, followed by explosive phenomena (i.e., flares, erupting prominences, coronal mass ejections, and ending with the interaction of plasma magnetized clouds expelled from the Sun with the interplanetary magnetic field and medium. This wide field of research constitutes one of the main aims of COST Action ES0803: Developing Space Weather products and services in Europe. In particular, one of the tasks of this COST Action was to investigate the Progress in Scientific Understanding of Space Weather. In this paper we review the state of the art of our comprehension of some phenomena that, in the scenario outlined above, might have a role on Space Weather, focusing on the researches, thematic reviews, and main results obtained during the COST Action ES0803.

  10. Annual Properties of Transverse Waves in the Corona over most of Solar Cycle 24

    Science.gov (United States)

    Weberg, M. J.; Morton, R. J.; McLaughlin, J. A.

    2017-12-01

    Waves are an omnipresent feature in heliophysical plasmas. In particular, transverse (or "Alfvénic") waves have been observed at a wide range of spatial and temporal scales within the corona and solar wind. These waves play a key role in transporting energy through the solar atmosphere and are also thought to contribute to the heating and acceleration of the solar wind. Previous studies of low-frequency (automated detection and measurement of low-frequency transverse waves with over 7 years of SDO / AIA data to provide a detailed picture of coronal transverse waves in polar plumes and, for the first time, begin to examine their long-term behaviour. We measure waves at three different heights in each of eight, four-hour periods spanning May 2010 - May 2017. We find that the bulk wave parameters within these 24 regions are largely consistent over most of a solar cycle. However, there is some evidence for smaller-scale variations both with height and over time periods of a few years. We also discuss total energy flux estimations based on the full wave power spectra, which yields a more nuanced picture than previous values based on summary statistics. Overall, this work expands our view of wave processes in the corona and is relevant to both theoretical and modelling considerations of energy transport within the solar atmosphere. Crucially, these initial results suggest that the energy flux provided by the low-frequency transverse waves varies little over the solar cycle, potentially indicating that the waves provide a consistent source of energy to the corona and beyond.

  11. Analysis of non-thermal velocities in the solar corona

    Directory of Open Access Journals (Sweden)

    L. Contesse

    2004-09-01

    Full Text Available We describe new ground-based spectroscopic observations made using a 40-cm aperture coronagraph over a whole range of radial distances (up to heights of 12' above the limb and along four different heliocentric directions N, E, S and W. The analysis is limited to the study of the brightest forbidden emission line of Fe XIV at 530.3nm, in order to reach the best possible signal-to-noise ratio. To make the results statistically more significant, the extracted parameters are averaged over the whole length of the slit, and measurements are repeated fives times at each position; the corresponding dispersions in the results obtained along the slit are given. Central line profile intensities and full line widths (FWHM are plotted and compared to measurements published by other authors closer to the limb. We found widths and turbulent (non-thermal velocities of significantly higher values above the polar regions, especially when a coronal hole is present along the line of sight. We do not see a definitely decreasing behaviour of widths and turbulent velocities in equatorial directions for larger radial distances, as reported in the literature, although lower values are measured compared to the values in polar regions. The variation in the high corona is rather flat and a correlation diagram indicates that it is different for different regions and different radial distances. This seems to be the first analysis of the profiles of this coronal line, up to large heights above the limb for both equatorial and polar regions.

  12. The colour of the solar corona and dust grains in it

    International Nuclear Information System (INIS)

    Ajmanov, A.K.; Nikolsky, G.M.

    1980-01-01

    The photometry of coronal negatives is carried out. The films were obtained at the March 7, 1970 and July 10, 1972 eclipses. A distribution of the coronal brightness in the red (635 mm), green (545 nm), and blue (455 nm) wavelength intervals up to distances of (6-7)Rsub(sun) is deduced (Figure 1). Colour indexes of the corona (the emission ratio red/blue-Csub(rb) and green/blue-Csub(gb)) have been obtained. We assume Csub(rb) = Csub(gb) = 1 in the inner corona ( = 1 μm. RED brightness is evaluated to be 4 x 10 -10 anti Bsub(sun). There is 1 grain of dust in the elementary volume with cross section of 1 cm 2 along the line of sight. The intensity of dust emission in wavelength interval 10 μm deduced by the authors is approximately 1 μ W cm -2 sm -1 . That is in agreement with Mankin et al. (1974) and Lena et al. (1974) observations. The whole dust mass of RED is -11 cm -3 . Determination of the colour of the solar corona have been made by a number of scientists (Tikhov, 1940, 1957; Allen, 1946; Blackwell, 1952; Michard, 1956; Sharonov, 1958; Nay et al. 1961). The corona colour was found to be somewhat redder than the Sun's. However this question is not finally settled to date. (orig.)

  13. MAXIMIZING MAGNETIC ENERGY STORAGE IN THE SOLAR CORONA

    International Nuclear Information System (INIS)

    Wolfson, Richard; Drake, Christina; Kennedy, Max

    2012-01-01

    The energy that drives solar eruptive events such as coronal mass ejections (CMEs) almost certainly originates in coronal magnetic fields. Such energy may build up gradually on timescales of days or longer before its sudden release in an eruptive event, and the presence of free magnetic energy capable of rapid release requires nonpotential magnetic fields and associated electric currents. For magnetic energy to power a CME, that energy must be sufficient to open the magnetic field to interplanetary space, to lift the ejecta against solar gravity, and to accelerate the material to speeds of typically several hundred km s –1 . Although CMEs are large-scale structures, many originate from relatively compact active regions on the solar surface—suggesting that magnetic energy storage may be enhanced when it takes place in smaller magnetic structures. This paper builds on our earlier work exploring energy storage in large-scale dipolar and related bipolar magnetic fields. Here we consider two additional cases: quadrupolar fields and concentrated magnetic bipoles intended to simulate active regions. Our models yield stored energies whose excess over that of the corresponding open field state can be greater than 100% of the associated potential field energy; this contrasts with maximum excess energies of only about 20% for dipolar and symmetric bipolar configurations. As in our previous work, energy storage is enhanced when we surround a nonpotential field with a strong overlying potential field that acts to 'hold down' the nonpotential flux as its magnetic energy increases.

  14. Electrons in the solar corona. Pt. 3. Coronal streamers analysis from balloon-borne coronagraph

    Energy Technology Data Exchange (ETDEWEB)

    Dollfus, A; Mouradian, Z [Observatoire de Paris, Section de Meudon, 92 (France)

    1981-03-01

    During a balloon flight in France on September 13, 1971, at altitude 32 000 m, the solar corona was cinematographed from 2 to 5 Rsub(sun) during 5 hr, with an externally occulted coronagraph. Motions in coronal features, when they occur, exhibit deformations of structures with velocities not exceeding a few 10 km s/sup -1/; several streamers were often involved simultaneously; these variations are compatible with magnetic changes or sudden reorganizations of lines of forces. Intensity and polarization measurements give the electron density with height in the quiet corona above the equator. Electron density gradient for one of the streamers gives a temperature of 1.6 x 10/sup 6/ K and comparisons with the on-board Apollo 16 coronal observation of 31 July, 1971 are compatible with the extension of this temperature up to 25 Rsub(sun). Three-dimensional structures and localizations of the streamers are deduced from combined photometry, polarimetry and ground-based K coronametry. Three of the four coronal streamers analysed have their axis bent with height towards the direction of the solar rotation, as if the upper corona has a rotation slightly faster than the chromosphere.

  15. Common observations of solar X-rays from SPHINX/CORONAS-PHOTON and XRS/MESSENGER

    Science.gov (United States)

    Kepa, Anna; Sylwester, Janusz; Sylwester, Barbara; Siarkowski, Marek; Mrozek, Tomasz; Gryciuk, Magdalena; Phillips, Kenneth

    SphinX was a soft X-ray spectrophotometer constructed in the Space Research Centre of Polish Academy of Sciences. The instrument was launched on 30 January 2009 aboard CORONAS-PHOTON satellite as a part of TESIS instrument package. SphinX measured total solar X-ray flux in the energy range from 1 to 15 keV during the period of very low solar activity from 20 February to 29 November 2009. For these times the solar detector (X-ray Spectrometer - XRS) onboard MESSENGER also observed the solar X-rays from a different vantage point. XRS measured the radiation in similar energy range. We present results of the comparison of observations from both instruments and show the preliminary results of physical analysis of spectra for selected flares.

  16. Resonators for magnetohydrodynamic waves in the solar corona: radioemission modulation effect

    International Nuclear Information System (INIS)

    Zajtsev, V.V.; Stepanov, A.V.

    1982-01-01

    Data on type 2 solar radio bursts are analyzed in the framework of a model of radio emission production by shock waves. Type 2 solar radio bursts data are shown to suggest the existence of Alfven velocity minimum at a height of the one solar radius in the corona. The domain of a low Alfven velocity is a resonator for the fast magnetosonic waves. The eigenmodes of the resonator are determined. The main mode period is about a few minutes. Fast modes in the resonator can be amplified by energetic ion beams at the Cherenkov resonance. The modulation of meter solar radio emission with a period of about a few minutes can be explained by radiowave propagation through the MHD-resonator

  17. Magnetic Untwisting in Solar Jets that Go into the Outer Corona in Polar Coronal Holes

    Science.gov (United States)

    Moore, Ronald L.; Sterling, Alphonse C.; Falconer, David A.

    2014-01-01

    We present results from 14 exceptionally high-reaching large solar jets observed in the polar coronal holes. EUV movies from SDO/AIA show that each jet is similar to many other similar-size and smaller jets that erupt in coronal holes, but each is exceptional in that it goes higher than most other jets, so high that it is observed in the outer corona beyond 2.2 R(sub Sun) in images from the SOHO/LASCO/C2 coronagraph. For these high-reaching jets, we find: (1) the front of the jet transits the corona below 2.2 R(sub Sun) at a speed typically several times the sound speed; (2) each jet displays an exceptionally large amount of spin as it erupts; (3) in the outer corona, most jets display oscillatory swaying having an amplitude of a few degrees and a period of order 1 hour. We conclude that these jets are magnetically driven, propose that the driver is a magnetic-untwisting wave that is grossly a large-amplitude (i.e., nonlinear) torsional Alfven wave that is put into the reconnected open magnetic field in the jet by interchange reconnection as the jet erupts, and estimate from the measured spinning and swaying that the magnetic-untwisting wave loses most of its energy in the inner corona below 2.2 R(sub Sun). From these results for these big jets, we reason that the torsional magnetic waves observed in Type-II spicules should dissipate in the corona in the same way and could thereby power much of the coronal heating in coronal holes.

  18. Shock–Cloud Interaction in the Solar Corona

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Takuya, E-mail: takahashi@kwasan.kyoto-u.ac.jp [Department of Astronomy, Kyoto University, Sakyo, Kyoto, 606-8502 (Japan)

    2017-02-20

    Flare-associated coronal shock waves sometimes interact with solar prominences, leading to large-amplitude prominence oscillations (LAPOs). Such prominence activation gives us a unique opportunity to track the time evolution of shock–cloud interaction in cosmic plasmas. Although the dynamics of interstellar shock–cloud interaction has been extensively studied, coronal shock–solar prominence interaction is rarely studied in the context of shock–cloud interaction. Associated with the X5.4 class solar flare that occurred on 2012 March 7, a globally propagated coronal shock wave interacted with a polar prominence, leading to LAPO. In this paper, we studied bulk acceleration and excitation of the internal flow of the shocked prominence using three-dimensional magnetohydrodynamic (MHD) simulations. We studied eight MHD simulation runs, each with different mass density structure of the prominence, and one hydrodynamic simulation run, and we compared the result. In order to compare the observed motion of activated prominence with the corresponding simulation, we also studied prominence activation by injection of a triangular-shaped coronal shock. We found that the prominence is first accelerated mainly by magnetic tension force as well as direct transmission of the shock, and later decelerated mainly by magnetic tension force. The internal flow, on the other hand, is excited during the shock front sweeps through the prominence and damps almost exponentially. We construct a phenomenological model of bulk momentum transfer from the shock to the prominence, which agreed quantitatively with all the simulation results. Based on the phenomenological prominence activation model, we diagnosed physical parameters of the coronal shock wave. The estimated energy of the coronal shock is several percent of the total energy released during the X5.4 flare.

  19. Comparative study of the loss cone-driven instabilities in the low solar corona

    International Nuclear Information System (INIS)

    Sharma, R.R.; Vlahos, L.

    1984-01-01

    A comparative study of the loss cone--driven instabilities in the low solar corona is undertaken. The instailities considered are the electron maser, the whistler, and the electrostatic upper hybrid. We show that the first-harmonic extraordinary mode of the electron cyclotron maser instability is the fastest growing mode for strongly magnetized plasma (ω/sub e//Ω/sub e/ 1.0, no direct electromagnetic radiation is expected since other instabilities, which do not escape directly, saturate the electron cyclotron maser (the whistler or the electrostatic upper hybrid waves). We also show that the second-harmonic electron cyclotron maser emission never grows to an appreciable level. Thus, we suggest that the electron cyclotron maser instability can be the explanation for intense radio bursts only when the first harmonic escapes from the low corona. We propose a possible explanation for the escape of the first harmonic from a flaring loop

  20. Energetics of small electron acceleration episodes in the solar corona from radio noise storm observations

    Science.gov (United States)

    James, Tomin; Subramanian, Prasad

    2018-05-01

    Observations of radio noise storms can act as sensitive probes of nonthermal electrons produced in small acceleration events in the solar corona. We use data from noise storm episodes observed jointly by the Giant Metrewave Radio Telescope (GMRT) and the Nancay Radioheliograph (NRH) to study characteristics of the nonthermal electrons involved in the emission. We find that the electrons carry 1021 to 1024 erg/s, and that the energy contained in the electrons producing a representative noise storm burst ranges from 1020 to 1023 ergs. These results are a direct probe of the energetics involved in ubiquitous, small-scale electron acceleration episodes in the corona, and could be relevant to a nanoflare-like scenario for coronal heating.

  1. Propagation of energetic electrons in the solar corona observed with LOFAR

    Science.gov (United States)

    Breitling, F.

    2017-06-01

    This work reports about new high-resolution imaging and spectroscopic observations of solar type III radio bursts at low radio frequencies in the range from 30 to 80 MHz. Solar type III radio bursts are understood as result of the beam-plasma interaction of electron beams in the corona. The Sun provides a unique opportunity to study these plasma processes of an active star. Its activity appears in eruptive events like flares, coronal mass ejections and radio bursts which are all accompanied by enhanced radio emission. Therefore solar radio emission carries important information about plasma processes associated with the Sun's activity. Moreover, the Sun's atmosphere is a unique plasma laboratory with plasma processes under conditions not found in terrestrial laboratories. Because of the Sun's proximity to Earth, it can be studied in greater detail than any other star but new knowledge about the Sun can be transfer to them. This "solar stellar connection" is important for the understanding of processes on other stars. The novel radio interferometer LOFAR provides imaging and spectroscopic capabilities to study these processes at low frequencies. Here it was used for solar observations. LOFAR, the characteristics of its solar data and the processing and analysis of the latter with the Solar Imaging Pipeline and Solar Data Center are described. The Solar Imaging Pipeline is the central software that allows using LOFAR for solar observations. So its development was necessary for the analysis of solar LOFAR data and realized here. Moreover a new density model with heat conduction and Alfvén waves was developed that provides the distance of radio bursts to the Sun from dynamic radio spectra. Its application to the dynamic spectrum of a type III burst observed on March 16, 2016 by LOFAR shows a nonuniform radial propagation velocity of the radio emission. The analysis of an imaging observation of type III bursts on June 23, 2012 resolves a burst as bright, compact region

  2. Waves and Turbulence in the Solar Corona: A Surplus of Sources and Sinks

    Science.gov (United States)

    Cranmer, Steven R.

    2018-06-01

    The Sun's corona is a hot, dynamic, and highly stochastic plasma environment, and we still do not yet understand how it is heated. Both the loop-filled coronal base and the extended acceleration region of the solar wind appear to be filled with waves and turbulent eddies. Models that invoke the dissipation of these magnetohydrodynamic (MHD) fluctuations have had some success in explaining the heating. In this presentation I will review some new insights about the different ways these waves are thought to be created and destroyed. For example: (1) Intergranular bright points in the photosphere are believed to extend upwards as coronal flux tubes, and their transverse oscillations are driven by the underlying convection. New high-resolution MHD simulations predict the kinetic energy spectra of the resulting coronal waves and serve as predictions for upcoming DKIST observations. (2) Magnetic reconnection in the supergranular network of the low corona can also generate MHD waves, and new Monte Carlo models of the resulting power spectra will be presented. The total integrated power in these waves is typically small in comparison to that of photosphere-driven waves, but they dominate the total spectrum at periods longer than about 30 minutes. (3) Because each magnetic field line in the corona is tied to at least one specific chromospheric footpoint (each with its own base pressure), the corona also plays host to field-aligned "density striations." These fluctuations vary with the supergranular network on timescales of roughly a day, but they also act as a spatially varying background through which the higher-frequency waves propagate. These multiple sources of space/time variability must be taken into account to properly understand off-limb measurements from CoMP and EIS/Hinode, as well as in-situ measurements from Parker Solar Probe.

  3. DISCOVERY OF FINELY STRUCTURED DYNAMIC SOLAR CORONA OBSERVED IN THE Hi-C TELESCOPE

    Energy Technology Data Exchange (ETDEWEB)

    Winebarger, Amy R.; Cirtain, Jonathan; Savage, Sabrina; Alexander, Caroline [NASA Marshall Space Flight Center, ZP 13, Huntsville, AL 35812 (United States); Golub, Leon; DeLuca, Edward [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Schuler, Timothy, E-mail: amy.r.winebarger@nasa.gov [State University of New York College at Buffalo, 1300 Elmwood Avenue, Buffalo, NY 14222 (United States)

    2014-05-20

    In the Summer of 2012, the High-resolution Coronal Imager (Hi-C) flew on board a NASA sounding rocket and collected the highest spatial resolution images ever obtained of the solar corona. One of the goals of the Hi-C flight was to characterize the substructure of the solar corona. We therefore examine how the intensity scales from AIA resolution to Hi-C resolution. For each low-resolution pixel, we calculate the standard deviation in the contributing high-resolution pixel intensities and compare that to the expected standard deviation calculated from the noise. If these numbers are approximately equal, the corona can be assumed to be smoothly varying, i.e., have no evidence of substructure in the Hi-C image to within Hi-C's ability to measure it given its throughput and readout noise. A standard deviation much larger than the noise value indicates the presence of substructure. We calculate these values for each low-resolution pixel for each frame of the Hi-C data. On average, 70% of the pixels in each Hi-C image show no evidence of substructure. The locations where substructure is prevalent is in the moss regions and in regions of sheared magnetic field. We also find that the level of substructure varies significantly over the roughly 160 s of the Hi-C data analyzed here. This result indicates that the finely structured corona is concentrated in regions of heating and is highly time dependent.

  4. DISCOVERY OF FINELY STRUCTURED DYNAMIC SOLAR CORONA OBSERVED IN THE Hi-C TELESCOPE

    International Nuclear Information System (INIS)

    Winebarger, Amy R.; Cirtain, Jonathan; Savage, Sabrina; Alexander, Caroline; Golub, Leon; DeLuca, Edward; Schuler, Timothy

    2014-01-01

    In the Summer of 2012, the High-resolution Coronal Imager (Hi-C) flew on board a NASA sounding rocket and collected the highest spatial resolution images ever obtained of the solar corona. One of the goals of the Hi-C flight was to characterize the substructure of the solar corona. We therefore examine how the intensity scales from AIA resolution to Hi-C resolution. For each low-resolution pixel, we calculate the standard deviation in the contributing high-resolution pixel intensities and compare that to the expected standard deviation calculated from the noise. If these numbers are approximately equal, the corona can be assumed to be smoothly varying, i.e., have no evidence of substructure in the Hi-C image to within Hi-C's ability to measure it given its throughput and readout noise. A standard deviation much larger than the noise value indicates the presence of substructure. We calculate these values for each low-resolution pixel for each frame of the Hi-C data. On average, 70% of the pixels in each Hi-C image show no evidence of substructure. The locations where substructure is prevalent is in the moss regions and in regions of sheared magnetic field. We also find that the level of substructure varies significantly over the roughly 160 s of the Hi-C data analyzed here. This result indicates that the finely structured corona is concentrated in regions of heating and is highly time dependent

  5. Synchronized observations of bright points from the solar photosphere to the corona

    Science.gov (United States)

    Tavabi, Ehsan

    2018-05-01

    One of the most important features in the solar atmosphere is the magnetic network and its relationship to the transition region (TR) and coronal brightness. It is important to understand how energy is transported into the corona and how it travels along the magnetic field lines between the deep photosphere and chromosphere through the TR and corona. An excellent proxy for transportation is the Interface Region Imaging Spectrograph (IRIS) raster scans and imaging observations in near-ultraviolet (NUV) and far-ultraviolet (FUV) emission channels, which have high time, spectral and spatial resolutions. In this study, we focus on the quiet Sun as observed with IRIS. The data with a high signal-to-noise ratio in the Si IV, C II and Mg II k lines and with strong emission intensities show a high correlation with TR bright network points. The results of the IRIS intensity maps and dopplergrams are compared with those of the Atmospheric Imaging Assembly (AIA) and Helioseismic and Magnetic Imager (HMI) instruments onboard the Solar Dynamical Observatory (SDO). The average network intensity profiles show a strong correlation with AIA coronal channels. Furthermore, we applied simultaneous observations of the magnetic network from HMI and found a strong relationship between the network bright points in all levels of the solar atmosphere. These features in the network elements exhibited regions of high Doppler velocity and strong magnetic signatures. Plenty of corona bright points emission, accompanied by the magnetic origins in the photosphere, suggest that magnetic field concentrations in the network rosettes could help to couple the inner and outer solar atmosphere.

  6. Observations of Fe XIV Line Intensity Variations in the Solar Corona During the 21 August 2017 Solar Eclipse

    Science.gov (United States)

    Johnson, Payton; Ladd, Edwin

    2018-01-01

    We present time- and spatially-resolved observations of the inner solar corona in the 5303 Å line of Fe XIV, taken during the 21 August 2017 solar eclipse from a field observing site in Crossville, TN. These observations are used to characterize the intensity variations in this coronal emission line, and to compare with oscillation predictions from models for heating the corona by magnetic wave dissipation.The observations were taken with two Explore Scientific ED 102CF 102 mm aperture triplet apochromatic refractors. One system used a DayStar custom-built 5 Å FWHM filter centered on the Fe XIV coronal spectral line and an Atik Titan camera for image collection. The setup produced images with a pixel size of 2.15 arcseconds (~1.5 Mm at the distance to the Sun), and a field of view of 1420 x 1060 arcseconds, covering approximately 20% of the entire solar limb centered near the emerging sunspot complex AR 2672. We obtained images with an exposure time of 0.22 seconds and a frame rate of 2.36 Hz, for a total of 361 images during totality.An identical, co-aligned telescope/camera system observed the same portion of the solar corona, but with a 100 Å FWHM Baader Planetarium solar continuum filter centered on a wavelength of 5400 Å. Images with an exposure time of 0.01 seconds were obtained with a frame rate of 4.05 Hz. These simultaneous observations are used as a control to monitor brightness variations not related to coronal line oscillations.

  7. A Comparison between Physics-based and Polytropic MHD Models for Stellar Coronae and Stellar Winds of Solar Analogs

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, O. [Lowell Center for Space Science and Technology, University of Massachusetts, Lowell, MA 01854 (United States)

    2017-02-01

    The development of the Zeeman–Doppler Imaging (ZDI) technique has provided synoptic observations of surface magnetic fields of low-mass stars. This led the stellar astrophysics community to adopt modeling techniques that have been used in solar physics using solar magnetograms. However, many of these techniques have been neglected by the solar community due to their failure to reproduce solar observations. Nevertheless, some of these techniques are still used to simulate the coronae and winds of solar analogs. Here we present a comparative study between two MHD models for the solar corona and solar wind. The first type of model is a polytropic wind model, and the second is the physics-based AWSOM model. We show that while the AWSOM model consistently reproduces many solar observations, the polytropic model fails to reproduce many of them, and in the cases where it does, its solutions are unphysical. Our recommendation is that polytropic models, which are used to estimate mass-loss rates and other parameters of solar analogs, must first be calibrated with solar observations. Alternatively, these models can be calibrated with models that capture more detailed physics of the solar corona (such as the AWSOM model) and that can reproduce solar observations in a consistent manner. Without such a calibration, the results of the polytropic models cannot be validated, but they can be wrongly used by others.

  8. The Funnel Geometry of Open Flux Tubes in the Low Solar Corona Constrained by O VI and Ne VIII Outflow

    Science.gov (United States)

    Byhring, Hanne S.; Esser, Ruth; Lie-Svendsen, Oystein

    2008-01-01

    Model calculations show that observed outflow velocities of order 7-10 km/s of C IV and O VI ions, and 15-20 km/s of Ne VIII ions, are not only consistent with models of the solar wind from coronas holes, but also place unique constraints on the degree of flow tube expansion as well as the location of the expansion in the transition region/lower corona.

  9. Scaling analysis and model estimation of solar corona index

    Science.gov (United States)

    Ray, Samujjwal; Ray, Rajdeep; Khondekar, Mofazzal Hossain; Ghosh, Koushik

    2018-04-01

    A monthly average solar green coronal index time series for the period from January 1939 to December 2008 collected from NOAA (The National Oceanic and Atmospheric Administration) has been analysed in this paper in perspective of scaling analysis and modelling. Smoothed and de-noising have been done using suitable mother wavelet as a pre-requisite. The Finite Variance Scaling Method (FVSM), Higuchi method, rescaled range (R/S) and a generalized method have been applied to calculate the scaling exponents and fractal dimensions of the time series. Autocorrelation function (ACF) is used to find autoregressive (AR) process and Partial autocorrelation function (PACF) has been used to get the order of AR model. Finally a best fit model has been proposed using Yule-Walker Method with supporting results of goodness of fit and wavelet spectrum. The results reveal an anti-persistent, Short Range Dependent (SRD), self-similar property with signatures of non-causality, non-stationarity and nonlinearity in the data series. The model shows the best fit to the data under observation.

  10. A Space Weather mission concept: Observatories of the Solar Corona and Active Regions (OSCAR)

    DEFF Research Database (Denmark)

    Strugarek, Antoine; Janitzek, Nils; Lee, Arrow

    2015-01-01

    advancements in the field of solar physics, improvements of the current CME prediction models, and provide data for reliable space weather forecasting. These objectives are achieved by utilising two spacecraft with identical instrumentation, located at a heliocentric orbital distance of 1 AU from the Sun......Coronal Mass Ejections (CMEs) and Corotating Interaction Regions (CIRs) are major sources of magnetic storms on Earth and are therefore considered to be the most dangerous space weather events. The Observatories of Solar Corona and Active Regions (OSCAR) mission is designed to identify the 3D...... structure of coronal loops and to study the trigger mechanisms of CMEs in solar Active Regions (ARs) as well as their evolution and propagation processes in the inner heliosphere. It also aims to provide monitoring and forecasting of geo-effective CMEs and CIRs. OSCAR would contribute to significant...

  11. SUPRATHERMAL ELECTRONS IN THE SOLAR CORONA: CAN NONLOCAL TRANSPORT EXPLAIN HELIOSPHERIC CHARGE STATES?

    International Nuclear Information System (INIS)

    Cranmer, Steven R.

    2014-01-01

    There have been several ideas proposed to explain how the Sun's corona is heated and how the solar wind is accelerated. Some models assume that open magnetic field lines are heated by Alfvén waves driven by photospheric motions and dissipated after undergoing a turbulent cascade. Other models posit that much of the solar wind's mass and energy is injected via magnetic reconnection from closed coronal loops. The latter idea is motivated by observations of reconnecting jets and also by similarities of ion composition between closed loops and the slow wind. Wave/turbulence models have also succeeded in reproducing observed trends in ion composition signatures versus wind speed. However, the absolute values of the charge-state ratios predicted by those models tended to be too low in comparison with observations. This Letter refines these predictions by taking better account of weak Coulomb collisions for coronal electrons, whose thermodynamic properties determine the ion charge states in the low corona. A perturbative description of nonlocal electron transport is applied to an existing set of wave/turbulence models. The resulting electron velocity distributions in the low corona exhibit mild suprathermal tails characterized by ''kappa'' exponents between 10 and 25. These suprathermal electrons are found to be sufficiently energetic to enhance the charge states of oxygen ions, while maintaining the same relative trend with wind speed that was found when the distribution was assumed to be Maxwellian. The updated wave/turbulence models are in excellent agreement with solar wind ion composition measurements

  12. Strong non-radial propagation of energetic electrons in solar corona

    Science.gov (United States)

    Klassen, A.; Dresing, N.; Gómez-Herrero, R.; Heber, B.; Veronig, A.

    2018-06-01

    Analyzing the sequence of solar energetic electron events measured at both STEREO-A (STA) and STEREO-B (STB) spacecraft during 17-21 July 2014, when their orbital separation was 34°, we found evidence of a strong non-radial electron propagation in the solar corona below the solar wind source surface. The impulsive electron events were associated with recurrent flare and jet (hereafter flare/jet) activity at the border of an isolated coronal hole situated close to the solar equator. We have focused our study on the solar energetic particle (SEP) event on 17 July 2014, during which both spacecraft detected a similar impulsive and anisotropic energetic electron event suggesting optimal connection of both spacecraft to the parent particle source, despite the large angular separation between the parent flare and the nominal magnetic footpoints on the source surface of STA and STB of 68° and 90°, respectively. Combining the remote-sensing extreme ultraviolet (EUV) observations, in-situ plasma, magnetic field, and energetic particle data we investigated and discuss here the origin and the propagation trajectory of energetic electrons in the solar corona. We find that the energetic electrons in the energy range of 55-195 keV together with the associated EUV jet were injected from the flare site toward the spacecraft's magnetic footpoints and propagate along a strongly non-radial and inclined magnetic field below the source surface. From stereoscopic (EUV) observations we estimated the inclination angle of the jet trajectory and the respective magnetic field of 63° ± 11° relative to the radial direction. We show how the flare accelerated electrons reach very distant longitudes in the heliosphere, when the spacecraft are nominally not connected to the particle source. This example illustrates how ballistic backmapping can occasionally fail to characterize the magnetic connectivity during SEP events. This finding also provides an additional mechanism (one among others

  13. Tracking Filament Evolution in the Low Solar Corona Using Remote Sensing and In Situ Observations

    Science.gov (United States)

    Kocher, Manan; Landi, Enrico; Lepri, Susan. T.

    2018-06-01

    In the present work, we analyze a filament eruption associated with an interplanetary coronal mass ejection that arrived at L1 on 2011 August 5. In multiwavelength Solar Dynamic Observatory/Advanced Imaging Assembly (AIA) images, three plasma parcels within the filament were tracked at high cadence along the solar corona. A novel absorption diagnostic technique was applied to the filament material traveling along the three chosen trajectories to compute the column density and temperature evolution in time. Kinematics of the filamentary material were estimated using STEREO/Extreme Ultraviolet Imager and STEREO/COR1 observations. The Michigan Ionization Code used inputs of these density, temperature, and speed profiles for the computation of ionization profiles of the filament plasma. Based on these measurements, we conclude that the core plasma was in near ionization equilibrium, and the ionization states were still evolving at the altitudes where they were visible in absorption in AIA images. Additionally, we report that the filament plasma was heterogeneous, and the filamentary material was continuously heated as it expanded in the low solar corona.

  14. Multi-Spacecraft 3D differential emission measure tomography of the solar corona: STEREO results.

    Science.gov (United States)

    Vásquez, A. M.; Frazin, R. A.

    We have recently developed a novel technique (called DEMT) for the em- pirical determination of the three-dimensional (3D) distribution of the so- lar corona differential emission measure through multi-spacecraft solar ro- tational tomography of extreme-ultaviolet (EUV) image time series (like those provided by EIT/SOHO and EUVI/STEREO). The technique allows, for the first time, to develop global 3D empirical maps of the coronal elec- tron temperature and density, in the height range 1.0 to 1.25 RS . DEMT constitutes a simple and powerful 3D analysis tool that obviates the need for structure specific modeling.

  15. SWAP OBSERVATIONS OF THE LONG-TERM, LARGE-SCALE EVOLUTION OF THE EXTREME-ULTRAVIOLET SOLAR CORONA

    Energy Technology Data Exchange (ETDEWEB)

    Seaton, Daniel B.; De Groof, Anik; Berghmans, David; Nicula, Bogdan [Royal Observatory of Belgium-SIDC, Avenue Circulaire 3, B-1180 Brussels (Belgium); Shearer, Paul [Department of Mathematics, 2074 East Hall, University of Michigan, 530 Church Street, Ann Arbor, MI 48109-1043 (United States)

    2013-11-01

    The Sun Watcher with Active Pixels and Image Processing (SWAP) EUV solar telescope on board the Project for On-Board Autonomy 2 spacecraft has been regularly observing the solar corona in a bandpass near 17.4 nm since 2010 February. With a field of view of 54 × 54 arcmin, SWAP provides the widest-field images of the EUV corona available from the perspective of the Earth. By carefully processing and combining multiple SWAP images, it is possible to produce low-noise composites that reveal the structure of the EUV corona to relatively large heights. A particularly important step in this processing was to remove instrumental stray light from the images by determining and deconvolving SWAP's point-spread function from the observations. In this paper, we use the resulting images to conduct the first-ever study of the evolution of the large-scale structure of the corona observed in the EUV over a three year period that includes the complete rise phase of solar cycle 24. Of particular note is the persistence over many solar rotations of bright, diffuse features composed of open magnetic fields that overlie polar crown filaments and extend to large heights above the solar surface. These features appear to be related to coronal fans, which have previously been observed in white-light coronagraph images and, at low heights, in the EUV. We also discuss the evolution of the corona at different heights above the solar surface and the evolution of the corona over the course of the solar cycle by hemisphere.

  16. Are coronae of late type stars made of solar-like structures? The Fx-HR diagram and the pressure-temperature correlation

    OpenAIRE

    Peres, G.; Orlando, S.; Reale, F.

    2004-01-01

    We show that stellar coronae can be composed of X-ray emitting structures like those in the solar corona, using a large set of ROSAT/PSPC observations of late-type-stars, and a large set of solar X-ray data collected with Yohkoh/SXT. We have considered data on the solar corona at various phases of the cycle and various kinds of X-ray coronal structures, from flares to the background corona. The surface flux (F_x) vs. spectral hardness ratio (HR) diagram is a fundamental tool for our study. We...

  17. STEREO OBSERVATIONS OF FAST MAGNETOSONIC WAVES IN THE EXTENDED SOLAR CORONA ASSOCIATED WITH EIT/EUV WAVES

    International Nuclear Information System (INIS)

    Kwon, Ryun-Young; Ofman, Leon; Kramar, Maxim; Olmedo, Oscar; Davila, Joseph M.; Thompson, Barbara J.; Cho, Kyung-Suk

    2013-01-01

    We report white-light observations of a fast magnetosonic wave associated with a coronal mass ejection observed by STEREO/SECCHI/COR1 inner coronagraphs on 2011 August 4. The wave front is observed in the form of density compression passing through various coronal regions such as quiet/active corona, coronal holes, and streamers. Together with measured electron densities determined with STEREO COR1 and Extreme UltraViolet Imager (EUVI) data, we use our kinematic measurements of the wave front to calculate coronal magnetic fields and find that the measured speeds are consistent with characteristic fast magnetosonic speeds in the corona. In addition, the wave front turns out to be the upper coronal counterpart of the EIT wave observed by STEREO EUVI traveling against the solar coronal disk; moreover, stationary fronts of the EIT wave are found to be located at the footpoints of deflected streamers and boundaries of coronal holes, after the wave front in the upper solar corona passes through open magnetic field lines in the streamers. Our findings suggest that the observed EIT wave should be in fact a fast magnetosonic shock/wave traveling in the inhomogeneous solar corona, as part of the fast magnetosonic wave propagating in the extended solar corona.

  18. Polar and equatorial coronal hole winds at solar minima: From the heliosphere to the inner corona

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, L.; Landi, E., E-mail: lzh@umich.edu [Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, MI 48105 (United States)

    2014-02-01

    Fast solar wind can be accelerated from at least two different sources: polar coronal holes and equatorial coronal holes. Little is known about the relationship between the wind coming from these two different latitudes and whether these two subcategories of fast wind evolve in the same way during the solar cycle. Nineteen years of Ulysses observations, from 1990 to 2009, combined with ACE observations from 1998 to the present provide us with in situ measurements of solar wind properties that span two entire solar cycles. These missions provide an ideal data set to study the properties and evolution of the fast solar wind originating from equatorial and polar holes. In this work, we focus on these two types of fast solar wind during the minima between solar cycles 22 and 23 and 23 and 24. We use data from SWICS, SWOOPS, and VHM/FGM on board Ulysses and SWICS, SWEPAM, and MAG on board ACE to analyze the proton kinetic, thermal, and dynamic characteristics, heavy ion composition, and magnetic field properties of these two fast winds. The comparison shows that: (1) their kinetic, thermal, compositional, and magnetic properties are significantly different at any time during the two minima and (2) they respond differently to the changes in solar activity from cycle 23 to 24. These results indicate that equatorial and polar fast solar wind are two separate subcategories of fast wind. We discuss the implications of these results and relate them to remote-sensing measurements of the properties of polar and equatorial coronal holes carried out in the inner corona during these two solar minima.

  19. Polar and equatorial coronal hole winds at solar minima: From the heliosphere to the inner corona

    International Nuclear Information System (INIS)

    Zhao, L.; Landi, E.

    2014-01-01

    Fast solar wind can be accelerated from at least two different sources: polar coronal holes and equatorial coronal holes. Little is known about the relationship between the wind coming from these two different latitudes and whether these two subcategories of fast wind evolve in the same way during the solar cycle. Nineteen years of Ulysses observations, from 1990 to 2009, combined with ACE observations from 1998 to the present provide us with in situ measurements of solar wind properties that span two entire solar cycles. These missions provide an ideal data set to study the properties and evolution of the fast solar wind originating from equatorial and polar holes. In this work, we focus on these two types of fast solar wind during the minima between solar cycles 22 and 23 and 23 and 24. We use data from SWICS, SWOOPS, and VHM/FGM on board Ulysses and SWICS, SWEPAM, and MAG on board ACE to analyze the proton kinetic, thermal, and dynamic characteristics, heavy ion composition, and magnetic field properties of these two fast winds. The comparison shows that: (1) their kinetic, thermal, compositional, and magnetic properties are significantly different at any time during the two minima and (2) they respond differently to the changes in solar activity from cycle 23 to 24. These results indicate that equatorial and polar fast solar wind are two separate subcategories of fast wind. We discuss the implications of these results and relate them to remote-sensing measurements of the properties of polar and equatorial coronal holes carried out in the inner corona during these two solar minima.

  20. SYNTHETIC HYDROGEN SPECTRA OF OSCILLATING PROMINENCE SLABS IMMERSED IN THE SOLAR CORONA

    International Nuclear Information System (INIS)

    Zapiór, M.; Heinzel, P.; Oliver, R.; Ballester, J. L.

    2016-01-01

    We study the behavior of H α and H β spectral lines and their spectral indicators in an oscillating solar prominence slab surrounded by the solar corona, using an MHD model combined with a 1D radiative transfer code taken in the line of sight perpendicular to the slab. We calculate the time variation of the Doppler shift, half-width, and maximum intensity of the H α and H β spectral lines for different modes of oscillation. We find a non-sinusoidal time dependence of some spectral parameters with time. Because H α and H β spectral indicators have different behavior for different modes, caused by differing optical depths of formation and different plasma parameter variations in time and along the slab, they may be used for prominence seismology, especially to derive the internal velocity field in prominences.

  1. SYNTHETIC HYDROGEN SPECTRA OF OSCILLATING PROMINENCE SLABS IMMERSED IN THE SOLAR CORONA

    Energy Technology Data Exchange (ETDEWEB)

    Zapiór, M.; Heinzel, P. [Astronomical Institute, The Czech Academy of Sciences, 25165 Ondřejov, The Czech Republic (Czech Republic); Oliver, R.; Ballester, J. L. [Universitat de les Illes Balears. Cra. de Valldemossa, km 7.5. Palma (Illes Balears), E-07122 (Spain)

    2016-08-20

    We study the behavior of H α and H β spectral lines and their spectral indicators in an oscillating solar prominence slab surrounded by the solar corona, using an MHD model combined with a 1D radiative transfer code taken in the line of sight perpendicular to the slab. We calculate the time variation of the Doppler shift, half-width, and maximum intensity of the H α and H β spectral lines for different modes of oscillation. We find a non-sinusoidal time dependence of some spectral parameters with time. Because H α and H β spectral indicators have different behavior for different modes, caused by differing optical depths of formation and different plasma parameter variations in time and along the slab, they may be used for prominence seismology, especially to derive the internal velocity field in prominences.

  2. Sparse Bayesian Inference and the Temperature Structure of the Solar Corona

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Harry P. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Byers, Jeff M. [Materials Science and Technology Division, Naval Research Laboratory, Washington, DC 20375 (United States); Crump, Nicholas A. [Naval Center for Space Technology, Naval Research Laboratory, Washington, DC 20375 (United States)

    2017-02-20

    Measuring the temperature structure of the solar atmosphere is critical to understanding how it is heated to high temperatures. Unfortunately, the temperature of the upper atmosphere cannot be observed directly, but must be inferred from spectrally resolved observations of individual emission lines that span a wide range of temperatures. Such observations are “inverted” to determine the distribution of plasma temperatures along the line of sight. This inversion is ill posed and, in the absence of regularization, tends to produce wildly oscillatory solutions. We introduce the application of sparse Bayesian inference to the problem of inferring the temperature structure of the solar corona. Within a Bayesian framework a preference for solutions that utilize a minimum number of basis functions can be encoded into the prior and many ad hoc assumptions can be avoided. We demonstrate the efficacy of the Bayesian approach by considering a test library of 40 assumed temperature distributions.

  3. The 3-D solar radioastronomy and the structure of the corona and the solar wind. [solar probes of solar activity

    Science.gov (United States)

    Steinberg, J. L.; Caroubalos, C.

    1976-01-01

    The mechanism causing solar radio bursts (1 and 111) is examined. It is proposed that a nonthermal energy source is responsible for the bursts; nonthermal energy is converted into electromagnetic energy. The advantages are examined for an out-of-the-ecliptic solar probe mission, which is proposed as a means of stereoscopically viewing solar radio bursts, solar magnetic fields, coronal structure, and the solar wind.

  4. The Time-Dependent Chemistry of Cometary Debris in the Solar Corona

    Science.gov (United States)

    Pesnell, W. D.; Bryans, P.

    2015-01-01

    Recent improvements in solar observations have greatly progressed the study of sungrazing comets. They can now be imaged along the entirety of their perihelion passage through the solar atmosphere, revealing details of their composition and structure not measurable through previous observations in the less volatile region of the orbit further from the solar surface. Such comets are also unique probes of the solar atmosphere. The debris deposited by sungrazers is rapidly ionized and subsequently influenced by the ambient magnetic field. Measuring the spectral signature of the deposited material highlights the topology of the magnetic field and can reveal plasma parameters such as the electron temperature and density. Recovering these variables from the observable data requires a model of the interaction of the cometary species with the atmosphere through which they pass. The present paper offers such a model by considering the time-dependent chemistry of sublimated cometary species as they interact with the solar radiation field and coronal plasma. We expand on a previous simplified model by considering the fully time-dependent solutions of the emitting species' densities. To compare with observations, we consider a spherically symmetric expansion of the sublimated material into the corona and convert the time-dependent ion densities to radial profiles. Using emissivities from the CHIANTI database and plasma parameters derived from a magnetohydrodynamic simulation leads to a spatially dependent emission spectrum that can be directly compared with observations. We find our simulated spectra to be consistent with observation.

  5. Faraday rotation fluctuations of MESSENGER radio signals through the equatorial lower corona near solar minimum

    Science.gov (United States)

    Wexler, D. B.; Jensen, E. A.; Hollweg, J. V.; Heiles, C.; Efimov, A. I.; Vierinen, J.; Coster, A. J.

    2017-02-01

    Faraday rotation (FR) of transcoronal radio transmissions from spacecraft near superior conjunction enables study of the temporal variations in coronal plasma density, velocity, and magnetic field. The MESSENGER spacecraft 8.4 GHz radio, transmitting through the corona with closest line-of-sight approach 1.63-1.89 solar radii and near-equatorial heliolatitudes, was recorded soon after the deep solar minimum of solar cycle 23. During egress from superior conjunction, FR gradually decreased, and an overlay of wave-like FR fluctuations (FRFs) with periods of hundreds to thousands of seconds was found. The FRF power spectrum was characterized by a power law relation, with the baseline spectral index being -2.64. A transient power increase showed relative flattening of the spectrum and bands of enhanced spectral power at 3.3 mHz and 6.1 mHz. Our results confirm the presence of coronal FRF similar to those described previously at greater solar offset. Interpreted as Alfvén waves crossing the line of sight radially near the proximate point, low-frequency FRF convey an energy flux density higher than that of the background solar wind kinetic energy, but only a fraction of that required to accelerate the solar wind. Even so, this fraction is quite variable and potentially escalates to energetically significant values with relatively modest changes in estimated magnetic field strength and electron concentration. Given the uncertainties in these key parameters, as well as in solar wind properties close to the Sun at low heliolatitudes, we cannot yet confidently assign the quantitative role for Alfvén wave energy from this region in driving the slow solar wind.

  6. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere II. Continuous Emission and Condensed Matter Within the Corona

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2013-07-01

    Full Text Available The K-corona, a significant portion of the solar atmosphere, displays a continuous spectrum which closely parallels photospheric emission, though without the presence of overlying Fraunhofer lines. The E-corona exists in the same region and is characterized by weak emission lines from highly ionized atoms. For instance, the famous green emission line from coronium (FeXIV is part of the E-corona. The F-corona exists beyond the K/E-corona and, like the photospheric spectrum, is characterized by Fraunhofer lines. The F-corona represents photospheric light scattered by dust particles in the interplanetary medium. Within the gaseous models of the Sun, the K-corona is viewed as photospheric radiation which has been scattered by relativistic electrons. This scattering is thought to broaden the Fraunhofer lines of the solar spectrum such that they can no longer be detected in the K-corona. Thus, the gaseous models of the Sun account for the appearance of the K-corona by distorting photospheric light, since they are unable to have recourse to condensed matter to directly produce such radiation. Conversely, it is now advanced that the continuous emission of the K-corona and associated emission lines from the E-corona must be interpreted as manifestations of the same phenomenon: condensed matter exists in the corona. It is well-known that the Sun expels large amounts of material from its surface in the form of flares and coronal mass ejections. Given a liquid metallic hydrogen model of the Sun, it is logical to assume that such matter, which exists in the condensed state on the solar surface, continues to manifest its nature once expelled into the corona. Therefore, the continuous spectrum of the K-corona provides the twenty-seventh line of evidence that the Sun is composed of condensed matter.

  7. EVOLUTION OF THE GLOBAL TEMPERATURE STRUCTURE OF THE SOLAR CORONA DURING THE MINIMUM BETWEEN SOLAR CYCLES 23 AND 24

    Energy Technology Data Exchange (ETDEWEB)

    Nuevo, Federico A.; Vasquez, Alberto M. [Instituto de Astronomia y Fisica del Espacio (CONICET-UBA) and FCEN (UBA), CC 67-Suc 28, Ciudad de Buenos Aires (Argentina); Huang Zhenguang; Frazin, Richard; Manchester, Ward B. IV; Jin Meng [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI 48109 (United States)

    2013-08-10

    The combination of differential emission measure tomography with extrapolation of the photospheric magnetic field allows determination of the electron density and electron temperature along individual magnetic field lines. This is especially useful in quiet-Sun (QS) plasmas where individual loops cannot otherwise be identified. In Paper I, this approach was applied to study QS plasmas during Carrington rotation (CR) 2077 at the minimum between solar cycles (SCs) 23 and 24. In that work, two types of QS coronal loops were identified: ''up'' loops in which the temperature increases with height, and ''down'' loops in which the temperature decreases with height. While the first ones were expected, the latter ones were a surprise and, furthermore, were found to be ubiquitous in the low-latitude corona. In the present work, we extend the analysis to 11 CRs around the last solar minimum. We found that the ''down'' population, always located at low latitudes, was maximum at the time when the sunspot number was minimum, and the number of down loops systematically increased during the declining phase of SC-23 and diminished during the rising phase of SC-24. ''Down'' loops are found to have systematically larger values of {beta} than do ''up'' loops. These discoveries are interpreted in terms of excitation of Alfven waves in the photosphere, and mode conversion and damping in the low corona.

  8. EVOLUTION OF THE GLOBAL TEMPERATURE STRUCTURE OF THE SOLAR CORONA DURING THE MINIMUM BETWEEN SOLAR CYCLES 23 AND 24

    International Nuclear Information System (INIS)

    Nuevo, Federico A.; Vásquez, Alberto M.; Huang Zhenguang; Frazin, Richard; Manchester, Ward B. IV; Jin Meng

    2013-01-01

    The combination of differential emission measure tomography with extrapolation of the photospheric magnetic field allows determination of the electron density and electron temperature along individual magnetic field lines. This is especially useful in quiet-Sun (QS) plasmas where individual loops cannot otherwise be identified. In Paper I, this approach was applied to study QS plasmas during Carrington rotation (CR) 2077 at the minimum between solar cycles (SCs) 23 and 24. In that work, two types of QS coronal loops were identified: ''up'' loops in which the temperature increases with height, and ''down'' loops in which the temperature decreases with height. While the first ones were expected, the latter ones were a surprise and, furthermore, were found to be ubiquitous in the low-latitude corona. In the present work, we extend the analysis to 11 CRs around the last solar minimum. We found that the ''down'' population, always located at low latitudes, was maximum at the time when the sunspot number was minimum, and the number of down loops systematically increased during the declining phase of SC-23 and diminished during the rising phase of SC-24. ''Down'' loops are found to have systematically larger values of β than do ''up'' loops. These discoveries are interpreted in terms of excitation of Alfvén waves in the photosphere, and mode conversion and damping in the low corona

  9. TIME-DEPENDENT TURBULENT HEATING OF OPEN FLUX TUBES IN THE CHROMOSPHERE, CORONA, AND SOLAR WIND

    Energy Technology Data Exchange (ETDEWEB)

    Woolsey, L. N.; Cranmer, S. R., E-mail: lwoolsey@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States)

    2015-10-01

    We investigate several key questions of plasma heating in open-field regions of the corona that connect to the solar wind. We present results for a model of Alfvén-wave-driven turbulence for three typical open magnetic field structures: a polar coronal hole, an open flux tube neighboring an equatorial streamer, and an open flux tube near a strong-field active region. We compare time-steady, one-dimensional turbulent heating models against fully time-dependent three-dimensional reduced-magnetohydrodynamic modeling of BRAID. We find that the time-steady results agree well with time-averaged results from BRAID. The time dependence allows us to investigate the variability of the magnetic fluctuations and of the heating in the corona. The high-frequency tail of the power spectrum of fluctuations forms a power law whose exponent varies with height, and we discuss the possible physical explanation for this behavior. The variability in the heating rate is bursty and nanoflare-like in nature, and we analyze the amount of energy lost via dissipative heating in transient events throughout the simulation. The average energy in these events is 10{sup 21.91} erg, within the “picoflare” range, and many events reach classical “nanoflare” energies. We also estimated the multithermal distribution of temperatures that would result from the heating-rate variability, and found good agreement with observed widths of coronal differential emission measure distributions. The results of the modeling presented in this paper provide compelling evidence that turbulent heating in the solar atmosphere by Alfvén waves accelerates the solar wind in open flux tubes.

  10. FORMATION AND RECONNECTION OF THREE-DIMENSIONAL CURRENT SHEETS IN THE SOLAR CORONA

    International Nuclear Information System (INIS)

    Edmondson, J. K.; Antiochos, S. K.; DeVore, C. R.; Zurbuchen, T. H.

    2010-01-01

    Current-sheet formation and magnetic reconnection are believed to be the basic physical processes responsible for much of the activity observed in astrophysical plasmas, such as the Sun's corona. We investigate these processes for a magnetic configuration consisting of a uniform background field and an embedded line dipole, a topology that is expected to be ubiquitous in the corona. This magnetic system is driven by a uniform horizontal flow applied at the line-tied photosphere. Although both the initial field and the driver are translationally symmetric, the resulting evolution is calculated using a fully three-dimensional (3D) magnetohydrodynamic simulation with adaptive mesh refinement that resolves the current sheet and reconnection dynamics in detail. The advantage of our approach is that it allows us to directly apply the vast body of knowledge gained from the many studies of two-dimensional (2D) reconnection to the fully 3D case. We find that a current sheet forms in close analogy to the classic Syrovatskii 2D mechanism, but the resulting evolution is different than expected. The current sheet is globally stable, showing no evidence for a disruption or a secondary instability even for aspect ratios as high as 80:1. The global evolution generally follows the standard Sweet-Parker 2D reconnection model except for an accelerated reconnection rate at a very thin current sheet, due to the tearing instability and the formation of magnetic islands. An interesting conclusion is that despite the formation of fully 3D structures at small scales, the system remains close to 2D at global scales. We discuss the implications of our results for observations of the solar corona.

  11. Global Solar Magnetic Field Organization in the Outer Corona: Influence on the Solar Wind Speed and Mass Flux Over the Cycle

    Science.gov (United States)

    Réville, Victor; Brun, Allan Sacha

    2017-11-01

    The dynamics of the solar wind depends intrinsically on the structure of the global solar magnetic field, which undergoes fundamental changes over the 11-year solar cycle. For instance, the wind terminal velocity is thought to be anti-correlated with the expansion factor, a measure of how the magnetic field varies with height in the solar corona, usually computed at a fixed height (≈ 2.5 {R}⊙ , the source surface radius that approximates the distance at which all magnetic field lines become open). However, the magnetic field expansion affects the solar wind in a more detailed way, its influence on the solar wind properties remaining significant well beyond the source surface. We demonstrate this using 3D global magnetohydrodynamic (MHD) simulations of the solar corona, constrained by surface magnetograms over half a solar cycle (1989-2001). A self-consistent expansion beyond the solar wind critical point (even up to 10 {R}⊙ ) makes our model comply with observed characteristics of the solar wind, namely, that the radial magnetic field intensity becomes latitude independent at some distance from the Sun, and that the mass flux is mostly independent of the terminal wind speed. We also show that near activity minimum, the expansion in the higher corona has more influence on the wind speed than the expansion below 2.5 {R}⊙ .

  12. CAN A NANOFLARE MODEL OF EXTREME-ULTRAVIOLET IRRADIANCES DESCRIBE THE HEATING OF THE SOLAR CORONA?

    Energy Technology Data Exchange (ETDEWEB)

    Tajfirouze, E.; Safari, H. [Department of Physics, University of Zanjan, P.O. Box 45195-313, Zanjan (Iran, Islamic Republic of)

    2012-01-10

    Nanoflares, the basic units of impulsive energy release, may produce much of the solar background emission. Extrapolation of the energy frequency distribution of observed microflares, which follows a power law to lower energies, can give an estimation of the importance of nanoflares for heating the solar corona. If the power-law index is greater than 2, then the nanoflare contribution is dominant. We model a time series of extreme-ultraviolet emission radiance as random flares with a power-law exponent of the flare event distribution. The model is based on three key parameters: the flare rate, the flare duration, and the power-law exponent of the flare intensity frequency distribution. We use this model to simulate emission line radiance detected in 171 A, observed by Solar Terrestrial Relation Observatory/Extreme-Ultraviolet Imager and Solar Dynamics Observatory/Atmospheric Imaging Assembly. The observed light curves are matched with simulated light curves using an Artificial Neural Network, and the parameter values are determined across the active region, quiet Sun, and coronal hole. The damping rate of nanoflares is compared with the radiative losses cooling time. The effect of background emission, data cadence, and network sensitivity on the key parameters of the model is studied. Most of the observed light curves have a power-law exponent, {alpha}, greater than the critical value 2. At these sites, nanoflare heating could be significant.

  13. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere V. On the Nature of the Corona

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2013-07-01

    Full Text Available The E-corona is the site of numerous emission lines associated with high ionization states (i.e. FeXIV-FeXXV. Modern gaseous models of the Sun require that these states are produced by atomic irradiation, requiring the sequential removal of electrons to infinity, without an associated electron acceptor. This can lead to computed temperatures in the corona which are unrealistic (i.e. ∼30–100 MK contrasted to solar core values of ∼16 MK. In order to understand the emission lines of the E-corona, it is vital to recognize that they are superimposed upon the K-corona, which produces a continuous spectrum, devoid of Fraunhofer lines, arising from this same region of the Sun. It has been advanced that the K-corona harbors self-luminous condensed matter (Robitaille P.M. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere II. Continuous Emission and Condensed Matter Within the Corona. Progr. Phys., 2013, v. 3, L8–L10; Robitaille P.M. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere III. Importance of Continuous Emission Spectra from Flares, Coronal Mass Ejections, Prominences, and Other Coronal Structures. Progr. Phys., 2013, v. 3, L11–L14. Condensed matter can possess elevated electron affinities which may strip nearby atoms of their electrons. Such a scenario accounts for the high ionization states observed in the corona: condensed matter acts to harness electrons, ensuring the electrical neutrality of the Sun, despite the flow of electrons and ions in the solar winds. Elevated ionization states reflect the presence of materials with high electron affinities in the corona, which is likely to be a form of metallic hydrogen, and does not translate into elevated temperatures in this region of the solar atmosphere. As a result, the many mechanisms advanced to account for coronal heating in the gaseous models of the Sun

  14. Electron cyclotron maser instability in the solar corona: The role of superthermal tails

    International Nuclear Information System (INIS)

    Vlahos, L.; Sharma, R.R.

    1985-01-01

    The effect of a superthermal component of electrons on the loss-cone--driven electron cyclotron maser instability is analyzed. We found that for a supertheral tail with temperature approx.10 keV (i) the first harmonic (X- and O-mode) is suppressed for n/sub t//n/sub r/roughly-equal1 (n/sub t/ and n/sub r/ are the densities of superthermal tail and loss-cone electrons) and (ii) the second harmonic (X- and O-modes) is suppressed for n/sub t//n/sub r/ -1 . We present a qualitative discussion on the formation of superthermal taisl and suggest that superthermal tails play an important role on the observed or available power, at microwave frequencies, from the electron cyclotron maser instability in the solar corona

  15. Electron cyclotron maser instability in the solar corona - The role of superthermal tails

    Science.gov (United States)

    Vlahos, L.; Sharma, R. R.

    1985-01-01

    The effect of a superthermal component of electrons on the loss-cone-driven electron cyclotron maser instability is analyzed. It is found that for a superthermal tail with temperature about 10 KeV, the first harmonic (X- and O-mode) is suppressed for n(t)/n(r) of about 1 (n/t/ and n/r/ are the densities of superthermal tail and loss-cone electrons) and the second harmonic (X- and O-modes) is suppressed for n(t)/n(r) less than about 0.1. A qualitative discussion on the formation of superthermal tails is presented and it is suggested that superthermal tails play an important role on the observed or available power, at microwave frequencies, from the electron cyclotron maser instability in the solar corona.

  16. ON THE ROLE OF REPETITIVE MAGNETIC RECONNECTIONS IN EVOLUTION OF MAGNETIC FLUX ROPES IN SOLAR CORONA

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sanjay; Bhattacharyya, R.; Joshi, Bhuwan [Udaipur Solar Observatory, Physical Research Laboratory, Dewali, Bari Road, Udaipur-313001 (India); Smolarkiewicz, P. K. [European Centre for Medium-Range Weather Forecasts, Reading RG2 9AX (United Kingdom)

    2016-10-20

    Parker's magnetostatic theorem, extended to astrophysical magnetofluids with large magnetic Reynolds number, supports ceaseless regeneration of current sheets and, hence, spontaneous magnetic reconnections recurring in time. Consequently, a scenario is possible where the repeated reconnections provide an autonomous mechanism governing emergence of coherent structures in astrophysical magnetofluids. In this work, such a scenario is explored by performing numerical computations commensurate with the magnetostatic theorem. In particular, the computations explore the evolution of a flux rope governed by repeated reconnections in a magnetic geometry resembling bipolar loops of solar corona. The revealed morphology of the evolution process—including onset and ascent of the rope, reconnection locations, and the associated topology of the magnetic field lines—agrees with observations, and thus substantiates physical realizability of the advocated mechanism.

  17. X-ray spectrometer spectrograph telescope system. [for solar corona study

    Science.gov (United States)

    Bruner, E. C., Jr.; Acton, L. W.; Brown, W. A.; Salat, S. W.; Franks, A.; Schmidtke, G.; Schweizer, W.; Speer, R. J.

    1979-01-01

    A new sounding rocket payload that has been developed for X-ray spectroscopic studies of the solar corona is described. The instrument incorporates a grazing incidence Rowland mounted grating spectrograph and an extreme off-axis paraboloic sector feed system to isolate regions of the sun of order 1 x 10 arc seconds in size. The focal surface of the spectrograph is shared by photographic and photoelectric detection systems, with the latter serving as a part of the rocket pointing system control loop. Fabrication and alignment of the optical system is based on high precision machining and mechanical metrology techniques. The spectrograph has a resolution of 16 milliangstroms and modifications planned for future flights will improve the resolution to 5 milliangstroms, permitting line widths to be measured.

  18. Resonators for magnetohydrodynamic waves in the solar corona: The effect of modulation of radio emission

    International Nuclear Information System (INIS)

    Zaitsev, V.V.; Stepanov, A.V.

    1982-01-01

    It is shown that the existence of a minimum of the Alfven speed in the corona at a height of approx.1R/sub sun/ follows from the characteristics of type II radio bursts. The region of a reduced Alfven speed is a resonator for a fast magnetosonic (FMS) waves. The eigenmodes of the resonator are determined. The period of the fundamental mode has the order of several minutes. In the resonator FMS waves can be excited at the Cherenkov resonance by streams of energetic ions. Modulations of metal solar radio emission with a period of several minutes is explained by the effect of the propagation of radio waves through an oscillating magnetohydrodynamic (MHD) resonator

  19. Pre-eruptive Magnetic Reconnection within a Multi-flux-rope System in the Solar Corona

    Science.gov (United States)

    Awasthi, Arun Kumar; Liu, Rui; Wang, Haimin; Wang, Yuming; Shen, Chenglong

    2018-04-01

    The solar corona is frequently disrupted by coronal mass ejections (CMEs), whose core structure is believed to be a flux rope made of helical magnetic field. This has become a “standard” picture; though, it remains elusive how the flux rope forms and evolves toward eruption. While one-third of the ejecta passing through spacecraft demonstrate a flux-rope structure, the rest have complex magnetic fields. Are they originating from a coherent flux rope, too? Here we investigate the source region of a complex ejecta, focusing on a flare precursor with definitive signatures of magnetic reconnection, i.e., nonthermal electrons, flaring plasma, and bidirectional outflowing blobs. Aided by nonlinear force-free field modeling, we conclude that the reconnection occurs within a system of multiple braided flux ropes with different degrees of coherency. The observation signifies the importance of internal structure and dynamics in understanding CMEs and in predicting their impacts on Earth.

  20. Synthetic spectral analysis of a kinetic model for slow-magnetosonic waves in solar corona

    Energy Technology Data Exchange (ETDEWEB)

    Ruan, Wenzhi; He, Jiansen; Tu, Chuanyi; Wang, Linghua [School of Earth and Space Sciences, Peking University, Beijing, 100871, China, E-mail: jshept@gmail.com (China); Zhang, Lei [State Key Laboratory of Space Weather, Chinese Academy of Sciences, Beijing 100190 (China); Vocks, Christian [Leibniz-Institut für Astrophysik Potsdam, 14482, Potsdam (Germany); Marsch, Eckart [Institute for Experimental and Applied Physics, Christian-Albrechts-Universität zu Kiel, 24118 Kiel (Germany); Peter, Hardi [Max Plank Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, 37077 Göttingen (Germany)

    2016-03-25

    We propose a kinetic model of slow-magnetosonic waves to explain various observational features associated with the propagating intensity disturbances (PIDs) occurring in the solar corona. The characteristics of slow mode waves, e.g, inphase oscillations of density, velocity, and thermal speed, are reproduced in this kinetic model. Moreover, the red-blue (R-B) asymmetry of the velocity distribution as self-consistently generated in the model is found to be contributed from the beam component, as a result of the competition between Landau resonance and Coulomb collisions. Furthermore, we synthesize the spectral lines and make the spectral analysis, based on the kinetic simulation data of the flux tube plasmas and the hypothesis of the surrounding background plasmas. It is found that the fluctuations of parameters of the synthetic spectral lines are basically consistent with the observations: (1) the line intensity, Doppler shift, and line width are fluctuating in phase; (2) the R-B asymmetry usually oscillate out of phase with the former three parameters; (3) the blueward asymmetry is more evident than the redward asymmetry in the R-B fluctuations. The oscillations of line parameters become weakened for the case with denser surrounding background plasmas. Similar to the observations, there is no doubled-frequency oscillation of the line width for the case with flux-tube plasmas flowing bulkly upward among the static background plasmas. Therefore, we suggest that the “wave + beam flow” kinetic model may be a viable interpretation for the PIDs observed in the solar corona.

  1. Detection of nanoflare-heated plasma in the solar corona by the FOXSI-2 sounding rocket

    Science.gov (United States)

    Ishikawa, Shin-nosuke; Glesener, Lindsay; Krucker, Säm; Christe, Steven; Buitrago-Casas, Juan Camilo; Narukage, Noriyuki; Vievering, Juliana

    2017-11-01

    The processes that heat the solar and stellar coronae to several million kelvins, compared with the much cooler photosphere (5,800 K for the Sun), are still not well known1. One proposed mechanism is heating via a large number of small, unresolved, impulsive heating events called nanoflares2. Each event would heat and cool quickly, and the average effect would be a broad range of temperatures including a small amount of extremely hot plasma. However, detecting these faint, hot traces in the presence of brighter, cooler emission is observationally challenging. Here we present hard X-ray data from the second flight of the Focusing Optics X-ray Solar Imager (FOXSI-2), which detected emission above 7 keV from an active region of the Sun with no obvious individual X-ray flare emission. Through differential emission measure computations, we ascribe this emission to plasma heated above 10 MK, providing evidence for the existence of solar nanoflares. The quantitative evaluation of the hot plasma strongly constrains the coronal heating models.

  2. Validation of the Earth atmosphere models using the EUV solar occultation data from the CORONAS and PROBA 2 instruments

    Science.gov (United States)

    Slemzin, Vladimir; Kuzin, Sergey; Berghmans, David; Pertsov, Andrey; Dominique, Marie; Ulyanov, Artyom; Gaikovich, Konstantin

    Absorption in the atmosphere below 500 km results in attenuation of the solar EUV flux, variation of its spectra and distortion of solar images acquired by solar EUV instruments operating on LEO satellites even on solar synchronous orbits. Occultation measurements are important for planning of solar observations from these satellites, and can be used for monitoring the upper atmosphere as well as for studying its response to the solar activity. We present the results of the occultation measurements of the solar EUV radiation obtained by the CORONAS-F/SPIRIT telescope at high solar activity (2002), by the CORONAS-Photon/TESIS telescope at low activity (2009), and by the SWAP telescope and LYRA radiometer onboard the PROBA 2 satellite at moderate activity (2010). The measured attenuation profiles and the retrieved linear extinction coefficients at the heights 200-500 km are compared with simulations by the NRLMSIS-00 and DTM2013 atmospheric models. It was shown that the results of simulations by the DTM2013 model are well agreed with the data of measurements at all stages of solar activity and in presence of the geomagnetic storm, whereas the results of the NRLMSISE-00 model significantly diverge from the measurements, in particular, at high and low activity. The research leading to these results has received funding from the European Union’s Seventh Programme for Research, Technological Development and Demonstration under Grant Agreement “eHeroes” (project No.284461, www.eheroes.eu).

  3. New Techniques Used in Modeling the 2017 Total Solar Eclipse: Energizing and Heating the Large-Scale Corona

    Science.gov (United States)

    Downs, Cooper; Mikic, Zoran; Linker, Jon A.; Caplan, Ronald M.; Lionello, Roberto; Torok, Tibor; Titov, Viacheslav; Riley, Pete; Mackay, Duncan; Upton, Lisa

    2017-08-01

    Over the past two decades, our group has used a magnetohydrodynamic (MHD) model of the corona to predict the appearance of total solar eclipses. In this presentation we detail recent innovations and new techniques applied to our prediction model for the August 21, 2017 total solar eclipse. First, we have developed a method for capturing the large-scale energized fields typical of the corona, namely the sheared/twisted fields built up through long-term processes of differential rotation and flux-emergence/cancellation. Using inferences of the location and chirality of filament channels (deduced from a magnetofrictional model driven by the evolving photospheric field produced by the Advective Flux Transport model), we tailor a customized boundary electric field profile that will emerge shear along the desired portions of polarity inversion lines (PILs) and cancel flux to create long twisted flux systems low in the corona. This method has the potential to improve the morphological shape of streamers in the low solar corona. Second, we apply, for the first time in our eclipse prediction simulations, a new wave-turbulence-dissipation (WTD) based model for coronal heating. This model has substantially fewer free parameters than previous empirical heating models, but is inherently sensitive to the 3D geometry and connectivity of the coronal field---a key property for modeling/predicting the thermal-magnetic structure of the solar corona. Overall, we will examine the effect of these considerations on white-light and EUV observables from the simulations, and present them in the context of our final 2017 eclipse prediction model.Research supported by NASA's Heliophysics Supporting Research and Living With a Star Programs.

  4. LAD Dissertation Prize: Laboratory Identification of Magnetohydrodynamic Eruption Criteria in the Solar Corona

    Science.gov (United States)

    Myers, Clayton E.; Yamada, Masaaki; Ji, Hantao

    2018-06-01

    Ideal magnetohydrodynamic instabilities such as the kink and torus instabilities are believed to play an important role in driving storage-and-release eruptions in the solar corona. These instabilities act on long-lived, arched magnetic flux ropes that are line-tied to the solar surface. In spite of numerous observational and computational studies, the conditions under which these instabilities produce an eruption remain a subject of intense debate. In this paper, we use a line-tied, arched flux rope experiment to systematically study storage-and-release eruption mechanisms in the laboratory [1]. Thin in situ magnetic probes facilitate the study of both the equilibrium and the stability of these laboratory flux ropes. In particular, they permit the direct measurement of magnetic (J×B) forces, both in equilibrium [2] and during dynamic events [3, 4]. Regarding stability and eruptions, two major results are reported: First, a new stability regime is identified where torus-unstable flux ropes fail to erupt. In this ‘failed torus’ regime, the flux rope is torus-unstable but kink-stable. Under these conditions, a dynamic toroidal field tension force surges in magnitude and prevents the flux rope from erupting [3, 4]. This dynamic tension force, which is missing from existing eruption models, is generated by magnetic self-organization events within the line-tied flux rope. Second, a clear torus instability threshold is observed in the kink-unstable regime. This latter result, which is consistent with existing theoretical [5] and numerical [6] results, verifies the key role of the torus instability in driving flux rope eruptions in the solar corona.[1] C. E. Myers, Ph.D. Thesis, Princeton University (2015)[2] C. E. Myers et al., Phys. Plasmas 23, 112102 (2016)[3] C. E. Myers et al., Nature 528, 526 (2015)[4] C. E. Myers et al., Plasma Phys. Control. Fusion 59, 014048 (2017)[5] O. Olmedo & J. Zhang, Astrophys. J. 718, 433 (2010)[6] T. Török & B. Kliem, Astrophys. J

  5. ELECTRON ACCELERATION BY CASCADING RECONNECTION IN THE SOLAR CORONA. II. RESISTIVE ELECTRIC FIELD EFFECTS

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, X.; Gan, W.; Liu, S. [Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China); Büchner, J.; Bárta, M., E-mail: zhou@mps.mpg.de, E-mail: liusm@pmo.ac.cn, E-mail: buechner@mps.mpg.de [Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany)

    2016-08-20

    We investigate electron acceleration by electric fields induced by cascading reconnections in current sheets trailing coronal mass ejections via a test particle approach in the framework of the guiding-center approximation. Although the resistive electric field is much weaker than the inductive electric field, the electron acceleration is still dominated by the former. Anomalous resistivity η is switched on only in regions where the current carrier’s drift velocity is large enough. As a consequence, electron acceleration is very sensitive to the spatial distribution of the resistive electric fields, and electrons accelerated in different segments of the current sheet have different characteristics. Due to the geometry of the 2.5-dimensional electromagnetic fields and strong resistive electric field accelerations, accelerated high-energy electrons can be trapped in the corona, precipitating into the chromosphere or escaping into interplanetary space. The trapped and precipitating electrons can reach a few MeV within 1 s and have a very hard energy distribution. Spatial structure of the acceleration sites may also introduce breaks in the electron energy distribution. Most of the interplanetary electrons reach hundreds of keV with a softer distribution. To compare with observations of solar flares and electrons in solar energetic particle events, we derive hard X-ray spectra produced by the trapped and precipitating electrons, fluxes of the precipitating and interplanetary electrons, and electron spatial distributions.

  6. Electric Current Filamentation Induced by 3D Plasma Flows in the Solar Corona

    Energy Technology Data Exchange (ETDEWEB)

    Nickeler, Dieter H.; Karlický, Marian; Kraus, Michaela [Astronomický ústav, Akademie věd České Republiky, v.v.i., Fričova 298, 251 65 Ondřejov (Czech Republic); Wiegelmann, Thomas, E-mail: dieter.nickeler@asu.cas.cz [Max-Planck Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany)

    2017-03-10

    Many magnetic structures in the solar atmosphere evolve rather slowly, so they can be assumed as (quasi-)static or (quasi-)stationary and represented via magnetohydrostatic (MHS) or stationary magnetohydrodynamic (MHD) equilibria, respectively. While exact 3D solutions would be desired, they are extremely difficult to find in stationary MHD. We construct solutions with magnetic and flow vector fields that have three components depending on all three coordinates. We show that the noncanonical transformation method produces quasi-3D solutions of stationary MHD by mapping 2D or 2.5D MHS equilibria to corresponding stationary MHD states, that is, states that display the same field-line structure as the original MHS equilibria. These stationary MHD states exist on magnetic flux surfaces of the original 2D MHS states. Although the flux surfaces and therefore also the equilibria have a 2D character, these stationary MHD states depend on all three coordinates and display highly complex currents. The existence of geometrically complex 3D currents within symmetric field-line structures provides the basis for efficient dissipation of the magnetic energy in the solar corona by ohmic heating. We also discuss the possibility of maintaining an important subset of nonlinear MHS states, namely force-free fields, by stationary flows. We find that force-free fields with nonlinear flows only arise under severe restrictions of the field-line geometry and of the magnetic flux density distribution.

  7. SIMULTANEOUS OBSERVATION OF SOLAR OSCILLATIONS ASSOCIATED WITH CORONAL LOOPS FROM THE PHOTOSPHERE TO THE CORONA

    Energy Technology Data Exchange (ETDEWEB)

    Su, J. T.; Liu, S.; Zhang, Y. Z.; Zhao, H.; Xu, H. Q.; Xie, W. B. [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Science, Beijing 100012 (China); Liu, Y. [National Astronomical Observatories/Yunnan Observatory, Chinese Academy of Sciences, Kunming 650011 (China)

    2013-01-01

    The solar oscillations along one coronal loop in AR 11504 are observed simultaneously in white light emission and Doppler velocity by SDO/HMI, and in UV and EUV emissions by SDO/AIA. The technique of the time-distance diagram is used to detect the propagating oscillations of the emission intensities along the loop. We find that although all the oscillation signals were intercorrelated, the low chromospheric oscillation correlated more closely to the oscillations of the transition region and corona than to those of the photosphere. Situated above the sunspot, the oscillation periods were {approx}3 minutes in the UV/EUV emissions; however, moving away from the sunspot and into the quiet Sun, the periods became longer, e.g., up to {approx}5 minutes or more. In addition, along another loop we observe both the high-speed outflows and oscillations, which roughly had a one-to-one corresponding relationship. This indicates that the solar periodic oscillations may modulate the magnetic reconnections between the loops of the high and low altitudes that drive the high-speed outflows along the loop.

  8. Intensity of emission lines of the quiescent solar corona: comparison between calculated and observed values

    Science.gov (United States)

    Krissinel, Boris

    2018-03-01

    The paper reports the results of calculations of the center-to-limb intensity of optically thin line emission in EUV and FUV wavelength ranges. The calculations employ a multicomponent model for the quiescent solar corona. The model includes a collection of loops of various sizes, spicules, and free (inter-loop) matter. Theoretical intensity values are found from probabilities of encountering parts of loops in the line of sight with respect to the probability of absence of other coronal components. The model uses 12 loops with sizes from 3200 to 210000 km with different values of rarefaction index and pressure at the loop base and apex. The temperature at loop apices is 1 400 000 K. The calculations utilize the CHIANTI database. The comparison between theoretical and observed emission intensity values for coronal and transition region lines obtained by the SUMER, CDS, and EIS telescopes shows quite satisfactory agreement between them, particularly for the solar disk center. For the data acquired above the limb, the enhanced discrepancies after the analysis refer to errors in EIS measurements.

  9. Rocket borne solar eclipse experiment to measure the temperature structure of the solar corona via lyman-α line profile observations

    International Nuclear Information System (INIS)

    Argo, H.V.

    1981-01-01

    A rocket borne experiment to measure the temperature structure of the inner solar corona via the doppler broadening of the resonance hydrogen Lyman-α (lambda1216A) radiation scattered by ambient neutral hydrogen atoms was attempted during the 16 Feb 1980 solar eclipse. Two Nike-Black Brant V sounding rockets carrying instrumented payloads were launched into the path of the advancing eclipse umbra from the San Marco satellite launch platform 3 miles off the east coast of Kenya

  10. High Performance Computing Application: Solar Dynamo Model Project II, Corona and Heliosphere Component Initialization, Integration and Validation

    Science.gov (United States)

    2015-06-24

    distribution at this level replaced a constant temperature assumption, and density was calculated locally through a balance of radiation loss, thermal...G. References Altschuler, M. D., and G. Newkirk, Jr. (1969), Magnetic fields and the structure of the solar corona. I: Methods of calculating ...Weather, 11, 17-33, doi:10.1029/2012SW000853. Nakamizo, A., T. Tanaka, Y. Kubo , S. Kamei, H. Shimazu, and H. Shinagawa (2009), Development of the

  11. Set of instruments for solar EUV and soft X-ray monitoring onboard satellite Coronas-Photon

    Science.gov (United States)

    Kotov, Yury; Kochemasov, Alexey; Kuzin, Sergey; Kuznetsov, Vladimir; Sylwester, Janusz; Yurov, Vitaly

    Coronas-Photon mission is the third satellite of the Russian Coronas program on solar activity observation. The main goal of the "Coronas-Photon" is the study of solar hard electromagnetic radiation in the wide energy range from UV up to high energy gamma-radiation (2000MeV). Scientific payload for solar radiation observation consists of three types of instruments: Monitors (Natalya-2M, Konus-RF, RT-2, Penguin-M, BRM, PHOKA, Sphin-X, SOKOL spectral and timing measurements of full solar disk radiation have timing in flare/burst mode up to one msec. Instruments Natalya-2M, Konus-RF, RT-2 will cover the wide energy range of hard X-rays and soft gamma-rays (15keV to 2000MeV) and will together constitute the largest area detectors ever used for solar observations. Detectors of gamma-ray monitors are based on structured inorganic scintillators. For X-ray and EUV monitors the scintillation phoswich detectors, gas proportional counter, CdZnTe assembly and filter-covered Si-diodes are used. Telescope-spectrometer TESIS for imaging solar spectroscopy in X-rays has angular resolution up to 1arcsec in three spectral lines. Satellite platform and scientific payload is under construction to be launched in autumn 2008. Satellite orbit is circular with initial height 550km and inclination 82.5degrees. Accuracy of the spacecraft orientation to the Sun is better 3arcmin. In the report the capability of PHOKA, SphinX, SOKOL and TESIS as well as the observation program are described and discussed.

  12. Comparative study of the loss cone-driven instabilities in the low solar corona

    Science.gov (United States)

    Sharma, R. R.; Vlahos, L.

    1984-01-01

    A comparative study of the loss cone-driven instabilities in the low solar corona is undertaken. The instabilities considered are the electron cyclotron maser, the whistler, and the electrostatic upper hybrid. It is shown that the first-harmonic extraordinary mode of the electron cyclotron maser instability is the fastest growing mode for strong magnetized plasma (the ratio of plasma frequency to cyclotron frequency being less than 0.35). For values of the ratio between 0.35 and 1.0, the first-harmonic ordinary mode of the electron cyclotron maser instability dominates the emission. For ratio values greater than 1.0, no direct electromagnetic radiation is expected since other instabilities, which do not escape directly, saturate the electron cyclotron maser (the whistler or the electrostatic upper hybrid waves). It is also shown that the second-harmonic electron cyclotron maser emission never grows to an appreciable level. Thus, it is suggested that the electron cyclotron maser instability can be the explanation for the escape of the first harmonic from a flaring loop.

  13. R CORONAE BOREALIS STARS ARE VIABLE FACTORIES OF PRE-SOLAR GRAINS

    International Nuclear Information System (INIS)

    Karakas, Amanda I.; Ruiter, Ashley J.; Hampel, Melanie

    2015-01-01

    We present a new theoretical estimate for the birthrate of R Coronae Borealis (RCB) stars that is in agreement with recent observational data. We find the current Galactic birthrate of RCB stars to be ≈25% of the Galactic rate of Type Ia supernovae, assuming that RCB stars are formed through the merger of carbon–oxygen and helium-rich white dwarfs. Our new RCB birthrate (1.8 × 10 −3 yr −1 ) is a factor of 10 lower than previous theoretical estimates. This results in roughly 180–540 RCB stars in the Galaxy, depending on the RCB lifetime. From the theoretical and observational estimates, we calculate the total dust production from RCB stars and compare this rate to dust production from novae and born-again asymptotic giant branch (AGB) stars. We find that the amount of dust produced by RCB stars is comparable to the amounts produced by novae or born-again post-AGB stars, indicating that these merger objects are a viable source of carbonaceous pre-solar grains in the Galaxy. There are graphite grains with carbon and oxygen isotopic ratios consistent with the observed composition of RCB stars, adding weight to the suggestion that these rare objects are a source of stardust grains

  14. ON THE ANISOTROPY IN EXPANSION OF MAGNETIC FLUX TUBES IN THE SOLAR CORONA

    Energy Technology Data Exchange (ETDEWEB)

    Malanushenko, A. [Department of Physics, Montana State University, Bozeman, MT (United States); Schrijver, C. J. [Lockheed Martin Advanced Technology Center, Palo Alto, CA (United States)

    2013-10-01

    Most one-dimensional hydrodynamic models of plasma confined to magnetic flux tubes assume circular tube cross sections. We use potential field models to show that flux tubes in circumstances relevant to the solar corona do not, in general, maintain the same cross-sectional shape through their length and therefore the assumption of a circular cross section is rarely true. We support our hypothesis with mathematical reasoning and numerical experiments. We demonstrate that lifting this assumption in favor of realistic, non-circular loops makes the apparent expansion of magnetic flux tubes consistent with that of observed coronal loops. We propose that in a bundle of ribbon-like loops, those that are viewed along the wide direction would stand out against those that are viewed across the wide direction due to the difference in their column depths. That result would impose a bias toward selecting loops that appear not to be expanding, seen projected in the plane of sky. An implication of this selection bias is that the preferentially selected non-circular loops would appear to have increased pressure scale heights even if they are resolved by current instruments.

  15. Probing the Quiet Solar Atmosphere from the Photosphere to the Corona

    Science.gov (United States)

    Kontogiannis, Ioannis; Gontikakis, Costis; Tsiropoula, Georgia; Tziotziou, Kostas

    2018-04-01

    We investigate the morphology and temporal variability of a quiet-Sun network region in different solar layers. The emission in several extreme ultraviolet (EUV) spectral lines through both raster and slot time-series, recorded by the EUV Imaging Spectrometer (EIS) on board the Hinode spacecraft is studied along with Hα observations and high-resolution spectropolarimetric observations of the photospheric magnetic field. The photospheric magnetic field is extrapolated up to the corona, showing a multitude of large- and small-scale structures. We show for the first time that the smallest magnetic structures at both the network and internetwork contribute significantly to the emission in EUV lines, with temperatures ranging from 8× 104 K to 6× 105 K. Two components of transition region emission are present, one associated with small-scale loops that do not reach coronal temperatures, and another component that acts as an interface between coronal and chromospheric plasma. Both components are associated with persistent chromospheric structures. The temporal variability of the EUV intensity at the network region is also associated with chromospheric motions, pointing to a connection between transition region and chromospheric features. Intensity enhancements in the EUV transition region lines are preferentially produced by Hα upflows. Examination of two individual chromospheric jets shows that their evolution is associated with intensity variations in transition region and coronal temperatures.

  16. MHD Wave Propagation at the Interface Between Solar Chromosphere and Corona

    Science.gov (United States)

    Huang, Y.; Song, P.; Vasyliunas, V. M.

    2017-12-01

    We study the electromagnetic and momentum constraints at the solar transition region which is a sharp layer interfacing between the solar chromosphere and corona. When mass transfer between the two domains is neglected, the transition region can be treated as a contact discontinuity across which the magnetic flux is conserved and the total forces are balanced. We consider an Alfvénic perturbation that propagates along the magnetic field incident onto the interface from one side. In order to satisfy the boundary conditions at the transition region, only part of the incident energy flux is transmitted through and the rest is reflected. Taking into account the highly anisotropic propagation of waves in magnetized plasmas, we generalize the law of reflection and specify Snell's law for each of the three wave MHD modes: incompressible Alfvén mode and compressible fast and slow modes. Unlike conventional optical systems, the interface between two magnetized plasmas is not rigid but can be deformed by the waves, allowing momentum and energy to be transferred by compression. With compressible modes included, the Fresnel conditions need substantial modification. We derive Fresnel conditions, reflectivities and transmittances, and mode conversion for incident waves propagating along the background magnetic field. The results are well organized when the incident perturbation is decomposed into components in and normal to the incident plane (containing the background magnetic field and the normal direction of the interface). For a perturbation normal to the incident plane, both transmitted and reflected perturbations are incompressible Alfvén mode waves. For a perturbation in the incident plane, they can be compressible slow and fast mode waves which may produce ripples on the transition region.

  17. EXPLAINING INVERTED-TEMPERATURE LOOPS IN THE QUIET SOLAR CORONA WITH MAGNETOHYDRODYNAMIC WAVE-MODE CONVERSION

    Energy Technology Data Exchange (ETDEWEB)

    Schiff, Avery J.; Cranmer, Steven R. [Department of Astrophysical and Planetary Sciences, Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80309 (United States)

    2016-11-01

    Coronal loops trace out bipolar, arch-like magnetic fields above the Sun’s surface. Recent measurements that combine rotational tomography, extreme-ultraviolet imaging, and potential-field extrapolation have shown the existence of large loops with inverted-temperature profiles, i.e., loops for which the apex temperature is a local minimum, not a maximum. These “down loops” appear to exist primarily in equatorial quiet regions near solar minimum. We simulate both these and the more prevalent large-scale “up loops” by modeling coronal heating as a time-steady superposition of (1) dissipation of incompressible Alfvén wave turbulence and (2) dissipation of compressive waves formed by mode conversion from the initial population of Alfvén waves. We found that when a large percentage (>99%) of the Alfvén waves undergo this conversion, heating is greatly concentrated at the footpoints and stable “down loops” are created. In some cases we found loops with three maxima that are also gravitationally stable. Models that agree with the tomographic temperature data exhibit higher gas pressures for “down loops” than for “up loops,” which is consistent with observations. These models also show a narrow range of Alfvén wave amplitudes: 3 to 6 km s{sup -1} at the coronal base. This is low in comparison to typical observed amplitudes of 20–30 km s{sup -1} in bright X-ray loops. However, the large-scale loops we model are believed to compose a weaker diffuse background that fills much of the volume of the corona. By constraining the physics of loops that underlie quiescent streamers, we hope to better understand the formation of the slow solar wind.

  18. The Nature of Variations in Anomalies of the Chemical Composition of the Solar Corona with the 11-Year Cycle

    Science.gov (United States)

    Pipin, V. V.; Tomozov, V. M.

    2018-04-01

    Evidence that the distribution of the abundances of admixtures with low first-ionization potentials (FIP 10 eV) in active regions and closed magnetic configurations in the lower corona. Observations with the ULYSSES spacecraft and at the Stanford Solar Observatory have revealed strong correlations between the manifestation of the FIP effect in the solar wind, the strength of the open magnetic flux (without regard to sign), and the ratio of the large-scale toroidal and poloidal magnetic fields at the solar surface. Analyses of observations of the Sun as a star show that the enhancement of the abundances of admixtures with low FIPs in the corona compared to their abundances in the photosphere (the FIP effect) is closely related to the solar-activity cycle and also with variations in the topology of the large-scale magnetic field. A possible mechanism for the relationship between the FIP effect and the spectral type of a star is discussed in the framework of solar-stellar analogies.

  19. Thermodynamics of the Solar Corona and Evolution of the Solar Magnetic Field as Inferred from the Total Solar Eclipse Observations of 11 July 2010

    Science.gov (United States)

    Habbal, Shadia Rifai; Druckmueller, Miloslav; Morgan, Huw; Ding, Adalbert; Johnson, Judd; Druckmuellerova, Hana; Daw, Adrian; Arndt, Martina B.; Dietzel, Martin; Saken, Jon

    2011-01-01

    We report on multi-wavelength observations of the corona taken simultaneously in broadband white light, and in seven spectral lines, H-alpha 656.3 nm, Fe IX 435.9 nm, Fe X 637.4 nm, Fe XI 789.2 nm, Fe XIII 1074.7 nm, Fe XIV 530.3 nm and Ni XV 670.2 nm. The observations were made during the total solar eclipse of 11 July 2010 from the atoll of Tatakoto in French Polynesia. Simultaneous imaging with narrow bandpass filters in each of these spectral lines and in their corresponding underlying continua maximized the observing time during less than ideal observing conditions and yielded outstanding quality data. The application of two complementary image processing techniques revealed the finest details of coronal structures at 1" resolution in white light, and 6.5" in each of the spectral lines. This comprehensive wavelength coverage confirmed earlier eclipse findings that the solar corona has a clear two-temperature structure: The open field lines, expanding outwards from the solar surface, are characterized by electron temperatures near 1 X 10(exp 6) K, while the hottest plasma around 2X 10(exp 6) K resides in loop-like structures forming the bulges of streamers. The first images of the corona in the forbidden lines of Fe IX and Ni XV, showed that there was very little coronal plasma at temperatures below 5 X 10(exp 5) K and above 2.5X 10(exp 6) K. The data also enabled temperature differentiations as low as 0:2 X 10(exp 6) K in different density structures. These observations showed how the passage of CMEs through the corona, prior to totality, produced large scale ripples and very sharp streaks, which could be identified with distinct temperatures for the first time. The ripples were most prominent in emission from spectral lines associated with temperatures around 10(exp 6) K. The most prominent streak was associated with a conical-shaped void in the emission from the coolest line of Fe IX and from the hottest line of Ni XV. A prominence, which erupted prior to

  20. Field-Lines-Threaded Model for: (1) the Low Solar Corona; (2) Electrons in the Transition Region; and (3) Solar Energetic Particle Acceleration and Transport

    Science.gov (United States)

    Sokolov, I.; van der Holst, B.; Jin, M.; Gombosi, T. I.; Taktakishvili, A.; Khazanov, G. V.

    2013-12-01

    In numerical simulations of the solar corona, both for the ambient state and especially for dynamical processes the most computational resources are spent for maintaining the numerical solution in the Low Solar Corona and in the transition region, where the temperature gradients are very sharp and the magnetic field has a complicated topology. The degraded computational efficiency is caused by the need in a highest resolution as well as the use of the fully three-dimensional implicit solver for electron heat conduction. On the other hand, the physical nature of the processes involved is rather simple (which still does not facilitate the numerical methods) as long as the heat fluxes as well as slow plasma motional velocities are aligned with the magnetic field. The Alfven wave turbulence, which is often believed to be the main driver of the solar wind and the main source of the coronal heating, is characterized by the Poynting flux of the waves, which is also aligned with the magnetic field. Therefore, the plasma state in any point of the three-dimensional grid in the Low Solar Corona can be found by solving a set of one-dimensional equations for the magnetic field line ('thread'), which passes through this point and connects it to the chromosphere and to the global Solar Corona. In the present paper we describe an innovative computational technology based upon the use of the magnetic-field-line-threads to find the local solution. We present the development of the AWSoM code of the University of Michigan with the field-lines-threaded Low Solar Corona. In the transition region, where the essentially kinetic description of the electron energy fluxes is required, we solve the Fokker-Plank equation on the system of threads, to achieve the physically consistent description of chromosphere evaporation. The third application for the field-lines-treaded model is the Solar Energetic Particle (SEP) acceleration and transport. Being the natural extension of the Field

  1. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere VII. Further Insights into the Chromosphere and Corona

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2013-07-01

    Full Text Available In the liquid metallic hydrogen model of the Sun, the chromosphere is responsible for the capture of atomic hydrogen in the solar atmosphere and its eventual re-entry onto the photospheric surface (P.M. Robitaille. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere IV. On the Nature of the Chromosphere. Prog. Phys., 2013, v. 3, L15–L21. As for the corona, it represents a diffuse region containing both gaseous plasma and condensed matter with elevated electron affinity (P.M. Robitaille. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere V. On the Nature of the Corona. Prog. Phys., 2013, v. 3, L22–L25. Metallic hydrogen in the corona is thought to enable the continual harvest of electrons from the outer reaches of the Sun, thereby preserving the neutrality of the solar body. The rigid rotation of the corona is offered as the thirty-third line of evidence that the Sun is comprised of condensed matter. Within the context of the gaseous models of the Sun, a 100 km thick transition zone has been hypothesized to exist wherein temperatures increase dramatically from 104–106 K. Such extreme transitional temperatures are not reasonable given the trivial physical scale of the proposed transition zone, a region adopted to account for the ultra-violet emission lines of ions such as C IV, O IV, and Si IV. In this work, it will be argued that the transition zone does not exist. Rather, the intermediate ionization states observed in the solar atmosphere should be viewed as the result of the simultaneous transfer of protons and electrons onto condensed hydrogen structures, CHS. Line emissions from ions such as C IV, O IV, and Si IV are likely to be the result of condensation reactions, manifesting the involvement of species such as CH4, SiH4, H3O+ in the synthesis of CHS in the chromosphere. In addition, given the presence of a true solar surface at the level of the photosphere in the liquid metallic hydrogen model

  2. Polarized Light from the Sun: Unification of the Corona and Analysis of the Second Solar Spectrum — Further Implications of a Liquid Metallic Hydrogen Solar Model

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2015-07-01

    Full Text Available In order to account for the slight polarization of the continuum towards the limb, propo- nents of the Standard Solar Model (SSM must have recourse to electron or hydrogen- based scattering of light, as no other mechanism is possible in a gaseous Sun. Con- versely, acceptance that the solar body is comprised of condensed matter opens up new avenues in the analysis of this problem, even if the photospheric surface itself is viewed as incapable of emitting polarized light. Thus, the increased disk polarization, from the center to the limb, can be explained by invoking the scattering of light by the at- mosphere above the photosphere. The former is reminiscent of mechanisms which are known to account for the polarization of sunlight in the atmosphere of the Earth. Within the context of the Liquid Metallic Hydrogen Solar Model (LMHSM, molecules and small particles, not electrons or hydrogen atoms as required by the SSM, would primarily act as scattering agents in regions also partially comprised of condensed hy- drogen structures (CHS. In addition, the well-known polarization which characterizes the K-corona would become a sign of emission polarization from an anisotropic source, without the need for scattering. In the LMHSM, the K, F, and T- coronas can be viewed as emissive and reflective manifestations of a single corona l entity adopting a radially anisotropic structure, while slowly cooling with altitude above the photosphere. The presence of “dust particles”, advanced by proponents of the SSM, would no longer be required to explain the F and T-corona, as a single cooling structure would account for the properties of the K, F, and T coronas. At the same time, the polarized “Second Solar Spectrum”, characterized by the dominance of certain elemental or ionic spectral lines and an abundance of molecular lines, could be explained in the LMHSM, by first invoking interface polarization and coordination of these species with condensed matter

  3. Time delay occultation data of the Helios spacecraft for probing the electron density distribution in the solar corona

    Science.gov (United States)

    Edenhofer, P.; Lueneburg, E.; Esposito, P. B.; Martin, W. L.; Zygielbaum, A. I.; Hansen, R. T.; Hansen, S. F.

    1978-01-01

    S-band time delay measurements were collected from the spacecraft Helios A and B during three solar occultations in 1975/76 within heliocentric distances of about 3 and 215 earth radius in terms of range, Doppler frequency shift, and electron content. Characteristic features of measurement and data processing are described. Typical data sets are discussed to probe the electron density distribution near the sun (west and east limb as well) including the outer and extended corona. Steady-state and dynamical aspects of the solar corona are presented and compared with earth-bound-K-coronagraph measurements. Using a weighted least squares estimation, parameters of an average coronal electron density profile are derived in a preliminary analysis to yield electron densities at r = 3, 65, 215 earth radius. Transient phenomena are discussed and a velocity of propagation v is nearly equal to 900 km/s is determined for plasma ejecta from a solar flare observed during an extraordinary set of Helios B electron content measurements.

  4. RADIO DIAGNOSTICS OF ELECTRON ACCELERATION SITES DURING THE ERUPTION OF A FLUX ROPE IN THE SOLAR CORONA

    Energy Technology Data Exchange (ETDEWEB)

    Carley, Eoin P.; Gallagher, Peter T. [Astrophysics Research Group, School of Physics, Trinity College Dublin, Dublin 2 (Ireland); Vilmer, Nicole, E-mail: eoin.carley@obspm.fr [LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, Univ. Paris Diderot, Sorbonne Paris Cité, 5 place Jules Janssen, F-92195 Meudon (France)

    2016-12-10

    Electron acceleration in the solar corona is often associated with flares and the eruption of twisted magnetic structures known as flux ropes. However, the locations and mechanisms of such particle acceleration during the flare and eruption are still subject to much investigation. Observing the exact sites of particle acceleration can help confirm how the flare and eruption are initiated and how they evolve. Here we use the Atmospheric Imaging Assembly to analyze a flare and erupting flux rope on 2014 April 18, while observations from the Nançay Radio Astronomy Facility allow us to diagnose the sites of electron acceleration during the eruption. Our analysis shows evidence of a pre-formed flux rope that slowly rises and becomes destabilized at the time of a C-class flare, plasma jet, and the escape of ≳75 keV electrons from the rope center into the corona. As the eruption proceeds, continued acceleration of electrons with energies of ∼5 keV occurs above the flux rope for a period over 5 minutes. At the flare peak, one site of electron acceleration is located close to the flare site, while another is driven by the erupting flux rope into the corona at speeds of up to 400 km s{sup −1}. Energetic electrons then fill the erupting volume, eventually allowing the flux rope legs to be clearly imaged from radio sources at 150–445 MHz. Following the analysis of Joshi et al. (2015), we conclude that the sites of energetic electrons are consistent with flux rope eruption via a tether cutting or flux cancellation scenario inside a magnetic fan-spine structure. In total, our radio observations allow us to better understand the evolution of a flux rope eruption and its associated electron acceleration sites, from eruption initiation to propagation into the corona.

  5. Mass and energy flows between the Solar chromosphere, transition region, and corona

    Science.gov (United States)

    Hansteen, V. H.

    2017-12-01

    A number of increasingly sophisticated numerical simulations spanning the convection zone to corona have shed considerable insight into the role of the magnetic field in the structure and energetics of the Sun's outer atmosphere. This development is strengthened by the wealth of observational data now coming on-line from both ground based and space borne observatories. We discuss what numerical models can tell us about the mass and energy flows in the region of the upper chromosphere and lower corona, using a variety of tools, including the direct comparison with data and the use of passive tracer particles (so-called 'corks') inserted into the simulated flows.

  6. Fragmentation of electric currents in the solar corona by plasma flows

    Czech Academy of Sciences Publication Activity Database

    Nickeler, Dieter Horst; Karlický, Marian; Wiegelmann, T.; Kraus, Michaela

    2013-01-01

    Roč. 556, August (2013), A61/1-A61/12 ISSN 0004-6361 R&D Projects: GA ČR GAP209/12/0103; GA ČR GA13-24782S Institutional support: RVO:67985815 Keywords : magnetohydrodynamics * Sun flares * Sun corona Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.479, year: 2013

  7. Soviet Union-France cooperative study of the solar corona. 1. The structure singularities and photometry of the corona on July 10, 1972

    International Nuclear Information System (INIS)

    Vsekhsvyatskij, S.K.; Dzyubenko, N.I.; Nesmyanovich, A.T.; Popov, O.S.; Kuchmij, S.; Centre National de la Recherche Scientifique, 75 - Paris

    1975-01-01

    The results of the study of the eclipse negatives obtained by the expedition of the astronomy division of the Kiev University on 10 July 1972 in accordance with the program of the Soviet-France experiment ''Thynamics of white corona'' are given. New formations - ''voids'' and sharp boundary are obtained side by side with the usual coronal structure details: -polar ray systems, large coronal beams; arch systems. A great number of extended thin streamers in the south-west square and a helical beam over bright condensation are registered. Photometry of one of the negatives exibited a considerable heterogeneity of the corona. Mean values of the K-corona brightness are in agreement with the brightness of a maximum corona according to Van de Hulst model within the range of p < 2R. The coronal gifts are registered near the N-pole and in the south-west region are registered

  8. White Light Solar Corona: An Atlas of 1988 K-Coronameter Synoptic Charts, December 1987-January 1989. Technical note

    International Nuclear Information System (INIS)

    Sime, D.G.; Garcia, C.; Yasukawa, E.; Lundin, E.

    1990-03-01

    The synoptic observing project of the High Altitude Observatory's Coronal Dynamics Program began on 30 July 1980. The data obtained for it are gathered by the Mark-III K-coronameter located at the Mauna Loa Solar Observatory, Hawaii, and are published yearly in volumes of The White Light Solar Corona: An Atlas of K-Coronameter Synoptic Charts (Table 1). The data, in the form of synoptic charts, are extended at both the beginning and the end of each year to provide some overlap with the preceding and succeeding volumes. This is also necessary to provide a complete set of the data organized into Carrington rotations covering a specific time period, since the rotations do not coincide with the yearly calendar. Further observations are made at the limb, and west limb passage occurs 14 days after east limb passage. Thus, an entire rotation's data requires more than 28 days to collect. Together with the synoptic maps and polar synoptic maps, two additional sections designed to aid the user are included in the volume. As in previous Atlases, the Activity Report Summary for the year is given and the Mauna Loa Solar Observatory Calendar for 1988 (Table III) is also included. This is a list of days on which no coronal observations were achieved. These synoptic data should be regarded as a preliminary presentation in which corrections have not fully been made for the day-to-day variations and scattering of polarized light by the earth's atmosphere. Data from the east and west limbs are presented separately in the synoptic charts, as transient and evolutionary changes in the white light corona can substantially modify the distribution of coronal material over the 14 days between sequential limb passages

  9. Flares on A-Type Stars: Evidence for Heating of Solar Corona by Nanoflares?

    Czech Academy of Sciences Publication Activity Database

    Švanda, Michal; Karlický, Marian

    2016-01-01

    Roč. 831, č. 1 (2016), 9/1-9/7 ISSN 0004-637X R&D Projects: GA ČR GAP209/12/0103 Grant - others:GA ČR(CZ) GA15-02112S Institutional support: RVO:67985815 Keywords : stars * activity * coronae Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.533, year: 2016

  10. Electric Current Filamentation Induced by 3D Plasma Flows in the Solar Corona

    Czech Academy of Sciences Publication Activity Database

    Nickeler, Dieter Horst; Wiegelmann, T.; Karlický, Marian; Kraus, Michaela

    2017-01-01

    Roč. 837, č. 2 (2017), 104/1-104/11 ISSN 0004-637X R&D Projects: GA ČR(CZ) GA16-05011S; GA ČR(CZ) GA16-13277S Institutional support: RVO:67985815 Keywords : magnetohydrodynamics * Sun * corona Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics OBOR OECD: Astronomy (including astrophysics,space science) Impact factor: 5.533, year: 2016

  11. Constraints on Nonlinear and Stochastic Growth Theories for Type 3 Solar Radio Bursts from the Corona to 1 AU

    Science.gov (United States)

    Cairns, Iver H.; Robinson, P. A.

    1998-01-01

    Existing, competing theories for coronal and interplanetary type III solar radio bursts appeal to one or more of modulational instability, electrostatic (ES) decay processes, or stochastic growth physics to preserve the electron beam, limit the levels of Langmuir-like waves driven by the beam, and produce wave spectra capable of coupling nonlinearly to generate the observed radio emission. Theoretical constraints exist on the wavenumbers and relative sizes of the wave bandwidth and nonlinear growth rate for which Langmuir waves are subject to modulational instability and the parametric and random phase versions of ES decay. A constraint also exists on whether stochastic growth theory (SGT) is appropriate. These constraints are evaluated here using the beam, plasma, and wave properties (1) observed in specific interplanetary type III sources, (2) predicted nominally for the corona, and (3) predicted at heliocentric distances greater than a few solar radii by power-law models based on interplanetary observations. It is found that the Langmuir waves driven directly by the beam have wavenumbers that are almost always too large for modulational instability but are appropriate to ES decay. Even for waves scattered to lower wavenumbers (by ES decay, for instance), the wave bandwidths are predicted to be too large and the nonlinear growth rates too small for modulational instability to occur for the specific interplanetary events studied or the great majority of Langmuir wave packets in type III sources at arbitrary heliocentric distances. Possible exceptions are for very rare, unusually intense, narrowband wave packets, predominantly close to the Sun, and for the front portion of very fast beams traveling through unusually dilute, cold solar wind plasmas. Similar arguments demonstrate that the ES decay should proceed almost always as a random phase process rather than a parametric process, with similar exceptions. These results imply that it is extremely rare for

  12. Comet C/2011 W3 (Lovejoy) between 2 and 10 Solar Radii: Physical Parameters of the Comet and the Corona

    Science.gov (United States)

    Raymond, J. C.; Downs, Cooper; Knight, Matthew M.; Battams, Karl; Giordano, Silvio; Rosati, Richard

    2018-05-01

    Comet C/2011 W3 (Lovejoy) is the first sungrazing comet in many years to survive perihelion passage. We report ultraviolet observations with the Ultraviolet Coronagraph Spectrometer (UVCS) spectrometer aboard the Solar and Heliospheric Observatory satellite at five heights as the comet approached the Sun. The brightest line, Lyα, shows dramatic variations in intensity, velocity centroid, and width during the observation at each height. We derive the outgassing rates and the abundances of N, O, and Si relative to H, and we estimate the effective diameter of the nucleus to be several hundred meters. We consider the effects of the large outgassing rate on the interaction between the cometary gas and the solar corona and find good qualitative agreement with the picture of a bow shock resulting from mass loading by cometary neutrals. We obtain estimates of the solar wind density, temperature, and speed, and compare them with predictions of a global magnetohydrodynamic simulation, finding qualitative agreement within our uncertainties. We also determine the sublimation rate of silicate dust in the comet’s tail by comparing the visible brightness from the Large Angle Spectroscopic Coronagraphs with the Si III intensity from UVCS. The sublimation rates lie between the predicted rates for olivines and pyroxenes, suggesting that the grains are composed of a mixture of those minerals.

  13. Radial distributions of magnetic field strength in the solar corona as derived from data on fast halo CMEs

    Science.gov (United States)

    Fainshtein, Victor; Egorov, Yaroslav

    2018-03-01

    In recent years, information about the distance between the body of rapid coronal mass ejection (CME) and the associated shock wave has been used to measure the magnetic field in the solar corona. In all cases, this technique allows us to find coronal magnetic field radial profiles B(R) applied to the directions almost perpendicular to the line of sight. We have determined radial distributions of magnetic field strength along the directions close to the Sun-Earth axis. For this purpose, using the "ice-cream cone" model and SOHO/LASCO data, we found 3D characteristics for fast halo coronal mass ejections (HCMEs) and for HCME-related shocks. With these data, we managed to obtain the B(R) distributions as far as ≈43 solar radii from the Sun's center, which is approximately twice as far as those in other studies based on LASCO data. We have concluded that to improve the accuracy of this method for finding the coronal magnetic field we should develop a technique for detecting CME sites moving in the slow and fast solar wind. We propose a technique for selecting CMEs whose central (paraxial) part actually moves in the slow wind.

  14. Radial distributions of magnetic field strength in the solar corona as derived from data on fast halo CMEs

    Directory of Open Access Journals (Sweden)

    Fainshtein V.G.

    2018-03-01

    Full Text Available In recent years, information about the distance between the body of rapid coronal mass ejection (CME and the associated shock wave has been used to measure the magnetic field in the solar corona. In all cases, this technique allows us to find coronal magnetic field radial profiles B(R applied to the directions almost perpendicular to the line of sight. We have determined radial distributions of magnetic field strength along the directions close to the Sun–Earth axis. For this purpose, using the “ice-cream cone” model and SOHO/LASCO data, we found 3D characteristics for fast halo coronal mass ejections (HCMEs and for HCME-related shocks. With these data we managed to obtain the B(R distributions as far as ≈43 solar radii from the Sun's center, which is approximately twice as far as those in other studies based on LASCO data. We have concluded that to improve the accuracy of this method for finding the coronal magnetic field we should develop a technique for detecting CME parts moving in the slow and fast solar wind. We propose a technique for selecting CMEs whose central (paraxial part actually moves in the slow wind.

  15. Electron acceleration in the Solar corona - 3D PiC code simulations of guide field reconnection

    Science.gov (United States)

    Alejandro Munoz Sepulveda, Patricio

    2017-04-01

    The efficient electron acceleration in the solar corona detected by means of hard X-ray emission is still not well understood. Magnetic reconnection through current sheets is one of the proposed production mechanisms of non-thermal electrons in solar flares. Previous works in this direction were based mostly on test particle calculations or 2D fully-kinetic PiC simulations. We have now studied the consequences of self-generated current-aligned instabilities on the electron acceleration mechanisms by 3D magnetic reconnection. For this sake, we carried out 3D Particle-in-Cell (PiC) code numerical simulations of force free reconnecting current sheets, appropriate for the description of the solar coronal plasmas. We find an efficient electron energization, evidenced by the formation of a non-thermal power-law tail with a hard spectral index smaller than -2 in the electron energy distribution function. We discuss and compare the influence of the parallel electric field versus the curvature and gradient drifts in the guiding-center approximation on the overall acceleration, and their dependence on different plasma parameters.

  16. Heating of the quiet solar corona from measurements of the FET/TESIS instrument on-board the KORONAS-FOTON satellite

    Science.gov (United States)

    Rybák, J.; Gömöry, P.; Benz, A.; Bogachev, P.; Brajša, R.

    2010-12-01

    The paper presents the first results of the observations of time evolution of the quiet solar corona brightenings obtained due to very rapid photography of the corona with full-disk EUV telescopes of the FET/TESIS instrument onboard the KORONA FOTON satellite. The measurements were performed simultaneously in the emission of the Fe IX / X 17.1 and Fe VIII 13.1 spectral lines with 10 second temporal cadence and spatial scale of 1.7 arc seconds within one hour. This test observation, carried out on 15 July 2009, was analyzed in order to determine whether this type of observation can be used to identify individual microevents in the solar corona heating that are above the tresholds of spatial and temporal resolutions of the observations of non-active regions in the solar atmosphere. For this purpose, a simple method was used involving cross-correlation of the plasma emission time evolution at different temperatures, each time from observations of identical elements. The results obtained are confronted with the expected observable manifestations of the corona heating via nanoflares. TESIS is a set of instruments for the Sun photography developed in the Lebedev Physics Institute of the Russian Academy of Sciences that was launched into orbit in January 2009.

  17. Validation of Spherically Symmetric Inversion by Use of a Tomographically Reconstructed Three-Dimensional Electron Density of the Solar Corona

    Science.gov (United States)

    Wang, Tongjiang; Davila, Joseph M.

    2014-01-01

    Determining the coronal electron density by the inversion of white-light polarized brightness (pB) measurements by coronagraphs is a classic problem in solar physics. An inversion technique based on the spherically symmetric geometry (spherically symmetric inversion, SSI) was developed in the 1950s and has been widely applied to interpret various observations. However, to date there is no study of the uncertainty estimation of this method. We here present the detailed assessment of this method using a three-dimensional (3D) electron density in the corona from 1.5 to 4 solar radius as a model, which is reconstructed by a tomography method from STEREO/COR1 observations during the solar minimum in February 2008 (Carrington Rotation, CR 2066).We first show in theory and observation that the spherically symmetric polynomial approximation (SSPA) method and the Van de Hulst inversion technique are equivalent. Then we assess the SSPA method using synthesized pB images from the 3D density model, and find that the SSPA density values are close to the model inputs for the streamer core near the plane of the sky (POS) with differences generally smaller than about a factor of two; the former has the lower peak but extends more in both longitudinal and latitudinal directions than the latter. We estimate that the SSPA method may resolve the coronal density structure near the POS with angular resolution in longitude of about 50 deg. Our results confirm the suggestion that the SSI method is applicable to the solar minimum streamer (belt), as stated in some previous studies. In addition, we demonstrate that the SSPA method can be used to reconstruct the 3D coronal density, roughly in agreement with the reconstruction by tomography for a period of low solar activity (CR 2066). We suggest that the SSI method is complementary to the 3D tomographic technique in some cases, given that the development of the latter is still an ongoing research effort.

  18. DYNAMICS OF A PROMINENCE-HORN STRUCTURE DURING ITS EVAPORATION IN THE SOLAR CORONA

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bing; Chen, Yao; Fu, Jie; Li, Bo [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, and Institute of Space Sciences, Shandong University, Weihai 264209 (China); Li, Xing [Department of Physics, Aberystwyth University, Aberystwyth, Ceredigion, SY23 3BZ (United Kingdom); Liu, Wei, E-mail: yaochen@sdu.edu.cn [Stanford-Lockheed Institute for Space Research, Stanford University, Stanford, CA 94305 (United States)

    2016-08-20

    The physical connections among and formation mechanisms of various components of the prominence-horn cavity system remain elusive. Here we present observations of such a system, focusing on a section of the prominence that rises and separates gradually from the main body. This forms a configuration sufficiently simple to yield clues regarding the above issues. It is characterized by embedding horns, oscillations, and a gradual disappearance of the separated material. The prominence-horn structure exhibits a large-amplitude longitudinal oscillation with a period of ∼150 minutes and an amplitude of ∼30 Mm along the trajectory defined by the concave horn structure. The horns also experience a simultaneous transverse oscillation with a much smaller amplitude (∼3 Mm) and a shorter period (∼10–15 minutes), likely representative of a global mode of the large-scale magnetic structure. The gradual disappearance of the structure indicates that the horn, an observational manifestation of the field-aligned transition region separating the cool and dense prominence from the hot and tenuous corona, is formed due to the heating and diluting process of the central prominence mass; most previous studies suggested that it is the opposite process, i.e., the cooling and condensation of coronal plasmas, that formed the horn. This study also demonstrates how the prominence transports magnetic flux to the upper corona, a process essential for the gradual build-up of pre-eruption magnetic energy.

  19. Magnetic neutral sheets in evolving fields. I - General theory. II - Formation of the solar corona

    Science.gov (United States)

    Parker, E. N.

    1983-01-01

    The problem of the hydrostatic equilibrium of a large-scale magnetic field embedded in a fluid with infinite electrical conductivity is considered. It is pointed out that a necessary condition for static equilibrium is the invariance of the small-scale pattern in the field along the large-scale direction. A varying topological pattern implies that no fluid pressure distribution exists for which the field is everywhere static. Magnetic neutral sheets form, and dynamical reconnection of the field takes place. It is shown here that the invariance is also a sufficient condition for the existence of a fluid pressure distribution producing static equilibrium. Even in the simplest cases, however, the requirements on the fluid pressure are extreme and, a priori, are unlikely. It is concluded that almost all twisted flux tubes packed together produce dynamical nonequilibrium and dissipation of their twisting. This is the basic effect underlying the long-standing conjecture that the shuffling of the footpoints of the bipolar magnetic fields in the sun is responsible for heating the active corona. Attention is then given to the consequences of this general dynamical dissipation in the magnetic fields that produce the active corona of the sun. The footpoints of the field are continually manipulated by the subphotospheric convection in such a way that the lines of force are continually wrapped and rotated about one another.

  20. Atomic Layer Deposition Re Ective Coatings For Future Astronomical Space Telescopes And The Solar Corona Viewed Through The Minxss (Miniature X-Ray Solar Spectrometer) Cubesats

    Science.gov (United States)

    Moore, Christopher Samuel

    2017-11-01

    Advances in technology and instrumentation open new windows for observing astrophysical objects. The first half of my dissertation involves the development of atomic layer deposition (ALD) coatings to create high reflectivity UV mirrors for future satellite astronomical telescopes. Aluminum (Al) has intrinsic reflectance greater than 80% from 90 – 2,000 nm, but develops a native aluminum oxide (Al2O3) layer upon exposure to air that readily absorbs light below 250 nm. Thus, Al based UV mirrors must be protected by a transmissive overcoat. Traditionally, metal-fluoride overcoats such as MgF2 and LiF are used to mitigate oxidation but with caveats. We utilize a new metal fluoride (AlF3) to protect Al mirrors deposited by ALD. ALD allows for precise thickness control, conformal and near stoichiometric thin films. We prove that depositing ultra-thin ( 3 nm) ALD ALF3 to protect Al mirrors after removing the native oxide layer via atomic layer etching (ALE) enhances the reflectance near 90 nm from 5% to 30%.X-ray detector technology with high readout rates are necessary for the relatively bright Sun, particularly during large flares. The hot plasma in the solar corona generates X-rays, which yield information on the physical conditions of the plasma. The second half of my dissertation includes detector testing, characterization and solar science with the Miniature X-ray Solar Spectrometer (MinXSS) CubeSats. The MinXSS CubeSats employ Silicon Drift Diode (SDD) detectors called X123, which generate full sun spectrally resolved ( 0.15 FWHM at 5.9 keV) measurements of the sparsely measured, 0.5 – 12 keV range. The absolute radiometric calibration of the MinXSS instrument suite was performed at the National Institute for Standards and Technology (NIST) Synchrotron Ultraviolet Radiation Facility (SURF) and spectral resolution determined from radioactive sources. I used MinXSS along with data from the Geostationary Operational Environmental Satellites (GOES), Reuven Ramaty

  1. Magnetic Nulls and Super-radial Expansion in the Solar Corona

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, Sarah E.; Dalmasse, Kevin; Tomczyk, Steven; Toma, Giuliana de; Burkepile, Joan; Galloy, Michael [National Center for Atmospheric Research, 3080 Center Green Drive, Boulder, CO 80301 (United States); Rachmeler, Laurel A. [NASA Marshall Space Flight Center, Huntsville, AL 35811 (United States); Rosa, Marc L. De, E-mail: sgibson@ucar.edu [Lockheed Martin Solar and Astrophysics Laboratory, 3251 Hanover Street B/252, Palo Alto, CA 94304 (United States)

    2017-05-10

    Magnetic fields in the Sun’s outer atmosphere—the corona—control both solar-wind acceleration and the dynamics of solar eruptions. We present the first clear observational evidence of coronal magnetic nulls in off-limb linearly polarized observations of pseudostreamers, taken by the Coronal Multichannel Polarimeter (CoMP) telescope. These nulls represent regions where magnetic reconnection is likely to act as a catalyst for solar activity. CoMP linear-polarization observations also provide an independent, coronal proxy for magnetic expansion into the solar wind, a quantity often used to parameterize and predict the solar wind speed at Earth. We introduce a new method for explicitly calculating expansion factors from CoMP coronal linear-polarization observations, which does not require photospheric extrapolations. We conclude that linearly polarized light is a powerful new diagnostic of critical coronal magnetic topologies and the expanding magnetic flux tubes that channel the solar wind.

  2. OBSERVATIONS OF FIVE-MINUTE SOLAR OSCILLATIONS IN THE CORONA USING THE EXTREME ULTRAVIOLET SPECTROPHOTOMETER (ESP) ON BOARD THE SOLAR DYNAMICS OBSERVATORY EXTREME ULTRAVIOLET VARIABILITY EXPERIMENT (SDO/EVE)

    International Nuclear Information System (INIS)

    Didkovsky, L.; Judge, D.; Wieman, S.; Kosovichev, A. G.; Woods, T.

    2011-01-01

    We report on the detection of oscillations in the corona in the frequency range corresponding to five-minute acoustic modes of the Sun. The oscillations have been observed using soft X-ray measurements from the Extreme Ultraviolet Spectrophotometer (ESP) of the Extreme Ultraviolet Variability Experiment on board the Solar Dynamics Observatory. The ESP zeroth-order channel observes the Sun as a star without spatial resolution in the wavelength range of 0.1-7.0 nm (the energy range is 0.18-12.4 keV). The amplitude spectrum of the oscillations calculated from six-day time series shows a significant increase in the frequency range of 2-4 mHz. We interpret this increase as a response of the corona to solar acoustic (p) modes and attempt to identify p-mode frequencies among the strongest peaks. Due to strong variability of the amplitudes and frequencies of the five-minute oscillations in the corona, we study how the spectrum from two adjacent six-day time series combined together affects the number of peaks associated with the p-mode frequencies and their amplitudes. This study shows that five-minute oscillations of the Sun can be observed in the corona in variations of the soft X-ray emission. Further investigations of these oscillations may improve our understanding of the interaction of the oscillation modes with the solar atmosphere, and the interior-corona coupling, in general.

  3. Effect of ballooning modes on thermal transport and magnetic field diffusion in the solar corona

    International Nuclear Information System (INIS)

    Strauss, H.R.

    1989-01-01

    Presently favored mechanisms of coronal heating: current sheet dissipation and Alfven wave resonant heating: deposit heat in thin layers. Classical thermal conduction cannot explain how heat is transported across the magnetic field. If heating occurs in thin layers, large pressure gradients can be created, which can give rise to ballooning modes. These instabilities are caused by the pressure gradient and the curvature of the magnetic field, and are stabilized by magnetic tension. The modes are broad band in wavelength and should produce turbulence. A mixing length expression for the turbulent heat transport shows that it is more than adequate to rapidly convect heat into much broader layers. Furthermore, the turbulent resistivity implies that heating occurs over most of the width of these broadened layers. The broadening also implies that much shorter time scales are required for heating. The β values in the corona suggest that 1--10 turbulent layers are formed in typical loop or arch structures. copyright American Geophysical Union 1989

  4. Spectroscopic Evidence of Alfvén Wave Damping in the Off-limb Solar Corona

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, G. R., E-mail: girjesh@iucaa.in [Inter-University Centre for Astronomy and Astrophysics, Post Bag-4, Ganeshkhind, Pune 411007 (India)

    2017-02-10

    We investigate the off-limb active-region and quiet-Sun corona using spectroscopic data. The active region is clearly visible in several spectral lines formed in the temperature range of 1.1–2.8 MK. We derive the electron number density using the line ratio method, and the nonthermal velocity in the off-limb region up to the distance of 140 Mm. We compare density scale heights derived from several spectral line pairs with expected scale heights per the hydrostatic equilibrium model. Using several isolated and unblended spectral line profiles, we estimate nonthermal velocities in the active region and quiet Sun. Nonthermal velocities obtained from warm lines in the active region first show an increase and then later either a decrease or remain almost constant with height in the far off-limb region, whereas nonthermal velocities obtained from hot lines show consistent decrease. However, in the quiet-Sun region, nonthermal velocities obtained from various spectral lines show either a gradual decrease or remain almost constant with height. Using these obtained parameters, we further calculate Alfvén wave energy flux in both active and quiet-Sun regions. We find a significant decrease in wave energy fluxes with height, and hence provide evidence of Alfvén wave damping. Furthermore, we derive damping lengths of Alfvén waves in the both regions and find them to be in the range of 25–170 Mm. Different damping lengths obtained at different temperatures may be explained as either possible temperature-dependent damping or by measurements obtained in different coronal structures formed at different temperatures along the line of sight. Temperature-dependent damping may suggest some role of thermal conduction in the damping of Alfvén waves in the lower corona.

  5. Validation of Earth atmosphere models using solar EUV observations from the CORONAS and PROBA2 satellites in occultation mode

    Science.gov (United States)

    Slemzin, Vladimir; Ulyanov, Artyom; Gaikovich, Konstantin; Kuzin, Sergey; Pertsov, Andrey; Berghmans, David; Dominique, Marie

    2016-02-01

    Aims: Knowledge of properties of the Earth's upper atmosphere is important for predicting the lifetime of low-orbit spacecraft as well as for planning operation of space instruments whose data may be distorted by atmospheric effects. The accuracy of the models commonly used for simulating the structure of the atmosphere is limited by the scarcity of the observations they are based on, so improvement of these models requires validation under different atmospheric conditions. Measurements of the absorption of the solar extreme ultraviolet (EUV) radiation in the upper atmosphere below 500 km by instruments operating on low-Earth orbits (LEO) satellites provide efficient means for such validation as well as for continuous monitoring of the upper atmosphere and for studying its response to the solar and geomagnetic activity. Method: This paper presents results of measurements of the solar EUV radiation in the 17 nm wavelength band made with the SPIRIT and TESIS telescopes on board the CORONAS satellites and the SWAP telescope on board the PROBA2 satellite in the occulted parts of the satellite orbits. The transmittance profiles of the atmosphere at altitudes between 150 and 500 km were derived from different phases of solar activity during solar cycles 23 and 24 in the quiet state of the magnetosphere and during the development of a geomagnetic storm. We developed a mathematical procedure based on the Tikhonov regularization method for solution of ill-posed problems in order to retrieve extinction coefficients from the transmittance profiles. The transmittance profiles derived from the data and the retrieved extinction coefficients are compared with simulations carried out with the NRLMSISE-00 atmosphere model maintained by Naval Research Laboratory (USA) and the DTM-2013 model developed at CNES in the framework of the FP7 project ATMOP. Results: Under quiet and slightly disturbed magnetospheric conditions during high and low solar activity the extinction coefficients

  6. On the Shape of Force-Free Field Lines in the Solar Corona

    KAUST Repository

    Prior, C.

    2012-02-02

    This paper studies the shape parameters of looped field lines in a linear force-free magnetic field. Loop structures with a sufficient amount of kinking are generally seen to form S or inverse S (Z) shapes in the corona (as viewed in projection). For a single field line, we can ask how much the field line is kinked (as measured by the writhe), and how much neighbouring flux twists about the line (as measured by the twist number). The magnetic helicity of a flux element surrounding the field line can be decomposed into these two quantities. We find that the twist helicity contribution dominates the writhe helicity contribution, for field lines of significant aspect ratio, even when their structure is highly kinked. These calculations shed light on some popular assumptions of the field. First, we show that the writhe of field lines of significant aspect ratio (the apex height divided by the footpoint width) can sometimes be of opposite sign to the helicity. Secondly, we demonstrate the possibility of field line structures which could be interpreted as Z-shaped, but which have a helicity value sign expected of an S-shaped structure. These results suggest that caution should be exercised in using two-dimensional images to draw conclusions on the helicity value of field lines and flux tubes. © 2012 Springer Science+Business Media B.V.

  7. The Fate of Cool Material in the Hot Corona: Solar Prominences and Coronal Rain

    Science.gov (United States)

    Liu, Wei; Antolin, Patrick; Sun, Xudong; Vial, Jean-Claude; Berger, Thomas

    2017-08-01

    As an important chain of the chromosphere-corona mass cycle, some of the million-degree hot coronal mass undergoes a radiative cooling instability and condenses into material at chromospheric or transition-region temperatures in two distinct forms - prominences and coronal rain (some of which eventually falls back to the chromosphere). A quiescent prominence usually consists of numerous long-lasting, filamentary downflow threads, while coronal rain consists of transient mass blobs falling at comparably higher speeds along well-defined paths. It remains puzzling why such material of similar temperatures exhibit contrasting morphologies and behaviors. We report recent SDO/AIA and IRIS observations that suggest different magnetic environments being responsible for such distinctions. Specifically, in a hybrid prominence-coronal rain complex structure, we found that the prominence material is formed and resides near magnetic null points that favor the radiative cooling process and provide possibly a high plasma-beta environment suitable for the existence of meandering prominence threads. As the cool material descends, it turns into coronal rain tied onto low-lying coronal loops in a likely low-beta environment. Such structures resemble to certain extent the so-called coronal spiders or cloud prominences, but the observations reported here provide critical new insights. We will discuss the broad physical implications of these observations for fundamental questions, such as coronal heating and beyond (e.g., in astrophysical and/or laboratory plasma environments).

  8. Wave disturbances in the solar corona: radio observations at 24.5-25.5 MHz

    International Nuclear Information System (INIS)

    Kobrin, M.M.; Snegriev, S.D.

    1984-01-01

    We present an analysis of observations of fluctuations in the integrated flux of radio emission from the ''quiet'' sun. The observations were made on the UTR-2 radiotelescope, simultaneously at 11 frequencies in the range 24.5-25.5 MHz. Control observations of Taurus were made in order to allow for the effects of the earth's ionosphere. We measured the phase dependences between oscillations in the radio emission intensity which looked like wave trains. From these measurements we found that for periods of about 10 min we always observed disturbances propagating from the lower levels of the corona to the upper levels. The frequency drift in the trains is observed to be about 10 -3 MHz/sec, corresponding to a disturbance velocity of about 100 km/sec. This may be associated with the propagation of magnetosonic waves. Our estimates show that the observed effects cannot be explained by a bremsstrahlung mechanism: We need to rely on plasma mechanisms in order to explain how the radio emission is generated

  9. Observational Evidence for the Associated Formation of Blobs and Raining Inflows in the Solar Corona

    International Nuclear Information System (INIS)

    Sanchez-Diaz, E.; Rouillard, A. P.; Lavraud, B.; Pinto, R. F.; Plotnikov, I.; Genot, V.; Davies, J. A.; Sheeley, N. R.; Kilpua, E.

    2017-01-01

    The origin of the slow solar wind is still a topic of much debate. The continual emergence of small transient structures from helmet streamers is thought to constitute one of the main sources of the slow wind. Determining the height at which these transients are released is an important factor in determining the conditions under which the slow solar wind forms. To this end, we have carried out a multipoint analysis of small transient structures released from a north–south tilted helmet streamer into the slow solar wind over a broad range of position angles during Carrington Rotation 2137. Combining the remote-sensing observations taken by the Solar-TErrestrial RElations Observatory ( STEREO ) mission with coronagraphic observations from the SOlar and Heliospheric Observatory ( SOHO ) spacecraft, we show that the release of such small transient structures (often called blobs), which subsequently move away from the Sun, is associated with the concomitant formation of transient structures collapsing back toward the Sun; the latter have been referred to by previous authors as “raining inflows.” This is the first direct association between outflowing blobs and raining inflows, which locates the formation of blobs above the helmet streamers and gives strong support that the blobs are released by magnetic reconnection.

  10. Observational Evidence for the Associated Formation of Blobs and Raining Inflows in the Solar Corona

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Diaz, E.; Rouillard, A. P.; Lavraud, B.; Pinto, R. F.; Plotnikov, I.; Genot, V. [Institut de Recherche en Astrophysique et Planétologie, Paul Sabatier University, Toulouse, 9 avenue Colonel Roche, BP 44346-31028, Toulouse Cedex 4A (France); Davies, J. A. [RAL Space, STFC-Rutherford Appleton Laboratory, Harwell Campus, Science and Technology Facilities Council Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0QX (United Kingdom); Sheeley, N. R. [Space Science Division, Naval Research Laboratory, Naval Research Laboratory, Code 7600, 4555 Overlook Avenue SW, Washington, DC 20375 (United States); Kilpua, E., E-mail: eduardo.sanchez-diaz@irap.omp.eu, E-mail: alexis.rouillard@irap.omp.eu, E-mail: benoit.lavraud@irap.omp.eu, E-mail: rui.pinto@irap.omp.eu, E-mail: illya.plotnikov@irap.omp.eu, E-mail: vincent.genot@irap.omp.eu, E-mail: jackie.davies@stfc.ac.uk, E-mail: neil.sheeley@nrl.navy.mil, E-mail: emilia.kilpua@helsinki.fi [Space Physics Department, Department of Physics, P.O. Box 64 FI-00014, University of Helsinki, Helsinki (Finland)

    2017-01-20

    The origin of the slow solar wind is still a topic of much debate. The continual emergence of small transient structures from helmet streamers is thought to constitute one of the main sources of the slow wind. Determining the height at which these transients are released is an important factor in determining the conditions under which the slow solar wind forms. To this end, we have carried out a multipoint analysis of small transient structures released from a north–south tilted helmet streamer into the slow solar wind over a broad range of position angles during Carrington Rotation 2137. Combining the remote-sensing observations taken by the Solar-TErrestrial RElations Observatory ( STEREO ) mission with coronagraphic observations from the SOlar and Heliospheric Observatory ( SOHO ) spacecraft, we show that the release of such small transient structures (often called blobs), which subsequently move away from the Sun, is associated with the concomitant formation of transient structures collapsing back toward the Sun; the latter have been referred to by previous authors as “raining inflows.” This is the first direct association between outflowing blobs and raining inflows, which locates the formation of blobs above the helmet streamers and gives strong support that the blobs are released by magnetic reconnection.

  11. Study of the Effect of Active Regions on the Scattering Polarization in the Solar Corona

    Science.gov (United States)

    Derouich, M.; Badruddin

    2018-03-01

    The solar photospheric/chromospheric light exciting atoms/ions is not homogeneous because of the presence of active regions (ARs). The effect of ARs on the scattering polarization at the coronal level is an important ingredient for a realistic determination of the magnetic field. This effect is usually disregarded or mixed with other effects in the sense that the degree of its importance is not well known. The aim of this paper is to study the effect of atmospheric inhomogeneities on the coronal scattering polarization. We determined quantitatively the importance of the atmospheric inhomogeneities by using given geometries of solar ARs (plages and sunspots).

  12. Spectroscopic Studies of Solar Corona VI: Trend in Line-width ...

    Indian Academy of Sciences (India)

    cm coronagraph at the Norikura Solar Observatory on several days during the years 1997–2004. The Coude type .... Top-most panel shows the variation of FWHM of the 6374 Е and 5303 Е emission lines with height above the limb when all ...

  13. STELLAR CORONAE, SOLAR FLARES: A DETAILED COMPARISON OF {sigma} GEM, HR 1099, AND THE SUN IN HIGH-RESOLUTION X-RAYS

    Energy Technology Data Exchange (ETDEWEB)

    Huenemoerder, David P. [Massachusetts Institute of Technology, Kavli Institute for Astrophysics and Space Research, 70 Vassar St., Cambridge, MA 02139 (United States); Phillips, Kenneth J. H. [Visiting Scientist, Space Research Center, Polish Academy of Sciences, 51-622, Kopernika 11, Wroclaw (Poland); Sylwester, Janusz; Sylwester, Barbara, E-mail: dph@space.mit.edu, E-mail: kennethjhphillips@yahoo.com, E-mail: js@cbk.pan.wroc.pl, E-mail: bs@cbk.pan.wroc.pl [Space Research Center, Polish Academy of Sciences, 51-622, Kopernika 11, Wroclaw (Poland)

    2013-05-10

    The Chandra High Energy Transmission Grating Spectrometer (HETG) spectra of the coronally active binary stars {sigma} Gem and HR 1099 are among the highest fluence observations for such systems taken at high spectral resolution in X-rays with this instrument. This allows us to compare their properties in detail to solar flare spectra obtained with the Russian CORONAS-F spacecraft's RESIK instrument at similar resolution in an overlapping bandpass. Here we emphasize the detailed comparisons of the 3.3-6.1 A region (including emission from highly ionized S, Si, Ar, and K) from solar flare spectra to the corresponding {sigma} Gem and HR 1099 spectra. We also model the larger wavelength range of the HETG, from 1.7 to 25 A - having emission lines from Fe, Ca, Ar, Si, Al, Mg, Ne, O, and N-to determine coronal temperatures and abundances. {sigma} Gem is a single-lined coronally active long-period binary which has a very hot corona. HR 1099 is a similar, but shorter period, double-lined system. With very deep HETG exposures we can even study emission from some of the weaker species, such as K, Na, and Al, which are important since they have the lowest first ionization potentials, a parameter well known to be correlated with elemental fractionation in the solar corona. The solar flare temperatures reach Almost-Equal-To 20 MK, comparable to the {sigma} Gem and HR 1099 coronae. During the Chandra exposures, {sigma} Gem was slowly decaying from a flare and its spectrum is well characterized by a collisional ionization equilibrium plasma with a broad temperature distribution ranging from 2 to 60 MK, peaking near 25 MK, but with substantial emission from 50 MK plasma. We have detected K XVIII and Na XI emission which allow us to set limits on their abundances. HR 1099 was also quite variable in X-rays, also in a flare state, but had no detectable K XVIII. These measurements provide new comparisons of solar and stellar coronal abundances, especially at the lowest first

  14. Mode Conversion of Langmuir to Electromagnetic Waves with Parallel Inhomogeneity in the Solar Wind and the Corona

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun-Hwa; Cairns, Iver H.; Robinson, Peter A.

    2008-06-09

    Linear mode conversion of Langmuir waves to radiation near the plasma frequency at density gradients is potentially relevant to multiple solar radio emissions, ionospheric radar experiments, laboratory plasma devices, and pulsars. Here we study mode conversion in warm magnetized plasmas using a numerical electron fluid simulation code with the density gradient parallel to the ambient magnetic field B0 for a range of incident Langmuir wavevectors. Our results include: (1) Both o- and x-mode waves are produced for Ω ∝ (ωL)1/3(ωc/ω) somewhat less than 1, contrary to previous ideas. Only o mode is produced for Ω and somewhat greater than 1.5. Here ωc is the (angular) electron cyclotron frequency, ω the angular wave frequency, and L the length scale of the (linear) density gradient. (2) In the unmagnetized limit, equal amounts of o- and x-mode radiation are produced. (3) The mode conversion window narrows as Ω increases. (4) As Ω increases the total electromagnetic field changes from linear to circular polarization, with the o- and x- mode signals remaining circularly polarized. (5) The conversion efficiency to the x mode decreases monotonically as Ω increases while the o-mode conversion efficiency oscillates due to an interference phenomenon between incoming and reflected Langmuir/z modes. (6) The total conversion efficiency for wave energy from the Langmuir/z mode to radiation is typically less than 10%, but the corresponding power efficiencies differ by the ratio of the group speeds for each mode and are of order 50 – 70%. (7) The interference effect and the disappearance of the x mode at Ω somewhat greater than 1 can be accounted for semiquantitatively using a WKB-like analysis. (8) Constraints on density turbulence are developed for the x mode to be generated and be able to propagate from the source. (9) Standard parameters for the corona and the solar wind near 1 AU suggest that linear mode conversion should produce both o- and x- mode radiation for

  15. Mode Conversion of Langmuir to Electromagnetic Waves with Parallel Inhomogeneity in the Solar Wind and the Corona

    International Nuclear Information System (INIS)

    Kim, Eun-Hwa; Cairns, Iver H.; Robinson, Peter A.

    2008-01-01

    Linear mode conversion of Langmuir waves to radiation near the plasma frequency at density gradients is potentially relevant to multiple solar radio emissions, ionospheric radar experiments, laboratory plasma devices, and pulsars. Here we study mode conversion in warm magnetized plasmas using a numerical electron fluid simulation code with the density gradient parallel to the ambient magnetic field B0 for a range of incident Langmuir wavevectors. Our results include: (1) Both o- and x-mode waves are produced for (Omega) ∝ (ωL) 1/3 (ω c /ω) ∼ 1.5. Here ω c is the (angular) electron cyclotron frequency, ω the angular wave frequency, and L the length scale of the (linear) density gradient. (2) In the unmagnetized limit, equal amounts of o- and x-mode radiation are produced. (3) The mode conversion window narrows as (Omega) increases. (4) As (Omega) increases the total electromagnetic field changes from linear to circular polarization, with the o- and x- mode signals remaining circularly polarized. (5) The conversion efficiency to the x mode decreases monotonically as (Omega) increases while the o-mode conversion efficiency oscillates due to an interference phenomenon between incoming and reflected Langmuir/z modes. (6) The total conversion efficiency for wave energy from the Langmuir/z mode to radiation is typically less than 10%, but the corresponding power efficiencies differ by the ratio of the group speeds for each mode and are of order 50-70%. (7) The interference effect and the disappearance of the x mode at (Omega) ∼> 1 can be accounted for semiquantitatively using a WKB-like analysis. (8) Constraints on density turbulence are developed for the x mode to be generated and be able to propagate from the source. (9) Standard parameters for the corona and the solar wind near 1 AU suggest that linear mode conversion should produce both o- and x- mode radiation for solar and interplanetary radio bursts. It is therefore possible that linear mode conversion

  16. On the Reconstruction of the Convection Pattern Below an Active Region of Solar Corona

    International Nuclear Information System (INIS)

    Pirot, Dorian; Gaudet, Jonathan; Vincent, Alain

    2012-01-01

    In order to better understand magneto-convective patterns and flux emergence, we use the Nudging Back and Forth, a data assimilation method with an anelastic convection model to reconstruct the convection zone below a solar active region from observed solar surface magnetograms. To mimic photosphere, vector magnetograms are computed using force free hypothesis. We find that the observed arcade system of AR9077-20000714 ( t he slinky ) of magnetic lines is actually formed by Ω and U loops generated in the convection zone. We generate temperature maps at top of the convective zone and find that high magnetic fields on either sides of the neutral line produce a local cooling by impeding the overturning motions.

  17. Particle Acceleration in a Statistically Modeled Solar Active-Region Corona

    Science.gov (United States)

    Toutounzi, A.; Vlahos, L.; Isliker, H.; Dimitropoulou, M.; Anastasiadis, A.; Georgoulis, M.

    2013-09-01

    Elaborating a statistical approach to describe the spatiotemporally intermittent electric field structures formed inside a flaring solar active region, we investigate the efficiency of such structures in accelerating charged particles (electrons). The large-scale magnetic configuration in the solar atmosphere responds to the strong turbulent flows that convey perturbations across the active region by initiating avalanche-type processes. The resulting unstable structures correspond to small-scale dissipation regions hosting strong electric fields. Previous research on particle acceleration in strongly turbulent plasmas provides a general framework for addressing such a problem. This framework combines various electromagnetic field configurations obtained by magnetohydrodynamical (MHD) or cellular automata (CA) simulations, or by employing a statistical description of the field's strength and configuration with test particle simulations. Our objective is to complement previous work done on the subject. As in previous efforts, a set of three probability distribution functions describes our ad-hoc electromagnetic field configurations. In addition, we work on data-driven 3D magnetic field extrapolations. A collisional relativistic test-particle simulation traces each particle's guiding center within these configurations. We also find that an interplay between different electron populations (thermal/non-thermal, ambient/injected) in our simulations may also address, via a re-acceleration mechanism, the so called `number problem'. Using the simulated particle-energy distributions at different heights of the cylinder we test our results against observations, in the framework of the collisional thick target model (CTTM) of solar hard X-ray (HXR) emission. The above work is supported by the Hellenic National Space Weather Research Network (HNSWRN) via the THALIS Programme.

  18. Using the ionospheric response to the solar eclipse on 20 March 2015 to detect spatial structure in the solar corona

    Science.gov (United States)

    Bradford, J.; Bell, S. A.; Wilkinson, J.; Smith, D.; Tudor, S.

    2016-01-01

    The total solar eclipse that occurred over the Arctic region on 20 March 2015 was seen as a partial eclipse over much of Europe. Observations of this eclipse were used to investigate the high time resolution (1 min) decay and recovery of the Earth’s ionospheric E-region above the ionospheric monitoring station in Chilton, UK. At the altitude of this region (100 km), the maximum phase of the eclipse was 88.88% obscuration of the photosphere occurring at 9:29:41.5 UT. In comparison, the ionospheric response revealed a maximum obscuration of 66% (leaving a fraction, Φ, of uneclipsed radiation of 34±4%) occurring at 9:29 UT. The eclipse was re-created using data from the Solar Dynamics Observatory to estimate the fraction of radiation incident on the Earth’s atmosphere throughout the eclipse from nine different emission wavelengths in the extreme ultraviolet (EUV) and X-ray spectrum. These emissions, having varying spatial distributions, were each obscured differently during the eclipse. Those wavelengths associated with coronal emissions (94, 211 and 335 Å) most closely reproduced the time varying fraction of unobscured radiation observed in the ionosphere. These results could enable historic ionospheric eclipse measurements to be interpreted in terms of the distribution of EUV and X-ray emissions on the solar disc. This article is part of the themed issue ‘Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse’. PMID:27550766

  19. Radio wave propagation in the inhomogeneous magnetic field of the solar corona

    International Nuclear Information System (INIS)

    Zheleznyakov, V.V.; Zlotnik, E.Ya.

    1977-01-01

    Various types of linear coupling between ordinary and extra-ordinary waves in the coronal plasma with the inhomogeneous magnetic field and the effect of this phenomenon upon the polarization characteristics of solar radio emission are considered. A qualitative analysis of the wave equation indicates that in a rarefied plasma the coupling effects can be displayed in a sufficiently weak magnetic field or at the angles between the magnetic field and the direction of wave propagation close enough to zero or π/2. The wave coupling parameter are found for these three cases. The radio wave propagation through the region with a quasi-transverse magnetic field and through the neutral current sheet is discussed more in detail. A qualitative picture of coupling in such a layer is supported by a numerical solution of the ''quasi-isotropic approximation'' equations. The role of the coupling effects in formation of polarization characteristics of different components of solar radio emission has been investigated. For cm wave range, the polarization is essentially dependent on the conditions in the region of the transverse magnetic field

  20. Intermittent heating of the corona as an alternative to generate fast solar wind flows

    International Nuclear Information System (INIS)

    Grappin, R.; Mangeney, A.; Schwartz, S.J.; Feldman, W.C.

    1999-01-01

    We discuss a new alternative to the generation of fast streams which does not require momentum addition beyond the critical point. We consider the consequences on the solar wind of temporally intermittent heat depositions at the base of the wind. With the help of 1d hydrodynamic simulations we show that the instantaneous wind velocity profile fluctuates around an average profile well above the one corresponding to the Parker solution with a coronal temperature equal to the average coronal temperature imposed at the bottom of the numerical domain. The origin of this result lies in a previously overlooked phenomenon, the overexpansion of hot plasma regions in the subsonic wind. copyright 1999 American Institute of Physics

  1. Soft X-ray images of the solar corona using normal incidence optics

    Science.gov (United States)

    Bruner, M. E.; Haisch, B. M.; Brown, W. A.; Acton, L. W.; Underwood, J. H.

    1988-01-01

    A solar coronal loop system has been photographed in soft X-rays using a normal incidence telescope based on multilayer mirror technology. The telescope consisted of a spherical objective mirror of 4 cm aperture and 1 m focal length, a film cassette, and a focal plane shutter. A metallized thin plastic film filter was used to exclude visible light. The objective mirror was covered with a multilayer coating consisting of alternating layers of tungsten and carbon whose combined thicknesses satisfied the Bragg diffraction condition for 44 A radiation. The image was recorded during a rocket flight on October 25, 1985 and was dominated by emission lines arising from the Si XII spectrum. The rocket also carried a high resolution soft X-ray spectrograph that confirmed the presence of Si XII line radiation in the source. This image represents the first successful use of multilayer technology for astrophysical observations.

  2. Rocket studies of solar corona and transition region. [X-Ray spectrometer/spectrograph telescope

    Science.gov (United States)

    Acton, L. W.; Bruner, E. C., Jr.; Brown, W. A.; Nobles, R. A.

    1979-01-01

    The XSST (X-Ray Spectrometer/Spectrograph Telescope) rocket payload launched by a Nike Boosted Black Brant was designed to provide high spectral resolution coronal soft X-ray line information on a spectrographic plate, as well as time resolved photo-electric records of pre-selected lines and spectral regions. This spectral data is obtained from a 1 x 10 arc second solar region defined by the paraboloidal telescope of the XSST. The transition region camera provided full disc images in selected spectral intervals originating in lower temperature zones than the emitting regions accessible to the XSST. A H-alpha camera system allowed referencing the measurements to the chromospheric temperatures and altitudes. Payload flight and recovery information is provided along with X-ray photoelectric and UV flight data, transition camera results and a summary of the anomalies encountered. Instrument mechanical stability and spectrometer pointing direction are also examined.

  3. Radio evidence for shock acceleration of electrons in the solar corona

    Science.gov (United States)

    Cane, H. V.; Stone, R. G.; Fainberg, J.; Steinberg, J. L.; Hoang, S.; Stewart, R. T.

    1981-01-01

    It is pointed out that the new class of kilometer-wavelength solar radio bursts observed with the ISEE-3 Radio Astronomy Experiment occurs at the reported times of type II events, which are indicative of a shock wave. An examination of records from the Culgoora Radio Observatory reveals that the associated type II bursts have fast drift elements emanating from them; that is, a herringbone structure is formed. It is proposed that this new class of bursts is a long-wavelength continuation of the herringbone structure, and it is thought probable that the electrons producing the radio emission are accelerated by shocks. These new events are referred to as shock-accelerated events, and their characteristics are discussed.

  4. Long-period intensity pulsations in the solar corona during activity cycle 23

    Science.gov (United States)

    Auchère, F.; Bocchialini, K.; Solomon, J.; Tison, E.

    2014-03-01

    We report on the detection (10σ) of 917 events of long-period (3 to 16 h) intensity pulsations in the 19.5 nm passband of the SOHO Extreme ultraviolet Imaging Telescope. The data set spans from January 1997 to July 2010, i.e. the entire solar cycle 23 and the beginning of cycle 24. The events can last for up to six days and have relative amplitudes up to 100%. About half of the events (54%) are found to happen in active regions, and 50% of these have been visually associated with coronal loops. The remaining 46% are localized in the quiet Sun. We performed a comprehensive analysis of the possible instrumental artefacts and we conclude that the observed signal is of solar origin. We discuss several scenarios that could explain the main characteristics of the active region events. The long periods and the amplitudes observed rule out any explanation in terms of magnetohydrodynamic waves. Thermal non-equilibrium could produce the right periods, but it fails to explain all the observed properties of coronal loops and the spatial coherence of the events. We propose that moderate temporal variations of the heating term in the energy equation, so as to avoid a thermal non-equilibrium state, could be sufficient to explain those long-period intensity pulsations. The large number of detections suggests that these pulsations are common in active regions. This would imply that the measurement of their properties could provide new constraints on the heating mechanisms of coronal loops. Movies are available in electronic form at http://www.aanda.org

  5. Long term changes in EUV and X-ray emissions from the solar corona and chromosphere as measured by the response of the Earth’s ionosphere during total solar eclipses from 1932 to 1999

    Directory of Open Access Journals (Sweden)

    C. J. Davis

    Full Text Available Measurements of the ionospheric E region during total solar eclipses in the period 1932–1999 have been used to investigate the fraction of Extreme Ultra Violet and soft X-ray radiation, 8, that is emitted from the limb corona and chromosphere. The relative apparent sizes of the Moon and the Sun are different for each eclipse, and techniques are presented which correct the measurements and, therefore, allow direct comparisons between different eclipses. The results show that the fraction of ionising radiation emitted by the limb corona has a clear solar cycle variation and that the underlying trend shows this fraction has been increasing since 1932. Data from the SOHO spacecraft are used to study the effects of short-term variability and it is shown that the observed long-term rise in 8 has a negligible probability of being a chance occurrence.

    Key words. Ionosphere (solar radiation and cosmic ray effects – Solar physics, astrophysics, and astronomy (corona and transition region

  6. The Duration of Energy Deposition on Unresolved Flaring Loops in the Solar Corona

    Science.gov (United States)

    Reep, Jeffrey W.; Polito, Vanessa; Warren, Harry P.; Crump, Nicholas A.

    2018-04-01

    Solar flares form and release energy across a large number of magnetic loops. The global parameters of flares, such as the total energy released, duration, physical size, etc., are routinely measured, and the hydrodynamics of a coronal loop subjected to intense heating have been extensively studied. It is not clear, however, how many loops comprise a flare, nor how the total energy is partitioned between them. In this work, we employ a hydrodynamic model to better understand the energy partition by synthesizing Si IV and Fe XXI line emission and comparing to observations of these lines with the Interface Region Imaging Spectrograph (IRIS). We find that the observed temporal evolution of the Doppler shifts holds important information on the heating duration. To demonstrate this, we first examine a single loop model, and find that the properties of chromospheric evaporation seen in Fe XXI can be reproduced by loops heated for long durations, while persistent redshifts seen in Si IV cannot be reproduced by any single loop model. We then examine a multithreaded model, assuming both a fixed heating duration on all loops and a distribution of heating durations. For a fixed heating duration, we find that durations of 100–200 s do a fair job of reproducing both the red- and blueshifts, while a distribution of durations, with a median of about 50–100 s, does a better job. Finally, we compare our simulations directly to observations of an M-class flare seen by IRIS, and find good agreement between the modeled and observed values given these constraints.

  7. Formation of fast shocks by magnetic reconnection in the solar corona

    International Nuclear Information System (INIS)

    Hsieh, M. H.; Tsai, C. L.; Ma, Z. W.; Lee, L. C.

    2009-01-01

    Reconnections of magnetic fields over the solar surface are expected to generate abundant magnetohydrodynamic (MHD) discontinuities and shocks, including slow shocks and rotational discontinuities. However, the generation of fast shocks by magnetic reconnection process is relatively not well studied. In this paper, magnetic reconnection in a current sheet is studied based on two-dimensional resistive MHD numerical simulations. Magnetic reconnections in the current sheet lead to the formation of plasma jets and plasma bulges. It is further found that the plasma bulges, the leading part of plasma jets, in turn lead to the generation of fast shocks on flanks of the bulges. The simulation results show that during the magnetic reconnection process, the plasma forms a series of structures: plasma jets, plasma bulges, and fast shocks. As time increases, the bulges spread out along the current sheet (±z direction) and the fast shocks move just ahead of the bulges. The effects of initial parameters ρ s /ρ m , β ∞ , and t rec on the fast shock generation are also examined, where ρ s /ρ m is the ratio of plasma densities on two sides of the initial current sheet, β ∞ =P ∞ /(B ∞ 2 /2μ 0 ), P ∞ is the plasma pressure and B ∞ is the magnetic field magnitude far from the current sheet, and t rec is the reconnection duration. In the asymmetric case with ρ s /ρ m =2, β ∞ =0.01 and t rec =1000, the maximum Alfven Mach number of fast shocks (M A1max ) is M A1max congruent with 1.1, where M A1 =V n1 /V A1 , and V n1 and V A1 are, respectively, the normal upstream fluid velocity and the upstream Alfven speed in the fast shocks frame. As the density ratio ρ s /ρ m (=1-8) and plasma beta β ∞ (=0.0001-1) increase, M A1max varies slightly. For the case with a large plasma beta β ∞ (=5), the fast shock is very weak. As the reconnection duration t rec increases, the bulges lead to generation of fast shocks with a higher M A1max . The present results can be

  8. Mid-Term Quasi-Periodicities and Solar Cycle Variation of the White-Light Corona from 18.5 Years (1996.0 - 2014.5) of LASCO Observations

    Science.gov (United States)

    Barlyaeva, T.; Lamy, P.; Llebaria, A.

    2015-07-01

    We report on the analysis of the temporal evolution of the solar corona based on 18.5 years (1996.0 - 2014.5) of white-light observations with the SOHO/LASCO-C2 coronagraph. This evolution is quantified by generating spatially integrated values of the K-corona radiance, first globally, then in latitudinal sectors. The analysis considers time series of monthly values and 13-month running means of the radiance as well as several indices and proxies of solar activity. We study correlation, wavelet time-frequency spectra, and cross-coherence and phase spectra between these quantities. Our results give a detailed insight on how the corona responds to solar activity over timescales ranging from mid-term quasi-periodicities (also known as quasi-biennial oscillations or QBOs) to the long-term 11 year solar cycle. The amplitude of the variation between successive solar maxima and minima (modulation factor) very much depends upon the strength of the cycle and upon the heliographic latitude. An asymmetry is observed during the ascending phase of Solar Cycle 24, prominently in the royal and polar sectors, with north leading. Most prominent QBOs are a quasi-annual period during the maximum phase of Solar Cycle 23 and a shorter period, seven to eight months, in the ascending and maximum phases of Solar Cycle 24. They share the same properties as the solar QBOs: variable periodicity, intermittency, asymmetric development in the northern and southern solar hemispheres, and largest amplitudes during the maximum phase of solar cycles. The strongest correlation of the temporal variations of the coronal radiance - and consequently the coronal electron density - is found with the total magnetic flux. Considering that the morphology of the solar corona is also directly controlled by the topology of the magnetic field, this correlation reinforces the view that they are intimately connected, including their variability at all timescales.

  9. Acceleration and propagation of energetic particles in the solar corona: from RHESSI data analysing to the preparation of the STIX tool operations on Solar Orbiter

    International Nuclear Information System (INIS)

    Musset, S.

    2016-01-01

    The Sun is an active star and one manifestation of its activity is the production of solar flares. It is currently admitted that solar flares are caused by the release of magnetic energy during the process of magnetic reconnection in the solar upper atmosphere, the solar corona. During these flares, a large fraction of the magnetic energy is transferred to the acceleration of particles (electrons and ions). However, the details of particle acceleration during flares are still not completely understood. Several scenarios and models have been developed to explain particle acceleration. In some of them, electric fields, produced at the location of current sheets, which can be fragmented or collapsing, and which are preferentially located on quasi-separatrix layers (QSLs), are accelerating particles. To investigate a possible link between energetic particles and direct electric fields produced at current sheet locations, we looked for a correlation between X-ray emission from energetic electrons and electric currents which can be measured at the photospheric level. We used the Reuven Ramaty High Energy Solar Spectrometric Imager (RHESSI) data to produce spectra and images of the X-ray emissions during GOES X-class flares, and spectro polarimetric data from the Helio seismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) to calculate the vertical current densities from the reconstructed 3D vector magnetic field. A correlation between the coronal X-ray emissions (tracing the energetic electrons near the acceleration site) and the strong current ribbons at the photospheric level (tracing the coronal current sheet) was found in the five studied X-class flares. Moreover, thanks to the 12-minute time cadence of SDO/HMI, we could study for the first time the time evolution of electric currents : in several flares, a change in the current intensity, occurring during the flare peak, was found to be spatially correlated with X-ray emission sites. These

  10. Using a New Infrared Si X Coronal Emission Line for Discriminating between Magnetohydrodynamic Models of the Solar Corona During the 2006 Solar Eclipse

    Science.gov (United States)

    Dima, Gabriel I.; Kuhn, Jeffrey R.; Mickey, Don; Downs, Cooper

    2018-01-01

    During the 2006 March 29 total solar eclipse, coronal spectropolarimetric measurements were obtained over a 6 × 6 R ⊙ field of view with a 1–2 μm spectral range. The data yielded linearly polarized measurements of the Fe XIII 1.075 μm, He I 1.083 μm, and for the first time, of the Si X 1.430 μm emission lines. To interpret the measurements, we used forward-integrated synthetic emission from two magnetohydrodynamic models for the same Carrington rotation with different heating functions and magnetic boundary conditions. Observations of the Fe XIII 1.075/Si X 1.430 line ratio allowed us to discriminate between two models of the corona, with the observations strongly favoring the warmer model. The observed polarized amplitudes for the Si X 1.430 μm line are around 7%, which is three times higher than the predicted values from available atomic models for the line. This discrepancy indicates a need for a closer look at some of the model assumptions for the collisional coefficients, as well as new polarized observations of the line to rule out any unknown systematic effect in the present data. All but two near-limb fibers show correlated bright He I 1.083 μm and H I 1.282 μm emission, which likely indicates cool prominence emission that is non-localized by the strongly defocused optics. One of the distant fibers located at 1.5 R ⊙ detected a weak He I 1.083 μm intensity signal consistent with previous eclipse measurements around 3 × 10‑7 {B}ȯ . However, given the limitations of these observations, it is not possible to completely remove contamination that is due to emission from prominence material that is not obscured by the lunar limb.

  11. mxCSM: A 100-slit, 6-Wavelength Wide-Field Coronal Spectropolarimeter for the Study of the Dynamics and the Magnetic Fields of the Solar Corona

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Haosheng, E-mail: lin@ifa.hawaii.edu [Institute for Astronomy, University of Hawaii, Pukalani, HI (United States)

    2016-03-30

    Tremendous progress has been made in the field of observational coronal magnetometry in the first decade of the Twenty-First century. With the successful construction of the Coronal Multichannel Magnetometer (CoMP) instrument, observations of the linear polarization of the coronal emission lines (CELs), which carry information about the azimuthal direction of the coronal magnetic fields, are now routinely available. However, reliable and regular measurements of the circular polarization signals of the CELs remain illusive. The CEL circular polarization signals allow us to infer the magnetic field strength in the corona, and is critically important for our understanding of the solar corona. Current telescopes and instrument can only measure the coronal magnetic field strength over a small field of view. Furthermore, the observations require very long integration time that preclude the study of dynamic events even when only a small field of view is required. This paper describes a new instrument concept that employs large-scale multiplexing technology to enhance the efficiency of current coronal spectropolarimeter by more than two orders of magnitude. This will allow for the instrument to increase the integration time at each spatial location by the same factor, while also achieving a large field of view coverage. We will present the conceptual design of a 100-slit coronal spectropolarimeter that can observe six CELs simultaneously. Instruments based on this concept will allow us to study the evolution of the coronal magnetic field even with coronagraphs with modest aperture.

  12. mxCSM: A 100-slit, 6-wavelength wide-field coronal spectropolarimeter for the study of the dynamics and the magnetic fields of the solar corona

    Directory of Open Access Journals (Sweden)

    Haosheng eLin

    2016-03-01

    Full Text Available remendous progress has been made in the field of observational coronal magnetometry in the first decade of the 21st century. With the successful construction of the Coronal Multichannel Magnetometer (CoMP instrument, observations of the linear polarization of the coronal emission lines (CELs, which carry information about the azimuthal direction of the coronal magnetic fields, are now routinely available. However, reliable and regular measurements of the circular polarization signals of the CELs remain illusive. The CEL circular polarization signals allow us to infer the magnetic field strength in the corona, and is critically important {bf of} our understanding of the solar corona. Current telescopes and instrument can only measure the coronal magnetic field strength over a small field of view. Furthermore, the observations require very long integration time that preclude the study of dynamic events even when only a small field of view is required. This paper describes a new instrument concept that employees large-scale multiplexing technology to enhance the efficiency of current coronal spectropolarimeter by more than two orders of magnitude. This will allow for the instrument to increase of the integration time at each spatial location by the same factor, while also achieving a large field of view coverage. We will present the conceptual design of a 100-slit coronal spectropolarimeter that can observe six coronal emission lines simultaneously. Instruments based on this concept will allow us to study the evolution of the coronal magnetic field even with coronagraphs with modest aperture.

  13. Corona Borealis

    Science.gov (United States)

    Murdin, P.

    2000-11-01

    (the Northern Crown; abbrev. CrB, gen. Coronae Borealis; area 179 sq. deg.) A northern constellation which lies between Boötes and Hercules, and culminates at midnight in mid-May. It represents the crown that in Greek mythology was made by Hephaestus, god of fire, and worn by Princess Ariadne of Crete. Its brightest stars were cataloged by Ptolemy (c. AD 100-175) in the Almagest....

  14. Intensity of the Fe XV emission line corona, the level of geomagnetic activity and the velocity of the solar wind

    International Nuclear Information System (INIS)

    Bell, B.; Noci, G.

    1976-01-01

    The average solar wind velocity and the level of geomagnetic activity (Kp) following central meridian passage of coronal weak and bright features identified from Oso 7 isophotograms of Fe XV (284 A) are determined by the method of superposed epochs. Results are consistent with the concept that bright regions possess magnetic field of closed configurations, thereby reducing particle escape, while coronal holes possess open magnetic field lines favorable to particle escape or enhanced outflow of the solar wind. Coronal holes are identified with Bartels' M regions not only statistically but by linking specific long-lived holes with individual sequences of geomagnetic storms. In the study of bright region a subdivision by brightness temperature (T/sub b/) of associated 9.1-cm radiation was found to be significant, with the region s of higher T/sub b/ having a stronger inhibiting power on the outflow of the solar wind when they were located in the solar hemisphere on the same side of the solar equator as the earth. Regions of highest T/sub b/ most strongly depress the outflow of solar wind but are also the most likely to produce flare-associated great storms

  15. A quasi-one-dimensional velocity regime of super-thermal electron stream propagation through the solar corona

    International Nuclear Information System (INIS)

    Levin, B.N.

    1984-01-01

    The propagation of an inhomogeneous stream of fast electrons through the corona - the type III radio burst source - is considered. It is shown, that the angular spectrum width of plasma waves excited by the stream is defined both by Landau damping by particles of the diffuse component and by damping (in the region of large phase velocities) by particles of the stream itself having large pitch angles. The regime of quasi-one-dimensional diffusion in the velocity space is realized only in the presence of a sufficiently dense diffuse component of super-thermal particles and only for a sufficiently large inhomogeneity scale of the stream. A large scale of the stream space profile is formed, evidently, close to the region of injection of super-thermal particles. It is the result of 'stripping' of part of the electrons from the stream front to its slower part due to essential non-one-dimensionality of the particle diffusion in velocity space. Results obtained may explain, in particular, the evolution of a stream particle angular spectrum in the generation region of type III radio bursts observed by spacecrafts (Lin et al., 1981). For the relatively low energetic part of the stream, the oblique plasma wave stabilization by a diffuse component results in a quasi-one-dimensional regime of diffusion. The latter conserves the beam-like structure of this part of the stream. (orig.)

  16. A new method of presentation the large-scale magnetic field structure on the Sun and solar corona

    Science.gov (United States)

    Ponyavin, D. I.

    1995-01-01

    The large-scale photospheric magnetic field, measured at Stanford, has been analyzed in terms of surface harmonics. Changes of the photospheric field which occur within whole solar rotation period can be resolved by this analysis. For this reason we used daily magnetograms of the line-of-sight magnetic field component observed from Earth over solar disc. We have estimated the period during which day-to-day full disc magnetograms must be collected. An original algorithm was applied to resolve time variations of spherical harmonics that reflect time evolution of large-scale magnetic field within solar rotation period. This method of magnetic field presentation can be useful enough in lack of direct magnetograph observations due to sometimes bad weather conditions. We have used the calculated surface harmonics to reconstruct the large-scale magnetic field structure on the source surface near the sun - the origin of heliospheric current sheet and solar wind streams. The obtained results have been compared with spacecraft in situ observations and geomagnetic activity. We tried to show that proposed technique can trace shon-time variations of heliospheric current sheet and short-lived solar wind streams. We have compared also our results with those obtained traditionally from potential field approximation and extrapolation using synoptic charts as initial boundary conditions.

  17. MODELING MAGNETIC FIELD STRUCTURE OF A SOLAR ACTIVE REGION CORONA USING NONLINEAR FORCE-FREE FIELDS IN SPHERICAL GEOMETRY

    International Nuclear Information System (INIS)

    Guo, Y.; Ding, M. D.; Liu, Y.; Sun, X. D.; DeRosa, M. L.; Wiegelmann, T.

    2012-01-01

    We test a nonlinear force-free field (NLFFF) optimization code in spherical geometry using an analytical solution from Low and Lou. Several tests are run, ranging from idealized cases where exact vector field data are provided on all boundaries, to cases where noisy vector data are provided on only the lower boundary (approximating the solar problem). Analytical tests also show that the NLFFF code in the spherical geometry performs better than that in the Cartesian one when the field of view of the bottom boundary is large, say, 20° × 20°. Additionally, we apply the NLFFF model to an active region observed by the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory (SDO) both before and after an M8.7 flare. For each observation time, we initialize the models using potential field source surface (PFSS) extrapolations based on either a synoptic chart or a flux-dispersal model, and compare the resulting NLFFF models. The results show that NLFFF extrapolations using the flux-dispersal model as the boundary condition have slightly lower, therefore better, force-free, and divergence-free metrics, and contain larger free magnetic energy. By comparing the extrapolated magnetic field lines with the extreme ultraviolet (EUV) observations by the Atmospheric Imaging Assembly on board SDO, we find that the NLFFF performs better than the PFSS not only for the core field of the flare productive region, but also for large EUV loops higher than 50 Mm.

  18. On the Reflection in the Solar Radio Emission of Processes in the Chromosphere and the lower Corona preceded CMEs Registration

    Science.gov (United States)

    Durasova, M. S.; Tikhomirov, Yu. V.; Fridman, V. M.; Sheiner, O. A.

    The phenomena preceding the Coronal Mass Ejections (CMEs) and observed in the radio-frequency band represent a lot of sporadic components of the emission, that cover the wide frequency range. The study of these phenomena composes the new, prevailing for the last ten years direction. This is caused by the fact that solar radioastronomy possesses the developed network of observant tools, by the sensitive methods of observations. It makes possible in a number of cases to obtain information from the layers of solar atmosphere, inaccessible for the studies by other methods of observations. The purpose of this work is analysis of information about the CMEs preceding radio-events and their dynamics in the centimeter and decimeter radio emission in 1998. We use the data of the worldwide network of solar observatories in the radio-frequency band, the data about the CMEs phenomena and the characteristics are taken from Internet: http://sdaw.gsfc.nasa.gov./CME_list}. From great number of the CMEs we select only such, before which there were no more recorded events in the time interval of 8 hours, and before which sporadic radio emission was observed on 2-hours interval. The selection of this interval was caused by available study about the mean lifetime of precursors before CMEs and powerful flares, as a rule, accompanying CMEs, in the optical, X-ray and radio emissions. It constitutes, on the average, about 30 min. The total volume of data composed 68 analyzed events of CMEs in 1998. The analysis of the spectral- temporary characteristics of sporadic radio emission in the dependence on the CMEs parameters is carried out. The nature of processes at the stage of formation and initial propagation of CMEs, such as floating up of new magnetic fluxes, the development of instabilities, the characteristic scales of phenomena, that have an effect upon the observed radio emission is analyzed. The work is carried out with the support of Russian Fund of Basic Research (grant 03

  19. OSO-8 observations of the impulsive phase of solar flares in the transition-zone and corona

    Science.gov (United States)

    Lites, B. W.; Bruner, E. C., Jr.; Wolfson, C. J.

    1981-01-01

    Several solar flares were observed from their onset in C IV 1548.2 A and 1-8 A X-rays using instruments on OSO-8. It is found that impulsive brightening in C IV is often accompanied by redshifts, interpreted as downflows, of the order of 80 km/s. The maximum soft X-ray intensity usually arrives several minutes after the maximum C IV intensity. The most energetic C IV event observed shows a small blueshift just before reaching maximum intensity; estimates of the mass flux associated with this upflow through the transition zone are consistent with the increase of mass in the coronal loops as observed in soft X-rays. Finally, it is suggested that the frequent occurrence of violent dynamical processes at the onset of the flare is associated with the initial energy release mechanism.

  20. Status of Knowledge after Ulysses and SOHO: Session 2: Investigate the Links between the Solar Surface, Corona, and Inner Heliosphere.

    Science.gov (United States)

    Suess, Steven

    2006-01-01

    As spacecraft observations of the heliosphere have moved from exploration into studies of physical processes, we are learning about the linkages that exist between different parts of the system. The past fifteen years have led to new ideas for how the heliospheric magnetic field connects back to the Sun and to how that connection plays a role in the origin of the solar wind. A growing understanding these connections, in turn, has led to the ability to use composition, ionization state, the microscopic state of the in situ plasma, and energetic particles as tools to further analyze the linkages and the underlying physical processes. Many missions have contributed to these investigations of the heliosphere as an integrated system. Two of the most important are Ulysses and SOHO, because of the types of measurements they make, their specific orbits, and how they have worked to complement each other. I will review and summarize the status of knowledge about these linkages, with emphasis on results from the Ulysses and SOHO missions. Some of the topics will be the global heliosphere at sunspot maximum and minimum, the physics and morphology of coronal holes, the origin(s) of slow wind, SOHO-Ulysses quadrature observations, mysteries in the propagation of energetic particles, and the physics of eruptive events and their associated current sheets. These specific topics are selected because they point towards the investigations that will be carried out with Solar Orbiter (SO) and the opportunity will be used to illustrate how SO will uniquely contribute to our knowledge of the underlying physical processes.

  1. OSO-8 observations of the impulsive phase of solar flares in the transition-zone and corona

    International Nuclear Information System (INIS)

    Lites, B.W.

    1981-01-01

    Several solar flares have been observed from their onset in C IV lambda 1548.2 and 1-8 Angstroem X-rays using instruments aboard OSO-8. In addition, microwave and Hα flare patrol data have been obtained for this study. The impulsive brightening in C IV is frequently accompanied by redshifts, interpreted as downflows, of the order of 80 km s -1 . The maximum soft X-ray intensity usually arrives several minutes after the maximum C IV intensity. The most energetic C IV event studied shows a small blueshift just before reaching maximum intensity, and estimates of the mass flux associated with this upflow through the transition-zone are consistent with the increase of mass in the coronal loops as observed in soft X-rays. This event had no observable microwave burst, suggesting that electron beams did not play a major role in the chromospheric and transition-zone excitation. Lastly, our observations suggest that the frequent occurrence of violent dynamical processes at the onset of the flare are associated with the initial energy release mechanism. (orig.)

  2. The TESIS experiment on the CORONAS-PHOTON spacecraft

    Science.gov (United States)

    Kuzin, S. V.; Zhitnik, I. A.; Shestov, S. V.; Bogachev, S. A.; Bugaenko, O. I.; Ignat'ev, A. P.; Pertsov, A. A.; Ulyanov, A. S.; Reva, A. A.; Slemzin, V. A.; Sukhodrev, N. K.; Ivanov, Yu. S.; Goncharov, L. A.; Mitrofanov, A. V.; Popov, S. G.; Shergina, T. A.; Solov'ev, V. A.; Oparin, S. N.; Zykov, A. M.

    2011-04-01

    On February 26, 2009, the first data was obtained in the TESIS experiment on the research of the solar corona using imaging spectroscopy. The TESIS is a part of the scientific equipment of the CORONAS-PHO-TON spacecraft and is designed for imaging the solar corona in soft X-ray and extreme ultraviolet regions of the spectrum with high spatial, spectral, and temporal resolutions at altitudes from the transition region to three solar radii. The article describes the main characteristics of the instrumentation, management features, and operation modes.

  3. ON THE REMOTE DETECTION OF SUPRATHERMAL IONS IN THE SOLAR CORONA AND THEIR ROLE AS SEEDS FOR SOLAR ENERGETIC PARTICLE PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Laming, J. Martin; Moses, J. Daniel; Ko, Yuan-Kuen [Space Science Division, Naval Research Laboratory, Code 7684, Washington, DC 20375 (United States); Ng, Chee K. [College of Science, George Mason University, Fairfax, VA 22030 (United States); Rakowski, Cara E.; Tylka, Allan J. [NASA/GSFC Code 672, Greenbelt, MD 20771 (United States)

    2013-06-10

    Forecasting large solar energetic particle (SEP) events associated with shocks driven by fast coronal mass ejections (CMEs) poses a major difficulty in the field of space weather. Besides issues associated with CME initiation, the SEP intensities are difficult to predict, spanning three orders of magnitude at any given CME speed. Many lines of indirect evidence point to the pre-existence of suprathermal seed particles for injection into the acceleration process as a key ingredient limiting the SEP intensity of a given event. This paper outlines the observational and theoretical basis for the inference that a suprathermal particle population is present prior to large SEP events, explores various scenarios for generating seed particles and their observational signatures, and explains how such suprathermals could be detected through measuring the wings of the H I Ly{alpha} line.

  4. ON THE REMOTE DETECTION OF SUPRATHERMAL IONS IN THE SOLAR CORONA AND THEIR ROLE AS SEEDS FOR SOLAR ENERGETIC PARTICLE PRODUCTION

    International Nuclear Information System (INIS)

    Laming, J. Martin; Moses, J. Daniel; Ko, Yuan-Kuen; Ng, Chee K.; Rakowski, Cara E.; Tylka, Allan J.

    2013-01-01

    Forecasting large solar energetic particle (SEP) events associated with shocks driven by fast coronal mass ejections (CMEs) poses a major difficulty in the field of space weather. Besides issues associated with CME initiation, the SEP intensities are difficult to predict, spanning three orders of magnitude at any given CME speed. Many lines of indirect evidence point to the pre-existence of suprathermal seed particles for injection into the acceleration process as a key ingredient limiting the SEP intensity of a given event. This paper outlines the observational and theoretical basis for the inference that a suprathermal particle population is present prior to large SEP events, explores various scenarios for generating seed particles and their observational signatures, and explains how such suprathermals could be detected through measuring the wings of the H I Lyα line.

  5. Corona helps curb losses

    Energy Technology Data Exchange (ETDEWEB)

    Laasonen, M.; Lahtinen, M.; Lustre, L.

    1996-11-01

    The greatest power losses in electricity transmission arise through a phenomenon called load losses. Corona losses caused by the surface discharge of electricity also constitute a considerable cost item. IVS, the nationwide network company, is investigating corona- induced losses, and has also commissioned similar research from IVO International, the Technical Research Centre of Finland (VTT) and from Tampere University of Technology. The research work strives to gain more in-depth knowledge on the phenomenon of frosting and its impact on corona losses. The correct prediction of frost helps reduce corona losses, while also cutting costs considerably. (orig.)

  6. The energy and pressure balance in the corona

    International Nuclear Information System (INIS)

    McWhirter, R.W.P.; Wilson, R.

    1976-01-01

    This paper reviews theoretical models for the solar corona based on energy and pressure calculations. Processes included in these calculations are: (a) heating of the outer corona by mechanical waves; (b) convective out-flow of gas giving rise to the solar wind; (c) thermal conductions; (d) radiated power loss. Possible observations to help answer some of the outstanding questions about the energy balance are suggested. (author)

  7. Characteristics of a corona discharge with a hot corona electrode

    International Nuclear Information System (INIS)

    Kulumbaev, E. B.; Lelevkin, V. M.; Niyazaliev, I. A.; Tokarev, A. V.

    2011-01-01

    The effect of the temperature of the corona electrode on the electrical characteristics of a corona discharge was studied experimentally. A modified Townsend formula for the current-voltage characteristic of a one-dimensional corona is proposed. Gasdynamic and thermal characteristics of a positive corona discharge in a coaxial electrode system are calculated. The calculated results are compared with the experimental data.

  8. Disease specific protein corona

    Science.gov (United States)

    Rahman, M.; Mahmoudi, M.

    2015-03-01

    It is now well accepted that upon their entrance into the biological environments, the surface of nanomaterials would be covered by various biomacromolecules (e.g., proteins and lipids). The absorption of these biomolecules, so called `protein corona', onto the surface of (nano)biomaterials confers them a new `biological identity'. Although the formation of protein coronas on the surface of nanoparticles has been widely investigated, there are few reports on the effect of various diseases on the biological identity of nanoparticles. As the type of diseases may tremendously changes the composition of the protein source (e.g., human plasma/serum), one can expect that amount and composition of associated proteins in the corona composition may be varied, in disease type manner. Here, we show that corona coated silica and polystyrene nanoparticles (after interaction with in the plasma of the healthy individuals) could induce unfolding of fibrinogen, which promotes release of the inflammatory cytokines. However, no considerable releases of inflammatory cytokines were observed for corona coated graphene sheets. In contrast, the obtained corona coated silica and polystyrene nanoparticles from the hypofibrinogenemia patients could not induce inflammatory cytokine release where graphene sheets do. Therefore, one can expect that disease-specific protein coronas can provide a novel approach for applying nanomedicine to personalized medicine, improving diagnosis and treatment of different diseases tailored to the specific conditions and circumstances.

  9. Corona SDK hotshot

    CERN Document Server

    Flanagan, Nevin

    2013-01-01

    Using a project based approach you will learn the coolest aspects of Corona SDK development. Each project contains step bystep explanations, diagrams, screenshots, and downloadable materials.This book is for users who already have completed at least one simple app using Corona and are familiar with mobile development using another platform and have done Lua programming in another context. Knowledge of the basic functions of Corona routines, as well as an understanding of the Lua programming language's syntax and common libraries, is assumed throughout.

  10. Solar Radio

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Scientists monitor the structure of the solar corona, the outer most regions of the Sun's atmosphere, using radio waves (100?s of MHz to 10?s of GHz). Variations in...

  11. Radio wave scattering observations of the solar corona: First-order measurements of expansion velocity and turbulence spectrum using Viking and Mariner 10 spacecraft

    International Nuclear Information System (INIS)

    Tyler, G.L.; Vesecky, J.F.; Plume, M.A.; Howard, H.T.; Barnes, A.

    1981-01-01

    Solar conjunction of Mars on 1976 November 25 occurred very near the beginning of solar cycle 21, about 4 months after the first Viking spacecraft arrived at the planet. Radio wave scattering data were collected at 3.6 and 13 cm wavelengths, using the radio link between the Viking orbiters and the Earth. These data allow measurements of solar wind properties over a range of heliocentric radial distance from approx.6 to 44 R/sub sun/ with solar latitudes ranging from -17 0 to +7 0 . Observations with Mariner 10 during a period of moderate solar activity in 1974 cover from 6 to 24 R/sub sun/ and from approx.20 0 to near 90 0 . We have found that the temporal frequency variance spectrum of amplitude fluctuations is useful for characterizing the bulk motion of the plasma. This spectrum has an approximately constant low frequency plateau and a power-law high frequency asymptote; the plateau-asymptote intersection frequency provides a measure of the solar wind velocity V. We also obtain the spectral index p of electron density turbulence, Phi/sub N/approx.kappa/sup -p/, where kappa is spatial wavenumber. These results apply to a cylindrical region oriented with its axis along the radio ray path and its center at the point of closest approach to the Sun. The measurements of V and p cover some 78/sup d/ for Viking and 49 2 for Mariner 10 and show the combined effects of changing heliocentric distance rho, solar latitude theta, and solar longitude Psi, as well as solar activity. The Viking results can be regarded as a function primary of rho and Psi since the observations are concentrated in the equatorial regions when solar activity was near minimum. For Mariner 10, rho, theta, and Psi variations were important. The Viking results show an abrupt change in V(rho) and the turbulence spectral index at approx.15 R/sub sun/

  12. Properties of minimum-flux coronae in dwarfs and giants

    International Nuclear Information System (INIS)

    Mullan, D.J.

    1976-01-01

    Using a method due to Hearn, we examine the properties of minimum-flux coronae in dwarfs and giants. If the fraction phi of the total stellar luminosity which is used to heat the corona is equal to the solar value phi/sub s/, then red dwarfs must have coronae that are cooler than the solar corona: in UV Ceti, for example, the coronal temperature is a factor 3 less than in the Sun. This is consistent with an independent estimate of coronal temperature in a flare star. If phi=phi/sub s/, main-sequence stars hotter than the Sun have coronae which are hotter than the solar corona. Soft X-rays from Sirius suggest that the coronal temperature in Sirius is indeed hotter than the Sun by a factor of about 40 percent. Giants show an even more marked decrease in coronal temperature at later spectral type than do the dwarfs. We suggest that the reason for the presence of O V emission in β Gem and O VI emission in α Aur, and the absence of O V emission in α Boo and α Tau, is that the coronae in the latter two stars are cooler (rather than hotter, as McClintock et al. have suggested) than in the former two. Our results explain why it is more likely that mass loss has been detected in α Aur and α Boo, but not in α Tau or β Gem. Using a simple flare model, we show that flares in both a dwarf star (UV Ceti) and a giant (α Aur) were initiated not in the corona, but in the transition region

  13. Equilibrium plasma corona surfaces

    International Nuclear Information System (INIS)

    Ensley, D.L.

    1979-07-01

    The distribution of charge of one sign when the opposite charge density is given is determined. Poisson's equation is solved in plane geometry for a simple specified ion density. This automatically gives the inverse solution for a given electron density, by reversing the sign of the potential. Some solutions can approximate a microwave confined corona, for very over dense cases

  14. Are All Flare Ribbons Simply Connected to the Corona?

    Energy Technology Data Exchange (ETDEWEB)

    Judge, Philip G. [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000 (United States); Paraschiv, Alin; Lacatus, Daniela; Donea, Alina [Monash Center for Astrophysics, School of Mathematical Science, Monash University, Victoria 3800 (Australia); Lindsey, Charlie, E-mail: judge@ucar.edu, E-mail: alina.donea@monash.edu, E-mail: alin.paraschiv@monash.edu, E-mail: daniela.lacatus@monash.edu, E-mail: indsey@cora.nwra.com [Northwest Research Associates, 3380 Mitchell Lane, Boulder, CO 80301 (United States)

    2017-04-01

    We consider the observational basis for the belief that flare ribbons in the chromosphere result from energy transport from the overlying corona. We study ribbons of small flares using magnetic and intensity data from the Hinode , Solar Dynamics Observatory , and IRIS missions. While most ribbons appear connected to the corona and overlie regions of significant vertical magnetic field, we examine one ribbon with no clear evidence for such connections. Evolving horizontal magnetic fields seen with Hinode suggest that reconnection with preexisting fields below the corona can explain the data. The identification of just one, albeit small, ribbon, with no apparent connection to the corona, leads us to conclude that at least two mechanisms are responsible for the heating that leads to flare ribbon emission.

  15. Secondary Rayleigh-Taylor Instabilities in the Reconnection Exhaust Jet: A Mechanism for Supra-Arcade Downflows in the Solar Corona

    Science.gov (United States)

    Guo, L.; Bhattacharjee, A.; Huang, Y. M.; Innes, D.

    2014-12-01

    Supra-arcade downflows (hereafter referred to as SADs) are low-emission, elongated, finger-like features usually observed in active-region coronae above post-eruption flare arcades. Observations exhibit downward moving SADs intertwined with bright, upward moving spikes. Whereas SADs are dark voids, spikes are brighter, denser structures. Although SADs have been observed for decades, the mechanism for formation of SADs remains an open issue. Using high-Lundquist-number three-dimensional resistive MHD simulations, we demonstrate that secondary Rayleigh-Taylor type instabilities develop in the downstream region of a reconnecting current sheet. The instability results in the formation of low-density coherent structures that resemble SADs, intertwined with high-density structures that appear to be spike-like. Using SDO/AIA images, we highlight features that have been previously unexplained, such as the splitting of SADs at their heads, but are a natural consequence of instabilities above the arcade. Comparison with siumlations suggest that secondary Rayleigh-Taylor type instabilities in the exhaust of reconnecting current sheets provide a plausible mechanism for observed SADs and spikes. Although the plasma conditions are vastly different, analogous phenomena also occur in the Earth's magnetotail during reconnection.

  16. Comments on the 'minimum flux corona' concept

    International Nuclear Information System (INIS)

    Antiochos, S.K.; Underwood, J.H.

    1978-01-01

    Hearn's (1975) models of the energy balance and mass loss of stellar coronae, based on a 'minimum flux corona' concept, are critically examined. First, it is shown that the neglect of the relevant length scales for coronal temperature variation leads to an inconsistent computation of the total energy flux F. The stability arguments upon which the minimum flux concept is based are shown to be fallacious. Errors in the computation of the stellar wind contribution to the energy budget are identified. Finally we criticize Hearn's (1977) suggestion that the model, with a value of the thermal conductivity modified by the magnetic field, can explain the difference between solar coronal holes and quiet coronal regions. (orig.) 891 WL [de

  17. Dynamics of the transition corona

    International Nuclear Information System (INIS)

    Masson, Sophie; McCauley, Patrick; Golub, Leon; Reeves, Katharine K.; DeLuca, Edward E.

    2014-01-01

    Magnetic reconnection between the open and closed magnetic fields in the corona is believed to play a crucial role in the corona/heliosphere coupling. At large scale, the exchange of open/closed connectivity is expected to occur in pseudo-streamer (PS) structures. However, there is neither clear observational evidence of how such coupling occurs in PSs, nor evidence for how the magnetic reconnection evolves. Using a newly developed technique, we enhance the off-limb magnetic fine structures observed with the Atmospheric Imaging Assembly and identify a PS-like feature located close to the northern coronal hole. We first identify that the magnetic topology associated with the observation is a PS, null-point (NP) related topology bounded by the open field. By comparing the magnetic field configuration with the EUV emission regions, we determined that most of the magnetic flux associated with plasma emission are small loops below the PS basic NP and open field bounding the PS topology. In order to interpret the evolution of the PS, we referred to a three-dimensional MHD interchange reconnection modeling the exchange of connectivity between small closed loops and the open field. The observed PS fine structures follow the dynamics of the magnetic field before and after reconnecting at the NP obtained by the interchange model. Moreover, the pattern of the EUV plasma emission is the same as the shape of the expected plasma emission location derived from the simulation. These morphological and dynamical similarities between the PS observations and the results from the simulation strongly suggest that the evolution of the PS, and in particular the opening/closing of the field, occurs via interchange/slipping reconnection at the basic NP of the PS. Besides identifying the mechanism at work in the large-scale coupling between the open and closed fields, our results highlight that interchange reconnection in PSs is a gradual physical process that differs from the impulsive

  18. Corona SDK application design

    CERN Document Server

    Williams, Daniel

    2013-01-01

    A step by step tutorial that focuses on everything from setup to deployment of basic apps.Have you ever wanted to create your own app? Then this book is for you. You will learn how to create apps using Corona SDK and how to publish your app so others can get a glimpse of your creation. This book is aimed at both Android and iOS app developers. The reader must have basic knowledge of app development.

  19. Solar Stereoscopy and Tomography

    Directory of Open Access Journals (Sweden)

    Markus J. Aschwanden

    2011-10-01

    Full Text Available We review stereoscopic and tomographic methods used in the solar corona, including ground-based and space-based measurements, using solar rotation or multiple spacecraft vantage points, in particular from the STEREO mission during 2007--2010. Stereoscopic and tomographic observations in the solar corona include large-scale structures, streamers, active regions, coronal loops, loop oscillations, acoustic waves in loops, erupting filaments and prominences, bright points, jets, plumes, flares, CME source regions, and CME-triggered global coronal waves. Applications in the solar interior (helioseismic tomography and reconstruction and tracking of CMEs from the outer corona and into the heliosphere (interplanetary CMEs are not included.

  20. Galactic absorption line coronae

    International Nuclear Information System (INIS)

    Bregman, J.N.

    1981-01-01

    We have investigated whether gaseous coronae around galaxies rise to the absorption systems seen in quasar spectra. In our model, gas originally located in the disk is heated to the million degree range and rises to surround the galaxy; the gas remains bound to the galaxy. Optically thin radiative cooling drives a thermal instability in the hot gas which causes cool clouds (T 4 K) to condense out of the corona. These clouds, which follow ballistic trajectories back to the disk, are the absorption sites. A two-dimensional hydrodynamic code with radiative cooling was used to study the dynamics and thermodynamics of the corona as well as the position rate at which clouds form. Coupled to the code is a galaxy with two mass components, a disk (approx.10 11 M/sub sun/) and a dark halo (approx.10 12 M/sub sun/). In a model where the temperature at the base of the corona (in the disk) is 3 x 10 6 K, absorbing gas of column density NL> or approx. =10 18 cm 2 extends radially to 100 kpc (face-on orientation) and vertically to 60 Kpc (edge-on orientation). The total mass of gas required here (coronal plus cloud gas) is 1.4 x 10 10 M/sub sun/, while the minimum supernova heating rate is one supernova per 27 years. In two other models (base coronal temperatures of 0.50 x 10 6 K and 1 x 10 6 K), coronal gas rises from an extended gaseous disk (in the previous model, the gas comes from a typical gaseous disk approximately 15 kpc in extent). Here, column densities of 10 19 cm -2 out to a radius of 70 kpc (face-on orientation) are achieved with a total gas mass of 1.7 x 10 9 M/sub direct-product/ and 2.0 x 10 9 M/sub sun/ and minimum heating rates of approximately one supernova per 170 years and one supernova per 60 years

  1. High-cadence observations of CME initiation and plasma dynamics in the corona with TESIS on board CORONAS-Photon

    Science.gov (United States)

    Bogachev, Sergey; Kuzin, Sergey; Zhitnik, I. A.; Bugaenko, O. I.; Goncharov, A. L.; Ignatyev, A. P.; Krutov, V. V.; Lomkova, V. M.; Mitrofanov, A. V.; Nasonkina, T. P.; Oparin, S. N.; Petzov, A. A.; Shestov, S. V.; Slemzin, V. A.; Soloviev, V. A.; Suhodrev, N. K.; Shergina, T. A.

    The TESIS is an ensemble of space instruments designed in Lebedev Institute of Russian Academy of Sciences for spectroscopic and imaging investigation of the Sun in EUV and soft X-ray spectral range with high spatial, temporal and spectral resolution. From 2009 January, when TESIS was launched onboard the Coronas-Photon satellite, it provided about 200 000 new images and spectra of the Sun, obtained during one of the deepest solar minimum in last century. Because of the wide field of view (4 solar radii) and high sensitivity, TESIS provided high-quality data on the origin and dynamics of eruptive prominences and CMEs in the low and intermediate solar corona. TESIS is also the first EUV instrument which provided high-cadence observations of coronal bright points and solar spicules with temporal resolution of a few seconds. We present first results of TESIS observations and discuss them from a scientific point of view.

  2. Line formation in the solar chromosphere. II - An optically thick region of the chromosphere-corona transition region observed with OSO 8

    Science.gov (United States)

    Lites, B. W.; Hansen, E. R.; Shine, R. A.

    1980-01-01

    The University of Colorado ultraviolet spectrometer aboard the Orbiting Solar Observatory 8(OSO 8) has measured self-reversed profiles of the resonance line of C IV lamda 1548.2 at the limb passage of an active region. The degree of the self-reversal together with the absolute intensity of the line profile determine the electron density in the active region at 10 to the 10th/cu cm at temperatures where the C IV line is formed. The nonthermal component of the broadening velocity is no more than 14km/s, and the physical thickness of an equivalent plane-parallel slab in hydrostatic equilibrium that would give rise to the observed line profiles is about 430 km.

  3. Ions mobilities in corona discharge

    International Nuclear Information System (INIS)

    Bakhtaev, Sh. A.; Bochkareva, G. V.; Sydykova, G. K.

    2000-01-01

    Ion mobility in unipolar corona at small inter-electron distances (up to 0.01 m) when as coroning element serves micro-wire is consider. Experimental data of ion mobility in corona discharge external zone in atmospheric air are obtained and its comparative analysis with known data is worked out. (author)

  4. Ground-based observation of emission lines from the corona of a red-dwarf star.

    Science.gov (United States)

    Schmitt, J H; Wichmann, R

    2001-08-02

    All 'solar-like' stars are surrounded by coronae, which contain magnetically confined plasma at temperatures above 106 K. (Until now, only the Sun's corona could be observed in the optical-as a shimmering envelope during a total solar eclipse.) As the underlying stellar 'surfaces'-the photospheres-are much cooler, some non-radiative process must be responsible for heating the coronae. The heating mechanism is generally thought to be magnetic in origin, but is not yet understood even for the case of the Sun. Ultraviolet emission lines first led to the discovery of the enormous temperature of the Sun's corona, but thermal emission from the coronae of other stars has hitherto been detectable only from space, at X-ray wavelengths. Here we report the detection of emission from highly ionized iron (Fe XIII at 3,388.1 A) in the corona of the red-dwarf star CN Leonis, using a ground-based telescope. The X-ray flux inferred from our data is consistent with previously measured X-ray fluxes, and the non-thermal line width of 18.4 km s-1 indicates great similarities between solar and stellar coronal heating mechanisms. The accessibility and spectral resolution (45,000) of the ground-based instrument are much better than those of X-ray satellites, so a new window to the study of stellar coronae has been opened.

  5. Sun and solar flares

    Energy Technology Data Exchange (ETDEWEB)

    McKenna-Lawlor, S. (Saint Patrick' s Coll., Maynooth (Ireland))

    1982-07-01

    The subject is discussed under the headings: the sun's core (thermonuclear reactions, energy transfer from core through radiation zone, convection zone, photosphere, chromosphere and corona); the photosphere (convection, granulation, sunspots, magnetic fields, solar cycle, rotation of the sun); solar variability and paleoclimatic records (correlation of low solar activity with increased /sup 14/C production in atmosphere); the chromosphere and corona (turbulence, temperature, coronal streamers, energy transfer); solar flares (cosmic rays, aurorae, spectra, velocity of flares, prominences, mechanisms of flares); the solar wind.

  6. Nanoflare heating model for collisionless solar corona

    Indian Academy of Sciences (India)

    2017-01-31

    Jan 31, 2017 ... The Sweet–Parker model uses a steady-state scaling analysis to determine ... Sweet–Parker mode. The electric field occurring in this region can be .... where V is the volume of the current sheet given by. L2 z. On substituting ...

  7. Corona-Solar Wind Coupling Review

    Science.gov (United States)

    1987-06-01

    been reviewed and is approved for publication" E. G. Mullen E. G. Mullen Contract Manager Chief, Space Particles Environment Branch FOR THR COIN 1a...modeled, partly because the acceleration mechanism is still under study. Conclusions This review has been a survey of the current state of knowlede of

  8. Nanoflares and Heating of the Solar Corona

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Coronal heating by nanoflares is presented by using observational, analytical, numerical simulation and statistical results. Numerical simulations show the formation of numerous current sheets if the magnetic field is sheared and bipoles have unequal pole strengths. This fact supports the generation of ...

  9. Evolution of CME Mass in the Corona

    Science.gov (United States)

    Howard, Russell A.; Vourlidas, Angelos

    2018-04-01

    The idea that coronal mass ejections (CMEs) pile up mass in their transport through the corona and heliosphere is widely accepted. However, it has not been shown that this is the case. We perform an initial study of the volume electron density of the fronts of 13 three-part CMEs with well-defined frontal boundaries observed with the Solar and Heliospheric Observatory/ Large Angle and Spectrometric COronagraph (SOHO/LASCO) white-light coronagraphs. We find that, in all cases, the volume electron density decreases as the CMEs travel through the LASCO-C2 and -C3 fields of view, from 2.6 - 30 R_{⊙}. The density decrease follows closely a power law with an exponent of -3, which is consistent with a simple radial expansion. This indicates that in this height regime there is no observed pile-up.

  10. The 1995 total solar eclipse: an overview.

    Science.gov (United States)

    Singh, J.

    A number of experiments were conducted during the total solar eclipse of October 24, 1995. First time efforts were made to photograph the solar corona using IAF jet aircrafts and transport planes ad hot air balloons.

  11. Green corona, geomagnetic activity and radar meteor rates

    International Nuclear Information System (INIS)

    Prikryl, P.

    1979-01-01

    The short-term dependence of radar meteor rates on geomagnetic activity and/or central meridian passage (CMP) of bright or faint green corona regions is studied. A superimposed-epoch analysis was applied to radar meteor observations from the Ottawa patrol radar (Springhill, Ont.) and Ksub(p)-indices of geomagnetic activity for the period 1963 to 1967. During the minimum of solar activity (1963 to 1965) the CMP of bright coronal regions was followed by the maximum in the daily rates of persistent meteor echoes (>=4s), and the minimum in the daily sums of Ksub(p)-indices whereas the minimum or the maximum, respectively, occurs after the CMP of faint coronal regions. The time delay between the CMP of coronal structures and the corresponding maxima or minima is found to be 3 to 4 days. However, for the period immediately after the minimum of solar activity (1966 to 1967) the above correlation with the green corona is void both for the geomagnetic activity and radar meteor rates. An inverse correlation was found between the radar meteor rates and the geomagnetic activity irrespective of the solar activity. The observed effect can be ascribed to the solar-wind-induced ''geomagnetic'' heating of the upper atmosphere and to the subsequent change in the density gradient in the meteor zone. (author)

  12. Current Sheets in the Corona and the Complexity of Slow Wind

    Science.gov (United States)

    Antiochos, Spiro

    2010-01-01

    The origin of the slow solar wind has long been one of the most important problems in solar/heliospheric physics. Two observational constraints make this problem especially challenging. First, the slow wind has the composition of the closed-field corona, unlike the fast wind that originates on open field lines. Second, the slow wind has substantial angular extent, of order 30 degrees, which is much larger than the widths observed for streamer stalks or the widths expected theoretically for a dynamic heliospheric current sheet. We propose that the slow wind originates from an intricate network of narrow (possibly singular) open-field corridors that emanate from the polar coronal hole regions. Using topological arguments, we show that these corridors must be ubiquitous in the solar corona. The total solar eclipse in August 2008, near the lowest point of cycle 23 affords an ideal opportunity to test this theory by using the ultra-high resolution Predictive Science's (PSI) eclipse model for the corona and wind. Analysis of the PSI eclipse model demonstrates that the extent and scales of the open-field corridors can account for both the angular width of the slow wind and its closed-field composition. We discuss the implications of our slow wind theory for the structure of the corona and heliosphere at solar minimum and describe further observational and theoretical tests.

  13. The sun and solar flares

    International Nuclear Information System (INIS)

    McKenna-Lawlor, S.

    1982-01-01

    The subject is discussed under the headings: the sun's core (thermonuclear reactions, energy transfer from core through radiation zone, convection zone, photosphere, chromosphere and corona); the photosphere (convection, granulation, sunspots, magnetic fields, solar cycle, rotation of the sun); solar variability and paleoclimatic records (correlation of low solar activity with increased 14 C production in atmosphere); the chromosphere and corona (turbulence, temperature, coronal streamers, energy transfer); solar flares (cosmic rays, aurorae, spectra, velocity of flares, prominences, mechanisms of flares); the solar wind. (U.K.)

  14. Pulsed Corona for Sustainable Technology

    International Nuclear Information System (INIS)

    Heesch, E.J.M. van; Pemen, A.J.M.; Yan, K.; Blom, P.P.M.; Huijbrechts, P.A.H.J.; Der Laan, P.C.T. van

    2000-01-01

    Highly active coronas with a peak power of up to 25 MW p/m corona wire and kJ/liter energy densities in the streamer channels can be produced by pulsed power. Since the voltage pulses are short, full breakdown does not occur even though the discharge currents are hundreds of Amperes. A matched pulsed power source can deposit up to 80% of its electrical energy into such a controlled discharge. Reliable and efficient sources characterized by 100 kV,150 ns wide pulses at 1000 Hz have passed 400 hours of operation. The area of applications is growing: VOC control, hot gas cleanup, water and air purification and sterilization. (author)

  15. Pulsed Corona Discharge Generated By Marx Generator

    Science.gov (United States)

    Sretenovic, G. B.; Obradovic, B. M.; Kovacevic, V. V.; Kuraica, M. M.; Puric J.

    2010-07-01

    The pulsed plasma has a significant role in new environmental protection technologies. As a part of a pulsed corona system for pollution control applications, Marx type repetitive pulse generator was constructed and tested in arrangement with wire-plate corona reactor. We performed electrical measurements, and obtained voltage and current signals, and also power and energy delivered per pulse. Ozone formation by streamer plasma in air was chosen to monitor chemical activity of the pulsed corona discharge.

  16. Hi-C Observations of an Active Region Corona, and Investigation of the Underlying Magnetic Structure

    Science.gov (United States)

    Tiwari, S. K.; Alexander, C. E.; Winebarger, A.; Moore, R. L.

    2014-01-01

    The solar corona is much hotter (>=10(exp 6) K) than its surface (approx 6000 K), puzzling astrophysicists for several decades. Active region (AR) corona is again hotter than the quiet Sun (QS) corona by a factor of 4-10. The most widely accepted mechanism that could heat the active region corona is the energy release by current dissipation via reconnection of braided magnetic field structure, first proposed by E. N. Parker three decades ago. The first observational evidence for this mechanism has only recently been presented by Cirtain et al. by using High-resolution Coronal Imager (Hi-C) observations of an AR corona at a spatial resolution of 0.2 arcsec, which is required to resolve the coronal loops, and was not available before the rocket flight of Hi-C in July 2012. The Hi-C project is led by NASA/MSFC. In the case of the QS, work done by convection/granulation on the inter-granular feet of the coronal field lines translates into the heat observed in the corona. In the case of the AR, as here, there could be flux emergence, cancellation/submergence, or shear flows generating large stress and tension in coronal field loops which is released as heat in the corona. We are currently investigating the changes taking place in photospheric feet of the magnetic field involved with brightenings in the Hi-C AR corona. For this purpose, we are also using SDO/AIA data of +/- 2 hours around the 5 minutes Hi-C flight. In the present talk, I will first summarize some of the results of the Hi-C observations and then present some results from our recent analysis on what photospheric processes feed the magnetic energy that dissipates into heat in coronal loops.

  17. Processing method of images obtained during the TESIS/CORONAS-PHOTON experiment

    Science.gov (United States)

    Kuzin, S. V.; Shestov, S. V.; Bogachev, S. A.; Pertsov, A. A.; Ulyanov, A. S.; Reva, A. A.

    2011-04-01

    In January 2009, the CORONAS-PHOTON spacecraft was successfully launched. It includes a set of telescopes and spectroheliometers—TESIS—designed to image the solar corona in soft X-ray and EUV spectral ranges. Due to features of the reading system, to obtain physical information from these images, it is necessary to preprocess them, i.e., to remove the background, correct the white field, level, and clean. The paper discusses the algorithms and software developed and used for the preprocessing of images.

  18. Two-zone model of coronal hole structure in the high corona

    International Nuclear Information System (INIS)

    Wang, Z.; Kundu, M.R.; Yoshimura, H.

    1988-01-01

    The two-zone coronal hole structure model presently proposed for the high corona at 1.5-1.7 solar radii emerges from a comparison of computation results for the potential magnetic fields of the corona and meter-decameter radio observations. The two zones of a coronal hole are defined by the configuration of magnetic field lines around a coronal hole: (1) the central hole of an open diverging magnetic field line system; and (2) the boundary zone between the central zone of the open field line system and the closed field line system or systems surrounding the open field line system. 19 references

  19. The "FIP Effect" and the Origins of Solar Energetic Particles and of the Solar Wind

    OpenAIRE

    Reames, Donald V.

    2018-01-01

    We find that the element abundances in solar energetic particles (SEPs) and in the slow solar wind (SSW), relative to those in the photosphere, show different patterns as a function of the first ionization potential (FIP) of the elements. Generally, the SEP and SSW abundances reflect abundance samples of the solar corona, where low-FIP elements, ionized in the chromosphere, are more efficiently conveyed upward to the corona than high-FIP elements that are initially neutral atoms. Abundances o...

  20. Power-law Statistics of Driven Reconnection in the Magnetically Closed Corona

    Science.gov (United States)

    Knizhnik, K. J.; Uritsky, V. M.; Klimchuk, J. A.; DeVore, C. R.

    2018-01-01

    Numerous observations have revealed that power-law distributions are ubiquitous in energetic solar processes. Hard X-rays, soft X-rays, extreme ultraviolet radiation, and radio waves all display power-law frequency distributions. Since magnetic reconnection is the driving mechanism for many energetic solar phenomena, it is likely that reconnection events themselves display such power-law distributions. In this work, we perform numerical simulations of the solar corona driven by simple convective motions at the photospheric level. Using temperature changes, current distributions, and Poynting fluxes as proxies for heating, we demonstrate that energetic events occurring in our simulation display power-law frequency distributions, with slopes in good agreement with observations. We suggest that the braiding-associated reconnection in the corona can be understood in terms of a self-organized criticality model driven by convective rotational motions similar to those observed at the photosphere.

  1. Power-Law Statistics of Driven Reconnection in the Magnetically Closed Corona

    Science.gov (United States)

    Klimchuk, J. A.; DeVore, C. R.; Knizhnik, K. J.; Uritskiy, V. M.

    2018-01-01

    Numerous observations have revealed that power-law distributions are ubiquitous in energetic solar processes. Hard X-rays, soft X-rays, extreme ultraviolet radiation, and radio waves all display power-law frequency distributions. Since magnetic reconnection is the driving mechanism for many energetic solar phenomena, it is likely that reconnection events themselves display such power-law distributions. In this work, we perform numerical simulations of the solar corona driven by simple convective motions at the photospheric level. Using temperature changes, current distributions, and Poynting fluxes as proxies for heating, we demonstrate that energetic events occurring in our simulation display power-law frequency distributions, with slopes in good agreement with observations. We suggest that the braiding-associated reconnection in the corona can be understood in terms of a self-organized criticality model driven by convective rotational motions similar to those observed at the photosphere.

  2. "SOLAR MAGNETIZED ""TORNADOES:"" RELATION TO FILAMENTS"

    OpenAIRE

    Su, Yang; Wang, Tongjiang; Veronig, Astrid; Temmer, Manuela; Gan, Weiqun

    2012-01-01

    Solar magnetized "tornadoes", a phenomenon discovered in the solar atmosphere, appear as tornado-like structures in the corona but root in the photosphere. Like other solar phenomena, solar tornadoes are a feature of magnetized plasma and therefore differ distinctly from terrestrial tornadoes. Here we report the first analysis of solar "tornadoes" {Two papers which focused on different aspect of solar tornadoes were published in the Astrophysical Journal Letters (Li et al. 2012) and Nature (W...

  3. A precise measurement of the magnetic field in the corona of the black hole binary V404 Cygni.

    Science.gov (United States)

    Dallilar, Yigit; Eikenberry, Stephen S; Garner, Alan; Stelter, Richard D; Gottlieb, Amy; Gandhi, Poshak; Casella, Piergiorgio; Dhillon, Vik S; Marsh, Tom R; Littlefair, Stuart P; Hardy, Liam; Fender, Rob; Mooley, Kunal; Walton, Dominic J; Fuerst, Felix; Bachetti, Matteo; Castro-Tirado, A J; Charcos, Miguel; Edwards, Michelle L; Lasso-Cabrera, Nestor M; Marin-Franch, Antonio; Raines, S Nicholas; Ackley, Kendall; Bennett, John G; Cenarro, A Javier; Chinn, Brian; Donoso, H Veronica; Frommeyer, Raymond; Hanna, Kevin; Herlevich, Michael D; Julian, Jeff; Miller, Paola; Mullin, Scott; Murphey, Charles H; Packham, Chris; Varosi, Frank; Vega, Claudia; Warner, Craig; Ramaprakash, A N; Burse, Mahesh; Punnadi, Sujit; Chordia, Pravin; Gerarts, Andreas; de Paz Martín, Héctor; Calero, María Martín; Scarpa, Riccardo; Acosta, Sergio Fernandez; Hernández Sánchez, William Miguel; Siegel, Benjamin; Pérez, Francisco Francisco; Viera Martín, Himar D; Rodríguez Losada, José A; Nuñez, Agustín; Tejero, Álvaro; Martín González, Carlos E; Rodríguez, César Cabrera; Molgó, Jordi; Rodriguez, J Esteban; Cáceres, J Israel Fernández; Rodríguez García, Luis A; Lopez, Manuel Huertas; Dominguez, Raul; Gaggstatter, Tim; Lavers, Antonio Cabrera; Geier, Stefan; Pessev, Peter; Sarajedini, Ata

    2017-12-08

    Observations of binary stars containing an accreting black hole or neutron star often show x-ray emission extending to high energies (>10 kilo--electron volts), which is ascribed to an accretion disk corona of energetic particles akin to those seen in the solar corona. Despite their ubiquity, the physical conditions in accretion disk coronae remain poorly constrained. Using simultaneous infrared, optical, x-ray, and radio observations of the Galactic black hole system V404 Cygni, showing a rapid synchrotron cooling event in its 2015 outburst, we present a precise 461 ± 12 gauss magnetic field measurement in the corona. This measurement is substantially lower than previous estimates for such systems, providing constraints on physical models of accretion physics in black hole and neutron star binary systems. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  4. Our prodigal sun. [solar energy technology

    Science.gov (United States)

    1974-01-01

    Characteristics of the sun are reported indicating it as a source of energy. Data from several space missions are discussed, and the solar activity cycle is presented. The corona, flares, prominences, spots, and wind of the sun are also discussed.

  5. The solar probe mission

    International Nuclear Information System (INIS)

    Feldman, W.C.; Anderson, J.; Bohlin, J.D.; Burlaga, L.F.; Farquhar, R.; Gloeckler, G.; Goldstein, B.E.; Harvey, J.W.; Holzer, T.E.; Jones, W.V.; Kellogg, P.J.; Krimigis, S.M.; Kundu, M.R.; Lazarus, A.J.; Mellott, M.M.; Parker, E.N.; Rosner, R.; Rottman, G.J.; Slavin, J.A.; Suess, S.T.; Tsurutani, B.T.; Woo, R.T.; Zwickl, R.D.

    1990-01-01

    The Solar Probe will deliver a 133.5 kg science payload into a 4 R s perihelion solar polar orbit (with the first perihelion passage in 2004) to explore in situ one of the last frontiers in the solar system---the solar corona. This mission is both affordable and technologically feasible. Using a payload of 12 (predominantly particles and fields) scientific experiments, it will be possible to answer many long-standing, fundamental problems concerning the structure and dynamics of the outer solar atmosphere, including the acceleration, storage, and transport of energetic particles near the Sun and in the inner ( s ) heliosphere

  6. STRUCTURE AND DYNAMICS OF THE 2010 JULY 11 ECLIPSE WHITE-LIGHT CORONA

    International Nuclear Information System (INIS)

    Pasachoff, J. M.; Rusin, V.; Saniga, M.

    2011-01-01

    The white-light corona (WLC) during the total solar eclipse on 2010 July 11 was observed by several teams in the Moon's shadow stretching across the Pacific Ocean and a number of isolated islands. We present a comparison of the WLC as observed by eclipse teams located on the Tatakoto Atoll in French Polynesia and on Easter Island, 83 minutes later, combined with near-simultaneous space observations. The eclipse was observed at the beginning of the solar cycle, not long after solar minimum. Nevertheless, the solar corona shows a plethora of different features (coronal holes, helmet streamers, polar rays, very faint loops and radial-oriented thin streamers, a coronal mass ejection, and a puzzling 'curtain-like' object above the north pole). Comparing the observations from the two sites enables us to detect some dynamic phenomena. The eclipse observations are further compared with a hairy-ball model of the magnetic field and near-simultaneous images from the Atmospheric Imaging Assembly on NASA's Solar Dynamics Observatory, the Extreme Ultraviolet Imager on NASA's Solar Terrestrial Relations Observatory, the Sun Watcher, using Active Pixel System Detector and Image Processing on ESA's PRoject for Onboard Autonomy, and the Naval Research Laboratory's Large Angle and Spectrometric Coronagraph on ESA's Solar and Heliospheric Observatory. The Ludendorff flattening coefficient is 0.156, matching the expected ellipticity of coronal isophotes at 2 Rs un , for this rising phase of the solar-activity cycle.

  7. Modeling of Trichel pulses in negative corona

    International Nuclear Information System (INIS)

    Napartovich, A.P.; Akishev, Yu. S.; Deryugin, A.A.; Kochetov, I.V.; Pan'kin, M.V.; Trushkin, N.I.

    1998-01-01

    Results are reported of detailed numerical studies of Trichel pulse formation for dry air in short-gap coronas. Continuity equations for electrons, positive and negative ions, and the Poisson equation averaged over the current cross section were solved numerically with appropriate boundary conditions. The results of numerical simulation make it possible to analyze in detail the trailing edge of the Trichel pulse and the inter-pulse pause determining the period between pulses. In particular, the variations of the total number of negative ions in the corona spacing occurring under typical conditions of a pulsating corona, proved to be quite insignificant. A comparison with experiments demonstrated a reasonable agreement both for the shape of the pulse and for the average characteristics of the negative corona. (J.U.)

  8. Frontier of solar observation. Solar activity observed by 'HINODE' mission

    International Nuclear Information System (INIS)

    Watanabe, Tetsuya

    2008-01-01

    After launched in September 2006, solar observation satellite 'HINODE' has been a solar observatory on orbit with the scientific instruments well operated and its continuous observation was conducted steadily on almost all solar atmospheres from photosphere to corona. 'HINODE' was equipped with the solar optical telescope, extreme-ultraviolet imaging spectrometer and x-ray telescope and aimed at clarifying the mystery of solar physics related with coronal heating and magnetic reconnection. Present state of 'HINODE' was described from observations made in initial observation results, which have made several discoveries, such as Alfven waves in the corona, unexpected dynamics in the chromosphere and photosphere, continuous outflowing plasma as a possible source of solar wind, and fine structures of magnetic field in sunspots and solar surface. (T. Tanaka)

  9. Corona Associations and Their Implications for Venus

    Science.gov (United States)

    Chapman, M.G.; Zimbelman, J.R.

    1998-01-01

    Geologic mapping principles were applied to determine genetic relations between coronae and surrounding geomorphologic features within two study areas in order to better understand venusian coronae. The study areas contain coronae in a cluster versus a contrasting chain and are (1) directly west of Phoebe Regio (quadrangle V-40; centered at latitude 15??S, longitude 250??) and (2) west of Asteria and Beta Regiones (between latitude 23??N, longitude 239?? and latitude 43??N, longitude 275??). Results of this research indicate two groups of coronae on Venus: (1) those that are older and nearly coeval with regional plains, and occur globally; and (2) those that are younger and occur between Beta, Atla, and Themis Regiones or along extensional rifts elsewhere, sometimes showing systematic age progressions. Mapping relations and Earth analogs suggest that older plains coronae may be related to a near-global resurfacing event perhaps initiated by a mantle superplume or plumes. Younger coronae of this study that show age progression may be related to (1) a tectonic junction of connecting rifts resulting from local mantle upwelling and spread of a quasi-stationary hotspot plume, and (2) localized spread of post-plains volcanism. We postulate that on Venus most of the young, post-resurfacing coronal plumes may be concentrated within an area defined by the bounds of Beta, Atla, and Themis Regiones. ?? 1998 Academic Press.

  10. Spicular downflows in late-type giant coronae

    International Nuclear Information System (INIS)

    Wallenhorst, S.G.

    1980-01-01

    Models of the coronae of late-type stars are considered, under the assumption that the dominant coronal energy loss is not conduction, as is usually assumed, but rather the losses due to hot spicular material falling back onto the chromosphere. This assumption is used to estimated the increase in stellar mass-loss rate which should occur when stars evolve across the so-called Supersonic Transition Locus (STL). For a constant downward number flux, this increase is estimate to be about one order of magnitude. Energy-balance models are then considered for spicule-dominated coronae, under the additional assumption that the energy input flux to the corona is constant over a star's post-main sequence evolution; this assumption is found to be consistent with observed red giant mass-loss rates. A sequence of models is constructed which enables the various coronal parameters to be estimated for different masses and radii. The models yield results similar to those of the minimum flux coronal theory of A.G. Hearn; these similarities, along with the validity of the minimum flux technique, are discussed. It is shown that several criticisms of the minimum flux method, due to Antiochos and Underwood (1978) and Van Tend (1979), are valid for minimum flux models in which spicular downflow is neglected, but are satisfied by the models considered below. Solutions which precisely satisfy the constant-flux assumption are not found to exist for solar mass stars. Under the assumption that the minimum flux theory is correct, and using a downflow number flux derived from the energy-balance model, the jump in mass-loss rate at the STL is reevaluated. In this more rigorous case, the jump is found to be only about a factor of three. It is concluded that large increases in mass-loss rate are not to be expected as stars evolve across this transition locus

  11. Air corona discharge chemical kinetics

    International Nuclear Information System (INIS)

    Kline, L.E.; Kanter, I.E.

    1984-01-01

    We have theoretically studied the initial chemical processing steps which occur in pulseless, negative, dc corona discharges in flowing air. A rate equation model is used because these discharges consist of a very small ionization zone near the pin with most of the pin-plane gap filled by a drift zone where both the electric field and the electron density are relatively uniform. The primary activated species are N 2 (A),O and O 2 (a 1 Δ). The predicted activated species density due to one discharge is 100 ppm per ms . mA cm 2 assuming E/n=60 Td. In pure, dry air the final product due to these activated species is primarily O 3 . The NO /sub x/ production is about 0.5 ppm per mA. In moist air there is an additional production of about 1.5 ppm per mA of HO /sub x/ species. The predicted ozone formation reactions will be ''intercepted'' when impurities are present in the air. Impurities present at densities below about 0.1% will react primarily with the activated species rather than with electrons. Hence the predicted activated species density provides an estimate of the potential chemical processing performance of the discharge

  12. Equitable Colorings Of Corona Multiproducts Of Graphs

    Directory of Open Access Journals (Sweden)

    Furmánczyk Hanna

    2017-11-01

    Full Text Available A graph is equitably k-colorable if its vertices can be partitioned into k independent sets in such a way that the numbers of vertices in any two sets differ by at most one. The smallest k for which such a coloring exists is known as the equitable chromatic number of G and denoted by =(G. It is known that the problem of computation of =(G is NP-hard in general and remains so for corona graphs. In this paper we consider the same model of coloring in the case of corona multiproducts of graphs. In particular, we obtain some results regarding the equitable chromatic number for the l-corona product G ◦l H, where G is an equitably 3- or 4-colorable graph and H is an r-partite graph, a cycle or a complete graph. Our proofs are mostly constructive in that they lead to polynomial algorithms for equitable coloring of such graph products provided that there is given an equitable coloring of G. Moreover, we confirm the Equitable Coloring Conjecture for corona products of such graphs. This paper extends the results from [H. Furmánczyk, K. Kaliraj, M. Kubale and V.J. Vivin, Equitable coloring of corona products of graphs, Adv. Appl. Discrete Math. 11 (2013 103–120].

  13. Evolving Waves and Turbulence in the Outer Corona and Inner Heliosphere: The Accelerating Expanding Box

    Energy Technology Data Exchange (ETDEWEB)

    Tenerani, Anna; Velli, Marco [EPSS, UCLA, Los Angeles, CA (United States)

    2017-07-01

    Alfvénic fluctuations in the solar wind display many properties reflecting an ongoing nonlinear cascade, e.g., a well-defined spectrum in frequency, together with some characteristics more commonly associated with the linear propagation of waves from the Sun, such as the variation of fluctuation amplitude with distance, dominated by solar wind expansion effects. Therefore, both nonlinearities and expansion must be included simultaneously in any successful model of solar wind turbulence evolution. Because of the disparate spatial scales involved, direct numerical simulations of turbulence in the solar wind represent an arduous task, especially if one wants to go beyond the incompressible approximation. Indeed, most simulations neglect solar wind expansion effects entirely. Here we develop a numerical model to simulate turbulent fluctuations from the outer corona to 1 au and beyond, including the sub-Alfvénic corona. The accelerating expanding box (AEB) extends the validity of previous expanding box models by taking into account both the acceleration of the solar wind and the inhomogeneity of background density and magnetic field. Our method incorporates a background accelerating wind within a magnetic field that naturally follows the Parker spiral evolution using a two-scale analysis in which the macroscopic spatial effect coupling fluctuations with background gradients becomes a time-dependent coupling term in a homogeneous box. In this paper we describe the AEB model in detail and discuss its main properties, illustrating its validity by studying Alfvén wave propagation across the Alfvén critical point.

  14. Recent perspectives in solar physics - Elemental composition, coronal structure and magnetic fields, solar activity

    Science.gov (United States)

    Newkirk, G., Jr.

    1975-01-01

    Elemental abundances in the solar corona are studied. Abundances in the corona, solar wind and solar cosmic rays are compared to those in the photosphere. The variation in silicon and iron abundance in the solar wind as compared to helium is studied. The coronal small and large scale structure is investigated, emphasizing magnetic field activity and examining cosmic ray generation mechanisms. The corona is observed in the X-ray and EUV regions. The nature of coronal transients is discussed with emphasis on solar-wind modulation of galactic cosmic rays. A schematic plan view of the interplanetary magnetic field during sunspot minimum is given showing the presence of magnetic bubbles and their concentration in the region around 4-5 AU by a fast solar wind stream.

  15. Imprint of the Sun on the Solar Wind

    Science.gov (United States)

    Woo, R.; Habbal, S. R.

    1998-01-01

    Observations of the inner corona in polarized brightness by the Mauna Loa MkIII K-coronameter and soft X-ray by Yohkoh of the inner corona are combined with Ulysses radio occultation measurements of the solar wind to demonstrate that the signature of active regions and bright points is present in the heliocentric distance range of 10-30 Ro.

  16. White light coronal structures and flattening during six total solar eclipses

    Directory of Open Access Journals (Sweden)

    B.A. Marzouk

    2016-12-01

    Flattening index is the first quantitative parameter introduced for analyses of the global structure of the solar corona. It varies with respect to the phase of the solar activity and sunspot number. In this paper we study the solar corona during the 1990, 1999, 2006, 2008, 2009 and 2012 total solar eclipses. We obtain flattening coefficients for all the six eclipses by using a new computer program. Our results are in a good agreement with published results.

  17. Effects of corona discharge treatment on some properties of wool ...

    African Journals Online (AJOL)

    Yomi

    2011-12-21

    Dec 21, 2011 ... Corona discharge after operation worsted water absorption property increased and the ... finally conditioned with atmospheric air (20°C, relative humidity ... For corona treatment, a glow discharge generator was used with a.

  18. Energy Input Flux in the Global Quiet-Sun Corona

    Energy Technology Data Exchange (ETDEWEB)

    Mac Cormack, Cecilia; Vásquez, Alberto M.; López Fuentes, Marcelo; Nuevo, Federico A. [Instituto de Astronomía y Física del Espacio (IAFE), CONICET-UBA, CC 67—Suc 28, (C1428ZAA) Ciudad Autónoma de Buenos Aires (Argentina); Landi, Enrico; Frazin, Richard A. [Department of Climate and Space Sciences and Engineering (CLaSP), University of Michigan, 2455 Hayward Street, Ann Arbor, MI 48109-2143 (United States)

    2017-07-01

    We present first results of a novel technique that provides, for the first time, constraints on the energy input flux at the coronal base ( r ∼ 1.025 R {sub ⊙}) of the quiet Sun at a global scale. By combining differential emission measure tomography of EUV images, with global models of the coronal magnetic field, we estimate the energy input flux at the coronal base that is required to maintain thermodynamically stable structures. The technique is described in detail and first applied to data provided by the Extreme Ultraviolet Imager instrument, on board the Solar TErrestrial RElations Observatory mission, and the Atmospheric Imaging Assembly instrument, on board the Solar Dynamics Observatory mission, for two solar rotations with different levels of activity. Our analysis indicates that the typical energy input flux at the coronal base of magnetic loops in the quiet Sun is in the range ∼0.5–2.0 × 10{sup 5} (erg s{sup −1} cm{sup −2}), depending on the structure size and level of activity. A large fraction of this energy input, or even its totality, could be accounted for by Alfvén waves, as shown by recent independent observational estimates derived from determinations of the non-thermal broadening of spectral lines in the coronal base of quiet-Sun regions. This new tomography product will be useful for the validation of coronal heating models in magnetohydrodinamic simulations of the global corona.

  19. Double streamer phenomena in atmospheric pressure low frequency corona plasma

    International Nuclear Information System (INIS)

    Kim, Dan Bee; Jung, H.; Gweon, B.; Choe, Wonho

    2010-01-01

    Time-resolved images of an atmospheric pressure corona discharge, generated at 50 kHz in a single pin electrode source, show unique positive and negative corona discharge features: a streamer for the positive period and a glow for the negative period. However, unlike in previous reports of dc pulse and low frequency corona discharges, multistreamers were observed at the initial time stage of the positive corona. A possible physical mechanism for the multistreamers is suggested.

  20. Pulsed corona demonstrator for semi-industrial scale air purification

    NARCIS (Netherlands)

    Beckers, F.J.C.M.; Hoeben, W.F.L.M.; Huiskamp, T.; Pemen, A.J.M.; Heesch, van E.J.M.

    2013-01-01

    Although pulsed corona technology for air purification is widely investigated by the lab experiments, large-scale application has yet to be proven. Industrial systems require large flow handling and thus, high corona power. An autonomous semi-industrial scale pilot wire-cylinder type corona reactor

  1. Stellar winds and coronae of low-mass Population II/III stars

    Science.gov (United States)

    Suzuki, Takeru K.

    2018-06-01

    We investigated stellar winds from zero-/low-metallicity low-mass stars by magnetohydrodynamical simulations for stellar winds driven by Alfvén waves from stars with mass M = (0.6-0.8) M⊙ and metallicity Z = (0-1) Z⊙, where M⊙ and Z⊙ are the solar mass and metallicity, respectively. Alfvénic waves, which are excited by the surface convection, travel upward from the photosphere and heat up the corona by their dissipation. For lower Z, denser gas can be heated up to the coronal temperature because of the inefficient radiation cooling. The coronal density of Population II/III stars with Z ≤ 0.01 Z⊙ is one to two orders of magnitude larger than that of a solar-metallicity star with the same mass, and as a result, the mass loss rate, \\dot{M}, is 4.5-20 times larger. This indicates that metal accretion on low-mass Pop. III stars is negligible. The soft X-ray flux of the Pop. II/III stars is also expected to be ˜1-30 times larger than that of a solar-metallicity counterpart owing to the larger coronal density, even though the radiation cooling efficiency is smaller. A larger fraction of the input Alfvénic wave energy is transmitted to the corona in low-Z stars because they avoid severe reflection owing to the smaller density difference between the photosphere and the corona. Therefore, a larger fraction is converted to the thermal energy of the corona and the kinetic energy of the stellar wind. From this energetics argument, we finally derived a scaling of \\dot{M} as \\dot{M}∝ L R_{\\star }^{11/9} M_{\\star }^{-10/9} T_eff^{11/2}[\\max (Z/Z_{⊙},0.01)]^{-1/5}, where L, R⋆, and Teff are the stellar luminosity, radius, and effective temperature, respectively.

  2. The CORONAS-Photon/TESIS experiment on EUV imaging spectroscopy of the Sun

    Science.gov (United States)

    Kuzin, S.; Zhitnik, I.; Bogachev, S.; Bugaenko, O.; Ignat'ev, A.; Mitrofanov, A.; Perzov, A.; Shestov, S.; Slemzin, V.; Suhodrev, N.

    The new experiment TESIS is developent for russian CORONAS-Photon mission launch is planned on the end of 2007 The experiment is aimed on the study of activity of the Sun in the phases of minimum rise and maximum of 24 th cycle of Solar activity by the method of XUV imaging spectroscopy The method is based on the registration full-Sun monochromatic images with high spatial and temporal resolution The scientific tasks of the experiment are i Investigation dynamic processes in corona flares CME etc with high spatial up to 1 and temporal up to 1 second resolution ii determination of the main plasma parameters like plasma electron and ion density and temperature differential emission measure etc iii study of the processes of appearance and development large scale long-life magnetic structures in the solar corona study of the fluency of this structures on the global activity of the corona iv study of the mechanisms of energy accumulation and release in the solar flares and mechanisms of transformation of this energy into the heating of the plasma and kinematics energy To get the information for this studies the TESIS will register full-Sun images in narrow spectral intervals and the monochromatic lines of HeII SiXI FeXXI-FeXXIII MgXII ions The instrument includes 5 independent channels 2 telescopes for 304 and 132 A wide-field 2 5 degrees coronograph 280-330A and 8 42 A spectroheliographs The detailed description of the TESIS experiment and the instrument is presented

  3. Stellar winds and coronae of low-mass Population II/III stars

    Science.gov (United States)

    Suzuki, Takeru K.

    2018-04-01

    We investigated stellar winds from zero-/low-metallicity low-mass stars by magnetohydrodynamical simulations for stellar winds driven by Alfvén waves from stars with mass M = (0.6-0.8) M⊙ and metallicity Z = (0-1) Z⊙, where M⊙ and Z⊙ are the solar mass and metallicity, respectively. Alfvénic waves, which are excited by the surface convection, travel upward from the photosphere and heat up the corona by their dissipation. For lower Z, denser gas can be heated up to the coronal temperature because of the inefficient radiation cooling. The coronal density of Population II/III stars with Z ≤ 0.01 Z⊙ is one to two orders of magnitude larger than that of a solar-metallicity star with the same mass, and as a result, the mass loss rate, \\dot{M}, is 4.5-20 times larger. This indicates that metal accretion on low-mass Pop. III stars is negligible. The soft X-ray flux of the Pop. II/III stars is also expected to be ˜1-30 times larger than that of a solar-metallicity counterpart owing to the larger coronal density, even though the radiation cooling efficiency is smaller. A larger fraction of the input Alfvénic wave energy is transmitted to the corona in low-Z stars because they avoid severe reflection owing to the smaller density difference between the photosphere and the corona. Therefore, a larger fraction is converted to the thermal energy of the corona and the kinetic energy of the stellar wind. From this energetics argument, we finally derived a scaling of \\dot{M} as \\dot{M}∝ L R_{\\star }^{11/9} M_{\\star }^{-10/9} T_eff^{11/2}[\\max (Z/Z_{⊙},0.01)]^{-1/5}, where L, R⋆, and Teff are the stellar luminosity, radius, and effective temperature, respectively.

  4. NEOCE: a new external occulting coronagraph experiment for ultimate observations of the chromosphere, corona and interface

    Science.gov (United States)

    Damé, Luc; Fineschi, Silvano; Kuzin, Sergey; Von Fay-Siebenburgen, Erdélyi Robert

    Several ground facilities and space missions are currently dedicated to the study of the Sun at high resolution and of the solar corona in particular. However, and despite significant progress with the advent of space missions and UV, EUV and XUV direct observations of the hot chromosphere and million-degrees coronal plasma, much is yet to be achieved in the understanding of these high temperatures, fine dynamic dissipative structures and of the coronal heating in general. Recent missions have shown the definite role of a wide range of waves and of the magnetic field deep in the inner corona, at the chromosphere-corona interface, where dramatic and physically fundamental changes occur. The dynamics of the chromosphere and corona is controlled and governed by the emerging magnetic field. Accordingly, the direct measurement of the chromospheric and coronal magnetic fields is of prime importance. The solar corona consists of many localised loop-like structures or threads with the plasmas brightening and fading independently. The plasma evolution in each thread is believed to be related to the formation of filaments, each one being dynamic, in a non-equilibrium state. The mechanism sustaining this dynamics, oscillations or waves (Alfvén or other magneto-plasma waves), requires both very high-cadence, multi-spectral observations, and high resolution and coronal magnetometry. This is foreseen in the future Space Mission NEOCE (New External Occulting Coronagraph Experiment), the ultimate new generation high-resolution coronagraphic heliospheric mission, to be proposed for ESA M4. NEOCE, an evolution of the HiRISE mission, is ideally placed at the L5 Lagrangian point (for a better follow-up of CMEs), and provides FUV imaging and spectro-imaging, EUV and XUV imaging and spectroscopy, and ultimate coronagraphy by a remote external occulter (two satellites in formation flying 375 m apart minimizing scattered light) allowing to characterize temperature, densities and

  5. Measurement and analysis of time-domain characteristics of corona-generated radio interference from a single positive corona source

    Science.gov (United States)

    Li, Xuebao; Li, Dayong; Chen, Bo; Cui, Xiang; Lu, Tiebing; Li, Yinfei

    2018-04-01

    The corona-generated electromagnetic interference commonly known as radio interference (RI) has become a limiting factor for the design of high voltage direct current transmission lines. In this paper, a time-domain measurement system is developed to measure the time-domain characteristics of corona-generated RI from a single corona source under a positive corona source. In the experiments, the corona current pulses are synchronously measured through coupling capacitors. The one-to-one relationship between the corona current pulse and measured RI voltage pulse is observed. The statistical characteristics of pulse parameters are analyzed, and the correlations between the corona current pulse and RI voltage pulse in the time-domain and frequency-domain are analyzed. Depending on the measured corona current pulses, the time-domain waveform of corona-generated RI is calculated on the basis of the propagation model of corona current on the conductor, the dipolar model for electric field calculation, and the antenna model for inducing voltage calculation. The well matched results between measured and simulated waveforms of RI voltage can show the validity of the measurement and calculation method presented in this paper, which also further show the close correlation between corona current and corona-generated RI.

  6. Novel modulator topology for corona plasma generation

    NARCIS (Netherlands)

    Ariaans, T.H.P.; Pemen, A.J.M.; Winands, G.J.J.; Liu, Z.; Heesch, van E.J.M.

    2009-01-01

    Gas cleaning using plasma technology is slowly introduced into industry nowadays. Several challenges still have to be overcome: increasing the scale, safety, life time and reducing costs. In 2006 we demonstrated a 20 kW nanosecond pulsed corona system. The electrical efficiency was > 90%. O-radical

  7. Plasma physical aspects of the solar cycle

    International Nuclear Information System (INIS)

    Raadu, M.A.

    1982-08-01

    Mass motions below the photosphere drive the solar cycle which is association with variations in the magnetic field structure and accompanying phenomena. In addition to semi-empirical models, dynamo theories have been used to explain the solar cycle. The emergence of magnetic field generated by these mechanisms and its expansions into the corona involves many plasma physical processes. Magnetic buoyancy aids the expulsion of magnetic flux. The corona may respond dynamically or by continually adjusting to a quasi-static force-free or pressure-balanced equilibrium. The formation and disruption of current sheets is significant for the overall structure of the coronal magnetic field and the physics of quiescent prominences. The corona has a fine structure consisting of magnetic loops. The structure and stability of these are important as they are one of the underlying elements which make up the corona. (Author)

  8. A Spectroscopic Study of the Energy Deposition in the Low Corona: Connecting Global Modeling to Observations

    Science.gov (United States)

    Szente, J.; Landi, E.; Toth, G.; Manchester, W.; van der Holst, B.; Gombosi, T. I.

    2017-12-01

    We are looking for signatures of coronal heating process using a physically consistent 3D MHD model of the global corona. Our approach is based on the Alfvén Wave Solar atmosphere Model (AWSoM), with a domain ranging from the upper chromosphere (50,000K) to the outer corona, and the solar wind is self-consistently heated and accelerated by the dissipation of low-frequency Alfvén waves. Taking into account separate electron and anisotropic proton heating, we model the coronal plasma at the same time and location as observed by Hinode/EIS, and calculate the synthetic spectra that we compare with the observations. With the obtained synthetic spectra, we are able to directly calculate line intensities, line width, thermal and nonthermal motions, line centroids, Doppler shift distributions and compare our predictions to real measurements. Our results directly test the extent to which Alfvénic heating is present in the low corona.

  9. Second-stage acceleration in solar flares

    International Nuclear Information System (INIS)

    Mullan, D.J.

    1976-01-01

    A model proposed by Chevalier and Scott to account for cosmic ray acceleration in an expanding supernova remnant is applied to the case of a shock wave injected into the solar corona by a flare. Certain features of solar cosmic rays can be explained by this model. (orig.) [de

  10. IMAGING COMET ISON C/2012 S1 IN THE INNER CORONA AT PERIHELION

    Energy Technology Data Exchange (ETDEWEB)

    Druckmüller, Miloslav [Faculty of Mechanical Engineering, Brno University of Technology, 616 69 Brno (Czech Republic); Habbal, Shadia Rifai [Institute for Astronomy, University of Hawaii, Honolulu 96822, Hawaii (United States); Aniol, Peter [ASTELCO Systems GmbH, D-82152 Martinsried (Germany); Ding, Adalbert [Institute of Optics and Atomic Physics, Technische Universitaet Berlin, and Institute of Technical Physics, Berlin (Germany); Morgan, Huw [Institute of Mathematics, Physics and Computer Science, Aberystwyth University, Ceredigion, Cymru SY23 3BZ (United Kingdom)

    2014-04-01

    Much anticipation and speculation were building around comet ISON, or C/2012 S1, discovered on 2012 September 21 by the International Scientific Optical Network telescope in Russia, and bound for the Sun on 2013 November 28, with a closest heliocentric approach distance of 2.7 R {sub ☉}. Here we present the first white light image of the comet's trail through the inner corona. The image was taken with a wide field Lyot-type coronagraph from the Mees Observatory on Haleakala at 19:12 UT, past its perihelion passage at 18:45 UT. The perfect match between the comet's trail captured in the inner corona and the trail that had persisted across the field of view of 2-6 R {sub ☉} of the Solar and Heliospheric Observatory Large Angle and Spectrometric Coronagraph Experiment/C2 coronagraph at 19:12 UT demonstrates that the comet survived its perihelion passage.

  11. Distribution of electric currents in sunspots from photosphere to corona

    Energy Technology Data Exchange (ETDEWEB)

    Gosain, Sanjay [National Solar Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Démoulin, Pascal [Observatoire de Paris, LESIA, UMR 8109 (CNRS), F-92195 Meudon Principal Cedex (France); López Fuentes, Marcelo [Instituto de Astronomía y Física del Espacio (IAFE), UBA-CONICET, CC. 67, Suc. 28 Buenos Aires 1428 (Argentina)

    2014-09-20

    We present a study of two regular sunspots that exhibit nearly uniform twist from the photosphere to the corona. We derive the twist parameter in the corona and in the chromosphere by minimizing the difference between the extrapolated linear force-free field model field lines and the observed intensity structures in the extreme-ultraviolet images of the Sun. The chromospheric structures appear more twisted than the coronal structures by a factor of two. Further, we derive the vertical component of electric current density, j{sub z} , using vector magnetograms from the Hinode Solar Optical Telescope (SOT). The spatial distribution of j{sub z} has a zebra pattern of strong positive and negative values owing to the penumbral fibril structure resolved by Hinode/SOT. This zebra pattern is due to the derivative of the horizontal magnetic field across the thin fibrils; therefore, it is strong and masks weaker currents that might be present, for example, as a result of the twist of the sunspot. We decompose j{sub z} into the contribution due to the derivatives along and across the direction of the horizontal field, which follows the fibril orientation closely. The map of the tangential component has more distributed currents that are coherent with the chromospheric and coronal twisted structures. Moreover, it allows us to map and identify the direct and return currents in the sunspots. Finally, this decomposition of j{sub z} is general and can be applied to any vector magnetogram in order to better identify the weaker large-scale currents that are associated with coronal twisted/sheared structures.

  12. Coronal heating driven by a magnetic gradient pumping mechanism in solar plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Baolin, E-mail: bltan@nao.cas.cn [Key Laboratory of Solar Activity, National Astronomical Observatories of Chinese Academy of Sciences, Beijing 100012 (China)

    2014-11-10

    The heating of the solar corona is a longstanding mystery in astrophysics. Considering that the solar magnetic field is spatially inhomogeneous with a considerable magnetic gradient from the solar surface to the corona, this work proposes a magnetic gradient pumping (MGP) mechanism to try to explain the formation of hot plasma upflows, such as hot type II spicules and hot plasma ejections. In the MGP mechanism, the magnetic gradient may drive the energetic particles to move upward from the underlying solar atmosphere and form hot upflows. These upflow energetic particles are deposited in the corona, causing it to become very hot. Rough estimations indicate that the solar corona can be heated to above 1 million degrees, and the upflow velocity is about 40 km s{sup –1} in the chromosphere and about 130 km s{sup –1} in the corona. The solar magnetic flux tubes act as pumpers to extract energetic particles from the underlying thermal photosphere, convey them, and deposit them in the corona. The deposit of these energetic particles causes the corona to become hot, and the escape of such particles from the photosphere leaves it a bit cold. This mechanism can present a natural explanation to the mystery of solar coronal heating.

  13. Determination of the Corona model parameters with artificial neural networks

    International Nuclear Information System (INIS)

    Ahmet, Nayir; Bekir, Karlik; Arif, Hashimov

    2005-01-01

    Full text : The aim of this study is to calculate new model parameters taking into account the corona of electrical transmission line wires. For this purpose, a neural network modeling proposed for the corona frequent characteristics modeling. Then this model was compared with the other model developed at the Polytechnic Institute of Saint Petersburg. The results of development of the specified corona model for calculation of its influence on the wave processes in multi-wires line and determination of its parameters are submitted. Results of obtained calculation equations are brought for electrical transmission line with allowance for superficial effect in the ground and wires with reference to developed corona model

  14. Investigating the concept of fraunhofer lines as a potential method to detect corona in the wavelength region 338.67nm – 405nm during the day

    CSIR Research Space (South Africa)

    Maistry, N

    2015-09-01

    Full Text Available the results obtained it was determined that the purchased optical filter was not filtering out the solar radiation and hence no corona was detected. The signal to noise ratio was 0.0314. Hence a new approach of simulating a narrow band-pass filter in MATLAB...

  15. SIMULATIONS OF THE KELVIN–HELMHOLTZ INSTABILITY DRIVEN BY CORONAL MASS EJECTIONS IN THE TURBULENT CORONA

    Energy Technology Data Exchange (ETDEWEB)

    Gómez, Daniel O.; DeLuca, Edward E. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St, Cambridge, MA 02138 (United States); Mininni, Pablo D. [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Física de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires (Argentina)

    2016-02-20

    Recent high-resolution Atmospheric Imaging Assembly/Solar Dynamics Observatory images show evidence of the development of the Kelvin–Helmholtz (KH) instability, as coronal mass ejections (CMEs) expand in the ambient corona. A large-scale magnetic field mostly tangential to the interface is inferred, both on the CME and on the background sides. However, the magnetic field component along the shear flow is not strong enough to quench the instability. There is also observational evidence that the ambient corona is in a turbulent regime, and therefore the criteria for the development of the instability are a priori expected to differ from the laminar case. To study the evolution of the KH instability with a turbulent background, we perform three-dimensional simulations of the incompressible magnetohydrodynamic equations. The instability is driven by a velocity profile tangential to the CME–corona interface, which we simulate through a hyperbolic tangent profile. The turbulent background is generated by the application of a stationary stirring force. We compute the instability growth rate for different values of the turbulence intensity, and find that the role of turbulence is to attenuate the growth. The fact that KH instability is observed sets an upper limit on the correlation length of the coronal background turbulence.

  16. TESIS experiment on XUV imaging spectroscopy of the Sun onboard the CORONAS-PHOTON satellite

    Science.gov (United States)

    Kuzin, S. V.; Zhitnik, I. A.; Bogachev, S. A.; Shestov, S. V.; Bugaenko, O. I.; Suhodrev, N. K.; Pertsov, A. A.; Mitrofanov, A. V.; Ignat'ev, A. P.; Slemzin, V. A.

    We present a brief description of new complex of space telescopes and spectrographs, TESIS, which will be placed aboard the CORONAS-PHOTON satellite. The complex is intended for high-resolution imaging observation of full Sun in the coronal spectral lines and in the spectral lines of the solar transition region. TESIS will be launched at the end of 2007 - early of 2008. About 25 % of the daily TESIS images will be free for use and for downloading from the TESIS data center that is planned to open 2 months before the TESIS launching at http://www.tesis.lebedev.ru

  17. Large-scale volcanism associated with coronae on Venus

    Science.gov (United States)

    Roberts, K. Magee; Head, James W.

    1993-01-01

    The formation and evolution of coronae on Venus are thought to be the result of mantle upwellings against the crust and lithosphere and subsequent gravitational relaxation. A variety of other features on Venus have been linked to processes associated with mantle upwelling, including shield volcanoes on large regional rises such as Beta, Atla and Western Eistla Regiones and extensive flow fields such as Mylitta and Kaiwan Fluctus near the Lada Terra/Lavinia Planitia boundary. Of these features, coronae appear to possess the smallest amounts of associated volcanism, although volcanism associated with coronae has only been qualitatively examined. An initial survey of coronae based on recent Magellan data indicated that only 9 percent of all coronae are associated with substantial amounts of volcanism, including interior calderas or edifices greater than 50 km in diameter and extensive, exterior radial flow fields. Sixty-eight percent of all coronae were found to have lesser amounts of volcanism, including interior flooding and associated volcanic domes and small shields; the remaining coronae were considered deficient in associated volcanism. It is possible that coronae are related to mantle plumes or diapirs that are lower in volume or in partial melt than those associated with the large shields or flow fields. Regional tectonics or variations in local crustal and thermal structure may also be significant in determining the amount of volcanism produced from an upwelling. It is also possible that flow fields associated with some coronae are sheet-like in nature and may not be readily identified. If coronae are associated with volcanic flow fields, then they may be a significant contributor to plains formation on Venus, as they number over 300 and are widely distributed across the planet. As a continuation of our analysis of large-scale volcanism on Venus, we have reexamined the known population of coronae and assessed quantitatively the scale of volcanism associated

  18. Chaotic characteristics of corona discharges in atmospheric air

    International Nuclear Information System (INIS)

    Tan Xiangyu; Zhang Qiaogen; Wang Xiuhuan; Sun Fu; Zha Wei; Jia Zhijie

    2008-01-01

    A point-plane electrode system in atmospheric air is established to investigate the mechanism of the corona discharge. By using this system, the current pulses of the corona discharges under the 50 Hz ac voltage are measured using partial discharge (PD) measurement instrument and constitute the point-plane voltage-current (V-I) characteristic equation together with the voltage. Then, this paper constructs the nonlinear circuit model and differential equations of the system in an attempt to give the underlying dynamic mechanism based on the nonlinear V-I characteristics of the point-plane corona discharges. The results show that the chaotic phenomenon is found in the corona circuit by the experimental study and nonlinear dynamic analysis. The basic dynamic characteristics, including the Lyapunov exponent, the existence of the strange attractors, and the equilibrium points, are also found and analyzed in the development process of the corona circuit. Moreover, the time series of the corona current pulses obtained in the experiment is used to demonstrate the chaotic characteristics of the corona current based on the nonlinear dynamic circuit theory and the experimental basis. It is pointed out that the corona phenomenon is not a purely stochastic phenomenon but a short term deterministic chaotic activity

  19. The effect of atmospheric corona treatment on AA1050 aluminium

    DEFF Research Database (Denmark)

    Jariyaboon, Manthana; Møller, Per; Dunin-Borkowski, Rafal E.

    2010-01-01

    The effect of atmospheric corona discharge on AM 050 aluminium surface was investigated using electrochemical polarization, SEM-EDX, FIB-SEM. and XPS. The corona treatment was performed with varying time (1, 5, and 15 min) in atmospheric air. A 200 nm oxide layer was generated on AA1050 after...

  20. The nanoparticle biomolecule corona: lessons learned - challenge accepted?

    Science.gov (United States)

    Docter, D; Westmeier, D; Markiewicz, M; Stolte, S; Knauer, S K; Stauber, R H

    2015-10-07

    Besides the wide use of engineered nanomaterials (NMs) in technical products, their applications are not only increasing in biotechnology and biomedicine, but also in the environmental field. While the physico-chemical properties and behaviour of NMs can be characterized accurately under idealized conditions, this is no longer the case in complex physiological or natural environments. Herein, proteins and other biomolecules rapidly bind to NMs, forming a protein/biomolecule corona that critically affects the NMs' (patho)biological and technical identities. As the corona impacts the in vitro and/or in vivo NM applications in humans and ecosystems, a mechanistic understanding of its relevance and of the biophysical forces regulating corona formation is mandatory. Based on recent insights, we here critically review and present an updated concept of corona formation and evolution. We comment on how corona signatures may be linked to effects at the nano-bio interface in physiological and environmental systems. In order to comprehensively analyse corona profiles and to mechanistically understand the coronas' biological/ecological impact, we present a tiered multidisciplinary approach. To stimulate progress in this field, we introduce the potential impact of the corona for NM-microbiome-(human)host interactions and the novel concept of 'nanologicals', i.e., the nanomaterial-specific targeting of molecular machines. We conclude by discussing the relevant challenges that still need to be resolved in this field.

  1. An analytical theory of corona discharge plasmas

    International Nuclear Information System (INIS)

    Uhm, H.S.; Lee, W.M.

    1997-01-01

    In this paper we describe an analytical investigation of corona discharge systems. Electrical charge and the energy transfer mechanism are investigated based on the circuit analysis. Efficient delivery of electrical energy from the external circuit to the reactor chamber is a major issue in design studies. The optimum condition obtained in this paper ensures 100% energy transfer. Second-order coupled differential equations are numerically solved. All the analytical results agree remarkably well with numerical data. The reactor capacitor plays a pivotal role in circuit performance. The voltage profile is dominated by the reactor capacitor. Corona discharge properties in the reactor chamber are also investigated, assuming that a specified voltage profile V(t) is fed through the inner conductor. The analytical description is based on the electron moment equation. Defining the plasma breakdown parameter u=V/R c p, plasma is generated for a high-voltage pulse satisfying u>u c , where u c is the critical breakdown parameter defined by geometrical configuration. Here, u is in units of a million volts per m per atm, and R c is the outer conductor radius. It is found that the plasma density profile generated inside the reactor chamber depends very sensitively on the system parameters. A small change of a physical parameter can easily lead to a density change in one order of magnitude

  2. Pulsed positive corona streamer propagation and branching

    International Nuclear Information System (INIS)

    Veldhuizen, E.M. van; Rutgers, W.R.

    2002-01-01

    The propagation and branching of pulsed positive corona streamers in a short gap is observed with high resolution in space and time. The appearance of the pre-breakdown phenomena can be controlled by the electrode configuration, the gas composition and the impedance of the pulsed power circuit. In a point-wire gap the positive corona shows much more branching than in the parallel plane gap with a protrusion. In air, the branching is more pronounced than in argon. The pulsed power circuit appears to operate in two modes, either as an inductive circuit creating a lower number of thick streamers or as a resistive circuit giving a higher number of thin streamers. A possible cause for branching is electrostatic repulsion of two parts of the streamer head. The electric field at the streamer head is limited, the maximum values found are ∼170 kV cm -1 in air and ∼100 kV cm -1 in argon. At these maximum field strengths, the electrons have 5-10 eV energy, so the ionization is dominated by two-step processes. Differences between argon and ambient air in the field strength at which streamers propagate are ascribed to the difference in de-excitation processes in noble and molecular gases. The fact that the pulsed power circuit can control the streamer structure is important for applications, but this effect must also be taken into account in fundamental studies of streamer propagation and branching. (author)

  3. Pulsed positive corona streamer propagation and branching

    Energy Technology Data Exchange (ETDEWEB)

    Veldhuizen, E.M. van [Department of Physics, Technische Universiteit Eindhoven, Eindhoven (Netherlands)]. E-mail: e.m.v.veldhuizen@tue.nl; Rutgers, W.R. [Department of Physics, Technische Universiteit Eindhoven, Eindhoven (Netherlands)

    2002-09-07

    The propagation and branching of pulsed positive corona streamers in a short gap is observed with high resolution in space and time. The appearance of the pre-breakdown phenomena can be controlled by the electrode configuration, the gas composition and the impedance of the pulsed power circuit. In a point-wire gap the positive corona shows much more branching than in the parallel plane gap with a protrusion. In air, the branching is more pronounced than in argon. The pulsed power circuit appears to operate in two modes, either as an inductive circuit creating a lower number of thick streamers or as a resistive circuit giving a higher number of thin streamers. A possible cause for branching is electrostatic repulsion of two parts of the streamer head. The electric field at the streamer head is limited, the maximum values found are {approx}170 kV cm{sup -1} in air and {approx}100 kV cm{sup -1} in argon. At these maximum field strengths, the electrons have 5-10 eV energy, so the ionization is dominated by two-step processes. Differences between argon and ambient air in the field strength at which streamers propagate are ascribed to the difference in de-excitation processes in noble and molecular gases. The fact that the pulsed power circuit can control the streamer structure is important for applications, but this effect must also be taken into account in fundamental studies of streamer propagation and branching. (author)

  4. CORONA project -contribution to VVER nuclear education and training

    International Nuclear Information System (INIS)

    Ilieva, M.; Miteva, R.; Takov, T.

    2016-01-01

    CORONA Project is established to stimulate the transnational mobility and lifelong learning amongst VVER end users. The project aims to provide a special purpose structure for training of specialists and to maintain the nuclear expertise by gathering the existing and generating new knowledge in the VVER area. CORONA Project consists of two parts: CORONA I (2011-2014) ''Establishment of a regional center of competence for VVER technology and Nuclear Applications'', co-financed by the Framework Program 7 of the European Union (EU) and CORONA II (2015-2018) ''Enhancement of training capabilities in VVER technology through establishment of VVER training academy'', co-financed by HORIZON 2020, EURATOM 2014-2015. The selected form of the CORONA Academy, together with the online availability of the training opportunities will allow trainees from different locations to access the needed knowledge on demand. The project will target also new-comers in VVER community like Vietnam, Turkey, Belarus, etc. (authors)

  5. Solar origins of solar wind properties during the cycle 23 solar minimum and rising phase of cycle 24

    Science.gov (United States)

    Luhmann, Janet G.; Petrie, Gordon; Riley, Pete

    2012-01-01

    The solar wind was originally envisioned using a simple dipolar corona/polar coronal hole sources picture, but modern observations and models, together with the recent unusual solar cycle minimum, have demonstrated the limitations of this picture. The solar surface fields in both polar and low-to-mid-latitude active region zones routinely produce coronal magnetic fields and related solar wind sources much more complex than a dipole. This makes low-to-mid latitude coronal holes and their associated streamer boundaries major contributors to what is observed in the ecliptic and affects the Earth. In this paper we use magnetogram-based coronal field models to describe the conditions that prevailed in the corona from the decline of cycle 23 into the rising phase of cycle 24. The results emphasize the need for adopting new views of what is ‘typical’ solar wind, even when the Sun is relatively inactive. PMID:25685422

  6. Solar Probe Plus: A NASA Mission to Touch the Sun

    Science.gov (United States)

    Fox, N. J.; Velli, M. M. C.; Kasper, J. C.; McComas, D. J.; Howard, R.; Bale, S. D.; Decker, R. B.

    2014-12-01

    Solar Probe Plus (SPP), currently in Phase C, will be the first mission to fly into the low solar corona, revealing how the corona is heated and the solar wind and energetic particles are accelerated, solving fundamental mysteries that have been top priority science goals since such a mission was first proposed in 1958. The scale and concept of such a mission has been revised at intervals since that time, yet the core has always been a close encounter with the Sun. The primary science goal of the Solar Probe Plus mission is to determine the structure and dynamics of the Sun's coronal magnetic field, understand how the solar corona and wind are heated and accelerated, and determine what mechanisms accelerate and transport energetic particles. The SPP mission will achieve this by identifying and quantifying the basic plasma physical processes at the heart of the Heliosphere. SPP uses an innovative mission design, significant technology development and a risk-reducing engineering development to meet the SPP science objectives: 1) Trace the flow of energy that heats and accelerates the solar corona and solar wind; 2) Determine the structure and dynamics of the plasma and magnetic fields at the sources of the solar wind; and 3) Explore mechanisms that accelerate and transport energetic particles. In this presentation, we present Solar Probe Plus and examine how the mission will address the science questions that have remained unanswered for over 5 decades.

  7. Solar Chameleons

    CERN Document Server

    Brax, Philippe

    2010-01-01

    We analyse the creation of chameleons deep inside the sun and their subsequent conversion to photons near the magnetised surface of the sun. We find that the spectrum of the regenerated photons lies in the soft X-ray region, hence addressing the solar corona problem. Moreover, these back-converted photons originating from chameleons have an intrinsic difference with regenerated photons from axions: their relative polarisations are mutually orthogonal before Compton interacting with the surrounding plasma. Depending on the photon-chameleon coupling and working in the strong coupling regime of the chameleons to matter, we find that the induced photon flux, when regenerated resonantly with the surrounding plasma, coincides with the solar flux within the soft X-ray energy range. Moreover, using the soft X-ray solar flux as a prior, we find that with a strong enough photon-chameleon coupling the chameleons emitted by the sun could lead to a regenerated photon flux in the CAST pipes, which could be within the reach...

  8. Solar chameleons

    International Nuclear Information System (INIS)

    Brax, Philippe; Zioutas, Konstantin

    2010-01-01

    We analyze the creation of chameleons deep inside the Sun (R∼0.7R sun ) and their subsequent conversion to photons near the magnetized surface of the Sun. We find that the spectrum of the regenerated photons lies in the soft x-ray region, hence addressing the solar corona problem. Moreover, these back-converted photons originating from chameleons have an intrinsic difference with regenerated photons from axions: their relative polarizations are mutually orthogonal before Compton interacting with the surrounding plasma. Depending on the photon-chameleon coupling and working in the strong coupling regime of the chameleons to matter, we find that the induced photon flux, when regenerated resonantly with the surrounding plasma, coincides with the solar flux within the soft x-ray energy range. Moreover, using the soft x-ray solar flux as a prior, we find that with a strong enough photon-chameleon coupling, the chameleons emitted by the Sun could lead to a regenerated photon flux in the CAST magnetic pipes, which could be within the reach of CAST with upgraded detector performance. Then, axion helioscopes have thus the potential to detect and identify particle candidates for the ubiquitous dark energy in the Universe.

  9. Mission Concepts for High-Resolution Solar Imaging with a Photon Sieve

    Science.gov (United States)

    Rabin, Douglas M.; Davila, Joseph; Daw, Adrian N.; Denis, Kevin L.; Novo-Gradac, Anne-Marie; Shah, Neerav; Widmyer, Thomas R.

    2017-08-01

    The best EUV coronal imagers are unable to probe the expected energy dissipation scales of the solar corona (rocket, a single spacecraft with a deployed boom, and two spacecraft flying in precise formation.

  10. Extended neutral atmosphere effect on solar wind interaction with nonmagnetic bodies of the solar system

    International Nuclear Information System (INIS)

    Breus, T.K.; Krymskij, A.M.; Mitnitskij, V.Ya.

    1987-01-01

    Numeric modelling of the Venus flow-around by the solar wind with regard to stream loading by heavy ions, produced under photoionization of the Venus neutral oxygen corona, is conducted. It is shown, that this effect can account for a whole number of peculiarities related to the solar wind interaction with the planet which have not been clearly explained yet, namely, shock wave position, solar wind stream and magnetic field characteristics behind the front

  11. Solar Probe Plus

    Science.gov (United States)

    Szabo, Adam

    2011-01-01

    The NASA Solar Probe Plus mission is planned to be launched in 2018 to study the upper solar corona with both.in-situ and remote sensing instrumentation. The mission will utilize 6 Venus gravity assist maneuver to gradually lower its perihelion to 9.5 Rs below the expected Alfven pOint to study the sub-alfvenic solar wind that is still at least partially co-rotates with the Sun. The detailed science objectives of this mission will be discussed. SPP will have a strong synergy with The ESA/NASA Solar orbiter mission to be launched a year ahead. Both missions will focus on the inner heliosphere and will have complimentary instrumentations. Strategies to exploit this synergy will be also presented.

  12. Solar radio bursts as a tool for space weather forecasting

    Science.gov (United States)

    Klein, Karl-Ludwig; Matamoros, Carolina Salas; Zucca, Pietro

    2018-01-01

    The solar corona and its activity induce disturbances that may affect the space environment of the Earth. Noticeable disturbances come from coronal mass ejections (CMEs), which are large-scale ejections of plasma and magnetic fields from the solar corona, and solar energetic particles (SEPs). These particles are accelerated during the explosive variation of the coronal magnetic field or at the shock wave driven by a fast CME. In this contribution, it is illustrated how full Sun microwave observations can lead to (1) an estimate of CME speeds and of the arrival time of the CME at the Earth, (2) the prediction of SEP events attaining the Earth. xml:lang="fr"

  13. Corona ignition system for highly efficient gasoline engines; Corona-Zuendsystem fuer hocheffiziente Ottomotoren

    Energy Technology Data Exchange (ETDEWEB)

    Burrows, John [Federal-Mogul Limited, Manchester (United Kingdom); Lykowski, Jim; Mixell, Kristapher [Federal-Mogul, Plymouth, MI (United States)

    2013-06-01

    Many future gasoline engines will require higher air/fuel ratios and higher mean effective pressures to further improve fuel efficiency. Federal-Mogul has taken up this challenge and has developed the Advanced Corona Ignition System (ACIS) as a new solution to reliably ignite a mix with high AFR/EGR and high MEP. During engine tests ACIS enabled a direct fuel economy improvement of up to 10 %. (orig.)

  14. Fine-Scale Fluctuations in the Corona Observed with Hi-C

    Science.gov (United States)

    Winebarger, Amy; Schuler, Timothy

    2013-01-01

    The High Resolution Coronal Imager(HiC) flew aboard a NASA sounding rocket on 2012 July11 and captured roughly 345 s of high spatial and temporal resolution images of the solar corona in a narrowband 193 Angstrom channel. We have analyzed the fluctuations in intensity of Active Region11520.We selected events based on a lifetime greater than 11s (twoHiC frames)and intensities greater than a threshold determined from the average background intensity in a pixel and the photon and electronic noise. We find fluctuations occurring down to the smallest timescale(11s).Typical intensity fluctuations are 20% background intensity, while some events peaka t100%the background intensity.Generally the fluctuations are clustered in solar structures, particularly the moss.We interpret the fluctuations in the moss as indicative of heating events. We use the observed events to model the active region core.

  15. Characteristics of pulse corona discharge over water surface

    Science.gov (United States)

    Fujii, Tomio; Arao, Yasushi; Rea, Massimo

    2008-12-01

    Production of ozone and OH radical is required to advance the plasma chemical reactions in the NOx removal processes for combustion gas treatment. The corona discharge to the water surface is expected to induce the good conditions for the proceeding of the NO oxidation and the NO2 dissolution removal into water. In order to get the fundamental data of the corona discharge over the water surface, the positive and negative V-I characteristics and the ozone production were measured with the multi needle and the saw-edge type of the discharge electrodes. The pulse corona characteristics were also measured with some different waveforms of the applied pulse voltage. The experiments were carried out under the atmospheric pressure and room temperature. Both the DC and the pulse corona to the water surface showed a stable and almost the same V-I characteristics as to plate electrodes though the surface of water was waved by corona wind. The positive streamer corona showed more ozone production than the negative one both in the DC and in the pulse corona.

  16. Characteristics of pulse corona discharge over water surface

    International Nuclear Information System (INIS)

    Fujii, Tomio; Arao, Yasushi; Rea, Massimo

    2008-01-01

    Production of ozone and OH radical is required to advance the plasma chemical reactions in the NOx removal processes for combustion gas treatment. The corona discharge to the water surface is expected to induce the good conditions for the proceeding of the NO oxidation and the NO 2 dissolution removal into water. In order to get the fundamental data of the corona discharge over the water surface, the positive and negative V-I characteristics and the ozone production were measured with the multi needle and the saw-edge type of the discharge electrodes. The pulse corona characteristics were also measured with some different waveforms of the applied pulse voltage. The experiments were carried out under the atmospheric pressure and room temperature. Both the DC and the pulse corona to the water surface showed a stable and almost the same V-I characteristics as to plate electrodes though the surface of water was waved by corona wind. The positive streamer corona showed more ozone production than the negative one both in the DC and in the pulse corona.

  17. Nonlinearity and instability in stellar coronae

    International Nuclear Information System (INIS)

    Martens, P.C.H.

    1983-01-01

    This thesis is mainly concerned with time dependent processes occurring in the hot and teneous plasma - about 1 million degrees and higher and less than 10 10 cm density - that forms the outer envelopes of many stars including the sun. These envelopes - coronae - emit X-rays and indirectly in the ultraviolet and are therefore mainly observed by satellite techniques. Part I consists of a general introduction to the work and an overview of the non-linear methods that are used in the following. Part II and part III are concerned with respectively open and closed coronal structures. There is great similarity in the physics of these two systems, but the open structures are somewhat more complicated. (Auth.)

  18. SphinX: The Solar Photometer in X-Rays

    Czech Academy of Sciences Publication Activity Database

    Gburek, S.; Sylwester, J.; Kowalinski, M.; Bakala, J.; Kordylewski, Z.; Podgorski, P.; Plocieniak, S.; Siarkowski, M.; Sylwester, B.; Trzebinski, W.; Kuzin, S.; Pertsov, A.A.; Kotov, Yu. D.; Fárník, František; Reale, F.; Phillips, K. J. H.

    2013-01-01

    Roč. 283, č. 2 (2013), s. 631-649 ISSN 0038-0938 Institutional support: RVO:67985815 Keywords : solar corona * solar instrumentation * X-rays Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 3.805, year: 2013

  19. A Detection of the Same Hot Plasma in the Corona: During a CME and Later at Ulysses

    Science.gov (United States)

    Suess, S. T.; Poletto, G.

    2004-01-01

    We show direct evidence for the same very hot plasma being detected remotely from SOHO in the corona and subsequently, at Ulysses in the solar wind. This is, to our knowledge, the first time that such an unambiguous identification has been made in the case of hot plasma. This detection complements studies correlating other plasma and field properties observed to the properties measured at the source in the corona. This observation takes advantage of a SOHO-Sun-Ulysses quadrature, during which the Sun-Ulysses included angle is $90^\\circ$ and it is possible to observe with Ulysses instruments the same plasma that has previously been remotely observed with SOHO instruments in the corona on the limb of the Sun. The identification builds on an existing base of separate SOHO and interplanetary detections of hot plasma. SOHO/UVCS has found evidence for very hot coronal plasma in current sheets in the aftermath of CMEs in the [Fe XVIII] $\\lambda$ \\AA\\ line, implying a temperature on the order of $6\\times 10(exp 6)$ K. This temperature is unusually high even for active regions, but is compatible with the high temperature predicted in current sheets. In the solar wind, ACE data from early 1998 to middle 2000 revealed high frozen-in Fe charge state in many cases to be present in interplanetary plasma.

  20. Ionization and Corona Discharges from Stressed Rocks

    Science.gov (United States)

    Winnick, M. J.; Kulahci, I.; Cyr, G.; Tregloan-Reed, J.; Freund, F. T.

    2008-12-01

    Pre-earthquake signals have long been observed and documented, though they have not been adequately explained scientifically. These signals include air ionization, occasional flashes of light from the ground, radio frequency emissions, and effects on the ionosphere that occur hours or even days before large earthquakes. The theory that rocks function as p-type semiconductors when deviatoric stresses are applied offers a mechanism for this group of earthquake precursors. When an igneous or high-grade metamorphic rock is subjected to deviatoric stresses, peroxy bonds that exist in the rock's minerals as point defects dissociate, releasing positive hole charge carriers. The positive holes travel by phonon-assisted electron hopping from the stressed into and through the unstressed rock volume and build up a positive surface charge. At sufficiently large electric fields, especially along edges and sharp points of the rock, air molecules become field-ionized, loosing an electron to the rock surface and turning into airborne positive ions. This in turn can lead to corona discharges, which manifest themselves by flashes of light and radio frequency emissions. We applied concentrated stresses to one end of a block of gabbro, 30 x 15 x 10 cm3, inside a shielded Faraday cage and observed positive ion currents through an air gap about 25 cm from the place where the stresses were applied, punctuated by short bursts, accompanied by flashes of light and radio frequency emissions characteristic of a corona discharge. These observations may serve to explain a range of pre-earthquake signals, in particular changes in air conductivity, luminous phenomena, radio frequency noise, and ionospheric perturbations.

  1. Ion-impact secondary emission in negative corona with photoionization

    Directory of Open Access Journals (Sweden)

    B. X. Lu

    2017-03-01

    Full Text Available A corona discharge measurement system and simulation model are presented to investigate the effects of photoionization and ion-impact secondary emission process in negative corona discharge. The simulation results obtained is shown good agreement with experimental observations. Distribution of electron density along the symmetry axis at three critical moments is shown and the role of photoionization in negative corona discharge is clearly explained. Moreover, the current pulses are also presented under different secondary emission coefficients and the effect of the secondary emission coefficient is discussed.

  2. Core-Shell-Corona Micelles with a Responsive Shell.

    Science.gov (United States)

    Gohy, Jean-François; Willet, Nicolas; Varshney, Sunil; Zhang, Jian-Xin; Jérôme, Robert

    2001-09-03

    A reactor for the synthesis of gold nanoparticles is one of the uses of a poly(styrene)-block-poly(2-vinylpyridine)-block-poly(ethylene oxide) triblock copolymer (PS-b-P2VP-b-PEO) which forms core-shell-corona micelles in water. Very low polydispersity spherical micelles are observed that consist of a PS core surrounded by a pH-sensitive P2VP shell and a corona of PEO chains end-capped by a hydroxyl group. The corona can act as a site for attaching responsive or sensing molecules. © 2001 WILEY-VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany.

  3. Statistical characteristic in time-domain of direct current corona-generated audible noise from conductor in corona cage

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xuebao, E-mail: lxb08357x@ncepu.edu.cn; Cui, Xiang, E-mail: x.cui@ncepu.edu.cn; Ma, Wenzuo; Bian, Xingming; Wang, Donglai [State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206 (China); Lu, Tiebing, E-mail: tiebinglu@ncepu.edu.cn [Beijing Key Laboratory of High Voltage and EMC, North China Electric Power University, Beijing 102206 (China); Hiziroglu, Huseyin [Department of Electrical and Computer Engineering, Kettering University, Flint, Michigan 48504 (United States)

    2016-03-15

    The corona-generated audible noise (AN) has become one of decisive factors in the design of high voltage direct current (HVDC) transmission lines. The AN from transmission lines can be attributed to sound pressure pulses which are generated by the multiple corona sources formed on the conductor, i.e., transmission lines. In this paper, a detailed time-domain characteristics of the sound pressure pulses, which are generated by the DC corona discharges formed over the surfaces of a stranded conductors, are investigated systematically in a laboratory settings using a corona cage structure. The amplitude of sound pressure pulse and its time intervals are extracted by observing a direct correlation between corona current pulses and corona-generated sound pressure pulses. Based on the statistical characteristics, a stochastic model is presented for simulating the sound pressure pulses due to DC corona discharges occurring on conductors. The proposed stochastic model is validated by comparing the calculated and measured A-weighted sound pressure level (SPL). The proposed model is then used to analyze the influence of the pulse amplitudes and pulse rate on the SPL. Furthermore, a mathematical relationship is found between the SPL and conductor diameter, electric field, and radial distance.

  4. Statistical characteristic in time-domain of direct current corona-generated audible noise from conductor in corona cage

    Science.gov (United States)

    Li, Xuebao; Cui, Xiang; Lu, Tiebing; Ma, Wenzuo; Bian, Xingming; Wang, Donglai; Hiziroglu, Huseyin

    2016-03-01

    The corona-generated audible noise (AN) has become one of decisive factors in the design of high voltage direct current (HVDC) transmission lines. The AN from transmission lines can be attributed to sound pressure pulses which are generated by the multiple corona sources formed on the conductor, i.e., transmission lines. In this paper, a detailed time-domain characteristics of the sound pressure pulses, which are generated by the DC corona discharges formed over the surfaces of a stranded conductors, are investigated systematically in a laboratory settings using a corona cage structure. The amplitude of sound pressure pulse and its time intervals are extracted by observing a direct correlation between corona current pulses and corona-generated sound pressure pulses. Based on the statistical characteristics, a stochastic model is presented for simulating the sound pressure pulses due to DC corona discharges occurring on conductors. The proposed stochastic model is validated by comparing the calculated and measured A-weighted sound pressure level (SPL). The proposed model is then used to analyze the influence of the pulse amplitudes and pulse rate on the SPL. Furthermore, a mathematical relationship is found between the SPL and conductor diameter, electric field, and radial distance.

  5. The Origin and Dynamics of Solar Magnetism

    CERN Document Server

    Thompson, M. J; Culhane, J. L; Nordlund, Å; Solanki, S. K; Zahn, J.-P

    2009-01-01

    The articles collected in this volume present all aspects of solar magnetism: from its origin in the solar dynamo to its evolution and dynamics that create the variability of solar phenomena, its well-known 11-year activity cycle that leads to the ever-changing pattern of sunspots and active regions on the Sun. Several contributions deal with the solar dynamo, the driver of many solar phenomena. Other contributions treat the transport and emergence of the magnetic flux through the outer layers of the Sun. The coupling of magnetic fields from the surface to the solar corona and beyond is also described, together with current studies on the predictability of solar activity. This book is aimed at researchers and graduate students working in solar physics and space science. It provides a full review of our current understanding of solar magnetism by the foremost experts in the field.

  6. Reticulated Vitreous Carbon Electrodes for Gas Phase Pulsed Corona Reactors

    National Research Council Canada - National Science Library

    Locke, B

    1998-01-01

    A new design for gas phase pulsed corona reactors incorporating reticulated vitreous carbon electrodes is demonstrated to be effective for the removal of nitrogen oxides from synthetic air mixtures...

  7. Reticulated Vitreous Carbon Electrodes for Gas Phase Pulsed Corona Reactors

    National Research Council Canada - National Science Library

    LOCKE, B

    1999-01-01

    A new design for gas phase pulsed corona reactors incorporating reticulated vitreous carbon electrodes is demonstrated to be effective for the removal of nitrogen oxides from synthetic air mixtures...

  8. High-tension corona controlled ozone generator for environment protection

    International Nuclear Information System (INIS)

    Vijayan, T; Patil, Jagadish G

    2010-01-01

    Engineering details of a high voltage driven corona-plasma ozone generator are described. The plasma diode of generator has coaxial cylindrical geometry with cathode located inside anode. Cathode is made of a large number of radial gas nozzles arranged on central tubular mast which admits oxygen gas. The sharp endings of the nozzles along with a set of corona rings create the high electric field at the cathode required for formation of dense corona plume responsible for O 3 evolution. A model of coronal plasma generation and ozone production is presented. The plasma formation is strongly dependent on the electric field and temperature in side diode where a high electron density in a low temperature negative corona is suited for high ozone yields. These are established by suitable regulation of A-K gap, voltage, oxygen pressure, and cathode-nozzle population.

  9. Nanoparticles formation and deposition in the trichel pulse corona

    International Nuclear Information System (INIS)

    Amirov, R H; Samoylov, I S; Petrov, A A

    2013-01-01

    Cathode erosion in the negative corona discharge has been studied in the point-to-plane electrode configuration with Cu cathodes in the Trichel pulse regime. Redeposition of erosion products has been found on the cathode surface in form of agglomerates of 10-nm nanoparticles. Nanocraters and nanoparticles formation in the negative corona discharge has been considered in frames of electro-explosive mechanism of cathode erosion. According to this mechanism the cathode erosion is performed as a consequence of elementary erosion events each of which is caused by a Trichel pulse. A 1-dimentional model of corona-produced nanoparticles dynamics in the gap was elaborated. According to results of the simulation, the redeposition is explained by charging of the nanoparticles due to positive ions adsorption and thermionic emission. The size, temperature and initial velocity of the aerosol nanoparticles have the decisive action on redeposition in the negative corona discharge.

  10. The EUV-observatory TESIS on board Coronas-Photon: scientific goals and initial plan of observations

    Science.gov (United States)

    Bogachev, Sergey

    The TESIS a EUV-observatory for solar research from space will be launched in 2008 September on board the satellite Coronas-Photon from cosmodrome Plesetsk. TESIS is a project of Lebedev Physical Institute of Russian Academy of Science with contribution from Space Research Center of Polish Academy of Science (the spectrometer SphinX). The experiment will focus on quasi-monochromatic imaging of the Sun and XUV spectroscopy of solar plasma. The scientific payload of TESIS contains five instruments: (1) Bragg crystal spectroheliometer for Sun monochromatic imaging in the line MgXII 8.42 A, (2) the normal-incidence Herschelian EUV telescopes with a resolution of 1.7 arc sec operated in lines FeXXII 133 A, FeIX 171 A and HeII 304 A, (3) the EUV imaging spectrometer, (4) the wide-field Ritchey-Chretien coronograph and (5) the X-ray spectrometer SphinX. The TESIS will focus on coordinated study of solar activity from the transition region to the outer corona up to 4 solar radii in wide temperature range from 5*104 to 2*107 K. We describe the scientific goals of the TESIS and its initial plan of observations.

  11. ''Relaxing phenomena'' in negative corona discharge in air: new aspects

    International Nuclear Information System (INIS)

    Strelle, D.; Pavlik, M.; Skalny, J.D.

    1998-01-01

    Several conspicuous differences between the positive and the negative corona discharges in air observed in small discharge gaps have been explained by two recent theoretical models considering the ion-molecule and chemical reactions in the negative corona discharge in air. In the present paper the discrepancies of these models are discussed, and the earlier experimental data and the presumptions used in the models are re-examined in the light of the latest experimentally confirmed facts. (J.U.)

  12. Why the negative corona current in air decreases?

    International Nuclear Information System (INIS)

    Pavlik, M.; Skalny, J.D.; Strelle, D.

    1996-01-01

    The time dependence of negative corona current I, called by Gagarin like 'relaxing of CV-characteristics', is a observed phenomena. The observed phenomena was explained by two theoretical models considering the ion-molecule and chemical reactions in the negative corona discharges in air, especially the ozone production. In the presented paper the discrepancies of above mentioned models, re-examination the earlier experimental data and presumptions used in models in a light the latest experimentally confirmed facts are discussed

  13. Elastic Thickness Estimates for Coronae Associated with Chasmata on Venus

    Science.gov (United States)

    Hoogenboom, T.; Martin, P.; Housean, G. A.

    2005-01-01

    Coronae are large-scale circular tectonic features surrounded by annular ridges. They are generally considered unique to Venus and may offer insights into the differences in lithospheric structure or mantle convective pattern between Venus and Earth. 68% of all coronae are associated with chasmata or fracture belts. The remaining 32% are located at volcanic rises or in the plains. Chasmata are linear to arcuate troughs, with trough parallel fractures and faults which extend for 1000 s of kilometers. Estimates of the elastic thickness of the lithosphere (T(sub e)) have been calculated in a number of gravity/topography studies of Venus and for coronae specifically. None of these studies, however, have explored the dependence of T(sub e) on the tectonic history of the region, as implied from the interpretation of relative timing relationships between coronae and surrounding features. We examine the relationship between the local T(sub e) and the relative ages of coronae and chasmata with the aim of further constraining the origin and evolution of coronae and chasmata systems.

  14. Corona development and floral nectaries of Asclepiadeae (Asclepiadoideae, Apocynaceae

    Directory of Open Access Journals (Sweden)

    Mariana Maciel Monteiro

    Full Text Available ABSTRACT Flowers of Asclepiadoideae are notable for possessing numerous nectaries and elaborate coronas, where nectar can accumulate but is not necessarily produced. Given the complexity and importance of these structures for reproduction, this study aimed to analyze the ontogeny of the corona, the structure and position of nectaries and the histochemistry of the nectar of species of Asclepiadeae. Two types of coronas were observed: androecial [C(is] and corolline (Ca. The development of the C(is-type of corona initiates opposite the stamens in all species examined with the exception of Matelea in which it begins to develop as a ring around the filament tube. Despite their morphological variation, coronas typically originate from the androecium. A notable difference among the studied species was the location of the nectaries. Primarily, they are located in the stigmatic chamber, where nectar composed of carbohydrates and lipids is produced. A secondary location of nectaries found in species of Peplonia and Matelea is within the corona, where nectar is produced and stored, composed of carbohydrates and lipids in Peplonia and only carbohydrates in Matelea. The functional role of nectar is related to the location of its production since it is a resource for pollinators and inducers of pollen germination.

  15. Direct observation of a single nanoparticle-ubiquitin corona formation

    Science.gov (United States)

    Ding, Feng; Radic, Slaven; Chen, Ran; Chen, Pengyu; Geitner, Nicholas K.; Brown, Jared M.; Ke, Pu Chun

    2013-09-01

    The advancement of nanomedicine and the increasing applications of nanoparticles in consumer products have led to administered biological exposure and unintentional environmental accumulation of nanoparticles, causing concerns over the biocompatibility and sustainability of nanotechnology. Upon entering physiological environments, nanoparticles readily assume the form of a nanoparticle-protein corona that dictates their biological identity. Consequently, understanding the structure and dynamics of a nanoparticle-protein corona is essential for predicting the fate, transport, and toxicity of nanomaterials in living systems and for enabling the vast applications of nanomedicine. Here we combined multiscale molecular dynamics simulations and complementary experiments to characterize the silver nanoparticle-ubiquitin corona formation. Notably, ubiquitins competed with citrates for the nanoparticle surface, governed by specific electrostatic interactions. Under a high protein/nanoparticle stoichiometry, ubiquitins formed a multi-layer corona on the particle surface. The binding exhibited an unusual stretched-exponential behavior, suggesting a rich binding kinetics. Furthermore, the binding destabilized the α-helices while increasing the β-sheet content of the proteins. This study revealed the atomic and molecular details of the structural and dynamic characteristics of nanoparticle-protein corona formation.The advancement of nanomedicine and the increasing applications of nanoparticles in consumer products have led to administered biological exposure and unintentional environmental accumulation of nanoparticles, causing concerns over the biocompatibility and sustainability of nanotechnology. Upon entering physiological environments, nanoparticles readily assume the form of a nanoparticle-protein corona that dictates their biological identity. Consequently, understanding the structure and dynamics of a nanoparticle-protein corona is essential for predicting the fate

  16. The Soft X-ray Spectrophotometer SphinX for the CORONAS-Photon Mission

    Science.gov (United States)

    Sylwester, Janusz; Kowalinski, Miroslaw; Szymon, Gburek; Bakala, Jaroslaw; Kuzin, Sergey; Kotov, Yury; Farnik, Frantisek; Reale, Fabio

    The purpose, construction details and calibration results of the new design, Polish-led solar X-ray spectrophotometer SphinX will be presented. The instrument constitutes a part of the Russian TESIS X-ray and EUV complex aboard the forthcoming CORONAS-Photon solar mission to be launched later in 2008. SphinX uses Si-PIN detectors for high time resolution (down to 0.01 s) measurements of solar spectra in the energy range between 0.5 keV and 15 keV. The spectral resolution allows separating 256 individual energy channels in this range with particular groups of lines clearly distinguishable. Unprecedented accuracy of the instrument calibration at the XACT (Palermo) and BESSY (Berlin) synchrotron will allow for establishing the solar soft X-ray photometric reference system. The cross-comparison between SphinX and the other instruments presently in orbit like XRT on Hinode, RHESSI and GOES X-ray monitor, will allow for a precise determination of the coronal emission measure and temperature during both very low and very high activity periods. Examples of the detectors' ground calibration results as well as the calculated synthetic spectra will be presented. The operation of the instrument while in orbit will be discussed allowing for suggestions from other groups to be still included in mission planning.

  17. Solar atmosphere wave dynamics generated by solar global oscillating eigenmodes

    Science.gov (United States)

    Griffiths, M. K.; Fedun, V.; Erdélyi, R.; Zheng, R.

    2018-01-01

    The solar atmosphere exhibits a diverse range of wave phenomena, where one of the earliest discovered was the five-minute global acoustic oscillation, also referred to as the p-mode. The analysis of wave propagation in the solar atmosphere may be used as a diagnostic tool to estimate accurately the physical characteristics of the Sun's atmospheric layers. In this paper, we investigate the dynamics and upward propagation of waves which are generated by the solar global eigenmodes. We report on a series of hydrodynamic simulations of a realistically stratified model of the solar atmosphere representing its lower region from the photosphere to low corona. With the objective of modelling atmospheric perturbations, propagating from the photosphere into the chromosphere, transition region and low corona, generated by the photospheric global oscillations the simulations use photospheric drivers mimicking the solar p-modes. The drivers are spatially structured harmonics across the computational box parallel to the solar surface. The drivers perturb the atmosphere at 0.5 Mm above the bottom boundary of the model and are placed coincident with the location of the temperature minimum. A combination of the VALIIIC and McWhirter solar atmospheres are used as the background equilibrium model. We report how synthetic photospheric oscillations may manifest in a magnetic field free model of the quiet Sun. To carry out the simulations, we employed the magnetohydrodynamics code, SMAUG (Sheffield MHD Accelerated Using GPUs). Our results show that the amount of energy propagating into the solar atmosphere is consistent with a model of solar global oscillations described by Taroyan and Erdélyi (2008) using the Klein-Gordon equation. The computed results indicate a power law which is compared to observations reported by Ireland et al. (2015) using data from the Solar Dynamics Observatory/Atmospheric Imaging Assembly.

  18. Prominence-corona interface compared with the chromosphere-corona transition region

    Energy Technology Data Exchange (ETDEWEB)

    Orrall, F Q; Schmahl, E J [Harvard Coll. Observatory, Cambridge, Mass. (USA)

    1976-11-01

    The intensities of 52 EUV emission lines from each of 9 hedgerow prominences observed at the limb with the Harvard experiment on ATM-Skylab have been compared with intensities from the interior of network cells at the center of the disk, in order to compare the prominence-corona (P-C) interface with the chromosphere-corona (C-C) transition region. The intensity ratio Isub(cell)/Isub(prominence) for each line varies systematically (in all of the prominences observed), with the temperature of formation of the line as approximately Tsup(-0.6). The density sensitive C III (formed at T approximately 9x10/sup 4/ K) line ratio Isub(lambda1175)/Isub(lambda977) implies an average density 1.3x10/sup 9/ electrons cm/sup -3/ in the P-C interface and approximately 4 times this value in the C-C transition of the cells. The total optical thickness at the head of the Lyman continuum is < approximately 10 in most of the prominences studied; in two of the prominences, however, the possibility that tau/sub 0/ is large cannot be rejected. Methods of analysis of these EUV data are developed assuming both a resolved and an unresolved internal prominence structure. Although the systematic differences between the P-C interface and the C-C transition are stressed, the similarities are probably more remarkable and may be a result of fine structure in the C-C transition.

  19. Understanding Solar Cycle Variability

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, R. H.; Schüssler, M., E-mail: cameron@mps.mpg.de [Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany)

    2017-07-10

    The level of solar magnetic activity, as exemplified by the number of sunspots and by energetic events in the corona, varies on a wide range of timescales. Most prominent is the 11-year solar cycle, which is significantly modulated on longer timescales. Drawing from dynamo theory, together with the empirical results of past solar activity and similar phenomena for solar-like stars, we show that the variability of the solar cycle can be essentially understood in terms of a weakly nonlinear limit cycle affected by random noise. In contrast to ad hoc “toy models” for the solar cycle, this leads to a generic normal-form model, whose parameters are all constrained by observations. The model reproduces the characteristics of the variable solar activity on timescales between decades and millennia, including the occurrence and statistics of extended periods of very low activity (grand minima). Comparison with results obtained with a Babcock–Leighton-type dynamo model confirm the validity of the normal-mode approach.

  20. Spatial Mapping and Quantification of Soft and Hard Protein Coronas at Silver Nanocubes

    DEFF Research Database (Denmark)

    Miclaus, Teodora; Bochenkov, Vladimir; Ogaki, Ryosuke

    2014-01-01

    kinetics of the corona-formation at cube edges/corners versus facets at short incubation times, where the polymer stabilization agent delayed corona hardening. The soft corona contained more protein than the hard corona at all time-points (8-fold difference with 10% serum conditions).......Protein coronas around silver nanocubes were quantified in serum-containing media using localized surface plasmon resonances. Both soft and hard coronas showed exposure-time and concentration-dependent changes in protein surface density with time-dependent hardening. We observed spatially dependent...

  1. The SOLAR-C Mission

    Science.gov (United States)

    Suematsu, Y.

    2015-12-01

    The Solar-C is a Japan-led international solar mission planned to be launched in mid2020. It is designed to investigate the magnetic activities of the Sun, focusing on the study in heating and dynamical phenomena of the chromosphere and corona, and also to develop an algorithm for predicting short and long term solar evolution. Since it has been revealed that the different parts of the magnetized solar atmosphere are essentially coupled, the SOLAR-C should tackle the spatial scales and temperature regimes that need to be observed in order to achieve a comprehensive physical understanding of this coupling. The science of Solar-C will greatly advance our understanding of the Sun, of basic physical processes operating throughout the universe. To dramatically improve the situation, SOLAR-C will carry three dedicated instruments; the Solar UV-Vis-IR Telescope (SUVIT), the EUV Spectroscopic Telescope (EUVST) and the High Resolution Coronal Imager (HCI), to jointly observe the entire visible solar atmosphere with essentially the same high spatial resolution (0.1-0.3 arcsec), performing high resolution spectroscopic measurements over all atmospheric regions and spectro-polarimetric measurements from the photosphere through the upper chromosphere. In addition, Solar-C will contribute to our understanding on the influence of the Sun-Earth environments with synergetic wide-field observations from ground-based and other space missions. Some leading science objectives and the mission concept, including designs of the three instruments aboard SOLAR-C will be presented.

  2. Acoustic waves in M dwarfs: Maintaining a corona

    Science.gov (United States)

    Mullan, D. J.; Cheng, Q. Q.

    1994-01-01

    We use a time-dependent hydrodynamics code to follow the propagation of acoustic waves into the corona of an M dwarf star. An important qualitative difference between M dwarfs and stars such as the Sun is that the acoustic spectrum in M dwarfs is expected to peak at periods close to the acoustic cutoff P(sub A): this allows more effective penetration of waves into the corona. In our code, radiative losses in the photosphere, chromosphere, and corona are computed using Rosseland mean opacities, Mg II kappa and Ly alpha emission, and optically thin emissivities respectively. We find that acoustic heating can maintain a corona with a temperature of order 0.7-1 x 10(exp 6) K and a surface X-ray flux as large as 10(exp 5)ergs/sq cm/s. In a recent survey of X-rays from M dwarfs, some (20%-30%) of the stars lie at or below this limiting X-ray flux: we suggest that such stars may be candidates for acoustically maintained coronae.

  3. CORONA DISCHARGE IGNITION FOR ADVANCED STATIONARY NATURAL GAS ENGINES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Paul D. Ronney

    2003-09-12

    An ignition source was constructed that is capable of producing a pulsed corona discharge for the purpose of igniting mixtures in a test chamber. This corona generator is adaptable for use as the ignition source for one cylinder on a test engine. The first tests were performed in a cylindrical shaped chamber to study the characteristics of the corona and analyze various electrode geometries. Next a test chamber was constructed that closely represented the dimensions of the combustion chamber of the test engine at USC. Combustion tests were performed in this chamber and various electrode diameters and geometries were tested. The data acquisition and control system hardware for the USC engine lab was updated with new equipment. New software was also developed to perform the engine control and data acquisition functions. Work is underway to design a corona electrode that will fit in the new test engine and be capable igniting the mixture in one cylinder at first and eventually in all four cylinders. A test engine was purchased for the project that has two spark plug ports per cylinder. With this configuration it will be possible to switch between corona ignition and conventional spark plug ignition without making any mechanical modifications.

  4. Cyclotron Line in Solar Microwave Radiation by Radio Telescope RATAN-600 Observations of the Solar Active Region NOAA 12182

    Science.gov (United States)

    Peterova, N. G.; Topchilo, N. A.

    2017-12-01

    This paper presents the results of observation of a rare phenomenon—a narrowband increase in the brightness of cyclotron radiation of one of the structural details of a radio source located in the solar corona above the solar active region NOAA 12182 in October 2014 at a frequency of 4.2 ± 0.1 GHz. The brightness of radiation in the maximum of the phenomenon has reached 10 MK; its duration was equal to 3 s. The exact location of the source of the narrowband cyclotron radiation is indicated: it is a corona above a fragmented (4-nuclear) sunspot, on which a small UV flare loop was closed.

  5. The "FIP Effect" and the Origins of Solar Energetic Particles and of the Solar Wind

    Science.gov (United States)

    Reames, Donald V.

    2018-03-01

    We find that the element abundances in solar energetic particles (SEPs) and in the slow solar wind (SSW), relative to those in the photosphere, show different patterns as a function of the first ionization potential (FIP) of the elements. Generally, the SEP and SSW abundances reflect abundance samples of the solar corona, where low-FIP elements, ionized in the chromosphere, are more efficiently conveyed upward to the corona than high-FIP elements that are initially neutral atoms. Abundances of the elements, especially C, P, and S, show a crossover from low to high FIP at {≈} 10 eV in the SEPs but {≈} 14 eV for the solar wind. Naively, this seems to suggest cooler plasma from sunspots beneath active regions. More likely, if the ponderomotive force of Alfvén waves preferentially conveys low-FIP ions into the corona, the source plasma that eventually will be shock-accelerated as SEPs originates in magnetic structures where Alfvén waves resonate with the loop length on closed magnetic field lines. This concentrates FIP fractionation near the top of the chromosphere. Meanwhile, the source of the SSW may lie near the base of diverging open-field lines surrounding, but outside of, active regions, where such resonance does not exist, allowing fractionation throughout the chromosphere. We also find that energetic particles accelerated from the solar wind itself by shock waves at corotating interaction regions, generally beyond 1 AU, confirm the FIP pattern of the solar wind.

  6. Impedance-stabilized positive corona discharge and its decontamination properties

    Energy Technology Data Exchange (ETDEWEB)

    Horak, P; Khun, J, E-mail: pavel.horak@vscht.c [Department of Physics and Measurements, Faculty of Chemical Engineering, Institute of Chemical Technology, Technicka 5, 166 28 Praha 6 (Czech Republic)

    2010-04-01

    The point-to-plane DC corona discharge in air at atmospheric pressure was stabilized by a serially connected ballast impedance. The ballast impedance was implemented by a resistor-capacitor group connected in parallel. In the case of connecting the serial impedance into the electric circuit of a negative corona, the transition into a spark takes place at parameters similar to those of a non-stabilized discharge. In contrast, in the case of a positive corona, the discharge does not undergo a transition into a spark, but rather into a mode of periodic streamers. We measured the bactericidal effect of the stabilized discharge. The experiments showed that after a 2-minute exposure the quantity of surviving bacteria decreased from 95% for a non-stabilized discharge down to 5% for a stabilized one.

  7. INDUCED SCATTERING LIMITS ON FAST RADIO BURSTS FROM STELLAR CORONAE

    Energy Technology Data Exchange (ETDEWEB)

    Lyubarsky, Yuri [Physics Department, Ben-Gurion University, P.O.B. 653, Beer-Sheva 84105 (Israel); Ostrovska, Sofiya [Department of Mathematics, Atilim University, Incek 06836, Ankara (Turkey)

    2016-02-10

    The origin of fast radio bursts remains a puzzle. Suggestions have been made that they are produced within the Earth’s atmosphere, in stellar coronae, in other galaxies, or at cosmological distances. If they are extraterrestrial, the implied brightness temperature is very high, and therefore the induced scattering places constraints on possible models. In this paper, constraints are obtained on flares from coronae of nearby stars. It is shown that the radio pulses with the observed power could not be generated if the plasma density within and in the nearest vicinity of the source is as high as is necessary to provide the observed dispersion measure. However, one cannot exclude the possibility that the pulses are generated within a bubble with a very low density and pass through the dense plasma only in the outer corona.

  8. Impedance-stabilized positive corona discharge and its decontamination properties

    International Nuclear Information System (INIS)

    Horak, P; Khun, J

    2010-01-01

    The point-to-plane DC corona discharge in air at atmospheric pressure was stabilized by a serially connected ballast impedance. The ballast impedance was implemented by a resistor-capacitor group connected in parallel. In the case of connecting the serial impedance into the electric circuit of a negative corona, the transition into a spark takes place at parameters similar to those of a non-stabilized discharge. In contrast, in the case of a positive corona, the discharge does not undergo a transition into a spark, but rather into a mode of periodic streamers. We measured the bactericidal effect of the stabilized discharge. The experiments showed that after a 2-minute exposure the quantity of surviving bacteria decreased from 95% for a non-stabilized discharge down to 5% for a stabilized one.

  9. Triggering Excimer Lasers by Photoionization from Corona Discharges

    Science.gov (United States)

    Xiong, Zhongmin; Duffey, Thomas; Brown, Daniel; Kushner, Mark

    2009-10-01

    High repetition rate ArF (192 nm) excimer lasers are used for photolithography sources in microelectronics fabrication. In highly attaching gas mixtures, preionization is critical to obtaining stable, reproducible glow discharges. Photoionization from a separate corona discharge is one technique for preionization which triggers the subsequent electron avalanche between the main electrodes. Photoionization triggering of an ArF excimer laser sustained in multi-atmosphere Ne/Ar/F2/Xe gas mixtures has been investigated using a 2-dimensional plasma hydrodynamics model including radiation transport. Continuity equations for charged and neutral species, and Poisson's equation are solved coincident with the electron temperature with transport coefficients obtained from solutions of Boltzmann's equation. Photoionizing radiation is produced by a surface discharge which propagates along a corona-bar located adjacent to the discharge electrodes. The consequences of pulse power waveform, corona bar location, capacitance and gas mixture on uniformity, symmetry and gain of the avalanche discharge will be discussed.

  10. Influence of corona charging in cellular polyethylene film

    International Nuclear Information System (INIS)

    Ortega Brana, Gustavo; Magraner, Francisco; Quijano, Alfredo; Llovera Segovia, Pedro

    2011-01-01

    Cellular polymers have recently attracted attention for their property of exhibiting a piezoelectric constant when they are electrically charged. The electrostatic charge generated in the voids by the internal discharges creates and internal macrodipole which is responsible for the piezoelectric effect. Charging by corona discharge is the most used method for cellular polymers. Many works has been published on polypropylene and polyethylene films mainly focused on the required expansion process or on the results obtained for raw cellular materials electrically activated. Our work is based on commercial polyethylene cellular films which have been physically characterized and electrically activated. The effect of thermal treatment, physical uniaxial or biaxial stretching and corona charging was investigated. The new method of corona charging improved the piezoelectric constant under other activation conditions.

  11. Influence of corona charging in cellular polyethylene film

    Energy Technology Data Exchange (ETDEWEB)

    Ortega Brana, Gustavo; Magraner, Francisco; Quijano, Alfredo [Instituto Tecnologico de la Energia (ITE), Av. Juan de la Cierva 24, Parque Tecnologico de Valencia, 46980 Paterna-Valencia (Spain); Llovera Segovia, Pedro, E-mail: gustavo.ortega@ite.es [Instituto de TecnologIa Electrica - Universitat Politecnica de Valencia, Camino de Vera s/n 46022-Valencia (Spain)

    2011-06-23

    Cellular polymers have recently attracted attention for their property of exhibiting a piezoelectric constant when they are electrically charged. The electrostatic charge generated in the voids by the internal discharges creates and internal macrodipole which is responsible for the piezoelectric effect. Charging by corona discharge is the most used method for cellular polymers. Many works has been published on polypropylene and polyethylene films mainly focused on the required expansion process or on the results obtained for raw cellular materials electrically activated. Our work is based on commercial polyethylene cellular films which have been physically characterized and electrically activated. The effect of thermal treatment, physical uniaxial or biaxial stretching and corona charging was investigated. The new method of corona charging improved the piezoelectric constant under other activation conditions.

  12. Solar Coronal Jets: Observations, Theory, and Modeling

    Science.gov (United States)

    Raouafi, N. E.; Patsourakos, S.; Pariat, E.; Young, P. R.; Sterling, A.; Savcheva, A.; Shimojo, M.; Moreno-Insertis, F.; Devore, C. R.; Archontis, V.; hide

    2016-01-01

    Chromospheric and coronal jets represent important manifestations of ubiquitous solar transients, which may be the source of signicant mass and energy input to the upper solar atmosphere and the solar wind. While the energy involved in a jet-like event is smaller than that of nominal solar ares and Coronal Mass Ejections (CMEs), jets share many common properties with these major phenomena, in particular, the explosive magnetically driven dynamics. Studies of jets could, therefore, provide critical insight for understanding the larger, more complex drivers of the solar activity. On the other side of the size-spectrum, the study of jets could also supply important clues on the physics of transients closeor at the limit of the current spatial resolution such as spicules. Furthermore, jet phenomena may hint to basic process for heating the corona and accelerating the solar wind; consequently their study gives us the opportunity to attack a broadrange of solar-heliospheric problems.

  13. Admittance Survey of Type 1 Coronae on Venus: Implications for Elastic Thickness

    Science.gov (United States)

    Hoogenboom, T.; Smrekar, S. E.; Anderson, F. S.; Houseman, G.

    2003-01-01

    Coronae are volcano-tectonic features on Venus which range from 60km to 2600km and are defined by their nearly circular patterns of fractures. Type 1 (regular) coronae are classified as having >50% complete fracture annuli. Previous work has examined the factors controlling the morphology, size, and fracture pattern of coronae, using lithospheric properties, loading signature and geologic characteristics. However, these studies have been limited to Type 2 (topographic) coronae (e.g. coronaes with <50% fracture annuli), and the factors controlling the formation of Type 1 coronae remain poorly understood. In this study, we apply the methodology of to survey the admittance signature for Type 1 coronae to determine the controlling parameters which govern Type 1 coronae formation.

  14. The Solar Wind from Pseudostreamers and their Environs: Opportunities for Observations with Parker Solar Probe and Solar Orbiter

    Science.gov (United States)

    Panasenco, O.; Velli, M.; Panasenco, A.; Lionello, R.

    2017-12-01

    The solar dynamo and photospheric convection lead to three main types of structures extending from the solar surface into the corona - active regions, solar filaments (prominences when observed at the limb) and coronal holes. These structures exist over a wide range of scales, and are interlinked with each other in evolution and dynamics. Active regions can form clusters of magnetic activity and the strongest overlie sunspots. In the decay of active regions, the boundaries separating opposite magnetic polarities (neutral lines) develop specific structures called filament channels above which filaments form. In the presence of flux imbalance decaying active regions can also give birth to lower latitude coronal holes. The accumulation of magnetic flux at coronal hole boundaries also creates conditions for filament formation: polar crown filaments are permanently present at the boundaries of the polar coronal holes. Mid-latitude and equatorial coronal holes - the result of active region evolution - can create pseudostreamers if other coronal holes of the same polarity are present. While helmet streamers form between open fields of opposite polarities, the pseudostreamer, characterized by a smaller coronal imprint, typically shows a more prominent straight ray or stalk extending from the corona. The pseudostreamer base at photospheric heights is multipolar; often one observes tripolar magnetic configurations with two neutral lines - where filaments can form - separating the coronal holes. Here we discuss the specific role of filament channels on pseudostreamer topology and on solar wind properties. 1D numerical analysis of pseudostreamers shows that the properties of the solar wind from around PSs depend on the presence/absence of filament channels, number of channels and chirality at thepseudostreamer base low in the corona. We review and model possible coronal magnetic configurations and solar wind plasma properties at different distances from the solar surface that

  15. Evolving R Coronae Borealis Stars with MESA

    Science.gov (United States)

    Clayton, Geoffrey C.; Lauer, Amber; Chatzopoulos, Emmanouil; Frank, Juhan

    2018-01-01

    R Coronae Borealis (RCB) stars form a small class of cool, carbon-rich supergiants that have almost no hydrogen. They undergo extreme, irregular declines in brightness of up to 8 magnitudes due to the formation of thick clouds of carbon dust. Two scenarios have been proposed for the origin of an RCB star: the merger of a CO/He white dwarf (WD) binary and a final helium-shell flash. We are using a combination of 3D hydrodynamics codes and the 1D MESA (Modules for Experiments in Stellar Astrophysics) stellar evolution code including nucleosynthesis to construct post-merger spherical models based on realistic merger progenitor models and on our hydrodynamical simulations, and then following the evolution into the region of the HR diagram where RCB stars are located. We are investigating nucleosynthesis in the dynamically accreting material of CO/He WD mergers which may provide a suitable environment for significant production of 18O and the very low 16O/18O values observed.Our MESA modeling consists of two steps: first mimicking the WD merger event using two different techniques, (a) by choosing a very high mass accretion rate with appropriate abundances and (b) by applying "stellar engineering" to an initial CO WD model to account for the newly merged material by applying an entropy adjusting procedure. Second, we follow the post-merger evolution using a large nuclear reaction network including the effects of convective and rotational instabilities to the mixing of material in order to match the observed RCB abundances. MESA follows the evolution of the merger product as it expands and cools to become an RCB star. We then examine the surface abundances and compare them to the observed RCB abundances. We also investigate how long fusion continues in the He shell near the core and how this processed material is mixed up to the surface of the star. We then model the later evolution of RCB stars to determine their likely lifetimes and endpoints when they have returned to

  16. Dielectric fluid directional spreading under the action of corona discharge

    Science.gov (United States)

    Zhou, Shangru; Liu, Jie; Hu, Qun; Jiang, Teng; Yang, Jinchu; Liu, Sheng; Zheng, Huai

    2018-01-01

    Liquid spreading is a very common nature phenomenon and of significant importance for a broad range of applications. In this study, a dielectric fluid directional spreading phenomenon is presented. Under the action of corona discharge, a dielectric fluid, here a typical silicone directionally spreads along conductive patterns on conductive/nonconductive substrates. Directional spreading behaviors of silicone were experimentally observed on different conductive patterns in detail. Spreading speeds were analyzed at different driving voltages, which induced the corona discharge. The presented phenomenon may be useful to inspire several techniques of manipulating liquid transportation and fabricating micropatterns.

  17. Hot Coronae in Local AGN: Present Status and Future Perspectives

    Directory of Open Access Journals (Sweden)

    Andrea Marinucci

    2018-04-01

    Full Text Available The nuclear X-ray emission in radio-quiet Active Galactic Nuclei (AGN is commonly believed to be due to inverse Compton scattering of soft UV photons in a hot corona. The radiation is expected to be polarized, the polarization degree depending mainly on the geometry and optical depth of the corona. Nuclear Spectroscopic Telescope Array (NuSTAR observations are providing for the first time high quality measurements of the coronal physical parameters—temperature and optical depth. We hereby review the NuSTAR results on the coronal physical parameters (temperature and optical depth and discuss their implications for future X-ray polarimetric studies.

  18. Nanoparticle-protein corona in invertebrate in vitro testing

    DEFF Research Database (Denmark)

    Hayashi, Yuya; Miclaus, Teodora; Scavenius, Carsten

    2013-01-01

    , and the primary cells were thus exposed to silver nanoparticles with pre-formed corona of serum albumin (a major serum protein). Here we have profiled proteins forming the hard corona around silver nanoparticles (OECD reference materials, 15 nm and 75 nm) using gel electrophoresis techniques to identify proteins...... that strongly interact with the nanoparticles. This study was accompanied by multi-parametric flow-cytometry analysis of the cellular responses, in particular nanoparticle accumulation and cytotoxicity. The formation of and differential cellular responses to nanoparticle-protein complexes underscore the need...

  19. Fabrication of corona-free nanoparticles with tunable hydrophobicity.

    Science.gov (United States)

    Moyano, Daniel F; Saha, Krishnendu; Prakash, Gyan; Yan, Bo; Kong, Hao; Yazdani, Mahdieh; Rotello, Vincent M

    2014-07-22

    A protein corona is formed at the surface of nanoparticles in the presence of biological fluids, masking the surface properties of the particle and complicating the relationship between chemical functionality and biological effects. We present here a series of zwitterionic NPs of variable hydrophobicity that do not adsorb proteins at moderate levels of serum protein and do not form hard coronas at physiological serum concentrations. These particles provide platforms to evaluate nanobiological behavior such as cell uptake and hemolysis dictated directly by chemical motifs at the nanoparticle surface.

  20. Propagation of Torsional Alfvén Waves from the Photosphere to the Corona: Reflection, Transmission, and Heating in Expanding Flux Tubes

    Energy Technology Data Exchange (ETDEWEB)

    Soler, Roberto; Terradas, Jaume; Oliver, Ramón; Ballester, José Luis, E-mail: roberto.soler@uib.es [Departament de Física, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain)

    2017-05-01

    It has been proposed that Alfvén waves play an important role in the energy propagation through the solar atmospheric plasma and its heating. Here we theoretically investigate the propagation of torsional Alfvén waves in magnetic flux tubes expanding from the photosphere up to the low corona and explore the reflection, transmission, and dissipation of wave energy. We use a realistic variation of the plasma properties and the magnetic field strength with height. Dissipation by ion–neutral collisions in the chromosphere is included using a multifluid partially ionized plasma model. Considering the stationary state, we assume that the waves are driven below the photosphere and propagate to the corona, while they are partially reflected and damped in the chromosphere and transition region. The results reveal the existence of three different propagation regimes depending on the wave frequency: low frequencies are reflected back to the photosphere, intermediate frequencies are transmitted to the corona, and high frequencies are completely damped in the chromosphere. The frequency of maximum transmissivity depends on the magnetic field expansion rate and the atmospheric model, but is typically in the range of 0.04–0.3 Hz. Magnetic field expansion favors the transmission of waves to the corona and lowers the reflectivity of the chromosphere and transition region compared to the case with a straight field. As a consequence, the chromospheric heating due to ion–neutral dissipation systematically decreases when the expansion rate of the magnetic flux tube increases.

  1. Nonequilibrium Processes in the Solar Corona, Transition Region, Flares, and Solar Wind (Invited Review)

    Czech Academy of Sciences Publication Activity Database

    Dudík, Jaroslav; Dzifčáková, Elena; Meyer-Vernet, N.; Del Zanna, G.; Young, P. R.; Giunta, A.; Sylwester, B.; Sylwester, J.; Oka, M.; Mason, H. E.; Vocks, C.; Matteini, L.; Krucker, S.; Williams, D.R.; Mackovjak, Š.

    2017-01-01

    Roč. 292, č. 8 (2017), 100/1-100/72 ISSN 0038-0938 R&D Projects: GA ČR(CZ) GA17-16447S Institutional support: RVO:67985815 Keywords : energetic particles * electrons * flares Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics OBOR OECD: Astronomy (including astrophysics,space science) Impact factor: 2.682, year: 2016

  2. Nanoparticles-cell association predicted by protein corona fingerprints

    Science.gov (United States)

    Palchetti, S.; Digiacomo, L.; Pozzi, D.; Peruzzi, G.; Micarelli, E.; Mahmoudi, M.; Caracciolo, G.

    2016-06-01

    In a physiological environment (e.g., blood and interstitial fluids) nanoparticles (NPs) will bind proteins shaping a ``protein corona'' layer. The long-lived protein layer tightly bound to the NP surface is referred to as the hard corona (HC) and encodes information that controls NP bioactivity (e.g. cellular association, cellular signaling pathways, biodistribution, and toxicity). Decrypting this complex code has become a priority to predict the NP biological outcomes. Here, we use a library of 16 lipid NPs of varying size (Ø ~ 100-250 nm) and surface chemistry (unmodified and PEGylated) to investigate the relationships between NP physicochemical properties (nanoparticle size, aggregation state and surface charge), protein corona fingerprints (PCFs), and NP-cell association. We found out that none of the NPs' physicochemical properties alone was exclusively able to account for association with human cervical cancer cell line (HeLa). For the entire library of NPs, a total of 436 distinct serum proteins were detected. We developed a predictive-validation modeling that provides a means of assessing the relative significance of the identified corona proteins. Interestingly, a minor fraction of the HC, which consists of only 8 PCFs were identified as main promoters of NP association with HeLa cells. Remarkably, identified PCFs have several receptors with high level of expression on the plasma membrane of HeLa cells.In a physiological environment (e.g., blood and interstitial fluids) nanoparticles (NPs) will bind proteins shaping a ``protein corona'' layer. The long-lived protein layer tightly bound to the NP surface is referred to as the hard corona (HC) and encodes information that controls NP bioactivity (e.g. cellular association, cellular signaling pathways, biodistribution, and toxicity). Decrypting this complex code has become a priority to predict the NP biological outcomes. Here, we use a library of 16 lipid NPs of varying size (Ø ~ 100-250 nm) and surface

  3. A new perspective on solar active regions

    Science.gov (United States)

    Strong, K. T.; Bruner, M. E.

    1996-01-01

    A flood of new observations of the solar corona have been made with high spatial resolution, good temporal coverage and resolution, and large linear dynamic range by the Soft X-ray Telescope (SXT) on Yohkoh. These data are changing our fundamental understanding of how solar magnetic fields emerge, interact, and dissipate. This paper reviews some of the results from Yohkoh in the context of earlier results from the Solar Maximum Mission (SMM) and in comjunction with ground-based optical and radio observations.

  4. Pulsations of the R Coronae Borealis stars

    International Nuclear Information System (INIS)

    Cox, J.P.; King, D.S.; Cox, A.N.; Wheeler, J.C.; Hansen, C.J.; Hodson, S.W.

    1980-01-01

    The radial pulsations of very luminous, low-mass models (L/M approx. 10 4 , solar units), which are possible representatives of the R CrB stars, have been examined. These pulsations are extremely nonadiabatic. There are in some cases at least one extra (strange) mode which makes interpretation difficult. The blue instability edges are also peculiar, in that there is an abrupt excursion of the blue edge to the blue for L/M sufficiently large. The range of periods of the model encompasses observed periods of the Cepheid-like pulsations of actual R CrB stars

  5. Second harmonic generation from corona-poled polymer thin films ...

    Indian Academy of Sciences (India)

    2014-02-09

    Feb 9, 2014 ... We characterize thermal stability of second harmonic generation (SHG) properties of four different Y-type polymers poled using corona poling method. These polymers are based on donor–acceptor–donor-type repeating unit with different aromatic moieties acting as donors and dicyanomethylene acting as ...

  6. Water purification by corona-above-water treatment

    NARCIS (Netherlands)

    Pemen, A.J.M.; Heesch, van E.J.M.; Hoeben, W.F.L.M.

    2012-01-01

    Advanced oxidation technologies (AOT), such as non-thermal plasmas, are considered to be very promising for the purpose of water treatment. The goal of this study is to test the feasibility of "Corona-above-water" technology for the treatment of drinking water. Experiments have been performed on the

  7. A high-voltage pulse generator for corona plasma generation

    NARCIS (Netherlands)

    Yan, K.; Heesch, van E.J.M.; Pemen, A.J.M.; Huijbrechts, P.A.H.J.; Gompel, van F.M.; Leuken, van H.E.M.; Matyas, Z.

    2002-01-01

    This paper discusses a high-voltage pulse generator for producing corona plasma. The generator consists of three resonant charging circuits, a transmission line transformer, and a triggered spark-gap switch. Voltage pulses in the order of 30-100 kV with a rise time of 10-20 ns, a pulse duration of

  8. Influences of the pulsed power supply on corona streamer appearance

    NARCIS (Netherlands)

    Veldhuizen, van E.M.; Briels, T.M.P.; Grabowski, L.R.; Pemen, A.J.M.; Ebert, U.M.

    2005-01-01

    Pulsed positive corona streamers in air are studied by images obtained with an intensified CCD camera. Using a switched capacitor power supply, thin streamers are observed that branch. A power supply consisting of a 4-stage transmission line transformer gives pulses of much higher current to the

  9. DBD-Corona Discharge for Degradation of Toxic Gases

    International Nuclear Information System (INIS)

    Pacheco-Pacheco, M.; Pacheco-Sotelo, J.; Moreno-Saavedra, H.; Diaz-Gomez, J. A.; Mercado-Cabrera, A.; Yousfi, M.

    2007-01-01

    The non-thermal plasma technology is a promising technique to treat SO 2 and NO x . Chemical radicals produced with this technology can remove several pollutants at atmospheric pressure in a very short period of time simultaneously. Both theoretical and experimental study on SO 2 and NO x removal, by a dielectric barrier discharge (DBD) with corona effect, is presented

  10. Pulsed power corona discharges for air pollution control

    NARCIS (Netherlands)

    Smulders, H.W.M.; Heesch, van E.J.M.; Paasen, van S.V.B.

    1998-01-01

    Successful introduction of pulsed corona for industrial purposes very much depends on the reliability of high-voltage and pulsed power technology and on the efficiency of energy transfer. In addition, it is of the utmost importance that adequate electromagnetic compatibility (EMC) is achieved

  11. Novel dielectric reduces corona breakdown in ac capacitors

    Science.gov (United States)

    Loehner, J. L.

    1972-01-01

    Dielectric system was developed which consists of two layers of 25-gage paper separated by one layer of 50-gage polypropylene to reduce corona breakdown in ac capacitors. System can be used in any alternating current application where constant voltage does not exceed 400 V rms. With a little research it could probably be increased to 700 to 800 V rms.

  12. Semi-analytical modelling of positive corona discharge in air

    Science.gov (United States)

    Pontiga, Francisco; Yanallah, Khelifa; Chen, Junhong

    2013-09-01

    Semianalytical approximate solutions of the spatial distribution of electric field and electron and ion densities have been obtained by solving Poisson's equations and the continuity equations for the charged species along the Laplacian field lines. The need to iterate for the correct value of space charge on the corona electrode has been eliminated by using the corona current distribution over the grounded plane derived by Deutsch, which predicts a cos m θ law similar to Warburg's law. Based on the results of the approximated model, a parametric study of the influence of gas pressure, the corona wire radius, and the inter-electrode wire-plate separation has been carried out. Also, the approximate solutions of the electron number density has been combined with a simplified plasma chemistry model in order to compute the ozone density generated by the corona discharge in the presence of a gas flow. This work was supported by the Consejeria de Innovacion, Ciencia y Empresa (Junta de Andalucia) and by the Ministerio de Ciencia e Innovacion, Spain, within the European Regional Development Fund contracts FQM-4983 and FIS2011-25161.

  13. Inception behaviour of pulsed positive corona in several gases

    International Nuclear Information System (INIS)

    Veldhuizen, E M van; Rutgers, W R

    2003-01-01

    The inception probability and the streamer length of pulsed positive corona discharges is determined in argon, nitrogen, oxygen and air. This study is performed in a 25 mm point-plane gap at a pressure of 1 bar. The lowest voltage at which a discharge in argon starts is 3 kV but only with an inception probability of 1%. At 5 kV the corona discharge in argon transforms into a spark with a probability close to 100%. The inception probability of corona discharges in all molecular gases used here as a function of the voltage is identical, starting with 1% at 4 kV and going up to 100% at 9 kV. The streamer lengths are quite different for these gases, nitrogen requiring the lowest voltage for streamers to cross the gap and oxygen the highest. This is probably due to electron attachment in oxygen. A remarkable result is that in air streamers bridge the gap at 8 kV, but spark breakdown occurs only above 26 kV. This property makes it relatively easy to obtain powerful pulsed corona discharges in air

  14. Inception behaviour of pulsed positive corona in several gases

    Energy Technology Data Exchange (ETDEWEB)

    Veldhuizen, E M van; Rutgers, W R [Technische Universiteit Eindhoven, PO Box 513, 5600 MB Eindhoven (Netherlands)

    2003-11-07

    The inception probability and the streamer length of pulsed positive corona discharges is determined in argon, nitrogen, oxygen and air. This study is performed in a 25 mm point-plane gap at a pressure of 1 bar. The lowest voltage at which a discharge in argon starts is 3 kV but only with an inception probability of 1%. At 5 kV the corona discharge in argon transforms into a spark with a probability close to 100%. The inception probability of corona discharges in all molecular gases used here as a function of the voltage is identical, starting with 1% at 4 kV and going up to 100% at 9 kV. The streamer lengths are quite different for these gases, nitrogen requiring the lowest voltage for streamers to cross the gap and oxygen the highest. This is probably due to electron attachment in oxygen. A remarkable result is that in air streamers bridge the gap at 8 kV, but spark breakdown occurs only above 26 kV. This property makes it relatively easy to obtain powerful pulsed corona discharges in air.

  15. Ozone formation by gaseous corona discharge generated above aqueous solution

    Czech Academy of Sciences Publication Activity Database

    Lukeš, Petr; Člupek, Martin; Babický, Václav; Šunka, Pavel

    2004-01-01

    Roč. 54, suppl. C (2004), C909-C913 ISSN 0011-4626. [Symposium on Plasma Physics and Technology /21st/. Praha, 14.06.2004-17.06.2004] R&D Projects: GA ČR GA202/02/1026 Keywords : corona discharg, ozone Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.292, year: 2004

  16. Filamentation of diamond nanoparticles treated in underwater corona discharge

    Czech Academy of Sciences Publication Activity Database

    Jirásek, Vít; Lukeš, Petr; Kozak, Halyna; Artemenko, Anna; Člupek, Martin; Čermák, Jan; Rezek, Bohuslav; Kromka, Alexander

    2016-01-01

    Roč. 6, č. 3 (2016), 2352-2360 ISSN 2046-2069 R&D Projects: GA ČR GA15-01687S; GA MŠk(CZ) LD14011 Institutional support: RVO:68378271 ; RVO:61389021 Keywords : nanodiamonds * pulsed streamer corona discharge * filamentation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.108, year: 2016

  17. The radii of the Wolf-Rayet stars and the extent of their chromosphere-corona formation

    Energy Technology Data Exchange (ETDEWEB)

    Sahade, J [Instituto de Astronomia y Fisica del Espacio, Buenos Aires, Argentina; Zorec, J [College de France, Paris, France

    1981-03-01

    The radii of 14 Wolf-Rayet stars are computed on the basis of previously reported absolute fluxes in the region from 4150 to 8000 A for 10 WN stars and from 3650 to 8000 A for four WC stars. For comparison, the radii of 11 Of stars are also calculated. The Wolf-Rayet radii are found to range from about 10 to 35 solar radii, values that do not appear to provide supporting evidence for the hypothesis that Of stars evolve into late WN stars. Available UV observations of Gamma-2 Vel are used to investigate the extent of the chromosphere-corona structure in Wolf-Rayet stars. It is suggested that the second electron-temperature maximum in a recently proposed model for the extended envelopes of Wolf-Rayet stars should be further than about 300 solar radii from the center of a star.

  18. An Estimate of Solar Wind Velocity Profiles in a Coronal Hole and a Coronal Streamer Area (6-40 R(radius symbol)

    Science.gov (United States)

    Patzold, M.; Tsurutani, B. T.; Bird, M. K.

    1995-01-01

    Total electron content data obtained from the Ulysses Solar Corona Experiment (SCE) in 1991 were used to select two data sets, one associated with a coronal hole and the other with coronal streamer crossings. (This is largely equatorial data shortly after solar maximum.) The solar wind velocity profile is estimated for these areas.

  19. Solar polar rotation and its effect on heliospheric neutral fluxes

    Science.gov (United States)

    Sokol, J. M.; Grzedzielski, S.; Bzowski, M.

    2016-12-01

    The magnetic field in the solar polar corona exhibit a regular "ray-like" structure associated with large polar coronal holes during solar minimum. The solar rotation twists the magnetic field lines of the expanding fast solar wind over the poles. The twist induces a toroidal component of the polar magnetic field which results in magnetic forces directed towards the rotation axis. That is tantamount to a (weak) zeta pinch, known also in other astrophysical contexts (e.g. AGN plasmas). The pinch compresses the polar solar corona plasma and a cone-like enhancement in the solar wind density forms along the rotation axis. Though the effect is likely very dynamic, a time independent description is used here to get an order-of-magnitude estimate. The weak pinch is treated as a 1st order perturbation to the zero-order radial flow. The obtained density enhancement may affect the near and far heliosphere, modifying the charge-exchange and electron impact ionization rates of neutral atoms in interplanetary space. The charge exchange is the most effective ionization process for hydrogen and oxygen atoms, and electron impact ionization is a significant loss reaction for the helium atoms at close distances to the Sun. The change in the polar density due to the solar polar corona rotation could be of importance in the inner heliosphere for low energy atoms. We will present the influence of this effect on interstellar neutral gas distribution and H ENA fluxes observed by IBEX.

  20. Solar Probe Plus: A mission to touch the sun

    Science.gov (United States)

    Kinnison, J.; Lockwood, M. K.; Fox, N.; Conde, R.; Driesman, A.

    Solar Probe Plus (SPP), currently in Phase B, will be the first mission to fly into the low solar corona, revealing how the corona is heated and the solar wind is accelerated, solving two fundamental mysteries that have been top priority science goals since such a mission was first proposed in 1958. The scale and concept of such a mission has been revised at intervals since that time, yet the core has always been a close encounter with the Sun. SPP uses an innovative mission design, significant technology development and a risk-reducing engineering development to meet the SPP science objectives: 1) determine the structure and dynamics of the magnetic fields at the sources of the fast and slow solar wind, 2) trace the flow of energy that heats the corona and accelerates the solar wind. and 3) determine what mechanisms accelerate and transport energetic particles. In this paper, we present the Solar Probe Plus mission along with a brief comparison with some previous concepts for such a mission, and discuss the trade studies that led to the SPP implementation. We present a summary of the challenges associated with operation in the solar encounter environment and discuss the technology development and engineering trade studies to compose a mission that will not only survive this environment, but will provide the data needed to answer the science questions that have remained unanswered to date.

  1. Implications of the Deep Minimum for Slow Solar Wind Origin

    Science.gov (United States)

    Antiochos, S. K.; Mikic, Z.; Lionello, R.; Titov, V. S.; Linker, J. A.

    2009-12-01

    The origin of the slow solar wind has long been one of the most important problems in solar/heliospheric physics. Two observational constraints make this problem especially challenging. First, the slow wind has the composition of the closed-field corona, unlike the fast wind that originates on open field lines. Second, the slow wind has substantial angular extent, of order 30 degrees, which is much larger than the widths observed for streamer stalks or the widths expected theoretically for a dynamic heliospheric current sheet. We propose that the slow wind originates from an intricate network of narrow (possibly singular) open-field corridors that emanate from the polar coronal hole regions. Using topological arguments, we show that these corridors must be ubiquitous in the solar corona. The total solar eclipse in August 2008, near the lowest point of the Deep Minimum, affords an ideal opportunity to test this theory by using the ultra-high resolution Predictive Science's (PSI) eclipse model for the corona and wind. Analysis of the PSI eclipse model demonstrates that the extent and scales of the open-field corridors can account for both the angular width of the slow wind and its closed-field composition. We discuss the implications of our slow wind theory for the structure of the corona and heliosphere at the Deep Minimum and describe further observational and theoretical tests. This work has been supported by the NASA HTP, SR&T, and LWS programs.

  2. Cyclical Variation of the Quiet Corona and Coronal Holes

    Indian Academy of Sciences (India)

    tribpo

    Key words. Coronagraphs—solar activity cycle—solar corona—total ... can be divided into the quiet sun (including coronal holes) and active regions. The ... regions has attracted attention and is termed as 'the extended solar cycle'. Here the.

  3. Endogenous Magnetic Reconnection in Solar Coronal Loops

    Science.gov (United States)

    Asgari-Targhi, M.; Coppi, B.; Basu, B.; Fletcher, A.; Golub, L.

    2017-12-01

    We propose that a magneto-thermal reconnection process occurring in coronal loops be the source of the heating of the Solar Corona [1]. In the adopted model, magnetic reconnection is associated with electron temperature gradients, anisotropic electron temperature fluctuations and plasma current density gradients [2]. The input parameters for our theoretical model are derived from the most recent observations of the Solar Corona. In addition, the relevant (endogenous) collective modes can produce high energy particle populations. An endogenous reconnection process is defined as being driven by factors internal to the region where reconnection takes place. *Sponsored in part by the U.S. D.O.E. and the Kavli Foundation* [1] Beafume, P., Coppi, B. and Golub, L., (1992) Ap. J. 393, 396. [2] Coppi, B. and Basu, B. (2017) MIT-LNS Report HEP 17/01.

  4. The Lyman Alpha Imaging-Monitor Experiment (LAIME) for TESIS/CORONAS-PHOTON

    Science.gov (United States)

    Damé, L.; Koutchmy, S.; Kuzin, S.; Lamy, P.; Malherbe, J.-M.; Noëns, J.-C.

    LAIME the Lyman Alpha Imaging-Monitor Experiment is a remarkably simple no mechanisms and compact 100x100x400 mm full Sun imager to be flown with TESIS on the CORONAS-PHOTON mission launch expected before mid-2008 As such it will be the only true chromospheric imager to be flown in the next years supporting TESIS EUV-XUV imaging SDO and the Belgian LYRA Lyman Alpha flux monitor on the ESA PROBA-2 microsatellite launch expected in September 2007 We will give a short description of this unique O60 mm aperture imaging telescope dedicated to the investigating of the magnetic sources of solar variability in the UV and chromospheric and coronal disruptive events rapid waves Moreton waves disparitions brusques of prominences filaments eruptions and CMEs onset The resolution pixel is 2 7 arcsec the field of view 1 4 solar radius and the acquisition cadence could be as high as 1 image minute The back thinned E2V CCD in the focal plane is using frame transfer to avoid shutter and mechanisms Further more the double Lyman Alpha filtering allows a 40 AA FWHM bandwidth and excellent rejection yet providing a vacuum seal design of the telescope MgF2 entrance window Structural stability of the telescope focal length 1 m is preserved by a 4-INVAR bars design with Aluminium compensation in a large pm 10 o around 20 o

  5. MUSE, the Multi-Slit Solar Explorer

    Science.gov (United States)

    Lemen, J. R.; Tarbell, T. D.; De Pontieu, B.; Wuelser, J. P.

    2017-12-01

    The Multi-Slit Solar Explorer (MUSE) has been selected for a Phase A study for the NASA Heliophysics Small Explorer program. The science objective of MUSE is to make high spatial and temporal resolution imaging and spectral observations of the solar corona and transition region in order to probe the mechanisms responsible for energy release in the corona and understand the dynamics of the solar atmosphere. The physical processes are responsible for heating the corona, accelerating the solar wind, and the rapid release of energy in CMEs and flares. The observations will be tightly coupled to state-of-the-art numerical modeling to provide significantly improved estimates for understanding and anticipating space weather. MUSE contains two instruments: an EUV spectrograph and an EUV context imager. Both have similar spatial resolutions and leverage extensive heritage from previous high-resolution instruments such as IRIS and the HiC rocket payload. The MUSE spectrograph employs a novel multi-slit design that enables a 100x improvement in spectral scanning rates, which will reveal crucial information about the dynamics (e.g., temperature, velocities) of the physical processes that are not observable with current instruments. The MUSE investigation builds on the success of IRIS by combining numerical modeling with a uniquely capable observatory: MUSE will obtain EUV spectra and images with the highest resolution in space (1/3 arcsec) and time (1-4 s) ever achieved for the transition region and corona, along 35 slits and a large context FOV simultaneously. The MUSE consortium includes LMSAL, SAO, Stanford, ARC, HAO, GSFC, MSFC, MSU, and ITA Oslo.

  6. New computation results for the solar dynamo

    International Nuclear Information System (INIS)

    Csada, I.K.

    1983-01-01

    The analytical solution to the solar dynamo equation leads to a relatively simple algorythm for the computation in terms of kinematic models. The internal and external velocities taken to be in the form of axisymmetric meridional circulation and differential rotation, respectively. Pure radial expanding motions in the corona are also taken into consideration. Numerical results are presented in terms of the velocity parameters for the period of field reversal, decay time, magnitudes and phases of the first four multipoles. (author)

  7. Core/corona modeling of diode-imploded annular loads

    Science.gov (United States)

    Terry, R. E.; Guillory, J. U.

    1980-11-01

    The effects of a tenuous exterior plasma corona with anomalous resistivity on the compression and heating of a hollow, collisional aluminum z-pinch plasma are predicted by a one-dimensional code. As the interior ("core") plasma is imploded by its axial current, the energy exchange between core and corona determines the current partition. Under the conditions of rapid core heating and compression, the increase in coronal current provides a trade-off between radial acceleration and compression, which reduces the implosion forces and softens the pitch. Combined with a heuristic account of energy and momentum transport in the strongly coupled core plasma and an approximate radiative loss calculation including Al line, recombination and Bremsstrahlung emission, the current model can provide a reasonably accurate description of imploding annular plasma loads that remain azimuthally symmetric. The implications for optimization of generator load coupling are examined.

  8. The Effect of a Corona Discharge on a Lightning Attachment

    International Nuclear Information System (INIS)

    Aleksandrov, N.L.; Bazelyan, E.M.; Raizer, Yu.P.

    2005-01-01

    The interaction between the lightning leader and the space charge accumulated near the top of a ground object in the atmospheric electric field is considered using analytical and numerical models developed earlier to describe spark discharges in long laboratory gaps. The specific features of a nonstationary corona discharge that develops in the electric field of a thundercloud and a downward lightning leader are analyzed. Conditions for the development of an upward lightning discharge from a ground object and for the propagation of an upward-connecting leader from the object toward a downward lightning leader (the process determining the point of strike to the ground) are investigated. Possible mechanisms for the interaction of the corona space charge with an upward leader and prospects of using it to control downward lightning discharges are analyzed

  9. Air trichloroethylene oxidation in a corona plasma-catalytic reactor

    International Nuclear Information System (INIS)

    Masoomi-Godarzi, S.; Ranji-Burachaloo, H.; Khodadadi, A.A.; Vesali-Naseh, M.; Mortazavi, Y.

    2014-01-01

    The oxidative decomposition of trichloroethylene (TCE; 300 ppm) by non-thermal corona plasma was investigated in dry air at atmospheric pressure and room temperature, both in the absence and presence of catalysts including MnO x , CoO x . The catalysts were synthesized by a co-precipitation method. The morphology and structure of the catalysts were characterized by BET surface area measurement and Fourier Transform Infrared (FTIR) methods. Decomposition of TCE and distribution of products were evaluated by a gas chromatograph (GC) and an FTIR. In the absence of the catalyst, TCE removal is increased with increases in the applied voltage and current intensity. Higher TCE removal and CO 2 selectivity is observed in presence of the corona and catalysts, as compared to those with the plasma alone. The results show that MnO x and CoO x catalysts can dissociate the in-plasma produced ozone to oxygen radicals, which enhances the TCE decomposition. (author)

  10. Air trichloroethylene oxidation in a corona plasma-catalytic reactor

    Science.gov (United States)

    Masoomi-Godarzi, S.; Ranji-Burachaloo, H.; Khodadadi, A. A.; Vesali-Naseh, M.; Mortazavi, Y.

    2014-08-01

    The oxidative decomposition of trichloroethylene (TCE; 300 ppm) by non-thermal corona plasma was investigated in dry air at atmospheric pressure and room temperature, both in the absence and presence of catalysts including MnOx, CoOx. The catalysts were synthesized by a co-precipitation method. The morphology and structure of the catalysts were characterized by BET surface area measurement and Fourier Transform Infrared (FTIR) methods. Decomposition of TCE and distribution of products were evaluated by a gas chromatograph (GC) and an FTIR. In the absence of the catalyst, TCE removal is increased with increases in the applied voltage and current intensity. Higher TCE removal and CO2 selectivity is observed in presence of the corona and catalysts, as compared to those with the plasma alone. The results show that MnOx and CoOx catalysts can dissociate the in-plasma produced ozone to oxygen radicals, which enhances the TCE decomposition.

  11. Physical conditions in the corona for a bipolar magnetic region

    International Nuclear Information System (INIS)

    Vorpahl, J.A.

    1978-01-01

    The S-056 X-ray data from Skylab has been used to determine quantitative values for the coronal conditions characterizing a new bipolar magnetic region (BMR). In particular, the author includes (a) the time variation of the total soft X-ray flux from the BMR as a function of time; (b) the temporal and spatial variation of the temperature and emission measure; (c) the variation with time of thermal energy density; (d) the (calculated) magnetic field configuration and magnetic flux density in the corona; and (e) the temporal variation of the magnetic field energy in the corona. Detailed comparisons are made between the configuration of X-ray features and the magnetic field topology. (Auth.)

  12. Corona discharge induced snow formation in a cloud chamber.

    Science.gov (United States)

    Ju, Jingjing; Wang, Tie-Jun; Li, Ruxin; Du, Shengzhe; Sun, Haiyi; Liu, Yonghong; Tian, Ye; Bai, Yafeng; Liu, Yaoxiang; Chen, Na; Wang, Jingwei; Wang, Cheng; Liu, Jiansheng; Chin, S L; Xu, Zhizhan

    2017-09-18

    Artificial rainmaking is in strong demand especially in arid regions. Traditional methods of seeding various Cloud Condensation Nuclei (CCN) into the clouds are costly and not environment friendly. Possible solutions based on ionization were proposed more than 100 years ago but there is still a lack of convincing verification or evidence. In this report, we demonstrated for the first time the condensation and precipitation (or snowfall) induced by a corona discharge inside a cloud chamber. Ionic wind was found to have played a more significant role than ions as extra CCN. In comparison with another newly emerging femtosecond laser filamentation ionization method, the snow precipitation induced by the corona discharge has about 4 orders of magnitude higher wall-plug efficiency under similar conditions.

  13. Negative corona discharges modelling. Application to the electrostatic precipitation

    International Nuclear Information System (INIS)

    Gaychet, S.

    2010-01-01

    Electrostatic precipitation presents many advantages from the nuclear wastes treatment's point of view. Indeed, this kind of process can capture submicron particles without producing secondary wastes (no filter media) and without pressure looses in the exhaust circuit. The work presented in this thesis concerns the study of negative corona discharges in air at atmospheric pressure occurring in an electrostatic precipitator (ESP) developed by the CEA (Atomic Energy Committee). The aim of this study is to determine how the electrostatic precipitation dedicated phenomena, especially the specific high voltage generator, the gas temperature and the fact that particles are flowing through the gap then collapsing on the electrodes, modify the discharge to improve the efficiency of ESPs. This work is based on a fundamental experimental study of the negative corona discharge and on numerical simulations of this discharge under conditions close to those of the lab scale ESP developed by the CEA. (author) [fr

  14. Augmented Visual Experience of Simulated Solar Phenomena

    Science.gov (United States)

    Tucker, A. O., IV; Berardino, R. A.; Hahne, D.; Schreurs, B.; Fox, N. J.; Raouafi, N.

    2017-12-01

    The Parker Solar Probe (PSP) mission will explore the Sun's corona, studying solar wind, flares and coronal mass ejections. The effects of these phenomena can impact the technology that we use in ways that are not readily apparent, including affecting satellite communications and power grids. Determining the structure and dynamics of corona magnetic fields, tracing the flow of energy that heats the corona, and exploring dusty plasma near the Sun to understand its influence on solar wind and energetic particle formation requires a suite of sensors on board the PSP spacecraft that are engineered to observe specific phenomena. Using models of these sensors and simulated observational data, we can visualize what the PSP spacecraft will "see" during its multiple passes around the Sun. Augmented reality (AR) technologies enable convenient user access to massive data sets. We are developing an application that allows users to experience environmental data from the point of view of the PSP spacecraft in AR using the Microsoft HoloLens. Observational data, including imagery, magnetism, temperature, and density are visualized in 4D within the user's immediate environment. Our application provides an educational tool for comprehending the complex relationships of observational data, which aids in our understanding of the Sun.

  15. Mathieu functions for fermions generated in magnetar’s corona

    Science.gov (United States)

    Dariescu, Marina-Aura; Dariescu, Ciprian

    2017-10-01

    This work deals with the behavior of fermions in a configuration supposed to exist in magnetar’s corona. For a static magnetic induction parallel to a time-harmonic electric field, the solution to the U(1)-gauge invariant Dirac equation is expressed in terms of Laguerre polynomials and Mathieu’s functions of complex parameter. Using the Fourier series valid before the branching point, we are computing the conserved current density components.

  16. Surface motion and confinement potential for a microwave confined corona

    International Nuclear Information System (INIS)

    Ensley, D.L.

    1979-07-01

    Approximate time dependent solutions for surface velocities and potentials are given for a plane polarized microwave field confining a hot, over-dense plasma corona. Steady state solutions to Poissons' equation can be applied to the time dependent case, provided transit time effects are included. The product of ion pressure and potential wave (surface) velocity gives an average heating rate approx. 7/32 NKT 0 V/sub theta/ directly to the ions

  17. Corona mortis: an anatomical variation with clinical relevance. Case report.

    Directory of Open Access Journals (Sweden)

    Guillermo Adrián Rivera-Cardona

    2010-12-01

    Full Text Available The obturator artery is one of the parietal branches arising from the internal iliac artery, the anatomical variation from which this artery originates is called “The corona mortis”, generally from the external iliac artery or the inferior epigastric artery. This finding was observed bilaterally in a male cadaver during a pelvis dissection. Clinical consideration of the anatomical variation in the obturator artery, during surgical procedures, is of great importance due to the risk of pelvic hemorrhage.

  18. SOLAR MAGNETIZED 'TORNADOES': RELATION TO FILAMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Su Yang; Veronig, Astrid; Temmer, Manuela [IGAM-Kanzelhoehe Observatory, Institute of Physics, University of Graz, Universitaetsplatz 5, A-8010 Graz (Austria); Wang Tongjiang [Department of Physics, Catholic University of America, Washington, DC 20064 (United States); Gan Weiqun, E-mail: yang.su@uni-graz.at [Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China)

    2012-09-10

    Solar magnetized 'tornadoes', a phenomenon discovered in the solar atmosphere, appear as tornado-like structures in the corona but are rooted in the photosphere. Like other solar phenomena, solar tornadoes are a feature of magnetized plasma and therefore differ distinctly from terrestrial tornadoes. Here we report the first analysis of solar 'tornadoes' (two papers which focused on different aspects of solar tornadoes were published in the Astrophysical Journal Letters and Nature, respectively, during the revision of this Letter). A detailed case study of two events indicates that they are rotating vertical magnetic structures probably driven by underlying vortex flows in the photosphere. They usually exist as a group and are related to filaments/prominences, another important solar phenomenon whose formation and eruption are still mysteries. Solar tornadoes may play a distinct role in the supply of mass and twists to filaments. These findings could lead to a new explanation of filament formation and eruption.

  19. The SOLAR-C Mission: Science Objectives and Current Status

    Science.gov (United States)

    Suematsu, Y.; Solar-C Working Group

    2016-04-01

    The SOLAR-C is a Japan-led international solar mission for mid-2020s designed to investigate the magnetic activities of the Sun, focusing on the study in heating and dynamical phenomena of the chromosphere and corona, and to advance algorithms for predicting short and long term solar magnetic activities. For these purposes, SOLAR-C will carry three dedicated instruments; the Solar UV-Vis-IR Telescope (SUVIT), the EUV Spectroscopic Telescope (EUVST) and the High Resolution Coronal Imager (HCI), to jointly observe the entire visible solar atmosphere with essentially the same high spatial resolution (0.1"-0.3"), performing high resolution spectroscopic measurements over all atmospheric regions and spectro-polarimetric measurements from the photosphere through the upper chromosphere. SOLAR-C will also contribute to understand the solar influence on the Sun-Earth environments with synergetic wide-field observations from ground-based and other space missions.

  20. Manifestation of solar activity in solar wind particle flux density

    International Nuclear Information System (INIS)

    Kovalenko, V.A.

    1988-01-01

    An analysis has been made of the origin of long-term variations in flux density of solar wind particles (nv) for different velocity regimes. The study revealed a relationship of these variations to the area of the polar coronal holes (CH). It is shown that within the framework of the model under development, the main longterm variations of nv are a result of the latitude redistribution of the solar wind mass flux in the heliosphere and are due to changes in the large-scale geometry of the solar plasma flow in the corona. A study has been made of the variations of nv for high speed solar wind streams. It is found that nv in high speed streams which are formed in CH, decreases from minimum to maximum solar activity. The analysis indicates that this decrease is attributable to the magnetic field strength increase in coronal holes. It has been found that periods of rapid global changes of background magnetic fields on the Sun are accompanied by a reconfiguration of coronal magnetic fields, rapid changes in the length of quiescent filaments, and by an increase in the density of the particle flux of a high speed solar wind. It has been established that these periods precede the formation of CH, corresponding to the increase in solar wind velocity near the Earth and to enhancement of the level of geomagnetic disturbance. (author)

  1. A comparison of solar wind streams and coronal structure near solar minimum

    Science.gov (United States)

    Nolte, J. T.; Davis, J. M.; Gerassimenko, M.; Lazarus, A. J.; Sullivan, J. D.

    1977-01-01

    Solar wind data from the MIT detectors on the IMP 7 and 8 satellites and the SOLRAD 11B satellite for the solar-minimum period September-December, 1976, were compared with X-ray images of the solar corona taken by rocket-borne telescopes on September 16 and November 17, 1976. There was no compelling evidence that a coronal hole was the source of any high speed stream. Thus it is possible that either coronal holes were not the sources of all recurrent high-speed solar wind streams during the declining phase of the solar cycle, as might be inferred from the Skylab period, or there was a change in the appearance of some magnetic field regions near the time of solar minimum.

  2. A Heuristic Approach to Remove the Background Intensity on White-light Solar Images. I. STEREO /HI-1 Heliospheric Images

    Energy Technology Data Exchange (ETDEWEB)

    Stenborg, Guillermo; Howard, Russell A. [Space Science Division, U.S. Naval Research Laboratory, Washington, DC 20375 (United States)

    2017-04-10

    White-light coronal and heliospheric imagers observe scattering of photospheric light from both dust particles (the F-Corona) and free electrons in the corona (the K-corona). The separation of the two coronae is thus vitally important to reveal the faint K-coronal structures (e.g., streamers, co-rotating interaction regions, coronal mass ejections, etc.). However, the separation of the two coronae is very difficult, so we are content in defining a background corona that contains the F- and as little K- as possible. For both the LASCO-C2 and LASCO-C3 coronagraphs aboard the Solar and Heliospheric Observatory ( SOHO ) and the white-light imagers of the SECCHI suite aboard the Solar Terrestrial Relationships Observatory ( STEREO ), a time-dependent model of the background corona is generated from about a month of similar images. The creation of such models is possible because the missions carrying these instruments are orbiting the Sun at about 1 au. However, the orbit profiles for the upcoming Solar Orbiter and Solar Probe Plus missions are very different. These missions will have elliptic orbits with a rapidly changing radial distance, hence invalidating the techniques in use for the SOHO /LASCO and STEREO /SECCHI instruments. We have been investigating techniques to generate background models out of just single images that could be used for the Solar Orbiter Heliospheric Imager and the Wide-field Imager for the Solar Probe Plus packages on board the respective spacecraft. In this paper, we introduce a state-of-the-art, heuristic technique to create the background intensity models of STEREO /HI-1 data based solely on individual images, report on new results derived from its application, and discuss its relevance to instrumental and operational issues.

  3. Oxidation of sulfur and nitrogen oxides by pulse corona discharge

    International Nuclear Information System (INIS)

    Amirov, R.H.; Desiaterik, Yu.N.; Filimonova, E.A.; Zhelezniak, M.B.; Chae, J.O.

    1996-01-01

    The NO x and SO 2 removal efficiency of the corona reactor has been measured both with and without ammonia addition to the gas stream. Experimental conditions are described. The dependence of NO and SO 2 removal efficiency from flow rate and initial pollutant concentrations were measured. One test with fixed amount of the inputted energy per the unit of SO 2 but with different initial concentration have been made. It is found that increasing of the initial concentration from 200 ppm to 700 ppm can enlarge the removal efficiency by factor 2.5. Some tests were carried out with both pollutant gases SO 2 and NO simultaneously. An efficiency on the SO 2 removal of 96% and on the NO removal 70% in pulse corona have been achieved with ammonia addition when SO 2 initial concentration was 480 ppm and the NO initial concentration was 230 ppm. A numerical model for NO and SO 2 oxidation in homogeneous gas flow has been developed. The flow contains cold (T = 300-400 K) background components N 2 , CO 2 , H 2 O, O 2 and impurities SO 2 , NO x , CO. A source of chemically active species is an electrical streamer discharge of corona type. (authors)

  4. River water remediation using pulsed corona, pulsed spark or ozonation

    Energy Technology Data Exchange (ETDEWEB)

    Izdebski, T.; Dors, M. [Polish Academy of Sciences, Szewalski Inst. of Fluid Flow Machiney, Fiszera (Poland). Centre for Plasma and Laser Engineering; Mizeraczyk, J. [Polish Academy of Sciences, Szewalski Inst. of Fluid Flow Machiney, Fiszera (Poland). Centre for Plasma and Laser Engineering; Gdynia Maritime Univ., Morska (Poland). Dept. of Marine Electronics

    2010-07-01

    The most common reason for epidemic formation is the pollution of surface and drinking water by wastewater bacteria. Pathogenic microorganisms that form the largest part of this are fecal bacteria, such as escherichia coli (E. coli). Wastewater treatment plants reduce the amount of the fecal bacteria by 1-3 orders of magnitude, depending on the initial number of bacteria. There is a lack of data on waste and drinking water purification by the electrohydraulic discharges method, which causes the destruction and inactivation of viruses, yeast, and bacteria. This paper investigated river water cleaning from microorganisms using pulsed corona, spark discharge and ozonization. The paper discussed the experimental setup and results. It was concluded that ozonization is the most efficient method of water disinfection as compared with pulsed spark and pulsed corona discharges. The pulsed spark discharge in water was capable of killing all microorganism similarly to ozonization, but with much lower energy efficiency. The pulsed corona discharge was found to be the less effective method of water disinfection. 21 refs., 4 figs.

  5. Simulation of the AC corona phenomenon with experimental validation

    International Nuclear Information System (INIS)

    Villa, Andrea; Barbieri, Luca; Marco, Gondola; Malgesini, Roberto; Leon-Garzon, Andres R

    2017-01-01

    The corona effect, and in particular the Trichel phenomenon, is an important aspect of plasma physics with many technical applications, such as pollution reduction, surface and medical treatments. This phenomenon is also associated with components used in the power industry where it is, in many cases, the source of electro-magnetic disturbance, noise and production of undesired chemically active species. Despite the power industry to date using mainly alternating current (AC) transmission, most of the studies related to the corona effect have been carried out with direct current (DC) sources. Therefore, there is technical interest in validating numerical codes capable of simulating the AC phenomenon. In this work we describe a set of partial differential equations that are comprehensive enough to reproduce the distinctive features of the corona in an AC regime. The model embeds some selectable chemical databases, comprising tens of chemical species and hundreds of reactions, the thermal dynamics of neutral species and photoionization. A large set of parameters—deduced from experiments and numerical estimations—are compared, to assess the effectiveness of the proposed approach. (paper)

  6. The Yohkoh mission for high-energy solar physics

    Science.gov (United States)

    Acton, L.; Tsuneta, S.; Ogawara, Y.; Bentley, R.; Bruner, M.; Canfield, R.; Culhane, L.; Doschek, G.; Hiei, E.; Hirayama, T.

    1992-01-01

    Data on solar flare mechanisms and the sun's corona will be generated by Japan's Yohkoh satellite's X-ray imaging sensors and X-ray and gamma-ray spectrometers. It is noted that the X-ray corona above active regions expands, in some cases almost continually, in contradiction of the widely accepted model of magnetohydrostatic equilibrium in such regions. Flaring X-ray bright points have been discovered to often involve ejecta into an adjacent, much larger and fainter magnetic loop, which brightens along its length at speeds up to 1000 km/sec.

  7. Calculation of single phase AC and monopolar DC hybrid corona effects

    International Nuclear Information System (INIS)

    Zhao, T.; Sebo, S.A.; Kasten, D.G.

    1996-01-01

    Operating a hybrid HVac and HVdc line is an option for increasing the efficiency of power transmission and overcoming the difficulties in obtaining a new right-of-way. This paper proposes a new calculation method for the study of hybrid line corona. The proposed method can be used to calculate dc corona losses and corona currents in dc or ac conductors for single phase ac and monopolar dc hybrid lines. Profiles of electric field strength and ion current density at ground level can be estimated. The effects of the presence of an energized ac conductor on dc conductor corona and dc voltage on ac conductor corona are included in the method. Full-scale and reduced-scale experiments were utilized to investigate the hybrid line corona effects. Verification of the proposed calculation method is given

  8. Propagating intensity disturbances in polar corona as seen from AIA/SDO

    Science.gov (United States)

    Krishna Prasad, S.; Banerjee, D.; Gupta, G. R.

    2011-04-01

    Context. Polar corona is often explored to find the energy source for the acceleration of the fast solar wind. Earlier observations show omni-presence of quasi-periodic disturbances, traveling outward, which is believed to be caused by the ubiquitous presence of outward propagating waves. These waves, mostly of compressional type, might provide the additional momentum and heat required for the fast solar wind acceleration. It has been conjectured that these disturbances are not due to waves but high speed plasma outflows, which are difficult to distinguish using the current available techniques. Aims: With the unprecedented high spatial and temporal resolution of AIA/SDO, we search for these quasi-periodic disturbances in both plume and interplume regions of the polar corona. We investigate their nature of propagation and search for a plausible interpretation. We also aim to study their multi-thermal nature by using three different coronal passbands of AIA. Methods: We chose several clean plume and interplume structures and studied the time evolution of specific channels by making artificial slits along them. Taking the average across the slits, space-time maps are constructed and then filtration techniques are applied to amplify the low-amplitude oscillations. To suppress the effect of fainter jets, we chose wider slits than usual. Results: In almost all the locations chosen, in both plume and interplume regions we find the presence of propagating quasi-periodic disturbances, of periodicities ranging from 10-30 min. These are clearly seen in two channels and in a few cases out to very large distances (≈250″) off-limb, almost to the edge of the AIA field of view. The propagation speeds are in the range of 100-170 km s-1. The average speeds are different for different passbands and higher in interplume regions. Conclusions: Propagating disturbances are observed, even after removing the effects of jets and are insensitive to changes in slit width. This indicates

  9. DC negative corona discharge in atmospheric pressure helium: transition from the corona to the ‘normal’ glow regime

    International Nuclear Information System (INIS)

    Hasan, Nusair; Farouk, Bakhtier; Antao, Dion S

    2014-01-01

    Direct current (dc) negative corona discharges in atmospheric pressure helium are simulated via detailed numerical modeling. Simulations are conducted to characterize the discharges in atmospheric helium for a pin plate electrode configuration. A self-consistent two-dimensional hybrid model is developed to simulate the discharges and the model predictions are validated with experimental measurements. The discharge model considered consists of momentum and energy conservation equations for a multi-component (electrons, ions, excited species and neutrals) gas mixture, conservation equations for each component of the mixture and state relations. A drift–diffusion approximation for the electron and the ion fluxes is used. A model for the external circuit driving the discharge is also considered and solved along with the discharge model. Many of the key features of a negative corona discharge, namely non-linear current–voltage characteristics, spatially flat cathode current density and glow-like discharge in the high current regime are displayed in the predictions. A transition to the ‘normal’ glow discharge from the corona discharge regime is also observed. The transition is identified from the calculated current–voltage characteristic curve and is characterized by the radial growth of the negative glow and the engulfment of the cathode wire. (paper)

  10. The CME Flare Arcade and the Width of the CME in the Outer Corona

    Science.gov (United States)

    Moore, Ron; Falconer, David; Sterling, Alphonse

    2008-01-01

    Moore, Sterling, & Suess (2007, ApJ, 668, 1221) present evidence that (1) a CME is typically a magnetic bubble, a low-beta gplasmoid with legs h having roughly the 3D shape of a light bulb, and (2) in the outer corona the CME plasmoid is in lateral pressure equilibrium with the ambient magnetic field. They present three CMEs observed by SOHO/LASCO, each from a very different source located near the limb. One of these CMEs came from a compact ejective eruption from a small part of a sunspot active region, another came from a large quiet-region filament eruption, and the third CME, an extremely large and fast one, was produced in tandem with an X20 flare arcade that was centered on a huge delta sunspot. Each of these CMEs had more or less the classic lightbulb silhouette and attained a constant heliocentric angular width in the outer corona. This indicates that the CME plasmoid attained lateral magnetic pressure balance with the ambient radial magnetic field in the outer corona. This lateral pressure balance, together with the standard scenario for CME production by the eruption of a sheared-core magnetic arcade, yields the following simple estimate of the strength B(sub Flare) of the magnetic field in the flare arcade produced together with the CME: B(sub Flare) 1.4(theta CME/theta Flare)sup 2 G, where theta (sub CME) is the heliocentric angular width of the CME plasmoid in the outer corona and theta (sub Flare) is the heliocentric angular width of the full-grown flare arcade. Conversely, theta (sub CME) approximately equal to (R(sub Sun)sup -1(phi(sub Flare)/1.4)sup 1/2 radians, where Flare is the magnetic flux covered by the full-grown flare arcade. In addition to presenting the three CMEs of Moore, Sterling, & Suess (2007) and their agreement with this relation between CME and Flare, we present a further empirical test of this relation. For CMEs that erupt from active regions, the co-produced flare arcade seldom if ever covers the entire active region: if AR is

  11. Little Eyes on Large Solar Motions

    Science.gov (United States)

    Kohler, Susanna

    2017-10-01

    Images taken during the solar eclipse in 2012. The central color composite of the eclipsed solar surface was captured by SDO, the white-light view of the solar corona around it was taken by the authors, and the background, wide-field black-and-white view is from LASCO. The white arrows mark the atypical structure. [Alzate et al. 2017]It seems like science is increasingly being done with advanced detectors on enormous ground- and space-based telescopes. One might wonder: is there anything left to learn from observations made with digital cameras mounted on 10-cm telescopes?The answer is yes plenty! Illustrating this point, a new study using such equipment recently reports on the structure and dynamics of the Suns corona during two solar eclipses.A Full View of the CoronaThe solar corona is the upper part of the Suns atmosphere, extending millions of kilometers into space. This plasma is dynamic, with changing structures that arise in response to activity on the Suns surface such as enormous ejections of energy known as coronal mass ejections (CMEs). Studying the corona is therefore important for understanding what drives its structure and how energy is released from the Sun.Though there exist a number of space-based telescopes that observe the Suns corona, they often have limited fields of view. The Solar Dynamics Observatory AIA, for instance, has spectacular resolution but only images out to 1/3 of a solar radius above the Suns limb. The space-based coronagraph LASCO C2, on the other hand, provides a broad view of the outer regions of the corona, but it only images down to 2.2 solar radii above the Suns limb. Piecing together observations from these telescopes therefore leaves a gap that prevents a full picture of the large-scale corona and how it connects to activity at the solar surface.Same as the previous figure, but for the eclipse in 2013. [Alzate et al. 2017]To provide this broad, continuous picture, a team of scientists used digital cameras mounted on 10

  12. An equatorial coronal hole at solar minimum

    Science.gov (United States)

    Bromage, B. J. I.; DelZanna, G.; DeForest, C.; Thompson, B.; Clegg, J. R.

    1997-01-01

    The large transequatorial coronal hole that was observed in the solar corona at the end of August 1996 is presented. It consists of a north polar coronal hole called the 'elephant's trunk or tusk'. The observations of this coronal hole were carried out with the coronal diagnostic spectrometer onboard the Solar and Heliospheric Observatory (SOHO). The magnetic field associated with the equatorial coronal hole is strongly connected to that of the active region at its base, resulting in the two features rotating at almost the same rate.

  13. Optical design of visible emission line coronagraph on Indian space solar mission Aditya-L1

    Science.gov (United States)

    Raj Kumar, N.; Raghavendra Prasad, B.; Singh, Jagdev; Venkata, Suresh

    2018-03-01

    The ground based observations of the coronal emission lines using a coronagraph are affected by the short duration of clear sky and varying sky transparency. These conditions do not permit to study small amplitude variations in the coronal emission reliably necessary to investigate the process or processes involved in heating the coronal plasma and dynamics of solar corona. The proposed Visible Emission Line Coronagraph (VELC) over comes these limitations and will provide continuous observation 24 h a day needed for detailed studies of solar corona and drivers for space weather predictions. VELC payload onboard India's Aditya-L1 space mission is an internally occulted solar coronagraph for studying the temperature, velocity, density and heating of solar corona. To achieve the proposed science goals, an instrument which is capable of carrying out simultaneous imaging, spectroscopy and spectro-polarimetric observations of the solar corona close to the solar limb is required. VELC is designed with salient features of (a) Imaging solar corona at 500 nm with an angular resolution of 5 arcsec over a FOV of 1.05Ro to 3Ro (Ro:Solar radius) (b) Simultaneous multi-slit spectroscopy at 530.3 nm [Fe XIV],789.2 nm [Fe XI] and 1074.7 nm [Fe XIII] with spectral dispersion of 28mÅ, 31mÅ and 202mÅ per pixel respectively, over a FOV of 1.05Ro to 1.5Ro. (c) Multi-slit dual beam spectro-polarimetry at 1074.7 nm. All the components of instrument have been optimized in view of the scientific objectives and requirements of space payloads. In this paper we present the details of optical configuration and the expected performance of the payload.

  14. Optical design of visible emission line coronagraph on Indian space solar mission Aditya-L1

    Science.gov (United States)

    Raj Kumar, N.; Raghavendra Prasad, B.; Singh, Jagdev; Venkata, Suresh

    2018-04-01

    The ground based observations of the coronal emission lines using a coronagraph are affected by the short duration of clear sky and varying sky transparency. These conditions do not permit to study small amplitude variations in the coronal emission reliably necessary to investigate the process or processes involved in heating the coronal plasma and dynamics of solar corona. The proposed Visible Emission Line Coronagraph (VELC) over comes these limitations and will provide continuous observation 24 h a day needed for detailed studies of solar corona and drivers for space weather predictions. VELC payload onboard India's Aditya-L1 space mission is an internally occulted solar coronagraph for studying the temperature, velocity, density and heating of solar corona. To achieve the proposed science goals, an instrument which is capable of carrying out simultaneous imaging, spectroscopy and spectro-polarimetric observations of the solar corona close to the solar limb is required. VELC is designed with salient features of (a) Imaging solar corona at 500 nm with an angular resolution of 5 arcsec over a FOV of 1.05Ro to 3Ro (Ro:Solar radius) (b) Simultaneous multi-slit spectroscopy at 530.3 nm [Fe XIV],789.2 nm [Fe XI] and 1074.7 nm [Fe XIII] with spectral dispersion of 28mÅ, 31mÅ and 202mÅ per pixel respectively, over a FOV of 1.05Ro to 1.5Ro. (c) Multi-slit dual beam spectro-polarimetry at 1074.7 nm. All the components of instrument have been optimized in view of the scientific objectives and requirements of space payloads. In this paper we present the details of optical configuration and the expected performance of the payload.

  15. Solar Coronal Structure Study

    Science.gov (United States)

    Nitta, Nariaki; Bruner, Marilyn E.; Saba, Julia; Strong, Keith; Harvey, Karen

    2000-01-01

    The subject of this investigation is to study the physics of the solar corona through the analysis of the EUV and UV data produced by two flights (12 May 1992 and 25 April 1994) of the Lockheed Solar Plasma Diagnostics Experiment (SPDE) sounding rocket payload, in combination with Yohkoh and ground-based data. Each rocket flight produced both spectral and imaging data. These joint datasets are useful for understanding the physical state of various features in the solar atmosphere at different heights ranging from the photosphere to the corona at the time of the, rocket flights, which took place during the declining phase of a solar cycle, 2-4 years before the minimum. The investigation is narrowly focused on comparing the physics of small- and medium-scale strong-field structures with that of large-scale, weak fields. As we close th is investigation, we have to recall that our present position in the understanding of basic solar physics problems (such as coronal heating) is much different from that in 1995 (when we proposed this investigation), due largely to the great success of SOHO and TRACE. In other words, several topics and techniques we proposed can now be better realized with data from these missions. For this reason, at some point of our work, we started concentrating on the 1992 data, which are more unique and have more supporting data. As a result, we discontinued the investigation on small-scale structures, i.e., bright points, since high-resolution TRACE images have addressed more important physics than SPDE EUV images could do. In the final year, we still spent long time calibrating the 1992 data. The work was complicated because of the old-fashioned film, which had problems not encountered with more modern CCD detectors. After our considerable effort on calibration, we were able to focus on several scientific topics, relying heavily on the SPDE UV images. They include the relation between filaments and filament channels, the identification of hot

  16. Solar Indices - Solar Flares

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  17. Solar Indices - Solar Ultraviolet

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  18. Solar Indices - Solar Irradiance

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  19. Apparent Relations Between Solar Activity and Solar Tides Caused by the Planets

    Science.gov (United States)

    Hung, Ching-Cheh

    2007-01-01

    A solar storm is a storm of ions and electrons from the Sun. Large solar storms are usually preceded by solar flares, phenomena that can be characterized quantitatively from Earth. Twenty-five of the thirty-eight largest known solar flares were observed to start when one or more tide-producing planets (Mercury, Venus, Earth, and Jupiter) were either nearly above the event positions (less than 10 deg. longitude) or at the opposing side of the Sun. The probability for this to happen at random is 0.039 percent. This supports the hypothesis that the force or momentum balance (between the solar atmospheric pressure, the gravity field, and magnetic field) on plasma in the looping magnetic field lines in solar corona could be disturbed by tides, resulting in magnetic field reconnection, solar flares, and solar storms. Separately, from the daily position data of Venus, Earth, and Jupiter, an 11-year planet alignment cycle is observed to approximately match the sunspot cycle. This observation supports the hypothesis that the resonance and beat between the solar tide cycle and nontidal solar activity cycle influences the sunspot cycle and its varying magnitudes. The above relations between the unpredictable solar flares and the predictable solar tidal effects could be used and further developed to forecast the dangerous space weather and therefore reduce its destructive power against the humans in space and satellites controlling mobile phones and global positioning satellite (GPS) systems.

  20. The effects of corona on current surges induced on conducting lines by EMP: A comparison of experiment data with results of analytic corona models

    Science.gov (United States)

    Blanchard, J. P.; Tesche, F. M.; McConnell, B. W.

    1987-09-01

    An experiment to determine the interaction of an intense electromagnetic pulse (EMP), such as that produced by a nuclear detonation above the Earth's atmosphere, was performed in March, 1986 at Kirtland Air Force Base near Albuquerque, New Mexico. The results of that experiment have been published without analysis. Following an introduction of the corona phenomenon, the reason for interest in it, and a review of the experiment, this paper discusses five different analytic corona models that may model corona formation on a conducting line subjected to EMP. The results predicted by these models are compared with measured data acquired during the experiment to determine the strengths and weaknesses of each model.

  1. Propagation of Energetic Electrons from the Corona into Interplanetary Space and Type III Radio Emission. Planetary Radio Emissions| PLANETARY RADIO EMISSIONS VII 7|

    OpenAIRE

    Vocks, C.; Breitling, F.; Mann, G.

    2011-01-01

    During solar flares a large amount of electrons with energies greater than 20 keV is generated with a production rate of typically 1036 s-1. A part of them is able to propagate along open magnetic field lines through the corona into interplanetary space. During their travel they emit radio radiation which is observed as type III radio bursts in the frequency range from 100 MHz down to 10 kHz by the WAVES radio spectrometer aboard the spacecraft WIND, for instance. From the drift rates of thes...

  2. Latitude dependence of the solar wind speed: Influence of the coronal magnetic field geometry

    International Nuclear Information System (INIS)

    Pneuman, G.W.

    1976-01-01

    The dependence of solar wind speed on latitude as influenced by the magnetic field configuration of the inner corona is studied. It is found that in general, a dipolelike field geometry characteristic of a minimum-type corona tends to produce a solar wind speed distribution which increases with heliographic latitude, in accordance with observations. At very high coronal base densities and temperatures, however, this effect is minimal or even inverted. Physically, the field affects the wind speed through its area divergence, a larger divergence resulting in correspondingly lower speeds. During solar minimum, eclipse photographs suggest that the field divergence increases from pole to equator, a characteristic not apparent during solar maximum. Hence we expect the latitudinal increase in speed to be most pronounced at the minimum phase of solar activity

  3. Evaluación estética de seis tipos de coronas para dientes primarios

    Directory of Open Access Journals (Sweden)

    Héctor Alejandro Ramírez Peña

    2017-03-01

    Full Text Available Objetivo: Evaluar las preferencias estéticas en relación con el color y la forma de coronas primarias utilizadas para dientes incisivos superiores primarios, mediante la realización de una encuesta a miembros de la Academia Mexicana de Odontología Pediatrica (AMOP. Material y Métodos: Se establecieron seis grupos de estudio con seis coronas diferentes: grupo 1, coronas de zirconia EZ-Pedo; grupo 2, coronas de zirconia NuSmile Zr; grupo 3, coronas estéticas hechas en el consultorio; grupo 4, coronas de fundas de celuloide; grupo 5, coronas estéticas prefabricadas NuSmile signature; y grupo 6, coronas estéticas fenestradas. Se llevaron a cabo encuestas con la finalidad de conocer las preferencias estéticas de estas diferentes coronas, con la finalidad de conocer cuál es la mejor opción para su uso en el consultorio dental. Resultados: Noventa miembros de la AMOP realizaron una encuesta válida, y se determinó que el grupo 4 fue el mejor evaluado, seguido de los grupos 2, 5, 1, 6 y 3. Se identificaron diferencias significativas entre los diferentes grupos. Conclusiones: Las coronas de fundas de celuloide fueron seleccionadas como mejor alternativa de uso en los dientes primarios anteriores, por parte de los miembros de la AMOP; asimismo, se consideró a las coronas de zirconia como una buena opción terapéutica. Es recomendable que se implemente el tratamiento estético en dientes primarios, para realizar un tratamiento integral.

  4. Protein corona: a new approach for nanomedicine design

    Directory of Open Access Journals (Sweden)

    Nguyen VH

    2017-04-01

    Full Text Available Van Hong Nguyen, Beom-Jin Lee Department of Pharmacy, Bioavailability Control Laboratory, College of Pharmacy, Ajou University, Suwon, Republic of Korea Abstract: After administration of nanoparticle (NP into biological fluids, an NP–protein complex is formed, which represents the “true identity” of NP in our body. Hence, protein–NP interaction should be carefully investigated to predict and control the fate of NPs or drug-loaded NPs, including systemic circulation, biodistribution, and bioavailability. In this review, we mainly focus on the formation of protein corona and its potential applications in pharmaceutical sciences such as prediction modeling based on NP-adsorbed proteins, usage of active proteins for modifying NP to achieve toxicity reduction, circulation time enhancement, and targeting effect. Validated correlative models for NP biological responses mainly based on protein corona fingerprints of NPs are more highly accurate than the models solely set up from NP properties. Based on these models, effectiveness as well as the toxicity of NPs can be predicted without in vivo tests, while novel cell receptors could be identified from prominent proteins which play important key roles in the models. The ungoverned protein adsorption onto NPs may have generally negative effects such as rapid clearance from the bloodstream, hindrance of targeting capacity, and induction of toxicity. In contrast, controlling protein adsorption by modifying NPs with diverse functional proteins or tailoring appropriate NPs which favor selective endogenous peptides and proteins will bring promising therapeutic benefits in drug delivery and targeted cancer treatment. Keywords: protein-nanoparticle interaction, protein corona, exchange of adsorbed protein, toxicity reduction, predictive modeling, targeting drug delivery

  5. Morphology of Pseudostreamers and Solar Wind Properties

    Science.gov (United States)

    Panasenco, Olga; Velli, Marco

    2016-05-01

    The solar dynamo and photospheric convection lead to three main types of structures extending from the solar surface into the corona - active regions, solar filaments (prominences when observed at the limb) and coronal holes. These structures exist over a wide range of scales, and are interlinked with each other in evolution and dynamics. Active regions can form clusters of magnetic activity and the strongest overlie sunspots. In the decay of active regions, the boundaries separating opposite magnetic polarities (neutral lines) develop the specific structures called filament channels above which filaments form. In the presence of flux imbalance decaying active regions can also give birth to lower latitude coronal holes. The accumulation of magnetic flux at coronal hole boundaries also creates the conditions for filament formation: polar crown filaments are permanently present at the boundaries of the polar coronal holes. Middle-latitude and equatorial coronal holes - the result of active region evolution - can create pseudostreamers (PSs) if other coronal holes of the same polarity are present. While helmet streamers form between open fields of opposite polarities, the pseudostreamer, characterized by a smaller coronal imprint, typically shows a more prominent straight ray or stalk extending from the corona. The pseudostreamer base at photospheric heights is multipolar; often one observes tripolar magnetic configurations with two neutral lines - where filaments can form - separating the coronal holes. Here we discuss the specific role of filament channels on pseudostreamer topology and on solar wind properties. 1D numerical analysis of PSs shows that the properties of the solar wind from around PSs depend on the presence/absence of filament channels, number of channels and chirality at the PS base low in the corona.

  6. The role of photoionization in negative corona discharge

    Directory of Open Access Journals (Sweden)

    B. X. Lu

    2016-09-01

    Full Text Available The effect of photoionization on the negative corona discharge was simulated based on the needle to plane air gaps. The Trichel pulse, pulse train, electron density and the distribution of electric field will be discussed in this manuscript. Effect of photoionization on the magnitude and interval of the first pulse will be discussed for different applied voltages. It is demonstrated that the peak of the first pulse current could be weakened by photoionization and a critical voltage of the first pulse interval influenced by photoionization was given.

  7. Study of a dual frequency atmospheric pressure corona plasma

    International Nuclear Information System (INIS)

    Kim, Dan Bee; Moon, S. Y.; Jung, H.; Gweon, B.; Choe, Wonho

    2010-01-01

    Radio frequency mixing of 2 and 13.56 MHz was investigated by performing experimental measurements on the atmospheric pressure corona plasma. As a result of the dual frequency, length, current density, and electron excitation temperature of the plasma were increased, while the gas temperature was maintained at roughly the same level when compared to the respective single frequency plasmas. Moreover, observation of time-resolved images revealed that the dual frequency plasma has a discharge mode of 2 MHz positive streamer, 2 MHz negative glow, and 13.56 MHz continuous glow.

  8. An alternative mass model for galactic dark coronae

    Directory of Open Access Journals (Sweden)

    Ninković S.

    2001-01-01

    Full Text Available A spherically symmetric mass distribution with two scale parameters for the dark corona of a (spiral galaxy as an alternative to the usually applied quasi-isothermal sphere is considered. Examinations of the rotation curve produced by this distribution over a limited interval of the distance to the rotation axis show that it can be a successful alternative to the usual approximation of the quasiisothermal sphere. This is important taking into account that the potential formula considered in the present paper can be easily generalized towards axial symmetry.

  9. High Resolution Imaging of the Sun with CORONAS-1

    Science.gov (United States)

    Karovska, Margarita

    1998-01-01

    We applied several image restoration and enhancement techniques, to CORONAS-I images. We carried out the characterization of the Point Spread Function (PSF) using the unique capability of the Blind Iterative Deconvolution (BID) technique, which recovers the real PSF at a given location and time of observation, when limited a priori information is available on its characteristics. We also applied image enhancement technique to extract the small scale structure imbeded in bright large scale structures on the disk and on the limb. The results demonstrate the capability of the image post-processing to substantially increase the yield from the space observations by improving the resolution and reducing noise in the images.

  10. Toxic Gas Removal by Dielectric Discharge with Corona Effect

    International Nuclear Information System (INIS)

    Moreno, H.; Pacheco, M.; Mercado, A.; Cruz, A.; Pacheco, J.; Yousfi, M.; Eichwald, O.; Benhenni, M.

    2006-01-01

    In this work, a theoretical and experimental study on SO2 and NOx removal by non-thermal plasma technology, more specifically a dielectric barrier (DBD) discharge combined with the Corona effect, is presented. Results obtained from a theoretical study describe the chemical kinetic model of SO2 and NOx removal processes; the effect of OH radicals in removal of both gases is noteworthy. Experimental results of de-SO2 process are reported. Also, optical emission spectroscopy study was applied on some atomic helium lines to obtain temperature of electrons in the non-thermal plasma

  11. CLASP: A UV Spectropolarimeter on a Sounding Rocket for Probing theChromosphere-Corona Transition Regio

    Science.gov (United States)

    Ishikawa, Ryohko; Kano, Ryouhei; Winebarger, Amy; Auchere, Frederic; Trujillo Bueno, Javier; Bando, Takamasa; Narukage, Noriyuki; Kobayashi, Ken; Katsukawa, Yukio; Kubo, Masahito; Ishikawa, Shin-nosuke; Giono, Gabriel; Tsuneta, Saku; Hara, Hirohisa; Suematsu, Yoshinori; Shimizu, Toshifumi; Sakao, Taro; Ichimoto, Kiyoshi; Cirtain, Jonathan; De Pontieu, Bart; Casini, Roberto; Manso Sainz, Rafael; Asensio Ramos, Andres; Stepan, Jiri; Belluzzi, Luca

    2015-08-01

    The wish to understand the energetic phenomena of the outer solar atmosphere makes it increasingly important to achieve quantitative information on the magnetic field in the chromosphere-corona transition region. To this end, we need to measure and model the linear polarization produced by scattering processes and the Hanle effect in strong UV resonance lines, such as the hydrogen Lyman-alpha line. A team consisting of Japan, USA, Spain, France, and Norway has been developing a sounding rocket experiment called the Chromospheric Lyman-alpha Spectro-Polarimeter (CLASP). The aim is to detect the scattering polarization produced by anisotropic radiation pumping in the hydrogen Lyman-alpha line (121.6 nm), and via the Hanle effect to try to constrain the magnetic field vector in the upper chromosphere and transition region. In this talk, we will present an overview of our CLASP mission, its scientific objectives, ground tests made, and the latest information on the launch planned for the Summer of 2015.

  12. Theory and Simulations of Solar System Plasmas

    Science.gov (United States)

    Goldstein, Melvyn L.

    2011-01-01

    "Theory and simulations of solar system plasmas" aims to highlight results from microscopic to global scales, achieved by theoretical investigations and numerical simulations of the plasma dynamics in the solar system. The theoretical approach must allow evidencing the universality of the phenomena being considered, whatever the region is where their role is studied; at the Sun, in the solar corona, in the interplanetary space or in planetary magnetospheres. All possible theoretical issues concerning plasma dynamics are welcome, especially those using numerical models and simulations, since these tools are mandatory whenever analytical treatments fail, in particular when complex nonlinear phenomena are at work. Comparative studies for ongoing missions like Cassini, Cluster, Demeter, Stereo, Wind, SDO, Hinode, as well as those preparing future missions and proposals, like, e.g., MMS and Solar Orbiter, are especially encouraged.

  13. Charge States of Krypton and Xenon in the Solar Wind

    Science.gov (United States)

    Bochsler, Peter; Fludra, Andrzej; Giunta, Alessandra

    2017-09-01

    We calculate charge state distributions of Kr and Xe in a model for two different types of solar wind using the effective ionization and recombination rates provided from the OPEN_ADAS data base. The charge states of heavy elements in the solar wind are essential for estimating the efficiency of Coulomb drag in the inner corona. We find that xenon ions experience particularly low Coulomb drag from protons in the inner corona, comparable to the notoriously weak drag of protons on helium ions. It has been found long ago that helium in the solar wind can be strongly depleted near interplanetary current sheets, whereas coronal mass ejecta are sometimes strongly enriched in helium. We argue that if the extraordinary variability of the helium abundance in the solar wind is due to inefficient Coulomb drag, the xenon abundance must vary strongly. In fact, a secular decrease of the solar wind xenon abundance relative to the other heavier noble gases (Ne, Ar, Kr) has been postulated based on a comparison of noble gases in recently irradiated and ancient samples of ilmenite in the lunar regolith. We conclude that decreasing solar activity and decreasing frequency of coronal mass ejections over the solar lifetime might be responsible for a secularly decreasing abundance of xenon in the solar wind.

  14. Pulsed corona generation using a diode-based pulsed power generator

    Science.gov (United States)

    Pemen, A. J. M.; Grekhov, I. V.; van Heesch, E. J. M.; Yan, K.; Nair, S. A.; Korotkov, S. V.

    2003-10-01

    Pulsed plasma techniques serve a wide range of unconventional processes, such as gas and water processing, hydrogen production, and nanotechnology. Extending research on promising applications, such as pulsed corona processing, depends to a great extent on the availability of reliable, efficient and repetitive high-voltage pulsed power technology. Heavy-duty opening switches are the most critical components in high-voltage pulsed power systems with inductive energy storage. At the Ioffe Institute, an unconventional switching mechanism has been found, based on the fast recovery process in a diode. This article discusses the application of such a "drift-step-recovery-diode" for pulsed corona plasma generation. The principle of the diode-based nanosecond high-voltage generator will be discussed. The generator will be coupled to a corona reactor via a transmission-line transformer. The advantages of this concept, such as easy voltage transformation, load matching, switch protection and easy coupling with a dc bias voltage, will be discussed. The developed circuit is tested at both a resistive load and various corona reactors. Methods to optimize the energy transfer to a corona reactor have been evaluated. The impedance matching between the pulse generator and corona reactor can be significantly improved by using a dc bias voltage. At good matching, the corona energy increases and less energy reflects back to the generator. Matching can also be slightly improved by increasing the temperature in the corona reactor. More effective is to reduce the reactor pressure.

  15. Block copolymer micelle coronas as quasi-two-dimensional dilute or semidilute polymer solutions

    DEFF Research Database (Denmark)

    Svaneborg, C.; Pedersen, J.S.

    2001-01-01

    Chain-chain interactions in a corona of polymers tethered to a spherical core under good solvent conditions are studied using Monte Carlo simulations. The total scattering function of the corona as well as different partial contributions are sampled. By combining the different contributions...

  16. Breakdown of methylene blue and methyl orange by pulsed corona discharge

    NARCIS (Netherlands)

    Grabowski, L.R.; Veldhuizen, van E.M.; Pemen, A.J.M.; Rutgers, W.R.

    2007-01-01

    The recently developed corona above water technique is applied to water containing 10 mg l-1 methylene blue (MB) or methyl orange (MO). The corona discharge pulses are created with a spark gap switched capacitor followed by a transmission line transformer. The pulse amplitude is 40 kV; its duration

  17. Loeb's and streamer-based mechanism for negative corona current pulses

    International Nuclear Information System (INIS)

    Vagnerova, L.; Skalny, J.D.; Cermak, M.

    1998-01-01

    The negative point-to-plane corona discharge in electronegative gaseous mixtures is studied experimentally and the basic mechanisms controlling the corona phenomena are discussed. The typical shapes of the current pulse waveforms observed in experiments with the nitrogen-freon mixtures are explained in terms of the theory by Loeb and of the positive-streamer-based model. (J.U.)

  18. Electrical and optical analysis of fast transient discharges in a pulsed corona pilot unit

    NARCIS (Netherlands)

    Blom, P.P.M.; Smulders, H.W.M.; Heesch, van E.J.M.; Laan, van der P.C.T.

    1997-01-01

    We give a detailed analysis of intense pulsed corona dis charges. CCD movies and current, voltage and energy in put measurements are the basis of the description. The discharges are generated in a 1.5 kW pilot unit, which cre ates pulsed corona discharges energized by 100 kV pulses of 200 us width,

  19. Effect of dc and pulsed corona discharge on DNA and proteins

    International Nuclear Information System (INIS)

    Shvedchikov, A.P.; Polyakova, A.V.; Belousova, E.V.; Ponizovskii, A.Z.; Goncharov, V.A.

    1993-01-01

    The authors have investigated the effect of a d.c. and pulsed corona discharge in air and nitrogen on DNA and albumin films in the temperature range 77-298 K. The authors have shown that upon exposure to a corona discharge and O 3 , the biopolymers are degraded. With a reduction in temperature, the extent of degradation of DNA drops

  20. Transient flows of the solar wind associated with small-scale solar activity in solar minimum

    Science.gov (United States)

    Slemzin, Vladimir; Veselovsky, Igor; Kuzin, Sergey; Gburek, Szymon; Ulyanov, Artyom; Kirichenko, Alexey; Shugay, Yulia; Goryaev, Farid

    The data obtained by the modern high sensitive EUV-XUV telescopes and photometers such as CORONAS-Photon/TESIS and SPHINX, STEREO/EUVI, PROBA2/SWAP, SDO/AIA provide good possibilities for studying small-scale solar activity (SSA), which is supposed to play an important role in heating of the corona and producing transient flows of the solar wind. During the recent unusually weak solar minimum, a large number of SSA events, such as week solar flares, small CMEs and CME-like flows were observed and recorded in the databases of flares (STEREO, SWAP, SPHINX) and CMEs (LASCO, CACTUS). On the other hand, the solar wind data obtained in this period by ACE, Wind, STEREO contain signatures of transient ICME-like structures which have shorter duration (<10h), weaker magnetic field strength (<10 nT) and lower proton temperature than usual ICMEs. To verify the assumption that ICME-like transients may be associated with the SSA events we investigated the number of weak flares of C-class and lower detected by SPHINX in 2009 and STEREO/EUVI in 2010. The flares were classified on temperature and emission measure using the diagnostic means of SPHINX and Hinode/EIS and were confronted with the parameters of the solar wind (velocity, density, ion composition and temperature, magnetic field, pitch angle distribution of the suprathermal electrons). The outflows of plasma associated with the flares were identified by their coronal signatures - CMEs (only in few cases) and dimmings. It was found that the mean parameters of the solar wind projected to the source surface for the times of the studied flares were typical for the ICME-like transients. The results support the suggestion that weak flares can be indicators of sources of transient plasma flows contributing to the slow solar wind at solar minimum, although these flows may be too weak to be considered as separate CMEs and ICMEs. The research leading to these results has received funding from the European Union’s Seventh Programme

  1. Origin of the Wang-Sheeley-Arge solar wind model

    Science.gov (United States)

    Sheeley, Neil R., Jr.

    2017-03-01

    A correlation between solar wind speed at Earth and the amount of magnetic field line expansion in the corona was verified in 1989 using 22 years of solar and interplanetary observations. We trace the evolution of this relationship from its birth 15 years earlier in the Skylab era to its current use as a space weather forecasting technique. This paper is the transcript of an invited talk at the joint session of the Historical Astronomy Division and the Solar Physics Division of the American Astronomical Society during its 224th meeting in Boston, MA, on 3 June 2014.

  2. Personalized disease-specific protein corona influences the therapeutic impact of graphene oxide

    Science.gov (United States)

    Hajipour, Mohammad Javad; Raheb, Jamshid; Akhavan, Omid; Arjmand, Sareh; Mashinchian, Omid; Rahman, Masoud; Abdolahad, Mohammad; Serpooshan, Vahid; Laurent, Sophie; Mahmoudi, Morteza

    2015-05-01

    The hard corona, the protein shell that is strongly attached to the surface of nano-objects in biological fluids, is recognized as the first layer that interacts with biological objects (e.g., cells and tissues). The decoration of the hard corona (i.e., the type, amount, and conformation of the attached proteins) can define the biological fate of the nanomaterial. Recent developments have revealed that corona decoration strongly depends on the type of disease in human patients from which the plasma is obtained as a protein source for corona formation (referred to as the `personalized protein corona'). In this study, we demonstrate that graphene oxide (GO) sheets can trigger different biological responses in the presence of coronas obtained from various types of diseases. GO sheets were incubated with plasma from human subjects with different diseases/conditions, including hypofibrinogenemia, blood cancer, thalassemia major, thalassemia minor, rheumatism, fauvism, hypercholesterolemia, diabetes, and pregnancy. Identical sheets coated with varying protein corona decorations exhibited significantly different cellular toxicity, apoptosis, and uptake, reactive oxygen species production, lipid peroxidation and nitrogen oxide levels. The results of this report will help researchers design efficient and safe, patient-specific nano biomaterials in a disease type-specific manner for clinical and biological applications.The hard corona, the protein shell that is strongly attached to the surface of nano-objects in biological fluids, is recognized as the first layer that interacts with biological objects (e.g., cells and tissues). The decoration of the hard corona (i.e., the type, amount, and conformation of the attached proteins) can define the biological fate of the nanomaterial. Recent developments have revealed that corona decoration strongly depends on the type of disease in human patients from which the plasma is obtained as a protein source for corona formation (referred

  3. Coronal Streamers Revealed during Solar Eclipses: Seeing is not Believing, and Pictures Can Lie

    Directory of Open Access Journals (Sweden)

    Richard Woo

    2011-08-01

    Full Text Available For those fortunate enough to have personally witnessed and photographed the visible corona surrounding the Sun during a solar eclipse, pictures are usually a let down for not living up to the visual view. After 150 years of investigating the corona, we understand it more fully and now know this difference to be real. The difference stems from our inability to either see or image the true distribution of simultaneous brightness because of its large dynamic range (eg, Rodriguez, Woods, 2008 Digital Image Processing, Upper Saddle River: Pearson Prentice Hall. Brightness in the corona is unprecedented, as it falls by three orders of magnitude over a distance of only one solar radius from the Sun.

  4. Numerical and Experimental Study of Amplitude Modulated Positive Corona Discharge

    Directory of Open Access Journals (Sweden)

    Pablo Martín GOMEZ

    2014-12-01

    Full Text Available The electrical behavior of a modulated positive corona discharge loudspeaker was studied. A coaxial transducer in air was built using a central copper wire of 75 mm radius (inner electrode and a perforated tube of 11 mm (outer electrode. A high voltage DC supply provided the bias current and a sinusoidal signal was superimposed to measure the discharge admittance. The experimental results could not be matched to previously reported equivalent circuits with fixed components. Using the basic equations that describe the ion motion, a numerical model was proposed. The computed values matched well the experimental data and suggested an equivalent circuit composed of frequency dependent conductance and capacitance. This dependence is closely related to the ion travel time between electrodes (transit time. Simulations carried out at several inter-electrode distances could be synthesized in a single plot where the different results overlap and further emphasize the role of the transit time. This numerical model proved to be an efficient tool to simulate and design modulated corona transducers.

  5. Accretion Disks and Coronae in the X-Ray Flashlight

    Science.gov (United States)

    Degenaar, Nathalie; Ballantyne, David R.; Belloni, Tomaso; Chakraborty, Manoneeta; Chen, Yu-Peng; Ji, Long; Kretschmar, Peter; Kuulkers, Erik; Li, Jian; Maccarone, Thomas J.; Malzac, Julien; Zhang, Shu; Zhang, Shuang-Nan

    2018-02-01

    Plasma accreted onto the surface of a neutron star can ignite due to unstable thermonuclear burning and produce a bright flash of X-ray emission called a Type-I X-ray burst. Such events are very common; thousands have been observed to date from over a hundred accreting neutron stars. The intense, often Eddington-limited, radiation generated in these thermonuclear explosions can have a discernible effect on the surrounding accretion flow that consists of an accretion disk and a hot electron corona. Type-I X-ray bursts can therefore serve as direct, repeating probes of the internal dynamics of the accretion process. In this work we review and interpret the observational evidence for the impact that Type-I X-ray bursts have on accretion disks and coronae. We also provide an outlook of how to make further progress in this research field with prospective experiments and analysis techniques, and by exploiting the technical capabilities of the new and concept X-ray missions ASTROSAT, NICER, Insight-HXMT, eXTP, and STROBE-X.

  6. Corona performance of a compact 230-kV line

    International Nuclear Information System (INIS)

    Chartier, V.L.; Blair, D.E.

    1994-01-01

    Permitting requirements and the acquisition of new rights-of-way for transmission facilities has in recent years become increasingly difficult for most utilities, including Puget Sound Power and Light Company. In order to maintain a high degree of reliability of service while being responsive to public concerns regarding the siting of high voltage (HV) transmission facilities, Puget Power has found it necessary to more heavily rely upon the use of compact lines in franchise corridors. Compaction does, however, precipitant increased levels of audible noise (AN) and radio and TV interference (RI and TVI) due to corona on the conductors and insulator assemblies. Puget Power relies upon the Bonneville Power Administration (BPA) Corona and Field Effects computer program to calculate AN and RI for new lines. Since there was some question of the program's ability to accurately represent quiet 230-kV compact designs, a joint project was undertaken with BPA to verify the program's algorithms. Long-term measurements made on an operating Puget Power 230-kV compact line confirmed the accuracy of BPA's AN model; however, the RI measurements were much lower than predicted by the BPA computer and other programs. This paper also describes how the BPA computer program can be used to calculate the voltage needed to expose insulator assemblies to the correct electric field in single test setups in HV laboratories

  7. Warm gas towards young stellar objects in Corona Australis

    DEFF Research Database (Denmark)

    Lindberg, Johan; Jørgensen, Jes Kristian; D. Green, Joel

    2014-01-01

    The effects of external irradiation on the chemistry and physics in the protostellar envelope around low-mass young stellar objects are poorly understood. The Corona Australis star-forming region contains the R CrA dark cloud, comprising several low-mass protostellar cores irradiated by an interm......The effects of external irradiation on the chemistry and physics in the protostellar envelope around low-mass young stellar objects are poorly understood. The Corona Australis star-forming region contains the R CrA dark cloud, comprising several low-mass protostellar cores irradiated...... by an intermediate-mass young star. We study the effects on the warm gas and dust in a group of low-mass young stellar objects from the irradiation by the young luminous Herbig Be star R CrA. Herschel/PACS far-infrared datacubes of two low-mass star-forming regions in the R CrA dark cloud are presented...... Be star R CrA. Our results show that a nearby luminous star does not increase the molecular excitation temperatures in the warm gas around a young stellar object (YSO). However, the emission from photodissociation products of H2O, such as OH and O, is enhanced in the warm gas associated...

  8. Solar building

    OpenAIRE

    Zhang, Luxin

    2014-01-01

    In my thesis I describe the utilization of solar energy and solar energy with building integration. In introduction it is also mentioned how the solar building works, trying to make more people understand and accept the solar building. The thesis introduces different types of solar heat collectors. I compared the difference two operation modes of solar water heating system and created examples of solar water system selection. I also introduced other solar building applications. It is conv...

  9. Solar-system Education for the 2017 Total Solar Eclipse

    Science.gov (United States)

    Pasachoff, Jay M.

    2017-10-01

    I describe an extensive outreach program about the Sun, the silhouette of the Moon, and the circumstances both celestial and terrestrial of the August 21, 2017, total solar eclipse. Publications included a summary of the last decade of solar-eclipse research for Nature Astronomy, a Resource Letter on Observing Solar Eclipses for the American Journal of Physics, and book reviews for Nature and for Phi Beta Kappa's Key Reporter. Symposia arranged include sessions at AAS, APS, AGU, and AAAS. Lectures include all ages from pre-school through elementary school to high school to senior-citizen residences. The work, including the scientific research about the solar corona that is not part of this abstract, was supported by grants from the Solar Terrestrial Program of the Atmospheric and Geospace Sciences Division of NSF and from the Committee for Research and Exploration of the National Geographic Society. Additional student support was received from NSF, NASA's Massachusetts Space Grant Consortium, the Honorary Research Society Sigma Xi, the Clare Booth Luce Foundation, and funds at Williams College.

  10. Solar energy

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter discusses the role solar energy may have in the energy future of the US. The topics discussed in the chapter include the solar resource, solar architecture including passive solar design and solar collectors, solar-thermal concentrating systems including parabolic troughs and dishes and central receivers, photovoltaic cells including photovoltaic systems for home use, and environmental, health and safety issues

  11. SOHO hunts elusive solar prey

    Science.gov (United States)

    1995-10-01

    limited by inclement weather conditions and atmospheric distortion of the Sun’s signal, and of course they cannot observe the Sun at night. Although the weather problem has been removed in orbit around the Earth, observations are still periodically interrupted when an Earth-orbiting spacecraft enters our planet’s shadow. In contrast, SOHO will provide the first long, clean uninterrupted views of the Sun. Science Objectives SOHO will look beyond the visible soar disk, observing through new windows from the centre of the Sun to the Earth. It will examine three regions - the hidden interior of the Sun, the hot transparent solar atmosphere, and the eternal solar wind of charged particles and magnetic fields that continuously flow outward from the Sun. The twelve instruments on board SOHO are designed to study one or two of these regions in a different, yet complimentary way. Their combined data will link events in the Sun’s atmosphere and solar wind changes taking place deep within the Sun. The SOHO mission has three principle scientific objectives: 1. Study of the structure and dynamics of the solar interior 2. Study of the heating mechanisms of the Sun's million-degree atmosphere, or solar corona 3. Investigation of the solar wind, its origin and its acceleration processes. "Never before have solar physicists had the opportunity to work with such a comprehensive observatory giving them access literally to the whole Sun", said Martin C. E. Huber, the Head of ESA's Space Science Department. Taking the pulse of the Sun SOHO wil illuminate the unseen depths of the Sun by recording widespread throbbing motions of the Sun's visible "surface", or photosphere. These oscillations are caused by sounds that are trapped inside the Sun. On striking the surface and rebounding back down, the sound waves cause the gases there to move up and down. Sound waves that penetrate deep within the Sun produce global surface oscillations with longer periods of up to a few hours; smaller

  12. MUSE: the Multi-Slit Solar Explorer

    Science.gov (United States)

    Tarbell, Theodore D.; De Pontieu, Bart

    2017-08-01

    The Multi-Slit Solar Explorer is a proposed Small Explorer mission for studying the dynamics of the corona and transition region using both conventional and novel spectral imaging techniques. The physical processes that heat the multi-million degree solar corona, accelerate the solar wind and drive solar activity (CMEs and flares) remain poorly known. A breakthrough in these areas can only come from radically innovative instrumentation and state-of-the-art numerical modeling and will lead to better understanding of space weather origins. MUSE’s multi-slit coronal spectroscopy will use a 100x improvement in spectral raster cadence to fill a crucial gap in our knowledge of Sun-Earth connections; it will reveal temperatures, velocities and non-thermal processes over a wide temperature range to diagnose physical processes that remain invisible to current or planned instruments. MUSE will contain two instruments: an EUV spectrograph (SG) and EUV context imager (CI). Both have similar spatial resolution and leverage extensive heritage from previous high-resolution instruments such as IRIS and the HiC rocket payload. The MUSE investigation will build on the success of IRIS by combining numerical modeling with a uniquely capable observatory: MUSE will obtain EUV spectra and images with the highest resolution in space (1/3 arcsec) and time (1-4 s) ever achieved for the transition region and corona, along 35 slits and a large context FOV simultaneously. The MUSE consortium includes LMSAL, SAO, Stanford, ARC, HAO, GSFC, MSFC, MSU, ITA Oslo and other institutions.

  13. High-energy particles associated with solar flares

    International Nuclear Information System (INIS)

    Sakurai, K.; Klimas, A.J.

    1974-05-01

    High energy particles, the so-called solar cosmic rays, are often generated in association with solar flares, and then emitted into interplanetary space. These particles, consisting of electrons, protons, and other heavier nuclei, including the iron-group, are accelerated in the vicinity of the flare. By studying the temporal and spatial variation of these particles near the earth's orbit, their storage and release mechanisms in the solar corona and their propagation mechanism can be understood. The details of the nuclear composition and the rigidity spectrum for each nuclear component of the solar cosmic rays are important for investigating the acceleration mechanism in solar flares. The timing and efficiency of the acceleration process can also be investigated by using this information. These problems are described in some detail by using observational results on solar cosmic rays and associated phenomena. (U.S.)

  14. Understanding non-equilibrium collisional and expansion effects in the solar wind with Parker Solar Probe

    Science.gov (United States)

    Korreck, K. E.; Klein, K. G.; Maruca, B.; Alterman, B. L.

    2017-12-01

    The evolution of the solar wind from the corona to the Earth and throughout the heliosphere is a complex interplay between local micro kinetics and large scale expansion effects. These processes in the solar wind need to be separated in order to understand and distinguish the dominant mechanism for heating and acceleration of the solar wind. With the upcoming launch in 2018 of Parker Solar Probe and the launch of Solar Orbiter after, addressing the local and global phenomena will be enabled with in situ measurements. Parker Solar Probe will go closer to the Sun than any previous mission enabling the ability to examine the solar wind at an early expansion age. This work examines the predictions for what will be seen inside of the 0.25 AU (54 solar radii) where Parker Solar Probe will take measurements and lays the groundwork for disentangling the expansion and collisional effects. In addition, methods of thermal plasma data analysis to determine the stability of the plasma in the Parker Solar Probe measurements will be discussed.

  15. SOLAR WIND HEAVY IONS OVER SOLAR CYCLE 23: ACE/SWICS MEASUREMENTS

    International Nuclear Information System (INIS)

    Lepri, S. T.; Landi, E.; Zurbuchen, T. H.

    2013-01-01

    Solar wind plasma and compositional properties reflect the physical properties of the corona and its evolution over time. Studies comparing the previous solar minimum with the most recent, unusual solar minimum indicate that significant environmental changes are occurring globally on the Sun. For example, the magnetic field decreased 30% between the last two solar minima, and the ionic charge states of O have been reported to change toward lower values in the fast wind. In this work, we systematically and comprehensively analyze the compositional changes of the solar wind during cycle 23 from 2000 to 2010 while the Sun moved from solar maximum to solar minimum. We find a systematic change of C, O, Si, and Fe ionic charge states toward lower ionization distributions. We also discuss long-term changes in elemental abundances and show that there is a ∼50% decrease of heavy ion abundances (He, C, O, Si, and Fe) relative to H as the Sun went from solar maximum to solar minimum. During this time, the relative abundances in the slow wind remain organized by their first ionization potential. We discuss these results and their implications for models of the evolution of the solar atmosphere, and for the identification of the fast and slow wind themselves.

  16. FADING CORONAL STRUCTURE AND THE ONSET OF TURBULENCE IN THE YOUNG SOLAR WIND

    Energy Technology Data Exchange (ETDEWEB)

    DeForest, C. E. [Southwest Research Institute, 1050 Walnut Street, Boulder, CO (United States); Matthaeus, W. H. [Bartol Research Institute, University of Delaware, Newark, DE 19716 (United States); Viall, N. M. [NASA/Goddard Space Flight Center, Mail Code 671, Greenbelt, MD 20771 (United States); Cranmer, S. R. [University of Colorado, Duane E226, Boulder, CO 80305 (United States)

    2016-09-10

    Above the top of the solar corona, the young, slow solar wind transitions from low- β , magnetically structured flow dominated by radial structures to high- β , less structured flow dominated by hydrodynamics. This transition, long inferred via theory, is readily apparent in the sky region close to 10° from the Sun in processed, background-subtracted solar wind images. We present image sequences collected by the inner Heliospheric Imager instrument on board the Solar-Terrestrial Relations Observatory ( STEREO /HI1) in 2008 December, covering apparent distances from approximately 4° to 24° from the center of the Sun and spanning this transition in the large-scale morphology of the wind. We describe the observation and novel techniques to extract evolving image structure from the images, and we use those data and techniques to present and quantify the clear textural shift in the apparent structure of the corona and solar wind in this altitude range. We demonstrate that the change in apparent texture is due both to anomalous fading of the radial striae that characterize the corona and to anomalous relative brightening of locally dense puffs of solar wind that we term “flocculae.” We show that these phenomena are inconsistent with smooth radial flow, but consistent with the onset of hydrodynamic or magnetohydrodynamic instabilities leading to a turbulent cascade in the young solar wind.

  17. Fading Coronal Structure and the Onset of Turbulence in the Young Solar Wind

    Science.gov (United States)

    DeForest, C. E.; Matthaeus, W. H.; Viall, N. M.; Cranmer, S. R.

    2016-01-01

    Above the top of the solar corona, the young, slow solar wind transitions from low-beta, magnetically structured flow dominated by radial structures to high-beta, less structured flow dominated by hydrodynamics. This transition, long inferred via theory, is readily apparent in the sky region close to 10deg from the Sun in processed, background-subtracted solar wind images. We present image sequences collected by the inner Heliospheric Imager instrument on board the Solar-Terrestrial Relations Observatory (STEREO/HI1) in 2008 December, covering apparent distances from approximately 4deg to 24deg from the center of the Sun and spanning this transition in the large-scale morphology of the wind. We describe the observation and novel techniques to extract evolving image structure from the images, and we use those data and techniques to present and quantify the clear textural shift in the apparent structure of the corona and solar wind in this altitude range. We demonstrate that the change in apparent texture is due both to anomalous fading of the radial striae that characterize the corona and to anomalous relative brightening of locally dense puffs of solar wind that we term "flocculae." We show that these phenomena are inconsistent with smooth radial flow, but consistent with the onset of hydrodynamic or magnetohydrodynamic instabilities leading to a turbulent cascade in the young solar wind.

  18. Solar Magnetism eXplorer (Solme X)

    Science.gov (United States)

    Peter, Hardi; Abbo, L.; Andretta, V.; Auchere, F.; Bemporad, A.; Berrilli, F.; Bommier, V.; Cassini, R.; Curdt, W.; Davila, J.; hide

    2011-01-01

    The magnetic field plays a pivotal role in many fields of Astrophysics. This is especially true for the physics of the solar atmosphere. Measuring the magnetic field in the upper solar atmosphere is crucial to understand the nature of the underlying physical processes that drive the violent dynamics of the solar corona-that can also affect life on Earth. SolmeX, a fully equipped solar space observatory for remote-sensing observations, will provide the first comprehensive measurements of the strength and direction of the magnetic field in the upper solar atmosphere. The mission consists of two spacecraft, one carrying the instruments, and another one in formation flight at a distance of about 200 m carrying the occulter to provide an artificial total solar eclipse. This will ensure high-quality coronagraphic observations above the solar limb. SolmeX integrates two spectro-polarimetric coronagraphs for off-limb observations, one in the EUV and one in the IR, and three instruments for observations on the disk. The latter comprises one imaging polarimeter in the EUV for coronal studies, a spectro-polarimeter in the EUV to investigate the low corona, and an imaging spectro-polarimeter in the UV for chromospheric studies. SOHO and other existing missions have investigated the emission of the upper atmosphere in detail (not considering polarization), and as this will be the case also for missions planned for the near future. Therefore it is timely that SolmeX provides the final piece of the observational quest by measuring the magnetic field in the upper atmosphere through polarimetric observations

  19. Propagation characteristics of audible noise generated by single corona source under positive DC voltage

    Directory of Open Access Journals (Sweden)

    Xuebao Li

    2017-10-01

    Full Text Available The directivity and lateral profile of corona-generated audible noise (AN from a single corona source are measured through experiments carried out in the semi-anechoic laboratory. The experimental results show that the waveform of corona-generated AN consists of a series of random sound pressure pulses whose pulse amplitudes decrease with the increase of measurement distance. A single corona source can be regarded as a non-directional AN source, and the A-weighted SPL (sound pressure level decreases 6 dB(A as doubling the measurement distance. Then, qualitative explanations for the rationality of treating the single corona source as a point source are given on the basis of the Ingard’s theory for sound generation in corona discharge. Furthermore, we take into consideration of the ground reflection and the air attenuation to reconstruct the propagation features of AN from the single corona source. The calculated results agree with the measurement well, which validates the propagation model. Finally, the influence of the ground reflection on the SPL is presented in the paper.

  20. Dynamic characteristics of corona discharge generated under rainfall condition on AC charged conductors

    Science.gov (United States)

    Xu, Pengfei; Zhang, Bo; Wang, Zezhong; Chen, Shuiming; He, Jinliang

    2017-12-01

    By synchronous measurement of corona current and the water droplet deformation process on a conductor surface, different types of corona discharge are visualized when AC voltage is applied on a line-ground electrode system. The corona characteristics are closely related to the applied voltage and water supply rate. With the increase of AC voltage, the positive Taylor cone discharge firstly appears and then disappears, replaced by the dripping and crashing discharge. Furthermore, the number of pulses in each pulse train increases with the increase of applied voltage. The mechanism of the transfer from the positive Taylor cone discharge to the dripping and crashing discharge is found to be related to the oscillation process of the water droplet. The water supply rate also has a great influence on the characteristics of corona currents. The number of positive pulse trains increases linearly when the water supply rate gets larger, leading to a higher audible noise and radio interference level from the AC corona, which is quite different from that of the DC corona. The difference between the AC and DC coronas under rainfall conditions is analyzed finally.

  1. Research on the correlation between corona current spectrum and audible noise spectrum of HVDC transmission line

    Science.gov (United States)

    Liu, Yingyi; Zhou, Lijuan; Liu, Yuanqing; Yuan, Haiwen; Ji, Liang

    2017-11-01

    Audible noise is closely related to corona current on a high voltage direct current (HVDC) transmission line. In this paper, we measured a large amount of audible noise and corona current waveforms simultaneously based on the largest outdoor HVDC corona cage all over the world. By analyzing the experimental data, the related statistical regularities between a corona current spectrum and an audible noise spectrum were obtained. Furthermore, the generation mechanism of audible noise was analyzed theoretically, and the related mathematical expression between the audible noise spectrum and the corona current spectrum, which is suitable for all of these measuring points in the space, has been established based on the electro-acoustic conversion theory. Finally, combined with the obtained mathematical relation, the internal reasons for these statistical regularities appearing in measured corona current and audible noise data were explained. The results of this paper not only present the statistical association regularities between the corona current spectrum and the audible noise spectrum on a HVDC transmission line, but also reveal the inherent reasons of these associated rules.

  2. The 1st of April 2470 BC Total Solar Eclipse Seen by the Prophet Ibraheem

    Science.gov (United States)

    Yousef, S. M.

    The Holy Quran describes a phenomenon seen by young Abraham that can only fit a solar eclipse. Two criteria were given for this particular eclipse; first only one planet was seen as soon as it got dark and second no corona was seen. In order to justify the first selection rule, examinations of solar and planetary longitudes for total solar eclipses passing over Babel were carried out. Only the eclipse of the 1st of April 2470 BC meets this condition, as it was only Venus that was seen at that eclipse. The second selection rule was also naturally fulfilled, as Babel happened to be on the border of the totality zone hence no corona was seen, however all the time the moon glistened as Baily's beads. There is no doubt that the prophet Abraham witnessed the 1st of April total solar eclipse that passed over Babel. This will put him about 470 years backward than it was previously anticipated.

  3. Corona-induced electrohydrodynamic instabilities in low conducting liquids

    Energy Technology Data Exchange (ETDEWEB)

    Vega, F.; Perez, A.T. [Depto. Electronica y Electromagnetismo, Facultad de Fisica, Universidad de Sevilla, Avda. Reina Mercedes, s/n. 41012, Sevilla (Spain)

    2003-06-01

    The rose-window electrohydrodynamic (EHD) instability has been observed when a perpendicular field with an additional unipolar ion injection is applied onto a low conducting liquid surface. This instability has a characteristic pattern with cells five to 10 times greater than those observed in volume instabilities caused by unipolar injection. We have used corona discharge from a metallic point to perform some measurements of the rose-window instability in low conducting liquids. The results are compared to the linear theoretical criterion for an ohmic liquid. They confirmed that the minimum voltage for this instability is much lower than that for the interfacial instability in high conducting liquids. This was predicted theoretically in the dependence of the critical voltage as a function of the non-dimensional conductivity. It is shown that in a non-ohmic liquid the rose window appears as a secondary instability after the volume instability. (orig.)

  4. Sunspot Oscillations From The Chromosphere To The Corona

    Science.gov (United States)

    Brynildsen, N.; Maltby, P.; Fredvik, T.; Kjeldseth-Moe, O.

    The behavior of the 3 minute sunspot oscillations is studied as a function of temper- ature through the transition region using observations with CDS/SOHO and TRACE. The oscillations occur above the umbra, with amplitudes increasing to a maximum near 200 000 K, then decreasing towards higher temperatures. Deviations from pure linear oscillations are present in several cases. Power spectra of the oscillations are remarkably similar in the chromosphere and through the transition region in contra- diction to the predictions of the sunspot filter theory. The 3 minute oscillations pene- trate to the low temperature end of the corona, where they are channeled into smaller areas coinciding with the endpoints of sunspot coronal loops. This differs from the transition zone where the oscillating region covers the umbra.

  5. A nano-bio interfacial protein corona on silica nanoparticle.

    Science.gov (United States)

    Zhang, Hongyan; Peng, Jiaxi; Li, Xin; Liu, Shengju; Hu, Zhengyan; Xu, Guiju; Wu, Ren'an

    2018-07-01

    Nano-bio interaction takes the crucial role in bio-application of nanoparticles. The systematic mapping of interfacial proteins remains the big challenge as low level of proteins within interface regions and lack of appropriate technology. Here, a facile proteomic strategy was developed to characterize the interfacial protein corona (noted as IPC) that has strong interactions with silica nanoparticle, via the combination of the vigorous elution with high concentration sodium dodecyl sulfate (SDS) and the pre-isolation of sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The trace level IPCs for silica nanoparticle were thus qualitatively and quantitatively identified. Bioinformatics analyses revealed the intrinsic compositions, relevance and potential regularity addressing the strong interactions between IPC and nanoparticle. This strategy in determining IPCs is opening an avenue to give a deep insight to understand the interaction between proteins and not only nanoparticles but also other bulk materials. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Corona discharge ion mobility spectrometry at reduced pressures

    International Nuclear Information System (INIS)

    Tabrizchi, Mahmoud; Rouholahnejad, Fereshteh

    2004-01-01

    Ion mobility spectrometers (IMSs) normally operate at ambient pressure. In this work an IMS cell has been designed and constructed to allow the pressure to be reduced inside the IMS cell. In this cell, corona discharge was employed as the ionization source. Reducing pressure affected both the discharge and the performance of the IMS. The discharge current was observed to increase with reducing pressure while the ignition potential decreased. The ion current received at the collector plate was also increased about 50 times when the pressure was reduced from ambient pressure to 15 Torr. The higher ion current can lead to an extended dynamic range. IMS spectra were recorded at various pressures and the results show that the drift times shift perfectly linear with pressure. This suggests that unlike temperature, pressure correction for ion mobility spectra is as simple as multiplying the drift times by a factor of 760/P

  7. Toxicity of silica nanoparticles and the effect of protein corona

    DEFF Research Database (Denmark)

    Foldbjerg, Rasmus; Jespersen, Lars Vesterby; Wang, Jing

    2010-01-01

      The cytotoxicity of silica nanoparticles (NPs) was investigated in the human lung cell line, A549. Silica NPs of different sizes (DLS size; 16-42 nm) were used to determine appropriate dose metrics whereas the effect of the NP corona was tested by coating the NPs with bovine serum albumin (BSA......). The NPs were characterized by TEM and DLS as monodisperse and non-aggregated in solution and the NP suspensions were free of metal and endotoxin impurities as tested by ICP-MS and the LAL test. Cellular uptake and binding of the silica NPs was indirectly assessed by flow cytometry side scatter and SEM...... upon silica NP exposure. The silica NP surface area was found to be the best dose metric for predicting cytotoxicity and IL-8 release. Generally, the NPs were only cytotoxic at high concentrations and BSA-coating of the NPs significantly decreased the cytotoxicity and cellular IL-8 secretion. All...

  8. A SOLAR SPECTROSCOPIC ABSOLUTE ABUNDANCE OF ARGON FROM RESIK

    International Nuclear Information System (INIS)

    Sylwester, J.; Sylwester, B.; Phillips, K. J. H.; Kuznetsov, V. D.

    2010-01-01

    Observations of He-like and H-like Ar (Ar XVII and Ar XVIII) lines at 3.949 A and 3.733 A, respectively, with the RESIK X-ray spectrometer on the CORONAS-F spacecraft, together with temperatures and emission measures from the two channels of GOES, have been analyzed to obtain the abundance of Ar in flare plasmas in the solar corona. The line fluxes per unit emission measure show a temperature dependence like that predicted from theory and lead to spectroscopically determined values for the absolute Ar abundance, A(Ar) = 6.44 ± 0.07 (Ar XVII) and 6.49 ± 0.16 (Ar XVIII), which are in agreement to within uncertainties. The weighted mean is 6.45 ± 0.06, which is between two recent compilations of the solar Ar abundance and suggests that the photospheric and coronal abundances of Ar are very similar.

  9. WHAT IS THE SHELL AROUND R CORONAE BOREALIS?

    Energy Technology Data Exchange (ETDEWEB)

    Montiel, Edward J.; Clayton, Geoffrey C.; Marcello, Dominic C. [Dept. of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Lockman, Felix J., E-mail: emonti2@lsu.edu, E-mail: gclayton@fenway.phys.lsu.edu, E-mail: dmarce1@tigers.lsu.edu, E-mail: jlockman@nrao.edu [National Radio Astronomy Observatory, Green Bank, WV 24944 (United States)

    2015-07-15

    The hydrogen-deficient, carbon-rich R Coronae Borealis (RCB) stars are known for being prolific producers of dust which causes their large iconic declines in brightness. Several RCB stars, including R Coronae Borealis (R CrB), itself, have large extended dust shells seen in the far-infrared. The origin of these shells is uncertain but they may give us clues to the evolution of the RCB stars. The shells could form in three possible ways. (1) They are fossil Planetary Nebula (PN) shells, which would exist if RCB stars are the result of a final, helium-shell flash, (2) they are material left over from a white-dwarf (WD) merger event which formed the RCB stars, or (3) they are material lost from the star during the RCB phase. Arecibo 21 cm observations establish an upper limit on the column density of H I in the R CrB shell implying a maximum shell mass of ≲0.3 M{sub ☉}. A low-mass fossil PN shell is still a possible source of the shell although it may not contain enough dust. The mass of gas lost during a WD merger event will not condense enough dust to produce the observed shell, assuming a reasonable gas-to-dust ratio. The third scenario where the shell around R CrB has been produced during the star’s RCB phase seems most likely to produce the observed mass of dust and the observed size of the shell. But this means that R CrB has been in its RCB phase for ∼10{sup 4} years.

  10. Create 2D mobile games with Corona SDK for iOS and Android

    CERN Document Server

    Mekersa, David

    2015-01-01

    Corona SDK is one of the most powerful tools used to create games and apps for mobile devices.The market requires speed; new developers need to operate quickly and efficiently. Create 2D Mobile Games with Corona SDK gives you the tools needed to master Corona - even within the framework of professional constraints. A must-read guide, this book gives you fast, accurate tips to learn the programming language necessary to create games. Read it sequentially or as an FAQ and you will have the tools you need to create any base game before moving on to advanced topics. The tutorial-based format:Conta

  11. Models of the plasma corona formation and stratification of exploding micro-wires

    International Nuclear Information System (INIS)

    Volkov, N.B.; Sarkisov, G.S.; Struve, K.W.; McDaniel, D.H.

    2005-01-01

    There are proposed the models pf plasma corona formation and stratification of a gas-plasma core of exploding micro-wire. The opportunity of use for the description of physical processes in a formed plasma corona of an electronic magnetohydrodynamics is generalized in view of change of particle number as a result of evaporation, ionization and a leaving of electrons on a wire surface. Necessity of the account of influence of a hot plasma corona on stratification of a gas-plasma core was grounded [ru

  12. Corona discharge secondary ionization of laser desorbed neutral molecules from a liquid matrix at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Turney, Kevin [Department of Chemistry, University of Florida, Gainesville, Florida 32611 (United States); Harrison, W.W. [Department of Chemistry, University of Florida, Gainesville, Florida 32611 (United States)]. E-mail: harrison@chem.ufl.edu

    2006-06-15

    Matrix assisted laser desorption/ionization (MALDI) is studied at atmospheric pressure using liquid sampling methods. A time-of-flight mass spectrometer couples to an open sample stage accessed by a UV laser for desorption and ionization. Also coupled to the sampling state is a corona discharge for auxiliary ionization of desorbed neutral molecules. The interaction of the laser desorption and corona ionization is studied for a range of desorption conditions, showing enhanced analyte ionization, but the effect is analytically advantageous only at low desorption rates. The effect of corona discharge voltage was also explored. The decoupling of neutral molecule formation and subsequent ionization provides an opportunity to study each process separately.

  13. Corona discharge secondary ionization of laser desorbed neutral molecules from a liquid matrix at atmospheric pressure

    International Nuclear Information System (INIS)

    Turney, Kevin; Harrison, W.W.

    2006-01-01

    Matrix assisted laser desorption/ionization (MALDI) is studied at atmospheric pressure using liquid sampling methods. A time-of-flight mass spectrometer couples to an open sample stage accessed by a UV laser for desorption and ionization. Also coupled to the sampling state is a corona discharge for auxiliary ionization of desorbed neutral molecules. The interaction of the laser desorption and corona ionization is studied for a range of desorption conditions, showing enhanced analyte ionization, but the effect is analytically advantageous only at low desorption rates. The effect of corona discharge voltage was also explored. The decoupling of neutral molecule formation and subsequent ionization provides an opportunity to study each process separately

  14. Sulphur dioxide (SO2) electrotransfer in electric field generated by corona discharge

    International Nuclear Information System (INIS)

    Wang, Zu-wu; Guo, Jia; Zeng, Han-cai; Ge, Chun-liang; Yu, Jiang

    2007-01-01

    The mechanism of the forming SO 2 negative ions and their electrotransfer in the corona discharge electric field was investigated in this paper. The experimental results showed that SO 2 electrotransfer occurred in the electric field with corona discharge, which had potential applications in removal of SO 2 of the flue gas from coal-fired power plants by electrotransfer. SO 2 electrotransfer was enhanced by higher electric-field intensity or a larger discharging area. Assistant uniform electric field after the corona discharge electric field would improve SO 2 electrotransfer. The increment of the desulphurization efficiency by SO 2 electrotransfer might reach as high as 50%. (author)

  15. Preliminary results from the Orbiting Solar Observatory 8 - Observations of optically thin lines

    Science.gov (United States)

    Shine, R. A.; Roussel-Dupre, D.; Bruner, E. C., Jr.; Chipman, E. G.; Lites, B. W.; Rottman, G. J.; Athay, R. G.; White, O. R.

    1976-01-01

    The University of Colorado spectrometer aboard OSO 8 has measured the high temperature C IV resonance lines (at 1548 and 1551 A) and the Si IV resonance lines (at 1393 and 1402 A) formed in the solar chromosphere-corona transition region. Preliminary results include studies of mean profiles, a comparison of cell and network profiles, and the behavior of the lines at the extreme solar limb.

  16. Turbulence in the solar atmosphere and in the interplanetary plasma

    International Nuclear Information System (INIS)

    Chashei, I.V.; Shishov, V.I.

    1984-01-01

    Analysis of the basic properties of the turbulence in the solar chromosphere, corona, and supercorona (the plasma acceleration zone) indicates that the energy of acoustic disturbances generated at the photospheric level will be conveyed outward into the interplanetary plasma jointly by nonlinear wave interactions and wave propagation effects. Above the chromosphere, damping will be strongest at heights Rroughly-equal0.4 R/sub sun/ for acoustic-type waves and at Rroughly-equalR/sub sun/ for Alfven waves

  17. Variability of fractal dimension of solar radio flux

    Science.gov (United States)

    Bhatt, Hitaishi; Sharma, Som Kumar; Trivedi, Rupal; Vats, Hari Om

    2018-04-01

    In the present communication, the variation of the fractal dimension of solar radio flux is reported. Solar radio flux observations on a day to day basis at 410, 1415, 2695, 4995, and 8800 MHz are used in this study. The data were recorded at Learmonth Solar Observatory, Australia from 1988 to 2009 covering an epoch of two solar activity cycles (22 yr). The fractal dimension is calculated for the listed frequencies for this period. The fractal dimension, being a measure of randomness, represents variability of solar radio flux at shorter time-scales. The contour plot of fractal dimension on a grid of years versus radio frequency suggests high correlation with solar activity. Fractal dimension increases with increasing frequency suggests randomness increases towards the inner corona. This study also shows that the low frequency is more affected by solar activity (at low frequency fractal dimension difference between solar maximum and solar minimum is 0.42) whereas, the higher frequency is less affected by solar activity (here fractal dimension difference between solar maximum and solar minimum is 0.07). A good positive correlation is found between fractal dimension averaged over all frequencies and yearly averaged sunspot number (Pearson's coefficient is 0.87).

  18. EVOLUTION OF THE RELATIONSHIPS BETWEEN HELIUM ABUNDANCE, MINOR ION CHARGE STATE, AND SOLAR WIND SPEED OVER THE SOLAR CYCLE

    International Nuclear Information System (INIS)

    Kasper, J. C.; Stevens, M. L.; Korreck, K. E.; Maruca, B. A.; Kiefer, K. K.; Schwadron, N. A.; Lepri, S. T.

    2012-01-01

    The changing relationships between solar wind speed, helium abundance, and minor ion charge state are examined over solar cycle 23. Observations of the abundance of helium relative to hydrogen (A He ≡ 100 × n He /n H ) by the Wind spacecraft are used to examine the dependence of A He on solar wind speed and solar activity between 1994 and 2010. This work updates an earlier study of A He from 1994 to 2004 to include the recent extreme solar minimum and broadly confirms our previous result that A He in slow wind is strongly correlated with sunspot number, reaching its lowest values in each solar minima. During the last minimum, as sunspot numbers reached their lowest levels in recent history, A He continued to decrease, falling to half the levels observed in slow wind during the previous minimum and, for the first time observed, decreasing even in the fastest solar wind. We have also extended our previous analysis by adding measurements of the mean carbon and oxygen charge states observed with the Advanced Composition Explorer spacecraft since 1998. We find that as solar activity decreased, the mean charge states of oxygen and carbon for solar wind of a given speed also fell, implying that the wind was formed in cooler regions in the corona during the recent solar minimum. The physical processes in the coronal responsible for establishing the mean charge state and speed of the solar wind have evolved with solar activity and time.

  19. Solar Probe Plus: A NASA Mission to Touch the SunMission Status Update

    Science.gov (United States)

    Fox, N. J.

    2016-12-01

    Solar Probe Plus (SPP), currently in Phase D, will be the first mission to fly into the low solar corona, revealing how the corona is heated and the solar wind and energetic particles are accelerated, solving fundamental mysteries that have been top priority science goals since such a mission was first proposed in 1958. The scale and concept of such a mission has been revised at intervals since that time, yet the core has always been a close encounter with the Sun. The primary science goal of the Solar Probe Plus mission is to determine the structure and dynamics of the Sun's coronal magnetic field, understand how the solar corona and wind are heated and accelerated, and determine what mechanisms accelerate and transport energetic particles. SPP uses an innovative mission design, significant technology development and a risk-reducing engineering development to meet the SPP science objectives. In this presentation, we provide an update on the progress of the Solar Probe Plus mission as we prepare for the July 2018 launch.

  20. Parker Solar Probe: A NASA Mission to Touch the Sun: Mission Status Update

    Science.gov (United States)

    Fox, N. J.

    2017-12-01

    The newly renamed, Parker Solar Probe (PSP) mission will be the first mission to fly into the low solar corona, revealing how the corona is heated and the solar wind and energetic particles are accelerated, solving fundamental mysteries that have been top priority science goals since such a mission was first proposed in 1958. The scale and concept of such a mission has been revised at intervals since that time, yet the core has always been a close encounter with the Sun. The primary science goal of the Parker Solar Probe mission is to determine the structure and dynamics of the Sun's coronal magnetic field, understand how the solar corona and wind are heated and accelerated, and determine what mechanisms accelerate and transport energetic particles. PSP uses an innovative mission design, significant technology development and a risk-reducing engineering development to meet the science objectives. In this presentation, we provide an update on the progress of the Parker Solar Probe mission as we prepare for the July 2018 launch.

  1. Solar Features - Solar Flares

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A solar flare is a short-lived sudden increase in the intensity of radiation emitted in the neighborhood of sunspots. For many years it was best monitored in the...

  2. Solar storms; Tormentas solares

    Energy Technology Data Exchange (ETDEWEB)

    Collaboration: Pereira Cuesta, S.; Pereira Pagan, B.

    2016-08-01

    Solar storms begin with an explosion, or solar flare, on the surface of the sun. The X-rays and extreme ultraviolet radiation from the flare reach the Earths orbit minutes later-travelling at light speed. The ionization of upper layers of our atmosphere could cause radio blackouts and satellite navigation errors (GPS). Soon after, a wave of energetic particles, electrons and protons accelerated by the explosion crosses the orbit of the Earth, and can cause real and significant damage. (Author)

  3. DO R CORONAE BOREALIS STARS FORM FROM DOUBLE WHITE DWARF MERGERS?

    Energy Technology Data Exchange (ETDEWEB)

    Staff, Jan. E.; Clayton, Geoffrey C.; Tohline, Joel E. [Department of Physics and Astronomy, Louisiana State University, 202 Nicholson Hall, Tower Drive, Baton Rouge, LA 70803-4001 (United States); Menon, Athira; Herwig, Falk [Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P5C2 (Canada); Even, Wesley; Fryer, Chris L. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Motl, Patrick M. [Department of Science, Mathematics and Informatics, Indiana University Kokomo, Kokomo, IN 46904-9003 (United States); Geballe, Tom [Gemini Observatory, 670 North A' ohoku Place, Hilo, HI 96720 (United States); Pignatari, Marco [Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland)

    2012-09-20

    A leading formation scenario for R Coronae Borealis (RCB) stars invokes the merger of degenerate He and CO white dwarfs (WDs) in a binary. The observed ratio of {sup 16}O/{sup 18}O for RCB stars is in the range of 0.3-20 much smaller than the solar value of {approx}500. In this paper, we investigate whether such a low ratio can be obtained in simulations of the merger of a CO and a He WD. We present the results of five three-dimensional hydrodynamic simulations of the merger of a double WD system where the total mass is 0.9 M{sub Sun} and the initial mass ratio (q) varies between 0.5 and 0.99. We identify in simulations with q {approx}< 0.7 a feature around the merged stars where the temperatures and densities are suitable for forming {sup 18}O. However, more {sup 16}O is being dredged up from the C- and O-rich accretor during the merger than the amount of {sup 18}O that is produced. Therefore, on the dynamical timescale over which our hydrodynamics simulation runs, an {sup 16}O/{sup 18}O ratio of {approx}2000 in the 'best' case is found. If the conditions found in the hydrodynamic simulations persist for 10{sup 6} s the oxygen ratio drops to 16 in one case studied, while in a hundred years it drops to {approx}4 in another case studied, consistent with the observed values in RCB stars. Therefore, the merger of two WDs remains a strong candidate for the formation of these enigmatic stars.

  4. Precipitation and Release of Solar Energetic Particles from the Solar Coronal Magnetic Field

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ming; Zhao, Lulu, E-mail: mzhang@fit.edu [Department of Physics and Space Sciences, Florida Institute of Technology, 150 W. University Blvd., Melbourne, FL 32901 (United States)

    2017-09-10

    Most solar energetic particles (SEPs) are produced in the corona. They propagate through complex coronal magnetic fields subject to scattering and diffusion across the averaged field lines by turbulence. We examine the behaviors of particle transport using a stochastic 3D focused transport simulation in a potential field source surface model of coronal magnetic field. The model is applied to an SEP event on 2010 February 7. We study three scenarios of particle injection at (i) the compact solar flare site, (ii) the coronal mass ejection (CME) shock, and (iii) the EUV wave near the surface. The majority of particles injected on open field lines are able to escape the corona. We found that none of our models can explain the observations of wide longitudinal SEP spread without perpendicular diffusion. If the perpendicular diffusion is about 10% of what is derived from the random walk of field lines at the rate of supergranular diffusion, particles injected at the compact solar flare site can spread to a wide range of longitude and latitude, very similar to the behavior of particles injected at a large CME shock. Stronger pitch-angle scattering results in a little more lateral spread by holding the particles in the corona for longer periods of time. Some injected particles eventually end up precipitating onto the solar surface. Even with a very small perpendicular diffusion, the pattern of the particle precipitation can be quite complicated depending on the detailed small-scale coronal magnetic field structures, which could be seen with future sensitive gamma-ray telescopes.

  5. Precipitation and Release of Solar Energetic Particles from the Solar Coronal Magnetic Field

    International Nuclear Information System (INIS)

    Zhang, Ming; Zhao, Lulu

    2017-01-01

    Most solar energetic particles (SEPs) are produced in the corona. They propagate through complex coronal magnetic fields subject to scattering and diffusion across the averaged field lines by turbulence. We examine the behaviors of particle transport using a stochastic 3D focused transport simulation in a potential field source surface model of coronal magnetic field. The model is applied to an SEP event on 2010 February 7. We study three scenarios of particle injection at (i) the compact solar flare site, (ii) the coronal mass ejection (CME) shock, and (iii) the EUV wave near the surface. The majority of particles injected on open field lines are able to escape the corona. We found that none of our models can explain the observations of wide longitudinal SEP spread without perpendicular diffusion. If the perpendicular diffusion is about 10% of what is derived from the random walk of field lines at the rate of supergranular diffusion, particles injected at the compact solar flare site can spread to a wide range of longitude and latitude, very similar to the behavior of particles injected at a large CME shock. Stronger pitch-angle scattering results in a little more lateral spread by holding the particles in the corona for longer periods of time. Some injected particles eventually end up precipitating onto the solar surface. Even with a very small perpendicular diffusion, the pattern of the particle precipitation can be quite complicated depending on the detailed small-scale coronal magnetic field structures, which could be seen with future sensitive gamma-ray telescopes.

  6. Precipitation and Release of Solar Energetic Particles from the Solar Coronal Magnetic Field

    Science.gov (United States)

    Zhang, Ming; Zhao, Lulu

    2017-09-01

    Most solar energetic particles (SEPs) are produced in the corona. They propagate through complex coronal magnetic fields subject to scattering and diffusion across the averaged field lines by turbulence. We examine the behaviors of particle transport using a stochastic 3D focused transport simulation in a potential field source surface model of coronal magnetic field. The model is applied to an SEP event on 2010 February 7. We study three scenarios of particle injection at (I) the compact solar flare site, (II) the coronal mass ejection (CME) shock, and (III) the EUV wave near the surface. The majority of particles injected on open field lines are able to escape the corona. We found that none of our models can explain the observations of wide longitudinal SEP spread without perpendicular diffusion. If the perpendicular diffusion is about 10% of what is derived from the random walk of field lines at the rate of supergranular diffusion, particles injected at the compact solar flare site can spread to a wide range of longitude and latitude, very similar to the behavior of particles injected at a large CME shock. Stronger pitch-angle scattering results in a little more lateral spread by holding the particles in the corona for longer periods of time. Some injected particles eventually end up precipitating onto the solar surface. Even with a very small perpendicular diffusion, the pattern of the particle precipitation can be quite complicated depending on the detailed small-scale coronal magnetic field structures, which could be seen with future sensitive gamma-ray telescopes.

  7. Radio and television interference caused by corona discharges from high-voltage transmission lines

    International Nuclear Information System (INIS)

    Sarmadi, M.

    1996-01-01

    Increase in power utility loads in industrialized countries, as well as developing countries, demands a higher level of transmission line voltage. Radio interference (RI) problems have been determined to be a limiting factor in selecting the size of transmission line conductors. Transmission line noise is primarily caused by corona discharges in the immediate vicinity of the conductor. It has been observed that discharges occur during both half-cycles of the applied voltage, but positive corona is usually predominant at AM radio frequencies range with practical high-voltage and extra high-voltage transmission lines. The corona radio noise effect is highly dependent upon the presence of particles on the surface of the conductor and the increase of the electrical gradient beyond the breakdown value of the air. Therefore, corona radio noise varies significantly with the weather and atmospheric conditions and generally increases by 10 to 30 dB in foul weather

  8. Corona initiated from grounded objects under thunderstorm conditions and its influence on lightning attachment

    International Nuclear Information System (INIS)

    Bazelyan, E M; Raizer, Yu P; Aleksandrov, N L

    2008-01-01

    Lightning attachment to grounded structures due to the initiation of an upward connecting leader from them is considered taking into account the effect of corona space charge near the structures. It is shown that the corona space charge strongly affects the initiation and development of the connecting leader. Specific features of a non-stationary corona are analysed analytically and numerically for one-dimensional electrode geometries and for a grounded rod coronating in a slowly varying thundercloud electric field that can be enhanced by the charge of an approaching downward lightning leader. Initiation and development of an upward connecting leader or upward lightning from high ground objects are investigated. Prospects of using the effect of coronae to control downward lightning discharges are discussed.

  9. Transfer of electrical space charge from corona between ground and thundercloud: Measurements and modeling

    Science.gov (United States)

    Soula, Serge

    1994-01-01

    The evolution of the vertical electric field profile deduced from simultaneous field measurements at several levels below a thundercloud shows the development of a space charge layer at least up to 600 m. The average charge density in the whole layer from 0 m to 600 m can reach about 1 nC m(exp -3). The ions are generated at the ground by corona effect and the production rate is evaluated with a new method from the comparison of field evolutions at the ground and at altitude after a lightning flash. The modeling of the relevant processes shows tht ground corona accounts for the observed field evolutions and that the aerosol particles concentration has a very large effect on the evolution of corona ions. However, with a realistic value for this concentration a large amount of ground corona ions reach the level of 600 m.

  10. Imaging a Magnetic-breakout Solar Eruption

    Science.gov (United States)

    Chen, Yao; Du, Guohui; Zhao, Di; Wu, Zhao; Liu, Wei; Wang, Bing; Ruan, Guiping; Feng, Shiwei; Song, Hongqiang

    2016-04-01

    The fundamental mechanism initiating coronal mass ejections (CMEs) remains controversial. One of the leading theories is magnetic breakout, in which magnetic reconnection occurring high in the corona removes the confinement on an energized low-corona structure from the overlying magnetic field, thus allowing it to erupt. Here, we report critical observational evidence of this elusive breakout reconnection in a multi-polar magnetic configuration that leads to a CME and an X-class, long-duration flare. Its occurrence is supported by the presence of pairs of heated cusp-shaped loops around an X-type null point and signatures of reconnection inflows. Other peculiar features new to the breakout picture include sequential loop brightening, coronal hard X-rays at energies up to ˜100 keV, and extended high-corona X-rays above the later restored multi-polar structure. These observations, from a novel perspective with clarity never achieved before, present crucial clues to understanding the initiation mechanism of solar eruptions.

  11. IMAGING A MAGNETIC-BREAKOUT SOLAR ERUPTION

    International Nuclear Information System (INIS)

    Chen, Yao; Du, Guohui; Zhao, Di; Wu, Zhao; Wang, Bing; Ruan, Guiping; Feng, Shiwei; Song, Hongqiang; Liu, Wei

    2016-01-01

    The fundamental mechanism initiating coronal mass ejections (CMEs) remains controversial. One of the leading theories is magnetic breakout, in which magnetic reconnection occurring high in the corona removes the confinement on an energized low-corona structure from the overlying magnetic field, thus allowing it to erupt. Here, we report critical observational evidence of this elusive breakout reconnection in a multi-polar magnetic configuration that leads to a CME and an X-class, long-duration flare. Its occurrence is supported by the presence of pairs of heated cusp-shaped loops around an X-type null point and signatures of reconnection inflows. Other peculiar features new to the breakout picture include sequential loop brightening, coronal hard X-rays at energies up to ∼100 keV, and extended high-corona X-rays above the later restored multi-polar structure. These observations, from a novel perspective with clarity never achieved before, present crucial clues to understanding the initiation mechanism of solar eruptions

  12. The Growth Potential of Corona Discharges from Aircraft Flying in Precipitation.

    Science.gov (United States)

    1987-11-12

    required for corona onset. However, it turns out that the fields required to generate corona from ’ce and water particles of the anticipated size are...still significantly larger than those commonly encountered in a thundercloud. The exception here is the long water filament drawn out when water drop...trial and error had 300 cone-angle, with a tip of radius -20Im (measured with a travelling microscope). It was necessary to electrolyse the tip in

  13. A search for the origins of a possible coronal mass ejection in the low corona

    Science.gov (United States)

    Neupert, Werner M.

    1988-01-01

    Evidence for coronal and chromospheric precursors of a hypothesized coronal mass ejection is sought in OSO-7 observations of a filament eruption and the subsequent flare. Large-scale changes in the corona above the active region were clearly present for at least several minutes before the flare, culminating in the activation and eruption of two widely separated filaments; the eruption of one of the preexisting filaments initiated magnetic reconnections and energy releases in the low corona, generating the observed chromospheric flare.

  14. Assessment of environmental impact of HVDC power lines in terms of corona currents

    International Nuclear Information System (INIS)

    Tikhodeev, N.N.

    1997-01-01

    Corona loss measurements were made on a HVDC power transmission line to evaluate current density. Ion currents were obtained from unipolar and bipolar 400 to 1000 kV DC test lines. A numerical solution was proposed for assessing the maximum current density of unipolar corona currents near the lines. A larger ground clearance of line conductors was proposed as being the most effective way of lowering the current density. 11 refs., 2 tabs., 4 figs

  15. Solar Flares: Magnetohydrodynamic Processes

    Directory of Open Access Journals (Sweden)

    Kazunari Shibata

    2011-12-01

    Full Text Available This paper outlines the current understanding of solar flares, mainly focused on magnetohydrodynamic (MHD processes responsible for producing a flare. Observations show that flares are one of the most explosive phenomena in the atmosphere of the Sun, releasing a huge amount of energy up to about 10^32 erg on the timescale of hours. Flares involve the heating of plasma, mass ejection, and particle acceleration that generates high-energy particles. The key physical processes for producing a flare are: the emergence of magnetic field from the solar interior to the solar atmosphere (flux emergence, local enhancement of electric current in the corona (formation of a current sheet, and rapid dissipation of electric current (magnetic reconnection that causes shock heating, mass ejection, and particle acceleration. The evolution toward the onset of a flare is rather quasi-static when free energy is accumulated in the form of coronal electric current (field-aligned current, more precisely, while the dissipation of coronal current proceeds rapidly, producing various dynamic events that affect lower atmospheres such as the chromosphere and photosphere. Flares manifest such rapid dissipation of coronal current, and their theoretical modeling has been developed in accordance with observations, in which numerical simulations proved to be a strong tool reproducing the time-dependent, nonlinear evolution of a flare. We review the models proposed to explain the physical mechanism of flares, giving an comprehensive explanation of the key processes mentioned above. We start with basic properties of flares, then go into the details of energy build-up, release and transport in flares where magnetic reconnection works as the central engine to produce a flare.

  16. Synthetic Hydrogen Spectra of Oscillating Prominence Slabs Immersed in the Solar Corona

    Czech Academy of Sciences Publication Activity Database

    Zapiór, Maciej; Oliver, R.; Ballester, J.L.; Heinzel, Petr

    2016-01-01

    Roč. 827, č. 2 (2016), 131/1-131/7 ISSN 0004-637X R&D Projects: GA ČR(CZ) GA16-18495S Institutional support: RVO:67985815 Keywords : Sun * filaments * prominences Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.533, year: 2016

  17. On the Shape of Force-Free Field Lines in the Solar Corona

    KAUST Repository

    Prior, C.; Berger, M. A.

    2012-01-01

    of field line structures which could be interpreted as Z-shaped, but which have a helicity value sign expected of an S-shaped structure. These results suggest that caution should be exercised in using two-dimensional images to draw conclusions

  18. Magnetohydrodynamic Oscillations in the Solar Corona and Earth's Magnetosphere: Towards Consolidated Understanding

    Czech Academy of Sciences Publication Activity Database

    Nakariakov, V. M.; Pilipenko, V.; Heilig, B.; Jelínek, P.; Karlický, Marian; Klimushkin, D.Y.; Kolotkov, D.Y.; Lee, D.-H.; Nistico, G.; Van Doorsselaere, T.; Verth, G.; Zimovets, I.V.

    2016-01-01

    Roč. 200, 1-4 (2016), s. 75-203 ISSN 0038-6308 R&D Projects: GA ČR GAP209/12/0103; GA ČR(CZ) GA16-13277S Institutional support: RVO:67985815 Keywords : Alfven waves * MHD waves * plasma waves Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 7.497, year: 2016

  19. Nanoflares and Heating of the Solar Corona U. Narain & K. Pandey

    Indian Academy of Sciences (India)

    shows that as l becomes smaller j becomes larger. The merging of .... a cellular automation self-organised critical (SOC) model for transients in which an explosion affects .... reported in the analyses of coronal data by Winebarger et al. (2003).

  20. Electron Acceleration by Cascading Reconnection in the Solar Corona. II. Resistive Electric Field Effects

    Czech Academy of Sciences Publication Activity Database

    Zhou, X.; Büchner, J.; Bárta, Miroslav; Gan, W.; Liu, S.

    2016-01-01

    Roč. 827, č. 2 (2016), 94/1-94/14 ISSN 0004-637X Institutional support: RVO:67985815 Keywords : acceleration of particles * magnetic reconnection * magnetohydrodynamics Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.533, year: 2016

  1. Electron Acceleration by Cascading Reconnection in the Solar Corona. I. Magnetic Gradient and Curvature Drift Effects

    Czech Academy of Sciences Publication Activity Database

    Zhou, X.; Büchner, J.; Bárta, Miroslav; Gan, W.; Liu, S.

    2015-01-01

    Roč. 815, č. 1 (2015), 6/1-6/17 ISSN 0004-637X Institutional support: RVO:67985815 Keywords : acceleration of particles * magnetic reconnection * magnetohydrodynamics Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.909, year: 2015

  2. Potential Magnetic Field around a Helical Flux-rope Current Structure in the Solar Corona

    OpenAIRE

    Petrie, G. J. D.

    2007-01-01

    We consider the potential magnetic field associated with a helical electric line current flow, idealizing the near-potential coronal field within which a highly localized twisted current structure is embedded. It is found that this field has a significant axial component off the helical magnetic axis where there is no current flow, such that the flux winds around the axis. The helical line current field, in including the effects of flux rope writhe, is therefore more topologically complex tha...

  3. OBSERVATIONS OF A HYBRID DOUBLE-STREAMER/PSEUDOSTREAMER IN THE SOLAR CORONA

    Energy Technology Data Exchange (ETDEWEB)

    Rachmeler, L. A.; Seaton, D. B. [Royal Observatory of Belgium, Avenue Circulaire 3, 1180 Brussels (Belgium); Platten, S. J. [School of Mathematics and Statistics, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9SS (United Kingdom); Bethge, C. [Kiepenheuer-Institut für Sonnenphysik, Schöneckstrasse 6, D-79104 Freiburg (Germany); Yeates, A. R., E-mail: rachmeler@oma.be [Department of Mathematical Sciences, Durham University, Science Laboratories, South Road, Durham DH1 3LE (United Kingdom)

    2014-05-20

    We report on the first observation of a single hybrid magnetic structure that contains both a pseudostreamer and a double streamer. This structure was originally observed by the SWAP instrument on board the PROBA2 satellite between 2013 May 5 and 10. It consists of a pair of filament channels near the south pole of the Sun. On the western edge of the structure, the magnetic morphology above the filaments is that of a side-by-side double streamer, with open field between the two channels. On the eastern edge, the magnetic morphology is that of a coronal pseudostreamer without the central open field. We investigated this structure with multiple observations and modeling techniques. We describe the topology and dynamic consequences of such a unified structure.

  4. The dynamic quiet solar corona: 4 days of joint observing with MDI and EIT

    Science.gov (United States)

    Schrijver, C. J.; Shine, R. A.; Hurlburt, N. E.; Tarbell, T. D.; Lemen, J. R.

    1997-01-01

    The analysis of a sequence of joint extreme ultraviolet imaging telescope (EIT) Fe XII and Michelson Doppler imager (MDI) magnetogram observations of the quiet sun near disk center is presented. It was found that: all the emerging flux above the threshold of approximately 10(sup 17) Mx is associated with enhanced coronal emissions; loop systems between the polarities in ephemeral regions remain visible up to separations of 10000 up to 30000 km; brightenings between approaching opposite polarity network concentrations form when the concentrations are between 5000 and 25000 km apart, and that faint connections up to 40000 km in length form as sets of concentrations of the same polarity coagulate. The coronal emission over patches of the quiet sun depends on the total flux in connected concentrations, on their distance and on the positions and strengths of neighboring concentrations.

  5. The detailed characteristics of positive corona current pulses in the line-to-plane electrodes

    Science.gov (United States)

    Xuebao, LI; Dayong, LI; Qian, ZHANG; Yinfei, LI; Xiang, CUI; Tiebing, LU

    2018-05-01

    The corona current pulses generated by corona discharge are the sources of the radio interference from transmission lines and the detailed characteristics of the corona current pulses from conductor should be investigated in order to reveal their generation mechanism. In this paper, the line-to-plane electrodes are designed to measure and analyze the characteristics of corona current pulses from positive corona discharges. The influences of inter-electrode gap and line diameters on the detail characteristics of corona current pulses, such as pulse amplitude, rise time, duration time and repetition frequency, are carefully analyzed. The obtained results show that the pulse amplitude and the repetition frequency increase with the diameter of line electrode when the electric fields on the surface of line electrodes are same. With the increase of inter-electrode gap, the pulse amplitude and the repetition frequency first decrease and then turn to be stable, while the rise time first increases and finally turns to be stable. The distributions of electric field and space charges under the line electrodes are calculated, and the influences of inter-electrode gap and line electrode diameter on the experimental results are qualitatively explained.

  6. Comparison of toluene removal in air at atmospheric conditions by different corona discharges.

    Science.gov (United States)

    Schiorlin, Milko; Marotta, Ester; Rea, Massimo; Paradisi, Cristina

    2009-12-15

    Different types of corona discharges, produced by DC of either polarity (+/-DC) and positive pulsed (+pulsed) high voltages, were applied to the removal of toluene via oxidation in air at room temperature and atmospheric pressure. Mechanistic insight was obtained through comparison of the three different corona regimes with regard to process efficiency, products, response to the presence of humidity and, for DC coronas, current/voltage characteristics coupled with ion analysis. Process efficiency increases in the order +DC toluene conversion and product selectivity were achieved, CO(2) and CO accounting for about 90% of all reacted carbon. Ion analysis, performed by APCI-MS (Atmospheric Pressure Chemical Ionization-Mass Spectrometry), provides a powerful rationale for interpreting current/voltage characteristics of DC coronas. All experimental findings are consistent with the proposal that in the case of +DC corona toluene oxidation is initiated by reactions with ions (O(2)(+*), H(3)O(+) and their hydrates, NO(+)) both in dry as well as in humid air. In contrast, with -DC no evidence is found for any significant reaction of toluene with negative ions. It is also concluded that in humid air OH radicals are involved in the initial stage of toluene oxidation induced both by -DC and +pulsed corona.

  7. Protein Corona Analysis of Silver Nanoparticles Links to Their Cellular Effects.

    Science.gov (United States)

    Juling, Sabine; Niedzwiecka, Alicia; Böhmert, Linda; Lichtenstein, Dajana; Selve, Sören; Braeuning, Albert; Thünemann, Andreas F; Krause, Eberhard; Lampen, Alfonso

    2017-11-03

    The breadth of applications of nanoparticles and the access to food-associated consumer products containing nanosized materials lead to oral human exposure to such particles. In biological fluids nanoparticles dynamically interact with biomolecules and form a protein corona. Knowledge about the protein corona is of great interest for understanding the molecular effects of particles as well as their fate inside the human body. We used a mass spectrometry-based toxicoproteomics approach to elucidate mechanisms of toxicity of silver nanoparticles and to comprehensively characterize the protein corona formed around silver nanoparticles in Caco-2 human intestinal epithelial cells. Results were compared with respect to the cellular function of proteins either affected by exposure to nanoparticles or present in the protein corona. A transcriptomic data set was included in the analyses in order to obtain a combined multiomics view of nanoparticle-affected cellular processes. A relationship between corona proteins and the proteomic or transcriptomic responses was revealed, showing that differentially regulated proteins or transcripts were engaged in the same cellular signaling pathways. Protein corona analyses of nanoparticles in cells might therefore help in obtaining information about the molecular consequences of nanoparticle treatment.

  8. Core–corona PSt/P(BA–AA) composite particles by two-stage emulsion polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Delong; Ren, Xiaolin; Zhang, Xinya, E-mail: cexyzh@scut.edu.cn; Liao, Shijun [South China University of Technology, School of Chemistry and Chemical Engineering (China)

    2016-03-15

    Raspberry-shaped composite particles with polystyrene (PSt) as core and poly(n-butyl acrylate-co-acrylic acid) (P(BA–AA)) as corona were synthesized via emulsion polymerization. The random copolymer, P(BA–AA), was pre-prepared and used as a polymeric surfactant, its emulsifying properties adjusted by changing the mass ratio of BA and AA. The morphology of the resulting core–corona composite particles, P(St/P(BA–AA)), could be regulated and controlled by varying the concentrations of P(BA–AA) or the mass ratio of BA:AA in P(BA–AA). The experimental results indicate that 3.0–6.0 wt% of P(BA–AA) is required to obtain stable composite emulsions, and P(BA–AA) with a mass ratio of BA:AA = 1:2 is able to generate distinct core–corona structures. A mechanism of composite particle formation is proposed based on the high affinity between the PSt core and the hydrophobic segments of P(BA–A). The regular morphology of the colloidal film is expected to facilitate potential application of core–corona particles in the field of light scattering. Furthermore, the diversity of core–corona particles can be expanded by replacing P(BA–AA) corona particles with other amphiphilic particles.

  9. THE CONTRIBUTION OF CORONAL JETS TO THE SOLAR WIND

    Energy Technology Data Exchange (ETDEWEB)

    Lionello, R.; Török, T.; Titov, V. S.; Mikić, Z.; Linker, J. A. [Predictive Science Inc., 9990 Mesa Rim Road, Suite 170, San Diego, CA 92121 (United States); Leake, J. E.; Linton, M. G., E-mail: lionel@predsci.com [US Naval Research Laboratory 4555 Overlook Avenue, SW Washington, DC 20375 (United States)

    2016-11-01

    Transient collimated plasma eruptions in the solar corona, commonly known as coronal (or X-ray) jets, are among the most interesting manifestations of solar activity. It has been suggested that these events contribute to the mass and energy content of the corona and solar wind, but the extent of these contributions remains uncertain. We have recently modeled the formation and evolution of coronal jets using a three-dimensional (3D) magnetohydrodynamic (MHD) code with thermodynamics in a large spherical domain that includes the solar wind. Our model is coupled to 3D MHD flux-emergence simulations, i.e., we use boundary conditions provided by such simulations to drive a time-dependent coronal evolution. The model includes parametric coronal heating, radiative losses, and thermal conduction, which enables us to simulate the dynamics and plasma properties of coronal jets in a more realistic manner than done so far. Here, we employ these simulations to calculate the amount of mass and energy transported by coronal jets into the outer corona and inner heliosphere. Based on observed jet-occurrence rates, we then estimate the total contribution of coronal jets to the mass and energy content of the solar wind to (0.4–3.0)% and (0.3–1.0)%, respectively. Our results are largely consistent with the few previous rough estimates obtained from observations, supporting the conjecture that coronal jets provide only a small amount of mass and energy to the solar wind. We emphasize, however, that more advanced observations and simulations (including parametric studies) are needed to substantiate this conjecture.

  10. Structure and sources of solar wind in the growing phase of 24th solar cycle

    Science.gov (United States)

    Slemzin, Vladimir; Goryaev, Farid; Shugay, Julia; Rodkin, Denis; Veselovsky, Igor

    2015-04-01

    We present analysis of the solar wind (SW) structure and its association with coronal sources during the minimum and rising phase of 24th solar cycle (2009-2011). The coronal sources prominent in this period - coronal holes, small areas of open magnetic fields near active regions and transient sources associated with small-scale solar activity have been investigated using EUV solar images and soft X-ray fluxes obtained by the CORONAS-Photon/TESIS/Sphinx, PROBA2/SWAP, Hinode/EIS and AIA/SDO instruments as well as the magnetograms obtained by HMI/SDO. It was found that at solar minimum (2009) velocity and magnetic field strength of high speed wind (HSW) and transient SW from small-scale flares did not differ significantly from those of the background slow speed wind (SSW). The major difference between parameters of different SW components was seen in the ion composition represented by the C6/C5, O7/O6, Fe/O ratios and the mean charge of Fe ions. With growing solar activity, the speed of HSW increased due to transformation of its sources - small-size low-latitude coronal holes into equatorial extensions of large polar holes. At that period, the ion composition of transient SW changed from low-temperature to high-temperature values, which was caused by variation of the source conditions and change of the recombination/ionization rates during passage of the plasma flow through the low corona. However, we conclude that criteria of separation of the SW components based on the ion ratios established earlier by Zhao&Fisk (2009) for higher solar activity are not applicable to the extremely weak beginning of 24th cycle. The research leading to these results has received funding from the European Commission's Seventh Framework Programme (FP7/2007-2013) under the grant agreement eHeroes (project n° 284461, www.eheroes.eu).

  11. Turbulent Transport in a Three-dimensional Solar Wind

    Energy Technology Data Exchange (ETDEWEB)

    Shiota, D. [Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Aichi 464-8601 (Japan); Zank, G. P.; Adhikari, L.; Hunana, P. [Center for Space Plasma and Aeronomic Research (CSPAR), Department of Space Science, University of Alabama in Huntsville, Huntsville, AL 35805 (United States); Telloni, D. [INAF—Astrophysical Observatory of Torino, Via Osservatorio 20, I-10025 Pino Torinese (Italy); Bruno, R., E-mail: shiota@isee.nagoya-u.ac.jp [INAF-IAPS Istituto di Astrofisica e Planetologia Spaziali, Via del Fosso del Cavaliere 100, I-00133 Roma (Italy)

    2017-03-01

    Turbulence in the solar wind can play essential roles in the heating of coronal and solar wind plasma and the acceleration of the solar wind and energetic particles. Turbulence sources are not well understood and thought to be partly enhanced by interaction with the large-scale inhomogeneity of the solar wind and the interplanetary magnetic field and/or transported from the solar corona. To investigate the interaction with background inhomogeneity and the turbulence sources, we have developed a new 3D MHD model that includes the transport and dissipation of turbulence using the theoretical model of Zank et al. We solve for the temporal and spatial evolution of three moments or variables, the energy in the forward and backward fluctuating modes and the residual energy and their three corresponding correlation lengths. The transport model is coupled to our 3D model of the inhomogeneous solar wind. We present results of the coupled solar wind-turbulence model assuming a simple tilted dipole magnetic configuration that mimics solar minimum conditions, together with several comparative intermediate cases. By considering eight possible solar wind and turbulence source configurations, we show that the large-scale solar wind and IMF inhomogeneity and the strength of the turbulence sources significantly affect the distribution of turbulence in the heliosphere within 6 au. We compare the predicted turbulence distribution results from a complete solar minimum model with in situ measurements made by the Helios and Ulysses spacecraft, finding that the synthetic profiles of the turbulence intensities show reasonable agreement with observations.

  12. Summary of solar eclipse operations in Australia, June 1974

    International Nuclear Information System (INIS)

    Lathrop, L.W.

    1975-03-01

    During the solar eclipse of June 20, 1974, a team of scientists and engineers from the United States and Australia conducted a series of scientific observations to study the temperature distribution in the solar corona. The performance of the rocket launched experiments is summarized. Two identical experiments were launched. Both rocket systems performed nominally. One failed to acquire the sun before entry into the shadow. Film from the recovered payload verified that the sun was not in view. The other test appeared to point successfully at the sun. However, the payload was not recovered and no data were obtained. The probable cause of the failures is discussed. (U.S.)

  13. Formation of the lunar helium corona and atmosphere

    Science.gov (United States)

    Hodges, R. R., Jr.

    1977-01-01

    Helium is one of the dominant gases of the lunar atmosphere. Its presence is easily identified in data from the mass spectrometer at the Apollo 17 landing site. The major part of these data was obtained in lunar nighttime, where helium concentration reaches the maximum of its diurnal cyclic variation. The large night to day concentration ratio agrees with the basic theory of exospheric lateral transport reported by Hodges and Johnson (1968). A reasonable fraction of atmospheric helium atoms has a velocity in excess of the gravitational escape velocity. The result is a short average lifetime and a tenuous helium atmosphere. A description is presented of an investigation which shows that the atmosphere of the moon has two distinct components including low energy atoms, which are gravitationally bound in trajectories that intersect the lunar surface, and higher energy atoms, which are trapped in satellite orbits. The total helium abundance in the lunar corona is shown to be about 1.3 times 10 to the 30th power atoms.

  14. Food waste management using an electrostatic separator with corona discharge

    Science.gov (United States)

    Lai, Koonchun; Lim, Sooking; Teh, Pehchiong

    2015-05-01

    In Malaysia, municipal solid waste contains a high portion of organic matters, typically contributed by food waste. It is estimated that about 45% of the municipal waste are food waste, followed by the non-food waste such as plastics, metals, glass and others. Food waste, while being properly sorted and contamination free from non-food waste, can be reused (e.g. fertiliser) instead of being landfilled. Therefore, recycling of food waste is crucial not only from the view point of waste management, but also with respect to the reduction of resource losses and greenhouse gases emission. A new waste separation process involved food particles, non-food particles and electrostatic discharge was investigated in this study. The empirical results reveal that the corona electrostatic separation is an environmental-friendly way in recovering foods from municipal waste. The efficiency of the separator, under same operating conditions, varies with the particle size of the food and non-food particles. The highest efficiency of 82% is recorded for the particle sizes between 1.5 and 3.0 mm.

  15. Food waste management using an electrostatic separator with corona discharge

    International Nuclear Information System (INIS)

    Lai, Koonchun; Teh, Pehchiong; Lim, Sooking

    2015-01-01

    In Malaysia, municipal solid waste contains a high portion of organic matters, typically contributed by food waste. It is estimated that about 45% of the municipal waste are food waste, followed by the non-food waste such as plastics, metals, glass and others. Food waste, while being properly sorted and contamination free from non-food waste, can be reused (e.g. fertiliser) instead of being landfilled. Therefore, recycling of food waste is crucial not only from the view point of waste management, but also with respect to the reduction of resource losses and greenhouse gases emission. A new waste separation process involved food particles, non-food particles and electrostatic discharge was investigated in this study. The empirical results reveal that the corona electrostatic separation is an environmental-friendly way in recovering foods from municipal waste. The efficiency of the separator, under same operating conditions, varies with the particle size of the food and non-food particles. The highest efficiency of 82% is recorded for the particle sizes between 1.5 and 3.0 mm

  16. Towards metals analysis using corona discharge ionization ion mobility spectrometry.

    Science.gov (United States)

    Jafari, Mohammad T; Saraji, Mohammad; Sherafatmand, Hossein

    2016-02-25

    For the first time, the capability of corona discharge ionization ion mobility spectrometry (CD-IMS) in the determination of metal complex was evaluated. The extreme simplicity of dispersive liquid-liquid microextraction (DLLME) coupled to the high sensitivity of CD-IMS measurement could make this combination really useful for simple, rapid, and sensitive determination of metals in different samples. In this regard, mercury, as a model metal, was complexed with diethyldithiocarbamate (DEDTC), and then extracted into the carbon tetrachloride using DLLME. Some parameters affecting the extraction efficiency, including the type and volume of the extraction solvent, the type and volume of the disperser solvent, the concentration of the chelating agent, salt addition and, pH were exhaustively investigated. Under the optimized condition, the enrichment factor was obtained to be 142. The linear range of 0.035-10.0 μg mL(-1) with r(2) = 0.997 and the detection limit of 0.010 μg mL(-1) were obtained. The relative standard deviation values were calculated to be lower than 4% and 8% for intra-day and inter-day, respectively. Finally, the developed method was successfully applied for the extraction and determination of mercury in various real samples. The satisfactory results revealed the capability of the proposed method in trace analysis without tedious derivatization or hydride generation. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Submillimeter Spectroscopy of the R Coronae Australis Molecular Cloud Region

    Science.gov (United States)

    Dunn, Marina Madeline; Walker, Christopher K.; Pat, Terrance; Sirsi, Siddhartha; Swift, Brandon J.; Peters, William L.

    2018-01-01

    The Interstellar Medium is comprised of large amounts of gas and dust which coalesce to form stars. Observing in the Terahertz regime of the electromagnetic spectrum, approximately 0.3 -300 microns, allows astronomers to study the ISM in unprecedented detail. Using the high spectral resolution imaging system of the SuperCam receiver, a 64-pixel array previously installed on the Submillimeter Telescope on Mt. Graham, AZ, we have begun a 500 square degree survey of the galactic plane. This instrument was designed to do a complete survey of the Milky Way from the ground, with the main focus being to observe two specific transitions of the carbon monoxide molecule, 12CO(3-2) and 13CO(3-2), at 345 GHz. In this work, we present results from these observations for the R Coronae Australis (R Cr A) complex, a region in the southern hemisphere of the sky, using spectroscopic data from a portion of the survey to gain better insight into the life cycle of the ISM. The majority of stars being formed here are similar to the stellar class of the Sun, making it an excellent area of observing interest. Using these results, we attempt to better ascertain the large-scale structure and kinematics inside of the molecular cloud.

  18. DC corona discharge ozone production enhanced by magnetic field

    Science.gov (United States)

    Pekárek, S.

    2010-01-01

    We have studied the effect of a stationary magnetic field on the production of ozone from air at atmospheric pressure by a negative corona discharge in a cylindrical electrode configuration. We used a stainless steel hollow needle placed at the axis of the cylindrical discharge chamber as a cathode. The outer wall of the cylinder was used as an anode. The vector of magnetic induction was perpendicular to the vector of current density. We found that: (a) the magnetic field extends the current voltage range of the discharge; (b) for the discharge in the Trichel pulses regime and in the pulseless glow regime, the magnetic field has no substantial effect on the discharge voltage or on the concentration of ozone that is produced; (c) for the discharge in the filamentary streamer regime for a particular current, the magnetic field increases the discharge voltage and consequently an approximately 30% higher ozone concentration can be obtained; (d) the magnetic field does not substantially increase the maximum ozone production yield. A major advantage of using a magnetic field is that the increase in ozone concentration produced by the discharge can be obtained without additional energy requirements.

  19. Pulsed corona discharge oxidation of aqueous carbamazepine micropollutant.

    Science.gov (United States)

    Ajo, Petri; Krzymyk, Ewelina; Preis, Sergei; Kornev, Iakov; Kronberg, Leif; Louhi-Kultanen, Marjatta

    2016-08-01

    The anti-epileptic drug carbamazepine (CBZ) receives growing attention due to slow biodegradation and inherent accumulation in the aquatic environment. The application of a gas-phase pulsed corona discharge (PCD) was investigated to remove CBZ from synthetic solutions and spiked wastewater effluent from a municipal wastewater treatment facility. The treated water was showered between high voltage (HV) wires and grounded plate electrodes, to which ultra-short HV pulses were applied. CBZ was readily oxidized and 1-(2-benzaldehyde)-4-hydroquinazoline-2-one (BQM) and 1-(2-benzaldehyde)-4-hydro-quinazoline-2,4-dione (BQD) were identified as the most abundant primary transformation products, which, contrary to CBZ ozonation data available in the literature, were further easily oxidized with PCD: BQM and BQD attributed to only a minor portion of the target compound oxidized. In concentrations commonly found in wastewater treatment plant effluents (around 5 µg L(-1)), up to 97% reduction in CBZ concentration was achieved at mere 0.3 kW h m(-3) energy consumption, and over 99.9% was removed at 1 kW h m(-3). The PCD application proved to be efficient in the removal of both the parent substance and its known transformation products, even with the competing reactions in the complex composition of wastewater.

  20. Food waste management using an electrostatic separator with corona discharge

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Koonchun; Teh, Pehchiong [Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman (Malaysia); Lim, Sooking [Faculty of Engineering and Science, Universiti Tunku Abdul Rahman (Malaysia)

    2015-05-15

    In Malaysia, municipal solid waste contains a high portion of organic matters, typically contributed by food waste. It is estimated that about 45% of the municipal waste are food waste, followed by the non-food waste such as plastics, metals, glass and others. Food waste, while being properly sorted and contamination free from non-food waste, can be reused (e.g. fertiliser) instead of being landfilled. Therefore, recycling of food waste is crucial not only from the view point of waste management, but also with respect to the reduction of resource losses and greenhouse gases emission. A new waste separation process involved food particles, non-food particles and electrostatic discharge was investigated in this study. The empirical results reveal that the corona electrostatic separation is an environmental-friendly way in recovering foods from municipal waste. The efficiency of the separator, under same operating conditions, varies with the particle size of the food and non-food particles. The highest efficiency of 82% is recorded for the particle sizes between 1.5 and 3.0 mm.