WorldWideScience

Sample records for corollary discharge circuits

  1. The Cellular Basis of a Corollary Discharge

    Science.gov (United States)

    Poulet, James F. A.; Hedwig, Berthold

    2006-01-01

    How do animals discriminate self-generated from external stimuli during behavior and prevent desensitization of their sensory pathways? A fundamental concept in neuroscience states that neural signals, termed corollary discharges or efference copies, are forwarded from motor to sensory areas. Neurons mediating these signals have proved difficult to identify. We show that a single, multisegmental interneuron is responsible for the pre- and postsynaptic inhibition of auditory neurons in singing crickets (Gryllus bimaculatus). Therefore, this neuron represents a corollary discharge interneuron that provides a neuronal basis for the central control of sensory responses.

  2. Corollary discharge inhibition and audition in the stridulating cricket.

    Science.gov (United States)

    Poulet, J F A

    2005-11-01

    The romantic notion of crickets singing on a warm summer's evening is quickly dispelled when one comes ear to ear with a stridulating male. Remarkably, stridulating male crickets are able to hear sounds from the environment despite generating a 100 db song (Heiligenberg 1969; Jones and Dambach 1973). This review summarises recent work examining how they achieve this feat of sensory processing. While the responsiveness of the crickets' peripheral auditory system (tympanic membrane, tympanic nerve, state of the acoustic spiracle) is maintained during sound production, central auditory neurons are inhibited by a feedforward corollary discharge signal precisely timed to coincide with the auditory neurons' maximum response to self-generated sound. In this way, the corollary discharge inhibition prevents desensitisation of the crickets' auditory pathway during sound production.

  3. A corollary discharge maintains auditory sensitivity during sound production.

    Science.gov (United States)

    Poulet, James F A; Hedwig, Berthold

    2002-08-22

    Speaking and singing present the auditory system of the caller with two fundamental problems: discriminating between self-generated and external auditory signals and preventing desensitization. In humans and many other vertebrates, auditory neurons in the brain are inhibited during vocalization but little is known about the nature of the inhibition. Here we show, using intracellular recordings of auditory neurons in the singing cricket, that presynaptic inhibition of auditory afferents and postsynaptic inhibition of an identified auditory interneuron occur in phase with the song pattern. Presynaptic and postsynaptic inhibition persist in a fictively singing, isolated cricket central nervous system and are therefore the result of a corollary discharge from the singing motor network. Mimicking inhibition in the interneuron by injecting hyperpolarizing current suppresses its spiking response to a 100-dB sound pressure level (SPL) acoustic stimulus and maintains its response to subsequent, quieter stimuli. Inhibition by the corollary discharge reduces the neural response to self-generated sound and protects the cricket's auditory pathway from self-induced desensitization.

  4. Corollary Discharge Failure in an Oculomotor Task Is Related to Delusional Ideation in Healthy Individuals.

    Directory of Open Access Journals (Sweden)

    Raphaëlle Malassis

    Full Text Available Predicting the sensory consequences of saccadic eye movements likely plays a crucial role in planning sequences of saccades and in maintaining visual stability despite saccade-caused retinal displacements. Deficits in predictive activity, such as that afforded by a corollary discharge signal, have been reported in patients with schizophrenia, and may lead to the emergence of positive symptoms, in particular delusions of control and auditory hallucinations. We examined whether a measure of delusional thinking in the general, non-clinical population correlated with measures of predictive activity in two oculomotor tasks. The double-step task measured predictive activity in motor control, and the in-flight displacement task measured predictive activity in trans-saccadic visual perception. Forty-one healthy adults performed both tasks and completed a questionnaire to assess delusional thinking. The quantitative measure of predictive activity we obtained correlated with the tendency towards delusional ideation, but only for the motor task, and not the perceptual task: Individuals with higher levels of delusional thinking showed less self-movement information use in the motor task. Variation of the degree of self-generated movement knowledge as a function of the prevalence of delusional ideation in the normal population strongly supports the idea that corollary discharge deficits measured in schizophrenic patients in previous researches are not due to neuroleptic medication. We also propose that this difference in results between the perceptual and the motor tasks may point to a dissociation between corollary discharge for perception and corollary discharge for action.

  5. Corollary discharge inhibition of wind-sensitive cercal giant interneurons in the singing field cricket

    Science.gov (United States)

    Hedwig, Berthold

    2014-01-01

    Crickets carry wind-sensitive mechanoreceptors on their cerci, which, in response to the airflow produced by approaching predators, triggers escape reactions via ascending giant interneurons (GIs). Males also activate their cercal system by air currents generated due to the wing movements underlying sound production. Singing males still respond to external wind stimulation, but are not startled by the self-generated airflow. To investigate how the nervous system discriminates sensory responses to self-generated and external airflow, we intracellularly recorded wind-sensitive afferents and ventral GIs of the cercal escape pathway in fictively singing crickets, a situation lacking any self-stimulation. GI spiking was reduced whenever cercal wind stimulation coincided with singing motor activity. The axonal terminals of cercal afferents showed no indication of presynaptic inhibition during singing. In two ventral GIs, however, a corollary discharge inhibition occurred strictly in phase with the singing motor pattern. Paired intracellular recordings revealed that this inhibition was not mediated by the activity of the previously identified corollary discharge interneuron (CDI) that rhythmically inhibits the auditory pathway during singing. Cercal wind stimulation, however, reduced the spike activity of this CDI by postsynaptic inhibition. Our study reveals how precisely timed corollary discharge inhibition of ventral GIs can prevent self-generated airflow from triggering inadvertent escape responses in singing crickets. The results indicate that the responsiveness of the auditory and wind-sensitive pathway is modulated by distinct CDIs in singing crickets and that the corollary discharge inhibition in the auditory pathway can be attenuated by cercal wind stimulation. PMID:25318763

  6. A corollary discharge mechanism modulates central auditory processing in singing crickets.

    Science.gov (United States)

    Poulet, J F A; Hedwig, B

    2003-03-01

    Crickets communicate using loud (100 dB SPL) sound signals that could adversely affect their own auditory system. To examine how they cope with this self-generated acoustic stimulation, intracellular recordings were made from auditory afferent neurons and an identified auditory interneuron-the Omega 1 neuron (ON1)-during pharmacologically elicited singing (stridulation). During sonorous stridulation, the auditory afferents and ON1 responded with bursts of spikes to the crickets' own song. When the crickets were stridulating silently, after one wing had been removed, only a few spikes were recorded in the afferents and ON1. Primary afferent depolarizations (PADs) occurred in the terminals of the auditory afferents, and inhibitory postsynaptic potentials (IPSPs) were apparent in ON1. The PADs and IPSPs were composed of many summed, small-amplitude potentials that occurred at a rate of about 230 Hz. The PADs and the IPSPs started during the closing wing movement and peaked in amplitude during the subsequent opening wing movement. As a consequence, during silent stridulation, ON1's response to acoustic stimuli was maximally inhibited during wing opening. Inhibition coincides with the time when ON1 would otherwise be most strongly excited by self-generated sounds in a sonorously stridulating cricket. The PADs and the IPSPs persisted in fictively stridulating crickets whose ventral nerve cord had been isolated from muscles and sense organs. This strongly suggests that the inhibition of the auditory pathway is the result of a corollary discharge from the stridulation motor network. The central inhibition was mimicked by hyperpolarizing current injection into ON1 while it was responding to a 100 dB SPL sound pulse. This suppressed its spiking response to the acoustic stimulus and maintained its response to subsequent, quieter stimuli. The corollary discharge therefore prevents auditory desensitization in stridulating crickets and allows the animals to respond to external

  7. Corollary discharge inhibition of ascending auditory neurons in the stridulating cricket.

    Science.gov (United States)

    Poulet, James F A; Hedwig, Berthold

    2003-06-01

    Acoustically communicating animals are able to process external acoustic stimuli despite generating intense sounds during vocalization. We have examined how the crickets' ascending auditory pathway copes with self-generated, intense auditory signals (chirps) during singing (stridulation). We made intracellular recordings from two identified ascending auditory interneurons, ascending neuron 1 (AN1) and ascending neuron 2 (AN2), during pharmacologically elicited sonorous (two-winged), silent (one-winged), and fictive (isolated CNS) stridulation. During sonorous chirps, AN1 responded with bursts of spikes, whereas AN2 was inhibited and rarely spiked. Low-amplitude hyperpolarizing potentials were recorded in AN1 and AN2 during silent chirps. The potentials were also present during fictive chirps. Therefore, they were the result of a centrally generated corollary discharge from the stridulatory motor network. The spiking response of AN1 and AN2 to acoustic stimuli was inhibited during silent and fictive chirps. The maximum period of inhibition occurred in phase with the maximum spiking response to self-generated sound in a sonorously stridulating cricket. In some experiments (30%) depolarizing potentials were recorded during silent chirps. Reafferent feedback elicited by wing movement was probably responsible for the depolarizing potentials. In addition, two other sources of inhibition were present in AN1: (1) IPSPs were elicited by stimulation with 12.5 kHz stimuli and (2) a long-lasting hyperpolarization followed spiking responses to 4.5 kHz stimuli. The hyperpolarization desensitized the response of AN1 to subsequent quieter stimuli. Therefore, the corollary discharge will reduce desensitization by suppressing the response of AN1 to self-generated sounds.

  8. Model of Pulsed Electrical Discharge Machining (EDM using RL Circuit

    Directory of Open Access Journals (Sweden)

    Ade Erawan Bin Minhat

    2014-10-01

    Full Text Available This article presents a model of pulsed Electrical Discharge Machining (EDM using RL circuit. There are several mathematical models have been successfully developed based on the initial, ignition and discharge phase of current and voltage gap. According to these models, the circuit schematic of transistor pulse power generator has been designed using electrical model in Matlab Simulink software to identify the profile of voltage and current during machining process. Then, the simulation results are compared with the experimental results.

  9. Four Order Electrostatic Discharge Circuit Model and its Simulation

    Directory of Open Access Journals (Sweden)

    Xiaodong Wang

    2012-12-01

    Full Text Available According to the international electrotechnical commission issued IEC61000-4-2 test standard, through the electrostatic discharge current waveform characteristics analysis and numerical experiment method, and construct a new ESD current expression. Using Laplasse transform, established the ESD system mathematical model. According to the mathematical model, construction of passive four order ESD system circuit model and active four order ESD system circuit model, and simulation. The simulation results meet the IEC61000-4-2 standard, and verify the consistency of the ESD current expression, the mathematical model and the circuit model.

  10. Electrostatic discharge current linear approach and circuit design method

    Energy Technology Data Exchange (ETDEWEB)

    Katsivelis, P. K.; Fotis, G. P.; Gonos, I. F.; Koussiouris, T. G.; Stathopulos, I. A. [School of Electrical and Computer Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zographou 157 80, Athens (Greece)

    2010-11-15

    The electrostatic discharge (ESD) phenomenon is a great threat to all electronic devices and ICs. An electric charge passing rapidly from a charged body to another can seriously harm the last one. However, there is a lack in a linear mathematical approach which will make it possible to design a circuit capable of producing such a sophisticated current waveform. The commonly accepted electrostatic discharge current waveform is the one set by the IEC 61000-4-2. However, the over-simplified circuit included in the same standard is incapable of producing such a waveform. Treating the electrostatic discharge current waveform of the IEC 61000-4-2 as reference, an approximation method, based on Prony's method, is developed and applied in order to obtain a linear system's response. Considering a known input, a method to design a circuit, able to generate this ESD current waveform in presented. The circuit synthesis assumes ideal active elements. A simulation is carried out using the PSpice software. (authors)

  11. Equivalent Circuit for Cavity Discharges Including Controlled Current Source and Controlled Switch

    Institute of Scientific and Technical Information of China (English)

    CHEN Weigen; CHEN Xi; XIE Bo; LIU Jun

    2013-01-01

    Numerous equivalent circuits for cavity discharges have been developed,yet most of these models cannot provide simulated signals that precisely reveal the variability of the discharge's characteristic parameters,such as repetition rate,magnitude and phase of discharges,which makes them not suitable for intensive studies of discharge process.Therefore,using Simulink code,we theoretically analyzed and studied the classical equivalent circuits of cavity discharges,as well as the influence of circuit components on simulation results,and then proposed a novel equivalent circuit,the key parameters of which were determined according to the physical behavior of cavity discharges.In the novel equivalent circuit,the repetition rate can be changed by discharge resistance,inception and residual voltages;meanwhile the phase of discharge can be controlled by adjusting the parameters of shunt resistance.Furthermore,a controlled current source as a function of space charge is introduced in the equivalent circuit.Compared with the former ones,the simulated signals obtained by this novel model are better approximation of real signals.This work could be referred by latter studies of the characteristics and the mechanisms of cavity discharge in oil-paper insulation.

  12. Polyimide Nanocomposite Circuit Board Materials to Mitigate Internal Electrostatic Discharge Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In Sub-topic T8.02, NASA has identified a need for improved circuit boards to mitigate the hazards of internal electrostatic discharge (IESD) on missions where high...

  13. Dependence of Nanoparticles Synthesis Energy Consumption in the Gas Spark Discharge on Circuit Parameters

    Directory of Open Access Journals (Sweden)

    D.A. Mylnikov

    2016-10-01

    Full Text Available In this paper, we study the specific energy of titanium dioxide nanoparticles synthesis in a spark discharge in the air by varying the parameters of a discharge circuit. The dependence shows a maximum at a capacitor voltage of about 2 kV and a monotonic decrease with increasing voltage.

  14. The influence of circuit inductance on the energy characteristics of electric discharge and deformation of plates in water

    Science.gov (United States)

    Kosenkov, V. M.; Bychkov, V. M.

    2017-08-01

    We have experimentally studied the influence of discharge-circuit inductance on the efficiency of conversion of energy stored in a capacitor bank, evolved in the electric-discharge channel in water, and spent for the resulting plastic deformation of plates. It is established for the first time that a growth in inductance of the discharge circuit produces a positive effect on the deformation of plates by increasing the amount of energy spent in this process.

  15. Research on Discharge Circuit of Electro-Hydraulic Power Impulse Water Jets

    Science.gov (United States)

    Wang, Zhaohui; Gao, Quanjie; Wang, Wei; Liao, Zhenfang

    2012-01-01

    Electro-hydraulic power impulse water jets can convert the shock wave generated in the liquid by discharging into mechanical energy, and it has been widely used in material forming, surface cleaning, pipeline dirt cleaning and ore breaking process. Compared with the traditional high pressure water jets, the energy utilization of electro-hydraulic power impulse water jets is up to 80% while the water consumption is reduced by 40-55%. This paper has taken electro-hydraulic power impulse water jets as the research object, employed obtaining the maximum pressure of compression impulse matrix surface as the research goal, studied in depth the equivalent discharge circuit, characteristic equation and the relationship between the electrical parameters of the electro-hydraulic power impulse discharge circuit and built the calculation method of the voltage, the inductance, the capacitance and the electrode spacing parameter of electro-hydraulic power impulse water jets discharge circuit. So, it will provide important theoretical basis for further studies of electro-hydraulic power impulse technology and the existing water jets device.

  16. A least squares method for CVT calibration in a RLC capacitor discharge circuit.

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Stephen E.; Dickey, Fred McCartney; Pecak, Sara North

    2003-11-01

    In many applications, the ability to monitor the output of a capacitive discharge circuit is imperative to ensuring the reliability and accuracy of the unit. This monitoring is commonly accomplished with the use of a Current Viewing Transformer (CVT). In order to calibrate the CVT, the circuit is assembled with a Current Viewing Transformer (CVR) in addition to the CVT and the peak outputs compared. However, difficulties encountered with the use of CVRs make it desirable to eliminate the use of the CVR from the calibration process. This report describes a method for determining the calibration factor between the current throughput and the CVT voltage output in a capacitive discharge unit from the CVT ringdown data and values of initial voltage and capacitance of the circuit. Previous linear RLC fitting work for determining R, L, and C is adapted to return values of R, L, and the calibration factor, k. Separate solutions for underdamped and overdamped cases are presented and implemented on real circuit data using MathCad software with positive results. This technique may also offer a unique approach to self calibration of current measuring devices.

  17. An Equivalent Circuit Modeling of Discharge Current Injected in Contact with an ESD-gun

    Science.gov (United States)

    Fujiwara, Osamu; Tanaka, Hideyuki; Yamanaka, Yukio

    The transient electromagnetic (EM) fields caused by an electrostatic discharge (ESD) have broadband frequency spectra, which cause serious failure to high-tech information equipment. From this perspective, an ESD testing for the EM immunity of the equipment is specified by the IEC 61000-4-2, in which the detailed waveform of the discharge current injected onto the IEC recommended Pellegrini target in contact with an ESD-gun is prescribed for calibration. However, the factors for determining the current waveform remain unclear, and thus the IEC prescribed current waveform is unlikely to be injected into actual equipment. In this study, based on the structure of an ESD-gun, an equivalent circuit modeling is proposed for analyzing the discharge current injected onto a 50-Ω SMA connector instead of the IEC target that has frequency-dependent transmission characteristics. Its validity is confirmed by comparing the calculated current waveform with the measured result. The proposed circuit modeling is also validated from measurement of the discharge current injected onto a transmission-line by the ESD-gun.

  18. Using the Zero-Resistance Spark Circuit on the Wire Cut Electric Discharge Machine to Realize Energy Savings

    Directory of Open Access Journals (Sweden)

    Shao-Hsien Chen

    2014-08-01

    Full Text Available There is an increasing emphasis on the development green manufacturing technologies. To improve processing and energy efficiency of modern Wire Cut Electric Discharge Machines (WEDM, many studies have focused on the design of the device’s discharge circuit. Currently, most such circuits use a resistor to impose current-limitations. When current flows through this resistor, considerable electrical energy converted into heat. The generated heat increases the temperature in the discharge circuit, which negatively impacts processing and energy efficiency, even though the temperature rise could be controlled by arranging cooling devices around the discharge circuit. This study seeks to produce an improved discharge circuit for use in WEDMs. We use DC-DC and electronic voltage regulation technology to convert the energy originally dissipated in the resistor directly into the energy for use in machining. The Zero-Resistance Spark Circuit is the critical design to realize the energy saving effect. Experimental results indicate energy savings of 10 to 15%.

  19. Operation circuits of emissive probes for determination of potentials in discharge plasmas; Circuitos de operacao de sondas emissivas para a determinacao de potenciais em plasmas de descargas eletricas

    Energy Technology Data Exchange (ETDEWEB)

    Petraconi, G.; Maciel, H.S.; Borges, C. [Centro Tecnico Aeroespacial, Sao Jose dos Campos, SP (Brazil). Inst. Tecnologico de Aeronautica. Lab. de Plasmas e Processos

    1999-12-01

    In this paper two circuits for plasma potential measurement are presented. The first one is an emissive probe control circuit for fast probe characteristics reading. The second one is a differential emissive probe control circuit that adjusts the bias voltage automatically and allows a direct potential measurement. These circuits present inconveniences if the characteristic of the probe does not exhibit an ideal saturation of the current as show the results obtained in continuous current discharge and RF discharge. (author)

  20. Multi-temperature state-dependent equivalent circuit discharge model for lithium-sulfur batteries

    DEFF Research Database (Denmark)

    Propp, Karsten; Marinescu, Monica; Auger, Daniel J.;

    2016-01-01

    -linear state-of-charge dependent Li-S equivalent circuit network (ECN) model for a Li-S cell under discharge. Li-S batteries are fundamentally different to Li-ion batteries, and require chemistry-specific models. A new Li-S model is obtained using a ‘behavioural’ interpretation of the ECN model; as Li......Lithium-sulfur (Li-S) batteries are described extensively in the literature, but existing computational models aimed at scientific understanding are too complex for use in applications such as battery management. Computationally simple models are vital for exploitation. This paper proposes a non...... pulse profile at four temperatures from 10 °C to 50 °C, giving linearized ECN parameters for a range of states-of-charge, currents and temperatures. These are used to create a nonlinear polynomial-based battery model suitable for use in a battery management system. When the model is used to predict...

  1. Multi-temperature state-dependent equivalent circuit discharge model for lithium-sulfur batteries

    Science.gov (United States)

    Propp, Karsten; Marinescu, Monica; Auger, Daniel J.; O'Neill, Laura; Fotouhi, Abbas; Somasundaram, Karthik; Offer, Gregory J.; Minton, Geraint; Longo, Stefano; Wild, Mark; Knap, Vaclav

    2016-10-01

    Lithium-sulfur (Li-S) batteries are described extensively in the literature, but existing computational models aimed at scientific understanding are too complex for use in applications such as battery management. Computationally simple models are vital for exploitation. This paper proposes a non-linear state-of-charge dependent Li-S equivalent circuit network (ECN) model for a Li-S cell under discharge. Li-S batteries are fundamentally different to Li-ion batteries, and require chemistry-specific models. A new Li-S model is obtained using a 'behavioural' interpretation of the ECN model; as Li-S exhibits a 'steep' open-circuit voltage (OCV) profile at high states-of-charge, identification methods are designed to take into account OCV changes during current pulses. The prediction-error minimization technique is used. The model is parameterized from laboratory experiments using a mixed-size current pulse profile at four temperatures from 10 °C to 50 °C, giving linearized ECN parameters for a range of states-of-charge, currents and temperatures. These are used to create a nonlinear polynomial-based battery model suitable for use in a battery management system. When the model is used to predict the behaviour of a validation data set representing an automotive NEDC driving cycle, the terminal voltage predictions are judged accurate with a root mean square error of 32 mV.

  2. Analysis of the discharge of the ATLAS barrel toroid and end cap toroids with different configurations of the protection circuit

    CERN Document Server

    Acerbi, E; Broggi, F; Sorbi, M; Volpini, G

    2001-01-01

    An analysis of the discharge of the barrel toroid and end cap toroids with different protection circuits has been carried out in order to verify the possibility of a new simplified and cheaper configuration of the components of the circuit. In the study also the presence of short circuits has been considered. The comparison of the results and the analysis of the advantages and risks of the different configurations should allow the choice of the best solution for the economy and safety of the toroids. (4 refs).

  3. Exploring the Corollaries of Students' Social Justice Intentionality

    Science.gov (United States)

    Smith, Laura; Lau, Michael Y.

    2013-01-01

    The preparation of students to take part in social justice advocacy has been increasingly embraced within higher education in the USA; nevertheless, the corollaries of social justice intentionality and commitment among students have yet to be investigated thoroughly. To contribute to the study of this question, data from 217 American psychology…

  4. A Recommendation Algorithm for Automating Corollary Order Generation

    Science.gov (United States)

    Klann, Jeffrey; Schadow, Gunther; McCoy, JM

    2009-01-01

    Manual development and maintenance of decision support content is time-consuming and expensive. We explore recommendation algorithms, e-commerce data-mining tools that use collective order history to suggest purchases, to assist with this. In particular, previous work shows corollary order suggestions are amenable to automated data-mining techniques. Here, an item-based collaborative filtering algorithm augmented with association rule interestingness measures mined suggestions from 866,445 orders made in an inpatient hospital in 2007, generating 584 potential corollary orders. Our expert physician panel evaluated the top 92 and agreed 75.3% were clinically meaningful. Also, at least one felt 47.9% would be directly relevant in guideline development. This automated generation of a rough-cut of corollary orders confirms prior indications about automated tools in building decision support content. It is an important step toward computerized augmentation to decision support development, which could increase development efficiency and content quality while automatically capturing local standards. PMID:20351875

  5. 蓄电池恒流放电容量监测仪的电路设计%Circuit Design of Constant Current Discharge Capacity Monitor for Battery

    Institute of Scientific and Technical Information of China (English)

    付晓伟; 普仕凡

    2013-01-01

    蓄电池恒流放电容量监测仪以单片机为核心,以PTC热敏电阻为放电负载;采用PWM技术控制电流恒定,实时监测放电电池的电流电压;采用大电流恒流放电方法,对蓄电池进行活化处理延长寿命.由ATmega128单片机、电源、存储器及时间芯片组成基础电路,由触摸屏、LCD显示模块、数据采集电路、PWM信号驱动电路组成显控驱动电路,监测仪则由二者共同构成.介绍了硬件构成与电路设计的思路.%In the constant current discharge capacity monitor for battery, microcontroller is taken as core and PTC thermistor is taken as discharge load, PWM technique is used to control current constant, the current and voltage of discharge battery is real-time monitored, the discharge means of heavy current constant current is a dopted to activate the battery and lengthen the life of it. The basic circuit consists of ATmegal28, power, memo ry and time chips, the display control drive circuit is composed of the touch screen, LCD display module, data acquisition circuit and PWM signal driving circuit, and the monitor is constituted together by the two circuits. The design idea of the hardware structure and circuit is introduced.

  6. Water treatments in semi-closed cooling circuits and their impact on the quality of effluents discharged by CERN

    CERN Document Server

    Santos Leite Cima Gomes, J; Kleiner, S

    2008-01-01

    The main goal of this study is to assess the impact of the discharges of the semi-closed water cooling circuits of CERN (European Center for Nuclear Research) on the overall quality of CERN's effluents, taking as guidelines the international legislation supported on the knowledge of the water systems of CERN. In order to reach this goal, a thorough analysis of the functioning of the semi-closed water cooling systems of CERN's particle accelerators was done, as well as, an analysis of the treatment that is done to prevent the proliferation of bacteria such as Legionella. The products used in these water treatments, as well as their impact, were also researched. In addition, a study of the applicable regulation to CERN's effluent was done. This study considered not only the regulation of France and Switzerland (CERN's host states) but also the international regulation from the European community, Portugal Germany, Spain, U.S. and Canada, having in view a better understanding of the limit values of the parameter...

  7. Resonance circuits for adiabatic circuits

    Directory of Open Access Journals (Sweden)

    C. Schlachta

    2003-01-01

    Full Text Available One of the possible techniques to reduces the power consumption in digital CMOS circuits is to slow down the charge transport. This slowdown can be achieved by introducing an inductor in the charging path. Additionally, the inductor can act as an energy storage element, conserving the energy that is normally dissipated during discharging. Together with the parasitic capacitances from the circuit a LCresonant circuit is formed.

  8. Study of the interrelation between the electrotechnical parameters of the plasma focus discharge circuit and the plasma compression dynamics on the PF-3 and PF-1000 facilities

    Energy Technology Data Exchange (ETDEWEB)

    Mitrofanov, K. N., E-mail: mitrkn@inbox.ru [Troitsk Institute for Innovation and Fusion Research (Russian Federation); Krauz, V. I., E-mail: krauz-vi@nrcki.ru, E-mail: vkrauz@yandex.ru [National Research Centre Kurchatov Institute (Russian Federation); Grabovski, E. V. [Troitsk Institute for Innovation and Fusion Research (Russian Federation); Myalton, V. V.; Vinogradov, V. P. [National Research Centre Kurchatov Institute (Russian Federation); Paduch, M. [Institute of Plasma Physics and Laser Microfusion (Poland); Scholz, M. [Polish Academy of Sciences, Niewodniczański Institute of Nuclear Physics (Poland); Karpiński, L. [Łukasiewicz University of Technology, Faculty of Electrical and Computer Engineering (Poland)

    2015-05-15

    The main stages of the plasma current sheath (PCS) dynamics on two plasma focus (PF) facilities with different geometries of the electrode system, PF-3 (Filippov type) and PF-1000 (Mather type), were studied by analyzing the results of the current and voltage measurements. Some dynamic characteristics, such as the PCS velocity in the acceleration phase in the Mather-type facility (PF-1000), the moment at which the PCS reaches the anode end, and the plasma velocity in the radial stage of plasma compression in the PF-3 Filippov-type facility, were determined from the time dependence of the inductance of the discharge circuit with a dynamic plasma load. The energy characteristics of the discharge circuit of the compressing PCS were studied for different working gases (deuterium, argon, and neon) at initial pressures of 1.5–3 Torr in discharges with energies of 0.3–0.6 MJ. In experiments with deuterium, correlation between the neutron yield and the electromagnetic energy deposited directly in the compressed PCS was investigated.

  9. Group task-specific circuit training for patients discharged home after stroke may be as effective as individualised physiotherapy in improving mobility.

    Science.gov (United States)

    Dean, Catherine

    2012-01-01

    Does task oriented circuit training improve mobility in patients with stroke compared with individualised physiotherapy? Randomised, controlled trial with concealed allocation and blinded outcome assessment. Nine outpatient rehabilitation centres in the Netherlands. Patients with a stroke who had been discharged home and who could walk 10 m without assistance were included. Cognitive deficits and inability to communicate were key exclusion criteria. Randomisation of 250 participants allocated 126 to task oriented circuit training and 124 to individualised physiotherapy. The task oriented circuit training group trained for 90 min twice-weekly for 12 weeks supervised by physiotherapists and sports trainers as they completed 8 mobility-related stations in groups of 2 to 8 participants. Individualised outpatient physiotherapy was designed to improve balance, physical conditioning, and walking. The primary outcome was the mobility domain of the stroke impact scale measured at 12 weeks and 24 weeks. The domain includes 9 questions about a patient's perceived mobility competence and is scored from 0 to 100 with higher scores indicating better mobility. Secondary outcome measures included other domains of the stroke impact scale, the Nottingham extended ADL scale, the falls efficacy scale, the hospital anxiety and depression scale, comfortable walking speed, 6-minute walk distance, and a stairs test. 242 participants completed the study. There were no differences in the mobility domain of the stroke impact scale between the groups at 12 weeks (mean difference (MD) -0.05 units, 95% CI -1.4 to 1.3 units) or 24 weeks (MD -0.6, 95% CI -1.8 to 0.5). Comfortable walking speed (MD 0.09 m/s, 95% CI 0.04 to 0.13), 6-minute walk distance (MD 20 m, 95% CI 35.3 to 34.7), and stairs test (MD -1.6s, 95% CI -2.9 to -0.3) improved a little more in the circuit training group than the control group at 12 weeks. The memory and thinking domain of the stroke impact scale (MD -1.6 units, 95% CI

  10. Modeling and analysis on spark discharge of capacitive circuit with cut-off type protection%截止型保护方式下容性电路短路火花放电模型及分析

    Institute of Scientific and Technical Information of China (English)

    于月森; 张望; 孟庆海; 伍小杰

    2013-01-01

    提出截止型输出短路保护方式下本质安全型开关变换器火花放电的容性等效电路模型.通过在IEC火花试验装置上进行试验,研究截止型保护方式下容性电路火花放电的规律,建立截止型保护方式下容性电路火花放电数学模型.分析与实验表明,建立的数学模型与实际基本相符;截止放电模式与自然放电模式在火花放电规律方面有显著的差异;截止放电模式下减小截止时间和减小电容值均能提高本质安全性能,但在不同取值范围效果不同.%It was proposed that the equivalent circuit model of intrinsically safe switching converter with cut-off type output short circuit protection was capacitive circuit with cut-off type protection. The discharge characteristic of the capacitive circuit with cut-off type protection was found out through a large number of spark discharge experiment in IEC spark test apparatus. The spark discharge mathematical model was established. Analysis and experimental results show that mathematical model is consistent with the reality. The spark discharge laws are significant differences between natural discharge mode and cut-off discharge mode. Under natural discharge mode, both shortening the discharge time and reducing the capacitance value could improve the performance of intrinsical safety, but there are different effects in different value range.

  11. Commutation circuit for an HVDC circuit breaker

    Science.gov (United States)

    Premerlani, William J.

    1981-01-01

    A commutation circuit for a high voltage DC circuit breaker incorporates a resistor capacitor combination and a charging circuit connected to the main breaker, such that a commutating capacitor is discharged in opposition to the load current to force the current in an arc after breaker opening to zero to facilitate arc interruption. In a particular embodiment, a normally open commutating circuit is connected across the contacts of a main DC circuit breaker to absorb the inductive system energy trapped by breaker opening and to limit recovery voltages to a level tolerable by the commutating circuit components.

  12. Getting deeper insight into stopping power problems in radiation physics using the Noether's theorem corollary

    Directory of Open Access Journals (Sweden)

    Ristić Vladimir M.

    2014-01-01

    Full Text Available The theories that combine two different approaches in dealing with interacting objects, for instance, treating electromagnetic laser field classically, and the interacting atom as a quantum object, have some ambiguities and, as such, they should be labeled as “mixed”. From the Noether's Theorem Corollary, which we proved earlier, about the conservation laws of energy, momentum and angular momentum in mixed theories, follows that the aforementioned theories do not support the law of angular momentum/spin conservation (to be precise, the obtained result does not imply that the law of conservation of angular momentum and spin is not valid generally, but rather that mixed theories can produce the results which might violate this law. In present paper, an additional explanation following our Corollary is given to why the calculation of the stopping power in the fully quantized theory gives better results than those that were obtained in mixed theories, which further confirms the predictions of our Corollary. [Projekat Ministarstva nauke Republike Srbije, br. 171021: The experimental and theoretical research in radiation physics and radioecology

  13. Push-pull type of high-frequency inverter with voltage controllability by using short-circuit mode and its application to high-frequency lighting circuit of electric-discharge lamp. Tanraku modo wo mochiita kaseigyo push pull koshuha inverter to hoden ranpu koshuha tento kairo eno oyo

    Energy Technology Data Exchange (ETDEWEB)

    Funabiki, S.; Komatsubara, H. (Okayama Univ., Okayama (Japan)); Kanbara, T.; Tanigawa, K. (Matsushita Electric Works Ltd., Osaka (Japan))

    1994-04-20

    In recent years, in order to compact the inverter and to make high-function of the inverter used in electric-discharge lamp, the electronic-inverter with high-frequency is improved. There are some problems in the high-frequency inverter that surge and noise occur when switch loss increases and voltage is intermitted abruptly that is caused by the over-voltage at the time of turn-on and turn-off. In this paper, as for voltage resonant type of push-pull high-frequency inverter circuit, a control method using a short-circuit mode actively that turns 2 switches on at the same time in power output control is proposed and the theoretical analysis and practical experiments are carried out. Then, the application of the control method to electric-discharge lamp is studied. As for the comparison of the steady-state characteristics of theoretical analysis with the experiment data, the result shows the both agrees well with each other even though there are some errors caused by the parasitic capacity of the MOSFET being a switch of the circuit. And, a stable output control in a wide range is achieved based on the experiments of the lighting circuit of the electric-discharge lamp. 7 refs., 7 figs., 3 tabs.

  14. Design of DC/AC convert protection circuit of single-phase battery discharging device%单相蓄电池放电装置中DC/AC变换保护电路的设计

    Institute of Scientific and Technical Information of China (English)

    易映萍; 郭利辉; 刘普; 邓祥纯

    2009-01-01

    介绍了一种新型的单相有源逆变蓄电池回馈放电装置中DC/AC变换保护电路的设计方法,电路具有IGBT过流、过热、直流过压、输出交流过压、输出交流欠压、输出交流过流等多种保护类型,对从事电力电子技术特别是蓄电池放电技术研究的工程技术人员具有较高的参考价值.%This paper brings forward a new style of discharging device--single-phase active inverter battery feedback discharging device, the design method of DC/AC convert protection circuit is obtained. The circuit has multifold protection functions such as IGBT over-current and over thermal protection, DC over-voltage, AC over-voltage or low-voltage, output over-current, etc. This method will have high value for the engineers.

  15. Effects of Video Games on the Adverse Corollaries of Chemotherapy in Pediatric Oncology Patients: A Single-Case Analysis.

    Science.gov (United States)

    Kolko, David J.; Rickard-Figueroa, Jorge L.

    1985-01-01

    Assessed effects of video games on adverse corollaries of chemotherapy in three pediatric oncology patients. Results indicated that access to video games resulted in reduction in the number of anticipatory symptoms experienced and observed, as well as a diminution in the aversiveness of chemotherapy side effects. (Author/NRB)

  16. Buck变换器的输出短路火花放电能量及输出本质安全判据*%Output short-circuit spark discharging energy and output intrinsic safety criterion of Buck converters*

    Institute of Scientific and Technical Information of China (English)

    刘树林; 崔强; 李勇

    2013-01-01

      为得出Buck变换器的输出本质安全判据,基于安全火花试验装置,对其输出短路火花放电特性进行了试验研究,发现其放电过程可分为介质击穿、火花产生、火花维持和火花熄灭四个阶段。基于得出的火花放电特性,对其输出短路火花放电能量进行了深入分析,指出对于给定电感的Buck变换器,当负载电阻RL小于给定电感对应的临界电阻RLC时,火花放电能量是关于RL的凹函数;而在RL>RLC时,是关于RL的凸函数。考虑到实际的参数取值范围,进一步指出:RLRLC时,则随着RL的增加,先增大后减小,在增加到特征电阻RL,DCM时达到最大值。得出了变换器在全动态范围内的最危险工况:变换器在输入电压最高及负载电阻等于RL,DCM时工作于DCM,此时,短路火花放电能量达到最大值。基于能量等效,提出了可模拟变换器输出短路放电特性的等效简单电容电路及输出本质安全判据,仿真和试验结果验证了理论分析及所提出判据的正确性和可行性。%To obtain the output intrinsic safety criterion of Buck converters, the experimental research on its output-short circuit discharge characteristics is conducted by using the safety spark test apparatus. It is found that its spark discharge process can be divided into four stages, i.e., the dielectric-breakdown, spark-generation, spark-keeping and spark-extinguishment. According to the obtained spark discharge characteristics, the output short-circuit spark discharging energy (OSSDE) is deeply analyzed. It is indicated that the OSSDE of the Buck converter with a given inductance is a concave function of load resistance RL when RL is less than the critical resistance RLC corresponding to this inductance, while that is a convex function of RL in the case of RL>RLC. Considering the actual parameter range of the Buck converter, it is further pointed out that when RLRLC, the OSSDE first increases and then

  17. Pancreatitis - discharge

    Science.gov (United States)

    Chronic pancreatitis - discharge; Pancreatitis - chronic - discharge; Pancreatic insufficiency - discharge; Acute pancreatitis - discharge ... You were in the hospital because you have pancreatitis. This is a swelling of the pancreas. You ...

  18. Negative circuits and sustained oscillations in asynchronous automata networks

    CERN Document Server

    Richard, Adrien

    2009-01-01

    The biologist Ren\\'e Thomas conjectured, twenty years ago, that the presence of a negative feedback circuit in the interaction graph of a dynamical system is a necessary condition for this system to produce sustained oscillations. In this paper, we state and prove this conjecture for asynchronous automata networks, a class of discrete dynamical systems extensively used to model the behaviors of gene networks. As a corollary, we obtain the following fixed point theorem: given a product $X$ of $n$ finite intervals of integers, and a map $F$ from $X$ to itself, if the interaction graph associated with $F$ has no negative circuit, then $F$ has at least one fixed point.

  19. Stereotactic radiosurgery - discharge

    Science.gov (United States)

    Gamma knife - discharge; Cyberknife - discharge; Stereotactic radiotherapy - discharge; Fractionated stereotactic radiotherapy - discharge; Cyclotrons - discharge; Linear accelerator - discharge; Lineacs - ...

  20. Algebraic circuits

    CERN Document Server

    Lloris Ruiz, Antonio; Parrilla Roure, Luis; García Ríos, Antonio

    2014-01-01

    This book presents a complete and accurate study of algebraic circuits, digital circuits whose performance can be associated with any algebraic structure. The authors distinguish between basic algebraic circuits, such as Linear Feedback Shift Registers (LFSRs) and cellular automata, and algebraic circuits, such as finite fields or Galois fields. The book includes a comprehensive review of representation systems, of arithmetic circuits implementing basic and more complex operations, and of the residue number systems (RNS). It presents a study of basic algebraic circuits such as LFSRs and cellular automata as well as a study of circuits related to Galois fields, including two real cryptographic applications of Galois fields.

  1. Compact monolithic capacitive discharge unit

    Science.gov (United States)

    Roesler, Alexander W.; Vernon, George E.; Hoke, Darren A.; De Marquis, Virginia K.; Harris, Steven M.

    2007-06-26

    A compact monolithic capacitive discharge unit (CDU) is disclosed in which a thyristor switch and a flyback charging circuit are both sandwiched about a ceramic energy storage capacitor. The result is a compact rugged assembly which provides a low-inductance current discharge path. The flyback charging circuit preferably includes a low-temperature co-fired ceramic transformer. The CDU can further include one or more ceramic substrates for enclosing the thyristor switch and for holding various passive components used in the flyback charging circuit. A load such as a detonator can also be attached directly to the CDU.

  2. Circle Points Discharge Tube Current Controller

    Institute of Scientific and Technical Information of China (English)

    Meng Jinjia; Meng Lisheng

    2005-01-01

    Circle points discharge tube current controller is a new type device to limit theoutput of high voltage discharge current. Circle points uniform corona discharge to form airionization current in the discharge tube. On the outside, even if the discharge electrode is sparkdischarging or the two discharge electrodes are short circuited, the air ionization current in the tuberemains within a stable range, and there is no spark discharge. In this case, when the dischargecurrent only increases slightly, the requirement to limited current is obtained. By installing thecontroller at a discharge pole with a small power but high voltage supply, we can realize the shiftbetween the continuous spark line discharge and corona discharge. This provides a new simpledevice for spark discharge research and is a supplement to the Townsend discharge experiment.

  3. Discharge processes of UV pre-ionized electric-discharge pulsed DF laser

    Science.gov (United States)

    Pan, Qikun; Xie, Jijiang; Shao, Chunlei; Wang, Chunrui; Shao, Mingzhen; Guo, Jin

    2016-03-01

    The discharge processes of ultraviolet (UV) pre-ionized electric-discharge pulsed DF laser operating with a SF6-D2 gas mixture are studied. A mathematical model based on continuity equation of electrons and Kirchhoff equations for discharge circuit is established to describe the discharge processes. Voltage and current waveforms of main discharge and voltage waveforms of pre-ionization are solved numerically utilizing the model. The calculations correctly display some physical processes, such as the delay time between pre-ionization and main discharge, breakdown of the main electrode and self-sustained volume discharge (SSVD). The results of theory are consistent with the experiments, which are performed in our non-chain pulsed DF laser. Then the delay inductance and peak capacitance are researched to analyze their influences on discharge processes, and the circuit parameters of DF laser are given which is useful to improve the discharge stability.

  4. Bronchiolitis - discharge

    Science.gov (United States)

    RSV bronchiolitis - discharge; Respiratory syncytial virus bronchiolitis - discharge ... Your child has bronchiolitis , which causes swelling and mucus to build up in the smallest air passages of the lungs. In the hospital, ...

  5. Circuit, Thermal and Cost Characteristics of Impulse Magnetizing Circuits

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This paper describes the development of circuit, thermal and cost model for a capacitor discharge impulse megnetizer and compares simulations to measurements from an actual system. We used a cost structure consisting of five major subsystems for cost modeling. Especially, we estimated the potential for cost reductions impulse magnetizer as a function of time using the learning curve.

  6. GATING CIRCUITS

    Science.gov (United States)

    Merrill, L.C.

    1958-10-14

    Control circuits for vacuum tubes are described, and a binary counter having an improved trigger circuit is reported. The salient feature of the binary counter is the application of the input signal to the cathode of each of two vacuum tubes through separate capacitors and the connection of each cathode to ground through separate diodes. The control of the binary counter is achieved in this manner without special pulse shaping of the input signal. A further advantage of the circuit is the simplicity and minimum nuruber of components required, making its use particularly desirable in computer machines.

  7. On the Quantum Circuit Complexity Equivalence

    CERN Document Server

    Drezgic, M; Drezgic, Milos; Sastry, Shankar

    2007-01-01

    Nielsen \\cite{Nielsen05} recently asked the following question: "What is the minimal size quantum circuit required to exactly implement a specified $% \\mathit{n}$-qubit unitary operation $U$, without the use of ancilla qubits?" Nielsen was able to prove that a lower bound on the minimal size circuit is provided by the length of the geodesic between the identity $I$ and $U$, where the length is defined by a suitable Finsler metric on $SU(2^{n})$. We prove that the minimum circuit size that simulates $U$ is in linear relation with the geodesic length and simulation parameters, for the given Finsler structure $F$. As a corollary we prove the highest lower bound of $O(\\frac{% n^{4}}{p}d_{F_{p}}^{2}(I,U)L_{F_{p}}(I,\\tilde{U})) $and the lowest upper bound of $\\Omega (n^{4}d_{F_{p}}^{3}(I,U))$, for the standard simulation technique. Therefore, our results show that by standard simulation one can not expect a better then $n^{2}$ times improvement in the upper bound over the result from Nielsen, Dowling, Gu and Dohert...

  8. NIPPLE DISCHARGE

    Directory of Open Access Journals (Sweden)

    T. N. Bukharova

    2008-01-01

    Full Text Available According to the data available in the literature, as high as 50% of women have benign breast tumors frequently accompanied by nip- ple discharge. Nipple discharge may be serous, bloody, purulent, and colostric. The most common causes are breast abscess, injury, drugs, prolactinoma, intraductal pappiloma, ductal ectasia, intraductal cancer (not more than 10%.

  9. Controllable circuit

    DEFF Research Database (Denmark)

    2010-01-01

    A switch-mode power circuit comprises a controllable element and a control unit. The controllable element is configured to control a current in response to a control signal supplied to the controllable element. The control unit is connected to the controllable element and provides the control...

  10. Discharge Dialogue

    DEFF Research Database (Denmark)

    Horsbøl, Anders

    2012-01-01

    less attention has been given to medical patients, who are often elderly and suffer from multiple diseases. This paper addresses the latter issue with a case study of a local initiative to improve transition from hospital to home (care) for medical patients at a Danish hospital, in which a discharge...... coordinator, employed at the hospital, is supposed to anticipate discharge and serve as mediator between the hospital and the municipal home care system. Drawing on methods from discourse and interaction analysis, the paper studies the practice of the discharge coordinator in two encounters between patients...

  11. Ileostomy - discharge

    Science.gov (United States)

    ... foods that may block your stoma are raw pineapple, nuts and seeds, celery, popcorn, corn, dried fruits ( ... ask your doctor Living with your ileostomy Low-fiber diet Small bowel resection - discharge Total colectomy or ...

  12. Gallstones - discharge

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000196.htm Gallstones - discharge To use the sharing features on this page, please enable JavaScript. You have gallstones. These are hard, pebble-like deposits that formed ...

  13. Interstitial lung disease - adults - discharge

    Science.gov (United States)

    Diffuse parenchymal lung disease - discharge; Alveolitis - discharge; Idiopathic pulmonary pneumonitis - discharge; IPP - discharge; Chronic interstitial lung - discharge; Chronic respiratory interstitial lung - discharge; Hypoxia - interstitial lung - discharge

  14. Analog and VLSI circuits

    CERN Document Server

    Chen, Wai-Kai

    2009-01-01

    Featuring hundreds of illustrations and references, this book provides the information on analog and VLSI circuits. It focuses on analog integrated circuits, presenting the knowledge on monolithic device models, analog circuit cells, high performance analog circuits, RF communication circuits, and PLL circuits.

  15. Discharge Dialogue

    DEFF Research Database (Denmark)

    Horsbøl, Anders

    2012-01-01

    For several years, efforts have been made to strengthen collaboration between health professionals with different specializations and to improve patient transition from hospital to home (care). In the Danish health care system, these efforts have concentrated on cancer and heart diseases, whereas...... less attention has been given to medical patients, who are often elderly and suffer from multiple diseases. This paper addresses the latter issue with a case study of a local initiative to improve transition from hospital to home (care) for medical patients at a Danish hospital, in which a discharge...... coordinator, employed at the hospital, is supposed to anticipate discharge and serve as mediator between the hospital and the municipal home care system. Drawing on methods from discourse and interaction analysis, the paper studies the practice of the discharge coordinator in two encounters between patients...

  16. Circuit Connectors

    Science.gov (United States)

    1979-01-01

    The U-shaped wire devices in the upper photo are Digi-Klipsm; aids to compact packaging of electrical and electronic devices. They serve as connectors linking the circuitry of one circuit board with another in multi-board systems. Digi-Klips were originally developed for Goddard Space Flight Center to meet a need for lightweight, reliable connectors to replace hand-wired connections formerly used in spacecraft. They are made of beryllium copper wire, noted for its excellent conductivity and its spring-like properties, which assure solid electrical contact over a long period of time.

  17. Electrochemical Discharge Machining Process

    Directory of Open Access Journals (Sweden)

    Anjali V. Kulkarni

    2007-09-01

    Full Text Available Electrochemical discharge machining process is evolving as a promising micromachiningprocess. The experimental investigations in the present work substantiate this trend. In the presentwork, in situ, synchronised, transient temperature and current measurements have been carriedout. The need for the transient measurements arose due to the time-varying nature of the dischargeformation and time varying circuit current. Synchronised and transient measurements revealedthe discrete nature of the process. It also helped in formulating the basic mechanism for thedischarge formation and the material removal in the process. Temperature profile on workpieceand in electrochemical discharge machining cell is experimentally measured using pyrometer,and two varieties of K-type thermocouples. Surface topography of the discharge-affected zoneson the workpiece has been carried out using scanning electron microscope. Measurements andsurface topographical studies reveal the potential use of this process for machining in micronregime. With careful experimental set-up design, suitable supply voltage and its polarity, theprocess can be applied for both micromachining and micro-deposition. It can be extended formachining and or deposition of wide range of materials.

  18. Double discharges in unipolar-pulsed dielectric barrier discharge xenon excimer lamps

    Science.gov (United States)

    Liu, Shuhai; Neiger, Manfred

    2003-07-01

    Excitation of dielectric barrier discharge xenon excimer lamps by unipolar short square pulses is studied in this paper. Two discharges with different polarity are excited by each voltage pulse (double discharge phenomenon). The primary discharge occurs at the top or at the rising flank of the applied unipolar square pulse, which is directly energized by the external circuit. The secondary discharge with the reversed polarity occurs at the falling flank or shortly after the falling flank end (zero external voltage) depending on the pulse width, which is energized by the energy stored by memory charges deposited by the primary discharge. Fast-speed ICCD imaging shows the primary discharge has a conic discharge appearance with a channel broadening on the anode side. This channel broadening increases with increasing the pulse top level. Only the anode-side surface discharge is observed in the primary discharge. The surface discharge on the cathode side which is present in bipolar sine voltage excitation is not observed. On the contrary, the secondary discharge has only the cathode-side surface discharge. The surface discharge on the anode side is not observed. The secondary discharge is much more diffuse than the primary discharge. Time-resolved emission measurement of double discharges show the secondary discharge emits more VUV xenon excimer radiation but less infrared (IR) xenon atomic emission than the primary discharge. It was found that the IR xenon atomic emission from the secondary discharge can be reduced by shortening the pulse width. The energy efficiency of unipolar-pulsed xenon excimer lamps (the overall energy efficiency of double discharges) is much higher than that obtained under bipolar sine wave excitation. The output VUV spectrum under unipolar pulse excitation is found to be identical to that under sine wave excitation and independent of injected electric power.

  19. LOGIC CIRCUIT

    Science.gov (United States)

    Strong, G.H.; Faught, M.L.

    1963-12-24

    A device for safety rod counting in a nuclear reactor is described. A Wheatstone bridge circuit is adapted to prevent de-energizing the hopper coils of a ball backup system if safety rods, sufficient in total control effect, properly enter the reactor core to effect shut down. A plurality of resistances form one arm of the bridge, each resistance being associated with a particular safety rod and weighted in value according to the control effect of the particular safety rod. Switching means are used to switch each of the resistances in and out of the bridge circuit responsive to the presence of a particular safety rod in its effective position in the reactor core and responsive to the attainment of a predetermined velocity by a particular safety rod enroute to its effective position. The bridge is unbalanced in one direction during normal reactor operation prior to the generation of a scram signal and the switching means and resistances are adapted to unbalance the bridge in the opposite direction if the safety rods produce a predetermined amount of control effect in response to the scram signal. The bridge unbalance reversal is then utilized to prevent the actuation of the ball backup system, or, conversely, a failure of the safety rods to produce the predetermined effect produces no unbalance reversal and the ball backup system is actuated. (AEC)

  20. Collective of mechatronics circuit

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1987-02-15

    This book is composed of three parts, which deals with mechatronics system about sensor, circuit and motor. The contents of the first part are photo sensor of collector for output, locating detection circuit with photo interrupts, photo sensor circuit with CdS cell and lamp, interface circuit with logic and LED and temperature sensor circuit. The second part deals with oscillation circuit with crystal, C-R oscillation circuit, F-V converter, timer circuit, stability power circuit, DC amp and DC-DC converter. The last part is comprised of bridge server circuit, deformation bridge server, controlling circuit of DC motor, controlling circuit with IC for PLL and driver circuit of stepping motor and driver circuit of Brushless.

  1. Lightning and middle atmospheric discharges in the atmosphere

    Science.gov (United States)

    Siingh, Devendraa; Singh, R. P.; Kumar, Sarvan; Dharmaraj, T.; Singh, Abhay K.; Singh, Ashok K.; Patil, M. N.; Singh, Shubha

    2015-11-01

    Recent development in lightning discharges including transient luminous events (TLEs) and global electric circuit are discussed. Role of solar activity, convective available potential energy, surface temperature and difference of land-ocean surfaces on convection process are discussed. Different processes of discharge initiation are discussed. Events like sprites and halos are caused by the upward quasi-electrostatic fields associated with intense cloud-to-ground discharges while jets (blue starter, blue jet, gigantic jet) are caused by charge imbalance in thunderstorm during lightning discharges but they are not associated with a particular discharge flash. Elves are generated by the electromagnetic pulse radiated during lightning discharges. The present understanding of global electric circuit is also reviewed. Relation between lightning activity/global electric circuit and climate is discussed.

  2. Angioplasty and stent - heart - discharge

    Science.gov (United States)

    Drug-eluting stents - discharge; PCI - discharge; Percutaneous coronary intervention - discharge; Balloon angioplasty - discharge; Coronary angioplasty - discharge; Coronary artery angioplasty - discharge; Cardiac ...

  3. Compact SCR trigger circuit for ignitron switch operates efficiently

    Science.gov (United States)

    Foster, L. E.

    1965-01-01

    Trigger circuit with two series-connected SCR triggers an ignitron switch used to discharge high-energy capacitor banks. It does not require a warmup period and operates at relatively high efficiency.

  4. Analog circuit design designing dynamic circuit response

    CERN Document Server

    Feucht, Dennis

    2010-01-01

    This second volume, Designing Dynamic Circuit Response builds upon the first volume Designing Amplifier Circuits by extending coverage to include reactances and their time- and frequency-related behavioral consequences.

  5. Ulcerative colitis - discharge

    Science.gov (United States)

    Inflammatory bowel disease - ulcerative colitis - discharge; Ulcerative proctitis - discharge; Colitis - discharge ... were in the hospital because you have ulcerative colitis. This is a swelling of the inner lining ...

  6. Analog circuit design designing waveform processing circuits

    CERN Document Server

    Feucht, Dennis

    2010-01-01

    The fourth volume in the set Designing Waveform-Processing Circuits builds on the previous 3 volumes and presents a variety of analog non-amplifier circuits, including voltage references, current sources, filters, hysteresis switches and oscilloscope trigger and sweep circuitry, function generation, absolute-value circuits, and peak detectors.

  7. Oscillatory localization of quantum walks analyzed by classical electric circuits

    Science.gov (United States)

    Ambainis, Andris; PrÅ«sis, Krišjānis; Vihrovs, JevgÄ`nijs; Wong, Thomas G.

    2016-12-01

    We examine an unexplored quantum phenomenon we call oscillatory localization, where a discrete-time quantum walk with Grover's diffusion coin jumps back and forth between two vertices. We then connect it to the power dissipation of a related electric network. Namely, we show that there are only two kinds of oscillating states, called uniform states and flip states, and that the projection of an arbitrary state onto a flip state is bounded by the power dissipation of an electric circuit. By applying this framework to states along a single edge of a graph, we show that low effective resistance implies oscillatory localization of the quantum walk. This reveals that oscillatory localization occurs on a large variety of regular graphs, including edge-transitive, expander, and high-degree graphs. As a corollary, high edge connectivity also implies localization of these states, since it is closely related to electric resistance.

  8. 46 CFR 169.682 - Distribution and circuit loads.

    Science.gov (United States)

    2010-10-01

    ... Machinery and Electrical Electrical Installations Operating at Potentials of 50 Volts Or More on Vessels of... be installed; or (2) 50 watts per outlet. (b) Circuits supplying electrical discharge lamps must be computed using the ballast input current. (c) The branch circuit cables for motor and lighting loads...

  9. Estimation of discharge and its distribution in compound channels

    Institute of Scientific and Technical Information of China (English)

    MOHANTY Prabir Kumar; KHATUA Kishanjit Kumar

    2014-01-01

    Results of research into a compound channel having width ratio (a) in excess of 11 are presented in the form of boun-dary shear distributions across the compound cross section. New relationship is derived between the percentage of shear carried by the flood plains (%S fp ) and the percentage of area occupied by the flood plains (%Afp ) . The equation so derived is taken as the basis to develop a new methodology to predict the stage discharge relationship specifically for wide compound channels using Darcy’s friction factor ( f ) for the main channel and flood plain regions. The methodology also is used for compound channels with smaller width ratios by applying the appropriate relation for %S fp derived earlier by different researchers and seems to work well. Next, as a corollary to the methodology, separate formulae are proposed to estimate flow distribution in main channel and flood plain regions. The proposed method and its corollary are tested for their validity against well-published small-scale data series of pre-vious researchers along with some large-scale data series from EPSRC-FCF (A-Series) compound channel experiments and very good agreement is observed between the measured values and predicted values for total flow as well as zonal distribution of flow. The methodology is also applied to some compound river section data published in literature and is found to serve well the purpose of predicting flow in real world application. This new method gives the least RMS value of error for discharge prediction compared with some other well-known methods used for estimating stage-discharge relation in compound channels by considering all data sets.

  10. Pediatric heart surgery - discharge

    Science.gov (United States)

    ... discharge; Heart valve surgery - children - discharge; Heart surgery - pediatric - discharge; Heart transplant - pediatric - discharge ... Geme JW, Schor NF, eds. Nelson Textbook of Pediatrics . 20th ed. Philadelphia, PA: Elsevier; 2016:chap 434. ...

  11. Lung surgery - discharge

    Science.gov (United States)

    ... Lung biopsy - discharge; Thoracoscopy - discharge; Video-assisted thoracoscopic surgery - discharge; VATS - discharge ... milk) for 2 weeks after video-assisted thoracoscopic surgery and 6 to 8 weeks after open surgery. ...

  12. Refractive corneal surgery - discharge

    Science.gov (United States)

    Nearsightedness surgery - discharge; Refractive surgery - discharge; LASIK - discharge; PRK - discharge ... You had refractive corneal surgery to help improve your vision. This surgery uses a laser to reshape your cornea. It corrects mild-to-moderate nearsightedness, ...

  13. Fitness for Entering a Simple Exercise Program and Mortality: A Study Corollary to the Exercise Introduction to Enhance Performance in Dialysis (Excite Trial

    Directory of Open Access Journals (Sweden)

    Rossella Baggetta

    2014-07-01

    Full Text Available Background/Aims: In this corollary analysis of the EXCITE study, we looked at possible differences in baseline risk factors and mortality between subjects excluded from the trial because non-eligible (n=216 or because eligible but refusing to participate (n=116. Methods: Baseline characteristics and mortality data were recorded. Survival and independent predictors of mortality were assessed by Kaplan-Meier and Cox regression analyses. Results: The incidence rate of mortality was higher in non-eligible vs. eligible non-randomized patients (21.0 vs. 10.9 deaths/100 persons-year; PConclusions: Deambulation ability mostly explains the difference in survival rate in non-eligible and eligible non-randomized patients in the EXCITE trial. Extending data analyses and outcome reporting also to subjects not taking part in a trial may be helpful to assess the representability of the study population.

  14. Monitor For Electrical-Discharge Machining

    Science.gov (United States)

    Burley, Richard K.

    1993-01-01

    Circuit monitors electrical-discharge-machining (EDM) process to detect and prevent abnormal arcing, which can produce unacceptable "burn" marks on workpiece. When voltage between EDM electrode and workpiece behaves in manner indicative of abnormal arcing, relay made to switch off EDM power, which remains off until operator attends to EDM setup and resets monitor.

  15. Partial discharge transients: The field theoretical approach

    DEFF Research Database (Denmark)

    McAllister, Iain Wilson; Crichton, George C

    1998-01-01

    Up until the mid-1980s the theory of partial discharge transients was essentially static. This situation had arisen because of the fixation with the concept of void capacitance and the use of circuit theory to address what is in essence a field problem. Pedersen rejected this approach and instead...

  16. Solid-state circuits

    CERN Document Server

    Pridham, G J

    2013-01-01

    Solid-State Circuits provides an introduction to the theory and practice underlying solid-state circuits, laying particular emphasis on field effect transistors and integrated circuits. Topics range from construction and characteristics of semiconductor devices to rectification and power supplies, low-frequency amplifiers, sine- and square-wave oscillators, and high-frequency effects and circuits. Black-box equivalent circuits of bipolar transistors, physical equivalent circuits of bipolar transistors, and equivalent circuits of field effect transistors are also covered. This volume is divided

  17. Simple Autonomous Chaotic Circuits

    Science.gov (United States)

    Piper, Jessica; Sprott, J.

    2010-03-01

    Over the last several decades, numerous electronic circuits exhibiting chaos have been proposed. Non-autonomous circuits with as few as two components have been developed. However, the operation of such circuits relies on the non-ideal behavior of the devices used, and therefore the circuit equations can be quite complex. In this paper, we present two simple autonomous chaotic circuits using only opamps and linear passive components. The circuits each use one opamp as a comparator, to provide a signum nonlinearity. The chaotic behavior is robust, and independent of nonlinearities in the passive components. Moreover, the circuit equations are among the algebraically simplest chaotic systems yet constructed.

  18. Circuit analysis for dummies

    CERN Document Server

    Santiago, John

    2013-01-01

    Circuits overloaded from electric circuit analysis? Many universities require that students pursuing a degree in electrical or computer engineering take an Electric Circuit Analysis course to determine who will ""make the cut"" and continue in the degree program. Circuit Analysis For Dummies will help these students to better understand electric circuit analysis by presenting the information in an effective and straightforward manner. Circuit Analysis For Dummies gives you clear-cut information about the topics covered in an electric circuit analysis courses to help

  19. Current limiter circuit system

    Energy Technology Data Exchange (ETDEWEB)

    Witcher, Joseph Brandon; Bredemann, Michael V.

    2017-09-05

    An apparatus comprising a steady state sensing circuit, a switching circuit, and a detection circuit. The steady state sensing circuit is connected to a first, a second and a third node. The first node is connected to a first device, the second node is connected to a second device, and the steady state sensing circuit causes a scaled current to flow at the third node. The scaled current is proportional to a voltage difference between the first and second node. The switching circuit limits an amount of current that flows between the first and second device. The detection circuit is connected to the third node and the switching circuit. The detection circuit monitors the scaled current at the third node and controls the switching circuit to limit the amount of the current that flows between the first and second device when the scaled current is greater than a desired level.

  20. Solenoid-Simulation Circuit

    Science.gov (United States)

    Simon, R. A.

    1986-01-01

    Electrical properties of solenoids imitated for tests of control circuits. Simulation circuit imitates voltage and current responses of two engine-controlling solenoids. Used in tests of programs of digital engine-control circuits, also provides electronic interface with circuits imitating electrical properties of pressure sensors and linear variable-differential transformers. Produces voltages, currents, delays, and discrete turnon and turnoff signals representing operation of solenoid in engine-control relay. Many such circuits used simulating overall engine circuitry.

  1. Modeling of Kr-Xe discharge of excimer lamp

    Directory of Open Access Journals (Sweden)

    Belasri A.

    2013-03-01

    Full Text Available This paper reports the numerical simulation of Dielectric Barrier Discharge (DBD for Kr-Xe excilamp. The model of the discharge consists of three main modules: a plasma chemistry module, a circuit module and a Boltzmann equation module. The results predict the optimal operating conditions and describe the electrical and chemical properties of the KrXe* excimer lamp.

  2. The electrical simulation of a gas discharge excited copper laser

    Science.gov (United States)

    Buckley, J. M.; Maitland, Arthur

    1992-12-01

    A circuit model of a gas laser discharge for use with simulator packages such as SPICE to describe the behavior of the combined circuit representing a copper vapor laser with its modulator drive is presented. The laser tube and discharge combination is treated as a transmission line with time-varying impedance elements for which the time variation is achieved by the introduction of controlled voltage and current sources. Theoretical and experimental results are compared. The model is used on a day-to-day basis to assist in interpreting the circuit behavior of laboratory lasers during their operation in order to reduce stress on the power switch (thyratron) and other components.

  3. Hidden circuits and argumentation

    Science.gov (United States)

    Leinonen, Risto; Kesonen, Mikko H. P.; Hirvonen, Pekka E.

    2016-11-01

    Despite the relevance of DC circuits in everyday life and schools, they have been shown to cause numerous learning difficulties at various school levels. In the course of this article, we present a flexible method for teaching DC circuits at lower secondary level. The method is labelled as hidden circuits, and the essential idea underlying hidden circuits is in hiding the actual wiring of DC circuits, but to make their behaviour evident for pupils. Pupils are expected to find out the wiring of the circuit which should enhance their learning of DC circuits. We present two possible ways to utilise hidden circuits in a classroom. First, they can be used to test and enhance pupils’ conceptual understanding when pupils are expected to find out which one of the offered circuit diagram options corresponds to the actual circuit shown. This method aims to get pupils to evaluate the circuits holistically rather than locally, and as a part of that aim this method highlights any learning difficulties of pupils. Second, hidden circuits can be used to enhance pupils’ argumentation skills with the aid of argumentation sheet that illustrates the main elements of an argument. Based on the findings from our co-operating teachers and our own experiences, hidden circuits offer a flexible and motivating way to supplement teaching of DC circuits.

  4. 78 FR 38591 - National Pollutant Discharge Elimination System Regulation Revision: Removal of the Pesticide...

    Science.gov (United States)

    2013-06-27

    ...: Removal of the Pesticide Discharge Permitting Exemption in Response to Sixth Circuit Court of Appeals... response to the 2009 Sixth Circuit Court of Appeals ruling that vacated the EPA's 2006 NPDES Pesticides... NPDES Pesticides Rule were filed in eleven federal circuit courts of appeals by industry...

  5. Intuitive analog circuit design

    CERN Document Server

    Thompson, Marc

    2013-01-01

    Intuitive Analog Circuit Design outlines ways of thinking about analog circuits and systems that let you develop a feel for what a good, working analog circuit design should be. This book reflects author Marc Thompson's 30 years of experience designing analog and power electronics circuits and teaching graduate-level analog circuit design, and is the ideal reference for anyone who needs a straightforward introduction to the subject. In this book, Dr. Thompson describes intuitive and ""back-of-the-envelope"" techniques for designing and analyzing analog circuits, including transistor amplifi

  6. The circuit designer's companion

    CERN Document Server

    Williams, Tim

    2013-01-01

    The Circuit Designer's Companion covers the theoretical aspects and practices in analogue and digital circuit design. Electronic circuit design involves designing a circuit that will fulfill its specified function and designing the same circuit so that every production model of it will fulfill its specified function, and no other undesired and unspecified function.This book is composed of nine chapters and starts with a review of the concept of grounding, wiring, and printed circuits. The subsequent chapters deal with the passive and active components of circuitry design. These topics are foll

  7. Isolated Fast High-Voltage Switching Circuit

    Science.gov (United States)

    Rizzi, Anthony

    1992-01-01

    Electrically isolated switching circuit supplies pulses at potentials up to 6.5 kV and currents up to 6.5 A, lasting as long as few microseconds. Turn-on time about 40 ns; turn-off time about 3 microseconds. Electrically isolated from control circuitry by means of fiber-optic signal coupling and isolated power supply. Electrical isolation protects both technician and equipment. This and similar circuits useful in such industrial and scientific applications as high-voltage, high-frequency test equipment; electrostatic-discharge test equipment; plasma-laboratory instrumentation; spark chambers; and electromagnetic-interference test equipment.

  8. Electrical Circuits and Water Analogies

    Science.gov (United States)

    Smith, Frederick A.; Wilson, Jerry D.

    1974-01-01

    Briefly describes water analogies for electrical circuits and presents plans for the construction of apparatus to demonstrate these analogies. Demonstrations include series circuits, parallel circuits, and capacitors. (GS)

  9. Concussion - adults - discharge

    Science.gov (United States)

    Brain injury - concussion - discharge; Traumatic brain injury - concussion - discharge; Closed head injury - concussion - discharge ... Getting better from a concussion takes days to weeks or even months. ... have trouble concentrating, or be unable to remember things. ...

  10. Tennis elbow surgery - discharge

    Science.gov (United States)

    ... epicondylitis surgery - discharge; Lateral tendinosis surgery - discharge; Lateral tennis elbow surgery - discharge ... long as you are told. This helps ensure tennis elbow will not return. You may be prescribed a ...

  11. Asthma - child - discharge

    Science.gov (United States)

    Pediatric asthma - discharge; Wheezing - discharge; Reactive airway disease - discharge ... Your child has asthma , which causes the airways of the lungs to swell and narrow. In the hospital, the doctors and nurses helped ...

  12. Eye muscle repair - discharge

    Science.gov (United States)

    ... Lazy eye repair - discharge; Strabismus repair - discharge; Extraocular muscle surgery - discharge ... You or your child had eye muscle repair surgery to correct eye muscle ... term for crossed eyes is strabismus. Children most often ...

  13. Neck dissection - discharge

    Science.gov (United States)

    Radical neck dissection - discharge; Modified radical neck dissection - discharge; Selective neck dissection - discharge ... 659-665. Robbins KT, Samant S, Ronen O. Neck dissection. In: Flint PW, Haughey BH, Lund V, et ...

  14. Circuits on Cylinders

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Arnsfelt; Miltersen, Peter Bro; Vinay, V

    2006-01-01

    We consider the computational power of constant width polynomial size cylindrical circuits and nondeterministic branching programs. We show that every function computed by a Pi2 o MOD o AC0 circuit can also be computed by a constant width polynomial size cylindrical nondeterministic branching...... program (or cylindrical circuit) and that every function computed by a constant width polynomial size cylindrical circuit belongs to ACC0....

  15. Electric circuits essentials

    CERN Document Server

    REA, Editors of

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Electric Circuits I includes units, notation, resistive circuits, experimental laws, transient circuits, network theorems, techniques of circuit analysis, sinusoidal analysis, polyph

  16. Piezoelectric drive circuit

    Science.gov (United States)

    Treu, Jr., Charles A.

    1999-08-31

    A piezoelectric motor drive circuit is provided which utilizes the piezoelectric elements as oscillators and a Meacham half-bridge approach to develop feedback from the motor ground circuit to produce a signal to drive amplifiers to power the motor. The circuit automatically compensates for shifts in harmonic frequency of the piezoelectric elements due to pressure and temperature changes.

  17. Signal sampling circuit

    NARCIS (Netherlands)

    Louwsma, S.M.; Vertregt, Maarten

    2010-01-01

    A sampling circuit for sampling a signal is disclosed. The sampling circuit comprises a plurality of sampling channels adapted to sample the signal in time-multiplexed fashion, each sampling channel comprising a respective track-and-hold circuit connected to a respective analogue to digital converte

  18. Signal sampling circuit

    NARCIS (Netherlands)

    Louwsma, S.M.; Vertregt, Maarten

    2011-01-01

    A sampling circuit for sampling a signal is disclosed. The sampling circuit comprises a plurality of sampling channels adapted to sample the signal in time-multiplexed fashion, each sampling channel comprising a respective track-and-hold circuit connected to a respective analogue to digital converte

  19. Load testing circuit

    DEFF Research Database (Denmark)

    2009-01-01

    A load testing circuit a circuit tests the load impedance of a load connected to an amplifier. The load impedance includes a first terminal and a second terminal, the load testing circuit comprising a signal generator providing a test signal of a defined bandwidth to the first terminal of the load...

  20. Short-circuit logic

    NARCIS (Netherlands)

    Bergstra, J.A.; Ponse, A.

    2010-01-01

    Short-circuit evaluation denotes the semantics of propositional connectives in which the second argument is only evaluated if the first argument does not suffice to determine the value of the expression. In programming, short-circuit evaluation is widely used. A short-circuit logic is a variant of p

  1. Signal sampling circuit

    NARCIS (Netherlands)

    Louwsma, Simon Minze; Vertregt, Maarten

    2011-01-01

    A sampling circuit for sampling a signal is disclosed. The sampling circuit comprises a plurality of sampling channels adapted to sample the signal in time-multiplexed fashion, each sampling channel comprising a respective track-and-hold circuit connected to a respective analogue to digital converte

  2. Signal sampling circuit

    NARCIS (Netherlands)

    Louwsma, Simon Minze; Vertregt, Maarten

    2010-01-01

    A sampling circuit for sampling a signal is disclosed. The sampling circuit comprises a plurality of sampling channels adapted to sample the signal in time-multiplexed fashion, each sampling channel comprising a respective track-and-hold circuit connected to a respective analogue to digital converte

  3. ACL reconstruction - discharge

    Science.gov (United States)

    Anterior cruciate ligament reconstruction - discharge; ACL reconstruction - discharge ... had surgery to reconstruct your anterior cruciate ligament (ACL). The surgeon drilled holes in the bones of ...

  4. Fitness for entering a simple exercise program and mortality: a study corollary to the exercise introduction to enhance performance in dialysis (EXCITE) trial.

    Science.gov (United States)

    Baggetta, Rossella; Bolignano, Davide; Torino, Claudia; Manfredini, Fabio; Aucella, Filippo; Barillà, Antonio; Battaglia, Yuri; Bertoli, Silvio; Bonanno, Graziella; Castellino, Pietro; Ciurlino, Daniele; Cupisti, Adamasco; D'Arrigo, Graziella; De Paola, Luciano; Fabrizi, Fabrizio; Fatuzzo, Pasquale; Fuiano, Giorgio; Lombardi, Luigi; Lucisano, Gaetano; Messa, Piergiorgio; Rapanà, Renato; Rapisarda, Francesco; Rastelli, Stefania; Rocca-Rey, Lisa; Summaria, Chiara; Zuccalà, Alessandro; Abd ElHafeez, Samar; Tripepi, Giovanni; Catizone, Luigi; Mallamaci, Francesca; Zoccali, Carmine

    2014-01-01

    In this corollary analysis of the EXCITE study, we looked at possible differences in baseline risk factors and mortality between subjects excluded from the trial because non-eligible (n=216) or because eligible but refusing to participate (n=116). Baseline characteristics and mortality data were recorded. Survival and independent predictors of mortality were assessed by Kaplan-Meier and Cox regression analyses. The incidence rate of mortality was higher in non-eligible vs. eligible non-randomized patients (21.0 vs. 10.9 deaths/100 persons-year; P<0.001). The crude excess risk of death in non-eligible patients (HR 1.96; 95% CI 1.36 to 2.77; P<0.001) was reduced after adjustment for risk factors which differed in the two cohorts including age, blood pressure, phosphate, CRP, smoking, diabetes, triglycerides, cardiovascular comorbidities and history of neoplasia (HR 1.60; 95% CI 1.10 to 2.35; P=0.017) and almost nullified after including in the same model also information on deambulation impairment (HR 1.16; 95% CI 0.75 to 1.80; P=0.513). Deambulation ability mostly explains the difference in survival rate in non-eligible and eligible non-randomized patients in the EXCITE trial. Extending data analyses and outcome reporting also to subjects not taking part in a trial may be helpful to assess the representability of the study population. © 2014 S. Karger AG, Basel.

  5. On current termination in rotamak discharges

    Energy Technology Data Exchange (ETDEWEB)

    Donaldson, N.; Euripides, P.; Jones, I.R.; Xu, S. [Flinders Univ. of South Australia, Bedford Park, SA (Australia). School of Physical Sciences

    1995-03-01

    A new series of rotamak experiments conducted in a 50 litre spherical pyrex discharge vessel is described. An analysis of the results, together with that of previous results from a smaller, 10 litre vessel, provides an explanation for the current termination phenomenon which is such a noteworthy and characteristic feature of all rotamak discharges studied to date. It is shown that the amplitude of the applied rotating magnetic field, B{sub {omega}}, has to be greater than a certain critical value, B{sub {omega}}{sup crit}, for the rotamak discharge to be maintained. Provided B{sub {omega}} {>=} B{sub {omega}}{sup crit}, the properties of the discharge are then determined by the behaviour of the circuit used to couple the RF generators to the plasma load. The conditions necessary for the production of a compact toroidal magnetic configuration are presented. (author).

  6. Ultrasonic Vibration Electrical Discharge Machining in Gas

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A new method of ultrasonic vibration electrical discharge machining(UEDM) in gas is proposed in this paper. In UEDM in gas, the gap between tool electrode and workpiece is small(about 0.01mm), and the voltage between them is higher than EDM in liquid, so short circuit is easy to take place. It is very important for improving the MRR to avoid short circuit. Therefore, some measures have been taken, a rotation and a planetary motion are superimposed upon the tool electrode. During UEDM in gas, workpiece is vi...

  7. Reversible Logic Circuit Synthesis

    CERN Document Server

    Shende, V V; Markov, I L; Prasad, A K; Hayes, John P.; Markov, Igor L.; Prasad, Aditya K.; Shende, Vivek V.

    2002-01-01

    Reversible, or information-lossless, circuits have applications in digital signal processing, communication, computer graphics and cryptography. They are also a fundamental requirement for quantum computation. We investigate the synthesis of reversible circuits that employ a minimum number of gates and contain no redundant input-output line-pairs (temporary storage channels). We propose new constructions for reversible circuits composed of NOT, Controlled-NOT, and TOFFOLI gates (the CNT gate library) based on permutation theory. A new algorithm is given to synthesize optimal reversible circuits using an arbitrary gate library. We also describe much faster heuristic algorithms. We also pursue applications of the proposed techniques to the synthesis of quantum circuits.

  8. Exact Threshold Circuits

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Arnsfelt; Podolskii, Vladimir V.

    2010-01-01

    We initiate a systematic study of constant depth Boolean circuits built using exact threshold gates. We consider both unweighted and weighted exact threshold gates and introduce corresponding circuit classes. We next show that this gives a hierarchy of classes that seamlessly interleave with the ......We initiate a systematic study of constant depth Boolean circuits built using exact threshold gates. We consider both unweighted and weighted exact threshold gates and introduce corresponding circuit classes. We next show that this gives a hierarchy of classes that seamlessly interleave...... with the well-studied corresponding hierarchies defined using ordinary threshold gates. A major open problem in Boolean circuit complexity is to provide an explicit super-polynomial lower bound for depth two threshold circuits. We identify the class of depth two exact threshold circuits as a natural subclass...

  9. Feedback in analog circuits

    CERN Document Server

    Ochoa, Agustin

    2016-01-01

    This book describes a consistent and direct methodology to the analysis and design of analog circuits with particular application to circuits containing feedback. The analysis and design of circuits containing feedback is generally presented by either following a series of examples where each circuit is simplified through the use of insight or experience (someone else’s), or a complete nodal-matrix analysis generating lots of algebra. Neither of these approaches leads to gaining insight into the design process easily. The author develops a systematic approach to circuit analysis, the Driving Point Impedance and Signal Flow Graphs (DPI/SFG) method that does not require a-priori insight to the circuit being considered and results in factored analysis supporting the design function. This approach enables designers to account fully for loading and the bi-directional nature of elements both in the feedback path and in the amplifier itself, properties many times assumed negligible and ignored. Feedback circuits a...

  10. Internal Electrostatic Discharge Monitor - IESDM

    Science.gov (United States)

    Kim, Wousik; Goebel, Dan M.; Jun, Insoo; Garrett, Henry B.

    2011-01-01

    A document discusses an innovation designed to effectively monitor dielectric charging in spacecraft components to measure the potential for discharge in order to prevent damage from internal electrostatic discharge (IESD). High-energy electrons penetrate the structural materials and shielding of a spacecraft and then stop inside dielectrics and keep accumulating. Those deposited charges generate an electric field. If the electric field becomes higher than the breakdown threshold (approx. =2 x 10(exp 5) V/cm), discharge occurs. This monitor measures potentials as a function of dielectric depth. Differentiation of potential with respect to the depth yields electric field. Direct measurement of the depth profile of the potential in a dielectric makes real-time electronic field evaluation possible without simulations. The IESDM has been designed to emulate a multi-layer circuit board, to insert very thin metallic layers between the dielectric layers. The conductors serve as diagnostic monitoring locations to measure the deposited electron-charge and the charge dynamics. Measurement of the time-dependent potential of the metal layers provides information on the amount of charge deposited in the dielectrics and the movement of that charge with time (dynamics).

  11. Design of a plasma discharge circuit for particle wakefield acceleration

    CERN Document Server

    Anania, M P; Cianchi, A; Di Giovenale, D; Ferrario, M; Flora, F; Gallerano, G P; Ghigo, A; Marocchino, A; Massimo, F; Mostacci, A; Mezi, L; Musumeci, P; Serio, M; 10.1016/j.nima.2013.10.053

    2014-01-01

    Plasma wakefield acceleration is the most promising acceleration technique known nowadays, able to provide very high accelerating fields (10-100 GV m^-1), enabling acceleration of electrons to GeV energy in few centimetres. However, the quality of the electron bunches accelerated with this technique is still not comparable with that of conventional accelerators; radiofrequency-based accelerators, in fact, are limited in the accelerating field (10-100 MV m^-1) requiring therefore kilometric distances to reach the GeV energies, but can provide very bright electron bunches. Combining high brightness electron bunches from conventional accelerators and high accelerating fields reachable with plasmas could be a good compromise accelerators and high accelerating fields reachable with plasmas could be a good compromise allowing to further accelerate high brightness electron bunches coming from LINAC while preserving electron beam quality. Following the idea of plasma wave resonant excitation driven by a train of shor...

  12. Numerical investigation of dielectric barrier discharges

    Science.gov (United States)

    Li, Jing

    1997-12-01

    A dielectric barrier discharge (DBD) is a transient discharge occurring between two electrodes in coaxial or planar arrangements separated by one or two layers of dielectric material. The charge accumulated on the dielectric barrier generates a field in a direction opposite to the applied field. The discharge is quenched before an arc is formed. It is one of the few non-thermal discharges that operates at atmospheric pressure and has the potential for use in pollution control. In this work, a numerical model of the dielectric barrier discharge is developed, along with the numerical approach. Adaptive grids based on the charge distribution is used. A self-consistent method is used to solve for the electric field and charge densities. The Successive Overrelaxation (SOR) method in a non-uniform grid spacing is used to solve the Poisson's equation in the cylindrically-symmetric coordinate. The Flux Corrected Transport (FCT) method is modified to solve the continuity equations in the non-uniform grid spacing. Parametric studies of dielectric barrier discharges are conducted. General characteristics of dielectric barrier discharges in both anode-directed and cathode-directed streamer are studied. Effects of the dielectric capacitance, the applied field, the resistance in external circuit and the type of gases (O2, air, N2) are investigated. We conclude that the SOR method in an adaptive grid spacing for the solution of the Poisson's equation in the cylindrically-symmetric coordinate is convergent and effective. The dielectric capacitance has little effect on the g-factor of radical production, but it determines the strength of the dielectric barrier discharge. The applied field and the type of gases used have a significant role on the current peak, current pulse duration and radical generation efficiency, discharge strength, and microstreamer radius, whereas the external series resistance has very little effect on the streamer properties. The results are helpful in

  13. What is the mathematical meaning of Steenbeck's principle of minimum power in gas discharge physics?

    Energy Technology Data Exchange (ETDEWEB)

    Benilov, M S [Departamento de Fisica, Universidade da Madeira, Largo do MunicIpio, 9000 Funchal (Portugal); Naidis, G V [Joint Institute for High Temperatures of the Russian Academy of Sciences, Izhorskaya 13/19, Moscow 125412 (Russian Federation)

    2010-05-05

    It is shown that Steenbeck's principle of minimum power, or voltage, for discharges with fixed current is not a corollary of the principle of minimum entropy production, in contrast to what is frequently assumed; besides, the latter principle itself does not provide a reasonable approximation in gas discharge physics. Similarly, Steenbeck's principle is not a corollary of mathematical models of gas discharges. Hence, this principle contradicts the mathematical models. A methodically correct evaluation of the error caused by the use of Steenbeck's principle requires a comparison of a solution obtained with the use of this principle with an exact solution to the same problem, rather than with experimental results or results deemed reasonable from the point of view of common sense. Such a comparison is performed for two examples from the theory of a cylindrical arc column. The examples show that the error incurred by the usage of Steenbeck's principle is uncontrollable and may be unacceptably high.

  14. Regenerative feedback resonant circuit

    Science.gov (United States)

    Jones, A. Mark; Kelly, James F.; McCloy, John S.; McMakin, Douglas L.

    2014-09-02

    A regenerative feedback resonant circuit for measuring a transient response in a loop is disclosed. The circuit includes an amplifier for generating a signal in the loop. The circuit further includes a resonator having a resonant cavity and a material located within the cavity. The signal sent into the resonator produces a resonant frequency. A variation of the resonant frequency due to perturbations in electromagnetic properties of the material is measured.

  15. Analog circuit design

    CERN Document Server

    Dobkin, Bob

    2012-01-01

    Analog circuit and system design today is more essential than ever before. With the growth of digital systems, wireless communications, complex industrial and automotive systems, designers are being challenged to develop sophisticated analog solutions. This comprehensive source book of circuit design solutions aids engineers with elegant and practical design techniques that focus on common analog challenges. The book's in-depth application examples provide insight into circuit design and application solutions that you can apply in today's demanding designs. <

  16. Parallelizing quantum circuit synthesis

    OpenAIRE

    Di Matteo, Olivia; Mosca, Michele

    2016-01-01

    Quantum circuit synthesis is the process in which an arbitrary unitary operation is decomposed into a sequence of gates from a universal set, typically one which a quantum computer can implement both efficiently and fault-tolerantly. As physical implementations of quantum computers improve, the need is growing for tools which can effectively synthesize components of the circuits and algorithms they will run. Existing algorithms for exact, multi-qubit circuit synthesis scale exponentially in t...

  17. Analog circuits cookbook

    CERN Document Server

    Hickman, Ian

    2013-01-01

    Analog Circuits Cookbook presents articles about advanced circuit techniques, components and concepts, useful IC for analog signal processing in the audio range, direct digital synthesis, and ingenious video op-amp. The book also includes articles about amplitude measurements on RF signals, linear optical imager, power supplies and devices, and RF circuits and techniques. Professionals and students of electrical engineering will find the book informative and useful.

  18. Electronic devices and circuits

    CERN Document Server

    Pridham, Gordon John

    1968-01-01

    Electronic Devices and Circuits, Volume 1 deals with the design and applications of electronic devices and circuits such as passive components, diodes, triodes and transistors, rectification and power supplies, amplifying circuits, electronic instruments, and oscillators. These topics are supported with introductory network theory and physics. This volume is comprised of nine chapters and begins by explaining the operation of resistive, inductive, and capacitive elements in direct and alternating current circuits. The theory for some of the expressions quoted in later chapters is presented. Th

  19. CMOS circuits manual

    CERN Document Server

    Marston, R M

    1995-01-01

    CMOS Circuits Manual is a user's guide for CMOS. The book emphasizes the practical aspects of CMOS and provides circuits, tables, and graphs to further relate the fundamentals with the applications. The text first discusses the basic principles and characteristics of the CMOS devices. The succeeding chapters detail the types of CMOS IC, including simple inverter, gate and logic ICs and circuits, and complex counters and decoders. The last chapter presents a miscellaneous collection of two dozen useful CMOS circuits. The book will be useful to researchers and professionals who employ CMOS circu

  20. Circuits and filters handbook

    CERN Document Server

    Chen, Wai-Kai

    2003-01-01

    A bestseller in its first edition, The Circuits and Filters Handbook has been thoroughly updated to provide the most current, most comprehensive information available in both the classical and emerging fields of circuits and filters, both analog and digital. This edition contains 29 new chapters, with significant additions in the areas of computer-aided design, circuit simulation, VLSI circuits, design automation, and active and digital filters. It will undoubtedly take its place as the engineer's first choice in looking for solutions to problems encountered in the design, analysis, and behavi

  1. Timergenerator circuits manual

    CERN Document Server

    Marston, R M

    2013-01-01

    Timer/Generator Circuits Manual is an 11-chapter text that deals mainly with waveform generator techniques and circuits. Each chapter starts with an explanation of the basic principles of its subject followed by a wide range of practical circuit designs. This work presents a total of over 300 practical circuits, diagrams, and tables.Chapter 1 outlines the basic principles and the different types of generator. Chapters 2 to 9 deal with a specific type of waveform generator, including sine, square, triangular, sawtooth, and special waveform generators pulse. These chapters also include pulse gen

  2. Security electronics circuits manual

    CERN Document Server

    MARSTON, R M

    1998-01-01

    Security Electronics Circuits Manual is an invaluable guide for engineers and technicians in the security industry. It will also prove to be a useful guide for students and experimenters, as well as providing experienced amateurs and DIY enthusiasts with numerous ideas to protect their homes, businesses and properties.As with all Ray Marston's Circuits Manuals, the style is easy-to-read and non-mathematical, with the emphasis firmly on practical applications, circuits and design ideas. The ICs and other devices used in the practical circuits are modestly priced and readily available ty

  3. MOS integrated circuit design

    CERN Document Server

    Wolfendale, E

    2013-01-01

    MOS Integral Circuit Design aims to help in the design of integrated circuits, especially large-scale ones, using MOS Technology through teaching of techniques, practical applications, and examples. The book covers topics such as design equation and process parameters; MOS static and dynamic circuits; logic design techniques, system partitioning, and layout techniques. Also featured are computer aids such as logic simulation and mask layout, as well as examples on simple MOS design. The text is recommended for electrical engineers who would like to know how to use MOS for integral circuit desi

  4. Printed circuit board industry.

    Science.gov (United States)

    LaDou, Joseph

    2006-05-01

    The printed circuit board is the platform upon which microelectronic components such as semiconductor chips and capacitors are mounted. It provides the electrical interconnections between components and is found in virtually all electronics products. Once considered low technology, the printed circuit board is evolving into a high-technology product. Printed circuit board manufacturing is highly complicated, requiring large equipment investments and over 50 process steps. Many of the high-speed, miniaturized printed circuit boards are now manufactured in cleanrooms with the same health and safety problems posed by other microelectronics manufacturing. Asia produces three-fourths of the world's printed circuit boards. In Asian countries, glycol ethers are the major solvents used in the printed circuit board industry. Large quantities of hazardous chemicals such as formaldehyde, dimethylformamide, and lead are used by the printed circuit board industry. For decades, chemically intensive and often sloppy manufacturing processes exposed tens of thousands of workers to a large number of chemicals that are now known to be reproductive toxicants and carcinogens. The printed circuit board industry has exposed workers to high doses of toxic metals, solvents, acids, and photolithographic chemicals. Only recently has there been any serious effort to diminish the quantity of lead distributed worldwide by the printed circuit board industry. Billions of electronics products have been discarded in every region of the world. This paper summarizes recent regulatory and enforcement efforts.

  5. Foot amputation - discharge

    Science.gov (United States)

    Amputation - foot - discharge; Trans-metatarsal amputation - discharge ... You have had a foot amputation. You may have had an accident, or your foot may have had an infection or disease and doctors could not save ...

  6. Synchronizing Hyperchaotic Circuits

    DEFF Research Database (Denmark)

    Tamasevicius, Arunas; Cenys, Antanas; Namajunas, Audrius

    1997-01-01

    Regarding possible applications to secure communications the technique of synchronizing hyperchaotic circuits with a single dynamical variable is discussed. Several specific examples including the fourth-order circuits with two positive Lyapunov exponents as well as the oscillator with a delay line...... characterized by multiple positive Lyapunov exponents are reviewd....

  7. Genetic circuit design automation.

    Science.gov (United States)

    Nielsen, Alec A K; Der, Bryan S; Shin, Jonghyeon; Vaidyanathan, Prashant; Paralanov, Vanya; Strychalski, Elizabeth A; Ross, David; Densmore, Douglas; Voigt, Christopher A

    2016-04-01

    Computation can be performed in living cells by DNA-encoded circuits that process sensory information and control biological functions. Their construction is time-intensive, requiring manual part assembly and balancing of regulator expression. We describe a design environment, Cello, in which a user writes Verilog code that is automatically transformed into a DNA sequence. Algorithms build a circuit diagram, assign and connect gates, and simulate performance. Reliable circuit design requires the insulation of gates from genetic context, so that they function identically when used in different circuits. We used Cello to design 60 circuits forEscherichia coli(880,000 base pairs of DNA), for which each DNA sequence was built as predicted by the software with no additional tuning. Of these, 45 circuits performed correctly in every output state (up to 10 regulators and 55 parts), and across all circuits 92% of the output states functioned as predicted. Design automation simplifies the incorporation of genetic circuits into biotechnology projects that require decision-making, control, sensing, or spatial organization.

  8. A Virtual Circuits Lab

    Science.gov (United States)

    Vick, Matthew E.

    2010-01-01

    The University of Colorado's Physics Education Technology (PhET) website offers free, high-quality simulations of many physics experiments that can be used in the classroom. The Circuit Construction Kit, for example, allows students to safely and constructively play with circuit components while learning the mathematics behind many circuit…

  9. The CRRES IDM spacecraft experiment for insulator discharge pulses. [Internal Discharge Monitor

    Science.gov (United States)

    Frederickson, A. R.; Mullen, E. G.; Kerns, K. J.; Robinson, P. A.; Holeman, E. G.

    1993-01-01

    The Internal Discharge Monitor (IDM) is designed to observe electrical pulses from common electrical insulators in space service. The characteristics of the instrument are described. The IDM was flown on the Combined Release and Radiation Effects Satellite (CRRES). The sixteen insulator samples included G10 circuit boards, FR4 and PTFE fiberglass circuit boards, FEP Teflon, alumina, and wires with common insulations. The samples are fully enclosed, mutually isolated, and space radiation penetrates 0.02 cm of aluminum before striking the samples. Published data in the literature provides a simple method for determining the flux of penetrating electrons. The pulse rate is compared to the penetrating flux of electrons.

  10. Approximate circuits for increased reliability

    Energy Technology Data Exchange (ETDEWEB)

    Hamlet, Jason R.; Mayo, Jackson R.

    2015-08-18

    Embodiments of the invention describe a Boolean circuit having a voter circuit and a plurality of approximate circuits each based, at least in part, on a reference circuit. The approximate circuits are each to generate one or more output signals based on values of received input signals. The voter circuit is to receive the one or more output signals generated by each of the approximate circuits, and is to output one or more signals corresponding to a majority value of the received signals. At least some of the approximate circuits are to generate an output value different than the reference circuit for one or more input signal values; however, for each possible input signal value, the majority values of the one or more output signals generated by the approximate circuits and received by the voter circuit correspond to output signal result values of the reference circuit.

  11. Approximate circuits for increased reliability

    Energy Technology Data Exchange (ETDEWEB)

    Hamlet, Jason R.; Mayo, Jackson R.

    2015-12-22

    Embodiments of the invention describe a Boolean circuit having a voter circuit and a plurality of approximate circuits each based, at least in part, on a reference circuit. The approximate circuits are each to generate one or more output signals based on values of received input signals. The voter circuit is to receive the one or more output signals generated by each of the approximate circuits, and is to output one or more signals corresponding to a majority value of the received signals. At least some of the approximate circuits are to generate an output value different than the reference circuit for one or more input signal values; however, for each possible input signal value, the majority values of the one or more output signals generated by the approximate circuits and received by the voter circuit correspond to output signal result values of the reference circuit.

  12. Analysis of Discharge Spark Energy in Buck Converter of a Continuous Mode of Inductive Current

    Institute of Scientific and Technical Information of China (English)

    CUI Bao-chun; CHENG Hong; WANG Cong; LU Huan-yu; SHI Yun

    2006-01-01

    The basic idea of intrinsically safe circuit and the discharge spark in the Buck converter in the explosive atmospheres were introduced. The Buck converter is the main topological structure of the switch type of intrinsically safe circuit, which has two working modes: continuous inductive current (CCM - continuous conduction mode) and discrete inductance current (DCM - discontinuous conduction mode). The operating state of the continuous inductive current mode is analyzed in detail and the energy of discharge spark in various operating modes is discussed. The total energy will decrease with the increase of switch frequency, in a switching cycle; the discharge spark energy has a maximum and a minimum value. Therefore, the Buck converter has smaller discharge spark energy than the linear power circuit and the switch type of intrinsically safe circuit can enhance the output power and the conversion efficiency of the intrinsically safe power.

  13. Study on the Sensitivity of Landmine Electrical Fuse Circuit Under the Interference of Natural Electromagnetic Pulse

    Science.gov (United States)

    Qin, Dechun

    Landmine electrical fuse circuits on the battlefield will be interfered by natural electromagnetic pulse such as electrostatic discharge and lightning, which will undermine the circuit performance and trigger the early burst or mistaken burst of the landmines. In this paper, numerically simulation analysis is conducted on the electrostatic and lightning effects received by the landmine fuse circuit by means of building simulation model of the fuse circuit and analyzing the electric and magnetic field changes of the observation The mechanism of the influence of electrostatic discharge and lightning on the sensitivity of the fuse circuit is explored. The conclusion is that electrostatic effect cause the mistaken burst of the landmines by enabling the interference voltage to reach the components turn-on threshold and cause the circuit malfunction, and lighting effect by long period accumulation of energy.

  14. Plasmonic Nanoguides and Circuits

    CERN Document Server

    Bozhevolnyi, Sergey

    2008-01-01

    Modern communication systems dealing with huge amounts of data at ever increasing speed try to utilize the best aspects of electronic and optical circuits. Electronic circuits are tiny but their operation speed is limited, whereas optical circuits are extremely fast but their sizes are limited by diffraction. Waveguide components utilizing surface plasmon (SP) modes were found to combine the huge optical bandwidth and compactness of electronics, and plasmonics thereby began to be considered as the next chip-scale technology. In this book, the authors concentrate on the SP waveguide configurati

  15. Optoelectronics circuits manual

    CERN Document Server

    Marston, R M

    2013-01-01

    Optoelectronics Circuits Manual covers the basic principles and characteristics of the best known types of optoelectronic devices, as well as the practical applications of many of these optoelectronic devices. The book describes LED display circuits and LED dot- and bar-graph circuits and discusses the applications of seven-segment displays, light-sensitive devices, optocouplers, and a variety of brightness control techniques. The text also tackles infrared light-beam alarms and multichannel remote control systems. The book provides practical user information and circuitry and illustrations.

  16. Circuit analysis with Multisim

    CERN Document Server

    Baez-Lopez, David

    2011-01-01

    This book is concerned with circuit simulation using National Instruments Multisim. It focuses on the use and comprehension of the working techniques for electrical and electronic circuit simulation. The first chapters are devoted to basic circuit analysis.It starts by describing in detail how to perform a DC analysis using only resistors and independent and controlled sources. Then, it introduces capacitors and inductors to make a transient analysis. In the case of transient analysis, it is possible to have an initial condition either in the capacitor voltage or in the inductor current, or bo

  17. Modern TTL circuits manual

    CERN Document Server

    Marston, R M

    2013-01-01

    Modern TTL Circuits Manual provides an introduction to the basic principles of Transistor-Transistor Logic (TTL). This book outlines the major features of the 74 series of integrated circuits (ICs) and introduces the various sub-groups of the TTL family.Organized into seven chapters, this book begins with an overview of the basics of digital ICs. This text then examines the symbology and mathematics of digital logic. Other chapters consider a variety of topics, including waveform generator circuitry, clocked flip-flop and counter circuits, special counter/dividers, registers, data latches, com

  18. Pragmatic circuits frequency domain

    CERN Document Server

    Eccles, William

    2006-01-01

    Pragmatic Circuits: Frequency Domain goes through the Laplace transform to get from the time domain to topics that include the s-plane, Bode diagrams, and the sinusoidal steady state. This second of three volumes ends with a-c power, which, although it is just a special case of the sinusoidal steady state, is an important topic with unique techniques and terminology. Pragmatic Circuits: Frequency Domain is focused on the frequency domain. In other words, time will no longer be the independent variable in our analysis. The two other volumes in the Pragmatic Circuits series include titles on DC

  19. Gallium Arsenide Domino Circuit

    Science.gov (United States)

    Yang, Long; Long, Stephen I.

    1990-01-01

    Advantages include reduced power and high speed. Experimental gallium arsenide field-effect-transistor (FET) domino circuit replicated in large numbers for use in dynamic-logic systems. Name of circuit denotes mode of operation, which logic signals propagate from each stage to next when successive stages operated at slightly staggered clock cycles, in manner reminiscent of dominoes falling in a row. Building block of domino circuit includes input, inverter, and level-shifting substages. Combinational logic executed in input substage. During low half of clock cycle, result of logic operation transmitted to following stage.

  20. Troubleshooting analog circuits

    CERN Document Server

    Pease, Robert A

    1991-01-01

    Troubleshooting Analog Circuits is a guidebook for solving product or process related problems in analog circuits. The book also provides advice in selecting equipment, preventing problems, and general tips. The coverage of the book includes the philosophy of troubleshooting; the modes of failure of various components; and preventive measures. The text also deals with the active components of analog circuits, including diodes and rectifiers, optically coupled devices, solar cells, and batteries. The book will be of great use to both students and practitioners of electronics engineering. Other

  1. Monolithic microwave integrated circuits

    Science.gov (United States)

    Pucel, R. A.

    Monolithic microwave integrated circuits (MMICs), a new microwave technology which is expected to exert a profound influence on microwave circuit designs for future military systems as well as for the commercial and consumer markets, is discussed. The book contains an historical discussion followed by a comprehensive review presenting the current status in the field. The general topics of the volume are: design considerations, materials and processing considerations, monolithic circuit applications, and CAD, measurement, and packaging techniques. All phases of MMIC technology are covered, from design to testing.

  2. Printed circuit for ATLAS

    CERN Multimedia

    Laurent Guiraud

    1999-01-01

    A printed circuit board made by scientists in the ATLAS collaboration for the transition radiaton tracker (TRT). This will read data produced when a high energy particle crosses the boundary between two materials with different electrical properties.

  3. Latching overcurrent circuit breaker

    Science.gov (United States)

    Moore, M. L.

    1970-01-01

    Circuit breaker consists of a preset current amplitude sensor, and a lamp-photo-resistor combination in a feedback arrangement which energizes a power switching relay. The ac input power is removed from the load at predetermined current amplitudes.

  4. High temperature circuit breaker

    Science.gov (United States)

    Edwards, R. N.; Travis, E. F.

    1970-01-01

    Alternating current circuit breaker is suitable for reliable long-term service at 1000 deg F in the vacuum conditions of outer space. Construction materials are resistant to nuclear radiation and vacuum welding. Service test conditions and results are given.

  5. Overriding Faulty Circuit Breakers

    Science.gov (United States)

    Robbins, Richard L.; Pierson, Thomas E.

    1987-01-01

    Retainer keeps power on in emergency. Simple mechanical device attaches to failed aircraft-type push/pull circuit breaker to restore electrical power temporarily until breaker replaced. Device holds push/pull button in closed position; unnecessary for crewmember to hold button in position by continual finger pressure. Sleeve and plug hold button in, overriding mechanical failure in circuit breaker. Windows in sleeve show button position.

  6. Heterogeneous photonic integrated circuits

    Science.gov (United States)

    Fang, Alexander W.; Fish, Gregory; Hall, Eric

    2012-01-01

    Photonic Integrated Circuits (PICs) have been dichotomized into circuits with high passive content (silica and silicon PLCs) and high active content (InP tunable lasers and transceivers) due to the trade-off in material characteristics used within these two classes. This has led to restrictions in the adoption of PICs to systems in which only one of the two classes of circuits are required to be made on a singular chip. Much work has been done to create convergence in these two classes by either engineering the materials to achieve the functionality of both device types on a single platform, or in epitaxial growth techniques to transfer one material to the next, but have yet to demonstrate performance equal to that of components fabricated in their native substrates. Advances in waferbonding techniques have led to a new class of heterogeneously integrated photonic circuits that allow for the concurrent use of active and passive materials within a photonic circuit, realizing components on a transferred substrate that have equivalent performance as their native substrate. In this talk, we review and compare advances made in heterogeneous integration along with demonstrations of components and circuits enabled by this technology.

  7. Discharge processes and an electrical model of atmospheric pressure plasma jets in argon

    Science.gov (United States)

    Fang, Zhi; Shao, Tao; Yang, Jing; Zhang, Cheng

    2016-01-01

    In this paper, an atmospheric pressure plasma discharge in argon was generated using a needle-to-ring electrode configuration driven by a sinusoidal excitation voltage. The electric discharge processes and discharge characteristics were investigated by inspecting the voltage-current waveforms, Lissajous curves and lighting emission images. The change in discharge mode with applied voltage amplitude was studied and characterised, and three modes of corona discharge, dielectric barrier discharge (DBD) and jet discharge were identified, which appeared in turn with increasing applied voltage and can be distinguished clearly from the measured voltage-current waveforms, light-emission images and the changing gradient of discharge power with applied voltage. Based on the experimental results and discharge mechanism analysis, an equivalent electrical model and the corresponding equivalent circuit for characterising the whole discharge processes accurately was proposed, and the three discharge stages were characterised separately. A voltage-controlled current source (VCCS) associated with a resistance and a capacitance were used to represent the DBD stage, and the plasma plume and corona discharge were modelled by a variable capacitor in series with a variable resistor. Other factors that can influence the discharge, such as lead and stray capacitance values of the circuit, were also considered in the proposed model. Contribution to the Topical Issue "Recent Breakthroughs in Microplasma Science and Technology", edited by Kurt Becker, Jose Lopez, David Staack, Klaus-Dieter Weltmann and Wei Dong Zhu.

  8. Chronic obstructive pulmonary disease - adults - discharge

    Science.gov (United States)

    COPD - adults - discharge; Chronic obstructive airways disease - adults - discharge; Chronic obstructive lung disease - adults - discharge; Chronic bronchitis - adults - discharge; Emphysema - adults - discharge; Bronchitis - ...

  9. Simulation of discharge in insulating gas from initial partial discharge to growth of a stepped leader using the percolation model

    Science.gov (United States)

    Sasaki, Akira; Kato, Susumu; Takahashii, Eiichi; Kishimoto, Yasuaki; Fujii, Takashi; Kanazawa, Seiji

    2016-02-01

    We show a cell simulation of a discharge in an insulating gas from the initial partial discharge to leader inception until breakdown, based on the percolation model. In the model, we consider that the propagation of the leader occurs when connections between randomly produced ionized regions in the discharge medium are established. To determine the distribution of ionized regions, the state of each simulation cell is decided by evaluating the probability of ionization in SF6, which depends on the local electric field. The electric field as well as the discharge current are calculated by solving circuit equations for the network of simulation cells. Both calculations are coupled to each other and the temporal evolution of discharge is self-consistently calculated. The model dependence of the features of the discharge is investigated. It is found that taking the suppression of attachment in the presence of a discharge current into account, the calculation reproduces the behavior of experimental discharges. It is shown that for a strong electric field, the inception of a stepped leader causes immediate breakdown. For an electric field of 30-50% of the critical field, the initial partial discharge persists for a stochastic time lag and then the propagation of a leader takes place. As the strength of the electric field decreases, the time lag increases rapidly and eventually only a partial discharge with a short arrested leader occurs, as observed in experiments.

  10. Circuit simulation: some humbling thoughts

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, Manfred; /Fermilab

    2006-01-01

    A short, very personal note on circuit simulation is presented. It does neither include theoretical background on circuit simulation, nor offers an overview of available software, but just gives some general remarks for a discussion on circuit simulator needs in context to the design and development of accelerator beam instrumentation circuits and systems.

  11. An Arduino Investigation of the RC Circuit

    Science.gov (United States)

    Galeriu, Calin; Letson, Cheryl; Esper, Geoffrey

    2015-05-01

    The experimental investigation of the charging or discharging of a capacitor through a resistor is of fundamental importance to the study of electricity. Students taking the Physics SAT or the AP Physics C: Electricity and Magnetism test have to prove their knowledge of time-varying behavior in RC circuits. While the classical experiment is done using a voltmeter and a stopwatch, this procedure is tedious and prone to human errors. We have developed an alternative procedure in which the voltage, the current, and the time are all measured electronically with the help of an Arduino Uno microcontroller board.

  12. Magnetic circuit for hall effect plasma accelerator

    Science.gov (United States)

    Manzella, David H. (Inventor); Jacobson, David T. (Inventor); Jankovsky, Robert S. (Inventor); Hofer, Richard (Inventor); Peterson, Peter (Inventor)

    2009-01-01

    A Hall effect plasma accelerator includes inner and outer electromagnets, circumferentially surrounding the inner electromagnet along a thruster centerline axis and separated therefrom, inner and outer magnetic conductors, in physical connection with their respective inner and outer electromagnets, with the inner magnetic conductor having a mostly circular shape and the outer magnetic conductor having a mostly annular shape, a discharge chamber, located between the inner and outer magnetic conductors, a magnetically conducting back plate, in magnetic contact with the inner and outer magnetic conductors, and a combined anode electrode/gaseous propellant distributor, located at a bottom portion of the discharge chamber. The inner and outer electromagnets, the inner and outer magnetic conductors and the magnetically conducting back plate form a magnetic circuit that produces a magnetic field that is largely axial and radially symmetric with respect to the thruster centerline.

  13. Low latency asynchronous interface circuits

    Energy Technology Data Exchange (ETDEWEB)

    Sadowski, Greg

    2017-06-20

    In one form, a logic circuit includes an asynchronous logic circuit, a synchronous logic circuit, and an interface circuit coupled between the asynchronous logic circuit and the synchronous logic circuit. The asynchronous logic circuit has a plurality of asynchronous outputs for providing a corresponding plurality of asynchronous signals. The synchronous logic circuit has a plurality of synchronous inputs corresponding to the plurality of asynchronous outputs, a stretch input for receiving a stretch signal, and a clock output for providing a clock signal. The synchronous logic circuit provides the clock signal as a periodic signal but prolongs a predetermined state of the clock signal while the stretch signal is active. The asynchronous interface detects whether metastability could occur when latching any of the plurality of the asynchronous outputs of the asynchronous logic circuit using said clock signal, and activates the stretch signal while the metastability could occur.

  14. A semiconductor laser excitation circuit

    Energy Technology Data Exchange (ETDEWEB)

    Kaadzunari, O.; Masaty, K.

    1984-03-27

    A semiconductor laser excitation circuit is patented that is designed for operation in a pulsed mode with a high pulse repetition frequency. This circuit includes, in addition to a semiconductor laser, a high speed photodetector, a reference voltage source, a comparator, and a pulse oscillator and modulator. If the circuit is built using standard silicon integrated circuits, its speed amounts to several hundred megahertz, if it is constructed using gallium arsenide integrated circuits, its speed is several gigahertz.

  15. Signal transduction in Mimosa pudica: biologically closed electrical circuits.

    Science.gov (United States)

    Volkov, Alexander G; Foster, Justin C; Markin, Vladislav S

    2010-05-01

    Biologically closed electrical circuits operate over large distances in biological tissues. The activation of such circuits can lead to various physiological and biophysical responses. Here, we analyse the biologically closed electrical circuits of the sensitive plant Mimosa pudica Linn. using electrostimulation of a petiole or pulvinus by the charged capacitor method, and evaluate the equivalent electrical scheme of electrical signal transduction inside the plant. The discharge of a 100 microF capacitor in the pulvinus resulted in the downward fall of the petiole in a few seconds, if the capacitor was charged beforehand by a 1.5 V power supply. Upon disconnection of the capacitor from Ag/AgCl electrodes, the petiole slowly relaxed to the initial position. The electrical properties of the M. pudica were investigated, and an equivalent electrical circuit was proposed that explains the experimental data.

  16. The Mind Grows Circuits

    CERN Document Server

    Panigrahy, Rina

    2012-01-01

    There is a vast supply of prior art that study models for mental processes. Some studies in psychology and philosophy approach it from an inner perspective in terms of experiences and percepts. Others such as neurobiology or connectionist-machines approach it externally by viewing the mind as complex circuit of neurons where each neuron is a primitive binary circuit. In this paper, we also model the mind as a place where a circuit grows, starting as a collection of primitive components at birth and then builds up incrementally in a bottom up fashion. A new node is formed by a simple composition of prior nodes when we undergo a repeated experience that can be described by that composition. Unlike neural networks, however, these circuits take "concepts" or "percepts" as inputs and outputs. Thus the growing circuits can be likened to a growing collection of lambda expressions that are built on top of one another in an attempt to compress the sensory input as a heuristic to bound its Kolmogorov Complexity.

  17. A Novel Crowbar Impulse Current Circuit for Testing the Switch-Type SPD

    Institute of Scientific and Technical Information of China (English)

    YAO Xueling; CHEN Jingliang; SUN Wei

    2008-01-01

    A crowbar impulse current circuit for testing the switch-type surge protective device (SPD) is presented. The crowbar circuit consists of a computer control circuit, a trigger voltage pulse generator, a main discharging switch, and a crowbar pseudospark switch. The active trigger technology was studied in the crowbar impulse current circuit. The circuit monitors the main discharging current and generates a trigger signal at a proper time for the crowbar pseudospark switch operation. The trigger characteristics of the main discharge switch and the crowbar pseudospark switch were investigated. By monitoring the preset applied capacitor voltage, the gap distance of the main discharging switch could be adjusted to ensure a discharging delay time less than 2 μs. Equipped with a surface flashover trigger device made of high relative perimittivity dielectric material BaTiO3 (εr = 3460), the discharge delay time of the crowbar pseudospark switch is less than 85 ns, and the minimum operating voltage is less than 1% of its self-breakdown voltage. With a storage capacitor of 9 μF , an inductor of 18 μH and a crowbar pseudospark switch, a load of 30 mΩ and an applied capacitor voltage of 40 kV, an impulse current wave form of maximum 25 kA was generated with a rise time and time to half peak value of 17.2/μs and 336 μs respectively.

  18. Predicting tile drainage discharge

    DEFF Research Database (Denmark)

    Iversen, Bo Vangsø; Kjærgaard, Charlotte; Petersen, Rasmus Jes;

    of the water load coming from the tile drainage system is therefore essential. This work aims at predicting tile drainage discharge using dynamic as well as a statistical predictive models. A large dataset of historical tile drain discharge data, daily discharge values as well as yearly average values were......More than 50 % of Danish agricultural areas are expected to be artificial tile drained. Transport of water and nutrients through the tile drain system to the aquatic environment is expected to be significant. For different mitigation strategies such as constructed wetlands an exact knowledge...... used in the analysis. For the dynamic modelling, a simple linear reservoir model was used where different outlets in the model represented tile drain as well as groundwater discharge outputs. This modelling was based on daily measured tile drain discharge values. The statistical predictive model...

  19. CO-AXIAL DISCHARGES

    Science.gov (United States)

    Luce, J.S.; Smith, L.P.

    1960-11-22

    A method and apparatus are given for producing coaxial arc discharges in an evacuated enclosure and within a strong, confining magnetic field. The arcs are maintained at a high potential difference. Electrons will diffuse to the more positive arc from the negative arc, and positive ions will diffuse from the more positive arc to the negative arc. Coaxial arc discharges have the advantage that ions which return to strike the positive arc discharge will lose no energy since they do not strike a solid wall or electrode. Those discharges are useful in confining an ionized plasma between the discharges, and have the advantage of preventing impurities from the walls of the enclosure from entering ihe plasma area because of the arc barrier set up bv the cylindrical outer arc.

  20. EFFECTIVE DISCHARGE CALCULATION GUIDE

    Institute of Scientific and Technical Information of China (English)

    D.S.BIEDENHARN; C.R.THORNE; P.J.SOAR; R.D.HEY; C.C.WATSON

    2001-01-01

    This paper presents a procedure for calculating the effective discharge for rivers with alluvial channels.An alluvial river adjusts the bankfull shape and dimensions of its channel to the wide range of flows that mobilize the boundary sediments. It has been shown that time-averaged river morphology is adjusted to the flow that, over a prolonged period, transports most sediment. This is termed the effective discharge.The effective discharge may be calculated provided that the necessary data are available or can be synthesized. The procedure for effective discharge calculation presented here is designed to have general applicability, have the capability to be applied consistently, and represent the effects of physical processes responsible for determining the channel, dimensions. An example of the calculations necessary and applications of the effective discharge concept are presented.

  1. Chaotic memristive circuit: equivalent circuit realization and dynamical analysis

    Institute of Scientific and Technical Information of China (English)

    Bao Bo-Cheng; Xu Jian-Ping; Zhou Guo-Hua; Ma Zheng-Hua; Zou Ling

    2011-01-01

    In this paper,a practical equivalent circuit of an active flux-controlled memristor characterized by smooth piecewise-quadratic nonlinearity is designed and an experimental chaotic memristive circuit is implemented.The chaotic memristive circuit has an equilibrium set and its stability is dependent on the initial state of the memristor.The initial state-dependent and the circuit parameter-dependent dynamics of the chaotic memristive circuit are investigated via phase portraits,bifurcation diagrams and Lyapunov exponents.Both experimental and simulation results validate the proposed equivalent circuit realization of the active flux-controlled memristor.

  2. Analysis of radiofrequency discharges in plasma

    Science.gov (United States)

    Kumar, Devendra; McGlynn, Sean P.

    1992-01-01

    Separation of laser optogalvanic signals in plasma into two components: (1) an ionization rate change component, and (2) a photoacoustic mediated component. This separation of components may be performed even when the two components overlap in time, by measuring time-resolved laser optogalvanic signals in an rf discharge plasma as the rf frequency is varied near the electrical resonance peak of the plasma and associated driving/detecting circuits. A novel spectrometer may be constructed to make these measurements. Such a spectrometer would be useful in better understanding and controlling such processes as plasma etching and plasma deposition.

  3. Primer printed circuit boards

    CERN Document Server

    Argyle, Andrew

    2009-01-01

    Step-by-step instructions for making your own PCBs at home. Making your own printed circuit board (PCB) might seem a daunting task, but once you master the steps, it's easy to attain professional-looking results. Printed circuit boards, which connect chips and other components, are what make almost all modern electronic devices possible. PCBs are made from sheets of fiberglass clad with copper, usually in multiplelayers. Cut a computer motherboard in two, for instance, and you'll often see five or more differently patterned layers. Making boards at home is relatively easy

  4. Current Conveyor Equivalent Circuits

    Directory of Open Access Journals (Sweden)

    Tejmal S. Rathore

    2012-02-01

    Full Text Available An equivalence between a class of (current conveyor CC II+ and CC II- circuits is established. CC IIequivalent circuit uses one extra element. However, under certain condition, the extra element can be eliminated. As an illustration of the application of this equivalence, minimal first and second order all-pass filters are derived. Incertain cases, it is possible to compensate the effect of the input resistor of CC at port X. At the end, an open problem of realizing an Nth order (N > 2 minimal all-pass filter is stated.

  5. Circuit design for reliability

    CERN Document Server

    Cao, Yu; Wirth, Gilson

    2015-01-01

    This book presents physical understanding, modeling and simulation, on-chip characterization, layout solutions, and design techniques that are effective to enhance the reliability of various circuit units.  The authors provide readers with techniques for state of the art and future technologies, ranging from technology modeling, fault detection and analysis, circuit hardening, and reliability management. Provides comprehensive review on various reliability mechanisms at sub-45nm nodes; Describes practical modeling and characterization techniques for reliability; Includes thorough presentation of robust design techniques for major VLSI design units; Promotes physical understanding with first-principle simulations.

  6. Inrush Current Control Circuit

    Science.gov (United States)

    Cole, Steven W. (Inventor)

    2002-01-01

    An inrush current control circuit having an input terminal connected to a DC power supply and an output terminal connected to a load capacitor limits the inrush current that charges up the load capacitor during power up of a system. When the DC power supply applies a DC voltage to the input terminal, the inrush current control circuit produces a voltage ramp at the load capacitor instead of an abrupt DC voltage. The voltage ramp results in a constant low level current to charge up the load capacitor, greatly reducing the current drain on the DC power supply.

  7. Electronic circuits fundamentals & applications

    CERN Document Server

    Tooley, Mike

    2015-01-01

    Electronics explained in one volume, using both theoretical and practical applications.New chapter on Raspberry PiCompanion website contains free electronic tools to aid learning for students and a question bank for lecturersPractical investigations and questions within each chapter help reinforce learning Mike Tooley provides all the information required to get to grips with the fundamentals of electronics, detailing the underpinning knowledge necessary to appreciate the operation of a wide range of electronic circuits, including amplifiers, logic circuits, power supplies and oscillators. The

  8. Varactor with integrated micro-discharge source

    Science.gov (United States)

    Elizondo-Decanini, Juan M.; Manginell, Ronald P.; Moorman, Matthew W.

    2016-10-18

    An apparatus that includes a varactor element and an integrated micro-discharge source is disclosed herein. In a general embodiment, the apparatus includes at least one np junction and at least one voltage source that is configured to apply voltage across the np junction. The apparatus further includes an aperture that extends through the np junction. When the voltage is applied across the np junction, gas in the aperture is ionized, forming a plasma, in turn causing a micro-discharge (of light, charge particles, and space charge) to occur. The light (charge particles, and space charge) impinges upon the surface of the np junction exposed in the aperture, thereby altering capacitance of the np junction. When used within an oscillator circuit, the effect of the plasma on the np-junction extends the capacitance changes of the np-junction and extends the oscillator frequency range in ways not possible by a conventional voltage controlled oscillator (VCO).

  9. Varactor with integrated micro-discharge source

    Energy Technology Data Exchange (ETDEWEB)

    Elizondo-Decanini, Juan M.; Manginell, Ronald P.; Moorman, Matthew W.

    2016-10-18

    An apparatus that includes a varactor element and an integrated micro-discharge source is disclosed herein. In a general embodiment, the apparatus includes at least one np junction and at least one voltage source that is configured to apply voltage across the np junction. The apparatus further includes an aperture that extends through the np junction. When the voltage is applied across the np junction, gas in the aperture is ionized, forming a plasma, in turn causing a micro-discharge (of light, charge particles, and space charge) to occur. The light (charge particles, and space charge) impinges upon the surface of the np junction exposed in the aperture, thereby altering capacitance of the np junction. When used within an oscillator circuit, the effect of the plasma on the np-junction extends the capacitance changes of the np-junction and extends the oscillator frequency range in ways not possible by a conventional voltage controlled oscillator (VCO).

  10. Filament Discharge Phenomena in Fingerprint Acquisition by Dielectric Barrier Discharge

    Institute of Scientific and Technical Information of China (English)

    WENG Ming; XU Weijun; LIU Qiang

    2007-01-01

    In this paper, the dielectric barrier discharge fingerprint acquisition technique is introduced. The filament discharge phenomena were observed in the process of fingerprint acquisition. The filament discharge reduced the quality of fingerprint images. Obviously, it was necessary to eliminate streamer discharges in order to get good fingerprint images. The streamer discharge was considered to be the cause of the filament discharge in the experiment. The relationship between the critical electric field and the discharge gap was calculated with the Raether's model of streamer discharge. The calculated results and our experiment proved that it would be difficult for the streamer discharge to occur when the discharge gap was narrow. With a narrow discharge gap, the discharge was homogeneous, and the fingerprint images were clear and large in area. The images obtained in the experiment are very suitable for fingerprint identification as they contain more information.

  11. ESD analog circuits and design

    CERN Document Server

    Voldman, Steven H

    2014-01-01

    A comprehensive and in-depth review of analog circuit layout, schematic architecture, device, power network and ESD design This book will provide a balanced overview of analog circuit design layout, analog circuit schematic development, architecture of chips, and ESD design.  It will start at an introductory level and will bring the reader right up to the state-of-the-art. Two critical design aspects for analog and power integrated circuits are combined. The first design aspect covers analog circuit design techniques to achieve the desired circuit performance. The second and main aspect pres

  12. Capacitor discharge engineering

    CERN Document Server

    Früngel, Frank B A

    1976-01-01

    High Speed Pulse Technology, Volume III: Capacitor Discharge Engineering covers the production and practical application of capacitor dischargers for the generation and utilization of high speed pulsed of energy in different forms. This nine-chapter volume discusses the principles of electric current, voltage, X-rays, gamma rays, heat, beams of electrons, neutrons and ions, magnetic fields, sound, and shock waves in gases and liquids. Considerable chapters consider the applications of capacitor discharges, such as impulse hardening of steel, ultrapulse welding of precision parts, X-ray flash t

  13. Bioluminescent bioreporter integrated circuit

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Michael L. (Knoxville, TN); Sayler, Gary S. (Blaine, TN); Paulus, Michael J. (Knoxville, TN)

    2000-01-01

    Disclosed are monolithic bioelectronic devices comprising a bioreporter and an OASIC. These bioluminescent bioreporter integrated circuit are useful in detecting substances such as pollutants, explosives, and heavy-metals residing in inhospitable areas such as groundwater, industrial process vessels, and battlefields. Also disclosed are methods and apparatus for environmental pollutant detection, oil exploration, drug discovery, industrial process control, and hazardous chemical monitoring.

  14. Superconducting Quantum Circuits

    NARCIS (Netherlands)

    Majer, J.B.

    2002-01-01

    This thesis describes a number of experiments with superconducting cir- cuits containing small Josephson junctions. The circuits are made out of aluminum islands which are interconnected with a very thin insulating alu- minum oxide layer. The connections form a Josephson junction. The current trough

  15. Quantum secure circuit evaluation

    Institute of Scientific and Technical Information of China (English)

    CHEN Huanhuan; LI Bin; ZHUANG Zhenquan

    2004-01-01

    In order to solve the problem of classical secure circuit evaluation, this paper proposes a quantum approach. In this approach, the method of inserting redundant entangled particles and quantum signature has been employed to strengthen the security of the system. Theoretical analysis shows that our solution is secure against classical and quantum attacks.

  16. Abdominal radiation - discharge

    Science.gov (United States)

    Radiation - abdomen - discharge; Cancer - abdominal radiation; Lymphoma - abdominal radiation ... When you have radiation treatment for cancer, your body goes through changes. About 2 weeks after radiation treatment starts, you might notice changes ...

  17. Chest radiation - discharge

    Science.gov (United States)

    Radiation - chest - discharge; Cancer - chest radiation; Lymphoma - chest radiation ... When you have radiation treatment for cancer, your body goes through changes. About 2 weeks after your first treatment: It may be hard ...

  18. Breast radiation - discharge

    Science.gov (United States)

    Radiation - breast - discharge ... away around 4 to 6 weeks after the radiation treatment is over. You may notice changes in ... breast looks or feels (if you are getting radiation after a lumpectomy). These changes include: Soreness or ...

  19. Corneal transplant - discharge

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/patientinstructions/000243.htm Corneal transplant - discharge To use the sharing features on this page, please enable JavaScript. You had a corneal transplant. Most of the tissue of your cornea (the ...

  20. Brain radiation - discharge

    Science.gov (United States)

    Radiation - brain - discharge; Cancer-brain radiation; Lymphoma - brain radiation; Leukemia - brain radiation ... Decadron) while you are getting radiation to the brain. It may make you hungrier, cause leg swelling ...

  1. Pneumonia - children - discharge

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000011.htm Pneumonia in children - discharge To use the sharing features ... this page, please enable JavaScript. Your child has pneumonia, which is an infection in the lungs. In ...

  2. Pneumonia - adults - discharge

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000017.htm Pneumonia in adults - discharge To use the sharing features on this page, please enable JavaScript. You have pneumonia, which is an infection in your lungs. In ...

  3. Inguinal hernia - discharge

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/patientinstructions/000274.htm Inguinal hernia repair - discharge To use the sharing features on ... your child had surgery to repair an inguinal hernia caused by a weakness in the abdominal wall ...

  4. Cosmetic breast surgery - discharge

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000273.htm Cosmetic breast surgery - discharge To use the sharing features on this page, please enable JavaScript. You had cosmetic breast surgery to change the size or shape ...

  5. Pectus excavatum - discharge

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000298.htm Pectus excavatum - discharge To use the sharing features on this ... You or your child had surgery to correct pectus excavatum. This is a deformity of the front of ...

  6. Hip fracture - discharge

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000168.htm Hip fracture - discharge To use the sharing features on this page, please enable JavaScript. Hip fracture surgery is done to repair a break in ...

  7. Capacitor discharge pulse analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Michael Sean; Griffiths, Stewart K.; Tanner, Danelle Mary

    2013-08-01

    Capacitors used in firing sets and other high discharge current applications are discharge tested to verify performance of the capacitor against the application requirements. Parameters such as capacitance, inductance, rise time, pulse width, peak current and current reversal must be verified to ensure that the capacitor will meet the application needs. This report summarizes an analysis performed on the discharge current data to extract these parameters by fitting a second-order system model to the discharge data and using this fit to determine the resulting performance metrics. Details of the theory and implementation are presented. Using the best-fit second-order system model to extract these metrics results in less sensitivity to noise in the measured data and allows for direct extraction of the total series resistance, inductance, and capacitance.

  8. Pelvic radiation - discharge

    Science.gov (United States)

    Radiation of the pelvis - discharge; Cancer treatment - pelvic radiation; Prostate cancer - pelvic radiation; Ovarian cancer - pelvic radiation; Cervical cancer - pelvic radiation; Uterine cancer - pelvic radiation; Rectal cancer - pelvic radiation

  9. Resistor Combinations for Parallel Circuits.

    Science.gov (United States)

    McTernan, James P.

    1978-01-01

    To help simplify both teaching and learning of parallel circuits, a high school electricity/electronics teacher presents and illustrates the use of tables of values for parallel resistive circuits in which total resistances are whole numbers. (MF)

  10. Identifying discharge practice training needs.

    Science.gov (United States)

    Lees, L; Emmerson, K

    A training needs analysis tool was developed to identify nurses' discharge training needs and to improve discharge practice. The tool includes 49 elements of discharge practice subdivided into four areas: corporate, operational, clinical and nurse-led discharge. The tool was disseminated to 15 wards on two hospital sites with assistance from the practice development team. Analysis of discharge training is important to assess discharge training needs and to identify staff who may assist with training.

  11. Electronic circuits and systems: A compilation. [including integrated circuits, logic circuits, varactor diode circuits, low pass filters, and optical equipment circuits

    Science.gov (United States)

    1975-01-01

    Technological information is presented electronic circuits and systems which have potential utility outside the aerospace community. Topics discussed include circuit components such as filters, converters, and integrators, circuits designed for use with specific equipment or systems, and circuits designed primarily for use with optical equipment or displays.

  12. The LMT circuit and SPICE

    DEFF Research Database (Denmark)

    Lindberg, Erik; Murali, K.; Tamacevicius, Arunas

    2006-01-01

    The state equations of the LMT circuit are modeled as a dedicated analogue computer circuit and solved by means of PSpice. The nonlinear part of the system is studied. Problems with the PSpice program are presented.......The state equations of the LMT circuit are modeled as a dedicated analogue computer circuit and solved by means of PSpice. The nonlinear part of the system is studied. Problems with the PSpice program are presented....

  13. Behavioral synthesis of asynchronous circuits

    DEFF Research Database (Denmark)

    Nielsen, Sune Fallgaard

    2005-01-01

    This thesis presents a method for behavioral synthesis of asynchronous circuits, which aims at providing a synthesis flow which uses and tranfers methods from synchronous circuits to asynchronous circuits. We move the synchronous behavioral synthesis abstraction into the asynchronous handshake...... is idle. This reduces unnecessary switching activity in the individual functional units and therefore the energy consumption of the entire circuit. A collection of behavioral synthesis algorithms have been developed allowing the designer to perform time and power constrained design space exploration...

  14. Diode, transistor & fet circuits manual

    CERN Document Server

    Marston, R M

    2013-01-01

    Diode, Transistor and FET Circuits Manual is a handbook of circuits based on discrete semiconductor components such as diodes, transistors, and FETS. The book also includes diagrams and practical circuits. The book describes basic and special diode characteristics, heat wave-rectifier circuits, transformers, filter capacitors, and rectifier ratings. The text also presents practical applications of associated devices, for example, zeners, varicaps, photodiodes, or LEDs, as well as it describes bipolar transistor characteristics. The transistor can be used in three basic amplifier configuration

  15. Statistical circuit design for yield improvement in CMOS circuits

    Science.gov (United States)

    Kamath, H. J.; Purviance, J. E.; Whitaker, S. R.

    1990-01-01

    This paper addresses the statistical design of CMOS integrated circuits for improved parametric yield. The work uses the Monte Carlo technique of circuit simulation to obtain an unbiased estimation of the yield. A simple graphical analysis tool, the yield factor histogram, is presented. The yield factor histograms are generated by a new computer program called SPICENTER. Using the yield factor histograms, the most sensitive circuit parameters are noted, and their nominal values are changed to improve the yield. Two basic CMOS example circuits, one analog and one digital, are chosen and their designs are 'centered' to illustrate the use of the yield factor histograms for statistical circuit design.

  16. Circuit Bodging: Atari Punk Console

    NARCIS (Netherlands)

    Allen, B.

    2009-01-01

    Circuit bodging is back! Maxwell is proud to present small, simple, but ultimately lovable little circuits to build for your own, personal pleasure. In this edition we are featuring: The Atari Punk Console. The Atari Punk Console (or APC) is a 555 timer IC based noise maker circuit. The original was

  17. Circuit Bodging: Atari Punk Console

    NARCIS (Netherlands)

    Allen, B.

    2009-01-01

    Circuit bodging is back! Maxwell is proud to present small, simple, but ultimately lovable little circuits to build for your own, personal pleasure. In this edition we are featuring: The Atari Punk Console. The Atari Punk Console (or APC) is a 555 timer IC based noise maker circuit. The original was

  18. Selective Manipulation of Neural Circuits.

    Science.gov (United States)

    Park, Hong Geun; Carmel, Jason B

    2016-04-01

    Unraveling the complex network of neural circuits that form the nervous system demands tools that can manipulate specific circuits. The recent evolution of genetic tools to target neural circuits allows an unprecedented precision in elucidating their function. Here we describe two general approaches for achieving circuit specificity. The first uses the genetic identity of a cell, such as a transcription factor unique to a circuit, to drive expression of a molecule that can manipulate cell function. The second uses the spatial connectivity of a circuit to achieve specificity: one genetic element is introduced at the origin of a circuit and the other at its termination. When the two genetic elements combine within a neuron, they can alter its function. These two general approaches can be combined to allow manipulation of neurons with a specific genetic identity by introducing a regulatory gene into the origin or termination of the circuit. We consider the advantages and disadvantages of both these general approaches with regard to specificity and efficacy of the manipulations. We also review the genetic techniques that allow gain- and loss-of-function within specific neural circuits. These approaches introduce light-sensitive channels (optogenetic) or drug sensitive channels (chemogenetic) into neurons that form specific circuits. We compare these tools with others developed for circuit-specific manipulation and describe the advantages of each. Finally, we discuss how these tools might be applied for identification of the neural circuits that mediate behavior and for repair of neural connections.

  19. Formation of an Apokampic Discharge Under Atmospheric Pressure Conditions

    Science.gov (United States)

    Skakun, V. S.; Panarin, V. A.; Pechenitsyn, D. S.; Sosnin, É. A.; Tarasenko, V. F.

    2016-09-01

    A new phenomenon is observed in a spark discharge developing under normal conditions in air in a discharge circuit with a capacitive decoupling. It consists in the current channel bending becoming a source of a 4-6 cm long plasma jet directed across the channel. The phenomenon is termed an apokampic discharge or an apokamp. Its emission spectrum contains the bands of electron-vibration transitions from the second positive group of molecular nitrogen. The conditions of formation of an apokamp are experimentally determined. A conclusion is drawn that in order construct a physical model of an apokamp, one has to take into account: 1) the presence of a local gas overheating in the site of the current channel bending, 2) the similarity of the current and voltage time dependences in the corona discharge and in the current channel (becoming a source of an apokamp), and 3) the length of the apokamp plasma jet.

  20. LC-Circuit Calorimetry

    CERN Document Server

    Bossen, Olaf

    2011-01-01

    We present a new type of calorimeter in which we couple an unknown heat capacity with the aid of Peltier elements to an electrical circuit. The use of an electrical inductance and an amplifier in the circuit allows us to achieve autonomous oscillations, and the measurement of the corresponding resonance frequency makes it possible to accurately measure the heat capacity with an intrinsic statistical error that decreases as ~t^{-3/2} with measuring time t, as opposed to a corresponding error ~t^{-1/2} in the conventional alternating current (a.c.) method to measure heat capacities. We have built a demonstration experiment to show the feasibility of the new technique, and we have tested it on a gadolinium sample at its transition to the ferromagnetic state.

  1. Neuromorphic silicon neuron circuits

    Directory of Open Access Journals (Sweden)

    Giacomo eIndiveri

    2011-05-01

    Full Text Available Hardware implementations of spiking neurons can be extremely useful for a large variety of applications, ranging from high-speed modeling of large-scale neural systems to real-time behaving systems, to bidirectional brain-machine interfaces. The specific circuit solutions used to implement silicon neurons depend on the application requirements. In this paper we describe the most common building blocks and techniques used to implement these circuits, and present an overview of a wide range of neuromorphic silicon neurons, which implement different computational models, ranging from biophysically realistic and conductance based Hodgkin-Huxley models to bi-dimensional generalized adaptive Integrate and Fire models. We compare the different design methodologies used for each silicon neuron design described, and demonstrate their features with experimental results, measured from a wide range of fabricated VLSI chips.

  2. Cartography of serotonergic circuits.

    Science.gov (United States)

    Sparta, Dennis R; Stuber, Garret D

    2014-08-06

    Serotonin is an essential neuromodulator, but the precise circuit connectivity that regulates serotonergic neurons has not been well defined. Using rabies virus tracing strategies Weissbourd et al. (2014) and Pollak Dorocic et al. (2014) in this issue of Neuron and Ogawa et al. (2014) in Cell Reports provide a comprehensive map of the inputs to serotonergic neurons, highlighting the complexity and diversity of potential upstream cellular regulators. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Inkjet deposited circuit components

    Science.gov (United States)

    Bidoki, S. M.; Nouri, J.; Heidari, A. A.

    2010-05-01

    All-printed electronics as a means of achieving ultra-low-cost electronic circuits has attracted great interest in recent years. Inkjet printing is one of the most promising techniques by which the circuit components can be ultimately drawn (i.e. printed) onto the substrate in one step. Here, the inkjet printing technique was used to chemically deposit silver nanoparticles (10-200 nm) simply by ejection of silver nitrate and reducing solutions onto different substrates such as paper, PET plastic film and textile fabrics. The silver patterns were tested for their functionality to work as circuit components like conductor, resistor, capacitor and inductor. Different levels of conductivity were achieved simply by changing the printing sequence, inks ratio and concentration. The highest level of conductivity achieved by an office thermal inkjet printer (300 dpi) was 5.54 × 105 S m-1 on paper. Inkjet deposited capacitors could exhibit a capacitance of more than 1.5 nF (parallel plate 45 × 45 mm2) and induction coils displayed an inductance of around 400 µH (planar coil 10 cm in diameter). Comparison of electronic performance of inkjet deposited components to the performance of conventionally etched items makes the technique highly promising for fabricating different printed electronic devices.

  4. Digital integrated circuits

    Science.gov (United States)

    Polasek, P.; Halamik, J.

    1984-05-01

    The term semicustom designed integrated circuits denotes integrated circuits of an all purpose character in which the production of chips is completed by using one to three custom design stencil type exposure masks. This involves in most cases interconnecting masks that are used to devise the circuit function desired by the customer. Silicon plates with an all purpose gate matrix are produced up to the interconnection level and can be kept at this phase in storage, after which a customer's specific demands can be met very expediently. All purpose logic fields containing 200 logic gates on a chip and an all purpose chip to be expanded to 1,000 logic gates are discussed. The technology facilitates the devising of fast gates with a delay of approximately 5 ns and power dissipation of 1 mW. In assembly it will be possible to make use of the entire assortment of the currently used casings with 16, 18, 20, 24, 28 and 40 outlets. In addition to the development of the mentioned technology, a general methodology for design of the mentioned gate fields is currently under way.

  5. Changes to the shuttle circuits

    CERN Multimedia

    GS Department

    2011-01-01

    To fit with passengers expectation, there will be some changes to the shuttle circuits as from Monday 10 October. See details on http://cern.ch/ShuttleService (on line on 7 October). Circuit No. 5 is cancelled as circuit No. 1 also stops at Bldg. 33. In order to guarantee shorter travel times, circuit No. 1 will circulate on Meyrin site only and circuit No. 2, with departures from Bldg. 33 and 500, on Prévessin site only. Site Services Section

  6. Power system with an integrated lubrication circuit

    Science.gov (United States)

    Hoff, Brian D.; Akasam, Sivaprasad; Algrain, Marcelo C.; Johnson, Kris W.; Lane, William H.

    2009-11-10

    A power system includes an engine having a first lubrication circuit and at least one auxiliary power unit having a second lubrication circuit. The first lubrication circuit is in fluid communication with the second lubrication circuit.

  7. FTIR Analysis of Flowing Afterglow from a High-Frequency Spark Discharge

    Science.gov (United States)

    White, Allen; Hieftje, Gary M.; Ray, Steve; Pfeuffer, Kevin

    2014-06-01

    Plasmas are often used as ionization sources for ambient mass spectrometry (AMS). Here, the flowing afterglow of a novel high-energy spark discharge system, operated in nitrogen at high repetition rates, is investigated as a source for AMS. The spark discharge here is the same as that of an automobile ignition circuit.Combustion in automobile engines is initiated by a spark ignition system that is designed to deliver short-duration,high-voltage sparks to multiple engine cylinders. The arrangement utilized in this study is a modified discharge configuration designed to produce similarly short-duration, high-voltage discharges. It consists of an automotive ignition coil that is activated by a spark initiation circuit that discharges in turn into a cell with neutral gas input flow and ultimately into the collection orifice of a mass spectrometer. The discharge voltage is approximately 40kV at 800 Hz. High-frequency spark discharges in a nitrogen flow produce reagent ions such as NO+. In order to better evaluate the effectiveness of the discharge in producing reagent ions, an FTIR is utilized to measure IR active species such as nitric oxide, hydroxide, ozone, and water in the afterglow of the spark discharge during variation of discharge parameters. Time-resolved IR emission spectra provide additional insight into the reagent ion production mechanisms.

  8. Memristor based startup circuit for self biased circuits

    Science.gov (United States)

    Das, Mangal; Singh, Amit Kumar; Rathi, Amit; Singhal, Sonal

    2016-04-01

    This paper presents the design of a Memristor based startup circuit for self biased circuits. Memristor has many advantages over conventional CMOS devices such as low leakage current at nanometer scale, easy to manufacture. In this work the switching characteristics of memristor is utilized. First the theoretical equations describing the switching behavior of memristor are investigated. To prove the switching capability of Memristor, a startup circuit based on memristor is proposed which uses series combination of Memristor and capacitor. Proposed circuit is compared with the previously reported MOSFET based startup circuits. Comparison of different circuits was done to validate the results. Simulation results show that memristor based circuit can attain on (I = 12.94 µA) to off state (I = 1 .2 µA) in 25 ns while the MOSFET based startup circuits take on (I = 14.19 µA) to off state (I = 1.4 µA) in more than 90 ns. The benefit comes in terms of area because the number of components used in the circuit are lesser than the conventional startup circuits.

  9. Microwave Discharge Ion Sources

    CERN Document Server

    Celona, L

    2013-01-01

    This chapter describes the basic principles, design features and characteristics of microwave discharge ion sources. A suitable source for the production of intense beams for high-power accelerators must satisfy the requirements of high brightness, stability and reliability. The 2.45 GHz off-resonance microwave discharge sources are ideal devices to generate the required beams, as they produce multimilliampere beams of protons, deuterons and singly charged ions. A description of different technical designs will be given, analysing their performance, with particular attention being paid to the quality of the beam, especially in terms of its emittance.

  10. Experimental study on high-voltage solar array sustained arc discharge induced by high charging

    Institute of Scientific and Technical Information of China (English)

    LI Kai; XIE ErQing; WANG Li; LIU YanXia; YANG Yang; SUN YanZheng; CUI XinYu; MAI ShengLi

    2007-01-01

    It has been reported that sustained arc discharge induced by electrostatic discharge (ESD) could cause permanent damage to high-power and high-voltage solar array of spacecrafts. The paper focuses on ESD simulating experiments on Si and GaAs samples, and induces sustained arc discharge. The physical mechanism of sustained arc discharge is discussed by comparing the charging/discharging phenomena between Si and GaAs samples. The experiments show that sustained arc discharge can produce a permanent short-circuit channel between solar cell strings through which the solar array's photovoltaic power may flow out sustainedly. The analyses show that sustained arc discharge strongly depends on solar array structure, solar array operating voltage, ESD characteristics and cell materials.

  11. Experimental study on high-voltage solar array sustained arc discharge induced by high charging

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    It has been reported that sustained arc discharge induced by electrostatic discharge (ESD) could cause permanent damage to high-power and high-voltage solar array of spacecrafts. The paper focuses on ESD simulating experiments on Si and GaAs samples, and induces sustained arc discharge. The physical mechanism of sustained arc discharge is discussed by comparing the charging/discharging phenomena between Si and GaAs samples. The experiments show that sustained arc discharge can produce a permanent short-circuit channel between solar cell strings through which the solar array’s photovoltaic power may flow out sustainedly. The analyses show that sustained arc discharge strongly depends on solar array structure, solar array operating voltage, ESD characteristics and cell materials.

  12. Circuits and methods for determination and control of signal transition rates in electrochemical cells

    Science.gov (United States)

    Jamison, David Kay

    2016-04-12

    A charge/discharge input is for respectively supplying charge to, or drawing charge from, an electrochemical cell. A transition modifying circuit is coupled between the charge/discharge input and a terminal of the electrochemical cell and includes at least one of an inductive constituent, a capacitive constituent and a resistive constituent selected to generate an adjusted transition rate on the terminal sufficient to reduce degradation of a charge capacity characteristic of the electrochemical cell. A method determines characteristics of the transition modifying circuit. A degradation characteristic of the electrochemical cell is analyzed relative to a transition rate of the charge/discharge input applied to the electrochemical cell. An adjusted transition rate is determined for a signal to be applied to the electrochemical cell that will reduce the degradation characteristic. At least one of an inductance, a capacitance, and a resistance is selected for the transition modifying circuit to achieve the adjusted transition rate.

  13. Electric circuits problem solver

    CERN Document Server

    REA, Editors of

    2012-01-01

    Each Problem Solver is an insightful and essential study and solution guide chock-full of clear, concise problem-solving gems. All your questions can be found in one convenient source from one of the most trusted names in reference solution guides. More useful, more practical, and more informative, these study aids are the best review books and textbook companions available. Nothing remotely as comprehensive or as helpful exists in their subject anywhere. Perfect for undergraduate and graduate studies.Here in this highly useful reference is the finest overview of electric circuits currently av

  14. Linear integrated circuits

    CERN Document Server

    Carr, Joseph

    1996-01-01

    The linear IC market is large and growing, as is the demand for well trained technicians and engineers who understand how these devices work and how to apply them. Linear Integrated Circuits provides in-depth coverage of the devices and their operation, but not at the expense of practical applications in which linear devices figure prominently. This book is written for a wide readership from FE and first degree students, to hobbyists and professionals.Chapter 1 offers a general introduction that will provide students with the foundations of linear IC technology. From chapter 2 onwa

  15. Optoelectronics circuits manual

    CERN Document Server

    Marston, R M

    1999-01-01

    This manual is a useful single-volume guide specifically aimed at the practical design engineer, technician, and experimenter, as well as the electronics student and amateur. It deals with the subject in an easy to read, down to earth, and non-mathematical yet comprehensive manner, explaining the basic principles and characteristics of the best known devices, and presenting the reader with many practical applications and over 200 circuits. Most of the ICs and other devices used are inexpensive and readily available types, with universally recognised type numbers.The second edition

  16. Nano integrated circuit process

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Yung Sup

    2004-02-15

    This book contains nine chapters, which are introduction of manufacture of semiconductor chip, oxidation such as Dry-oxidation, wet oxidation, oxidation model and oxide film, diffusion like diffusion process, diffusion equation, diffusion coefficient and diffusion system, ion implantation, including ion distribution, channeling, multiimplantation and masking and its system, sputtering such as CVD and PVD, lithography, wet etch and dry etch, interconnection and flattening like metal-silicon connection, silicide, multiple layer metal process and flattening, an integrated circuit process, including MOSFET and CMOS.

  17. Photonic Integrated Circuits

    Science.gov (United States)

    Krainak, Michael; Merritt, Scott

    2016-01-01

    Integrated photonics generally is the integration of multiple lithographically defined photonic and electronic components and devices (e.g. lasers, detectors, waveguides passive structures, modulators, electronic control and optical interconnects) on a single platform with nanometer-scale feature sizes. The development of photonic integrated circuits permits size, weight, power and cost reductions for spacecraft microprocessors, optical communication, processor buses, advanced data processing, and integrated optic science instrument optical systems, subsystems and components. This is particularly critical for small spacecraft platforms. We will give an overview of some NASA applications for integrated photonics.

  18. Electronic logic circuits

    CERN Document Server

    Gibson, J

    2013-01-01

    Most branches of organizing utilize digital electronic systems. This book introduces the design of such systems using basic logic elements as the components. The material is presented in a straightforward manner suitable for students of electronic engineering and computer science. The book is also of use to engineers in related disciplines who require a clear introduction to logic circuits. This third edition has been revised to encompass the most recent advances in technology as well as the latest trends in components and notation. It includes a wide coverage of application specific integrate

  19. Electronics circuits and systems

    CERN Document Server

    Bishop, Owen

    2011-01-01

    The material in Electronics - Circuits and Systems is a truly up-to-date textbook, with coverage carefully matched to the electronics units of the 2007 BTEC National Engineering and the latest AS and A Level specifications in Electronics from AQA, OCR and WJEC. The material has been organized with a logical learning progression, making it ideal for a wide range of pre-degree courses in electronics. The approach is student-centred and includes: numerous examples and activities; web research topics; Self Test features, highlighted key facts, formulae and definitions. Ea

  20. Electronics circuits and systems

    CERN Document Server

    Bishop, Owen

    2007-01-01

    The material in Electronics - Circuits and Systems is a truly up-to-date textbook, with coverage carefully matched to the electronics units of the 2007 BTEC National Engineering and the latest AS and A Level specifications in Electronics from AQA, OCR and WJEC. The material has been organized with a logical learning progression, making it ideal for a wide range of pre-degree courses in electronics. The approach is student-centred and includes: numerous examples and activities; web research topics; Self Test features, highlighted key facts, formulae and definitions. Each chapter ends with a set

  1. Sequential circuit design for radiation hardened multiple voltage integrated circuits

    Science.gov (United States)

    Clark, Lawrence T.; McIver, III, John K.

    2009-11-24

    The present invention includes a radiation hardened sequential circuit, such as a bistable circuit, flip-flop or other suitable design that presents substantial immunity to ionizing radiation while simultaneously maintaining a low operating voltage. In one embodiment, the circuit includes a plurality of logic elements that operate on relatively low voltage, and a master and slave latches each having storage elements that operate on a relatively high voltage.

  2. MANAGEMENT OF VAGINAL DISCHARGE

    African Journals Online (AJOL)

    Enrique

    Vaginal infection is one of the top 25 reasons for women to consult doctors in the. USA. The 3 most common ... VAGINAL DISCHARGE IN POSTMENOPAUSAL WOMEN. In this age group, the .... More than one host fac- tor may be involved and ...

  3. Novel Molecular Discharges

    NARCIS (Netherlands)

    Hilbig, R.; Koerber, A.; Schwan, S.; Hayashi, D.

    2011-01-01

    A systematic investigation into halides and ~oxides showed the high potential of transition metal oxides as visible radiators for highly efficient gas discharge light sources. Zirconium monoxide (ZrO) has been identified as most promising candidate combining highly attractive green and red emission

  4. Electrical Discharge Machining.

    Science.gov (United States)

    Montgomery, C. M.

    The manual is for use by students learning electrical discharge machining (EDM). It consists of eight units divided into several lessons, each designed to meet one of the stated objectives for the unit. The units deal with: introduction to and advantages of EDM, the EDM process, basic components of EDM, reaction between forming tool and workpiece,…

  5. Flight Model Discharge System

    Science.gov (United States)

    1988-06-01

    Dielectric Sensor ................................... 12 5 ESA S/N 001 ......................................... 24 6 Preliminary Test Sequence...71 28 Optical Transmission Loss of Contamination "Witness" Slide 3 .................................. 72 29 Apparatus used in FMDS Spectroscopic...Monitor ( TPU ). This sensor detects the electromagnetic pulses generated by the onset of arcing. (2) An active discharge device (plasma source). (3) A

  6. 49 CFR 236.13 - Spring switch; selection of signal control circuits through circuit controller.

    Science.gov (United States)

    2010-10-01

    ... circuits through circuit controller. 236.13 Section 236.13 Transportation Other Regulations Relating to...; selection of signal control circuits through circuit controller. The control circuits of signals governing... circuit controller, or through the contacts of relay repeating the position of such circuit...

  7. Quasi-Linear Circuit

    Science.gov (United States)

    Bradley, William; Bird, Ross; Eldred, Dennis; Zook, Jon; Knowles, Gareth

    2013-01-01

    This work involved developing spacequalifiable switch mode DC/DC power supplies that improve performance with fewer components, and result in elimination of digital components and reduction in magnetics. This design is for missions where systems may be operating under extreme conditions, especially at elevated temperature levels from 200 to 300 degC. Prior art for radiation-tolerant DC/DC converters has been accomplished utilizing classical magnetic-based switch mode converter topologies; however, this requires specific shielding and component de-rating to meet the high-reliability specifications. It requires complex measurement and feedback components, and will not enable automatic re-optimization for larger changes in voltage supply or electrical loading condition. The innovation is a switch mode DC/DC power supply that eliminates the need for processors and most magnetics. It can provide a well-regulated voltage supply with a gain of 1:100 step-up to 8:1 step down, tolerating an up to 30% fluctuation of the voltage supply parameters. The circuit incorporates a ceramic core transformer in a manner that enables it to provide a well-regulated voltage output without use of any processor components or magnetic transformers. The circuit adjusts its internal parameters to re-optimize its performance for changes in supply voltage, environmental conditions, or electrical loading at the output

  8. Automated Design of Quantum Circuits

    Science.gov (United States)

    Williams, Colin P.; Gray, Alexander G.

    2000-01-01

    In order to design a quantum circuit that performs a desired quantum computation, it is necessary to find a decomposition of the unitary matrix that represents that computation in terms of a sequence of quantum gate operations. To date, such designs have either been found by hand or by exhaustive enumeration of all possible circuit topologies. In this paper we propose an automated approach to quantum circuit design using search heuristics based on principles abstracted from evolutionary genetics, i.e. using a genetic programming algorithm adapted specially for this problem. We demonstrate the method on the task of discovering quantum circuit designs for quantum teleportation. We show that to find a given known circuit design (one which was hand-crafted by a human), the method considers roughly an order of magnitude fewer designs than naive enumeration. In addition, the method finds novel circuit designs superior to those previously known.

  9. Large-scale circuit simulation

    Science.gov (United States)

    Wei, Y. P.

    1982-12-01

    The simulation of VLSI (Very Large Scale Integration) circuits falls beyond the capabilities of conventional circuit simulators like SPICE. On the other hand, conventional logic simulators can only give the results of logic levels 1 and 0 with the attendent loss of detail in the waveforms. The aim of developing large-scale circuit simulation is to bridge the gap between conventional circuit simulation and logic simulation. This research is to investigate new approaches for fast and relatively accurate time-domain simulation of MOS (Metal Oxide Semiconductors), LSI (Large Scale Integration) and VLSI circuits. New techniques and new algorithms are studied in the following areas: (1) analysis sequencing (2) nonlinear iteration (3) modified Gauss-Seidel method (4) latency criteria and timestep control scheme. The developed methods have been implemented into a simulation program PREMOS which could be used as a design verification tool for MOS circuits.

  10. Integrated circuit cooled turbine blade

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ching-Pang; Jiang, Nan; Um, Jae Y.; Holloman, Harry; Koester, Steven

    2017-08-29

    A turbine rotor blade includes at least two integrated cooling circuits that are formed within the blade that include a leading edge circuit having a first cavity and a second cavity and a trailing edge circuit that includes at least a third cavity located aft of the second cavity. The trailing edge circuit flows aft with at least two substantially 180-degree turns at the tip end and the root end of the blade providing at least a penultimate cavity and a last cavity. The last cavity is located along a trailing edge of the blade. A tip axial cooling channel connects to the first cavity of the leading edge circuit and the penultimate cavity of the trailing edge circuit. At least one crossover hole connects the penultimate cavity to the last cavity substantially near the tip end of the blade.

  11. CMOS Nonlinear Signal Processing Circuits

    OpenAIRE

    2010-01-01

    The chapter describes various nonlinear signal processing CMOS circuits, including a high reliable WTA/LTA, simple MED cell, and low-voltage arbitrary order extractor. We focus the discussion on CMOS analog circuit design with reliable, programmable capability, and low voltage operation. It is a practical problem when the multiple identical cells are required to match and realized within a single chip using a conventional process. Thus, the design of high-reliable circuit is indeed needed. Th...

  12. Analog electronic neural network circuits

    Energy Technology Data Exchange (ETDEWEB)

    Graf, H.P.; Jackel, L.D. (AT and T Bell Labs., Holmdel, NJ (USA))

    1989-07-01

    The large interconnectivity and moderate precision required in neural network models present new opportunities for analog computing. This paper discusses analog circuits for a variety of problems such as pattern matching, optimization, and learning. Most of the circuits build so far are relatively small, exploratory designs. The most mature circuits are those for template matching. Chips performing this function are now being applied to pattern recognition problems.

  13. Transistor switching and sequential circuits

    CERN Document Server

    Sparkes, John J

    1969-01-01

    Transistor Switching and Sequential Circuits presents the basic ideas involved in the construction of computers, instrumentation, pulse communication systems, and automation. This book discusses the design procedure for sequential circuits. Organized into two parts encompassing eight chapters, this book begins with an overview of the ways on how to generate the types of waveforms needed in digital circuits, principally ramps, square waves, and delays. This text then considers the behavior of some simple circuits, including the inverter, the emitter follower, and the long-tailed pair. Other cha

  14. Unstable oscillators based hyperchaotic circuit

    DEFF Research Database (Denmark)

    Murali, K.; Tamasevicius, A.; G. Mykolaitis, A.;

    1999-01-01

    A simple 4th order hyperchaotic circuit with unstable oscillators is described. The circuit contains two negative impedance converters, two inductors, two capacitors, a linear resistor and a diode. The Lyapunov exponents are presented to confirm hyperchaotic nature of the oscillations in the circ......A simple 4th order hyperchaotic circuit with unstable oscillators is described. The circuit contains two negative impedance converters, two inductors, two capacitors, a linear resistor and a diode. The Lyapunov exponents are presented to confirm hyperchaotic nature of the oscillations...

  15. Electrical Discharge Machining Flyback Converter using UC3842 Current Mode PWM Controller

    Directory of Open Access Journals (Sweden)

    Nazriah Mahmud

    2014-10-01

    Full Text Available This paper presents a current mode Pulse Width Modulation (PWM controlled Flyback converter using UC3842 for Electrical Discharge Machining current generator control circuit. Circuit simplicity and high efficiency can be achieved by a Flyback converter with current mode PWM controller. The behaviors of the system's operation is analyzed and discussed by varying the load resistance. Matlab sofware is used to simulate the Flyback converter where a prototype has been built and tested to verify it's performance.

  16. A Circuit to Demonstrate Phase Relationships in "RLC" Circuits

    Science.gov (United States)

    Sokol, P. E.; Warren, G.; Zheng, B.; Smith, P.

    2013-01-01

    We have developed a circuit to demonstrate the phase relationships between resistive and reactive elements in series "RLC" circuits. We utilize a differential amplifier to allow the phases of the three elements and the current to be simultaneously displayed on an inexpensive four channel oscilloscope. We have included a novel circuit…

  17. Discharge pulse phenomenology

    Science.gov (United States)

    Frederickson, A. R.

    1985-01-01

    A model was developed which places radiation induced discharge pulse results into a unified conceptual framework. Only two phenomena are required to interpret all space and laboratory results: (1) radiation produces large electrostatic fields inside insulators via the trapping of a net space charge density; and (2) the electrostatic fields initiate discharge streamer plasmas similar to those investigated in high voltage electrical insulation materials; these streamer plasmas generate the pulsing phenomena. The apparent variability and diversity of results seen is an inherent feature of the plasma streamer mechanism acting in the electric fields which is created by irradiation of the dielectrics. The implications of the model are extensive and lead to constraints over what can be done about spacecraft pulsing.

  18. Electrostatic Discharge Training Manual

    Science.gov (United States)

    1980-09-01

    NAVSEA SE 003-AA-TRN-OO LEYE V ELECTROSTATIC DISCHARGE TRAINING MANUAL s DTIC ,T OF I!ELECTE, ,4MA 0W\\R 9 981 E PUBLISHED BY DIRECTION OF COMMANDER...AS: F (QIQ2 . . . ................................................. (1) WHERE: F = FORCE ( NEWTONS ) Q, AND Q2 = MAGNITUDES OF THE CHARGES (COULOMB) R...RATIONALIZED MKS UNITS IN EQUATION (1), WE HAVE: & I 9(5 X 1 - )(lO ř I ’ 32 I I I I. & I = .5 NEWTON

  19. VLSI circuits implementing computational models of neocortical circuits.

    Science.gov (United States)

    Wijekoon, Jayawan H B; Dudek, Piotr

    2012-09-15

    This paper overviews the design and implementation of three neuromorphic integrated circuits developed for the COLAMN ("Novel Computing Architecture for Cognitive Systems based on the Laminar Microcircuitry of the Neocortex") project. The circuits are implemented in a standard 0.35 μm CMOS technology and include spiking and bursting neuron models, and synapses with short-term (facilitating/depressing) and long-term (STDP and dopamine-modulated STDP) dynamics. They enable execution of complex nonlinear models in accelerated-time, as compared with biology, and with low power consumption. The neural dynamics are implemented using analogue circuit techniques, with digital asynchronous event-based input and output. The circuits provide configurable hardware blocks that can be used to simulate a variety of neural networks. The paper presents experimental results obtained from the fabricated devices, and discusses the advantages and disadvantages of the analogue circuit approach to computational neural modelling.

  20. 协调大规模风电汇聚外送的火电容量优化%Capacity Optimization of Corollary Thermal Sources Transmitted with Large-Scale Clustering Wind Power

    Institute of Scientific and Technical Information of China (English)

    侯婷婷; 娄素华; 张滋华; 吴耀武

    2012-01-01

    针对风电基地风电外送的形势,提出了一种风电汇聚外送配套火电容量优化方法。针对风电的随机性,定义了输电通道的持续STC曲线,来分析输电通道输送风电后火电可用容量空间的特性。在此基础上,建立了风电外送配套火电容量优化模型,模型考虑了输电线路、配套火电的费用及输送电量收益,在风电优先外送的前提下,充分利用输电通道,使得经济效益最大化,并采用两层优化策略对模型进行求解。应用本文模型对一个算例系统进行了计算分析,并对电价和火电煤价对结果的影响进行了分析,结果证明了所提方法的正确性和有效性。%ince wind power is explored on a large scale and in a highly centralized way these years,and usually wind bases are inconsistent with load in geographic region,so transmitting wind power through high-voltage transmission line will be an inevitable trend.In this new situation,the paper presents an optimal methodology for corollary thermal sources transmitted with wind power together for wind power’s variability and low energy density.For the random nature of wind power,the duration curve of spare capacity of transmission line(STC) which can be used to transmit thermal power is introduced to illustrate characteristics of capacity for thermal power after transmitting wind power.Based on the duration curve of STC,the model for optimizing the capacity of corollary thermal sources is proposed,which takes into account transmission line costs,thermal sources costs and benefit of electric power transmitted,and the objective function being maximized is the total benefits.The model can be solved by a two-stage optimal strategy.The case studies are carried out for a system,where effects of coal price and electricity price on the optimal schemes is also studied,and the results verify the effectiveness of the presented method.

  1. Microhollow cathode discharges

    Science.gov (United States)

    Schoenbach, K. H.; Moselhy, M.; Shi, W.; Bentley, R.

    2003-07-01

    By reducing the dimensions of hollow cathodes into the hundred micrometer range, stable, direct current, high (atmospheric) pressure glow discharges in rare gases, rare gas-halide mixtures and in air could be generated. The electron energy distribution in these microdischarges is non-Maxwellian, with a pronounced high-energy tail. The high electron energy together with the high gas density, which favors three-body collisions, is the reason for an efficient excimer generation in these microplasmas. Excimer efficiencies from 1% to 9% have been measured for argon, xenon, argon fluoride, and xenon chloride direct current excimer emitters, with a radiant excimer emittance of up to 2 W/cm2 for xenon. Adding small amounts of oxygen to argon has allowed us to generate vacuum ultraviolet line radiation at 130.5 nm with an efficiency approaching 1%. Pulsing xenon discharges with nanosecond electrical pulses has led to an increase in intensity to 15 W/cm2 and to a simultaneous increase in efficiency to more than 20%. Operating the discharges in an abnormal glow mode has allowed us to generate microdischarge arrays without individual ballast. Applications of these plasma arrays are excimer lamps and plasma reactors.

  2. Modeling electronegative plasma discharge

    Energy Technology Data Exchange (ETDEWEB)

    Lichtenberg, A.J.; Lieberman, M.A. [Univ. of California, Berkley, CA (United States)

    1995-12-31

    Macroscopic analytic models for a three-component electronegative gas discharge are developed. Assuming the negative ions to be in Boltzmann equilibrium, a positive ion ambipolar diffusion equation is derived. The discharge consists of an electronegative core and electropositive edges. The electron density in the core is nearly uniform, allowing a parabolic approximation to the plasma profile to be employed. The resulting equilibrium equations are solved analytically and matched to a constant mobility transport model of an electropositive edge plasma. The solutions are compared to a simulation of a parallel-plane r.f. driven oxygen plasma for p = 50 mTorr and n{sub eo}= 2.4 x 10{sup 15} m{sup -3}. The ratio {alpha}{sub o} of central negative ion density to electron density, and the electron temperature T{sub e}, found in the simulation, are in reasonable agreement with the values calculated from the model. The model is extended to: (1) low pressures, where a variable mobility model is used in the electropositive edge region; and (2) high {alpha}{sub o} in which the edge region disappears. The inclusion of a second positive ion species, which can be very important in describing electronegative discharges used for materials processing, is a possible extension of the model.

  3. Modeling cortical circuits.

    Energy Technology Data Exchange (ETDEWEB)

    Rohrer, Brandon Robinson; Rothganger, Fredrick H.; Verzi, Stephen J.; Xavier, Patrick Gordon

    2010-09-01

    The neocortex is perhaps the highest region of the human brain, where audio and visual perception takes place along with many important cognitive functions. An important research goal is to describe the mechanisms implemented by the neocortex. There is an apparent regularity in the structure of the neocortex [Brodmann 1909, Mountcastle 1957] which may help simplify this task. The work reported here addresses the problem of how to describe the putative repeated units ('cortical circuits') in a manner that is easily understood and manipulated, with the long-term goal of developing a mathematical and algorithmic description of their function. The approach is to reduce each algorithm to an enhanced perceptron-like structure and describe its computation using difference equations. We organize this algorithmic processing into larger structures based on physiological observations, and implement key modeling concepts in software which runs on parallel computing hardware.

  4. Memristor Circuits and Systems

    KAUST Repository

    Zidan, Mohammed A.

    2015-05-01

    Current CMOS-based technologies are facing design challenges related to the continuous scaling down of the minimum feature size, according to Moore’s law. Moreover, conventional computing architecture is no longer an effective way of fulfilling modern applications demands, such as big data analysis, pattern recognition, and vector processing. Therefore, there is an exigent need to shift to new technologies, at both the architecture and the device levels. Recently, memristor devices and structures attracted attention for being promising candidates for this job. Memristor device adds a new dimension for designing novel circuits and systems. In addition, high-density memristor-based crossbar is widely considered to be the essential element for future memory and bio-inspired computing systems. However, numerous challenges need to be addressed before the memristor genuinely replaces current memory and computing technologies, which is the motivation behind this research effort. In order to address the technology challenges, we begin by fabricating and modeling the memristor device. The devices fabricated at our local clean room enriched our understanding of the memristive phenomenon and enabled the experimental testing for our memristor-based circuits. Moreover, our proposed mathematical modeling for memristor behavior is an essential element for the theoretical circuit design stage. Designing and addressing the challenges of memristor systems with practical complexity, however, requires an extra step, which takes the form of a reliable and modular simulation platform. We, therefore, built a new simulation platform for the resistive crossbar, which can simulate realistic size arrays filled with real memory data. In addition, this simulation platform includes various crossbar nonidealities in order to obtain accurate simulation results. Consequently, we were able to address the significant challenges facing the high density memristor crossbar, as the building block for

  5. A dishwasher for circuits

    CERN Multimedia

    Rosaria Marraffino

    2014-01-01

    You have always been told that electronic devices fear water. However, at the Surface Mount Devices (SMD) Workshop here at CERN all the electronic assemblies are cleaned with a machine that looks like a… dishwasher.   The circuit dishwasher. Credit: Clara Nellist.  If you think the image above shows a dishwasher, you wouldn’t be completely wrong. Apart from the fact that the whole pumping system and the case itself are made entirely from stainless steel and chemical resistant materials, and the fact that it washes electrical boards instead of dishes… it works exactly like a dishwasher. It’s a professional machine (mainly used in the pharmaceutical industry) designed to clean everything that can be washed with a water-based chemical soap. This type of treatment increases the lifetime of the electronic boards and therefore the LHC's reliability by preventing corrosion problems in the severe radiation and ozone environment of the LHC tunn...

  6. Basic electronic circuits

    CERN Document Server

    Buckley, P M

    1980-01-01

    In the past, the teaching of electricity and electronics has more often than not been carried out from a theoretical and often highly academic standpoint. Fundamentals and basic concepts have often been presented with no indication of their practical appli­ cations, and all too frequently they have been illustrated by artificially contrived laboratory experiments bearing little relationship to the outside world. The course comes in the form of fourteen fairly open-ended constructional experiments or projects. Each experiment has associated with it a construction exercise and an explanation. The basic idea behind this dual presentation is that the student can embark on each circuit following only the briefest possible instructions and that an open-ended approach is thereby not prejudiced by an initial lengthy encounter with the theory behind the project; this being a sure way to dampen enthusiasm at the outset. As the investigation progresses, questions inevitably arise. Descriptions of the phenomena encounte...

  7. Diamond Integrated Optomechanical Circuits

    CERN Document Server

    Rath, Patrik; Nebel, Christoph; Wild, Christoph; Pernice, Wolfram H P

    2013-01-01

    Diamond offers unique material advantages for the realization of micro- and nanomechanical resonators due to its high Young's modulus, compatibility with harsh environments and superior thermal properties. At the same time, the wide electronic bandgap of 5.45eV makes diamond a suitable material for integrated optics because of broadband transparency and the absence of free-carrier absorption commonly encountered in silicon photonics. Here we take advantage of both to engineer full-scale optomechanical circuits in diamond thin films. We show that polycrystalline diamond films fabricated by chemical vapour deposition provide a convenient waferscale substrate for the realization of high quality nanophotonic devices. Using free-standing nanomechanical resonators embedded in on-chip Mach-Zehnder interferometers, we demonstrate efficient optomechanical transduction via gradient optical forces. Fabricated diamond resonators reproducibly show high mechanical quality factors up to 11,200. Our low cost, wideband, carri...

  8. Spleen removal - open - adults - discharge

    Science.gov (United States)

    Splenectomy - adult - discharge; Spleen removal - adult - discharge ... You had surgery to remove your spleen. This operation is called splenectomy . The surgeon made a cut (incision) in the middle of your belly or on the left side ...

  9. Theory of gas discharge plasma

    CERN Document Server

    Smirnov, Boris M

    2015-01-01

    This book presents the theory of gas discharge plasmas in a didactical way. It explains the processes in gas discharge plasmas. A gas discharge plasma is an ionized gas which is supported by an external electric field. Therefore its parameters are determined by processes in it. The properties of a gas discharge plasma depend on its gas component, types of external fields, their geometry and regimes of gas discharge. Fundamentals of a gas discharge plasma include elementary, radiative and transport processes which are included in its kinetics influence. They are represented in this book together with the analysis of simple gas discharges. These general principles are applied to stationary gas discharge plasmas of helium and argon. The analysis of such plasmas under certain conditions is theoretically determined by numerical plasma parameters for given regimes and conditions.

  10. Electrostatic Discharge Effects on Thin Film Resistors

    Science.gov (United States)

    Sampson, Michael J.; Hull, Scott M.

    1999-01-01

    Recently, open circuit failures of individual elements in thin film resistor networks have been attributed to electrostatic discharge (ESD) effects. This paper will discuss the investigation that came to this conclusion and subsequent experimentation intended to characterize design factors that affect the sensitivity of resistor elements to ESD. The ESD testing was performed using the standard human body model simulation. Some of the design elements to be evaluated were: trace width, trace length (and thus width to length ratio), specific resistivity of the trace (ohms per square) and resistance value. However, once the experiments were in progress, it was realized that the ESD sensitivity of most of the complex patterns under evaluation was determined by other design and process factors such as trace shape and termination pad spacing. This paper includes pictorial examples of representative ESD failure sites, and provides some options for designing thin film resistors that are ESD resistant. The risks of ESD damage are assessed and handling precautions suggested.

  11. Extension of spatiotemporal chaos in glow discharge-semiconductor systems

    Energy Technology Data Exchange (ETDEWEB)

    Akhmet, Marat, E-mail: marat@metu.edu.tr; Fen, Mehmet Onur [Department of Mathematics, Middle East Technical University, 06800 Ankara (Turkey); Rafatov, Ismail [Department of Physics, Middle East Technical University, 06800 Ankara (Turkey)

    2014-12-15

    Generation of chaos in response systems is discovered numerically through specially designed unidirectional coupling of two glow discharge-semiconductor systems. By utilizing the auxiliary system approach, [H. D. I. Abarbanel, N. F. Rulkov, and M. M. Sushchik, Phys. Rev. E 53, 4528–4535 (1996)] it is verified that the phenomenon is not a chaos synchronization. Simulations demonstrate various aspects of the chaos appearance in both drive and response systems. Chaotic control is through the external circuit equation and governs the electrical potential on the boundary. The expandability of the theory to collectives of glow discharge systems is discussed, and this increases the potential of applications of the results. Moreover, the research completes the previous discussion of the chaos appearance in a glow discharge-semiconductor system [D. D. Šijačić U. Ebert, and I. Rafatov, Phys. Rev. E 70, 056220 (2004).].

  12. Comminution circuits for compact itabirites

    Directory of Open Access Journals (Sweden)

    Pedro Ferreira Pinto

    Full Text Available Abstract In the beneficiation of compact Itabirites, crushing and grinding account for major operational and capital costs. As such, the study and development of comminution circuits have a fundamental importance for feasibility and optimization of compact Itabirite beneficiation. This work makes a comparison between comminution circuits for compact Itabirites from the Iron Quadrangle. The circuits developed are: a crushing and ball mill circuit (CB, a SAG mill and ball mill circuit (SAB and a single stage SAG mill circuit (SSSAG. For the SAB circuit, the use of pebble crushing is analyzed (SABC. An industrial circuit for 25 million tons of run of mine was developed for each route from tests on a pilot scale (grinding and industrial scale. The energy consumption obtained for grinding in the pilot tests was compared with that reported by Donda and Bond. The SSSAG route had the lowest energy consumption, 11.8kWh/t and the SAB route had the highest energy consumption, 15.8kWh/t. The CB and SABC routes had a similar energy consumption of 14.4 kWh/t and 14.5 kWh/t respectively.

  13. Sequential Polarity-Reversing Circuit

    Science.gov (United States)

    Labaw, Clayton C.

    1994-01-01

    Proposed circuit reverses polarity of electric power supplied to bidirectional dc motor, reversible electro-mechanical actuator, or other device operating in direction depending on polarity. Circuit reverses polarity each time power turned on, without need for additional polarity-reversing or direction signals and circuitry to process them.

  14. Logic Circuit Design Selected Methods

    CERN Document Server

    Vingron, Shimon P

    2012-01-01

        In three main divisions the  book covers combinational circuits, latches, and asynchronous sequential circuits. Combinational circuits have  no memorising ability, while sequential circuits have such an ability to various degrees. Latches are the simplest sequential circuits, ones with the shortest memory. The presentation is decidedly non-standard.         The design of combinational circuits is discussed in an orthodox manner using normal forms and in an unorthodox manner using set-theoretical evaluation formulas relying heavily on Karnaugh maps. The latter approach allows for a new design technique called composition.          Latches are covered very extensively. Their memory functions are expressed mathematically in a time-independent manner allowing the use of (normal, non-temporal) Boolean logic in their calculation. The theory of latches is then used as the basis for calculating asynchronous circuits.         Asynchronous circuits are specified in a tree-representation, eac...

  15. Enhancement of Linear Circuit Program

    DEFF Research Database (Denmark)

    Gaunholt, Hans; Dabu, Mihaela; Beldiman, Octavian

    1996-01-01

    In this report a preliminary user friendly interface has been added to the LCP2 program making it possible to describe an electronic circuit by actually drawing the circuit on the screen. Component values and other options and parameters can easily be set by the aid of the interface. The interface...

  16. Short-circuit impedance measurement

    DEFF Research Database (Denmark)

    Pedersen, Knud Ole Helgesen; Nielsen, Arne Hejde; Poulsen, Niels Kjølstad

    2003-01-01

    Methods for estimating the short-circuit impedance in the power grid are investigated for various voltage levels and situations. The short-circuit impedance is measured, preferably from naturally occurring load changes in the grid, and it is shown that such a measurement system faces different...

  17. Dive In to Aquatic Circuits.

    Science.gov (United States)

    Goldfarb, Joseph M.

    1995-01-01

    The article presents a method for swimming teachers and coaches to stave off workout boredom in their students by using a circuit in the pool. After explaining how to set up a training circuit, the article describes sample stations and notes important safety precautions. (SM)

  18. Enhancement of Linear Circuit Program

    DEFF Research Database (Denmark)

    Gaunholt, Hans; Dabu, Mihaela; Beldiman, Octavian

    1996-01-01

    In this report a preliminary user friendly interface has been added to the LCP2 program making it possible to describe an electronic circuit by actually drawing the circuit on the screen. Component values and other options and parameters can easily be set by the aid of the interface. The interfac...

  19. Accurate Switched-Voltage voltage averaging circuit

    OpenAIRE

    金光, 一幸; 松本, 寛樹

    2006-01-01

    Abstract ###This paper proposes an accurate Switched-Voltage (SV) voltage averaging circuit. It is presented ###to compensated for NMOS missmatch error at MOS differential type voltage averaging circuit. ###The proposed circuit consists of a voltage averaging and a SV sample/hold (S/H) circuit. It can ###operate using nonoverlapping three phase clocks. Performance of this circuit is verified by PSpice ###simulations.

  20. 46 CFR 169.670 - Circuit breakers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Circuit breakers. 169.670 Section 169.670 Shipping COAST... Gross Tons § 169.670 Circuit breakers. Each circuit breaker must be of the manually reset type designed... the circuit without damage to the circuit breaker....

  1. The energy distribution structure and dynamic characteristics of energy release in electrostatic discharge process

    CERN Document Server

    Liu, Qingming; Zhang, Yunming

    2015-01-01

    The detail structure of energy output and the dynamic characteristics of electric spark discharge process have been studied to calculate the energy of electric spark induced plasma under different discharge condition accurately. A series of electric spark discharge experiments were conducted with the capacitor stored energy in the range of 10J 100J and 1000J respectively. And the resistance of wire, switch and plasma between electrodes were evaluated by different methods. An optimized method for electric resistance evaluation of the full discharge circuit, three poles switch and electric spark induced plasma during the discharge process was put forward. The electric energy consumed by wire, electric switch and electric spark induced plasma between electrodes were obtained by Joules law. The structure of energy distribution and the dynamic process of energy release during the capacitor discharge process have been studied. Experiments results showed that, with the increase of capacitor released energy, the dura...

  2. A diagnostic system for electrical faults in a high current discharge plasma setup.

    Science.gov (United States)

    Nigam, S; Aneesh, K; Navathe, C P; Gupta, P D

    2011-02-01

    A diagnostic system to detect electrical faults inside a coaxial high current discharge device is presented here. This technique utilizes two biconical antennas picking up electromagnetic radiation from the discharge device, a voltage divider sensing input voltage, and a Rogowski coil measuring the main discharge current. A computer program then analyses frequency components in these signals and provides information as to whether the discharge event was normal or any breakdown fault occurred inside the coaxial device. The diagnostic system is developed for a 450 kV and 50 kA capillary discharge plasma setup. For the setup various possible faults are analyzed by electrical simulation, followed by experimental results. In the case of normal discharge through the capillary load the dominant frequency is ∼4 MHz. Under faulty conditions, the peak in magnitude versus frequency plot of the antenna signal changes according to the fault position which involves different paths causing variation in the equivalent circuit elements.

  3. A diagnostic system for electrical faults in a high current discharge plasma setup

    Science.gov (United States)

    Nigam, S.; Aneesh, K.; Navathe, C. P.; Gupta, P. D.

    2011-02-01

    A diagnostic system to detect electrical faults inside a coaxial high current discharge device is presented here. This technique utilizes two biconical antennas picking up electromagnetic radiation from the discharge device, a voltage divider sensing input voltage, and a Rogowski coil measuring the main discharge current. A computer program then analyses frequency components in these signals and provides information as to whether the discharge event was normal or any breakdown fault occurred inside the coaxial device. The diagnostic system is developed for a 450 kV and 50 kA capillary discharge plasma setup. For the setup various possible faults are analyzed by electrical simulation, followed by experimental results. In the case of normal discharge through the capillary load the dominant frequency is ˜4 MHz. Under faulty conditions, the peak in magnitude versus frequency plot of the antenna signal changes according to the fault position which involves different paths causing variation in the equivalent circuit elements.

  4. Plasma Discharge Process in a Pulsed Diaphragm Discharge System

    Science.gov (United States)

    Duan, Jianjin; Hu, Jue; Zhang, Chao; Wen, Yuanbin; Meng, Yuedong; Zhang, Chengxu

    2014-12-01

    As one of the most important steps in wastewater treatment, limited study on plasma discharge process is a key challenge in the development of plasma applications. In this study, we focus on the plasma discharge process of a pulsed diaphragm discharge system. According to the analysis, the pulsed diaphragm discharge proceeds in seven stages: (1) Joule heating and heat exchange stage; (2) nucleated site formation; (3) plasma generation (initiation of the breakdown stage); (4) avalanche growth and plasma expansion; (5) plasma contraction; (6) termination of the plasma discharge; and (7) heat exchange stage. From this analysis, a critical voltage criterion for breakdown is obtained. We anticipate this finding will provide guidance for a better application of plasma discharges, especially diaphragm plasma discharges.

  5. The role of molecular vibration in nanosecond repetitively pulsed discharges and in DBDs in hydrogen plasmas

    Science.gov (United States)

    Colonna, G.; D'Ammando, G.; Pietanza, L. D.

    2016-10-01

    A self-consistent state-to-state model of pure hydrogen has been used to investigate the development of nanosecond repetitively pulsed discharges and dielectric barrier discharges, the latter coupling the kinetic model with an equation for the circuit, thus mimicking an insulated electrode with an external capacitance. Vibrationally excited states play a fundamental role, affecting the degrees of dissociation and ionization, as well as internal and free-electron distributions.

  6. Photodiode circuits for retinal prostheses.

    Science.gov (United States)

    Loudin, J D; Cogan, S F; Mathieson, K; Sher, A; Palanker, D V

    2011-10-01

    Photodiode circuits show promise for the development of high-resolution retinal prostheses. While several of these systems have been constructed and some even implanted in humans, existing descriptions of the complex optoelectronic interaction between light, photodiode, and the electrode/electrolyte load are limited. This study examines this interaction in depth with theoretical calculations and experimental measurements. Actively biased photoconductive and passive photovoltaic circuits are investigated, with the photovoltaic circuits consisting of one or more diodes connected in series, and the photoconductive circuits consisting of a single diode in series with a pulsed bias voltage. Circuit behavior and charge injection levels were markedly different for platinum and sputtered iridium-oxide film (SIROF) electrodes. Photovoltaic circuits were able to deliver 0.038 mC/cm(2) (0.75 nC/phase) per photodiode with 50- μm platinum electrodes, and 0.54-mC/cm(2) (11 nC/phase) per photodiode with 50-μ m SIROF electrodes driven with 0.5-ms pulses of light at 25 Hz. The same pulses applied to photoconductive circuits with the same electrodes were able to deliver charge injections as high as 0.38 and 7.6 mC/cm(2) (7.5 and 150 nC/phase), respectively. We demonstrate photovoltaic stimulation of rabbit retina in-vitro, with 0.5-ms pulses of 905-nm light using peak irradiance of 1 mW/mm(2). Based on the experimental data, we derive electrochemical and optical safety limits for pixel density and charge injection in various circuits. While photoconductive circuits offer smaller pixels, photovoltaic systems do not require an external bias voltage. Both classes of circuits show promise for the development of high-resolution optoelectronic retinal prostheses.

  7. Preliminary Investigation of a Dielectric Barrier Discharge Lamp in Open Air at Atmospheric Pressure

    Institute of Scientific and Technical Information of China (English)

    LIU Feng; WANG Wei-Wei; CHANG Xi-Jiang; LIANG Rong-Qing

    2011-01-01

    @@ A dielectric barrier discharge (DBD) lamp is investigated by using sinusoidal power with a 10 kHz frequency in open air at atmospheric pressure.With increasing applied voltages, the different discharge phenomena appear.At relatively low voltages, the discharge states are general stochastic filamentary discharges with weak light.However, at relatively high voltages, the walls of quartz tubes are heated sharply by plasma, and then the dazzling light is emitted very quickly to form the DBD Lamp, corresponding to the low maintaining voltage that is lower than the ignited voltage.The discharge state or mode of the DBD lamp that corresponds to the glow discharge is deduced according to the wave form of the circuit current, which is evidently different from the filamentary discharges.Under these conditions, the spectrum of the DBD lamp is continuous in the range 400-932nm, which is scanned in the range 300-932nm.It is also shown that there is another discharge state or mode that is different from the traditional filamentary discharges.Therefore, it is concluded that the discharge state or mode of the DBD lamp is a glow discharge.

  8. Internal Active Thermal Control System (IATCS) Sodium Bicarbonate/Carbonate Buffer in an Open Aqueous Carbon Dioxide System and Corollary Electrochemical/Chemical Reactions Relative to System pH Changes

    Science.gov (United States)

    Stegman, Thomas W.; Wilson, Mark E.; Glasscock, Brad; Holt, Mike

    2014-01-01

    The International Space Station (ISS) Internal Active Thermal Control System (IATCS) experienced a number of chemical changes driven by system absorption of CO2 which altered the coolant’s pH. The natural effects of the decrease in pH from approximately 9.2 to less than 8.4 had immediate consequences on system corrosion rates and corrosion product interactions with specified coolant constituents. The alkalinity of the system was increased through the development and implementation of a carbonate/bicarbonate buffer that would increase coolant pH to 9.0 – 10.0 and maintain pH above 9.0 in the presence of ISS cabin concentrations of CO2 up to twenty times higher than ground concentrations. This paper defines how a carbonate/bicarbonate buffer works in an open carbon dioxide system and summarizes the analyses performed on the buffer for safe and effective application in the on-orbit system. The importance of the relationship between the cabin environment and the IATCS is demonstrated as the dominant factor in understanding the system chemistry and pH trends before and after addition of the carbonate/bicarbonate buffer. The paper also documents the corollary electrochemical and chemical reactions the system has experienced and the rationale for remediation of these effects with the addition of the carbonate/bicarbonate buffer.

  9. Compact Intracloud Discharges

    Energy Technology Data Exchange (ETDEWEB)

    Smith, David A. [Univ. of Colorado, Boulder, CO (United States)

    1998-11-01

    In November of 1993, mysterious signals recorded by a satellite-borne broadband VHF radio science experiment called Blackboard led to a completely unexpected discovery. Prior to launch of the ALEXIS satellite, it was thought that its secondary payload, Blackboard, would most often detect the radio emissions from lightning when its receiver was not overwhelmed by noise from narrowband communication carriers. Instead, the vast majority of events that triggered the instrument were isolated pairs of pulses that were one hundred times more energetic than normal thunderstorm electrical emissions. The events, which came to be known as TIPPs (for transionospheric pulse pairs), presented a true mystery to the geophysics community. At the time, it was not even known whether the events had natural or anthropogenic origins. After two and one half years of research into the unique signals, two ground-based receiver arrays in New Mexico first began to detect and record thunderstorm radio emissions that were consistent with the Blackboard observations. On two occasions, the ground-based systems and Blackboard even recorded emissions that were produced by the same exact events. From the ground based observations, it has been determined that TIPP events areproduced by brief, singular, isolated, intracloud electrical discharges that occur in intense regions of thunderstorms. These discharges have been dubbed CIDS, an acronym for compact intracloud discharges. During the summer of 1996, ground-based receiver arrays were used to record the electric field change signals and broadband HF emissions from hundreds of CIDS. Event timing that was accurate to within a few microseconds made possible the determination of source locations using methods of differential time of arrival. Ionospheric reflections of signals were recorded in addition to groundwave/line-of-sight signals and were used to determine accurate altitudes for the discharges. Twenty-four CIDS were recorded from three

  10. Continuous pile discharging machine

    Science.gov (United States)

    Smith, Phillips P.

    1976-05-11

    A device for discharging cartridges from tubes under fluid pressure includes a cylindrical housing adapted to be seated in a leak-tight manner on the end of one of the tubes, a chute depending from the cylindrical housing near the end seated on the end of the tube, a rotatable piston having a wrench on the forward end thereof disposed in the cylindrical housing and adapted to manipulate a plug in the end of the tube, and a telescopic hydraulic ram adapted to move the piston toward the plug. In addition the wrench contains a magnet which prevents inadvertent uncoupling of the wrench and the plug.

  11. Experimental Device for Learning of Logical Circuit Design using Integrated Circuits

    OpenAIRE

    石橋, 孝昭

    2012-01-01

    This paper presents an experimental device for learning of logical circuit design using integrated circuits and breadboards. The experimental device can be made at a low cost and can be used for many subjects such as logical circuits, computer engineering, basic electricity, electrical circuits and electronic circuits. The proposed device is effective to learn the logical circuits than the usual lecture.

  12. 30 CFR 75.800 - High-voltage circuits; circuit breakers.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-voltage circuits; circuit breakers. 75.800... § 75.800 High-voltage circuits; circuit breakers. High-voltage circuits entering the underground area of any coal mine shall be protected by suitable circuit breakers of adequate interrupting...

  13. Performance analysis of electrical circuits /PANE/

    Science.gov (United States)

    Johnson, K. L.; Steinberg, L. L.

    1968-01-01

    Automated statistical and worst case computer program has been designed to perform dc and ac steady circuit analyses. The program determines the worst case circuit performance by solving circuit equations.

  14. Local changes in neocortical circuit dynamics coincide with the spread of seizures to thalamus in a model of epilepsy.

    Science.gov (United States)

    Neubauer, Florian B; Sederberg, Audrey; MacLean, Jason N

    2014-01-01

    During the generalization of epileptic seizures, pathological activity in one brain area recruits distant brain structures into joint synchronous discharges. However, it remains unknown whether specific changes in local circuit activity are related to the aberrant recruitment of anatomically distant structures into epileptiform discharges. Further, it is not known whether aberrant areas recruit or entrain healthy ones into pathological activity. Here we study the dynamics of local circuit activity during the spread of epileptiform discharges in the zero-magnesium in vitro model of epilepsy. We employ high-speed multi-photon imaging in combination with dual whole-cell recordings in acute thalamocortical (TC) slices of the juvenile mouse to characterize the generalization of epileptic activity between neocortex and thalamus. We find that, although both structures are exposed to zero-magnesium, the initial onset of focal epileptiform discharge occurs in cortex. This suggests that local recurrent connectivity that is particularly prevalent in cortex is important for the initiation of seizure activity. Subsequent recruitment of thalamus into joint, generalized discharges is coincident with an increase in the coherence of local cortical circuit activity that itself does not depend on thalamus. Finally, the intensity of population discharges is positively correlated between both brain areas. This suggests that during and after seizure generalization not only the timing but also the amplitude of epileptiform discharges in thalamus is entrained by cortex. Together these results suggest a central role of neocortical activity for the onset and the structure of pathological recruitment of thalamus into joint synchronous epileptiform discharges.

  15. Variational integrators for electric circuits

    Energy Technology Data Exchange (ETDEWEB)

    Ober-Blöbaum, Sina, E-mail: sinaob@math.upb.de [Computational Dynamics and Optimal Control, University of Paderborn (Germany); Tao, Molei [Courant Institute of Mathematical Sciences, New York University (United States); Cheng, Mulin [Applied and Computational Mathematics, California Institute of Technology (United States); Owhadi, Houman; Marsden, Jerrold E. [Control and Dynamical Systems, California Institute of Technology (United States); Applied and Computational Mathematics, California Institute of Technology (United States)

    2013-06-01

    In this contribution, we develop a variational integrator for the simulation of (stochastic and multiscale) electric circuits. When considering the dynamics of an electric circuit, one is faced with three special situations: 1. The system involves external (control) forcing through external (controlled) voltage sources and resistors. 2. The system is constrained via the Kirchhoff current (KCL) and voltage laws (KVL). 3. The Lagrangian is degenerate. Based on a geometric setting, an appropriate variational formulation is presented to model the circuit from which the equations of motion are derived. A time-discrete variational formulation provides an iteration scheme for the simulation of the electric circuit. Dependent on the discretization, the intrinsic degeneracy of the system can be canceled for the discrete variational scheme. In this way, a variational integrator is constructed that gains several advantages compared to standard integration tools for circuits; in particular, a comparison to BDF methods (which are usually the method of choice for the simulation of electric circuits) shows that even for simple LCR circuits, a better energy behavior and frequency spectrum preservation can be observed using the developed variational integrator.

  16. Research on Battery Charging-Discharging in New Energy Systems

    Directory of Open Access Journals (Sweden)

    Che Yanbo

    2013-07-01

    Full Text Available As an energy storage component, the battery plays increasingly important role in new energy industry. Charging and discharging system is the vital part of the application of the battery, but the charge and discharge are always designed separately and carried by different part in the traditional application. Additionally, most battery discharge mode and method are always simplified which cannot ensure to meet the demand of power utilization. In the actual energy storage system, the design of the energy converter, which make the power storage and supply as a whole and the design of the charge and discharge method, will play an important role in efficient utilization of the battery system. As a part of the new energy system, the study makes battery and the charging and discharging system as a whole to store energy, which can store and release electric energy high efficiently according to the system state and control the bidirectional flow of energy precisely. Using TMS320F2812 as the control core, the system which integrates charging and discharging with battery monitoring can achieve the bidirectional Buck/Boost power control. It can achieve three-stage charging and selective discharging of the battery. Due to the influence of the diode reverse recovery time, current oscillation will appear. In order to eliminate the oscillation, we can set the circuit to work in critical conduction mode. The experimental result shows that the system can achieve the charging and discharging control of lead-acid battery and increase the battery life time further.

  17. Overpulse railgun energy recovery circuit

    Energy Technology Data Exchange (ETDEWEB)

    Honig, E.M.

    1984-09-28

    The invention presented relates to a high-power pulsing circuit and more particularly to a repetitive pulse inductive energy storage and transfer circuit for an electromagnetic launcher. In an electromagnetic launcher such as a railgun for propelling a projectile at high velocity, an overpulse energy recovery circuit is employed to transfer stored inductive energy from a source inductor to the railgun inductance to propel the projectile down the railgun. Switching circuitry and an energy transfer capacitor are used to switch the energy back to the source inductor in readiness for a repetitive projectile propelling cycle.

  18. Counterpulse railgun energy recovery circuit

    Energy Technology Data Exchange (ETDEWEB)

    Honig, E.M.

    1984-09-28

    The invention presented relates to a high-power pulsing circuit and more particularly to a repetitive pulse inductive energy storage and transfer circuit for an electromagnetic launcher. In an electromagnetic launcher such as a railgun for propelling a projectile at high velocity, a counterpulse energy recovery circuit is employed to transfer stored inductive energy from a source inductor to the railgun inductance to propel the projectile down the railgun. Switching circuitry and an energy transfer capacitor are used to switch the energy back to the source inductor in readiness for a repetitive projectile propelling cycle.

  19. The Maplin electronic circuits handbook

    CERN Document Server

    Tooley, Michael

    2015-01-01

    The Maplin Electronic Circuits Handbook provides pertinent data, formula, explanation, practical guidance, theory and practical guidance in the design, testing, and construction of electronic circuits. This book discusses the developments in electronics technology techniques.Organized into 11 chapters, this book begins with an overview of the common types of passive component. This text then provides the reader with sufficient information to make a correct selection of passive components for use in the circuits. Other chapters consider the various types of the most commonly used semiconductor

  20. Secure integrated circuits and systems

    CERN Document Server

    Verbauwhede, Ingrid MR

    2010-01-01

    On any advanced integrated circuit or 'system-on-chip' there is a need for security. In many applications the actual implementation has become the weakest link in security rather than the algorithms or protocols. The purpose of the book is to give the integrated circuits and systems designer an insight into the basics of security and cryptography from the implementation point of view. As a designer of integrated circuits and systems it is important to know both the state-of-the-art attacks as well as the countermeasures. Optimizing for security is different from optimizations for speed, area,

  1. Determining Covers in Combinational Circuits

    Directory of Open Access Journals (Sweden)

    Ljubomir Cvetkovic

    2011-05-01

    Full Text Available In this paper we propose a procedure for determining 0- or 1-cover of an arbitrary line in a combinational circuit. When determining a cover we do not need Boolean expression for the line; only the circuit structure is used. Within the proposed procedure we use the tools of the cube theory, in particular, some operations defined on cubes. The procedure can be applied for determining 0- and 1- covers of output lines in programmable logic devices. Basically, this procedure is a method for the analysis of a combinational circuit.

  2. Development of circuit model for arcing on solar panels

    Energy Technology Data Exchange (ETDEWEB)

    Mehta, Bhoomi K; Deshpande, S P; Mukherjee, S; Gupta, S B; Ranjan, M; Rane, R; Vaghela, N; Acharya, V [FCIPT, Institute for Plasma Research, Bhat, Gandhinagar 382428 (India); Sudhakar, M; Sankaran, M; Suresh, E P, E-mail: bhoomi@ipr.res.i [ISRO Satellite Centre (ISAC), Bangalore 560017 (India)

    2010-02-01

    The increased requirements of payload capacity of the satellites have resulted in much higher power requirements of the satellites. In order to minimize the energy loss during power transmission due to cable loss, use of high voltage solar panels becomes necessary. When a satellite encounters space plasma it floats negatively with respect to the surrounding space plasma environment. At high voltage, charging and discharging on solar panels causes the power system breakdown. Once a solar panel surface is charged and potential difference between surface insulator and conductor exceeds certain value, electrostatic discharge (ESD) may occur. This ESD may trigger a secondary arc that can destroy the solar panel circuit. ESD is also called as primary or minor arc and secondary is called major arc. The energy of minor arc is supplied by the charge stored in the coverglass of solar array and is a pulse of typically several 100 ns to several 100 {mu}s duration. The damage caused by minor arc is less compared to major arcs, but it is observed that the minor arc is cause of major arc. Therefore it is important to develop an understanding of minor arc and mitigation techniques. In this paper we present a linear circuit analysis for minor arcs on solar panels. To study arcing event, a ground experimental facility to simulate space plasma environment has been developed at Facilitation Centre for Industrial Plasma Technologies (Institute for Plasma Research) in collaboration with Indian Space Research Organization's ISRO Satellite Technology Centre (ISAC). A linear circuit model has been developed to explain the experimental results by representing the coverglass, solar cell interconnect and wiring by an LCR circuit and the primary arc by an equivalent LR circuit. The aim of the circuit analysis is to predict the arc current which flows through the arc plasma. It is established from the model that the current depends on various parameters like potential difference between

  3. Connecting Time and Frequency in the RC Circuit

    Science.gov (United States)

    Moya, A. A.

    2017-04-01

    Charging and discharging processes of a capacitor through a resistor, as well as the concept of impedance in alternating current circuits, are topics covered in introductory physics courses. The experimental study of the charge and discharge of a capacitor through a resistor is a well-established lab exercise that is used to introduce concepts such as exponential increase or decrease and time constant. Determining the time constant of the RC circuit has important practical applications because, for example, it can be used to measure unknown values of resistance or capacitance. The transient experiment can be done by using a voltmeter and stopwatch, signal generator and oscilloscope, or even low-cost data acquisition systems such as Arduino. An equivalent topic when studying alternating current circuits arises from the characterization of the impedance of the series or parallel combination of the capacitor and the resistor as a function of frequency. Determining the time constant of the RC circuit by means of impedance measurements for different frequencies is a known experimental technique that can be done using not only LCR meters but also basic instrumentation in the physics lab such as a signal generator, frequency counter, and multimeter. However, lab exercises dealing with RC circuits in alternating current usually focus on their use as filters, and the potential applications in the field of the electrical characterization of material systems are ignored. In this work, we describe a simple exercise showing how the time constant of the RC circuit can easily be determined in the introductory physics lab by means of impedance measurements as a function of frequency. This exercise allows students to learn experimental techniques that find application to characterize the time constants of the charge transport processes in material systems. Moreover, comparison of the time constants obtained from transient and frequency analysis allows us to relate the time and

  4. CADAT integrated circuit mask analysis

    Science.gov (United States)

    1981-01-01

    CADAT System Mask Analysis Program (MAPS2) is automated software tool for analyzing integrated-circuit mask design. Included in MAPS2 functions are artwork verification, device identification, nodal analysis, capacitance calculation, and logic equation generation.

  5. Circuit design on plastic foils

    CERN Document Server

    Raiteri, Daniele; Roermund, Arthur H M

    2015-01-01

    This book illustrates a variety of circuit designs on plastic foils and provides all the information needed to undertake successful designs in large-area electronics.  The authors demonstrate architectural, circuit, layout, and device solutions and explain the reasons and the creative process behind each. Readers will learn how to keep under control large-area technologies and achieve robust, reliable circuit designs that can face the challenges imposed by low-cost low-temperature high-throughput manufacturing.   • Discusses implications of problems associated with large-area electronics and compares them to standard silicon; • Provides the basis for understanding physics and modeling of disordered material; • Includes guidelines to quickly setup the basic CAD tools enabling efficient and reliable designs; • Illustrates practical solutions to cope with hard/soft faults, variability, mismatch, aging and bias stress at architecture, circuit, layout, and device levels.

  6. Chaos Control for Chua's Circuits

    Science.gov (United States)

    Tôrres, L. A. B.; Aguirre, L. A.; Palhares, R. M.; Mendes, E. M. A. M.

    The practical implementation of Chua's circuit control methods is discussed in this chapter. In order to better address this subject, an inductorless Chua's circuit realization is first presented, followed by practical issues related to data analysis, mathematical modelling, and dynamical characterization associated to this electronic chaotic oscillator. As a consequence of the investigation of different control strategies applied to Chua's circuit, a tradeoff among control objective, control energy, and model complexity is devised, which quite naturally leads to a principle that seems to be of general nature: the Information Transmission Via Control (ITVC) for nonlinear oscillators. The main purpose of the present chapter is to serve as an introductory guide to the universe of Chua's circuit control, synchronization, and mathematical modelling.

  7. Logic circuits from zero forcing

    CERN Document Server

    Burgarth, Daniel; Hogben, Leslie; Severini, Simone; Young, Michael

    2011-01-01

    We design logical circuits based on the notion of zero forcing on graphs; each gate of the circuits is a gadget in which zero forcing is performed. We show that such circuits can evaluate every monotone Boolean function. By using two vertices to encode each logical bit, we obtain universal computation. We also highlight a phenomenon of "back forcing" as a property of each function. Such a phenomenon occurs in a circuit when the input of gates which have been already used at a given time step is further modified by a computation actually performed at a later stage. Finally, we show that zero forcing can be also used to implement reversible computation. The model introduced here provides a potentially new tool in the analysis of Boolean functions, with particular attention to monotonicity.

  8. Analysis of low energy arc discharge characteristics based on dynamic V-A characteristics model

    Institute of Scientific and Technical Information of China (English)

    JING Li-nan; WANG Li-gong

    2006-01-01

    Low energy arc discharge characteristics was analyzed based on dynamic V-A characteristics model. It draws conclusions that discharge time relates to the source voltage and the product of inductance and stable current, discharge time will increase when the source voltage increases; current reduce rate is in inverse proportion to the value of inductance; arc resistance when the arc occurs is the ratio of minimum arcing voltage to stable current. It also gains the expressions of arc resistance and arc power, arc resistance and arc power both increase as the source voltage increases and decrease as the value of inductance increases. Conclusions above mentioned are helpful to design intrinsically safe circuits.

  9. Spinal sensory circuits in motion

    OpenAIRE

    2016-01-01

    International audience; The role of sensory feedback in shaping locomotion has been long debated. Recent advances in genetics and behavior analysis revealed the importance of proprioceptive pathways in spinal circuits. The mechanisms underlying peripheral mechanosensation enabled to unravel the networks that feedback to spinal circuits in order to modulate locomotion. Sensory inputs to the vertebrate spinal cord were long thought to originate from the periphery. Recent studies challenge this ...

  10. Optimizing Transmission Line Matching Circuits

    OpenAIRE

    Novak, S.

    1996-01-01

    When designing transmission line matching circuits, there exist often overlooked, additional, not much used, degree of choice in the selection of the transmission line impedance. In this work are presented results of CAD analysis for the two element transmission line matching networks, demonstrating that selecting matching circuits transmission lines with higher impedance, than usually used 50 or 75 ohms, can in most cases substantially decrease the physical dimension of the final matching ci...

  11. Parametric study of radiofrequency helium discharge under atmospheric pressure

    Indian Academy of Sciences (India)

    SAFDAR HUSSAIN; HAFIZ IMRAN AHMAD QAZI; SHANAWER NIAZ; MANZOOR AHMAD BADAR

    2016-12-01

    The parameters of radio frequency helium discharge under atmospheric pressure were studied by electrical and optical measurements using high voltage probe, current probe and optical emission spectroscopy. Two discharge modes $\\alpha$ and $\\gamma$ were observed within certain limits. During $\\alpha$ to $\\gamma$ mode transition, a decrease in voltage (280–168 V), current (2.05–1.61 A) and phase angle (76$^{\\rm o}-56^{\\rm o}$) occurred. The discharge parameters such as resistance, reactance, sheath thickness, electron density, excitation temperature and gas temperature were assessed by electrical measurements using equivalent circuit model and optical emission spectroscopy. In $\\alpha$ mode, the discharge current increased from 1.17 to 2.05 A, electron density increased from $0.19 \\times 10^{12} {\\rm to} 0.47 \\times 10^{12} {\\rm cm}^{−3}$ while sheath thickness decreased from 0.40 to 0.25 mm. The excitation temperatures in the $\\alpha$ and $\\gamma$ modes were 3266 and 4500 K respectively, evaluated by Boltzmann’s plot method. The estimated gas temperature increased from 335 K in the α mode to 485 K in the γ mode, suggesting that the radio frequency atmospheric pressure helium discharge can be used for surface treatment applications.

  12. Neural Circuits on a Chip

    Directory of Open Access Journals (Sweden)

    Md. Fayad Hasan

    2016-09-01

    Full Text Available Neural circuits are responsible for the brain’s ability to process and store information. Reductionist approaches to understanding the brain include isolation of individual neurons for detailed characterization. When maintained in vitro for several days or weeks, dissociated neurons self-assemble into randomly connected networks that produce synchronized activity and are capable of learning. This review focuses on efforts to control neuronal connectivity in vitro and construct living neural circuits of increasing complexity and precision. Microfabrication-based methods have been developed to guide network self-assembly, accomplishing control over in vitro circuit size and connectivity. The ability to control neural connectivity and synchronized activity led to the implementation of logic functions using living neurons. Techniques to construct and control three-dimensional circuits have also been established. Advances in multiple electrode arrays as well as genetically encoded, optical activity sensors and transducers enabled highly specific interfaces to circuits composed of thousands of neurons. Further advances in on-chip neural circuits may lead to better understanding of the brain.

  13. Evaluation of Dielectric-Barrier-Discharge Actuator Substrate Materials

    Science.gov (United States)

    Wilkinson, Stephen P.; Siochi, Emilie J.; Sauti, Godfrey; Xu, Tian-Bing; Meador, Mary Ann; Guo, Haiquan

    2014-01-01

    A key, enabling element of a dielectric barrier discharge (DBD) actuator is the dielectric substrate material. While various investigators have studied the performance of different homogeneous materials, most often in the context of related DBD experiments, fundamental studies focused solely on the dielectric materials have received less attention. The purpose of this study was to conduct an experimental assessment of the body-force-generating performance of a wide range of dielectric materials in search of opportunities to improve DBD actuator performance. Materials studied included commonly available plastics and glasses as well as a custom-fabricated polyimide aerogel. Diagnostics included static induced thrust, electrical circuit parameters for 2D surface discharges and 1D volume discharges, and dielectric material properties. Lumped-parameter circuit simulations for the 1D case were conducted showing good correspondence to experimental data provided that stray capacitances are included. The effect of atmospheric humidity on DBD performance was studied showing a large influence on thrust. The main conclusion is that for homogeneous, dielectric materials at forcing voltages less than that required for streamer formation, the material chemical composition appears to have no effect on body force generation when actuator impedance is properly accounted for.

  14. Difference-Equation/Flow-Graph Circuit Analysis

    Science.gov (United States)

    Mcvey, I. M.

    1988-01-01

    Numerical technique enables rapid, approximate analyses of electronic circuits containing linear and nonlinear elements. Practiced in variety of computer languages on large and small computers; for circuits simple enough, programmable hand calculators used. Although some combinations of circuit elements make numerical solutions diverge, enables quick identification of divergence and correction of circuit models to make solutions converge.

  15. Multi-Layer E-Textile Circuits

    Science.gov (United States)

    Dunne, Lucy E.; Bibeau, Kaila; Mulligan, Lucie; Frith, Ashton; Simon, Cory

    2012-01-01

    Stitched e-textile circuits facilitate wearable, flexible, comfortable wearable technology. However, while stitched methods of e-textile circuits are common, multi-layer circuit creation remains a challenge. Here, we present methods of stitched multi-layer circuit creation using accessible tools and techniques.

  16. 30 CFR 56.6403 - Branch circuits.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Branch circuits. 56.6403 Section 56.6403... Blasting § 56.6403 Branch circuits. (a) If electric blasting includes the use of branch circuits, each branch shall be equipped with a safety switch or equivalent method to isolate the circuits to be used....

  17. Equivalence Checking of Hierarchical Combinational Circuits

    DEFF Research Database (Denmark)

    Williams, Poul Frederick; Hulgaard, Henrik; Andersen, Henrik Reif

    1999-01-01

    This paper presents a method for verifying that two hierarchical combinational circuits implement the same Boolean functions. The key new feature of the method is its ability to exploit the modularity of circuits to reuse results obtained from one part of the circuits in other parts. We demonstrate...... our method on large adder and multiplier circuits....

  18. Comparison between four piezoelectric energy harvesting circuits

    Institute of Scientific and Technical Information of China (English)

    Jinhao QIU; Hao JIANG; Hongli JI; Kongjun ZHU

    2009-01-01

    This paper investigates and compares the efficiencies of four different interfaces for vibration-based energy harvesting systems. Among those four circuits, two circuits adopt the synchronous switching technique, in which the circuit is switched synchronously with the vibration. In this study, a simple source-less trigger circuit used to control the synchronized switch is proposed and two interface circuits of energy harvesting systems are designed based on the trigger circuit. To validate the effectiveness of the proposed circuits, an experimental system was established and the power harvested by those circuits from a vibration beam was measured. Experimental results show that the two new circuits can increase the harvested power by factors 2.6 and 7, respectively, without consuming extra power in the circuits.

  19. Using Combinational Circuits for Control Purposes

    Directory of Open Access Journals (Sweden)

    Maher A. Nabulsi

    2009-01-01

    Full Text Available Problem statement: Combinational circuits are used in computers for generating binary control decisions and for providing digital components for data processing. Approach: The use of combinational circuits and logic gates to control other circuits was discussed. Different systems that use logic gates, multiplexers, decoders and encoders to control different circuits were presented. This study presented a design and implementation of some combinational circuits such as a decoder, an encoder, a multiplexer, a bus system and read/write memory operations. Results: When we connected some types of combinational circuits to the inputs/outputs of digital circuit, these combinational circuits can help us to manage and flow a different types of control signals through a large digital circuit. Conclusion: Many combinational circuits had a good function which can be used for controlling different parts of any digital system and they produce a suitable way to transfer a control signals between different digital components of any large digital system.

  20. DC-DC converter for discharging energy storage magnets

    Science.gov (United States)

    Eyssa, Yehia M.; Huang, Xianrui

    1994-07-01

    A new DC-DC converter to control the output power delivered from a magnetic energy storage magnet or an equivalent current source is discussed. The circuit consists of: (1) highly coupled transformer (air or iron core) with coupling coefficient better than 0.95; (2) low frequency mechanical or superconducting switches (0.1 - 10 Hz) or high frequency (10 - 1000 Hz) GTO switches depending on the application; and (3) small voltage source (capacitor or battery) to control the output voltage. Two examples illustrating the application of this circuit are discussed. They are a step up dc current converter for use in uninterruptible power supplies and a step down one for use in discharging large current storage coil into a small current load. The efficiency expected to exceed 90%.

  1. Instrumentation and test gear circuits manual

    CERN Document Server

    Marston, R M

    2013-01-01

    Instrumentation and Test Gear Circuits Manual provides diagrams, graphs, tables, and discussions of several types of practical circuits. The practical circuits covered in this book include attenuators, bridges, scope trace doublers, timebases, and digital frequency meters. Chapter 1 discusses the basic instrumentation and test gear principles. Chapter 2 deals with the design of passive attenuators, and Chapter 3 with passive and active filter circuits. The subsequent chapters tackle 'bridge' circuits, analogue and digital metering techniques and circuitry, signal and waveform generation, and p

  2. 30 CFR 75.601-1 - Short circuit protection; ratings and settings of circuit breakers.

    Science.gov (United States)

    2010-07-01

    ... of circuit breakers. 75.601-1 Section 75.601-1 Mineral Resources MINE SAFETY AND HEALTH... Trailing Cables § 75.601-1 Short circuit protection; ratings and settings of circuit breakers. Circuit breakers providing short circuit protection for trailing cables shall be set so as not to exceed...

  3. 49 CFR 236.5 - Design of control circuits on closed circuit principle.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Design of control circuits on closed circuit..., AND APPLIANCES Rules and Instructions: All Systems General § 236.5 Design of control circuits on closed circuit principle. All control circuits the functioning of which affects safety of train...

  4. 30 CFR 77.506 - Electric equipment and circuits; overload and short-circuit protection.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electric equipment and circuits; overload and short-circuit protection. 77.506 Section 77.506 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... circuits; overload and short-circuit protection. Automatic circuit-breaking devices or fuses of the...

  5. 30 CFR 77.800 - High-voltage circuits; circuit breakers.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-voltage circuits; circuit breakers. 77.800... COAL MINES Surface High-Voltage Distribution § 77.800 High-voltage circuits; circuit breakers. High-voltage circuits supplying power to portable or mobile equipment shall be protected by suitable...

  6. Electrosurgical Plasma Discharges

    Science.gov (United States)

    Stalder, K. R.; Woloszko, J.

    2002-10-01

    Electrosurgical instruments employing plasmas to volumetrically ablate tissue are now enjoying widespread use in medical applications. We have studied several commercially available instruments in which luminous plasma discharges are formed near electrodes immersed in saline solutions when sufficiently large amplitude bipolar voltage waveforms are applied. Different aqueous salt solutions have been investigated, including isotonic NaCl solution as well as solutions of KCl, and BaCl_2. With strong driving voltage applied, a vapor layer is formed as well as visible and UV optical emissions. Spectroscopic measurements reveal the predominant emissions are from the low ionization potential salt species, but significant emissions from electron impact dissociated water fragments such as OH and H-atoms also are observed. The emissions also coincide with negative bias on the active electrode. These optical emissions are consistent with an electron density of about 10^12cm-3 and an electron temperature of about 4 eV. Experimental results and model calculations of the vapor layer formation process and plasma formation in the high-field region will be discussed.

  7. YANGTZE DISCHARGE MEMORY

    Institute of Scientific and Technical Information of China (English)

    Klaus Fraedrich; Xiuhua Zhu

    2009-01-01

    We present a review on studies focusing on memories in hydrological time series in the Yangtze Basin based on observational and reconstructed historical data.Memory appears as scaling of power spectra,S(f)~f-β,with 0 <β≤ 1.The presence of scaling is noteworthy in daily river discharge time series:1)from weeks to a couple of years,power spectra follow flicker noise,that is β≈ 1;2)beyond years,spectral scaling appraaclTes β≈0.3.In historical time series of floods and draughts,power spectra also shows scaling with β≈ 0.38 ~0.52.Furthermore,a 70-year peak is detected in historical maritime events series,which also appears in other past climate indicators.Presence of memory in these hydrological time series implies clustering of extremes and scaling of their recurrence times,therefore,probabilistic forecast potential for extremes can be derived.On the other hand,although several physical processes,for example,soil moisture storage and high intermittency of precipitation,have been suggested to be the possible candidates contributing to the presence of long term memory,they remain open for future research.

  8. Performance Analysis of Modified Drain Gating Techniques for Low Power and High Speed Arithmetic Circuits

    Directory of Open Access Journals (Sweden)

    Shikha Panwar

    2014-01-01

    Full Text Available This paper presents several high performance and low power techniques for CMOS circuits. In these design methodologies, drain gating technique and its variations are modified by adding an additional NMOS sleep transistor at the output node which helps in faster discharge and thereby providing higher speed. In order to achieve high performance, the proposed design techniques trade power for performance in the delay critical sections of the circuit. Intensive simulations are performed using Cadence Virtuoso in a 45 nm standard CMOS technology at room temperature with supply voltage of 1.2 V. Comparative analysis of the present circuits with standard CMOS circuits shows smaller propagation delay and lesser power consumption.

  9. DESIGN OF TWO-PHASE SINUSOIDAL POWER CLOCK AND CLOCKED TRANSMISSION GATE ADIABATIC LOGIC CIRCUIT

    Institute of Scientific and Technical Information of China (English)

    Wang Pengjun; Yu Junjun

    2007-01-01

    First the research is conducted on the design of the two-phase sinusoidal power clock generator in this paper. Then the design of the new adiabatic logic circuit adopting the two-phase sinusoidal power clocks-Clocked Transmission Gate Adiabatic Logic (CTGAL) circuit is presented. This circuit makes use of the clocked transmission gates to sample the input signals, then the output loads are charged and discharged in a fully adiabatic manner by using bootstrapped N-Channel Metal Oxide Semiconductor (NMOS) and Complementary Metal Oxide Semiconductor (CMOS) latch structure.Finally, with the parameters of Taiwan Semiconductor Manufacturing Company (TSMC) 0.25 μm CMOS device, the transient energy consumption of CTGAL, Bootstrap Charge-Recovery Logic (BCRL)and Pass-transistor Adiabatic Logic (PAL) including their clock generators is simulated. The simulation result indicates that CTGAL circuit has the characteristic of remarkably low energy consumption.

  10. Modelling Discharge Inception in Thunderstorms

    NARCIS (Netherlands)

    Rutjes, Casper; Dubinova, Anna; Ebert, Ute; Buitink, Stijn; Scholten, Olaf; Trinh, Gia Thi Ngoc

    2015-01-01

    The electric fields in thunderstorms can exceed the breakdown value locally near hydrometeors. But are fields high enough and the regions large enough to initiate a streamer discharge? And where would a sufficient density of free electrons come from to start the discharge in the humid air that rapid

  11. [Redesigning the hospital discharge process].

    Science.gov (United States)

    Martínez-Ramos, M; Flores-Pardo, E; Uris-Sellés, J

    2016-01-01

    The aim of this article is to show that the redesign and planning process of hospital discharge advances the departure time of the patient from a hospital environment. Quasi-experimental study conducted from January 2011 to April 2013, in a local hospital. The cases analysed were from medical and surgical nursing units. The process was redesigned to coordinate all the professionals involved in the process. The hospital discharge improvement process improvement was carried out by forming a working group, the analysis of retrospective data, identifying areas for improvement, and its redesign. The dependent variable was the time of patient administrative discharge. The sample was classified as pre-intervention, inter-intervention, and post-intervention, depending on the time point of the study. The final sample included 14,788 patients after applying the inclusion and exclusion criteria. The mean discharge release time decreased significantly by 50 min between pre-intervention and post-intervention periods. The release time in patients with planned discharge was one hour and 25 min less than in patients with unplanned discharge. Process redesign is a useful strategy to improve the process of hospital discharge. Besides planning the discharge, it is shown that the patient leaving the hospital before 12 midday is a key factor. Copyright © 2015 SECA. Published by Elsevier Espana. All rights reserved.

  12. Logic circuits from zero forcing.

    Science.gov (United States)

    Burgarth, Daniel; Giovannetti, Vittorio; Hogben, Leslie; Severini, Simone; Young, Michael

    We design logic circuits based on the notion of zero forcing on graphs; each gate of the circuits is a gadget in which zero forcing is performed. We show that such circuits can evaluate every monotone Boolean function. By using two vertices to encode each logical bit, we obtain universal computation. We also highlight a phenomenon of "back forcing" as a property of each function. Such a phenomenon occurs in a circuit when the input of gates which have been already used at a given time step is further modified by a computation actually performed at a later stage. Finally, we show that zero forcing can be also used to implement reversible computation. The model introduced here provides a potentially new tool in the analysis of Boolean functions, with particular attention to monotonicity. Moreover, in the light of applications of zero forcing in quantum mechanics, the link with Boolean functions may suggest a new directions in quantum control theory and in the study of engineered quantum spin systems. It is an open technical problem to verify whether there is a link between zero forcing and computation with contact circuits.

  13. Introduction to lethal circuit transformations

    Science.gov (United States)

    Fišer, Petr; Schmidt, Jan

    2015-12-01

    Logic optimization is a process that takes a logic circuit description (Boolean network) as an input and tries to refine it, to reduce its size and/or depth. An ideal optimization process should be able to devise an optimum implementation of a network in a reasonable time, given any circuit structure at the input. However, there are cases where it completely fails to produce even near-optimum solutions. Such cases are typically induced by non-standard circuit structure modifications. Surprisingly enough, such deviated structures are frequently present in standard benchmark sets too. We may only wonder whether it is an intention of the benchmarks creators, or just an unlucky coincidence. Even though synthesis tools should be primarily well suited for practical circuits, there is no guarantee that, e.g., a higher-level synthesis process will not generate such unlucky structures. Here we present examples of circuit transformations that lead to failure of most of state-of-the-art logic synthesis and optimization processes, both academic and commercial, and suggest actions to mitigate the disturbing effects.

  14. Dynamical compensation in physiological circuits.

    Science.gov (United States)

    Karin, Omer; Swisa, Avital; Glaser, Benjamin; Dor, Yuval; Alon, Uri

    2016-11-08

    Biological systems can maintain constant steady-state output despite variation in biochemical parameters, a property known as exact adaptation. Exact adaptation is achieved using integral feedback, an engineering strategy that ensures that the output of a system robustly tracks its desired value. However, it is unclear how physiological circuits also keep their output dynamics precise-including the amplitude and response time to a changing input. Such robustness is crucial for endocrine and neuronal homeostatic circuits because they need to provide a precise dynamic response in the face of wide variation in the physiological parameters of their target tissues; how such circuits compensate their dynamics for unavoidable natural fluctuations in parameters is unknown. Here, we present a design principle that provides the desired robustness, which we call dynamical compensation (DC). We present a class of circuits that show DC by means of a nonlinear feedback loop in which the regulated variable controls the functional mass of the controlling endocrine or neuronal tissue. This mechanism applies to the control of blood glucose by insulin and explains several experimental observations on insulin resistance. We provide evidence that this mechanism may also explain compensation and organ size control in other physiological circuits.

  15. The practice of terminal discharge.

    Science.gov (United States)

    Radha Krishna, Lalit Kumar; Murugam, Vengadasalam; Quah, Daniel Song Chiek

    2017-01-01

    'Terminal discharges' are carried out in Singapore for patients who wish to die at home. However, if due diligence is not exercised, parallels may be drawn with euthanasia. We present a theoretical discussion beginning with the definition of terminal discharges and the reasons why they are carried out in Singapore. By considering the intention behind terminal discharges and utilising a multidisciplinary team to deliberate on the clinical, social and ethical intricacies with a patient- and context-specific approach, euthanasia is avoided. It is hoped that this will provide a platform for professionals in palliative medicine to negotiate challenging issues when arranging a terminal discharge, so as to avoid the pitfall of committing euthanasia in a country such as Singapore where euthanasia is illegal. It is hoped that a set of guidelines for terminal discharges may someday be realised to assist professionals in Singapore and around the world.

  16. Investigation on the characteristics of a two gap capillary discharge based on surface flash over ignition in atmosphere

    Science.gov (United States)

    Huang, Dong; Yang, Lanjun; Huo, Peng; Ma, Jiangbo; Guo, Haishan; Xu, Ran; Ding, Weidong

    2016-09-01

    In this paper, a two gap capillary (TGC) structure is presented and the corresponding driving circuit based on surface flashover ignition is designed to achieve reliable and repetitive discharge in atmosphere. The characteristics of the two gap capillary (TGC) discharge in low energy are investigated, of which the discharge energy is from 27 J to 432 J. With the rise of charging voltage, the delay of the weak capillary discharge and the main discharge both decrease. Meanwhile, the current flowing through the main gap and the plasma jet ejection are enhanced. The main gap resistance is about several hundreds of milliohms in the main discharge and rises gradually with the decay of the current. The long tail extinction is witnessed at the relatively low charging voltage of 0.5 kV and 1.0 kV, by which the pulse width of the discharge is extended. However, the discharge during the long tail extinction contributes little to the plasma jet ejection with negligible plasma jet velocity and low degree of the plasma ionization. The effective energy deposition efficiency on the main gap increases gradually with the charging voltage and reaches approximately 2 times higher than that of the traditional structure at the charging voltage of 2.0 kV. The series inductor in the circuit can restrain the development of the long tail extinction and increase the effective energy deposition efficiency. Thus, the discharge characteristics and the plasma ejection of TGC under the relatively low charging voltage are optimized.

  17. Analysis of polypyrrole-coated stainless steel electrodes - Estimation of specific capacitances and construction of equivalent circuits

    Indian Academy of Sciences (India)

    R Ramya; M V Sangaranarayanan

    2008-01-01

    The galvanostatic polymerization of pyrrole is carried out on stainless steel electrodes using -toluene sulphonic acid. The morphology of the film is studied from Scanning Electron Microscopy (SEM) measurements while the nature of the substrate is analysed using Energy Dispersive X-ray Spectroscopy (EDAX) technique. The electrochemical behaviour is studied using cyclic voltammetry, charge-discharge analysis and impedance spectroscopy. The feasibility of the electrode for supercapacitor applications is investigated. The specific capacitance is estimated as ∼ 102 Farads per gram with 103 charge-discharge cycles. A plausible equivalent circuit for the system is proposed and the circuit parameters are obtained by non-linear regression analysis.

  18. Low-Frequency Relaxation Oscillations in Capacitive Discharge Processes

    Institute of Scientific and Technical Information of China (English)

    ZHOU Zhu-Wen; M.A.LIEBERMAN; Sungjin KIM; JI Shi-Yin; DENG Ming-Sen; SUN Guang-Yu

    2008-01-01

    Low-frequency (2.72-3.70 Hz) relaxation oscillations at 100m Tort at higher absorbed power were observed from time-varying optical emission of the main discharge chamber and the periphery.We interpret the low frequency oscillations using an electromagnetic model of the slot impedance with parallel connection variational peripheral capacitance,coupled to a circuit analysis of the system including the matching network.The model results are in general agreement with the experimental observations,and indicate a variety of bchaviours dependent on the matching conditions.

  19. Diagnostics of Atmospheric Pressure Surface Discharge Plasmas in Argon

    Institute of Scientific and Technical Information of China (English)

    张锐; 詹如娟; 温晓辉

    2003-01-01

    Atmospheric pressure surface discharge is shown to have great prospects for a number of industrial applications.To acquire better results in application fields and considering that the study of the basic parameters including electron temperature and electron density is desirable,we develop an equivalent circuit model and the diagnostic techniques based on optical emission spectroscopy and electrical measurement in our laboratory.The electron temperature has been determined to be about 0.7eV by a Fermi-Dirac model.The electron density has been calculated to be near 1010 cm-3 from a time resolved electrical measurement(Ohmic heating method).

  20. RF impedance measurements of DC atmospheric micro-discharges

    CERN Document Server

    Overzet, Lawrence J; Mandra, Monali; Goeckner, Matthew; Dufour, Thierry; Dussart, Remi; Lefaucheux, Philippe

    2016-01-01

    The available diagnostics for atmospheric micro-plasmas remain limited and relatively complex to implement; so we present a radio-frequency technique for diagnosing a key parameter here. The technique allows one to estimate the dependencies of the electron density by measuring the RF-impedance of the micro-plasma and analyzing it with an appropriate equivalent circuit. This technique is inexpensive, can be used in real time and gives reasonable results for argon and helium DC micro-plasmas in holes over a wide pressure range. The electron density increases linearly with current in the expected range consistent with normal glow discharge behavior.

  1. Electronically Tunable Sinusoidal Oscillator Circuit

    Directory of Open Access Journals (Sweden)

    Sudhanshu Maheshwari

    2012-01-01

    Full Text Available This paper presents a novel electronically tunable third-order sinusoidal oscillator synthesized from a simple topology, employing current-mode blocks. The circuit is realized using the active element: Current Controlled Conveyors (CCCIIs and grounded passive components. The new circuit enjoys the advantages of noninteractive electronically tunable frequency of oscillation, use of grounded passive components, and the simultaneous availability of three sinusoidal voltage outputs. Bias current generation scheme is given for the active elements used. The circuit exhibits good high frequency performance. Nonideal and parasitic study has also been carried out. Wide range frequency tuning is shown with the bias current. The proposed theory is verified through extensive PSPICE simulations using 0.25 μm CMOS process parameters.

  2. Optimization of reversible sequential circuits

    CERN Document Server

    Sayem, Abu Sadat Md

    2010-01-01

    In recent years reversible logic has been considered as an important issue for designing low power digital circuits. It has voluminous applications in the present rising nanotechnology such as DNA computing, Quantum Computing, low power VLSI and quantum dot automata. In this paper we have proposed optimized design of reversible sequential circuits in terms of number of gates, delay and hardware complexity. We have designed the latches with a new reversible gate and reduced the required number of gates, garbage outputs, and delay and hardware complexity. As the number of gates and garbage outputs increase the complexity of reversible circuits, this design will significantly enhance the performance. We have proposed reversible D-latch and JK latch which are better than the existing designs available in literature.

  3. Chua's Circuit: Control and Synchronization

    Science.gov (United States)

    Irimiciuc, Stefan-Andrei; Vasilovici, Ovidiu; Dimitriu, Dan-Gheorghe

    Chaos-based data encryption is one of the most reliable methods used in secure communications. This implies a good control of a chaotic system and a good synchronization between the involved systems. Here, experimental results are shown on the control and synchronization of Chua's circuits. The control of the chaotic circuit was achieved by using the switching method. The influence of the control signal characteristics (amplitude, frequency and shape) on the system's states was also investigated. The synchronization of two similar chaotic circuits was studied, emphasizing the importance of the chaotic state characteristics of the Master system in respect to those of Slave system. It was shown that the synchronization does not depend on the chaotic state type, neither on the dimension (x, y or z) used for synchronization.

  4. Additive Manufacturing of Hybrid Circuits

    Science.gov (United States)

    Sarobol, Pylin; Cook, Adam; Clem, Paul G.; Keicher, David; Hirschfeld, Deidre; Hall, Aaron C.; Bell, Nelson S.

    2016-07-01

    There is a rising interest in developing functional electronics using additively manufactured components. Considerations in materials selection and pathways to forming hybrid circuits and devices must demonstrate useful electronic function; must enable integration; and must complement the complex shape, low cost, high volume, and high functionality of structural but generally electronically passive additively manufactured components. This article reviews several emerging technologies being used in industry and research/development to provide integration advantages of fabricating multilayer hybrid circuits or devices. First, we review a maskless, noncontact, direct write (DW) technology that excels in the deposition of metallic colloid inks for electrical interconnects. Second, we review a complementary technology, aerosol deposition (AD), which excels in the deposition of metallic and ceramic powder as consolidated, thick conformal coatings and is additionally patternable through masking. Finally, we show examples of hybrid circuits/devices integrated beyond 2-D planes, using combinations of DW or AD processes and conventional, established processes.

  5. Vertically Integrated Circuits at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Deptuch, Grzegorz; Demarteau, Marcel; Hoff, James; Lipton, Ronald; Shenai, Alpana; Trimpl, Marcel; Yarema, Raymond; Zimmerman, Tom; /Fermilab

    2009-01-01

    The exploration of the vertically integrated circuits, also commonly known as 3D-IC technology, for applications in radiation detection started at Fermilab in 2006. This paper examines the opportunities that vertical integration offers by looking at various 3D designs that have been completed by Fermilab. The emphasis is on opportunities that are presented by through silicon vias (TSV), wafer and circuit thinning and finally fusion bonding techniques to replace conventional bump bonding. Early work by Fermilab has led to an international consortium for the development of 3D-IC circuits for High Energy Physics. The consortium has submitted over 25 different designs for the Fermilab organized MPW run organized for the first time.

  6. Nuclear sensor signal processing circuit

    Science.gov (United States)

    Kallenbach, Gene A.; Noda, Frank T.; Mitchell, Dean J.; Etzkin, Joshua L.

    2007-02-20

    An apparatus and method are disclosed for a compact and temperature-insensitive nuclear sensor that can be calibrated with a non-hazardous radioactive sample. The nuclear sensor includes a gamma ray sensor that generates tail pulses from radioactive samples. An analog conditioning circuit conditions the tail-pulse signals from the gamma ray sensor, and a tail-pulse simulator circuit generates a plurality of simulated tail-pulse signals. A computer system processes the tail pulses from the gamma ray sensor and the simulated tail pulses from the tail-pulse simulator circuit. The nuclear sensor is calibrated under the control of the computer. The offset is adjusted using the simulated tail pulses. Since the offset is set to zero or near zero, the sensor gain can be adjusted with a non-hazardous radioactive source such as, for example, naturally occurring radiation and potassium chloride.

  7. Electrical model of dielectric barrier discharge homogenous and filamentary modes

    Science.gov (United States)

    López-Fernandez, J. A.; Peña-Eguiluz, R.; López-Callejas, R.; Mercado-Cabrera, A.; Valencia-Alvarado, R.; Muñoz-Castro, A.; Rodríguez-Méndez, B. G.

    2017-01-01

    This work proposes an electrical model that combines homogeneous and filamentary modes of an atmospheric pressure dielectric barrier discharge cell. A voltage controlled electric current source has been utilized to implement the power law equation that represents the homogeneous discharge mode, which starts when the gas breakdown voltage is reached. The filamentary mode implies the emergence of electric current conducting channels (microdischarges), to add this phenomenon an RC circuit commutated by an ideal switch has been proposed. The switch activation occurs at a higher voltage level than the gas breakdown voltage because it is necessary to impose a huge electric field that contributes to the appearance of streamers. The model allows the estimation of several electric parameters inside the reactor that cannot be measured. Also, it is possible to appreciate the modes of the DBD depending on the applied voltage magnitude. Finally, it has been recognized a good agreement between simulation outcomes and experimental results.

  8. Effect of Exposure to Electrical Discharge on Transformer Oil Properties

    Institute of Scientific and Technical Information of China (English)

    J. S. N'Cho; I. Fofana; T. Aka-Ngnui; A. Beroual

    2011-01-01

    Petroleum based oils, the so-called mineral oils, are used for impregnating solid insulations or filling products of very large number of electric materials: transformers, reactors, cables, bushings, circuit breakers, tap changers, etc. In these equipments, oil is exposed to electrical stress and may experience electrical discharges under certain circumstances. Since the electrical stress is unavoidable in power equipments, the ability of oil to resist decomposition under electrical stress is of great importance for the safety of these devices. Electrical stress together with heat and moisture, in the presence of oxygen, oxidises the oil producing free radicals, acids and sludge that are deleterious to the transformer. In this paper, the effect of electrical discharges on oil properties is reported. The results indicate that quality of oil is considerably affected with increasing voltage stress. Comparing oil properties before and after voltage application allows assessing the outcome of random secondary chemical reactions between large oil born free radicals.

  9. Prolongation of the lifetime of guided discharges triggered in atmospheric air by femtosecond laser filaments up to 130 μs

    Science.gov (United States)

    Arantchouk, L.; Honnorat, B.; Thouin, E.; Point, G.; Mysyrowicz, A.; Houard, A.

    2016-04-01

    The triggering and guiding of electric discharges produced in atmospheric air by a compact 100 kV Marx generator is realized in laboratory using an intense femtosecond laser pulse undergoing filamentation. We describe here an approach allowing extending the lifetime of the discharges by injecting a current with an additional circuit. Laser guiding discharges with a length of 8.5 cm and duration of 130 μs were obtained.

  10. Endogenous money, circuits and financialization

    OpenAIRE

    Malcolm Sawyer

    2013-01-01

    This paper locates the endogenous money approach in a circuitist framework. It argues for the significance of the credit creation process for the evolution of the economy and the absence of any notion of ‘neutrality of money’. Clearing banks are distinguished from other financial institutions as the providers of initial finance in a circuit whereas other financial institutions operate in a final finance circuit. Financialization is here viewed in terms of the growth of financial assets an...

  11. Circuit modeling for electromagnetic compatibility

    CERN Document Server

    Darney, Ian B

    2013-01-01

    Very simply, electromagnetic interference (EMI) costs money, reduces profits, and generally wreaks havoc for circuit designers in all industries. This book shows how the analytic tools of circuit theory can be used to simulate the coupling of interference into, and out of, any signal link in the system being reviewed. The technique is simple, systematic and accurate. It enables the design of any equipment to be tailored to meet EMC requirements. Every electronic system consists of a number of functional modules interconnected by signal links and power supply lines. Electromagnetic interference

  12. Simplified design of filter circuits

    CERN Document Server

    Lenk, John

    1999-01-01

    Simplified Design of Filter Circuits, the eighth book in this popular series, is a step-by-step guide to designing filters using off-the-shelf ICs. The book starts with the basic operating principles of filters and common applications, then moves on to describe how to design circuits by using and modifying chips available on the market today. Lenk's emphasis is on practical, simplified approaches to solving design problems.Contains practical designs using off-the-shelf ICsStraightforward, no-nonsense approachHighly illustrated with manufacturer's data sheets

  13. Embedded systems circuits and programming

    CERN Document Server

    Sanchez, Julio

    2012-01-01

    During the development of an engineered product, developers often need to create an embedded system--a prototype--that demonstrates the operation/function of the device and proves its viability. Offering practical tools for the development and prototyping phases, Embedded Systems Circuits and Programming provides a tutorial on microcontroller programming and the basics of embedded design. The book focuses on several development tools and resources: Standard and off-the-shelf components, such as input/output devices, integrated circuits, motors, and programmable microcontrollers The implementat

  14. Integrated circuits for multimedia applications

    DEFF Research Database (Denmark)

    Vandi, Luca

    2007-01-01

    This work presents several key aspects in the design of RF integrated circuits for portable multimedia devices. One chapter is dedicated to the application of negative-feedback topologies to receiver frontends. A novel feedback technique suitable for common multiplier-based mixers is described......, and it is applied to a broad-band dual-loop receiver architecture in order to boost the linearity performances of the stage. A simplified noise- and linearity analysis of the circuit is derived, and a comparison is provided with a more traditional dual-loop topology (a broad-band stage based on shunt...

  15. Fermionic models with superconducting circuits

    Energy Technology Data Exchange (ETDEWEB)

    Las Heras, Urtzi; Garcia-Alvarez, Laura; Mezzacapo, Antonio; Lamata, Lucas [University of the Basque Country UPV/EHU, Department of Physical Chemistry, Bilbao (Spain); Solano, Enrique [University of the Basque Country UPV/EHU, Department of Physical Chemistry, Bilbao (Spain); IKERBASQUE, Basque Foundation for Science, Bilbao (Spain)

    2015-12-01

    We propose a method for the efficient quantum simulation of fermionic systems with superconducting circuits. It consists in the suitable use of Jordan-Wigner mapping, Trotter decomposition, and multiqubit gates, be with the use of a quantum bus or direct capacitive couplings. We apply our method to the paradigmatic cases of 1D and 2D Fermi-Hubbard models, involving couplings with nearest and next-nearest neighbours. Furthermore, we propose an optimal architecture for this model and discuss the benchmarking of the simulations in realistic circuit quantum electrodynamics setups. (orig.)

  16. A modified circuit topology for inductive pulsed power supply based on HTSPPTs

    Science.gov (United States)

    Li, Haitao; Zhang, Cunshan; Wang, Teng; Gao, Mingliang; Li, Zhenmei; Zou, Guofeng

    2016-10-01

    High temperature superconducting pulsed power transformer (HTSPPT) provides an efficient method for inductive energy storage and current multiplication. The primary inductor of HTSPPT used for energy storage is made of high temperature superconducting coils, and the secondary inductor used for current pulse generation is made of normal conductor coils. In the initial circuit, the secondary inductor generates current pulse by switching out the coupled primary superconducting inductor. However, during the switching period, the leakage flux caused by imperfect coupling and the sudden change in primary current induce a voltage across the opening switch which exceeds the affordability of modern solid-state switches. In previous studies, a half-cycle oscillatory discharge circuit is proposed to mitigate these problems by using a capacitor to recapture the energy in the leakage flux and to slow down the turnoff of current in the primary. However, there are still some problems should be settled. For example, the output pulse cannot be adjusted, the residual energy cannot be recovered and the capacitor branch circuit may have an impact on the charging process. In the paper, a modified discharge circuit topology is introduced to solve these problems. A multi-module system comprising of several HTSPPTs charging in series connection and discharging in parallel is also designed and simulated. This system can be used to power an electromagnetic emission device.

  17. Relaxation Based Electrical Simulation for VLSI Circuits

    Directory of Open Access Journals (Sweden)

    S. Rajkumar

    2012-06-01

    Full Text Available Electrical circuit simulation was one of the first CAD tools developed for IC design. The conventional circuit simulators like SPICE and ASTAP were designed initially for the cost effective analysis of circuits containing a few hundred transistors or less. A number of approaches have been used to improve the performances of congenital circuit simulators for the analysis of large circuits. Thereafter relaxation methods was proposed to provide more accurate waveforms than standard circuit simulators with up to two orders of magnitude speed improvement for large circuits. In this paper we have tried to highlights recently used waveform and point relaxation techniques for simulation of VLSI circuits. We also propose a simple parallelization technique and experimentally demonstrate that we can solve digital circuits with tens of million transistors in a few hours.

  18. An Approach to Simplify Reversible Logic Circuits

    Directory of Open Access Journals (Sweden)

    Pabitra Roy

    2012-09-01

    Full Text Available Energy loss is one of the major problems in traditional irreversible circuits. For every bit of information loss kTln2 joules of heat is lost. In order to reduce the energy loss the concept of reversible logic circuits are introduced. Here we have described an algorithm for simplifying the reversible logic circuit and hence reduction of circuit cost and energy. The algorithm considers sub_circuit with respect to their number of lines and contiguous gates. The resulting sub_circuits are re-synthesized with smaller equivalent implementation. The process continues until circuit cost reaches good enough for Application or until a given computation budget has been exhausted. The circuit is constructed by NOT, CNOT and Toffoli gates only. By applying the algorithm and using the equivalent implementation we will get significant reduction of circuit cost and hence energy.

  19. Retropath: automated pipeline for embedded metabolic circuits.

    Science.gov (United States)

    Carbonell, Pablo; Parutto, Pierre; Baudier, Claire; Junot, Christophe; Faulon, Jean-Loup

    2014-08-15

    Metabolic circuits are a promising alternative to other conventional genetic circuits as modular parts implementing functionalities required for synthetic biology applications. To date, metabolic design has been mainly focused on production circuits. Emergent applications such as smart therapeutics, however, require circuits that enable sensing and regulation. Here, we present RetroPath, an automated pipeline for embedded metabolic circuits that explores the circuit design space from a given set of specifications and selects the best circuits to implement based on desired constraints. Synthetic biology circuits embedded in a chassis organism that are capable of controlling the production, processing, sensing, and the release of specific molecules were enumerated in the metabolic space through a standard procedure. In that way, design and implementation of applications such as therapeutic circuits that autonomously diagnose and treat disease, are enabled, and their optimization is streamlined.

  20. Discharge Planning in Chronic Conditions

    Science.gov (United States)

    McMartin, K

    2013-01-01

    Background Chronically ill people experience frequent changes in health status accompanied by multiple transitions between care settings and care providers. Discharge planning provides support services, follow-up activities, and other interventions that span pre-hospital discharge to post-hospital settings. Objective To determine if discharge planning is effective at reducing health resource utilization and improving patient outcomes compared with standard care alone. Data Sources A standard systematic literature search was conducted for studies published from January 1, 2004, until December 13, 2011. Review Methods Reports, randomized controlled trials, systematic reviews, and meta-analyses with 1 month or more of follow-up and limited to specified chronic conditions were examined. Outcomes included mortality/survival, readmissions and emergency department (ED) visits, hospital length of stay (LOS), health-related quality of life (HRQOL), and patient satisfaction. Results One meta-analysis compared individualized discharge planning to usual care and found a significant reduction in readmissions favouring individualized discharge planning. A second meta-analysis compared comprehensive discharge planning with postdischarge support to usual care. There was a significant reduction in readmissions favouring discharge planning with postdischarge support. However, there was significant statistical heterogeneity. For both meta-analyses there was a nonsignificant reduction in mortality between the study arms. Limitations There was difficulty in distinguishing the relative contribution of each element within the terms “discharge planning” and “postdischarge support.” For most studies, “usual care” was not explicitly described. Conclusions Compared with usual care, there was moderate quality evidence that individualized discharge planning is more effective at reducing readmissions or hospital LOS but not mortality, and very low quality evidence that it is more

  1. Ion Transport and Discharge Characteristics of Polymer Blend (PVP/PVA) Electrolyte Films Doped with Potassium Iodide

    Science.gov (United States)

    Umadevi, C.; Mohan, K. R.; Achari, V. B. S.; Sharma, A. K.; Rao, V. V. R. N.

    2010-12-01

    Solid polymer blend electrolyte films based on PVP/PVA complexed with KI were prepared by the solution cast technique. Various experimental techniques such as electrical conductivity and transport number measurement were used to characterize the polymer electrolyte films. Electrochemical cells with the polymer electrolytes (PVP+PVA+KI) were fabricated in the configuration K/(PVP+PVA+KI)/ (I2+C+electrode). The discharge characteristics of the cells were studied under a constant load of 100 KΩ. The open-circuit voltage, short-circuit current and discharge time for the plateau region are measured. Several other cell parameters were evaluated and are reported.

  2. Past and future corollaries of theories on causes of metabolic syndrome and obesity related co-morbidities part 2: a composite unifying theory review of human-specific co-adaptations to brain energy consumption.

    Science.gov (United States)

    McGill, Anne-Thea

    2014-01-01

    Metabolic syndrome (MetS) predicts type II diabetes mellitus (TIIDM), cardiovascular disease (CVD) and cancer, and their rates have escalated over the last few decades. Obesity related co-morbidities also overlap the concept of the metabolic syndrome (MetS). However, understanding of the syndrome's underlying causes may have been misapprehended. The current paper follows on from a theory review by McGill, A-T in Archives of Public Health, 72: 30. This accompanying paper utilises research on human evolution and new biochemistry to theorise on why MetS and obesity arise and how they affect the population. The basis of this composite unifying theory is that the proportionately large, energy-demanding human brain may have driven co-adaptive mechanisms to provide, or conserve, energy for the brain. A 'dual system' is proposed. 1) The enlarged, complex cortico-limbic-striatal system increases dietary energy by developing strong neural self-reward/motivation pathways for the acquisition of energy dense food, and (2) the nuclear factor-erythroid 2-related factor 2 (NRF2) cellular protection system amplifies antioxidant, antitoxicant and repair activity by employing plant chemicals. In humans who consume a nutritious diet, the NRF2 system has become highly energy efficient. Other relevant human-specific co-adaptations are explored. In order to 'test' this composite unifying theory it is important to show that the hypothesis and sub-theories pertain throughout the whole of human evolution and history up till the current era. Corollaries of the composite unifying theory of MetS are examined with respect to past under-nutrition and malnutrition since agriculture began 10,000 years ago. The effects of man-made pollutants on degenerative change are examined. Projections are then made from current to future patterns on the state of 'insufficient micronutrient and/or unbalanced high energy malnutrition with central obesity and metabolic dysregulation' or 'malnubesity'. Forecasts

  3. NPDES (National Pollution Discharge & Elimination System) Minor Dischargers

    Data.gov (United States)

    U.S. Environmental Protection Agency — As authorized by the Clean Water Act, the National Pollutant Discharge Elimination System (NPDES) permit program controls water pollution by regulating point sources...

  4. Laser-induced optogalvanic signal oscillations in miniature neon glow discharge plasma.

    Science.gov (United States)

    Saini, V K

    2013-06-20

    Laser-induced optogalvanic (OG) signal oscillations detected in miniature neon glow discharge plasma are investigated using a discharge equivalent-circuit model. The damped oscillations in OG signal are generated when a pulsed dye laser is tuned to a specific neon transition (1s5→2p2) at 588.2 nm under the discharge conditions where dynamic resistance changes its sign. Penning ionization via quasi-resonant energy transfer collisions between neon gas atoms in metastable state and sputtered electrode atoms in ground state is discussed to explain the negative differential resistance properties of discharge plasma that are attributed to oscillations in the OG signal. The experimentally observed results are simulated by analyzing the behavior of an equivalent discharge-OG circuit. Good agreement between theoretically calculated and experimental results is observed. It is found that discharge plasma is more sensitive and less stable in close vicinity to dynamic resistance sign inversion, which can be useful for weak-optical-transition OG detection.

  5. HIGH ENERGY GASEOUS DISCHARGE DEVICES

    Science.gov (United States)

    Josephson, V.

    1960-02-16

    The high-energy electrical discharge device described comprises an envelope, a pair of main discharge electrodes supported in opposition in the envelope, and a metallic shell symmetrically disposed around and spaced from the discharge path between the electrodes. The metallic shell comprises a first element of spaced helical turns of metallic material and a second element of spaced helical turns of methllic material insulatedly supported in superposition outside the first element and with the turns overlapping the gap between the turns of the first element.

  6. An introduction to gas discharges

    CERN Document Server

    Howatson, A M

    2013-01-01

    An Introduction to Gas Discharges: Second Edition aims to provide a compact introduction to the subject of gas discharges, which continues to make both scientific and industrial progress. In this second edition, the author has made minor corrections, rewritten and expanded some sections, used SI units and modernized notions, in hopes of making the book more up to date. Included in the book is a short history of the subject, an introduction that enumerates the types of gas discharges, the fundamental processes, and then moves on to the more specific areas such as the breakdown, the self-sustai

  7. Snowfall induced by corona discharge

    CERN Document Server

    Ju, Jingjing; Li, Ruxin; Du, Shengzhe; Sun, Haiyi; Liu, Yonghong; Tian, Ye; Bai, Yafeng; Liu, Yaoxiang; Chen, Na; Wang, Jingwei; Wang, Cheng; Liu, Jiansheng; Chin, S L; Xu, Zhizhan

    2016-01-01

    We demonstrated for the first time the condensation and precipitation (or snowfall) induced by a corona discharge inside a cloud chamber. Ionic wind was found to have played a more significant role than ions as extra Cloud Condensation Nuclei (CCN). 2.25 g of net snow enhancement was measured after applying a 30 kV corona discharge for 25 min. In comparison with another newly emerging femtosecond laser filamentation method, the snow precipitation induced by the corona discharge has about 4 orders of magnitude higher wall-plug efficiency under similar conditions.

  8. Clocking Scheme for Switched-Capacitor Circuits

    DEFF Research Database (Denmark)

    Steensgaard-Madsen, Jesper

    1998-01-01

    A novel clocking scheme for switched-capacitor (SC) circuits is presented. It can enhance the understanding of SC circuits and the errors caused by MOSFET (MOS) switches. Charge errors, and techniques to make SC circuits less sensitive to them are discussed.......A novel clocking scheme for switched-capacitor (SC) circuits is presented. It can enhance the understanding of SC circuits and the errors caused by MOSFET (MOS) switches. Charge errors, and techniques to make SC circuits less sensitive to them are discussed....

  9. Digital circuit boards mach 1 GHz

    CERN Document Server

    Morrison, Ralph

    2012-01-01

    A unique, practical approach to the design of high-speed digital circuit boards The demand for ever-faster digital circuit designs is beginning to render the circuit theory used by engineers ineffective. Digital Circuit Boards presents an alternative to the circuit theory approach, emphasizing energy flow rather than just signal interconnection to explain logic circuit behavior. The book shows how treating design in terms of transmission lines will ensure that the logic will function, addressing both storage and movement of electrical energy on these lines. It cove

  10. Advanced circuit simulation using Multisim workbench

    CERN Document Server

    Báez-López, David; Cervantes-Villagómez, Ofelia Delfina

    2012-01-01

    Multisim is now the de facto standard for circuit simulation. It is a SPICE-based circuit simulator which combines analog, discrete-time, and mixed-mode circuits. In addition, it is the only simulator which incorporates microcontroller simulation in the same environment. It also includes a tool for printed circuit board design.Advanced Circuit Simulation Using Multisim Workbench is a companion book to Circuit Analysis Using Multisim, published by Morgan & Claypool in 2011. This new book covers advanced analyses and the creation of models and subcircuits. It also includes coverage of transmissi

  11. Circadian variations in biologically closed electrochemical circuits in Aloe vera and Mimosa pudica.

    Science.gov (United States)

    Volkov, Alexander G; Baker, Kara; Foster, Justin C; Clemmons, Jacqueline; Jovanov, Emil; Markin, Vladislav S

    2011-04-01

    The circadian clock regulates a wide range of electrophysiological and developmental processes in plants. This paper presents, for the first time, the direct influence of a circadian clock on biologically closed electrochemical circuits in vivo. Here we show circadian variation of the plant responses to electrical stimulation. The biologically closed electrochemical circuits in the leaves of Aloe vera and Mimosa pudica, which regulate their physiology, were analyzed using the charge stimulation method. The electrostimulation was provided with different timing and different voltages. Resistance between Ag/AgCl electrodes in the leaf of Aloe vera was higher during the day than at night. Discharge of the capacitor in Aloe vera at night was faster than during the day. Discharge of the capacitor in a pulvinus of Mimosa pudica was faster during the day. The biologically closed electrical circuits with voltage gated ion channels in Mimosa pudica are also activated the next day, even in the darkness. These results show that the circadian clock can be maintained endogenously and has electrochemical oscillators, which can activate ion channels in biologically closed electrochemical circuits. We present the equivalent electrical circuits in both plants and their circadian variation to explain the experimental data. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. A Low Noise Electronic Circuit

    NARCIS (Netherlands)

    Annema, Anne J.; Leenaerts, Dominicus M.W.; de Vreede, Petrus W.H.

    2002-01-01

    An electronic circuit, which can be used as a Low Noise Amplifier (LNA), comprises two complementary Field Effect Transistors (M1, M2; M5, M6), each having a gate, a source and a drain. The gates are connected together as a common input terminal, and the drains are connected together as a

  13. A circuit mechanism for neurodegeneration.

    Science.gov (United States)

    Roselli, Francesco; Caroni, Pico

    2012-10-12

    How deficiency in SMN1 selectively affects motoneurons in spinal muscular atrophy is poorly understood. Here, Imlach et al. and Lotti et al. show that aberrant splicing of Stasimon in cholinergic sensory neurons and interneurons leads to motoneuron degeneration, suggesting that altered circuit function may underlie the disorder.

  14. Integrated Circuit Stellar Magnitude Simulator

    Science.gov (United States)

    Blackburn, James A.

    1978-01-01

    Describes an electronic circuit which can be used to demonstrate the stellar magnitude scale. Six rectangular light-emitting diodes with independently adjustable duty cycles represent stars of magnitudes 1 through 6. Experimentally verifies the logarithmic response of the eye. (Author/GA)

  15. Structural Testing of RSFQ Circuits

    NARCIS (Netherlands)

    Arun, A.J.; Kerkhoff, Hans G.; Flokstra, Jakob; Rogalla, Horst; Brinkman, Alexander

    2005-01-01

    The RSFQ family of logic circuits built in Niobium (Nb) tri-layer processes are being widely used for designs in Superconductor Electronics (SCE). But little information is available about the defects and fault mechanisms occurring in an RSFQ Nb process.

  16. Research on the Optical Properties of Transformers Partial Discharge Based on Different Discharge Models

    Directory of Open Access Journals (Sweden)

    Wei Bengang

    2016-01-01

    Full Text Available In this paper, the different types of discharge in transformer were simulated based on the real transformer fault model. The optical partial discharge detection system was established based on optical sensors which were capturing partial discharge accompanied by optical effects. In this research, surface discharge and suspended discharge defect model was pressurized to generate partial discharge signal. The results showed that: Partial discharge optical signals could effectively respond the production and development process of transformer partial discharge. It was able to assess discharge level also. When the discharge phenomenon stabilized, the phase of surface discharge mainly between 60°~150°and 240°~330°, the phase of suspended discharge mainly between 260°~320°. According to the phase characteristic of discharge pattern, the creeping discharge and suspended discharge phenomenon of transformer can be distinguished. It laid the foundation for the application of transformer optical partial discharge detection technology.

  17. SEMICONDUCTOR INTEGRATED CIRCUITS A novel 2.2 Gbps LVDS driver circuit design based on 0.35 μm CMOS

    Science.gov (United States)

    Hua, Cai; Ping, Li

    2010-10-01

    This paper presents a novel high-speed low voltage differential signaling (LVDS) driver design for point-to-point communication. The switching noise of the driver was greatly suppressed by adding a charge/discharge circuit and the operating frequency of the circuit was also increased. A simple and effective common-mode feedback circuit was added to stabilize the output common-mode voltage. The proposed driver was implemented in a standard 0.35 μm CMOS process with a die area of 0.15 mm2. The test result shows that the proposed driver works well at 2.2 Gbps with power consumption of only 23 mW and 21.35 ps peak-to-peak jitter under a 1.8 V power supply.

  18. Pulsed discharge production Ar* metastables

    Science.gov (United States)

    Han, Jiande; Heaven, Michael C.; Emmons, Daniel; Perram, Glen P.; Weeks, David E.; Bailey, William F.

    2016-03-01

    The production of relatively high densities of Ar* metastables (>1012 cm-3) in Ar/He mixtures, at total pressures close to 1 atm, is essential for the efficient operation of an optically pumped Ar* laser. We have used emission spectroscopy and diode laser absorption spectroscopy measurements to observe the production and decay of Ar* in a parallel plate pulsed discharge. With discharge pulses of 1 μs duration we find that metastable production is dominated by processes occurring within the first 100 ns of the gas break-down. Application of multiple, closely spaced discharge pulses yields insights concerning conditions that favor metastable production. This information has been combined with time-resolved measurements of voltage and current. The experimental results and preliminary modeling of the discharge kinetics are presented.

  19. The voltage-current relationship and equivalent circuit implementation of parallel flux-controlled memristive circuits

    Institute of Scientific and Technical Information of China (English)

    Bao Bo-Cheng; Feng Fei; Dong Wei; Pan Sai-Hu

    2013-01-01

    A flux-controlled memristor characterized by smooth cubic nonlinearity is taken as an example,upon which the voltage-current relationships (VCRs) between two parallel memristive circuits-a parallel memristor and capacitor circuit (the parallel MC circuit),and a parallel memristor and inductor circuit (the parallel ML circuit)-are investigated.The results indicate that the VCR between these two parallel memristive circuits is closely related to the circuit parameters,and the frequency and amplitude of the sinusoidal voltage stimulus.An equivalent circuit model of the memristor is built,upon which the circuit simulations and experimental measurements of both the parallel MC circuit and the parallel ML circuit are performed,and the results verify the theoretical analysis results.

  20. Photovoltaic Pixels for Neural Stimulation: Circuit Models and Performance.

    Science.gov (United States)

    Boinagrov, David; Lei, Xin; Goetz, Georges; Kamins, Theodore I; Mathieson, Keith; Galambos, Ludwig; Harris, James S; Palanker, Daniel

    2016-02-01

    Photovoltaic conversion of pulsed light into pulsed electric current enables optically-activated neural stimulation with miniature wireless implants. In photovoltaic retinal prostheses, patterns of near-infrared light projected from video goggles onto subretinal arrays of photovoltaic pixels are converted into patterns of current to stimulate the inner retinal neurons. We describe a model of these devices and evaluate the performance of photovoltaic circuits, including the electrode-electrolyte interface. Characteristics of the electrodes measured in saline with various voltages, pulse durations, and polarities were modeled as voltage-dependent capacitances and Faradaic resistances. The resulting mathematical model of the circuit yielded dynamics of the electric current generated by the photovoltaic pixels illuminated by pulsed light. Voltages measured in saline with a pipette electrode above the pixel closely matched results of the model. Using the circuit model, our pixel design was optimized for maximum charge injection under various lighting conditions and for different stimulation thresholds. To speed discharge of the electrodes between the pulses of light, a shunt resistor was introduced and optimized for high frequency stimulation.

  1. [Study on the discharge properties of xeon flash lamp and experimental measurement].

    Science.gov (United States)

    Zhao, You-Quan; Miao, Pei-Liang; He, Feng; Gu, Jian; Zhai, Rui-Wei

    2014-07-01

    The Xenon flash lamp is a new type of light source for analytical instrument. The present paper analyzed the discharge process of xenon flash lamp, presented the discharge test system, and conducted experimental measurement of the voltage, current and optical pulse signal in the process of discharge. The results show that in the preliminary discharge, the free electron concentration was at a low level, so the energy was at a low level, then following the gas discharge, numerous free electrons formed in the lamp, resultin in the increase in the concentration of free electrons, therefore discharge current rised rapidly and voltage reduced. The lamp released photons to generate light pulse in the moment of ionic recombination, The pulse xenon lamp light energy output and spectral characteristic is related to electron energy in recombination and combination level of xenon, if the input energy and the energy consumption of the xenon lamp is inconsistent, it will lead to repeated capacitor charging and discharging and produce oscillation waveform. This paper is very useful for understanding the process of xenon lamp discharge, optimizing the driver circuit and the production of xenon flash lamp.

  2. Study on the transition from filamentary discharge to diffuse discharge by using a dielectric barrier surface discharge device

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Discharge characteristics have been investigated in different gases under different pressures using a dielectric barrier surface discharge device. Electrical measurements and optical emission spectroscopy are used to study the discharge,and the results obtained show that the discharges in atmospheric pressure helium and in low-pressure air are diffuse,while that in high-pressure air is filamentary. With decreasing pressure, the discharge in air can transit from filamentary to diffuse one. The results also indicate that corona discharge around the stripe electrode is important for the diffuse discharge. The spectral intensity of N2+ (391.4 nm) relative to N2 (337.1 nm) is measured during the transition from diffuse to filamentary discharge. It is shown that relative spectral intensity increases during the discharge transition. This phenomenon implies that the averaged electron energy in diffuse discharge is higher than that in the filamentary discharge.

  3. Developing a Domain Model for Relay Circuits

    DEFF Research Database (Denmark)

    Haxthausen, Anne Elisabeth

    2009-01-01

    the statics as well as the dynamics of relay circuits, i.e. how a relay circuit can be composed legally from electrical components as well as how the components may change state over time. Finally the circuit model is transformed into an executable model, and we show how a concrete circuit can be defined......In this paper we stepwise develop a domain model for relay circuits as used in railway control systems. First we provide an abstract, property-oriented model of networks consisting of components that can be glued together with connectors. This model is strongly inspired by a network model...... for railways madeby Bjørner et.al., however our model is more general: the components can be of any kind and can later be refined to e.g. railway components or circuit components. Then we show how the abstract network model can be refined into an explicit model for relay circuits. The circuit model describes...

  4. Driver circuit for solid state light sources

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, Fred; Denvir, Kerry; Allen, Steven

    2016-02-16

    A driver circuit for a light source including one or more solid state light sources, a luminaire including the same, and a method of so driving the solid state light sources are provided. The driver circuit includes a rectifier circuit that receives an alternating current (AC) input voltage and provides a rectified AC voltage. The driver circuit also includes a switching converter circuit coupled to the light source. The switching converter circuit provides a direct current (DC) output to the light source in response to the rectified AC voltage. The driver circuit also includes a mixing circuit, coupled to the light source, to switch current through at least one solid state light source of the light source in response to each of a plurality of consecutive half-waves of the rectified AC voltage.

  5. Fabric circuits and method of manufacturing fabric circuits

    Science.gov (United States)

    Chu, Andrew W. (Inventor); Dobbins, Justin A. (Inventor); Scully, Robert C. (Inventor); Trevino, Robert C. (Inventor); Lin, Greg Y. (Inventor); Fink, Patrick W. (Inventor)

    2011-01-01

    A flexible, fabric-based circuit comprises a non-conductive flexible layer of fabric and a conductive flexible layer of fabric adjacent thereto. A non-conductive thread, an adhesive, and/or other means may be used for attaching the conductive layer to the non-conductive layer. In some embodiments, the layers are attached by a computer-driven embroidery machine at pre-determined portions or locations in accordance with a pre-determined attachment layout before automated cutting. In some other embodiments, an automated milling machine or a computer-driven laser using a pre-designed circuit trace as a template cuts the conductive layer so as to separate an undesired portion of the conductive layer from a desired portion of the conductive layer. Additional layers of conductive fabric may be attached in some embodiments to form a multi-layer construct.

  6. Classification of electrical discharges in DC Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Srutarshi, E-mail: sruban.stephens@gmail.com [Accelerator and Pulse Power Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Deb, A.K. [Department of Electrical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India); Rajan, Rehim N. [Accelerator and Pulse Power Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Kishore, N.K. [Department of Electrical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India)

    2016-08-11

    Controlled electrical discharge aids in conditioning of the system while uncontrolled discharges damage its electronic components. DC Accelerator being a high voltage system is no exception. It is useful to classify electrical discharges according to the severity. Experimental prototypes of the accelerator discharges are developed. Photomultiplier Tubes (PMTs) are used to detect the signals from these discharges. Time and Frequency domain characteristics of the detected discharges are used to extract features. Machine Learning approaches like Fuzzy Logic, Neural Network and Least Squares Support Vector Machine (LSSVM) are employed to classify the discharges. This aids in detecting the severity of the discharges.

  7. Classification of electrical discharges in DC Accelerators

    Science.gov (United States)

    Banerjee, Srutarshi; Deb, A. K.; Rajan, Rehim N.; Kishore, N. K.

    2016-08-01

    Controlled electrical discharge aids in conditioning of the system while uncontrolled discharges damage its electronic components. DC Accelerator being a high voltage system is no exception. It is useful to classify electrical discharges according to the severity. Experimental prototypes of the accelerator discharges are developed. Photomultiplier Tubes (PMTs) are used to detect the signals from these discharges. Time and Frequency domain characteristics of the detected discharges are used to extract features. Machine Learning approaches like Fuzzy Logic, Neural Network and Least Squares Support Vector Machine (LSSVM) are employed to classify the discharges. This aids in detecting the severity of the discharges.

  8. Brain-machine interface circuits and systems

    CERN Document Server

    Zjajo, Amir

    2016-01-01

    This book provides a complete overview of significant design challenges in respect to circuit miniaturization and power reduction of the neural recording system, along with circuit topologies, architecture trends, and (post-silicon) circuit optimization algorithms. The introduced novel circuits for signal conditioning, quantization, and classification, as well as system configurations focus on optimized power-per-area performance, from the spatial resolution (i.e. number of channels), feasible wireless data bandwidth and information quality to the delivered power of implantable system.

  9. DC operating points of transistor circuits

    Science.gov (United States)

    Trajkovic, Ljiljana

    Finding a circuit's dc operating points is an essential step in its design and involves solving systems of nonlinear algebraic equations. Of particular research and practical interests are dc analysis and simulation of electronic circuits consisting of bipolar junction and field-effect transistors (BJTs and FETs), which are building blocks of modern electronic circuits. In this paper, we survey main theoretical results related to dc operating points of transistor circuits and discuss numerical methods for their calculation.

  10. An Improved Squaring Circuit for Binary Numbers

    Directory of Open Access Journals (Sweden)

    Kabiraj Sethi

    2012-02-01

    Full Text Available In this paper, a high speed squaring circuit for binary numbers is proposed. High speed Vedic multiplier is used for design of the proposed squaring circuit. The key to our success is that only one Vedic multiplier is used instead of four multipliers reported in the literature. In addition, one squaring circuit is used twice. Our proposed Squaring Circuit seems to have better performance in terms of speed.

  11. Solid-State dc Circuit Breaker

    Science.gov (United States)

    Harvey, P.

    1983-01-01

    Circuit breaker with no moving parts protects direct-current (dc) loads. Current which circuit breaker opens (trip current) is adjustable and so is time delay before breaker trips. Forward voltage drop rises from 0.6 to 1.2 V as current rises to trip point. Breaker has two terminals, like fuse, therefore replaces fuse in dc circuit. Powered by circuit it protects and reset by either turning off power source or disconnecting load.

  12. Microhollow Cathode Discharge Excimer Lamps

    Science.gov (United States)

    Schoenbach, K. H.

    1999-11-01

    character. Reducing the diameter of the cathode hole in a hollow cathode discharge geometry to values on the order of 100 μm has allowed us to extend the pressure range of stable, direct current hollow cathode gas discharges up to atmospheric pressure. The large concentration of high-energy electrons generated in the cathode fall, in combination with the high neutral gas density favors three-body processes such as excimer formation. Excimer emission in xenon discharges peaking at 172 nm, was observed with efficiencies between 6% and 9% at pressures of several hundred Torr. Typical forward voltages are 200 V at dc currents up to 8 mA. Pulsed operation allowed us to extend the current range to 80 mA with corresponding linear increase in optical power. Spatially resolved measurements showed that the source of the excimer radiation at atmospheric pressure and currents of less than 8 mA is confined to the cathode opening. The radiative emittance at 8 mA and atmospheric pressure is approximately 20 W/cm^2. With reduced pressure and increased current, respectively, the excimer source extends into the area outside the cathode hole. Besides in xenon, excimer emission in argon at a peak wavelength of 128 nm has been recorded. In addition to operating the discharge in rare gases, we have also explored its use as rare gas-halide excimer source. In a gas mixture containing 1% ArF we were able to generate stable dc discharges in flowing gas at pressures ranging from 100 Torr to atmospheric pressure. The spectra of the high-pressure ArF discharges are dominated by excimer radiation peaking at 193 nm. The excimer emission of a single ArF discharge at 700 Torr was measured as 150 mW at an efficiency of 3%. Parallel operation of these discharges by means of a resistive anode, which has recently been demonstrated for argon discharges, offers the possibility to use microhollow cathode discharge arrays as dc-excimer lamps, with estimated power densities exceeding 10 W/cm^2. abstract

  13. Methane conversion using a dielectric barrier discharge reactor at atmospheric pressure for hydrogen production

    Science.gov (United States)

    Khadir, N.; Khodja, K.; Belasri, A.

    2017-09-01

    In the present paper, we carried out a theoretical study of dielectric barrier discharge (DBD) filled with pure methane gas. The homogeneous discharge model used in this work includes a plasma chemistry unit, an electrical circuit, and the Boltzmann equation. The model was applied to the case of a sinusoidal voltage at a period frequency of 50 kHz and under a gas pressure of 600 Torr. We investigated the temporal variation of electrical and kinetic discharge parameters such as plasma and dielectric voltages, the discharge current density, electric field, deposited power density, and the species concentration. We also checked the physical model validity by comparing its results with experimental work. According to the results discussed herein, the dielectric capacitance is the parameter that has the greatest effect on the methane conversion and H2/CH4 ratio. This work enriches the knowledge for the improvement of DBD for CH4 conversion and hydrogen production.

  14. Single granule cells reliably discharge targets in the hippocampal CA3 network in vivo.

    Science.gov (United States)

    Henze, Darrell A; Wittner, Lucia; Buzsáki, György

    2002-08-01

    Processing of neuronal information depends on interactions between the anatomical connectivity and cellular properties of single cells. We examined how these computational building blocks work together in the intact rat hippocampus. Single spikes in dentate granule cells, controlled intracellularly, generally failed to discharge either interneurons or CA3 pyramidal cells. In contrast, trains of spikes effectively discharged both CA3 cell types. Increasing the discharge rate of the granule cell increased the discharge probability of its target neuron and decreased the delay between the onset of a granule cell train and evoked firing in postsynaptic targets. Thus, we conclude that the granule cell to CA3 synapses are 'conditional detonators,' dependent on granule cell firing pattern. In addition, we suggest that information in single granule cells is converted into a temporal delay code in target CA3 pyramidal cells and interneurons. These data demonstrate how a neural circuit of the CNS may process information.

  15. Modelling of low-current self-generated oscillations in a hollow cathode discharge

    CERN Document Server

    Donko, Z

    1999-01-01

    Low-current self-generated oscillations in a rectangular hollow cathode discharge in helium gas were investigated experimentally and by means of a two-dimensional self-consistent hybrid model. The model combines Monte Carlo simulation of the motion of fast electrons and a fluid description of slow electrons and positive ions. The low-frequency (<=20 kHz) oscillations were found to arise as an effect of the interaction of the gas discharge and the external electric circuit - consisting of a stable voltage source, a series resistor and a capacitor formed by the discharge electrodes. Good agreement was found between the experimentally observed and calculated oscillation frequency and current wave forms. Beside these characteristics the modelling also made it possible to calculate the time dependence of numerous other discharge characteristics (e.g. electron multiplication, ion density, potential distribution) and provided detailed insight into the mechanism of oscillations. The advantage of the present model ...

  16. 49 CFR 236.721 - Circuit, control.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Circuit, control. 236.721 Section 236.721..., MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.721 Circuit, control. An electrical circuit between a source of electric energy and a device which it operates....

  17. New Logic Circuit with DC Parametric Excitation

    Science.gov (United States)

    Sugahara, Masanori; Kaneda, Hisayoshi

    1982-12-01

    It is shown that dc parametric excitation is possible in a circuit named JUDO, which is composed of two resistively-connected Josephson junctions. Simulation study proves that the circuit has large gain and properties suitable for the construction of small, high-speed logic circuits.

  18. An eigenvalue study of the MLC circuit

    DEFF Research Database (Denmark)

    Lindberg, Erik; Murali, K.

    1998-01-01

    The MLC (Murali-Lakshmanan-Chua) circuit is the simplest non-autonomous chaotic circuit. Insight in the behaviour of the circuit is obtained by means of a study of the eigenvalues of the linearized Jacobian of the nonlinear differential equations. The trajectories of the eigenvalues as functions...

  19. Controllability/observability analysis of digital circuits

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, L.H.

    1978-11-01

    The testability of a digital circuit is directy related to the difficulty of controlling and observing the logical values of internal nodes from circuit inputs and outputs, respectively. A method for analyzing digital circuits in terms of six functions which characterize combinational and sequential controllability and observability is presented.

  20. Controllability/observability analysis of digital circuits

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, L.H.

    1979-01-01

    The testability of a digital circuit is directly related to the difficulty of controlling and observing the logical values of internal nodes from circuit inputs and outputs, respectively. A method for analyzing digital circuits in terms of six functions which characterize combinational and sequential controllability and observability is presented.

  1. Controllability/observability analysis of digital circuits

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, L.H.

    1979-09-01

    The testability of a digital circuit is directly related to the difficulty of controlling and observing the logical values of internal nodes from circuit inputs and outputs, respectively. A method for analyzing digital circuits in terms of six functions which characterize combinational and sequential controllability and observability is presented.

  2. An Equivalent Circuit for Landau Damping

    DEFF Research Database (Denmark)

    Pécseli, Hans

    1976-01-01

    An equivalent circuit simulating the effect of Landau damping in a stable plasma‐loaded parallel‐plate capacitor is presented. The circuit contains a double infinity of LC components. The transition from stable to unstable plasmas is simulated by the introduction of active elements into the circuit....

  3. 30 CFR 75.1323 - Blasting circuits.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Blasting circuits. 75.1323 Section 75.1323... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1323 Blasting circuits. (a) Blasting circuits shall be protected from sources of stray electric current. (b) Detonators made...

  4. 30 CFR 57.6403 - Branch circuits.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Branch circuits. 57.6403 Section 57.6403... Blasting-Surface and Underground § 57.6403 Branch circuits. (a) If electric blasting includes the use of branch circuits, each branch shall be equipped with a safety switch or equivalent method to isolate...

  5. 49 CFR 234.203 - Control circuits.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Control circuits. 234.203 Section 234.203 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION..., Inspection, and Testing Maintenance Standards § 234.203 Control circuits. All control circuits that...

  6. Nanoelectronic circuit design and test

    Science.gov (United States)

    Simsir, Muzaffer Orkun

    Controlling power consumption in CMOS integrated circuits (ICs) during normal mode of operation is becoming one of the limiting factors to further scaling. In addition, it is a well known fact that during testing of a complex IC, power consumption can far exceed the values reached during its normal operation. High power consumption, combined with limited cooling support, leads to overheating of ICs. This can cause permanent damage to the chip or can invalidate test results due to the fact that extreme temperature variations lead to changes in path delays. Therefore, even good chips can fail the test. For these reasons, thermal problems during test need to be identified to prevent the loss of yield in CMOS ICs. In this thesis, we propose a methodology for thermally characterizing circuits under test. Using this methodology, it is possible to simulate the thermal profiles of the chips during test and prevent possible yield loss because of thermal problems. In addition to the problems associated with power and temperature, a more important barrier is the scaling limitations of the CMOS technology. It has been predicted that in next decade, it will not be possible to scale it further. In the near future, rather than a transition to a completely new technology, extensions to CMOS seem to be more realistic. Double-gate CMOS technology is one of the most promising alternatives that offers a simple extension to CMOS. The transistors of this technology are formed by adding a second gate across the conventional CMOS transistor gate. Designing circuits using this technology has attracted a lot of attention. However, as circuit design methods mature, there is a need to identify how these circuits can be tested. From a circuit testing viewpoint, it is unclear if CMOS fault models are comprehensive enough to model all defects in double-gate CMOS circuits. Therefore, fault models of this technology need to be defined to enable manufacturing-time testing. In this thesis, we

  7. Water purification by electrical discharges

    Science.gov (United States)

    Arif Malik, Muhammad; Ghaffar, Abdul; Akbar Malik, Salman

    2001-02-01

    There is a continuing need for the development of effective, cheap and environmentally friendly processes for the disinfection and degradation of organic pollutants from water. Ozonation processes are now replacing conventional chlorination processes because ozone is a stronger oxidizing agent and a more effective disinfectant without any side effects. However, the fact that the cost of ozonation processes is higher than chlorination processes is their main disadvantage. In this paper recent developments targeted to make ozonation processes cheaper by improving the efficiency of ozone generation, for example, by incorporation of catalytic packing in the ozone generator, better dispersion of ozone in water and faster conversion of dissolved ozone to free radicals are described. The synthesis of ozone in electrical discharges is discussed. Furthermore, the generation and plasma chemical reactions of several chemically active species, such as H2O2, Obullet, OHbullet, HO2bullet, O3*, N2*, e-, O2-, O-, O2+, etc, which are produced in the electrical discharges are described. Most of these species are stronger oxidizers than ozone. Therefore, water treatment by direct electrical discharges may provide a means to utilize these species in addition to ozone. Much research and development activity has been devoted to achieve these targets in the recent past. An overview of these techniques and important developments that have taken place in this area are discussed. In particular, pulsed corona discharge, dielectric barrier discharge and contact glow discharge electrolysis techniques are being studied for the purpose of cleaning water. The units based on electrical discharges in water or close to the water level are being tested at industrial-scale water treatment plants.}

  8. The neural circuit basis of learning

    Science.gov (United States)

    Patrick, Kaifosh William John

    The astounding capacity for learning ranks among the nervous system's most impressive features. This thesis comprises studies employing varied approaches to improve understanding, at the level of neural circuits, of the brain's capacity for learning. The first part of the thesis contains investigations of hippocampal circuitry -- both theoretical work and experimental work in the mouse Mus musculus -- as a model system for declarative memory. To begin, Chapter 2 presents a theory of hippocampal memory storage and retrieval that reflects nonlinear dendritic processing within hippocampal pyramidal neurons. As a prelude to the experimental work that comprises the remainder of this part, Chapter 3 describes an open source software platform that we have developed for analysis of data acquired with in vivo Ca2+ imaging, the main experimental technique used throughout the remainder of this part of the thesis. As a first application of this technique, Chapter 4 characterizes the content of signaling at synapses between GABAergic neurons of the medial septum and interneurons in stratum oriens of hippocampal area CA1. Chapter 5 then combines these techniques with optogenetic, pharmacogenetic, and pharmacological manipulations to uncover inhibitory circuit mechanisms underlying fear learning. The second part of this thesis focuses on the cerebellum-like electrosensory lobe in the weakly electric mormyrid fish Gnathonemus petersii, as a model system for non-declarative memory. In Chapter 6, we study how short-duration EOD motor commands are recoded into a complex temporal basis in the granule cell layer, which can be used to cancel Purkinje-like cell firing to the longer duration and temporally varying EOD-driven sensory responses. In Chapter 7, we consider not only the temporal aspects of the granule cell code, but also the encoding of body position provided from proprioceptive and efference copy sources. Together these studies clarify how the cerebellum-like circuitry of the

  9. 30 CFR 75.518 - Electric equipment and circuits; overload and short circuit protection.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electric equipment and circuits; overload and short circuit protection. 75.518 Section 75.518 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... Equipment-General § 75.518 Electric equipment and circuits; overload and short circuit protection....

  10. Delay locked loop integrated circuit.

    Energy Technology Data Exchange (ETDEWEB)

    Brocato, Robert Wesley

    2007-10-01

    This report gives a description of the development of a Delay Locked Loop (DLL) integrated circuit (IC). The DLL was developed and tested as a stand-alone IC test chip to be integrated into a larger application specific integrated circuit (ASIC), the Quadrature Digital Waveform Synthesizer (QDWS). The purpose of the DLL is to provide a digitally programmable delay to enable synchronization between an internal system clock and external peripherals with unknown clock skew. The DLL was designed and fabricated in the IBM 8RF process, a 0.13 {micro}m CMOS process. It was designed to operate with a 300MHz clock and has been tested up to 500MHz.

  11. Optogenetic Investigation of Arousal Circuits.

    Science.gov (United States)

    Tyree, Susan M; de Lecea, Luis

    2017-08-15

    Modulation between sleep and wake states is controlled by a number of heterogeneous neuron populations. Due to the topological proximity and genetic co-localization of the neurons underlying sleep-wake state modulation optogenetic methods offer a significant improvement in the ability to benefit from both the precision of genetic targeting and millisecond temporal control. Beginning with an overview of the neuron populations mediating arousal, this review outlines the progress that has been made in the investigation of arousal circuits since the incorporation of optogenetic techniques and the first in vivo application of optogenetic stimulation in hypocretin neurons in the lateral hypothalamus. This overview is followed by a discussion of the future progress that can be made by incorporating more recent technological developments into the research of neural circuits.

  12. Relativistic causality and clockless circuits

    CERN Document Server

    Matherat, Philippe; 10.1145/2043643.2043650

    2011-01-01

    Time plays a crucial role in the performance of computing systems. The accurate modelling of logical devices, and of their physical implementations, requires an appropriate representation of time and of all properties that depend on this notion. The need for a proper model, particularly acute in the design of clockless delay-insensitive (DI) circuits, leads one to reconsider the classical descriptions of time and of the resulting order and causal relations satisfied by logical operations. This questioning meets the criticisms of classical spacetime formulated by Einstein when founding relativity theory and is answered by relativistic conceptions of time and causality. Applying this approach to clockless circuits and considering the trace formalism, we rewrite Udding's rules which characterize communications between DI components. We exhibit their intrinsic relation with relativistic causality. For that purpose, we introduce relativistic generalizations of traces, called R-traces, which provide a pertinent des...

  13. Phonon waveguides for electromechanical circuits

    Science.gov (United States)

    Hatanaka, D.; Mahboob, I.; Onomitsu, K.; Yamaguchi, H.

    2014-07-01

    Nanoelectromechanical systems (NEMS), utilizing localized mechanical vibrations, have found application in sensors, signal processors and in the study of macroscopic quantum mechanics. The integration of multiple mechanical elements via electrical or optical means remains a challenge in the realization of NEMS circuits. Here, we develop a phonon waveguide using a one-dimensional array of suspended membranes that offers purely mechanical means to integrate isolated NEMS resonators. We demonstrate that the phonon waveguide can support and guide mechanical vibrations and that the periodic membrane arrangement also creates a phonon bandgap that enables control of the phonon propagation velocity. Furthermore, embedding a phonon cavity into the phonon waveguide allows mobile mechanical vibrations to be dynamically switched or transferred from the waveguide to the cavity, thereby illustrating the viability of waveguide-resonator coupling. These highly functional traits of the phonon waveguide architecture exhibit all the components necessary to permit the realization of all-phononic NEMS circuits.

  14. Handbook of microwave integrated circuits

    Science.gov (United States)

    Hoffmann, Reinmut K.

    The design and operation of ICs for use in the 0.5-20-GHz range are described in an introductory and reference work for industrial engineers. Chapters are devoted to an overview of microwave IC (MIC) technology, general stripline characteristics, microwave transmission line (MTL) parameters for microstrips with isotropic dielectric substrates, higher-order modes on a microstrip, the effects of metallic enclosure on MTL transmission parameters, losses in microstrips, the measurement of MTL parameters, and MTLs on anisotropic dielectric substrates. Consideration is given to coupled microstrips on dielectric substrates, microstrip discontinuities, radiation from microstrip circuits, MTL variations, coplanar MTLs, slotlines, and spurious modes in MTL circuits. Diagrams, drawings, graphs, and a glossary of symbols are provided.

  15. Advanced Microwave Circuits and Systems

    DEFF Research Database (Denmark)

    This book is based on recent research work conducted by the authors dealing with the design and development of active and passive microwave components, integrated circuits and systems. It is divided into seven parts. In the first part comprising the first two chapters, alternative concepts...... and equations for multiport network analysis and characterization are provided. A thru-only de-embedding technique for accurate on-wafer characterization is introduced. The second part of the book corresponds to the analysis and design of ultra-wideband low-noise amplifiers (LNA). The LNA is the most critical...... as sufficient gain in a wide frequency range of operation, which is very difficult to achieve. Most circuits demonstrated are not stable across the frequency band, which makes these amplifiers prone to self-oscillations and therefore limit their applicability. The trade-off between noise figure, gain, linearity...

  16. Foundations for microstrip circuit design

    CERN Document Server

    Edwards, Terry

    2016-01-01

    Building on the success of the previous three editions, Foundations for Microstrip Circuit Design offers extensive new, updated and revised material based upon the latest research. Strongly design-oriented, this fourth edition provides the reader with a fundamental understanding of this fast expanding field making it a definitive source for professional engineers and researchers and an indispensable reference for senior students in electronic engineering. Topics new to this edition: microwave substrates, multilayer transmission line structures, modern EM tools and techniques, microstrip and planar transmision line design, transmission line theory, substrates for planar transmission lines, Vias, wirebonds, 3D integrated interposer structures, computer-aided design, microstrip and power-dependent effects, circuit models, microwave network analysis, microstrip passive elements, and slotline design fundamentals.

  17. Ultra-low power integrated circuit design circuits, systems, and applications

    CERN Document Server

    Li, Dongmei; Wang, Zhihua

    2014-01-01

    This book describes the design of CMOS circuits for ultra-low power consumption including analog, radio frequency (RF), and digital signal processing circuits (DSP). The book addresses issues from circuit and system design to production design, and applies the ultra-low power circuits described to systems for digital hearing aids and capsule endoscope devices. Provides a valuable introduction to ultra-low power circuit design, aimed at practicing design engineers; Describes all key building blocks of ultra-low power circuits, from a systems perspective; Applies circuits and systems described to real product examples such as hearing aids and capsule endoscopes.

  18. Counterpulse railgun energy recovery circuit

    Energy Technology Data Exchange (ETDEWEB)

    Honig, Emanuel M. (Los Alamos, NM)

    1986-01-01

    In an electromagnetic launcher such as a railgun for propelling a projectile at high velocity, a counterpulse energy recovery circuit is employed to transfer stored inductive energy from a source inductor to the railgun inductance to propel the projectile down the railgun. Switching circuitry and an energy transfer capacitor are used to switch the energy back to the source inductor in readiness for a repetitive projectile propelling cycle.

  19. Overpulse railgun energy recovery circuit

    Energy Technology Data Exchange (ETDEWEB)

    Honig, Emanuel M. (Los Alamos, NM)

    1989-01-01

    In an electromagnetic launcher such as a railgun for propelling a projectile at high velocity, an overpulse energy recovery circuit is employed to transfer stored inductive energy from a source inductor to the railgun inductance to propel the projectile down the railgun. Switching circuitry and an energy transfer capacitor are used to switch the energy back to the source inductor in readiness for a repetitive projectile propelling cycle.

  20. Monolithic readout circuits for RHIC

    Energy Technology Data Exchange (ETDEWEB)

    O`Connor, P.; Harder, J. [Brookhaven National Laboratory, Upton, NY (United States)

    1991-12-31

    Several CMOS ASICs have been developed for a proposed RHIC experiment. This paper discusses why ASIC implementation was chosen for certain functions, circuit specifications and the design techniques used to meet them, and results of simulations and early prototypes. By working closely together from an early stage in the planning process, in-house ASIC designers and detector and data acquisition experimenters can achieve optimal use of this important technology.

  1. Monolithic readout circuits for RHIC

    Energy Technology Data Exchange (ETDEWEB)

    O`Connor, P.; Harder, J. [Brookhaven National Laboratory, Upton, NY (United States)

    1991-12-31

    Several CMOS ASICs have been developed for a proposed RHIC experiment. This paper discusses why ASIC implementation was chosen for certain functions, circuit specifications and the design techniques used to meet them, and results of simulations and early prototypes. By working closely together from an early stage in the planning process, in-house ASIC designers and detector and data acquisition experimenters can achieve optimal use of this important technology.

  2. Optimization of Bootstrapping in Circuits

    OpenAIRE

    Benhamouda, Fabrice; Lepoint, Tancrède; Mathieu, Claire; Zhou, Hang

    2016-01-01

    In 2009, Gentry proposed the first Fully Homomorphic Encryption (FHE) scheme, an extremely powerful cryptographic primitive that enables to perform computations, i.e., to evaluate circuits, on encrypted data without decrypting them first. This has many applications, in particular in cloud computing. In all currently known FHE schemes, encryptions are associated to some (non-negative integer) noise level, and at each evaluation of an AND gate, the noise level increases. This is problematic bec...

  3. Coulomb drag in quantum circuits

    OpenAIRE

    Levchenko, Alex; Kamenev, Alex

    2008-01-01

    We study drag effect in a system of two electrically isolated quantum point contacts (QPC), coupled by Coulomb interactions. Drag current exhibits maxima as a function of QPC gate voltages when the latter are tuned to the transitions between quantized conductance plateaus. In the linear regime this behavior is due to enhanced electron-hole asymmetry near an opening of a new conductance channel. In the non-linear regime the drag current is proportional to the shot noise of the driving circuit,...

  4. Behavioral synthesis of asynchronous circuits

    DEFF Research Database (Denmark)

    Nielsen, Sune Fallgaard

    2005-01-01

    domain by introducing a computation model, which resembles the synchronous datapath and control architecture, but which is completely asynchronous. The model contains the possibility for isolating some or all of the functional units by locking their respective inputs and outputs while the functional unit....... The datapath and control architecture is then expressed in the Balsa-language, and using syntax directed compilation a corresponding handshake circuit implementation (and eventually a layout) is produced....

  5. CMOS circuit design, layout and simulation

    CERN Document Server

    Baker, R Jacob

    2010-01-01

    The Third Edition of CMOS Circuit Design, Layout, and Simulation continues to cover the practical design of both analog and digital integrated circuits, offering a vital, contemporary view of a wide range of analog/digital circuit blocks including: phase-locked-loops, delta-sigma sensing circuits, voltage/current references, op-amps, the design of data converters, and much more. Regardless of one's integrated circuit (IC) design skill level, this book allows readers to experience both the theory behind, and the hands-on implementation of, complementary metal oxide semiconductor (CMOS) IC design via detailed derivations, discussions, and hundreds of design, layout, and simulation examples.

  6. Self arbitrated VLSI asynchronous sequential circuits

    Science.gov (United States)

    Whitaker, S.; Maki, G.

    1990-01-01

    A new class of asynchronous sequential circuits is introduced in this paper. The new design procedures are oriented towards producing asynchronous sequential circuits that are implemented with CMOS VLSI and take advantage of pass transistor technology. The first design algorithm utilizes a standard Single Transition Time (STT) state assignment. The second method introduces a new class of self synchronizing asynchronous circuits which eliminates the need for critical race free state assignments. These circuits arbitrate the transition path action by forcing the circuit to sequence through proper unstable states. These methods result in near minimum hardware since only the transition paths associated with state variable changes need to be implemented with pass transistor networks.

  7. Design of analog circuits through symbolic analysis

    CERN Document Server

    Fakhfakh, Mourad; V Fernández, Francisco

    2012-01-01

    Symbolic analyzers have the potential to offer knowledge to sophomores as well as practitioners of analog circuit design. Actually, they are an essential complement to numerical simulators, since they provide insight into circuit behavior which numerical analyzers do not provide. Symbolic analysis of electronic circuits addresses the generation of symbolic expressions for the parameters that describe the performance of linear and nonlinear circuits in three domains: DC, AC and time; some or all the circuit parameters can be kept as symbols. Due to the fact that these expressions remain va

  8. Model Order Reduction for Electronic Circuits:

    DEFF Research Database (Denmark)

    Hjorth, Poul G.; Shontz, Suzanne

    Electronic circuits are ubiquitous; they are used in numerous industries including: the semiconductor, communication, robotics, auto, and music industries (among many others). As products become more and more complicated, their electronic circuits also grow in size and complexity. This increased...... the need for circuit simulators to evaluate potential designs before fabrication, as integrated circuit prototypes are expensive to build, and troubleshooting is difficult. In this report, we focus on the simulation of printed circuit boards (PCB’s) and interconnects both of which are of great importance...

  9. DC negative corona discharge in atmospheric pressure helium: transition from the corona to the ‘normal’ glow regime

    Science.gov (United States)

    Hasan, Nusair; Antao, Dion S.; Farouk, Bakhtier

    2014-06-01

    Direct current (dc) negative corona discharges in atmospheric pressure helium are simulated via detailed numerical modeling. Simulations are conducted to characterize the discharges in atmospheric helium for a pin plate electrode configuration. A self-consistent two-dimensional hybrid model is developed to simulate the discharges and the model predictions are validated with experimental measurements. The discharge model considered consists of momentum and energy conservation equations for a multi-component (electrons, ions, excited species and neutrals) gas mixture, conservation equations for each component of the mixture and state relations. A drift-diffusion approximation for the electron and the ion fluxes is used. A model for the external circuit driving the discharge is also considered and solved along with the discharge model. Many of the key features of a negative corona discharge, namely non-linear current-voltage characteristics, spatially flat cathode current density and glow-like discharge in the high current regime are displayed in the predictions. A transition to the ‘normal’ glow discharge from the corona discharge regime is also observed. The transition is identified from the calculated current-voltage characteristic curve and is characterized by the radial growth of the negative glow and the engulfment of the cathode wire.

  10. Design of superconductor frame compression circuits

    Science.gov (United States)

    Sakurai, T.; Miyaho, N.; Miyahara, K.

    2007-10-01

    We proposed previously a novel interface circuit which was used between semiconductor data-input circuits and superconductor high-speed routers. The frame length of data packets is compressed in the interface circuit. Our proposed interface circuit has rather narrow timing margin. The problem was that our control circuit of the interface circuit could allow only very small timing delay. In this paper we propose a modified control circuit. We have improved the timing margin of the control circuit using RS-flip flop (RS-FF), where two shift registers and one control circuit are driven by clock pulses provided from a master clock-pulse generator. In this circuit, we have assumed fixed frame length packets. Our final target of master clock frequency is 100 GHz which will be realized with the device-parameter set of future advanced process. As the first step of realizing this target value, we aimed at 40 GHz clock operation with the conventional device-parameter set of NECs standard I process. The behavior of the whole frame compression circuit was simulated by a computer, and it was confirmed that it operated properly up to the master clock frequency of 23 GHz.

  11. Helicon plasma thruster discharge model

    Energy Technology Data Exchange (ETDEWEB)

    Lafleur, T., E-mail: trevor.lafleur@lpp.polytechnique.fr [Laboratoire de Physique des Plasmas, CNRS, Sorbonne Universités, UPMC Univ Paris 06, Univ Paris-Sud, Ecole Polytechnique, 91128 Palaiseau, France and ONERA - The French Aerospace Lab, 91120 Palaiseau (France)

    2014-04-15

    By considering particle, momentum, and energy balance equations, we develop a semi-empirical quasi one-dimensional analytical discharge model of radio-frequency and helicon plasma thrusters. The model, which includes both the upstream plasma source region as well as the downstream diverging magnetic nozzle region, is compared with experimental measurements and confirms current performance levels. Analysis of the discharge model identifies plasma power losses on the radial and back wall of the thruster as the major performance reduction factors. These losses serve as sinks for the input power which do not contribute to the thrust, and which reduce the maximum plasma density and hence propellant utilization. With significant radial plasma losses eliminated, the discharge model (with argon) predicts specific impulses in excess of 3000 s, propellant utilizations above 90%, and thruster efficiencies of about 30%.

  12. Capillary Discharge XUV Radiation Source

    Directory of Open Access Journals (Sweden)

    M. Nevrkla

    2009-01-01

    Full Text Available A device producing Z-pinching plasma as a source of XUV radiation is described. Here a ceramic capacitor bank pulse-charged up to 100 kV is discharged through a pre-ionized gas-filled ceramic tube 3.2 mm in diameter and 21 cm in length. The discharge current has amplitude of 20 kA and a rise-time of 65 ns. The apparatus will serve as experimental device for studying of capillary discharge plasma, for testing X-ray optics elements and for investigating the interaction of water-window radiation with biological samples. After optimization it will be able to produce 46.9 nm laser radiation with collision pumped Ne-like argon ions active medium. 

  13. Stroke rehabilitation and discharge planning.

    Science.gov (United States)

    Kerr, Peter

    Nurses play a pivotal role in the rehabilitation and discharge planning process of patients who have had a stroke. The nurse's role in the wider stroke multidisciplinary team is complex and diverse and, as such, stroke nurses may find it hard to describe their role and how it fits into the rehabilitation and discharge planning process. A definition of the stroke nurse role in prominent publications such as those of the Scottish Intercollegiate Guidelines Network and the Royal College of Physicians is lacking. This article emphasises the role of the stroke nurse in the rehabilitation and discharge planning process in the stroke unit, while highlighting the complexity, diversity and importance of this role in providing holistic care and support for patients who have survived a stroke. The author draws on his clinical experience of stroke nursing practice in primary, secondary and tertiary care in west central Scotland.

  14. Fractional linear systems and electrical circuits

    CERN Document Server

    Kaczorek, Tadeusz

    2015-01-01

    This monograph covers some selected problems of positive and fractional electrical circuits composed of resistors, coils, capacitors and voltage (current) sources. The book consists of 8 chapters, 4 appendices and a list of references. Chapter 1 is devoted to fractional standard and positive continuous-time and discrete-time linear systems without and with delays. In chapter 2 the standard and positive fractional electrical circuits are considered and the fractional electrical circuits in transient states are analyzed.  Descriptor linear electrical circuits and their properties are investigated in chapter 3,  while chapter 4 is devoted to the stability of fractional standard and positive linear electrical circuits. The reachability, observability and reconstructability of fractional positive electrical circuits and their decoupling zeros are analyzed in chapter 5. The fractional linear electrical circuits with feedbacks are considered in chapter 6. In chapter 7 solutions of minimum energy control for standa...

  15. Graphene radio frequency receiver integrated circuit.

    Science.gov (United States)

    Han, Shu-Jen; Garcia, Alberto Valdes; Oida, Satoshi; Jenkins, Keith A; Haensch, Wilfried

    2014-01-01

    Graphene has attracted much interest as a future channel material in radio frequency electronics because of its superior electrical properties. Fabrication of a graphene integrated circuit without significantly degrading transistor performance has proven to be challenging, posing one of the major bottlenecks to compete with existing technologies. Here we present a fabrication method fully preserving graphene transistor quality, demonstrated with the implementation of a high-performance three-stage graphene integrated circuit. The circuit operates as a radio frequency receiver performing signal amplification, filtering and downconversion mixing. All circuit components are integrated into 0.6 mm(2) area and fabricated on 200 mm silicon wafers, showing the unprecedented graphene circuit complexity and silicon complementary metal-oxide-semiconductor process compatibility. The demonstrated circuit performance allow us to use graphene integrated circuit to perform practical wireless communication functions, receiving and restoring digital text transmitted on a 4.3-GHz carrier signal.

  16. Integrated input protection against discharges for Micro Pattern Gas Detectors readout ASICs

    Science.gov (United States)

    Fiutowski, T.; Dąbrowski, W.; Koperny, S.; Wiącek, P.

    2017-02-01

    Immunity against possible random discharges inside active detector volume of MPGDs is one of the key aspects that should be addressed in the design of the front-end electronics. This issue becomes particularly critical for systems with high channel counts and high density readout employing the front-end electronics built as multichannel ASICs implemented in modern CMOS technologies, for which the breakdown voltages are in the range of a few Volts. The paper presents the design of various input protection structures integrated in the ASIC manufactured in a 350 nm CMOS process and test results using an electrical circuit to mimic discharges in the detectors.

  17. State Waste Discharge Permit application, 183-N Backwash Discharge Pond

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    As part of the Hanford Federal Facility Agreement and Consent Order negotiations (Ecology et al. 1994), the US Department of Energy, Richland Operations Office, the US Environmental Protection Agency, and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground on the Hanford Site which affect groundwater or have the potential to affect groundwater would be subject to permitting under the structure of Chapter 173--216 (or 173--218 where applicable) of the Washington Administrative Code, the State Waste Discharge Permit Program. As a result of this decision, the Washington State Department of Ecology and the US Department of Energy, Richland Operations Office entered into Consent Order No. DE91NM-177, (Ecology and DOE-RL 1991). The Consent Order No. DE91NM-177 requires a series of permitting activities for liquid effluent discharges. Liquid effluents on the Hanford Site have been classified as Phase I, Phase II, and Miscellaneous Streams. The Consent Order No. DE91NM-177 establishes milestones for State Waste Discharge Permit application submittals for all Phase I and Phase II streams, as well as the following 11 Miscellaneous Streams as identified in Table 4 of the Consent Order No. DE91NM-177.

  18. Protecting integrated circuits from excessive charge accumulation during plasma cleaning of multichip modules

    Energy Technology Data Exchange (ETDEWEB)

    Rodenbeck, Christopher T; Girardi, Michael

    2015-04-21

    Internal nodes of a constituent integrated circuit (IC) package of a multichip module (MCM) are protected from excessive charge during plasma cleaning of the MCM. The protected nodes are coupled to an internal common node of the IC package by respectively associated discharge paths. The common node is connected to a bond pad of the IC package. During MCM assembly, and before plasma cleaning, this bond pad receives a wire bond to a ground bond pad on the MCM substrate.

  19. Dielectric barrier discharges in analytical chemistry.

    Science.gov (United States)

    Meyer, C; Müller, S; Gurevich, E L; Franzke, J

    2011-06-21

    The present review reflects the importance of dielectric barrier discharges in analytical chemistry. Special about this discharge is-and in contrast to usual discharges with direct current-that the plasma is separated from one or two electrodes by a dielectric barrier. This gives rise to two main features of the dielectric barrier discharges; it can serve as dissociation and excitation device and as ionization mechanism, respectively. The article portrays the various application fields for dielectric barrier discharges in analytical chemistry, for example the use for elemental detection with optical spectrometry or as ionization source for mass spectrometry. Besides the introduction of different kinds of dielectric barrier discharges used for analytical chemistry from the literature, a clear and concise classification of dielectric barrier discharges into capacitively coupled discharges is provided followed by an overview about the characteristics of a dielectric barrier discharge concerning discharge properties and the ignition mechanism.

  20. The discharge behavior of lithium-ion batteries using the Dual-Potential Multi-Scale Multi-Dimensional (MSMD) Battery Model

    DEFF Research Database (Denmark)

    Saeed Madani, Seyed; Swierczynski, Maciej Jozef; Kær, Søren Knudsen

    2017-01-01

    This paper gives insight into the discharge behavior of lithium-ion batteries based on the investigations, which have been done by the researchers [1– 19]. In this article, the battery's discharge behaviour at various discharge rates is studied and surface monitor, discharge curve, volume monitor...... to analysis the discharge behaviour of lithium-ion batteries. The results show that surface monitor plot of discharge curve at 1 C has a decreasing trend and volume monitor plot of maximum temperature in the domain has slightly increasing pattern over the simulation time. For the curves of discharge...... plot of maximum temperature in the domain and maximum temperature in the area are illustrated. Additionally, an external and internal short-circuit treatment for three cases have been studied. The Dual-Potential Multi-Scale Multi-Dimensional (MSMD) Battery Model (BM) was used by ANSYS FLUENT software...

  1. Local changes in neocortical circuit dynamics coincide with the spread of seizures to thalamus in a model of epilepsy

    Directory of Open Access Journals (Sweden)

    Florian B Neubauer

    2014-09-01

    Full Text Available During the generalization of epileptic seizures, pathological activity in one brain area recruits distant brain structures into joint synchronous discharges. However, it remains unknown whether specific changes in local circuit activity are related to the aberrant recruitment of anatomically distant structures into epileptiform discharges. Further, it is not known whether aberrant areas recruit or entrain healthy ones into pathological activity. Here we study the dynamics of local circuit activity during the spread of epileptiform discharges in the zero-magnesium in vitro model of epilepsy. We employ high-speed multi-photon imaging in combination with dual whole-cell recordings in acute thalamocortical slices of the juvenile mouse to characterize the generalization of epileptic activity between neocortex and thalamus. We find that, although both structures are exposed to zero-magnesium, the initial onset of focal epileptiform discharge occurs in cortex. This suggests that local recurrent connectivity that is particularly prevalent in cortex is important for the initiation of seizure activity. Subsequent recruitment of thalamus into joint, generalized discharges is coincident with an increase in the coherence of local cortical circuit activity that itself does not depend on thalamus. Finally, the intensity of population discharges is positively correlated between both brain areas. This suggests that during and after seizure generalization not only the timing but also the amplitude of epileptiform discharges in thalamus is entrained by cortex. Together these results suggest a central role of neocortical activity for the onset and the structure of pathological recruitment of thalamus into joint synchronous epileptiform discharges.

  2. 46 CFR 111.54-1 - Circuit breakers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Circuit breakers. 111.54-1 Section 111.54-1 Shipping... REQUIREMENTS Circuit Breakers § 111.54-1 Circuit breakers. (a) Each Circuit breaker must— (1) Meet the general... circuit breaker frame. (e) Each circuit breaker located in an engineroom, boilerroom, or machinery......

  3. 14 CFR 23.1357 - Circuit protective devices.

    Science.gov (United States)

    2010-01-01

    ... circuit breakers, must be installed in all electrical circuits other than— (1) Main circuits of starter... circuit breaker or replace a fuse is essential to safety in flight, that circuit breaker or fuse must be... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Circuit protective devices. 23.1357...

  4. Lower Bounds for Tropical Circuits and Dynamic Programs

    OpenAIRE

    Jukna, Stasys

    2014-01-01

    Tropical circuits are circuits with Min and Plus, or Max and Plus operations as gates. Their importance stems from their intimate relation to dynamic programming algorithms. The power of tropical circuits lies somewhere between that of monotone boolean circuits and monotone arithmetic circuits. In this paper we present some lower bounds arguments for tropical circuits, and hence, for dynamic programs.

  5. Investigation of electrolyte electric discharge characteristics

    Science.gov (United States)

    Kirko, D. L.; Savjolov, A. S.

    2016-09-01

    The most important electrical characteristics of electrolyte electric discharge were investigated. The electric burning discharge was obtained with the help of different electrolytes. The spectral composition of the electric discharge electromagnetic radiation was determined, the plasma temperature was determined. The spectrum of the electric discharge high-frequency oscillations was calculated in the region v=10 kHz-80 MHz. The most appropriate modes of the electric burning discharge in different electrolytes were proposed.

  6. The electrical characteristics of the dielectric barrier discharges

    Energy Technology Data Exchange (ETDEWEB)

    Yehia, Ashraf, E-mail: yehia30161@yahoo.com [Department of Physics, College of Science and Humanitarian Studies at Alkharj, Prince Sattam bin Abdulaziz University, P.O. Box 83, Alkharj 11942 (Saudi Arabia); Department of Physics, Faculty of Science, Assiut University, Assiut 71516 (Egypt)

    2016-06-15

    The electrical characteristics of the dielectric barrier discharges have been studied in this paper under different operating conditions. The dielectric barrier discharges were formed inside two reactors composed of electrodes in the shape of two parallel plates. The dielectric layers inside these reactors were pasted on the surface of one electrode only in the first reactor and on the surfaces of the two electrodes in the second reactor. The reactor under study has been fed by atmospheric air that flowed inside it with a constant rate at the normal temperature and pressure, in parallel with applying a sinusoidal ac voltage between the electrodes of the reactor. The amount of the electric charge that flows from the reactors to the external circuit has been studied experimentally versus the ac peak voltage applied to them. An analytical model has been obtained for calculating the electrical characteristics of the dielectric barrier discharges that were formed inside the reactors during a complete cycle of the ac voltage. The results that were calculated by using this model have agreed well with the experimental results under the different operating conditions.

  7. Design of a Microwave Assisted Discharge Inductive Plasma Accelerator

    Science.gov (United States)

    Hallock, Ashley K.; Polzin, Kurt A.

    2010-01-01

    The design and construction of a thruster that employs electrodeless plasma preionization and pulsed inductive acceleration is described. Preionization is achieved through an electron cyclotron resonance discharge that produces a weakly-ionized plasma at the face of a conical theta pinch-shaped inductive coil. The presence of the preionized plasma allows for current sheet formation at lower discharge voltages than those employed in other pulsed inductive accelerators that do not employ preionization. The location of the electron cyclotron resonance discharge is controlled through the design of the applied magnetic field in the thruster. Finite element analysis shows that there is an arrangement of permanent magnets that yields a small volume of resonant magnetic field at the coil face. Preionization in the resonant zone leads to current sheet formation at the coil face, which minimizes the initial inductance of the pulse circuit and maximizes the potential electrical efficiency of the accelerator. A magnet assembly was constructed around an inductive coil to provide structural support to the selected arrangement of neodymium magnets. Measured values of the resulting magnetic field compare favorably with the finite element model.

  8. Enhanced efficiency from a Xe excimer barrier discharge lamp employing short-pulsed excitation

    Science.gov (United States)

    Mildren, Richard P.; Morrow, R.; Carman, Robert J.

    2000-04-01

    We have measured the efficiency and spatial characteristics of output radiation as a function of fill pressure for a Xe excimer lamp employing a short voltage pulse (approximately 100 ns) excitation circuit, and compared the results with those obtained using conventional AC (ie. sinusoidal voltage waveform). When using pulsed excitation, VUV output is obtained from a homogeneous discharge at efficiencies which increase linearly with Xe pressure in the range 50 - 750 torr up to 3.2X the maximum efficiency obtained when using AC. When using AC excitation, the efficiency saturates with increasing pressure > 350 torr for which pressures the discharge appearance is altered from a diffuse discharge to one which is comprised of stochastic or stationary filaments. We have also recorded discharge spectra which highlight the different character of the homogeneous and filamented types of discharges. It is deduced that the enhanced efficiency arises due to the capability of pulsed excitation to produce a homogeneous (glow-like) discharge at higher pressure, which brings about more optimal electron density and temperature conditions for exclusively exciting Xe metastables than possible using AC. We attribute the homogenizing effect of short-pulsed excitation to the rapid rate at which the applied E-field increases to the necessary value for homogeneous discharge breakdown to proceed at a faster rate than the formation of filaments.

  9. A compact, low cost Marx bank for generating capillary discharge plasmas

    Science.gov (United States)

    Dyson, A. E.; Thornton, C.; Hooker, S. M.

    2016-09-01

    We describe in detail a low power Compact Marx Bank (CMB) circuit that can provide 20 kV, 500 A pulses of approximately 100-200 ns duration. One application is the generation of capillary discharge plasmas of density ≈1018 cm-3 used in laser plasma accelerators. The CMB is triggered with a high speed solid state switch and gives a high voltage output pulse with a ns scale rise time into a 50 Ω load (coaxial cable) with run at shot repetition rates of ≳1 Hz. This low power requirement means that the circuit can easily be powered by a small lead acid battery and, therefore, can be floated relative to laboratory earth. The CMB is readily scalable and pulses >45 kV are demonstrated in air discharges.

  10. Electronic Discharge Letter Mobile App

    NARCIS (Netherlands)

    Lezcano, Leonardo; Triana, Michel; Ternier, Stefaan; Hartkopf, Kathleen; Stieger, Lina; Schroeder, Hanna; Sopka, Sasa; Drachsler, Hendrik; Maher, Bridget; Henn, Patrick; Orrego, Carola; Marcus, Specht

    2014-01-01

    The electronic discharge letter mobile app takes advantage of Near Field Communication (NFC) within the PATIENT project and a related post-doc study. NFC enabled phones to read passive RFID tags, but can also use this short-range wireless technology to exchange (small) messages. NFC in that sense co

  11. Plasma Characteristics of Electrosurgical Discharges*

    Science.gov (United States)

    Stalder, Kenneth R.

    2003-10-01

    Surgical devices utilizing electrical discharges of ever increasing sophistication have been used for decades for numerous procedures. Cushing and Bovie in 1928, for example, developed high-frequency spark generators to cauterize blood vessels and remove unwanted tissue by a thermal ablation processes. Modern Bovies (named after their inventor) use a high-frequency discharge from an electrode to nearby tissue to thermally ablate tissue. Spectroscopic analysis shows that these discharges are hot and are well represented by a thermal equilibrium model, and temperatures near 2000 K are easily achieved. New electrosurgical devices utilizing repetitive electrical discharges in a conducting saline environment have recently been developed. Electron emission from an active electrode during certain portions of the voltage waveform causes the formation of a vapor layer surrounding the electrode and the subsequent ionization and dissociation of species in this region. Electron temperatures of approximately 4 eV are achieved during the plasma phase. Water molecules are dissociated into reactive fragments, and the salt species are also excited and ionized in this nonequilibrium plasma. It is thought that the reactive species interact with nearby tissue, causing localized tissue removal (ablation) which surgeons can exploit during surgical procedures. Flowing saline surrounding the plasma region cools untargeted tissue and removes the reaction products. This presentation will focus on experimental results of the plasma conditions and discuss our current efforts to understand the complex reactions of the various plasma species with tissue structures such as collagen. A short clip showing tissue removal will also be shown.

  12. Electrical discharge machining in dentistry.

    Science.gov (United States)

    Van Roekel, N B

    1992-01-01

    A brief history of electrical discharge machining (EDM) is given and the process is discussed. A description of the application of EDM for fabricating precision attachment removable partial dentures, fixed-removable implant prostheses, and titanium-ceramic crowns is presented. The advantages and disadvantages of the EDM process for the dental profession are evaluated. Although expensive, the procedure has merit.

  13. Integrity Monitoring of Mercury Discharge Lamps

    Science.gov (United States)

    Tjoelker, Robert L.

    2010-01-01

    Mercury discharge lamps are critical in many trapped ion frequency standard applications. An integrity monitoring system can be implemented using end-of-life signatures observed in operational mercury discharge lamps, making it possible to forecast imminent failure and to take action to mitigate the consequences (such as switching to a redundant system). Mercury lamps are used as a source of 194-nm ultraviolet radiation for optical pumping and state selection of mercury trapped ion frequency standards. Lamps are typically fabricated using 202Hg distilled into high-purity quartz, or other 194-nm transmitting material (e.g., sapphire). A buffer gas is also placed into the bulb, typically a noble gas such as argon, neon, or krypton. The bulbs are driven by strong RF fields oscillating at .200 MHz. The lamp output may age over time by two internal mechanisms: (1) the darkening of the bulb that attenuates light transmission and (2) the loss of mercury due to migration or chemical interactions with the bulb surface. During fabrication, excess mercury is placed into a bulb, so that the loss rate is compensated with new mercury emanating from a cool tip or adjacent reservoir. The light output is nearly constant or varies slightly at a constant rate for many months/years until the mercury source is depleted. At this point, the vapor pressure abruptly falls and the total light output and atomic clock SNR (signal-to-noise ratio) decrease. After several days to weeks, the light levels decrease to a point where the atomic clock SNR is no longer sufficient to stay in lock, or the lamp self-extinguishes. This signature has been observed in four separate end-of-life lamp failures while operating in the Deep Space Network (DSN). A simple integrator circuit can observe and document steady-state lamp behavior. When the light levels drop over a predetermined time interval by a specified amount (e.g., 20 percent), an alarm is set. For critical operational applications, such as the DSN

  14. Development of a Lumped Element Circuit Model for Approximation of Nanosecond Pulsed Dielectric Barrier Discharges

    Science.gov (United States)

    2013-01-01

    primary terms: the current from electrons and that from ions. As the drift velocity of electrons, we, in a non -equilibrium plasma is significantly higher...8 Numerical values used in the model are included in the Appendix. The electron velocity can be obtained by assuming a Maxwellian velocity profile. As...a collection of electrons within plasma have a range of velocities, the Maxwellian velocity profile represents the most probable distribution of

  15. Physics Based Lumped Element Circuit Model for Nanosecond Pulsed Dielectric Barrier Discharges

    Science.gov (United States)

    2013-01-01

    from electrons and that from ions. As the drift velocity of electrons, we, in a non -equilibrium plasma is significantly higher than ions, the current... Maxwellian velocity profile. As a collection of electrons within plasma have a range of velocities, the Maxwellian ve- locity profile represents the most...kbTe 2 64 3 75; (21) A3 ¼ Ne m 2pkbTe 1 2 : (22) Using the non -relativistic definition of kinetic energy, a relationship can be established for the

  16. On-chip electro-static discharge (ESD) protection for radio-frequency integrated circuits

    CERN Document Server

    Cui, Qiang; Hajjar, Jean-Jacques; Salcedo, Javier; Zhou, Yuanzhong; Srivatsan, Parthasarathy

    2015-01-01

    This book enables readers to design effective ESD protection solutions for all mainstream RF fabrication processes (GaAs pHEMT, SiGe HBT, CMOS). The new techniques introduced by the authors have much higher protection levels and much lower parasitic effects than those of existing ESD protection devices. The authors describe in detail the ESD phenomenon, as well as ESD protection fundamentals, standards, test equipment, and basic design strategies. Readers will benefit from realistic case studies of ESD protection for RFICs and will learn to increase significantly modern RFICs’ ESD safety level, while maximizing RF performance. Describes in detail the ESD phenomenon, as well as ESD protection fundamentals, standards, test equipment, and basic design strategies; Enables readers to design effective ESD protection solutions for all mainstream RF fabrication processes (GaAs pHEMT, SiGe HBT, CMOS); Includes realistic case studies of ESD protection for RFICs that resulted in significantly increased ESD safety leve...

  17. Quantum Memristors with Superconducting Circuits

    Science.gov (United States)

    Salmilehto, J.; Deppe, F.; di Ventra, M.; Sanz, M.; Solano, E.

    2017-02-01

    Memristors are resistive elements retaining information of their past dynamics. They have garnered substantial interest due to their potential for representing a paradigm change in electronics, information processing and unconventional computing. Given the advent of quantum technologies, a design for a quantum memristor with superconducting circuits may be envisaged. Along these lines, we introduce such a quantum device whose memristive behavior arises from quasiparticle-induced tunneling when supercurrents are cancelled. For realistic parameters, we find that the relevant hysteretic behavior may be observed using current state-of-the-art measurements of the phase-driven tunneling current. Finally, we develop suitable methods to quantify memory retention in the system.

  18. Circuit considerations for repetitive railguns

    Energy Technology Data Exchange (ETDEWEB)

    Honih, E.M.

    1986-01-01

    Railgun electromagnetic launchers have significant military and scientific potential. They provide direct conversion of electrical energy to projectile kinetic energy, and they offer the hope of achieving projectile velocities greatly exceeding the limits of conventional guns. With over 10 km/sec already demonstrated, railguns are attracting attention for tactical and strategic weapons systems and for scientific equation-of-state research. The full utilization of railguns will require significant improvements in every aspect of system design - projectile, barrel, and power source - to achieve operation on a large scale. This paper will review fundamental aspects of railguns, with emphasis on circuit considerations and repetitive operation.

  19. Circuit for Driving Piezoelectric Transducers

    Science.gov (United States)

    Randall, David P.; Chapsky, Jacob

    2009-01-01

    The figure schematically depicts an oscillator circuit for driving a piezoelectric transducer to excite vibrations in a mechanical structure. The circuit was designed and built to satisfy application-specific requirements to drive a selected one of 16 such transducers at a regulated amplitude and frequency chosen to optimize the amount of work performed by the transducer and to compensate for both (1) temporal variations of the resonance frequency and damping time of each transducer and (2) initially unknown differences among the resonance frequencies and damping times of different transducers. In other words, the circuit is designed to adjust itself to optimize the performance of whichever transducer is selected at any given time. The basic design concept may be adaptable to other applications that involve the use of piezoelectric transducers in ultrasonic cleaners and other apparatuses in which high-frequency mechanical drives are utilized. This circuit includes three resistor-capacitor networks that, together with the selected piezoelectric transducer, constitute a band-pass filter having a peak response at a frequency of about 2 kHz, which is approximately the resonance frequency of the piezoelectric transducers. Gain for generating oscillations is provided by a power hybrid operational amplifier (U1). A junction field-effect transistor (Q1) in combination with a resistor (R4) is used as a voltage-variable resistor to control the magnitude of the oscillation. The voltage-variable resistor is part of a feedback control loop: Part of the output of the oscillator is rectified and filtered for use as a slow negative feedback to the gate of Q1 to keep the output amplitude constant. The response of this control loop is much slower than 2 kHz and, therefore, does not introduce significant distortion of the oscillator output, which is a fairly clean sine wave. The positive AC feedback needed to sustain oscillations is derived from sampling the current through the

  20. Pragmatic circuits signals and filters

    CERN Document Server

    Eccles, William

    2006-01-01

    Pragmatic Circuits: Signals and Filters is built around the processing of signals. Topics include spectra, a short introduction to the Fourier series, design of filters, and the properties of the Fourier transform. The focus is on signals rather than power. But the treatment is still pragmatic. For example, the author accepts the work of Butterworth and uses his results to design filters in a fairly methodical fashion. This third of three volumes finishes with a look at spectra by showing how to get a spectrum even if a signal is not periodic. The Fourier transform provides a way of dealing wi

  1. Circuit Breakers and Market Runs

    OpenAIRE

    Sarah Draus; Mark Van Achter

    2012-01-01

    This paper analyzes whether the application of a “circuit breaker” to a financial market (i.e. a mechanism that interrupts trading for a predetermined period when the price moves beyond a predetermined level) reaches its intended goals of increased market stability and overall welfare. Our framework of analysis is a model in which investors can trade at several dates and might face a liquidity shock forcing them to sell immediately when the shock occurs. This setting potentially induces a “ma...

  2. Recursive Optimization of Digital Circuits

    Science.gov (United States)

    1990-12-14

    capability will become increasingly important as the application-specific integrated circuit (ASIC) market continues to meet its rapid growth projections... market (ASIC) continues to grow (18). The recursive optimization system presented in this thesis was developed to inves- tigate a new approach to global...f)) (narg (bar arg)) (fO (divide f narg)) (f1 (divide f arg)) (gO (divide g narg)) (gi (divide g arg)) ( productO (mult fO gO)) (producti (mult fl gl

  3. Model reduction for circuit simulation

    CERN Document Server

    Hinze, Michael; Maten, E Jan W Ter

    2011-01-01

    Simulation based on mathematical models plays a major role in computer aided design of integrated circuits (ICs). Decreasing structure sizes, increasing packing densities and driving frequencies require the use of refined mathematical models, and to take into account secondary, parasitic effects. This leads to very high dimensional problems which nowadays require simulation times too large for the short time-to-market demands in industry. Modern Model Order Reduction (MOR) techniques present a way out of this dilemma in providing surrogate models which keep the main characteristics of the devi

  4. Quantum Memristors with Superconducting Circuits

    Science.gov (United States)

    Salmilehto, J.; Deppe, F.; Di Ventra, M.; Sanz, M.; Solano, E.

    2017-01-01

    Memristors are resistive elements retaining information of their past dynamics. They have garnered substantial interest due to their potential for representing a paradigm change in electronics, information processing and unconventional computing. Given the advent of quantum technologies, a design for a quantum memristor with superconducting circuits may be envisaged. Along these lines, we introduce such a quantum device whose memristive behavior arises from quasiparticle-induced tunneling when supercurrents are cancelled. For realistic parameters, we find that the relevant hysteretic behavior may be observed using current state-of-the-art measurements of the phase-driven tunneling current. Finally, we develop suitable methods to quantify memory retention in the system. PMID:28195193

  5. Circuit QED with transmon qubits

    Energy Technology Data Exchange (ETDEWEB)

    Wulschner, Karl Friedrich; Puertas, Javier; Baust, Alexander; Eder, Peter; Fischer, Michael; Goetz, Jan; Haeberlein, Max; Schwarz, Manuel; Xie, Edwar; Zhong, Ling; Deppe, Frank; Fedorov, Kirill; Marx, Achim; Menzel, Edwin; Gross, Rudolf [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Nanosystems Initiative Munich (NIM), Muenchen (Germany); Huebl, Hans [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Nanosystems Initiative Munich (NIM), Muenchen (Germany); Weides, Martin [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany)

    2015-07-01

    Superconducting quantum bits are basic building blocks for circuit QED systems. Applications in the fields of quantum computation and quantum simulation require long coherence times. We have fabricated and characterized superconducting transmon qubits which are designed to operate at a high ratio of Josephson energy and charging energy. Due to their low sensitivity to charge noise transmon qubits show good coherence properties. We couple transmon qubits to coplanar waveguide resonators and coplanar slotline resonators and characterize the devices at mK-temperatures. From the experimental data we derive the qubit-resonator coupling strength, the qubit relaxation time and calibrate the photon number in the resonator via Stark shifts.

  6. Radio frequency integrated circuit design

    CERN Document Server

    Rogers, John W M

    2010-01-01

    This newly revised and expanded edition of the 2003 Artech House classic, Radio Frequency Integrated Circuit Design, serves as an up-to-date, practical reference for complete RFIC know-how. The second edition includes numerous updates, including greater coverage of CMOS PA design, RFIC design with on-chip components, and more worked examples with simulation results. By emphasizing working designs, this book practically transports you into the authors' own RFIC lab so you can fully understand the function of each design detailed in this book. Among the RFIC designs examined are RF integrated LC

  7. HF radio systems and circuits

    CERN Document Server

    Sabin, William

    1998-01-01

    A comprehensive reference for the design of high frequency communications systems and equipment. This revised edition is loaded with practical data, much of which cannot be found in other reference books. Its approach to the subject follows the needs of an engineer from system definition and performance requirements down to the individual circuit elements that make up radio transmitters and receivers. The accompanying disk contains updated software on filters, matching networks and receiver analysis. SciTech Publishing also provides many other products related to Communication Systems Design.

  8. Analog VLSI neural network integrated circuits

    Science.gov (United States)

    Kub, F. J.; Moon, K. K.; Just, E. A.

    1991-01-01

    Two analog very large scale integration (VLSI) vector matrix multiplier integrated circuit chips were designed, fabricated, and partially tested. They can perform both vector-matrix and matrix-matrix multiplication operations at high speeds. The 32 by 32 vector-matrix multiplier chip and the 128 by 64 vector-matrix multiplier chip were designed to perform 300 million and 3 billion multiplications per second, respectively. An additional circuit that has been developed is a continuous-time adaptive learning circuit. The performance achieved thus far for this circuit is an adaptivity of 28 dB at 300 KHz and 11 dB at 15 MHz. This circuit has demonstrated greater than two orders of magnitude higher frequency of operation than any previous adaptive learning circuit.

  9. Physical synthesis of quantum circuits using templates

    Science.gov (United States)

    Mirkhani, Zahra; Mohammadzadeh, Naser

    2016-10-01

    Similar to traditional CMOS circuits, quantum circuit design flow is divided into two main processes: logic synthesis and physical design. Addressing the limitations imposed on optimization of the quantum circuit metrics because of no information sharing between logic synthesis and physical design processes, the concept of " physical synthesis" was introduced for quantum circuit flow, and a few techniques were proposed for it. Following that concept, in this paper a new approach for physical synthesis inspired by template matching idea in quantum logic synthesis is proposed to improve the latency of quantum circuits. Experiments show that by using template matching as a physical synthesis approach, the latency of quantum circuits can be improved by more than 23.55 % on average.

  10. A concise guide to chaotic electronic circuits

    CERN Document Server

    Buscarino, Arturo; Frasca, Mattia; Sciuto, Gregorio

    2014-01-01

    This brief provides a source of instruction from which students can be taught about the practicalities of designing and using chaotic circuits. The text provides information on suitable materials, circuit design and schemes for design realization. Readers are then shown how to reproduce experiments on chaos and to design new ones. The text guides the reader easily from the basic idea of chaos to the laboratory test providing an experimental basis that can be developed for such applications as secure communications. This brief provides introductory information on sample chaotic circuits, includes coverage of their development, and the “gallery” section provides information on a wide range of circuits. Concise Guide to Chaotic Electronic Circuits will be useful to anyone running a laboratory class involving chaotic circuits and to students wishing to learn about them.

  11. GLITCH ANALYSIS AND REDUCTION IN DIGITAL CIRCUITS

    Directory of Open Access Journals (Sweden)

    Ronak Shah

    2016-08-01

    Full Text Available Hazard in digital circuits is unnecessary transitions due to gate propagation delay in that circuit. Hazards occur due to uneven delay offered in the path of the various ongoing signals. One of the important reasons for power dissipation in CMOS circuits is the switching activity .This include activities such as spurious pulses, called glitches. Power optimization techniques that concentrate on the reduction of switching power dissipation of a given circuit are called glitch reduction techniques. In this paper, we analyse various Glitch reduction techniques such as Hazard filtering Technique, Balanced Path Technique, Multiple Threshold Technique and Gate Freezing Technique. We also measure the parameters such as noise and delay of the circuits on application of various techniques to check the reliability of different circuits in various situations.

  12. A Singularity in the Kirchhoff's Circuit Equations

    CERN Document Server

    Harsha, N R Sree

    2016-01-01

    Students often have difficulty in understanding qualitatively the behaviour of simple electric circuits. In particular, as different studies have shown, they find multiple batteries connected in multiple loops difficult to analyse. In a recent paper [Phys. Educ. 50 568 (2015)], we showed such an electric circuit, which consists of ideal batteries connected in parallel, that couldn't be solved by the existing circuit analysis methods. In this paper, we shall introduce a new mathematical method of solving simple electric circuits from the solutions of more general circuits and show that the currents, in this particular circuit, take the indeterminate 0/0 form. We shall also present some of the implications of teaching the method. We believe that the description presented in this paper should help the instructors in teaching the behaviour of multiple batteries connected in parallel.

  13. Development of larval motor circuits in Drosophila.

    Science.gov (United States)

    Kohsaka, Hiroshi; Okusawa, Satoko; Itakura, Yuki; Fushiki, Akira; Nose, Akinao

    2012-04-01

    How are functional neural circuits formed during development? Despite recent advances in our understanding of the development of individual neurons, little is known about how complex circuits are assembled to generate specific behaviors. Here, we describe the ways in which Drosophila motor circuits serve as an excellent model system to tackle this problem. We first summarize what has been learned during the past decades on the connectivity and development of component neurons, in particular motor neurons and sensory feedback neurons. We then review recent progress in our understanding of the development of the circuits as well as studies that apply optogenetics and other innovative techniques to dissect the circuit diagram. New approaches using Drosophila as a model system are now making it possible to search for developmental rules that regulate the construction of neural circuits.

  14. Discharge current distribution in stratified soil under impulse discharge

    Science.gov (United States)

    Eniola Fajingbesi, Fawwaz; Shahida Midi, Nur; Elsheikh, Elsheikh M. A.; Hajar Yusoff, Siti

    2017-06-01

    The mobility of charge particles traversing a material defines its electrical properties. Soil (earth) have long been the universal grounding before and after the inception of active ground systems for electrical appliance purpose due to it semi-conductive properties. The soil can thus be modelled as a single material exhibiting semi-complex inductive-reactive impedance. Under impulse discharge such as lightning strikes to soil this property of soil could result in electric potential level fluctuation ranging from ground potential rise/fall to electromagnetic pulse coupling that could ultimately fail connected electrical appliance. In this work we have experimentally model the soil and lightning discharge using point to plane electrode setup to observe the current distribution characteristics at different soil conductivity [mS/m] range. The result presented from this research indicate above 5% shift in conductivity before and after discharge which is significant for consideration when dealing with grounding designs. The current distribution in soil have also be successfully observed and analysed from experimental result using mean current magnitude in relation to electrode distance and location, current density variation with depth all showing strong correlation with theoretical assumptions of a semi-complex impedance material.

  15. Efficient FM Algorithm for VLSI Circuit Partitioning

    Directory of Open Access Journals (Sweden)

    M.RAJESH

    2013-04-01

    Full Text Available In FM algorithm initial partitioning matrix of the given circuit is assigned randomly, as a result for larger circuit having hundred or more nodes will take long time to arrive at the final partition if theinitial partitioning matrix is close to the final partitioning then the computation time (iteration required is small . Here we have proposed novel approach to arrive at initial partitioning by using spectralfactorization method the results was verified using several circuits.

  16. Nonsmooth Modeling and Simulation for Switched Circuits

    CERN Document Server

    Acary, Vincent; Brogliato, Bernard

    2011-01-01

    "Nonsmooth Modeling and Simulation for Switched Circuits" concerns the modeling and the numerical simulation of switched circuits with the nonsmooth dynamical systems (NSDS) approach, using piecewise-linear and multivalued models of electronic devices like diodes, transistors, switches. Numerous examples (ranging from introductory academic circuits to various types of power converters) are analyzed and many simulation results obtained with the INRIA open-source SICONOS software package are presented. Comparisons with SPICE and hybrid methods demonstrate the power of the NSDS approach

  17. Integrated capacitors for conductive lithographic film circuits

    OpenAIRE

    Harrey, PM; Evans, PSA; Harrison, DJ

    2001-01-01

    This paper reports on fabrication of low-value embedded capacitors in conductive lithographic film (CLF) circuit boards. The CLF process is a low-cost and high speed manufacturing technique for flexible circuits and systems. We report on the construction and electrical characteristics of CLF capacitor structures printed onto flexible substrates. These components comprise a single polyester dielectric layer, which separates the printed electrode films. Multilayer circuit boards with printed co...

  18. The analysis and design of linear circuits

    CERN Document Server

    Thomas, Roland E; Toussaint, Gregory J

    2009-01-01

    The Analysis and Design of Linear Circuits, 6e gives the reader the opportunity to not only analyze, but also design and evaluate linear circuits as early as possible. The text's abundance of problems, applications, pedagogical tools, and realistic examples helps engineers develop the skills needed to solve problems, design practical alternatives, and choose the best design from several competing solutions. Engineers searching for an accessible introduction to resistance circuits will benefit from this book that emphasizes the early development of engineering judgment.

  19. Monitoring transients in low inductance circuits

    Science.gov (United States)

    Guilford, R.P.; Rosborough, J.R.

    1985-10-21

    The instant invention relates to methods of and apparatus for monitoring transients in low inductance circuits and to a probe utilized to practice said method and apparatus. More particularly, the instant invention relates to methods of and apparatus for monitoring low inductance circuits, wherein the low inductance circuits include a pair of flat cable transmission lines. The instant invention is further directed to a probe for use in monitoring pairs of flat cable transmission lines.

  20. Long-wavelength silicon photonic integrated circuits

    OpenAIRE

    2014-01-01

    In this paper we elaborate on our development of silicon photonic integrated circuits operating at wavelengths beyond the telecommunication wavelength window. Silicon-on-insulator waveguide circuits up to 3.8 mu m wavelength are demonstrated as well as germanium-on-silicon waveguide circuits operating in the 5-5 mu m wavelength range. The heterogeneous integration of III-V semiconductors and IV-VI semiconductors on this platform is described for the integration of lasers and photodetectors op...

  1. Computer-Aided Pneumatic Circuit Design

    OpenAIRE

    TEKİNER, Zafer; KORKUT, İhsan

    2001-01-01

    In this study, a user-interactive computer program was developed for computer-aided pneumatic circuit design. The pneumatic circuit elements were selected and designed by the determination of the main principles that are in accordance with the aim the user is going to specify. A database was established by forming IGES files for pneumatic circuit elements. In addition to this database, lists displaying the connection nodes of each element were prepared. The coordinates will be conne...

  2. MESOSCOPIC ELECTRIC CIRCUITS WITH CHARGE DISCRETIZATION

    OpenAIRE

    2004-01-01

    MESOSCOPIC ELECTRIC CIRCUITS WITH CHARGE DISCRETIZATION Nanoscience is a modern aspect of electronic engineering with significant projections for applications on new devices. This project allowed presenting an innovative language and a rigorous vision on aspects of nanoscience. The theory of quantum electrical circuits with discrete charge corresponds to the description (in simple terms) of some aspects of nanoscience. Our results gather aspects of quantum mechanics, electrical circuit...

  3. Electronic circuits for communications systems: A compilation

    Science.gov (United States)

    1972-01-01

    The compilation of electronic circuits for communications systems is divided into thirteen basic categories, each representing an area of circuit design and application. The compilation items are moderately complex and, as such, would appeal to the applications engineer. However, the rationale for the selection criteria was tailored so that the circuits would reflect fundamental design principles and applications, with an additional requirement for simplicity whenever possible.

  4. Combinational Circuit Obfuscation Through Power Signature Manipulation

    Science.gov (United States)

    2011-06-01

    hardware descrip- tion files such as VHDL , SPICE netlist are needed for the SPICE-like simulation tools; however, the SID just needs a simple circuit...Time Interval) Figure 3.12: The Summary of Procedure for SPICE Simulation CORGI 3.0 XML Exporter Truth Table Exporter GraphML Exporter VHDL Exporter...encryption system developed by Falkinburg [4]. For installing the obfuscated version of a circuit into the test-bed, the circuit is described in VHDL format

  5. Logarithmic current-measuring transistor circuits

    DEFF Research Database (Denmark)

    Højberg, Kristian Søe

    1967-01-01

    Describes two transistorized circuits for the logarithmic measurement of small currents suitable for nuclear reactor instrumentation. The logarithmic element is applied in the feedback path of an amplifier, and only one dual transistor is used as logarithmic diode and temperature compensating...... transistor. A simple one-amplifier circuit is compared with a two-amplifier system. The circuits presented have been developed in connexion with an amplifier using a dual m.o.s. transistor input stage with diode-protected gates....

  6. Efficient Scheme for Optimizing Quantum Fourier Circuits

    Institute of Scientific and Technical Information of China (English)

    JIANG Min; ZHANG Zengke; Tzyh-Jong Tarn

    2008-01-01

    In quantum circuits, importing of additional qubits can reduce the operation time and prevent de-coherence induced by the environment. However, excessive qubits may make the quantum system vulner-able. This paper describes how to relax existing qubits without additional qubits to significantly reduce the operation time of the quantum Fourier circuit compared to a circuit without optimization. The results indicate that this scheme makes full use of the qubits relaxation. The concepts can be applied to improve similar quantum circuits and guide the physical implementations of quantum algorithms or devices.

  7. The emergy analysis of loop circuit.

    Science.gov (United States)

    Cao, Kai; Feng, Xiao

    2008-12-01

    Emergy analysis can analyze the resource utilization and environmental performance of a system. Loop circuit is a common structure in the process industry, but when emergy analysis is carried out to such structure, mistakes such as emergy double counting often occur. To avoid emergy double counting, two types of loop circuit-direct loop circuit and indirect loop circuit-are theoretically distinguished, and the methods to avoid such mistake are proposed. Finally, PVC production and vinyl acetate production are adopted to demonstrate the methods.

  8. Rule-Based Optimization of Reversible Circuits

    CERN Document Server

    Arabzadeh, Mona; Zamani, Morteza Saheb

    2010-01-01

    Reversible logic has applications in various research areas including low-power design and quantum computation. In this paper, a rule-based optimization approach for reversible circuits is proposed which uses both negative and positive control Toffoli gates during the optimization. To this end, a set of rules for removing NOT gates and optimizing sub-circuits with common-target gates are proposed. To evaluate the proposed approach, the best-reported synthesized circuits and the results of a recent synthesis algorithm which uses both negative and positive controls are used. Our experiments reveal the potential of the proposed approach in optimizing synthesized circuits.

  9. Model Order Reduction for Electronic Circuits:

    DEFF Research Database (Denmark)

    Hjorth, Poul G.; Shontz, Suzanne

    Electronic circuits are ubiquitous; they are used in numerous industries including: the semiconductor, communication, robotics, auto, and music industries (among many others). As products become more and more complicated, their electronic circuits also grow in size and complexity. This increased ...... in the semiconductor industry. Circuit simulation proceeds by using Maxwell’s equations to create a mathematical model of the circuit. The boundary element method is then used to discretize the equations, and the variational form of the equations are then solved on the graph network....

  10. Electric circuit theory applied electricity and electronics

    CERN Document Server

    Yorke, R

    1981-01-01

    Electric Circuit Theory provides a concise coverage of the framework of electrical engineering. Comprised of six chapters, this book emphasizes the physical process of electrical engineering rather than abstract mathematics. Chapter 1 deals with files, circuits, and parameters, while Chapter 2 covers the natural and forced response of simple circuit. Chapter 3 talks about the sinusoidal steady state, and Chapter 4 discusses the circuit analysis. The fifth chapter tackles frequency response of networks, and the last chapter covers polyphase systems. This book will be of great help to electrical

  11. High Speed Solid State Circuit Breaker

    Science.gov (United States)

    Podlesak, Thomas F.

    1993-01-01

    The U.S. Army Research Laboratory, Fort Monmouth, NJ, has developed and is installing two 3.3 MW high speed solid state circuit breakers at the Army's Pulse Power Center. These circuit breakers will interrupt 4160V three phase power mains in no more than 300 microseconds, two orders of magnitude faster than conventional mechanical contact type circuit breakers. These circuit breakers utilize Gate Turnoff Thyristors (GTO's) and are currently utility type devices using air cooling in an air conditioned enclosure. Future refinements include liquid cooling, either water or two phase organic coolant, and more advanced semiconductors. Each of these refinements promises a more compact, more reliable unit.

  12. Wafer-scale graphene integrated circuit.

    Science.gov (United States)

    Lin, Yu-Ming; Valdes-Garcia, Alberto; Han, Shu-Jen; Farmer, Damon B; Meric, Inanc; Sun, Yanning; Wu, Yanqing; Dimitrakopoulos, Christos; Grill, Alfred; Avouris, Phaedon; Jenkins, Keith A

    2011-06-10

    A wafer-scale graphene circuit was demonstrated in which all circuit components, including graphene field-effect transistor and inductors, were monolithically integrated on a single silicon carbide wafer. The integrated circuit operates as a broadband radio-frequency mixer at frequencies up to 10 gigahertz. These graphene circuits exhibit outstanding thermal stability with little reduction in performance (less than 1 decibel) between 300 and 400 kelvin. These results open up possibilities of achieving practical graphene technology with more complex functionality and performance.

  13. Circuit For Control Of Electromechanical Prosthetic Hand

    Science.gov (United States)

    Bozeman, Richard J., Jr.

    1995-01-01

    Proposed circuit for control of electromechanical prosthetic hand derives electrical control signals from shoulder movements. Updated, electronic version of prosthesis, that includes two hooklike fingers actuated via cables from shoulder harness. Circuit built around favored shoulder harness, provides more dexterous movement, without incurring complexity of computer-controlled "bionic" or hydraulically actuated devices. Additional harness and potentiometer connected to similar control circuit mounted on other shoulder. Used to control stepping motor rotating hand about prosthetic wrist to one of number of angles consistent with number of digital outputs. Finger-control signals developed by circuit connected to first shoulder harness transmitted to prosthetic hand via sliprings at prosthetic wrist joint.

  14. Analog circuit design art, science, and personalities

    CERN Document Server

    Williams, Jim

    1991-01-01

    Analog Circuit Design: Art, Science, and Personalities discusses the many approaches and styles in the practice of analog circuit design. The book is written in an informal yet informative manner, making it easily understandable to those new in the field. The selection covers the definition, history, current practice, and future direction of analog design; the practice proper; and the styles in analog circuit design. The book also includes the problems usually encountered in analog circuit design; approach to feedback loop design; and other different techniques and applications. The text is

  15. Reliability of Physical Systems: Detection of Malicious Subcircuits (Trojan Circuits) in Sequential Circuits

    Science.gov (United States)

    Matrosova, A. Yu.; Kirienko, I. E.; Tomkov, V. V.; Miryutov, A. A.

    2016-12-01

    Reliability of physical systems is provided by reliability of their parts including logical ones. Insertion of malicious subcircuits that can destroy logical circuit or cause leakage of confidential information from a system necessitates the detection of such subcircuits followed by their masking if possible. We suggest a method of finding a set of sequential circuit nodes in which Trojan Circuits can be inserted. The method is based on random estimations of controllability and observability of combinational nodes calculated using a description of sequential circuit working area and an evidence of existence of a transfer sequence for the proper set of internal states without finding the sequence itself. The method allows cutting calculations using operations on Reduced Ordered Binary Decision Diagrams (ROBDDs) that can depend only on the state variables of the circuit. The approach, unlike traditional ones, does not require preliminary sequential circuit simulation but can use its results. It can be used when malicious circuits cannot be detected during sequential circuit verification.

  16. Microhollow cathode discharge excimer lamps

    Science.gov (United States)

    Schoenbach, Karl H.; El-Habachi, Ahmed; Moselhy, Mohamed M.; Shi, Wenhui; Stark, Robert H.

    2000-05-01

    Microhollow cathode discharges are high-pressure, nonequilibrium gas discharges between a hollow cathode and a planar or hollow anode with electrode dimensions in the 100 μm range. The large concentration of high-energy electrons, in combination with the high-gas density favors excimer formation. Excimer emission was observed in xenon and argon, at wavelengths of 128 and 172 nm, respectively, and in argon fluoride and xenon chloride, at 193 and 308 nm. The radiant emittance of the excimer radiation was found to increase monotonically with pressure. However, due to the decrease in source size with pressure, the efficiency (ratio of excimer radiant power to input electrical power), has for xenon and argon fluoride a maximum at ˜400 Torr. The maximum efficiency is between 6% and 9% for xenon, and ˜2% for argon fluoride.

  17. Current-induced membrane discharge

    CERN Document Server

    Andersen, M B; Mani, A; Bruus, H; Biesheuvel, P M; Bazant, M Z

    2012-01-01

    Possible mechanisms for over-limiting current (OLC) through aqueous ion-exchange membranes (exceeding diffusion limitation) have been debated for half a century. Flows consistent with electro-osmotic instability (EOI) have recently been observed in microfluidic experiments, but the existing theory neglects chemical effects and remains to be quantitatively tested. Here, we show that charge regulation and water self-ionization can lead to OLC by "current-induced membrane discharge" (CIMD), even in the absence of fluid flow. Salt depletion leads to a large electric field which expels water co-ions, causing the membrane to discharge and lose its selectivity. Since salt co-ions and water ions contribute to OLC, CIMD interferes with electrodialysis (salt counter-ion removal) but could be exploited for current-assisted ion exchange and pH control. CIMD also suppresses the extended space charge that leads to EOI, so it should be reconsidered in both models and experiments on OLC.

  18. Current-Induced Membrane Discharge

    DEFF Research Database (Denmark)

    Andersen, Mathias Bækbo; van Soestbergen, M.; Mani, A.;

    2012-01-01

    Possible mechanisms for overlimiting current (OLC) through aqueous ion-exchange membranes (exceeding diffusion limitation) have been debated for half a century. Flows consistent with electro-osmotic instability have recently been observed in microfluidic experiments, but the existing theory...... neglects chemical effects and remains to be quantitatively tested. Here, we show that charge regulation and water self-ionization can lead to OLC by "current-induced membrane discharge'' (CIMD), even in the absence of fluid flow, in ion-exchange membranes much thicker than the local Debye screening length....... Salt depletion leads to a large electric field resulting in a local pH shift within the membrane with the effect that the membrane discharges and loses its ion selectivity. Since salt co-ions, H+ ions, and OH- ions contribute to OLC, CIMD interferes with electrodialysis (salt counterion removal...

  19. [Ductoscopy for pathologic nipple discharge].

    Science.gov (United States)

    Waaijer, Laurien; van Diest, Paul J; van der Pol, Carmen C; Verolme, Berna; Hennink, Annelies; Witkamp, Arjen J

    2013-01-01

    Pathologic nipple discharge is a symptom that frequently causes female patients to visit the outpatient breast clinic. In the vast majority of cases, the symptom is caused by a benign intraductal laesion. The options for diagnosis and treatment have long been limited; surgery was not infrequently the treatment of choice. With the advent of breast ductoscopy, a micro-endoscopic procedure, it is possible to visualise abnormalities in the ductal system. Tissue for histopathological investigation can be retrieved from the duct and the condition can be treated. The patient with nipple discharge is consequently prevented from having to undergo an invasive and fairly 'blindly' executed procedure under general anaesthesia. The miniscule dimensions of the duct in which the technique is carried out pose the greatest challenge to the further development of the ductoscope.

  20. Upset susceptibility study employing circuit analysis and digital simulation

    Science.gov (United States)

    Carreno, V. A.

    1984-01-01

    This paper describes an approach to predicting the susceptibility of digital systems to signal disturbances. Electrical disturbances on a digital system's input and output lines can be induced by activities and conditions including static electricity, lightning discharge, Electromagnetic Interference (EMI) and Electromagnetic Pulsation (EMP). The electrical signal disturbances employed for the susceptibility study were limited to nondestructive levels, i.e., the system does not sustain partial or total physical damage and reset and/or reload will bring the system to an operational status. The front-end transition from the electrical disturbances to the equivalent digital signals was accomplished by computer-aided circuit analysis. The Super-Sceptre (system for circuit evaluation of transient radiation effects) Program was used. Gate models were developed according to manufacturers' performance specifications and parameters resulting from construction processes characteristic of the technology. Digital simulation at the gate and functional level was employed to determine the impact of the abnormal signals on system performance and to study the propagation characteristics of these signals through the system architecture. Example results are included for an Intel 8080 processor configuration.

  1. The Immunity of Evolvable Digital Circuits to ESD Interference

    Institute of Scientific and Technical Information of China (English)

    Shanghe Liu; Menghua Man; Zhengquan Ju; Xiaolong Chang; Jie Chu; Liang Yuan

    2012-01-01

    With the rapid development of semiconductor technology and the increasing proliferation of emission sources,digital circuits are frequently used in harsh and hostile electromagnetic environments.Electrostatic Discharge (ESD) interferences are gradually gaining prominence,resulting in performance degradations,malfunctions and disturbances in component and/or system level applications.Conventional solutions to such problems are shielding,filtering and grounding.This paper proposes a novel Evolvable Digital Circuit (EDC) for intrinsic immunity.The key idea is motivated by the noise-robustness and fault-tolerance of the biological system.First,the architecture of the EDC is designed based on the cell structure.Then,ESD immunity tests are carried out on the most fragile element of the EDC in operation.Based on the results,fault models are also presented to simulate different functional disturbances.Finally,the immunity of the EDC is evaluated while it is exposed to a variety of simulated environments.The results which demonstrate a graceful immunity to ESD interference are presented.

  2. Upset susceptibility study employing circuit analysis and digital simulation

    Science.gov (United States)

    Carreno, V. A.

    1984-12-01

    An approach to predict the susceptibility of digital systems to signal disturbances is described. Electrical disturbances on a digital system's input and output lines can be induced by activities and conditions including static electricity, lightning discharge, electromagnetic interference (EMI), and electromagnetic pulsation (EMP). The electrical signal disturbances employed for the susceptibility study were limited to nondestructive levels, i.e., the system does not sustain partial or total physical damage and reset and/or reload brings the system to an operational status. The front-end transition from the electrical disturbances to the equivalent digital signals was accomplished by computer-aided circuit analysis. The super-sceptre (system for circuit evaluation of transient radiation effects) programs was used. Gate models were developed according to manufacturers' performance specifications and parameters resulting from construction processes characteristic of the technology. Digital simulation at the gate and functional level was employed to determine the impact of the abnormal signals on system performance and to study the propagation characteristics of these signals through the system architecture. Example results are included for an Intel 8080 processor configuration.

  3. Testing of Diode-Clamping in an Inductive Pulsed Plasma Thruster Circuit

    Science.gov (United States)

    Toftul, Alexandra; Polzin, Kurt A.; Martin, Adam K.; Hudgins, Jerry L.

    2014-01-01

    Testing of a 5.5 kV silicon (Si) diode and 5.8 kV prototype silicon carbide (SiC) diode in an inductive pulsed plasma thruster (IPPT) circuit was performed to obtain a comparison of the resulting circuit recapture efficiency,eta(sub r), defined as the percentage of the initial charge energy remaining on the capacitor bank after the diode interrupts the current. The diode was placed in a pulsed circuit in series with a silicon controlled rectifier (SCR) switch, and the voltages across different components and current waveforms were collected over a range of capacitor charge voltages. Reverse recovery parameters, including turn-off time and peak reverse recovery current, were measured and capacitor voltage waveforms were used to determine the recapture efficiency for each case. The Si fast recovery diode in the circuit was shown to yield a recapture efficiency of up to 20% for the conditions tested, while the SiC diode further increased recapture efficiency to nearly 30%. The data presented show that fast recovery diodes operate on a timescale that permits them to clamp the discharge quickly after the first half cycle, supporting the idea that diode-clamping in IPPT circuit reduces energy dissipation that occurs after the first half cycle

  4. A comprehensive equivalent circuit model of all-vanadium redox flow battery for power system analysis

    Science.gov (United States)

    Zhang, Yu; Zhao, Jiyun; Wang, Peng; Skyllas-Kazacos, Maria; Xiong, Binyu; Badrinarayanan, Rajagopalan

    2015-09-01

    Electrical equivalent circuit models demonstrate excellent adaptability and simplicity in predicting the electrical dynamic response of the all-vanadium redox flow battery (VRB) system. However, only a few publications that focus on this topic are available. The paper presents a comprehensive equivalent circuit model of VRB for system level analysis. The least square method is used to identify both steady-state and dynamic characteristics of VRB. The inherent features of the flow battery such as shunt current, ion diffusion and pumping energy consumption are also considered. The proposed model consists of an open-circuit voltage source, two parasitic shunt bypass circuits, a 1st order resistor-capacitor network and a hydraulic circuit model. Validated with experimental data, the proposed model demonstrates excellent accuracy. The mean-error of terminal voltage and pump consumption are 0.09 V and 0.49 W respectively. Based on the proposed model, self-discharge and system efficiency are studied. An optimal flow rate which maximizes the system efficiency is identified. Finally, the dynamic responses of the proposed VRB model under step current profiles are presented. Variables such as SOC and stack terminal voltage can be provided.

  5. Review of relaxation oscillations in plasma processing discharges

    Institute of Scientific and Technical Information of China (English)

    Zhou Zhu-Wen; M.A.Lieberman; Sungjin Kim

    2007-01-01

    Relaxation oscillations due to plasma instabilities at frequencies ranging from a few Hz to tens of kHz have been observed in various types of plasma processing discharges.Relaxation oscillations have been observed in electropositive capacitive discharges between a powered anode and a metallic chamber whose periphery iS grounded through a slot with dielectric spacers.The oscillations of time-varying optical emission from the main discharge chamber show,for example,a high-frequency (~40 kHz) relaxation oscillation at 13.33Pa,with an absorbed power being nearly the peripheral breakdown power,and a low-frequency (~3 Hz) oscillation,with an even higher absorbed power.The high-frequency oscillation is found to ignite plasma in the slot,but usually not in the peripheral chamber.The kilohertz oscillations are modelled using an electromagnetic model of the slot impedance,coupled to a circuit analysis of the system including the matching network.The model results are in general agreement with the experimental observations,and indicate a variety of behaviours dependent on the matching conditions.In low-pressure inductive discharges,oscillations appear in the transition between low-density capacitively driven and high-density inductively driven discharges when attaching gases such as SF6 and Ar/SF6 mixtures are used.Oscillations of charged particles,plasma potential,and light,at frequencies ranging from a few Hz to tens of kHz,are seen for gas pressures between 0.133 Pa and 13.33 Pa and discharge powers in a range of 75-1200 W.The region of instability increases as the plasma becomes more electronegative,and the frequency of plasma oscillation increases as the power,pressure,and gas flow rate increase.A volume-averaged (global) model of the kilohertz instability has been developed;the results obtained from the model agree well with the experimental observations.

  6. 42 CFR 32.89 - Discharge.

    Science.gov (United States)

    2010-10-01

    ... PERSONS WITH HANSEN'S DISEASE AND OTHER PERSONS IN EMERGENCIES Persons with Hansen's Disease § 32.89 Discharge. Patients with Hansen's disease will be discharged when, in the opinion of the medical staff of...

  7. EPA Region 1 No Discharge Zones

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset details No Discharge Zones (NDZ) for New England. Boaters may not discharge waste into these areas. Boundaries were determined mostly by Federal...

  8. Electrical circuit theory and technology

    CERN Document Server

    Bird, John

    2014-01-01

    This much-loved textbook explains the principles of electrical circuit theory and technology so that students of electrical and mechanical engineering can master the subject. Real-world situations and engineering examples put the theory into context. The inclusion of worked problems with solutions help you to learn and further problems then allow you to test and confirm you have fully understood each subject. In total the book contains 800 worked problems, 1000 further problems and 14 revision tests with answers online. This an ideal text for foundation and undergraduate degree students and those on upper level vocational engineering courses, in particular electrical and mechanical. It provides a sound understanding of the knowledge required by technicians in fields such as electrical engineering, electronics and telecommunications. This edition has been updated with developments in key areas such as semiconductors, transistors, and fuel cells, along with brand new material on ABCD parameters and Fourier's An...

  9. Microtubule as nanobioelectronic nonlinear circuit

    Directory of Open Access Journals (Sweden)

    Sekulić Dalibor L.

    2012-01-01

    Full Text Available In recent years, the use of biological molecules has offered exciting alternatives to conventional synthetic methods. Specific methods use various biological templates to direct the deposition and patterning of inorganic materials. Here we have established a new electrical model of microtubules as a biological nanoscale circuit based on polyelectrolyte features of cylindrical biopolymers. Our working hypothesis is that microtubules play an active role in sub-cellular computation and signaling via electronic and protonic conductivity and can thus be made useful in hybrid materials that offer novel electronic characteristics. We verify these hypotheses both computationally and analytically through a quantitative model based on the atomic resolution structures of the key functional proteins.

  10. TIME CALIBRATED OSCILLOSCOPE SWEEP CIRCUIT

    Science.gov (United States)

    Smith, V.L.; Carstensen, H.K.

    1959-11-24

    An improved time calibrated sweep circuit is presented, which extends the range of usefulness of conventional oscilloscopes as utilized for time calibrated display applications in accordance with U. S. Patent No. 2,832,002. Principal novelty resides in the provision of a pair of separate signal paths, each of which is phase and amplitude adjustable, to connect a high-frequency calibration oscillator to the output of a sawtooth generator also connected to the respective horizontal deflection plates of an oscilloscope cathode ray tube. The amplitude and phase of the calibration oscillator signals in the two signal paths are adjusted to balance out feedthrough currents capacitively coupled at high frequencies of the calibration oscillator from each horizontal deflection plate to the vertical plates of the cathode ray tube.

  11. Advanced Microwave Circuits and Systems

    DEFF Research Database (Denmark)

    such as voltage-controlled oscillators and electron devices for millimeter wave and submillimeter wave applications. This part also covers studies of integrated buffer circuits. Passive components are indispensable elements of any electronic system. The increasing demands to miniaturization and cost effectiveness...... component in a receiving system. Its performance determines the overall system sensitivity because it is the first block to amplify the received signal from the antenna. Hence, for the achievement of high receiver performance, the LNA is required to have a low noise figure with good input matching as well......, bandwidth, and power consumption, which generally accompanies the LNA design process, is discussed in this part. The requirement from an amplifier design differs for different applications. A power amplifier is a type of amplifier which drives the antenna of a transmitter. Unlike LNA, a power amplifier...

  12. Cornered by reality: circuit minors

    Directory of Open Access Journals (Sweden)

    José A. Moreno Mena

    2015-01-01

    Full Text Available The present study examines a category of migrant children named “circuit minors.” This category includes unaccompanied migrant children and adolescents who cross the border continuously for various reasons and are typically associated with criminal gangs and human and drug traffickers. The aim of this paper is to highlight the problem and consider the risks and the state of social vulnerability in which this population lives. These categories of children and adolescent migrants are identified through a review of the literature, newspaper archives, and official statistics. The study draws on interviews with key informants to characterize this population. We conclude that there is a need to review existing frameworks for the protection of migrant children and to create an action protocol for officials who have contact with these children to ensure their best interests.

  13. Molectronics: a circuit design perspective

    Science.gov (United States)

    Nackashi, David P.; Franzon, Paul D.

    2001-03-01

    Recently, several mechanisms have been proposed as a basis for designing molecular electronic logic switching elements. Many two terminal molecular devices functioning as diodes have been synthesized with responses similar to silicon devices such as rectifying and resonant tunneling diodes. In this paper, the feasibility of integrating these molecular diodes into current circuit architectures is explored. A series of logic gates and a memory element are simulated based on the voltage-controlled current flow method using the Tour-Reed molecular diode exhibiting negative differential resistance (NDR). HSPICE simulation results are used to illustrate the performance of these devices and to quantify additional component and interconnect requirements. Finally, future system design approaches using molecular components are discussed.

  14. Design of an improved RCD buffer circuit for full bridge circuit

    Science.gov (United States)

    Yang, Wenyan; Wei, Xueye; Du, Yongbo; Hu, Liang; Zhang, Liwei; Zhang, Ou

    2017-05-01

    In the full bridge inverter circuit, when the switch tube suddenly opened or closed, the inductor current changes rapidly. Due to the existence of parasitic inductance of the main circuit. Therefore, the surge voltage between drain and source of the switch tube can be generated, which will have an impact on the switch and the output voltage. In order to ab sorb the surge voltage. An improve RCD buffer circuit is proposed in the paper. The peak energy will be absorbed through the buffer capacitor of the circuit. The part energy feedback to the power supply, another part release through the resistor in the form of heat, and the circuit can absorb the voltage spikes. This paper analyzes the process of the improved RCD snubber circuit, According to the specific parameters of the main circuit, a reasonable formula for calculating the resistance capacitance is given. A simulation model will be modulated in Multisim, which compared the waveform of tube voltage and the output waveform of the circuit without snubber circuit with the improved RCD snubber circuit. By comparing and analyzing, it is proved that the improved buffer circuit can absorb surge voltage. Finally, experiments are demonstrated to validate that the correctness of the RC formula and the improved RCD snubber circuit.

  15. Design of Multivalued Circuits Based on an Algebra for Current—Mode CMOS Multivalued Circuits

    Institute of Scientific and Technical Information of China (English)

    陈偕雄; ClaudioMoraga

    1995-01-01

    An algebra proposed for current-mode CMOS multivalued circuits is briefly reviewed.this paper discusses its application in the design of multivalued circuits.Several current-mode CMOS quaternary and quinary circuits are designed by algebraic means.The design method based on this algebra may offer a design simpler than the previously known ones.

  16. Scaling of graphene integrated circuits

    Science.gov (United States)

    Bianchi, Massimiliano; Guerriero, Erica; Fiocco, Marco; Alberti, Ruggero; Polloni, Laura; Behnam, Ashkan; Carrion, Enrique A.; Pop, Eric; Sordan, Roman

    2015-04-01

    The influence of transistor size reduction (scaling) on the speed of realistic multi-stage integrated circuits (ICs) represents the main performance metric of a given transistor technology. Despite extensive interest in graphene electronics, scaling efforts have so far focused on individual transistors rather than multi-stage ICs. Here we study the scaling of graphene ICs based on transistors from 3.3 to 0.5 μm gate lengths and with different channel widths, access lengths, and lead thicknesses. The shortest gate delay of 31 ps per stage was obtained in sub-micron graphene ROs oscillating at 4.3 GHz, which is the highest oscillation frequency obtained in any strictly low-dimensional material to date. We also derived the fundamental Johnson limit, showing that scaled graphene ICs could be used at high frequencies in applications with small voltage swing.The influence of transistor size reduction (scaling) on the speed of realistic multi-stage integrated circuits (ICs) represents the main performance metric of a given transistor technology. Despite extensive interest in graphene electronics, scaling efforts have so far focused on individual transistors rather than multi-stage ICs. Here we study the scaling of graphene ICs based on transistors from 3.3 to 0.5 μm gate lengths and with different channel widths, access lengths, and lead thicknesses. The shortest gate delay of 31 ps per stage was obtained in sub-micron graphene ROs oscillating at 4.3 GHz, which is the highest oscillation frequency obtained in any strictly low-dimensional material to date. We also derived the fundamental Johnson limit, showing that scaled graphene ICs could be used at high frequencies in applications with small voltage swing. Electronic supplementary information (ESI) available: Discussions on the cutoff frequency fT, the maximum frequency of oscillation fmax, and the intrinsic gate delay CV/I. See DOI: 10.1039/c5nr01126d

  17. Unilateral whisker trimming in newborn rats alters neuronal coincident discharge among mature barrel cortex neurons.

    Science.gov (United States)

    Ghoshal, Ayan; Lustig, Brian; Popescu, Maria; Ebner, Ford; Pouget, Pierre

    2014-10-15

    It is known that sensory deprivation, including postnatal whisker trimming, can lead to severe deficits in the firing rate properties of cortical neurons. Recent results indicate that development of synchronous discharge among cortical neurons is also activity influenced, and that correlated discharge is significantly impaired following loss of bilateral sensory input in rats. Here we investigate whether unilateral whisker trimming (unilateral deprivation or UD) after birth interferes in the same way with the development of synchronous discharge in cortex. We measured the coincidence of spikes among pairs of neurons recorded under urethane anesthesia in one whisker barrel field deprived by trimming all contralateral whiskers for 60 days after birth (UD), and in untrimmed controls (CON). In the septal columns around barrels, UD significantly increased the coincident discharge among cortical neurons compared with CON, most notably in layers II/III. In contrast, synchronous discharge was normal between layer IV UD barrel neurons: i.e., not different from CON. Thus, while bilateral whisker deprivation (BD) produced a global deficit in the development of synchrony in layer IV, UD did not block the development of synchrony between neurons in layer IV barrels and increased synchrony within septal circuits. We conclude that changes in synchronous discharge after UD are unexpectedly different from those recorded after BD, and we speculate that this effect may be due to the driven activity from active commissural inputs arising from the contralateral hemisphere that received normal activity levels during postnatal development. Copyright © 2014 the American Physiological Society.

  18. Numerical and experimental analysis of middle-bore copper-vapor laser discharge

    Science.gov (United States)

    Yu, Deli; Tao, Yongxiang; Yin, Xianhua; Chen, Lin; Yang, Yan; Li, Hailan; Wang, Runwen

    1998-08-01

    A single simulation model describing the discharge circuitry is introduced. First the differential equations are presented. In order to calculate the laser head discharge current, the thyratron resistance with a switching time coefficient (tau) s is investigated. The plasma conductivity used in these models is estimated using the available data on plasma parameters. Here 0.6 eV of the average electron temperature and 80 nH of thyratron inductance are assumed according to our previous model. The laser head discharge current of the differential equations is calculated with the method of Runge- Kutta. The discharge current profiles of the simulation are found to be in close agreement with the experimental data which come from 4.8-cm-diameter and 6.5-cm-diameter middle- bore Copper-Vapor Laser. In this way, the factors which effect the short rise time to increase lasing ability in the CVL (Copper-Vapor Laser) are studied on the bases of studying the storage capacitor's and the peaking capacitor's effect. As a calculation result, the inductance of the laser head takes an inferior effect to the thyratron circuit inductance on the discharge current rise time. Very good agreement exists between the calculated and measured results. This is a successful single discharge model.

  19. Radiating dipole model of interference induced in spacecraft circuitry by surface discharges

    Science.gov (United States)

    Metz, R. N.

    1984-01-01

    Spacecraft in geosynchronous orbit can be charged electrically to high voltages by interaction with the space plasma. Differential charging of spacecraft surfaces leads to arc and blowoff discharging. The discharges are thought to upset interior, computer-level circuitry. In addition to capacitive or electrostatic effects, significant inductive and less significant radiative effects of these discharges exist and can be modeled in a dipole approximation. Flight measurements suggest source frequencies of 5 to 50 MHz. Laboratory tests indicate source current strengths of several amperes. Electrical and magnetic fields at distances of many centimeters from such sources can be as large as tens of volts per meter and meter squared, respectively. Estimates of field attenuation by spacecraft walls and structures suggest that interior fields may be appreciable if electromagnetic shielding is much thinner than about 0.025 mm (1 mil). Pickup of such fields by wires and cables interconnecting circuit components could be a source of interference signals of several volts amplitude.

  20. Stimulus-induced rhythmic, periodic, or ictal discharges (SIRPIDs: an intriguing EEG phenomenon

    Directory of Open Access Journals (Sweden)

    Mariana Ribeiro Marcondes da Silveira

    2013-12-01

    Full Text Available SIRPIDs, an acronym for stimulus-induced rhythmic, periodic, or ictal discharges, were first named in 2004. This is a pattern observed in continuous electroencephalogram (CEEG consistently elicited by stimulation in comatose patients. The pathophysiology of SIRPIDs probably involves dysregulation of subcortico–cortical projections, particularly thalamocortical circuit, in a markedly abnormal brain with hyperexci­table cortex. This may explain some studies found an association of prolonged periodic epileptiform discharges (PEDs activity and a higher incidence of concurrent electrographic seizures and SIRPIDs. An association of SIRPIDs and poor prognosis has already been described. However, it is not yet possible to assert whether these discharges can cause neuronal injury or if they are simply a marker of severe brain injury. Objective of this paper is to review clinical relevance and pathophysiology of SIRPIDs, as well as its role as a brain response in the critically ill patient.