WorldWideScience

Sample records for cornix call propagation

  1. Measurements and predictions of hooded crow (Corvus corone cornix) call propagation over open field habitats

    DEFF Research Database (Denmark)

    Jensen, Kenneth Kragh; Larsen, Ole Næsbye; Attenborough, Keith

    2008-01-01

    In a study of hooded crow communication over open fields an excellent correspondence is found between the attenuation spectra predicted by a "turbulence-modified ground effect plus atmospheric absorption" model, and crow call attenuation data. Sound propagation predictions and background noise...

  2. Sexual aggression by intruders in hooded crow Corvus cornix

    OpenAIRE

    Zduniak, Piotr; Kosicki, Jakub Z.; Yosef, Reuven

    2015-01-01

    The hooded crow Corvus cornix is a west Palaearctic, solitary nesting, monogamous corvid. In the breeding season, populations are characterized by a social organization wherein breeding pairs are territorial and non-breeding individuals, called floaters, live in flocks. During a study of the breeding ecology of the hooded crow, conducted in a protected flooded area, we monitored nests with video cameras. We recorded two separate incidents when intruders attacked a female at the nest. We belie...

  3. Sexual aggression by intruders in hooded crow Corvus cornix.

    Science.gov (United States)

    Zduniak, Piotr; Kosicki, Jakub Z; Yosef, Reuven

    The hooded crow Corvus cornix is a west Palaearctic, solitary nesting, monogamous corvid. In the breeding season, populations are characterized by a social organization wherein breeding pairs are territorial and non-breeding individuals, called floaters, live in flocks. During a study of the breeding ecology of the hooded crow, conducted in a protected flooded area, we monitored nests with video cameras. We recorded two separate incidents when intruders attacked a female at the nest. We believe that she remained in the nest in order to prevent the strangers cannibalizing the nestlings by mantling over the brood. The spatio-temporal occurrence of these attacks suggests that the observed behaviour is intraspecific sexual aggression wherein non-breeding males mounted an immobilized female.

  4. Microbiological and serological monitoring in hooded crow (Corvus corone cornix in the Region Lombardia, Italy

    Directory of Open Access Journals (Sweden)

    Guido Grilli

    2010-01-01

    Full Text Available The health status of 276 hooded crows (Corvus corone cornix from various provinces of Lombardy was monitored for three years. Bacteriological examination detected E. coli (76%, Campylobacter jejuni (17%, Salmonella typhimurium (11.6%, Yersinia spp. (6.5%, Clamydophila abortus and C. psittaci (2.6%; from six birds showing severe prostration Pasteurella multocida was isolated. Virological and serological tests were negative for Avian Influenza virus (AIV, West Nile virus (WNV and only three samples were positive for Newcastle disease virus (NDV but only at serology (titre 1:16.

  5. Single Neurons in the Avian Auditory Cortex Encode Individual Identity and Propagation Distance in Naturally Degraded Communication Calls.

    Science.gov (United States)

    Mouterde, Solveig C; Elie, Julie E; Mathevon, Nicolas; Theunissen, Frédéric E

    2017-03-29

    One of the most complex tasks performed by sensory systems is "scene analysis": the interpretation of complex signals as behaviorally relevant objects. The study of this problem, universal to species and sensory modalities, is particularly challenging in audition, where sounds from various sources and localizations, degraded by propagation through the environment, sum to form a single acoustical signal. Here we investigated in a songbird model, the zebra finch, the neural substrate for ranging and identifying a single source. We relied on ecologically and behaviorally relevant stimuli, contact calls, to investigate the neural discrimination of individual vocal signature as well as sound source distance when calls have been degraded through propagation in a natural environment. Performing electrophysiological recordings in anesthetized birds, we found neurons in the auditory forebrain that discriminate individual vocal signatures despite long-range degradation, as well as neurons discriminating propagation distance, with varying degrees of multiplexing between both information types. Moreover, the neural discrimination performance of individual identity was not affected by propagation-induced degradation beyond what was induced by the decreased intensity. For the first time, neurons with distance-invariant identity discrimination properties as well as distance-discriminant neurons are revealed in the avian auditory cortex. Because these neurons were recorded in animals that had prior experience neither with the vocalizers of the stimuli nor with long-range propagation of calls, we suggest that this neural population is part of a general-purpose system for vocalizer discrimination and ranging. SIGNIFICANCE STATEMENT Understanding how the brain makes sense of the multitude of stimuli that it continually receives in natural conditions is a challenge for scientists. Here we provide a new understanding of how the auditory system extracts behaviorally relevant information

  6. Propagating semantic information in biochemical network models

    Directory of Open Access Journals (Sweden)

    Schulz Marvin

    2012-01-01

    Full Text Available Abstract Background To enable automatic searches, alignments, and model combination, the elements of systems biology models need to be compared and matched across models. Elements can be identified by machine-readable biological annotations, but assigning such annotations and matching non-annotated elements is tedious work and calls for automation. Results A new method called "semantic propagation" allows the comparison of model elements based not only on their own annotations, but also on annotations of surrounding elements in the network. One may either propagate feature vectors, describing the annotations of individual elements, or quantitative similarities between elements from different models. Based on semantic propagation, we align partially annotated models and find annotations for non-annotated model elements. Conclusions Semantic propagation and model alignment are included in the open-source library semanticSBML, available on sourceforge. Online services for model alignment and for annotation prediction can be used at http://www.semanticsbml.org.

  7. Degradation characteristics of golden lion tamarin Leontopithecus rosalia two-phrase long calls

    DEFF Research Database (Denmark)

    Sabatini, Vera; Ruiz-Miranda, Carlos R.; Dabelsteen, Torben

    2011-01-01

    Neotropical primates have evolved long calls, which have a role in spacing and cohesion of groups. Detection and "reading" of long calls as well as ranging of calling individuals seem essential for this role. This study used sound propagation experiments to investigate habitat caused degradation...... of long calls of the Golden Lion Tamarin Leontopithecus rosalia and its implications for "reading" and ranging long calls of calling tamarins. The experiments were made in lowland, evergreen forest in Brazil. Synthesized copies of natural sounds were broadcast and re-recorded using different combinations...... effective sound propagation at 2.0 m (below the canopy and in the upper part of the dense undergrowth where they forage) facilitates reading of the information content of the long calls and hence their use for communication during foraging. Although the high degradation of the long calls with distance...

  8. Long-distance calls in Neotropical primates

    Directory of Open Access Journals (Sweden)

    Oliveira Dilmar A.G.

    2004-01-01

    Full Text Available Long-distance calls are widespread among primates. Several studies concentrate on such calls in just one or in few species, while few studies have treated more general trends within the order. The common features that usually characterize these vocalizations are related to long-distance propagation of sounds. The proposed functions of primate long-distance calls can be divided into extragroup and intragroup ones. Extragroup functions relate to mate defense, mate attraction or resource defense, while intragroup functions involve group coordination or alarm. Among Neotropical primates, several species perform long-distance calls that seem more related to intragroup coordination, markedly in atelines. Callitrichids present long-distance calls that are employed both in intragroup coordination and intergroup contests or spacing. Examples of extragroup directed long-distance calls are the duets of titi monkeys and the roars and barks of howler monkeys. Considerable complexity and gradation exist in the long-distance call repertoires of some Neotropical primates, and female long-distance calls are probably more important in non-duetting species than usually thought. Future research must focus on larger trends in the evolution of primate long-distance calls, including the phylogeny of calling repertoires and the relationships between form and function in these signals.

  9. Secure, web-accessible call rosters for academic radiology departments.

    Science.gov (United States)

    Nguyen, A V; Tellis, W M; Avrin, D E

    2000-05-01

    Traditionally, radiology department call rosters have been posted via paper and bulletin boards. Frequently, changes to these lists are made by multiple people independently, but often not synchronized, resulting in confusion among the house staff and technical staff as to who is on call and when. In addition, multiple and disparate copies exist in different sections of the department, and changes made would not be propagated to all the schedules. To eliminate such difficulties, a paperless call scheduling application was developed. Our call scheduling program allowed Java-enabled web access to a database by designated personnel from each radiology section who have privileges to make the necessary changes. Once a person made a change, everyone accessing the database would see the modification. This eliminates the chaos resulting from people swapping shifts at the last minute and not having the time to record or broadcast the change. Furthermore, all changes to the database were logged. Users are given a log-in name and password and can only edit their section; however, all personnel have access to all sections' schedules. Our applet was written in Java 2 using the latest technology in database access. We access our Interbase database through the DataExpress and DB Swing (Borland, Scotts Valley, CA) components. The result is secure access to the call rosters via the web. There are many advantages to the web-enabled access, mainly the ability for people to make changes and have the changes recorded and propagated in a single virtual location and available to all who need to know.

  10. Vertical laser beam propagation through the troposphere

    Science.gov (United States)

    Minott, P. O.; Bufton, J. L.; Schaefer, W. H.; Grolemund, D. A.

    1974-01-01

    The characteristics of the earth's atmosphere and its effects upon laser beams was investigated in a series of balloon borne, optical propagation experiments. These experiments were designed to simulate the space to ground laser link. An experiment to determine the amplitude fluctuation, commonly called scintillation, caused by the atmosphere was described.

  11. Maximum nondiffracting propagation distance of aperture-truncated Airy beams

    Science.gov (United States)

    Chu, Xingchun; Zhao, Shanghong; Fang, Yingwu

    2018-05-01

    Airy beams have called attention of many researchers due to their non-diffracting, self-healing and transverse accelerating properties. A key issue in research of Airy beams and its applications is how to evaluate their nondiffracting propagation distance. In this paper, the critical transverse extent of physically realizable Airy beams is analyzed under the local spatial frequency methodology. The maximum nondiffracting propagation distance of aperture-truncated Airy beams is formulated and analyzed based on their local spatial frequency. The validity of the formula is verified by comparing the maximum nondiffracting propagation distance of an aperture-truncated ideal Airy beam, aperture-truncated exponentially decaying Airy beam and exponentially decaying Airy beam. Results show that the formula can be used to evaluate accurately the maximum nondiffracting propagation distance of an aperture-truncated ideal Airy beam. Therefore, it can guide us to select appropriate parameters to generate Airy beams with long nondiffracting propagation distance that have potential application in the fields of laser weapons or optical communications.

  12. Magnetic field driven domain-wall propagation in magnetic nanowires

    International Nuclear Information System (INIS)

    Wang, X.R.; Yan, P.; Lu, J.; He, C.

    2009-01-01

    The mechanism of magnetic field induced magnetic domain-wall (DW) propagation in a nanowire is revealed: A static DW cannot exist in a homogeneous magnetic nanowire when an external magnetic field is applied. Thus, a DW must vary with time under a static magnetic field. A moving DW must dissipate energy due to the Gilbert damping. As a result, the wire has to release its Zeeman energy through the DW propagation along the field direction. The DW propagation speed is proportional to the energy dissipation rate that is determined by the DW structure. The negative differential mobility in the intermediate field is due to the transition from high energy dissipation at low field to low energy dissipation at high field. For the field larger than the so-called Walker breakdown field, DW plane precesses around the wire, leading to the propagation speed oscillation.

  13. Strategies for Seed Propagation of Native Forbs

    Science.gov (United States)

    Susan E. Meyer

    2006-01-01

    Native forbs are an increasingly important component of container production for many public and private nurseries. Propagators are often called upon to grow species with unknown requirements. A systematic approach is required to obtain plants from seeds of these species, beginning with determining what is a propagule and evaluating seed quality. Next, seed dormancy...

  14. Self-sustained high-temperature reactions : Initiation, propagation and synthesis

    NARCIS (Netherlands)

    Martinez Pacheco, M.

    2007-01-01

    Self-Propagating High-Temperature Synthesis (SHS), also called combustion synthesis is an exothermic and self-sustained reaction between the constituents, which has assumed significance for the production of ceramics and ceramic-metallic materials (cermets), because it is a very rapid processing

  15. Suppression of Fatigue Crack Propagation of Duralumin by Cavitation Peening

    Directory of Open Access Journals (Sweden)

    Hitoshi Soyama

    2015-08-01

    Full Text Available It was demonstrated in the present paper that cavitation peening which is one of the mechanical surface modification technique can suppress fatigue crack propagation in duralumin. The impacts produced when cavitation bubble collapses can be utilised for the mechanical surface modification technique in the same way as laser peening and shot peening, which is called “cavitation peening”. Cavitation peening employing a cavitating jet in water was used to treat the specimen made of duralumin Japanese Industrial Standards JIS A2017-T3. After introducing a notch, fatigue test was conducted by a load-controlled plate bending fatigue tester, which has been originally developed. The fatigue crack propagation behavior was evaluated and the relationship between the fatigue crack propagation rate versus stress intensity factor range was obtained. From the results, the fatigue crack propagation rate was drastically reduced by cavitation peening and the fatigue life of duralumin plate was extended 4.2 times by cavitation peening. In addition, the fatigue crack propagation can be suppressed by 88% in the stable crack propagation stage by cavitation peening.

  16. Environmental constraints and call evolution in torrent-dwelling frogs.

    Science.gov (United States)

    Goutte, Sandra; Dubois, Alain; Howard, Samuel D; Marquez, Rafael; Rowley, Jodi J L; Dehling, J Maximilian; Grandcolas, Philippe; Rongchuan, Xiong; Legendre, Frédéric

    2016-04-01

    Although acoustic signals are important for communication in many taxa, signal propagation is affected by environmental properties. Strong environmental constraints should drive call evolution, favoring signals with greater transmission distance and content integrity in a given calling habitat. Yet, few empirical studies have verified this prediction, possibly due to a shortcoming in habitat characterization, which is often too broad. Here we assess the potential impact of environmental constraints on the evolution of advertisement call in four groups of torrent-dwelling frogs in the family Ranidae. We reconstruct the evolution of calling site preferences, both broadly categorized and at a finer scale, onto a phylogenetic tree for 148 species with five markers (∼3600 bp). We test models of evolution for six call traits for 79 species with regard to the reconstructed history of calling site preferences and estimate their ancestral states. We find that in spite of existing morphological constraints, vocalizations of torrent-dwelling species are most probably constrained by the acoustic specificities of torrent habitats and particularly their high level of ambient noise. We also show that a fine-scale characterization of calling sites allows a better perception of the impact of environmental constraints on call evolution. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  17. Photon propagator and pair production in stationary electric field

    International Nuclear Information System (INIS)

    Makhlin, A.N.; Olejnik, V.P.

    1978-01-01

    Effects related to pair production by an external field are discussed. It is shown that vacuum instability against pair production leads to an essential difference between the propagator and Feynman Green's function. Analysis of Yang-Feldman equations and of boundary conditions imposed upon the Green's function shows that using Feynman Green's function as a propagator contradicts the causality principle. The physical causality principle is satisfied by Heisenberg Green's function for which usual Schwinger-Dyson equations cannot be formulated. Heisenberg and Feynman Green's functions coincide for the case of stable vacuum state. All calculations are carried out using the technique of the so-called generalized Green's functions in terms of which the propagators are written. The polarization operator in the electric field is calculated in the one-loop approximation. Its' general structure is found. The photon propagator is obtained. Self oscillations of the photon vacuum are determined. It is shown that new modes correspond to collective excitations of the type ''photon+electron-positron pairs''

  18. Blue functions: probability and current density propagators in non-relativistic quantum mechanics

    International Nuclear Information System (INIS)

    Withers, L P Jr

    2011-01-01

    Like a Green function to propagate a particle's wavefunction in time, a Blue function is introduced to propagate the particle's probability and current density. Accordingly, the complete Blue function has four components. They are constructed from path integrals involving a quantity like the action that we call the motion. The Blue function acts on the displaced probability density as the kernel of an integral operator. As a result, we find that the Wigner density occurs as an expression for physical propagation. We also show that, in quantum mechanics, the displaced current density is conserved bilocally (in two places at one time), as expressed by a generalized continuity equation. (paper)

  19. Parallel Reservoir Simulations with Sparse Grid Techniques and Applications to Wormhole Propagation

    KAUST Repository

    Wu, Yuanqing

    2015-01-01

    the traditional simulation technique relying on the Darcy framework, we propose a new framework called Darcy-Brinkman-Forchheimer framework to simulate wormhole propagation. Furthermore, to process the large quantity of cells in the simulation grid and shorten

  20. Propagation of waves in a multicomponent plasma having charged ...

    Indian Academy of Sciences (India)

    Propagation of waves in a multicomponent plasma having charged dust particles has been investigated by various authors in recent times as the presence of charged dust grains give rise to a new kind of modes called dust modes and it has wide applications in magneto- sphere and space plasma [1–3]. In fact, Rao et al [4] ...

  1. Multipoint propagators for non-Gaussian initial conditions

    International Nuclear Information System (INIS)

    Bernardeau, Francis; Sefusatti, Emiliano; Crocce, Martin

    2010-01-01

    We show here how renormalized perturbation theory calculations applied to the quasilinear growth of the large-scale structure can be carried on in presence of primordial non-Gaussian (PNG) initial conditions. It is explicitly demonstrated that the series reordering scheme proposed in Bernardeau, Crocce, and Scoccimarro [Phys. Rev. D 78, 103521 (2008)] is preserved for non-Gaussian initial conditions. This scheme applies to the power spectrum and higher-order spectra and is based on a reorganization of the contributing terms into the sum of products of multipoint propagators. In case of PNG, new contributing terms appear, the importance of which is discussed in the context of current PNG models. The properties of the building blocks of such resummation schemes, the multipoint propagators, are then investigated. It is first remarked that their expressions are left unchanged at one-loop order irrespective of statistical properties of the initial field. We furthermore show that the high-momentum limit of each of these propagators can be explicitly computed even for arbitrary initial conditions. They are found to be damped by an exponential cutoff whose expression is directly related to the moment generating function of the one-dimensional displacement field. This extends what had been established for multipoint propagators for Gaussian initial conditions. Numerical forms of the cutoff are shown for the so-called local model of PNG.

  2. Call transmission efficiency in native and invasive anurans: competing hypotheses of divergence in acoustic signals.

    Science.gov (United States)

    Llusia, Diego; Gómez, Miguel; Penna, Mario; Márquez, Rafael

    2013-01-01

    Invasive species are a leading cause of the current biodiversity decline, and hence examining the major traits favouring invasion is a key and long-standing goal of invasion biology. Despite the prominent role of the advertisement calls in sexual selection and reproduction, very little attention has been paid to the features of acoustic communication of invasive species in nonindigenous habitats and their potential impacts on native species. Here we compare for the first time the transmission efficiency of the advertisement calls of native and invasive species, searching for competitive advantages for acoustic communication and reproduction of introduced taxa, and providing insights into competing hypotheses in evolutionary divergence of acoustic signals: acoustic adaptation vs. morphological constraints. Using sound propagation experiments, we measured the attenuation rates of pure tones (0.2-5 kHz) and playback calls (Lithobates catesbeianus and Pelophylax perezi) across four distances (1, 2, 4, and 8 m) and over two substrates (water and soil) in seven Iberian localities. All factors considered (signal type, distance, substrate, and locality) affected transmission efficiency of acoustic signals, which was maximized with lower frequency sounds, shorter distances, and over water surface. Despite being broadcast in nonindigenous habitats, the advertisement calls of invasive L. catesbeianus were propagated more efficiently than those of the native species, in both aquatic and terrestrial substrates, and in most of the study sites. This implies absence of optimal relationship between native environments and propagation of acoustic signals in anurans, in contrast to what predicted by the acoustic adaptation hypothesis, and it might render these vertebrates particularly vulnerable to intrusion of invasive species producing low frequency signals, such as L. catesbeianus. Our findings suggest that mechanisms optimizing sound transmission in native habitat can play a less

  3. Call transmission efficiency in native and invasive anurans: competing hypotheses of divergence in acoustic signals.

    Directory of Open Access Journals (Sweden)

    Diego Llusia

    Full Text Available Invasive species are a leading cause of the current biodiversity decline, and hence examining the major traits favouring invasion is a key and long-standing goal of invasion biology. Despite the prominent role of the advertisement calls in sexual selection and reproduction, very little attention has been paid to the features of acoustic communication of invasive species in nonindigenous habitats and their potential impacts on native species. Here we compare for the first time the transmission efficiency of the advertisement calls of native and invasive species, searching for competitive advantages for acoustic communication and reproduction of introduced taxa, and providing insights into competing hypotheses in evolutionary divergence of acoustic signals: acoustic adaptation vs. morphological constraints. Using sound propagation experiments, we measured the attenuation rates of pure tones (0.2-5 kHz and playback calls (Lithobates catesbeianus and Pelophylax perezi across four distances (1, 2, 4, and 8 m and over two substrates (water and soil in seven Iberian localities. All factors considered (signal type, distance, substrate, and locality affected transmission efficiency of acoustic signals, which was maximized with lower frequency sounds, shorter distances, and over water surface. Despite being broadcast in nonindigenous habitats, the advertisement calls of invasive L. catesbeianus were propagated more efficiently than those of the native species, in both aquatic and terrestrial substrates, and in most of the study sites. This implies absence of optimal relationship between native environments and propagation of acoustic signals in anurans, in contrast to what predicted by the acoustic adaptation hypothesis, and it might render these vertebrates particularly vulnerable to intrusion of invasive species producing low frequency signals, such as L. catesbeianus. Our findings suggest that mechanisms optimizing sound transmission in native habitat

  4. Controlling emission and propagation of light with photonic band gap crystals

    NARCIS (Netherlands)

    Yeganegi Dastgerdi, Elahe

    2014-01-01

    In certain three-dimensional crystals, a frequency range exist for all polarizations for which light is not allowed to propagate in any direction, called the 3D photonic band gap: a frequency range where the density of vacuum fluctuations vanishes in an ideal infinitely large and perfect system. The

  5. Effect of observed micropolar motions on wave propagation in deep Earth minerals

    Science.gov (United States)

    Abreu, Rafael; Thomas, Christine; Durand, Stephanie

    2018-03-01

    We provide a method to compute the Cosserat couple modulus for a bridgmanite (MgSiO3 silicate perovskite) solid from frequency gaps observed in Raman experiments. To this aim, we apply micropolar theory which is a generalization of the classical linear elastic theory, where each particle has an intrinsic rotational degree of freedom, called micro-rotation and/or spin, and which depends on the so-called Cosserat couple modulus μc that characterizes the micropolar medium. We investigate both wave propagation and dispersion. The wave propagation simulations in both potassium nitrate (KNO3) and bridgmanite crystal leads to a faster elastic wave propagation as well as to an independent rotational field of motion, called optic mode, which is smaller in amplitude compared to the conventional rotational field. The dispersion analysis predicts that the optic mode only appears above a cutoff frequency, ωr , which has been observed in Raman experiments done at high pressures and temperatures on bridgmanite crystal. The comparison of the cutoff frequency observed in experiments and the micropolar theory enables us to compute for the first time the temperature and pressure dependency of the Cosserat couple modulus μc of bridgmanite. This study thus shows that the micropolar theory can explain particle motions observed in laboratory experiments that were before neglected and that can now be used to constrain the micropolar elastic constants of Earth's mantle like material. This pioneer work aims at encouraging the use of micropolar theory in future works on deep Earth's mantle material by providing Cosserat couple modulus that were not available before.

  6. The effect of various parameters of large scale radio propagation models on improving performance mobile communications

    Science.gov (United States)

    Pinem, M.; Fauzi, R.

    2018-02-01

    One technique for ensuring continuity of wireless communication services and keeping a smooth transition on mobile communication networks is the soft handover technique. In the Soft Handover (SHO) technique the inclusion and reduction of Base Station from the set of active sets is determined by initiation triggers. One of the initiation triggers is based on the strong reception signal. In this paper we observed the influence of parameters of large-scale radio propagation models to improve the performance of mobile communications. The observation parameters for characterizing the performance of the specified mobile system are Drop Call, Radio Link Degradation Rate and Average Size of Active Set (AS). The simulated results show that the increase in altitude of Base Station (BS) Antenna and Mobile Station (MS) Antenna contributes to the improvement of signal power reception level so as to improve Radio Link quality and increase the average size of Active Set and reduce the average Drop Call rate. It was also found that Hata’s propagation model contributed significantly to improvements in system performance parameters compared to Okumura’s propagation model and Lee’s propagation model.

  7. Impulse or propagation? How the tides turned in Business Cycle Theory

    NARCIS (Netherlands)

    Reijnders, J.P.G.

    This paper contains a short history of business cycle theory. It is argued that in the course of time the emphasis shifted from a mainly exogenous to a mainly endogenous explanation of the cycle. After the integration of the two approaches in the so-called impulse and propagation theory, the balance

  8. Efficient techniques for wave-based sound propagation in interactive applications

    Science.gov (United States)

    Mehra, Ravish

    Sound propagation techniques model the effect of the environment on sound waves and predict their behavior from point of emission at the source to the final point of arrival at the listener. Sound is a pressure wave produced by mechanical vibration of a surface that propagates through a medium such as air or water, and the problem of sound propagation can be formulated mathematically as a second-order partial differential equation called the wave equation. Accurate techniques based on solving the wave equation, also called the wave-based techniques, are too expensive computationally and memory-wise. Therefore, these techniques face many challenges in terms of their applicability in interactive applications including sound propagation in large environments, time-varying source and listener directivity, and high simulation cost for mid-frequencies. In this dissertation, we propose a set of efficient wave-based sound propagation techniques that solve these three challenges and enable the use of wave-based sound propagation in interactive applications. Firstly, we propose a novel equivalent source technique for interactive wave-based sound propagation in large scenes spanning hundreds of meters. It is based on the equivalent source theory used for solving radiation and scattering problems in acoustics and electromagnetics. Instead of using a volumetric or surface-based approach, this technique takes an object-centric approach to sound propagation. The proposed equivalent source technique generates realistic acoustic effects and takes orders of magnitude less runtime memory compared to prior wave-based techniques. Secondly, we present an efficient framework for handling time-varying source and listener directivity for interactive wave-based sound propagation. The source directivity is represented as a linear combination of elementary spherical harmonic sources. This spherical harmonic-based representation of source directivity can support analytical, data

  9. Manifold Adaptive Label Propagation for Face Clustering.

    Science.gov (United States)

    Pei, Xiaobing; Lyu, Zehua; Chen, Changqing; Chen, Chuanbo

    2015-08-01

    In this paper, a novel label propagation (LP) method is presented, called the manifold adaptive label propagation (MALP) method, which is to extend original LP by integrating sparse representation constraint into regularization framework of LP method. Similar to most LP, first of all, MALP also finds graph edges from given data and gives weights to the graph edges. Our goal is to find graph weights matrix adaptively. The key advantage of our approach is that MALP simultaneously finds graph weights matrix and predicts the label of unlabeled data. This paper also derives efficient algorithm to solve the proposed problem. Extensions of our MALP in kernel space and robust version are presented. The proposed method has been applied to the problem of semi-supervised face clustering using the well-known ORL, Yale, extended YaleB, and PIE datasets. Our experimental evaluations show the effectiveness of our method.

  10. Spatial-temporal modeling of malware propagation in networks.

    Science.gov (United States)

    Chen, Zesheng; Ji, Chuanyi

    2005-09-01

    Network security is an important task of network management. One threat to network security is malware (malicious software) propagation. One type of malware is called topological scanning that spreads based on topology information. The focus of this work is on modeling the spread of topological malwares, which is important for understanding their potential damages, and for developing countermeasures to protect the network infrastructure. Our model is motivated by probabilistic graphs, which have been widely investigated in machine learning. We first use a graphical representation to abstract the propagation of malwares that employ different scanning methods. We then use a spatial-temporal random process to describe the statistical dependence of malware propagation in arbitrary topologies. As the spatial dependence is particularly difficult to characterize, the problem becomes how to use simple (i.e., biased) models to approximate the spatially dependent process. In particular, we propose the independent model and the Markov model as simple approximations. We conduct both theoretical analysis and extensive simulations on large networks using both real measurements and synthesized topologies to test the performance of the proposed models. Our results show that the independent model can capture temporal dependence and detailed topology information and, thus, outperforms the previous models, whereas the Markov model incorporates a certain spatial dependence and, thus, achieves a greater accuracy in characterizing both transient and equilibrium behaviors of malware propagation.

  11. Call Forecasting for Inbound Call Center

    Directory of Open Access Journals (Sweden)

    Peter Vinje

    2009-01-01

    Full Text Available In a scenario of inbound call center customer service, the ability to forecast calls is a key element and advantage. By forecasting the correct number of calls a company can predict staffing needs, meet service level requirements, improve customer satisfaction, and benefit from many other optimizations. This project will show how elementary statistics can be used to predict calls for a specific company, forecast the rate at which calls are increasing/decreasing, and determine if the calls may stop at some point.

  12. Integral propagator solvers for Vlasov-Fokker-Planck equations

    International Nuclear Information System (INIS)

    Donoso, J M; Rio, E del

    2007-01-01

    We briefly discuss the use of short-time integral propagators on solving the so-called Vlasov-Fokker-Planck equation for the dynamics of a distribution function. For this equation, the diffusion tensor is singular and the usual Gaussian representation of the short-time propagator is no longer valid. However, we prove that the path-integral approach on solving the equation is, in fact, reliable by means of our generalized propagator, which is obtained through the construction of an auxiliary solvable Fokker-Planck equation. The new representation of the grid-free advancing scheme describes the inherent cross- and self-diffusion processes, in both velocity and configuration spaces, in a natural manner, although these processes are not explicitly depicted in the differential equation. We also show that some splitting methods, as well as some finite-difference schemes, could fail in describing the aforementioned diffusion processes, governed in the whole phase space only by the velocity diffusion tensor. The short-time transition probability offers a stable and robust numerical algorithm that preserves the distribution positiveness and its norm, ensuring the smoothness of the evolving solution at any time step. (fast track communication)

  13. Evaluation of Cyber Security and Modelling of Risk Propagation with Petri Nets

    Directory of Open Access Journals (Sweden)

    Marcin Szpyrka

    2017-02-01

    Full Text Available This article presents a new method of risk propagation among associated elements. On thebasis of coloured Petri nets, a new class called propagation nets is defined. This class providesa formal model of a risk propagation. The proposed method allows for model relations betweennodes forming the network structure. Additionally, it takes into account the bidirectional relationsbetween components as well as relations between isomorphic, symmetrical components in variousbranches of the network. This method is agnostic in terms of use in various systems and it canbe adapted to the propagation model of any systems’ characteristics; however, it is intentionallyproposed to assess the risk of critical infrastructures. In this paper, as a proof of concept example, weshow the formal model of risk propagation proposed within the project Cyberspace Security ThreatsEvaluation System of the Republic of Poland. In the article, the idea of the method is presented aswell as its use case for evaluation of risk for cyber threats. With the adaptation of Petri nets, it ispossible to evaluate the risk for the particular node and assess the impact of this risk for all relatednodes including hierarchic relations of components as well as isomorphism of elements.

  14. Acoustic/seismic signal propagation and sensor performance modeling

    Science.gov (United States)

    Wilson, D. Keith; Marlin, David H.; Mackay, Sean

    2007-04-01

    Performance, optimal employment, and interpretation of data from acoustic and seismic sensors depend strongly and in complex ways on the environment in which they operate. Software tools for guiding non-expert users of acoustic and seismic sensors are therefore much needed. However, such tools require that many individual components be constructed and correctly connected together. These components include the source signature and directionality, representation of the atmospheric and terrain environment, calculation of the signal propagation, characterization of the sensor response, and mimicking of the data processing at the sensor. Selection of an appropriate signal propagation model is particularly important, as there are significant trade-offs between output fidelity and computation speed. Attenuation of signal energy, random fading, and (for array systems) variations in wavefront angle-of-arrival should all be considered. Characterization of the complex operational environment is often the weak link in sensor modeling: important issues for acoustic and seismic modeling activities include the temporal/spatial resolution of the atmospheric data, knowledge of the surface and subsurface terrain properties, and representation of ambient background noise and vibrations. Design of software tools that address these challenges is illustrated with two examples: a detailed target-to-sensor calculation application called the Sensor Performance Evaluator for Battlefield Environments (SPEBE) and a GIS-embedded approach called Battlefield Terrain Reasoning and Awareness (BTRA).

  15. Target & Propagation Models for the FINDER Radar

    Science.gov (United States)

    Cable, Vaughn; Lux, James; Haque, Salmon

    2013-01-01

    Finding persons still alive in piles of rubble following an earthquake, a severe storm, or other disaster is a difficult problem. JPL is currently developing a victim detection radar called FINDER (Finding Individuals in Emergency and Response). The subject of this paper is directed toward development of propagation & target models needed for simulation & testing of such a system. These models are both physical (real rubble piles) and numerical. Early results from the numerical modeling phase show spatial and temporal spreading characteristics when signals are passed through a randomly mixed rubble pile.

  16. A Research Program on the Asymptotic Description of Electromagnetic Pulse Propagation in Spatially Inhomogeneous, Temporally Dispersive, Attenuative Media

    National Research Council Canada - National Science Library

    Oughstun, Kurt E; Cartwright, Natalie A

    2007-01-01

    .... Indeed, previous studies of ultrawideband electromagnetic pulse propagation through dispersive, nonconducting media has shown the existence of a so-called Brillouin precursor whose peak amplitude...

  17. First-Principles Propagation of Geoelectric Fields from Ionosphere to Ground using LANLGeoRad

    Science.gov (United States)

    Jeffery, C. A.; Woodroffe, J. R.; Henderson, M. G.

    2017-12-01

    A notable deficiency in the current SW forecasting chain is the propagation of geoelectric fields from ionosphere to ground using Biot-Savart integrals, which ignore the localized complexity of lithospheric electrical conductivity and the relatively high conductivity of ocean water compared to the lithosphere. Three-dimensional models of Earth conductivity with mesoscale spatial resolution are being developed, but a new approach is needed to incorporate this information into the SW forecast chain. We present initial results from a first-principles geoelectric propagation model call LANLGeoRad, which solves Maxwell's equations on an unstructured geodesic grid. Challenges associated with the disparate response times of millisecond electromagnetic propagation and 10-second geomagnetic fluctuations are highlighted, and a novel rescaling of the ionosphere/ground system is presented that renders this geoelectric system computationally tractable.

  18. Demonstration of slow light propagation in an optical fiber under dual pump light with co-propagation and counter-propagation

    Science.gov (United States)

    Qiu, Wei; Liu, Jianjun; Wang, Yuda; Yang, Yujing; Gao, Yuan; Lv, Pin; Jiang, Qiuli

    2018-04-01

    In this paper, a general theory of coherent population oscillation effect in an Er3+ -doped fiber under the dual-frequency pumping laser with counter-propagation and co-propagation at room temperature is presented. Using the numerical simulation, in case of dual frequency light waves (1480 nm and 980 nm) with co-propagation and counter-propagation, we analyze the effect of the pump optical power ratio (M) on the group speed of light. The group velocity of light can be varied with the change of M. We research the time delay and fractional delay in an Er3+-doped fiber under the dual-frequency pumping laser with counter-propagation and co-propagation. Compared to the methods of the single pumping, the larger time delay can be got by using the technique of dual-frequency laser pumped fiber with co-propagation and counter-propagation.

  19. Propagators for a quantized scalar field in a static closed universe

    International Nuclear Information System (INIS)

    Nariai, Hidekazu; Azuma, Takahiro.

    1978-07-01

    In a previous paper, a massive scalar field in an expanding closed universe was canonically quantized by taking full account of its coupling-type with the background universe and of the latter's topological (spherical or elliptic) nature. General formulae (including the parts of vacuum fluctuation which should after all be removed by a suitable regularization) for the energy density and pressure of the quantized medium were derived. Various propagators for the quantized scalar field were also dealt with, because the Feynman propagator in particular became important as soon as the pair-creation of those particles was called for. However, there will be an intimate relation between the former hydrodynamic quantities and the pair-creation of their constituents. Accordingly, this problem is studied in detail by adopting a static closed universe (for simplicity in the reduction of various expressions derived in the previous paper) and examining the behavior of various bi-scalar propagators in the universe. (author)

  20. Spin foam propagator: A new perspective to include the cosmological constant

    Science.gov (United States)

    Han, Muxin; Huang, Zichang; Zipfel, Antonia

    2018-04-01

    In recent years, the calculation of the first nonvanishing order of the metric 2-point function or graviton propagator in a semiclassical limit has evolved as a standard test for the credibility of a proposed spin foam model. The existing results of spin foam graviton propagators rely heavily on the so-called double scaling limit where spins j are large and the Barbero-Immirzi parameter γ is small such that the area A ∝j γ is approximately constant. However, it seems that this double scaling limit is bound to break down in models including a cosmological constant. We explore this in detail for the recently proposed model [7 H. M. Haggard, M. Han, W. Kaminski, and A. Riello, Nucl. Phys. B900, 1 (2015), 10.1016/j.nuclphysb.2015.08.023.] by Haggard, Han, Kaminski, and Riello and discuss alternative definitions of a graviton propagator, in which the double scaling limit can be avoided.

  1. Laboratory investigations into fracture propagation characteristics of rock material

    Science.gov (United States)

    Prasad, B. N. V. Siva; Murthy, V. M. S. R.

    2018-04-01

    After Industrial Revolution, demand of materials for building up structures have increased enormously. Unfortunately, failures of such structures resulted in loss of life and property. Rock is anisotropic and discontinuous in nature with inherent flaws or so-called discontinuities in it. Rock is apparently used for construction in mining, civil, tunnelling, hydropower, geothermal and nuclear sectors [1]. Therefore, the strength of the structure built up considering rockmass as the construction material needs proper technical evaluation during designing stage itself to prevent and predict the scenarios of catastrophic failures due to these inherent fractures [2]. In this study, samples collected from nine different drilling sites have been investigated in laboratory for understanding the fracture propagation characteristics in rock. Rock material properties, ultrasonic velocities through pulse transmission technique and Mode I Fracture Toughness Testing of different variants of Dolomites and Graywackes are determined in laboratory and the resistance of the rock material to catastrophic crack extension or propagation has been determined. Based on the Fracture Toughness values and the rock properties, critical Energy Release Rates have been estimated. However further studies in this direction is to be carried out to understand the fracture propagation characteristics in three-dimensional space.

  2. A Monte Carlo approach for simulating the propagation of partially coherent x-ray beams

    DEFF Research Database (Denmark)

    Prodi, A.; Bergbäck Knudsen, Erik; Willendrup, Peter Kjær

    2011-01-01

    Advances at SR sources in the generation of nanofocused beams with a high degree of transverse coherence call for effective techniques to simulate the propagation of partially coherent X-ray beams through complex optical systems in order to characterize how coherence properties such as the mutual...

  3. MANGO PROPAGATION

    OpenAIRE

    ALBERTO CARLOS DE QUEIROZ PINTO; VICTOR GALÁN SAÚCO; SISIR KUMAR MITRA; FRANCISCO RICARDO FERREIRA

    2018-01-01

    ABSTRACT This Chapter has the objectives to search, through the review of the available literature, important informations on the evolution of mango propagation regarding theoretical and practical aspects from cellular base of sexual propagation, nursery structures and organizations, substrate compositions and uses, importance of rootstock and scion selections, also it will be described the preparation and transport of the grafts (stem and bud) as well as the main asexual propagation methods...

  4. The Hill-determinant perturbation theory with triangular propagators

    International Nuclear Information System (INIS)

    Znojil, M.

    1996-01-01

    A new version of the Rayleigh-Schroedinger perturbation prescription is proposed. Its main formal feature lies in an unusual choice of the model space and unperturbed H 0 and in a resulting lower-triangular matrix structure of its propagators. Within the framework of the so-called Hill-determinant method, an admissibility of any incompletely solvable zero-order Hamiltonian is achieved in this way. As a consequence, the range of practical applicability of our new perturbative formalism may be expected to incorporate many new phenomenological interactions with a strongly anharmonic character. 18 refs

  5. The impact of countermeasure propagation on the prevalence of computer viruses.

    Science.gov (United States)

    Chen, Li-Chiou; Carley, Kathleen M

    2004-04-01

    Countermeasures such as software patches or warnings can be effective in helping organizations avert virus infection problems. However, current strategies for disseminating such countermeasures have limited their effectiveness. We propose a new approach, called the Countermeasure Competing (CMC) strategy, and use computer simulation to formally compare its relative effectiveness with three antivirus strategies currently under consideration. CMC is based on the idea that computer viruses and countermeasures spread through two separate but interlinked complex networks-the virus-spreading network and the countermeasure-propagation network, in which a countermeasure acts as a competing species against the computer virus. Our results show that CMC is more effective than other strategies based on the empirical virus data. The proposed CMC reduces the size of virus infection significantly when the countermeasure-propagation network has properties that favor countermeasures over viruses, or when the countermeasure-propagation rate is higher than the virus-spreading rate. In addition, our work reveals that CMC can be flexibly adapted to different uncertainties in the real world, enabling it to be tuned to a greater variety of situations than other strategies.

  6. G-control fatigue testing for cyclic crack propagation in composite structures

    DEFF Research Database (Denmark)

    Manca, Marcello; Berggreen, Christian; Carlsson, Leif A.

    2015-01-01

    This paper presents a computer controlled testing methodology called “The G-control Method” which allows cyclic crack growth testing using real-time control of the cyclic energy release rate. The advantages of using this approach are described and compared with traditional fatigue testing methods...... that the G-control method allows fatigue testing at a constant range of energy release rates leading to a constant crack propagation rate....

  7. The acceleration and propagation of solar energetic particles

    International Nuclear Information System (INIS)

    Dalla, Silvia

    2004-01-01

    During flares and coronal mass ejections at the Sun, ions and electrons can be accelerated to high energies. They can escape from the solar corona into interplanetary space, and be detected by instruments on board spacecraft. This paper will review measurements of these solar energetic particles (SEPs) and models of their acceleration and propagation.It is generally agreed that SEP flux enhancements fall into two distinct classes: the so-called impulsive events, thought to originate in solar flares, and gradual events, thought to be the result of acceleration at the shock driven through the corona and interplanetary space by coronal mass ejections. A fundamental assumption of this model for SEPs is that particles' guiding centers propagate essentially parallel to the interplanetary magnetic field lines, and cross-field particle diffusion is negligible.The recent passage of the Ulysses spacecraft over the solar poles provided the first ever measurements of SEPs out of the ecliptic plane. Analysis of these data has revealed several fundamental differences with respect to the near-ecliptic measurements, such as large delays in particle arrival and in fluxes reaching their peak value. It will be shown that the current model of SEP acceleration and propagation does not account for the Ulysses results, which would more easily be explained by efficient cross-field diffusion of energetic particles

  8. Normal zone propagation characteristics of coated conductor according to insulation materials

    International Nuclear Information System (INIS)

    Yang, S.E.; Ahn, M.C.; Park, D.K.; Chang, K.S.; Bae, D.K.; Ko, T.K.

    2007-01-01

    Recent development of CC, usually called second generation (2G) HTS, is actively in progress. Because of its higher critical current density as well as higher n-value, 2G HTS is feasible for the applications such as superconducting fault current limiter and superconducting cable. For operating the HTS equipment stably, it needs to investigate the characteristics of normal zone propagation occurred by quench. Investigations on the fundamental characteristics can be one of the indispensable foundations for research and development of power equipments. In this paper, normal zone propagation (NZP) characteristics according to various insulation materials are researched. By heating with NiCr heater and insulating with epoxy, we applied the operating current with respect to the critical current for calculation of minimum quench energy (MQE) and measurement of NZP

  9. MANGO PROPAGATION

    Directory of Open Access Journals (Sweden)

    ALBERTO CARLOS DE QUEIROZ PINTO

    2018-03-01

    Full Text Available ABSTRACT This Chapter has the objectives to search, through the review of the available literature, important informations on the evolution of mango propagation regarding theoretical and practical aspects from cellular base of sexual propagation, nursery structures and organizations, substrate compositions and uses, importance of rootstock and scion selections, also it will be described the preparation and transport of the grafts (stem and bud as well as the main asexual propagation methods their uses and practices. Finally, pattern and quality of graft mangos and their commercialization aspects will be discussed in this Chapter.

  10. Part two: Error propagation

    International Nuclear Information System (INIS)

    Picard, R.R.

    1989-01-01

    Topics covered in this chapter include a discussion of exact results as related to nuclear materials management and accounting in nuclear facilities; propagation of error for a single measured value; propagation of error for several measured values; error propagation for materials balances; and an application of error propagation to an example of uranium hexafluoride conversion process

  11. Propagation Characteristics in an Underground Shopping Area for 5GHz-band Wireless Access Systems

    Science.gov (United States)

    Itokawa, Kiyohiko; Kita, Naoki; Sato, Akio; Matsue, Hideaki; Mori, Daisuke; Watanabe, Hironobu

    5-GHz band wireless access systems, such as the RLAN (Radio Local Area Network) system of IEEE802.11a, HiperLAN/2, HiSWANa and AWA, are developed and provide transmission rates over 20 Mbps for indoor use. Those 5-GHz access systems are expected to extend service areas from the office to the so-called “hot-spot" in public areas. Underground shopping malls are one of the anticipated service areas for such a nomadic wireless access service. Broadband propagation characteristics are required for radio zone design in an underground mall environment despite previous results obtained by narrow band measurements. This paper presents results of an experimental study on the propagation characteristics for broadband wireless access systems in an underground mall environment. First, broadband propagation path loss is measured and formulated considering human body shadowing. A ray trace simulation is used to clarify the basic propagation mechanism in such a closed environment. Next, a distance dependency of the delay spread during a crowded time period, rush hour, is found to be at most 65 nsec, which is under the permitted maximum value of the present 5-GHz systems. Finally, above propagation characteristics support the result of transmission test carried out by using AWA equipment.

  12. Identifying students’ mental models of sound propagation: The role of conceptual blending in understanding conceptual change

    Directory of Open Access Journals (Sweden)

    Zdeslav Hrepic

    2010-09-01

    Full Text Available We investigated introductory physics students’ mental models of sound propagation. We used a phenomenographic method to analyze the data in the study. In addition to the scientifically accepted Wave model, students used the “Entity” model to describe the propagation of sound. In this latter model sound is a self-standing entity, different from the medium through which it propagates. All other observed alternative models contain elements of both Entity and Wave models, but at the same time are distinct from each of the constituent models. We called these models “hybrid” or “blend” models. We discuss how students use these models in various contexts before and after instruction and how our findings contribute to the understanding of conceptual change. Implications of our findings for teaching are summarized.

  13. Analysis of the Effect of UTI-UTC to High Precision Orbit Propagation

    Directory of Open Access Journals (Sweden)

    Dongseok Shin

    1999-12-01

    Full Text Available As the spatial resolution of remote sensing satellites becomes higher, very accurate determination of the position of a LEO (Low Earth Orbit satellite is demanding more than ever. Non-symmetric Earth gravity is the major perturbation force to LEO satellites. Since the orbit propagation is performed in the celestial frame while Earth gravity is defined in the terrestrial frame, it is required to convert the coordinates of the satellite from one to the other accurately. Unless the coordinate conversion between the two frames is performed accurately the orbit propagation calculates incorrect Earth gravitational force at a specific time instant, and hence, causes errors in orbit prediction. The coordinate conversion between the two frames involves precession, nutation, Earth rotation and polar motion. Among these factors, unpredictability and uncertainty of Earth rotation, called UTI-UTC, is the largest error source. In this paper, the effect of UTI-UTC on the accuracy of the LEO propagation is introduced, tested and analzed. Considering the maximum unpredictability of UTI-UTC, 0.9 seconds, the meaningful order of non-spherical Earth harmonic functions is derived.

  14. Multi-spacecraft observations of ICMEs propagating beyond Earth orbit during MSL/RAD flight and surface phases

    Science.gov (United States)

    von Forstner, J.; Guo, J.; Wimmer-Schweingruber, R. F.; Hassler, D.; Temmer, M.; Vrsnak, B.; Čalogović, J.; Dumbovic, M.; Lohf, H.; Appel, J. K.; Heber, B.; Steigies, C. T.; Zeitlin, C.; Ehresmann, B.; Jian, L. K.; Boehm, E.; Boettcher, S. I.; Burmeister, S.; Martin-Garcia, C.; Brinza, D. E.; Posner, A.; Reitz, G.; Matthiae, D.; Rafkin, S. C.; weigle, G., II; Cucinotta, F.

    2017-12-01

    The propagation of interplanetary coronal mass ejections (ICMEs) between Earth's orbit (1 AU) and Mars ( 1.5 AU) has been studied with their propagation speed estimated from both measurements and simulations. The enhancement of the magnetic fields related to ICMEs and their shock fronts cause so-called Forbush decreases, which can be detected as a reduction of galactic cosmic rays measured on-ground or on a spacecraft. We have used galactic cosmic ray (GCR) data from in-situ measurements at Earth, from both STEREO A and B as well as the GCR measurement by the Radiation Assessment Detector (RAD) instrument onboard Mars Science Laboratory (MSL) on the surface of Mars as well as during its flight to Mars in 2011-2012. A set of ICME events has been selected during the periods when Earth (or STEREO A or B) and MSL locations were nearly aligned on the same side of the Sun in the ecliptic plane (so-called opposition phase). Such lineups allow us to estimate the ICMEs' transit times between 1 AU and the MSL location by estimating the delay time of the corresponding Forbush decreases measured at each location. We investigate the evolution of their propagation speeds after passing Earth's orbit and find that the deceleration of ICMEs due to their interaction with the ambient solar wind continues beyond 1 AU. The results are compared to simulation data obtained from two CME propagation models, namely the Drag-Based Model (DBM) and the WSA-ENLIL plus cone model.

  15. Using Forbush Decreases to Derive the Transit Time of ICMEs Propagating from 1 AU to Mars

    Science.gov (United States)

    Freiherr von Forstner, Johan L.; Guo, Jingnan; Wimmer-Schweingruber, Robert F.; Hassler, Donald M.; Temmer, Manuela; Dumbović, Mateja; Jian, Lan K.; Appel, Jan K.; Čalogović, Jaša.; Ehresmann, Bent; Heber, Bernd; Lohf, Henning; Posner, Arik; Steigies, Christian T.; Vršnak, Bojan; Zeitlin, Cary J.

    2018-01-01

    The propagation of 15 interplanetary coronal mass ejections (ICMEs) from Earth's orbit (1 AU) to Mars (˜1.5 AU) has been studied with their propagation speed estimated from both measurements and simulations. The enhancement of magnetic fields related to ICMEs and their shock fronts causes the so-called Forbush decrease, which can be detected as a reduction of galactic cosmic rays measured on ground. We have used galactic cosmic ray (GCR) data from in situ measurements at Earth, from both STEREO A and STEREO B as well as GCR measurements by the Radiation Assessment Detector (RAD) instrument on board Mars Science Laboratory on the surface of Mars. A set of ICME events has been selected during the periods when Earth (or STEREO A or STEREO B) and Mars locations were nearly aligned on the same side of the Sun in the ecliptic plane (so-called opposition phase). Such lineups allow us to estimate the ICMEs' transit times between 1 and 1.5 AU by estimating the delay time of the corresponding Forbush decreases measured at each location. We investigate the evolution of their propagation speeds before and after passing Earth's orbit and find that the deceleration of ICMEs due to their interaction with the ambient solar wind may continue beyond 1 AU. We also find a substantial variance of the speed evolution among different events revealing the dynamic and diverse nature of eruptive solar events. Furthermore, the results are compared to simulation data obtained from two CME propagation models, namely the Drag-Based Model and ENLIL plus cone model.

  16. Temporal scaling in information propagation

    Science.gov (United States)

    Huang, Junming; Li, Chao; Wang, Wen-Qiang; Shen, Hua-Wei; Li, Guojie; Cheng, Xue-Qi

    2014-06-01

    For the study of information propagation, one fundamental problem is uncovering universal laws governing the dynamics of information propagation. This problem, from the microscopic perspective, is formulated as estimating the propagation probability that a piece of information propagates from one individual to another. Such a propagation probability generally depends on two major classes of factors: the intrinsic attractiveness of information and the interactions between individuals. Despite the fact that the temporal effect of attractiveness is widely studied, temporal laws underlying individual interactions remain unclear, causing inaccurate prediction of information propagation on evolving social networks. In this report, we empirically study the dynamics of information propagation, using the dataset from a population-scale social media website. We discover a temporal scaling in information propagation: the probability a message propagates between two individuals decays with the length of time latency since their latest interaction, obeying a power-law rule. Leveraging the scaling law, we further propose a temporal model to estimate future propagation probabilities between individuals, reducing the error rate of information propagation prediction from 6.7% to 2.6% and improving viral marketing with 9.7% incremental customers.

  17. On Polarization and Frequency Dependence of Diffuse Indoor Propagation

    DEFF Research Database (Denmark)

    Nielsen, Jesper Ødum; Andersen, Jørgen Bach; Pedersen, Gert Frølund

    2011-01-01

    The room electromagnetics (RE) theory describes the radio propagation in a single room assuming diffuse scat- tering. A main characteristic is the exponential power-delay profile (PDP) decaying with the so-called reverberation time (RT) parameter, depending only on the wall area, the volume...... of the room and an absorption coefficient. The PDP is independent on the location in the room, except for the arrival time. Based on measurements in a room with a spherical array of 16 dual- polarized wideband horn antennas, the current work studies how the RE parameters depend on the receiver (Rx) antenna...

  18. Effect of environment on the propagation of electromagnetic waves in GRC 408E digital radiorelay devices

    Directory of Open Access Journals (Sweden)

    Vojkan M. Radonjić

    2011-01-01

    , i.e. the strength of a signal received at the entrance of the receiver. The error in the received bit (BER is a function of the receiving field. By reducing the level of the field the BER increases and vice versa. The level of the receiving field in the absence of margin is called the nominal level of the receiving field. The difference between the nominal level and the receiving threshold represents a margin or a budget for the fading for the given BER. Diffraction is a phenomenon that follows the propagation of electromagnetic waves and indicates their ability to bend round the relief, uneven surfaces and other obstacles, during propagation through the environment. Diffraction is considered when the obstacles on the path of propagation of electromagnetic waves enter the first Fresnel zone, because then an error in the information transmission occurs. Refraction is the refraction of electromagnetic waves in the lower layers of the atmosphere and is caused by its unhomogeneity. The upper part of the EM wave front progresses faster and the wave bends towards the Earth. The phenomenon of EM wave bending towards the Earth is called refraction. Reflection When electromagnetic waves propagate near the Earth surface, a part of the wave front, reflected from the surface of the Earth, may arrive in the receiving antenna of radio relay equipment together with direct electromagnetic waves. EM waves (direct and reflected are summed up vectorially in the receiver giving the resulting EM wave. This can cause a substantial reduction in the resulting field when compared to the field in ideal conditions, which leads to the error increase. Absorption or EM wave absorption occurs in all frequency bands and signifies a higher or lower level of attenuation of electromagnetic waves. It is taken into consideration in digital radio-relay devices which operate in the frequency range over 7 GHz. Multiple propagation of electromagnetic waves EM waves from the transmitter can reach the

  19. Root Growth Optimizer with Self-Similar Propagation

    Directory of Open Access Journals (Sweden)

    Xiaoxian He

    2015-01-01

    Full Text Available Most nature-inspired algorithms simulate intelligent behaviors of animals and insects that can move spontaneously and independently. The survival wisdom of plants, as another species of biology, has been neglected to some extent even though they have evolved for a longer period of time. This paper presents a new plant-inspired algorithm which is called root growth optimizer (RGO. RGO simulates the iterative growth behaviors of plant roots to optimize continuous space search. In growing process, main roots and lateral roots, classified by fitness values, implement different strategies. Main roots carry out exploitation tasks by self-similar propagation in relatively nutrient-rich areas, while lateral roots explore other places to seek for better chance. Inhibition mechanism of plant hormones is applied to main roots in case of explosive propagation in some local optimal areas. Once resources in a location are exhausted, roots would shrink away from infertile conditions to preserve their activity. In order to validate optimization effect of the algorithm, twelve benchmark functions, including eight classic functions and four CEC2005 test functions, are tested in the experiments. We compared RGO with other existing evolutionary algorithms including artificial bee colony, particle swarm optimizer, and differential evolution algorithm. The experimental results show that RGO outperforms other algorithms on most benchmark functions.

  20. Sound Propagation Around Off-Shore Wind Turbines. Long-Range Parabolic Equation Calculations for Baltic Sea Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Lisa

    2003-07-01

    Low-frequency, long-range sound propagation over a sea surface has been calculated using a wide-angel Cranck-Nicholson Parabolic Equation method. The model is developed to investigate noise from off-shore wind turbines. The calculations are made using normal meteorological conditions of the Baltic Sea. Special consideration has been made to a wind phenomenon called low level jet with strong winds on rather low altitude. The effects of water waves on sound propagation have been incorporated in the ground boundary condition using a boss model. This way of including roughness in sound propagation models is valid for water wave heights that are small compared to the wave length of the sound. Nevertheless, since only low frequency sound is considered, waves up to the mean wave height of the Baltic Sea can be included in this manner. The calculation model has been tested against benchmark cases and agrees well with measurements. The calculations show that channelling of sound occurs at downwind conditions and that the sound propagation tends towards cylindrical spreading. The effects of the water waves are found to be fairly small.

  1. Wave propagation in elastic solids

    CERN Document Server

    Achenbach, Jan

    1984-01-01

    The propagation of mechanical disturbances in solids is of interest in many branches of the physical scienses and engineering. This book aims to present an account of the theory of wave propagation in elastic solids. The material is arranged to present an exposition of the basic concepts of mechanical wave propagation within a one-dimensional setting and a discussion of formal aspects of elastodynamic theory in three dimensions, followed by chapters expounding on typical wave propagation phenomena, such as radiation, reflection, refraction, propagation in waveguides, and diffraction. The treat

  2. Blended call center with idling times during the call service

    NARCIS (Netherlands)

    Legros, Benjamin; Jouini, Oualid; Koole, Ger

    We consider a blended call center with calls arriving over time and an infinitely backlogged amount of outbound jobs. Inbound calls have a non-preemptive priority over outbound jobs. The inbound call service is characterized by three successive stages where the second one is a break; i.e., there is

  3. Quasiparticle engineering and entanglement propagation in a quantum many-body system.

    Science.gov (United States)

    Jurcevic, P; Lanyon, B P; Hauke, P; Hempel, C; Zoller, P; Blatt, R; Roos, C F

    2014-07-10

    The key to explaining and controlling a range of quantum phenomena is to study how information propagates around many-body systems. Quantum dynamics can be described by particle-like carriers of information that emerge in the collective behaviour of the underlying system, the so-called quasiparticles. These elementary excitations are predicted to distribute quantum information in a fashion determined by the system's interactions. Here we report quasiparticle dynamics observed in a quantum many-body system of trapped atomic ions. First, we observe the entanglement distributed by quasiparticles as they trace out light-cone-like wavefronts. Second, using the ability to tune the interaction range in our system, we observe information propagation in an experimental regime where the effective-light-cone picture does not apply. Our results will enable experimental studies of a range of quantum phenomena, including transport, thermalization, localization and entanglement growth, and represent a first step towards a new quantum-optic regime of engineered quasiparticles with tunable nonlinear interactions.

  4. Novel Back Propagation Optimization by Cuckoo Search Algorithm

    Directory of Open Access Journals (Sweden)

    Jiao-hong Yi

    2014-01-01

    Full Text Available The traditional Back Propagation (BP has some significant disadvantages, such as training too slowly, easiness to fall into local minima, and sensitivity of the initial weights and bias. In order to overcome these shortcomings, an improved BP network that is optimized by Cuckoo Search (CS, called CSBP, is proposed in this paper. In CSBP, CS is used to simultaneously optimize the initial weights and bias of BP network. Wine data is adopted to study the prediction performance of CSBP, and the proposed method is compared with the basic BP and the General Regression Neural Network (GRNN. Moreover, the parameter study of CSBP is conducted in order to make the CSBP implement in the best way.

  5. Sub-critical cohesive crack propagation with hydro-mechanical coupling and friction

    Directory of Open Access Journals (Sweden)

    S. Valente

    2016-01-01

    Full Text Available Looking at the long-time behaviour of a dam, it is necessary to assume that the water can penetrate a possible crack washing away some components of the concrete. This type of corrosion reduces the tensile strength and fracture energy of the concrete compared to the same parameters measured during a short-time laboratory test. This phenomenon causes the so called sub-critical crack propagation. That is the reason why the International Commission of Large Dams recommends to neglect the tensile strength of the joint between the dam and the foundation, which is the weakest point of a gravity dam. In these conditions a shear displacement discontinuity starts growing in a point, called Fictitious Crack Tip (shortened FCT, which is still subjected to a compression stress. In order to manage this problem, in this paper the cohesive crack model is re-formulated with the focus on the shear stress component. In this context, the classical Newton-Raphson method fails to converge to an equilibrium state. Therefore the approach used is based on two stages: (a a global one in which the FCT is moved ahead of one increment; (b a local one in which the non-linear conditions occurring in the Fracture Process Zone are taken into account. This two-stage approach, which is known in the literature as a Large Time Increment method, is able to model three different mechanical regimes occurring during the crack propagation between a dam and the foundation rock.

  6. Database for propagation models

    Science.gov (United States)

    Kantak, Anil V.

    1991-07-01

    A propagation researcher or a systems engineer who intends to use the results of a propagation experiment is generally faced with various database tasks such as the selection of the computer software, the hardware, and the writing of the programs to pass the data through the models of interest. This task is repeated every time a new experiment is conducted or the same experiment is carried out at a different location generating different data. Thus the users of this data have to spend a considerable portion of their time learning how to implement the computer hardware and the software towards the desired end. This situation may be facilitated considerably if an easily accessible propagation database is created that has all the accepted (standardized) propagation phenomena models approved by the propagation research community. Also, the handling of data will become easier for the user. Such a database construction can only stimulate the growth of the propagation research it if is available to all the researchers, so that the results of the experiment conducted by one researcher can be examined independently by another, without different hardware and software being used. The database may be made flexible so that the researchers need not be confined only to the contents of the database. Another way in which the database may help the researchers is by the fact that they will not have to document the software and hardware tools used in their research since the propagation research community will know the database already. The following sections show a possible database construction, as well as properties of the database for the propagation research.

  7. Propagation prevention: a complementary mechanism for "lung protective" ventilation in acute respiratory distress syndrome.

    Science.gov (United States)

    Marini, John J; Gattinoni, Luciano

    2008-12-01

    To describe the clinical implications of an often neglected mechanism through which localized acute lung injury may be propagated and intensified. Experimental and clinical evidence from the medical literature relevant to the airway propagation hypothesis and its consequences. The diffuse injury that characterizes acute respiratory distress syndrome is often considered a process that begins synchronously throughout the lung, mediated by inhaled or blood-borne noxious agents. Relatively little attention has been paid to possibility that inflammatory lung injury may also begin focally and propagate sequentially via the airway network, proceeding mouth-ward from distal to proximal. Were this true, modifications of ventilatory pattern and position aimed at geographic containment of the injury process could help prevent its generalization and limit disease severity. The purposes of this communication are to call attention to this seldom considered mechanism for extending lung injury that might further justify implementation of low tidal volume/high positive end-expiratory pressure ventilatory strategies for lung protection and to suggest additional therapeutic measures implied by this broadened conceptual paradigm.

  8. Experimental detection of domain wall propagation above the Walker field

    International Nuclear Information System (INIS)

    Kondou, Kouta; Chiba, Daichi; Kobayashi, Kensuke; Ono, Teruo; Ohshima, Norikazu; Kasai, Shinya

    2012-01-01

    The domain wall (DW) velocity above the Walker field drops abruptly with increasing magnetic field, because of the so-called Walker breakdown, where the DW moves with a precessional mode. On applying the higher field, the DW velocity again starts to increase gradually. We report the DW propagation around this local minimum regime in detail, investigated through the time-resolved electrical detection technique, with a magnetic tunnel junction. Just above the Walker field, we succeeded in detecting the precessional motion of the DW in a real-time regime, while a different mode appeared around the local minimum of the DW velocity. (paper)

  9. Propagation of acoustic shock waves between parallel rigid boundaries and into shadow zones

    International Nuclear Information System (INIS)

    Desjouy, C.; Ollivier, S.; Dragna, D.; Blanc-Benon, P.; Marsden, O.

    2015-01-01

    The study of acoustic shock propagation in complex environments is of great interest for urban acoustics, but also for source localization, an underlying problematic in military applications. To give a better understanding of the phenomenon taking place during the propagation of acoustic shocks, laboratory-scale experiments and numerical simulations were performed to study the propagation of weak shock waves between parallel rigid boundaries, and into shadow zones created by corners. In particular, this work focuses on the study of the local interactions taking place between incident, reflected, and diffracted waves according to the geometry in both regular or irregular – also called Von Neumann – regimes of reflection. In this latter case, an irregular reflection can lead to the formation of a Mach stem that can modify the spatial distribution of the acoustic pressure. Short duration acoustic shock waves were produced by a 20 kilovolts electric spark source and a schlieren optical method was used to visualize the incident shockfront and the reflection/diffraction patterns. Experimental results are compared to numerical simulations based on the high-order finite difference solution of the two dimensional Navier-Stokes equations

  10. Propagation of ultra-high-energy cosmic rays and their secondaries with CRPropa

    International Nuclear Information System (INIS)

    Vliet, Arjen Rene van

    2015-04-01

    Due to experiments like the Pierre Auger Observatory (Auger) and the Telescope Array (TA), high-statistics data is becoming available on the energy spectrum, the composition and the arrival directions of ultra-high-energy cosmic rays (UHECRs, cosmic rays with energies above ∝ 10 17 eV). To interpret this data in terms of actual astrophysical parameters, or to test astrophysical models against the measured data, dedicated simulations of the propagation of UHECRs from their sources to Earth are needed. To this end, the UHECR propagation code called CRPropa has been developed. It can take into account all relevant interactions with ambient photon backgrounds (pair production, photodisintegration and photopion production) as well as nuclear decay, cosmological evolution effects and deflections in extragalactic and galactic magnetic fields. CRPropa, including its newest features, is described in this thesis. When considering the propagation of ultra-high-energy nuclei, the dominant interaction for most isotopes and energies is photodisintegration. Photodisintegration has been implemented in CRPropa for all relevant isotopes (up to iron) and all relevant photodisintegration channels using cross-section calculations with the publicly-available code called TALYS, including extensions for the low mass numbers. This photodisintegration setup is compared here extensively with the photodisintegration scheme developed by Puget, Stecker and Bredekamp, leading to several improvements on the cross sections implemented in CRPropa. In the interactions of UHECRs with background photon fields, secondary neutrinos and photons, so-called cosmogenic neutrinos and photons, can be created. CRPropa can simulate the production and propagation of these secondary particles as well. The IceCube Neutrino Observatory (IceCube) has recently reported the first observation of extraterrestrial neutrinos in the PeV energy range. In this work is investigated whether these neutrinos could have

  11. Nest occupation and prey grabbing by saker falcon (Falco cherrug on power lines in the province of Vojvodina (Serbia

    Directory of Open Access Journals (Sweden)

    Puzović S.

    2008-01-01

    Full Text Available Research on nest occupation and prey grabbing by saker falcon (Falco cherrug on power lines in Vojvodina (Serbia was done in the period from 1986 to 2004. During three specially analyzed periods, saker falcon took the nests of raven (Corvus corax in 91% of a total of 22 cases of nest occupation, and those of hooded crow (Corvus corone cornix in only 9%. Saker falcon regularly grabs prey from different birds that occasionally or constantly spend time around power lines [Kestrel (Falco tinnunculus, hobby (Falco subbuteo, hooded crow (Corvus corone cornix, jack-daw (Corvus monedula, marsh harrier (Circus aeruginosus, hen harrier (Circus cyaneus, buzzard (Buteo buteo, and raven (Corvus corax]. One year a studied pair of saker falcons on a power line in Donji Srem, Serbia grabbed prey from five different species of birds. Out of a total of 40 cases of prey grabbing in the period from January to December, as much 70% of the grabbed prey was taken from kestrel (Falco tinnunculus. During the winter and early spring, prey was grabbed predominantly by males; after May, prey was sometimes grabbed by females as well. Most of the grabbed prey was common vole (Microtus arvalis.

  12. Propagating the missing bacteriophages: a large bacteriophage in a new class

    Directory of Open Access Journals (Sweden)

    Hardies Stephen C

    2007-02-01

    Full Text Available Abstract The number of successful propagations/isolations of soil-borne bacteriophages is small in comparison to the number of bacteriophages observed by microscopy (great plaque count anomaly. As one resolution of the great plaque count anomaly, we use propagation in ultra-dilute agarose gels to isolate a Bacillus thuringiensis bacteriophage with a large head (95 nm in diameter, tail (486 × 26 nm, corkscrew-like tail fibers (187 × 10 nm and genome (221 Kb that cannot be detected by the usual procedures of microbiology. This new bacteriophage, called 0305φ8-36 (first number is month/year of isolation; remaining two numbers identify the host and bacteriophage, has a high dependence of plaque size on the concentration of a supporting agarose gel. Bacteriophage 0305φ8-36 does not propagate in the traditional gels used for bacteriophage plaque formation and also does not produce visible lysis of liquid cultures. Bacteriophage 0305φ8-36 aggregates and, during de novo isolation from the environment, is likely to be invisible to procedures of physical detection that use either filtration or centrifugal pelleting to remove bacteria. Bacteriophage 0305φ8-36 is in a new genomic class, based on genes for both structural components and DNA packaging ATPase. Thus, knowledge of environmental virus diversity is expanded with prospect of greater future expansion.

  13. Secretion of full-length Tau or Tau fragments in cell culture models. Propagation of Tau in vivo and in vitro.

    Science.gov (United States)

    Pérez, Mar; Medina, Miguel; Hernández, Félix; Avila, Jesús

    2018-03-05

    The microtubule-associated protein Tau plays a crucial role in stabilizing neuronal microtubules. In Tauopathies, Tau loses its ability to bind microtubules, detach from them and forms intracellular aggregates. Increasing evidence in recent years supports the notion that Tau pathology spreading throughout the brain in AD and other Tauopathies is the consequence of the propagation of specific Tau species along neuroanatomically connected brain regions in a so-called "prion-like" manner. A number of steps are assumed to be involved in this process, including secretion, cellular uptake, transcellular transfer and/or seeding, although the precise mechanisms underlying propagation of Tau pathology are not fully understood yet. This review summarizes recent evidence on the nature of the specific Tau species that are propagated and the different mechanisms of Tau pathology spreading.

  14. Estimation of stepwise crack propagation in ceramic laminates with strong interfaces

    Directory of Open Access Journals (Sweden)

    K. Štegnerová

    2015-10-01

    Full Text Available During the last years many researchers put so much effort to design layered structures combining different materials in order to improve low fracture toughness and mechanical reliability of the ceramics. It has been proven, that an effective way is to create layered ceramics with strongly bonded interfaces. After the cooling process from the sintering temperature, due to the different coefficients of thermal expansion of individual constituents of the composite, significant internal residual stresses are developed within the layers. These stresses can change the crack behaviour. This results to the higher value of so-called apparent fracture toughness, i.e. higher resistance of the ceramic laminate to the crack propagation. The contribution deals with a description of the specific crack behaviour in the layered alumina-zirconia ceramic laminate. The main aim is to clarify crack behaviour in the compressive layer and provide computational tools for estimation of crack behaviour in the field of strong residual stresses. The crack propagation was investigated on the basis of linear elastic fracture mechanics. Fracture parameters were computed numerically and by author’s routines. Finite element models were developed in order to obtain a stress distribution in the laminate containing a crack and to simulate crack propagation. The sharp change of the crack propagation direction was estimated using Sih’s criterion based on the strain energy density factor. Estimated crack behaviour is qualitatively in a good agreement with experimental observations. Presented approach contributes to the better understanding of the toughening mechanism of ceramic laminates and can be advantageously used for design of new layered ceramic composites and for better prediction of their failure.

  15. Dynamic call center routing policies using call waiting and agent idle times

    NARCIS (Netherlands)

    Chan, W.; Koole, G.M.; L'Ecuyer, P.

    2014-01-01

    We study call routing policies for call centers with multiple call types and multiple agent groups. We introduce new weight-based routing policies where each pair (call type, agent group) is given a matching priority defined as an affine combination of the longest waiting time for that call type and

  16. Proceedings of the Twentieth NASA Propagation Experimenters Meeting (NAPEX XX) and the Advanced Communications Technology Satellite (ACTS) Propagation Studies Miniworkshop

    Science.gov (United States)

    Golshan, Nassar (Editor)

    1996-01-01

    The NASA Propagation Experimenters (NAPEX) Meeting and associated Advanced Communications Technology Satellite (ACTS) Propagation Studies Miniworkshop convene yearly to discuss studies supported by the NASA Propagation Program. Representatives from the satellite communications (satcom)industry, academia, and government with an interest in space-ground radio wave propagation have peer discussion of work in progress, disseminate propagation results, and interact with the satcom industry. NAPEX XX, in Fairbanks, Alaska, June 4-5, 1996, had three sessions: (1) "ACTS Propagation Study: Background, Objectives, and Outcomes," covered results from thirteen station-years of Ka-band experiments; (2) "Propagation Studies for Mobile and Personal Satellite Applications," provided the latest developments in measurement, modeling, and dissemination of propagation phenomena of interest to the mobile, personal, and aeronautical satcom industry; and (3)"Propagation Research Topics," covered a range of topics including space/ground optical propagation experiments, propagation databases, the NASA Propagation Web Site, and revision plans for the NASA propagation effects handbooks. The ACTS Miniworkshop, June 6, 1996, covered ACTS status, engineering support for ACTS propagation terminals, and the ACTS Propagation Data Center. A plenary session made specific recommendations for the future direction of the program.

  17. Self-propagative replication of Aβ oligomers suggests potential transmissibility in Alzheimer disease.

    Directory of Open Access Journals (Sweden)

    Amit Kumar

    Full Text Available The aggregation of amyloid-β (Aβ peptide and its deposition in parts of the brain form the central processes in the etiology of Alzheimer disease (AD. The low-molecular weight oligomers of Aβ aggregates (2 to 30 mers are known to be the primary neurotoxic agents whose mechanisms of cellular toxicity and synaptic dysfunction have received substantial attention in the recent years. However, how these toxic agents proliferate and induce widespread amyloid deposition throughout the brain, and what mechanism is involved in the amplification and propagation of toxic oligomer species, are far from clear. Emerging evidence based on transgenic mice models indicates a transmissible nature of Aβ aggregates and implicates a prion-like mechanism of oligomer propagation, which manifests as the dissemination and proliferation of Aβ toxicity. Despite accumulating evidence in support of a transmissible nature of Aβ aggregates, a clear, molecular-level understanding of this intriguing mechanism is lacking. Recently, we reported the characterization of unique replicating oligomers of Aβ42 (12-24 mers in vitro called Large Fatty Acid-derived Oligomers (LFAOs (Kumar et al., 2012, J. Biol. Chem. In the current report, we establish that LFAOs possess physiological activity by activating NF-κB in human neuroblastoma cells, and determine the experimental parameters that control the efficiency of LFAO replication by self-propagation. These findings constitute the first detailed report on monomer - oligomer lateral propagation reactions that may constitute potential mechanism governing transmissibility among Aβ oligomers. These data support the previous reports on transmissible mechanisms observed in transgenic animal models.

  18. Impact of correlations between core configurations for the evaluation of nuclear data uncertainty propagation for reactivity

    International Nuclear Information System (INIS)

    Frosio, T.; Bonaccorsi, T.; Blaise, P.

    2017-01-01

    The precise estimation of Pearson correlations, also called 'representativity' coefficients, between core configurations is a fundamental quantity for properly assessing the nuclear data (ND) uncertainties propagation on integral parameters such as k-eff, power distributions, or reactivity coefficients. In this paper, a traditional adjoint method is used to propagate ND uncertainty on reactivity and reactivity coefficients and estimate correlations between different states of the core. We show that neglecting those correlations induces a loss of information in the final uncertainty. We also show that using approximate values of Pearson does not lead to an important error of the model. This calculation is made for reactivity at the beginning of life and can be extended to other parameters during depletion calculations. (authors)

  19. Tropospheric radiowave propagation beyond the horizon

    CERN Document Server

    Du Castel, François

    1966-01-01

    Tropospheric Radiowave Propagation Beyond the Horizon deals with developments concerning the tropospheric propagation of ultra-short radio waves beyond the horizon, with emphasis on the relationship between the theoretical and the experimental. Topics covered include the general conditions of propagation in the troposphere; general characteristics of propagation beyond the horizon; and attenuation in propagation. This volume is comprised of six chapters and begins with a brief historical look at the various stages that have brought the technique of transhorizon links to its state of developmen

  20. Light propagation in linear optical media

    CERN Document Server

    Gillen, Glen D; Guha, Shekhar

    2013-01-01

    Light Propagation in Linear Optical Media describes light propagation in linear media by expanding on diffraction theories beyond what is available in classic optics books. In one volume, this book combines the treatment of light propagation through various media, interfaces, and apertures using scalar and vector diffraction theories. After covering the fundamentals of light and physical optics, the authors discuss light traveling within an anisotropic crystal and present mathematical models for light propagation across planar boundaries between different media. They describe the propagation o

  1. PROPAGATOR: a synchronous stochastic wildfire propagation model with distributed computation engine

    Science.gov (United States)

    D´Andrea, M.; Fiorucci, P.; Biondi, G.; Negro, D.

    2012-04-01

    PROPAGATOR is a stochastic model of forest fire spread, useful as a rapid method for fire risk assessment. The model is based on a 2D stochastic cellular automaton. The domain of simulation is discretized using a square regular grid with cell size of 20x20 meters. The model uses high-resolution information such as elevation and type of vegetation on the ground. Input parameters are wind direction, speed and the ignition point of fire. The simulation of fire propagation is done via a stochastic mechanism of propagation between a burning cell and a non-burning cell belonging to its neighbourhood, i.e. the 8 adjacent cells in the rectangular grid. The fire spreads from one cell to its neighbours with a certain base probability, defined using vegetation types of two adjacent cells, and modified by taking into account the slope between them, wind direction and speed. The simulation is synchronous, and takes into account the time needed by the burning fire to cross each cell. Vegetation cover, slope, wind speed and direction affect the fire-propagation speed from cell to cell. The model simulates several mutually independent realizations of the same stochastic fire propagation process. Each of them provides a map of the area burned at each simulation time step. Propagator simulates self-extinction of the fire, and the propagation process continues until at least one cell of the domain is burning in each realization. The output of the model is a series of maps representing the probability of each cell of the domain to be affected by the fire at each time-step: these probabilities are obtained by evaluating the relative frequency of ignition of each cell with respect to the complete set of simulations. Propagator is available as a module in the OWIS (Opera Web Interfaces) system. The model simulation runs on a dedicated server and it is remote controlled from the client program, NAZCA. Ignition points of the simulation can be selected directly in a high-resolution, three

  2. Semiclassical propagation of Wigner functions.

    Science.gov (United States)

    Dittrich, T; Gómez, E A; Pachón, L A

    2010-06-07

    We present a comprehensive study of semiclassical phase-space propagation in the Wigner representation, emphasizing numerical applications, in particular as an initial-value representation. Two semiclassical approximation schemes are discussed. The propagator of the Wigner function based on van Vleck's approximation replaces the Liouville propagator by a quantum spot with an oscillatory pattern reflecting the interference between pairs of classical trajectories. Employing phase-space path integration instead, caustics in the quantum spot are resolved in terms of Airy functions. We apply both to two benchmark models of nonlinear molecular potentials, the Morse oscillator and the quartic double well, to test them in standard tasks such as computing autocorrelation functions and propagating coherent states. The performance of semiclassical Wigner propagation is very good even in the presence of marked quantum effects, e.g., in coherent tunneling and in propagating Schrodinger cat states, and of classical chaos in four-dimensional phase space. We suggest options for an effective numerical implementation of our method and for integrating it in Monte-Carlo-Metropolis algorithms suitable for high-dimensional systems.

  3. Propagation phenomena in real world networks

    CERN Document Server

    Fay, Damien; Gabryś, Bogdan

    2015-01-01

    Propagation, which looks at spreading in complex networks, can be seen from many viewpoints; it is undesirable, or desirable, controllable, the mechanisms generating that propagation can be the topic of interest, but in the end all depends on the setting. This book covers leading research on a wide spectrum of propagation phenomenon and the techniques currently used in its modelling, prediction, analysis and control. Fourteen papers range over topics including epidemic models, models for trust inference, coverage strategies for networks, vehicle flow propagation, bio-inspired routing algorithms, P2P botnet attacks and defences, fault propagation in gene-cellular networks, malware propagation for mobile networks, information propagation in crisis situations, financial contagion in interbank networks, and finally how to maximize the spread of influence in social networks. The compendium will be of interest to researchers, those working in social networking, communications and finance and is aimed at providin...

  4. On the propagation of transient waves in a viscoelastic Bessel medium

    Science.gov (United States)

    Colombaro, Ivano; Giusti, Andrea; Mainardi, Francesco

    2017-06-01

    In this paper, we discuss the uniaxial propagation of transient waves within a semi-infinite viscoelastic Bessel medium. First, we provide the analytic expression for the response function of the material as we approach the wave front. To do so, we take profit of a revisited version of the so called Buchen-Mainardi algorithm. Secondly, we provide an analytic expression for the long-time behavior of the response function of the material. This result is obtained by means of the Tauberian theorems for the Laplace transform. Finally, we relate the obtained results to a peculiar model for fluid-filled elastic tubes.

  5. Completeness and orthonormality of the Volkov states and the Volkov propagator in configuration space

    Science.gov (United States)

    Di Piazza, A.

    2018-03-01

    Volkov states and Volkov propagator are the basic analytical tools to investigate QED processes occurring in the presence of an intense plane-wave electromagnetic field. In the present paper we provide alternative and relatively simple proofs of the completeness and of the orthonormality at a fixed time of the Volkov states. Concerning the completeness, we exploit some known properties of the Green's function of the Dirac operator in a plane wave, whereas the orthonormality of the Volkov states is proved, relying only on a geometric argument based on the Gauss theorem in four dimensions. In relation with the completeness of the Volkov states, we also study some analytical properties of the Green's function of the Dirac operator in a plane wave, which we explicitly prove to coincide with the Volkov propagator in configuration space. In particular, a closed-form expression in terms of modified Bessel functions and Hankel functions is derived by means of the operator technique in a plane wave and different asymptotic forms are determined. Finally, the transformation properties of the Volkov propagator under general gauge transformations and a general gauge-invariant expression of the so-called dressed mass in configuration space are presented.

  6. Propagation of dynamic measurement uncertainty

    International Nuclear Information System (INIS)

    Hessling, J P

    2011-01-01

    The time-dependent measurement uncertainty has been evaluated in a number of recent publications, starting from a known uncertain dynamic model. This could be defined as the 'downward' propagation of uncertainty from the model to the targeted measurement. The propagation of uncertainty 'upward' from the calibration experiment to a dynamic model traditionally belongs to system identification. The use of different representations (time, frequency, etc) is ubiquitous in dynamic measurement analyses. An expression of uncertainty in dynamic measurements is formulated for the first time in this paper independent of representation, joining upward as well as downward propagation. For applications in metrology, the high quality of the characterization may be prohibitive for any reasonably large and robust model to pass the whiteness test. This test is therefore relaxed by not directly requiring small systematic model errors in comparison to the randomness of the characterization. Instead, the systematic error of the dynamic model is propagated to the uncertainty of the measurand, analogously but differently to how stochastic contributions are propagated. The pass criterion of the model is thereby transferred from the identification to acceptance of the total accumulated uncertainty of the measurand. This increases the relevance of the test of the model as it relates to its final use rather than the quality of the calibration. The propagation of uncertainty hence includes the propagation of systematic model errors. For illustration, the 'upward' propagation of uncertainty is applied to determine if an appliance box is damaged in an earthquake experiment. In this case, relaxation of the whiteness test was required to reach a conclusive result

  7. Propagation Engineering in Wireless Communications

    CERN Document Server

    Ghasemi, Abdollah; Ghasemi, Farshid

    2012-01-01

    Wireless communications has seen explosive growth in recent decades, in a realm that is both broad and rapidly expanding to include satellite services, navigational aids, remote sensing, telemetering, audio and video broadcasting, high-speed data communications, mobile radio systems and much more. Propagation Engineering in Wireless Communications deals with the basic principles of radiowaves propagation for frequency bands used in radio-communications, offering descriptions of new achievements and newly developed propagation models. The book bridges the gap between theoretical calculations and approaches, and applied procedures needed for advanced radio links design. The primary objective of this two-volume set is to demonstrate the fundamentals, and to introduce propagation phenomena and mechanisms that engineers are likely to encounter in the design and evaluation of radio links of a given type and operating frequency. Volume one covers basic principles, along with tropospheric and ionospheric propagation,...

  8. Propagating wave correlations in complex systems

    International Nuclear Information System (INIS)

    Creagh, Stephen C; Gradoni, Gabriele; Hartmann, Timo; Tanner, Gregor

    2017-01-01

    We describe a novel approach for computing wave correlation functions inside finite spatial domains driven by complex and statistical sources. By exploiting semiclassical approximations, we provide explicit algorithms to calculate the local mean of these correlation functions in terms of the underlying classical dynamics. By defining appropriate ensemble averages, we show that fluctuations about the mean can be characterised in terms of classical correlations. We give in particular an explicit expression relating fluctuations of diagonal contributions to those of the full wave correlation function. The methods have a wide range of applications both in quantum mechanics and for classical wave problems such as in vibro-acoustics and electromagnetism. We apply the methods here to simple quantum systems, so-called quantum maps, which model the behaviour of generic problems on Poincaré sections. Although low-dimensional, these models exhibit a chaotic classical limit and share common characteristics with wave propagation in complex structures. (paper)

  9. Fatigue crack propagation behavior under creep conditions

    International Nuclear Information System (INIS)

    Ohji, Kiyotsugu; Kubo, Shiro

    1991-01-01

    The crack propagation behavior of the SUS 304 stainless steel under creep-fatigue conditions was reviewed. Cracks propagated either in purely time-dependent mode or in purely cycle-dependent mode, depending on loading conditions. The time-dependent crack propagation rate was correlated with modified J-integral J * and the cycle-dependent crack propagation rate was correlated with J-integral range ΔJ f . Threshold was observed in the cycle-dependent crack propagation, and below this threshold the time-dependent crack propagation appeared. The crack propagation rates were uniquely characterized by taking the effective values of J * and ΔJ f , when crack closure was observed. Change in crack propagation mode occurred reversibly and was predicted by the competitive damage model. The threshold disappeared and the cycle-dependent crack propagation continued in a subthreshold region under variable amplitude conditions, where the threshold was interposed between the maximum and minimum ΔJ f . (orig.)

  10. An analytical approach for the Propagation Saw Test

    Science.gov (United States)

    Benedetti, Lorenzo; Fischer, Jan-Thomas; Gaume, Johan

    2016-04-01

    The Propagation Saw Test (PST) [1, 2] is an experimental in-situ technique that has been introduced to assess crack propagation propensity in weak snowpack layers buried below cohesive snow slabs. This test attracted the interest of a large number of practitioners, being relatively easy to perform and providing useful insights for the evaluation of snow instability. The PST procedure requires isolating a snow column of 30 centimeters of width and -at least-1 meter in the downslope direction. Then, once the stratigraphy is known (e.g. from a manual snow profile), a saw is used to cut a weak layer which could fail, potentially leading to the release of a slab avalanche. If the length of the saw cut reaches the so-called critical crack length, the onset of crack propagation occurs. Furthermore, depending on snow properties, the crack in the weak layer can initiate the fracture and detachment of the overlying slab. Statistical studies over a large set of field data confirmed the relevance of the PST, highlighting the positive correlation between test results and the likelihood of avalanche release [3]. Recent works provided key information on the conditions for the onset of crack propagation [4] and on the evolution of slab displacement during the test [5]. In addition, experimental studies [6] and simplified models [7] focused on the qualitative description of snowpack properties leading to different failure types, namely full propagation or fracture arrest (with or without slab fracture). However, beside current numerical studies utilizing discrete elements methods [8], only little attention has been devoted to a detailed analytical description of the PST able to give a comprehensive mechanical framework of the sequence of processes involved in the test. Consequently, this work aims to give a quantitative tool for an exhaustive interpretation of the PST, stressing the attention on important parameters that influence the test outcomes. First, starting from a pure

  11. Modelling the gluon propagator

    Energy Technology Data Exchange (ETDEWEB)

    Leinweber, D.B.; Parrinello, C.; Skullerud, J.I.; Williams, A.G

    1999-03-01

    Scaling of the Landau gauge gluon propagator calculated at {beta} = 6.0 and at {beta} = 6.2 is demonstrated. A variety of functional forms for the gluon propagator calculated on a large (32{sup 3} x 64) lattice at {beta} = 6.0 are investigated.

  12. 47 CFR 22.921 - 911 call processing procedures; 911-only calling mode.

    Science.gov (United States)

    2010-10-01

    ... programming in the mobile unit that determines the handling of a non-911 call and permit the call to be... CARRIER SERVICES PUBLIC MOBILE SERVICES Cellular Radiotelephone Service § 22.921 911 call processing procedures; 911-only calling mode. Mobile telephones manufactured after February 13, 2000 that are capable of...

  13. Semiclassical propagator of the Wigner function.

    Science.gov (United States)

    Dittrich, Thomas; Viviescas, Carlos; Sandoval, Luis

    2006-02-24

    Propagation of the Wigner function is studied on two levels of semiclassical propagation: one based on the Van Vleck propagator, the other on phase-space path integration. Leading quantum corrections to the classical Liouville propagator take the form of a time-dependent quantum spot. Its oscillatory structure depends on whether the underlying classical flow is elliptic or hyperbolic. It can be interpreted as the result of interference of a pair of classical trajectories, indicating how quantum coherences are to be propagated semiclassically in phase space. The phase-space path-integral approach allows for a finer resolution of the quantum spot in terms of Airy functions.

  14. Sound propagation in cities

    NARCIS (Netherlands)

    Salomons, E.; Polinder, H.; Lohman, W.; Zhou, H.; Borst, H.

    2009-01-01

    A new engineering model for sound propagation in cities is presented. The model is based on numerical and experimental studies of sound propagation between street canyons. Multiple reflections in the source canyon and the receiver canyon are taken into account in an efficient way, while weak

  15. Unirradiated cladding rip-propagation tests

    International Nuclear Information System (INIS)

    Hu, W.L.; Hunter, C.W.

    1981-04-01

    The size of cladding rips which develop when a fuel pin fails can affect the subassembly cooling and determine how rapidly fuel escapes from the pin. The object of the Cladding Rip Propagation Test (CRPT) was to quantify the failure development of cladding so that a more realistic fuel pin failure modeling may be performed. The test results for unirradiated 20% CS 316 stainless steel cladding show significantly different rip propagation behavior at different temperatures. At room temperature, the rip growth is stable as the rip extension increases monotonically with the applied deformation. At 500 0 C, the rip propagation becomes unstable after a short period of stable rip propagation. The rapid propagation rate is approximately 200 m/s, and the critical rip length is 9 mm. At test temperatures above 850 0 C, the cladding exhibits very high failure resistances, and failure occurs by multiple cracking at high cladding deformation. 13 figures

  16. Propagation engineering in radio links design

    CERN Document Server

    Ghasemi, Abdollah; Ghasemi, Farshid

    2013-01-01

    Propagation Engineering in Radio Link Design covers the basic principles of radiowaves propagation in a practical manner.  This fundamental understanding enables the readers to design radio links efficiently. This book elaborates on new achievements as well as recently developed propagation models.  This is in addition to a comprehensive overview of fundamentals of propagation in various scenarios. It examines theoretical calculations, approaches and applied procedures needed for radio links design. The authors study and analysis of the main propagation phenomena and its mechanisms based on the recommendations of International Telecommunications Union, (ITU). The book has been organized in 9 chapters and examines the role of antennas and passive reflectors in radio services, propagation mechanisms related to radar, satellite, short distance, broadcasting and trans-horizon radio links, with two chapters devoted to radio noise and main  parameters of radio link design. The book presents some 278 illustration...

  17. Safe Laser Beam Propagation for Interplanetary Links

    Science.gov (United States)

    Wilson, Keith E.

    2011-01-01

    Ground-to-space laser uplinks to Earth–orbiting satellites and deep space probes serve both as a beacon and an uplink command channel for deep space probes and Earth-orbiting satellites. An acquisition and tracking point design to support a high bandwidth downlink from a 20-cm optical terminal on an orbiting Mars spacecraft typically calls for 2.5 kW of 1030-nm uplink optical power in 40 micro-radians divergent beams.2 The NOHD (nominal ocular hazard distance) of the 1030nm uplink is in excess of 2E5 km, approximately half the distance to the moon. Recognizing the possible threat of high power laser uplinks to the flying public and to sensitive Earth-orbiting satellites, JPL developed a three-tiered system at its Optical Communications Telescope Laboratory (OCTL) to ensure safe laser beam propagation through navigational and near-Earth space.

  18. Propagation engineering in wireless communications

    CERN Document Server

    Ghasemi, Abdollah; Ghasemi, Farshid

    2016-01-01

    This book covers the basic principles for understanding radio wave propagation for common frequency bands used in radio-communications. This includes achievements and developments in propagation models for wireless communication. This book is intended to bridge the gap between the theoretical calculations and approaches to the applied procedures needed for radio links design in a proper manner. The authors emphasize propagation engineering by giving fundamental information and explain the use of basic principles together with technical achievements. This new edition includes additional information on radio wave propagation in guided media and technical issues for fiber optics cable networks with several examples and problems. This book also includes a solution manual - with 90 solved examples distributed throughout the chapters - and 158 problems including practical values and assumptions.

  19. Propagation into an unstable state

    International Nuclear Information System (INIS)

    Dee, G.

    1985-01-01

    We describe propagating front solutions of the equations of motion of pattern-forming systems. We make a number of conjectures concerning the properties of such fronts in connection with pattern selection in these systems. We describe a calculation which can be used to calculate the velocity and state selected by certain types of propagating fronts. We investigate the propagating front solutions of the amplitude equation which provides a valid dynamical description of many pattern-forming systems near onset

  20. Radio wave propagation and parabolic equation modeling

    CERN Document Server

    Apaydin, Gokhan

    2018-01-01

    A thorough understanding of electromagnetic wave propagation is fundamental to the development of sophisticated communication and detection technologies. The powerful numerical methods described in this book represent a major step forward in our ability to accurately model electromagnetic wave propagation in order to establish and maintain reliable communication links, to detect targets in radar systems, and to maintain robust mobile phone and broadcasting networks. The first new book on guided wave propagation modeling and simulation to appear in nearly two decades, Radio Wave Propagation and Parabolic Equation Modeling addresses the fundamentals of electromagnetic wave propagation generally, with a specific focus on radio wave propagation through various media. The authors explore an array of new applications, and detail various v rtual electromagnetic tools for solving several frequent electromagnetic propagation problems. All of the methods described are presented within the context of real-world scenari...

  1. Performance evaluation of coherent WDM PS-QPSK (HEXA) accounting for non-linear fiber propagation effects.

    Science.gov (United States)

    Poggiolini, P; Bosco, G; Carena, A; Curri, V; Forghieri, F

    2010-05-24

    Coherent-detection (CoD) permits to fully exploit the four-dimensional (4D) signal space consisting of the in-phase and quadrature components of the two fiber polarizations. A well-known and successful format exploiting such 4D space is Polarization-multiplexed QPSK (PM-QPSK). Recently, new signal constellations specifically designed and optimized in 4D space have been proposed, among which polarization-switched QPSK (PS-QPSK), consisting of a 8-point constellation at the vertices of a 4D polychoron called hexadecachoron. We call it HEXA because of its geometrical features and to avoid acronym mix-up with PM-QPSK, as well as with other similar acronyms. In this paper we investigate the performance of HEXA in direct comparison with PM-QPSK, addressing non-linear propagation over realistic links made up of 20 spans of either standard single mode fiber (SSMF) or non-zero dispersion-shifted fiber (NZDSF). We show that HEXA not only confirms its theoretical sensitivity advantage over PM-QPSK in back-to-back, but also shows a greater resilience to non-linear effects, allowing for substantially increased span loss margins. As a consequence, HEXA appears as an interesting option for dual-format transceivers capable to switch on-the-fly between PM-QPSK and HEXA when channel propagation degrades. It also appears as a possible direct competitor of PM-QPSK, especially over NZDSF fiber and uncompensated links.

  2. On the propagation of hydromagnetic waves in a plasma of thermal and suprathermal components

    Science.gov (United States)

    Kumar, Nagendra; Sikka, Himanshu

    2007-12-01

    The propagation of MHD waves is studied when two ideal fluids, thermal and suprathermal gases, coupled by magnetic field are moving with the steady flow velocity. The fluids move independently in a direction perpendicular to the magnetic field but gets coupled along the field. Due to the presence of flow in suprathermal and thermal fluids there appears forward and backward waves. All the forward and backward modes propagate in such a way that their rate of change of phase speed with the thermal Mach number is same. It is also found that besides the usual hydromagnetic modes there appears a suprathermal mode which propagates with faster speed. Surface waves are also examined on an interface formed with composite plasma (suprathermal and thermal gases) on one side and the other is a non-magnetized plasma. In this case, the modes obtained are two or three depending on whether the sound velocity in thermal gas is equal to or greater than the sound velocity in suprathermal gas. The results lead to the conclusion that the interaction of thermal and suprathermal components may lead to the occurrence of an additional mode called suprathermal mode whose phase velocity is higher than all the other modes.

  3. The propagator of quantum gravity in minisuperspace

    International Nuclear Information System (INIS)

    Louko, J.

    1985-04-01

    We study the quantum gravitational propagation amplitude between two spacelike three-surfaces in minisuperspaces where the supermomentum constraints are identically satisfied. We derive a well-defined path integral formula for the propagator and show that the propagator is an inverse of the canonical Hamiltonian operator. In an exactly solvable deSitter minisuperspace model the propagator is found to obey semi-classically correct boundary conditions. We discuss the implications for the full theory and suggest an approach to unravelling the physical meaning of the propagator. (orig.)

  4. Neural network construction via back-propagation

    International Nuclear Information System (INIS)

    Burwick, T.T.

    1994-06-01

    A method is presented that combines back-propagation with multi-layer neural network construction. Back-propagation is used not only to adjust the weights but also the signal functions. Going from one network to an equivalent one that has additional linear units, the non-linearity of these units and thus their effective presence is then introduced via back-propagation (weight-splitting). The back-propagated error causes the network to include new units in order to minimize the error function. We also show how this formalism allows to escape local minima

  5. Terrestrial propagation of long electromagnetic waves

    CERN Document Server

    Galejs, Janis; Fock, V A

    2013-01-01

    Terrestrial Propagation of Long Electromagnetic Waves deals with the propagation of long electromagnetic waves confined principally to the shell between the earth and the ionosphere, known as the terrestrial waveguide. The discussion is limited to steady-state solutions in a waveguide that is uniform in the direction of propagation. Wave propagation is characterized almost exclusively by mode theory. The mathematics are developed only for sources at the ground surface or within the waveguide, including artificial sources as well as lightning discharges. This volume is comprised of nine chapte

  6. The accuracy of dynamic attitude propagation

    Science.gov (United States)

    Harvie, E.; Chu, D.; Woodard, M.

    1990-01-01

    Propagating attitude by integrating Euler's equation for rigid body motion has long been suggested for the Earth Radiation Budget Satellite (ERBS) but until now has not been implemented. Because of limited Sun visibility, propagation is necessary for yaw determination. With the deterioration of the gyros, dynamic propagation has become more attractive. Angular rates are derived from integrating Euler's equation with a stepsize of 1 second, using torques computed from telemetered control system data. The environmental torque model was quite basic. It included gravity gradient and unshadowed aerodynamic torques. Knowledge of control torques is critical to the accuracy of dynamic modeling. Due to their coarseness and sparsity, control actuator telemetry were smoothed before integration. The dynamic model was incorporated into existing ERBS attitude determination software. Modeled rates were then used for attitude propagation in the standard ERBS fine-attitude algorithm. In spite of the simplicity of the approach, the dynamically propagated attitude matched the attitude propagated with good gyros well for roll and yaw but diverged up to 3 degrees for pitch because of the very low resolution in pitch momentum wheel telemetry. When control anomalies significantly perturb the nominal attitude, the effect of telemetry granularity is reduced and the dynamically propagated attitudes are accurate on all three axes.

  7. Propagation of SLF/ELF electromagnetic waves

    CERN Document Server

    Pan, Weiyan

    2014-01-01

    This book deals with the SLF/ELF wave propagation, an important branch of electromagnetic theory. The SLF/ELF wave propagation theory is well applied in earthquake electromagnetic radiation, submarine communication, thunderstorm detection, and geophysical prospecting and diagnostics. The propagation of SLF/ELF electromagnetic waves is introduced in various media like the earth-ionospheric waveguide, ionospheric plasma, sea water, earth, and the boundary between two different media or the stratified media. Applications in the earthquake electromagnetic radiation and the submarine communications are also addressed. This book is intended for scientists and engineers in the fields of radio propagation and EM theory and applications. Prof. Pan is a professor at China Research Institute of Radiowave Propagation in Qingdao (China). Dr. Li is a professor at Zhejiang University in Hangzhou (China).

  8. Effect of magnetic helicity upon rectilinear propagation of charged particles in random magnetic fields

    Science.gov (United States)

    Earl, James A.

    1992-01-01

    When charged particles spiral along a large constant magnetic field, their trajectories are scattered by any random field components that are superposed on the guiding field. If the random field configuration embodies helicity, the scattering is asymmetrical with respect to a plane perpendicular to the guiding field, for particles moving into the forward hemisphere are scattered at different rates from those moving into the backward hemisphere. This asymmetry gives rise to new terms in the transport equations that describe propagation of charged particles. Helicity has virtually no impact on qualitative features of the diffusive mode of propagation. However, characteristic velocities of the coherent modes that appear after a highly anisotropic injection exhibit an asymmetry related to helicity. Explicit formulas, which embody the effects of helicity, are given for the anisotropies, the coefficient diffusion, and the coherent velocities. Predictions derived from these expressions are in good agreement with Monte Carlo simulations of particle transport, but the simulations reveal certain phenomena whose explanation calls for further analytical work.

  9. Proceedings of the Twenty-First NASA Propagation Experiments Meeting (NAPEX XXI) and the Advanced Communications Technology Satellite (ACTS) Propagation Studies Miniworkshop

    Science.gov (United States)

    Golshan, Nasser (Editor)

    1997-01-01

    The NASA Propagation Experimenters (NAPEX) meeting is convened each year to discuss studies supported by the NASA Propagation Program. Representatives from the satellite communications industry, academia and government who have an interest in space-ground radio wave propagation are invited to NAPEX meetings for discussions and exchange of information. The reports delivered at this meeting by program managers and investigators present recent activities and future plans. This forum provides an opportunity for peer discussion of work in progress, timely dissemination of propagation results, and close interaction with the satellite communications industry. NAPEX XXI took place in El Segundo, California on June 11-12, 1997 and consisted of three sessions. Session 1, entitled "ACTS Propagation Study Results & Outcome " covered the results of 20 station-years of Ka-band radio-wave propagation experiments. Session 11, 'Ka-band Propagation Studies and Models,' provided the latest developments in modeling, and analysis of experimental results about radio wave propagation phenomena for design of Ka-band satellite communications systems. Session 111, 'Propagation Research Topics,' covered a diverse range of propagation topics of interest to the space community, including overviews of handbooks and databases on radio wave propagation. The ACTS Propagation Studies miniworkshop was held on June 13, 1997 and consisted of a technical session in the morning and a plenary session in the afternoon. The morning session covered updates on the status of the ACTS Project & Propagation Program, engineering support for ACTS Propagation Terminals, and the Data Center. The plenary session made specific recommendations for the future direction of the program.

  10. ACTS Propagation Measurements in Maryland and Virginia

    Science.gov (United States)

    Dissanayake, Asoka; Lin, Kuan-Ting

    1996-01-01

    Rapid growth in new satellite services incorporating very small aperture terminals (VSAT) and ultra small aperture terminals (USAT) is expected in the coming years. Small size terminals allow for widespread use of satellite services in small business and domestic applications. Due to congestion of lower frequency bands such as C and Ku, most of these services will use Ka-band (2/20 GHz) frequencies. Propagation impairments produced by the troposphere is a limiting factor for the effective use of the 20/30 GHz band and the use of smaller Earth terminals makes it difficult to provide sufficient link margins for propagation related outages. In this context, reliable prediction of propagation impairments for low margin systems becomes important. Due to the complexity of propagation phenomena propagation modeling is mainly attempted on an empirical basis. As such, the availability of reliable measured data that extend to probability levels well in excess of the traditional limit of 1 percent is of great importance in the development, validation, and refinement of propagation models. The beacon payload on the Advanced Communications Technology Satellite (ACTS) together with the propagation measurement terminals developed under the NASA ACTS propagation program provide an excellent opportunity to collect such data on a long-term basis. This paper presents the results of ACTS propagation measurements conducted in the Washington, DC metropolitan area by COMSAT Laboratories.

  11. Propagation of waves

    CERN Document Server

    David, P

    2013-01-01

    Propagation of Waves focuses on the wave propagation around the earth, which is influenced by its curvature, surface irregularities, and by passage through atmospheric layers that may be refracting, absorbing, or ionized. This book begins by outlining the behavior of waves in the various media and at their interfaces, which simplifies the basic phenomena, such as absorption, refraction, reflection, and interference. Applications to the case of the terrestrial sphere are also discussed as a natural generalization. Following the deliberation on the diffraction of the "ground? wave around the ear

  12. Group symmetries and information propagation

    International Nuclear Information System (INIS)

    Draayer, J.P.

    1980-01-01

    Spectroscopy concerns itself with the ways in which the Hamiltonian and other interesting operators defined in few-particle spaces are determined or determine properties of many-particle systems. But the action of the central limit theorem (CLT) filters the transmission of information between source and observed so whether propagating forward from a few-particle defining space, as is usual in theoretical studies, or projecting backward to it from measured things, each is only sensitive to averaged properties of the other. Our concern is with the propagation of spectroscopic information in the presence of good symmetries when filtering action of the CLT is effective. Specifically, we propose to address the question, What propagates and how. We begin with some examples, using both scalar and isospin geometries to illustrate simple propagation. Examples of matrix propagation are studied; contact with standard tensor algebra is established and an algorithm put forward for the expansion of any operator in terms of another set, complete or not; shell-model results for 20 Ne using a realistic interaction and two trace-equivalent forms are presented; and some further challenges are mentioned

  13. Uncertainty Propagation in OMFIT

    Science.gov (United States)

    Smith, Sterling; Meneghini, Orso; Sung, Choongki

    2017-10-01

    A rigorous comparison of power balance fluxes and turbulent model fluxes requires the propagation of uncertainties in the kinetic profiles and their derivatives. Making extensive use of the python uncertainties package, the OMFIT framework has been used to propagate covariant uncertainties to provide an uncertainty in the power balance calculation from the ONETWO code, as well as through the turbulent fluxes calculated by the TGLF code. The covariant uncertainties arise from fitting 1D (constant on flux surface) density and temperature profiles and associated random errors with parameterized functions such as a modified tanh. The power balance and model fluxes can then be compared with quantification of the uncertainties. No effort is made at propagating systematic errors. A case study will be shown for the effects of resonant magnetic perturbations on the kinetic profiles and fluxes at the top of the pedestal. A separate attempt at modeling the random errors with Monte Carlo sampling will be compared to the method of propagating the fitting function parameter covariant uncertainties. Work supported by US DOE under DE-FC02-04ER54698, DE-FG2-95ER-54309, DE-SC 0012656.

  14. Synchronous motion of a relativistic particles in the wave propagating at the angle to a magnetic field

    International Nuclear Information System (INIS)

    Milant'ev, V.P.

    1996-01-01

    It is shown that within the transverse or the longitudinal wave propagating at the angle to the magnetic field there is a specific mode of motion of relativistic particle called as a synchronous one where the condition of a particle resonance with the wave is realized with increasing accuracy with increase of particle energy. A trend to the unlimited acceleration is detected in a synchronous mode of the Cherenkov resonance. 21 refs

  15. Propagating separable equalities in an MDD store

    DEFF Research Database (Denmark)

    Hadzic, Tarik; Hooker, John N.; Tiedemann, Peter

    2008-01-01

    We present a propagator that achieves MDD consistency for a separable equality over an MDD (multivalued decision diagram) store in pseudo-polynomial time. We integrate the propagator into a constraint solver based on an MDD store introduced in [1]. Our experiments show that the new propagator pro...... provides substantial computational advantage over propagation of two inequality constraints, and that the advantage increases when the maximum width of the MDD store increases....

  16. K-AP: Generating specified K clusters by efficient Affinity Propagation

    KAUST Repository

    Zhang, Xiangliang

    2010-12-01

    The Affinity Propagation (AP) clustering algorithm proposed by Frey and Dueck (2007) provides an understandable, nearly optimal summary of a data set. However, it suffers two major shortcomings: i) the number of clusters is vague with the user-defined parameter called self-confidence, and ii) the quadratic computational complexity. When aiming at a given number of clusters due to prior knowledge, AP has to be launched many times until an appropriate setting of self-confidence is found. The re-launched AP increases the computational cost by one order of magnitude. In this paper, we propose an algorithm, called K-AP, to exploit the immediate results of K clusters by introducing a constraint in the process of message passing. Through theoretical analysis and experimental validation, K-AP was shown to be able to directly generate K clusters as user defined, with a negligible increase of computational cost compared to AP. In the meanwhile, K-AP preserves the clustering quality as AP in terms of the distortion. K-AP is more effective than k-medoids w.r.t. the distortion minimization and higher clustering purity. © 2010 IEEE.

  17. Perceiving a calling, living a calling, and job satisfaction: testing a moderated, multiple mediator model.

    Science.gov (United States)

    Duffy, Ryan D; Bott, Elizabeth M; Allan, Blake A; Torrey, Carrie L; Dik, Bryan J

    2012-01-01

    The current study examined the relation between perceiving a calling, living a calling, and job satisfaction among a diverse group of employed adults who completed an online survey (N = 201). Perceiving a calling and living a calling were positively correlated with career commitment, work meaning, and job satisfaction. Living a calling moderated the relations of perceiving a calling with career commitment and work meaning, such that these relations were more robust for those with a stronger sense they were living their calling. Additionally, a moderated, multiple mediator model was run to examine the mediating role of career commitment and work meaning in the relation of perceiving a calling and job satisfaction, while accounting for the moderating role of living a calling. Results indicated that work meaning and career commitment fully mediated the relation between perceiving a calling and job satisfaction. However, the indirect effects of work meaning and career commitment were only significant for individuals with high levels of living a calling, indicating the importance of living a calling in the link between perceiving a calling and job satisfaction. Implications for research and practice are discussed. (c) 2012 APA, all rights reserved.

  18. Call Center Capacity Planning

    DEFF Research Database (Denmark)

    Nielsen, Thomas Bang

    in order to relate the results to the service levels used in call centers. Furthermore, the generic nature of the approximation is demonstrated by applying it to a system incorporating a dynamic priority scheme. In the last paper Optimization of overflow policies in call centers, overflows between agent......The main topics of the thesis are theoretical and applied queueing theory within a call center setting. Call centers have in recent years become the main means of communication between customers and companies, and between citizens and public institutions. The extensively computerized infrastructure...... in modern call centers allows for a high level of customization, but also induces complicated operational processes. The size of the industry together with the complex and labor intensive nature of large call centers motivates the research carried out to understand the underlying processes. The customizable...

  19. Methodologies of Uncertainty Propagation Calculation

    International Nuclear Information System (INIS)

    Chojnacki, Eric

    2002-01-01

    After recalling the theoretical principle and the practical difficulties of the methodologies of uncertainty propagation calculation, the author discussed how to propagate input uncertainties. He said there were two kinds of input uncertainty: - variability: uncertainty due to heterogeneity, - lack of knowledge: uncertainty due to ignorance. It was therefore necessary to use two different propagation methods. He demonstrated this in a simple example which he generalised, treating the variability uncertainty by the probability theory and the lack of knowledge uncertainty by the fuzzy theory. He cautioned, however, against the systematic use of probability theory which may lead to unjustifiable and illegitimate precise answers. Mr Chojnacki's conclusions were that the importance of distinguishing variability and lack of knowledge increased as the problem was getting more and more complex in terms of number of parameters or time steps, and that it was necessary to develop uncertainty propagation methodologies combining probability theory and fuzzy theory

  20. Fatigue crack layer propagation in silicon-iron

    Science.gov (United States)

    Birol, Y.; Welsch, G.; Chudnovsky, A.

    1986-01-01

    Fatigue crack propagation in metal is almost always accompanied by plastic deformation unless conditions strongly favor brittle fracture. The analysis of the plastic zone is crucial to the understanding of crack propagation behavior as it governs the crack growth kinetics. This research was undertaken to study the fatigue crack propagation in a silicon iron alloy. Kinetic and plasticity aspects of fatigue crack propagation in the alloy were obtained, including the characterization of damage evolution.

  1. Calle Blanco

    Directory of Open Access Journals (Sweden)

    Gonzalo Cerda Brintrup

    1988-06-01

    Full Text Available Importante arteria, que comunica el sector del puerto con la plaza. Las más imponentes construcciones se sucedían de un modo continuo, encaramándose a ambos lados de la empinada calle. Antes del gran incendio de 1936 grandes casonas de madera destacaban en calle Irarrázabal y en la esquina de ésta con calle Blanco, la más hermosa construcción pertenecía a don Alberto Oyarzún y la casa vecina hacia Blanco era de don Mateo Miserda, limitada por arriba con la casa de don Augusto Van Der Steldt y ésta era seguida de la casa de don David Barrientos provista de cuatro cúpulas en las esquinas y de un amplio corredor en el frontis. Todas estas construcciones de madera fueron destruidas en el gran incendio de 1936.

  2. Wave propagation in electromagnetic media

    CERN Document Server

    Davis, Julian L

    1990-01-01

    This is the second work of a set of two volumes on the phenomena of wave propagation in nonreacting and reacting media. The first, entitled Wave Propagation in Solids and Fluids (published by Springer-Verlag in 1988), deals with wave phenomena in nonreacting media (solids and fluids). This book is concerned with wave propagation in reacting media-specifically, in electro­ magnetic materials. Since these volumes were designed to be relatively self­ contained, we have taken the liberty of adapting some of the pertinent material, especially in the theory of hyperbolic partial differential equations (concerned with electromagnetic wave propagation), variational methods, and Hamilton-Jacobi theory, to the phenomena of electromagnetic waves. The purpose of this volume is similar to that of the first, except that here we are dealing with electromagnetic waves. We attempt to present a clear and systematic account of the mathematical methods of wave phenomena in electromagnetic materials that will be readily accessi...

  3. A modern trans-ionospheric propagation sensing system

    Science.gov (United States)

    Bishop, G. J.; Klobuchar, J. A.; Ronn, A. E.; Bedard, M. G.

    1989-09-01

    One of the most important potential problems with modern military systems which utilize spacecraft is the effect of the ionosphere on the radio signals which pass to and from the spacecraft. Such systems include active communications and navigation satellites as well as both ground-based and potential space-based ranging systems. The major effects the ionosphere can have on such systems are the additional time delay the electrons in the earth's ionosphere add to the free space path delay, the short term rate of change of this additional delay, amplitude scintillation or fading effects the signal encounters due to irregularities in the ionosphere, and Faraday rotation of linearly polarized radio waves transmitted through the ionosphere. While some of these effects were studied adequate models of these effects on military systems still do not exist. A modern trans-ionospheric sensing system, called TISS, is being procured which will consist of a number of stations located throughout the world, making real time measurements of the time delay of the ionosphere, and its rate of change, as well as amplitude scintillation, along several different viewing directions from each station. These trans-ionospheric measurements will be used to allow models, which currently provide only monthly propagation parameters. The real-time specifications of these parameters can then be used as decision aids in both the tactical and the strategic military environments. The TISS will include first order artificial intelligence design to aid in gathering the most appropriate sets of available real-time trans-ionospheric propagation data, and will communicate these data sets to the Air Weather Service Forecasting Center where they will be tailored to specific military customers.

  4. Laser beam propagation generation and propagation of customized light

    CERN Document Server

    Forbes, Andrew

    2014-01-01

    ""The text is easy to read and is accompanied by beautiful illustrations. It is an excellent book for anyone working in laser beam propagation and an asset for any library.""-Optics & Photonics News, July 2014

  5. NLO error propagation exercise: statistical results

    International Nuclear Information System (INIS)

    Pack, D.J.; Downing, D.J.

    1985-09-01

    Error propagation is the extrapolation and cumulation of uncertainty (variance) above total amounts of special nuclear material, for example, uranium or 235 U, that are present in a defined location at a given time. The uncertainty results from the inevitable inexactness of individual measurements of weight, uranium concentration, 235 U enrichment, etc. The extrapolated and cumulated uncertainty leads directly to quantified limits of error on inventory differences (LEIDs) for such material. The NLO error propagation exercise was planned as a field demonstration of the utilization of statistical error propagation methodology at the Feed Materials Production Center in Fernald, Ohio from April 1 to July 1, 1983 in a single material balance area formed specially for the exercise. Major elements of the error propagation methodology were: variance approximation by Taylor Series expansion; variance cumulation by uncorrelated primary error sources as suggested by Jaech; random effects ANOVA model estimation of variance effects (systematic error); provision for inclusion of process variance in addition to measurement variance; and exclusion of static material. The methodology was applied to material balance area transactions from the indicated time period through a FORTRAN computer code developed specifically for this purpose on the NLO HP-3000 computer. This paper contains a complete description of the error propagation methodology and a full summary of the numerical results of applying the methodlogy in the field demonstration. The error propagation LEIDs did encompass the actual uranium and 235 U inventory differences. Further, one can see that error propagation actually provides guidance for reducing inventory differences and LEIDs in future time periods

  6. Perceiving a Calling, Living a Calling, and Job Satisfaction: Testing a Moderated, Multiple Mediator Model

    Science.gov (United States)

    Duffy, Ryan D.; Bott, Elizabeth M.; Allan, Blake A.; Torrey, Carrie L.; Dik, Bryan J.

    2012-01-01

    The current study examined the relation between perceiving a calling, living a calling, and job satisfaction among a diverse group of employed adults who completed an online survey (N = 201). Perceiving a calling and living a calling were positively correlated with career commitment, work meaning, and job satisfaction. Living a calling moderated…

  7. Incorporating plastic collapse into the linear elastic fracture mechanics methodology in determining crack propagation lifetimes

    International Nuclear Information System (INIS)

    Glasgow, B.B.; Wolfer, W.G.

    1986-01-01

    Crack growth can result in a breech of a pressure boundary causing coolant loss or in total structural failure. This paper discusses brittle and plastic failure in terms of a unified structural model called the Two Criteria model. The model takes into account the flow stress of the material as well as the fracture toughness. Our results indicate that for fusion reactor first wall structures, ferritic steel is better able to resist crack propagation and subsequent structural failure than 316 stainless steel under the same wall loadings and geometry

  8. Rapid Vegetative Propagation Method for Carob

    OpenAIRE

    Hamide GUBBUK; Esma GUNES; Tomas AYALA-SILVA; Sezai ERCISLI

    2011-01-01

    Most of fruit species are propagated by vegetative methods such as budding, grafting, cutting, suckering, layering etc. to avoid heterozygocity. Carob trees (Ceratonia siliqua L.) are of highly economical value and are among the most difficult to propagate fruit species. In the study, air-layering propagation method was investigated first time to compare wild and cultivated (�Sisam�) carob types. In the experiment, one year old carob limbs were air-layered on coco peat medium by wrapping with...

  9. Behavioral Preferences for Individual Securities : The Case for Call Warrants and Call Options

    NARCIS (Netherlands)

    Ter Horst, J.R.; Veld, C.H.

    2002-01-01

    Since 1998, large investment banks have flooded the European capital markets with issues of call warrants.This has led to a unique situation in the Netherlands, where now call warrants, traded on the stock exchange, and long-term call options, traded on the options exchange, exist.Both entitle their

  10. On the power propagation time of a graph

    OpenAIRE

    Bozeman, Chassidy

    2016-01-01

    In this paper, we give Nordhaus-Gaddum upper and lower bounds on the sum of the power propagation time of a graph and its complement, and we consider the effects of edge subdivisions and edge contractions on the power propagation time of a graph. We also study a generalization of power propagation time, known as $k-$power propagation time, by characterizing all simple graphs on $n$ vertices whose $k-$power propagation time is $n-1$ or $n-2$ (for $k\\geq 1$) and $n-3$ (for $k\\geq 2$). We determ...

  11. Wave equations for pulse propagation

    International Nuclear Information System (INIS)

    Shore, B.W.

    1987-01-01

    Theoretical discussions of the propagation of pulses of laser radiation through atomic or molecular vapor rely on a number of traditional approximations for idealizing the radiation and the molecules, and for quantifying their mutual interaction by various equations of propagation (for the radiation) and excitation (for the molecules). In treating short-pulse phenomena it is essential to consider coherent excitation phenomena of the sort that is manifest in Rabi oscillations of atomic or molecular populations. Such processes are not adequately treated by rate equations for excitation nor by rate equations for radiation. As part of a more comprehensive treatment of the coupled equations that describe propagation of short pulses, this memo presents background discussion of the equations that describe the field. This memo discusses the origin, in Maxwell's equations, of the wave equation used in the description of pulse propagation. It notes the separation into lamellar and solenoidal (or longitudinal and transverse) and positive and negative frequency parts. It mentions the possibility of separating the polarization field into linear and nonlinear parts, in order to define a susceptibility or index of refraction and, from these, a phase and group velocity. The memo discusses various ways of characterizing the polarization characteristics of plane waves, that is, of parameterizing a transverse unit vector, such as the Jones vector, the Stokes vector, and the Poincare sphere. It discusses the connection between macroscopically defined quantities, such as the intensity or, more generally, the Stokes parameters, and microscopic field amplitudes. The material presented here is a portion of a more extensive treatment of propagation to be presented separately. The equations presented here have been described in various books and articles. They are collected here as a summary and review of theory needed when treating pulse propagation

  12. Propagation testing multi-cell batteries.

    Energy Technology Data Exchange (ETDEWEB)

    Orendorff, Christopher J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lamb, Joshua [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Steele, Leigh Anna Marie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Spangler, Scott Wilmer [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-10-01

    Propagation of single point or single cell failures in multi-cell batteries is a significant concern as batteries increase in scale for a variety of civilian and military applications. This report describes the procedure for testing failure propagation along with some representative test results to highlight the potential outcomes for different battery types and designs.

  13. Spectral transfer functions of body waves propagating through a stratified medium. Part 1: Basic theory by means of matrix propagators

    International Nuclear Information System (INIS)

    Macia, R.; Correig, A.M.

    1987-01-01

    Seismic wave propagation is described by a second order differential equation for medium displacement. By Fourier transforming with respect to time and space, wave equation transforms into a system of first order linear differential equations for the Fourier transform of displacement and stress. This system of differential equations is solved by means of Matrix Propagator and applied to the propagation of body waves in stratified media. The matrix propagators corresponding to P-SV and SH waves in homogeneous medium are found as an intermediate step to obtain the spectral response of body waves propagating through a stratified medium with homogeneous layers. (author) 14 refs

  14. Fast Heat Pulse Propagation by Turbulence Spreading

    DEFF Research Database (Denmark)

    Naulin, Volker; Juul Rasmussen, Jens; Mantica, Paola

    2009-01-01

    The propagation of a cold pulse initiated by edge cooling in JET is compared to propagation of the heat wave originating from a modulation of the heating source roughly at mid radius. It is found that the propagation of the cold pulse is by far faster than what could be predicted on the basis of ...

  15. Nonlinear radial propagation of drift wave turbulence

    International Nuclear Information System (INIS)

    Prakash, M.

    1985-01-01

    We study the linear and the nonlinear radial propagation of drift wave energy in an inhomogeneous plasma. The drift mode excited in such a plasma is dispersive in nature. The drift wave energy spreads out symmetrically along the direction of inhomogeneity with a finite group velocity. To study the effect of the nonlinear coupling on the propagation of energy in a collision free plasma, we solve the Hasegawa-Mima equation as a mixed initial boundary-value problem. The solutions of the linearized equation are used to check the reliability of our numerical calculations. Additional checks are also performed on the invariants of the system. Our results reveal that a pulse gets distorted as it propagates through the medium. The peak of the pulse propagates with a finite velocity that depends on the amplitude of the initial pulse. The polarity of propagation depends on the initial parameters of the pulse. We have also studied drift wave propagation in a resistive plasma. The Hasegawa-Wakatani equations are used to investigate this problem

  16. Universal self-similarity of propagating populations.

    Science.gov (United States)

    Eliazar, Iddo; Klafter, Joseph

    2010-07-01

    This paper explores the universal self-similarity of propagating populations. The following general propagation model is considered: particles are randomly emitted from the origin of a d-dimensional Euclidean space and propagate randomly and independently of each other in space; all particles share a statistically common--yet arbitrary--motion pattern; each particle has its own random propagation parameters--emission epoch, motion frequency, and motion amplitude. The universally self-similar statistics of the particles' displacements and first passage times (FPTs) are analyzed: statistics which are invariant with respect to the details of the displacement and FPT measurements and with respect to the particles' underlying motion pattern. Analysis concludes that the universally self-similar statistics are governed by Poisson processes with power-law intensities and by the Fréchet and Weibull extreme-value laws.

  17. Universal self-similarity of propagating populations

    Science.gov (United States)

    Eliazar, Iddo; Klafter, Joseph

    2010-07-01

    This paper explores the universal self-similarity of propagating populations. The following general propagation model is considered: particles are randomly emitted from the origin of a d -dimensional Euclidean space and propagate randomly and independently of each other in space; all particles share a statistically common—yet arbitrary—motion pattern; each particle has its own random propagation parameters—emission epoch, motion frequency, and motion amplitude. The universally self-similar statistics of the particles’ displacements and first passage times (FPTs) are analyzed: statistics which are invariant with respect to the details of the displacement and FPT measurements and with respect to the particles’ underlying motion pattern. Analysis concludes that the universally self-similar statistics are governed by Poisson processes with power-law intensities and by the Fréchet and Weibull extreme-value laws.

  18. Numerical modelling of crack initiation and propagation in concrete structure under hydro-mechanical loading

    International Nuclear Information System (INIS)

    Bian, H.B.; Jia, Y.; Shao, J.F.

    2012-01-01

    shrinkage in material as a result of variations of capillary pressure, surface tension or disjoining pressure. When the permeability of concrete is very low, the non uniform distribution of capillary pressure is generated and induces hydraulic gradient in the material. It is then necessary to take into account poro-mechanical coupling in partial conditions. The damage related to desiccation can be distinguished in two different processes. The first, called local effect, is related to micro-structural heterogeneity of cement-based materials. Local shear and tensile stresses can be generated at the grain scale, leading to nucleation and propagation of microcracks. In the second process, called structural effect, tensile strains or stress may be generated by non-uniform distribution of desiccation. Finally, with further coalescence of some of these defects results, the macroscopic cracks appear in the structure. After the initiation of these macro-cracks and fractures, they begin to propagate until the total failure of the structure. Thus, two failure phases could be distinguished: the inception and growth of micro-cracks and then the initiation and propagation of macroscopic discontinuous. For the first phase, the inception and growth of micro-cracks for the partially saturated porous media, a number of numerical modelling has been proposed. These works are mainly concerning the development the diffuse micro-cracks based on the continuum approaches. For avoiding pathological mesh dependence, these models generally require regularization, such as the famous non-local approach. From the computational standpoint, the numerical simulation of crack initiation and propagation in structures under mechanical loading, such as concrete beams, still represents a challenging work. More recently, in the framework of finite element methods, significant progress has been made, that is the use of extended finite element methods (XFEM) based on the partition of unity methods for the crack

  19. Action potential propagation: ion current or intramembrane electric field?

    Science.gov (United States)

    Martí, Albert; Pérez, Juan J; Madrenas, Jordi

    2018-01-01

    The established action potential propagation mechanisms do not satisfactorily explain propagation on myelinated axons given the current knowledge of biological channels and membranes. The flow across ion channels presents two possible effects: the electric potential variations across the lipid bilayers (action potential) and the propagation of an electric field through the membrane inner part. The proposed mechanism is based on intra-membrane electric field propagation, this propagation can explain the action potential saltatory propagation and its constant delay independent of distance between Ranvier nodes in myelinated axons.

  20. Propagation of Ion Acoustic Perturbations

    DEFF Research Database (Denmark)

    Pécseli, Hans

    1975-01-01

    Equations describing the propagation of ion acoustic perturbations are considered, using the assumption that the electrons are Boltzman distributed and isothermal at all times. Quasi-neutrality is also considered.......Equations describing the propagation of ion acoustic perturbations are considered, using the assumption that the electrons are Boltzman distributed and isothermal at all times. Quasi-neutrality is also considered....

  1. Feynman propagator and space-time transformation technique

    International Nuclear Information System (INIS)

    Nassar, A.B.

    1987-01-01

    We evaluate the exact propagator for the time-dependent two-dimensional charged harmonic oscillator in a time-varying magnetic field, by taking direct recourse to the corresponding Schroedinger equation. Through the usage of an appropriate space-time transformation, we show that such a propagator can be obtained from the free propagator in the new space-time coordinate system. (orig.)

  2. The quark propagator in a covariant gauge

    International Nuclear Information System (INIS)

    Bonnet, F.D.R.; Leinweber, D.B.; Williams, A.G.; Zanotti, J.M.

    2000-01-01

    Full text: The quark propagator is one of the fundamental building blocks of QCD. Results strongly depend on the ansatz for the propagator. Direct simulations of QCD on a space time lattice can provide guidance and constraints on the analytic structure of the quark propagator. On the lattice the infrared and asymptotic behaviour of the quark propagator is of particular interest since it is a reflection of the accuracy of the discretised quark action. In the deep infrared region, artefacts associated with the finite size of the lattice spacing become small. This is the most interesting region as nonperturbative physics lies here. However, the ultraviolet behaviour at large momentum of the propagator will in general strongly deviate from the correct continuum behaviour. This behaviour will be action dependent. Some interesting progress has been made in improving the ultraviolet behaviour of the propagator. A method, recently developed and referred to as tree-level correction, consists of using the knowledge of the tree-level behaviour to eliminate the obvious lattice artefacts. Tree-level correction represents a crucial step in extracting meaningful results for the mass function and the renormalisation function outside of the deep infrared region. The mass function is particularly interesting as it provides insights into the constituent quark mass as a measure of the nonperturbative physics. In this poster I will present results from the analytic structure of the propagator in recent lattice studies for a variety of fermion actions in lattice QCD. I will also present the new ratio method used to tree-level correct these quark propagators

  3. Application of propagation calculations in air quality control

    International Nuclear Information System (INIS)

    Kuelske, S.

    1993-01-01

    This paper describes the development of a methodics of propagation calculation since the foundation of the 'Landesanstalt fuer Immissionsschutz' in 1963, and its practical use in air quality control. In this context, it deals with methods for calculating stack heights and the Gaussian propagation model adopted by the Technical Code on Clean Air, the propagation of flue gas emitted via cooling towers, the propagation of accidentally released substances, odours and automobile emissions, and with flow and propagation calculation for the proximity zone of buildings as well as for meteorological fields with space and time variations and topographically varied terrain. (orig.) [de

  4. ICRF wave propagation and absorption in axisymmetric mirrors. Annual report, July 1, 1985-February 28, 1986

    International Nuclear Information System (INIS)

    Todd, A.M.M.; Phillips, M.W.

    1986-04-01

    A numerical code called GARFIELD has been developed to calculate the structure of ICRF electric fields in axisymmetric mirrors. It is being used to investigate ICRF wave structure of central cells of tandem mirror experiments. Fields are solved on a 2-D grid in the axial and radial directions. This permits us to study the effect that axial as well as radial variations of the magnetic field and density have on ICRF wave propagation and absorption. Much of this time frame was spent writing the code and refining the numerics. Initial calculations have been completed for the Phaedrus tandem mirror. These show that there is an evanescent fast wave structure in the radial direction, a standing wave formation in the axial direction, and a small amount of propagating ion cyclotron wave towards a shallow magnetic beach in the center of the mirror. In general, the fields peak on the outside which would show that the resulting pondermotive force would tend to stabilize the plasma

  5. Failure propagation tests and analysis at PNC

    International Nuclear Information System (INIS)

    Tanabe, H.; Miyake, O.; Daigo, Y.; Sato, M.

    1984-01-01

    Failure propagation tests have been conducted using the Large Leak Sodium Water Reaction Test Rig (SWAT-1) and the Steam Generator Safety Test Facility (SWAT-3) at PNC in order to establish the safety design of the LMFBR prototype Monju steam generators. Test objectives are to provide data for selecting a design basis leak (DBL), data on the time history of failure propagations, data on the mechanism of the failures, and data on re-use of tubes in the steam generators that have suffered leaks. Eighteen fundamental tests have been performed in an intermediate leak region using the SWAT-1 test rig, and ten failure propagation tests have been conducted in the region from a small leak to a large leak using the SWAT-3 test facility. From the test results it was concluded that a dominant mechanism was tube wastage, and it took more than one minute until each failure propagation occurred. Also, the total leak rate in full sequence simulation tests including a water dump was far less than that of one double-ended-guillotine (DEG) failure. Using such experimental data, a computer code, LEAP (Leak Enlargement and Propagation), has been developed for the purpose of estimating the possible maximum leak rate due to failure propagation. This paper describes the results of the failure propagation tests and the model structure and validation studies of the LEAP code. (author)

  6. Propagation of Axially Symmetric Detonation Waves

    Energy Technology Data Exchange (ETDEWEB)

    Druce, R L; Roeske, F; Souers, P C; Tarver, C M; Chow, C T S; Lee, R S; McGuire, E M; Overturf, G E; Vitello, P A

    2002-06-26

    We have studied the non-ideal propagation of detonation waves in LX-10 and in the insensitive explosive TATB. Explosively-driven, 5.8-mm-diameter, 0.125-mm-thick aluminum flyer plates were used to initiate 38-mm-diameter, hemispherical samples of LX-10 pressed to a density of 1.86 g/cm{sup 3} and of TATB at a density of 1.80 g/cm{sup 3}. The TATB powder was a grade called ultrafine (UFTATB), having an arithmetic mean particle diameter of about 8-10 {micro}m and a specific surface area of about 4.5 m{sup 2}/g. Using PMMA as a transducer, output pressure was measured at 5 discrete points on the booster using a Fabry-Perot velocimeter. Breakout time was measured on a line across the booster with a streak camera. Each of the experimental geometries was calculated using the Ignition and Growth Reactive Flow Model, the JWL++ Model and the Programmed Burn Model. Boosters at both ambient and cold (-20 C and -54 C) temperatures have been experimentally and computationally studied. A comparison of experimental and modeling results is presented.

  7. SDEM modelling of fault-propagation folding

    DEFF Research Database (Denmark)

    Clausen, O.R.; Egholm, D.L.; Poulsen, Jane Bang

    2009-01-01

    and variations in Mohr-Coulomb parameters including internal friction. Using SDEM modelling, we have mapped the propagation of the tip-line of the fault, as well as the evolution of the fold geometry across sedimentary layers of contrasting rheological parameters, as a function of the increased offset......Understanding the dynamics and kinematics of fault-propagation-folding is important for evaluating the associated hydrocarbon play, for accomplishing reliable section balancing (structural reconstruction), and for assessing seismic hazards. Accordingly, the deformation style of fault-propagation...... a precise indication of when faults develop and hence also the sequential evolution of secondary faults. Here we focus on the generation of a fault -propagated fold with a reverse sense of motion at the master fault, and varying only the dip of the master fault and the mechanical behaviour of the deformed...

  8. Pole solutions for flame front propagation

    CERN Document Server

    Kupervasser, Oleg

    2015-01-01

    This book deals with solving mathematically the unsteady flame propagation equations. New original mathematical methods for solving complex non-linear equations and investigating their properties are presented. Pole solutions for flame front propagation are developed. Premixed flames and filtration combustion have remarkable properties: the complex nonlinear integro-differential equations for these problems have exact analytical solutions described by the motion of poles in a complex plane. Instead of complex equations, a finite set of ordinary differential equations is applied. These solutions help to investigate analytically and numerically properties of the flame front propagation equations.

  9. A representation independent propagator. Pt. 1. Compact Lie groups

    International Nuclear Information System (INIS)

    Tome, W.A.

    1995-01-01

    Conventional path integral expressions for propagators are representation dependent. Rather than having to adapt each propagator to the representation in question, it is shown that for compact Lie groups it is possible to introduce a propagator that is representation independent. For a given set of kinematical variables this propagator is a single function independent of any particular choice of fiducial vector, which monetheless, correctly propagates each element of the coherent state representation associated with these kinematical variables. Although the configuration space is in general curved, nevertheless the lattice phase-space path integral for the representation independent propagator has the form appropriate to flat space. To illustrate the general theory a representation independent propagator is explicitly constructed for the Lie group SU(2). (orig.)

  10. Content Propagation in Online Social Networks

    NARCIS (Netherlands)

    Blenn, N.

    2014-01-01

    This thesis presents methods and techniques to analyze content propagation within online social networks (OSNs) using a graph theoretical approach. Important factors and different techniques to analyze and describe content propagation, starting from the smallest entity in a network, representing a

  11. A time-dependent neutron transport method of characteristics formulation with time derivative propagation

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, Adam J., E-mail: adamhoff@umich.edu; Lee, John C., E-mail: jcl@umich.edu

    2016-02-15

    A new time-dependent Method of Characteristics (MOC) formulation for nuclear reactor kinetics was developed utilizing angular flux time-derivative propagation. This method avoids the requirement of storing the angular flux at previous points in time to represent a discretized time derivative; instead, an equation for the angular flux time derivative along 1D spatial characteristics is derived and solved concurrently with the 1D transport characteristic equation. This approach allows the angular flux time derivative to be recast principally in terms of the neutron source time derivatives, which are approximated to high-order accuracy using the backward differentiation formula (BDF). This approach, called Source Derivative Propagation (SDP), drastically reduces the memory requirements of time-dependent MOC relative to methods that require storing the angular flux. An SDP method was developed for 2D and 3D applications and implemented in the computer code DeCART in 2D. DeCART was used to model two reactor transient benchmarks: a modified TWIGL problem and a C5G7 transient. The SDP method accurately and efficiently replicated the solution of the conventional time-dependent MOC method using two orders of magnitude less memory.

  12. A time-dependent neutron transport method of characteristics formulation with time derivative propagation

    International Nuclear Information System (INIS)

    Hoffman, Adam J.; Lee, John C.

    2016-01-01

    A new time-dependent Method of Characteristics (MOC) formulation for nuclear reactor kinetics was developed utilizing angular flux time-derivative propagation. This method avoids the requirement of storing the angular flux at previous points in time to represent a discretized time derivative; instead, an equation for the angular flux time derivative along 1D spatial characteristics is derived and solved concurrently with the 1D transport characteristic equation. This approach allows the angular flux time derivative to be recast principally in terms of the neutron source time derivatives, which are approximated to high-order accuracy using the backward differentiation formula (BDF). This approach, called Source Derivative Propagation (SDP), drastically reduces the memory requirements of time-dependent MOC relative to methods that require storing the angular flux. An SDP method was developed for 2D and 3D applications and implemented in the computer code DeCART in 2D. DeCART was used to model two reactor transient benchmarks: a modified TWIGL problem and a C5G7 transient. The SDP method accurately and efficiently replicated the solution of the conventional time-dependent MOC method using two orders of magnitude less memory.

  13. Steady-state propagation of interface corner crack

    DEFF Research Database (Denmark)

    Veluri, Badrinath; Jensen, Henrik Myhre

    2013-01-01

    Steady-state propagation of interface cracks close to three-dimensional corners has been analyzed. Attention was focused on modeling the shape of the interface crack front and calculating the critical stress for steady-state propagation of the crack. The crack propagation was investigated...... on the finite element method with iterative adjustment of the crack front to estimate the critical delamination stresses as a function of the fracture criterion and corner angles. The implication of the results on the delamination is discussed in terms of crack front profiles and the critical stresses...... for propagation and the angle of intersection of the crack front with the free edge....

  14. Can Neural Activity Propagate by Endogenous Electrical Field?

    Science.gov (United States)

    Qiu, Chen; Shivacharan, Rajat S.; Zhang, Mingming

    2015-01-01

    It is widely accepted that synaptic transmissions and gap junctions are the major governing mechanisms for signal traveling in the neural system. Yet, a group of neural waves, either physiological or pathological, share the same speed of ∼0.1 m/s without synaptic transmission or gap junctions, and this speed is not consistent with axonal conduction or ionic diffusion. The only explanation left is an electrical field effect. We tested the hypothesis that endogenous electric fields are sufficient to explain the propagation with in silico and in vitro experiments. Simulation results show that field effects alone can indeed mediate propagation across layers of neurons with speeds of 0.12 ± 0.09 m/s with pathological kinetics, and 0.11 ± 0.03 m/s with physiologic kinetics, both generating weak field amplitudes of ∼2–6 mV/mm. Further, the model predicted that propagation speed values are inversely proportional to the cell-to-cell distances, but do not significantly change with extracellular resistivity, membrane capacitance, or membrane resistance. In vitro recordings in mice hippocampi produced similar speeds (0.10 ± 0.03 m/s) and field amplitudes (2.5–5 mV/mm), and by applying a blocking field, the propagation speed was greatly reduced. Finally, osmolarity experiments confirmed the model's prediction that cell-to-cell distance inversely affects propagation speed. Together, these results show that despite their weak amplitude, electric fields can be solely responsible for spike propagation at ∼0.1 m/s. This phenomenon could be important to explain the slow propagation of epileptic activity and other normal propagations at similar speeds. SIGNIFICANCE STATEMENT Neural activity (waves or spikes) can propagate using well documented mechanisms such as synaptic transmission, gap junctions, or diffusion. However, the purpose of this paper is to provide an explanation for experimental data showing that neural signals can propagate by means other than synaptic

  15. In vitro propagation of Paphiopedilum orchids.

    Science.gov (United States)

    Zeng, Songjun; Huang, Weichang; Wu, Kunlin; Zhang, Jianxia; da Silva, Jaime A Teixeira; Duan, Jun

    2016-01-01

    Paphiopedilum is one of the most popular and rare orchid genera. Members of the genus are sold and exhibited as pot plants and cut flowers. Wild populations of Paphiopedilum are under the threat of extinction due to over-collection and loss of suitable habitats. A reduction in their commercial value through large-scale propagation in vitro is an option to reduce pressure from illegal collection, to attempt to meet commercial needs and to re-establish threatened species back into the wild. Although they are commercially propagated via asymbiotic seed germination, Paphiopedilum are considered to be difficult to propagate in vitro, especially by plant regeneration from tissue culture. This review aims to cover the most important aspects and to provide an up-to-date research progress on in vitro propagation of Paphiopedilum and to emphasize the importance of further improving tissue culture protocols for ex vitro-derived explants.

  16. Radio Propagation in Open-pit Mines

    DEFF Research Database (Denmark)

    Portela Lopes de Almeida, Erika; Caldwell, George; Rodriguez Larrad, Ignacio

    2017-01-01

    In this paper we present the results of an extensive measurement campaign performed at two large iron ore mining centers in Brazil at the 2.6 GHz band. Although several studies focusing on radio propagation in underground mines have been published, measurement data and careful analyses for open......-pit mines are still scarce. Our results aim at filling this gap in the literature. The research is motivated by the ongoing mine automation initiatives, where connectivity becomes critical. This paper presents the first set of results comprising measurements under a gamut of propagation conditions. A second...... paper detailing sub-GHz propagation is also in preparation. The results indicate that conventional wisdom is wrong, in other words, radio-frequency (RF) propagation in surface mines can be far more elaborate than plain free-space line-of-sight conditions. Additionally, the old mining adage “no two mines...

  17. Proceedings of the Twentieth NASA Propagation Experimenters Meeting (NAPEX 20) and the Advanced Communications Technology Satellite (ACTS) Propagation Studies Miniworkshop

    Science.gov (United States)

    Golshan, Nasser (Editor)

    1996-01-01

    The NASA Propagation Experimenters (NAPEX) Meeting is convened each year to discuss studies supported by the NASA Propagation Program. Representatives from the satellite communications (satcom) industry, academia, and government who have an interest in space-ground radio wave propagation are invited to NAPEX meetings for discussions and exchange of information. The reports delivered at these meetings by program managers and investigators present recent activities and future plans. This forum provides an opportunity for peer discussion of work in progress, timely dissemination of propagation results, and close interaction with the satcom industry.

  18. Call Centre- Computer Telephone Integration

    Directory of Open Access Journals (Sweden)

    Dražen Kovačević

    2012-10-01

    Full Text Available Call centre largely came into being as a result of consumerneeds converging with enabling technology- and by the companiesrecognising the revenue opportunities generated by meetingthose needs thereby increasing customer satisfaction. Regardlessof the specific application or activity of a Call centre, customersatisfaction with the interaction is critical to the revenuegenerated or protected by the Call centre. Physical(v, Call centreset up is a place that includes computer, telephone and supervisorstation. Call centre can be available 24 hours a day - whenthe customer wants to make a purchase, needs information, orsimply wishes to register a complaint.

  19. Dressing the nucleon propagator

    International Nuclear Information System (INIS)

    Fishman, S.; Gersten, A.

    1976-01-01

    The nucleon propagator in the ''nested bubbles'' approximation is analyzed. The approximation is built from the minimal set of diagrams which is needed to maintain the unitarity condition under two-pion production threshold in the two-nucleon Bethe--Salpeter equation. Recursive formulas for subsets of ''nested bubbles'' diagrams calculated in the framework of the pseudoscalar interaction are obtained by the use of dispersion relations. We prove that the sum of all the ''nested bubbles'' diverges. Moreover, the successive iterations are plagued with ghost poles. We prove that the first approximation--which is the so-called chain approximation--has ghost poles for any nonvanishing coupling constant. In an earlier paper we have shown that ghost poles lead to ghost cuts. These cuts are present in the ''nested bubbles.'' Ghost elimination procedures are discussed. Modifications of the ''nested bubbles'' approximation are introduced in order to obtain convergence and in order to eliminate the ghost poles and ghost cuts. In a similar way as in the Lee model, cutoff functions are introduced in order to eliminate the ghost poles. The necessary and sufficient conditions for the absence of ghost poles are formulated and analyzed. The spectral functions of the modified ''nested bubbles'' are analyzed and computed. Finally, we present a theorem, similar in its form to Levinson's theorem in scattering theory, which enables one to compute in a simple way the number of ghost poles

  20. Network propagation in the cytoscape cyberinfrastructure.

    Science.gov (United States)

    Carlin, Daniel E; Demchak, Barry; Pratt, Dexter; Sage, Eric; Ideker, Trey

    2017-10-01

    Network propagation is an important and widely used algorithm in systems biology, with applications in protein function prediction, disease gene prioritization, and patient stratification. However, up to this point it has required significant expertise to run. Here we extend the popular network analysis program Cytoscape to perform network propagation as an integrated function. Such integration greatly increases the access to network propagation by putting it in the hands of biologists and linking it to the many other types of network analysis and visualization available through Cytoscape. We demonstrate the power and utility of the algorithm by identifying mutations conferring resistance to Vemurafenib.

  1. Crack Propagation by Finite Element Method

    Directory of Open Access Journals (Sweden)

    Luiz Carlos H. Ricardo

    2018-01-01

    Full Text Available Crack propagation simulation began with the development of the finite element method; the analyses were conducted to obtain a basic understanding of the crack growth. Today structural and materials engineers develop structures and materials properties using this technique. The aim of this paper is to verify the effect of different crack propagation rates in determination of crack opening and closing stress of an ASTM specimen under a standard suspension spectrum loading from FDandE SAE Keyhole Specimen Test Load Histories by finite element analysis. To understand the crack propagation processes under variable amplitude loading, retardation effects are observed

  2. Propagation of a plasma streamer in catalyst pores

    Science.gov (United States)

    Zhang, Quan-Zhi; Bogaerts, Annemie

    2018-03-01

    Although plasma catalysis is gaining increasing interest for various environmental applications, the underlying mechanisms are still far from understood. For instance, it is not yet clear whether and how plasma streamers can propagate in catalyst pores, and what is the minimum pore size to make this happen. As this is crucial information to ensure good plasma-catalyst interaction, we study here the mechanism of plasma streamer propagation in a catalyst pore, by means of a two-dimensional particle-in-cell/Monte Carlo collision model, for various pore diameters in the nm-range to μm-range. The so-called Debye length is an important criterion for plasma penetration into catalyst pores, i.e. a plasma streamer can penetrate into pores when their diameter is larger than the Debye length. The Debye length is typically in the order of a few 100 nm up to 1 μm at the conditions under study, depending on electron density and temperature in the plasma streamer. For pores in the range of ∼50 nm, plasma can thus only penetrate to some extent and at very short times, i.e. at the beginning of a micro-discharge, before the actual plasma streamer reaches the catalyst surface and a sheath is formed in front of the surface. We can make plasma streamers penetrate into smaller pores (down to ca. 500 nm at the conditions under study) by increasing the applied voltage, which yields a higher plasma density, and thus reduces the Debye length. Our simulations also reveal that the plasma streamers induce surface charging of the catalyst pore sidewalls, causing discharge enhancement inside the pore, depending on pore diameter and depth.

  3. Propagation of synchrotron radiation through nanocapillary structures

    International Nuclear Information System (INIS)

    Bjeoumikhov, A.; Bjeoumikhova, S.; Riesemeier, H.; Radtke, M.; Wedell, R.

    2007-01-01

    The propagation of synchrotron radiation through nanocapillary structures with channel sizes of 200 nm and periods in the micrometer size has been studied experimentally. It was shown that the propagation through individual capillary channels has a mode formation character. Furthermore it was shown that during the propagation through capillary channels the coherence of synchrotron radiation is partially conserved. Interference of beams propagating through different capillary channels is observed which leads to a periodically modulated distribution of the radiation intensity in a plane far from the exit of the structure. These investigations are of high relevance for the understanding of X-ray transmission through nanocapillaries and the appearance of wave properties at this size scale

  4. Network-based analysis of software change propagation.

    Science.gov (United States)

    Wang, Rongcun; Huang, Rubing; Qu, Binbin

    2014-01-01

    The object-oriented software systems frequently evolve to meet new change requirements. Understanding the characteristics of changes aids testers and system designers to improve the quality of softwares. Identifying important modules becomes a key issue in the process of evolution. In this context, a novel network-based approach is proposed to comprehensively investigate change distributions and the correlation between centrality measures and the scope of change propagation. First, software dependency networks are constructed at class level. And then, the number of times of cochanges among classes is minded from software repositories. According to the dependency relationships and the number of times of cochanges among classes, the scope of change propagation is calculated. Using Spearman rank correlation analyzes the correlation between centrality measures and the scope of change propagation. Three case studies on java open source software projects Findbugs, Hibernate, and Spring are conducted to research the characteristics of change propagation. Experimental results show that (i) change distribution is very uneven; (ii) PageRank, Degree, and CIRank are significantly correlated to the scope of change propagation. Particularly, CIRank shows higher correlation coefficient, which suggests it can be a more useful indicator for measuring the scope of change propagation of classes in object-oriented software system.

  5. Wave propagation through an electron cyclotron resonance layer

    International Nuclear Information System (INIS)

    Westerhof, E.

    1997-01-01

    The propagation of a wave beam through an electron cyclotron resonance layer is analysed in two-dimensional slab geometry in order to assess the deviation from cold plasma propagation due to resonant, warm plasma changes in wave dispersion. For quasi-perpendicular propagation, N ' 'parallel to'' ≅ v t /c, an O-mode beam is shown to exhibit a strong wiggle in the trajectory of the centre of the beam when passing through the fundamental electron cyclotron resonance. The effects are largest for low temperatures and close to perpendicular propagation. Predictions from standard dielectric wave energy fluxes are inconsistent with the trajectory of the beam. Qualitatively identical results are obtained for the X-mode second harmonic. In contrast, the X-mode at the fundamental resonance shows significant deviations form cold plasma propagation only for strongly oblique propagation and/or high temperatures. On the basis of the obtained results a practical suggestion is made for ray tracing near electron cyclotron resonance. (Author)

  6. The ghost propagator in Coulomb gauge

    International Nuclear Information System (INIS)

    Watson, P.; Reinhardt, H.

    2011-01-01

    We present results for a numerical study of the ghost propagator in Coulomb gauge whereby lattice results for the spatial gluon propagator are used as input to solving the ghost Dyson-Schwinger equation. We show that in order to solve completely, the ghost equation must be supplemented by a boundary condition (the value of the inverse ghost propagator dressing function at zero momentum) which determines if the solution is critical (zero value for the boundary condition) or subcritical (finite value). The various solutions exhibit a characteristic behavior where all curves follow the same (critical) solution when going from high to low momenta until 'forced' to freeze out in the infrared to the value of the boundary condition. The boundary condition can be interpreted in terms of the Gribov gauge-fixing ambiguity; we also demonstrate that this is not connected to the renormalization. Further, the connection to the temporal gluon propagator and the infrared slavery picture of confinement is discussed.

  7. Investigation into stress wave propagation in metal foams

    Directory of Open Access Journals (Sweden)

    Li Lang

    2015-01-01

    Full Text Available The aim of this study is to investigate stress wave propagation in metal foams under high-speed impact loading. Three-dimensional Voronoi model is established to represent real closed-cell foam. Based on the one-dimensional stress wave theory and Voronoi model, a numerical model is developed to calculate the velocity of elastic wave and shock wave in metal foam. The effects of impact velocity and relative density of metal foam on the stress wave propagation in metal foams are explored respectively. The results show that both elastic wave and shock wave propagate faster in metal foams with larger relative density; with increasing the impact velocity, the shock wave propagation velocity increase, but the elastic wave propagation is not sensitive to the impact velocity.

  8. Call cultures in orang-utans?

    Directory of Open Access Journals (Sweden)

    Serge A Wich

    Full Text Available BACKGROUND: Several studies suggested great ape cultures, arguing that human cumulative culture presumably evolved from such a foundation. These focused on conspicuous behaviours, and showed rich geographic variation, which could not be attributed to known ecological or genetic differences. Although geographic variation within call types (accents has previously been reported for orang-utans and other primate species, we examine geographic variation in the presence/absence of discrete call types (dialects. Because orang-utans have been shown to have geographic variation that is not completely explicable by genetic or ecological factors we hypothesized that this will be similar in the call domain and predict that discrete call type variation between populations will be found. METHODOLOGY/PRINCIPAL FINDINGS: We examined long-term behavioural data from five orang-utan populations and collected fecal samples for genetic analyses. We show that there is geographic variation in the presence of discrete types of calls. In exactly the same behavioural context (nest building and infant retrieval, individuals in different wild populations customarily emit either qualitatively different calls or calls in some but not in others. By comparing patterns in call-type and genetic similarity, we suggest that the observed variation is not likely to be explained by genetic or ecological differences. CONCLUSION/SIGNIFICANCE: These results are consistent with the potential presence of 'call cultures' and suggest that wild orang-utans possess the ability to invent arbitrary calls, which spread through social learning. These findings differ substantially from those that have been reported for primates before. First, the results reported here are on dialect and not on accent. Second, this study presents cases of production learning whereas most primate studies on vocal learning were cases of contextual learning. We conclude with speculating on how these findings might

  9. Propagation Velocity of Solid Earth Tides

    Science.gov (United States)

    Pathak, S.

    2017-12-01

    One of the significant considerations in most of the geodetic investigations is to take into account the outcome of Solid Earth tides on the location and its consequent impact on the time series of coordinates. In this research work, the propagation velocity resulting from the Solid Earth tides between the Indian stations is computed. Mean daily coordinates for the stations have been computed by applying static precise point positioning technique for a day. The computed coordinates are used as an input for computing the tidal displacements at the stations by Gravity method along three directions at 1-minute interval for 24 hours. Further the baseline distances are computed between four Indian stations. Computation of the propagation velocity for Solid Earth tides can be done by the virtue of study of the concurrent effect of it in-between the stations of identified baseline distance along with the time consumed by the tides for reaching from one station to another. The propagation velocity helps in distinguishing the impact at any station if the consequence at a known station for a specific time-period is known. Thus, with the knowledge of propagation velocity, the spatial and temporal effects of solid earth tides can be estimated with respect to a known station. As theoretically explained, the tides generated are due to the position of celestial bodies rotating about Earth. So the need of study is to observe the correlation of propagation velocity with the rotation speed of the Earth. The propagation velocity of Solid Earth tides comes out to be in the range of 440-470 m/s. This velocity comes out to be in a good agreement with the Earth's rotation speed.

  10. Modeling Passive Propagation of Malwares on the WWW

    Science.gov (United States)

    Chunbo, Liu; Chunfu, Jia

    Web-based malwares host in websites fixedly and download onto user's computers automatically while users browse. This passive propagation pattern is different from that of traditional viruses and worms. A propagation model based on reverse web graph is proposed. In this model, propagation of malwares is analyzed by means of random jump matrix which combines orderness and randomness of user browsing behaviors. Explanatory experiments, which has single or multiple propagation sources respectively, prove the validity of the model. Using this model, people can evaluate the hazardness of specified websites and take corresponding countermeasures.

  11. Network propagation in the cytoscape cyberinfrastructure.

    Directory of Open Access Journals (Sweden)

    Daniel E Carlin

    2017-10-01

    Full Text Available Network propagation is an important and widely used algorithm in systems biology, with applications in protein function prediction, disease gene prioritization, and patient stratification. However, up to this point it has required significant expertise to run. Here we extend the popular network analysis program Cytoscape to perform network propagation as an integrated function. Such integration greatly increases the access to network propagation by putting it in the hands of biologists and linking it to the many other types of network analysis and visualization available through Cytoscape. We demonstrate the power and utility of the algorithm by identifying mutations conferring resistance to Vemurafenib.

  12. Energy model for rumor propagation on social networks

    Science.gov (United States)

    Han, Shuo; Zhuang, Fuzhen; He, Qing; Shi, Zhongzhi; Ao, Xiang

    2014-01-01

    With the development of social networks, the impact of rumor propagation on human lives is more and more significant. Due to the change of propagation mode, traditional rumor propagation models designed for word-of-mouth process may not be suitable for describing the rumor spreading on social networks. To overcome this shortcoming, we carefully analyze the mechanisms of rumor propagation and the topological properties of large-scale social networks, then propose a novel model based on the physical theory. In this model, heat energy calculation formula and Metropolis rule are introduced to formalize this problem and the amount of heat energy is used to measure a rumor’s impact on a network. Finally, we conduct track experiments to show the evolution of rumor propagation, make comparison experiments to contrast the proposed model with the traditional models, and perform simulation experiments to study the dynamics of rumor spreading. The experiments show that (1) the rumor propagation simulated by our model goes through three stages: rapid growth, fluctuant persistence and slow decline; (2) individuals could spread a rumor repeatedly, which leads to the rumor’s resurgence; (3) rumor propagation is greatly influenced by a rumor’s attraction, the initial rumormonger and the sending probability.

  13. Synaptic Contacts Enhance Cell-to-Cell Tau Pathology Propagation

    Directory of Open Access Journals (Sweden)

    Sara Calafate

    2015-05-01

    Full Text Available Accumulation of insoluble Tau protein aggregates and stereotypical propagation of Tau pathology through the brain are common hallmarks of tauopathies, including Alzheimer’s disease (AD. Propagation of Tau pathology appears to occur along connected neurons, but whether synaptic contacts between neurons are facilitating propagation has not been demonstrated. Using quantitative in vitro models, we demonstrate that, in parallel to non-synaptic mechanisms, synapses, but not merely the close distance between the cells, enhance the propagation of Tau pathology between acceptor hippocampal neurons and Tau donor cells. Similarly, in an artificial neuronal network using microfluidic devices, synapses and synaptic activity are promoting neuronal Tau pathology propagation in parallel to the non-synaptic mechanisms. Our work indicates that the physical presence of synaptic contacts between neurons facilitate Tau pathology propagation. These findings can have implications for synaptic repair therapies, which may turn out to have adverse effects by promoting propagation of Tau pathology.

  14. Synaptic Contacts Enhance Cell-to-Cell Tau Pathology Propagation.

    Science.gov (United States)

    Calafate, Sara; Buist, Arjan; Miskiewicz, Katarzyna; Vijayan, Vinoy; Daneels, Guy; de Strooper, Bart; de Wit, Joris; Verstreken, Patrik; Moechars, Diederik

    2015-05-26

    Accumulation of insoluble Tau protein aggregates and stereotypical propagation of Tau pathology through the brain are common hallmarks of tauopathies, including Alzheimer's disease (AD). Propagation of Tau pathology appears to occur along connected neurons, but whether synaptic contacts between neurons are facilitating propagation has not been demonstrated. Using quantitative in vitro models, we demonstrate that, in parallel to non-synaptic mechanisms, synapses, but not merely the close distance between the cells, enhance the propagation of Tau pathology between acceptor hippocampal neurons and Tau donor cells. Similarly, in an artificial neuronal network using microfluidic devices, synapses and synaptic activity are promoting neuronal Tau pathology propagation in parallel to the non-synaptic mechanisms. Our work indicates that the physical presence of synaptic contacts between neurons facilitate Tau pathology propagation. These findings can have implications for synaptic repair therapies, which may turn out to have adverse effects by promoting propagation of Tau pathology. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Soluble Aβ aggregates can inhibit prion propagation.

    Science.gov (United States)

    Sarell, Claire J; Quarterman, Emma; Yip, Daniel C-M; Terry, Cassandra; Nicoll, Andrew J; Wadsworth, Jonathan D F; Farrow, Mark A; Walsh, Dominic M; Collinge, John

    2017-11-01

    Mammalian prions cause lethal neurodegenerative diseases such as Creutzfeldt-Jakob disease (CJD) and consist of multi-chain assemblies of misfolded cellular prion protein (PrP C ). Ligands that bind to PrP C can inhibit prion propagation and neurotoxicity. Extensive prior work established that certain soluble assemblies of the Alzheimer's disease (AD)-associated amyloid β-protein (Aβ) can tightly bind to PrP C , and that this interaction may be relevant to their toxicity in AD. Here, we investigated whether such soluble Aβ assemblies might, conversely, have an inhibitory effect on prion propagation. Using cellular models of prion infection and propagation and distinct Aβ preparations, we found that the form of Aβ assemblies which most avidly bound to PrP in vitro also inhibited prion infection and propagation. By contrast, forms of Aβ which exhibit little or no binding to PrP were unable to attenuate prion propagation. These data suggest that soluble aggregates of Aβ can compete with prions for binding to PrP C and emphasize the bidirectional nature of the interplay between Aβ and PrP C in Alzheimer's and prion diseases. Such inhibitory effects of Aβ on prion propagation may contribute to the apparent fall-off in the incidence of sporadic CJD at advanced age where cerebral Aβ deposition is common. © 2017 The Authors.

  16. Proceedings of the Twenty-First NASA Propagation Experimenters Meeting (NAPEX XXI) and the Advanced Communications Technology Satellite (ACTS) Propagation Studies Miniworkshop

    Science.gov (United States)

    Golshan, Nasser (Editor)

    1997-01-01

    The NASA Propagation Experimenters (NAPEX) meeting is convened each year to discuss studies supported by the NASA Propagation Program. Representatives from the satellite communications industry, academia and government who have an interest in space-ground radio wave propagation are invited to NAPEX meetings for discussions and exchange of information. The reports delivered at this meeting by program managers and investigators present recent activities and future plans. This forum provides an opportunity for peer discussion of work in progress, timely dissemination of propagation results, and close interaction with the satellite communications industry.

  17. Magnetosheath Propagation Time of Solar Wind Directional Discontinuities

    Science.gov (United States)

    Samsonov, A. A.; Sibeck, D. G.; Dmitrieva, N. P.; Semenov, V. S.; Slivka, K. Yu.; Å afránkova, J.; Němeček, Z.

    2018-05-01

    Observed delays in the ground response to solar wind directional discontinuities have been explained as the result of larger than expected magnetosheath propagation times. Recently, Samsonov et al. (2017, https://doi.org/10.1002/2017GL075020) showed that the typical time for a southward interplanetary magnetic field (IMF) turning to propagate across the magnetosheath is 14 min. Here by using a combination of magnetohydrodynamic simulations, spacecraft observations, and analytic calculations, we study the dependence of the propagation time on solar wind parameters and near-magnetopause cutoff speed. Increases in the solar wind speed result in greater magnetosheath plasma flow velocities, decreases in the magnetosheath thickness and, as a result, decreases in the propagation time. Increases in the IMF strength result in increases in the magnetosheath thickness and increases in the propagation time. Both magnetohydrodynamic simulations and observations suggest that propagation times are slightly smaller for northward IMF turnings. Magnetosheath flow deceleration must be taken into account when predicting the arrival times of solar wind structures at the dayside magnetopause.

  18. In vitro propagation of Irvingia gabonensis

    African Journals Online (AJOL)

    GREGO

    2007-04-16

    Apr 16, 2007 ... Full-grown plantlets were obtained and work is in progress on mass propagation. ... subsequent mass propagation to produce seedlings for farmers, and to improve food security and ... Shooting and rooting were observed, and full grown plantlets were obtained. ¼ MS +0.2 mg KIN. +0.1 mg NAA. Rooting ...

  19. Propagation of microwaves in pulsar magnetospheres

    Energy Technology Data Exchange (ETDEWEB)

    Bodo, G; Ferrari, A [Turin Univ. (Italy). Ist. di Fisica Generale; Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica); Massaglia, S [Turin Univ. (Italy). Ist. di Fisica Generale; Cambridge Univ. (UK). Inst. of Astronomy)

    1981-12-01

    We discuss the dispersion relation of linearly-polarized waves, propagating along a strong background magnetic field embedded in an electron-positron plasma. The results are then applied to the study of the propagation conditions of coherent curvature radio radiation inside neutron stars magnetospheres, as produced by electric discharges following current pulsar models.

  20. The difficult medical emergency call

    DEFF Research Database (Denmark)

    Møller, Thea Palsgaard; Kjærulff, Thora Majlund; Viereck, Søren

    2017-01-01

    BACKGROUND: Pre-hospital emergency care requires proper categorization of emergency calls and assessment of emergency priority levels by the medical dispatchers. We investigated predictors for emergency call categorization as "unclear problem" in contrast to "symptom-specific" categories and the ......BACKGROUND: Pre-hospital emergency care requires proper categorization of emergency calls and assessment of emergency priority levels by the medical dispatchers. We investigated predictors for emergency call categorization as "unclear problem" in contrast to "symptom-specific" categories...... and the effect of categorization on mortality. METHODS: Register-based study in a 2-year period based on emergency call data from the emergency medical dispatch center in Copenhagen combined with nationwide register data. Logistic regression analysis (N = 78,040 individuals) was used for identification...

  1. BUSINESS MODELS FOR EXTENDING OF 112 EMERGENCY CALL CENTER CAPABILITIES WITH E-CALL FUNCTION INSERTION

    Directory of Open Access Journals (Sweden)

    Pop Dragos Paul

    2010-12-01

    Full Text Available The present article concerns present status of implementation in Romania and Europe of eCall service and the proposed business models regarding eCall function implementation in Romania. eCall system is used for reliable transmission in case of crush between In Vehicle System and Public Service Answering Point, via the voice channel of cellular and Public Switched Telephone Network (PSTN. eCall service could be initiated automatically or manual the driver. All data presented in this article are part of researches made by authors in the Sectorial Contract Implementation study regarding eCall system, having as partners ITS Romania and Electronic Solution, with the Romanian Ministry of Communication and Information Technology as beneficiary.

  2. Inward propagating chemical waves in Taylor vortices.

    Science.gov (United States)

    Thompson, Barnaby W; Novak, Jan; Wilson, Mark C T; Britton, Melanie M; Taylor, Annette F

    2010-04-01

    Advection-reaction-diffusion (ARD) waves in the Belousov-Zhabotinsky reaction in steady Taylor-Couette vortices have been visualized using magnetic-resonance imaging and simulated using an adapted Oregonator model. We show how propagating wave behavior depends on the ratio of advective, chemical and diffusive time scales. In simulations, inward propagating spiral flamelets are observed at high Damköhler number (Da). At low Da, the reaction distributes itself over several vortices and then propagates inwards as contracting ring pulses--also observed experimentally.

  3. Against dogma: On superluminal propagation in classical electromagnetism

    Science.gov (United States)

    Weatherall, James Owen

    2014-11-01

    It is deeply entrenched dogma that relativity theory prohibits superluminal propagation. It is also experimentally well-established that under some circumstances, classical electromagnetic fields propagate through a dielectric medium with superluminal group velocities and superluminal phase velocities. But it is usually claimed that these superluminal velocities do not violate the relativistic prohibition. Here I analyze electromagnetic fields in a dielectric medium within a framework for understanding superluminal propagation recently developed by Geroch (1996, 2011) and elaborated by Earman (2014). I will argue that for some parameter values, electromagnetic fields do propagate superluminally in the Geroch-Earman sense.

  4. Measuring propagation speed of Coulomb fields

    Energy Technology Data Exchange (ETDEWEB)

    Sangro, R. de; Finocchiaro, G.; Patteri, P.; Piccolo, M.; Pizzella, G. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, Frascati (Italy)

    2015-03-01

    The problem of gravity propagation has been subject of discussion for quite a long time: Newton, Laplace and, in relatively more modern times, Eddington pointed out that, if gravity propagated with finite velocity, planet motion around the sun would become unstable due to a torque originating from time lag of the gravitational interactions. Such an odd behavior can be found also in electromagnetism, when one computes the propagation of the electric fields generated by a set of uniformly moving charges. As a matter of fact the Lienard-Weichert retarded potential leads to the same formula as the one obtained assuming that the electric field propagate with infinite velocity. The Feynman explanation for this apparent paradox was based on the fact that uniform motions last indefinitely. To verify such an explanation, we performed an experiment to measure the time/space evolution of the electric field generated by an uniformly moving electron beam. The results we obtain, on a finite lifetime kinematical state, are compatible with an electric field rigidly carried by the beam itself. (orig.)

  5. Wind turbine noise propagation modelling: An unsteady approach

    DEFF Research Database (Denmark)

    Barlas, Emre; Zhu, Wei Jun; Shen, Wen Zhong

    2016-01-01

    Wind turbine sound generation and propagation phenomena are inherently time dependent, hence tools that incorporate the dynamic nature of these two issues are needed for accurate modelling. In this paper, we investigate the sound propagation from a wind turbine by considering the effects of unste...... Pressure Level (SPL).......Wind turbine sound generation and propagation phenomena are inherently time dependent, hence tools that incorporate the dynamic nature of these two issues are needed for accurate modelling. In this paper, we investigate the sound propagation from a wind turbine by considering the effects...... of unsteady flow around it and time dependent source characteristics. For the acoustics modelling we employ the Parabolic Equation (PE) method while Large Eddy Simulation (LES) as well as synthetically generated turbulence fields are used to generate the medium flow upon which sound propagates. Unsteady...

  6. Assessing call centers’ success:

    Directory of Open Access Journals (Sweden)

    Hesham A. Baraka

    2013-07-01

    This paper introduces a model to evaluate the performance of call centers based on the Delone and McLean Information Systems success model. A number of indicators are identified to track the call center’s performance. Mapping of the proposed indicators to the six dimensions of the D&M model is presented. A Weighted Call Center Performance Index is proposed to assess the call center performance; the index is used to analyze the effect of the identified indicators. Policy-Weighted approach was used to assume the weights with an analysis of different weights for each dimension. The analysis of the different weights cases gave priority to the User satisfaction and net Benefits dimension as the two outcomes from the system. For the input dimensions, higher priority was given to the system quality and the service quality dimension. Call centers decision makers can use the tool to tune the different weights in order to reach the objectives set by the organization. Multiple linear regression analysis was used in order to provide a linear formula for the User Satisfaction dimension and the Net Benefits dimension in order to be able to forecast the values for these two dimensions as function of the other dimensions

  7. 78 FR 76218 - Rural Call Completion

    Science.gov (United States)

    2013-12-17

    ... calls to rural areas, and enforce restrictions against blocking, choking, reducing, or restricting calls... to alert the Commission of systemic problems receiving calls from a particular originating long... associated with completing calls to rural areas. These rules will also enhance our ability to enforce...

  8. Karyopherin-Mediated Nuclear Import of the Homing Endonuclease VMA1-Derived Endonuclease Is Required for Self-Propagation of the Coding Region

    OpenAIRE

    Nagai, Yuri; Nogami, Satoru; Kumagai-Sano, Fumi; Ohya, Yoshikazu

    2003-01-01

    VMA1-derived endonuclease (VDE), a site-specific endonuclease in Saccharomyces cerevisiae, enters the nucleus to generate a double-strand break in the VDE-negative allelic locus, mediating the self-propagating gene conversion called homing. Although VDE is excluded from the nucleus in mitotic cells, it relocalizes at premeiosis, becoming localized in both the nucleus and the cytoplasm in meiosis. The nuclear localization of VDE is induced by inactivation of TOR kinases, which constitute centr...

  9. Propagation in a waveguide with range-dependent seabed properties.

    Science.gov (United States)

    Holland, Charles W

    2010-11-01

    The ocean environment contains features affecting acoustic propagation that vary on a wide range of time and space scales. A significant body of work over recent decades has aimed at understanding the effects of water column spatial and temporal variability on acoustic propagation. Much less is understood about the impact of spatial variability of seabed properties on propagation, which is the focus of this study. Here, a simple, intuitive expression for propagation with range-dependent boundary properties and uniform water depth is derived. It is shown that incoherent range-dependent propagation depends upon the geometric mean of the seabed plane-wave reflection coefficient and the arithmetic mean of the cycle distance. Thus, only the spatial probability distributions (pdfs) of the sediment properties are required. Also, it is shown that the propagation over a range-dependent seabed tends to be controlled by the lossiest, not the hardest, sediments. Thus, range-dependence generally leads to higher propagation loss than would be expected, due for example to lossy sediment patches and/or nulls in the reflection coefficient. In a few instances, propagation over a range-dependent seabed can be calculated using range-independent sediment properties. The theory may be useful for other (non-oceanic) waveguides.

  10. Research on Trust Propagation Models in Reputation Management Systems

    Directory of Open Access Journals (Sweden)

    Zhiyuan Su

    2014-01-01

    Full Text Available Feedback based reputation systems continue to gain popularity in eCommerce and social media systems today and reputation management in large social networks needs to manage cold start and sparseness in terms of feedback. Trust propagation has been widely recognized as an effective mechanism to handle these problems. In this paper we study the characterization of trust propagation models in the context of attack resilience. We characterize trust propagation models along three dimensions: (i uniform propagation and conditional propagation, (ii jump strategies for breaking unwanted cliques, and (iii decay factors for differentiating recent trust history from remote past history. We formally and experimentally show that feedback similarity is a critical measure for countering colluding attacks in reputation systems. Without feedback similarity guided control, trust propagations are vulnerable to different types of colluding attacks.

  11. The Green-function transform and wave propagation

    Directory of Open Access Journals (Sweden)

    Colin eSheppard

    2014-11-01

    Full Text Available Fourier methods well known in signal processing are applied to three-dimensional wave propagation problems. The Fourier transform of the Green function, when written explicitly in terms of a real-valued spatial frequency, consists of homogeneous and inhomogeneous components. Both parts are necessary to result in a pure out-going wave that satisfies causality. The homogeneous component consists only of propagating waves, but the inhomogeneous component contains both evanescent and propagating terms. Thus we make a distinction between inhomogeneous waves and evanescent waves. The evanescent component is completely contained in the region of the inhomogeneous component outside the k-space sphere. Further, propagating waves in the Weyl expansion contain both homogeneous and inhomogeneous components. The connection between the Whittaker and Weyl expansions is discussed. A list of relevant spherically symmetric Fourier transforms is given.

  12. ADVANCES IN THE PROPAGATION OF RAMBUTAN TREE

    Directory of Open Access Journals (Sweden)

    RENATA APARECIDA DE ANDRADE

    2017-12-01

    Full Text Available ABSTRACT The reality of Brazilian fruit farming is demonstrating increasing demand for sustainable information about native and exotic fruit, which can diversify and elevate the efficiency of fruit exploitation. Research on propagation of fruits tree is very important so that it can provide a protocol for suitable multiplication of this fruitful. Due to the great genetic diversity of rambutan plants, it is recommended the use of vegetative propagated plants. This research aimed to evaluate the propagation of rambutan by cuttings, layering and grafting, as well as seed germination and viability without storage. The results of this research indicate that this species can be successfully propagated by layering, grafting and seeds. We also observed that the germination percentage of seeds kept inside the fruits for six days were not influenced by the different substrates used in this experiment.

  13. Distributed Software-Attestation Defense against Sensor Worm Propagation

    Directory of Open Access Journals (Sweden)

    Jun-Won Ho

    2015-01-01

    Full Text Available Wireless sensor networks are vulnerable to sensor worm attacks in which the attacker compromises a few nodes and makes these compromised nodes initiate worm spread over the network, targeting the worm infection of the whole nodes in the network. Several defense mechanisms have been proposed to prevent worm propagation in wireless sensor networks. Although these proposed schemes use software diversity technique for worm propagation prevention under the belief that different software versions do not have common vulnerability, they have fundamental drawback in which it is difficult to realize the aforementioned belief in sensor motes. To resolve this problem, we propose on-demand software-attestation based scheme to defend against worm propagation in sensor network. The main idea of our proposed scheme is to perform software attestations against sensor nodes in on-demand manner and detect the infected nodes by worm, resulting in worm propagation block in the network. Through analysis, we show that our proposed scheme defends against worm propagation in efficient and robust manner. Through simulation, we demonstrate that our proposed scheme stops worm propagation at the reasonable overhead while preventing a majority of sensor nodes from being infected by worm.

  14. Variation of Quench Propagation Velocities in YBCO Cables

    CERN Document Server

    Härö, E.; Stenvall, A.; 10.1007/s10948-015-2976-y

    2015-01-01

    changes during the quench. Due to the large temperature margin between the operation and the current sharing temperatures, the normal zone does not propagate with the temperature front. This means that the temperature will rise in a considerably larger volume when compared to the quenched volume. Thus, the evolution of the temperature distribution below current sharing temperature Tcs after the quench onset affects the normal zone propagation velocity in HTS more than in LTS coils. This can be seen as an acceleration of the quench propagation velocities while the quench evolves when margin to Tcs is high. In this paper we scrutinize quench propagation in a stack of YBCO cables with an in-house finite element method software which solves the heat diffusion equation. We compute the longitudinal and transverse normal zone propagation velocities at various distances from the hot spot to demonstrate the distance-variation...

  15. Propagation considerations in land mobile satellite transmission

    Science.gov (United States)

    Vogel, W. J.; Smith, E. K.

    1985-01-01

    It appears likely that the Land Mobile Satellite Services (LMSS) will be authorized by the FCC for operation in the 800 to 900 MHz (UHF) and possibly near 1500 MHz (L-band). Propagation problems are clearly an important factor in the effectiveness of this service, but useful measurements are few, and produced contradictory interpretations. A first order overview of existing measurements is presented with particular attention to the first two NASA balloon to mobile vehicle propagation experiments. Some physical insight into the interpretation of propagation effects in LMSS transmissions is provided.

  16. Wave propagation in thermoelastic saturated porous medium

    Indian Academy of Sciences (India)

    the existence and propagation of four waves in the medium. Three of the waves are ... predicted infinite speed for propagation of ther- mal signals. Lord and ..... saturated reservoir rock (North-sea Sandstone) is chosen for the numerical model ...

  17. Signal propagation along the axon.

    Science.gov (United States)

    Rama, Sylvain; Zbili, Mickaël; Debanne, Dominique

    2018-03-08

    Axons link distant brain regions and are usually considered as simple transmission cables in which reliable propagation occurs once an action potential has been generated. Safe propagation of action potentials relies on specific ion channel expression at strategic points of the axon such as nodes of Ranvier or axonal branch points. However, while action potentials are generally considered as the quantum of neuronal information, their signaling is not entirely digital. In fact, both their shape and their conduction speed have been shown to be modulated by activity, leading to regulations of synaptic latency and synaptic strength. We report here newly identified mechanisms of (1) safe spike propagation along the axon, (2) compartmentalization of action potential shape in the axon, (3) analog modulation of spike-evoked synaptic transmission and (4) alteration in conduction time after persistent regulation of axon morphology in central neurons. We discuss the contribution of these regulations in information processing. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Parallel Reservoir Simulations with Sparse Grid Techniques and Applications to Wormhole Propagation

    KAUST Repository

    Wu, Yuanqing

    2015-09-08

    In this work, two topics of reservoir simulations are discussed. The first topic is the two-phase compositional flow simulation in hydrocarbon reservoir. The major obstacle that impedes the applicability of the simulation code is the long run time of the simulation procedure, and thus speeding up the simulation code is necessary. Two means are demonstrated to address the problem: parallelism in physical space and the application of sparse grids in parameter space. The parallel code can gain satisfactory scalability, and the sparse grids can remove the bottleneck of flash calculations. Instead of carrying out the flash calculation in each time step of the simulation, a sparse grid approximation of all possible results of the flash calculation is generated before the simulation. Then the constructed surrogate model is evaluated to approximate the flash calculation results during the simulation. The second topic is the wormhole propagation simulation in carbonate reservoir. In this work, different from the traditional simulation technique relying on the Darcy framework, we propose a new framework called Darcy-Brinkman-Forchheimer framework to simulate wormhole propagation. Furthermore, to process the large quantity of cells in the simulation grid and shorten the long simulation time of the traditional serial code, standard domain-based parallelism is employed, using the Hypre multigrid library. In addition to that, a new technique called “experimenting field approach” to set coefficients in the model equations is introduced. In the 2D dissolution experiments, different configurations of wormholes and a series of properties simulated by both frameworks are compared. We conclude that the numerical results of the DBF framework are more like wormholes and more stable than the Darcy framework, which is a demonstration of the advantages of the DBF framework. The scalability of the parallel code is also evaluated, and good scalability can be achieved. Finally, a mixed

  19. Sleep Quality of Call Handlers Employed in International Call Centers in National Capital Region of Delhi, India.

    Science.gov (United States)

    Raja, J D; Bhasin, S K

    2016-10-01

    Call center sector in India is a relatively new and fast growing industry driving employment and growth in modern India today. Most international call centers in National Capital Region (NCR) of Delhi operate at odd work hours corresponding to a time suitable fortheir international customers. The sleep quality of call handlers employed in these call centers is in jeopardy owing to their altered sleep schedule. To assess the sleep quality and determine its independent predictors among call handlers employed in international call centers in NCR of Delhi. A cross-sectional questionnaire-based study was conducted on 375 call handlers aged 18-39 years employed in international call centers in NCR of Delhi. Sleep quality was assessed using Athens Insomnia scale along with a pre-tested, structured questionnaire. The mean age of respondents was 24.6 (SD 2.4) years. 78% of participants were male. 83.5% of respondents were unmarried. 44.3% of call handlers were cigarette smokers. Physical ailments were reported by 37% call handlers. 77.6% of call handlers had somesuspicion of insomnia or suspected insomnia; the rest had no sleep problem. Smoking, poor social support, heavy workload, lack of relaxation facility at office, and prolonged travel time to office were independent predictors of sleep quality (pSafeguarding their health becomes an occupational health challenge to public health specialists.

  20. Canada Basin Acoustic Propagation Experiment (CANAPE)

    Science.gov (United States)

    2015-09-30

    acoustic communications, acoustic navigation, or acoustic remote sensing of the ocean interior . RELATED PROJECTS The 2015 CANAPE pilot study was a...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Canada Basin Acoustic Propagation Experiment (CANAPE...ocean structure. Changes in sea ice and the water column affect both acoustic propagation and ambient noise. This implies that what was learned

  1. Topology optimization of wave-propagation problems

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard; Sigmund, Ole

    2006-01-01

    Topology optimization is demonstrated as a useful tool for systematic design of wave-propagation problems. We illustrate the applicability of the method for optical, acoustic and elastic devices and structures.......Topology optimization is demonstrated as a useful tool for systematic design of wave-propagation problems. We illustrate the applicability of the method for optical, acoustic and elastic devices and structures....

  2. A Workflow-Oriented Approach To Propagation Models In Heliophysics

    Directory of Open Access Journals (Sweden)

    Gabriele Pierantoni

    2014-01-01

    Full Text Available The Sun is responsible for the eruption of billions of tons of plasma andthe generation of near light-speed particles that propagate throughout the solarsystem and beyond. If directed towards Earth, these events can be damaging toour tecnological infrastructure. Hence there is an effort to understand the causeof the eruptive events and how they propagate from Sun to Earth. However, thephysics governing their propagation is not well understood, so there is a need todevelop a theoretical description of their propagation, known as a PropagationModel, in order to predict when they may impact Earth. It is often difficultto define a single propagation model that correctly describes the physics ofsolar eruptive events, and even more difficult to implement models capable ofcatering for all these complexities and to validate them using real observational data.In this paper, we envisage that workflows offer both a theoretical andpractical framerwork for a novel approach to propagation models. We definea mathematical framework that aims at encompassing the different modalitieswith which workflows can be used, and provide a set of generic building blockswritten in the TAVERNA workflow language that users can use to build theirown propagation models. Finally we test both the theoretical model and thecomposite building blocks of the workflow with a real Science Use Case that wasdiscussed during the 4th CDAW (Coordinated Data Analysis Workshop eventheld by the HELIO project. We show that generic workflow building blocks canbe used to construct a propagation model that succesfully describes the transitof solar eruptive events toward Earth and predict a correct Earth-impact time

  3. Noise propagation in two-step series MAPK cascade.

    Directory of Open Access Journals (Sweden)

    Venkata Dhananjaneyulu

    Full Text Available Series MAPK enzymatic cascades, ubiquitously found in signaling networks, act as signal amplifiers and play a key role in processing information during signal transduction in cells. In activated cascades, cell-to-cell variability or noise is bound to occur and thereby strongly affects the cellular response. Commonly used linearization method (LM applied to Langevin type stochastic model of the MAPK cascade fails to accurately predict intrinsic noise propagation in the cascade. We prove this by using extensive stochastic simulations for various ranges of biochemical parameters. This failure is due to the fact that the LM ignores the nonlinear effects on the noise. However, LM provides a good estimate of the extrinsic noise propagation. We show that the correct estimate of intrinsic noise propagation in signaling networks that contain at least one enzymatic step can be obtained only through stochastic simulations. Noise propagation in the cascade depends on the underlying biochemical parameters which are often unavailable. Based on a combination of global sensitivity analysis (GSA and stochastic simulations, we developed a systematic methodology to characterize noise propagation in the cascade. GSA predicts that noise propagation in MAPK cascade is sensitive to the total number of upstream enzyme molecules and the total number of molecules of the two substrates involved in the cascade. We argue that the general systematic approach proposed and demonstrated on MAPK cascade must accompany noise propagation studies in biological networks.

  4. Non-perturbative power corrections to ghost and gluon propagators

    International Nuclear Information System (INIS)

    Boucaud, Philippe; Leroy, Jean-Pierre; Yaouanc, Alain Le; Lokhov, Alexey; Micheli, Jacques; Pene, Olivier; RodrIguez-Quintero, Jose; Roiesnel, Claude

    2006-01-01

    We study the dominant non-perturbative power corrections to the ghost and gluon propagators in Landau gauge pure Yang-Mills theory using OPE and lattice simulations. The leading order Wilson coefficients are proven to be the same for both propagators. The ratio of the ghost and gluon propagators is thus free from this dominant power correction. Indeed, a purely perturbative fit of this ratio gives smaller value ( ≅ 270MeV) of Λ M-barS-bar than the one obtained from the propagators separately( ≅ 320MeV). This argues in favour of significant non-perturbative ∼ 1/q 2 power corrections in the ghost and gluon propagators. We check the self-consistency of the method

  5. A photon propagator on de Sitter in covariant gauges

    NARCIS (Netherlands)

    Domazet, S.; Prokopec, T.

    2014-01-01

    We construct a de Sitter invariant photon propagator in general covariant gauges. Our result is a natural generalization of the Allen-Jacobson photon propagator in Feynman gauge. Our propagator reproduces the correct response to a point static charge and the one-loop electromagnetic stress-energy

  6. Callings and Organizational Behavior

    Science.gov (United States)

    Elangovan, A. R.; Pinder, Craig C.; McLean, Murdith

    2010-01-01

    Current literature on careers, social identity and meaning in work tends to understate the multiplicity, historical significance, and nuances of the concept of calling(s). In this article, we trace the evolution of the concept from its religious roots into secular realms and develop a typology of interpretations using occupation and religious…

  7. Correlations and fluctuations in reflection coefficients for coherent wave propagation in disordered scattering media

    International Nuclear Information System (INIS)

    Wang, L.; Feng, S.

    1989-01-01

    The relation between the reflection coefficients and the Green's function for a coherent wave propagation in a disordered elastic-scattering medium is derived. The sum rule of the reflection and transmission coefficients corresponding to probability conservation is shown rigorously for an arbitrary scattering potential. The correlation function of the reflection coefficients is then calculated by using a Feynman-diagrammatic approach in the weak-localized multiple-scattering regime (L much-gt l much-gt λ). The result is in agreement with recent experiments on the so-called ''memory effect'' in reflection coefficients. A more general condition under which the memory effect can occur is derived. Differences between the the correlation functions for reflection and that for transmission are discussed

  8. Uncertain call likelihood negatively affects sleep and next-day cognitive performance while on-call in a laboratory environment.

    Science.gov (United States)

    Sprajcer, Madeline; Jay, Sarah M; Vincent, Grace E; Vakulin, Andrew; Lack, Leon; Ferguson, Sally A

    2018-05-11

    On-call working arrangements are employed in a number of industries to manage unpredictable events, and often involve tasks that are safety- or time-critical. This study investigated the effects of call likelihood during an overnight on-call shift on self-reported pre-bed anxiety, sleep and next-day cognitive performance. A four-night laboratory-based protocol was employed, with an adaptation, a control and two counterbalanced on-call nights. On one on-call night, participants were instructed that they would definitely be called during the night, while on the other on-call night they were told they may be called. The State-Trait Anxiety Inventory form x-1 was used to investigate pre-bed anxiety, and sleep was assessed using polysomnography and power spectral analysis of the sleep electroencephalographic analysis. Cognitive performance was assessed four times daily using a 10-min psychomotor vigilance task. Participants felt more anxious before bed when they were definitely going to be called, compared with the control and maybe conditions. Conversely, participants experienced significantly less non-rapid eye movement and stage two sleep and poorer cognitive performance when told they may be called. Further, participants had significantly more rapid eye movement sleep in the maybe condition, which may be an adaptive response to the stress associated with this on-call condition. It appears that self-reported anxiety may not be linked with sleep outcomes while on-call. However, this research indicates that it is important to take call likelihood into consideration when constructing rosters and risk-management systems for on-call workers.

  9. Uncertainty Propagation in an Ecosystem Nutrient Budget.

    Science.gov (United States)

    New aspects and advancements in classical uncertainty propagation methods were used to develop a nutrient budget with associated error for a northern Gulf of Mexico coastal embayment. Uncertainty was calculated for budget terms by propagating the standard error and degrees of fr...

  10. Ion stochastic heating by obliquely propagating magnetosonic waves

    International Nuclear Information System (INIS)

    Gao Xinliang; Lu Quanming; Wu Mingyu; Wang Shui

    2012-01-01

    The ion motions in obliquely propagating Alfven waves with sufficiently large amplitudes have already been studied by Chen et al.[Phys. Plasmas 8, 4713 (2001)], and it was found that the ion motions are stochastic when the wave frequency is at a fraction of the ion gyro-frequency. In this paper, with test particle simulations, we investigate the ion motions in obliquely propagating magnetosonic waves and find that the ion motions also become stochastic when the amplitude of the magnetosonic waves is sufficiently large due to the resonance at sub-cyclotron frequencies. Similar to the Alfven wave, the increase of the propagating angle, wave frequency, and the number of the wave modes can lower the stochastic threshold of the ion motions. However, because the magnetosonic waves become more and more compressive with the increase of the propagating angle, the decrease of the stochastic threshold with the increase of the propagating angle is more obvious in the magnetosonic waves than that in the Alfven waves.

  11. A model for high-cycle fatigue crack propagation

    Energy Technology Data Exchange (ETDEWEB)

    Balbi, Marcela Angela [Rosario National Univ. (Argentina); National Council of Scientific Research and Technology (CONICET) (Argentina)

    2017-02-01

    This paper deals with the prediction of high-cycle fatigue behavior for four different materials (7075-T6 alloy, Ti-6Al-4 V alloy, JIS S10C steel and 0.4 wt.-% C steel) using Chapetti's approach to estimate the fatigue crack propagation curve. In the first part of the paper, a single integral equation for studying the entire propagation process is determined using the recent results of Santus and Taylor, which consider a double regime of propagation (short and long cracks) characterized by the model of El Haddad. The second part of the paper includes a comparison of the crack propagation behavior model proposed by Navarro and de los Rios with the one mentioned in the first half of this work. The results allow us to conclude that the approach presented in this paper is a good and valid estimation of high-cycle fatigue crack propagation using a single equation to describe the entire fatigue crack regime.

  12. Counter-propagating wave interaction for contrast-enhanced ultrasound imaging

    Science.gov (United States)

    Renaud, G.; Bosch, J. G.; ten Kate, G. L.; Shamdasani, V.; Entrekin, R.; de Jong, N.; van der Steen, A. F. W.

    2012-11-01

    Most techniques for contrast-enhanced ultrasound imaging require linear propagation to detect nonlinear scattering of contrast agent microbubbles. Waveform distortion due to nonlinear propagation impairs their ability to distinguish microbubbles from tissue. As a result, tissue can be misclassified as microbubbles, and contrast agent concentration can be overestimated; therefore, these artifacts can significantly impair the quality of medical diagnoses. Contrary to biological tissue, lipid-coated gas microbubbles used as a contrast agent allow the interaction of two acoustic waves propagating in opposite directions (counter-propagation). Based on that principle, we describe a strategy to detect microbubbles that is free from nonlinear propagation artifacts. In vitro images were acquired with an ultrasound scanner in a phantom of tissue-mimicking material with a cavity containing a contrast agent. Unlike the default mode of the scanner using amplitude modulation to detect microbubbles, the pulse sequence exploiting counter-propagating wave interaction creates no pseudoenhancement behind the cavity in the contrast image.

  13. Counter-propagating wave interaction for contrast-enhanced ultrasound imaging

    International Nuclear Information System (INIS)

    Renaud, G; Bosch, J G; Ten Kate, G L; De Jong, N; Van der Steen, A F W; Shamdasani, V; Entrekin, R

    2012-01-01

    Most techniques for contrast-enhanced ultrasound imaging require linear propagation to detect nonlinear scattering of contrast agent microbubbles. Waveform distortion due to nonlinear propagation impairs their ability to distinguish microbubbles from tissue. As a result, tissue can be misclassified as microbubbles, and contrast agent concentration can be overestimated; therefore, these artifacts can significantly impair the quality of medical diagnoses. Contrary to biological tissue, lipid-coated gas microbubbles used as a contrast agent allow the interaction of two acoustic waves propagating in opposite directions (counter-propagation). Based on that principle, we describe a strategy to detect microbubbles that is free from nonlinear propagation artifacts. In vitro images were acquired with an ultrasound scanner in a phantom of tissue-mimicking material with a cavity containing a contrast agent. Unlike the default mode of the scanner using amplitude modulation to detect microbubbles, the pulse sequence exploiting counter-propagating wave interaction creates no pseudoenhancement behind the cavity in the contrast image. (fast track communication)

  14. Tropical Cyclone Propagation

    National Research Council Canada - National Science Library

    Gray, William

    1994-01-01

    This paper discusses the question of tropical cyclone propagation or why the average tropical cyclone moves 1-2 m/s faster and usually 10-20 deg to the left of its surrounding (or 5-7 deg radius) deep layer (850-300 mb) steering current...

  15. Physics of Earthquake Rupture Propagation

    Science.gov (United States)

    Xu, Shiqing; Fukuyama, Eiichi; Sagy, Amir; Doan, Mai-Linh

    2018-05-01

    A comprehensive understanding of earthquake rupture propagation requires the study of not only the sudden release of elastic strain energy during co-seismic slip, but also of other processes that operate at a variety of spatiotemporal scales. For example, the accumulation of the elastic strain energy usually takes decades to hundreds of years, and rupture propagation and termination modify the bulk properties of the surrounding medium that can influence the behavior of future earthquakes. To share recent findings in the multiscale investigation of earthquake rupture propagation, we held a session entitled "Physics of Earthquake Rupture Propagation" during the 2016 American Geophysical Union (AGU) Fall Meeting in San Francisco. The session included 46 poster and 32 oral presentations, reporting observations of natural earthquakes, numerical and experimental simulations of earthquake ruptures, and studies of earthquake fault friction. These presentations and discussions during and after the session suggested a need to document more formally the research findings, particularly new observations and views different from conventional ones, complexities in fault zone properties and loading conditions, the diversity of fault slip modes and their interactions, the evaluation of observational and model uncertainties, and comparison between empirical and physics-based models. Therefore, we organize this Special Issue (SI) of Tectonophysics under the same title as our AGU session, hoping to inspire future investigations. Eighteen articles (marked with "this issue") are included in this SI and grouped into the following six categories.

  16. Propagation of sound waves in ducts

    DEFF Research Database (Denmark)

    Jacobsen, Finn

    2000-01-01

    Plane wave propagation in ducts with rigid walls, radiation from ducts, classical four-pole theory for composite duct systems, and three-dimentional waves in wave guides of various cross-sectional shape are described.......Plane wave propagation in ducts with rigid walls, radiation from ducts, classical four-pole theory for composite duct systems, and three-dimentional waves in wave guides of various cross-sectional shape are described....

  17. Propagation and wavefront ambiguity of linear nondiffracting beams

    Science.gov (United States)

    Grunwald, R.; Bock, M.

    2014-02-01

    Ultrashort-pulsed Bessel and Airy beams in free space are often interpreted as "linear light bullets". Usually, interconnected intensity profiles are considered a "propagation" along arbitrary pathways which can even follow curved trajectories. A more detailed analysis, however, shows that this picture gives an adequate description only in situations which do not require to consider the transport of optical signals or causality. To also cover these special cases, a generalization of the terms "beam" and "propagation" is necessary. The problem becomes clearer by representing the angular spectra of the propagating wave fields by rays or Poynting vectors. It is known that quasi-nondiffracting beams can be described as caustics of ray bundles. Their decomposition into Poynting vectors by Shack-Hartmann sensors indicates that, in the frame of their classical definition, the corresponding local wavefronts are ambiguous and concepts based on energy density are not appropriate to describe the propagation completely. For this reason, quantitative parameters like the beam propagation factor have to be treated with caution as well. For applications like communication or optical computing, alternative descriptions are required. A heuristic approach based on vector field based information transport and Fourier analysis is proposed here. Continuity and discontinuity of far field distributions in space and time are discussed. Quantum aspects of propagation are briefly addressed.

  18. Theoretical models for ultrashort electromagnetic pulse propagation in nonlinear metamaterials

    International Nuclear Information System (INIS)

    Wen, Shuangchun; Xiang, Yuanjiang; Dai, Xiaoyu; Tang, Zhixiang; Su, Wenhua; Fan, Dianyuan

    2007-01-01

    A metamaterial (MM) differs from an ordinary optical material mainly in that it has a dispersive magnetic permeability and offers greatly enhanced design freedom to alter the linear and nonlinear properties. This makes it possible for us to control the propagation of ultrashort electromagnetic pulses at will. Here we report on generic features of ultrashort electromagnetic pulse propagation and demonstrate the controllability of both the linear and nonlinear parameters of models for pulse propagation in MMs. First, we derive a generalized system of coupled three-dimensional nonlinear Schroedinger equations (NLSEs) suitable for few-cycle pulse propagation in a MM with both nonlinear electric polarization and nonlinear magnetization. The coupled equations recover previous models for pulse propagation in both ordinary material and a MM under the same conditions. Second, by using the coupled NLSEs in the Drude dispersive model as an example, we identify the respective roles of the dispersive electric permittivity and magnetic permeability in ultrashort pulse propagation and disclose some additional features of pulse propagation in MMs. It is shown that, for linear propagation, the sign and magnitude of space-time focusing can be controlled through adjusting the linear dispersive permittivity and permeability. For nonlinear propagation, the linear dispersive permittivity and permeability are incorporated into the nonlinear magnetization and nonlinear polarization, respectively, resulting in controllable magnetic and electric self-steepening effects and higher-order dispersively nonlinear terms in the propagation models

  19. Markov transitions and the propagation of chaos

    International Nuclear Information System (INIS)

    Gottlieb, A.

    1998-01-01

    The propagation of chaos is a central concept of kinetic theory that serves to relate the equations of Boltzmann and Vlasov to the dynamics of many-particle systems. Propagation of chaos means that molecular chaos, i.e., the stochastic independence of two random particles in a many-particle system, persists in time, as the number of particles tends to infinity. We establish a necessary and sufficient condition for a family of general n-particle Markov processes to propagate chaos. This condition is expressed in terms of the Markov transition functions associated to the n-particle processes, and it amounts to saying that chaos of random initial states propagates if it propagates for pure initial states. Our proof of this result relies on the weak convergence approach to the study of chaos due to Sztitman and Tanaka. We assume that the space in which the particles live is homomorphic to a complete and separable metric space so that we may invoke Prohorov's theorem in our proof. We also show that, if the particles can be in only finitely many states, then molecular chaos implies that the specific entropies in the n-particle distributions converge to the entropy of the limiting single-particle distribution

  20. Thermal propagation and stability in superconducting films

    International Nuclear Information System (INIS)

    Gray, K.E.; Kampwirth, R.T.; Zasadzinski, J.F.; Ducharme, S.P.

    1983-01-01

    Thermal propagation and stable hot spots (normal domains) are studied in various high Tsub(c) superconducting films (Nb 3 Sn, Nb, NbN and Nb 3 Ge). A new energy balance is shown to give reasonable quantitative agreement of the dependence of the propagation velocity on the length of short normal domains. The steady state (zero velocity) measurements indicate the existence of two distinct situations for films on high thermal conductivity (sapphire) substrates. For low power per unit area the film and substrate have the same temperature, and the thermal properties of the substrate dominate. However, for higher power densities in short hot spots, the coupling is relatively weak and the thermal properties of the film alone are important. Here a connection is made between the critical current stability of superconducting films and a critical hot spot size for thermal propagation. As a result efficient heat removal is shown to dominate the stabilisation of superconducting films. The strong and weak coupling situations also lead to modifications of the models for propagation velocities on sapphire substrates. Self-healing of hot spots and other phenomena in superconducting film are explained. The potential use of the thermal propagation model in applications of superconductors, especially switches is discussed. (author)

  1. Wave propagation in electromagnetic media

    International Nuclear Information System (INIS)

    Davis, J.L.

    1990-01-01

    This book is concerned with wave propagation in reacting media, specifically in electromagnetic materials. An account is presented of the mathematical methods of wave phenomena in electromagnetic materials. The author presents the theory of time-varying electromagnetic fields, which involves a discussion of Faraday's laws, Maxwell's equations and their application to electromagnetic wave propagation under a variety of conditions. The author gives a discussion of magnetohydrodynamics and plasma physics. Chapters are included on quantum mechanics and the theory of relativity. The mathematical foundation of electromagnetic waves vis a vis partial differential equations is discussed

  2. Nonequilibrium theory of flame propagation

    International Nuclear Information System (INIS)

    Merzhanov, A.G.

    1995-01-01

    The nonequilibrium theory of flame propagation is considered as applied to the following three processes of wave propagation: the combustion waves of the second kind, the combustion waves with broad reaction zones, and the combustion waves with chemical stages. Kinetic and combustion wave parameters are presented for different in composition mixtures of boron and transition metals, such as Zr, Hf, Ti, Nb, Ta, Mo, as well as for the Ta-N, Zr-C-H, Nb-B-O systems to illustrate specific features of the above-mentioned processes [ru

  3. Blackmail propagation on small-world networks

    Science.gov (United States)

    Shao, Zhi-Gang; Jian-Ping Sang; Zou, Xian-Wu; Tan, Zhi-Jie; Jin, Zhun-Zhi

    2005-06-01

    The dynamics of the blackmail propagation model based on small-world networks is investigated. It is found that for a given transmitting probability λ the dynamical behavior of blackmail propagation transits from linear growth type to logistical growth one with the network randomness p increases. The transition takes place at the critical network randomness pc=1/N, where N is the total number of nodes in the network. For a given network randomness p the dynamical behavior of blackmail propagation transits from exponential decrease type to logistical growth one with the transmitting probability λ increases. The transition occurs at the critical transmitting probability λc=1/, where is the average number of the nearest neighbors. The present work will be useful for understanding computer virus epidemics and other spreading phenomena on communication and social networks.

  4. Quantum dynamics via a time propagator in Wigner's phase space

    DEFF Research Database (Denmark)

    Grønager, Michael; Henriksen, Niels Engholm

    1995-01-01

    We derive an expression for a short-time phase space propagator. We use it in a new propagation scheme and demonstrate that it works for a Morse potential. The propagation scheme is used to propagate classical distributions which do not obey the Heisenberg uncertainty principle. It is shown that ...... as a part of the sampling function. ©1995 American Institute of Physics....

  5. Care and calls

    DEFF Research Database (Denmark)

    Paasch, Bettina Sletten

    -centred care through the use of tactile resources and embodied orientations while they attend to the phone call. Experienced nurses Thus perform multiactivity by distributing attention towards both the patient and the phone, and the analysis shows that their concrete ways of doing so depend on the complex...... they are telephoned during interactions with patients are not universal. Indeed different strategies have evolved in other hospital departments. Not only does this thesis contribute insights into the way nurses manage phone calls during interactions with patients, but by subscribing to a growing body of embodied...... of human interaction....

  6. A solid state lightning propagation speed sensor

    Science.gov (United States)

    Mach, Douglas M.; Rust, W. David

    1989-01-01

    A device to measure the propagation speeds of cloud-to-ground lightning has been developed. The lightning propagation speed (LPS) device consists of eight solid state silicon photodetectors mounted behind precision horizontal slits in the focal plane of a 50-mm lens on a 35-mm camera. Although the LPS device produces results similar to those obtained from a streaking camera, the LPS device has the advantages of smaller size, lower cost, mobile use, and easier data collection and analysis. The maximum accuracy for the LPS is 0.2 microsec, compared with about 0.8 microsecs for the streaking camera. It is found that the return stroke propagation speed for triggered lightning is different than that for natural lightning if measurements are taken over channel segments less than 500 m. It is suggested that there are no significant differences between the propagation speeds of positive and negative flashes. Also, differences between natural and triggered dart leaders are discussed.

  7. ADVANCES IN PEACH, NECTARINE AND PLUM PROPAGATION

    Directory of Open Access Journals (Sweden)

    NEWTON ALEX MAYER

    2017-12-01

    Full Text Available ABSTRACT Nursery trees of stone fruits (Prunus spp. are traditionally produced by union of two distinct genotypes - the rootstock and the scion - which, by grafting, form a composite plant that will be maintained throughout of all plant life. In Brazil, the rootstocks are predominantly seed propagated and therefore usually results in heterogeneous trees for vigor and edaphic adaptation. However, with advances in rootstock breeding programs that released cultivars and certification in several countries (notably in Europe, the system will come gradually evolving for vegetative propagation (cuttings and tissue culture and use of seeds of selected rootstocks with specific characteristics and potted nursery trees production. For scion cultivar propagation, the budding system (with its many variations has predominantly been adopted in major producing countries. This review had as objective to comment main propagation methods adopted for rootstocks and scion in peach, nectarine and plum, and recent technical progress obtained as well as the needs of improvement for nursery tree production.

  8. A Study of Malware Propagation via Online Social Networking

    Science.gov (United States)

    Faghani, Mohammad Reza; Nguyen, Uyen Trang

    The popularity of online social networks (OSNs) have attracted malware creators who would use OSNs as a platform to propagate automated worms from one user's computer to another's. On the other hand, the topic of malware propagation in OSNs has only been investigated recently. In this chapter, we discuss recent advances on the topic of malware propagation by way of online social networking. In particular, we present three malware propagation techniques in OSNs, namely cross site scripting (XSS), Trojan and clickjacking types, and their characteristics via analytical models and simulations.

  9. Propagator of the lattice domain wall fermion and the staggered fermion

    International Nuclear Information System (INIS)

    Furui, S.

    2009-01-01

    We calculate the propagator of the domain wall fermion (DWF) of the RBC/UKQCD collaboration with 2 + 1 dynamical flavors of 16 3 x 32 x 16 lattice in Coulomb gauge, by applying the conjugate gradient method. We find that the fluctuation of the propagator is small when the momenta are taken along the diagonal of the 4-dimensional lattice. Restricting momenta in this momentum region, which is called the cylinder cut, we compare the mass function and the running coupling of the quark-gluon coupling a s,g1 (q) with those of the staggered fermion of the MILC collaboration in Landau gauge. In the case of DWF, the ambiguity of the phase of the wave function is adjusted such that the overlap of the solution of the conjugate gradient method and the plane wave at the source becomes real. The quark-gluon coupling a s,g1 (q) of the DWF in the region q > 1.3 GeV agrees with ghost-gluon coupling a s (q) that we measured by using the configuration of the MILC collaboration, i.e., enhancement by a factor (1 + c/q 2 ) with c ∼ 2.8 GeV 2 on the pQCD result. In the case of staggered fermion, in contrast to the ghost-gluon coupling a s (q) in Landau gauge which showed infrared suppression, the quark-gluon coupling a s,g1 (q) in the infrared region increases monotonically as q → 0. Above 2 GeV, the quark-gluon coupling a s,g1 (q) of staggered fermion calculated by naive crossing becomes smaller than that of DWF, probably due to the complex phase of the propagator which is not connected with the low energy physics of the fermion taste. An erratum to this article can be found at http://dx.doi.org/10.1007/s00601-009-0053-4. (author)

  10. New approach to wireless data communication in a propagation environment

    Science.gov (United States)

    Hunek, Wojciech P.; Majewski, Paweł

    2017-10-01

    This paper presents a new idea of perfect signal reconstruction in multivariable wireless communications systems including a different number of transmitting and receiving antennas. The proposed approach is based on the polynomial matrix S-inverse associated with Smith factorization. Crucially, the above mentioned inverse implements the so-called degrees of freedom. It has been confirmed by simulation study that the degrees of freedom allow to minimalize the negative impact of the propagation environment in terms of increasing the robustness of whole signal reconstruction process. Now, the parasitic drawbacks in form of dynamic ISI and ICI effects can be eliminated in framework described by polynomial calculus. Therefore, the new method guarantees not only reducing the financial impact but, more importantly, provides potentially the lower consumption energy systems than other classical ones. In order to show the potential of new approach, the simulation studies were performed by author's simulator based on well-known OFDM technique.

  11. Study of ultrasonic propagation through vortices for acoustic monitoring of high-temperature and turbulent fluid

    International Nuclear Information System (INIS)

    Massacret, Nicolas; Moysan, Joseph; Ploix, Marie-Aude; Chaouch, Naim; Jeannot, Jean-Philippe

    2016-01-01

    Ultrasonic monitoring in high temperature fluids with turbulences requires the knowledge of wave propagation in such media and the development of simulation tools. Applications could be the monitoring of sodium-cooled fast reactors. The objectives are mainly acoustic telemetry and thermometry, which involve the propagation of ultrasounds in turbulent and heated sodium flows. We developed a ray-tracing model to simulate the wave propagation and to determine wave deviations and delays due to an inhomogeneous medium. In previous work we demonstrated the sensitivity of ultrasounds to temperature gradients in liquid sodium. To complete that study, we need to investigate the sensitivity of ultrasounds to vortices created in a moving fluid. We designed a specific experimental setup called IKHAR (Instabilities of Kelvin-Helmholtz for Acoustic Research) in order to assess the validity of the ray-tracing model and the potential of ultrasounds for monitoring such fluid. In this experiment, Von Karman instabilities were created in a flow of water. Fluid temperature was homogeneous in our experimental setup. Through a careful choice of the parameters, periodic vortices were generated. The experiment was also simulated using Comsol registered to allow discussion about repeatability. The throughtransmission method was used to measure wave delays due to the vortices. Arrays of transducers were used to measure time of flight variations of several nanoseconds with a high spatial resolution. Results were similar to simulation results. They demonstrate that beam delays due to vortices can be measured and confirm the potential of ultrasounds in monitoring very inhomogeneous fluid media such as liquid sodium used as coolant fluid in nuclear fast reactors.

  12. The gluon propagator in momentum space

    International Nuclear Information System (INIS)

    Bernard, C.; Soni, A.

    1992-01-01

    We consider quenched QCD on a 16 3 x40 lattice at β=6.0. We give preliminary numerical results for the lattice gluon propagator evaluated both in coordinate and momentum space. Our findings are compared with earlier results in the literature at zero momentum. In addition, by considering nonzero momenta we attempt to extract the form of the propagator and compare it to continuum predictions formulated by Gribov and others

  13. Crack propagation along polymer/non-polymer interfaces

    NARCIS (Netherlands)

    Vellinga, Willem-Pier; Fedorov, Alexander; De Hosson, Jeff T.

    2007-01-01

    Mechanisms of the propagation of crack fronts along interfaces between a glassy polymer and metal or glass are discussed. Specifically, the systems studied are Poly-Ethylene Terephthalate (PETG) spin-coated on A1, PETG-glass and PETG hot-pressed on Cr-sputtered glass. Cracks studied propagate in an

  14. Nonuniqueness of self-propagating spiral galaxy models

    International Nuclear Information System (INIS)

    Freedman, W.L.; Madore, B.F.

    1984-01-01

    We demonstrate the nonuniqueness of the basic assumptions leading to spiral structure in self-propagating star formation models. Even in the case where star formation occurs purely spontaneously and does not propagate, we have generated spiral structure by adopting the radically different assumption where star formation is systematically inhibited

  15. Advertising to Early Trend Propagators: Evidence from Twitter

    OpenAIRE

    Lambrecht, A.; Tucker, C. M.; Wiertz, C.

    2018-01-01

    In the digital economy, influencing and controlling the spread of information is a key concern for firms. One way firms try to achieve this is to target firm communications to consumers who embrace and propagate the spread of new information on emerging and `trending' topics on social media. However, little is known about whether early trend propagators are indeed responsive to firm-sponsored messages. To explore whether early propagators of trending topics respond to advertising messages, we...

  16. Advertising to early trend propagators: evidence from Twitter

    OpenAIRE

    Lambrecht, A; Tucker, C; Wiertz, C

    2018-01-01

    In the digital economy, influencing and controlling the spread of information is a key concern for firms. One way firms try to achieve this is to target firm communications to consumers who embrace and propagate the spread of new information on emerging and `trending' topics on social media. However, little is known about whether early trend propagators are indeed responsive to firm-sponsored messages. To explore whether early propagators of trending topics respond to advertising messages, we...

  17. Modeling of acoustic wave propagation and scattering for telemetry of complex structures; Modelisation de la propagation et de l'interaction d'une onde acoustique pour la telemetrie de structures complexes

    Energy Technology Data Exchange (ETDEWEB)

    LU, B.

    2011-11-07

    This study takes place in the framework of tools development for the telemetry simulation. Telemetry is a possible technology applied to monitoring the sodium-cooled fast reactors (SFR) and consists in positioning in the reactor core a transducer to generate an ultrasonic beam. This beam propagates through an inhomogeneous random medium since temperature fluctuations occur in the liquid sodium and consequently the sound velocity fluctuates as well, which modifies the bream propagation. Then the beam interacts with a reactor structure immersed in sodium. By measuring the time of flight of the backscattered echo received by the same transducer, one can determine the precise location of the structure. The telemetry simulation therefore requires modeling of both the acoustic wave propagation in an inhomogeneous random medium and the interaction of this wave with structures of various shapes; this is the objective of this work. A stochastic model based on a Monte Carlo algorithm is developed in order to take into account the random fluctuations of the acoustic field. The acoustic field through an inhomogeneous random medium is finally modeled from the field calculated in a mean homogeneous medium by modifying the travel times of rays in the homogeneous medium, using a correction provided by the stochastic model. This stochastic propagation model has been validated by comparison with a deterministic model and is much simpler to integrate in the CIVA software platform for non destructive evaluation simulation and less time consuming than the deterministic model. In order to model the interaction between the acoustic wave and the immersed structures, classical diffraction models have been evaluated for rigid structures, including the geometrical theory of diffraction (GTD) and the Kirchhoff approximation (KA). These two approaches appear to be complementary. Combining them so as to retain only their advantages, we have developed a hybrid model (the so-called refined KA

  18. The Weinberg propagators

    International Nuclear Information System (INIS)

    Dvoeglazov, V.V.

    1997-01-01

    An analog of the j = 1/2 Feynman-Dyson propagator is presented in the framework of the j = 1 Weinberg's theory. The basis for this construction is the concept of the Weinberg field as a system of four field functions differing by parity and by dual transformations. (orig.)

  19. On the mathematical integration of the nervous tissue based on the S-propagator formalism.

    Science.gov (United States)

    Chauvet, Gilbert A

    2002-06-01

    The integration of physiological functions in living organisms corresponds to the reconstruction of a biological system from its components. This calls for a sound theoretical framework based on the rigorous definition of the elementary physiological function within the context of multiple levels of biological organization. One of the main problems encountered in the neurosciences is that of extending the current theory of automata, as used in the study of artificial neural networks, to real neural networks. The difficulty arises because the theory of automata fails to take into account the various levels of biological organization involved in nervous activity. This article recalls the main elements of G. A. Chauvet's novel n-level field theory, i.e., the properties of non-symmetry and non-locality of functional interactions, and the S-propagator formalism that governs the propagation of a functional interaction across the different levels of the structural organization of a biological system. The neural field equations derived from this theory allow the inclusion of multiple organizational levels of a biological system into the analysis by incorporating specific local models into a global non-local model. The main advantage of the method presented here is the simplification obtained by breaking down the physiological function into its components according to the time scales and space scales of operation. Moreover, the method takes into account the non-locality of the functional interaction, assuming it to be propagated at finite velocity in a continuous and hierarchical space. Finally, this approach allows the systematic study of physiological functions within a single theoretical framework, the complexity of which could be progressively increased by integrating specific local models as new findings become available.

  20. Asymptotic study and numerical simulation of laser wave propagation in an inhomogeneous medium; Etude asymptotique et simulation numerique de la propagation laser en milieu inhomogene

    Energy Technology Data Exchange (ETDEWEB)

    Doumic, M

    2005-05-15

    To simulate the propagation of a monochromatic laser beam in a medium, we use the paraxial approximation of the Klein-Gordon (in the time-varying problem) and of the Maxwell (in the non time-depending case) equations. In a first part, we make an asymptotic analysis of the Klein-Gordon equation. We obtain approximated problems, either of Schroedinger or of transport-Schroedinger type. We prove the existence and uniqueness of a solution for these problems, and estimate the difference between it and the exact solution of the Klein-Gordon equation. In a second part, we study the boundary problem for the advection Schroedinger equation, and show what the boundary condition must be so that the problem on our domain should be the restriction of the problem in the whole space: such a condition is called a transparent or an absorbing boundary condition. In a third part, we use the preceding results to build a numerical resolution method, for which we prove stability and show some simulations. (author)

  1. CRPropa 2.0. A public framework for propagating high energy nuclei, secondary gamma rays and neutrinos

    International Nuclear Information System (INIS)

    Kampert, Karl-Heinz; Kulbartz, Joerg; Schiffer, Peter; Sigl, Guenter; Vliet, Arjen Rene van; Nierstenhoefer, Nils; Hamburg Univ.

    2012-06-01

    Version 2.0 of CRPropa is public software to model the extra-galactic propagation of ultra-high energy nuclei of atomic number Z≤26 through structured magnetic fields and ambient photon backgrounds taking into account all relevant particle interactions. CRPropa covers the energy range 6 x 10 16 22 where A is the nuclear mass number. CRPropa can also be used to track secondary γ-rays and neutrinos which allows the study of their link with the charged primary nuclei - the so called multi-messenger connection. After a general introduction we present several sample applications of current interest concerning the physics of extragalactic ultra-high energy radiation.

  2. Crack propagation studies and bond coat properties in thermal

    Indian Academy of Sciences (India)

    High threshold load at the interface between the ceramic layer and the bond coat was required to propagate the crack further into the bond coat. Once the threshold load was surpassed the crack propagated into the brittle bond coat without an appreciable increase in the load. At temperatures of 800°C the crack propagated ...

  3. Polarity-specific high-level information propagation in neural networks.

    Science.gov (United States)

    Lin, Yen-Nan; Chang, Po-Yen; Hsiao, Pao-Yueh; Lo, Chung-Chuan

    2014-01-01

    Analyzing the connectome of a nervous system provides valuable information about the functions of its subsystems. Although much has been learned about the architectures of neural networks in various organisms by applying analytical tools developed for general networks, two distinct and functionally important properties of neural networks are often overlooked. First, neural networks are endowed with polarity at the circuit level: Information enters a neural network at input neurons, propagates through interneurons, and leaves via output neurons. Second, many functions of nervous systems are implemented by signal propagation through high-level pathways involving multiple and often recurrent connections rather than by the shortest paths between nodes. In the present study, we analyzed two neural networks: the somatic nervous system of Caenorhabditis elegans (C. elegans) and the partial central complex network of Drosophila, in light of these properties. Specifically, we quantified high-level propagation in the vertical and horizontal directions: the former characterizes how signals propagate from specific input nodes to specific output nodes and the latter characterizes how a signal from a specific input node is shared by all output nodes. We found that the two neural networks are characterized by very efficient vertical and horizontal propagation. In comparison, classic small-world networks show a trade-off between vertical and horizontal propagation; increasing the rewiring probability improves the efficiency of horizontal propagation but worsens the efficiency of vertical propagation. Our result provides insights into how the complex functions of natural neural networks may arise from a design that allows them to efficiently transform and combine input signals.

  4. Quantum state propagation in linear photonic bandgap structures

    International Nuclear Information System (INIS)

    Severini, S; Tricca, D; Sibilia, C; Bertolotti, M; Perina, Jan

    2004-01-01

    In this paper we investigate the propagation of a generic quantum state in a corrugated waveguide, which reproduces a photonic bandgap structure. We find the conditions that assure the outcoming state to preserve the quantum properties of the incoming state. Then, focusing on a particular quantum state (realized by two counter-propagating coherent states), we study the possibility of preserving the quantum properties of this particular double coherent state even in the presence of absorption phenomena during propagation in the structure

  5. Average expansion rate and light propagation in a cosmological Tardis spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Lavinto, Mikko; Räsänen, Syksy [Department of Physics, University of Helsinki, and Helsinki Institute of Physics, P.O. Box 64, FIN-00014 University of Helsinki (Finland); Szybka, Sebastian J., E-mail: mikko.lavinto@helsinki.fi, E-mail: syksy.rasanen@iki.fi, E-mail: sebastian.szybka@uj.edu.pl [Astronomical Observatory, Jagellonian University, Orla 171, 30-244 Kraków (Poland)

    2013-12-01

    We construct the first exact statistically homogeneous and isotropic cosmological solution in which inhomogeneity has a significant effect on the expansion rate. The universe is modelled as a Swiss Cheese, with dust FRW background and inhomogeneous holes. We show that if the holes are described by the quasispherical Szekeres solution, their average expansion rate is close to the background under certain rather general conditions. We specialise to spherically symmetric holes and violate one of these conditions. As a result, the average expansion rate at late times grows relative to the background, \\ie backreaction is significant. The holes fit smoothly into the background, but are larger on the inside than a corresponding background domain: we call them Tardis regions. We study light propagation, find the effective equations of state and consider the relation of the spatially averaged expansion rate to the redshift and the angular diameter distance.

  6. The gluon propagator in momentum space

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, C. [Washington Univ., St. Louis, MO (United States). Dept. of Physics; Parrinello, C. [New York Univ., NY (United States). Dept. of Physics]|[Brookhaven National Lab., Upton, NY (United States); Soni, A. [Brookhaven National Lab., Upton, NY (United States)

    1992-12-31

    We consider quenched QCD on a 16{sup 3}{times}40 lattice at {beta}=6.0. We give preliminary numerical results for the lattice gluon propagator evaluated both in coordinate and momentum space. Our findings are compared with earlier results in the literature at zero momentum. In addition, by considering nonzero momenta we attempt to extract the form of the propagator and compare it to continuum predictions formulated by Gribov and others.

  7. The gluon propagator in momentum space

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, C. (Washington Univ., St. Louis, MO (United States). Dept. of Physics); Parrinello, C. (New York Univ., NY (United States). Dept. of Physics Brookhaven National Lab., Upton, NY (United States)); Soni, A. (Brookhaven National Lab., Upton, NY (United States))

    1992-01-01

    We consider quenched QCD on a 16[sup 3][times]40 lattice at [beta]=6.0. We give preliminary numerical results for the lattice gluon propagator evaluated both in coordinate and momentum space. Our findings are compared with earlier results in the literature at zero momentum. In addition, by considering nonzero momenta we attempt to extract the form of the propagator and compare it to continuum predictions formulated by Gribov and others.

  8. The gluon propagator in momentum space

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, C. (Dept. of Physics, Washington Univ., St. Louis, MO (United States)); Parrinello, C. (Physics Dept., New York Univ., NY (United States) Physics Dept., Brookhaven National Lab., Upton, NY (United States)); Soni, A. (Physics Dept., Brookhaven National Lab., Upton, NY (United States))

    1993-03-01

    We consider quenched QCD on a 16[sup 3] x 40 lattice at [beta] = 6.0. We give preliminary numerical results for the lattice gluon propagator evaluated both in coordinate and momentum space. Our findings are compared with earlier results in the literature at zero momentum. In addition, by considering nonzero momenta we attempt to extract the form of the propagator and compare it to continuum predictions formulated by Gribov and others. (orig.)

  9. How to call the Fire Brigade

    CERN Multimedia

    2003-01-01

    The telephone numbers for the CERN Fire Brigade are: 74444 for emergency calls 74848 for other calls Note The number 112 will stay in use for emergency calls from "wired" telephones, however, from mobile phones it leads to non-CERN emergency services.

  10. Propagation of ionization waves during ignition of fluorescent lamps

    International Nuclear Information System (INIS)

    Langer, R; Tidecks, R; Horn, S; Garner, R; Hilscher, A

    2008-01-01

    The propagation of the first ionization wave in a compact fluorescent lamp (T4 tube with standard electrodes) during ignition was investigated for various initial dc-voltages (both polarities measured against ground) and gas compositions (with and without mercury). In addition the effect of the presence of a fluorescent powder coating was studied. The propagation velocity of the initial wave was measured by an assembly of photomultipliers installed along the tube, which detected the light emitted by the wave head. The propagation was found to be faster for positive than for negative polarity. This effect is explained involving processes in the electrode region as well as in the wave head. Waves propagate faster in the presence of a fluorescent powder coating than without it and gases of lighter mass show a faster propagation than gases with higher mass

  11. Effect of surface conditions on blast wave propagation

    International Nuclear Information System (INIS)

    Song, Seung Ho; Li, Yi Bao; Lee, Chang Hoon; Choi, Jung Il

    2016-01-01

    We performed numerical simulations of blast wave propagations on surfaces by solving axisymmetric two-dimensional Euler equations. Assuming the initial stage of fireball at the breakaway point after an explosion, we investigated the effect of surface conditions considering surface convex or concave elements and thermal conditions on blast wave propagations near the ground surface. Parametric studies were performed by varying the geometrical factors of the surface element as well as thermal layer characteristics. We found that the peak overpressure near the ground zero was increased due to the surface elements, while modulations of the blast wave propagations were limited within a region for the surface elements. Because of the thermal layer, the precursor was formed in the propagations, which led to the attenuation of the peak overpressure on the ground surface

  12. FATIGUE CRACK PROPAGATION THROUGH AUSTEMPERED DUCTILE IRON MICROSTRUCTURE

    Directory of Open Access Journals (Sweden)

    Lukáš Bubenko

    2010-10-01

    Full Text Available Austempered ductile iron (ADI has a wide range of application, particularly for castings used in automotive and earth moving machinery industries. These components are usually subjected to variable dynamic loading that may promote initiation and propagation of fatigue cracks up to final fracture. Thus, it is important to determine the fatigue crack propagation behavior of ADI. Since fatigue crack growth rate (da/dN vs. stress intensity factor K data describe fatigue crack propagation resistance and fatigue durability of structural materials, da/dN vs. Ka curves of ADI 1050 are reported here. The threshold amplitude of stress intensity factor Kath is also determined. Finally, the influence of stress intensity factor amplitude to the character of fatigue crack propagation through the ADI microstructure is described.

  13. Nonlinear propagation analysis of few-optical-cycle pulses for subfemtosecond compression and carrier envelope phase effect

    International Nuclear Information System (INIS)

    Mizuta, Yo; Nagasawa, Minoru; Ohtani, Morimasa; Yamashita, Mikio

    2005-01-01

    A numerical approach called Fourier direct method (FDM) is applied to nonlinear propagation of optical pulses with the central wavelength 800 nm, the width 2.67-12.00 fs, and the peak power 25-6870 kW in a fused-silica fiber. Bidirectional propagation, delayed Raman response, nonlinear dispersion (self-steepening, core dispersion), as well as correct linear dispersion are incorporated into 'bidirectional propagation equations' which are derived directly from Maxwell's equations. These equations are solved for forward and backward waves, instead of the electric-field envelope as in the nonlinear Schroedinger equation (NLSE). They are integrated as multidimensional simultaneous evolution equations evolved in space. We investigate, both theoretically and numerically, the validity and the limitation of assumptions and approximations used for deriving the NLSE. Also, the accuracy and the efficiency of the FDM are compared quantitatively with those of the finite-difference time-domain numerical approach. The time-domain size 500 fs and the number of grid points in time 2048 are chosen to investigate numerically intensity spectra, spectral phases, and temporal electric-field profiles up to the propagation distance 1.0 mm. On the intensity spectrum of a few-optical-cycle pulses, the self-steepening, core dispersion, and the delayed Raman response appear as dominant, middle, and slight effects, respectively. The delayed Raman response and the core dispersion reduce the effective nonlinearity. Correct linear dispersion is important since it affects the intensity spectrum sensitively. For the compression of femtosecond optical pulses by the complete phase compensation, the shortness and the pulse quality of compressed pulses are remarkably improved by the intense initial peak power rather than by the short initial pulse width or by the propagation distance longer than 0.1 mm. They will be compressed as short as 0.3 fs below the damage threshold of fused-silica fiber 6 MW. It

  14. Modeling the Propagation of Mobile Phone Virus under Complex Network

    Science.gov (United States)

    Yang, Wei; Wei, Xi-liang; Guo, Hao; An, Gang; Guo, Lei

    2014-01-01

    Mobile phone virus is a rogue program written to propagate from one phone to another, which can take control of a mobile device by exploiting its vulnerabilities. In this paper the propagation model of mobile phone virus is tackled to understand how particular factors can affect its propagation and design effective containment strategies to suppress mobile phone virus. Two different propagation models of mobile phone viruses under the complex network are proposed in this paper. One is intended to describe the propagation of user-tricking virus, and the other is to describe the propagation of the vulnerability-exploiting virus. Based on the traditional epidemic models, the characteristics of mobile phone viruses and the network topology structure are incorporated into our models. A detailed analysis is conducted to analyze the propagation models. Through analysis, the stable infection-free equilibrium point and the stability condition are derived. Finally, considering the network topology, the numerical and simulation experiments are carried out. Results indicate that both models are correct and suitable for describing the spread of two different mobile phone viruses, respectively. PMID:25133209

  15. The effect of lower-hybrid waves on the propagation of hydromagnetic waves

    International Nuclear Information System (INIS)

    Hamabata, Hiromitsu; Namikawa, Tomikazu; Mori, Kazuhiro

    1988-01-01

    Propagation characteristics of hydromagnetic waves in a magnetic plasma are investigated using the two-plasma fluid equations including the effect of lower-hybrid waves propagating perpendicularly to the magnetic field. The effect of lower-hybrid waves on the propagation of hydromagnetic waves is analysed in terms of phase speed, growth rate, refractive index, polarization and the amplitude relation between the density perturbation and the magnetic-field perturbation for the cases when hydromagnetic waves propagate in the plane whose normal is perpendicular to both the magnetic field and the propagation direction of lower-hybrid waves and in the plane perpendicular to the propagation direction of lower-hybrid waves. It is shown that hydromagnetic waves propagating at small angles to the propagation direction of lower-hybrid waves can be excited by the effect of lower-hybrid waves and the energy of excited waves propagates nearly parallel to the propagation direction of lower-hybrid waves. (author)

  16. Wave propagation of spectral energy content in a granular chain

    NARCIS (Netherlands)

    Shrivastava, Rohit Kumar; Luding, Stefan

    2017-01-01

    A mechanical wave is propagation of vibration with transfer of energy and momentum. Understanding the spectral energy characteristics of a propagating wave through disordered granular media can assist in understanding the overall properties of wave propagation through inhomogeneous materials like

  17. Graviton propagator from background-independent quantum gravity.

    Science.gov (United States)

    Rovelli, Carlo

    2006-10-13

    We study the graviton propagator in Euclidean loop quantum gravity. We use spin foam, boundary-amplitude, and group-field-theory techniques. We compute a component of the propagator to first order, under some approximations, obtaining the correct large-distance behavior. This indicates a way for deriving conventional spacetime quantities from a background-independent theory.

  18. Spinor and isospinor structure of relativistic particle propagators

    International Nuclear Information System (INIS)

    Gitman, D.M.; Shvartsman, Sh.M.

    1993-07-01

    Representations by means of path integrals are used to find spinor and isospinor structure of relativistic particle propagators in external fields. For Dirac propagator in an external electromagnetic field all Grassmannian integrations are performed and a general result is presented via a bosonic path integral. The spinor structure of the integrand is given explicitly by its decomposition in the independent γ-matrix structures. A similar technique is used to get the isospinor structure of the scalar particle propagator in an external non-Abelian field. (author). 21 refs

  19. Feynman propagator for a particle with arbitrary spin

    International Nuclear Information System (INIS)

    Huang Shi-Zhong; Zhang Peng-Fei; Ruan Tu-Nan; Zhu Yu-Can; Zheng Zhi-Peng

    2005-01-01

    Based on the solution to the Rarita-Schwinger equations, a direct derivation of the projection operator and propagator for a particle with arbitrary spin is worked out. The projection operator constructed by Behrends and Fronsdal is re-deduced and confirmed, and simplified in the case of half-integral spin; the general commutation rules and Feynman propagator for a free particle of any spin are derived, and explicit expressions for the propagators for spins 3/2, 2, 5/2, 3, 7/2, 4 are provided. (orig.)

  20. Using Semantic Similarity In Automated Call Quality Evaluator For Call Centers

    Directory of Open Access Journals (Sweden)

    Ria A. Sagum

    2015-08-01

    Full Text Available Conversation between the agent and client are being evaluated manually by a quality assurance officer QA. This job is only one of the responsibilities being done by a QA and particularly eat ups a lot of time for them which lead to late evaluation results that may cause untimely response of the company to concerns raised by their clients. This research developed an application software that automates and evaluates the quality assurance in business process outsourcing companies or customer service management implementing sentence similarity. The developed system includes two modules speaker diarization which includes transcription and question and answer extraction and similarity checker which checks the similarity between the extracted answer and the answer of the call center agent to a question. The system was evaluated for Correctness of the extracted answers and accurateness of the evaluation for a particular call. Audio conversations were tested for the accuracy of the transcription module which has an accuracy of 27.96. The Precision Recall and F-measure of the extracted answer was tested as 78.03 96.26 and 86.19 respectively. The Accuracy of the system in evaluating a call is 70.

  1. Crack propagation at stresses below the fatigue limit.

    Science.gov (United States)

    Holden, F. C.; Hyler, W. S.; Marschall, C. W.

    1967-01-01

    Crack propagation for stainless steel and Ti alloy at stresses below fatigue limit, noting of alternating stress cycles crack propagation for stainless steel and Ti alloy at stresses below fatigue limit, noting role of alternating stress cycles

  2. Computerized simulation study of the influence of the different parameters inducing crevice corrosion propagation of passivable alloys in chloride medium

    International Nuclear Information System (INIS)

    Girardin, G.; Proust, A.; Combrade, P.; Vuillemin, B.; Oltra, R.

    2006-01-01

    The most frequent case of crevice corrosion concerns passivable alloys, and particularly stainless steels in oxidizing chloride media. In order to be sure that its propagation is not possible, the corrosion potential has to be inferior to a critical value called 're-passivation potential'. An easy and flexible computerized simulation of the propagation of an active crevice in chloride medium has been developed to give a parametric study of the local medium and of the re-passivation conditions. This modeling allows to establish the stability domains of the solid and gaseous phases inside the crevice and to assess the influence of the potential of the free surfaces, of the amount of chloride in the exterior medium and the geometry on the local chemistry. It appears that the deepest crevices are not necessarily the strongest. The introduction, in crevice tip, of an easy re-passivation criteria shows the existence of a re-passivation potential depending of the crevice geometry. (O.M.)

  3. Molecular dynamics simulation of propagating cracks

    Science.gov (United States)

    Mullins, M.

    1982-01-01

    Steady state crack propagation is investigated numerically using a model consisting of 236 free atoms in two (010) planes of bcc alpha iron. The continuum region is modeled using the finite element method with 175 nodes and 288 elements. The model shows clear (010) plane fracture to the edge of the discrete region at moderate loads. Analysis of the results obtained indicates that models of this type can provide realistic simulation of steady state crack propagation.

  4. Crack Propagation by Finite Element Method

    OpenAIRE

    H. Ricardo, Luiz Carlos

    2017-01-01

    Crack propagation simulation began with the development of the finite element method; the analyses were conducted to obtain a basic understanding of the crack growth. Today structural and materials engineers develop structures and materials properties using this technique. The aim of this paper is to verify the effect of different crack propagation rates in determination of crack opening and closing stress of an ASTM specimen under a standard suspension spectrum loading from FD&E SAE Keyh...

  5. Calling in Work: Secular or Sacred?

    Science.gov (United States)

    Steger, Michael F.; Pickering, N. K.; Shin, J. Y.; Dik, B. J.

    2010-01-01

    Recent scholarship indicates that people who view their work as a calling are more satisfied with their work and their lives. Historically, calling has been regarded as a religious experience, although modern researchers frequently have adopted a more expansive and secular conceptualization of calling, emphasizing meaning and personal fulfillment…

  6. Ballistic propagation of turbulence front in tokamak edge plasmas

    International Nuclear Information System (INIS)

    Sugita, Satoru; Itoh, Kimitaka; Itoh, Sanae-I; Yagi, Masatoshi; Fuhr, Guillaume; Beyer, Peter; Benkadda, Sadruddin

    2012-01-01

    The flux-driven nonlinear simulation of resistive ballooning mode turbulence with tokamak edge geometry is performed to study the non-steady component in the edge turbulence. The large-scale and dynamical events in transport are investigated in a situation where the mean flow is suppressed. Two types of dynamics are observed. One is the radial propagation of the pulse of pressure gradient, the other is the appearance/disappearance of radially elongated global structure of turbulent heat flux. The ballistic propagation is observed in the pulse of pressure gradient, which is associated with the front of turbulent heat flux. We focus on this ballistic propagation phenomenon. Both of the bump of pressure gradient and the front of heat flux propagate inward and outward direction. It is confirmed that the strong fluctuation propagates with the pulse front. It is observed that the number of pulses going outward is close to those going inward. This ballistic phenomenon does not contradict to the turbulence spreading theory. Statistical characteristics of the ballistic propagation of pulses are evaluated and compared with scaling laws which is given by the turbulence spreading theory. It is found that they give qualitatively good agreement. (paper)

  7. Breit-Wigner approximation for propagators of mixed unstable states

    International Nuclear Information System (INIS)

    Fuchs, Elina

    2016-10-01

    For systems of unstable particles that mix with each other, an approximation of the fully momentum- dependent propagator matrix is presented in terms of a sum of simple Breit-Wigner propagators that are multiplied with finite on-shell wave function normalisation factors. The latter are evaluated at the complex poles of the propagators. The pole structure of general propagator matrices is carefully analysed, and it is demonstrated that in the proposed approximation imaginary parts arising from absorptive parts of loop integrals are properly taken into account. Applying the formalism to the neutral MSSM Higgs sector with complex parameters, very good numerical agreement is found between cross sections based on the full propagators and the corresponding cross sections based on the described approximation. The proposed approach does not only technically simplify the treatment of propagators with non-vanishing off-diagonal contributions, it is shown that it can also facilitate an improved theoretical prediction of the considered observables via a more precise implementation of the total widths of the involved particles. It is also well-suited for the incorporation of interference effects arising from overlapping resonances.

  8. Linear wave propagation in a hot axisymmetric toroidal plasma

    International Nuclear Information System (INIS)

    Jaun, A.

    1995-03-01

    Kinetic effects on the propagation of the Alfven wave are studied for the first time in a toroidal plasma relevant for experiments. This requires the resolution of a set of coupled partial differential equations whose coefficients depend locally on the plasma parameters. For this purpose, a numerical wave propagation code called PENN has been developed using either a bilinear or a bicubic Hermite finite element discretization. It solves Maxwell's equations in toroidal geometry, with a dielectric tensor operator that takes into account the linear response of the plasma. Two different models have been implemented and can be used comparatively to describe the same physical case: the first treats the plasma as resistive fluids and gives results which are in good agreement with toroidal fluid codes. The second is a kinetic model and takes into account the finite size of the Larmor radii; it has successfully been tested against a kinetic plasma model in cylindrical geometry. New results have been obtained when studying kinetic effects in toroidal geometry. Two different conversion mechanisms to the kinetic Alfven wave have been described: one occurs at toroidally coupled resonant surfaces and is the kinetic counterpart of the fluid models' resonance absorption. The other has no such correspondence and results directly from the toroidal coupling between the kinetic Alfven wave and the global wavefield. An analysis of a heating scenario suggests that it might be difficult to heat a plasma with Alfven waves up to temperatures that are relevant for a tokamak reactor. Kinetic effects are studied for three types of global Alfven modes (GAE, TAE, BAE) and a new class of kinetic eigenmodes is described which appear inside the fluid gap: it could be related to recent observations in the JET (Joint European Torus) tokamak. (author) 56 figs., 6 tabs., 58 refs

  9. Linear wave propagation in a hot axisymmetric toroidal plasma

    Energy Technology Data Exchange (ETDEWEB)

    Jaun, A [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP)

    1995-03-01

    Kinetic effects on the propagation of the Alfven wave are studied for the first time in a toroidal plasma relevant for experiments. This requires the resolution of a set of coupled partial differential equations whose coefficients depend locally on the plasma parameters. For this purpose, a numerical wave propagation code called PENN has been developed using either a bilinear or a bicubic Hermite finite element discretization. It solves Maxwell`s equations in toroidal geometry, with a dielectric tensor operator that takes into account the linear response of the plasma. Two different models have been implemented and can be used comparatively to describe the same physical case: the first treats the plasma as resistive fluids and gives results which are in good agreement with toroidal fluid codes. The second is a kinetic model and takes into account the finite size of the Larmor radii; it has successfully been tested against a kinetic plasma model in cylindrical geometry. New results have been obtained when studying kinetic effects in toroidal geometry. Two different conversion mechanisms to the kinetic Alfven wave have been described: one occurs at toroidally coupled resonant surfaces and is the kinetic counterpart of the fluid models` resonance absorption. The other has no such correspondence and results directly from the toroidal coupling between the kinetic Alfven wave and the global wavefield. An analysis of a heating scenario suggests that it might be difficult to heat a plasma with Alfven waves up to temperatures that are relevant for a tokamak reactor. Kinetic effects are studied for three types of global Alfven modes (GAE, TAE, BAE) and a new class of kinetic eigenmodes is described which appear inside the fluid gap: it could be related to recent observations in the JET (Joint European Torus) tokamak. (author) 56 figs., 6 tabs., 58 refs.

  10. Propagation Characteristics of International Space Station Wireless Local Area Network

    Science.gov (United States)

    Sham, Catherine C.; Hwn, Shian U.; Loh, Yin-Chung

    2005-01-01

    This paper describes the application of the Uniform Geometrical Theory of Diffraction (UTD) for Space Station Wireless Local Area Networks (WLANs) indoor propagation characteristics analysis. The verification results indicate good correlation between UTD computed and measured signal strength. It is observed that the propagation characteristics are quite different in the Space Station modules as compared with those in the typical indoor WLANs environment, such as an office building. The existing indoor propagation models are not readily applicable to the Space Station module environment. The Space Station modules can be regarded as oversized imperfect waveguides. Two distinct propagation regions separated by a breakpoint exist. The propagation exhibits the guided wave characteristics. The propagation loss in the Space Station, thus, is much smaller than that in the typical office building. The path loss model developed in this paper is applicable for Space Station WLAN RF coverage and link performance analysis.

  11. Wave propagation in a magnetically structured atmosphere. Pt. 2

    International Nuclear Information System (INIS)

    Roberts, B.

    1981-01-01

    Magnetic fields may introduce structure (inhomogeneity) into an otherwise uniform medium and thus change the nature of wave propagation in that medium. As an example of such structuring, wave propagation in an isolated magnetic slab is considered. It is supposed that disturbances outside the slab are laterally non-propagating. The effect of gravity is ignored. The field can support the propagation of both body and surface waves. The existence and nature of these waves depends upon the relative magnitudes of the sound speed c 0 and Alfven speed upsilonsub(A) inside the slab, and the sound speed csub(e) in the field-free environment. (orig./WL)

  12. Hornbills can distinguish between primate alarm calls.

    Science.gov (United States)

    Rainey, Hugo J.; Zuberbühler, Klaus; Slater, Peter J. B.

    2004-01-01

    Some mammals distinguish between and respond appropriately to the alarm calls of other mammal and bird species. However, the ability of birds to distinguish between mammal alarm calls has not been investigated. Diana monkeys (Cercopithecus diana) produce different alarm calls to two predators: crowned eagles (Stephanoaetus coronatus) and leopards (Panthera pardus). Yellow-casqued hornbills (Ceratogymna elata) are vulnerable to predation by crowned eagles but are not preyed on by leopards and might therefore be expected to respond to the Diana monkey eagle alarm call but not to the leopard alarm call. We compared responses of hornbills to playback of eagle shrieks, leopard growls, Diana monkey eagle alarm calls and Diana monkey leopard alarm calls and found that they distinguished appropriately between the two predator vocalizations as well as between the two Diana monkey alarm calls. We discuss possible mechanisms leading to these responses. PMID:15209110

  13. Gauge-invariant dressed fermion propagator in massless QED3

    International Nuclear Information System (INIS)

    Mitra, Indrajit; Ratabole, Raghunath; Sharatchandra, H.S.

    2006-01-01

    The infrared behaviour of the gauge-invariant dressed fermion propagator in massless QED 3 is discussed for three choices of dressing. It is found that only the propagator with the isotropic (in three Euclidean dimensions) choice of dressing is acceptable as the physical fermion propagator. It is explained that the negative anomalous dimension of this physical fermion does not contradict any field-theoretical requirement

  14. Analysis of Error Propagation Within Hierarchical Air Combat Models

    Science.gov (United States)

    2016-06-01

    values alone are propagated through layers of combat models, the final results will likely be biased, and risk underestimated. An air-to-air...values alone are propagated through layers of combat models, the final results will likely be biased, and risk underestimated. An air-to-air engagement... PROPAGATION WITHIN HIERARCHICAL AIR COMBAT MODELS by Salih Ilaslan June 2016 Thesis Advisor: Thomas W. Lucas Second Reader: Jeffrey

  15. Model for Atmospheric Propagation of Spatially Combined Laser Beams

    Science.gov (United States)

    2016-09-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS MODEL FOR ATMOSPHERIC PROPAGATION OF SPATIALLY COMBINED LASER BEAMS by Kum Leong Lee September...MODEL FOR ATMOSPHERIC PROPAGATION OF SPATIALLY COMBINED LASER BEAMS 5. FUNDING NUMBERS 6. AUTHOR(S) Kum Leong Lee 7. PERFORMING ORGANIZATION NAME(S) AND...BLANK ii Approved for public release. Distribution is unlimited. MODEL FOR ATMOSPHERIC PROPAGATION OF SPATIALLY COMBINED LASER BEAMS Kum Leong Lee

  16. Propagation of Gaussian Beams through Active GRIN Materials

    International Nuclear Information System (INIS)

    Gomez-Varela, A I; Flores-Arias, M T; Bao-Varela, C; Gomez-Reino, C; De la Fuente, X

    2011-01-01

    We discussed light propagation through an active GRIN material that exhibits loss or gain. Effects of gain or loss in GRIN materials can be phenomenologically taken into account by using a complex refractive index in the wave equation. This work examines the implication of using a complex refractive index on light propagation in an active GRIN material illuminated by a non-uniform monochromatic wave described by a Gaussian beam. We analyze how a Gaussian beam is propagated through the active material in order to characterize it by the beam parameters and the transverse irradiance distribution.

  17. Design Change Model for Effective Scheduling Change Propagation Paths

    Science.gov (United States)

    Zhang, Hai-Zhu; Ding, Guo-Fu; Li, Rong; Qin, Sheng-Feng; Yan, Kai-Yin

    2017-09-01

    Changes in requirements may result in the increasing of product development project cost and lead time, therefore, it is important to understand how requirement changes propagate in the design of complex product systems and be able to select best options to guide design. Currently, a most approach for design change is lack of take the multi-disciplinary coupling relationships and the number of parameters into account integrally. A new design change model is presented to systematically analyze and search change propagation paths. Firstly, a PDS-Behavior-Structure-based design change model is established to describe requirement changes causing the design change propagation in behavior and structure domains. Secondly, a multi-disciplinary oriented behavior matrix is utilized to support change propagation analysis of complex product systems, and the interaction relationships of the matrix elements are used to obtain an initial set of change paths. Finally, a rough set-based propagation space reducing tool is developed to assist in narrowing change propagation paths by computing the importance of the design change parameters. The proposed new design change model and its associated tools have been demonstrated by the scheduling change propagation paths of high speed train's bogie to show its feasibility and effectiveness. This model is not only supportive to response quickly to diversified market requirements, but also helpful to satisfy customer requirements and reduce product development lead time. The proposed new design change model can be applied in a wide range of engineering systems design with improved efficiency.

  18. Vegetative propagation of Bambusa vulgaris

    Directory of Open Access Journals (Sweden)

    Rafael Malfitano Braga

    2017-06-01

    Full Text Available Bamboo is an important source of raw material of multiple uses. The development of simple techniques for its propagation is a practical way to enable its implementation in ownership of low technology. The present work had the objective of evaluating artisanal propagation methods for Bambusa vulgaris. Two types of propagules were tested, with buds budded or not, and three relative positions to the removal of vegetative material on the culm. The best propagule was with only one node, extracted from the lower thirds of the stem, presenting 72% of rooting. This result demonstrates its potential for seedling production of this species under low tech.

  19. From nestling calls to fledgling silence: adaptive timing of change in response to aerial alarm calls.

    Science.gov (United States)

    Magrath, Robert D; Platzen, Dirk; Kondo, Junko

    2006-09-22

    Young birds and mammals are extremely vulnerable to predators and so should benefit from responding to parental alarm calls warning of danger. However, young often respond differently from adults. This difference may reflect: (i) an imperfect stage in the gradual development of adult behaviour or (ii) an adaptation to different vulnerability. Altricial birds provide an excellent model to test for adaptive changes with age in response to alarm calls, because fledglings are vulnerable to a different range of predators than nestlings. For example, a flying hawk is irrelevant to a nestling in a enclosed nest, but is dangerous to that individual once it has left the nest, so we predict that young develop a response to aerial alarm calls to coincide with fledging. Supporting our prediction, recently fledged white-browed scrubwrens, Sericornis frontalis, fell silent immediately after playback of their parents' aerial alarm call, whereas nestlings continued to calling despite hearing the playback. Young scrubwrens are therefore exquisitely adapted to the changing risks faced during development.

  20. The structure of the gluon propagator

    Energy Technology Data Exchange (ETDEWEB)

    Leinweber, D.B.; Parrinello, C.; Skullerud, J.I.; Williams, A.G

    1999-03-01

    The gluon propagator has been calculated for quenched QCD in the Landau gauge at {beta} = 6.0 for volumes 16{sup 3} x 48 and 32{sup 3} x 64, and at {beta} 6.2 for volume 24{sup 3} x 48. The large volume and different lattice spacings allow us to identify and minimise finite volume and finite lattice spacing artefacts. We also study the tensor structure of the gluon propagator, confirming that it obeys the lattice Landau gauge condition.

  1. Radio propagation measurement and channel modelling

    CERN Document Server

    Salous, Sana

    2013-01-01

    While there are numerous books describing modern wireless communication systems that contain overviews of radio propagation and radio channel modelling, there are none that contain detailed information on the design, implementation and calibration of radio channel measurement equipment, the planning of experiments and the in depth analysis of measured data. The book would begin with an explanation of the fundamentals of radio wave propagation and progress through a series of topics, including the measurement of radio channel characteristics, radio channel sounders, measurement strategies

  2. Radial propagation of turbulence in tokamaks

    International Nuclear Information System (INIS)

    Garbet, X.; Laurent, L.; Samain, A.

    1993-12-01

    It is shown in this paper that a turbulence propagation can be due to toroidal or non linear mode coupling. An analytical analysis indicates that the toroidal coupling acts through a convection while the non linear effects induce a diffusion. Numerical simulations suggest that the toroidal propagation is usually the fastest process, except perhaps in some highly turbulent regimes. The consequence is the possibility of non local effects on the fluctuation level and the associated transport. (authors). 7 figs., 19 refs

  3. Valley-controlled propagation of pseudospin states in bulk metacrystal waveguides

    Science.gov (United States)

    Chen, Xiao-Dong; Deng, Wei-Min; Lu, Jin-Cheng; Dong, Jian-Wen

    2018-05-01

    Light manipulations such as spin-direction locking propagation, robust transport, quantum teleportation, and reconfigurable electromagnetic pathways have been investigated at the boundaries of photonic systems. Recently by breaking Dirac cones in time-reversal-invariant photonic crystals, valley-pseudospin coupled edge states have been employed to realize selective propagation of light. Here, we realize the controllable propagation of pseudospin states in three-dimensional bulk metacrystal waveguides by valley degree of freedom. Reconfigurable photonic valley Hall effect is achieved for frequency-direction locking propagation in such a way that the propagation path can be tunable precisely by scanning the working frequency. A complete transition diagram is illustrated on the valley-dependent pseudospin states of Dirac-cone-absent photonic bands. A photonic blocker is proposed by cascading two inversion asymmetric metacrystal waveguides in which pseudospin-direction locking propagation exists. In addition, valley-dependent pseudospin bands are also discussed in a realistic metamaterials sample. These results show an alternative way toward molding the pseudospin flow in photonic systems.

  4. Propagation of Nd magnetic phases in Nd/Sm(001) superlattices

    International Nuclear Information System (INIS)

    Soriano, S; Dufour, C; Dumesnil, K; Stunault, A

    2006-01-01

    The propagation of Nd long range magnetic order in the hexagonal and cubic sublattices has been investigated in double hexagonal compact Nd/Sm(001) superlattices by resonant x-ray magnetic scattering at the Nd L 2 absorption edge. For a superlattice with 3.7 nm thick Sm layers, the magnetic structure of the hexagonal sublattice propagates coherently through several bilayers, whereas the order in the cubic sublattice remains confined to single Nd blocks. For a superlattice with 1.4 nm thick Sm layers, the magnetic structures of both sublattices appear to propagate coherently through the superlattice. This is the first observation (i) of the long range coherent propagation of Nd order on the cubic sites between Nd blocks and (ii) of a different thickness dependence of the propagation of the Nd magnetic phases associated with the hexagonal and cubic sublattices. The propagation of the Nd magnetic order through Sm is interpreted in terms of generalized susceptibility of the Nd conduction electrons

  5. Staffing to Maximize Profit for Call Centers with Impatient and Repeat-Calling Customers

    Directory of Open Access Journals (Sweden)

    Jun Gong

    2015-01-01

    Full Text Available Motivated by call center practice, we study the optimal staffing of many-server queues with impatient and repeat-calling customers. A call center is modeled as an M/M/s+M queue, which is developed to a behavioral queuing model in which customers come and go based on their satisfaction with waiting time. We explicitly take into account customer repeat behavior, which implies that satisfied customers might return and have an impact on the arrival rate. Optimality is defined as the number of agents that maximize revenues net of staffing costs, and we account for the characteristic that revenues are a direct function of staffing. Finally, we use numerical experiments to make certain comparisons with traditional models that do not consider customer repeat behavior. Furthermore, we indicate how managers might allocate staffing optimally with various customer behavior mechanisms.

  6. Laser beam trapping and propagation in cylindrical plasma columns

    International Nuclear Information System (INIS)

    Feit, M.D.; Fleck, J.A. Jr.

    1976-01-01

    An analysis of the scheme to heat magnetically confined plasma columns to kilovolt temperatures with a laser beam requires consideration of two propagation problems. The first question to be answered is whether stable beam trapping is possible. Since the laser beam creates its own density profile by heating the plasma, the propagation of the beam becomes a nonlinear phenomenon, but not necessarily a stable one. In addition, the electron density at a given time depends on the preceding history of both the medium and the laser pulse. A self-consistent time dependent treatment of the beam propagation and the medium hydrodynamics is consequently required to predict the behavior of the laser beam. Such calculations have been carried out and indicate that propagation of a laser beam in an initially uniform plasma can form a stable filament which alternately focuses and defocuses. An additional question that is discussed is whether diffractive losses associated with long propagation paths are significant

  7. Dynamic Analysis of a Reaction-Diffusion Rumor Propagation Model

    Science.gov (United States)

    Zhao, Hongyong; Zhu, Linhe

    2016-06-01

    The rapid development of the Internet, especially the emergence of the social networks, leads rumor propagation into a new media era. Rumor propagation in social networks has brought new challenges to network security and social stability. This paper, based on partial differential equations (PDEs), proposes a new SIS rumor propagation model by considering the effect of the communication between the different rumor infected users on rumor propagation. The stabilities of a nonrumor equilibrium point and a rumor-spreading equilibrium point are discussed by linearization technique and the upper and lower solutions method, and the existence of a traveling wave solution is established by the cross-iteration scheme accompanied by the technique of upper and lower solutions and Schauder’s fixed point theorem. Furthermore, we add the time delay to rumor propagation and deduce the conditions of Hopf bifurcation and stability switches for the rumor-spreading equilibrium point by taking the time delay as the bifurcation parameter. Finally, numerical simulations are performed to illustrate the theoretical results.

  8. Enhancing propagation characteristics of truncated localized waves in silica

    KAUST Repository

    Salem, Mohamed

    2011-07-01

    The spectral characteristics of truncated Localized Waves propagating in dispersive silica are analyzed. Numerical experiments show that the immunity of the truncated Localized Waves propagating in dispersive silica to decay and distortion is enhanced as the non-linearity of the relation between the transverse spatial spectral components and the wave vector gets stronger, in contrast to free-space propagating waves, which suffer from early decay and distortion. © 2011 IEEE.

  9. Beam propagation

    International Nuclear Information System (INIS)

    Hermansson, B.R.

    1989-01-01

    The main part of this thesis consists of 15 published papers, in which the numerical Beam Propagating Method (BPM) is investigated, verified and used in a number of applications. In the introduction a derivation of the nonlinear Schroedinger equation is presented to connect the beginning of the soliton papers with Maxwell's equations including a nonlinear polarization. This thesis focuses on the wide use of the BPM for numerical simulations of propagating light and particle beams through different types of structures such as waveguides, fibers, tapers, Y-junctions, laser arrays and crystalline solids. We verify the BPM in the above listed problems against other numerical methods for example the Finite-element Method, perturbation methods and Runge-Kutta integration. Further, the BPM is shown to be a simple and effective way to numerically set up the Green's function in matrix form for periodic structures. The Green's function matrix can then be diagonalized with matrix methods yielding the eigensolutions of the structure. The BPM inherent transverse periodicity can be untied, if desired, by for example including an absorptive refractive index at the computational window edges. The interaction of two first-order soliton pulses is strongly dependent on the phase relationship between the individual solitons. When optical phase shift keying is used in coherent one-carrier wavelength communication, the fiber attenuation will suppress or delay the nonlinear instability. (orig.)

  10. Controlling wave propagation through nonlinear engineered granular systems

    Science.gov (United States)

    Leonard, Andrea

    We study the fundamental dynamic behavior of a special class of ordered granular systems in order to design new, structured materials with unique physical properties. The dynamic properties of granular systems are dictated by the nonlinear, Hertzian, potential in compression and zero tensile strength resulting from the discrete material structure. Engineering the underlying particle arrangement of granular systems allows for unique dynamic properties, not observed in natural, disordered granular media. While extensive studies on 1D granular crystals have suggested their usefulness for a variety of engineering applications, considerably less attention has been given to higher-dimensional systems. The extension of these studies in higher dimensions could enable the discovery of richer physical phenomena not possible in 1D, such as spatial redirection and anisotropic energy trapping. We present experiments, numerical simulation (based on a discrete particle model), and in some cases theoretical predictions for several engineered granular systems, studying the effects of particle arrangement on the highly nonlinear transient wave propagation to develop means for controlling the wave propagation pathways. The first component of this thesis studies the stress wave propagation resulting from a localized impulsive loading for three different 2D particle lattice structures: square, centered square, and hexagonal granular crystals. By varying the lattice structure, we observe a wide range of properties for the propagating stress waves: quasi-1D solitary wave propagation, fully 2D wave propagation with tunable wave front shapes, and 2D pulsed wave propagation. Additionally the effects of weak disorder, inevitably present in real granular systems, are investigated. The second half of this thesis studies the solitary wave propagation through 2D and 3D ordered networks of granular chains, reducing the effective density compared to granular crystals by selectively placing wave

  11. Time-translation noninvariance of temporal gauge propagator

    International Nuclear Information System (INIS)

    Lim, S.C.

    1992-07-01

    We show that within the framework of stochastic mechanics, the quantization of a free electromagnetic or Yang-Mills field in the temporal gauge can be consistently carried out. The resulting longitudinal component of the photon or gluon propagator is time-translation noninvariant. The exact form of the propagator depends on the additional boundary condition which fully fixes the temporal gauge. (author). 11 refs

  12. Preventing Unofficial Information Propagation

    Science.gov (United States)

    Le, Zhengyi; Ouyang, Yi; Xu, Yurong; Ford, James; Makedon, Fillia

    Digital copies are susceptible to theft and vulnerable to leakage, copying, or manipulation. When someone (or some group), who has stolen, leaked, copied, or manipulated digital documents propagates the documents over the Internet and/or distributes those through physical distribution channels many challenges arise which document holders must overcome in order to mitigate the impact to their privacy or business. This paper focuses on the propagation problem of digital credentials, which may contain sensitive information about a credential holder. Existing work such as access control policies and the Platform for Privacy Preferences (P3P) assumes that qualified or certified credential viewers are honest and reliable. The proposed approach in this paper uses short-lived credentials based on reverse forward secure signatures to remove this assumption and mitigate the damage caused by a dishonest or honest but compromised viewer.

  13. Propagation of truncated modified Laguerre-Gaussian beams

    Science.gov (United States)

    Deng, D.; Li, J.; Guo, Q.

    2010-01-01

    By expanding the circ function into a finite sum of complex Gaussian functions and applying the Collins formula, the propagation of hard-edge diffracted modified Laguerre-Gaussian beams (MLGBs) through a paraxial ABCD system is studied, and the approximate closed-form propagation expression of hard-edge diffracted MLGBs is obtained. The transverse intensity distribution of the MLGB carrying finite power can be characterized by a single bright and symmetric ring during propagation when the aperture radius is very large. Starting from the definition of the generalized truncated second-order moments, the beam quality factor of MLGBs through a hard-edged circular aperture is investigated in a cylindrical coordinate system, which turns out to be dependent on the truncated radius and the beam orders.

  14. Propagating Characteristics of Pulsed Laser in Rain

    Directory of Open Access Journals (Sweden)

    Jing Guo

    2015-01-01

    Full Text Available To understand the performance of laser ranging system under the rain weather condition, we need to know the propagating characteristics of laser pulse in rain. In this paper, the absorption and attenuation coefficients were calculated based on the scattering theories in discrete stochastic media, and the propagating characteristics of laser pulse in rain were simulated and analyzed using Monte-Carlo method. Some simulation results were verified by experiments, and the simulation results are well matched with the experimental data, with the maximal deviation not less than 7.5%. The results indicated that the propagating laser beam would be attenuated and distorted due to the scattering and absorption of raindrops, and the energy attenuation and pulse shape distortion strongly depended on the laser pulse widths.

  15. Laser beam propagation in non-linearly absorbing media

    CSIR Research Space (South Africa)

    Forbes, A

    2006-08-01

    Full Text Available Many analytical techniques exist to explore the propagation of certain laser beams in free space, or in a linearly absorbing medium. When the medium is nonlinearly absorbing the propagation must be described by an iterative process using the well...

  16. Cosmic ray propagation with CRPropa 3

    International Nuclear Information System (INIS)

    Batista, R Alves; Evoli, C; Sigl, G; Van Vliet, A; Erdmann, M; Kuempel, D; Mueller, G; Walz, D; Kampert, K-H; Winchen, T

    2015-01-01

    Solving the question of the origin of ultra-high energy cosmic rays (UHECRs) requires the development of detailed simulation tools in order to interpret the experimental data and draw conclusions on the UHECR universe. CRPropa is a public Monte Carlo code for the galactic and extragalactic propagation of cosmic ray nuclei above ∼ 10 17 eV, as well as their photon and neutrino secondaries. In this contribution the new algorithms and features of CRPropa 3, the next major release, are presented. CRPropa 3 introduces time-dependent scenarios to include cosmic evolution in the presence of cosmic ray deflections in magnetic fields. The usage of high resolution magnetic fields is facilitated by shared memory parallelism, modulated fields and fields with heterogeneous resolution. Galactic propagation is enabled through the implementation of galactic magnetic field models, as well as an efficient forward propagation technique through transformation matrices. To make use of the large Python ecosystem in astrophysics CRPropa 3 can be steered and extended in Python. (paper)

  17. Heat pulse propagation studies in TFTR

    Energy Technology Data Exchange (ETDEWEB)

    Fredrickson, E.D.; Callen, J.D.; Colchin, R.J.; Efthimion, P.C.; Hill, K.W.; Izzo, R.; Mikkelsen, D.R.; Monticello, D.A.; McGuire, K.; Bell, J.D.

    1986-02-01

    The time scales for sawtooth repetition and heat pulse propagation are much longer (10's of msec) in the large tokamak TFTR than in previous, smaller tokamaks. This extended time scale coupled with more detailed diagnostics has led us to revisit the analysis of the heat pulse propagation as a method to determine the electron heat diffusivity, chi/sub e/, in the plasma. A combination of analytic and computer solutions of the electron heat diffusion equation are used to clarify previous work and develop new methods for determining chi/sub e/. Direct comparison of the predicted heat pulses with soft x-ray and ECE data indicates that the space-time evolution is diffusive. However, the chi/sub e/ determined from heat pulse propagation usually exceeds that determined from background plasma power balance considerations by a factor ranging from 2 to 10. Some hypotheses for resolving this discrepancy are discussed. 11 refs., 19 figs., 1 tab.

  18. Heat pulse propagation studies in TFTR

    International Nuclear Information System (INIS)

    Fredrickson, E.D.; Callen, J.D.; Colchin, R.J.

    1986-02-01

    The time scales for sawtooth repetition and heat pulse propagation are much longer (10's of msec) in the large tokamak TFTR than in previous, smaller tokamaks. This extended time scale coupled with more detailed diagnostics has led us to revisit the analysis of the heat pulse propagation as a method to determine the electron heat diffusivity, chi/sub e/, in the plasma. A combination of analytic and computer solutions of the electron heat diffusion equation are used to clarify previous work and develop new methods for determining chi/sub e/. Direct comparison of the predicted heat pulses with soft x-ray and ECE data indicates that the space-time evolution is diffusive. However, the chi/sub e/ determined from heat pulse propagation usually exceeds that determined from background plasma power balance considerations by a factor ranging from 2 to 10. Some hypotheses for resolving this discrepancy are discussed. 11 refs., 19 figs., 1 tab

  19. Modelling of waves propagation on irregular surfaces using ray tracing and GTD approaches: Application to head waves simulation in TOFD inspections for NDT

    Science.gov (United States)

    Ferrand, Adrien; Darmon, Michel; Chatillon, Sylvain; Deschamps, Marc

    2014-04-01

    The Time of Flight Diffraction (TOFD) technique is a classical ultrasonic method used in ultrasonic non-destructive evaluation, which allows a precise positioning and a quantitative size evaluation of cracks in the inspected material. Among the typical phenomena arising in the current TOFD inspection, the so-called "head wave" is the first contribution reaching the receiver. The head wave propagation on a planar interface is well known and identified as a critical refraction taking place on the material surface. On irregular surfaces, it has been shown that the head wave results from the melting of surface and bulk waves mechanisms and that surface irregularities are responsible for numerous diffractions of the incident head wave. To simulate such behaviour, a model has been developed using a ray tracing technique based on time of flight minimization (generalized Fermat's principle). It enables the calculation of the ray path and the corresponding time of flight of all waves propagating in the material, including the head wave. To obtain a complete propagation model for these waves (both trajectory and amplitude), the integration of Geometrical Theory of Diffraction (GTD) models is currently performed by coupling them with the ray-based approach discussed above.

  20. On the propagation of truncated localized waves in dispersive silica

    KAUST Repository

    Salem, Mohamed

    2010-01-01

    Propagation characteristics of truncated Localized Waves propagating in dispersive silica and free space are numerically analyzed. It is shown that those characteristics are affected by the changes in the relation between the transverse spatial spectral components and the wave vector. Numerical experiments demonstrate that as the non-linearity of this relation gets stronger, the pulses propagating in silica become more immune to decay and distortion whereas the pulses propagating in free-space suffer from early decay and distortion. © 2010 Optical Society of America.

  1. Mechanism for propagation of the step leader of streak lightning

    International Nuclear Information System (INIS)

    Golubev, A.I.; Zolotovskil, V.I.; Ivanovskil, A.V.

    1992-01-01

    A hypothetical scheme for the development of the step leader of streak lightning is discussed. The mathematical problem of modeling the propagation of the leader in this scheme is stated. The main parameters of the leader are estimated: the length and propagation velocity of the step, the average propagation velocity, etc. This is compared with data from observations in nature. The propagation of the leader is simulated numerically. Results of the calculation are presented for two 'flashes' of the step leader. 25 refs., 6 figs

  2. Project Integration Architecture: A Practical Demonstration of Information Propagation

    Science.gov (United States)

    Jones, William Henry

    2005-01-01

    One of the goals of the Project Integration Architecture (PIA) effort is to provide the ability to propagate information between disparate applications. With this ability, applications may then be formed into an application graph constituting a super-application. Such a super-application would then provide all of the analysis appropriate to a given technical system. This paper reports on a small demonstration of this concept in which a Computer Aided Design (CAD) application was connected to an inlet analysis code and geometry information automatically propagated from one to the other. The majority of the work reported involved not the technology of information propagation, but rather the conversion of propagated information into a form usable by the receiving application.

  3. Wave propagation in nanostructures nonlocal continuum mechanics formulations

    CERN Document Server

    Gopalakrishnan, Srinivasan

    2013-01-01

    Wave Propagation in Nanostructures describes the fundamental and advanced concepts of waves propagating in structures that have dimensions of the order of nanometers. The book is fundamentally based on non-local elasticity theory, which includes scale effects in the continuum model. The book predominantly addresses wave behavior in carbon nanotubes and graphene structures, although the methods of analysis provided in this text are equally applicable to other nanostructures. The book takes the reader from the fundamentals of wave propagation in nanotubes to more advanced topics such as rotating nanotubes, coupled nanotubes, and nanotubes with magnetic field and surface effects. The first few chapters cover the basics of wave propagation, different modeling schemes for nanostructures and introduce non-local elasticity theories, which form the building blocks for understanding the material provided in later chapters. A number of interesting examples are provided to illustrate the important features of wave behav...

  4. An ellipsoidal calculus based on propagation and fusion.

    Science.gov (United States)

    Ros, L; Sabater, A; Thomas, F

    2002-01-01

    Presents an ellipsoidal calculus based solely on two basic operations: propagation and fusion. Propagation refers to the problem of obtaining an ellipsoid that must satisfy an affine relation with another ellipsoid, and fusion to that of computing the ellipsoid that tightly bounds the intersection of two given ellipsoids. These two operations supersede the Minkowski sum and difference, affine transformation and intersection tight bounding of ellipsoids on which other ellipsoidal calculi are based. Actually, a Minkowski operation can be seen as a fusion followed by a propagation and an affine transformation as a particular case of propagation. Moreover, the presented formulation is numerically stable in the sense that it is immune to degeneracies of the involved ellipsoids and/or affine relations. Examples arising when manipulating uncertain geometric information in the context of the spatial interpretation of line drawings are extensively used as a testbed for the presented calculus.

  5. Effects of laser beam propagation in a multilevel photoionization system

    International Nuclear Information System (INIS)

    Izawa, Y.; Nomaru, K.; Chen, Y. W.

    1995-01-01

    When the intense laser pulse propagates in the atomic vapor over a long distance, the laser pulse shape, the carrier frequency and the propagating velocity are greatly modified during the propagation by the resonant and/or the near-resonant interactions with atoms. We have been investigating these effects on the laser beam propagation experimentally and analytically. The simulation code named CEALIS-P has been developed, which employs the coupled three- level Bloch-Maxwell equations to study the atomic excitation and laser beam propagation simultaneously. Several features of the resonant and near-resonant effects based on the the self-induced transparency, the self-phase modulation and the nonlinear group velocity dispersion are described and the influences of such effects on the photoionization efficiency are analyzed.

  6. Johnson Creek Artificial Propagation and Enhancement Project Operations and Maintenance Program; Brood Year 1998: Johnson Creek Chinook Salmon Supplementation, Biennial Report 1998-2000.

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, Mitch; Gebhards, John

    2003-05-01

    The Nez Perce Tribe, through funding provided by the Bonneville Power Administration, has implemented a small scale chinook salmon supplementation program on Johnson Creek, a tributary in the South Fork of the Salmon River, Idaho. The Johnson Creek Artificial Propagation Enhancement project was established to enhance the number of threatened Snake River summer chinook salmon (Oncorhynchus tshawytscha) returning to Johnson Creek through artificial propagation. Adult chinook salmon collection and spawning began in 1998. A total of 114 fish were collected from Johnson Creek and 54 fish (20 males and 34 females) were retained for Broodstock. All broodstock were transported to Lower Snake River Compensation Plan's South Fork Salmon River adult holding and spawning facility, operated by the Idaho Department of Fish and Game. The remaining 60 fish were released to spawn naturally. An estimated 155,870 eggs from Johnson Creek chinook spawned at the South Fork Salmon River facility were transported to the McCall Fish Hatchery for rearing. Average fecundity for Johnson Creek females was 4,871. Approximately 20,500 eggs from females with high levels of Bacterial Kidney Disease were culled. This, combined with green-egg to eyed-egg survival of 62%, resulted in about 84,000 eyed eggs produced in 1998. Resulting juveniles were reared indoors at the McCall Fish Hatchery in 1999. All of these fish were marked with Coded Wire Tags and Visual Implant Elastomer tags and 8,043 were also PIT tagged. A total of 78,950 smolts were transported from the McCall Fish Hatchery and released directly into Johnson Creek on March 27, 28, 29, and 30, 2000.

  7. Are North Atlantic Multidecadal SST Anomalies Westward Propagating?

    NARCIS (Netherlands)

    Feng, Qingyi; Dijkstra, Hendrik

    2014-01-01

    The westward propagation of sea surface temperature (SST) anomalies is one of the main characteristics of one of the theories of the Atlantic Multidecadal Oscillation. Here we use techniques from complex network modeling to investigate the existence of the westward propagation in the North Atlantic

  8. Propagation of spatially entangled qudits through free space

    International Nuclear Information System (INIS)

    Lima, G.; Neves, Leonardo; Santos, Ivan F.; Padua, S.; Aguirre Gomez, J. G.; Saavedra, C.

    2006-01-01

    We show the propagation of entangled states of high-dimensional quantum systems. The qudits states were generated using the transverse correlation of the twin photons produced by spontaneous parametric down-conversion. Their free-space distribution was performed at the laboratory scale and the propagated states maintained a high fidelity with their original form. The use of entangled qudits allow an increase in the quantity of information that can be transmitted and may also guarantee more privacy for communicating parties. Therefore, studies about propagating entangled states of qudits are important for the effort of building quantum communication networks

  9. Numerical simulation methods for wave propagation through optical waveguides

    International Nuclear Information System (INIS)

    Sharma, A.

    1993-01-01

    The simulation of the field propagation through waveguides requires numerical solutions of the Helmholtz equation. For this purpose a method based on the principle of orthogonal collocation was recently developed. The method is also applicable to nonlinear pulse propagation through optical fibers. Some of the salient features of this method and its application to both linear and nonlinear wave propagation through optical waveguides are discussed in this report. 51 refs, 8 figs, 2 tabs

  10. Multimodal imaging of spike propagation: a technical case report.

    Science.gov (United States)

    Tanaka, N; Grant, P E; Suzuki, N; Madsen, J R; Bergin, A M; Hämäläinen, M S; Stufflebeam, S M

    2012-06-01

    We report an 11-year-old boy with intractable epilepsy, who had cortical dysplasia in the right superior frontal gyrus. Spatiotemporal source analysis of MEG and EEG spikes demonstrated a similar time course of spike propagation from the superior to inferior frontal gyri, as observed on intracranial EEG. The tractography reconstructed from DTI showed a fiber connection between these areas. Our multimodal approach demonstrates spike propagation and a white matter tract guiding the propagation.

  11. Peafowl antipredator calls encode information about signalers.

    Science.gov (United States)

    Yorzinski, Jessica L

    2014-02-01

    Animals emit vocalizations that convey information about external events. Many of these vocalizations, including those emitted in response to predators, also encode information about the individual that produced the call. The relationship between acoustic features of antipredator calls and information relating to signalers (including sex, identity, body size, and social rank) were examined in peafowl (Pavo cristatus). The "bu-girk" antipredator calls of male and female peafowl were recorded and 20 acoustic parameters were automatically extracted from each call. Both the bu and girk elements of the antipredator call were individually distinctive and calls were classified to the correct signaler with over 90% and 70% accuracy in females and males, respectively. Females produced calls with a higher fundamental frequency (F0) than males. In both females and males, body size was negatively correlated with F0. In addition, peahen rank was related to the duration, end mean frequency, and start harmonicity of the bu element. Peafowl antipredator calls contain detailed information about the signaler and can potentially be used by receivers to respond to dangerous situations.

  12. Simulation of crack propagation in fiber-reinforced concrete by fracture mechanics

    International Nuclear Information System (INIS)

    Zhang Jun; Li, Victor C.

    2004-01-01

    Mode I crack propagation in fiber-reinforced concrete (FRC) is simulated by a fracture mechanics approach. A superposition method is applied to calculate the crack tip stress intensity factor. The model relies on the fracture toughness of hardened cement paste (K IC ) and the crack bridging law, so-called stress-crack width (σ-δ) relationship of the material, as the fundamental material parameters for model input. As two examples, experimental data from steel FRC beams under three-point bending load are analyzed with the present fracture mechanics model. A good agreement has been found between model predictions and experimental results in terms of flexural stress-crack mouth opening displacement (CMOD) diagrams. These analyses and comparisons confirm that the structural performance of concrete and FRC elements, such as beams in bending, can be predicted by the simple fracture mechanics model as long as the related material properties, K IC and (σ-δ) relationship, are known

  13. Wave propagation model of heat conduction and group speed

    Science.gov (United States)

    Zhang, Long; Zhang, Xiaomin; Peng, Song

    2018-03-01

    In view of the finite relaxation model of non-Fourier's law, the Cattaneo and Vernotte (CV) model and Fourier's law are presented in this work for comparing wave propagation modes. Independent variable translation is applied to solve the partial differential equation. Results show that the general form of the time spatial distribution of temperature for the three media comprises two solutions: those corresponding to the positive and negative logarithmic heating rates. The former shows that a group of heat waves whose spatial distribution follows the exponential function law propagates at a group speed; the speed of propagation is related to the logarithmic heating rate. The total speed of all the possible heat waves can be combined to form the group speed of the wave propagation. The latter indicates that the spatial distribution of temperature, which follows the exponential function law, decays with time. These features show that propagation accelerates when heated and decelerates when cooled. For the model media that follow Fourier's law and correspond to the positive heat rate of heat conduction, the propagation mode is also considered the propagation of a group of heat waves because the group speed has no upper bound. For the finite relaxation model with non-Fourier media, the interval of group speed is bounded and the maximum speed can be obtained when the logarithmic heating rate is exactly the reciprocal of relaxation time. And for the CV model with a non-Fourier medium, the interval of group speed is also bounded and the maximum value can be obtained when the logarithmic heating rate is infinite.

  14. On fault propagation in deterioration of multi-component systems

    International Nuclear Information System (INIS)

    Liang, Zhenglin; Parlikad, Ajith Kumar; Srinivasan, Rengarajan; Rasmekomen, Nipat

    2017-01-01

    In extant literature, deterioration dependence among components can be modelled as inherent dependence and induced dependence. We find that the two types of dependence may co-exist and interact with each other in one multi-component system. We refer to this phenomenon as fault propagation. In practice, a fault induced by the malfunction of a non-critical component may further propagate through the dependence amongst critical components. Such fault propagation scenario happens in industrial assets or systems (bridge deck, and heat exchanging system). In this paper, a multi-layered vector-valued continuous-time Markov chain is developed to capture the characteristics of fault propagation. To obtain the mathematical tractability, we derive a partitioning rule to aggregate states with the same characteristics while keeping the overall aging behaviour of the multi-component system. Although the detailed information of components is masked by aggregated states, lumpability is attainable with the partitioning rule. It means that the aggregated process is stochastically equivalent to the original one and retains the Markov property. We apply this model on a heat exchanging system in oil refinery company. The results show that fault propagation has a more significant impact on the system's lifetime comparing with inherent dependence and induced dependence. - Highlights: • We develop a vector value continuous-time Markov chain to model the meta-dependent characteristic of fault propagation. • A partitioning rule is derived to reduce the state space and attain lumpability. • The model is applied on analysing the impact of fault propagation in a heat exchanging system.

  15. Wave propagation of spectral energy content in a granular chain

    Directory of Open Access Journals (Sweden)

    Shrivastava Rohit Kumar

    2017-01-01

    Full Text Available A mechanical wave is propagation of vibration with transfer of energy and momentum. Understanding the spectral energy characteristics of a propagating wave through disordered granular media can assist in understanding the overall properties of wave propagation through inhomogeneous materials like soil. The study of these properties is aimed at modeling wave propagation for oil, mineral or gas exploration (seismic prospecting or non-destructive testing of the internal structure of solids. The focus is on the total energy content of a pulse propagating through an idealized one-dimensional discrete particle system like a mass disordered granular chain, which allows understanding the energy attenuation due to disorder since it isolates the longitudinal P-wave from shear or rotational modes. It is observed from the signal that stronger disorder leads to faster attenuation of the signal. An ordered granular chain exhibits ballistic propagation of energy whereas, a disordered granular chain exhibits more diffusive like propagation, which eventually becomes localized at long time periods. For obtaining mean-field macroscopic/continuum properties, ensemble averaging has been used, however, such an ensemble averaged spectral energy response does not resolve multiple scattering, leading to loss of information, indicating the need for a different framework for micro-macro averaging.

  16. Quantum noise and superluminal propagation

    International Nuclear Information System (INIS)

    Segev, Bilha; Milonni, Peter W.; Babb, James F.; Chiao, Raymond Y.

    2000-01-01

    Causal ''superluminal'' effects have recently been observed and discussed in various contexts. The question arises whether such effects could be observed with extremely weak pulses, and what would prevent the observation of an ''optical tachyon.'' Aharonov, Reznik, and Stern (ARS) [Phys. Rev. Lett. 81, 2190 (1998)] have argued that quantum noise will preclude the observation of a superluminal group velocity when the pulse consists of one or a few photons. In this paper we reconsider this question both in a general framework and in the specific example, suggested by Chiao, Kozhekin, and Kurizki (CKK) [Phys. Rev. 77, 1254 (1996)], of off-resonant, short-pulse propagation in an optical amplifier. We derive in the case of the amplifier a signal-to-noise ratio that is consistent with the general ARS conclusions when we impose their criteria for distinguishing between superluminal propagation and propagation at the speed c. However, results consistent with the semiclassical arguments of CKK are obtained if weaker criteria are imposed, in which case the signal can exceed the noise without being ''exponentially large.'' We show that the quantum fluctuations of the field considered by ARS are closely related to superfluorescence noise. More generally, we consider the implications of unitarity for superluminal propagation and quantum noise and study, in addition to the complete and truncated wave packets considered by ARS, the residual wave packet formed by their difference. This leads to the conclusion that the noise is mostly luminal and delayed with respect to the superluminal signal. In the limit of a very weak incident signal pulse, the superluminal signal will be dominated by the noise part, and the signal-to-noise ratio will therefore be very small. (c) 2000 The American Physical Society

  17. BUFO PARDALIS (ANURA: BUFONIDAE): MATING CALL AND ...

    African Journals Online (AJOL)

    the calls of one of these species, Bufo pardalis. Hewitt, were not analysed by Tandy & Keith. (1972). Furthennore there is some confusion in the literature regarding the mating call of this species. For these reasons this mating call is here clarified. The mating call of B. pardaiis was first described by Ranger (in Hewitt 1935) as ...

  18. Impact of mobility on call block, call drops and optimal cell size in small cell networks

    OpenAIRE

    Ramanath , Sreenath; Voleti , Veeraruna Kavitha; Altman , Eitan

    2011-01-01

    We consider small cell networks and study the impact of user mobility. Assuming Poisson call arrivals at random positions with random velocities, we discuss the characterization of handovers at the boundaries. We derive explicit expressions for call block and call drop probabilities using tools from spatial queuing theory. We also derive expressions for the average virtual server held up time. These expressions are used to derive optimal cell sizes for various profile of velocities in small c...

  19. Propagation Environment Assessment Using UAV Electromagnetic Sensors

    Science.gov (United States)

    2018-03-01

    losses can be taken into account when calculating propagation losses. To correlate the data correctly, the measured received signal power must be...DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) In this thesis, we attempt to build a picture of local propagation conditions by measuring ...operators to choose the optimal settings for the maximum detection range of their radar and radio systems. We also investigate the measurement system

  20. Diagnostics for the ATA beam propagation experiments

    International Nuclear Information System (INIS)

    Fessenden, T.J.; Atchison, W.L.; Barletta, W.A.

    1981-11-01

    This report contains a discussion of the diagnostics required for the beam propagation experiment to be done with the ATA accelerator. Included are a list of the diagnostics needed; a description of the ATA experimental environment; the status of beam diagnostics available at Livermore including recent developments, and a prioritized list of accelerator and propagation diagnostics under consideration or in various stages of development

  1. Efficient Geometric Sound Propagation Using Visibility Culling

    Science.gov (United States)

    Chandak, Anish

    2011-07-01

    Simulating propagation of sound can improve the sense of realism in interactive applications such as video games and can lead to better designs in engineering applications such as architectural acoustics. In this thesis, we present geometric sound propagation techniques which are faster than prior methods and map well to upcoming parallel multi-core CPUs. We model specular reflections by using the image-source method and model finite-edge diffraction by using the well-known Biot-Tolstoy-Medwin (BTM) model. We accelerate the computation of specular reflections by applying novel visibility algorithms, FastV and AD-Frustum, which compute visibility from a point. We accelerate finite-edge diffraction modeling by applying a novel visibility algorithm which computes visibility from a region. Our visibility algorithms are based on frustum tracing and exploit recent advances in fast ray-hierarchy intersections, data-parallel computations, and scalable, multi-core algorithms. The AD-Frustum algorithm adapts its computation to the scene complexity and allows small errors in computing specular reflection paths for higher computational efficiency. FastV and our visibility algorithm from a region are general, object-space, conservative visibility algorithms that together significantly reduce the number of image sources compared to other techniques while preserving the same accuracy. Our geometric propagation algorithms are an order of magnitude faster than prior approaches for modeling specular reflections and two to ten times faster for modeling finite-edge diffraction. Our algorithms are interactive, scale almost linearly on multi-core CPUs, and can handle large, complex, and dynamic scenes. We also compare the accuracy of our sound propagation algorithms with other methods. Once sound propagation is performed, it is desirable to listen to the propagated sound in interactive and engineering applications. We can generate smooth, artifact-free output audio signals by applying

  2. k-Essence, superluminal propagation, causality and emergent geometry

    International Nuclear Information System (INIS)

    Babichev, Eugeny; Mukhanov, Viatcheslav; Vikman, Alexander

    2008-01-01

    The k-essence theories admit in general the superluminal propagation of the perturbations on classical backgrounds. We show that in spite of the superluminal propagation the causal paradoxes do not arise in these theories and in this respect they are not less safe than General Relativity

  3. CRPropa 2.0. A public framework for propagating high energy nuclei, secondary gamma rays and neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Kampert, Karl-Heinz [Wuppertal Univ. (Germany); Kulbartz, Joerg; Schiffer, Peter; Sigl, Guenter; Vliet, Arjen Rene van [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Maccione, Luca [Muenchen Univ. (Germany); Max-Planck-Institut fuer Physik, Muenchen (Germany); Nierstenhoefer, Nils [Wuppertal Univ. (Germany); Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2012-06-15

    Version 2.0 of CRPropa is public software to model the extra-galactic propagation of ultra-high energy nuclei of atomic number Z{<=}26 through structured magnetic fields and ambient photon backgrounds taking into account all relevant particle interactions. CRPropa covers the energy range 6 x 10{sup 16} < E/eV < A x 10{sup 22} where A is the nuclear mass number. CRPropa can also be used to track secondary {gamma}-rays and neutrinos which allows the study of their link with the charged primary nuclei - the so called multi-messenger connection. After a general introduction we present several sample applications of current interest concerning the physics of extragalactic ultra-high energy radiation.

  4. Morse oscillator propagator in the high temperature limit I: Theory

    Energy Technology Data Exchange (ETDEWEB)

    Toutounji, Mohamad, E-mail: Mtoutounji@uaeu.ac.ae

    2017-02-15

    In an earlier work of the author the time evolution of Morse oscillator was studied analytically and exactly at low temperatures whereupon optical correlation functions were calculated using Morse oscillator coherent states were employed. Morse oscillator propagator in the high temperature limit is derived and a closed form of its corresponding canonical partition function is obtained. Both diagonal and off-diagonal forms of Morse oscillator propagator are derived in the high temperature limit. Partition functions of diatomic molecules are calculated. - Highlights: • Derives the quantum propagator of Morse oscillator in the high temperature limit. • Uses the resulting diagonal propagator to derive a closed form of Morse oscillator partition function. • Provides a more sophisticated formula of the quantum propagator to test the accuracy of the herein results.

  5. Thermo-hydraulic Quench Propagation at the LHC Superconducting Magnet String

    CERN Document Server

    Rodríguez-Mateos, F; Serio, L

    1998-01-01

    The superconducting magnets of the LHC are protected by heaters and cold by-pass diodes. If a magnet quenches, the heaters on this magnet are fired and the magnet chain is de-excited in about two minu tes by opening dump switches in parallel to a resistor. During the time required for the discharge, adjacent magnets might quench due to thermo-hydraulic propagation in the helium bath and/or heat con duction via the bus bar. The number of quenching magnets depends on the mechanisms for the propagation. In this paper we report on quench propagation experiments from a dipole magnet to an adjacent ma gnet. The mechanism for the propagation is hot helium gas expelled from the first quenching magnet. The propagation changes with the pressure opening settings of the quench relief valves.

  6. Current-controlled light scattering and asymmetric plasmon propagation in graphene

    Science.gov (United States)

    Wenger, Tobias; Viola, Giovanni; Kinaret, Jari; Fogelström, Mikael; Tassin, Philippe

    2018-02-01

    We demonstrate that plasmons in graphene can be manipulated using a dc current. A source-drain current lifts the forward/backward degeneracy of the plasmons, creating two modes with different propagation properties parallel and antiparallel to the current. We show that the propagation length of the plasmon propagating parallel to the drift current is enhanced, while the propagation length for the antiparallel plasmon is suppressed. We also investigate the scattering of light off graphene due to the plasmons in a periodic dielectric environment and we find that the plasmon resonance separates in two peaks corresponding to the forward and backward plasmon modes. The narrower linewidth of the forward propagating plasmon may be of interest for refractive index sensing and the dc current control could be used for the modulation of mid-infrared electromagnetic radiation.

  7. Wave propagation simulation of radio occultations based on ECMWF refractivity profiles

    DEFF Research Database (Denmark)

    von Benzon, Hans-Henrik; Høeg, Per

    2015-01-01

    This paper describes a complete radio occultation simulation environment, including realistic refractivity profiles, wave propagation modeling, instrument modeling, and bending angle retrieval. The wave propagator is used to simulate radio occultation measurements. The radio waves are propagated...... of radio occultations. The output from the wave propagator simulator is used as input to a Full Spectrum Inversion retrieval module which calculates geophysical parameters. These parameters can be compared to the ECMWF atmospheric profiles. The comparison can be used to reveal system errors and get...... a better understanding of the physics. The wave propagation simulations will in this paper also be compared to real measurements. These radio occultations have been exposed to the same atmospheric conditions as the radio occultations simulated by the wave propagator. This comparison reveals that precise...

  8. Propagation of Aquilaria malaccensis seedlings through tissue culture techniques

    International Nuclear Information System (INIS)

    Salahbiah Abdul Majid; Zaiton Ahmad; Mohd Rafaie Abdul Salam; Nurhayati Irwan; Affrida Abu Hassan; Rusli Ibrahim

    2010-01-01

    Aquilaria malaccensis or karas is the principal source of gaharu resin, which is used in many cultures for incense, perfumes and traditional medicines. The species is mainly propagated conventionally through seeds, cuttings and graftings. Propagation by seeds is usually a reliable method for other forest species, but for karas, this technique is inadequate to meet the current demand of seedling supplies. This is principally due to its low seed viability, low germination rate, delayed rooting of seedlings, long life-cycle and rare seed production. Tissue culture has several advantages over conventional propagation, especially for obtaining large number of uniform and high-yielding plantlets or clones. This paper presents the current progress on mass-propagation of Aquilaria malaccensis seedlings through tissue culture technique at Nuclear Malaysia. (author)

  9. Nonlinear effects in the propagation of shortwave transverse sound in pure superconductors

    International Nuclear Information System (INIS)

    Gal'perin, Y.

    1982-01-01

    Various mechanisms are analyzed which lead to nonlinear phenomena (e.g., the dependence of the absorption coefficient and of the velocity of sound on its intensity) in the propagation of transverse shortwave sound in pure superconductors (the wavelength of the sound being much less than the mean free path of the quasiparticles). It is shown that the basic mechanism, over a wide range of superconductor parameters and of the sound intensity, is the so-called momentum nonlinearity. The latter is due to the distortion (induced by the sound wave) of the quasimomentum distribution of resonant electrons interacting with the wave. The dependences of the absorption coefficient and of the sound velocity on its intensity and on the temperature are analyzed in the vicinity of the superconducting transition point. The feasibility of an experimental study of nonlinear acoustic phenomena in the case of transverse sound is considered

  10. Propagator of stochastic electrodynamics

    International Nuclear Information System (INIS)

    Cavalleri, G.

    1981-01-01

    The ''elementary propagator'' for the position of a free charged particle subject to the zero-point electromagnetic field with Lorentz-invariant spectral density proportionalω 3 is obtained. The nonstationary process for the position is solved by the stationary process for the acceleration. The dispersion of the position elementary propagator is compared with that of quantum electrodynamics. Finally, the evolution of the probability density is obtained starting from an initial distribution confined in a small volume and with a Gaussian distribution in the velocities. The resulting probability density for the position turns out to be equal, to within radiative corrections, to psipsi* where psi is the Kennard wave packet. If the radiative corrections are retained, the present result is new since the corresponding expression in quantum electrodynamics has not yet been found. Besides preceding quantum electrodynamics for this problem, no renormalization is required in stochastic electrodynamics

  11. Photon Propagation through Linearly Active Dimers

    Directory of Open Access Journals (Sweden)

    José Delfino Huerta Morales

    2017-06-01

    Full Text Available We provide an analytic propagator for non-Hermitian dimers showing linear gain or losses in the quantum regime. In particular, we focus on experimentally feasible realizations of the PT -symmetric dimer and provide their mean photon number and second order two-point correlation. We study the propagation of vacuum, single photon spatially-separable, and two-photon spatially-entangled states. We show that each configuration produces a particular signature that might signal their possible uses as photon switches, semi-classical intensity-tunable sources, or spatially entangled sources to mention a few possible applications.

  12. Optimization of directional elastic energy propagation

    DEFF Research Database (Denmark)

    Andreassen, Erik; Chang, Hannah R.; Ruzzene, Massimo

    2016-01-01

    The aim of this paper is to demonstrate how topology optimization can be used to design a periodically perforated plate, in order to obtain a tailored anisotropic group velocity profile. The main method is demonstrated on both low and high frequency bending wave propagation in an aluminum plate......, but is general in the sense that it could be used to design periodic structures with frequency dependent group velocity profiles for any kind of elastic wave propagation. With the proposed method the resulting design is manufacturable. Measurements on an optimized design compare excellently with the numerical...

  13. Sound Propagation An impedance Based Approach

    CERN Document Server

    Kim, Yang-Hann

    2010-01-01

    In Sound Propagation: An Impedance Based Approach , Professor Yang-Hann Kim introduces acoustics and sound fields by using the concept of impedance. Kim starts with vibrations and waves, demonstrating how vibration can be envisaged as a kind of wave, mathematically and physically. One-dimensional waves are used to convey the fundamental concepts. Readers can then understand wave propagation in terms of characteristic and driving point impedance. The essential measures for acoustic waves, such as dB scale, octave scale, acoustic pressure, energy, and intensity, are explained. These measures are

  14. External GSM phone calls now made simpler

    CERN Multimedia

    2007-01-01

    On 2 July, the IT/CS Telecom Service introduced a new service making external calls from CERN GSM phones easier. A specific prefix is no longer needed for calls outside CERN. External calls from CERN GSM phones are to be simplified. It is no longer necessary to use a special prefix to call an external number from the CERN GSM network.The Telecom Section of the IT/CS Group is introducing a new system that will make life easier for GSM users. It is no longer necessary to use a special prefix (333) to call an external number from the CERN GSM network. Simply dial the number directly like any other Swiss GSM customer. CERN currently has its own private GSM network with the Swiss mobile operator, Sunrise, covering the whole of Switzerland. This network was initially intended exclusively for calls between CERN numbers (replacing the old beeper system). A special system was later introduced for external calls, allowing them to pass thr...

  15. Simulation of excitation and propagation of pico-second ultrasound

    International Nuclear Information System (INIS)

    Yang, Seung Yong; Kim, No Hyu

    2016-01-01

    This paper presents an analytic and numerical simulation of the generation and propagation of pico-second ultrasound with nano-scale wavelength, enabling the production of bulk waves in thin films. An analytic model of laser-matter interaction and elasto-dynamic wave propagation is introduced to calculate the elastic strain pulse in microstructures. The model includes the laser-pulse absorption on the material surface, heat transfer from a photon to the elastic energy of a phonon, and acoustic wave propagation to formulate the governing equations of ultra-short ultrasound. The excitation and propagation of acoustic pulses produced by ultra-short laser pulses are numerically simulated for an aluminum substrate using the finite-difference method and compared with the analytical solution. Furthermore, Fourier analysis was performed to investigate the frequency spectrum of the simulated elastic wave pulse. It is concluded that a pico-second bulk wave with a very high frequency of up to hundreds of gigahertz is successfully generated in metals using a 100-fs laser pulse and that it can be propagated in the direction of thickness for thickness less than 100 nm

  16. Simulation of excitation and propagation of pico-second ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Seung Yong; Kim, No Hyu [Dept. of Mechanical Engineering, Korea University of Technology and Education, Chunan (Korea, Republic of)

    2016-12-15

    This paper presents an analytic and numerical simulation of the generation and propagation of pico-second ultrasound with nano-scale wavelength, enabling the production of bulk waves in thin films. An analytic model of laser-matter interaction and elasto-dynamic wave propagation is introduced to calculate the elastic strain pulse in microstructures. The model includes the laser-pulse absorption on the material surface, heat transfer from a photon to the elastic energy of a phonon, and acoustic wave propagation to formulate the governing equations of ultra-short ultrasound. The excitation and propagation of acoustic pulses produced by ultra-short laser pulses are numerically simulated for an aluminum substrate using the finite-difference method and compared with the analytical solution. Furthermore, Fourier analysis was performed to investigate the frequency spectrum of the simulated elastic wave pulse. It is concluded that a pico-second bulk wave with a very high frequency of up to hundreds of gigahertz is successfully generated in metals using a 100-fs laser pulse and that it can be propagated in the direction of thickness for thickness less than 100 nm.

  17. Simulation of excitation and propagation of pico-second ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Seung Yong; Kim, No Kyu [Dept. of Mechanical Engineering, Korea University of Technology and Education, Chunan (Korea, Republic of)

    2014-12-15

    This paper presents an analytic and numerical simulation of the generation and propagation of pico-second ultrasound with nano-scale wavelength, enabling the production of bulk waves in thin films. An analytic model of laser-matter interaction and elasto-dynamic wave propagation is introduced to calculate the elastic strain pulse in microstructures. The model includes the laser-pulse absorption on the material surface, heat transfer from a photon to the elastic energy of a phonon, and acoustic wave propagation to formulate the governing equations of ultra-short ultrasound. The excitation and propagation of acoustic pulses produced by ultra-short laser pulses are numerically simulated for an aluminum substrate using the finite-difference method and compared with the analytical solution. Furthermore, Fourier analysis was performed to investigate the frequency spectrum of the simulated elastic wave pulse. It is concluded that a pico-second bulk wave with a very high frequency of up to hundreds of gigahertz is successfully generated in metals using a 100-fs laser pulse and that it can be propagated in the direction of thickness for thickness less than 100 nm.

  18. Sharing programming resources between Bio* projects through remote procedure call and native call stack strategies.

    Science.gov (United States)

    Prins, Pjotr; Goto, Naohisa; Yates, Andrew; Gautier, Laurent; Willis, Scooter; Fields, Christopher; Katayama, Toshiaki

    2012-01-01

    Open-source software (OSS) encourages computer programmers to reuse software components written by others. In evolutionary bioinformatics, OSS comes in a broad range of programming languages, including C/C++, Perl, Python, Ruby, Java, and R. To avoid writing the same functionality multiple times for different languages, it is possible to share components by bridging computer languages and Bio* projects, such as BioPerl, Biopython, BioRuby, BioJava, and R/Bioconductor. In this chapter, we compare the two principal approaches for sharing software between different programming languages: either by remote procedure call (RPC) or by sharing a local call stack. RPC provides a language-independent protocol over a network interface; examples are RSOAP and Rserve. The local call stack provides a between-language mapping not over the network interface, but directly in computer memory; examples are R bindings, RPy, and languages sharing the Java Virtual Machine stack. This functionality provides strategies for sharing of software between Bio* projects, which can be exploited more often. Here, we present cross-language examples for sequence translation, and measure throughput of the different options. We compare calling into R through native R, RSOAP, Rserve, and RPy interfaces, with the performance of native BioPerl, Biopython, BioJava, and BioRuby implementations, and with call stack bindings to BioJava and the European Molecular Biology Open Software Suite. In general, call stack approaches outperform native Bio* implementations and these, in turn, outperform RPC-based approaches. To test and compare strategies, we provide a downloadable BioNode image with all examples, tools, and libraries included. The BioNode image can be run on VirtualBox-supported operating systems, including Windows, OSX, and Linux.

  19. Call Duration Characteristics based on Customers Location

    Directory of Open Access Journals (Sweden)

    Žvinys Karolis

    2014-05-01

    Full Text Available Nowadays a lot of different researches are performed based on call duration distributions (CDD analysis. However, the majority of studies are linked with social relationships between the people. Therefore the scarcity of information, how the call duration is associated with a user's location, is appreciable. The goal of this paper is to reveal the ties between user's voice call duration and the location of call. For this reason we analyzed more than 5 million calls from real mobile network, which were made over the base stations located in rural areas, roads, small towns, business and entertainment centers, residential districts. According to these site types CDD’s and characteristic features for call durations are given and discussed. Submitted analysis presents the users habits and behavior as a group (not an individual. The research showed that CDD’s of customers being them in different locations are not equal. It has been found that users at entertainment, business centers are tend to talk much shortly, than people being at home. Even more CDD can be distorted strongly, when machinery calls are evaluated. Hence to apply a common CDD for a whole network it is not recommended. The study also deals with specific parameters of call duration for distinguished user groups, the influence of network technology for call duration is considered.

  20. Dynamic 8-state ICSAR rumor propagation model considering official rumor refutation

    Science.gov (United States)

    Zhang, Nan; Huang, Hong; Su, Boni; Zhao, Jinlong; Zhang, Bo

    2014-12-01

    With the rapid development of information networks, negative impacts of rumor propagation become more serious. Nowadays, knowing the mechanisms of rumor propagation and having an efficient official rumor refutation plan play very important roles in reducing losses and ensuring social safety. In this paper we first develop the dynamic 8-state ICSAR (Ignorance, Information Carrier, Information Spreader, Information Advocate, Removal) rumor propagation model to study the mechanism of rumor propagation. Eight influencing factors including information attraction, objective identification of rumors, subjective identification of people, the degree of trust of information media, spread probability, reinforcement coefficient, block value and expert effects which are related to rumor propagation were analyzed. Next, considering these factors and mechanisms of rumor propagation and refutation, the dynamic 8-state ICSAR rumor propagation model is verified by the SIR epidemic model, computer simulation and actual data. Thirdly, through quantitative sensitivity analysis, the detailed function of each influencing factor was studied and shown in the figure directly. According to these mechanisms, we could understand how to block a rumor in a very efficient way and which methods should be chosen in different situations. The ICSAR model can divide people into 8 states and analyze rumor and anti-rumor dissemination in an accurate way. Furthermore, official rumor refutation is considered in rumor propagation. The models and the results are essential for improving the efficiency of rumor refutation and making emergency plans, which help to reduce the possibility of losses in disasters and rumor propagation.

  1. Equivalence of Equilibrium Propagation and Recurrent Backpropagation

    OpenAIRE

    Scellier, Benjamin; Bengio, Yoshua

    2017-01-01

    Recurrent Backpropagation and Equilibrium Propagation are algorithms for fixed point recurrent neural networks which differ in their second phase. In the first phase, both algorithms converge to a fixed point which corresponds to the configuration where the prediction is made. In the second phase, Recurrent Backpropagation computes error derivatives whereas Equilibrium Propagation relaxes to another nearby fixed point. In this work we establish a close connection between these two algorithms....

  2. Bubble propagation in Hele-Shaw channels with centred constrictions

    Science.gov (United States)

    Franco-Gómez, Andrés; Thompson, Alice B.; Hazel, Andrew L.; Juel, Anne

    2018-04-01

    We study the propagation of finite bubbles in a Hele-Shaw channel, where a centred occlusion (termed a rail) is introduced to provide a small axially uniform depth constriction. For bubbles wide enough to span the channel, the system’s behaviour is similar to that of semi-infinite fingers and a symmetric static solution is stable. Here, we focus on smaller bubbles, in which case the symmetric static solution is unstable and the static bubble is displaced towards one of the deeper regions of the channel on either side of the rail. Using a combination of experiments and numerical simulations of a depth-averaged model, we show that a bubble propagating axially due to a small imposed flow rate can be stabilised in a steady symmetric mode centred on the rail through a subtle interaction between stabilising viscous forces and destabilising surface tension forces. However, for sufficiently large capillary numbers Ca, the ratio of viscous to surface tension forces, viscous forces in turn become destabilising thus returning the bubble to an off-centred propagation regime. With decreasing bubble size, the range of Ca for which steady centred propagation is stable decreases, and eventually vanishes through the coalescence of two supercritical pitchfork bifurcations. The depth-averaged model is found to accurately predict all the steady modes of propagation observed experimentally, and provides a comprehensive picture of the underlying steady bifurcation structure. However, for sufficiently large imposed flow rates, we find that initially centred bubbles do not converge onto a steady mode of propagation. Instead they transiently explore weakly unstable steady modes, an evolution which results in their break-up and eventual settling into a steady propagating state of changed topology.

  3. Intraband effects on ultrafast pulse propagation in semiconductor ...

    Indian Academy of Sciences (India)

    High bit-rate (>10 Gb/s) signals are composed of very short pulses and propagation of such pulses through a semiconductor optical amplifier (SOA) requires consideration of intraband phenomena. Due to the intraband effects, the propagating pulse sees a fast recovering nonlinear gain which introduces less distortion in the ...

  4. Propagation of Porro "petal" beams through a turbulent atmosphere

    CSIR Research Space (South Africa)

    Burger, L

    2009-07-01

    Full Text Available . Construct a series of pseudo–random phase screens from the basis. 3. Implement optical wavefront changes from the pseudo–random phase screens. 4. Propagate the resulting beam to the far field and measure …. Page 11 Phase screen construction 20 40 60 80... constant h is height asl k is the wave number Atmospheric propagation Kolmogorov Turbulence Model Page 10 Atmospheric propagation How to measure turbulence 1. Decompose the turbulence model into a series of orthogonal functions (basis set). 2...

  5. Propagation law of impact elastic wave based on specific materials

    Directory of Open Access Journals (Sweden)

    Chunmin CHEN

    2017-02-01

    Full Text Available In order to explore the propagation law of the impact elastic wave on the platform, the experimental platform is built by using the specific isotropic materials and anisotropic materials. The glass cloth epoxy laminated plate is used for anisotropic material, and an organic glass plate is used for isotropic material. The PVDF sensors adhered on the specific materials are utilized to collect data, and the elastic wave propagation law of different thick plates and laminated plates under impact conditions is analyzed. The Experimental results show that in anisotropic material, transverse wave propagation speed along the fiber arrangement direction is the fastest, while longitudinal wave propagation speed is the slowest. The longitudinal wave propagation speed in anisotropic laminates is much slower than that in the laminated thick plates. In the test channel arranged along a particular angle away from the central region of the material, transverse wave propagation speed is larger. Based on the experimental results, this paper proposes a material combination mode which is advantageous to elastic wave propagation and diffusion in shock-isolating materials. It is proposed to design a composite material with high acoustic velocity by adding regularly arranged fibrous materials. The overall design of the barrier material is a layered structure and a certain number of 90°zigzag structure.

  6. Prestress mediates force propagation into the nucleus

    International Nuclear Information System (INIS)

    Hu Shaohua; Chen Jianxin; Butler, James P.; Wang Ning

    2005-01-01

    Several reports show that the nucleus is 10 times stiffer than the cytoplasm. Hence, it is not clear if intra-nuclear structures can be directly deformed by a load of physiologic magnitudes. If a physiologic load could not directly deform intra-nuclear structures, then signaling inside the nucleus would occur only via the mechanisms of diffusion or translocation. Using a synchronous detection approach, we quantified displacements of nucleolar structures in cultured airway smooth muscle cells in response to a localized physiologic load (∼0.4 μm surface deformation) via integrin receptors. The nucleolus exhibited significant displacements. Nucleolar structures also exhibited significant deformation, with the dominant strain being the bulk strain. Increasing the pre-existing tensile stress (prestress) in the cytoskeleton significantly increased the stress propagation efficiency to the nucleolus (defined as nucleolus displacement per surface deformation) whereas decreasing the prestress significantly lowered the stress propagation efficiency to the nucleolus. Abolishing the stress fibers/actin bundles by plating the cells on poly-L-lysine-coated dishes dramatically inhibited stress propagation to the nucleolus. These results demonstrate that the prestress in the cytoskeleton is crucial in mediating stress propagation to the nucleolus, with implications for direct mechanical regulation of nuclear activities and functions

  7. An Immunization Strategy Based on Propagation Mechanism

    Directory of Open Access Journals (Sweden)

    Yixin Zhu

    2014-01-01

    Full Text Available With the ubiquity of smart phones, wearable equipment, and wireless sensors, the topologies of networks composed by them change along with time. The immunization strategies in which network immune nodes are chosen by analyzing the static aggregation network topologies have been challenged. The studies about interaction propagations between two pathogens show that the interaction can change propagation threshold and the final epidemic size of each other, which provides a new thinking of immunization method. The eradication or inhibition of the virus can be achieved through the spread of its opposite party. Here, we put forward an immunization strategy whose implementation does not depend on the analysis of network topology. The immunization agents are randomly placed on a few of individuals of network and spread out from these individuals on network in a propagation method. The immunization agents prevent virus infecting their habitat nodes with certain immune success rate. The analysis and simulation of evolution equation of the model show that immune propagation has a significant impact on the spread threshold and steady-state density of virus on a finite size of BA networks. Simulations on some real-world networks also suggest that the immunization strategy is feasible and effective.

  8. Propagation of coherent light pulses with PHASE

    Science.gov (United States)

    Bahrdt, J.; Flechsig, U.; Grizzoli, W.; Siewert, F.

    2014-09-01

    The current status of the software package PHASE for the propagation of coherent light pulses along a synchrotron radiation beamline is presented. PHASE is based on an asymptotic expansion of the Fresnel-Kirchhoff integral (stationary phase approximation) which is usually truncated at the 2nd order. The limits of this approximation as well as possible extensions to higher orders are discussed. The accuracy is benchmarked against a direct integration of the Fresnel-Kirchhoff integral. Long range slope errors of optical elements can be included by means of 8th order polynomials in the optical element coordinates w and l. Only recently, a method for the description of short range slope errors has been implemented. The accuracy of this method is evaluated and examples for realistic slope errors are given. PHASE can be run either from a built-in graphical user interface or from any script language. The latter method provides substantial flexibility. Optical elements including apertures can be combined. Complete wave packages can be propagated, as well. Fourier propagators are included in the package, thus, the user may choose between a variety of propagators. Several means to speed up the computation time were tested - among them are the parallelization in a multi core environment and the parallelization on a cluster.

  9. Van Allen Probe observations of EMIC wave propagation in the inner magnetosphere

    Science.gov (United States)

    Saikin, A.; Zhang, J.; Smith, C. W.; Spence, H. E.; Torbert, R. B.; Kletzing, C.; Wygant, J. R.

    2017-12-01

    This study examines the propagation of inner magnetosphere (L vector, , analysis on all observed EMIC wave events to determine the direction of propagation, with bi-directionally propagating EMIC waves indicating the presence of the EMIC wave source region. EMIC waves were considered bi-directional (i.e., in the source region) if at least two wave packets exhibited opposing flux components, and (W/km2), consistently for 60 seconds. Events not observed to have opposing flux components are considered unidirectional. EMIC wave events observed at relatively high magnetic latitudes, generally, are found to propagate away from the magnetic equator (i.e., unidirectional). Bi-directionally propagating EMIC waves are preferably observed at lower magnetic latitudes. The occurrence rate, spatial distribution, and the energy propagation angle of both unidirectionally and bi-directionally propagating EMIC waves are examined with respect to L, MLT, and MLAT.

  10. Semiclassical propagation: Hilbert space vs. Wigner representation

    Science.gov (United States)

    Gottwald, Fabian; Ivanov, Sergei D.

    2018-03-01

    A unified viewpoint on the van Vleck and Herman-Kluk propagators in Hilbert space and their recently developed counterparts in Wigner representation is presented. Based on this viewpoint, the Wigner Herman-Kluk propagator is conceptually the most general one. Nonetheless, the respective semiclassical expressions for expectation values in terms of the density matrix and the Wigner function are mathematically proven here to coincide. The only remaining difference is a mere technical flexibility of the Wigner version in choosing the Gaussians' width for the underlying coherent states beyond minimal uncertainty. This flexibility is investigated numerically on prototypical potentials and it turns out to provide neither qualitative nor quantitative improvements. Given the aforementioned generality, utilizing the Wigner representation for semiclassical propagation thus leads to the same performance as employing the respective most-developed (Hilbert-space) methods for the density matrix.

  11. Linear and Nonlinear Infrasound Propagation to 1000 km

    Science.gov (United States)

    2015-12-15

    AFRL-RV-PS- AFRL-RV-PS- TR-2016-0017 TR-2016-0017 LINEAR AND NONLINEAR INFRASOUND PROPAGATION TO 1000 KM Catherine de Groot-Hedlin Scripps...Nonlinear Infrasound Propagation to 1000 km 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62601F 6. AUTHOR(S) Catherine de Groot

  12. Analysis of Accuracy and Epoch on Back-propagation BFGS Quasi-Newton

    Science.gov (United States)

    Silaban, Herlan; Zarlis, Muhammad; Sawaluddin

    2017-12-01

    Back-propagation is one of the learning algorithms on artificial neural networks that have been widely used to solve various problems, such as pattern recognition, prediction and classification. The Back-propagation architecture will affect the outcome of learning processed. BFGS Quasi-Newton is one of the functions that can be used to change the weight of back-propagation. This research tested some back-propagation architectures using classical back-propagation and back-propagation with BFGS. There are 7 architectures that have been tested on glass dataset with various numbers of neurons, 6 architectures with 1 hidden layer and 1 architecture with 2 hidden layers. BP with BFGS improves the convergence of the learning process. The average improvement convergence is 98.34%. BP with BFGS is more optimal on architectures with smaller number of neurons with decreased epoch number is 94.37% with the increase of accuracy about 0.5%.

  13. UWB Propagation through Walls

    Czech Academy of Sciences Publication Activity Database

    Schejbal, V.; Bezoušek, P.; Čermák, D.; NĚMEC, Z.; Fišer, Ondřej; Hájek, M.

    2006-01-01

    Roč. 15, č. 1 (2006), s. 17-24 ISSN 1210-2512 R&D Projects: GA MPO(CZ) FT-TA2/030 Institutional research plan: CEZ:AV0Z30420517 Keywords : Ultra wide band * UWB antennas * UWB propagation * multipath effects Subject RIV: JB - Sensors, Measurment, Regulation

  14. Obliquely propagating dust-density waves

    International Nuclear Information System (INIS)

    Piel, A.; Arp, O.; Klindworth, M.; Melzer, A.

    2008-01-01

    Self-excited dust-density waves are experimentally studied in a dusty plasma under microgravity. Two types of waves are observed: a mode inside the dust volume propagating in the direction of the ion flow and another mode propagating obliquely at the boundary between the dusty plasma and the space charge sheath. The dominance of oblique modes can be described in the frame of a fluid model. It is shown that the results fom the fluid model agree remarkably well with a kinetic electrostatic model of Rosenberg [J. Vac. Sci. Technol. A 14, 631 (1996)]. In the experiment, the instability is quenched by increasing the gas pressure or decreasing the dust density. The critical pressure and dust density are well described by the models

  15. Propagation of a laser beam in a time-varying waveguide

    International Nuclear Information System (INIS)

    Chapman, J.M.; Kevorkian, J.

    1978-01-01

    The propagation of an axisymmetric laser beam in a plasma column having a radially parabolic electron density distribution is examined. First, an extended paraxial procedure is developed for the case of an axially uniform waveguide. It is shown that the essential feature of an alternate focusing and defocusing beam is retained, but that the intensity distribution is cumulatively modified at the foci and at the outer portions of the beam as compared to that of the paraxial case. Second, some general features of paraxial beam propagation are examined for the case of axially varying waveguides. Finally, laser plasma coupling is examined for the case when laser heating generates a density distribution that is radially parabolic near the axis and when the energy absorbed over a focal length of a plasma lens is small. It is shown that stable or unstable beam propagation depends upon the relative magnitude of the density fluctuations which exist in the axial variation of the waveguides as a result of laser heating. When the fluctuations are small, the propagation is stable, and a simple algebraic expression is obtained which relates the beam diameter to the axially slow averaged variation in the waveguide. When the fluctuations are large, the propagation stability can be determined only by consistently combining plasma dynamics and beam propagation to interrelate the axial variation of the beam to that of the waveguide. In this case of beam propagation in a time-varying waveguide, it is shown that the global stability of the propagation depends upon the initial fluctuation growth rate compared to the initial time rate of change in the radial curvature of the waveguide

  16. Non-Linear Back-propagation: Doing Back-Propagation withoutDerivatives of the Activation Function

    DEFF Research Database (Denmark)

    Hertz, John; Krogh, Anders Stærmose; Lautrup, Benny

    1997-01-01

    The conventional linear back-propagation algorithm is replaced by a non-linear version, which avoids the necessity for calculating the derivative of the activation function. This may be exploited in hardware realizations of neural processors. In this paper we derive the non-linear back...

  17. A simple three dimensional wide-angle beam propagation method

    Science.gov (United States)

    Ma, Changbao; van Keuren, Edward

    2006-05-01

    The development of three dimensional (3-D) waveguide structures for chip scale planar lightwave circuits (PLCs) is hampered by the lack of effective 3-D wide-angle (WA) beam propagation methods (BPMs). We present a simple 3-D wide-angle beam propagation method (WA-BPM) using Hoekstra’s scheme along with a new 3-D wave equation splitting method. The applicability, accuracy and effectiveness of our method are demonstrated by applying it to simulations of wide-angle beam propagation and comparing them with analytical solutions.

  18. Lamb wave propagation in monocrystalline silicon wafers

    OpenAIRE

    Fromme, P.; Pizzolato, M.; Robyr, J-L; Masserey, B.

    2018-01-01

    Monocrystalline silicon wafers are widely used in the photovoltaic industry for solar panels with high conversion efficiency. Guided ultrasonic waves offer the potential to efficiently detect micro-cracks in the thin wafers. Previous studies of ultrasonic wave propagation in silicon focused on effects of material anisotropy on bulk ultrasonic waves, but the dependence of the wave propagation characteristics on the material anisotropy is not well understood for Lamb waves. The phase slowness a...

  19. Care and Calls

    DEFF Research Database (Denmark)

    Paasch, Bettina Sletten

    on the enactment of care but also on patient safety. Nurses working in various hospital departments have developed different strategies for handling mobile phone calls when with a patient. Additional research into the ways nurses successfully or unsuccessfully enact care and ensure patient safety when they answer......In Danish hospitals, nurses have been equipped with a mobile work phone to improve their availability and efficiency. On the phones nurses receive internal and external phone conversations, patient calls, and alarms from electronic surveillance equipment. For safety reasons the phones cannot...... be switched off or silenced; they consequently ring during all activities and also during interactions with patients. A possible tension thus arises when nurses have to be both caring and sensitive towards the patient and simultaneously be efficient and available and answer their phone. The present paper...

  20. Analysis of Propagation Plans in NSF-Funded Education Development Projects

    Science.gov (United States)

    Stanford, Courtney; Cole, Renee; Froyd, Jeff; Henderson, Charles; Friedrichsen, Debra; Khatri, Raina

    2017-08-01

    Increasing adoption and adaptation of promising instructional strategies and materials has been identified as a critical component needed to improve science, technology, engineering, and mathematics (STEM) education. This paper examines typical propagation practices and resulting outcomes of proposals written by developers of educational innovations. These proposals were analyzed using the Designing for Sustained Adoption Assessment Instrument (DSAAI), an instrument developed to evaluate propagation plans, and the results used to predict the likelihood that a successful project would result in adoption by others. We found that few education developers propose strong propagation plans. Afterwards, a follow-up analysis was conducted to see which propagation strategies developers actually used to help develop, disseminate, and support their innovations. A web search and interviews with principal investigators were used to determine the degree to which propagation plans were actually implemented and to estimate adoption of the innovations. In this study, we analyzed 71 education development proposals funded by the National Science Foundation and predicted that 80% would be unsuccessful in propagating their innovations. Follow-up data collection with a subset of these suggests that the predictions were reasonably accurate.

  1. Calling under pressure: short-finned pilot whales make social calls during deep foraging dives.

    Science.gov (United States)

    Jensen, Frants H; Perez, Jacobo Marrero; Johnson, Mark; Soto, Natacha Aguilar; Madsen, Peter T

    2011-10-22

    Toothed whales rely on sound to echolocate prey and communicate with conspecifics, but little is known about how extreme pressure affects pneumatic sound production in deep-diving species with a limited air supply. The short-finned pilot whale (Globicephala macrorhynchus) is a highly social species among the deep-diving toothed whales, in which individuals socialize at the surface but leave their social group in pursuit of prey at depths of up to 1000 m. To investigate if these animals communicate acoustically at depth and test whether hydrostatic pressure affects communication signals, acoustic DTAGs logging sound, depth and orientation were attached to 12 pilot whales. Tagged whales produced tonal calls during deep foraging dives at depths of up to 800 m. Mean call output and duration decreased with depth despite the increased distance to conspecifics at the surface. This shows that the energy content of calls is lower at depths where lungs are collapsed and where the air volume available for sound generation is limited by ambient pressure. Frequency content was unaffected, providing a possible cue for group or species identification of diving whales. Social calls may be important to maintain social ties for foraging animals, but may be impacted adversely by vessel noise.

  2. Do market participants learn from conference calls?

    NARCIS (Netherlands)

    Roelofsen, E.; Verbeeten, F.; Mertens, G.

    2014-01-01

    We examine whether market participants learn from the information that is disseminated during the Q-and-A section of conference calls. Specifically, we investigate whether stock prices react to information on intangible assets provided during conference calls, and whether conference calls

  3. Propagation of positional error in 3D GIS

    NARCIS (Netherlands)

    Biljecki, Filip; Heuvelink, Gerard B.M.; Ledoux, Hugo; Stoter, Jantien

    2015-01-01

    While error propagation in GIS is a topic that has received a lot of attention, it has not been researched with 3D GIS data. We extend error propagation to 3D city models using a Monte Carlo simulation on a use case of annual solar irradiation estimation of building rooftops for assessing the

  4. The linear potential propagator via wave function expansion

    International Nuclear Information System (INIS)

    Nassar, Antonio B.; Cattani, Mauro S.D.

    2002-01-01

    We evaluate the quantum propagator for the motion of a particle in a linear potential via a recently developed formalism [A.B. Nassar et al., Phys. Rev. E56, 1230, (1997)]. In this formalism, the propagator comes about as a type of expansion of the wave function over the space of the initial velocities. (author)

  5. Synthesis of ideas on cosmic ray origin and propagation

    International Nuclear Information System (INIS)

    Wolfendale, A.W.

    1986-01-01

    An attempt is made, based largely on ideas reported at this Advanced Studies Institute, to synthesise ideas which have been put forward on cosmic ray origin and propagation. The conclusions drawn are as follows. The bulk of cosmic rays detected at earth appear to be of Galactic origin, many probably having come from supernova remnants, at least at the lowest energies. Only above 10/sup 19/ eV does an extragalactic origin appear likely and here the VIRGO cluster at the centre of our Supercluster is a likely source. Although extragalactic cosmic rays are not present to a large extent their energy density could well be significant and the case is made for its being about 10/sup -4/ eV cm/sup -3/. Concerning the controversy about continuous or ''quick'' particle acceleration, it appears necessary to separate origin and acceleration. The interesting model put forward by Schlickeiser involving what might be called pseudo-continuous acceleration appears to require that the bulk of the particle acceleration occurs in a very large Galactic halo, the secondaries being produced only in the gas disk. Problems are likely, however, with the expected fluxes of X-rays and radio synchrotron radiation

  6. Gauge-invariant dressed fermion propagator in massless QED{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Mitra, Indrajit [Theory Group, Saha Institute of Nuclear Physics, 1/AF Bidhan-Nagar, Kolkata 700064 (India)]. E-mail: indrajit.mitra@saha.ac.in; Ratabole, Raghunath [Institute of Mathematical Sciences, C.I.T. Campus, Taramani P.O., Chennai 600113 (India)]. E-mail: raghu@imsc.res.in; Sharatchandra, H.S. [Institute of Mathematical Sciences, C.I.T. Campus, Taramani P.O., Chennai 600113 (India)]. E-mail: sharat@imsc.res.in

    2006-04-27

    The infrared behaviour of the gauge-invariant dressed fermion propagator in massless QED{sub 3} is discussed for three choices of dressing. It is found that only the propagator with the isotropic (in three Euclidean dimensions) choice of dressing is acceptable as the physical fermion propagator. It is explained that the negative anomalous dimension of this physical fermion does not contradict any field-theoretical requirement.

  7. Interarrival times of message propagation on directed networks

    Science.gov (United States)

    Mihaljev, Tamara; de Arcangelis, Lucilla; Herrmann, Hans J.

    2011-08-01

    One of the challenges in fighting cybercrime is to understand the dynamics of message propagation on botnets, networks of infected computers used to send viruses, unsolicited commercial emails (SPAM) or denial of service attacks. We map this problem to the propagation of multiple random walkers on directed networks and we evaluate the interarrival time distribution between successive walkers arriving at a target. We show that the temporal organization of this process, which models information propagation on unstructured peer to peer networks, has the same features as SPAM reaching a single user. We study the behavior of the message interarrival time distribution on three different network topologies using two different rules for sending messages. In all networks the propagation is not a pure Poisson process. It shows universal features on Poissonian networks and a more complex behavior on scale free networks. Results open the possibility to indirectly learn about the process of sending messages on networks with unknown topologies, by studying interarrival times at any node of the network.

  8. HOW TO CALL THE CERN FIRE BRIGADE

    CERN Multimedia

    2002-01-01

    The telephone numbers of the CERN Fire Brigade are: 74444 for emergency calls 74848 for other calls Note The number 112 will stay in use for emergency calls from 'wired' telephones, however, from mobile phones it leads to non-CERN emergency services.  

  9. HOW TO CALL THE CERN FIRE BRIGADE

    CERN Multimedia

    2002-01-01

    The telephone numbers of the CERN Fire Brigade are: 74444 for emergency calls 74848 for other calls Note The number 112 will stay in use for emergency calls from 'wired' telephones, however, from mobile phones it leads to non-CERN emergency services.

  10. HOW TO CALL THE CERN FIRE BRIGADE

    CERN Multimedia

    2001-01-01

    The telephone numbers of the CERN Fire Brigade are: 74444 for emergency calls 74848 for other calls Note The number 112 will stay in use for emergency calls from 'wired' telephones, however, from mobile phones it leads to non-CERN emergency services.

  11. HOW TO CALL THE CERN FIRE BRIGADE

    CERN Multimedia

    2001-01-01

    The telephone numbers of the CERN Fire Brigade are: 74444 for emergency calls 74848 for other calls Note: the number 112 will stay in use for emergency calls from 'wired' telephones, however, from mobile phones it leads to non-CERN emergency services.

  12. A study on in vitro propagation of Castanopsis argentea

    Directory of Open Access Journals (Sweden)

    MUHAMMAD IMAM SURYA

    2017-03-01

    Full Text Available Abstract. Surya MI, Kurnita NI, Setyaningsih L, Ismaini L, Muttaqin Z. 2016. A study on in vitro propagation of Castanopsis argentea. Pros Sem Nas Masy Biodiv Indon 2: 10-15. Saninten (Castanopsis argentea is a keystone species that has highly potential as a food material. Mostly, the fruits of C. argentea are eaten by animals. It made us difficults to get the natural regeneration. In vitro propagation is an effort to produce considerable amounts of C. argentea. However, the information about in vitro propagation of C. argentea is still very limited. This study was aimed to determine the initiation methods to propagate C. argentea by in vitro propagation. Two methods of sterilization were used to sterilize the explant of seed and buds. Moreover, the explant was planted on modified MS and WPM. The results show that percentage of survival, number of buds and time of germination were found on seed explants sterilized by first method. The number of callus were found on bud explants sterilized by second method. Furthermore, planting media were not affected to the germination of seed explants, but affected to growth of bud explants.

  13. Telephone calls by individuals with cancer.

    Science.gov (United States)

    Flannery, Marie; McAndrews, Leanne; Stein, Karen F

    2013-09-01

    To describe symptom type and reporting patterns found in spontaneously initiated telephone calls placed to an ambulatory cancer center practice. Retrospective, descriptive. Adult hematology oncology cancer center. 563 individuals with a wide range of oncology diagnoses who initiated 1,229 telephone calls to report symptoms. Raw data were extracted from telephone forms using a data collection sheet with 23 variables obtained for each phone call, using pre-established coding criteria. A literature-based, investigator-developed instrument was used for the coding criteria and selection of which variables to extract. Symptom reporting, telephone calls, pain, and symptoms. A total of 2,378 symptoms were reported by telephone during the four months. At least 10% of the sample reported pain (38%), fatigue (16%), nausea (16%), swelling (12%), diarrhea (12%), dyspnea (10%), and anorexia (10%). The modal response was to call only one time and to report only one symptom (55%). Pain emerged as the symptom that most often prompted an individual to pick up the telephone and call. Although variation was seen in symptom reporting, an interesting pattern emerged with an individual reporting on a solitary symptom in a single telephone call. The emergence of pain as the primary symptom reported by telephone prompted educational efforts for both in-person clinic visit management of pain and prioritizing nursing education and protocol management of pain reported by telephone. Report of symptoms by telephone can provide nurses unique insight into patient-centered needs. Although pain has been an important focus of education and research for decades, it remains a priority for individuals with cancer. A wide range in symptom reporting by telephone was evident.

  14. Quantum tomography and classical propagator for quadratic quantum systems

    International Nuclear Information System (INIS)

    Man'ko, O.V.

    1999-03-01

    The classical propagator for tomographic probability (which describes the quantum state instead of wave function or density matrix) is presented for quadratic quantum systems and its relation to the quantum propagator is considered. The new formalism of quantum mechanics, based on the probability representation of the state, is applied to particular quadratic systems - the harmonic oscillator, particle's free motion, problems of an ion in a Paul trap and in asymmetric Penning trap, and to the process of stimulated Raman scattering. The classical propagator for these systems is written in an explicit form. (author)

  15. Quark and gluon propagators in the spherical bag model

    Energy Technology Data Exchange (ETDEWEB)

    Kulish, Yu V [AN Ukrainskoj SSR, Fiziko-Tekhnicheskij Inst., Kharkov

    1983-12-01

    The quark and gluon propagators in a spherical cavity have been obtained by summation of the quark field modes (J-1/2, J is the total moment) and gluon field modes (J=1). The requirements for the spatial components of the gluon propagator Gsub(ik)(x, x') and the quark propagator S(x, x') to be Green functions of the wave equations result in the coincidence of directions for anti x and anti x' vectors. Relations have been derived which allow verification of the self-consistency of approximations used to calculate dynamic values.

  16. Quark and gluon propagators in the spherical bag model

    International Nuclear Information System (INIS)

    Kulish, Yu.V.

    1983-01-01

    The quark and gluon propagators in a spherical cavity have been obtained by summation of the quark field modes (J-1/2, J is the total moment) and gluon field modes (J=1). The requirements for the spatial components of the gluon propagator Gsub(ik)(x, x') and the quark propagator S(x, x') to be Green functions of the wave equations result in the coincidence of directions for anti x and anti x' vectors. Relations have been derived which allow verification of the self-consistency of approximations used to calculate dynamic values

  17. Characteristics of micro-propagated banana (Musa spp.) cultures ...

    African Journals Online (AJOL)

    Administrator

    2011-05-23

    May 23, 2011 ... was conducted to assess the effect of NaCl and PEG separately as well as in combination on plant micro- propagation efficiency of banana (Musa spp.) cv., Basrai. In this experiment, 4-weeks old plantlets of the 3rd sub- culture with well propagation on MS2b nutrient were sub- cultured on three differentially ...

  18. Outsourcing an Effective Postdischarge Call Program

    Science.gov (United States)

    Meek, Kevin L.; Williams, Paula; Unterschuetz, Caryn J.

    2018-01-01

    To improve patient satisfaction ratings and decrease readmissions, many organizations utilize internal staff to complete postdischarge calls to recently released patients. Developing, implementing, monitoring, and sustaining an effective call program can be challenging and have eluded some of the renowned medical centers in the country. Using collaboration with an outsourced vendor to bring state-of-the-art call technology and staffed with specially trained callers, health systems can achieve elevated levels of engagement and satisfaction for their patients postdischarge. PMID:29494453

  19. Calling to Nursing: Concept Analysis.

    Science.gov (United States)

    Emerson, Christie

    The aims of this article are (a) to analyze the concept of a calling as it relates nursing and (b) to develop a definition of calling to nursing with the detail and clarity needed to guide reliable and valid research. The classic steps described by Walker and Avant are used for the analysis. Literature from several disciplines is reviewed including vocational psychology, Christian career counseling, sociology, organizational management, and nursing. The analysis provides an operational definition of a calling to nursing and establishes 3 defining attributes of the concept: (a) a passionate intrinsic motivation or desire (perhaps with a religious component), (b) an aspiration to engage in nursing practice, as a means of fulfilling one's purpose in life, and (c) the desire to help others as one's purpose in life. Antecedents to the concept are personal introspection and cognitive awareness. Positive consequences to the concept are improved work meaningfulness, work engagement, career commitment, personal well-being, and satisfaction. Negative consequences of having a calling might include willingness to sacrifice well-being for work and problems with work-life balance. Following the concept analysis, philosophical assumptions, contextual factors, interdisciplinary work, research opportunities, and practice implications are discussed.

  20. Detecting electromagnetic cloaks using backward-propagating waves

    KAUST Repository

    Salem, Mohamed; Bagci, Hakan

    2011-01-01

    A novel approach for detecting transformation-optics invisibility cloaks is proposed. The detection method takes advantage of the unusual backward-propagation characteristics of recently reported beams and pulses to induce electromagnetic scattering from the cloak. Even though waves with backward-propagating energy flux cannot penetrate the cloaking shell and interact with the cloaked objects (i.e., they do not make the cloaked object visible), they provide a mechanism for detecting the presence of cloaks. © 2011 IEEE.

  1. Detecting electromagnetic cloaks using backward-propagating waves

    KAUST Repository

    Salem, Mohamed

    2011-08-01

    A novel approach for detecting transformation-optics invisibility cloaks is proposed. The detection method takes advantage of the unusual backward-propagation characteristics of recently reported beams and pulses to induce electromagnetic scattering from the cloak. Even though waves with backward-propagating energy flux cannot penetrate the cloaking shell and interact with the cloaked objects (i.e., they do not make the cloaked object visible), they provide a mechanism for detecting the presence of cloaks. © 2011 IEEE.

  2. On low-frequency whistler propagation in ionosphere

    International Nuclear Information System (INIS)

    Mazur, V.A.

    1988-01-01

    The propagation along the Earth surface of an electromagnetic wave with frequency below the ion gyrofrequency is theoretically investigated. In Hall layer of the ionosphere this wave is the whistler mode. It is shown that - contrary to previous works - Ohmic dissipation makes impossible the long-distance propagation of low-frequency whistlers. A many-layer model of the medium is used. The geomagnetic field is considered inclined. The eigen modes and evolution of the initial perturbation are considered

  3. Contribution to the study of neutron propagation in cavities; Contribution a l'etude de la propagation des neutrons dans les cavites

    Energy Technology Data Exchange (ETDEWEB)

    Hasselin, G [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1965-07-01

    In large size cavities where the dimensions of the holes are greater than the mean free path of the radiations, the neutron propagation calculations are carried out by taking into account the effect of the medium surrounding the hole using a reflection coefficient or albedo. In this work the fast neutron albedos are obtained for various materials and these results are applied for a Monte-Carlo propagation calculation. A comparison of this calculation with experimental results shows the validity of the method. (author) [French] Dans les cavites de grandes dimensions, ou les dimensions des vides sont superieures au libre parcours moyen des rayonnements, le calcul de la propagation des neutrons se fait en essayant de rendre compte de l'effet du milieu entourant le vide, par un coefficient de reflexion ou albedo. Dans cette etude, sont d'une part obtenus des albedo en neutrons rapides sur divers materiaux, d'autre part ces resultats sont appliques pour un calcul de MONTE-CARLO de propagation. La comparaison entre le calcul et l'experience montre la validite de la methode. (auteur)

  4. Energy harvesting from radio frequency propagation using piezoelectric cantilevers

    KAUST Repository

    Al Ahmad, Mahmoud; Alshareef, Husam N.

    2012-01-01

    This work reports an induced strain in a piezoelectric cantilever due to radio frequency signal propagation. The piezoelectric actuator is coupled to radio frequency (RF) line through a gap of 0.25 mm. When a voltage signal of 10 Vpp propagates

  5. Temperature dependency of external stress corrosion crack propagation of 304 stainless steel

    International Nuclear Information System (INIS)

    Hayashibara, Hitoshi; Mizutani, Yoshihiro; Mayuzumi, Masami; Tani, Jun-ichi

    2010-01-01

    Temperature dependency of external stress corrosion cracking (ESCC) of 304 stainless steel was examined with CT specimens. Maximum ESCC propagation rates appeared in the early phase of ESCC propagation. ESCC propagation rates generally became smaller as testing time advance. Temperature dependency of maximum ESCC propagation rate was analyzed with Arrhenius plot, and apparent activation energy was similar to that of SCC in chloride solutions. Temperature dependency of macroscopic ESCC incubation time was different from that of ESCC propagation rate. Anodic current density of 304 stainless steel was also examined by anodic polarization measurement. Temperature dependency of critical current density of active state in artificial sea water solution of pH=1.3 was similar to that of ESCC propagation rate. (author)

  6. Query by Constraint Propagation in the Concept-Oriented Data Model

    Directory of Open Access Journals (Sweden)

    Alexandr Savinov

    2006-09-01

    Full Text Available The paper describes an approach to query processing in the concept-oriented data model. This approach is based on imposing constraints and specifying the result type. The constraints are then automatically propagated over the model and the result contains all related data items. The simplest constraint propagation strategy consists of two steps: propagating down to the most specific level using de-projection and propagating up to the target concept using projection. A more complex strategy described in the paper may consist of many de-projection/projection steps passing through some intermediate concepts. An advantage of the described query mechanism is that it does not need any join conditions because it uses the structure of the model for propagation. Moreover, this mechanism does not require specifying an access path using dimension names. Thus even rather complex queries can be expressed in simple and natural form because they are expressed by specifying what information is available and what related data we want to get.

  7. Propagation of an intense laser beam in a tapered plasma channel

    International Nuclear Information System (INIS)

    Jha, Pallavi; Singh, Ram Gopal; Upadhyaya, Ajay K.; Mishra, Rohit K.

    2008-01-01

    Propagation characteristics and modulation instability of an intense laser beam propagating in an axially tapered plasma channel, having a parabolic radial density profile, are studied. Using the source-dependent expansion technique, the evolution equation for the laser spot is set up and conditions for propagation of the laser beam with a constant spot size (matched beam) are obtained. Further, the dispersion relation and growth rate of modulation instability of the laser pulse as it propagates through linearly and quadratically tapered plasma channels, have been obtained

  8. EMERGENCY CALLS

    CERN Multimedia

    Medical Service

    2001-01-01

    IN URGENT NEED OF A DOCTOR GENEVA EMERGENCY SERVICES GENEVA AND VAUD 144 FIRE BRIGADE 118 POLICE 117 CERN FIREMEN 767-44-44 ANTI-POISONS CENTRE Open 24h/24h 01-251-51-51 Patient not fit to be moved, call family doctor, or: GP AT HOME, open 24h/24h 748-49-50 Association Of Geneva Doctors Emergency Doctors at home 07h-23h 322 20 20 Patient fit to be moved: HOPITAL CANTONAL CENTRAL 24 Micheli-du-Crest 372-33-11 ou 382-33-11 EMERGENCIES 382-33-11 ou 372-33-11 CHILDREN'S HOSPITAL 6 rue Willy-Donzé 372-33-11 MATERNITY 32 bvd.de la Cluse 382-68-16 ou 382-33-11 OPHTHALMOLOGY 22 Alcide Jentzer 382-33-11 ou 372-33-11 MEDICAL CENTRE CORNAVIN 1-3 rue du Jura 345 45 50 HOPITAL DE LA TOUR Meyrin EMERGENCIES 719-61-11 URGENCES PEDIATRIQUES 719-61-00 LA TOUR MEDICAL CENTRE 719-74-00 European Emergency Call 112 FRANCE EMERGENCY SERVICES 15 FIRE BRIGADE 18 POLICE 17 CERN FIREMEN AT HOME 00-41-22-767-44-44 ANTI-POISONS CENTRE Open 24h/24h 04-72-11-69-11 All doctors ...

  9. Interactive Sound Propagation using Precomputation and Statistical Approximations

    Science.gov (United States)

    Antani, Lakulish

    Acoustic phenomena such as early reflections, diffraction, and reverberation have been shown to improve the user experience in interactive virtual environments and video games. These effects arise due to repeated interactions between sound waves and objects in the environment. In interactive applications, these effects must be simulated within a prescribed time budget. We present two complementary approaches for computing such acoustic effects in real time, with plausible variation in the sound field throughout the scene. The first approach, Precomputed Acoustic Radiance Transfer, precomputes a matrix that accounts for multiple acoustic interactions between all scene objects. The matrix is used at run time to provide sound propagation effects that vary smoothly as sources and listeners move. The second approach couples two techniques---Ambient Reverberance, and Aural Proxies---to provide approximate sound propagation effects in real time, based on only the portion of the environment immediately visible to the listener. These approaches lie at different ends of a space of interactive sound propagation techniques for modeling sound propagation effects in interactive applications. The first approach emphasizes accuracy by modeling acoustic interactions between all parts of the scene; the second approach emphasizes efficiency by only taking the local environment of the listener into account. These methods have been used to efficiently generate acoustic walkthroughs of architectural models. They have also been integrated into a modern game engine, and can enable realistic, interactive sound propagation on commodity desktop PCs.

  10. Study on the electromagnetic waves propagation characteristics in partially ionized plasma slabs

    Directory of Open Access Journals (Sweden)

    Zhi-Bin Wang

    2016-05-01

    Full Text Available Propagation characteristics of electromagnetic (EM waves in partially ionized plasma slabs are studied in this paper. Such features are significant to applications in plasma antennas, blackout of re-entry flying vehicles, wave energy injection to plasmas, and etc. We in this paper developed a theoretical model of EM wave propagation perpendicular to a plasma slab with a one-dimensional density inhomogeneity along propagation direction to investigate essential characteristics of EM wave propagation in nonuniform plasmas. Particularly, the EM wave propagation in sub-wavelength plasma slabs, where the geometric optics approximation fails, is studied and in comparison with thicker slabs where the geometric optics approximation applies. The influences of both plasma and collisional frequencies, as well as the width of the plasma slab, on the EM wave propagation characteristics are discussed. The results can help the further understanding of propagation behaviours of EM waves in nonuniform plasma, and applications of the interactions between EM waves and plasmas.

  11. Propagation environments [Chapter 4

    Science.gov (United States)

    Douglass F. Jacobs; Thomas D. Landis; Tara Luna

    2009-01-01

    An understanding of all factors influencing plant growth in a nursery environment is needed for the successful growth and production of high-quality container plants. Propagation structures modify the atmospheric conditions of temperature, light, and relative humidity. Native plant nurseries are different from typical horticultural nurseries because plants must be...

  12. TPMG Northern California appointments and advice call center.

    Science.gov (United States)

    Conolly, Patricia; Levine, Leslie; Amaral, Debra J; Fireman, Bruce H; Driscoll, Tom

    2005-08-01

    Kaiser Permanente (KP) has been developing its use of call centers as a way to provide an expansive set of healthcare services to KP members efficiently and cost effectively. Since 1995, when The Permanente Medical Group (TPMG) began to consolidate primary care phone services into three physical call centers, the TPMG Appointments and Advice Call Center (AACC) has become the "front office" for primary care services across approximately 89% of Northern California. The AACC provides primary care phone service for approximately 3 million Kaiser Foundation Health Plan members in Northern California and responds to approximately 1 million calls per month across the three AACC sites. A database records each caller's identity as well as the day, time, and duration of each call; reason for calling; services provided to callers as a result of calls; and clinical outcomes of calls. We here summarize this information for the period 2000 through 2003.

  13. Studies of nonlinear femtosecond pulse propagation in bulk materials

    Science.gov (United States)

    Eaton, Hilary Kaye

    2000-10-01

    Femtosecond pulse lasers are finding widespread application in a variety of fields including medical research, optical switching and communications, plasma formation, high harmonic generation, and wavepacket formation and control. As the number of applications for femtosecond pulses increases, so does the need to fully understand the linear and nonlinear processes involved in propagating these pulses through materials under various conditions. Recent advances in pulse measurement techniques, such as frequency-resolved optical gating (FROG), allow measurement of the full electric field of the pulse and have made detailed investigations of short- pulse propagation effects feasible. In this thesis, I present detailed experimental studies of my work involving nonlinear propagation of femtosecond pulses in bulk media. Studies of plane-wave propagation in fused silica extend the SHG form of FROG from a simple pulse diagnostic to a useful method of interrogating the nonlinear response of a material. Studies of nonlinear propagation are also performed in a regime where temporal pulse splitting occurs. Experimental results are compared with a three- dimensional nonlinear Schrödinger equation. This comparison fuels the development of a more complete model for pulse splitting. Experiments are also performed at peak input powers above those at which pulse splitting is observed. At these higher intensities, a broadband continuum is generated. This work presents a detailed study of continuum behavior and power loss as well as the first near-field spatial- spectral measurements of the generated continuum light. Nonlinear plane-wave propagation of short pulses in liquids is also investigated, and a non-instantaneous nonlinearity with a surprisingly short response time of 10 fs is observed in methanol. Experiments in water confirm that this effect in methanol is indeed real. Possible explanations for the observed effect are discussed and several are experimentally rejected. This

  14. Mathematical Modelling of Tsunami Propagation 1EZE, C. L.; 2UKO ...

    African Journals Online (AJOL)

    MICHAEL

    propagation of waves in the open ocean; (c) propagation of waves in shallow water and on the shore. The development of numerical models to describe tsunami wave generation, propagation and interaction with complicated topography such as bays or harbours and the resulting flooding has advanced to the stage where ...

  15. Evolution of advertisement calls in African clawed frogs

    Science.gov (United States)

    Tobias, Martha L.; Evans, Ben J.; Kelley, Darcy B.

    2014-01-01

    Summary For most frogs, advertisement calls are essential for reproductive success, conveying information on species identity, male quality, sexual state and location. While the evolutionary divergence of call characters has been examined in a number of species, the relative impacts of genetic drift or natural and sexual selection remain unclear. Insights into the evolutionary trajectory of vocal signals can be gained by examining how advertisement calls vary in a phylogenetic context. Evolution by genetic drift would be supported if more closely related species express more similar songs. Conversely, a poor correlation between evolutionary history and song expression would suggest evolution shaped by natural or sexual selection. Here, we measure seven song characters in 20 described and two undescribed species of African clawed frogs (genera Xenopus and Silurana) and four populations of X. laevis. We identify three call types — click, burst and trill — that can be distinguished by click number, call rate and intensity modulation. A fourth type is biphasic, consisting of two of the above. Call types vary in complexity from the simplest, a click, to the most complex, a biphasic call. Maximum parsimony analysis of variation in call type suggests that the ancestral type was of intermediate complexity. Each call type evolved independently more than once and call type is typically not shared by closely related species. These results indicate that call type is homoplasious and has low phylogenetic signal. We conclude that the evolution of call type is not due to genetic drift, but is under selective pressure. PMID:24723737

  16. Modelling of waves propagation on irregular surfaces using ray tracing and GTD approaches: Application to head waves simulation in TOFD inspections for NDT

    International Nuclear Information System (INIS)

    Ferrand, Adrien; Darmon, Michel; Chatillon, Sylvain; Deschamps, Marc

    2014-01-01

    The Time of Flight Diffraction (TOFD) technique is a classical ultrasonic method used in ultrasonic non-destructive evaluation, which allows a precise positioning and a quantitative size evaluation of cracks in the inspected material. Among the typical phenomena arising in the current TOFD inspection, the so-called 'head wave' is the first contribution reaching the receiver. The head wave propagation on a planar interface is well known and identified as a critical refraction taking place on the material surface. On irregular surfaces, it has been shown that the head wave results from the melting of surface and bulk waves mechanisms and that surface irregularities are responsible for numerous diffractions of the incident head wave. To simulate such behaviour, a model has been developed using a ray tracing technique based on time of flight minimization (generalized Fermat's principle). It enables the calculation of the ray path and the corresponding time of flight of all waves propagating in the material, including the head wave. To obtain a complete propagation model for these waves (both trajectory and amplitude), the integration of Geometrical Theory of Diffraction (GTD) models is currently performed by coupling them with the ray-based approach discussed above.

  17. Simulation of action potential propagation in plants.

    Science.gov (United States)

    Sukhov, Vladimir; Nerush, Vladimir; Orlova, Lyubov; Vodeneev, Vladimir

    2011-12-21

    Action potential is considered to be one of the primary responses of a plant to action of various environmental factors. Understanding plant action potential propagation mechanisms requires experimental investigation and simulation; however, a detailed mathematical model of plant electrical signal transmission is absent. Here, the mathematical model of action potential propagation in plants has been worked out. The model is a two-dimensional system of excitable cells; each of them is electrically coupled with four neighboring ones. Ion diffusion between excitable cell apoplast areas is also taken into account. The action potential generation in a single cell has been described on the basis of our previous model. The model simulates active and passive signal transmission well enough. It has been used to analyze theoretically the influence of cell to cell electrical conductivity and H(+)-ATPase activity on the signal transmission in plants. An increase in cell to cell electrical conductivity has been shown to stimulate an increase in the length constant, the action potential propagation velocity and the temperature threshold, while the membrane potential threshold being weakly changed. The growth of H(+)-ATPase activity has been found to induce the increase of temperature and membrane potential thresholds and the reduction of the length constant and the action potential propagation velocity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. On the propagation of a coupled saturation and pressure front

    Energy Technology Data Exchange (ETDEWEB)

    Vasco, D. W.

    2010-12-01

    Using an asymptotic technique, valid for a medium with smoothly varying heterogeneity, I derive an expression for the velocity of a propagating, coupled saturation and pressure front. Due to the nonlinearity of the governing equations, the velocity of the propagating front depends upon the magnitude of the saturation and pressure changes across the front in addition to the properties of the medium. Thus, the expression must be evaluated in conjunction with numerical reservoir simulation. The propagation of the two-phase front is governed by the background saturation distribution, the saturation-dependent component of the fluid mobility, the porosity, the permeability, the capillary pressure function, the medium compressibility, and the ratio of the slopes of the relative permeability curves. Numerical simulation of water injection into a porous layer saturated with a nonaqueous phase liquid indicates that two modes of propagation are important. The fastest mode of propagation is a pressure-dominated disturbance that travels through the saturated layer. This is followed, much later, by a coupled mode with a large saturation change. These two modes are also observed in a simulation using a heterogeneous porous layer. A comparison between the propagation times estimated from the results of the numerical simulation and predictions from the asymptotic expression indicates overall agreement.

  19. Using the sampling method to propagate uncertainties of physical parameters in systems with fissile material

    International Nuclear Information System (INIS)

    Campolina, Daniel de Almeida Magalhães

    2015-01-01

    There is an uncertainty for all the components that comprise the model of a nuclear system. Assessing the impact of uncertainties in the simulation of fissionable material systems is essential for a realistic calculation that has been replacing conservative model calculations as the computational power increases. The propagation of uncertainty in a simulation using a Monte Carlo code by sampling the input parameters is recent because of the huge computational effort required. By analyzing the propagated uncertainty to the effective neutron multiplication factor (k eff ), the effects of the sample size, computational uncertainty and efficiency of a random number generator to represent the distributions that characterize physical uncertainty in a light water reactor was investigated. A program entitled GB s ample was implemented to enable the application of the random sampling method, which requires an automated process and robust statistical tools. The program was based on the black box model and the MCNPX code was used in and parallel processing for the calculation of particle transport. The uncertainties considered were taken from a benchmark experiment in which the effects in k eff due to physical uncertainties is done through a conservative method. In this work a script called GB s ample was implemented to automate the sampling based method, use multiprocessing and assure the necessary robustness. It has been found the possibility of improving the efficiency of the random sampling method by selecting distributions obtained from a random number generator in order to obtain a better representation of uncertainty figures. After the convergence of the method is achieved, in order to reduce the variance of the uncertainty propagated without increase in computational time, it was found the best number o components to be sampled. It was also observed that if the sampling method is used to calculate the effect on k eff due to physical uncertainties reported by

  20. Global Bifurcation of a Novel Computer Virus Propagation Model

    Directory of Open Access Journals (Sweden)

    Jianguo Ren

    2014-01-01

    Full Text Available In a recent paper by J. Ren et al. (2012, a novel computer virus propagation model under the effect of the antivirus ability in a real network is established. The analysis there only partially uncovers the dynamics behaviors of virus spread over the network in the case where around bifurcation is local. In the present paper, by mathematical analysis, it is further shown that, under appropriate parameter values, the model may undergo a global B-T bifurcation, and the curves of saddle-node bifurcation, Hopf bifurcation, and homoclinic bifurcation are obtained to illustrate the qualitative behaviors of virus propagation. On this basis, a collection of policies is recommended to prohibit the virus prevalence. To our knowledge, this is the first time the global bifurcation has been explored for the computer virus propagation. Theoretical results and corresponding suggestions may help us suppress or eliminate virus propagation in the network.

  1. An analysis of superluminal propagation becoming subluminal in highly dispersive media

    Science.gov (United States)

    Nanda, L.

    2018-05-01

    In this article the time-moments of the Poynting vector associated with an electromagnetic pulse are used to characterize the traversal time and the pulse width as the pulse propagates through highly dispersive media. The behaviour of these quantities with propagation distance is analyzed in two physical cases: Lorentz absorptive medium, and Raman gain doublet amplifying medium. It is found that the superluminal pulse propagation in these two cases with anomalous dispersion is always accompanied by pulse compression and eventually the pulse becomes subluminal with increasing distance of propagation.

  2. Visual attitude propagation for small satellites

    Science.gov (United States)

    Rawashdeh, Samir A.

    As electronics become smaller and more capable, it has become possible to conduct meaningful and sophisticated satellite missions in a small form factor. However, the capability of small satellites and the range of possible applications are limited by the capabilities of several technologies, including attitude determination and control systems. This dissertation evaluates the use of image-based visual attitude propagation as a compliment or alternative to other attitude determination technologies that are suitable for miniature satellites. The concept lies in using miniature cameras to track image features across frames and extracting the underlying rotation. The problem of visual attitude propagation as a small satellite attitude determination system is addressed from several aspects: related work, algorithm design, hardware and performance evaluation, possible applications, and on-orbit experimentation. These areas of consideration reflect the organization of this dissertation. A "stellar gyroscope" is developed, which is a visual star-based attitude propagator that uses relative motion of stars in an imager's field of view to infer the attitude changes. The device generates spacecraft relative attitude estimates in three degrees of freedom. Algorithms to perform the star detection, correspondence, and attitude propagation are presented. The Random Sample Consensus (RANSAC) approach is applied to the correspondence problem to successfully pair stars across frames while mitigating falsepositive and false-negative star detections. This approach provides tolerance to the noise levels expected in using miniature optics and no baffling, and the noise caused by radiation dose on orbit. The hardware design and algorithms are validated using test images of the night sky. The application of the stellar gyroscope as part of a CubeSat attitude determination and control system is described. The stellar gyroscope is used to augment a MEMS gyroscope attitude propagation

  3. Massive propagators in instanton fields

    International Nuclear Information System (INIS)

    Brown, L.S.; Lee, C.

    1978-01-01

    Green's functions for massive spinor and vector particles propagating in a self-dual but otherwise arbitrary non-Abelian gauge field are shown to be completely determined by the corresponding Green's functions of massive scalar particles

  4. Interface fatigue crack propagation in sandwich X-joints – Part I: Experiments

    DEFF Research Database (Denmark)

    Moslemian, Ramin; Berggreen, Christian

    2013-01-01

    Correlation technique was used to locate the crack tip and monitor the crack growth. For the specimens with H45 core, unstable crack growth took place initially. Following the unstable propagation, the crack propagated in the core underneath the resin-rich cell layer approaching the interface. However......, the crack did not kink into the interface. For the specimens with H100 core, the crack propagated initially in the core and then returned into the interface and continued to propagate in the interface. For the specimens with H250 core, the crack initially propagated in the core and then kinked...

  5. Electromagnetic Wave Propagation in Two-Dimensional Photonic Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Foteinopoulou, Stavroula [Iowa State Univ., Ames, IA (United States)

    2003-01-01

    In this dissertation, they have undertaken the challenge to understand the unusual propagation properties of the photonic crystal (PC). The photonic crystal is a medium where the dielectric function is periodically modulated. These types of structures are characterized by bands and gaps. In other words, they are characterized by frequency regions where propagation is prohibited (gaps) and regions where propagation is allowed (bands). In this study they focus on two-dimensional photonic crystals, i.e., structures with periodic dielectric patterns on a plane and translational symmetry in the perpendicular direction. They start by studying a two-dimensional photonic crystal system for frequencies inside the band gap. The inclusion of a line defect introduces allowed states in the otherwise prohibited frequency spectrum. The dependence of the defect resonance state on different parameters such as size of the structure, profile of incoming source, etc., is investigated in detail. For this study, they used two popular computational methods in photonic crystal research, the Finite Difference Time Domain method (FDTD) and the Transfer Matrix Method (TMM). The results for the one-dimensional defect system are analyzed, and the two methods, FDTD and TMM, are compared. Then, they shift their attention only to periodic two-dimensional crystals, concentrate on their band properties, and study their unusual refractive behavior. Anomalous refractive phenomena in photonic crystals included cases where the beam refracts on the ''wrong'' side of the surface normal. The latter phenomenon, is known as negative refraction and was previously observed in materials where the wave vector, the electric field, and the magnetic field form a left-handed set of vectors. These materials are generally called left-handed materials (LHM) or negative index materials (NIM). They investigated the possibility that the photonic crystal behaves as a LHM, and how this behavior relates

  6. Spark channel propagation in a microbubble liquid

    Energy Technology Data Exchange (ETDEWEB)

    Panov, V. A.; Vasilyak, L. M., E-mail: vasilyak@ihed.ras.ru; Vetchinin, S. P.; Pecherkin, V. Ya.; Son, E. E. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

    2016-11-15

    Experimental study on the development of the spark channel from the anode needle under pulsed electrical breakdown of isopropyl alcohol solution in water with air microbubbles has been performed. The presence of the microbubbles increases the velocity of the spark channel propagation and increases the current in the discharge gap circuit. The observed rate of spark channel propagation in microbubble liquid ranges from 4 to 12 m/s, indicating the thermal mechanism of the spark channel development in a microbubble liquid.

  7. Quantum Graphical Models and Belief Propagation

    International Nuclear Information System (INIS)

    Leifer, M.S.; Poulin, D.

    2008-01-01

    Belief Propagation algorithms acting on Graphical Models of classical probability distributions, such as Markov Networks, Factor Graphs and Bayesian Networks, are amongst the most powerful known methods for deriving probabilistic inferences amongst large numbers of random variables. This paper presents a generalization of these concepts and methods to the quantum case, based on the idea that quantum theory can be thought of as a noncommutative, operator-valued, generalization of classical probability theory. Some novel characterizations of quantum conditional independence are derived, and definitions of Quantum n-Bifactor Networks, Markov Networks, Factor Graphs and Bayesian Networks are proposed. The structure of Quantum Markov Networks is investigated and some partial characterization results are obtained, along the lines of the Hammersley-Clifford theorem. A Quantum Belief Propagation algorithm is presented and is shown to converge on 1-Bifactor Networks and Markov Networks when the underlying graph is a tree. The use of Quantum Belief Propagation as a heuristic algorithm in cases where it is not known to converge is discussed. Applications to decoding quantum error correcting codes and to the simulation of many-body quantum systems are described

  8. Wave propagation in spatially modulated tubes

    Energy Technology Data Exchange (ETDEWEB)

    Ziepke, A., E-mail: ziepke@itp.tu-berlin.de; Martens, S.; Engel, H. [Institut für Theoretische Physik, Hardenbergstraße 36, EW 7-1, Technische Universität Berlin, 10623 Berlin (Germany)

    2016-09-07

    We investigate wave propagation in rotationally symmetric tubes with a periodic spatial modulation of cross section. Using an asymptotic perturbation analysis, the governing quasi-two-dimensional reaction-diffusion equation can be reduced into a one-dimensional reaction-diffusion-advection equation. Assuming a weak perturbation by the advection term and using projection method, in a second step, an equation of motion for traveling waves within such tubes can be derived. Both methods predict properly the nonlinear dependence of the propagation velocity on the ratio of the modulation period of the geometry to the intrinsic width of the front, or pulse. As a main feature, we observe finite intervals of propagation failure of waves induced by the tube’s modulation and derive an analytically tractable condition for their occurrence. For the highly diffusive limit, using the Fick-Jacobs approach, we show that wave velocities within modulated tubes are governed by an effective diffusion coefficient. Furthermore, we discuss the effects of a single bottleneck on the period of pulse trains. We observe period changes by integer fractions dependent on the bottleneck width and the period of the entering pulse train.

  9. Modeling paraxial wave propagation in free-electron laser oscillators

    NARCIS (Netherlands)

    Karssenberg, J.G.; van der Slot, Petrus J.M.; Volokhine, I.; Verschuur, Jeroen W.J.; Boller, Klaus J.

    2006-01-01

    Modeling free-electron laser (FEL) oscillators requires calculation of both the light-beam interaction within the undulator and the light propagation outside the undulator. We have developed a paraxial optical propagation code that can be combined with various existing models of gain media, for

  10. Enhancement of in vitro Guayule propagation

    Science.gov (United States)

    Dastoor, M. N.; Schubert, W. W.; Petersen, G. R. (Inventor)

    1982-01-01

    A method for stimulating in vitro propagation of Guayule from a nutrient medium containing Guayule tissue by adding a substituted trialkyl amine bioinducing agent to the nutrient medium is described. Selective or differentiated propagation of shoots or callus is obtained by varying the amounts of substituted trialky amine present in the nutrient medium. The luxuriant growth provided may be processed for its poly isoprene content or may be transferred to a rooting medium for production of whole plants as identical clones of the original tissue. The method also provides for the production of large numbers of Guayule plants having identical desirable properties such as high polyisoprene levels.

  11. Propagation of ultrahigh-energy cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Stanev, Todor [Bartol Research Institute and Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States)], E-mail: stanev@bartol.udel.edu

    2009-06-15

    We briefly describe the energy loss processes of ultrahigh-energy protons, heavier nuclei and {gamma}-rays in interactions with the universal photon fields of the Universe. We then discuss the modification of the accelerated cosmic-ray energy spectrum in propagation by the energy loss processes and the charged cosmic-ray scattering in the extragalactic magnetic fields. The energy lost by the ultrahigh-energy cosmic rays goes into {gamma}-rays and neutrinos that carry additional information about the sources of highest energy particles. The new experimental results of the HiRes and the Auger collaborations are discussed in view of the predictions from propagation calculations.

  12. Nonlinear propagation of ultrashort laser pulses in transparent media

    International Nuclear Information System (INIS)

    Vincotte, A.

    2006-10-01

    We present different aspects of the propagation of ultrashort laser pulses in transparent media. First, we derive the propagation equations starting from the Maxwell equations. We remind of the main physical phenomena undergone by ultrashort and powerful laser pulses. First self-focusing occurs, owing to the Kerr response of the medium. This self-focusing is stopped by plasma generation from the laser-induced ionization of the ambient atoms. The propagation of the wave generates a super-continuum through self-phase modulation. We recall the main results concerning the simple and multiple filamentation of an intense wave, induced by the beam inhomogeneities and which take place as soon as the beam power is above critical. In a second part, we investigate the influence of high-order nonlinearities on the propagation of the beam and especially on its filamentation pattern. To control the multi-filamentation process, we investigate in a third part the propagation of beams with special designs, namely; Gradient- and vortex-shaped beams. We justify the robustness of this latter kind of optical objects. Eventually, we investigate multi-filamentation patterns of femtosecond pulses in a fog tube and in cells of ethanol doped with coumarin, for different beam configurations. (author)

  13. Radio Wave Propagation Scene Partitioning for High-Speed Rails

    Directory of Open Access Journals (Sweden)

    Bo Ai

    2012-01-01

    Full Text Available Radio wave propagation scene partitioning is necessary for wireless channel modeling. As far as we know, there are no standards of scene partitioning for high-speed rail (HSR scenarios, and therefore we propose the radio wave propagation scene partitioning scheme for HSR scenarios in this paper. Based on our measurements along the Wuhan-Guangzhou HSR, Zhengzhou-Xian passenger-dedicated line, Shijiazhuang-Taiyuan passenger-dedicated line, and Beijing-Tianjin intercity line in China, whose operation speeds are above 300 km/h, and based on the investigations on Beijing South Railway Station, Zhengzhou Railway Station, Wuhan Railway Station, Changsha Railway Station, Xian North Railway Station, Shijiazhuang North Railway Station, Taiyuan Railway Station, and Tianjin Railway Station, we obtain an overview of HSR propagation channels and record many valuable measurement data for HSR scenarios. On the basis of these measurements and investigations, we partitioned the HSR scene into twelve scenarios. Further work on theoretical analysis based on radio wave propagation mechanisms, such as reflection and diffraction, may lead us to develop the standard of radio wave propagation scene partitioning for HSR. Our work can also be used as a basis for the wireless channel modeling and the selection of some key techniques for HSR systems.

  14. Voltage tunable plasmon propagation in dual gated bilayer graphene

    Science.gov (United States)

    Farzaneh, Seyed M.; Rakheja, Shaloo

    2017-10-01

    In this paper, we theoretically investigate plasmon propagation characteristics in AB and AA stacked bilayer graphene (BLG) in the presence of energy asymmetry due to an electrostatic field oriented perpendicularly to the plane of the graphene sheet. We first derive the optical conductivity of BLG using the Kubo formalism incorporating energy asymmetry and finite electron scattering. All results are obtained for room temperature (300 K) operation. By solving Maxwell's equations in a dual gate device setup, we obtain the wavevector of propagating plasmon modes in the transverse electric (TE) and transverse magnetic (TM) directions at terahertz frequencies. The plasmon wavevector allows us to compare the compression factor, propagation length, and the mode confinement of TE and TM plasmon modes in bilayer and monolayer graphene sheets and also to study the impact of material parameters on plasmon characteristics. Our results show that the energy asymmetry can be harnessed to increase the propagation length of TM plasmons in BLG. AA stacked BLG shows a larger increase in the propagation length than AB stacked BLG; conversely, it is very insensitive to the Fermi level variations. Additionally, the dual gate structure allows independent modulation of the energy asymmetry and the Fermi level in BLG, which is advantageous for reconfiguring plasmon characteristics post device fabrication.

  15. Error propagation analysis for a sensor system

    International Nuclear Information System (INIS)

    Yeater, M.L.; Hockenbury, R.W.; Hawkins, J.; Wilkinson, J.

    1976-01-01

    As part of a program to develop reliability methods for operational use with reactor sensors and protective systems, error propagation analyses are being made for each model. An example is a sensor system computer simulation model, in which the sensor system signature is convoluted with a reactor signature to show the effect of each in revealing or obscuring information contained in the other. The error propagation analysis models the system and signature uncertainties and sensitivities, whereas the simulation models the signatures and by extensive repetitions reveals the effect of errors in various reactor input or sensor response data. In the approach for the example presented, the errors accumulated by the signature (set of ''noise'' frequencies) are successively calculated as it is propagated stepwise through a system comprised of sensor and signal processing components. Additional modeling steps include a Fourier transform calculation to produce the usual power spectral density representation of the product signature, and some form of pattern recognition algorithm

  16. Adaptive numerical modeling of dynamic crack propagation

    International Nuclear Information System (INIS)

    Adouani, H.; Tie, B.; Berdin, C.; Aubry, D.

    2006-01-01

    We propose an adaptive numerical strategy that aims at developing reliable and efficient numerical tools to model dynamic crack propagation and crack arrest. We use the cohesive zone theory as behavior of interface-type elements to model crack. Since the crack path is generally unknown beforehand, adaptive meshing is proposed to model the dynamic crack propagation. The dynamic study requires the development of specific solvers for time integration. As both geometry and finite element mesh of the studied structure evolve in time during transient analysis, the stability behavior of dynamic solver becomes a major concern. For this purpose, we use the space-time discontinuous Galerkin finite element method, well-known to provide a natural framework to manage meshes that evolve in time. As an important result, we prove that the space-time discontinuous Galerkin solver is unconditionally stable, when the dynamic crack propagation is modeled by the cohesive zone theory, which is highly non-linear. (authors)

  17. Large scale propagation intermittency in the atmosphere

    Science.gov (United States)

    Mehrabi, Ali

    2000-11-01

    Long-term (several minutes to hours) amplitude variations observed in outdoor sound propagation experiments at Disneyland, California, in February 1998 are explained in terms of a time varying index of refraction. The experimentally propagated acoustic signals were received and recorded at several locations ranging from 300 meters to 2,800 meters. Meteorological data was taken as a function of altitude simultaneously with the received signal levels. There were many barriers along the path of acoustic propagation that affected the received signal levels, especially at short ranges. In a downward refraction situation, there could be a random change of amplitude in the predicted signals. A computer model based on the Fast Field Program (FFP) was used to compute the signal loss at the different receiving locations and to verify that the variations in the received signal levels can be predicted numerically. The calculations agree with experimental data with the same trend variations in average amplitude.

  18. Thermal effects on parallel-propagating electron cyclotron waves

    International Nuclear Information System (INIS)

    Robinson, P.A.

    1987-01-01

    Thermal effects on the dispersion of right-handed electron cyclotron waves propagating parallel to a uniform, ambient magnetic field are investigated in the strictly non-relativistic ('classical') and weakly relativistic approximations for real frequency and complex wave vector. In each approximation, the two branches of the RH mode reconnect near the cyclotron frequency as the plasma temperature is increased or the density is lowered. This reconnection occurs in a manner different from that previously assumed at parallel propagation and from that at perpendicular propagation, giving rise to a new mode near the cold plasma cut-off frequency ωsub(xC). For both parallel and perpendicular propagation, it is noted that reconnection occurs approximately when the cyclotron linewidth equals the width of the stop-band in the cold plasma dispersion relation. Inclusion of weakly relativistic effects is found to be necessary for quantitative calculations and for an accurate treatment of the new mode near ωsub(xC). Weakly relativistic effects also modify the analytic properties of the dispersion relation so as to introduce a new family of weakly damped and undamped solutions. (author)

  19. Invertible propagator for plane wave illumination of forward-scattering structures.

    Science.gov (United States)

    Samelsohn, Gregory

    2017-05-10

    Propagation of directed waves in forward-scattering media is considered. It is assumed that the evolution of the wave field is governed by the standard parabolic wave equation. An efficient one-step momentum-space propagator, suitable for a tilted plane wave illumination of extended objects, is derived. It is expressed in terms of a propagation operator that transforms (the complex exponential of) a linogram of the illuminated object into a set of its diffraction patterns. The invertibility of the propagator is demonstrated, which permits a multiple-shot scatter correction to be performed, and makes the solution especially attractive for either projective or tomographic imaging. As an example, high-resolution tomograms are obtained in numerical simulations implemented for a synthetic phantom, with both refractive and absorptive inclusions.

  20. Rotating and propagating LIB stabilized by self-induced magnetic field

    International Nuclear Information System (INIS)

    Murakami, H.; Aoki, T.; Kawata, S.; Niu, K.

    1984-01-01

    Rotating motion of a propagating LIB is analyzed in order to suppress the mixed mode of the Kelvin-Helmholtz instability, the tearing instability and the sausage instability by the action of a self-induced magnetic field in the axial direction. The beams are assumed to be charge-neutralized but not current-neutralized. The steady-state solutions of a propagating LIB with rotation are first obtained numerically. Through the dispersion relation with respect to the ikonal type of perturbations, which are added to the steady-state solutions, the growth rates of instabilities appearing in an LIB are obtained. It is concluded that if the mean rotating velocity of an LIB is comparable to the propagation velocity, the instability disappears in the propagating ion beam. (author)

  1. Fatigue crack propagation under elastic plastic medium at elevated temperature

    International Nuclear Information System (INIS)

    Asada, Y.; Yuuki, R.; Sakon, T.; Sunamoto, D.; Tokimasa, K.; Makino, Y.; Kitagawa, M; Shingai, K.

    1980-01-01

    The purposes of the present study are to establish the testing method to obtain compatible data on the low cycle fatigue crack propagation at elevated temperature, and to investigate the parameter controlling the crack propagation rate. In the present study, the preliminary experiments have been carried out on low cycle fatigue crack propagation behaviour in type 304 stainless steel in air at 550 0 C, using two types of specimen with a through thickness notch. Both strain controlled and stress controlled fatigue tests have been done under a fully reversed strain or stress cycling. The data obtained are correlated with some fracture mechanics parameters and are discussed with the appropriate parameter for evaluating the low cycle fatigue crack propagation behaviour at elevated temperature. (author)

  2. Multilayer Network Modeling of Change Propagation for Engineering Change Management

    Science.gov (United States)

    2010-06-01

    generalization, rather than statistical generalization. As such, a single case can be used to advance a theory, similarly to how scientific experiments are...ation 411 PNC C ac 2 C PC Not Predicted & Propagated wI Comunication ENot Predicted & Not Propagated w ConPnCcation 04 PPC 5CPredicted & Propagated w...Engineering Management 48(3): 292-306. 5. Clark, J. and Holton, D.A. (2005). A First Look at Graph Theory. World Scientific . 6. Clarkson P.J., Simons, C

  3. 29 CFR 785.17 - On-call time.

    Science.gov (United States)

    2010-07-01

    ... On-call time. An employee who is required to remain on call on the employer's premises or so close... employee who is not required to remain on the employer's premises but is merely required to leave word at his home or with company officials where he may be reached is not working while on call. (Armour & Co...

  4. Analytical, numerical and experimental investigations of transverse fracture propagation from horizontal wells

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, M.M.; Hossain, M.M.; Crosby, D.G.; Rahman, M.K.; Rahman, S.S. [School of Petroleum Engineering, The University of New South Wales, 2052 Sydney (Australia)

    2002-08-01

    This paper presents results of a comprehensive study involving analytical, numerical and experimental investigations into transverse fracture propagation from horizontal wells. The propagation of transverse hydraulic fractures from horizontal wells is simulated and investigated in the laboratory using carefully designed experimental setups. Closed-form analytical theories for Mode I (opening) stress intensity factors for idealized fracture geometries are reviewed, and a boundary element-based model is used herein to investigate non-planar propagation of fractures. Using the mixed mode fracture propagation criterion of the model, a reasonable agreement is found with respect to fracture geometry, net fracture pressures and fracture propagation paths between the modeled fractures and the laboratory tested fractures. These results suggest that the propagation of multiple fractures requires higher net pressures than a single fracture, the underlying reason of which is theoretically justified on the basis of local stress distribution.

  5. Hydrodynamic model of hydrogen-flame propagation in reactor vessels

    International Nuclear Information System (INIS)

    Baer, M.R.; Ratzel, A.C.

    1982-01-01

    A hydrodynamic model for hydrogen flame propagation in reactor geometries is presented. This model is consistent with the theory of slow combustion in which the gasdynamic field equations are treated in the limit of small Mach numbers. To the lowest order, pressure is spatially uniform. The flame is treated as a density and entropy discontinuity which propagates at prescribed burning velocities, corresponding to laminar or turbulent flames. Radiation cooling of the burned combustion gases and possible preheating of the unburned gases during propagation of the flame is included using a molecular gas-band thermal radiation model. Application of this model has been developed for 1-D variable area flame propagation. Multidimensional effects induced by hydrodynamics and buoyancy are introduced as a correction to the burn velocity (which reflects a modification of planar flame surface to a distorted surface) using experimentally measured pressure-rise time data for hydrogen/air deflagrations in cylindrical vessels

  6. SPP propagation in nonlinear glass-metal interface

    KAUST Repository

    Sagor, Rakibul Hasan

    2011-12-01

    The non-linear propagation of Surface-Plasmon-Polaritons (SPP) in single interface of metal and chalcogenide glass (ChG) is considered. A time domain simulation algorithm is developed using the Finite Difference Time Domain (FDTD) method. The general polarization algorithm incorporated in the auxiliary differential equation (ADE) is used to model frequency-dependent dispersion relation and third-order nonlinearity of ChG. The main objective is to observe the nonlinear behavior of SPP propagation and study the dynamics of the whole structure. © 2011 IEEE.

  7. CALLING AQUARIUM LOVERS...

    CERN Multimedia

    2002-01-01

    CERN's anemones will soon be orphans. We are looking for someone willing to look after the aquarium in the main building, for one year. If you are interested, or if you would like more information, please call 73830. (The anemones living in the aquarium thank you in anticipation.)

  8. Propagation calculation for reactor cases

    Energy Technology Data Exchange (ETDEWEB)

    Yang Yanhua [School of Power and Energy Engineering, Shanghai Jiao Tong Univ., Shanghai (China); Moriyama, K.; Maruyama, Y.; Nakamura, H.; Hashimoto, K. [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2000-11-01

    The propagation of steam explosion for real reactor geometry and conditions are investigated by using the computer code JASMINE-pro. The ex-vessel steam explosion is considered, which is described as follow: during the accident of reactor core meltdown, the molten core melts a hole at the bottom of reactor vessel and causes the higher temperature core fuel being leaked into the water pool below reactor vessel. During the melt-water mixing interaction process, the high temperature melt evaporates the cool water at an extreme high rate and might induce a steam explosion. A steam explosion could experience first the premixing phase and then the propagation explosion phase. For a propagation calculation, we should know the information about the initial fragmentation time, the total melt mass, premixing region size, initial void fraction and distribution of the melt volume fraction, and so on. All the initial conditions used in this calculation are based on analyses from some simple assumptions and the observation from the experiments. The results show that the most important parameter for the initial condition of this phase is the total mass and its initial distribution. This gives the requirement for a premixing calculation. On the other hand, for higher melt volume fraction case, the fragmentation is strong so that the local pressure can exceed over the EOS maximum pressure of the code, which lead to the incorrect calculation or divergence of the calculation. (Suetake, M.)

  9. Fast fracture: an adiabatic restriction on thermally activated crack propagation

    Energy Technology Data Exchange (ETDEWEB)

    Burns, S.J.

    1978-01-01

    Slow, isothermal, crack propagation is widely suspected to be rate controlled by thermally activated plastic deformation in the crack tip region. Adiabatic conditions are generally established in the fracture modified material at the tip of a crack during fast fracture. The temperature of this material is not the temperature of the specimen and is generally not measured during fast fracture. Thus, a complete thermodynamic description of adiabatic crack propagation data can not be made. When the slow, isothermal, crack propagation mechanisms are assumed to be operative during adiabatic crack propagation then certain predictions can be made. For example: the changes in the driving force due to temperature and rate are always in the opposite sense; there is no minimum in the driving force versus crack velocity without a change in mechanism; the temperature rise in the crack tip fracture modified material is determined mainly by the activation enthalpy for crack propagation; the interpretation of fast fracture structural steel data from simple plastic models is suspect since these materials have dissimilar isothermal temperature dependencies.

  10. Calling 911! What role does the pediatrician play?

    Science.gov (United States)

    Grossman, Devin; Kunkov, Sergey; Kaplan, Carl; Crain, Ellen F

    2013-06-01

    The objective of this study was to compare admission rates and medical interventions among children whose caregivers called their child's primary care provider (PCP) before taking an ambulance to the pediatric emergency department (PED) versus those who did not. This was a prospective cohort study of patients brought to an urban, public hospital PED via emergency medical system (EMS). Children were included if the caregiver called 911 to have them transported via EMS and was present in the PED. The main variable was whether the child's PCP was called before EMS utilization. Study outcomes were medical interventions, such as intravenous line insertion or laboratory tests, and hospital admission. χ Test and logistic regression were used to evaluate the relationship of the main variable to the study outcomes. Six hundred fourteen patients met inclusion criteria and were enrolled. Five hundred eighty-five patients (95.3%) were reported to have a PCP. Seventy-four caregivers (12.1%) called their child's PCP before calling EMS. Two hundred seventy-seven patients (45.1%) had medical interventions performed; of these, 42 (15.2%) called their PCP (P = 0.03). Forty-two patients (6.8%) were admitted; among these, 14 (33.3%) called their PCP (P < 0.01). Adjusting for triage level, patients whose caregiver called the PCP before calling EMS were 3.2 times (95% confidence interval, 1.9-5.2 times) more likely to be admitted and 1.7 times (95% confidence interval, 1.1-2.9 times) more likely to have a medical intervention compared with patients whose caregivers did not call their child's PCP. Children were more likely to be admitted or require a medical intervention if their caregiver called their PCP before calling EMS. The availability of a PCP for telephone triage may help to optimize EMS utilization.

  11. Propagation of human spermatogonial stem cells in vitro.

    Science.gov (United States)

    Sadri-Ardekani, Hooman; Mizrak, Sefika C; van Daalen, Saskia K M; Korver, Cindy M; Roepers-Gajadien, Hermien L; Koruji, Morteza; Hovingh, Suzanne; de Reijke, Theo M; de la Rosette, Jean J M C H; van der Veen, Fulco; de Rooij, Dirk G; Repping, Sjoerd; van Pelt, Ans M M

    2009-11-18

    Young boys treated with high-dose chemotherapy are often confronted with infertility once they reach adulthood. Cryopreserving testicular tissue before chemotherapy and autotransplantation of spermatogonial stem cells at a later stage could theoretically allow for restoration of fertility. To establish in vitro propagation of human spermatogonial stem cells from small testicular biopsies to obtain an adequate number of cells for successful transplantation. Study performed from April 2007 to July 2009 using testis material donated by 6 adult men who underwent orchidectomy as part of prostate cancer treatment. Testicular cells were isolated and cultured in supplemented StemPro medium; germline stem cell clusters that arose were subcultured on human placental laminin-coated dishes in the same medium. Presence of spermatogonia was determined by reverse transcriptase polymerase chain reaction and immunofluorescence for spermatogonial markers. To test for the presence of functional spermatogonial stem cells in culture, xenotransplantation to testes of immunodeficient mice was performed, and migrated human spermatogonial stem cells after transplantation were detected by COT-1 fluorescence in situ hybridization. The number of colonized spermatogonial stem cells transplanted at early and later points during culture were counted to determine propagation. Propagation of spermatogonial stem cells over time. Testicular cells could be cultured and propagated up to 15 weeks. Germline stem cell clusters arose in the testicular cell cultures from all 6 men and could be subcultured and propagated up to 28 weeks. Expression of spermatogonial markers on both the RNA and protein level was maintained throughout the entire culture period. In 4 of 6 men, xenotransplantation to mice demonstrated the presence of functional spermatogonial stem cells, even after prolonged in vitro culture. Spermatogonial stem cell numbers increased 53-fold within 19 days in the testicular cell culture and

  12. Pathways of seizure propagation from the temporal to the occipital lobe.

    Science.gov (United States)

    Jacobs, Julia; Dubeau, François; Olivier, André; Andermann, Frederick

    2008-12-01

    Propagation of ictal epileptic discharges influences the clinical appearance of seizures. Fast propagation from the occipital to temporal lobe has been well described, but until now the reverse direction of spread has not been emphasized. We describe two patients who experienced ictal propagation from temporal to occipital regions. One case presented with amaurosis during a seizure with temporal onset and temporal-occipital spread. In the second, temporal-occipital spread was documented during a seizure, which continued in the occipital lobe for six minutes. Depth electrode studies suggested the temporal ictal onset of seizures in both patients. Propagation from temporal to occipital lobe structures must be considered in the assessment of patients who have seizures with both temporal and occipital features. The propagation may have predictive value for their surgical outcome. The underlying anatomical structure might be the inferior longitudinal fasciculus.

  13. 3D Orthorhombic Elastic Wave Propagation Pre-Test Simulation of SPE DAG-1 Test

    Science.gov (United States)

    Jensen, R. P.; Preston, L. A.

    2017-12-01

    A more realistic representation of many geologic media can be characterized as a dense system of vertically-aligned microfractures superimposed on a finely-layered horizontal geology found in shallow crustal rocks. This seismic anisotropy representation lends itself to being modeled as an orthorhombic elastic medium comprising three mutually orthogonal symmetry planes containing nine independent moduli. These moduli can be determined by observing (or prescribing) nine independent P-wave and S-wave phase speeds along different propagation directions. We have developed an explicit time-domain finite-difference (FD) algorithm for simulating 3D elastic wave propagation in a heterogeneous orthorhombic medium. The components of the particle velocity vector and the stress tensor are governed by a set of nine, coupled, first-order, linear, partial differential equations (PDEs) called the velocity-stress system. All time and space derivatives are discretized with centered and staggered FD operators possessing second- and fourth-order numerical accuracy, respectively. Additionally, we have implemented novel perfectly matched layer (PML) absorbing boundary conditions, specifically designed for orthorhombic media, to effectively suppress grid boundary reflections. In support of the Source Physics Experiment (SPE) Phase II, a series of underground chemical explosions at the Nevada National Security Site, the code has been used to perform pre-test estimates of the Dry Alluvium Geology - Experiment 1 (DAG-1). Based on literature searches, realistic geologic structure and values for orthorhombic P-wave and S-wave speeds have been estimated. Results and predictions from the simulations are presented.

  14. Simulation of reactive nanolaminates using reduced models: II. Normal propagation

    Energy Technology Data Exchange (ETDEWEB)

    Salloum, Maher; Knio, Omar M. [Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD 21218-2686 (United States)

    2010-03-15

    Transient normal flame propagation in reactive Ni/Al multilayers is analyzed computationally. Two approaches are implemented, based on generalization of earlier methodology developed for axial propagation, and on extension of the model reduction formalism introduced in Part I. In both cases, the formulation accommodates non-uniform layering as well as the presence of inert layers. The equations of motion for the reactive system are integrated using a specially-tailored integration scheme, that combines extended-stability, Runge-Kutta-Chebychev (RKC) integration of diffusion terms with exact treatment of the chemical source term. The detailed and reduced models are first applied to the analysis of self-propagating fronts in uniformly-layered materials. Results indicate that both the front velocities and the ignition threshold are comparable for normal and axial propagation. Attention is then focused on analyzing the effect of a gap composed of inert material on reaction propagation. In particular, the impacts of gap width and thermal conductivity are briefly addressed. Finally, an example is considered illustrating reaction propagation in reactive composites combining regions corresponding to two bilayer widths. This setup is used to analyze the effect of the layering frequency on the velocity of the corresponding reaction fronts. In all cases considered, good agreement is observed between the predictions of the detailed model and the reduced model, which provides further support for adoption of the latter. (author)

  15. Propagated failure analysis for non-repairable systems considering both global and selective effects

    International Nuclear Information System (INIS)

    Wang Chaonan; Xing Liudong; Levitin, Gregory

    2012-01-01

    This paper proposes an algorithm for the reliability analysis of non-repairable binary systems subject to competing failure propagation and failure isolation events with both global and selective failure effects. A propagated failure that originates from a system component causes extensive damage to the rest of the system. Global effect happens when the propagated failure causes the entire system to fail; whereas selective effect happens when the propagated failure causes only failure of a subset of system components. In both cases, the failure propagation that originates from some system components (referred to as dependent components) can be isolated because of functional dependence between the dependent components and a component that prevents the failure propagation (trigger components) when the failure of the trigger component happens before the occurrence of the propagated failure. Most existing studies focus on the analysis of propagated failures with global effect. However, in many cases, propagated failures affect only a subset of system components not the entire system. Existing approaches for analyzing propagated failures with selective effect are limited to series-parallel systems. This paper proposes a combinatorial method for the propagated failure analysis considering both global and selective effects as well as the competition with the failure isolation in the time domain. The proposed method is not limited to series-parallel systems and has no limitation on the type of time-to-failure distributions for the system components. The method is verified using the Markov-based method. An example of computer memory systems is analyzed to demonstrate the application of the proposed method.

  16. Crack propagation of brittle rock under high geostress

    Science.gov (United States)

    Liu, Ning; Chu, Weijiang; Chen, Pingzhi

    2018-03-01

    Based on fracture mechanics and numerical methods, the characteristics and failure criterions of wall rock cracks including initiation, propagation, and coalescence are analyzed systematically under different conditions. In order to consider the interaction among cracks, adopt the sliding model of multi-cracks to simulate the splitting failure of rock in axial compress. The reinforcement of bolts and shotcrete supporting to rock mass can control the cracks propagation well. Adopt both theory analysis and simulation method to study the mechanism of controlling the propagation. The best fixed angle of bolts is calculated. Then use ansys to simulate the crack arrest function of bolt to crack. Analyze the influence of different factors on stress intensity factor. The method offer more scientific and rational criterion to evaluate the splitting failure of underground engineering under high geostress.

  17. Contribution to the study of neutron propagation in cavities; Contribution a l'etude de la propagation des neutrons dans les cavites

    Energy Technology Data Exchange (ETDEWEB)

    Hasselin, G. [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1965-07-01

    In large size cavities where the dimensions of the holes are greater than the mean free path of the radiations, the neutron propagation calculations are carried out by taking into account the effect of the medium surrounding the hole using a reflection coefficient or albedo. In this work the fast neutron albedos are obtained for various materials and these results are applied for a Monte-Carlo propagation calculation. A comparison of this calculation with experimental results shows the validity of the method. (author) [French] Dans les cavites de grandes dimensions, ou les dimensions des vides sont superieures au libre parcours moyen des rayonnements, le calcul de la propagation des neutrons se fait en essayant de rendre compte de l'effet du milieu entourant le vide, par un coefficient de reflexion ou albedo. Dans cette etude, sont d'une part obtenus des albedo en neutrons rapides sur divers materiaux, d'autre part ces resultats sont appliques pour un calcul de MONTE-CARLO de propagation. La comparaison entre le calcul et l'experience montre la validite de la methode. (auteur)

  18. Propagation speed of gamma radiation in brass

    International Nuclear Information System (INIS)

    Cavalcante, Jose T.P.D.; Silva, Paulo R.J.; Saitovich, Henrique

    2009-01-01

    The propagation speed (PS) of visible light -represented by a short frequency range in the large frame of electromagnetic radiations (ER) frequencies- in air was measured during the last century, using a great deal of different methods, with high precision results being achieved. Presently, a well accepted value, with very small uncertainty, is c= 299,792.458 Km/s) (c reporting to the Latin word celeritas: 'speed swiftness'). When propagating in denser material media (MM), such value is always lower when compared to the air value, with the propagating MM density playing an important role. Until present, such studies focusing propagation speeds, refractive indexes, dispersions were specially related to visible light, or to ER in wavelengths ranges dose to it, and with a transparent MM. A first incursion in this subject dealing with γ-rays was performed using an electronic coincidence counting system, when the value of it's PS was measured in air, C γ(air) 298,300.15 Km/s; a method that went on with later electronic improvements. always in air. To perform such measurements the availability of a γ-radiation source in which two γ-rays are emitted simultaneously in opposite directions -as already used as well as applied in the present case- turns out to be essential to the feasibility of the experiment, as far as no reflection techniques could be used. Such a suitable source was the positron emitter 22 Na placed in a thin wall metal container in which the positrons are stopped and annihilated when reacting with the medium electrons, in such way originating -as it is very well established from momentum/energy conservation laws - two gamma-rays, energy 511 KeV each, both emitted simultaneously in opposite directions. In all the previous experiments were used photomultiplier detectors coupled to NaI(Tl) crystal scintillators, which have a good energy resolution but a deficient time resolution for such purposes. Presently, as an innovative improvement, were used BaF 2

  19. Finite-time barriers to front propagation in two-dimensional fluid flows

    Science.gov (United States)

    Mahoney, John R.; Mitchell, Kevin A.

    2015-08-01

    Recent theoretical and experimental investigations have demonstrated the role of certain invariant manifolds, termed burning invariant manifolds (BIMs), as one-way dynamical barriers to reaction fronts propagating within a flowing fluid. These barriers form one-dimensional curves in a two-dimensional fluid flow. In prior studies, the fluid velocity field was required to be either time-independent or time-periodic. In the present study, we develop an approach to identify prominent one-way barriers based only on fluid velocity data over a finite time interval, which may have arbitrary time-dependence. We call such a barrier a burning Lagrangian coherent structure (bLCS) in analogy to Lagrangian coherent structures (LCSs) commonly used in passive advection. Our approach is based on the variational formulation of LCSs using curves of stationary "Lagrangian shear," introduced by Farazmand et al. [Physica D 278-279, 44 (2014)] in the context of passive advection. We numerically validate our technique by demonstrating that the bLCS closely tracks the BIM for a time-independent, double-vortex channel flow with an opposing "wind."

  20. Sharing programming resources between Bio* projects through remote procedure call and native call stack strategies

    DEFF Research Database (Denmark)

    Prins, Pjotr; Goto, Naohisa; Yates, Andrew

    2012-01-01

    Open-source software (OSS) encourages computer programmers to reuse software components written by others. In evolutionary bioinformatics, OSS comes in a broad range of programming languages, including C/C++, Perl, Python, Ruby, Java, and R. To avoid writing the same functionality multiple times...... for different languages, it is possible to share components by bridging computer languages and Bio* projects, such as BioPerl, Biopython, BioRuby, BioJava, and R/Bioconductor. In this chapter, we compare the two principal approaches for sharing software between different programming languages: either by remote...... procedure call (RPC) or by sharing a local call stack. RPC provides a language-independent protocol over a network interface; examples are RSOAP and Rserve. The local call stack provides a between-language mapping not over the network interface, but directly in computer memory; examples are R bindings, RPy...

  1. Indico CONFERENCE: Define the Call for Abstracts

    CERN Multimedia

    CERN. Geneva; Ferreira, Pedro

    2017-01-01

    In this tutorial, you will learn how to define and open a call for abstracts. When defining a call for abstracts, you will be able to define settings related to the type of questions asked during a review of an abstract, select the users who will review the abstracts, decide when to open the call for abstracts, and more.

  2. Study on Knowledge Propagation in Complex Networks Based on Preferences, Taking Wechat as Example

    Directory of Open Access Journals (Sweden)

    Si-hua Chen

    2014-01-01

    Full Text Available As platform based on users’ relationship to acquire, share, and propagate knowledge, Wechat develops very rapidly and becomes an important channel to spread knowledge. This new way to propagate knowledge is quite different from the traditional media way which enables knowledge to be spread surprisingly in Wechat. Based on complex network theory and the analysis of the factors which influence the knowledge propagation in Wechat, this paper summarizes the behavior preferences of Wechat users in knowledge propagation and establishes a Wechat knowledge propagation model. By the simulation experiment, this paper tests the model established and finds some important thresholds in knowledge propagation in Wechat. The findings are valuable for further studying the knowledge propagation in Wechat and provide theoretical proof for forecasting the scale and influence of knowledge propagation.

  3. Propagation velocity analysis of a single blob in the SOL

    International Nuclear Information System (INIS)

    Sugita, Satoru; Yagi, Masatoshi; Itoh, Sanae-I.; Itoh, Kimitaka

    2008-01-01

    Nonlinear simulation of plasma blob propagation in the tokamak scrape-off layer is reported. Three types of model equations are introduced and the simulation results are compared. It is found that in the parameter regime where the intercharge instability appears during the propagation process, the theoretical model of propagation velocity determined by the initial blob size provides a good approximation of the simulation results. In the regime where the Kelvin-Helmholtz instability appears, however, the blob velocity saturates at a lower value. (author)

  4. Call for Research

    International Development Research Centre (IDRC) Digital Library (Canada)

    Marie-Isabelle Beyer

    2014-10-03

    Oct 3, 2014 ... 5.Submission process. 6.Eligibility criteria. 7.Selection Process. 8. Format and requirements. 9.Evaluation criteria. 10.Country clearance requirements. 11. .... It is envisaged that through this call a single consortium will undertake 6-8 projects within a total budget of up to ... principle qualify for IDRC's support.

  5. Orthogonal wave propagation of epileptiform activity in the planar mouse hippocampus in vitro.

    Science.gov (United States)

    Kibler, Andrew B; Durand, Dominique M

    2011-09-01

    In vitro brain preparations have been used extensively to study the generation and propagation of epileptiform activity. Transverse and longitudinal slices of the rodent hippocampus have revealed various patterns of propagation. Yet intact connections between the transverse and longitudinal pathways should generate orthogonal (both transverse and longitudinal) propagation of seizures involving the entire hippocampus. This study utilizes the planar unfolded mouse hippocampus preparation to reveal simultaneous orthogonal epileptiform propagation and to test a method of arresting propagation. This study utilized an unfolded mouse hippocampus preparation. It was chosen due to its preservation of longitudinal neuronal processes, which are thought to play an important role in epileptiform hyperexcitability. 4-Aminopyridine (4-AP), microelectrodes, and voltage-sensitive dye imaging were employed to investigate tissue excitability. In 50-μm 4-AP, stimulation of the stratum radiatum induced transverse activation of CA3 cells but also induced a longitudinal wave of activity propagating along the CA3 region at a speed of 0.09 m/s. Without stimulation, a wave originated at the temporal CA3 and propagated in a temporal-septal direction could be suppressed with glutamatergic receptor antagonists. Orthogonal propagation traveled longitudinally along the CA3 pathway, secondarily invading the CA1 region at a velocity of 0.22 ± 0.024 m/s. Moreover, a local lesion restricted to the CA3 region could arrest wave propagation. These results reveal a complex two-dimensional epileptiform wave propagation pattern in the hippocampus that is generated by a combination of synaptic transmission and axonal propagation in the CA3 recurrent network. Epileptiform propagation block via a transverse selective CA3 lesion suggests a potential surgical technique for the treatment of temporal lobe epilepsy. Wiley Periodicals, Inc. © 2011 International League Against Epilepsy.

  6. Spin factor and spinor structure of Dirac propagator in constant field

    Energy Technology Data Exchange (ETDEWEB)

    Gitman, D.M.; Cruz, W. da [Sao Paulo Univ., SP (Brazil). Inst. de Fisica; Zlatev, S.I. [Sergipe Univ., Aracaju, SE (Brazil). Dept. de Fisica

    1996-06-01

    We use bosonic path integral representation of Dirac propagator with a spin factor to calculate the propagator in a constant uniform electromagnetic field. Such a way of calculation allows us to get the explicit spinor structure of the propagator in the case under consideration. The representation obtained differs from the Schwinger`s one but the equivalence can be checked. (author). 21 refs.

  7. Spin factor and spinor structure of Dirac propagator in constant field

    International Nuclear Information System (INIS)

    Gitman, D.M.; Cruz, W. da; Zlatev, S.I.

    1996-01-01

    We use bosonic path integral representation of Dirac propagator with a spin factor to calculate the propagator in a constant uniform electromagnetic field. Such a way of calculation allows us to get the explicit spinor structure of the propagator in the case under consideration. The representation obtained differs from the Schwinger's one but the equivalence can be checked. (author). 21 refs

  8. Proton-beam propagation through wall-confined plasma channel stabilized against sausage instability

    International Nuclear Information System (INIS)

    Nakahama, Masao; Nemoto, Masahiro; Masugata, Katsumi; Ito, Michiaki; Matsui, Masao; Yatsui, Kiyoshi

    1986-01-01

    Experimental results are presented of proton-beam (energy ∼ 650 keV) propagation through wall-confined plasma channel that is stabilized against sausage instability by an externally-applied longitudinal magnetic field. Significant improvement of beam-propagation efficiency has been obtained of ∼ 70 % compared with the previous experiment of ∼ 55 % without the magnetic field. The propagation can also be available up to ∼ 30 % even in a non-propagation region in a non-stabilized channel. (author)

  9. Vegetative Propagation and the Genetic Improvement of North American Hardwoods

    Science.gov (United States)

    R. E. Farmer

    1973-01-01

    Progress and problems in vegetative propagation of important North American hardwoods are reviewed with emphasis on rooting cuttings and the application of propagation techniques in breeding research. Some problems in rooting physiology are discussed.

  10. On the propagation of truncated localized waves in dispersive silica

    KAUST Repository

    Salem, Mohamed; Bagci, Hakan

    2010-01-01

    Propagation characteristics of truncated Localized Waves propagating in dispersive silica and free space are numerically analyzed. It is shown that those characteristics are affected by the changes in the relation between the transverse spatial

  11. The function of migratory bird calls

    DEFF Research Database (Denmark)

    Reichl, Thomas; Andersen, Bent Bach; Larsen, Ole Næsbye

    The function of migratory bird calls: do they influence orientation and navigation?   Thomas Reichl1, Bent Bach Andersen2, Ole Naesbye Larsen2, Henrik Mouritsen1   1Institute of Biology, University of Oldenburg, Oldenburg, D-26111 Oldenburg, Germany 2Institute of Biology, University of Southern...... migration and to stimulate migratory restlessness in conspecifics. We wished to test if conspecific flight calls influence the flight direction of a nocturnal migrant, the European Robin (Erithacus rubecula), i.e. if flight calls help migrants keeping course. Wild caught birds showing migratory restlessness...... the experimental bird could be activated successively to simulate a migrating Robin cruising E-W, W-E, S-N or N-S at a chosen height (mostly about 40 m), at 10 m/s and emitting Robin flight calls of 80 dB(A) at 1 m. The simulated flight of a "ding" sound served as a control. During an experiment the bird was first...

  12. Study of phonon propagation in water using picosecond ultrasonics

    International Nuclear Information System (INIS)

    Yang, F; Atay, T; Dang, C H; Grimsley, T J; Che, S; Ma, J; Zhang, Q; Nurmikko, A V; Maris, H J

    2007-01-01

    The propagation of ultra-short sound pulses in water is studied by using the picosecond ultrasonic technique. A sound pulse is generated when light is absorbed in a metal transducer film deposited onto a substrate. The sound propagates across a thin layer of water and is then reflected back to the surface at which it was generated. The efficiency of optoacoustic detection of the reflected sound is enhanced through the use of a resonant optical cavity. We show that the variation of the shape of the returning sound pulse with propagation distance agrees with that calculated by using the attenuation of sound in water that has been measured at lower frequencies

  13. Propagation of singularities for linearised hybrid data impedance tomography

    Science.gov (United States)

    Bal, Guillaume; Hoffmann, Kristoffer; Knudsen, Kim

    2018-02-01

    For a general formulation of linearised hybrid inverse problems in impedance tomography, the qualitative properties of the solutions are analysed. Using an appropriate scalar pseudo-differential formulation, the problems are shown to permit propagating singularities under certain non-elliptic conditions, and the associated directions of propagation are precisely identified relative to the directions in which ellipticity is lost. The same result is found in the setting for the corresponding normal formulation of the scalar pseudo-differential equations. A numerical reconstruction procedure based of the least squares finite element method is derived, and a series of numerical experiments visualise exactly how the loss of ellipticity manifests itself as propagating singularities.

  14. Factors Enabling Information Propagation in a Social Network Site

    DEFF Research Database (Denmark)

    Magnani, Matteo; Montesi, Danilo; Rossi, Luca

    2013-01-01

    A relevant feature of Social Network Sites is their ability to propagate units of information and create large distributed conversations. This phenomenon is particularly relevant because of the speed of information propagation, which is known to be much faster than within traditional media......, and because of the very large amount of people that can potentially be exposed to information items. While many general formal models of network propagation have been developed in different research fields, in this chapter we present the result of an empirical study on a Large Social Database (LSD) aimed...... at measuring specific socio-technical factors enabling information spreading in Social Network Sites....

  15. An empirical analysis of the corporate call decision

    International Nuclear Information System (INIS)

    Carlson, M.D.

    1998-01-01

    An economic study of the the behaviour of financial managers of utility companies was presented. The study examined whether or not an option pricing based model of the call decision does a better job of explaining callable preferred share prices and call decisions compared to other models. In this study, the Rust (1987) empirical technique was extended to include the use of information from preferred share prices in addition to the call decisions. Reasonable estimates were obtained from data of shares of the Pacific Gas and Electric Company (PGE) for the transaction costs associated with a call. It was concluded that the managers of the PGE clearly take into account the value of the option to delay the call when making their call decisions

  16. Numerical Algorithms for Precise and Efficient Orbit Propagation and Positioning

    Science.gov (United States)

    Bradley, Ben K.

    Motivated by the growing space catalog and the demands for precise orbit determination with shorter latency for science and reconnaissance missions, this research improves the computational performance of orbit propagation through more efficient and precise numerical integration and frame transformation implementations. Propagation of satellite orbits is required for astrodynamics applications including mission design, orbit determination in support of operations and payload data analysis, and conjunction assessment. Each of these applications has somewhat different requirements in terms of accuracy, precision, latency, and computational load. This dissertation develops procedures to achieve various levels of accuracy while minimizing computational cost for diverse orbit determination applications. This is done by addressing two aspects of orbit determination: (1) numerical integration used for orbit propagation and (2) precise frame transformations necessary for force model evaluation and station coordinate rotations. This dissertation describes a recently developed method for numerical integration, dubbed Bandlimited Collocation Implicit Runge-Kutta (BLC-IRK), and compare its efficiency in propagating orbits to existing techniques commonly used in astrodynamics. The BLC-IRK scheme uses generalized Gaussian quadratures for bandlimited functions. It requires significantly fewer force function evaluations than explicit Runge-Kutta schemes and approaches the efficiency of the 8th-order Gauss-Jackson multistep method. Converting between the Geocentric Celestial Reference System (GCRS) and International Terrestrial Reference System (ITRS) is necessary for many applications in astrodynamics, such as orbit propagation, orbit determination, and analyzing geoscience data from satellite missions. This dissertation provides simplifications to the Celestial Intermediate Origin (CIO) transformation scheme and Earth orientation parameter (EOP) storage for use in positioning and

  17. Underwater Sound Propagation from Marine Pile Driving.

    Science.gov (United States)

    Reyff, James A

    2016-01-01

    Pile driving occurs in a variety of nearshore environments that typically have very shallow-water depths. The propagation of pile-driving sound in water is complex, where sound is directly radiated from the pile as well as through the ground substrate. Piles driven in the ground near water bodies can produce considerable underwater sound energy. This paper presents examples of sound propagation through shallow-water environments. Some of these examples illustrate the substantial variation in sound amplitude over time that can be critical to understand when computing an acoustic-based safety zone for aquatic species.

  18. Wave propagation and scattering in random media

    CERN Document Server

    Ishimaru, Akira

    1978-01-01

    Wave Propagation and Scattering in Random Media, Volume 2, presents the fundamental formulations of wave propagation and scattering in random media in a unified and systematic manner. The topics covered in this book may be grouped into three categories: waves in random scatterers, waves in random continua, and rough surface scattering. Random scatterers are random distributions of many particles. Examples are rain, fog, smog, hail, ocean particles, red blood cells, polymers, and other particles in a state of Brownian motion. Random continua are the media whose characteristics vary randomly an

  19. Perceived Calling and Work Engagement Among Nurses.

    Science.gov (United States)

    Ziedelis, Arunas

    2018-03-01

    The purpose of this study was to explore the relationship of perceived calling and work engagement in nursing over and above major work environment factors. In all, 351 nurses from various health care institutions completed the survey. Data were collected about the most demanding aspects of nursing, major job resources, the degree to which nursing is perceived as a meaningful calling, work engagement, and main demographic information. Hierarchical linear regression was applied to assess the relation between perceived calling and work engagement, while controlling for demographic and work environment factors, and perceived calling was significantly related to two out of three components of nurses' work engagement. The highest association was found with dedication component, and vigor component was related insignificantly. Results have shown that perceived calling might motivate nurses to engage in their work even in burdensome environment, although possible implications for the occupational well-being of nurses themselves remains unclear.

  20. Alternative model of thrust-fault propagation

    Science.gov (United States)

    Eisenstadt, Gloria; de Paor, Declan G.

    1987-07-01

    A widely accepted explanation for the geometry of thrust faults is that initial failures occur on deeply buried planes of weak rock and that thrust faults propagate toward the surface along a staircase trajectory. We propose an alternative model that applies Gretener's beam-failure mechanism to a multilayered sequence. Invoking compatibility conditions, which demand that a thrust propagate both upsection and downsection, we suggest that ramps form first, at shallow levels, and are subsequently connected by flat faults. This hypothesis also explains the formation of many minor structures associated with thrusts, such as backthrusts, wedge structures, pop-ups, and duplexes, and provides a unified conceptual framework in which to evaluate field observations.

  1. On-call work and health: a review

    Directory of Open Access Journals (Sweden)

    Botterill Jackie S

    2004-12-01

    Full Text Available Abstract Many professions in the fields of engineering, aviation and medicine employ this form of scheduling. However, on-call work has received significantly less research attention than other work patterns such as shift work and overtime hours. This paper reviews the current body of peer-reviewed, published research conducted on the health effects of on-call work The health effects studies done in the area of on-call work are limited to mental health, job stress, sleep disturbances and personal safety. The reviewed research suggests that on-call work scheduling can pose a risk to health, although there are critical gaps in the literature.

  2. Systems configured to distribute a telephone call, communication systems, communication methods and methods of routing a telephone call to a service representative

    Science.gov (United States)

    Harris, Scott H.; Johnson, Joel A.; Neiswanger, Jeffery R.; Twitchell, Kevin E.

    2004-03-09

    The present invention includes systems configured to distribute a telephone call, communication systems, communication methods and methods of routing a telephone call to a customer service representative. In one embodiment of the invention, a system configured to distribute a telephone call within a network includes a distributor adapted to connect with a telephone system, the distributor being configured to connect a telephone call using the telephone system and output the telephone call and associated data of the telephone call; and a plurality of customer service representative terminals connected with the distributor and a selected customer service representative terminal being configured to receive the telephone call and the associated data, the distributor and the selected customer service representative terminal being configured to synchronize, application of the telephone call and associated data from the distributor to the selected customer service representative terminal.

  3. Electron thermal conductivity from heat wave propagation in Wendelstein 7-AS

    Energy Technology Data Exchange (ETDEWEB)

    Giannone, L.; Erckmann, V; Gasparino, U; Hartfuss, H J; Kuehner, G; Maassberg, H; Stroth, U; Tutter, M [Association Euratom-Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); W7-AS Team; ECRH Group IPF Stuttgart; Gyrotron Group KFK Karlsruhe

    1992-11-01

    Heat wave propagation experiments have been carried out on the Wendelstein 7-AS stellarator. The deposition of electron cyclotron resonance heating power is highly localized in the plasma centre, so that power modulation produces heat waves which propagate away from the deposition volume. Radiometry of the electron cyclotron emission is used to measure the generated temperature perturbation. The propagation time delay of the temperature perturbation as a function of distance to the power deposition region is used to determine the electron thermal conductivity [chi][sub e]. This value is then compared with the value determined by global power balance. In contrast to sawtooth propagation experiments in tokamaks, it is found that the value of [chi][sub e] from heat wave propagation is comparable to that calculated by power balance. In addition, inward propagating waves were produced by choosing a power deposition region away from the plasma centre. Experiments were carried out at 70 GHz in the ordinary mode and at 140 GHz in the extraordinary mode. Variations of the modulation power amplitude have demonstrated that the inferred value of [chi][sub e] is independent of the amplitude of the induced temperature perturbations. (author). 29 refs, 11 figs, 5 tabs.

  4. Effect of material parameters on stress wave propagation during fast upsetting

    Institute of Scientific and Technical Information of China (English)

    WANG Zhong-jin; CHENG Li-dong

    2008-01-01

    Based'on a dynamic analysis method and an explicit algorithm, a dynamic explicit finite element code was developed for modeling the fast upsetting process of block under drop hammer impact, in which the hammer velocity during the deformation was calculated by energy conservation law according to the operating principle of hammer equipment. The stress wave propagation and its effect on the deformation were analyzed by the stress and strain distributions. Industrial pure lead, oxygen-free high-conductivity (OFHC) copper and 7039 aluminum alloy were chosen to investigate the effect of material parameters on the stress wave propagation. The results show that the stress wave propagates from top to bottom of block, and then reflects back when it reaches the bottom surface. After that, stress wave propagates and reflects repeatedly between the upper surface and bottom surface. The stress wave propagation has a significant effect on the deformation at the initial stage, and then becomes weak at the middle-final stage. When the ratio of elastic modulus or the slope of stress-strain curve to mass density becomes larger, the velocity of stress wave propagation increases, and the influence of stress wave on the deformation becomes small.

  5. The propagation of Escherichia Coli and of conservative tracers. A comparison

    International Nuclear Information System (INIS)

    Alexander, I.; Seiler, K.P.

    1982-01-01

    The propagation of Escherichia Coli (ATCC 11229, Gelsenkirchen) is compared with that of conservative tracers in groundwater. The experiments were performed with injection quantities of 10 7 , 10 8 , 10 10 and 10 11 of Escherichia Coli. Both, bacteria and conservative tracers pass their maximum at the same instant in the observation gauges. With injection quantities of more than 10 8 , the propagation of the Escherichia Coli sets in at the same time as it begins with the dyes. When the quantities range below 10 8 , the propagation begins after that of conservative tracers, because Coli bacteria were measured with a lower degree of detecting sensitivity than the tracers. With Coli injection quantities ranging above 10 10 , an increased filtering of these bacteria can be observed. Coli bacteria propagate more laterally than conservative tracers, however it could not be proved that this lateral propagation depends on the bacteria concentration. (orig.) [de

  6. NASA Lunar Base Wireless System Propagation Analysis

    Science.gov (United States)

    Hwu, Shian U.; Upanavage, Matthew; Sham, Catherine C.

    2007-01-01

    There have been many radio wave propagation studies using both experimental and theoretical techniques over the recent years. However, most of studies have been in support of commercial cellular phone wireless applications. The signal frequencies are mostly at the commercial cellular and Personal Communications Service bands. The antenna configurations are mostly one on a high tower and one near the ground to simulate communications between a cellular base station and a mobile unit. There are great interests in wireless communication and sensor systems for NASA lunar missions because of the emerging importance of establishing permanent lunar human exploration bases. Because of the specific lunar terrain geometries and RF frequencies of interest to the NASA missions, much of the published literature for the commercial cellular and PCS bands of 900 and 1800 MHz may not be directly applicable to the lunar base wireless system and environment. There are various communication and sensor configurations required to support all elements of a lunar base. For example, the communications between astronauts, between astronauts and the lunar vehicles, between lunar vehicles and satellites on the lunar orbits. There are also various wireless sensor systems among scientific, experimental sensors and data collection ground stations. This presentation illustrates the propagation analysis of the lunar wireless communication and sensor systems taking into account the three dimensional terrain multipath effects. It is observed that the propagation characteristics are significantly affected by the presence of the lunar terrain. The obtained results indicate the lunar surface material, terrain geometry and antenna location are the important factors affecting the propagation characteristics of the lunar wireless systems. The path loss can be much more severe than the free space propagation and is greatly affected by the antenna height, surface material and operating frequency. The

  7. No Call for Action? Why There Is No Union (Yet in Philippine Call Centers

    Directory of Open Access Journals (Sweden)

    Niklas Reese

    2013-01-01

    Full Text Available This contribution presents findings from a qualitative study which focused on young urban professionals in the Philippines who work(ed in international call centers – workplaces usually characterized by job insecurity and other forms of precarity, factory-like working conditions, and disembeddedness. Nevertheless, trade unions in these centers have not come into existence. Why collective action is not chosen by call center agents as an option to tackle the above mentioned problems – this is what the research project this article is based on tried to understand. After outlining some workrelated problems identified by Filipino call center agents, the article will focus on the strategies the agents employ to counter these problems (mainly accommodation and everyday resistance. By highlighting five objective and five subjective reasons (or reasons by circumstances and reasons by framing, we conclude that it is not repressive regulation policies, but rather the formative power and the internalization of discourses of rule within individual life strategies that are preventing the establishment of unions and other collective action structures.

  8. Research on Propagation Model of Malicious Programs in Ad Hoc Wireless Network

    Directory of Open Access Journals (Sweden)

    Weimin GAO

    2014-01-01

    Full Text Available Ad Hoc wireless network faces more security threats than traditional network due to its P2P system structure and the limited node resources. In recent years, malicious program has become one of the most important researches on international network security and information security. The research of malicious programs on wireless network has become a new research hotspot in the field of malicious programs. This paper first analyzed the Ad Hoc network system structure, security threats, the common classification of malicious programs and the bionic propagation model. Then starting from the differential equations of the SEIR virus propagation model, the question caused by introducing the SEIR virus propagation model in Ad Hoc wireless network was analyzed. This paper improved the malicious program propagation model through introducing the network topology features and concepts such as immunization delay, and designed an improved algorithm combined with the dynamic evolution of malware propagation process. Considering of the network virus propagation characteristics, network characteristics and immunization strategy to improve simulation model experiment analysis, the experimental results show that both the immunization strategy and the degrees of node can affect the propagation of malicious program.

  9. Numerical simulation of transoceanic propagation and run-up of tsunami

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Yong-Sik; Yoon Sung-Bum [Hanyang University, Seoul(Korea)

    2001-04-30

    The propagation and associated run-up process of tsunami are numerically investigated in this study. A transoceanic propagation model is first used to simulate the distant propagation of tsunamis. An inundation model is then employed to simulate the subsequent run-up process near coastline. A case study is done for the 1960 Chilean tsunami. A detailed maximum inundation map at Hilo Bay is obtained and compared with field observation and other numerical model, predictions. A very reasonable agreement is observed. (author). refs., tabs., figs.

  10. Generation of spirally polarized propagation-invariant beam using fiber microaxicon.

    Science.gov (United States)

    Philip, Geo M; Viswanathan, Nirmal K

    2011-10-01

    We present here a fiber microaxicon (MA)based method to generate spirally polarized propagation-invariant optical beam. MA chemically etched in the tip of a two-mode fiber efficiently converts the generic cylindrically polarized vortex fiber mode into a spirally polarized propagation-invariant (Bessel-type) beam via radial dependence of polarization rotation angle. The combined roles of helico-conical phase and nonparaxial propagation in the generation and characteristics of the output beam from the fiber MA are discussed. © 2011 Optical Society of America

  11. Characteristic of laser diode beam propagation through a collimating lens.

    Science.gov (United States)

    Xu, Qiang; Han, Yiping; Cui, Zhiwei

    2010-01-20

    A mathematical model of a laser diode beam propagating through a collimating lens is presented. Wave propagation beyond the paraxial approximation is studied. The phase delay of the laser diode wave in passing through the lens is analyzed in detail. The propagation optical field after the lens is obtained from the diffraction integral by the stationary phase method. The model is employed to predict the light intensity at various beam cross sections, and the computed intensity distributions are in a good agreement with the corresponding measurements.

  12. Magnetic Field Effects and Electromagnetic Wave Propagation in Highly Collisional Plasmas.

    Science.gov (United States)

    Bozeman, Steven Paul

    The homogeneity and size of radio frequency (RF) and microwave driven plasmas are often limited by insufficient penetration of the electromagnetic radiation. To investigate increasing the skin depth of the radiation, we consider the propagation of electromagnetic waves in a weakly ionized plasma immersed in a steady magnetic field where the dominant collision processes are electron-neutral and ion-neutral collisions. Retaining both the electron and ion dynamics, we have adapted the theory for cold collisionless plasmas to include the effects of these collisions and obtained the dispersion relation at arbitrary frequency omega for plane waves propagating at arbitrary angles with respect to the magnetic field. We discuss in particular the cases of magnetic field enhanced wave penetration for parallel and perpendicular propagation, examining the experimental parameters which lead to electromagnetic wave propagation beyond the collisional skin depth. Our theory predicts that the most favorable scaling of skin depth with magnetic field occurs for waves propagating nearly parallel to B and for omega << Omega_{rm e} where Omega_{rm e} is the electron cyclotron frequency. The scaling is less favorable for propagation perpendicular to B, but the skin depth does increase for this case as well. Still, to achieve optimal wave penetration, we find that one must design the plasma configuration and antenna geometry so that one generates primarily the appropriate angles of propagation. We have measured plasma wave amplitudes and phases using an RF magnetic probe and densities using Stark line broadening. These measurements were performed in inductively coupled plasmas (ICP's) driven with a standard helical coil, a reverse turn (Stix) coil, and a flat spiral coil. Density measurements were also made in a microwave generated plasma. The RF magnetic probe measurements of wave propagation in a conventional ICP with wave propagation approximately perpendicular to B show an increase in

  13. Reducing juvenile delinquency with automated cell phone calls.

    Science.gov (United States)

    Burraston, Bert O; Bahr, Stephen J; Cherrington, David J

    2014-05-01

    Using a sample of 70 juvenile probationers (39 treatment and 31 controls), we evaluated the effectiveness of a rehabilitation program that combined cognitive-behavioral training and automated phone calls. The cognitive-behavioral training contained six 90-min sessions, one per week, and the phone calls occurred twice per day for the year following treatment. Recidivism was measured by whether they were rearrested and the total number of rearrests during the 1st year. To test the impact of the phone calls, those who received phone calls were divided into high and low groups depending on whether they answered more or less than half of their phone calls. Those who completed the class and answered at least half of their phone calls were less likely to have been arrested and had fewer total arrests.

  14. Correction of edge-flame propagation speed in a counterflow, annular slot burner

    KAUST Repository

    Tran, Vu Manh

    2015-10-22

    To characterize the propagation modes of flames, flame propagation speed must be accurately calculated. The impact of propagating edge-flames on the flow fields of unburned gases is limited experimentally. Thus, few studies have evaluated true propagation speeds by subtracting the flow velocities of unburned gases from flame displacement speeds. Here, we present a counterflow, annular slot burner that provides an ideal one-dimensional strain rate and lengthwise zero flow velocity that allowed us to study the fundamental behaviors of edge-flames. In addition, our burner has easy optical access for detailed laser diagnostics. Flame displacement speeds were measured using a high-speed camera and related flow fields of unburned gases were visualized by particle image velocimetry. These techniques allowed us to identify significant modifications to the flow fields of unburned gases caused by thermal expansion of the propagating edges, which enabled us to calculate true flame propagation speeds that took into account the flow velocities of unburned gases.

  15. The evolutionary ecology of clonally propagated domesticated plants.

    Science.gov (United States)

    McKey, Doyle; Elias, Marianne; Pujol, Benoît; Duputié, Anne

    2010-04-01

    While seed-propagated crops have contributed many evolutionary insights, evolutionary biologists have often neglected clonally propagated crops. We argue that widespread notions about their evolution under domestication are oversimplified, and that they offer rich material for evolutionary studies. The diversity of their wild ancestors, the diverse ecologies of the crop populations themselves, and the intricate mix of selection pressures, acting not only on the parts harvested but also on the parts used by humans to make clonal propagules, result in complex and diverse evolutionary trajectories under domestication. We examine why farmers propagate some plants clonally, and discuss the evolutionary dynamics of sexual reproduction in clonal crops. We explore how their mixed clonal/sexual reproductive systems function, based on the sole example studied in detail, cassava (Manihot esculenta). Biotechnology is now expanding the number of clonal crops, continuing the 10 000-yr-old trend to increase crop yields by propagating elite genotypes. In an era of rapid global change, it is more important than ever to understand how the adaptive potential of clonal crops can be maintained. A key component of strategies for preserving this adaptive potential is the maintenance of mixed clonal/sexual systems, which can be achieved by encouraging and valuing farmer knowledge about the sexual reproductive biology of their clonal crops.

  16. Beam propagation through a gaseous reactor: classical transport

    International Nuclear Information System (INIS)

    Yu, S.S.; Buchanan, H.L.; Lee, E.P.; Chambers, F.W.

    1979-01-01

    The present calculations are applicable to any beam geometry with cylindrical symmetry, including the converging beam geometry (large entrance port with radius > or approx. = 10 cm), as well as the pencil-shaped beam (small porthole with radius approx. mm). The small porthole is clearly advantageous from the reactor vessel design point of view. While the physics of the latter mode of propagation may be more complex, analyses up to this point have not revealed any detrimental instability effects that will inhibit propagation. In fact, the large perpendicular velocity v/sub perpendicular/ that the pinched mode can accommodate provides a mechanism for the quenching of filamentary instability. Furthermore, this mode of propagation can withstand more ion scattering and is not subject to the upper bound on pressure (p < 10 torr) which is imposed on the converging beam mode

  17. The propagator of stochastic electrodynamics

    Science.gov (United States)

    Cavalleri, G.

    1981-01-01

    The "elementary propagator" for the position of a free charged particle subject to the zero-point electromagnetic field with Lorentz-invariant spectral density ~ω3 is obtained. The nonstationary process for the position is solved by the stationary process for the acceleration. The dispersion of the position elementary propagator is compared with that of quantum electrodynamics. Finally, the evolution of the probability density is obtained starting from an initial distribution confined in a small volume and with a Gaussian distribution in the velocities. The resulting probability density for the position turns out to be equal, to within radiative corrections, to ψψ* where ψ is the Kennard wave packet. If the radiative corrections are retained, the present result is new since the corresponding expression in quantum electrodynamics has not yet been found. Besides preceding quantum electrodynamics for this problem, no renormalization is required in stochastic electrodynamics.

  18. Effectiveness of the Call in Beach Volleyball Attacking Play

    Directory of Open Access Journals (Sweden)

    Künzell Stefan

    2014-12-01

    Full Text Available In beach volleyball the setter has the opportunity to give her or his hitter a “call”. The call intends that the setter suggests to her or his partner where to place the attack in the opponent’s court. The effectiveness of a call is still unknown. We investigated the women’s and men’s Swiss National Beach Volleyball Championships in 2011 and analyzed 2185 attacks. We found large differences between female and male players. While men called in only 38.4% of attacks, women used calls in 85.5% of attacks. If the male players followed a given call, 63% of the attacks were successful. The success rate of attacks without any call was 55.8% and 47.6% when the call was ignored. These differences were not significant (χ2(2 = 4.55, p = 0.103. In women’s beach volleyball, the rate of successful attacks was 61.5% when a call was followed, 35% for attacks without a call, and 42.6% when a call was ignored. The differences were highly significant (χ2(2 = 23.42, p < 0.0005. Taking into account the findings of the present study, we suggested that the call was effective in women’s beach volleyball, while its effect in men’s game was unclear. Considering the quality of calls we indicate that there is a significant potential to increase the effectiveness of a call.

  19. Call for volunteers

    CERN Document Server

    2008-01-01

    CERN is calling for volunteers from all members of the Laboratory for organizing the two exceptional Open days.CERN is calling for volunteers from all members of the Laboratory’s personnel to help with the organisation of these two exceptional Open Days, for the visits of CERN personnel and their families on the Saturday and above all for the major public Open Day on the Sunday. As for the 50th anniversary in 2004, the success of the Open Days will depend on a large number of volunteers. All those working for CERN as well as retired members of the personnel can contribute to making this event a success. Many guides will be needed at the LHC points, for the activities at the surface and to man the reception and information points. The aim of these major Open Days is to give the local populations the opportunity to discover the fruits of almost 20 years of work carried out at CERN. We are hoping for some 2000 volunteers for the two Open Days, on the Saturday from 9 a.m. to ...

  20. Convective Propagation Characteristics Using a Simple Representation of Convective Organization

    Science.gov (United States)

    Neale, R. B.; Mapes, B. E.

    2016-12-01

    Observed equatorial wave propagation is intimately linked to convective organization and it's coupling to features of the larger-scale flow. In this talk we a use simple 4 level model to accommodate vertical modes of a mass flux convection scheme (shallow, mid-level and deep). Two paradigms of convection are used to represent convective processes. One that has only both random (unorganized) diagnosed fluctuations of convective properties and one with organized fluctuations of convective properties that are amplified by previously existing convection and has an explicit moistening impact on the local convecting environment We show a series of model simulations in single-column, 2D and 3D configurations, where the role of convective organization in wave propagation is shown to be fundamental. For the optimal choice of parameters linking organization to local atmospheric state, a broad array of convective wave propagation emerges. Interestingly the key characteristics of propagating modes are the low-level moistening followed by deep convection followed by mature 'large-scale' heating. This organization structure appears to hold firm across timescales from 5-day wave disturbances to MJO-like wave propagation.

  1. Beaconless operation for optimal laser beam propagation through turbulent atmosphere

    Science.gov (United States)

    Khizhnyak, Anatoliy; Markov, Vladimir

    2016-09-01

    Corruption of the wavefront, beam wondering and power density degradation at the receiving end are the effects typically observed at laser beam propagation through turbulent atmosphere. Compensation of these effects can be achieved if the reciprocal conditions for the propagating wave are satisfied along the propagation range. Practical realization of these conditions requires placing a localized beacon at the receiving end of the range and high-performance adaptive optics system (AOS). The key condition for an effective performance of AOS is a high value of the reciprocal component in the outgoing wave, since only this component is getting compensated after propagating turbulence perturbed path. The nonreciprocal components that is present in the wave directed toward the target is caused by three factors (detailed in this paper) that determine the partial restoration of the structure of the beacon beam. Thus solution of a complex problem of focusing the laser beam propagating through turbulent media can be achieved for the share of the outgoing wave that has a reciprocal component. This paper examines the ways and means that can be used in achieving the stated goal of effective laser power delivery on the distant image-resolved object.

  2. Local excitation-inhibition ratio for synfire chain propagation in feed-forward neuronal networks

    Science.gov (United States)

    Guo, Xinmeng; Yu, Haitao; Wang, Jiang; Liu, Jing; Cao, Yibin; Deng, Bin

    2017-09-01

    A leading hypothesis holds that spiking activity propagates along neuronal sub-populations which are connected in a feed-forward manner, and the propagation efficiency would be affected by the dynamics of sub-populations. In this paper, how the interaction between local excitation and inhibition effects on synfire chain propagation in feed-forward network (FFN) is investigated. The simulation results show that there is an appropriate excitation-inhibition (EI) ratio maximizing the performance of synfire chain propagation. The optimal EI ratio can significantly enhance the selectivity of FFN to synchronous signals, which thereby increases the stability to background noise. Moreover, the effect of network topology on synfire chain propagation is also investigated. It is found that synfire chain propagation can be maximized by an optimal interlayer linking probability. We also find that external noise is detrimental to synchrony propagation by inducing spiking jitter. The results presented in this paper may provide insights into the effects of network dynamics on neuronal computations.

  3. Wave propagation in the magnetosphere of Jupiter

    Science.gov (United States)

    Liemohn, H. B.

    1972-01-01

    A systematic procedure is developed for identifying the spatial regimes of various modes of wave propagation in the Jupiter magnetosphere that may be encountered by flyby missions. The Clemmow-Mullaly-Allis (CMA) diagram of plasma physics is utilized to identify the frequency regimes in which different modes of propagation occur in the magnetoplasma. The Gledhill model and the Ioannidis and Brice model of the magnetoplasma are summarized, and configuration-space CMA diagrams are constructed for each model for frequencies from 10 Hz to 1 MHz. The distinctive propagation features, the radio noise regimes, and the wave-particle interactions are discussed. It is concluded that the concentration of plasma in the equatorial plane makes this region of vital importance for radio observations with flyby missions. Local radio noise around the electron cyclotron frequency will probably differ appreciably from its terrestrial counterpart due to the lack of field-line guidance. Hydromagnetic wave properties at frequencies near the ion cyclotron frequency and below will probably be similar to the terrestrial case.

  4. Results of the NLO error-propagation exercise

    International Nuclear Information System (INIS)

    Gessiness, B.; Lower, C.W.; Porter, G.K.

    1984-01-01

    The successful conclusion of the Error Propagation Exercise, started 2 years ago at NLO, Inc.'s Feed Materials Production Center, Fernald, Ohio, was reached when a statistically based LEID was determined in a controlled balance area, processing low enriched uranium materials. The three-month test demonstrated that it is possible even in a high-throughput bulk processing facility to collect and process all data necessary for computation of a rigorously determined LEID without interference with production and without significant cost increases. The exercise further demonstrated that much of the data necessary are already collected for other routine uses (e.g., production control, measurement quality control, etc.) so that only a modest increase in data collection is necessary. The automated data collection system developed showed that the additional data can be collected quickly, accurately, and relatively cheaply using readily-available commercial hardware. The benefits of error propagation in terms of increased confidence in nuclear materials safeguards are clear; plans have been developed to extend error propagation to all the enriched uranium processing areas of the Feed Materials Production Center. 6 references, 3 figures

  5. Event-triggered Decision Propagation in Proximity Networks

    Directory of Open Access Journals (Sweden)

    Soumik eSarkar

    2014-12-01

    Full Text Available This paper proposes a novel event-triggered formulation as an extension of the recently develo-ped generalized gossip algorithm for decision/awareness propagation in mobile sensor networksmodeled as proximity networks. The key idea is to expend energy for communication (messagetransmission and reception only when there is any event of interest in the region of surveillance.The idea is implemented by using an agent’s belief about presence of a hotspot as feedback tochange its probability of (communication activity. In the original formulation, the evolution ofnetwork topology and the dynamics of decision propagation were completely decoupled whichis no longer the case as a consequence of this feedback policy. Analytical results and numeri-cal experiments are presented to show a significant gain in energy savings with no change inthe first moment characteristics of decision propagation. However, numerical experiments showthat the second moment characteristics may change and theoretical results are provided forupper and lower bounds for second moment characteristics. Effects of false alarms on networkformation and communication activity are also investigated.

  6. Mass transport in propagating patterns of convection

    International Nuclear Information System (INIS)

    Moses, E.; Steinberg, V.

    1988-01-01

    Recent studies of propagating waves in an oscillatory convection of binary mixtures arise questions about transport properties of this flow. Optical visualization of a field of refraction index due to a shadowgraph technique gives information on the temperature and concentration fields. However, experimental observation of rolls propagating along the cell as travelling waves (TW) does not necessarily imply that mass is transferred hydrodynamically by the convective motion along the cell. One of the possibilities discussed, e.g., is that TW observed is only a phase propagation. The traditional examples of such situations come from the domain of linear, superposition-oriented physics. Acoustic waves transfer momentum and energy, but do not cause the mass to make excursions for their equilibrium point that are larger than the oscillation amplitude. In the case of nonlinear physics we were aware that small amplitude surface waves cause only small oscillatory motion round the equilibrium point, while larger amplitudes can cause the mass to start moving in the direction of the TW. This paper discussed the different possibilities of mass transfer by TW. 27 refs., 20 figs

  7. Propagator of a time-dependent unbound quadratic Hamiltonian system

    International Nuclear Information System (INIS)

    Yeon, K.H.; Kim, H.J.; Um, C.I.; George, T.F.; Pandey, L.N.

    1996-01-01

    The propagator for a time-dependent unbound quadratic Hamiltonian system is explicitly evaluated using the path integral method. Two time-invariant quantities of the system are found where these invariants determine whether or not the system is bound. Several examples are considered to illustrate that the propagator obtained for the unbound systems is correct

  8. Stable propagation of an electron beam in gas

    International Nuclear Information System (INIS)

    Lee, E.P.; Chambers, F.W.; Lodestro, L.L.; Yu, S.S.

    1977-01-01

    Conditions for the stable propagation of a pinched electron beam in low pressure gas (p approximately 0.1 to 100 torr) are described. The observed window of good propagation around p approximately 2 torr air is interpreted as the quenching of the two-stream mode by sufficiently high plasma density and collision frequency, and the simultaneous suppression of the resistive hose mode by sufficiently rapid generation of electrical conductivity from breakdown ionization

  9. Five-component propagation model for steam explosion analysis

    International Nuclear Information System (INIS)

    Yang, Y.; Moriyama, Kiyofumi; Park, H.S.; Maruyama, Yu; Sugimoto, Jun

    1999-01-01

    A five-field simulation code JASMINE-pro has been developed at JAERI for the calculation of the propagation and explosion phase of steam explosions. The basic equations and the constitutive relationships specifically utilized in the propagation models in the code are introduced in this paper. Some calculations simulating the KROTOS 1D and 2D steam explosion experiments are also stated in the paper to show the present capability of the code. (author)

  10. Ultra-Wideband Electromagnetic Pulse Propagation through Causal Media

    Science.gov (United States)

    2016-03-04

    AFRL-AFOSR-VA-TR-2016-0112 Ultra-Wideband Electromagnetic Pulse Propagation through Causal Media Natalie Cartwright RESEARCH FOUNDATION OF STATE... Electromagnetic Pulse Propagation through Causal Media 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550-13-1-0013 5c.  PROGRAM ELEMENT NUMBER 61102F 6...SUPPLEMENTARY NOTES 14. ABSTRACT When an electromagnetic pulse travels through a dispersive material each frequency of the transmitted pulse changes in both

  11. Propagative modes along a superfluid helium-4 meniscus

    International Nuclear Information System (INIS)

    Poujade, M.; Guthmann, C.; Rolley, E.

    2002-01-01

    We have studied the dynamics of a superfluid helium-4 meniscus on a solid substrate. In a pseudo-non-wetting situation, there is no hysteresis of the contact angle. We show that distortions of a liquid meniscus do propagate along the contact line. We have analyzed the propagation of pulses. We find a good agreement with theoretical predictions by Brochard for the dispersion relation of oscillation modes of the contact line. (authors)

  12. Model Development For Wireless Propagation In Forested Environments

    Science.gov (United States)

    2015-09-01

    vegetation elements can be compared to the reduction of the propagated radio signals in buildings and urban areas. The diversity of operational...contexts for radio wave propagation through foliage is infinite, ranging from tall, dense canopy forests to open, low, sparse canopy woodlands [3], as...nearly flat and mainly consists of dry soil and sand that is covered by grass in some parts. The experimental site is mixed vegetation woodland with an

  13. Studies of nonlinear ultrasound propagation: safety considerations in the use of ultrasound for medical diagnosis - nonlinear propagation

    International Nuclear Information System (INIS)

    Egerton, B.; Barnett, S.; Vella, G.

    1994-01-01

    Diagnostic ultrasound is an established imaging modality without any documented harmful effects. New developments such as pulsed Doppler and intracavity investigations may result in increases in ultrasound exposures which could cause harm. Thermal mechanisms and cavitation may become relevant sources of bioeffects. The preliminary study described here investigates the distribution and amplitude of harmonics generated through nonlinear propagation of ultrasound in water. Knowledge of harmonic attenuation will help predict sites of enhanced heating and enable accurate modelling of clinical situations. This presentation is concerned with thermal safety guidelines, their relationship to a typical ultrasound beam profile for a single, medium focussed, transducer operating in water and possible sites of enhanced heating due to nonlinear propagation effects. Measurements were made of the amplitudes of the harmonics generated by the nonlinear propagation of ultrasound in water. The amplitudes of the harmonics were detected up to frequencies of 35 MHz and displayed using Fast Fourier Transform facilities within the oscilloscope. The nonlinearity parameter of the ultrasonic waveforms has been identified as an important factor in thermal effects of ultrasound interactions. The appearance of nonlinear distortion is shown to be dependant on the peak compressional pressure and distance from the ultrasound source. 20 refs., 2 figs

  14. On flame kernel formation and propagation in premixed gases

    Energy Technology Data Exchange (ETDEWEB)

    Eisazadeh-Far, Kian; Metghalchi, Hameed [Northeastern University, Mechanical and Industrial Engineering Department, Boston, MA 02115 (United States); Parsinejad, Farzan [Chevron Oronite Company LLC, Richmond, CA 94801 (United States); Keck, James C. [Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2010-12-15

    Flame kernel formation and propagation in premixed gases have been studied experimentally and theoretically. The experiments have been carried out at constant pressure and temperature in a constant volume vessel located in a high speed shadowgraph system. The formation and propagation of the hot plasma kernel has been simulated for inert gas mixtures using a thermodynamic model. The effects of various parameters including the discharge energy, radiation losses, initial temperature and initial volume of the plasma have been studied in detail. The experiments have been extended to flame kernel formation and propagation of methane/air mixtures. The effect of energy terms including spark energy, chemical energy and energy losses on flame kernel formation and propagation have been investigated. The inputs for this model are the initial conditions of the mixture and experimental data for flame radii. It is concluded that these are the most important parameters effecting plasma kernel growth. The results of laminar burning speeds have been compared with previously published results and are in good agreement. (author)

  15. Propagation and dispersion of shock waves in magnetoelastic materials

    Science.gov (United States)

    Crum, R. S.; Domann, J. P.; Carman, G. P.; Gupta, V.

    2017-12-01

    Previous studies examining the response of magnetoelastic materials to shock waves have predominantly focused on applications involving pulsed power generation, with limited attention given to the actual wave propagation characteristics. This study provides detailed magnetic and mechanical measurements of magnetoelastic shock wave propagation and dispersion. Laser generated rarefacted shock waves exceeding 3 GPa with rise times of 10 ns were introduced to samples of the magnetoelastic material Galfenol. The resulting mechanical measurements reveal the evolution of the shock into a compressive acoustic front with lateral release waves. Importantly, the wave continues to disperse even after it has decayed into an acoustic wave, due in large part to magnetoelastic coupling. The magnetic data reveal predominantly shear wave mediated magnetoelastic coupling, and were also used to noninvasively measure the wave speed. The external magnetic field controlled a 30% increase in wave propagation speed, attributed to a 70% increase in average stiffness. Finally, magnetic signals propagating along the sample over 20× faster than the mechanical wave were measured, indicating these materials can act as passive antennas that transmit information in response to mechanical stimuli.

  16. Propagation Analysis for Wireless Sensor Networks Applied to Viticulture

    Directory of Open Access Journals (Sweden)

    Felipe Pinheiro Correia

    2017-01-01

    Full Text Available Wireless sensor networks have been proposed as a solution to obtain soil and environment information in large distributed areas. The main economic activity of the São Francisco Valley region in the Northeast of Brazil is the irrigated fruit production. The region is one of the major agricultural regions of the country. Grape plantations receive large investments and provide good financial return. However, the region still lacks electronic sensing systems to extract adequate information from plantations. Considering these facts, this paper presents a study of path loss in grape plantations for a 2.4 GHz operating frequency. In order to determine the position of the sensor nodes, the research dealt with various environmental factors that influence the intensity of the received signal. It has been noticed that main plantation aisles favor the guided propagation, and the vegetation along the secondary plantation aisles compromises the propagation. Diffraction over the grape trees is the main propagation mechanism in the diagonal propagation path. Transmission carried out above the vineyard showed that reflection on the top of the trees is the main mechanism.

  17. Spherical shock-wave propagation in three-dimensional granular packings.

    Science.gov (United States)

    Xue, Kun; Bai, Chun-Hua

    2011-02-01

    We investigate numerically the spherical shock-wave propagation in an open dense granular packing perturbed by the sudden expansion of a spherical intruder in the interior of the pack, focusing on the correlation between geometrical fabrics and propagating properties. The measurements of the temporal and spatial variations in a variety of propagating properties define a consistent serrated wave substructure with characteristic length on the orders of particle diameters. Further inspection of particle packing reveals a well-defined particle layering that persists several particle diameters away from the intruder, although its dominant effects are only within one to two diameters. This interface-induced layering not only exactly coincides with the serrated wave profile, but also highlights the competition between two energy transmission mechanisms involving distinct transport speeds. The alternating dominances between these two mechanisms contribute to the nonlinear wave propagation on the particle scale. Moreover, the proliferation of intricate three-dimensional contact force networks suggests the anisotropic stress transmission, which is found to also arise from the localized packing structure in the vicinity of the intruder.

  18. E3D, 3-D Elastic Seismic Wave Propagation Code

    International Nuclear Information System (INIS)

    Larsen, S.; Harris, D.; Schultz, C.; Maddix, D.; Bakowsky, T.; Bent, L.

    2004-01-01

    1 - Description of program or function: E3D is capable of simulating seismic wave propagation in a 3D heterogeneous earth. Seismic waves are initiated by earthquake, explosive, and/or other sources. These waves propagate through a 3D geologic model, and are simulated as synthetic seismograms or other graphical output. 2 - Methods: The software simulates wave propagation by solving the elasto-dynamic formulation of the full wave equation on a staggered grid. The solution scheme is 4-order accurate in space, 2-order accurate in time

  19. Spike propagation in driven chain networks with dominant global inhibition

    International Nuclear Information System (INIS)

    Chang Wonil; Jin, Dezhe Z.

    2009-01-01

    Spike propagation in chain networks is usually studied in the synfire regime, in which successive groups of neurons are synaptically activated sequentially through the unidirectional excitatory connections. Here we study the dynamics of chain networks with dominant global feedback inhibition that prevents the synfire activity. Neural activity is driven by suprathreshold external inputs. We analytically and numerically demonstrate that spike propagation along the chain is a unique dynamical attractor in a wide parameter regime. The strong inhibition permits a robust winner-take-all propagation in the case of multiple chains competing via the inhibition.

  20. Faraday tarotion: new parameter for electromagnetic pulse propagation in magnetoplasma

    International Nuclear Information System (INIS)

    Bloch, S.C.; Lyons, P.W.

    1976-01-01

    Extreme distortion and time-dependent Faraday rotation occur for propagation of short electromagnetic pulses in magnetoplasma, for some ranges of plasma parameters. In order to relate pulse and monochromatic waves for propagation-path diagnostic purposes, a new parameter is introduced for the transmitted pulse train which has properties that correspond very accurately to results that would be expected for Faraday rotation of a continuous wave having the central frequency of the incident pulse spectrum. Results for 5-ns pulses (10 GHz) are presented for varying propagating length, static magnetic field, electron density, and collisional absorption