WorldWideScience

Sample records for corneal stromal cells

  1. Equine corneal stromal abscesses

    DEFF Research Database (Denmark)

    Henriksen, M. D. L.; Andersen, P. H.; Plummer, C. E.

    2013-01-01

    The last 30 years have seen many changes in the understanding of the pathogenesis and treatment of equine corneal stromal abscesses (SAs). Stromal abscesses were previously considered an eye problem related to corneal bacterial infection, equine recurrent uveitis, corneal microtrauma and corneal...

  2. IL-8 and MCP Gene Expression and Production by LPS-Stimulated Human Corneal Stromal Cells

    Directory of Open Access Journals (Sweden)

    Roni M. Shtein

    2012-01-01

    Full Text Available Purpose. To determine time course of effect of lipopolysaccharide (LPS on production of interleukin-8 (IL-8 and monocyte chemotactic protein (MCP by cultured human corneal stromal cells. Methods. Human corneal stromal cells were harvested from donor corneal specimens, and fourth to sixth passaged cells were used. Cell cultures were stimulated with LPS for 2, 4, 8, and 24 hours. Northern blot analysis of IL-8 and MCP gene expression and ELISA for IL-8 and MCP secretion were performed. ELISA results were analyzed for statistical significance using two-tailed Student's t-test. Results. Northern blot analysis demonstrated significantly increased IL-8 and MCP gene expression after 4 and 8 hours of exposure to LPS. ELISA for secreted IL-8 and MCP demonstrated statistically significant increases (P<0.05 after corneal stromal cell stimulation with LPS. Conclusions. This paper suggests that human corneal stromal cells may participate in corneal inflammation by secreting potent leukocyte chemotactic and activating proteins in a time-dependent manner when exposed to LPS.

  3. The graft of autologous adipose-derived stem cells in the corneal stromal after mechanic damage.

    Directory of Open Access Journals (Sweden)

    Xiao-Yun Ma

    Full Text Available This study was designed to explore the feasibility of using autologous rabbit adipose derived stem cells (rASCs as seed cells and polylactic-co-glycolic acid (PLGA as a scaffold for repairing corneal stromal defects. rASCs isolated from rabbit nape adipose tissue were expanded and seeded on a PLGA scaffold to fabricate cell-scaffold constructs. After 1 week of cultivation in vitro, the cell-scaffold complexes were transplanted into corneal stromal defects in rabbits. In vivo, the autologous rASCs-PLGA constructed corneal stroma gradually became transparent without corneal neovascularization after 12 weeks. Hematoxylin and eosin staining and transmission electron microscopy examination revealed that their histological structure and collagen fibril distribution at 24 weeks after implantation were similar to native counterparts. As to the defect treated with PLGA alone, the stromal defects remained. And scar tissue was observed in the untreated-group. The implanted autologous ASCs survived up to 24 weeks post-transplantation and differentiated into functional keratocytes, as assessed by the expression of aldehyde-3-dehydrogenase1A1 (ALDH1A1 and cornea-specific proteoglycan keratocan. Our results revealed that autologous rASCs could be one of the cell sources for corneal stromal restoration in diseased corneas or for tissue engineering of a corneal equivalent.

  4. Tissue engineering of corneal stromal layer with dermal fibroblasts: phenotypic and functional switch of differentiated cells in cornea.

    Science.gov (United States)

    Zhang, Yan Qing; Zhang, Wen Jie; Liu, Wei; Hu, Xiao Jie; Zhou, Guang Dong; Cui, Lei; Cao, Yilin

    2008-02-01

    Previously, we successfully engineered a corneal stromal layer using corneal stromal cells. However, the limited source and proliferation potential of corneal stromal cells has driven us to search for alternative cell sources for corneal stroma engineering. Based on the idea that the tissue-specific environment may alter cell fate, we proposed that dermal fibroblasts could switch their phenotype to that of corneal stromal cells in the corneal environment. Thus, dermal fibroblasts were harvested from newborn rabbits, seeded on biodegradable polyglycolic acid (PGA) scaffolds, cultured in vitro for 1 week, and then implanted into adult rabbit corneas. After 8 weeks of implantation, nearly transparent corneal stroma was formed, with a histological structure similar to that of its native counterpart. The existence of cells that had been retrovirally labeled with green fluorescence protein (GFP) demonstrated the survival of implanted cells. In addition, all GFP-positive cells that survived expressed keratocan, a specific marker for corneal stromal cells, and formed fine collagen fibrils with a highly organized pattern similar to that of native stroma. However, neither dermal fibroblast-PGA construct pre-incubated in vitro for 3 weeks nor chondrocyte-PGA construct could form transparent stroma. The results demonstrated that neonatal dermal fibroblasts could switch their phenotype in the new tissue environment under restricted conditions. The functional restoration of corneal transparency using dermal fibroblasts suggests that they could be an alternative cell source for corneal stroma engineering.

  5. Optimization of Human Corneal Endothelial Cells for Culture: The Removal of Corneal Stromal Fibroblast Contamination Using Magnetic Cell Separation

    Directory of Open Access Journals (Sweden)

    Gary S. L. Peh

    2012-01-01

    Full Text Available The culture of human corneal endothelial cells (CECs is critical for the development of suitable graft alternative on biodegradable material, specifically for endothelial keratoplasty, which can potentially alleviate the global shortage of transplant-grade donor corneas available. However, the propagation of slow proliferative CECs in vitro can be hindered by rapid growing stromal corneal fibroblasts (CSFs that may be coisolated in some cases. The purpose of this study was to evaluate a strategy using magnetic cell separation (MACS technique to deplete the contaminating CSFs from CEC cultures using antifibroblast magnetic microbeads. Separated “labeled” and “flow-through” cell fractions were collected separately, cultured, and morphologically assessed. Cells from the “flow-through” fraction displayed compact polygonal morphology and expressed Na+/K+ATPase indicative of corneal endothelial cells, whilst cells from the “labeled” fraction were mostly elongated and fibroblastic. A separation efficacy of 96.88% was observed. Hence, MACS technique can be useful in the depletion of contaminating CSFs from within a culture of CECs.

  6. Effect of pirfenidone on the proliferation of rat corneal stromal cells

    Directory of Open Access Journals (Sweden)

    Jun-Jie Chen

    2015-02-01

    Full Text Available AIM: To investigate the effects of pirfenidone(PFDon the proliferation and transfomring growth factor-β1(TGF-β1expression in vitro culture rat corneal stromal cells. METHODS: Corneal stromal cells from 8 to 10wk SD rats were isolated, cultured and treated with different concentrations of PFD 0mg/mL(control group, 0.15mg/mL(experimental group Ⅰ, 0.3mg/mL(experimental group Ⅱ, 1mg/mL(experimental group Ⅲfor 48h. CCK-8 assay was performed to assess cell proliferation, while immunocytochemistry and Western Blot were used to detect the expression of ki-67 and TGF-β1 expression, respectively. RESULTS: Compared with control group, PFD significantly inhibited the proliferation in a dose-dependent manner(all P1 in a dose-dependent manner(PCONCLUSION: Pirfenidone can significantly inhibit the proliferation of rat corneal stromal cell by down regulating TGF-β1 expression, therefore, it has potential prospect in lightening the corneal wound healing reaction.

  7. Differential expression of epithelial basement membrane components nidogens and perlecan in corneal stromal cells in vitro.

    Science.gov (United States)

    Santhanam, Abirami; Torricelli, Andre A M; Wu, Jiahui; Marino, Gustavo K; Wilson, Steven E

    2015-01-01

    The purpose of this study was to examine the expression of corneal epithelial basement membrane (EBM) components in different corneal stromal cell types. In vitro model systems were used to explore the expression of EBM components nidogen-1, nidogen-2, and perlecan that are the primary components in the lamina lucida and the lamina densa that defectively regenerate in corneas with stromal opacity after in -9.0 D photorefractive keratectomy (PRK). Primary rabbit corneal stromal cells were cultured using varying serum concentrations and exogenous growth factors, including fibroblast growth factor (FGF)-2 and transforming growth factor (TGF)-β1, to optimize the growth of each cell type of interest. The expression of the keratocyte-specific marker keratocan and the myofibroblast-specific marker α-smooth muscle actin (α-SMA) were analyzed with real-time PCR, western blot, and immunocytochemical staining to evaluate the specificity of the cell types and select optimal conditions (high keratocan and low α-SMA for keratocytes; low keratocan and high α-SMA for myofibroblasts; low keratocan and low α-SMA for corneal fibroblasts). The expression of the EBM components nidogen-1, nidogen-2, and perlecan was evaluated in each corneal cell type using real-time PCR, immunostaining, and western blotting. In agreement with previous studies, serum-free DMEM was found to be optimal for keratocytes, DMEM with 10% serum and 40 ng/ml FGF-2 yielded the best marker profile for corneal fibroblasts, and DMEM with 1% serum and 2 ng/ml TGF-β1 was found to be optimal for myofibroblasts. Nidogen-1 and nidogen-2 mRNAs were highly expressed in keratocytes, whereas perlecan was highly expressed in myofibroblasts. In keratocytes, nidogen-2 and perlecan proteins were expressed predominantly in intracellular compartments, whereas in myofibroblasts expression of both EBM components was observed diffusely throughout the cell. Although the perlecan mRNA levels were high in the myofibroblasts, the

  8. Corneal stromal invasive squamous cell carcinoma: a retrospective morphological description in 10 horses.

    Science.gov (United States)

    Kafarnik, Christiane; Rawlings, Melanie; Dubielzig, Richard R

    2009-01-01

    To describe the pathomorphological features of corneal stromal invasive squamous cell carcinoma (CSI-SCC) in horses. A total of 87 equine SCC in the Comparative Ocular Pathology Laboratory of Wisconsin database were retrieved. The signalment and anatomical distribution were summarized. Ten CSI-SCC out of 87 SCCs were further investigated focusing on pathomorphological description. All 10 cases were stained with H&E, periodic acid-Schiff stain and Verhoeff's elastic stain. Four Appaloosas, two Quarter horses, two American Paint, one Pinto and one Thoroughbred horse were affected. The mean age at the time of enucleation/keratectomy was 16.7 +/- 5.2 years. Out of 10, five horses were clinically diagnosed as chronic stromal keratitis, 3 of 10 had a previous biopsy diagnosed as SCC, 1 of 10 was described as stromal mass, and 1 of 10 as invasive SCC. Previous keratectomies before enucleation were performed in 3 of 10 horses, of which 2 also had additional lasertherapy/cryotherapy. Seven of 10 cases showed tumor infiltration in the anterior-mid stroma, 3/10 in the mid-deep stroma. The anterior epithelium had no contact with the CSI-SCC in 8 of 10 cases, 7 of 10 had intact and normal epithelium, and 3 of 10 showed intact, dysplastic corneal and conjunctival epithelium. The limbus was not pigmented in 8 of 10 specimens. There was a mild-moderate lymphoplasmacytic inflammation between the neoplastic islands. Solar elastosis was present in 2 of 10 samples. The CSI-SCC shows a distinctive intrastromal tumor growth pattern with a smooth, intact corneal epithelium. The tumor can be underestimated and misdiagnosed as chronic active stromal keratitis. A deep biopsy is necessary for the definitive diagnosis.

  9. Stromal-epithelial interaction study: The effect of corneal epithelial cells on growth factor expression in stromal cells using organotypic culture model.

    Science.gov (United States)

    Kobayashi, Takeshi; Shiraishi, Atsushi; Hara, Yuko; Kadota, Yuko; Yang, Lujun; Inoue, Tomoyuki; Shirakata, Yuji; Ohashi, Yuichi

    2015-06-01

    Interactions between stromal and epithelial cells play important roles in the development, homeostasis, and pathological conditions of the cornea. Soluble cytokines are critical factors in stromal-epithelial interactions, and growth factors secreted from corneal stromal cells contribute to the regulation of proliferation and differentiation of corneal epithelial cells (CECs). However, the manner in which the expression of growth factors is regulated in stromal cells has not been completely determined. To study stromal-epithelial cell interactions, we used an organotypic culture model. Human or rabbit CECs (HCECs or RCECs) were cultured on amniotic membranes placed on human corneal fibroblasts (HCFs) embedded in a collagen gel. The properties of the organotypic culture were examined by hematoxylin-eosin staining and immunofluorescence. In the organotypic culture, HCECs or RCECs were stratified into two-three layers after five days and five-seven layers after nine days. However, stratification was not observed when the HCECs were seeded on a collagen gel without fibroblasts. K3/K12 were expressed on day 9. The HCF-embedded collagen gels were collected on days 3, 5, or 9 after seeding the RCECs, and mRNA expression of growth factors FGF7, HGF, NGF, EGF, TGF-α, SCF, TGF-β1, TGF-β2, and TGF-β3 were quantified by real-time PCR. mRNA expression of the growth factors in HCFs cultured with RCECs were compared with those cultured without RCECs, as well as in monolayer cultures. mRNA expression of TGF-α was markedly increased in HCFs cultured with RCECs. However, mRNA expression of the TGF-β family was suppressed in HCFs cultured with RCECs. Principal component analysis revealed that mRNA expression of the growth factors in HCFs were generally similar when they were cultured with RCECs. In organotypic cultures, the morphological changes in the CECs and the expression patterns of the growth factors in the stromal cells clearly demonstrated stromal-epithelial cell

  10. Corneal stromal dystrophies: a clinical pathologic study

    Directory of Open Access Journals (Sweden)

    Elvira Barbosa Abreu

    2012-12-01

    Full Text Available INTRODUCTION: Corneal dystrophy is defined as bilateral and symmetric primary corneal disease, without previous associated ocular inflammation. Corneal dystrophies are classified according to the involved corneal layer in superficial, stromal, and posterior dystrophy. Incidence of each dystrophy varies according to the geographic region studied. PURPOSE: To evaluate the prevalence of stromal corneal dystrophies among corneal buttons specimens obtained by penetrating keratoplasty (PK in an ocular pathology laboratory and to correlate the diagnosis with patient age and gender. METHODS: Corneal button cases of penetrating keratoplasty from January-1996 to May-2009 were retrieved from the archives of The Henry C. Witelson Ophthalmic Pathology Laboratory and Registry, Montreal, Canada. The cases with histopathological diagnosis of stromal corneal dystrophies were stained with special stains (Peroxid acid Schiff, Masson trichrome, Congo red analyzed under polarized light, and alcian blue for classification and correlated with epidemiological information (age at time of PK and gender from patients' file. RESULTS: 1,300 corneal buttons cases with clinical diagnose of corneal dystrophy were retrieved. Stromal corneal dystrophy was found in 40 (3.1% cases. Lattice corneal dystrophy was the most prevalent with 26 cases (65%. Nineteen were female (73.07% and the PK was performed at average age of 59.3 years old. Combined corneal dystrophy was found in 8 (20% cases, 5 (62.5% of them were female and the average age of the penetrating keratoplasty was 54.8 years old. Granular corneal dystrophy was represented by 5 (12.5% cases, and 2 (40% of them were female. Penetrating keratoplasty was performed at average age of 39.5 years old in granular corneal dystrophy cases. Macular corneal dystrophy was present in only 1 (2.5% case, in a 36 years old female. CONCLUSION: Systematic histopathological approach and evaluation, including special stains in all stromal

  11. Nerve regeneration by human corneal stromal keratocytes and stromal fibroblasts

    Science.gov (United States)

    Yam, Gary Hin-Fai; Williams, Geraint P.; Setiawan, Melina; Yusoff, Nur Zahirah Binte M.; Lee, Xiao-wen; Htoon, Hla Myint; Zhou, Lei; Fuest, Matthias; Mehta, Jodhbir S.

    2017-01-01

    Laser refractive surgeries reshape corneal stroma to correct refractive errors, but unavoidably affect corneal nerves. Slow nerve regeneration and atypical neurite morphology cause desensitization and neuro-epitheliopathy. Following injury, surviving corneal stromal keratocytes (CSKs) are activated to stromal fibroblasts (SFs). How these two different cell types influence nerve regeneration is elusive. Our study evaluated the neuro-regulatory effects of human SFs versus CSKs derived from the same corneal stroma using an in vitro chick dorsal root ganglion model. The neurite growth was assessed by a validated concentric circle intersection count method. Serum-free conditioned media (CM) from SFs promoted neurite growth dose-dependently, compared to that from CSKs. We detected neurotrophic and pro-inflammatory factors (interleukin-8, interleukin-15, monocyte chemoattractant protein-1, eotaxin, RANTES) in SFCM by Bio-Plex Human Cytokine assay. More than 130 proteins in SFCM and 49 in CSKCM were identified by nanoLC-MS/MS. Proteins uniquely present in SFCM had reported neuro-regulatory activities and were predicted to regulate neurogenesis, focal adhesion and wound healing. Conclusively, this was the first study showing a physiological relationship between nerve growth and the metabolically active SFs versus quiescent CSKs from the same cornea source. The dose-dependent effect on neurite growth indicated that nerve regeneration could be influenced by SF density. PMID:28349952

  12. Coculture of dorsal root ganglion neurons and differentiated human corneal stromal stem cells on silk-based scaffolds.

    Science.gov (United States)

    Wang, Siran; Ghezzi, Chiara E; White, James D; Kaplan, David L

    2015-10-01

    Corneal tissue displays the highest peripheral nerve density in the human body. Engineering of biomaterials to promote interactions between neurons and corneal tissue could provide tissue models for nerve/cornea development, platforms for drug screening, as well as innovative opportunities to regenerate cornea tissue. The focus of this study was to develop a coculture system for differentiated human corneal stromal stem cells (dhCSSCs) and dorsal root ganglion neurons (DRG) to mimic the human cornea tissue interactions. Axon extension, connectivity, and neuron cell viability were studied. DRG neurons developed longer axons when cocultured with dhCSSCs in comparison to neuron cultures alone. To assess the mechanism involved in the coculture response, nerve growth factors (NGF) secreted by dhCSSCs including NGF, brain-derived neurotrophic factor (BDNF), glial cell-derived neurotrophic factor (GDNF), and neurotrophin-3 were characterized with greater focus on BDNF secretion. DhCSSCs also secreted collagen type I, an extracellular matrix molecule favorable for neuronal outgrowth. This coculture system provides a slowly degrading silk matrix to study neuronal responses in concert with hCSSCs related to innervation of corneal tissue with utility toward human corneal nerve regeneration and associated diseases. © 2015 Wiley Periodicals, Inc.

  13. Limbal Stromal Tissue Specific Stem Cells and Their Differentiation Potential to Corneal Epithelial Cells.

    Science.gov (United States)

    Katikireddy, Kishore Reddy; Jurkunas, Ula V

    2016-01-01

    From the derivation of the first human embryonic stem (hES) cell line to the development of induced pluripotent stem (iPS) cells; it has become evident that tissue specific stem cells are able to differentiate into a specific somatic cell types. The understanding of key processes such as the signaling pathways and the role of the microenvironment in epidermal/epithelial development has provided important clues for the derivation of specific epithelial cell types.Various differentiation protocols/methods were used to attain specific epithelial cell types. Here, we describe in detail the procedure to follow for isolation of tissue specific stem cells, mimicking their microenvironment to attain stem cell characteristics, and their potential differentiation to corneal epithelial cells.

  14. CORNEAL STROMAL THINNING: A RARE CORNEAL COMPLICATION AFTER BARE SCL ERA PTERYG I UM EXCISION TECHNIQUE

    Directory of Open Access Journals (Sweden)

    Sulaiman Abdul

    2015-06-01

    Full Text Available INTRODUCTION : Bare sclera technique without using any anti - mitotic drugs are commonly employed in rural population. Corneal dellen formation and recurrence of pterygium are more common in these cases. But the corneal complication like stromal thinning, necrosis of corne a and sclera are not common. The corneal epithelium is a highly differentiated cell type that is self - renewing. Also corneal epithelium is important for the stromal replacement in the situations like chemical, thermal burns, ocular surgery like pterygium s urgery. Interference with status of stem cell replacement and as a consequent to it, stromal thinning is occurring in the pterygium surgery. P atient 1: A 68 yr s. old male patient underwent pterygium surgery ( B aresclera excision technique. After 30 days he developed corneal thinning with the punched out partial stromal loss without perforation or descmetocele or scleral thinning. Patient 2: A 60yr s. old male patient underwent pterygium surgery 2months back, he developed same type of corneal thinning. Both P atients were treated with tear drops and improved. CONCLUSION : The stromal thinning in these two cases is may be due to chemical factors like collagenase which might have been released from the traumatised conjunctival epithelial cells causing thinning wit hout replacement of stroma by limbal stem cells.

  15. Expression of NADPH oxidase (NOX 5 in rabbit corneal stromal cells.

    Directory of Open Access Journals (Sweden)

    Farhan Rizvi

    Full Text Available PURPOSE: To determine whether NOX 5 is expressed in rabbit corneal stromal cells (RCSC. NADPH oxidases (NOXes are enzymes that preferentially use NADPH as a substrate and generate superoxide. Several isoforms of NOXes function as multi-protein complexes while NOX5 and DUOXs do not require the accessory proteins for their activity and possess calcium binding EF hands. METHODS: Human NOX5 primers were used to amplify the rabbit NOX5 by RT-PCR. Amplified product was sequenced to confirm its identity. The protein encoded by the NOX5 was identified by western blot analysis. NOX5 siRNA was used to reduce transcript, protein, and calcium stimulated activity. In silico analyses were performed to establish the putative structure, functions, and evolution of rabbit NOX5. RESULTS: NOX activity was measured in RCSC with NADPH rather than NADH as a substrate. RT-PCR with NOX5 primers amplified 288 bp product using RCSC cDNA, which, when sequenced, confirmed its identity to human NOX5 mRNA. This sequence was used to predict the rabbit (Oryctolagus cuniculus NOX5 gene. NOX5 siRNA reduced amounts of NOX5 mRNA in RCSC and reduced ionomycin stimulated superoxide production. A protein of about 65 to 70 kDa encoded by the NOX5 was detected by western blot analysis. In silico analysis predicted a putative rabbit NOX5 protein containing 801 amino acids. Motif searches predicted the presence of at least 3 putative EF-hands in N-terminus and a NOX domain in C terminal region. CONCLUSIONS: The data document that the NOX5 gene was expressed in cells of lagomorphs unlike rodents, making the rabbit an interesting model to study NOX5 functions. The activity of the rabbit NOX5 was calcium stimulated, a trait of NOX5 in general. NOX5 may also prove to be a useful genetic marker for studying the taxonomic position of lagomorphs and the Glires classification.

  16. Characterization of vitamin C-induced cell sheets formed from primary and immortalized human corneal stromal cells for tissue engineering applications.

    Science.gov (United States)

    Grobe, Gesa Maria; Reichl, Stephan

    2013-01-01

    The purpose of this study was to compare the ability of primary human corneal stromal cells (HuFib cells) and SV40-immortalized human corneal keratocytes (HCK cells) to synthesize their own extracellular matrix induced by vitamin C supplementation. Therefore, the amount of collagen secreted and resulting biomechanical properties based on the culture duration were assessed. Cells were cultivated for several weeks with or without vitamin C. The amount of collagen secreted by the cells was quantified based on the culture duration. Cell viability was simultaneously determined via the MTT assay. Collagen secretion was increased as a result of vitamin C supplementation. The effect was stronger in primary cells. In addition, vitamin C supplementation had a positive effect on HuFib cell viability. Vitamin C supplementation induced the formation of detachable cell sheets in both primary and immortalized cells. The biomechanical properties of the sheets were evaluated using a static material testing machine, and the ultrastructure of the cell sheets was examined using scanning electron microscopy. The cell sheets formed from HuFib cells had a higher percentage of light transmission between 400 and 800 nm and were superior in terms of E-modulus and ultimate strength testing. Indirect immunofluorescence and Western blot confirmed the presence of collagen type I in the HuFib and HCK cell cultures. Stimulating secretion of the extracellular matrix in corneal stromal cells is a promising approach for corneal stroma reconstruction for tissue engineering applications. Copyright © 2013 S. Karger AG, Basel.

  17. Thermosensitive chitosan-based hydrogels releasing stromal cell derived factor-1 alpha recruit MSC for corneal epithelium regeneration.

    Science.gov (United States)

    Tang, Qiaomei; Luo, Chenqi; Lu, Bing; Fu, Qiuli; Yin, Houfa; Qin, Zhenwei; Lyu, Danni; Zhang, Lifang; Fang, Zhi; Zhu, Yanan; Yao, Ke

    2017-10-01

    Corneal epithelium integrity depends on continuous self-renewing of epithelium and connections between adjacent cells or between the cells and the basement membrane. Self-renewing epithelium cells mainly arise from the continuous proliferation and differentiation of the basal layer and limbal stem cells. The aim of the present study was to generate a bioactive, thermosensitive chitosan-gelatin hydrogel (CHI hydrogel) by incorporating exogenous recombinant human stromal cell-derived factor-1 alpha (SDF-1 alpha) for corneal epithelium regeneration. The exogenous SDF-1 alpha could enhance the stem cells proliferation, chemotaxis and migration, and the expression levels of related genes were significantly elevated in LESCs and mesenchymal stem cells (MSCs) in vitro. Moreover, the MSCs promoted the proliferation and maintained the corneal fate of the LESCs. The rat alkali injury model was used for in vivo study. The injured eyes were covered with CHI hydrogel alone or rhSDF-1 alpha-loaded CHI hydrogel. All rats were followed for 13days. Histological examination showed that the SDF-1 alpha/CHI hydrogel complex group had a nearly normal thickness; moreover, it was also found that this group could upregulate the expression of some genes and had more ΔNp63-positive cells. The SDF-1 alpha/CHI hydrogel complex group had a more tightly arranged epithelium compared with the control group using transmission electron microscopy (TEM). The mechanism for this may have involved the activation of stem cell homing and the secretion of growth factors via the SDF-1/CXCR4 chemokine axis. Therefore, SDF-1 alpha/CHI hydrogel complexes could provide a new idea for the clinical application. The clarity of cornea is important for normal vision. The loss or dysfunction of LESCs leads to the impairment of corneal epithelium. The complete regeneration of corneal epithelium has not been achieved. Our study demonstrated that the incorporation of rhSDF-1 alpha with CHI hydrogel accelerated corneal

  18. The corneal fibrosis response to epithelial-stromal injury.

    Science.gov (United States)

    Torricelli, Andre A M; Santhanam, Abirami; Wu, Jiahui; Singh, Vivek; Wilson, Steven E

    2016-01-01

    The corneal wound healing response, including the development of stromal opacity in some eyes, is a process that often leads to scarring that occurs after injury, surgery or infection to the cornea. Immediately after epithelial and stromal injury, a complex sequence of processes contributes to wound repair and regeneration of normal corneal structure and function. In some corneas, however, often depending on the type and extent of injury, the response may also lead to the development of mature vimentin+ α-smooth muscle actin+ desmin+ myofibroblasts. Myofibroblasts are specialized fibroblastic cells generated in the cornea from keratocyte-derived or bone marrow-derived precursor cells. The disorganized extracellular matrix components secreted by myofibroblasts, in addition to decreased expression of corneal crystallins in these cells, are central biological processes that result in corneal stromal fibrosis associated with opacity or "haze". Several factors are associated with myofibroblast generation and haze development after PRK surgery in rabbits, a reproducible model of scarring, including the amount of tissue ablated, which may relate to the extent of keratocyte apoptosis in the early response to injury, irregularity of stromal surface after surgery, and changes in corneal stromal proteoglycans, but normal regeneration of the epithelial basement membrane (EBM) appears to be a critical factor determining whether a cornea heals with relative transparency or vision-limiting stromal opacity. Structural and functional abnormalities of the regenerated EBM facilitate prolonged entry of epithelium-derived growth factors such as transforming growth factor β (TGF-β) and platelet-derived growth factor (PDGF) into the stroma that both drive development of mature myofibroblasts from precursor cells and lead to persistence of the cells in the anterior stroma. A major discovery that has contributed to our understanding of haze development is that keratocytes and corneal

  19. EBM regeneration and changes in EBM component mRNA expression in stromal cells after corneal injury.

    Science.gov (United States)

    Santhanam, Abirami; Marino, Gustavo K; Torricelli, Andre A M; Wilson, Steven E

    2017-01-01

    To investigate the production of the epithelial basement membrane (EBM) component mRNAs at time points before lamina lucida and lamina densa regeneration in anterior stromal cells after corneal injury that would heal with and without fibrosis. Rabbit corneas were removed from 2 to 19 days after -4.5D or -9.0D photorefractive keratectomy (PRK) with the VISX S4 IR laser. Corneas were evaluated with transmission electron microscopy (TEM) for full regeneration of the lamina lucida and the lamina densa. Laser capture microdissection (LCM) based quantitative real-time (RT)-PCR was used to quantitate the expression of mRNAs for laminin α-3 (LAMA3), perlecan, nidogen-1, and nidogen-2 in the anterior stroma. After -4.5D PRK, EBM was found to be fully regenerated at 8 to 10 days after surgery. At 4 days after PRK, the nidogen-2 and LAMA3 mRNAs levels were detected at statistically significantly lower levels in the anterior stroma of the -9.0D PRK corneas (where the EBM would not fully regenerate) compared to the -4.5D PRK corneas (where the EBM was destined to fully regenerate). At 7 days after PRK, nidogen-2 and LAMA3 mRNAs continued to be statistically significantly lower in the anterior stroma of the -9.0D PRK corneas compared to their expression in the anterior stroma of the -4.5D PRK corneas. Key EBM components LAMA3 and nidogen-2 mRNAs are expressed at higher levels in the anterior stroma during EBM regeneration in the -4.5D PRK corneas where the EBM is destined to fully regenerate and no haze developed compared to the -9.0D PRK corneas where the EBM will not fully regenerate and myofibroblast-related stromal fibrosis (haze) will develop.

  20. EBM regeneration and changes in EBM component mRNA expression in stromal cells after corneal injury

    Science.gov (United States)

    Santhanam, Abirami; Marino, Gustavo K.; Torricelli, Andre A. M.

    2017-01-01

    Purpose To investigate the production of the epithelial basement membrane (EBM) component mRNAs at time points before lamina lucida and lamina densa regeneration in anterior stromal cells after corneal injury that would heal with and without fibrosis. Methods Rabbit corneas were removed from 2 to 19 days after −4.5D or −9.0D photorefractive keratectomy (PRK) with the VISX S4 IR laser. Corneas were evaluated with transmission electron microscopy (TEM) for full regeneration of the lamina lucida and the lamina densa. Laser capture microdissection (LCM) based quantitative real-time (RT)–PCR was used to quantitate the expression of mRNAs for laminin α-3 (LAMA3), perlecan, nidogen-1, and nidogen-2 in the anterior stroma. Results After −4.5D PRK, EBM was found to be fully regenerated at 8 to 10 days after surgery. At 4 days after PRK, the nidogen-2 and LAMA3 mRNAs levels were detected at statistically significantly lower levels in the anterior stroma of the −9.0D PRK corneas (where the EBM would not fully regenerate) compared to the −4.5D PRK corneas (where the EBM was destined to fully regenerate). At 7 days after PRK, nidogen-2 and LAMA3 mRNAs continued to be statistically significantly lower in the anterior stroma of the −9.0D PRK corneas compared to their expression in the anterior stroma of the −4.5D PRK corneas. Conclusions Key EBM components LAMA3 and nidogen-2 mRNAs are expressed at higher levels in the anterior stroma during EBM regeneration in the −4.5D PRK corneas where the EBM is destined to fully regenerate and no haze developed compared to the −9.0D PRK corneas where the EBM will not fully regenerate and myofibroblast-related stromal fibrosis (haze) will develop.

  1. Corneal Topography Analysis of Stromal Corneal Dystrophies

    OpenAIRE

    Kocluk, Yusuf; Yalniz-Akkaya, Zuleyha; Burcu, Ayse; Ornek, Firdevs

    2015-01-01

    Objective: The aim was to compare the corneal topography and tomography parameters of macular corneal dystrophy (MCD), granular corneal dystrophy (GCD) and lattice corneal dystrophy (LCD) patients obtained by Scheimpflug imaging system. Methods: The charts, photographs and topography images of patients were reviewed retrospectively. This study included 73 eyes of 73 patients (28 MCD, 20 GCG and 25 LCD patients). Topography images were obtained by Pentacam (Oculus Optikgerate, Wetzlar, Germany...

  2. Effects of 4-methylumbelliferone and high molecular weight hyaluronic acid on the inflammation of corneal stromal cells induced by LPS.

    Science.gov (United States)

    Li, Fang; Hao, Peng; Liu, Guangjie; Wang, Weiyi; Han, Ruifang; Jiang, Zhixin; Li, Xuan

    2017-03-01

    To investigate the effects of hyaluronic acid (HA) on the inflammation of corneal fibroblasts induced by lipopolysaccharide (LPS). Primary rabbit corneal keratocytes were isolated with collagenase. The keratocytes were cultured in a serum-containing medium to induce corneal fibroblasts, which represented the wound repair phenotype of corneal keratocytes. Corneal fibroblasts were treated with LPS with or without 4-methylumbelliferone (4-MU) / high molecular weight hyaluronic acid (HMWHA). The gene expression was evaluated via real-time PCR, immunofluorescence, and western blot. The release of inflammatory cytokines and HA was determined by ELISA. Three types of hyaluronan synthase (HAS) were detected in corneal fibroblasts. LPS stimulation caused the up-regulation of HAS1 and HAS2 expression in corneal fibroblasts. LPS-induced HAS2 expression was significantly inhibited by 4-MU, and accompanied by decreased HA release by the corneal fibroblasts. In the corneal fibroblasts, 4-MU reduced the LPS-stimulated up-regulation of inflammatory cytokines including IL-1, IL-6, IL-8, TNF-α, and also attenuated the LPS-induced up-regulation of inflammatory related receptors including TLR2, TLR4, CD44, and CXCR1. HMWHA treatment resulted in a significant decline in the expression of IL-6, IL-8, TLR4, and CXCR1 responded to LPS stimulation. Consistent with mRNA expression of level, the up-regulation of the release of IL-6 and IL-8 induced by LPS in corneal fibroblasts was significantly attenuated by 4-MU and HMWHA. The LPS-induced expression of IL-8 and its receptor CXCR1 at both the mRNA and protein level were significantly attenuated by 4-MU and HMWHA. The inhibitor of HA synthesis 4-MU, and HMWHA successfully reduced LPS-induced inflammation in corneal fibroblasts. The mechanism might be via the inhibition of LPS-induced TLR4 up-regulation.

  3. Descemet membrane endothelial keratoplasty with a stromal rim in the treatment of posterior polymorphous corneal dystrophy

    Directory of Open Access Journals (Sweden)

    Pavel Studeny

    2012-01-01

    Full Text Available A 20-year-old patient, diagnosed with posterior polymorphous corneal dystrophy, developed corneal edema for which he underwent Descemet membrane endothelial keratoplasty with a stromal rim (DMEK-S in the right eye. No intra- or postoperative complications were noted. At the last follow-up 2 years and 9 months after the procedure, the best corrected visual acuity was 1.0 and endothelial cell density declined from 3533 cells/mm 2 to 1012 cells/mm 2 . Despite the endothelial cell loss, DMEK-S appears to be a good alternative to other surgical techniques for the treatment of corneal endotheliopathies, and it may be of benefit to young patients.

  4. Skeletal (stromal) stem cells

    DEFF Research Database (Denmark)

    Abdallah, Basem M; Kermani, Abbas Jafari; Zaher, Walid

    2015-01-01

    Skeletal (marrow stromal) stem cells (BMSCs) are a group of multipotent cells that reside in the bone marrow stroma and can differentiate into osteoblasts, chondrocytes and adipocytes. Studying signaling pathways that regulate BMSC differentiation into osteoblastic cells is a strategy....../preadipocyte factor 1 (Dlk1/Pref-1), the Wnt co-receptor Lrp5 and intracellular kinases. This article is part of a Special Issue entitled: Stem Cells and Bone....

  5. Corneal reconstruction by stem cells and bioengineering

    Directory of Open Access Journals (Sweden)

    Arjamaa O

    2012-09-01

    Full Text Available Olli ArjamaaDepartment of Biology, University of Turku, Turku, FinlandAbstract: Almost 300 million people are visually impaired worldwide due to various eye diseases such as cataracts, glaucoma, age-related macular degeneration, diabetic retinopathy, and corneal diseases. Notably, ten million people are blind because of severe ocular surface diseases and the majority of cases occur in developing countries. Blinding ocular surface diseases have, however, become treatable by grafting of surface layers, or by full-thickness transplantation of the cornea. As the demand for human corneal tissue for surface reconstruction and transplantation far exceeds the supply, methods are being developed to supplement tissue donation. Xenotransplantation of the cornea or cells from genetically modified pigs may become one of the solutions. Transplantation of limbal stem cells within tissue biopsies, to restore the transparency of the cornea is another remarkable method, which has shown its potential in several clinical studies. The combination of stem cell technology and engineering of biocompatible tissue equivalent, still at preclinical stage, has shown us how synthetic corneal tissue is able to guide cultured corneal stromal stem cells of human origin, to become native-like stroma, the most important layer of the cornea. These findings give hope for a large-quantity production of biomaterial for corneal reconstruction. As such, clinical ophthalmologists should become more familiar with the methods of laboratory science.Keywords: eye, grafting, keratoplasty, xenotransplantation, cell reservoir, biocompatible tissue equivalent

  6. Sub-micron and nanoscale feature depth modulates alignment of stromal fibroblasts and corneal epithelial cells in serum-rich and serum-free media.

    Science.gov (United States)

    Fraser, Sarah A; Ting, Yuk-Hong; Mallon, Kelly S; Wendt, Amy E; Murphy, Christopher J; Nealey, Paul F

    2008-09-01

    Topographic features are generally accepted as being capable of modulating cell alignment. Of particular interest is the potential that topographic feature geometry induces cell alignment indirectly through impacting adsorbed proteins from the cell culture medium on the surface of the substrate. However, it has also been reported that micron-scale feature depth significantly impacts the level of alignment of cellular populations on topography, despite being orders of magnitude larger than the average adsorbed protein layer (nm). In order to better determine the impact of biomimetic length scale topography and adsorbed protein interaction on cellular morphology we have systematically investigated the effect of combinations of sub-micron to nanoscale feature depth and lateral pitch on corneal epithelial cell alignment. In addition we have used the unique properties of a serum-free media alternative in direct comparison to serum-rich medium to investigate the role of culture medium protein composition on cellular alignment to topographically patterned surfaces. Our observation that increasing groove depth elicited larger populations of corneal epithelial cells to align regardless of culture medium composition and of cell orientation with respect to the topography, suggests that these cells can sense changes in topographic feature depths independent of adsorbed proteins localized along ridge edges and tops. However, our data also suggests a strong combinatory effect of topography with culture medium composition, and also a cell type dependency in determining the level of cell elongation and alignment to nanoscale topographic features.

  7. Nanoscale modification of porous gelatin scaffolds with chondroitin sulfate for corneal stromal tissue engineering

    Directory of Open Access Journals (Sweden)

    Lai JY

    2012-02-01

    Full Text Available Jui-Yang Lai*, Ya-Ting Li*, Ching-Hsien Cho, Ting-Chun Yu Institute of Biochemical and Biomedical Engineering, Chang Gung University, Taoyuan, Taiwan, Republic of China*These authors contributed equally to this workAbstract: Recent studies reflect the importance of using naturally occurring biopolymers as three-dimensional corneal keratocyte scaffolds and suggest that the porous structure of gelatin materials may play an important role in controlling nutrient uptake. In the current study, the authors further consider the application of carbodiimide cross-linked porous gelatin as an alternative to collagen for corneal stromal tissue engineering. The authors developed corneal keratocyte scaffolds by nanoscale modification of porous gelatin materials with chondroitin sulfate (CS using carbodiimide chemistry. Scanning electron microscopy/energy dispersive X-ray spectroscopy and Fourier transform infrared spectroscopy showed that the amount of covalently incorporated polysaccharide was significantly increased when the CS concentration was increased from 0% to 1.25% (w/v. In addition, as demonstrated by dimethylmethylene blue assays, the CS content in these samples was in the range of 0.078–0.149 nmol per 10 mg scaffold. When compared with their counterparts without CS treatment, various CS-modified porous gelatin membranes exhibited higher levels of water content, light transmittance, and amount of permeated nutrients but possessed lower Young’s modulus and resistance against protease digestion. The hydrophilic and mechanical properties of scaffolds modified with 0.25% CS were comparable with those of native corneas. The samples from this group were biocompatible with the rabbit corneal keratocytes and showed enhanced proliferative and biosynthetic capacity of cultured cells. In summary, the authors found that the nanoscale-level modification has influence on the characteristics and cell-material interactions of CS-containing gelatin hydrogels

  8. Corneal stem cells and tissue engineering: Current advancesand future perspectives

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Major advances are currently being made in regenerativemedicine for cornea. Stem cell-based therapiesrepresent a novel strategy that may substituteconventional corneal transplantation, albeit there aremany challenges ahead given the singularities of eachcellular layer of the cornea. This review recapitulatesthe current data on corneal epithelial stem cells,corneal stromal stem cells and corneal endothelialcell progenitors. Corneal limbal autografts containingepithelial stem cells have been transplanted in humansfor more than 20 years with great successful rates,and researchers now focus on ex vivo cultures andother cell lineages to transplant to the ocular surface.A small population of cells in the corneal endotheliumwas recently reported to have self-renewal capacity,although they do not proliferate in vivo . Two mainobstacles have hindered endothelial cell transplantationto date culture protocols and cell delivery methods tothe posterior cornea in vivo . Human corneal stromalstem cells have been identified shortly after therecognition of precursors of endothelial cells. Stromalstem cells may have the potential to provide a directcell-based therapeutic approach when injected tocorneal scars. Furthermore, they exhibit the ability todeposit organized connective tissue in vitro and maybe useful in corneal stroma engineering in the future.Recent advances and future perspectives in the field arediscussed.

  9. Cutting and Decellularization of Multiple Corneal Stromal Lamellae for the Bioengineering of Endothelial Grafts.

    Science.gov (United States)

    He, Zhiguo; Forest, Fabien; Bernard, Aurélien; Gauthier, Anne-Sophie; Montard, Romain; Peoc'h, Michel; Jumelle, Clotilde; Courrier, Emilie; Perrache, Chantal; Gain, Philippe; Thuret, Gilles

    2016-12-01

    Engineered corneal endothelial grafts able to provide numerous functional endothelial cells for the restoration of corneal transparency would be a worthwhile way of replacing donor tissue, which is extremely scarce. The grafts are simply constructed: a biocompatible thin and transparent carrier colonized by a monolayer of cultured endothelial cells (ECs). Here we describe a process able to obtain appropriate carriers by recycling human corneas unsuitable for graft in their original state, but liable to provide multiple thin lamellae when cut with a femtosecond laser as used in refractive surgery. We selected a robust method of stromal decellularization. To demonstrate that neither this process nor long-term storage hindered cell adherence, lamellae were endothelialized with an EC line. The constructs achieved up to very high EC density (the main quality criterion for regular donor corneas) while remaining transparent and thin. We verified that they could be inserted in the anterior chamber of a human eye, like a conventional endothelial graft. Human decellularized cornea will likely be directly compatible with the recipient cornea and comply with the requirements of health regulatory authorities. This study demonstrates that thin human corneal lamellae could have high potential as carriers in next-generation therapy for endothelial dysfunctions.

  10. Corneal Cell Morphology in Keratoconus: A Confocal Microscopic Observation

    Science.gov (United States)

    Ghosh, Somnath; Mutalib, Haliza Abdul; Kaur, Sharanjeet; Ghoshal, Rituparna; Retnasabapathy, Shamala

    2017-01-01

    Purpose To evaluate corneal cell morphology in patients with keratoconus using an in vivo slit scanning confocal microscope. Methods A cross-sectional study was conducted to evaluate the corneal cell morphology of 47 keratoconus patients and 32 healthy eyes without any ocular disease. New keratoconus patients with different disease severities and without any other ocular co-morbidity were recruited from the ophthalmology department of a public hospital in Malaysia from June 2013 to May 2014. Corneal cell morphology was evaluated using an in vivo slit-scanning confocal microscope. Qualitative and quantitative data were analysed using a grading scale and the Nidek Advanced Visual Information System software, respectively. Results The corneal cell morphology of patients with keratoconus was significantly different from that of healthy eyes except in endothelial cell density (P = 0.072). In the keratoconus group, increased level of stromal haze, alterations such as the elongation of keratocyte nuclei and clustering of cells at the anterior stroma, and dark bands in the posterior stroma were observed with increased severity of the disease. The mean anterior and posterior stromal keratocyte densities and cell areas among the different stages of keratoconus were significantly different (P 0.05) among the three stages of keratoconus. Conclusion Confocal microscopy observation showed significant changes in corneal cell morphology in keratoconic cornea from normal healthy cornea. Analysis also showed significant changes in different severities of keratoconus. Understanding the corneal cell morphology changes in keratoconus may help in the long-term monitoring and management of keratoconus. PMID:28894403

  11. Femtosecond laser cutting of multiple thin corneal stromal lamellae for endothelial bioengineering.

    Science.gov (United States)

    Bernard, Aurélien; He, Zhiguo; Forest, Fabien; Gauthier, Anne-Sophie; Peocʼh, Michel; Dumollard, Jean-Marc; Acquart, Sophie; Montard, Romain; Delbosc, Bernard; Gain, Philippe; Thuret, Gilles

    2015-02-01

    To assess the feasibility of cutting multiple thin stromal lamellae in human donor corneas using a commercial femtosecond laser (FSL) to provide cell carriers for future endothelial graft bioengineering. Eight edematous organ-cultured corneas not suitable for grafting for endothelial reasons were mounted on a Ziemer anterior chamber and cut with a Z6 FSL with 6 successive parallel cuts, from depth to surface. Target thickness of each lamella ranged from 100 to 150 μm depending on initial corneal thickness. Thickness was measured using anterior segment optical coherence tomography before and after cutting on mounted corneas, and on each stromal lamella after detachment. Scanning electron microscopy observation was performed on 4 lamellae and histological cross sections on 1 cornea before detachment. A median of 5 (minimum 3, maximum 7) lamellae was obtained per cornea. All lamellae still attached were the most posterior ones, suggesting that FSL was less efficient because of light scattering by edematous stroma. Cut precision and postdetachment swelling were correlated with anterior-posterior position within the cornea. Median lamella thickness was 127 μm (56-222 μm) before detachment and 196 μm (80-304 μm) after detachment. Surface state was consistent with previously reported FSL lamellar cuts during Descemet stripping automated endothelial keratoplasty. Up to 7 thin lamellae can be cut in stored corneas with an FSL. This method, once optimized primarily by using deswelled, more transparent corneas, could prove effective for recycling unsuitable donor corneas in corneal bioengineering processes.

  12. Effect of pirfenidone on the proliferation of rat corneal stromal cells%吡非尼酮对大鼠角膜基质细胞增殖的影响

    Institute of Scientific and Technical Information of China (English)

    陈俊杰; 吴共发; 林俊汕; 曾宇婷; 黄绮亭

    2015-01-01

    AlM:To investigate the effects of pirfenidone ( PFD) on the proliferation and transfomring growth factor-β1 ( TGF-β1 ) expression in vitro culture rat corneal stromal cells.METHODS: Corneal stromal cells from 8 to 10wk SD rats were isolated, cultured and treated with different concentrations of PFD 0mg/mL (control group), 0. 15mg/mL (experimental group▏), 0. 3mg/mL (experimental group‖), 1mg/mL (experimental group Ⅲ) for 48h. CCK-8 assay was performed to assess cell proliferation, while immunocytochemistry and Western Blot were used to detect the expression of ki-67 and TGF-β1 expression, respectively. RESULTS: Compared with control group, PFD significantly inhibited the proliferation in a dose -dependent manner ( all P < 0. 05 ), so was protein expression of ki-67. PFD significantly down-regulated the expression of TGF-β1 in a dose-dependent manner (P<0. 05).CONCLUSlON: Pirfenidone can significantly inhibit the proliferation of rat corneal stromal cell by down regulating TGF-β1 expression, therefore, it has potential prospect in lightening the corneal wound healing reaction.%目的::探讨吡非尼酮( Pirfenidone,PFD)对体外培养大鼠角膜基质细胞增殖的抑制效果及其对转化生长因子-β1( transforming growth factor-β1,TGF-β1)表达的影响。方法:分离培养大鼠角膜基质细胞,根据PFD用药的不同浓度分为对照组(0mg/mL)、实验组Ⅰ(0.15mg/mL)、实验组Ⅱ(0.3mg/mL)、实验组Ⅲ(1mg/mL),加药48h后应用CCK-8法检测其对角膜基质细胞增殖能力的影响,免疫细胞化学和Western-blot分别检测ki-67和TGF-β1表达的变化。结果:CCK-8结果显示,相比对照组,各实验组对角膜基质细胞的增殖均有明显的抑制作用,且随浓度的增大其抑制作用明显增强(均P<0.05);免疫细胞化学显示PFD能明显降低ki-67阳性指数( P<0.05);Western-blot结果显示,PFD能降低TGF-β1的表达,且呈剂量依赖关系(P<0.05)。结论:PFD对大鼠角膜基

  13. "Double bubble" deep anterior lamellar keratoplasty for management of corneal stromal pathologies.

    Science.gov (United States)

    Jhanji, Vishal; Beltz, Jacqueline; Sharma, Namrata; Graue, Enrique; Vajpayee, Rasik B

    2011-08-01

    'Big Bubble' deep anterior lamellar keratoplasty (DALK) is becoming an accepted corneal transplantation technique for keratoconus and other anterior stromal corneal pathologies that spare the Descemet's membrane (DM) and endothelium. However, it is not always possible to conclusively recognise formation and identification of the 'Big Bubble'. We describe the surgical technique of DALK called 'Double Bubble' technique that allows the surgeon to definitely and immediately identify the formation of an adequate big bubble. DALK was performed using the 'Double Bubble' technique in twelve eyes of twelve patients with corneal stromal pathologies (keratoconus, 9 eyes; macular corneal dystrophy, 2 eyes; postinfectious keratitis corneal stromal scar, 1 eye) at the Royal Victorian Eye and Ear Hospital, Melbourne. Big bubble was successfully formed in 10 eyes. Maximum-depth deep lamellar keratoplasty was performed in two eyes. There were no instances of intraoperative perforation of the DM. All grafts were clear at last follow-up. Best-corrected visual acuity of ≥20/40 was achieved in all the cases at last follow-up (6-12 months). 'Double Bubble' DALK helps in identification of the big bubble and has the potential to increase the success of standard 'Big Bubble' DALK in patients with corneal stromal pathologies sparing the DM and endothelium.

  14. Comparison of stromal hydration techniques for clear corneal cataract incisions: conventional hydration versus anterior stromal pocket hydration.

    Science.gov (United States)

    Mifflin, Mark D; Kinard, Krista; Neuffer, Marcus C

    2012-06-01

    Anterior stromal pocket hydration was compared with conventional hydration for preventing wound leak after 2.8 mm uniplanar clear corneal incisions (CCIs) in patients having routine cataract surgery. Conventional hydration involves hydration of the lateral walls of the main incision with visible whitening of the stroma. The anterior stromal pocket hydration technique involves creation of an additional supraincisional stromal pocket overlying the main incision, which is then hydrated instead of the main incision. Sixty-six eyes of 48 patients were included in the data analysis with 33 assigned to each study group. The anterior stromal pocket hydration technique was significantly better than conventional hydration in preventing wound leak due to direct pressure on the posterior lip of the incision. Copyright © 2012 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  15. Effects of diabetic keratopathy on corneal optical density, central corneal thickness, and corneal endothelial cell counts.

    Science.gov (United States)

    Gao, Feng; Lin, Tao; Pan, Yingzhe

    2016-09-01

    Diabetic keratopathy is an ocular complication that occurs with diabetes. In the present study, the effect of diabetic keratopathy on corneal optical density, central corneal thickness, and corneal endothelial cell count was investigated. One hundred and eighty diabetic patients (360 eyes) were enrolled in the study during the period from March, 2012 to March, 2013. The patients were divided into three age groups: 10 years, with 60 patients per group (120 eyes). During the same period, 60 healthy cases (120 eyes) were selected and labeled as the normal control group. The Pentacam was used to measure the corneal optical density, and central corneal thickness. Specular microscopy was used to examine the corneal endothelial cell density. The coefficient of partial correlation was used to control age and correlate the analysis between the corneal optical density, corneal endothelial cell density, and central corneal thickness. The stage of the disease, the medial and intimal corneal optical density and central corneal thickness was analyzed in the diabetes group. The corneal optical density in the diabetes group increased compared with that of the normal control group. The medial and intimal corneal optical density and central corneal thickness were positively correlated with the course of the disease. However, the corneal endothelial cell density was not associated with the course of diabetes. There was a positive association between the medial and intimal corneal optical density and central corneal thickness of the diabetic patients. In conclusion, the results of the present study show that medial and intimal corneal optical density and central corneal thickness were sensitive indicators for early diabetic keratopathy.

  16. Generation of corneal epithelial cells from induced pluripotent stem cells derived from human dermal fibroblast and corneal limbal epithelium.

    Directory of Open Access Journals (Sweden)

    Ryuhei Hayashi

    Full Text Available Induced pluripotent stem (iPS cells can be established from somatic cells. However, there is currently no established strategy to generate corneal epithelial cells from iPS cells. In this study, we investigated whether corneal epithelial cells could be differentiated from iPS cells. We tested 2 distinct sources: human adult dermal fibroblast (HDF-derived iPS cells (253G1 and human adult corneal limbal epithelial cells (HLEC-derived iPS cells (L1B41. We first established iPS cells from HLEC by introducing the Yamanaka 4 factors. Corneal epithelial cells were successfully induced from the iPS cells by the stromal cell-derived inducing activity (SDIA differentiation method, as Pax6(+/K12(+ corneal epithelial colonies were observed after prolonged differentiation culture (12 weeks or later in both the L1B41 and 253G1 iPS cells following retinal pigment epithelial and lens cell induction. Interestingly, the corneal epithelial differentiation efficiency was higher in L1B41 than in 253G1. DNA methylation analysis revealed that a small proportion of differentially methylated regions still existed between L1B41 and 253G1 iPS cells even though no significant difference in methylation status was detected in the specific corneal epithelium-related genes such as K12, K3, and Pax6. The present study is the first to demonstrate a strategy for corneal epithelial cell differentiation from human iPS cells, and further suggests that the epigenomic status is associated with the propensity of iPS cells to differentiate into corneal epithelial cells.

  17. Corneal stromal wound healing in rabbits after 193-nm excimer laser surface ablation.

    Science.gov (United States)

    Hanna, K D; Pouliquen, Y; Waring, G O; Savoldelli, M; Cotter, J; Morton, K; Menasche, M

    1989-06-01

    An argon fluoride excimer laser (193 nm) with a moving slit delivery system was used to perform anterior myopic keratomileusis in both eyes of 24 New Zealand white rabbits. Rabbits were killed immediately after ablation and at intervals up to 100 days. By slit-lamp microscopy, four rabbits at day 100 exhibited four clear corneas and four corneas had central, spotty, subepithelial haze. Light and electron microscopy documented corneal healing. In the early stages a transient acellular zone in the anterior stroma appeared over a period of three weeks, followed by an increased number of fibrocytes. In the corneas with opacification, focal areas of 20-microns-thick subepithelial scarring were present. An unexpected finding was transient damage to posterior stromal keratocytes and endothelial cells. The endothelium produced a layer of granular material that migrated anteriorly across Descemet's membrane. Immunochemistry at day 6 showed a marked staining for collagen IV, proteoglycans, fibronectin, and laminin.

  18. Prevalence and histopathological characteristics of corneal stromal dystrophies in Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Sultan Alzuhairy

    2015-01-01

    Conclusion: This pathological study suggested that MCD was the most common corneal stromal dystrophy that required keratoplasty in Saudi Arabia. Patient with MCD and GCD presented at a significantly younger age than LCD. The clinical diagnosis of MCD is not achieved in all cases likely due to a more severe phenotype in the Saudi population or the presence of corneal scarring that is associated with previous trachoma, which obscures the classical appearance of LCD. We believe that PKP is first-line surgical treatment, especially for MCD because it involves all corneal layers. However, deep stromal involvement and changes in Descemet′s membrane in MCD should be considered when selecting the surgical procedure.

  19. Effect of substrate composition and alignment on corneal cell phenotype.

    Science.gov (United States)

    Phu, Donna; Wray, Lindsay S; Warren, Robert V; Haskell, Richard C; Orwin, Elizabeth J

    2011-03-01

    Corneal blindness is a significant problem treated primarily by corneal transplants. Donor tissue supply is low, creating a growing need for an alternative. A tissue-engineered cornea made from patient-derived cells and biopolymer scaffold materials would be widely accessible to all patients and would alleviate the need for donor sources. Previous work in this lab led to a method for electrospinning type I collagen scaffolds for culturing corneal fibroblasts ex vivo that mimics the microenvironment in the native cornea. This electrospun scaffold is composed of small-diameter, aligned collagen fibers. In this study, we investigate the effect of scaffold nanostructure and composition on the phenotype of corneal stromal cells. Rabbit-derived corneal fibroblasts were cultured on aligned and unaligned collagen type I fibers ranging from 50 to 300 nm in diameter and assessed for expression of α-smooth muscle actin, a protein marker upregulated in hazy corneas. In addition, the optical properties of the cell-matrix constructs were assessed using optical coherence microscopy. Cells grown on collagen scaffolds had reduced myofibroblast phenotype expression compared to cells grown on tissue culture plates. Cells grown on aligned collagen type I fibers downregulated α-smooth muscle actin protein expression significantly more than unaligned collagen scaffolds, and also exhibited reduced overall light scattering by the tissue construct. These results suggest that aligned collagen type I fibrous scaffolds are viable platforms for engineering corneal replacement tissue.

  20. Evaluation of Corneal Stromal Demarcation Line after Two Different Protocols of Accelerated Corneal Collagen Cross-Linking Procedures Using Anterior Segment Optical Coherence Tomography and Confocal Microscopy

    Directory of Open Access Journals (Sweden)

    Engin Bilge Ozgurhan

    2014-01-01

    Full Text Available Purpose. To evaluate the depth of corneal stromal demarcation line using AS-OCT and confocal microscopy after two different protocols of accelerated corneal collagen cross-linking procedures (CXL. Methods. Patients with keratoconus were divided into two groups. Peschke CXL device (Peschke CCL-VARIO Meditrade GmbH applied UVA light with an intended irradiance of 18.0 mW/cm2 for 5 minutes after applying riboflavin for 20 minutes (group 1 and 30 minutes (group 2. One month postoperatively, corneal stromal demarcation line was measured using AS-OCT and confocal microscopy. Results. This study enrolled 34 eyes of 34 patients (17 eyes in group 1 and 17 eyes in group 2. The mean depth of the corneal stromal demarcation line was 208.64±18.41 μm in group 1 and 240.37±18.89 μm in group 2 measured with AS OCT, while it was 210.29±18.66 μm in group 1 and 239.37±20.07 μm in group 2 measured with confocal microscopy. Corneal stromal demarcation line depth measured with AS OCT or confocal microscopy was significantly deeper in group 2 than group 1 (P<0.01. Conclusion. The group in which riboflavin was applied for 30 minutes showed significantly deeper corneal stromal demarcation line than the group in which riboflavin was applied for 20 minutes.

  1. Stromal haze after combined riboflavin-UVA corneal collagen cross-linking in keratoconus: in vivo confocal microscopic evaluation.

    Science.gov (United States)

    Mazzotta, Cosimo; Balestrazzi, Angelo; Baiocchi, Stefano; Traversi, Claudio; Caporossi, Aldo

    2007-08-01

    The technique of corneal collagen cross-linking consists of photopolymerization of stromal fibres by the combined action of a photosensitizing substance (riboflavin or vitamin B2) and ultraviolet light from a solid state UVA source. Photopolymerization increases the rigidity of corneal collagen and its resistance to keratectasia. In this report we present two cases, studied through in vivo confocal microscopy, with stage III keratoconus that developed stromal haze after the cross-linking treatment.

  2. Human stromal (mesenchymal) stem cells

    DEFF Research Database (Denmark)

    Aldahmash, Abdullah; Zaher, Walid; Al-Nbaheen, May

    2012-01-01

    Human stromal (mesenchymal) stem cells (hMSC) represent a group of non-hematopoietic stem cells present in the bone marrow stroma and the stroma of other organs including subcutaneous adipose tissue, placenta, and muscles. They exhibit the characteristics of somatic stem cells of self-renewal and......Human stromal (mesenchymal) stem cells (hMSC) represent a group of non-hematopoietic stem cells present in the bone marrow stroma and the stroma of other organs including subcutaneous adipose tissue, placenta, and muscles. They exhibit the characteristics of somatic stem cells of self...... of clinical applications, e.g., non-healing bone fractures and defects and also non-skeletal degenerative diseases like heart failure. Currently, the numbers of clinical trials that employ MSC are increasing. However, several biological and biotechnological challenges need to be overcome to benefit from...

  3. Cell therapy of congenital corneal diseases with umbilical mesenchymal stem cells: lumican null mice.

    Directory of Open Access Journals (Sweden)

    Hongshan Liu

    Full Text Available BACKGROUND: Keratoplasty is the most effective treatment for corneal blindness, but suboptimal medical conditions and lack of qualified medical personnel and donated cornea often prevent the performance of corneal transplantation in developing countries. Our study aims to develop alternative treatment regimens for congenital corneal diseases of genetic mutation. METHODOLOGY/PRINCIPAL FINDINGS: Human mesenchymal stem cells isolated from neonatal umbilical cords were transplanted to treat thin and cloudy corneas of lumican null mice. Transplantation of umbilical mesenchymal stem cells significantly improved corneal transparency and increased stromal thickness of lumican null mice, but human umbilical hematopoietic stem cells failed to do the same. Further studies revealed that collagen lamellae were re-organized in corneal stroma of lumican null mice after mesenchymal stem cell transplantation. Transplanted umbilical mesenchymal stem cells survived in the mouse corneal stroma for more than 3 months with little or no graft rejection. In addition, these cells assumed a keratocyte phenotype, e.g., dendritic morphology, quiescence, expression of keratocyte unique keratan sulfated keratocan and lumican, and CD34. Moreover, umbilical mesenchymal stem cell transplantation improved host keratocyte functions, which was verified by enhanced expression of keratocan and aldehyde dehydrogenase class 3A1 in lumican null mice. CONCLUSIONS/SIGNIFICANCE: Umbilical mesenchymal stem cell transplantation is a promising treatment for congenital corneal diseases involving keratocyte dysfunction. Unlike donated corneas, umbilical mesenchymal stem cells are easily isolated, expanded, stored, and can be quickly recovered from liquid nitrogen when a patient is in urgent need.

  4. Comparison of corneal epithelial and stromal thickness distributions between eyes with keratoconus and healthy eyes with corneal astigmatism ≥ 2.0 D.

    Directory of Open Access Journals (Sweden)

    Wen Zhou

    Full Text Available PURPOSE: To identify corneal epithelial- and stromal-thickness distribution patterns in keratoconus using spectral-domain optical coherence tomography (SD-OCT. PATIENTS AND METHODS: We analyzed SD-OCT findings in 20 confirmed cases of keratoconus (group 1 and in 20 healthy subjects with corneal astigmatism ≥ 2 D (group 2. Epithelial and stromal thicknesses were measured at 11 strategic locations along the steepest and flattest meridians, previously located by corneal topography. Vertical mirrored symmetry superimposition was used in the statistical analysis. RESULTS: The mean maximum keratometry measurements in groups 1 and 2 were 47.9 ± 2.9 D (range, 41.8-52.8 and 45.6 ± 1.1 D (range, 42.3-47.5, respectively, with mean corneal cylinders of 3.3 ± 2.2 D (range, 0.5-9.5 and 3.6 ± 1.2 D (range, 2.0-6.4, respectively. The mean epithelial thickness along the steepest meridian in group 1 was the lowest (37.4 ± 4.4 µm at 1.2 mm inferotemporally and the highest (59.3 ± 4.4 µm at 1.4 mm supranasally from the corneal vertex. There was only a small deviation in thickness along the steepest meridian in group 2, as well as along the flattest meridians in both groups. The stromal thickness distribution in the two groups was similar to the epithelial, while the stromal thickness was generally lower in group 1 than in group 2. CONCLUSIONS: SD-OCT provides details about the distribution of corneal epithelial and stromal thicknesses. The epithelium and stroma in keratoconic eyes were thinner inferotemporally and thicker supranasally compared with control eyes. The distribution pattern was more distinct in epithelium than in stroma. This finding may help improve the early diagnosis of keratoconus. TRIAL REGISTRATION: ClinicalTrials.gov NCT02023619.

  5. Corneal Fibroblasts as Sentinel Cells and Local Immune Modulators in Infectious Keratitis

    Directory of Open Access Journals (Sweden)

    Ken Fukuda

    2017-08-01

    Full Text Available The cornea serves as a barrier to protect the eye against external insults including microbial pathogens and antigens. Bacterial infection of the cornea often results in corneal melting and scarring that can lead to severe visual impairment. Not only live bacteria but also their components such as lipopolysaccharide (LPS of Gram-negative bacteria contribute to the development of inflammation and subsequent corneal damage in infectious keratitis. We describe the important role played by corneal stromal fibroblasts (activated keratocytes as sentinel cells, immune modulators, and effector cells in infectious keratitis. Corneal fibroblasts sense bacterial infection through Toll-like receptor (TLR–mediated detection of a complex of LPS with soluble cluster of differentiation 14 (CD14 and LPS binding protein present in tear fluid. The cells then initiate innate immune responses including the expression of chemokines and adhesion molecules that promote the recruitment of inflammatory cells necessary for elimination of the infecting bacteria. Infiltrated neutrophils are activated by corneal stromal collagen and release mediators that stimulate the production of pro–matrix metalloproteinases by corneal fibroblasts. Elastase produced by Pseudomonas aeruginosa (P. aeruginosa activates these released metalloproteinases, resulting in the degradation of stromal collagen. The modulation of corneal fibroblast activation and of the interaction of these cells with inflammatory cells and bacteria is thus important to minimize corneal scarring during treatment of infectious keratitis. Pharmacological agents that are able to restrain such activities of corneal fibroblasts without allowing bacterial growth represent a potential novel treatment option for prevention of excessive scarring and tissue destruction in the cornea.

  6. 角膜基质创伤愈合的研究进展%Research progress of corneal stromal wound healing

    Institute of Scientific and Technical Information of China (English)

    樊廷俊; 白苏冉

    2016-01-01

    Corneal stroma wound healing is a complex process involving cell apoptosis,migration,proliferation,differ-entiation,and extracellular matrix remodeling.Transforming growth factor β(TGF-β)system plays central roles in regulating the transformation of stromal cells and the fibrosis of stroma,and its dysregulation might be the main cause of stromal haze,scar formation and vision damage.Recently,great progress has been made in the study of corneal stromal wound healing,and various new therapies to attenuate stromal scar have also been developed.The process of corneal stromal wound healing,cellular phenotype transformation and its regulating factors,and strategies of excessive healing control are reviewed.%角膜基质创伤愈合是一个涉及细胞调亡、迁移、增殖、分化和细胞外基质重建的复杂过程。转化生长因子β(TGF-β)系统在调控角膜基质细胞转化和基质纤维化方面具有关键作用,其失调是造成愈合后形成基质瘢痕、出现雾状混浊和视力受损的主要原因。近年来,在角膜基质创伤愈合的研究方面取得了重要进展,并开发出了一些消除基质瘢痕的新的治疗方法。本文拟围绕角膜基质的创伤愈合过程,细胞表型转化及其调控因子,以及愈合过度的控制策略进行综述。

  7. Stromal demarcation line induced by corneal cross-linking in eyes with keratoconus and nonkeratoconic asymmetric topography.

    Science.gov (United States)

    Malta, João B N; Renesto, Adimara C; Moscovici, Bernardo K; Soong, H K; Campos, Mauro

    2015-02-01

    To evaluate stromal demarcation lines following corneal cross-linking (CXL) using anterior segment optical coherence tomography in patients with keratoconus and nonkeratoconic asymmetric topography. Fifth-nine eyes of 59 patients were enrolled in a retrospective comparative case series, of which 19 eyes had keratoconus and 40 eyes had asymmetric topography. Eyes with asymmetric topography were treated in preparation for photorefractive keratectomy. One month after CXL, a stromal demarcation line was evaluated at 5 standardized corneal points using anterior segment optical coherence tomography. Mean stromal demarcation line depths were measured at 5 points on the cornea, namely, centrally, 3.0 mm temporally, 1.5 mm temporally, 3.0 mm nasally, and 1.5 mm nasally. For the keratoconus group, the values were 178 ± 47, 123 ± 15, 152 ± 47, 125 ± 23, and 160 ± 43 μm, respectively. For the asymmetric corneal topography group (without keratoconus), they were 305 ± 64, 235 ± 57, 294 ± 50, 214 ± 54, and 285 ± 58 μm, respectively. There was no correlation between central corneal pachymetry and stromal demarcation line depth in all 5 measured corneal points in both groups. CXL treatment profiles are similar in keratoconic and nonkeratoconic eyes with asymmetric topography.

  8. Generation of Corneal Keratocytes from Human Embryonic Stem Cells.

    Science.gov (United States)

    Hertsenberg, Andrew J; Funderburgh, James L

    2016-01-01

    Human Embryonic Stem Cells (hESC) offer an important resource as a limitless supply of any differentiated cell type of the human body. Keratocytes, cells from the corneal stroma, may have the potential for restoration of vision in cell therapy and biomedical engineering applications, but these specialized cells are not readily expanded in vitro. Here we describe a two-part method to produce keratocytes from the H1 hESC cell line. The hESC cells, maintained and expanded in feeder-free culture medium are first differentiated to neural crest cells using the stromal-derived inducing activity (SDIA) of the PA6 mouse embryonic fibroblast cell line. The resulting neural crest cells are selected by their expression of cell-surface CD271 and subsequently cultured as 3D pellets in a defined differentiation medium to induce a keratocyte phenotype.

  9. Are mesenchymal stromal cells immune cells?

    NARCIS (Netherlands)

    M.J. Hoogduijn (Martin)

    2015-01-01

    textabstractMesenchymal stromal cells (MSCs) are considered to be promising agents for the treatment of immunological disease. Although originally identified as precursor cells for mesenchymal lineages, in vitro studies have demonstrated that MSCs possess diverse immune regulatory capacities. Pre-cl

  10. Nanoscale topography-induced modulation of fundamental cell behaviors of rabbit corneal keratocytes, fibroblasts, and myofibroblasts.

    Science.gov (United States)

    Pot, Simon A; Liliensiek, Sara J; Myrna, Kathern E; Bentley, Ellison; Jester, James V; Nealey, Paul F; Murphy, Christopher J

    2010-03-01

    Keratocyte-to-myofibroblast differentiation is a key factor in corneal wound healing. The purpose of this study was to determine the influence of environmental nanoscale topography on keratocyte, fibroblast, and myofibroblast cell behavior. Primary rabbit corneal keratocytes, fibroblasts, and myofibroblasts were seeded onto planar polyurethane surfaces with six patterned areas, composed of anisotropically ordered grooves and ridges with a 400-, 800-, 1200-, 1600-, 2000-, and 4000-nm pitch (pitch = groove + ridge width). After 24 hours cells were fixed, stained, imaged, and analyzed for cell shape and orientation. For migration studies, cells on each patterned surface were imaged every 10 minutes for 12 hours, and individual cell trajectories and migration rates were calculated. Keratocytes, fibroblasts, and myofibroblasts aligned and elongated to pitch sizes larger than 1000 nm. A lower limit to the topographic feature sizes that the cells responded to was identified for all three phenotypes, with a transition zone around the 800- to 1200-nm pitch size. Fibroblasts and myofibroblasts migrated parallel to surface ridges larger than 1000 nm but lacked directional guidance on submicron and nanoscale topographic features and on planar surfaces. Keratocytes remained essentially immobile. Corneal stromal cells elongated, aligned, and migrated, differentially guided by substratum topographic features. All cell types failed to respond to topographic features approximating the dimensions of individual stromal fibers. These findings contribute to our understanding of corneal stromal cell biology in health and disease and their interaction with biomaterials and their native extracellular matrix.

  11. Collagen based film with well epithelial and stromal regeneration as corneal repair materials: Improving mechanical property by crosslinking with citric acid

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xuan; Liu, Yang; Li, Weichang; Long, Kai; Wang, Lin; Liu, Sa; Wang, Yingjun [School of Materials Science and Engineering, South China University of Technology, Guangzhou (China); National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou (China); Ren, Li, E-mail: psliren@scut.edu.cn [School of Materials Science and Engineering, South China University of Technology, Guangzhou (China); National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou (China)

    2015-10-01

    Corneal disease can lead to vision loss. It has become the second greatest cause of blindness in the world, and keratoplasty is considered as an effective treatment method. This paper presents the crosslinked collagen (Col)–citric acid (CA) films developed by making use of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS). The results showed that the Col–CA films had necessary optical performance, water content. The collagenase resistance of CA crosslinked films was superior to that of EDC crosslinked films. And CA5 film (Col:CA:EDC:NHS = 60:3:10:10) had the best mechanical properties. Cell experiments showed that CA5 film was non-cytotoxic and human corneal epithelial cells could proliferate well on the films. Lamellar keratoplasty showed that the CA5 film could be sutured in the rabbit eyes and was epithelialized completely in about 10 days, and the transparency was restored quickly in 30 ± 5 days. No inflammation and corneal neovascularization were observed at 6 months. Corneal stroma had been repaired; stromal cells and neo-stroma could be seen in the area of operation from the hematoxylin–eosin stained histologic sections and anterior segment optical coherence tomography images. These results indicated that Col–CA films were highly promising biomaterials that could be used in corneal tissue engineering and a variety of other tissue engineering applications. - Highlights: • Adding different amounts of citric acid could change the properties of films. • The crosslinked films had better mechanical property than non-modified films. • Crosslinked collagen–citric acid films could tolerate suture during operation. • The films showed good ability of epithelial and stromal repair.

  12. Normal corneal endothelial cell density in Nigerians

    Directory of Open Access Journals (Sweden)

    Ewete T

    2016-03-01

    Full Text Available Temitope Ewete,1 Efeoghene Uchenna Ani,2 Adegboyega Sunday Alabi1 1MeCure Eye Center, Lagos, 2Department of Ophthalmology, University of Port Harcourt, Port Harcourt, Nigeria Aim: The aim of the study was to describe the corneal endothelial cell density of adults at the MeCure Eye Center and to determine the relationship between age, sex, and corneal endothelial cell density. Methods: This study was a retrospective study looking at those records of individuals who had undergone specular microscopy or corneal endothelial cell count measurement at the MeCure Eye Center. Results: The endothelial cell characteristics of 359 healthy eyes of 201 volunteers were studied. The mean corneal endothelial cell density (MCD was 2,610.26±371.87 cells/mm2 (range, 1,484–3,571 cells/mm2. The MCD decreased from 2,860.70 cells/mm2 in the 20–30-year age group to 2,493.06 cells/mm2 in the >70-year age group, and there was a statistically significant relationship between age and MCD with a P-value of <0.001. There was no statistically significant correlation between sex and corneal endothelial cell density (P=0.45. Conclusion: This study shows that endothelial cell density in Nigerian eyes is less than that reported in the Japanese, American, and Chinese eyes, and is comparable to that seen in Indian and Malaysian eyes. Keywords: corneal, endothelial cell density, Nigerian

  13. Experimental Models for Investigating Intra-Stromal Migration of Corneal Keratocytes, Fibroblasts and Myofibroblasts

    Directory of Open Access Journals (Sweden)

    Lisha Ma

    2012-03-01

    Full Text Available Following laser vision correction, corneal keratocytes must repopulate areas of cell loss by migrating through the intact corneal stroma, and this can impact corneal shape and transparency. In this study, we evaluate 3D culture models for simulating this process in vitro. Buttons (8 mm diameter were first punched out of keratocyte populated compressed collagen matrices, exposed to a 3 mm diameter freeze injury, and cultured in serum-free media (basal media or media supplemented with 10% FBS, TGFb1 or PDGF BB. Following freeze injury, a region of cell death was observed in the center of the constructs. Although cells readily migrated on top of the matrices to cover the wound area, a limited amount of cell migration was observed within the constructs. We next developed a novel “sandwich” model, which better mimics the native lamellar architecture of the cornea. Using this model, significant migration was observed under all conditions studied. In both models, cells in TGFb and 10% FBS developed stress fibers; whereas cells in PDGF were more dendritic. PDGF stimulated the most inter-lamellar migration in the sandwich construct. Overall, these models provide insights into the complex interplay between growth factors, cell mechanical phenotypes and the structural properties of the ECM.

  14. Cells from the adult corneal stroma can be reprogrammed to a neuron-like cell using exogenous growth factors

    Energy Technology Data Exchange (ETDEWEB)

    Greene, Carol Ann, E-mail: carol.greene@auckland.ac.nz; Chang, Chuan-Yuan; Fraser, Cameron J.; Nelidova, Dasha E.; Chen, Jing A.; Lim, Angela; Brebner, Alex; McGhee, Jennifer; Sherwin, Trevor; Green, Colin R.

    2014-03-10

    Cells thought to be stem cells isolated from the cornea of the eye have been shown to exhibit neurogenic potential. We set out to uncover the identity and location of these cells within the cornea and to elucidate their neuronal protein and gene expression profile during the process of switching to a neuron-like cell. Here we report that every cell of the adult human and rat corneal stroma is capable of differentiating into a neuron-like cell when treated with neurogenic differentiation specifying growth factors. Furthermore, the expression of genes regulating neurogenesis and mature neuronal structure and function was increased. The switch from a corneal stromal cell to a neuron-like cell was also shown to occur in vivo in intact corneas of living rats. Our results clearly indicate that lineage specifying growth factors can affect changes in the protein and gene expression profiles of adult cells, suggesting that possibly many adult cell populations can be made to switch into another type of mature cell by simply modifying the growth factor environment. - Highlights: • Adult corneal stromal cells can differentiated into neuron-like cells. • Neuronal specification of the adult stromal cell population is stochastic. • Neuronal specification in an adult cell population can be brought about by growth factors.

  15. Methods Development for the Isolation and Culture of Primary Corneal Endothelial Cells

    Science.gov (United States)

    2017-02-01

    stromal fibroblasts (keratocytes). Additional challenges are encountered in attempts to expand isolated cells in culture while maintaining CEC morphology...maintain normal cobblestone morphology and favorable growth. However, no results were reported in this study for cells that had been expanded in...and development. Prog Mol Biol Transl Sci 2015; 134: 7-23. 2. Joyce NC. Proliferative capacity of the corneal endothelium. Progress in Retinal and

  16. 角膜基质细胞Nrf2-ARE信号通路活化缺陷在圆锥角膜发病中的作用%Defect of Nrf2-ARE signaling activation in corneal stromal cells of keratoconus

    Institute of Scientific and Technical Information of China (English)

    边江; 曲明俐; 王瑶; 杨玲玲; 史伟云; 周庆军

    2015-01-01

    Background Recent researches show that oxidative stress is involved in the progress of keratoconus.Nuclear factor-E2-related factor 2-antioxidant response element (Nrf2-ARE) pathway plays a critical role in the defense against oxidative stress,but its function in keratoconus is unclear.Objective To investigate the differences of Nrf2-ARE signaling activation and matrix degenerating enzymes between keratoconus and normal corneal stromal cells.Methods Corneal stromal cells were isolated from keratoconus and normal cornea by using dispase and collagenase digestion.The cells were treated with hydrogen peroxide (H2O2) to mimic in vivo oxidative stress condition.Reactive oxygen species (ROS) production was measured by fluorescence substrate DCHF-DA incubation.Nrf2 level and the expression of Nrf2-ARE downstream antioxidant genes were analyzed by Western blot and real-time quantitative-PCR(RT-qPCR).The activity of matrix degenerating enzymes,including urokinase-type plasminogen activator (uPA)-uPA receptor (uPAR) system and matrix metalloproteinase-2 (MMP-2) were assessed by Western blot and gelatin zymography respectively.Results In normal culture,keratoconus corneal stromal cells assumed increased basal ROS and Nrf2 level when compared with normal cells(t =18.155,P<0.01).However,after H2O2 treatment,the keratoconus corneal stromal cells showed increased ROS production,while decreased Nrf2 translocation and no significant difference in expression levels of Nrf2-ARE downstream antioxidant genes (Nrf2:t =62.123,P< 0.01 ; (nicotinamide adenine dinucleotide phosphate quinine oxidoreductase-1 [NQO-1]:t =2.209,P =0.092 ; hemo oxygenase-1 [HO-1]:t =0.293,P =0.784 ; superoxide dismutase [SOD2]:t =0.749,P =0.495).The contents of uPA-uPAR and the activity of MMP-2 also showed a higher level in keratoconus corneal stromal cells than normal cells,with significant differences between them (t =19.164,15.458,4.818,all at P<0.01).Conclusions The defect of Nrf2-ARE signaling

  17. The Bone Marrow-Derived Stromal Cells

    DEFF Research Database (Denmark)

    Tencerova, Michaela; Kassem, Moustapha

    2016-01-01

    diseases. BM stromal cells (also known as skeletal or mesenchymal stem cells) [bone marrow stromal stem cell (BMSC)] are multipotent stem cells located within BM stroma and give rise to osteoblasts and adipocytes. However, cellular and molecular mechanisms of BMSC lineage commitment to adipocytic lineage...... and regulation of BM adipocyte formation are not fully understood. In this review, we will discuss recent findings pertaining to identification and characterization of adipocyte progenitor cells in BM and the regulation of differentiation into mature adipocytes. We have also emphasized the clinical relevance...

  18. Mouse endometrial stromal cells produce basement-membrane components

    DEFF Research Database (Denmark)

    Wewer, U M; Damjanov, A; Weiss, J;

    1986-01-01

    During mouse pregnancy, uterine stromal cells transform into morphologically distinct decidual cells under the influence of the implanting embryo and a proper hormonal environment. Mechanical stimulation of hormonally primed uterine stromal cells leads to the same morphologic alterations. The dec...

  19. Corneal stromal dystrophies: a clinical pathologic study Distrofia corneana estromal: um estudo clínicopatológico

    Directory of Open Access Journals (Sweden)

    Elvira Barbosa Abreu

    2012-12-01

    Full Text Available INTRODUCTION: Corneal dystrophy is defined as bilateral and symmetric primary corneal disease, without previous associated ocular inflammation. Corneal dystrophies are classified according to the involved corneal layer in superficial, stromal, and posterior dystrophy. Incidence of each dystrophy varies according to the geographic region studied. PURPOSE: To evaluate the prevalence of stromal corneal dystrophies among corneal buttons specimens obtained by penetrating keratoplasty (PK in an ocular pathology laboratory and to correlate the diagnosis with patient age and gender. METHODS: Corneal button cases of penetrating keratoplasty from January-1996 to May-2009 were retrieved from the archives of The Henry C. Witelson Ophthalmic Pathology Laboratory and Registry, Montreal, Canada. The cases with histopathological diagnosis of stromal corneal dystrophies were stained with special stains (Peroxid acid Schiff, Masson trichrome, Congo red analyzed under polarized light, and alcian blue for classification and correlated with epidemiological information (age at time of PK and gender from patients' file. RESULTS: 1,300 corneal buttons cases with clinical diagnose of corneal dystrophy were retrieved. Stromal corneal dystrophy was found in 40 (3.1% cases. Lattice corneal dystrophy was the most prevalent with 26 cases (65%. Nineteen were female (73.07% and the PK was performed at average age of 59.3 years old. Combined corneal dystrophy was found in 8 (20% cases, 5 (62.5% of them were female and the average age of the penetrating keratoplasty was 54.8 years old. Granular corneal dystrophy was represented by 5 (12.5% cases, and 2 (40% of them were female. Penetrating keratoplasty was performed at average age of 39.5 years old in granular corneal dystrophy cases. Macular corneal dystrophy was present in only 1 (2.5% case, in a 36 years old female. CONCLUSION: Systematic histopathological approach and evaluation, including special stains in all stromal

  20. Putative epidermal stem cell convert into corneal epithelium-like cell under corneal tissue in vitro

    Institute of Scientific and Technical Information of China (English)

    GAO Nan; CUI GuangHui; WANG ZhiChong; HUANG Bing; GE Jian; LU Rong; ZHANG KeFei; FAN ZhiGang; LU Li; PENG Zhan

    2007-01-01

    Rhesus putative epidermal stem cells are being investigated for their potential use in regenerative corneal epithelium-like cells, which may provide a practical source of autologous seed cells for the construction of bioengineered corneas. The goal of this study was to investigate the potential of epidermal stem cells for trans-differentiation into corneal epithelium-like cells. Rhesus putative epidermal stem cells were isolated by type IV collagen attachment method. Flow cytometry analysis, immunohistology and RT-PCR were conducted to identify the expression of specific markers (β1, α6 integrin, K15, K1/K10, K3/K12 and CD71) on the isolated rapid attaching cells. The isolated cells were cocultured with human corneal limbal stroma and corneal epithelial cells. After coculture, the expression of the same specific markers was evaluated in order to identify expression difference caused by the coculture conditions. K3/K12 expression was analyzed in coculture cells on day 2, 4, 6, 8 and 10. Putative epidermal stem cells in conditioned culture media were used as control. Putative epidermal stem cells were predominant in rapid attaching cells by type IV collagen attachment isolation. Before being cocultured, the rhesus putative epidermal stem cells expressed K15, α6 and β1 integrin, but no CD71, K1/K10 and K3/K12. After coculture, these cells expressed K3/K12 (a marker of corneal epithelial cells), K15 and β 1 integrin, but no K1/K10. Cells being not coculture converted into terminally differentiated cells expressing K1/K10. These results indicate that rhesus putative epidermal stem cells can trans-differentiate into corneal epithelium-like cells and, therefore, may have potential therapeutic application as autologous seed cells for the construction of bioengineered corneas.

  1. Putative epidermal stem cell convert into corneal epithelium-like cell under corneal tissue in vitro

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Rhesus putative epidermal stem cells are being investigated for their potential use in regenerative corneal epithelium-like cells, which may provide a practical source of autologous seed cells for the construction of bioengineered corneas. The goal of this study was to investigate the potential of epi-dermal stem cells for trans-differentiation into corneal epithelium-like cells. Rhesus putative epidermal stem cells were isolated by type IV collagen attachment method. Flow cytometry analysis, immuno-histology and RT-PCR were conducted to identify the expression of specific markers (β1, α6 integrin, K15, K1/K10, K3/K12 and CD71) on the isolated rapid attaching cells. The isolated cells were cocultured with human corneal limbal stroma and corneal epithelial cells. After coculture, the expression of the same specific markers was evaluated in order to identify expression difference caused by the coculture conditions. K3/K12 expression was analyzed in coculture cells on day 2, 4, 6, 8 and 10. Putative epi-dermal stem cells in conditioned culture media were used as control. Putative epidermal stem cells were predominant in rapid attaching cells by type IV collagen attachment isolation. Before being co-cultured, the rhesus putative epidermal stem cells expressed K15, α6 and β1 integrin, but no CD71, K1/K10 and K3/K12. After coculture, these cells expressed K3/K12 (a marker of corneal epithelial cells), K15 and β 1 integrin, but no K1/K10. Cells being not coculture converted into terminally differentiated cells expressing K1/K10. These results indicate that rhesus putative epidermal stem cells can trans-differentiate into corneal epithelium-like cells and, therefore, may have potential therapeutic application as autologous seed cells for the construction of bioengineered corneas.

  2. Isolation and transplantation of corneal endothelial cell-like cells derived from in-vitro-differentiated human embryonic stem cells.

    Science.gov (United States)

    Zhang, Kai; Pang, Kunpeng; Wu, Xinyi

    2014-06-15

    The maintenance of corneal dehydration and transparency depends on barrier and pump functions of corneal endothelial cells (CECs). The human CECs have no proliferation capacity in vivo and the ability to divide in vitro under culture conditions is dramatically limited. Thus, the acquisition of massive cells analogous to normal human CECs is extremely necessary whether from the perspective of cellular basic research or from clinical applications. Here we report the derivation of CEC-like cells from human embryonic stem cells (hESCs) through the periocular mesenchymal precursor (POMP) phase. Using the transwell coculture system of hESCs with differentiated human corneal stromal cells, we induced hESCs to differentiate into POMPs. Then, CEC-like cells were derived from POMPs with lens epithelial cell-conditioned medium. Within 1 week, CEC-like cells that expressed the corneal endothelium (CE) differentiation marker N-cadherin and transcription factors FoxC1 and Pitx2 were detectable. Fluorescence-activated cell sorting (FACS)-based isolation of the N-cadherin/vimentin dual-positive population enriches for CEC-like cells. The isolated CEC-like cells were labeled with carboxyfluorescein diacetate, succinimidyl ester (CFDA SE) and seeded onto posterior acellular porcine corneal matrix lamellae to construct the CEC-like cell sheets. Pump function parameters of the CEC-like cell sheets approximated those of human donor corneas. Importantly, when the CEC-like cell sheets were transplanted into the eyes of rabbit CE dysfunction models, the corneal transparency was restored gradually. In conclusion, CEC-like cells derived from hESCs displayed characteristics of native human CECs. This renewable source of human CECs offers massive cells for further studies of human CEC biological characteristics and potential applications of replacement therapies as substitution for donor CECs in the future.

  3. Fibroblast growth factor receptor 2 (FGFR2) is required for corneal epithelial cell proliferation and differentiation during embryonic development.

    Science.gov (United States)

    Zhang, Jinglin; Upadhya, Dinesh; Lu, Lin; Reneker, Lixing W

    2015-01-01

    Fibroblast growth factors (FGFs) play important roles in many aspects of embryonic development. During eye development, the lens and corneal epithelium are derived from the same surface ectodermal tissue. FGF receptor (FGFR)-signaling is essential for lens cell differentiation and survival, but its role in corneal development has not been fully investigated. In this study, we examined the corneal defects in Fgfr2 conditional knockout mice in which Cre expression is activated at lens induction stage by Pax6 P0 promoter. The cornea in LeCre, Fgfr2(loxP/loxP) mice (referred as Fgfr2(CKO)) was analyzed to assess changes in cell proliferation, differentiation and survival. We found that Fgfr2(CKO) cornea was much thinner in epithelial and stromal layer when compared to WT cornea. At embryonic day 12.5-13.5 (E12.5-13.5) shortly after the lens vesicle detaches from the overlying surface ectoderm, cell proliferation (judged by labeling indices of Ki-67, BrdU and phospho-histone H3) was significantly reduced in corneal epithelium in Fgfr2(CKO) mice. At later stage, cell differentiation markers for corneal epithelium and underlying stromal mesenchyme, keratin-12 and keratocan respectively, were not expressed in Fgfr2(CKO) cornea. Furthermore, Pax6, a transcription factor essential for eye development, was not present in the Fgfr2(CKO) mutant corneal epithelial at E16.5 but was expressed normally at E12.5, suggesting that FGFR2-signaling is required for maintaining Pax6 expression in this tissue. Interestingly, the role of FGFR2 in corneal epithelial development is independent of ERK1/2-signaling. In contrast to the lens, FGFR2 is not required for cell survival in cornea. This study demonstrates for the first time that FGFR2 plays an essential role in controlling cell proliferation and differentiation, and maintaining Pax6 levels in corneal epithelium via ERK-independent pathways during embryonic development.

  4. Crosstalk between stromal cells and cancer cells in pancreatic cancer: New insights into stromal biology.

    Science.gov (United States)

    Zhan, Han-Xiang; Zhou, Bin; Cheng, Yu-Gang; Xu, Jian-Wei; Wang, Lei; Zhang, Guang-Yong; Hu, San-Yuan

    2017-04-28

    Pancreatic cancer (PC) remains one of the most lethal malignancies worldwide. Increasing evidence has confirmed the pivotal role of stromal components in the regulation of carcinogenesis, invasion, metastasis, and therapeutic resistance in PC. Interaction between neoplastic cells and stromal cells builds a specific microenvironment, which further modulates the malignant properties of cancer cells. Instead of being a "passive bystander", stroma may play a role as a "partner in crime" in PC. However, the role of stromal components in PC is complex and requires further investigation. In this article, we review recent advances regarding the regulatory roles and mechanisms of stroma biology, especially the cellular components such as pancreatic stellate cells, macrophages, neutrophils, adipocytes, epithelial cells, pericytes, mast cells, and lymphocytes, in PC. Crosstalk between stromal cells and cancer cells is thoroughly investigated. We also review the prognostic value and molecular therapeutic targets of stroma in PC. This review may help us further understand the molecular mechanisms of stromal biology and its role in PC development and therapeutic resistance. Moreover, targeting stroma components may provide new therapeutic strategies for this stubborn disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Establishment of a novel corneal endothelial cell line from domestic rabbit, Oryctolagus curiculus.

    Science.gov (United States)

    Fan, TingJun; Zhao, Jun; Fu, YongFeng; Cong, RiShan; Guo, RuiChao; Liu, WanShun; Han, BaoQin; Yu, QiuTao; Wang, Jing

    2007-04-01

    To develop a rabbit corneal endothelial (RCE) cell line, in vitro culture of RCE cells was initiated from Oryctolagus curiculus corneas and a novel RCE cell line was established in this study. To initiate the primary culture of RCE cells, corneas from rabbit eyes were sliced and attached into glutin-coated wells with endothelial cell surface down. After being cultured at a time-gradient interval from 48 to 6 h, the corneal slices were detached and reattached into new wells, respectively. Cells in the wells containing only a pure population of RCE cells were collected and cultured in 20% FBS-DMEM/F12 medium containing chondroitin sulfate, ocular extract, epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), carboxymethyl-chitosan, N-acetylglucosamine hydrochloride, glucosamine hydrochloride, culture medium of rabbit corneal stromal cells and oxidation-degradation products of chondroitin sulfate at 37 degrees C, 5% CO(2). The cultured RCE cells, in quadrangle and polygonal shapes, proliferated to confluence 3 weeks later. During the subsequent subculture, the shape of RCE cells changed gradually from polygonal to more fibroblastic. A novel RCE cell line, growing at a steady rate, with a population doubling time of 53.8 h, has been established and subcultured to passage 67. Chromosome analysis showed that the RCE cells exhibited chromosomal aneuploidy with the modal chromosome number of 44. The results of immuno-cytochemical staining with neuron specific enolase (NSE) confirmed that the RCE cells were in neuroectodermal origin. Combined with the results of vascular endothelial growth factor (VEGF) treatment and endothelial cell morphology recovery, it can be concluded that the cell line established here is an RCE cell line. This RCE cell line may serve as a useful tool in theoretical researches of mammalian corneal endothelial cells, and may also have potential application in artificial corneal endothelium development.

  6. Establishment of a novel corneal endothelial cell line from domestic rabbit, Oryctolagus curiculus

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    To develop a rabbit corneal endothelial (RCE) cell line, in vitro culture of RCE cells was initiated from Oryctolagus curiculus corneas and a novel RCE cell line was established in this study. To initiate the primary culture of RCE cells, corneas from rabbit eyes were sliced and attached into glutin-coated wells with endothelial cell surface down. After being cultured at a time-gradient interval from 48 to 6 h, the corneal slices were detached and reattached into new wells, respectively. Cells in the wells containing only a pure population of RCE cells were collected and cultured in 20% FBS-DMEM/F12 medium con- taining chondroitin sulfate, ocular extract, epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), carboxymethyl-chitosan, N-acetylglucosamine hydrochloride, glucosamine hydrochloride, culture medium of rabbit corneal stromal cells and oxidation-degradation products of chondroitin sul- fate at 37℃, 5% CO2. The cultured RCE cells, in quadrangle and polygonal shapes, proliferated to con- fluence 3 weeks later. During the subsequent subculture, the shape of RCE cells changed gradually from polygonal to more fibroblastic. A novel RCE cell line, growing at a steady rate, with a population doubling time of 53.8 h, has been established and subcultured to passage 67. Chromosome analysis showed that the RCE cells exhibited chromosomal aneuploidy with the modal chromosome number of 44. The results of immuno-cytochemical staining with neuron specific enolase (NSE) confirmed that the RCE cells were in neuroectodermal origin. Combined with the results of vascular endothelial growth factor (VEGF) treatment and endothelial cell morphology recovery, it can be concluded that the cell line established here is an RCE cell line. This RCE cell line may serve as a useful tool in theoretical re- searches of mammalian corneal endothelial cells, and may also have potential application in artificial corneal endothelium development.

  7. Establishment of a novel corneal endothelial cell line from domestic rabbit, Oryctolagus curiculus

    Institute of Scientific and Technical Information of China (English)

    FAN TingJun; ZHAO Jun; FU YongFeng; CONG RiShan; GUO RuiChao; LIU WanShun; HAN BaoQin; YU QiuTao; WANG Jing

    2007-01-01

    To develop a rabbit corneal endothelial (RCE) cell line, in vitro culture of RCE cells was initiated from Oryctolagus curiculus corneas and a novel RCE cell line was established in this study. To initiate the primary culture of RCE cells, corneas from rabbit eyes were sliced and attached into glutin-coated wells with endothelial cell surface down. After being cultured at a time-gradient interval from 48 to 6 h, the corneal slices were detached and reattached into new wells, respectively. Cells in the wells containing only a pure population of RCE cells were collected and cultured in 20% FBS-DMEM/F12 medium containing chondroitin sulfate, ocular extract, epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), carboxymethyl-chitosan, N-acetylglucosamine hydrochloride, glucosamine hydrochloride,culture medium of rabbit corneal stromal cells and oxidation-degradation products of chondroitin sulfate at 37℃, 5% CO2. The cultured RCE cells, in quadrangle and polygonal shapes, proliferated to confluence 3 weeks later. During the subsequent subculture, the shape of RCE cells changed gradually from polygonal to more fibroblastic. A novel RCE cell line, growing at a steady rate, with a population doubling time of 53.8 h, has been established and subcultured to passage 67. Chromosome analysis showed that the RCE cells exhibited chromosomal aneuploidy with the modal chromosome number of 44. The results of immuno-cytochemical staining with neuron specific enolase (NSE) confirmed that the RCE cells were in neuroectodermal origin. Combined with the results of vascular endothelial growth factor (VEGF) treatment and endothelial cell morphology recovery, it can be concluded that the cell line established here is an RCE cell line. This RCE cell line may serve as a useful tool in theoretical researches of mammalian corneal endothelial cells, and may also have potential application in artificial corneal endothelium development.

  8. Mesenchymal stromal cells for traumatic brain injury

    OpenAIRE

    Pischiutta,

    2014-01-01

    The multiple pathological cascades activated after traumatic brain injury (TBI) and their extended nature offer the possibility for therapeutic interventions possibly affecting multiple injury mechanisms simultaneously. Mesenchymal stromal cell (MSC) therapy matches this need, being a bioreactor of a variety of molecules able to interact and modify the injured brain microenvironment. Compared to autologous MSCs, bank stored GMP-graded allogenic MSCs appear to be a realistic choice for TBI ...

  9. Morphometric characterisation of pterygium associated with corneal stromal scarring using high-resolution anterior segment optical coherence tomography.

    Science.gov (United States)

    Gasser, Thomas; Romano, Vito; Seifarth, Christof; Bechrakis, Nikolaos E; Kaye, Stephen B; Steger, Bernhard

    2017-05-01

    To investigate the role of high-resolution anterior segment optical coherence tomography (HR-ASOCT) in the assessment of pterygia. Single centre cross-sectional study. Patients with primary pterygium and/or pingueculae were included. Clinical assessment included HR-ASOCT, colour photography, keratometry followed by histology. Associations were tested between HR-ASOCT features of the pterygium and the degree of corneal scarring and elastotic degeneration, astigmatism and best-corrected visual acuity. 29 eyes of 26 patients with pterygium and 6 patients with pinguecula were included. Apical anterior stromal scarring was found in 23 cases (79.3%) reaching a mean depth of 68.8±21.7 µm (minimum: 33 µm, maximum: 126 µm). Increased stromal scarring and subepithelial elastotic degenerative tissue was significantly associated with HR-ASOCT features of flat bridging of the corneoscleral transition zone (pHR-ASOCT is a useful tool for the assessment and monitoring of pterygia in clinical practice. Features associated with increased stromal scarring and astigmatism are reduced thickness of the head of the pterygium and flat bridging of the corneoscleral transition zone. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  10. Mammary fibroadenoma with pleomorphic stromal cells.

    Science.gov (United States)

    Abid, Najla; Kallel, Rim; Ellouze, Sameh; Mellouli, Manel; Gouiaa, Naourez; Mnif, Héla; Boudawara, Tahia

    2015-01-01

    The presence of enlarged and pleomorphic nuclei is usually regarded as a feature of malignancy, but it may on occasion be seen in benign lesions such as mammary fibroadenomas. We present such a case of fibroadenoma occurring in a 37-year-old woman presenting with a self-palpable right breast mass. Histological examination of the tumor revealed the presence of multi and mononucleated giant cells with pleomorphic nuclei. The recognition of the benign nature of these cells is necessary for differential diagnosis from malignant lesions of the breast. fibroadenoma - pleomorphic stromal cells - atypia - breast.

  11. EFFECT OF HUMAN AMNIOTIC MEMBRANE ON CORNEAL EPITHELIUM AND YAC-1 CELL

    Institute of Scientific and Technical Information of China (English)

    叶纹; 沈玺; 钟一声

    2003-01-01

    Objective To study the effect of the amniotic membrane on enhancing the proliferation of corneal epithelia and YAC 1 cell.MethodsAfter the primary culture of the rabbits corneal epithelia and YAC 1 cells, they were seeded on the upper surface or stromal matrix side of amniotic membrane respectively. The proliferation results were observed by MTT test.ResultsThe amniotic membrane was found significantly enhancing the proliferation of corneal epithelia on the d1,d3,and d5 after culture. The proliferation rate was 28.93%,23.32%,23.41%(P<0.05)respectively, but the d7 proliferation rate was 20.72%(P>0.05).On the d1,d3,d7 after culture,the YAC 1 cells proliferation rate was 34.87%,36.28%,33.86%(P<0.01)respectively.ConclusionOur results demonstrated that the amniotic membrane could enhance the prolifera tion of both corneal epithelia and YAC 1 cells significantly. Although amniotic membrane has been suggested as an ideal material for reconstruction of ocular surface, special attention should be paid during amniotic membrane transplantation for treating ocular surface lesion resulted from epibulbar tumors.

  12. Transition of mesenchymal stem/stromal cells to endothelial cells

    NARCIS (Netherlands)

    M. Crisan (Mihaela)

    2013-01-01

    textabstractMesenchymal stem/stromal cells (MSCs) are heterogeneous. A fraction of these cells constitute multipotent cells that can self-renew and mainly give rise to mesodermal lineage cells such as adipocytes, osteocytes and chondrocytes. The ability of MSCs to differentiate into endothelial cell

  13. A role for topographic cues in the organization of collagenous matrix by corneal fibroblasts and stem cells.

    Science.gov (United States)

    Karamichos, Dimitrios; Funderburgh, Martha L; Hutcheon, Audrey E K; Zieske, James D; Du, Yiqin; Wu, Jian; Funderburgh, James L

    2014-01-01

    Human corneal fibroblasts (HCF) and corneal stromal stem cells (CSSC) each secrete and organize a thick stroma-like extracellular matrix in response to different substrata, but neither cell type organizes matrix on tissue-culture polystyrene. This study compared cell differentiation and extracellular matrix secreted by these two cell types when they were cultured on identical substrata, polycarbonate Transwell filters. After 4 weeks in culture, both cell types upregulated expression of genes marking differentiated keratocytes (KERA, CHST6, AQP1, B3GNT7). Absolute expression levels of these genes and secretion of keratan sulfate proteoglycans were significantly greater in CSSC than HCF. Both cultures produced extensive extracellular matrix of aligned collagen fibrils types I and V, exhibiting cornea-like lamellar structure. Unlike HCF, CSSC produced little matrix in the presence of serum. Construct thickness and collagen organization was enhanced by TGF-ß3. Scanning electron microscopic examination of the polycarbonate membrane revealed shallow parallel grooves with spacing of 200-300 nm, similar to the topography of aligned nanofiber substratum which we previously showed to induce matrix organization by CSSC. These results demonstrate that both corneal fibroblasts and stromal stem cells respond to a specific pattern of topographical cues by secreting highly organized extracellular matrix typical of corneal stroma. The data also suggest that the potential for matrix secretion and organization may not be directly related to the expression of molecular markers used to identify differentiated keratocytes.

  14. A role for topographic cues in the organization of collagenous matrix by corneal fibroblasts and stem cells.

    Directory of Open Access Journals (Sweden)

    Dimitrios Karamichos

    Full Text Available Human corneal fibroblasts (HCF and corneal stromal stem cells (CSSC each secrete and organize a thick stroma-like extracellular matrix in response to different substrata, but neither cell type organizes matrix on tissue-culture polystyrene. This study compared cell differentiation and extracellular matrix secreted by these two cell types when they were cultured on identical substrata, polycarbonate Transwell filters. After 4 weeks in culture, both cell types upregulated expression of genes marking differentiated keratocytes (KERA, CHST6, AQP1, B3GNT7. Absolute expression levels of these genes and secretion of keratan sulfate proteoglycans were significantly greater in CSSC than HCF. Both cultures produced extensive extracellular matrix of aligned collagen fibrils types I and V, exhibiting cornea-like lamellar structure. Unlike HCF, CSSC produced little matrix in the presence of serum. Construct thickness and collagen organization was enhanced by TGF-ß3. Scanning electron microscopic examination of the polycarbonate membrane revealed shallow parallel grooves with spacing of 200-300 nm, similar to the topography of aligned nanofiber substratum which we previously showed to induce matrix organization by CSSC. These results demonstrate that both corneal fibroblasts and stromal stem cells respond to a specific pattern of topographical cues by secreting highly organized extracellular matrix typical of corneal stroma. The data also suggest that the potential for matrix secretion and organization may not be directly related to the expression of molecular markers used to identify differentiated keratocytes.

  15. Efficacy of cultivated corneal epithelial stem cells for ocular surface reconstruction

    Directory of Open Access Journals (Sweden)

    Prabhasawat P

    2012-09-01

    outcomes were lid abnormalities, abnormal corneal stromal beds, and complications.Conclusion: CLET can successfully restore ocular surface damage in most cases with corneal limbal stem cell deficiency.Keywords: limbal deficiency, limbal transplantation, corneal epithelial stem-cell transplantation, cultivated corneal epithelial stem cells

  16. Cytocompatibility of Three Corneal Cell Types with Amniotic Membrane

    Institute of Scientific and Technical Information of China (English)

    CHENJian-su; CHENRui; XUJin-tang; DINGYong; ZHAOSong-bin; LISui-lian

    2004-01-01

    Rabbit limbal corneal epithelial cells, corneal endothelial cells and keratocytes were cultured on amniotic membrane. Phase contrast microscope examination was performed daily. Histological and scan electron microscopic examinations were carried out to observe the growth, arrangement and adhesion of cultivated cells. Results showed that three corneal cell types seeded on amniotic membrane grew well and had normal cell morphology. Cultured cells attached firmly on the surface of amniotic membrane. Corneal epithelial cells showed singular layer or stratification. Cell boundaries were formed and tightly opposed. Corneal endothelial cells showed cobblestone or polygonal morphologic characteristics that appeared uniform in size. The cellular arrangement was compact. Keratocytes elongated and showed triangle or dendritic morphology with many intercellular joints which could form networks. In conclusion, amniotic membrane has good scaffold property, diffusion effect and compatibility with corneal cells. The basement membrane side of amniotic membrane facilitated the growth of corneal epithelial cells and endothelial cells and cell junctions were tightly developed. The spongy layer of amniotic membrane facilitated the growth of keratocytes and intercellular joints were rich. Amniotic membrane is an ideal biomaterial for layering tissue engineered cornea.

  17. Cryopreservation and revival of mesenchymal stromal cells

    DEFF Research Database (Denmark)

    Haack-Sørensen, Mandana; Kastrup, Jens

    2011-01-01

    Over the past few years, the pace of preclinical stem cell research is astonishing and adult stem cells have become the subject of intense research. Due to the presence of promising supporting preclinical data, human clinical trials for stem cell regenerative treatment of various diseases have been...... initiated. As there has been a precedent for the use of bone marrow stem cells in the treatment of hematological malignancies and ischemic heart diseases through randomized clinical safety and efficacy trials, the development of new therapies based on culture-expanded human mesenchymal stromal cells (MSCs......) opens up new possibilities for cell therapy. To facilitate these applications, cryopreservation and long-term storage of MSCs becomes an absolute necessity. As a result, optimization of this cryopreservation protocol is absolutely critical. The major challenge during cellular cryopreservation...

  18. Cryopreservation and revival of mesenchymal stromal cells

    DEFF Research Database (Denmark)

    Haack-Sørensen, Mandana; Kastrup, Jens

    2011-01-01

    ) opens up new possibilities for cell therapy. To facilitate these applications, cryopreservation and long-term storage of MSCs becomes an absolute necessity. As a result, optimization of this cryopreservation protocol is absolutely critical. The major challenge during cellular cryopreservation...... initiated. As there has been a precedent for the use of bone marrow stem cells in the treatment of hematological malignancies and ischemic heart diseases through randomized clinical safety and efficacy trials, the development of new therapies based on culture-expanded human mesenchymal stromal cells (MSCs......Over the past few years, the pace of preclinical stem cell research is astonishing and adult stem cells have become the subject of intense research. Due to the presence of promising supporting preclinical data, human clinical trials for stem cell regenerative treatment of various diseases have been...

  19. Adipose-derived mesenchymal stromal cells for chronic myocardial ischemia (MyStromalCell Trial)

    DEFF Research Database (Denmark)

    Qayyum, Abbas Ali; Haack-Sørensen, Mandana; Mathiasen, Anders Bruun;

    2012-01-01

    for regenerative therapy to replace injured tissue by creating new blood vessels and cardiomyocytes in patients with chronic ischemic heart disease. The aim of this special report is to review the present preclinical data leading to clinical stem cell therapy using ADSCs in patients with ischemic heart disease......Adipose tissue represents an abundant, accessible source of multipotent adipose-derived stromal cells (ADSCs). Animal studies have suggested that ADSCs have the potential to differentiate in vivo into endothelial cells and cardiomyocytes. This makes ADSCs a promising new cell source....... In addition, we give an introduction to the first-in-man clinical trial, MyStromalCell Trial, which is a prospective, randomized, double-blind, placebo-controlled study using culture-expanded ADSCs obtained from adipose-derived cells from abdominal adipose tissue and stimulated with VEGF-A(165) the week...

  20. Mesenchymal stromal cell therapy in ischemic stroke

    Directory of Open Access Journals (Sweden)

    Zhang Y

    2016-11-01

    Full Text Available Ye Zhang, Hong Deng, Chao Pan, Yang Hu, Qian Wu, Na Liu, Zhouping Tang Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China Abstract: Stroke is a clinical disease with high incidence, high disability rate, and high mortality. But effective and safe therapy for stroke remains limited. Adult mesenchymal stromal cells (MSCs perform a variety of therapeutic functions. MSC delivery improves neurological outcomes in ischemic stroke models via neurorestorative and neuroprotective effects such as angiogenic effects, promoting endogenous proliferation, and reducing apoptosis and inflammation. MSC secretome also showed powerful therapeutic effects as a cell-based therapy in animal experiments. Several clinical trials on MSC implantation via different routes have now been completed in patients with stroke. Although challenges such as immunogenicity of allo-MSCs and large-scale production strategies need to be overcome, MSCs can be considered as a promising potential therapy for ischemic stroke. Keywords: mesenchymal stromal cell, stroke, therapy, transplantation, exosomes

  1. Mesenchymal Stem/Stromal Cells in Stromal Evolution and Cancer Progression

    Directory of Open Access Journals (Sweden)

    Francesca Cammarota

    2016-01-01

    Full Text Available The study of cancer biology has mainly focused on malignant epithelial cancer cells, although tumors also contain a stromal compartment, which is composed of stem cells, tumor-associated fibroblasts (TAFs, endothelial cells, immune cells, adipocytes, cytokines, and various types of macromolecules comprising the extracellular matrix (ECM. The tumor stroma develops gradually in response to the needs of epithelial cancer cells during malignant progression initiating from increased local vascular permeability and ending to remodeling of desmoplastic loosely vascularized stromal ECM. The constant bidirectional interaction of epithelial cancer cells with the surrounding microenvironment allows damaged stromal cell usage as a source of nutrients for cancer cells, maintains the stroma renewal thus resembling a wound that does not heal, and affects the characteristics of tumor mesenchymal stem/stromal cells (MSCs. Although MSCs have been shown to coordinate tumor cell growth, dormancy, migration, invasion, metastasis, and drug resistance, recently they have been successfully used in treatment of hematopoietic malignancies to enhance the effect of total body irradiation-hematopoietic stem cell transplantation therapy. Hence, targeting the stromal elements in combination with conventional chemotherapeutics and usage of MSCs to attenuate graft-versus-host disease may offer new strategies to overcome cancer treatment failure and relapse of the disease.

  2. Mechanism of Corneal Endothelial Cells Lesion during Phacoemulsification and Aspiration

    Institute of Scientific and Technical Information of China (English)

    Songtao Yuan; Lina Xie; Qinghuai Liu; Nanrong Yuan

    2003-01-01

    Purpose: To evaluate the proportions of corneal endothelial lesion caused by differentfactors during phacoemulsification and aspiration.Methods: Fourteen cats (twenty eight eyes) were divided into four groups. The processedfactors were ultrasonic power, lens extraction by phacoemulsification or not, and lensextraction using different levels of ultrasonic power. The density of central cornealendothelial cells was measured before and after operation.Results: There is no statistic difference between pre-operation density and post-operationdensity for releasing ultrasonic power only without lens extraction group. But for the lensextraction group, there is difference in density of central corneal endothelial cells andthe higher level of ultrasonic power, the more the central corneal endothelial cells densitydecreased through operation.Conclusion: The primary factor that causes corneal endothelial lesion duringphacoemulsification and aspiration procedure is debris of lens nucleus, and the otherfactors cause the lesion of corneal endothelium in normal operations just in very smalldegree.

  3. Reconstruction of Rabbit Corneal Layer Composed of Corneal Fibroblasts and Corneal Epithelium on the Lyophilized Amniotic Membrane

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Many researchers have employed the cryopreserved amniotic membrane(CAM) and corneal epithelial cells in the treatment of a severely damaged burned cornea, with corneal epithelial cells cultured on an amniotic membrane (AM). The lyophilized amniotic membrane (LAM) has a higher graft take and a longer shelf life; it is easier to store and safer because of gamma irradiation. Two Teflon rings(Ahn's supporter) were made for culturing the cells on the LAM, and were then used to support the LAM. To reconstruct a corneal layer composed of corneal fibroblasts and epithelium, the corneal fibroblasts were first cultivated on the stromal side of LAM for five days, followed by epithelial cells culture on the epithelial side, by using the air-liquid interface culture. The reconstructed corneal layer composed of corneal fibroblasts and corneal epithelial cells has a much healthier basal layer of corneal epithelium than the reconstructed corneal epithelium, which was got by using only corneal epithelial cells, and resembles the epithelium of normal corneas, without the horny layer. Thus, the reconstruction of the corneal layer by using a LAM is considered to be a good in vitro model, not only for its application in toxicological test kits, but also for transplantation in patients with a severely damaged cornea.

  4. Roles of TRIM32 in Corneal Epithelial Cells After Infection with Herpes Simplex Virus

    Directory of Open Access Journals (Sweden)

    Hao Cui

    2017-09-01

    Full Text Available Background: Epithelial cells play important roles as a critical barrier in protecting the cornea from microbial pathogens infection. Methods: In this study, we were aiming to investigate the role of E3 ubiquitin ligase tripartite motif protein 32 (TRIM32 in corneal epithelial cells in response to Herpes Simplex Virus type 1 (HSV-1 infection and to elucidate the underlying mechanisms. Results: We found the expression of TRIM32 was increased after infected with HSV-1 both in murine corneas and cultured human epithelial (HCE cells. Furthermore, knockdown of the expression of TRIM32 significantly aggravated HSV-1 induced herpetic stromal keratitis (HSK in mice and promoted the replication of HSV-1 in cultured HCE cells. We also observed that silencing of TRIM32 resulted in the decreased expression of IFN-β and suppressed activation of interferon regulatory factor 3 (IRF3 both in vivo and in vitro. Finally, we found TRIM32 positively regulate IFN-β production in corneal epithelial cells through promoting K63-linked polyubiquitination of stimulator of interferon genes (STING. Conclusion: In conclusion, our data suggested that TRIM32 as a crucial positive regulator of HSV-1 induced IFN-β production in corneal epithelial cells, and it played a predominant role in clearing HSV-1 from the cornea.

  5. Limbal stem cells: Central concepts of corneal epithelial homeostasis

    Institute of Scientific and Technical Information of China (English)

    Jinny; J; Yoon; Salim; Ismail; Trevor; Sherwin

    2014-01-01

    A strong cohort of evidence exists that supports the localisation of corneal stem cells at the limbus. The distinguishing characteristics of limbal cells as stem cells include slow cycling properties, high proliferative potential when required, clonogenicity, absence of differentiation marker expression coupled with positive expression of progenitor markers, multipotency, centripetal migration, requirement for a distinct niche environment and the ability of transplanted limbal cells to regenerate the entire corneal epithelium. The existence of limbal stem cells supports the prevailing theory of corneal homeostasis, known as the XYZ hypothesis where X represents proliferation and stratification of limbal basal cells, Y centripetal migration of basal cells and Z desquamation of superficial cells. To maintain the mass of cornea, the sum of X and Y must equal Z and very elegant cell tracking experiments provide strong evidence in support of this theory. However, several recent stud-ies have suggested the existence of oligopotent stem cells capable of corneal maintenance outside of the limbus. This review presents a summary of data which led to the current concepts of corneal epithelial homeostasis and discusses areas of controversy surrounding the existence of a secondary stem cell reservoir on the corneal surface

  6. Effect of Intraoperative Corneal Stromal Pocket Irrigation in Small Incision Lenticule Extraction

    Directory of Open Access Journals (Sweden)

    Yu-Chi Liu

    2015-01-01

    Full Text Available This study aimed at evaluating the effect of intraoperative corneal pocket irrigation in small incision lenticule extraction (SMILE and compares it to that in femtosecond laser-assisted in situ keratomileusis (FS-LASIK. Sixteen rabbit eyes underwent a SMILE procedure, with 8 eyes having corneal pocket irrigation, while the other 8 eyes were without irrigation. Another 16 eyes underwent a FS-LASIK procedure for comparison, with 8 eyes having flap irrigation, while the other 8 eyes were without irrigation. The results showed that the changes in the total corneal thickness, anterior and posterior lamellar thickness, measured by the anterior segment optical coherence tomography, were comparable between the SMILE with and without irrigation groups, suggesting that the irrigation did not lead to significant changes in the corneal thickness. However, at postoperative 8 hours, in vivo confocal microscopy showed that the interface reflectivity in the SMILE with irrigation group was significantly higher than that in other three groups. The presence of interface fluid was further confirmed by the identification of fluid pockets with undulated collagen shown on histological section in the post-SMILE with irrigation eyes. Our findings might contribute to the occurrence of post-SMILE delayed immediate visual quality recovery and further clinical study is required.

  7. Development of new therapeutic modalities for corneal endothelial disease focused on the proliferation of corneal endothelial cells using animal models.

    Science.gov (United States)

    Koizumi, Noriko; Okumura, Naoki; Kinoshita, Shigeru

    2012-02-01

    This review describes our recent attempts to develop new therapeutic modalities for corneal endothelial disease using animal models including non-human primate model in which the proliferative ability of corneal endothelial cells is severely limited, as is the case in humans. First, we describe our attempt to develop new surgical treatments using cultivated corneal endothelial cells for advanced corneal endothelial dysfunction. It includes two different approaches; a "corneal endothelial cell sheet transplantation" with cells grown on a type-I collagen carrier, and a "cell-injection therapy" combined with the application of Rho-kinase (ROCK) inhibitor. Recently, it was reported that the selective ROCK inhibitor, Y-27632, promotes cell adhesion and proliferation and inhibits the apoptosis of primate corneal endothelial cells in culture. When cultivated corneal endothelial cells were injected into the anterior chamber of animal eyes in the presence of ROCK inhibitor, endothelial cell adhesion was promoted and the cells achieved a high cell density and a morphology similar to corneal endothelial cells in vivo. We are also trying to develop a novel medical treatment for the early phase of corneal endothelial disease by the use of ROCK inhibitor eye drops. In rabbit and monkey experiments using partial endothelial dysfunction models, corneal endothelial wound healing was accelerated by the topical application of ROCK inhibitor to the ocular surface, and resulted in the regeneration of a corneal endothelial monolayer with a high endothelial cell density. We are now trying to advance the clinical application of these new therapies for patients with corneal endothelial dysfunction.

  8. Two-way communication between endometrial stromal cells and monocytes.

    Science.gov (United States)

    Klinkova, Olga; Hansen, Keith A; Winterton, Emily; Mark, Connie J; Eyster, Kathleen M

    2010-02-01

    Immune system cells and cells of the endometrium have long been proposed to interact in both physiological and pathological processes. The current study was undertaken to examine communication between cultured monocytes and endometrial stromal cells and also to assess responses of endometrial stromal cells for treatment with estradiol (E) in the absence and presence of medroxyprogesterone acetate (P). A telomerase-immortalized human endometrial stromal cell (T-HESC) line and the U937 monocyte cell line were used. Telomerase-immortalized human endometrial stromal cells were treated with E +/- P +/- monocyte conditioned medium; U937 were treated +/- T-HESC conditioned medium. Gene expression in response to treatment was examined by DNA microarray. Bidirectional communication, as demonstrated by changes in gene expression, clearly occurred between U937 monocytes and T-HESC.

  9. A native-like corneal construct using donor corneal stroma for tissue engineering.

    Directory of Open Access Journals (Sweden)

    Jing Lin

    Full Text Available Tissue engineering holds great promise for corneal transplantation to treat blinding diseases. This study was to explore the use of natural corneal stroma as an optimal substrate to construct a native like corneal equivalent. Human corneal epithelium was cultivated from donor limbal explants on corneal stromal discs prepared by FDA approved Horizon Epikeratome system. The morphology, phenotype, regenerative capacity and transplantation potential were evaluated by hematoxylin eosin and immunofluorescent staining, a wound healing model, and the xeno-transplantation of the corneal constructs to nude mice. An optically transparent and stratified epithelium was rapidly generated on donor corneal stromal substrate and displayed native-like morphology and structure. The cells were polygonal in the basal layer and became flattened in superficial layers. The epithelium displayed a phenotype similar to human corneal epithelium in vivo. The differentiation markers, keratin 3, involucrin and connexin 43, were expressed in full or superficial layers. Interestingly, certain basal cells were immunopositive to antibodies against limbal stem/progenitor cell markers ABCG2 and p63, which are usually negative in corneal epithelium in vivo. It suggests that this bioengineered corneal epithelium shared some characteristics of human limbal epithelium in vivo. This engineered epithelium was able to regenerate in 4 days following from a 4mm-diameter wound created by a filter paper soaked with 1 N NaOH. This corneal construct survived well after xeno-transplantation to the back of a nude mouse. The transplanted epithelium remained multilayer and became thicker with a phenotype similar to human corneal epithelium. Our findings demonstrate that natural corneal stroma is an optimal substrate for tissue bioengineering, and a native-like corneal construct has been created with epithelium containing limbal stem cells. This construct may have great potential for clinical use in

  10. Gut Mesenchymal Stromal Cells in Immunity

    Directory of Open Access Journals (Sweden)

    Valeria Messina

    2017-01-01

    Full Text Available Mesenchymal stromal cells (MSCs, first found in bone marrow (BM, are the structural architects of all organs, participating in most biological functions. MSCs possess tissue-specific signatures that allow their discrimination according to their origin and location. Among their multiple functions, MSCs closely interact with immune cells, orchestrating their activity to maintain overall homeostasis. The phenotype of tissue MSCs residing in the bowel overlaps with myofibroblasts, lining the bottom walls of intestinal crypts (pericryptal or interspersed within intestinal submucosa (intercryptal. In Crohn’s disease, intestinal MSCs are tightly stacked in a chronic inflammatory milieu, which causes their enforced expression of Class II major histocompatibility complex (MHC. The absence of Class II MHC is a hallmark for immune-modulator and tolerogenic properties of normal MSCs and, vice versa, the expression of HLA-DR is peculiar to antigen presenting cells, that is, immune-activator cells. Interferon gamma (IFNγ is responsible for induction of Class II MHC expression on intestinal MSCs. The reversal of myofibroblasts/MSCs from an immune-modulator to an activator phenotype in Crohn’s disease results in the formation of a fibrotic tube subverting the intestinal structure. Epithelial metaplastic areas in this context can progress to dysplasia and cancer.

  11. Gut Mesenchymal Stromal Cells in Immunity

    Science.gov (United States)

    Messina, Valeria; Buccione, Carla; Marotta, Giulia; Ziccheddu, Giovanna; Signore, Michele; Mattia, Gianfranco; Puglisi, Rossella; Sacchetti, Benedetto; Biancone, Livia

    2017-01-01

    Mesenchymal stromal cells (MSCs), first found in bone marrow (BM), are the structural architects of all organs, participating in most biological functions. MSCs possess tissue-specific signatures that allow their discrimination according to their origin and location. Among their multiple functions, MSCs closely interact with immune cells, orchestrating their activity to maintain overall homeostasis. The phenotype of tissue MSCs residing in the bowel overlaps with myofibroblasts, lining the bottom walls of intestinal crypts (pericryptal) or interspersed within intestinal submucosa (intercryptal). In Crohn's disease, intestinal MSCs are tightly stacked in a chronic inflammatory milieu, which causes their enforced expression of Class II major histocompatibility complex (MHC). The absence of Class II MHC is a hallmark for immune-modulator and tolerogenic properties of normal MSCs and, vice versa, the expression of HLA-DR is peculiar to antigen presenting cells, that is, immune-activator cells. Interferon gamma (IFNγ) is responsible for induction of Class II MHC expression on intestinal MSCs. The reversal of myofibroblasts/MSCs from an immune-modulator to an activator phenotype in Crohn's disease results in the formation of a fibrotic tube subverting the intestinal structure. Epithelial metaplastic areas in this context can progress to dysplasia and cancer. PMID:28337224

  12. Mesenchymal Stromal Cells and Viral Infection

    Directory of Open Access Journals (Sweden)

    Maytawan Thanunchai

    2015-01-01

    Full Text Available Mesenchymal Stromal Cells (MSCs are a subset of nonhematopoietic adult stem cells, readily isolated from various tissues and easily culture-expanded ex vivo. Intensive studies of the immune modulation and tissue regeneration over the past few years have demonstrated the great potential of MSCs for the prevention and treatment of steroid-resistant acute graft-versus-host disease (GvHD, immune-related disorders, and viral diseases. In immunocompromised individuals, the immunomodulatory activities of MSCs have raised safety concerns regarding the greater risk of primary viral infection and viral reactivation, which is a major cause of mortality after allogeneic transplantation. Moreover, high susceptibilities of MSCs to viral infections in vitro could reflect the destructive outcomes that might impair the clinical efficacy of MSCs infusion. However, the interplay between MSCs and virus is like a double-edge sword, and it also provides beneficial effects such as allowing the proliferation and function of antiviral specific effector cells instead of suppressing them, serving as an ideal tool for study of viral pathogenesis, and protecting hosts against viral challenge by using the antimicrobial activity. Here, we therefore review favorable and unfavorable consequences of MSCs and virus interaction with the highlight of safety and efficacy for applying MSCs as cell therapy.

  13. Progress in corneal wound healing.

    Science.gov (United States)

    Ljubimov, Alexander V; Saghizadeh, Mehrnoosh

    2015-11-01

    Corneal wound healing is a complex process involving cell death, migration, proliferation, differentiation, and extracellular matrix remodeling. Many similarities are observed in the healing processes of corneal epithelial, stromal and endothelial cells, as well as cell-specific differences. Corneal epithelial healing largely depends on limbal stem cells and remodeling of the basement membrane. During stromal healing, keratocytes get transformed to motile and contractile myofibroblasts largely due to activation of transforming growth factor-β (TGF-β) system. Endothelial cells heal mostly by migration and spreading, with cell proliferation playing a secondary role. In the last decade, many aspects of wound healing process in different parts of the cornea have been elucidated, and some new therapeutic approaches have emerged. The concept of limbal stem cells received rigorous experimental corroboration, with new markers uncovered and new treatment options including gene and microRNA therapy tested in experimental systems. Transplantation of limbal stem cell-enriched cultures for efficient re-epithelialization in stem cell deficiency and corneal injuries has become reality in clinical setting. Mediators and course of events during stromal healing have been detailed, and new treatment regimens including gene (decorin) and stem cell therapy for excessive healing have been designed. This is a very important advance given the popularity of various refractive surgeries entailing stromal wound healing. Successful surgical ways of replacing the diseased endothelium have been clinically tested, and new approaches to accelerate endothelial healing and suppress endothelial-mesenchymal transformation have been proposed including Rho kinase (ROCK) inhibitor eye drops and gene therapy to activate TGF-β inhibitor SMAD7. Promising new technologies with potential for corneal wound healing manipulation including microRNA, induced pluripotent stem cells to generate corneal

  14. Progress in corneal wound healing

    Science.gov (United States)

    Ljubimov, Alexander V.; Saghizadeh, Mehrnoosh

    2015-01-01

    Corneal wound healing is a complex process involving cell death, migration, proliferation, differentiation, and extracellular matrix remodeling. Many similarities are observed in the healing processes of corneal epithelial, stromal and endothelial cells, as well as cell-specific differences. Corneal epithelial healing largely depends on limbal stem cells and remodeling of the basement membrane. During stromal healing, keratocytes get transformed to motile and contractile myofibroblasts largely due to activation of transforming growth factor-β system. Endothelial cells heal mostly by migration and spreading, with cell proliferation playing a secondary role. In the last decade, many aspects of wound healing process in different parts of the cornea have been elucidated, and some new therapeutic approaches have emerged. The concept of limbal stem cells received rigorous experimental corroboration, with new markers uncovered and new treatment options including gene and microRNA therapy tested in experimental systems. Transplantation of limbal stem cell-enriched cultures for efficient re-epithelialization in stem cell deficiency and corneal injuries has become reality in clinical setting. Mediators and course of events during stromal healing have been detailed, and new treatment regimens including gene (decorin) and stem cell therapy for excessive healing have been designed. This is a very important advance given the popularity of various refractive surgeries entailing stromal wound healing. Successful surgical ways of replacing the diseased endothelium have been clinically tested, and new approaches to accelerate endothelial healing and suppress endothelial-mesenchymal transformation have been proposed including Rho kinase (ROCK) inhibitor eye drops and gene therapy to activate TGF-β inhibitor SMAD7. Promising new technologies with potential for corneal wound healing manipulation including microRNA, induced pluripotent stem cells to generate corneal epithelium, and

  15. Mechanism of induction of fibroblast to corneal endothelial cell.

    Science.gov (United States)

    Jiang, Yan; Fu, Wei-Cai; Zhang, Lin

    2014-08-01

    To explore mechanism of nduction of fibroblast to corneal endothelial cell. Rabbit conjunctiva fibroblasts were used as feeder cells, rabbit oral mucosa epithelial cells were used as seed cells, and human denuded amniotic membrane was used as carrier to establish tissue engineering corneal endothelium. The transformation effect was observed. As concentration of mitomycin C increased, cell survival rate gradually decreased, cell proliferation was obviously inhibited when concentration≥25 μg/mL; 5 days after being treated by 5 μg/mL mitomycin C, cell body was enlarged and extended without cell fusion, however after being treated by 0.5 μg/mL mitomycin C, cell body was significantly proliferated and gradually fused; after 3 weeks of culture, stratified epithelium appeared on rabbit oral mucosa epithelial cells, differentiation layers were 4-5 and were well differentiated, the morphology was similar to corneal endothelial cells; Under electron microscope, surface layer of cells were polygonal, tightly connected to another with microvilli on the border, there was hemidesmosome between basal cells and human denuded amniotic membrane. Fibroblast cells have the potential of multi-directional differentiation, effective induction can promote emergence of intercellular desmosomes between seed cells and emergence of epithelial surface microvilli, and differentiate to the corneal endothelial cell. However, clinical application still needs more research and safety evaluation. Copyright © 2014 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  16. Oxidized alginate hydrogels as niche environments for corneal epithelial cells.

    Science.gov (United States)

    Wright, Bernice; De Bank, Paul A; Luetchford, Kim A; Acosta, Fernando R; Connon, Che J

    2014-10-01

    Chemical and biochemical modification of hydrogels is one strategy to create physiological constructs that maintain cell function. The aim of this study was to apply oxidised alginate hydrogels as a basis for development of a biomimetic niche for limbal epithelial stem cells that may be applied to treating corneal dysfunction. The stem phenotype of bovine limbal epithelial cells (LEC) and the viability of corneal epithelial cells (CEC) were examined in oxidised alginate gels containing collagen IV over a 3-day culture period. Oxidation increased cell viability (P ≤ 0.05) and this improved further with addition of collagen IV (P ≤ 0.01). Oxidised gels presented larger internal pores (diameter: 0.2-0.8 µm) than unmodified gels (pore diameter: 0.05-0.1 µm) and were significantly less stiff (P ≤ 0.001), indicating that an increase in pore size and a decrease in stiffness contributed to improved cell viability. The diffusion of collagen IV from oxidised alginate gels was similar to that of unmodified gels suggesting that oxidation may not affect the retention of extracellular matrix proteins in alginate gels. These data demonstrate that oxidised alginate gels containing corneal extracellular matrix proteins can influence corneal epithelial cell function in a manner that may impact beneficially on corneal wound healing therapy.

  17. Oxidized alginate hydrogels as niche environments for corneal epithelial cells

    Science.gov (United States)

    Wright, Bernice; De Bank, Paul A; Luetchford, Kim A; Acosta, Fernando R; Connon, Che J

    2014-01-01

    Chemical and biochemical modification of hydrogels is one strategy to create physiological constructs that maintain cell function. The aim of this study was to apply oxidised alginate hydrogels as a basis for development of a biomimetic niche for limbal epithelial stem cells that may be applied to treating corneal dysfunction. The stem phenotype of bovine limbal epithelial cells (LEC) and the viability of corneal epithelial cells (CEC) were examined in oxidised alginate gels containing collagen IV over a 3-day culture period. Oxidation increased cell viability (P ≤ 0.05) and this improved further with addition of collagen IV (P ≤ 0.01). Oxidised gels presented larger internal pores (diameter: 0.2–0.8 µm) than unmodified gels (pore diameter: 0.05–0.1 µm) and were significantly less stiff (P ≤ 0.001), indicating that an increase in pore size and a decrease in stiffness contributed to improved cell viability. The diffusion of collagen IV from oxidised alginate gels was similar to that of unmodified gels suggesting that oxidation may not affect the retention of extracellular matrix proteins in alginate gels. These data demonstrate that oxidised alginate gels containing corneal extracellular matrix proteins can influence corneal epithelial cell function in a manner that may impact beneficially on corneal wound healing therapy. © 2013 The Authors. Journal of Biomedical Materials Research Part A Published byWiley Periodicals, Inc. Part A: 102A: 3393–3400, 2014. PMID:24142706

  18. Interleukin-8 derived from local tissue-resident stromal cells promotes tumor cell invasion.

    Science.gov (United States)

    Welte, Gabriel; Alt, Eckhard; Devarajan, Eswaran; Krishnappa, Srinivasalu; Jotzu, Constantin; Song, Yao-Hua

    2012-11-01

    The aim of this study is to evaluate the role of adipose tissue resident stromal cells on tumor cell invasion. Our data show that a subpopulation of adipose tissue derived stromal cells expressing Nestin, NG2, α-smooth muscle actin and PDGFR-α migrate toward the cancer cells. Microarray analysis revealed the upregulation of IL-8 in the migrated cells. We demonstrated that stromal cell derived IL-8 promote the invasion and the anchorage-independent growth of cancer cells. We conclude that human breast cancer cells attract a subpopulation of stromal cells that secrete IL-8 to promote tumor cell invasion in a paracrine fashion.

  19. Trefoil peptides promote restitution of wounded corneal epithelial cells.

    Science.gov (United States)

    Göke, M N; Cook, J R; Kunert, K S; Fini, M E; Gipson, I K; Podolsky, D K

    2001-04-01

    The ocular surface shares many characteristics with mucosal surfaces. In both, healing is regulated by peptide growth factors, cytokines, and extracellular matrix proteins. However, these factors are not sufficient to ensure most rapid healing. Trefoil peptides are abundantly expressed epithelial cell products which exert protective effects and are key regulators of gastrointestinal epithelial restitution, the critical early phase of cell migration after mucosal injury. To assess the role of trefoil peptides in corneal epithelial wound healing, the effects of intestinal trefoil factor (ITF/TFF3) and spasmolytic polypeptide (SP/TFF2) on migration and proliferation of corneal epithelial cells were analyzed. Both ITF and SP enhanced restitution of primary rabbit corneal epithelial cells in vitro. While the restitution-enhancing effects of TGF-alpha and TGF-beta were both inhibited by neutralizing anti-TGF-beta-antibodies, trefoil peptide stimulation of restitution was not. Neither trefoil peptide significantly affected proliferation of primary corneal epithelial cells. ITF but not SP or pS2 mRNA was present in rabbit corneal and conjunctival tissues. In summary, the data indicate an unanticipated role of trefoil peptides in healing of ocular surface and demand rating their functional actions beyond the gastrointestinal tract.

  20. Training human mesenchymal stromal cells for bone tissue engineering applications

    NARCIS (Netherlands)

    Doorn, J.

    2012-01-01

    Human mesenchymal stromal cells (hMSCs) are an interesting source for cell therapies and tissue engineering applications, because these cells are able to differentiate into various target tissues, such as bone, cartilage, fat and endothelial cells. In addition, they secrete a wide array of growth fa

  1. Stromal mesenchyme cell genes of the human prostate and bladder

    Directory of Open Access Journals (Sweden)

    Pascal Laura E

    2005-12-01

    Full Text Available Abstract Background Stromal mesenchyme cells play an important role in epithelial differentiation and likely in cancer as well. Induction of epithelial differentiation is organ-specific, and the genes responsible could be identified through a comparative genomic analysis of the stromal cells from two different organs. These genes might be aberrantly expressed in cancer since cancer could be viewed as due to a defect in stromal signaling. We propose to identify the prostate stromal genes by analysis of differentially expressed genes between prostate and bladder stromal cells, and to examine their expression in prostate cancer. Methods Immunohistochemistry using antibodies to cluster designation (CD cell surface antigens was first used to characterize the stromas of the prostate and bladder. Stromal cells were prepared from either prostate or bladder tissue for cell culture. RNA was isolated from the cultured cells and analyzed by DNA microarrays. Expression of candidate genes in normal prostate and prostate cancer was examined by RT-PCR. Results The bladder stroma was phenotypically different from that of the prostate. Most notable was the presence of a layer of CD13+ cells adjacent to the urothelium. This structural feature was also seen in the mouse bladder. The prostate stroma was uniformly CD13-. A number of differentially expressed genes between prostate and bladder stromal cells were identified. One prostate gene, proenkephalin (PENK, was of interest because it encodes a hormone. Secreted proteins such as hormones and bioactive peptides are known to mediate cell-cell signaling. Prostate stromal expression of PENK was verified by an antibody raised against a PENK peptide, by RT-PCR analysis of laser-capture microdissected stromal cells, and by database analysis. Gene expression analysis showed that PENK expression was down-regulated in prostate cancer. Conclusion Our findings show that the histologically similar stromas of the prostate and

  2. Stromal-cell and cancer-cell exosomes leading the metastatic exodus for the promised niche

    OpenAIRE

    2013-01-01

    Exosomes are thought to play an important role in metastasis. Luga and colleagues have described the production of exosomes by stromal cells such as cancer-associated fibroblasts that are taken up by breast cancer cells and are then loaded with Wnt 11, which is associated with stimulation of the invasiveness and metastasis of the breast cancer cells. Previous studies have shown that exosomes produced by breast cancer cells are taken up by stromal fibroblasts and other stromal cells, suggestin...

  3. Stromal cells in chronic inflammation and tertiary lymphoid organ formation.

    Science.gov (United States)

    Buckley, Christopher D; Barone, Francesca; Nayar, Saba; Bénézech, Cecile; Caamaño, Jorge

    2015-01-01

    Inflammation is an unstable state. It either resolves or persists. Why inflammation persists and the factors that define tissue tropism remain obscure. Increasing evidence suggests that tissue-resident stromal cells not only provide positional memory but also actively regulate the differential accumulation of inflammatory cells within inflamed tissues. Furthermore, at many sites of chronic inflammation, structures that mimic secondary lymphoid tissues are observed, suggesting that chronic inflammation and lymphoid tissue formation share common activation programs. Similarly, blood and lymphatic endothelial cells contribute to tissue homeostasis and disease persistence in chronic inflammation. This review highlights our increasing understanding of the role of stromal cells in inflammation and summarizes the novel immunological role that stromal cells exert in the persistence of inflammatory diseases.

  4. Adult Stromal (Skeletal, Mesenchymal) Stem Cells: Advances Towards Clinical Applications

    DEFF Research Database (Denmark)

    Kermani, Abbas Jafari; Harkness, Linda; Zaher, Walid;

    2014-01-01

    Mesenchymal Stem Cells (MSC) are non-hematopoietic adult stromal cells that reside in a perivascular niche in close association with pericytes and endothelial cells and possess self-renewal and multi-lineage differentiation capacity. The origin, unique properties, and therapeutic benefits of MSC ...

  5. SPONTANEOUS TRANSFORMATION OF CULTURED PORCINE BONE MARROW STROMAL CELLS

    DEFF Research Database (Denmark)

    Zou, Lijin; Zou, Xuenong; Li, Haisheng;

    INTRODUCTION Recently, the possibility that tumors originate from cancer stem cells (CSCs) has been proposed. Stem cells and CSCs share certain features such as self-renewal and differentiation potential. The aim of this study was to evaluate whether bone marrow stromal cells (BMSC) after long-te...

  6. Derivation of Corneal Keratocyte-Like Cells from Human Induced Pluripotent Stem Cells

    Science.gov (United States)

    Naylor, Richard W.; McGhee, Charles N. J.; Cowan, Chad A.; Davidson, Alan J.; Holm, Teresa M.; Sherwin, Trevor

    2016-01-01

    Corneal diseases such as keratoconus represent a relatively common disorder in the human population. However, treatment is restricted to corneal transplantation, which only occurs in the most advanced cases. Cell based therapies may offer an alternative approach given that the eye is amenable to such treatments and corneal diseases like keratoconus have been associated specifically with the death of corneal keratocytes. The ability to generate corneal keratocytes in vitro may enable a cell-based therapy to treat patients with keratoconus. Human induced pluripotent stem cells (hiPSCs) offer an abundant supply of cells from which any cell in the body can be derived. In the present study, hiPSCs were successfully differentiated into neural crest cells (NCCs), the embryonic precursor to keratocytes, and then cultured on cadaveric corneal tissue to promote keratocyte differentiation. The hiPSC-derived NCCs were found to migrate into the corneal stroma where they acquired a keratocyte-like morphology and an expression profile similar to corneal keratocytes in vivo. These results indicate that hiPSCs can be used to generate corneal keratocytes in vitro and lay the foundation for using these cells in cornea cell-based therapies. PMID:27792791

  7. Targeting stromal glutamine synthetase in tumors disrupts tumor microenvironment-regulated cancer cell growth

    Science.gov (United States)

    Reactive stromal cells are an integral part of tumor microenvironment (TME) and interact with cancer cells to regulate their growth. Although targeting stromal cells could be a viable therapy to regulate the communication between TME and cancer cells, identification of stromal targets that make canc...

  8. Effects of granulosa cells on steroidogenesis, proliferation and apoptosis of stromal cells and theca cells derived from the goat ovary.

    Science.gov (United States)

    Qiu, Mingning; Quan, Fusheng; Han, Chengquan; Wu, Bin; Liu, Jun; Yang, Zhongcai; Su, Feng; Zhang, Yong

    2013-11-01

    The aim of this study was to investigate the effect of granulosa cells from small antral follicles on steroidogenesis, proliferation and apoptosis of goat ovarian stromal and theca cells in vitro. Using Transwell co-culture system, we evaluated androgen production, LH responsiveness, cell proliferation and apoptosis and some molecular expression regarding steroidogenic enzyme and apoptosis-related genes in stromal and theca cells. The results indicated that the co-culture with granulosa cells increased steroidogenesis, LH responsiveness and bcl-2 gene expression as well as decreased apoptotic bax and bad expressions in stromal and theca cells. Thus, granulosa cells had a capacity of promoting steroidogenesis in stromal cell and LH responsiveness in cortical stromal cells, maintaining steroidogenesis in theca cells, inhibiting apoptosis of cortical stromal cells and improving anti-apoptotic abilities of stromal and theca cells.

  9. Feline corneal disease.

    Science.gov (United States)

    Moore, Phillip Anthony

    2005-05-01

    The cornea is naturally transparent. Anything that interferes with the cornea's stromal architecture, contributes to blood vessel migration, increases corneal pigmentation, or predisposes to corneal edema, disrupts the corneas transparency and indicates corneal disease. The color, location, and shape and pattern of a corneal lesion can help in determining the underlying cause for the disease. Corneal disease is typically divided into congenital or acquired disorders. Congenital disorders, such as corneal dermoids are rare in cats, whereas acquired corneal disease associated with nonulcerative or ulcerative keratitis is common. Primary ocular disease, such as tear film instability, adenexal disease (medial canthal entropion, lagophthalmus, eyelid agenesis), and herpes keratitis are associated with the majority of acquired corneal disease in cats. Proliferative/eosinophilic keratitis, acute bullous keratopathy, and Florida keratopathy are common feline nonulcerative disorders. Nonprogressive ulcerative disease in cats, such as chronic corneal epithelial defects and corneal sequestration are more common than progressive corneal ulcerations.

  10. Bone marrow stromal cell : mediated neuroprotection for spinal cord repair

    NARCIS (Netherlands)

    Ritfeld, Gaby Jane

    2014-01-01

    Currently, there is no treatment available that restores anatomy and function after spinal cord injury. This thesis explores transplantation of bone marrow-derived mesenchymal stem cells (bone marrow stromal cells; BMSCs) as a therapeutic approach for spinal cord repair. BMSCs secrete neurotrophic f

  11. Endogenous collagen influences differentiation of human multipotent mesenchymal stromal cells

    NARCIS (Netherlands)

    Fernandes, H.; Mentink, A.; Bank, R.; Stoop, R.; Blitterswijk, C. van; Boer, J. de

    2010-01-01

    Human multipotent mesenchymal stromal cells (hMSCs) are multipotent cells that, in the presence of appropriate stimuli, can differentiate into different lineages such as the osteogenic, chondrogenic, and adipogenic lineages. In the presence of ascorbic acid, MSCs secrete an extracellular matrix main

  12. Caveolin-1 associated adenovirus entry into human corneal cells.

    Directory of Open Access Journals (Sweden)

    Mohammad A Yousuf

    Full Text Available The cellular entry of viruses represents a critical area of study, not only for viral tropism, but also because viral entry dictates the nature of the immune response elicited upon infection. Epidemic keratoconjunctivitis (EKC, caused by viruses within human adenovirus species D (HAdV-D, is a severe, ocular surface infection associated with corneal inflammation. Clathrin-mediated endocytosis has previously been shown to play a critical role in entry of other HAdV species into many host cell types. However, HAdV-D endocytosis into corneal cells has not been extensively studied. Herein, we show an essential role for cholesterol rich, lipid raft microdomains and caveolin-1, in the entry of HAdV-D37 into primary human corneal fibroblasts. Cholesterol depletion using methyl-β-cyclodextrin (MβCD profoundly reduced viral infection. When replenished with soluble cholesterol, the effect of MβCD was reversed, allowing productive viral infection. HAdV-D37 DNA was identified in caveolin-1 rich endosomal fractions after infection. Src kinase activity was also increased in caveolin-1 rich endosomal fractions after infection, and Src phosphorylation and CXCL1 induction were both decreased in caveolin-1-/- mice corneas compared to wild type mice. siRNA knock down of caveolin-1 in corneal cells reduced chemokine induction upon viral infection, and caveolin-1-/- mouse corneas showed reduced cellular entry of HAdV-D37. As a control, HAdV-C2, a non-corneal pathogen, appeared to utilize the caveolar pathway for entry into A549 cells, but failed to infect corneal cells entirely, indicating virus and cell specific tropism. Immuno-electron microscopy confirmed the presence of caveolin-1 in HAdV-D37-containing vesicles during the earliest stages of viral entry. Collectively, these experiments indicate for the first time that HAdV-D37 uses a lipid raft mediated caveolin-1 associated pathway for entry into corneal cells, and connects the processes of viral entry with

  13. Cartographic system for spatial distribution analysis of corneal endothelial cells.

    Science.gov (United States)

    Corkidi, G; Márquez, J; García-Ruiz, M; Díaz-Cintra, S; Graue, E

    1994-07-01

    A combined cartographic and morphometric endothelium analyser has been developed by integrating the HISTO 2000 histological imaging and analysis system with a prototype human corneal endothelium analyser. The complete system allows the elaboration and analysis of cartographies of corneal endothelial tissue, and hence the in vitro study of the spatial distribution of corneal endothelial cells, according to their regional morphometric characteristics (cell size and polygonality). The global cartographic reconstruction is obtained by sequential integration of the data analysed for each microscopic field. Subsequently, the location of each microscopically analysed field is referred to its real position on the histologic preparation by means of X-Y co-ordinates; both are provided by micrometric optoelectronic sensors installed on the optical microscope stage. Some cartographies of an excised human corneal keratoconus button in vitro are also presented. These cartographic images allow a macroscopic view of endothelial cells analysed microscopically. Parametric colour images show the spatial distribution of endothelial cells, according to their specific morphometric parameters, and exhibit the variability in size and cellular shape which depend on the analysed area.

  14. Atypical Herpes simplex keratitis (HSK presenting as a perforated corneal ulcer with a large infiltrate in a contact lens wearer: multinucleated giant cells in the Giemsa smear offered a clue to the diagnosis

    Directory of Open Access Journals (Sweden)

    Vemuganti Geeta K

    2001-04-01

    Full Text Available Abstract Purpose To report a case of atypical herpes simplex keratitis initially diagnosed as bacterial keratitis, in a contact lens wearer. Results Case report of an 18-year-old woman using contact lenses who presented with pain, redness and gradual decrease in vision in the right eye. Examination revealed a paracentral large stromal infiltrate with a central 2-mm perforation. Corneal and conjunctival scrapings were collected for microbiological investigations. Corneal tissue was obtained following penetrating keratoplasty. Corneal scraping revealed no microorganisms. Giemsa stained smear showed multinucleated giant cells. Conjunctival, corneal scrapings and tissue were positive for herpes simplex virus - 1 (HSV antigen. Corneal tissue was positive for HSV DNA by PCR. Conclusions Atypical HSV keratitis can occur in contact lens wearers. A simple investigation like Giemsa stain may offer a clue to the diagnosis.

  15. The Preliminary Experimental Study of Induced Differentiation of Embryonic Stem Cells into Corneal Epithelial Cells

    Institute of Scientific and Technical Information of China (English)

    Ling Yu; Jian Ge; Zhichong Wang; Bing Huang; Keming Yu; Chongde Long; Xigu Chen

    2001-01-01

    Purpose:To study preliminarily induced differentiation of embryonic stem cells intocorneal epithelial cells in vitro.Methods: Murine embryonic stem cells were co-cultured with Rabbit limbal cornealepithelial cells in Transwell system to induce differentiation. Mophological andimmunohistochemical examination were implemented.Results: The induced cells from embryonic stem cells have an epithelial appearance.The cells formed a network and were confluent into film gradually after beingco-cultured with rabbit limbal corneal epithelial cells for 24 ~ 96 hours. The cells rangedmosaic structure and localized together with clear rim. Most of the cells showedpolygonal appearance. Transmission electron microscope showed lots of microvilli on thesurface of induced cells and tight junctions between them. These epithelial-like cellsexpressed the corneal epithelial cell specific marker cytokeratin3/cytokeratinl2.Conclusion: The potential mechanism of the differentiation of murine embryonic stemcells into corneal epithelial cells induced by limbal corneal epithelial cell-derivedinducing activity is to be further verified.

  16. File list: His.Adp.50.AllAg.Adipose_stromal_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.50.AllAg.Adipose_stromal_cell hg19 Histone Adipocyte Adipose stromal cell S...15,SRX019508,SRX019494 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.50.AllAg.Adipose_stromal_cell.bed ...

  17. File list: DNS.Utr.50.AllAg.Endometrial_stromal_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Utr.50.AllAg.Endometrial_stromal_cells hg19 DNase-seq Uterus Endometrial stroma...l cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Utr.50.AllAg.Endometrial_stromal_cells.bed ...

  18. File list: DNS.Utr.20.AllAg.Endometrial_stromal_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Utr.20.AllAg.Endometrial_stromal_cells hg19 DNase-seq Uterus Endometrial stroma...l cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Utr.20.AllAg.Endometrial_stromal_cells.bed ...

  19. File list: Unc.Adp.20.AllAg.Adipose_stromal_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.20.AllAg.Adipose_stromal_cell hg19 Unclassified Adipocyte Adipose stromal c...ell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Adp.20.AllAg.Adipose_stromal_cell.bed ...

  20. File list: His.Adp.20.AllAg.Adipose_stromal_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.20.AllAg.Adipose_stromal_cell hg19 Histone Adipocyte Adipose stromal cell S...11,SRX019515,SRX019508 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.20.AllAg.Adipose_stromal_cell.bed ...

  1. File list: DNS.Adp.05.AllAg.Adipose_stromal_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.05.AllAg.Adipose_stromal_cell hg19 DNase-seq Adipocyte Adipose stromal cell... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Adp.05.AllAg.Adipose_stromal_cell.bed ...

  2. File list: DNS.Adp.10.AllAg.Adipose_stromal_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.10.AllAg.Adipose_stromal_cell hg19 DNase-seq Adipocyte Adipose stromal cell... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Adp.10.AllAg.Adipose_stromal_cell.bed ...

  3. File list: Pol.Utr.20.AllAg.Endometrial_stromal_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Utr.20.AllAg.Endometrial_stromal_cells hg19 RNA polymerase Uterus Endometrial stroma...l cells SRX1048949 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Utr.20.AllAg.Endometrial_stromal_cells.bed ...

  4. File list: DNS.Utr.10.AllAg.Endometrial_stromal_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Utr.10.AllAg.Endometrial_stromal_cells hg19 DNase-seq Uterus Endometrial stroma...l cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Utr.10.AllAg.Endometrial_stromal_cells.bed ...

  5. File list: DNS.Utr.05.AllAg.Endometrial_stromal_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Utr.05.AllAg.Endometrial_stromal_cells hg19 DNase-seq Uterus Endometrial stroma...l cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Utr.05.AllAg.Endometrial_stromal_cells.bed ...

  6. File list: Unc.Utr.05.AllAg.Endometrial_stromal_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Utr.05.AllAg.Endometrial_stromal_cells hg19 Unclassified Uterus Endometrial stroma...l cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Utr.05.AllAg.Endometrial_stromal_cells.bed ...

  7. File list: DNS.Adp.50.AllAg.Adipose_stromal_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.50.AllAg.Adipose_stromal_cell hg19 DNase-seq Adipocyte Adipose stromal cell... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Adp.50.AllAg.Adipose_stromal_cell.bed ...

  8. File list: Pol.Adp.10.AllAg.Adipose_stromal_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.10.AllAg.Adipose_stromal_cell hg19 RNA polymerase Adipocyte Adipose stromal... cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Adp.10.AllAg.Adipose_stromal_cell.bed ...

  9. File list: Unc.Adp.05.AllAg.Adipose_stromal_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.05.AllAg.Adipose_stromal_cell hg19 Unclassified Adipocyte Adipose stromal c...ell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Adp.05.AllAg.Adipose_stromal_cell.bed ...

  10. File list: Unc.Utr.20.AllAg.Endometrial_stromal_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Utr.20.AllAg.Endometrial_stromal_cells hg19 Unclassified Uterus Endometrial stroma...l cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Utr.20.AllAg.Endometrial_stromal_cells.bed ...

  11. File list: Unc.Adp.10.AllAg.Adipose_stromal_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.10.AllAg.Adipose_stromal_cell hg19 Unclassified Adipocyte Adipose stromal c...ell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Adp.10.AllAg.Adipose_stromal_cell.bed ...

  12. File list: Pol.Adp.20.AllAg.Adipose_stromal_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.20.AllAg.Adipose_stromal_cell hg19 RNA polymerase Adipocyte Adipose stromal... cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Adp.20.AllAg.Adipose_stromal_cell.bed ...

  13. File list: Unc.Adp.50.AllAg.Adipose_stromal_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.50.AllAg.Adipose_stromal_cell hg19 Unclassified Adipocyte Adipose stromal c...ell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Adp.50.AllAg.Adipose_stromal_cell.bed ...

  14. File list: Unc.Utr.10.AllAg.Endometrial_stromal_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Utr.10.AllAg.Endometrial_stromal_cells hg19 Unclassified Uterus Endometrial stroma...l cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Utr.10.AllAg.Endometrial_stromal_cells.bed ...

  15. File list: Pol.Utr.50.AllAg.Endometrial_stromal_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Utr.50.AllAg.Endometrial_stromal_cells hg19 RNA polymerase Uterus Endometrial stroma...l cells SRX1048949 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Utr.50.AllAg.Endometrial_stromal_cells.bed ...

  16. File list: Pol.Utr.10.AllAg.Endometrial_stromal_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Utr.10.AllAg.Endometrial_stromal_cells hg19 RNA polymerase Uterus Endometrial stroma...l cells SRX1048949 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Utr.10.AllAg.Endometrial_stromal_cells.bed ...

  17. File list: Oth.Utr.50.AllAg.Endometrial_stromal_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Utr.50.AllAg.Endometrial_stromal_cells hg19 TFs and others Uterus Endometrial stroma...l cells SRX372174,SRX1048948,SRX735140,SRX735139,SRX1048946,SRX1048945 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Utr.50.AllAg.Endometrial_stromal_cells.bed ...

  18. File list: Pol.Utr.05.AllAg.Endometrial_stromal_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Utr.05.AllAg.Endometrial_stromal_cells hg19 RNA polymerase Uterus Endometrial stroma...l cells SRX1048949 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Utr.05.AllAg.Endometrial_stromal_cells.bed ...

  19. File list: His.Adp.05.AllAg.Adipose_stromal_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.05.AllAg.Adipose_stromal_cell hg19 Histone Adipocyte Adipose stromal cell S...04,SRX019497,SRX019503 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.05.AllAg.Adipose_stromal_cell.bed ...

  20. File list: Oth.Utr.20.AllAg.Endometrial_stromal_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Utr.20.AllAg.Endometrial_stromal_cells hg19 TFs and others Uterus Endometrial stroma...l cells SRX1048945,SRX372174,SRX1048948,SRX1048946,SRX735140,SRX735139 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Utr.20.AllAg.Endometrial_stromal_cells.bed ...

  1. File list: Oth.Utr.05.AllAg.Endometrial_stromal_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Utr.05.AllAg.Endometrial_stromal_cells hg19 TFs and others Uterus Endometrial stroma...l cells SRX1048945,SRX1048948,SRX1048946,SRX372174,SRX735140,SRX735139 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Utr.05.AllAg.Endometrial_stromal_cells.bed ...

  2. File list: Pol.Adp.50.AllAg.Adipose_stromal_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.50.AllAg.Adipose_stromal_cell hg19 RNA polymerase Adipocyte Adipose stromal... cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Adp.50.AllAg.Adipose_stromal_cell.bed ...

  3. File list: Unc.Utr.50.AllAg.Endometrial_stromal_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Utr.50.AllAg.Endometrial_stromal_cells hg19 Unclassified Uterus Endometrial stroma...l cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Utr.50.AllAg.Endometrial_stromal_cells.bed ...

  4. File list: Oth.Utr.10.AllAg.Endometrial_stromal_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Utr.10.AllAg.Endometrial_stromal_cells hg19 TFs and others Uterus Endometrial stroma...l cells SRX1048945,SRX1048948,SRX1048946,SRX372174,SRX735140,SRX735139 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Utr.10.AllAg.Endometrial_stromal_cells.bed ...

  5. File list: Pol.Adp.05.AllAg.Adipose_stromal_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.05.AllAg.Adipose_stromal_cell hg19 RNA polymerase Adipocyte Adipose stromal... cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Adp.05.AllAg.Adipose_stromal_cell.bed ...

  6. File list: His.Adp.10.AllAg.Adipose_stromal_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.10.AllAg.Adipose_stromal_cell hg19 Histone Adipocyte Adipose stromal cell S...17,SRX019503,SRX019497 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.10.AllAg.Adipose_stromal_cell.bed ...

  7. File list: DNS.Adp.20.AllAg.Adipose_stromal_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.20.AllAg.Adipose_stromal_cell hg19 DNase-seq Adipocyte Adipose stromal cell... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Adp.20.AllAg.Adipose_stromal_cell.bed ...

  8. Effect of culture medium on propagation and phenotype of corneal stroma-derived stem cells.

    Science.gov (United States)

    Sidney, Laura E; Branch, Matthew J; Dua, Harminder S; Hopkinson, Andrew

    2015-12-01

    The limbal area of the corneal stroma has been identified as a source of mesenchymal-like stem cells, which have potential for exploitation as a cell therapy. However, the optimal culture conditions are disputed and few direct media comparisons have been performed. In this report, we evaluated several media types to identify the optimal for inducing an in vitro stem cell phenotype. Primary human corneal stroma-derived stem cells (CSSCs) were extracted from corneoscleral rims. Culture in seven different media types was compared: Dulbecco's modified Eagle's medium (DMEM) with 10% fetal bovine serum (FBS); M199 with 20% FBS; DMEM-F12 with 20% serum replacement, basic fibroblast growth factor and leukemia inhibitory factor (SCM); endothelial growth medium (EGM); semi-solid MethoCult; serum-free keratinocyte medium (K-SFM); and StemPro-34. Effects on proliferation, morphology, protein and messenger RNA expression were evaluated. All media supported proliferation of CSSCs with the exception of K-SFM and StemPro-34. Morphology differed between media: DMEM produced large cells, whereas EGM produced very small cells. Culture in M199 produced a typical mesenchymal stromal cell phenotype with high expression of CD105, CD90 and CD73 but not CD34. Culture in SCM produced a phenotype more reminiscent of a progenitor cell type with expression of CD34, ABCG2, SSEA-4 and PAX6. Culture medium can significantly influence CSSC phenotype. SCM produced a cell phenotype closest to that of a pluripotent stem cell, and we consider it to be the most appropriate for development as a clinical-grade medium for the production of CSSC phenotypes suitable for cell therapy. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  9. Corneal endothelial cell density and morphology and central corneal thickness in Guangxi Maonan and Han adolescent students of China

    Institute of Scientific and Technical Information of China (English)

    Hao; Liang; Hui-Yi; Zuo; Jin-Mao; Chen; Jie; Cai; Yu-Zhua; Qin; Yu-Ping; Huang; Ying-Ying; Chen; Dong-Yong; Tang; Shao-Jian; Tan

    2015-01-01

    AIM: To investigate the corneal endothelial cell density and morphology and central corneal thickness in the Guangxi Maonan and Han adolescent students of China.METHODS: Noncontact specular microscope(Topcon SP3000 P, Tokyo, Japan) was performed in 133 adolescent students of Maonan nationality(M:F 54:79)and 105 adolescent students of Han nationality(M:F 50:55),5 to 20 y of age, who were randomly selected from 3schools in Huanjiang Maonan Autonomous County of Guangxi Zhuang Autonomous Region of China.Parameters studied included endothelial cell density,mean cell area, coefficient of variation in cell size,percentage hexagonality and central corneal thickness. RESULTS: Endothelial cell density, mean cell area,coefficient of variation in cell size, percentage hexagonality and central corneal thickness in the study population were(2969.50 ±253.93) cells/mm2,(339.23 ±29.44) μm2,(29.96 ±4.07) %,(64.58 ±9.41) % and(523.71 ±32.82) μm in Maonan and(2998.26 ±262.65) cells/mm2,(336.11±30.07) μm2,(29.89±5.03) %,(64.91±11.64) % and(524.39 ±33.15) μm in Han, respectively. No significant differences were observed in endothelial cell density,mean cell area, coefficient of variation in cell size,percentage hexagonality and central corneal thickness between Maonan and Han(P =0.615, 0.659, 0.528, 0.551,0.999). In Maonan and Han, we found age was negatively correlated with endothelial cell density and percentagehexagonality and positively correlated with mean cell area and coefficient of variation in cell size. Negative correlation was also found between central corneal thickness and age in Han, whereas no correlation was found in Maonan. CONCLUSION: There were no differences between Maonan and Han in corneal endothelial cell density and morphology and central corneal thickness. In these two nationalities, there were statistically significant decrease in endothelial cell density and percentage hexagonality with increasing age and statistically significant increase in

  10. Corneal Endothelial Cell Density and Morphology in Healthy Turkish Eyes

    Directory of Open Access Journals (Sweden)

    Ceyhun Arıcı

    2014-01-01

    Full Text Available Purpose. To describe the normative values of corneal endothelial cell density, morphology, and central corneal thickness in healthy Turkish eyes. Methods. Specular microscopy was performed in 252 eyes of 126 healthy volunteers (M : F, 42 : 84. Parameters studied included mean endothelial cell density (MCD, mean cell area (MCA, coefficient of variation (CV in cell size, percentage of hexagonal cells, and central corneal thickness (CCT. Results. The mean age of volunteers was 44.3±13.5 (range, 20 to 70 years. There was a statistically significant decrease in MCD (P<0.001; correlation, −0.388 and percentage of hexagonal cells, (P<0.001; correlation, −0.199 with age. There was also a statistically significant increase in MCA (P<0.001; correlation, 0.363 with increasing age. There was no statistically significant difference in MCD, MCA, CV in cell size, percentage of hexagonal cells, and CCT between genders and there was also no significant difference in these parameters between fellow eyes of subjects. Conclusions. Normotive data for the endothelium in the Turkish population are reported. Endothelial cell density in the Turkish eyes is less than that described in the Japanese, American, Chinese, and Filipino eyes and higher than that described in Indian, Thai, and Iranian eyes.

  11. Protective Effects of Trehalose on the Corneal Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Pasquale Aragona

    2014-01-01

    Full Text Available Purpose. Aim of the present work was to evaluate the effects of the trehalose on the corneal epithelium undergoing alcohol delamination. Methods. Twelve patients undergoing laser subepithelial keratomileusis (LASEK were consecutively included in the study. The right eyes were pretreated with 3% trehalose eye drops, whilst left eyes were used as control. Epithelial specimens were processed for cells vitality assessment, apoptosis, and light and transmission electron microscopy; a morphometric analysis was performed in both groups. Results. In both trehalose-untreated eyes (TUE and trehalose-treated eyes (TTE, the percentage of vital cells was similar and no apoptotic cells were observed. In TUE, the corneal epithelium showed superficial cells with reduced microfolds, wing cells with vesicles and dilated intercellular spaces, and dark basal cells with vesicles and wide clefts. In TTE, superficial and wing cells were better preserved, and basal cells were generally clear with intracytoplasmatic vesicles. The morphometric analysis showed statistically significant differences between the two groups: the TTE epithelial height was higher, the basal cells showed larger area and clearer cytoplasm. The distribution of desmosomes and hemidesmosomes was significantly different between the groups. Conclusions. Trehalose administration better preserved morphological and morphometric features of alcohol-treated corneal epithelium, when compared to controls.

  12. Discovery of molecular markers to discriminate corneal endothelial cells in the human body

    NARCIS (Netherlands)

    Yoshihara, Masahito; Ohmiya, Hiroko; Hara, Susumu; Kawasaki, Satoshi; Hayashizaki, Yoshihide; Itoh, Masayoshi; Kawaji, Hideya; Tsujikawa, Motokazu; Nishida, Kohji; Clevers, J.C.; van de Wetering, M.L.

    2015-01-01

    The corneal endothelium is a monolayer of hexagonal corneal endothelial cells (CECs) on the inner surface of the cornea. CECs are critical in maintaining corneal transparency through their barrier and pump functions. CECs in vivo have a limited capacity in proliferation, and loss of a significant

  13. Discovery of molecular markers to discriminate corneal endothelial cells in the human body

    NARCIS (Netherlands)

    Yoshihara, Masahito; Ohmiya, Hiroko; Hara, Susumu; Kawasaki, Satoshi; Hayashizaki, Yoshihide; Itoh, Masayoshi; Kawaji, Hideya; Tsujikawa, Motokazu; Nishida, Kohji; Clevers, J.C.; van de Wetering, M.L.

    2015-01-01

    The corneal endothelium is a monolayer of hexagonal corneal endothelial cells (CECs) on the inner surface of the cornea. CECs are critical in maintaining corneal transparency through their barrier and pump functions. CECs in vivo have a limited capacity in proliferation, and loss of a significant nu

  14. Human mesenchymal stromal cells : biological characterization and clinical application

    NARCIS (Netherlands)

    Bernardo, Maria Ester

    2010-01-01

    This thesis focuses on the characterization of the biological and functional properties of human mesenchymal stromal cells (MSCs), isolated from different tissue sources. The differentiation capacity of MSCs from fetal and adult tissues has been tested and compared. Umbilical cord blood (UCB) has be

  15. Therapy Effects of Bone Marrow Stromal Cells on Ischemic Stroke

    OpenAIRE

    Xinchun Ye; Jinxia Hu; Guiyun Cui

    2016-01-01

    Stroke is the second most common cause of death and major cause of disability worldwide. Recently, bone marrow stromal cells (BMSCs) have been shown to improve functional outcome after stroke. In this review, we will focus on the protective effects of BMSCs on ischemic brain and the relative molecular mechanisms underlying the protective effects of BMSCs on stroke.

  16. File list: His.Utr.50.AllAg.Endometrial_stromal_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Utr.50.AllAg.Endometrial_stromal_cells hg19 Histone Uterus Endometrial stromal ...X524966,SRX524979,SRX524974,SRX524968,SRX524964,SRX524973 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Utr.50.AllAg.Endometrial_stromal_cells.bed ...

  17. File list: ALL.Adp.20.AllAg.Adipose_stromal_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.20.AllAg.Adipose_stromal_cell hg19 All antigens Adipocyte Adipose stromal c...019497,SRX019518,SRX019504,SRX019511,SRX019515,SRX019508 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.20.AllAg.Adipose_stromal_cell.bed ...

  18. File list: ALL.Adp.50.AllAg.Adipose_stromal_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.50.AllAg.Adipose_stromal_cell hg19 All antigens Adipocyte Adipose stromal c...019518,SRX019504,SRX019511,SRX019515,SRX019508,SRX019494 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.50.AllAg.Adipose_stromal_cell.bed ...

  19. File list: His.Utr.20.AllAg.Endometrial_stromal_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Utr.20.AllAg.Endometrial_stromal_cells hg19 Histone Uterus Endometrial stromal ...X524966,SRX524964,SRX524963,SRX524979,SRX524962,SRX524974 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Utr.20.AllAg.Endometrial_stromal_cells.bed ...

  20. File list: ALL.Adp.05.AllAg.Adipose_stromal_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.05.AllAg.Adipose_stromal_cell hg19 All antigens Adipocyte Adipose stromal c...019496,SRX019511,SRX019518,SRX019504,SRX019497,SRX019503 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.05.AllAg.Adipose_stromal_cell.bed ...

  1. File list: His.Utr.10.AllAg.Endometrial_stromal_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Utr.10.AllAg.Endometrial_stromal_cells hg19 Histone Uterus Endometrial stromal ...X524966,SRX524963,SRX524979,SRX524969,SRX524974,SRX524967 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Utr.10.AllAg.Endometrial_stromal_cells.bed ...

  2. File list: His.Utr.05.AllAg.Endometrial_stromal_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Utr.05.AllAg.Endometrial_stromal_cells hg19 Histone Uterus Endometrial stromal ...X524964,SRX524979,SRX524974,SRX524967,SRX524969,SRX524963 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Utr.05.AllAg.Endometrial_stromal_cells.bed ...

  3. File list: ALL.Adp.10.AllAg.Adipose_stromal_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.10.AllAg.Adipose_stromal_cell hg19 All antigens Adipocyte Adipose stromal c...019504,SRX019510,SRX019496,SRX019517,SRX019503,SRX019497 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.10.AllAg.Adipose_stromal_cell.bed ...

  4. Interleukin 7-engineered stromal cells: a new approach for hastening naive T cell recruitment.

    Science.gov (United States)

    Di Ianni, Mauro; Del Papa, Beatrice; De Ioanni, Maria; Terenzi, Adelmo; Sportoletti, Paolo; Moretti, Lorenzo; Falzetti, Franca; Gaozza, Eugenia; Zei, Tiziana; Spinozzi, Fabrizio; Bagnis, Claude; Mannoni, Patrice; Bonifacio, Elisabetta; Falini, Brunangelo; Martelli, Massimo F; Tabilio, Antonio

    2005-06-01

    In this study we determined whether human stromal cells could be engineered with a retroviral vector carrying the interleukin 7 (IL-7) gene and investigated the effects on T cells in vitro and in vivo in a murine model. Transduced mesenchymal cells strongly express CD90 (98.15%), CD105 (87.6%), and STRO-1 (86.7%). IL-7 production was 16.37 (+/-2 SD) pg/ml, which remained stable for 60 days. In vitro-immunoselected naive T cells maintained the CD45RA+ CD45RO- naive phenotype (4.2 times more than controls) after 7 days of culture with IL-7-engineered stromal cells. The apoptosis rate (4.7%) of the naive T cells cultured with transduced stromal cells overlapped with that of freshly isolated cells. Immunohistological analysis detected stromal cells in bone marrow, spleen, and thymus. Cotransplantation of IL-7-engineered stromal cells with CD34+ cells improved engraftment in terms of CD45+ cells and significantly increased the CD3+ cell count in peripheral blood, bone marrow, and spleen. These data demonstrate the following: (1) human stromal cells can be transduced, generating a normal layer; (2) transduced stromal cells in vitro maintain the naive T cell phenotype; and (3) IL-7-transduced stromal cells in vivo home to lymphoid organs and produce sufficient IL-7 in loco, supporting T cell development in a cotransplantation model. Because of their efficient cytokine production and homing, IL-7-engineered stromal cells might be an ideal vehicle to hasten immunological reconstitution in T cell-depleted hosts.

  5. Effects of N-acetylcysteine on matrix metalloproteinase-9 secretion and cell migration of human corneal epithelial cells

    OpenAIRE

    Ramaesh, T; Ramaesh, K; Riley, S C; West, J.D.; Dhillon, B

    2012-01-01

    Matrix metalloproteinase-9 (MMP-9) secreted by corneal epithelial cells has a role in the remodelling of extracellular matrix and migration of epithelial cells. Elevated levels of MMP-9 activity in the ocular surface may be involved in the pathogenesis of corneal diseases. N-acetylcysteine (NAC) has been used to treat corneal diseases, including recurrent epithelial erosions. In this study, its effects on the MMP-9 secretion and human corneal epithelial (HCE) cell migration were evaluated in ...

  6. Survival and integration of tissue-engineered corneal stroma in a model of corneal ulcer.

    Science.gov (United States)

    Zhang, Chao; Nie, Xin; Hu, Dan; Liu, Yuan; Deng, Zhihong; Dong, Rui; Zhang, Yongjie; Jin, Yan

    2007-08-01

    Tissue-engineered replacement of diseased or damaged tissue has become a reality for some types of tissue, such as skin and cartilage. Tissue-engineered corneal stroma represents a promising concept to overcome the limitations of cornea replacement with allograft. In this study, porcine cornea was decellularized by a series of extraction methods, and the in vivo biocompatibility of the scaffold was measured subcutaneously in rabbits (n = 8). These were not acutely rejected and no abscesses were observed by hematoxylin and eosin staining at the 8th week, indicating that the scaffolds had good biocompatibility. To investigate the potential value of clinical applications, rabbit stromal keratocytes were implanted onto decellularized scaffolds to fabricate tissue-engineered corneal stroma. Allograft, tissue-engineered corneal stroma, or scaffolds were implanted into a model of corneal ulcer. The survival and reconstruction of corneal transplantation were morphologically evaluated by light and electron microscopy until the 32nd week after implantation. Experiments involving transplantation indicated that the epithelial and stromal defect healed quickly, with improvement in corneal clarity. The integration of the graft was accompanied by neurite ingrowth from the host tissue. By 16 weeks after transplantation, the cornea had gradually regained an intact state similar to that of normal cornea. Our results demonstrate that the tissue-engineered corneal stroma with allogenetic cells is a promising therapeutic method for corneal injury.

  7. Differentiation of embryonic stem cells into corneal epithelium

    Institute of Scientific and Technical Information of China (English)

    WANG Zhichong; LIU Jingbo; GE Jian; HUANG Bing; GAO Qianying; LIU Bingqian; WANG Linghua; YU Ling; FAN Zhigang; LU Xiaoming

    2005-01-01

    Our project was to determine whether embryonic stem (ES) cells could be induced to differentiate into corneal epithelia by superficial corneoscleral limbal stroma. To achieve this goal, ES-GFP cell line D3 was pre-induced by retinoic acid (RA). The pre-induced cells were seeded on deepithelialized superficial corneoscleral slices (SCSS) to form a monolayer, and divided into three groups. Group 1 was cultured and passaged in vitro for direct detection. Group 2 was exposed to air-liquid interfaces for 10 days and implanted into the subcutaneous layer of nude mice for 2 weeks for further induction in vivo. Group 3 was cultured in vitro without any inducing factors for control. There were no teratomas found in nude mice which were implanted with differentiated ES cells after two weeks. The differentiated cells showed an appearance of epithelia both in vitro and in vivo. Expression of CK3, P63 and PCNA was detected by immunohistochemical staining in the differentiated cells in group 1 and 2. Microvillis and zonula occludens were observed on the surface of the differentiated cells under an electron microscope. In the control group, ES cells differentiated freely without any inducing factors. Most cells were shed and formed a neuronal dendrite-like structure, and a minority of cells appeared polymorphic. These results demonstrate that ES cells can differentiate into corneal epithelia on the surface of SCSS under the controlled condition. Differentiated ES cells could be used as epithelial seeding cells for the reconstruction of ocular surface and corneal tissue engineering in the future.

  8. Experiment Study of Effect of Perfiuorohexyloctane on Corneal Endothelial Cells

    Institute of Scientific and Technical Information of China (English)

    Xiaoyan Ding; Chunfang Li; Lin Lu; Guanguang Feng; Huling Zheng

    2001-01-01

    Purpose: To investigate the effect of Perfluorohexyloctane (F6H8)on corneal endothelial celIs(CEC) of rabbit eyes. Methods: Fifteen New Zealand white rabbits were devided into two groups:experimental group(F6H8) and control group(BSS) . All rabbits underwent anterior chamber injection of 0. 15ml F6H8 or BSS. Slit-lamp biomicroscopy and corneal endothelium photography were performed pre-operatively and postoperatively. Histopathological examination and Transmission electron microscopy(TEM) were done after the rabbits were sacrificed. Results: All the corneas were clear. Since 4 weeks after operation, the endothelial cells were markedly irregular in size and shape and the number of endothelial cells was markedly decreased. Multilayered retrocorneal membranes (RCM)grew gradually 2 weeks after surgery. Vacuolar degeneration was seen in some endothelial cells. Nuclear degeneration and edema of plasma were seen in TEM. Conclusion: Corneal endothelial cell degenerated after contacting with F6H8 for 2 ~4weeks. As a silicone solvent, it should be removed completely after injection. We don't recommend it to be used as a new intraocular temponade. Eye Science 2001: 17:21 ~ 26.

  9. Cryopreservation and revival of human mesenchymal stromal cells

    DEFF Research Database (Denmark)

    Haack-Sørensen, Mandana; Ekblond, Annette; Kastrup, Jens

    2016-01-01

    Cell-based therapy is a promising and innovative new treatment for different degenerative and autoimmune diseases, and mesenchymal stromal cells (MSCs) from the bone marrow have demonstrated great therapeutic potential due to their immunosuppressive and regenerative capacities. The establishment ...... medium containing DMSO and animal serum or humanderived products for research use and the animal protein-free cryopreservation media CryoStor (BioLife Solutions) for clinical use....

  10. Significance of stromal-1 and stromal-2 signatures and biologic prognostic model in diffuse large B-cell lymphoma

    Science.gov (United States)

    Abdou, Asmaa Gaber; Asaad, Nancy; Kandil, Mona; Shabaan, Mohammed; Shams, Asmaa

    2017-01-01

    Objective : Diffuse Large B Cell Lymphoma (DLBCL) is a heterogeneous group of tumors with different biological and clinical characteristics that have diverse clinical outcomes and response to therapy. Stromal-1 signature of tumor microenvironment of DLBCL represents extracellular matrix deposition and histiocytic infiltrate, whereas stromal-2 represents angiogenesis that could affect tumor progression. Methods : The aim of the present study is to assess the significance of stromal-1 signature using SPARC-1 and stromal-2 signature using CD31 expression and then finally to construct biologic prognostic model (BPM) in 60 cases of DLBCL via immunohistochemistry. Results : Microvessel density (PBPM showed that 42 cases (70%) were of low biologic score (0–1) and 18 cases (30%) were of high biologic score (2–3). Low BPM cases showed less probability for splenic involvement (P=0.04) and a higher rate of complete response to therapy compared with high score cases (P=0.08). Conclusions : The DLBCL microenvironment could modulate tumor progression behavior since angiogenesis and SPARC positive stromal cells promote dissemination by association with spleen involvement and capsular invasion. Biologic prognostic models, including modified BPM, which considered cell origin of DLBCL and stromal signature pathways, could determine DLBCL progression and response to therapy. PMID:28607806

  11. Differentiation and molecular profiling of human embryonic stem cell-derived corneal epithelial cells.

    Science.gov (United States)

    Brzeszczynska, J; Samuel, K; Greenhough, S; Ramaesh, K; Dhillon, B; Hay, D C; Ross, J A

    2014-06-01

    It has been suggested that the isolation of scalable populations of limbal stem cells may lead to radical changes in ocular therapy. In particular, the derivation and transplantation of corneal stem cells from these populations may result in therapies providing clinical normality of the diseased or damaged cornea. Although feasible in theory, the lack of donor material in sufficient quantity and quality currently limits such a strategy. A potential scalable source of corneal cells could be derived from pluripotent stem cells (PSCs). We developed an in vitro and serum-free corneal differentiation model which displays significant promise. Our stepwise differentiation model was designed with reference to development and gave rise to cells which displayed similarities to epithelial progenitor cells which can be specified to cells displaying a corneal epithelial phenotype. We believe our approach is novel, provides a robust model of human development and in the future, may facilitate the generation of corneal epithelial cells that are suitable for clinical use. Additionally, we demonstrate that following continued cell culture, stem cell-derived corneal epithelial cells undergo transdifferentiation and exhibit squamous metaplasia and therefore, also offer an in vitro model of disease.

  12. Spontaneous cancer-stromal cell fusion as a mechanism of prostate cancer androgen-independent progression.

    Directory of Open Access Journals (Sweden)

    Ruoxiang Wang

    Full Text Available We have previously shown that human prostate cancer cells are capable of acquiring malignant attributes through interaction with stromal cells in the tumor microenvironment, while the interacting stromal cells can also become affected with both phenotypic and genotypic alterations. This study used a co-culture model to investigate the mechanism underlying the co-evolution of cancer and stromal cells. Red fluorescent androgen-dependent LNCaP prostate cancer cells were cultured with a matched pair of normal and cancer-associated prostate myofibroblast cells to simulate cancer-stromal interaction, and cellular changes in the co-culture were documented by tracking the red fluorescence. We found frequent spontaneous fusions between cancer and stromal cells throughout the co-culture. In colony formation assays assessing the fate of the hybrid cells, most of the cancer-stromal fusion hybrids remained growth-arrested and eventually perished. However, some of the hybrids survived to form colonies from the co-culture with cancer-associated stromal cells. These derivative clones showed genomic alterations together with androgen-independent phenotype. The results from this study reveal that prostate cancer cells are fusogenic, and cancer-stromal interaction can lead to spontaneous fusion between the two cell types. While a cancer-stromal fusion strategy may allow the stromal compartment to annihilate invading cancer cells, certain cancer-stromal hybrids with increased survival capability may escape annihilation to form a derivative cancer cell population with an altered genotype and increased malignancy. Cancer-stromal fusion thus lays a foundation for an incessant co-evolution between cancer and the cancer-associated stromal cells in the tumor microenvironment.

  13. Phage display against corneal epithelial cells produced bioactive peptides that inhibit Aspergillus adhesion to the corneas.

    Directory of Open Access Journals (Sweden)

    Ge Zhao

    Full Text Available Dissection of host-pathogen interactions is important for both understanding the pathogenesis of infectious diseases and developing therapeutics for the infectious diseases like various infectious keratitis. To enhance the knowledge about pathogenesis infectious keratitis, a random 12-mer peptide phage display library was screened against cultured human corneal epithelial cells (HCEC. Fourteen sequences were obtained and BLASTp analysis showed that most of their homologue counterparts in GenBank were for defined or putative proteins in various pathogens. Based on known or predicted functions of the homologue proteins, ten synthetic peptides (Pc-A to Pc-J were measured for their affinity to bind cells and their potential efficacy to interfere with pathogen adhesion to the cells. Besides binding to HCEC, most of them also bound to human corneal stromal cells and umbilical endothelial cells to different extents. When added to HCEC culture, the peptides induced expression of MyD88 and IL-17 in HCEC, and the stimulated cell culture medium showed fungicidal potency to various extents. While peptides Pc-C and Pc-E inhibited Aspergillus fumigatus (A.f adhesion to HCEC in a dose-dependent manner, the similar inhibition ability of peptides Pc-A and Pc-B required presence of their homologue ligand Alb1p on A.f. When utilized in an eyeball organ culture model and an in vivo A.f keratitis model established in mouse, Pc-C and Pc-E inhibited fungal adhesion to corneas, hence decreased corneal disruption caused by inflammatory infiltration. Affinity pull-down of HCEC membrane proteins with peptide Pc-C revealed several molecules as potential receptors for this peptide. In conclusion, besides proving that phage display-selected peptides could be utilized to interfere with adhesion of pathogens to host cells, hence could be exploited for managing infectious diseases including infectious keratitis, we also proposed that the phage display technique and the

  14. A Stromal Cell Niche for Human and Mouse Type 3 Innate Lymphoid Cells.

    Science.gov (United States)

    Hoorweg, Kerim; Narang, Priyanka; Li, Zhi; Thuery, Anne; Papazian, Natalie; Withers, David R; Coles, Mark C; Cupedo, Tom

    2015-11-01

    Adaptive immunity critically depends on the functional compartmentalization of secondary lymphoid organs. Mesenchymal stromal cells create and maintain specialized niches that support survival, activation, and expansion of T and B cells, and integrated analysis of lymphocytes and their niche has been instrumental in understanding adaptive immunity. Lymphoid organs are also home to type 3 innate lymphoid cells (ILC3), innate effector cells essential for barrier immunity. However, a specialized stromal niche for ILC3 has not been identified. A novel lineage-tracing approach now identifies a subset of murine fetal lymphoid tissue organizer cells that gives rise exclusively to adult marginal reticular cells. Moreover, both cell types are conserved from mice to humans and colocalize with ILC3 in secondary lymphoid tissues throughout life. In sum, we provide evidence that fetal stromal organizers give rise to adult marginal reticular cells and form a dedicated stromal niche for innate ILC3 in adaptive lymphoid organs.

  15. Fetal liver stromal cells promote hematopoietic cell expansion

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Kun; Hu, Caihong [Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030 (China); Zhou, Zhigang [Shanghai 1st People Hospital, Shanghai Jiao Tong University, Shanghai 201620 (China); Huang, Lifang; Liu, Wenli [Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030 (China); Sun, Hanying, E-mail: shanhum@163.com [Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030 (China)

    2009-09-25

    Future application of hematopoietic stem and progenitor cells (HSPCs) in clinical therapies largely depends on their successful expansion in vitro. Fetal liver (FL) is a unique hematopoietic organ in which hematopoietic cells markedly expand in number, but the mechanisms involved remain unclear. Stromal cells (StroCs) have been suggested to provide a suitable cellular environment for in vitro expansion of HSPCs. In this study, murine StroCs derived from FL at E14.5, with a high level of Sonic hedgehog (Shh) and Wnt expression, were found to have an increased ability to support the proliferation of HSPCs. This effect was inhibited by blocking Shh signaling. Supplementation with soluble Shh-N promoted the proliferation of hematopoietic cells by activating Wnt signaling. Our findings suggest that FL-derived StroCs support proliferation of HSPCs via Shh inducing an autocrine Wnt signaling loop. The use of FL-derived StroCs and regulation of the Shh pathway might further enhance HPSC expansion.

  16. Adipose tissue-derived stromal cells express neuronal phenotypes

    Institute of Scientific and Technical Information of China (English)

    杨立业; 刘相名; 孙兵; 惠国桢; 费俭; 郭礼和

    2004-01-01

    Background Adipose tissue-derived stromal cells (ADSCs) can be greatly expanded in vitro, and induced to differentiate into multiple mesenchymal cell types, including osteogenic, chondrogenic, myogenic, and adipogenic cells. This study was designed to investigate the possibility of ADSCs differentiating into neurons.Methods Adipose tissue from rats was digested with collagenase, and adherent stromal cells were cultured. A medium containing a low concentration of fetal bovine serum was adopted to induce the cells to differentiate. ADSCs were identified by immunocytochemistry, and semi-quantitative RT-PCR was applied to detect mRNA expression of neurofilament 1 (NF1), nestin, and neuron-specific enolase (NSE).Results Nestin-positive cells were found occasionally among ADSCs. ADSCs were found to express NSE mRNA and nestin mRNA, but not NF1 mRNA. ADSCs could differentiate into neuron-like cells in a medium composed of a low concentration of fetal bovine serum, and these differentiated cells displayed complicated neuron-like morphologies.Conclusions The data support the hypothesis that adipose tissue contains stem cells capable of differentiating into neurons. These stem cells can overcome their mesenchymal commitment, and may represent an alternative autologous stem cell source for CNS cell transplantation.

  17. Genomics of corneal wound healing: a review of the literature.

    Science.gov (United States)

    Maycock, Nick J R; Marshall, John

    2014-05-01

    Corneal wound healing is a complex process: its mechanisms and the underlying genetic control are not fully understood. It involves the integrated actions of multiple growth factors, cytokines and proteases produced by epithelial cells, stromal keratocytes, inflammatory cells and lacrimal gland cells. Following an epithelial insult, multiple cytokines are released triggering a cascade of events that leads to repair the epithelial defect and remodelling of the stroma to minimize the loss of transparency and function. In this review, we examine the literature surrounding the genomics of corneal wound healing with respect to the following topics: epithelial and stromal wound healing (including inhibition); corneal neovascularisation; the role of corneal nerves in wound healing; the endothelium; the role of aquaporins and aptamers. We also examine the effect of ectasia on corneal wound healing with regard to keratoconus and following corneal surgery. A better understanding of the cellular and molecular changes that occur during repair of corneal wounds will provide the opportunity to design treatments that selectively modulate key phases of the healing process resulting in scars that more closely resemble normal corneal architecture.

  18. Shaping of the tumor microenvironment: Stromal cells and vessels.

    Science.gov (United States)

    Blonska, Marzenna; Agarwal, Nitin K; Vega, Francisco

    2015-10-01

    Lymphomas develop and progress in a specialized tissue microenvironment such as bone marrow as well as secondary lymphoid organs such as lymph node and spleen. The lymphoma microenvironment is characterized by a heterogeneous population of stromal cells, including fibroblastic reticular cells, nurse-like cells, mesenchymal stem cells, follicular dendritic cells, and inflammatory cells such as macrophages, T- and B-cells. These cell populations interact with the lymphoma cells to promote lymphoma growth, survival and drug resistance through multiple mechanisms. Angiogenesis is also recognized as an important factor associated with lymphoma progression. In recent years, we have learned that the interaction between the malignant and non-malignant cells is bidirectional and resembles, at least in part, the pattern seen between non-neoplastic lymphoid cells and the normal microenvironment of lymphoid organs. A summary of the current knowledge of lymphoma microenvironment focusing on the cellular components will be reviewed here. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Hyaluronate Acid-Dependent Protection and Enhanced Corneal Wound Healing against Oxidative Damage in Corneal Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Jing Zhong

    2016-01-01

    Full Text Available Purpose. To evaluate the effects and mechanism of exogenous hyaluronate (HA in promoting corneal wound healing. Methods. Human corneal epithelial cells (HCECs were incubated with different concentrations of HA to evaluate their efficiency in promoting cell migration and their modulation of repair factors. After inducing hyperosmolar conditions, the cell morphologies, cell apoptosis, and expression levels of TNF-α and MMP-9 were detected to assess the protective role of HA. Corneal epithelium-injured rat models were established to test the therapeutic effects of 0.3% HA. Then, the wound healing rates, the RNA expression levels of inflammatory cytokines, and repair factors were examined. Results. HCECs in the 0.03% and 0.3% HA groups showed fewer morphological alterations and lower rates of cell apoptosis following preincubation with HA under hyperosmolar conditions, as well as the expression levels of MMP-9 and TNF-α. In the rat model, the areas of fluorescein staining in the corneas of 0.3% HA group were significantly smaller than the control group. The expression levels of IL-1β and MMP-9 were decreased, while CD44 and FN were increased in the 0.3% HA group. Conclusion. HA enhanced corneal epithelial cell wound healing by promoting cell migration, upregulating repair responses, and suppressing inflammatory responses.

  20. Hyaluronate Acid-Dependent Protection and Enhanced Corneal Wound Healing against Oxidative Damage in Corneal Epithelial Cells.

    Science.gov (United States)

    Zhong, Jing; Deng, Yuqing; Tian, Bishan; Wang, Bowen; Sun, Yifang; Huang, Haixiang; Chen, Ling; Ling, Shiqi; Yuan, Jin

    2016-01-01

    Purpose. To evaluate the effects and mechanism of exogenous hyaluronate (HA) in promoting corneal wound healing. Methods. Human corneal epithelial cells (HCECs) were incubated with different concentrations of HA to evaluate their efficiency in promoting cell migration and their modulation of repair factors. After inducing hyperosmolar conditions, the cell morphologies, cell apoptosis, and expression levels of TNF-α and MMP-9 were detected to assess the protective role of HA. Corneal epithelium-injured rat models were established to test the therapeutic effects of 0.3% HA. Then, the wound healing rates, the RNA expression levels of inflammatory cytokines, and repair factors were examined. Results. HCECs in the 0.03% and 0.3% HA groups showed fewer morphological alterations and lower rates of cell apoptosis following preincubation with HA under hyperosmolar conditions, as well as the expression levels of MMP-9 and TNF-α. In the rat model, the areas of fluorescein staining in the corneas of 0.3% HA group were significantly smaller than the control group. The expression levels of IL-1β and MMP-9 were decreased, while CD44 and FN were increased in the 0.3% HA group. Conclusion. HA enhanced corneal epithelial cell wound healing by promoting cell migration, upregulating repair responses, and suppressing inflammatory responses.

  1. Stromal-cell and cancer-cell exosomes leading the metastatic exodus for the promised niche.

    Science.gov (United States)

    Hoffman, Robert M

    2013-06-18

    Exosomes are thought to play an important role in metastasis. Luga and colleagues have described the production of exosomes by stromal cells such as cancer-associated fibroblasts that are taken up by breast cancer cells and are then loaded with Wnt 11, which is associated with stimulation of the invasiveness and metastasis of the breast cancer cells. Previous studies have shown that exosomes produced by breast cancer cells are taken up by stromal fibroblasts and other stromal cells, suggesting that exosomes are agents of cross-talk between cancer and stromal cells to stimulate metastasis. Imaging of exosomes by labeling with fluorescent proteins will enlighten the process by which exosomes enhance metastasis, including premetastatic niche formation.

  2. A novel closed cell culture device for fabrication of corneal epithelial cell sheets.

    Science.gov (United States)

    Nakajima, Ryota; Kobayashi, Toyoshige; Moriya, Noboru; Mizutani, Manabu; Kan, Kazutoshi; Nozaki, Takayuki; Saitoh, Kazuo; Yamato, Masayuki; Okano, Teruo; Takeda, Shizu

    2015-11-01

    Automation technology for cell sheet-based tissue engineering would need to optimize the cell sheet fabrication process, stabilize cell sheet quality and reduce biological contamination risks. Biological contamination must be avoided in clinical settings. A closed culture system provides a solution for this. In the present study, we developed a closed culture device called a cell cartridge, to be used in a closed cell culture system for fabricating corneal epithelial cell sheets. Rabbit limbal epithelial cells were cultured on the surface of a porous membrane with 3T3 feeder cells, which are separate from the epithelial cells in the cell cartridges and in the cell-culture inserts as a control. To fabricate the stratified cell sheets, five different thicknesses of the membranes which were welded to the cell cartridge, were examined. Multilayered corneal epithelial cell sheets were fabricated in cell cartridges that were welded to a 25 µm-thick gas-permeable membrane, which was similar to the results with the cell-culture inserts. However, stratification of corneal epithelial cell sheets did not occur with cell cartridges that were welded to 100-300 µm-thick gas-permeable membranes. The fabricated cell sheets were evaluated by histological analyses to examine the expression of corneal epithelial-specific markers. Immunohistochemical analyses showed that a putative stem cell marker, p63, a corneal epithelial differentiation maker, CK3, and a barrier function marker, Claudin-1, were expressed in the appropriate position in the cell sheets. These results suggest that the cell cartridge is effective for fabricating corneal epithelial cell sheets.

  3. Equine corneal surgery and transplantation.

    Science.gov (United States)

    Denis, Heidi M

    2004-08-01

    Corneal disease is common in equine ophthalmology and requires vigilant monitoring and appropriate therapy to optimize the outcome. Many equine corneal diseases, particularly those that progress rapidly, may benefit from surgical intervention. These include descemetoceles, deep corneal lacerations and ulcers, corneal perforation/iris prolapse, ulcerative keratitis, corneal stromal abscesses, and corneoscleral neoplasia. Indications for corneal transplantation include optical, tectonic, therapeutic, and cosmetic purposes. Corneal transplantation is most often implemented in equine patients for tectonic and therapeutic reasons when a cornea is compromised by corneal stromal abscess, iris prolapse, or neoplasia. This article provides an outline of when to consider surgical intervention for corneal disease, the procedures available and expected outcomes, and how appropriate early surgical intervention can dramatically improve the end result.

  4. Cell pattern in adult human corneal endothelium.

    Directory of Open Access Journals (Sweden)

    Carlos H Wörner

    Full Text Available A review of the current data on the cell density of normal adult human endothelial cells was carried out in order to establish some common parameters appearing in the different considered populations. From the analysis of cell growth patterns, it is inferred that the cell aging rate is similar for each of the different considered populations. Also, the morphology, the cell distribution and the tendency to hexagonallity are studied. The results are consistent with the hypothesis that this phenomenon is analogous with cell behavior in other structures such as dry foams and grains in polycrystalline materials. Therefore, its driving force may be controlled by the surface tension and the mobility of the boundaries.

  5. An optimized protocol for isolating lymphoid stromal cells from the intestinal lamina propria.

    Science.gov (United States)

    Stzepourginski, Igor; Eberl, Gérard; Peduto, Lucie

    2015-06-01

    Mesenchymal stromal cells in lymphoid organs, also called lymphoid stromal cells (LSCs), play a pivotal role in immunity by forming specialized microenvironments that provide signals for leukocyte migration, positioning, and survival. Best characterized in lymphoid organs, LSCs are also abundant in the intestinal mucosa, which harbors a rich repertoire of immune cells. However, the lack of efficient procedures for isolation and purification of LSCs from the intestine has been a major limitation to their characterization. Here we report a new method to efficiently isolate, in addition to immune cells, viable lymphoid stromal cells and other stromal subsets from the intestinal lamina propria for subsequent phenotypic and functional analysis.

  6. Corneal endothelial cell density and morphology in Phramongkutklao Hospital

    Directory of Open Access Journals (Sweden)

    Narumon Sopapornamorn

    2008-03-01

    Full Text Available Narumon Sopapornamorn1, Manapon Lekskul1, Suthee Panichkul21Department of Ophthalmology, Phramongkutklao Hospital, Bangkok, Thailand; 2Department of Obstetrics and Gynecology, Phramongkutklao College of Medicine, Bangkok, ThailandObjective: To describe the corneal endothelial density and morphology in patients of Phramongkutklao Hospital and the relationship between endothelial cell parameters and other factors.Methods: Four hundred and four eyes of 202 volunteers were included. Noncontact specular microscopy was performed after taking a history and testing the visual acuity, intraocular pressure measurement, Schirmer’s test and routine eye examination by slit lamp microscope. The studied parameters included mean endothelial cell density (MCD, coefficient of variation (CV, and percentage of hexagonality.Results: The mean age of volunteers was 45.73 years; the range being 20 to 80 years old. Their MCD (SD, mean percentage of CV (SD and mean (SD percentage of hexagonality were 2623.49(325 cell/mm2, 39.43(8.23% and 51.50(10.99%, respectively. Statistically, MCD decreased significantly with age (p < 0.01. There was a significant difference in the percentage of CV between genders. There was no statistical significance between parameters and other factors.Conclusion: The normative data of the corneal endothelium of Thai eyes indicated that, statistically, MCD decreased significantly with age. Previous studies have reported no difference in MCD, percentage of CV, and percentage of hexagonality between gender. Nevertheless, significantly different percentages of CV between genders were presented in this study.Keywords: Corneal endothelial cell, parameters, age, gender, smoking, Thailand

  7. Aloe vera extract activity on human corneal cells.

    Science.gov (United States)

    Woźniak, Anna; Paduch, Roman

    2012-02-01

    Ocular diseases are currently an important problem in modern societies. Patients suffer from various ophthalmologic ailments namely, conjunctivitis, dry eye, dacryocystitis or degenerative diseases. Therefore, there is a need to introduce new treatment methods, including medicinal plants usage. Aloe vera [Aloe barbadensis Miller (Liliaceae)] possesses wound-healing properties and shows immunomodulatory, anti-inflammatory or antioxidant activities. NR uptake, MTT, DPPH• reduction, Griess reaction, ELISA and rhodamine-phalloidin staining were used to test toxicity, antiproliferative activity, reactive oxygen species (ROS) reduction, nitric oxide (NO) and cytokine level, and distribution of F-actin in cells, respectively. The present study analyzes the effect of Aloe vera extracts obtained with different solvents on in vitro culture of human 10.014 pRSV-T corneal cells. We found no toxicity of ethanol, ethyl acetate and heptane extracts of Aloe vera on human corneal cells. No ROS reducing activity by heptane extract and trace action by ethanol (only at high concentration 125 µg/ml) extract of Aloe vera was observed. Only ethyl acetate extract expressed distinct free radical scavenging effect. Plant extracts decreased NO production by human corneal cells as compared to untreated controls. The cytokine (IL-1β, IL-6, TNF-α and IL-10) production decreased after the addition of Aloe vera extracts to the culture media. Aloe vera contains multiple pharmacologically active substances which are capable of modulating cellular phenotypes and functions. Aloe vera ethanol and ethyl acetate extracts may be used in eye drops to treat inflammations and other ailments of external parts of the eye such as the cornea.

  8. T cells stimulate catabolic gene expression by the stromal cells from giant cell tumor of bone

    Energy Technology Data Exchange (ETDEWEB)

    Cowan, Robert W. [Department of Pathology and Molecular Medicine, McMaster University, 1280 Main St. W., Hamilton, ON, Canada L8S 4L8 (Canada); Juravinski Cancer Centre, 699 Concession St., Hamilton, ON, Canada L8V 5C2 (Canada); Ghert, Michelle [Juravinski Cancer Centre, 699 Concession St., Hamilton, ON, Canada L8V 5C2 (Canada); Department of Surgery, McMaster University, 1280 Main St. W., Hamilton, ON, Canada L8S 4L8 (Canada); Singh, Gurmit, E-mail: gurmit.singh@jcc.hhsc.ca [Department of Pathology and Molecular Medicine, McMaster University, 1280 Main St. W., Hamilton, ON, Canada L8S 4L8 (Canada); Juravinski Cancer Centre, 699 Concession St., Hamilton, ON, Canada L8V 5C2 (Canada)

    2012-03-23

    Highlights: Black-Right-Pointing-Pointer Two T cell lines stimulate PTHrP, RANKL, MMP13 gene expression in GCT cell cultures. Black-Right-Pointing-Pointer CD40 expressed by stromal cells; CD40L detected in whole tumor but not cultures. Black-Right-Pointing-Pointer Effect of CD40L treatment on GCT cells increased PTHrP and MMP13 gene expression. Black-Right-Pointing-Pointer PTHrP treatment increased MMP13 expression, while inhibition decreased expression. Black-Right-Pointing-Pointer T cells may stimulate GCT stromal cells and promote the osteolysis of the tumor. -- Abstract: The factors that promote the localized bone resorption by giant cell tumor of bone (GCT) are not fully understood. We investigated whether T cells could contribute to bone resorption by stimulating expression of genes for parathyroid hormone-related protein (PTHrP), matrix metalloproteinase (MMP)-13, and the receptor activator of nuclear-factor {kappa}B ligand (RANKL). Two cell lines, Jurkat clone E6-1 and D1.1, were co-cultured with isolated GCT stromal cells. Real-time PCR analyses demonstrated a significant increase of all three genes following 48 h incubation, and PTHrP and MMP-13 gene expression was also increased at 24 h. Further, we examined the expression of CD40 ligand (CD40L), a protein expressed by activated T cells, and its receptor, CD40, in GCT. Immunohistochemistry results revealed expression of the CD40 receptor in both the stromal cells and giant cells of the tumor. RNA collected from whole GCT tissues showed expression of CD40LG, which was absent in cultured stromal cells, and suggests that CD40L is expressed within GCT. Stimulation of GCT stromal cells with CD40L significantly increased expression of the PTHrP and MMP-13 genes. Moreover, we show that inhibition of PTHrP with neutralizing antibodies significantly decreased MMP13 expression by the stromal cells compared to IgG-matched controls, whereas stimulation with PTHrP (1-34) increased MMP-13 gene expression. These

  9. The Effects of Vitamin A Compounds on Hyaluronic Acid Released from Cultured Rabbit Corneal Epithelial Cells and Keratocytes

    National Research Council Canada - National Science Library

    TOSHIDA, Hiroshi; TABUCHI, Nobuhito; KOIKE, Daisuke; KOIDE, Misao; SUGIYAMA, Keikichi; NAKAYASU, Kiyoo; KANAI, Atsushi; MURAKAMI, Akira

    2012-01-01

    .... Hyaluronic acid is produced by corneal epithelial cells and keratocytes in the eye. We investigated whether rabbit corneal epithelial cells and keratocytes release hyaluronic acid after exposure to vitamin A compounds...

  10. Degradation of polysaccharide hydrogels seeded with bone marrow stromal cells.

    Science.gov (United States)

    Jahromi, Shiva H; Grover, Liam M; Paxton, Jennifer Z; Smith, Alan M

    2011-10-01

    In order to produce hydrogel cell culture substrates that are fit for the purpose, it is important that the mechanical properties are well understood not only at the point of cell seeding but throughout the culture period. In this study the change in the mechanical properties of three biopolymer hydrogels alginate, low methoxy pectin and gellan gum have been assessed in cell culture conditions. Samples of the gels were prepared encapsulating rat bone marrow stromal cells which were then cultured in osteogenic media. Acellular samples were also prepared and incubated in standard cell culture media. The rheological properties of the gels were measured over a culture period of 28 days and it was found that the gels degraded at very different rates. The degradation occurred most rapidly in the order alginate > Low methoxy pectin > gellan gum. The ability of each hydrogel to support differentiation of bone marrow stromal cells to osteoblasts was also verified by evidence of mineral deposits in all three of the materials. These results highlight that the mechanical properties of biopolymer hydrogels can vary greatly during in vitro culture, and provide the potential of selecting hydrogel cell culture substrates with mechanical properties that are tissue specific.

  11. [VEGF gene expression in transfected human multipotent stromal cells].

    Science.gov (United States)

    Smirnikhina, S A; Lavrov, A V; Bochkov, N P

    2011-01-01

    Dynamics of VEGF gene expression in transfected multipotent stromal cells from adipose tissue was examined using electroporation and lipofection. Differences in the potency and dynamics of plasmid elimination (up to day 9) between cell cultures were observed. All cultures were divided into fast and slow plasmid-eliminating ones. Interculture differences in VEGF expression were detected. The possibility of a 5-6-fold increase of VEGF expression was shown. There were no differences in transfection potency, plasmid elimination dynamics, and VEGF expression after transfection by both nonviral methods.

  12. Dry Eye and Corneal Langerhans Cells in Systemic Lupus Erythematosus

    Directory of Open Access Journals (Sweden)

    Miklós D. Resch

    2015-01-01

    Full Text Available Purpose. Investigation of dry eye and corneal Langerhans cells (LCs in systemic lupus erythematosus (SLE. Methods. Prospective consecutive case series of 27 SLE patients and 27 control subjects. Dry eye was evaluated by lid-parallel conjunctival folds (LIPCOF, Schirmer test, tear break-up time (TBUT, and ocular surface disease index (OSDI questionnaire. In vivo investigation of corneal LCs density and morphology (LCM was performed with confocal corneal microscopy (Heidelberg Retina Tomograph with Rostock Cornea Module. Results. Tear production and stability were pathological in SLE subjects compared to control (Schirmer: 8.45 ± 9.82 mm/5 min versus 11.67 ± 3.21 mm/5 min; TBUT: 6.86 ± 3.53 s versus 11.09 ± 3.37 s. OSDI was significantly greater in SLE patients (25.95 ± 17.92 than in controls (11.06 ± 7.18. Central LC density was greater in SLE patients (43.08 ± 48.67 cell/mm2 than in controls (20.57 ± 21.04 cell/mm2. There was no difference in the peripheral LC density (124.78 ± 165.39 versus 78.00 ± 39.51 cell/mm2. LCM was higher in SLE patients in the centre (1.43 ± 0.79 and in the periphery (2.89 ± 0.42 compared to controls (centre: 1.00 ± 0.69, periphery: 2.35 ± 0.54. Conclusions. Significant changes in dry eye parameters and marked increase of central LCs could be demonstrated in SLE patients. SLE alters not only the LC density but also the morphology, modifies corneal homeostasis, and might contribute to the development of dry eye.

  13. Derivation of corneal endothelial cell-like cells from rat neural crest cells in vitro.

    Directory of Open Access Journals (Sweden)

    Chengqun Ju

    Full Text Available The aim of this study was to investigate the feasibility of inducing rat neural crest cells (NCC to differentiate to functional corneal endothelial cell (CEC-like cells in vitro. Rat NCC were induced with adult CEC-derived conditioned medium. Immunofluorescence, flow cytometry and real time RT-PCR assay were used to detect expression of the corneal endothelium differentiation marker N-cadherin and transcription factors FoxC1 and Pitx2. CFDA SE-labeled CEC-like cells were transplanted to the corneal endothelium of a rat corneal endothelium deficiency model, and an eye-down position was maintained for 24 hours to allow cell attachment. The animals were observed for as long as 2 months after surgery and underwent clinical and histological examination. Spindle-like NCC turned to polygonal CEC-like after induction and expressed N-cadherin, FoxC1, Pitx2, zonula occludens-1 and sodium-potassium pump Na(+/K(+ ATPase. The corneas of the experimental group were much clearer than those of the control group and the mean corneal thickness in the experimental group was significantly less than in the control group7, 14, 21 and 28 days after surgery. Confocal microscopy through focusing and histological analysis confirmed that green fluorescence-positive CEC-like cells formed a monolayer covering the Descemet's membrane in the experimental group. In conclusion, CEC-like cells derived from NCCs displayed characters of native CEC, and the induction protocol provides guidance for future human CEC induction from NCC.

  14. Functional inhibition of mesenchymal stromal cells in acute myeloid leukemia.

    Science.gov (United States)

    Geyh, S; Rodríguez-Paredes, M; Jäger, P; Khandanpour, C; Cadeddu, R-P; Gutekunst, J; Wilk, C M; Fenk, R; Zilkens, C; Hermsen, D; Germing, U; Kobbe, G; Lyko, F; Haas, R; Schroeder, T

    2016-03-01

    Hematopoietic insufficiency is the hallmark of acute myeloid leukemia (AML) and predisposes patients to life-threatening complications such as bleeding and infections. Addressing the contribution of mesenchymal stromal cells (MSC) to AML-induced hematopoietic failure we show that MSC from AML patients (n=64) exhibit significant growth deficiency and impaired osteogenic differentiation capacity. This was molecularly reflected by a specific methylation signature affecting pathways involved in cell differentiation, proliferation and skeletal development. In addition, we found distinct alterations of hematopoiesis-regulating factors such as Kit-ligand and Jagged1 accompanied by a significantly diminished ability to support CD34+ hematopoietic stem and progenitor cells in long-term culture-initiating cells (LTC-ICs) assays. This deficient osteogenic differentiation and insufficient stromal support was reversible and correlated with disease status as indicated by Osteocalcin serum levels and LTC-IC frequencies returning to normal values at remission. In line with this, cultivation of healthy MSC in conditioned medium from four AML cell lines resulted in decreased proliferation and osteogenic differentiation. Taken together, AML-derived MSC are molecularly and functionally altered and contribute to hematopoietic insufficiency. Inverse correlation with disease status and adoption of an AML-like phenotype after exposure to leukemic conditions suggests an instructive role of leukemic cells on bone marrow microenvironment.

  15. [Protection of corneal endothelium from apoptosis by gene and cell therapy].

    Science.gov (United States)

    Fuchsluger, T A

    2016-06-01

    Protection of corneal endothelium from apoptosis using gene and cell therapy is in a translational phase. This approach offers advantages for eye banking and after transplantation. Safe vehicles for gene or cell therapeutic transduction of corneal endothelium with nucleic acids are available. This strategy will be further developed in consultation with the Paul Ehrlich Institute and European regulatory authorities.

  16. Corneal endothelial cell changes associated with cataract surgery in patients with type 2 diabetes mellitus

    DEFF Research Database (Denmark)

    Hugod, Mikkel; Storr-Paulsen, Allan; Norregaard, Jens Christian;

    2011-01-01

    To investigate the corneal endothelial cell density and morphology in patients with and without diabetes after phacoemulsification with intraocular lens implantation.......To investigate the corneal endothelial cell density and morphology in patients with and without diabetes after phacoemulsification with intraocular lens implantation....

  17. A comparative evaluation of corneal epithelial cell cultures for assessing ocular permeability.

    Science.gov (United States)

    Becker, Ulrich; Ehrhardt, Carsten; Schneider, Marc; Muys, Leon; Gross, Dorothea; Eschmann, Klaus; Schaefer, Ulrich F; Lehr, Claus-Michael

    2008-02-01

    The purpose of this study was to evaluate the potential value of different epithelial cell culture systems as in vitro models for studying corneal permeability. Transformed human corneal epithelial (HCE-T) cells and Statens Serum Institut rabbit corneal (SIRC) cells were cultured on permeable filters. SkinEthic human corneal epithelium (S-HCE) and Clonetics human corneal epithelium (C-HCE) were received as ready-to-use systems. Excised rabbit corneas (ERCs) and human corneas (EHCs) were mounted in Ussing chambers, and used as references. Barrier properties were assessed by measuring transepithelial electrical resistance, and by determining the apparent permeability of markers with different physico-chemical properties, namely, fluorescein, sodium salt; propranolol hydrochloride; moxaverine hydrochloride; timolol hydrogenmaleate; and rhodamine 123. SIRC cells and the S-HCE failed to develop epithelial barrier properties, and hence were unable to distinguish between the permeation markers. Barrier function and the power to differentiate compound permeabilities were evident with HCE-T cells, and were even more pronounced in the case of C-HCE, corresponding very well with data from ERCs and EHCs. A net secretion of rhodamine 123 was not observed with any of the models, suggesting that P-glycoprotein or similar efflux systems have no significant effects on corneal permeability. Currently available corneal epithelial cell culture systems show differences in epithelial barrier function. Systems lacking functional cell-cell contacts are of limited value for assessing corneal permeability, and should be critically evaluated for other purposes.

  18. Nerve growth factor modulate proliferation of cultured rabbit corneal endothelial cells and epithelial cells.

    Science.gov (United States)

    Li, Xinyu; Li, Zhongguo; Qiu, Liangxiu; Zhao, Changsong; Hu, Zhulin

    2005-01-01

    In order to investigate the effect of nerve growth factor (NGF) on the proliferation of rabbit corneal endothelial cells and epithelial cells, the in vitro cultured rabbit corneal endothelial cells and epithelial cells were treated with different concentrations of NGF. MTT assay was used to examine the clonal growth and proliferation of the cells by determining the absorbency values at 570 nm. The results showed that NGF with three concentrations ranging from 5 U/mL to 500 U/mL enhanced the proliferation of rabbit corneal endothelial cells in a concentration-dependent manner. 50 U/mL and 500 U/mL NGF got more increase of proliferation than that of 5 U/mL NGF did. Meanwhile, 50 U/mL and 500 U/mL NGF could promote the proliferation of the rabbit corneal epithelial cells significantly in a concentration-dependent manner. However, 5 U/mL NGF did not enhance the proliferation of epithelial cells. It was suggested that exogenous NGF can stimulate the proliferation of both rabbit corneal endothelial and epithelial cells, but the extent of modulation is different.

  19. Mesenchymal Stem Cell-Induced DDR2 Mediates Stromal-Breast Cancer Interactions and Metastasis Growth

    OpenAIRE

    Gonzalez, Maria E.; Martin, Emily E.; Talha Anwar; Caroline Arellano-Garcia; Natasha Medhora; Arjun Lama; Yu-Chih Chen; Kevin S. Tanager; Euisik Yoon; Kidwell, Kelley M.; Chunxi Ge; Franceschi, Renny T.; Celina G. Kleer

    2017-01-01

    Increased collagen deposition by breast cancer (BC)-associated mesenchymal stem/multipotent stromal cells (MSC) promotes metastasis, but the mechanisms are unknown. Here, we report that the collagen receptor discoidin domain receptor 2 (DDR2) is essential for stromal-BC communication. In human BC metastasis, DDR2 is concordantly upregulated in metastatic cancer and multipotent mesenchymal stromal cells. In MSCs isolated from human BC metastasis, DDR2 maintains a fibroblastic phenotype with co...

  20. Isolating stromal stem cells from periodontal granulation tissues.

    Science.gov (United States)

    Hung, Tzu-Yuan; Lin, Hsiang-Chun; Chan, Ying-Jen; Yuan, Kuo

    2012-08-01

    Stem cell therapy is a promising area in regenerative medicine. Periodontal granulation tissues are often discarded during conventional surgery. If stromal stem cells can be isolated from these tissues, they can be used for subsequent surgery on the same patient. Fifteen human periodontal granulation tissue samples were obtained from intrabony defects during surgery. Immunohistochemistry (IHC) was carried out on five of the samples to identify STRO-1, a marker of mesenchymal stem cells. Five samples underwent flow cytometry analysis for the same marker. The remaining five samples were characterized by "colony formation unit-fibroblast" (CFU-f) assay and selected for proliferation assay, flow cytometry of stem cell markers, immunocytochemistry (ICC), multipotent differentiation assays, and repairing critical-size defects in mice. The ratio of STRO-1(+) cells detected by IHC was 5.91 ± 1.50%. The analysis of flow cytometry for STRO-1 was 6.70 ± 0.81%. Approximately two thirds of the CFU-f colonies had a strong reaction to STRO-1 in ICC staining. The cells were multipotent both in vitro and in vivo. Mice given bone grafts and stem cells showed significantly better bone healing than those without stem cells. Multipotent stromal stem cells can be isolated from human periodontal granulation tissues. These cells improve new bone formation when transplanted in mouse calvarial defects. Isolating stem cells from relatively accessible sites without extra procedures is clinically advantageous. This study demonstrated that human periodontal granulation tissues contain isolatable multipotent stem cells. The cells may be a good source for autotransplantation in subsequent treatment.

  1. Multiparameter Analysis of Human Bone Marrow Stromal Cells Identifies Distinct Immunomodulatory and Differentiation-Competent Subtypes

    NARCIS (Netherlands)

    S. James (Sally); J. Fox (James); F. Afsari (Farinaz); J. Lee (Jennifer); S. Clough (Sally); C. Knight (Charlotte); J. Ashmore (James); P. Ashton (Peter); O. Preham (Olivier); M.J. Hoogduijn (Martin); R.D.A.R. Ponzoni (Raquel De Almeida Rocha); Y. Hancock; M. Coles (Mark); P.G. Genever (Paul)

    2015-01-01

    textabstractBone marrow stromal cells (BMSCs, also called bone-marrow-derived mesenchymal stromal cells) provide hematopoietic support and immunoregulation and contain a stem cell fraction capable of skeletogenic differentiation. We used immortalized human BMSC clonal lines for multi-level analysis

  2. Anchored and soluble gangliosides contribute to myelosupportivity of stromal cells

    Energy Technology Data Exchange (ETDEWEB)

    Ziulkoski, Ana L. [Programa de Pos-Graduacao em Ciencias Biologicas: Bioquimica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Departamento de Bioquimica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Instituto de Ciencias da Saude, Centro Universitario Feevale, Novo Hamburgo, RS (Brazil); Santos, Aline X.S. dos; Andrade, Claudia M.B.; Trindade, Vera M.T. [Programa de Pos-Graduacao em Ciencias Biologicas: Bioquimica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Departamento de Bioquimica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Daniotti, Jose Luis [Departamento de Quimica Biologica, Faculdad de Ciencias Quimicas, Universidad Nacional de Cordoba, Cordoba (Argentina); Borojevic, Radovan [Departamento de Histologia e Embriologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro (Brazil); Guma, Fatima C.R., E-mail: fatima.guma@ufrgs.br [Programa de Pos-Graduacao em Ciencias Biologicas: Bioquimica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Departamento de Bioquimica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil)

    2009-10-09

    Stroma-mediated myelopoiesis depends upon growth factors and an appropriate intercellular microenvironment. Previous studies have demonstrated that gangliosides, produced by hepatic stromal cell types, are required for optimal myelosupportive function. Here, we compared the mielossuportive functions of a bone marrow stroma (S17) and skin fibroblasts (SF) regarding their ganglioside pattern of synthesis and shedding. The survival and proliferation of a myeloid precursor cell (FDC-P1) were used as reporter. Although the ganglioside synthesis of the two stromal cells was similar, their relative content and shedding were distinct. The ganglioside requirement for mielossuportive function was confirmed by the decreased proliferation of FDC-P1 cells in ganglioside synthesis-inhibited cultures and in presence of an antibody to GM3 ganglioside. The distinct mielossuportive activities of the S17 and SF stromata may be related to differences on plasma membrane ganglioside concentrations or to differences on the gangliosides shed and their subsequent uptake by myeloid cells, specially, GM3 ganglioside.

  3. Morphological changes in corneal endothelial cells after penetrating keratoplasty.

    Science.gov (United States)

    Laing, R A; Sandstrom, M; Berrospi, A R; Leibowitz, H M

    1976-09-01

    Fifteen patients who had had a successful penetrating keratoplasty were photographed with the clinical specular microscope and the resulting endothelial photomicrographs were analyzed. The average endothelial cell area was one to six times larger and the average endothelial cell perimeter was one to 2 1/2 times larger than that of a normal cornea of a subject the same age as the donor. In each corneal graft, endothelial cell areas and perimeters clustered tightly around a mean value, although the mean value for different corneas varied significantly. The thickness and transparency of each graft was normal, indicating that within the observed limits the success of the transplantation procedure did not depend on final endothelial cell size or perimeter.

  4. Expansive effects of aorta-gonad-mesonephros-derived stromal cells on hematopoietic stem cells from embryonic stem cells

    Institute of Scientific and Technical Information of China (English)

    FU Jin-rong; LIU Wen-li; ZHOU Yu-feng; ZHOU Jian-feng; SUN Han-ying; LUO Li; ZHANG Heng; XU Hui-zhen

    2005-01-01

    Background Hematopoietic stem cells (HSCs) give rise to all blood and immune cells and are used in clinical transplantation protocols to treat a wide variety of refractory diseases, but the amplification of HSCs has been difficult to achieve in vitro. In the present study, the expansive effects of aorta-gonad-mesonephros (AGM) region derived stromal cells on HSCs were explored, attempting to improve the efficiency of HSC transplantation in clinical practice.Methods The murine stromal cells were isolated from the AGM region of 12 days postcoitum (dpc) murine embryos and bone marrow(BM)of 6 weeks old mice, respectively. After identification with flow cytometry and immunocytochemistry, the stromal cells were co-cultured with ESCs-derived, cytokines-induced HSCs. The maintenance and expansion of ESCs-derived HSCs were evaluated by detecting the population of CD34+ and CD34+Sca-1+cells with flow cytometry and the blast colony-forming cells (BL-CFCs), high proliferative potential colony-forming cells (HPP-CFCs) by using semi-solid medium colonial culture. Finally, the homing and hematopoietic reconstruction abilities of HSCs were evaluated using a murine model of HSC transplantation in vivo.Results AGM and BM-derived stromal cells were morphologically and phenotypically similar, and had the features of stromal cells. When co-cultured with AGM or BM stromal cells, more primitive progenitor cells (HPP-CFCs ) could be detected in ESCs derived hematopoietic precursor cells, but BL-CFC's expansion could be detected only when co-cultured with AGM-derived stromal cells. The population of CD34+ hematopoietic stem/progenitor cells were expanded 3 times,but no significant expansion in the population of CD34+Sca-1+ cells was noted when co-cultured with BM stromal cells. While both CD34+ hematopoietic stem/progenitor cells and CD34+Sca-1+ cells were expanded 4 to 5 times respectively when co-cultured with AGM stromal cells. AGM region-derived stromal cells, like BM-derived stromal

  5. Mesenchymal stem/stromal cells precondition lung monocytes/macrophages to produce tolerance against allo- and autoimmunity in the eye.

    Science.gov (United States)

    Ko, Jung Hwa; Lee, Hyun Ju; Jeong, Hyun Jeong; Kim, Mee Kum; Wee, Won Ryang; Yoon, Sun-Ok; Choi, Hosoon; Prockop, Darwin J; Oh, Joo Youn

    2016-01-01

    Intravenously administered mesenchymal stem/stromal cells (MSCs) engraft only transiently in recipients, but confer long-term therapeutic benefits in patients with immune disorders. This suggests that MSCs induce immune tolerance by long-lasting effects on the recipient immune regulatory system. Here, we demonstrate that i.v. infusion of MSCs preconditioned lung monocytes/macrophages toward an immune regulatory phenotype in a TNF-α-stimulated gene/protein (TSG)-6-dependent manner. As a result, mice were protected against subsequent immune challenge in two models of allo- and autoimmune ocular inflammation: corneal allotransplantation and experimental autoimmune uveitis (EAU). The monocytes/macrophages primed by MSCs expressed high levels of MHC class II, B220, CD11b, and IL-10, and exhibited T-cell-suppressive activities independently of FoxP3(+) regulatory T cells. Adoptive transfer of MSC-induced B220(+)CD11b(+) monocytes/macrophages prevented corneal allograft rejection and EAU. Deletion of monocytes/macrophages abrogated the MSC-induced tolerance. However, MSCs with TSG-6 knockdown did not induce MHC II(+)B220(+)CD11b(+) cells, and failed to attenuate EAU. Therefore, the results demonstrate a mechanism of the MSC-mediated immune modulation through induction of innate immune tolerance that involves monocytes/macrophages.

  6. Zfp423 promotes adipogenic differentiation of bovine stromal vascular cells.

    Directory of Open Access Journals (Sweden)

    Yan Huang

    Full Text Available Intramuscular fat or marbling is critical for the palatability of beef. In mice, very recent studies show that adipocytes and fibroblasts share a common pool of progenitor cells, with Zinc finger protein 423 (Zfp423 as a key initiator of adipogenic differentiation. To evaluate the role of Zfp423 in intramuscular adipogenesis and marbling in beef cattle, we sampled beef muscle for separation of stromal vascular cells. These cells were immortalized with pCI neo-hEST2 and individual clones were selected by G418. A total of 288 clones (3×96 well plates were isolated and induced to adipogenesis. The presence of adipocytes was assessed by Oil-Red-O staining. Three clones with high and low adipogenic potential respectively were selected for further analyses. In addition, fibro/adipogenic progenitor cells were selected using a surface marker, platelet derived growth factor receptor (PDGFR α. The expression of Zfp423 was much higher (307.4±61.9%, P<0.05 in high adipogenic cells, while transforming growth factor (TGF-β was higher (156.1±48.7%, P<0.05 in low adipogenic cells. Following adipogenic differentiation, the expression of peroxisome proliferator-activated receptor γ (PPARγ and CCAAT/enhancer binding protein α (C/EBPα were much higher (239.4±84.1% and 310.7±138.4%, respectively, P<0.05 in high adipogenic cells. Over-expression of Zfp423 in stromal vascular cells and cloned low adipogenic cells dramatically increased their adipogenic differentiation, accompanied with the inhibition of TGF-β expression. Zfp423 knockdown by shRNA in high adipogenic cells largely prevented their adipogenic differentiation. The differential regulation of Zfp423 and TGF-β between low and high adipogenic cells is associated with the DNA methylation in their promoters. In conclusion, data show that Zfp423 is a critical regulator of adipogenesis in stromal vascular cells of bovine muscle, and Zfp423 may provide a molecular target for enhancing intramuscular

  7. Induced Differentiation of Adipose-derived Stromal Cells into Myoblasts

    Institute of Scientific and Technical Information of China (English)

    吴桂珠; 郑秀; 江忠清; 王金华; 宋岩峰

    2010-01-01

    This study aimed to induce the differentiation of isolated and purified adipose-derived stromal cells(ADSCs) into myoblasts,which may provide a new strategy for tissue engineering in patients with stress urinary incontinence(SUI).ADSCs,isolated and cultured ex vivo,were identified by flow cytometry and induced to differentiate into myoblasts in the presence of an induction solution consisting of DMEM supplemented with 5-azacytidine(5-aza),5% FBS,and 5% horse serum.Cellular morphology was observed under an i...

  8. Rho GTPases and regulation of cell migration and polarization in human corneal epithelial cells.

    Directory of Open Access Journals (Sweden)

    Aihua Hou

    Full Text Available PURPOSE: Epithelial cell migration is required for regeneration of tissues and can be defective in a number of ocular surface diseases. This study aimed to determine the expression pattern of Rho family small G-proteins in human corneal epithelial cells to test their requirement in directional cell migration. METHODS: Rho family small G-protein expression was assessed by reverse transcription-polymerase chain reaction. Dominant-inhibitory constructs encoding Rho proteins or Rho protein targeting small interfering RNA were transfected into human corneal epithelial large T antigen cells, and wound closure rate were evaluated by scratch wounding assay, and a complementary non-traumatic cell migration assay. Immunofluorescence staining was performed to study cell polarization and to assess Cdc42 downstream effector. RESULTS: Cdc42, Chp, Rac1, RhoA, TC10 and TCL were expressed in human corneal epithelial cells. Among them, Cdc42 and TCL were found to significantly affect cell migration in monolayer scratch assays. These results were confirmed through the use of validated siRNAs directed to Cdc42 and TCL. Scramble siRNA transfected cells had high percentage of polarized cells than Cdc42 or TCL siRNA transfected cells at the wound edge. We showed that the Cdc42-specific effector p21-activated kinase 4 localized predominantly to cell-cell junctions in cell monolayers, but failed to translocate to the leading edge in Cdc42 siRNA transfected cells after monolayer wounding. CONCLUSION: Rho proteins expressed in cultured human corneal epithelial cells, and Cdc42, TCL facilitate two-dimensional cell migration in-vitro. Although silencing of Cdc42 and TCL did not noticeably affect the appearance of cell adhesions at the leading edge, the slower migration of these cells indicates both GTP-binding proteins play important roles in promoting cell movement of human corneal epithelial cells.

  9. Reproducible isolation of lymph node stromal cells reveals site-dependent differences in fibroblastic reticular cells

    Directory of Open Access Journals (Sweden)

    Anne L Fletcher

    2011-09-01

    Full Text Available Within lymph nodes, non-hematopoietic stromal cells organize and interact with leukocytes in an immunologically important manner. In addition to organizing T and B cell segregation and expressing lymphocyte survival factors, several recent studies have shown that lymph node stromal cells shape the naïve T cell repertoire, expressing self-antigens which delete self-reactive T cells in a unique and non-redundant fashion. A fundamental role in peripheral tolerance, in addition to an otherwise extensive functional portfolio, necessitates closer study of lymph node stromal cell subsets using modern immunological techniques; however this has not routinely been possible in the field, due to difficulties reproducibly isolating these rare subsets. Techniques were therefore developed for successful ex vivo and in vitro manipulation and characterization of lymph node stroma. Here we discuss and validate these techniques in mice and humans, and apply them to address several unanswered questions regarding lymph node composition. We explored the steady-state stromal composition of lymph nodes isolated from mice and humans, and found that marginal reticular cells and lymphatic endothelial cells required lymphocytes for their normal maturation in mice. We also report alterations in the proportion and number of fibroblastic reticular cells (FRCs between skin-draining and mesenteric lymph nodes. Similarly, transcriptional profiling of FRCs revealed changes in cytokine production from these sites. Together, these methods permit highly reproducible stromal cell isolation, sorting, and culture.

  10. Brm inhibits the proliferative response of keratinocytes and corneal epithelial cells to ultraviolet radiation-induced damage.

    Directory of Open Access Journals (Sweden)

    Nur Mohammad Monsur Hassan

    Full Text Available Ultraviolet radiation (UV from sunlight is the primary cause of skin and ocular neoplasia. Brahma (BRM is part of the SWI/SNF chromatin remodeling complex. It provides energy for rearrangement of chromatin structure. Previously we have found that human skin tumours have a hotspot mutation in BRM and that protein levels are substantially reduced. Brm-/- mice have enhanced susceptibility to photocarcinogenesis. In these experiments, Brm-/- mice, with both or a single Trp53 allele were exposed to UV for 2 or 25 weeks. In wild type mice the central cornea and stroma became atrophic with increasing time of exposure while the peripheral regions became hyperplastic, presumably as a reparative process. Brm-/-, Trp53+/-, and particularly the Brm-/- Trp53+/- mice had an exaggerated hyperplastic regeneration response in the corneal epithelium and stroma so that the central epithelial atrophy or stromal loss was reduced. UV induced hyperplasia of the epidermis and corneal epithelium, with an increase in the number of dividing cells as determined by Ki-67 expression. This response was considerably greater in both the Brm-/- Trp53+/+ and Brm-/- Trp53+/- mice indicating that Brm protects from UV-induced enhancement of cell division, even with loss of one Trp53 allele. Cell division was disorganized in Brm-/- mice. Rather than being restricted to the basement membrane region, dividing cells were also present in the suprabasal regions of both tissues. Brm appears to be a tumour suppressor gene that protects from skin and ocular photocarcinogenesis. These studies indicate that Brm protects from UV-induced hyperplastic growth in both cutaneous and corneal keratinocytes, which may contribute to the ability of Brm to protect from photocarcinogenesis.

  11. Morphometrics of corneal growth in chicks raised in constant light.

    Science.gov (United States)

    Wahl, Christina; Li, Tong; Choden, Tsering; Howland, Howard

    2009-03-01

    In this study we wish to augment our understanding of the effect of environment on corneal growth and morphology. To understand how corneal development of chicks raised in constant light differs from that of 'normal' eyes exposed to cyclic periods of light and dark, white Leghorn chicks were raised under either constant light (approximately 700 lux at cage top) or in 12 h light/12 h dark conditions for up to 12 weeks after hatching. To determine whether corneal expansion is uniform, some birds from each group received corneal tattoos for periodic photographic assessment. By 16 days of age, constant light corneas weighed less than light/dark regimen corneas [7.39 +/- 0.35 mg (SE) vs. 8.47 mg +/- 0.26 mg SE wet weight, P < or = 0.05], and corresponding differences were seen in corneal dry weights. Spatial expansion of the corneal surface was uniform in both groups, but the rate of expansion was slower in constant light chicks [0.0327 +/- 0.009 (SE) vs. 0.144 +/- 0.018 (SE) mm(2) day(-1) for normal chicks, P < or = 0.001]. At 1 day of age, there were 422 +/- 12.5 (SE) stromal cells 0.01 mm(-2) in the central cornea and 393 +/- 21.5 (SE) stromal cells 0.01 mm(-2 )peripherally. Although this difference is not statistically significant, the cell densities in the central cornea were always larger than those of the peripheral cornea in all eight measurements over a 10.5-week period, and this difference is significant (P < or = 0.008, binomial test). Light/dark regimen birds show no such consistent difference in cell densities between central and peripheral corneas. Thus, the density distribution of corneal stromal cells of chicks grown in constant light differs from that of normal chicks. Taken together, all these observations suggest that diurnal cycles of light and darkness are necessary for normal corneal growth.

  12. File list: ALL.Utr.20.AllAg.Endometrial_stromal_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Utr.20.AllAg.Endometrial_stromal_cells hg19 All antigens Uterus Endometrial stroma...RX524962,SRX524974 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Utr.20.AllAg.Endometrial_stromal_cells.bed ...

  13. File list: ALL.Utr.05.AllAg.Endometrial_stromal_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Utr.05.AllAg.Endometrial_stromal_cells hg19 All antigens Uterus Endometrial stroma...RX735139,SRX735141 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Utr.05.AllAg.Endometrial_stromal_cells.bed ...

  14. File list: ALL.Utr.10.AllAg.Endometrial_stromal_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Utr.10.AllAg.Endometrial_stromal_cells hg19 All antigens Uterus Endometrial stroma...X1048949,SRX524965 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Utr.10.AllAg.Endometrial_stromal_cells.bed ...

  15. File list: ALL.Utr.50.AllAg.Endometrial_stromal_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Utr.50.AllAg.Endometrial_stromal_cells hg19 All antigens Uterus Endometrial stroma...RX524970,SRX524973 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Utr.50.AllAg.Endometrial_stromal_cells.bed ...

  16. System for tracking transplanted limbal epithelial stem cells in the treatment of corneal stem cell deficiency

    Science.gov (United States)

    Boadi, J.; Sangwal, V.; MacNeil, S.; Matcher, S. J.

    2015-03-01

    The prevailing hypothesis for the existence and healing of the avascular corneal epithelium is that this layer of cells is continually produced by stem cells in the limbus and transported onto the cornea to mature into corneal epithelium. Limbal Stem Cell Deficiency (LSCD), in which the stem cell population is depleted, can lead to blindness. LSCD can be caused by chemical and thermal burns to the eye. A popular treatment, especially in emerging economies such as India, is the transplantation of limbal stem cells onto damaged limbus with hope of repopulating the region. Hence regenerating the corneal epithelium. In order to gain insights into the success rates of this treatment, new imaging technologies are needed in order to track the transplanted cells. Optical Coherence Tomography (OCT) is well known for its high resolution in vivo images of the retina. A custom OCT system has been built to image the corneal surface, to investigate the fate of transplanted limbal stem cells. We evaluate two methods to label and track transplanted cells: melanin labelling and magneto-labelling. To evaluate melanin labelling, stem cells are loaded with melanin and then transplanted onto a rabbit cornea denuded of its epithelium. The melanin displays strongly enhanced backscatter relative to normal cells. To evaluate magneto-labelling the stem cells are loaded with magnetic nanoparticles (20-30nm in size) and then imaged with a custom-built, magneto-motive OCT system.

  17. Regenerative Potential of Mesenchymal Stromal Cells: Age-Related Changes

    Science.gov (United States)

    Bruna, Flavia; Contador, David; Conget, Paulette; Erranz, Benjamín; Sossa, Claudia L.; Arango-Rodríguez, Martha L.

    2016-01-01

    Preclinical and clinical studies have shown that a therapeutic effect results from mesenchymal stromal cells (MSCs) transplant. No systematic information is currently available regarding whether donor age modifies MSC regenerative potential on cutaneous wound healing. Here, we evaluate whether donor age influences this potential. Two different doses of bone marrow MSCs (BM-MSCs) from young, adult, or old mouse donors or two doses of their acellular derivatives mesenchymal stromal cells (acd-MSCs) were intradermally injected around wounds in the midline of C57BL/6 mice. Every two days, wound healing was macroscopically assessed (wound closure) and microscopically assessed (reepithelialization, dermal-epidermal junction, skin appendage regeneration, granulation tissue, leukocyte infiltration, and density dermal collagen fibers) after 12 days from MSC transplant. Significant differences in the wound closure kinetic, quality, and healing of skin regenerated were observed in lesions which received BM-MSCs from different ages or their acd-MSCs compared to lesions which received vehicle. Nevertheless, our data shows that adult's BM-MSCs or their acd-MSCs were the most efficient for recovery of most parameters analyzed. Our data suggest that MSC efficacy was negatively affected by donor age, where the treatment with adult's BM-MSCs or their acd-MSCs in cutaneous wound promotes a better tissue repair/regeneration. This is due to their paracrine factors secretion. PMID:27247575

  18. Intravital imaging of the cellular dynamics of LysM-positive cells in a murine corneal suture model.

    Science.gov (United States)

    Ueta, Mayumi; Koga, Ayaka; Kikuta, Junichi; Yamada, Keiko; Kojima, Sachi; Shinomiya, Katsuhiko; Ishii, Masaru; Kinoshita, Shigeru

    2016-03-01

    Corneal suturing is a surgical procedure used in patients with corneal trauma or transplants. It was reported that endogenous neutrophils are brightly labelled in gene-targeted mice expressing enhanced green fluorescent protein (eGFP) under the control of the endogenous lysozyme M promoter (LysM-eGFP mice). We applied intravital imaging methods to analyse in vivo the dynamics of LysM-positive granulocytes (neutrophils) in LysM-eGFP mice with corneal sutures and examined their role in the elicitation of neutrophil infiltration. We found that in the presuturing state, neutrophils strongly positive for LysM were located in the periphery of the corneal stromal layer; none were present in the centre of the cornea. After introducing a corneal suture, neutrophils accumulated in limbal vessels and then migrated to the corneal side and the conjunctival side, suggesting that they derived from limbal vessels. Thereafter they accumulated towards the central corneal area, arriving at the suture about 7 h after its placement. Although corneal sutures may elicit the continuous infiltration of neutrophils, their number was markedly decreased by day 1 after suture removal and continued to decrease thereafter. Our results showed that corneal sutures may elicit the continuous infiltration of neutrophils. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  19. Polysaccharide hydrogel combined with mesenchymal stem cells promotes the healing of corneal alkali burn in rats.

    Directory of Open Access Journals (Sweden)

    Yifeng Ke

    Full Text Available Corneal chemical burns are common ophthalmic injuries that may result in permanent visual impairment. Although significant advances have been achieved on the treatment of such cases, the structural and functional restoration of a chemical burn-injured cornea remains challenging. The applications of polysaccharide hydrogel and subconjunctival injection of mesenchymal stem cells (MSCs have been reported to promote the healing of corneal wounds. In this study, polysaccharide was extracted from Hardy Orchid and mesenchymal stem cells (MSCs were derived from Sprague-Dawley rats. Supplementation of the polysaccharide significantly enhanced the migration rate of primarily cultured rat corneal epithelial cells. We examined the therapeutic effects of polysaccharide in conjunction with MSCs application on the healing of corneal alkali burns in rats. Compared with either treatment alone, the combination strategy resulted in significantly better recovery of corneal epithelium and reduction in inflammation, neovascularization and opacity of healed cornea. Polysaccharide and MSCs acted additively to increase the expression of anti-inflammatory cytokine (TGF-β, antiangiogenic cytokine (TSP-1 and decrease those promoting inflammation (TNF-α, chemotaxis (MIP-1α and MCP-1 and angiogenesis (VEGF and MMP-2. This study provided evidence that Hardy Orchid derived polysaccharide and MSCs are safe and effective treatments for corneal alkali burns and that their benefits are additive when used in combination. We concluded that combination therapy with polysaccharide and MSCs is a promising clinical treatment for corneal alkali burns and may be applicable for other types of corneal disorder.

  20. File list: NoD.Adp.10.AllAg.Adipose_stromal_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.10.AllAg.Adipose_stromal_cell hg19 No description Adipocyte Adipose stromal... cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.10.AllAg.Adipose_stromal_cell.bed ...

  1. File list: InP.Adp.10.AllAg.Adipose_stromal_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adp.10.AllAg.Adipose_stromal_cell hg19 Input control Adipocyte Adipose stromal ...cell SRX019491,SRX469459,SRX469457 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Adp.10.AllAg.Adipose_stromal_cell.bed ...

  2. File list: NoD.Adp.50.AllAg.Adipose_stromal_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.50.AllAg.Adipose_stromal_cell hg19 No description Adipocyte Adipose stromal... cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.50.AllAg.Adipose_stromal_cell.bed ...

  3. File list: NoD.Utr.10.AllAg.Endometrial_stromal_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Utr.10.AllAg.Endometrial_stromal_cells hg19 No description Uterus Endometrial stroma...l cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Utr.10.AllAg.Endometrial_stromal_cells.bed ...

  4. File list: NoD.Adp.20.AllAg.Adipose_stromal_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.20.AllAg.Adipose_stromal_cell hg19 No description Adipocyte Adipose stromal... cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.20.AllAg.Adipose_stromal_cell.bed ...

  5. File list: InP.Adp.05.AllAg.Adipose_stromal_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adp.05.AllAg.Adipose_stromal_cell hg19 Input control Adipocyte Adipose stromal ...cell SRX019491,SRX469459,SRX469457 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Adp.05.AllAg.Adipose_stromal_cell.bed ...

  6. File list: NoD.Utr.20.AllAg.Endometrial_stromal_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Utr.20.AllAg.Endometrial_stromal_cells hg19 No description Uterus Endometrial stroma...l cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Utr.20.AllAg.Endometrial_stromal_cells.bed ...

  7. File list: NoD.Adp.05.AllAg.Adipose_stromal_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.05.AllAg.Adipose_stromal_cell hg19 No description Adipocyte Adipose stromal... cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.05.AllAg.Adipose_stromal_cell.bed ...

  8. File list: NoD.Utr.50.AllAg.Endometrial_stromal_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Utr.50.AllAg.Endometrial_stromal_cells hg19 No description Uterus Endometrial stroma...l cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Utr.50.AllAg.Endometrial_stromal_cells.bed ...

  9. File list: NoD.Utr.05.AllAg.Endometrial_stromal_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Utr.05.AllAg.Endometrial_stromal_cells hg19 No description Uterus Endometrial stroma...l cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Utr.05.AllAg.Endometrial_stromal_cells.bed ...

  10. File list: InP.Adp.50.AllAg.Adipose_stromal_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adp.50.AllAg.Adipose_stromal_cell hg19 Input control Adipocyte Adipose stromal ...cell SRX019491,SRX469459,SRX469457 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Adp.50.AllAg.Adipose_stromal_cell.bed ...

  11. File list: InP.Adp.20.AllAg.Adipose_stromal_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adp.20.AllAg.Adipose_stromal_cell hg19 Input control Adipocyte Adipose stromal ...cell SRX019491,SRX469459,SRX469457 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Adp.20.AllAg.Adipose_stromal_cell.bed ...

  12. Prostate stromal cells express the progesterone receptor to control cancer cell mobility.

    Directory of Open Access Journals (Sweden)

    Yue Yu

    Full Text Available BACKGROUND: Reciprocal interactions between epithelium and stroma play vital roles for prostate cancer development and progression. Enhanced secretions of cytokines and growth factors by cancer associated fibroblasts in prostate tumors create a favorable microenvironment for cancer cells to grow and metastasize. Our previous work showed that the progesterone receptor (PR was expressed specifically in prostate stromal fibroblasts and smooth muscle cells. However, the expression levels of PR and its impact to tumor microenvironment in prostate tumors are poorly understood. METHODS: Immunohistochemistry assays are applied to human prostate tissue biopsies. Cell migration, invasion and proliferation assays are performed using human prostate cells. Real-time PCR and ELISA are applied to measure gene expression at molecular levels. RESULTS: Immunohistochemistry assays showed that PR protein levels were decreased in cancer associated stroma when compared with paired normal prostate stroma. Using in vitro prostate stromal cell models, we showed that conditioned media collected from PR positive stromal cells inhibited prostate cancer cell migration and invasion, but had minor suppressive impacts on cancer cell proliferation. PR suppressed the secretion of stromal derived factor-1 (SDF-1 and interlukin-6 (IL-6 by stromal cells independent to PR ligands. Blocking PR expression by siRNA or supplementation of exogenous SDF-1 or IL-6 to conditioned media from PR positive stromal cells counteracted the inhibitory effects of PR to cancer cell migration and invasion. CONCLUSIONS: Decreased expression of the PR in cancer associated stroma may contribute to the elevated SDF-1 and IL-6 levels in prostate tumors and enhance prostate tumor progression.

  13. Stereotypical chronic lymphocytic leukemia B-cell receptors recognize survival promoting antigens on stromal cells.

    Directory of Open Access Journals (Sweden)

    Mascha Binder

    Full Text Available Chronic lymphocytic leukemia (CLL is the most common leukemia in the Western world. Survival of CLL cells depends on their close contact with stromal cells in lymphatic tissues, bone marrow and blood. This microenvironmental regulation of CLL cell survival involves the stromal secretion of chemo- and cytokines as well as the expression of adhesion molecules. Since CLL survival may also be driven by antigenic stimulation through the B-cell antigen receptor (BCR, we explored the hypothesis that these processes may be linked to each other. We tested if stromal cells could serve as an antigen reservoir for CLL cells, thus promoting CLL cell survival by stimulation through the BCR. As a proof of principle, we found that two CLL BCRs with a common stereotyped heavy chain complementarity-determining region 3 (previously characterized as "subset 1" recognize antigens highly expressed in stromal cells--vimentin and calreticulin. Both antigens are well-documented targets of autoantibodies in autoimmune disorders. We demonstrated that vimentin is displayed on the surface of viable stromal cells and that it is present and bound by the stereotyped CLL BCR in CLL-stroma co-culture supernatant. Blocking the vimentin antigen by recombinant soluble CLL BCR under CLL-stromal cell co-culture conditions reduces stroma-mediated anti-apoptotic effects by 20-45%. We therefore conclude that CLL BCR stimulation by stroma-derived antigens can contribute to the protective effect that the stroma exerts on CLL cells. This finding sheds a new light on the understanding of the pathobiology of this so far mostly incurable disease.

  14. 多层角膜基质透镜重叠治疗角膜溃疡穿孔%Treatment of large corneal perforations with acellular multilayer of corneal stromal lenticules harvested from femtosecond laser lenticule extraction

    Institute of Scientific and Technical Information of China (English)

    薛春燕; 夏元; 陈月芹; 杨丽萍; 黄振平

    2015-01-01

    目的 探讨多层角膜基质透镜重叠组成的角膜板层植片保存后用于较大直径角膜溃疡穿孔紧急修补的效果.方法 回顾性病例系列研究.收集南京军区南京总医院眼科2013年6至11月角膜溃疡穿孔的患者5例,包括神经营养性角膜溃疡穿孔1例,严重变应性角膜结膜炎角膜穿孔1例,真菌性角膜溃疡穿孔3例,使用角膜基质透镜粘合而成的角膜板层材料进行紧急修补并观察其治疗效果.角膜基质透镜来自于接受全飞秒角膜屈光手术的近视眼患者,所有捐献者均经知情同意及血液传染病检查.3或4片基质透镜粘合成一个直径6.0~6.5 mm,中央厚度300~400μm的角膜基质板层材料,置于消毒的纯甘油,-80℃冰箱保存备用.当角膜穿孔大于3 mm,且无新鲜或保存的角膜材料可用时,可将此合成的角膜板层材料用于角膜穿孔的修补.结果 5例患者角膜溃疡愈合,前房形成良好.随访结果显示,周边穿孔愈合后视力良好,中央部穿孔也为择期光学性角膜移植创造条件.结论 多层角膜基质透镜重叠组成的角膜板层植片可以安全有效地应用于角膜穿孔的紧急修补,保存眼球结构.%Objective To describe a novel surgical technique for the treatment of large corneal perforations by using acellular multilayer of corneal stromal lenticules.Methods Prospective study.The acellular tissue used for the repair was harvested from myopic patients during the femtosecond laser (FS) refractive surgery.Informed consent,blood test and donor eligibility were obtained in each case.Three or four layers of lenticules were stacked up and stored at-80℃ in pure sterile glycerin.The diameter is 6.0 to 6.5 mm and central thickness was 300 to 400 μm.If the diameter of the corneal ulcer perforation was larger than 3 mm and corneal grafts were not available,we used this kind of patches to seal the perforations.It was a retrospective case series study.Five cases of

  15. CD34 defines an osteoprogenitor cell population in mouse bone marrow stromal cells

    DEFF Research Database (Denmark)

    Abdallah, Basem M; Al-Shammary, Asma; Skagen, Peter

    2015-01-01

    Bone marrow stromal cells (BMSCs, also known as bone marrow-derived mesenchymal stem cells) and their progenitors have been identified based on retrospective functional criteria. CD markers are employed to define cell populations with distinct functional characteristics. However, defining and pro...

  16. Epigenetic rejuvenation of mesenchymal stromal cells derived from induced pluripotent stem cells

    NARCIS (Netherlands)

    Frobel, Joana; Hemeda, Hatim; Lenz, Michael; Abagnale, Giulio; Joussen, Sylvia; Denecke, Bernd; Sarić, Tomo; Zenke, Martin; Wagner, Wolfgang

    2014-01-01

    Standardization of mesenchymal stromal cells (MSCs) remains a major obstacle in regenerative medicine. Starting material and culture expansion affect cell preparations and render comparison between studies difficult. In contrast, induced pluripotent stem cells (iPSCs) assimilate toward a ground stat

  17. Stromal cell-derived factor 1α (SDF-1α)

    DEFF Research Database (Denmark)

    Li, Dana; Bjørnager, Louise; Langkilde, Anne

    2016-01-01

    OBJECTIVES: Stromal cell-derived factor 1a (SDF-1α), is a chemokine and is able to home hematopoietic progenitor cells to injured areas of heart tissue for structural repair. Previous studies have found increased levels of SDF-1α in several cardiac diseases, but only few studies have investigated...... SDF-1α in patients with atrial fibrillation (AF). We aimed to test SDF-1α in a large cohort of patients with AF and its role as a prognostic marker. DESIGN: Between January 1st 2008 to December 1st 2012, 290 patients with ECG documented AF were enrolled from the in- and outpatient clinics...... at the Department of Cardiology, Hvidovre Hospital, University of Copenhagen, Hvidovre, Denmark. Plasma levels of SDF-1α were measured using ELISA technique. Clinical data were registered and patient follow-up was conducted. RESULTS: Patients with permanent AF had significantly higher SDF-1α levels (2199.5 pg...

  18. Good manufacturing practices production of mesenchymal stem/stromal cells.

    Science.gov (United States)

    Sensebé, Luc; Bourin, Philippe; Tarte, Karin

    2011-01-01

    Because of their multi/pluripotency and immunosuppressive properties mesenchymal stem/stromal cells (MSCs) are important tools for treating immune disorders and for tissue repair. The increasing use of MSCs has led to production processes that need to be in accordance with Good Manufacturing Practice (GMP). In cellular therapy, safety remains one of the main concerns and refers to donor validation, choice of starting material, processes, and the controls used, not only at the batch release level but also during the development of processes. The culture processes should be reproducible, robust, and efficient. Moreover, they should be adapted to closed systems that are easy to use. Implementing controls during the manufacturing of clinical-grade MSCs is essential. The controls should ensure microbiological safety but also avoid potential side effects linked to genomic instability driving transformation and senescence or decrease of cell functions (immunoregulation, differentiation potential). In this rapidly evolving field, a new approach to controls is needed.

  19. Low Reactive Level Laser Therapy for Mesenchymal Stromal Cells Therapies

    Directory of Open Access Journals (Sweden)

    Toshihiro Kushibiki

    2015-01-01

    Full Text Available Low reactive level laser therapy (LLLT is mainly focused on the activation of intracellular or extracellular chromophore and the initiation of cellular signaling by using low power lasers. Over the past forty years, it was realized that the laser therapy had the potential to improve wound healing and reduce pain and inflammation. In recent years, the term LLLT has become widely recognized in the field of regenerative medicine. In this review, we will describe the mechanisms of action of LLLT at a cellular level and introduce the application to mesenchymal stem cells and mesenchymal stromal cells (MSCs therapies. Finally, our recent research results that LLLT enhanced the MSCs differentiation to osteoblast will also be described.

  20. Tissue engineering of corneal stroma with rabbit fibroblast precursors and gelatin hydrogels.

    Science.gov (United States)

    Mimura, Tatsuya; Amano, Shiro; Yokoo, Seiichi; Uchida, Saiko; Yamagami, Satoru; Usui, Tomohiko; Kimura, Yu; Tabata, Yasuhiko

    2008-01-01

    To isolate fibroblast precursors from rabbit corneal stroma using a sphere-forming assay, to engineer corneal stroma with the precursors and gelatin, and to establish the therapeutic application of precursors in a rabbit corneal stroma. In the in vitro study, a sphere-forming assay was performed to produce precursors from rabbit corneal stroma. Corneal stroma was engineered by cultivating precursors in porous gelatin for one week. In the in vivo study, the engineered corneal stromal sheet with precursors (precursor/gelatin group) or with fibroblasts (fibroblast /gelatin group) or without cells (gelatin group) was transplanted to a pocket of rabbit corneal stroma. Gene expression and extracellular matrix production were examined immunohistochemically in each group one week and four weeks after surgery. In the in vitro study, cells in the spheres were BrdU-positive, and their progeny were keratocan-positive. The study also showed that the corneas transplanted with a porous gelatin sheet did not show any opacity four weeks after transplantation in any group. In the gelatin sheet of the precursor/gelatin group, a more intense expression of type I collagen was observed relative to the other two groups four weeks after the surgery. Our findings demonstrate that the transplantation of fibroblast precursors combined with gelatin hydrogel into the corneal stroma is a possible treatment strategy for corneal stromal regeneration.

  1. Zebrafish Caudal Haematopoietic Embryonic Stromal Tissue (CHEST) Cells Support Haematopoiesis

    Science.gov (United States)

    Wolf, Anja; Aggio, Julian; Campbell, Clyde; Wright, Francis; Marquez, Gabriel; Traver, David; Stachura, David L.

    2017-01-01

    Haematopoiesis is an essential process in early vertebrate development that occurs in different distinct spatial locations in the embryo that shift over time. These different sites have distinct functions: in some anatomical locations specific hematopoietic stem and progenitor cells (HSPCs) are generated de novo. In others, HSPCs expand. HSPCs differentiate and renew in other locations, ensuring homeostatic maintenance. These niches primarily control haematopoiesis through a combination of cell-to-cell signalling and cytokine secretion that elicit unique biological effects in progenitors. To understand the molecular signals generated by these niches, we report the generation of caudal hematopoietic embryonic stromal tissue (CHEST) cells from 72-hours post fertilization (hpf) caudal hematopoietic tissue (CHT), the site of embryonic HSPC expansion in fish. CHEST cells are a primary cell line with perivascular endothelial properties that expand hematopoietic cells in vitro. Morphological and transcript analysis of these cultures indicates lymphoid, myeloid, and erythroid differentiation, indicating that CHEST cells are a useful tool for identifying molecular signals critical for HSPC proliferation and differentiation in the zebrafish. These findings permit comparison with other temporally and spatially distinct haematopoietic-supportive zebrafish niches, as well as with mammalian haematopoietic-supportive cells to further the understanding of the evolution of the vertebrate hematopoietic system. PMID:28300168

  2. Use of Corneal Confocal Microscopy to Detect Corneal Nerve Loss and Increased Dendritic Cells in Patients With Multiple Sclerosis.

    Science.gov (United States)

    Bitirgen, Gulfidan; Akpinar, Zehra; Malik, Rayaz A; Ozkagnici, Ahmet

    2017-07-01

    Multiple sclerosis (MS) is characterized by demyelination, axonal degeneration, and inflammation. Corneal confocal microscopy has been used to identify axonal degeneration in several peripheral neuropathies. To assess corneal subbasal nerve plexus morphologic features, corneal dendritic cell (DC) density, and peripapillary retinal nerve fiber layer (RNFL) thickness in patients with MS. This single-center, cross-sectional comparative study was conducted at a tertiary referral university hospital between May 27, 2016, and January 30, 2017. Fifty-seven consecutive patients with relapsing-remitting MS and 30 healthy, age-matched control participants were enrolled in the study. Corneal subbasal nerve plexus measures and DC density were quantified in images acquired with the laser scanning in vivo corneal confocal microscope, and peripapillary RNFL thickness was measured with spectral-domain optical coherence tomography. Corneal nerve fiber density, nerve branch density, nerve fiber length, DC density, peripapillary RNFL thickness, and association with the severity of neurologic disability as assessed by the Kurtzke Expanded Disability Status Scale (score range, 0-10; higher scores indicate greater disability) and Multiple Sclerosis Severity Score (score range, 0.01-9.99; higher scores indicate greater severity). Of the 57 participants with MS, 42 (74%) were female and the mean (SD) age was 35.4 (8.9) years; of the 30 healthy controls, 19 (63%) were female and the mean (SD) age was 34.8 (10.2) years. Corneal nerve fiber density (mean [SE] difference, -6.78 [2.14] fibers/mm2; 95% CI, -11.04 to -2.52; P = .002), nerve branch density (mean [SE] difference, -17.94 [5.45] branches/mm2; 95% CI, -28.77 to -7.10; P = .001), nerve fiber length (mean [SE] difference, -3.03 [0.89] mm/mm2; 95% CI, -4.81 to -1.25; P = .001), and the mean peripapillary RNFL thickness (mean [SE] difference, -17.06 [3.14] μm; 95% CI, -23.29 to -10.82; P < .001) were reduced in patients with MS compared

  3. Microarray Analysis on Gene Regulation by Estrogen, Progesterone and Tamoxifen in Human Endometrial Stromal Cells

    Directory of Open Access Journals (Sweden)

    Chun-E Ren

    2015-03-01

    Full Text Available Epithelial stromal cells represent a major cellular component of human uterine endometrium that is subject to tight hormonal regulation. Through cell-cell contacts and/or paracrine mechanisms, stromal cells play a significant role in the malignant transformation of epithelial cells. We isolated stromal cells from normal human endometrium and investigated the morphological and transcriptional changes induced by estrogen, progesterone and tamoxifen. We demonstrated that stromal cells express appreciable levels of estrogen and progesterone receptors and undergo different morphological changes upon hormonal stimulation. Microarray analysis indicated that both estrogen and progesterone induced dramatic alterations in a variety of genes associated with cell structure, transcription, cell cycle, and signaling. However, divergent patterns of changes, and in some genes opposite effects, were observed for the two hormones. A large number of genes are identified as novel targets for hormonal regulation. These hormone-responsive genes may be involved in normal uterine function and the development of endometrial malignancies.

  4. Microarray Analysis on Gene Regulation by Estrogen, Progesterone and Tamoxifen in Human Endometrial Stromal Cells

    Science.gov (United States)

    Ren, Chun-E; Zhu, Xueqiong; Li, Jinping; Lyle, Christian; Dowdy, Sean; Podratz, Karl C.; Byck, David; Chen, Hai-Bin; Jiang, Shi-Wen

    2015-01-01

    Epithelial stromal cells represent a major cellular component of human uterine endometrium that is subject to tight hormonal regulation. Through cell-cell contacts and/or paracrine mechanisms, stromal cells play a significant role in the malignant transformation of epithelial cells. We isolated stromal cells from normal human endometrium and investigated the morphological and transcriptional changes induced by estrogen, progesterone and tamoxifen. We demonstrated that stromal cells express appreciable levels of estrogen and progesterone receptors and undergo different morphological changes upon hormonal stimulation. Microarray analysis indicated that both estrogen and progesterone induced dramatic alterations in a variety of genes associated with cell structure, transcription, cell cycle, and signaling. However, divergent patterns of changes, and in some genes opposite effects, were observed for the two hormones. A large number of genes are identified as novel targets for hormonal regulation. These hormone-responsive genes may be involved in normal uterine function and the development of endometrial malignancies. PMID:25782154

  5. Human pluripotent stem cell-derived limbal epithelial stem cells on bioengineered matrices for corneal reconstruction.

    Science.gov (United States)

    Mikhailova, Alexandra; Ilmarinen, Tanja; Ratnayake, Anjula; Petrovski, Goran; Uusitalo, Hannu; Skottman, Heli; Rafat, Mehrdad

    2016-05-01

    Corneal epithelium is renewed by limbal epithelial stem cells (LESCs), a type of tissue-specific stem cells located in the limbal palisades of Vogt at the corneo-scleral junction. Acute trauma or inflammatory disorders of the ocular surface can destroy these stem cells, leading to limbal stem cell deficiency (LSCD) - a painful and vision-threatening condition. Treating these disorders is often challenging and complex, especially in bilateral cases with extensive damage. Human pluripotent stem cells (hPSCs) provide new opportunities for corneal reconstruction using cell-based therapy. Here, we investigated the use of hPSC-derived LESC-like cells on bioengineered collagen matrices in serum-free conditions, aiming for clinical applications to reconstruct the corneal epithelium and partially replace the damaged stroma. Differentiation of hPSCs towards LESC-like cells was directed using small-molecule induction followed by maturation in corneal epithelium culture medium. After four to five weeks of culture, differentiated cells were seeded onto bioengineered matrices fabricated as transparent membranes of uniform thickness, using medical-grade porcine collagen type I and a hybrid cross-linking technology. The bioengineered matrices were fully transparent, with high water content and swelling capacity, and parallel lamellar microstructure. Cell proliferation of hPSC-LESCs was significantly higher on bioengineered matrices than on collagen-coated control wells after two weeks of culture, and LESC markers p63 and cytokeratin 15, along with proliferation marker Ki67 were expressed even after 30 days in culture. Overall, hPSC-LESCs retained their capacity to self-renew and proliferate, but were also able to terminally differentiate upon stimulation, as suggested by protein expression of cytokeratins 3 and 12. We propose the use of bioengineered collagen matrices as carriers for the clinically-relevant hPSC-derived LESC-like cells, as a novel tissue engineering approach for

  6. Comparing the immunosuppressive potency of naïve marrow stromal cells and Notch-transfected marrow stromal cells

    Directory of Open Access Journals (Sweden)

    Dao Mo A

    2011-10-01

    Full Text Available Abstract Background SB623 cells are expanded from marrow stromal cells (MSCs transfected with a Notch intracellular domain (NICD-expressing plasmid. In stroke-induced animals, these cells reduce infarct size and promote functional recovery. SB623 cells resemble the parental MSCs with respect to morphology and cell surface markers despite having been in extended culture. MSCs are known to have immunosuppressive properties; whether long-term culture of MSCs impact their immunomodulatory activity has not been addressed. Methods To assess the possible senescent properties of SB623 cells, we performed cell cycle related assays and beta-galactosidase staining. To assess the immunomodulatory activity of these expanded NICD-transfected MSCs, we performed co-cultures of SB623 cells or MSCs with either enriched human T cells or monocytes and assessed cytokine production by flow cytometry. In addition, we monitored the immunosuppressive activity of SB623 cells in both allogenic and xenogenic mixed lymphocyte reaction (MLR. Results Compared to MSCs, we showed that a small number of senescent-like cells appear in each lot of SB623 cells. Nevertheless, we demonstrated that these cells suppress human T cell proliferation in both the allogeneic and xenogeneic mixed lymphocyte reaction (MLR in a manner comparable to MSCs. IL-10 producing T cells were generated and monocyte-dendritic cell differentiation was dampened by co-culture with SB623 cells. Compared to the parental MSCs, SB623 cells appear to exert a greater inhibitory impact on the maturation of dendritic cells as demonstrated by a greater reduction in the surface expression of the co-stimulatory molecule, CD86. Conclusion The results demonstrated that the immunosuppressive activity of the expanded NICD-transfected MSCs is comparable to the parental MSCs, in spite of the appearance of a small number of senescent-like cells.

  7. Angiogenic Potential of Multipotent Stromal Cells from the Umbilical Cord: an In Vitro Study.

    Science.gov (United States)

    Arutyunyan, I V; Kananykhina, E Yu; Fatkhudinov, T Kh; El'chaninov, A V; Makarov, A V; Raimova, E Sh; Bol'shakova, G B; Sukhikh, G T

    2016-05-01

    The mechanisms of proangiogenic activity of multipotent stromal cells from human umbilical cord were analyzed in vitro. The absence of secreted forms of proangiogenic growth factor VEGF-A in the culture medium conditioned by umbilical cord-derived multipotent stromal cells was shown by ELISA. However, the possibility of paracrine stimulation of cell proliferation, mobility, and directed migration of endothelial EA.hy926 cells was demonstrated by using MTT test, Transwell system, and monolayer wound modeling. The capacity of multipotent stromal cells to acquire the phenotype of endothelium-like cells was analyzed using differentiation media of three types. It was found that VEGF-A is an essential but not sufficient inductor of differentiation of umbilical cord-derived multipotent stromal cells into CD31+ cells.

  8. Mesenchymal stem cells: Potential role in corneal wound repair and transplantation

    Institute of Scientific and Technical Information of China (English)

    Fei; Li; Shao-Zhen; Zhao

    2014-01-01

    Corneal diseases are a major cause of blindness in the world. Although great progress has been achieved in the treatment of corneal diseases, wound healing after severe corneal damage and immunosuppressive therapy after corneal transplantation remain prob-lematic. Mesenchymal stem cells(MSCs) derived from bone marrow or other adult tissues can differentiate into various types of mesenchymal lineages, such as osteocytes, adipocytes, and chondrocytes, both in vivo and in vitro. These cells can further differentiate into specific cell types under specific conditions. MSCs migrate to injury sites and promote wound healing by secreting anti-inflammatory and growth factors. In ad-dition, MSCs interact with innate and acquired immune cells and modulate the immune response through their powerful paracrine function. Over the last decade, MSCs have drawn considerable attention because of their beneficial properties and promising therapeutic prospective. Furthermore, MSCs have been applied to various studies related to wound healing, autoim-mune diseases, and organ transplantation. This review discusses the potential functions of MSCs in protecting corneal tissue and their possible mechanisms in corneal wound healing and corneal transplantation.

  9. [The causes of necrobiosis and apoptosis of corneal epithelial cells during primary acquired keratoconus].

    Science.gov (United States)

    Ziangirova, G G; Antonova, O V

    2002-01-01

    We studied 56 biopsy samples of conjunctiva and 50 corneal discs excised from 28 patients with acquired keratoconus cornea. The conjunctivas in all biopsy samples showed various stages of immune inflammation. Necrobiotic changes have been revealed in epithelium of the corneal discs going by the pathways of apoptosis--programmed cell death--and oncosis--initial edematic stage of necrobiosis. At the stage of acute inflammation they are due to cytotoxic effect of the lymphocytes, monocytes, and macrophages. Antibody-dependent cytotoxicity mediated by plasma and lymphoid cells predominates at this stage. At the reparative stage of inflammation ischemia, an inductor of apoptosis and oncosis, underlies necrobiotic changes in corneal epithelium.

  10. Single cell sequencing reveals heterogeneity within ovarian cancer epithelium and cancer associated stromal cells.

    Science.gov (United States)

    Winterhoff, Boris J; Maile, Makayla; Mitra, Amit Kumar; Sebe, Attila; Bazzaro, Martina; Geller, Melissa A; Abrahante, Juan E; Klein, Molly; Hellweg, Raffaele; Mullany, Sally A; Beckman, Kenneth; Daniel, Jerry; Starr, Timothy K

    2017-03-01

    The purpose of this study was to determine the level of heterogeneity in high grade serous ovarian cancer (HGSOC) by analyzing RNA expression in single epithelial and cancer associated stromal cells. In addition, we explored the possibility of identifying subgroups based on pathway activation and pre-defined signatures from cancer stem cells and chemo-resistant cells. A fresh, HGSOC tumor specimen derived from ovary was enzymatically digested and depleted of immune infiltrating cells. RNA sequencing was performed on 92 single cells and 66 of these single cell datasets passed quality control checks. Sequences were analyzed using multiple bioinformatics tools, including clustering, principle components analysis, and geneset enrichment analysis to identify subgroups and activated pathways. Immunohistochemistry for ovarian cancer, stem cell and stromal markers was performed on adjacent tumor sections. Analysis of the gene expression patterns identified two major subsets of cells characterized by epithelial and stromal gene expression patterns. The epithelial group was characterized by proliferative genes including genes associated with oxidative phosphorylation and MYC activity, while the stromal group was characterized by increased expression of extracellular matrix (ECM) genes and genes associated with epithelial-to-mesenchymal transition (EMT). Neither group expressed a signature correlating with published chemo-resistant gene signatures, but many cells, predominantly in the stromal subgroup, expressed markers associated with cancer stem cells. Single cell sequencing provides a means of identifying subpopulations of cancer cells within a single patient. Single cell sequence analysis may prove to be critical for understanding the etiology, progression and drug resistance in ovarian cancer. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Application value of corneal limbus stem cells transplantation to treat pterygium

    Directory of Open Access Journals (Sweden)

    Miao-Ying Zhang

    2017-02-01

    Full Text Available AIM: To analyze the application value of corneal limbus stem cells transplantation in the treatment of pterygium. METHODS: Totally 300 patients(318 eyeswith pterygium were divided into 2 groups according to treatment methods. Patients of the control group(70 patients with 77 eyeswere given simple surgical resection, while patients of the observation group(230 patients with 241 eyeswere given corneal limbus stem cells transplantation after surgical resection. The postoperative recurrent rate, corneal epithelium incision healing time, corneal epithelium healing degree, pain score and tear film break-up time were observed. RESULTS: The corneal epithelium incision healing time of the observation group and control group were respectively 5.2±1.9d and 6.4±1.7d, and the difference had statistical significance(PPP>0.05. At 2wk after treatment, the corneal epithelium healing degree of the observation group was better, and the pain score of the observation group was lower than those of the control group, the differences between groups had statistical significance(PP>0.05. At 1 and 2wk after treatment, the tear film break-up time of the observation group was longer than that of the control group(PCONCLUSION: Corneal limbus stem cell transplantation can prevent postoperative recurrence of pterygium effectively, and its postoperative tissue repair effect is superior to simple surgery.

  12. Effect of Mitomycin-C augmented trabeculectomy on corneal endothelial cells

    Directory of Open Access Journals (Sweden)

    Reza Zarei

    2015-01-01

    Conclusion: MMC application in trabeculectomy seems to cause a small but significant corneal endothelial loss. Most of the damage occurs intraoperatively, or in the early postoperative period, however progressive endothelial cell loss is not a major concern.

  13. Identification of human fibroblast cell lines as a feeder layer for human corneal epithelial regeneration.

    Directory of Open Access Journals (Sweden)

    Rong Lu

    Full Text Available There is a great interest in using epithelium generated in vitro for tissue bioengineering. Mouse 3T3 fibroblasts have been used as a feeder layer to cultivate human epithelia including corneal epithelial cells for more than 3 decades. To avoid the use of xeno-components, we evaluated human fibroblasts as an alternative feeder supporting human corneal epithelial regeneration. Five human fibroblast cell lines were used for evaluation with mouse 3T3 fibroblasts as a control. Human epithelial cells isolated from fresh corneal limbal tissue were seeded on these feeders. Colony forming efficiency (CFE and cell growth capacity were evaluated on days 5-14. The phenotype of the regenerated epithelia was evaluated by morphology and immunostaining with epithelial markers. cDNA microarray was used to analyze the gene expression profile of the supportive human fibroblasts. Among 5 strains of human fibroblasts evaluated, two newborn foreskin fibroblast cell lines, Hs68 and CCD1112Sk, were identified to strongly support human corneal epithelial growth. Tested for 10 passages, these fibroblasts continually showed a comparative efficiency to the 3T3 feeder layer for CFE and growth capacity of human corneal epithelial cells. Limbal epithelial cells seeded at 1 × 10(4 in a 35-mm dish (9.6 cm(2 grew to confluence (about 1.87-2.41 × 10(6 cells in 12-14 days, representing 187-241 fold expansion with over 7-8 doublings on these human feeders. The regenerated epithelia expressed K3, K12, connexin 43, p63, EGFR and integrin β1, resembling the phenotype of human corneal epithelium. DNA microarray revealed 3 up-regulated and 10 down-regulated genes, which may be involved in the functions of human fibroblast feeders. These findings demonstrate that commercial human fibroblast cell lines support human corneal epithelial regeneration, and have potential use in tissue bioengineering for corneal reconstruction.

  14. Derivation of Stromal (Skeletal, Mesenchymal) Stem-like cells from Human Embryonic Stem Cells

    DEFF Research Database (Denmark)

    Mahmood, Amer; Harkness, Linda; Abdallah, Basem

    2012-01-01

    stromal (mesenchymal, skeletal) stem cell (hMSC)-like population, known to be osteoblastic cell precursors and to test their osteoblastic differentiation capacity in ex vivo cultures and in vivo. We cultured hESC in a feeder-free environment using serum replacement and as suspension aggregates (embryoid...

  15. Expression of the melanoma cell adhesion molecule in human mesenchymal stromal cells regulates proliferation, differentiation, and maintenance of hematopoietic stem and progenitor cells.

    Science.gov (United States)

    Stopp, Sabine; Bornhäuser, Martin; Ugarte, Fernando; Wobus, Manja; Kuhn, Matthias; Brenner, Sebastian; Thieme, Sebastian

    2013-04-01

    The melanoma cell adhesion molecule defines mesenchymal stromal cells in the human bone marrow that regenerate bone and establish a hematopoietic microenvironment in vivo. The role of the melanoma cell adhesion molecule in primary human mesenchymal stromal cells and the maintenance of hematopoietic stem and progenitor cells during ex vivo culture has not yet been demonstrated. We applied RNA interference or ectopic overexpression of the melanoma cell adhesion molecule in human mesenchymal stromal cells to evaluate the effect of the melanoma cell adhesion molecule on their proliferation and differentiation as well as its influence on co-cultivated hematopoietic stem and progenitor cells. Knockdown and overexpression of the melanoma cell adhesion molecule affected several characteristics of human mesenchymal stromal cells related to osteogenic differentiation, proliferation, and migration. Furthermore, knockdown of the melanoma cell adhesion molecule in human mesenchymal stromal cells stimulated the proliferation of hematopoietic stem and progenitor cells, and strongly reduced the formation of long-term culture-initiating cells. In contrast, melanoma cell adhesion molecule-overexpressing human mesenchymal stromal cells provided a supportive microenvironment for hematopoietic stem and progenitor cells. Expression of the melanoma cell adhesion molecule increased the adhesion of hematopoietic stem and progenitor cells to human mesenchymal stromal cells and their migration beneath the monolayer of human mesenchymal stromal cells. Our results demonstrate that the expression of the melanoma cell adhesion molecule in human mesenchymal stromal cells determines their fate and regulates the maintenance of hematopoietic stem and progenitor cells through direct cell-cell contact.

  16. IFN type I and II induce BAFF secretion from human decidual stromal cells.

    Science.gov (United States)

    Lundell, Anna-Carin; Nordström, Inger; Andersson, Kerstin; Lundqvist, Christina; Telemo, Esbjörn; Nava, Silvia; Kaipe, Helen; Rudin, Anna

    2017-01-06

    B cell activating factor (BAFF) is a critical cytokine for maturation of immature B cells. In murine lymph nodes, BAFF is mainly produced by podoplanin-expressing stromal cells. We have previously shown that circulating BAFF levels are maximal at birth, and that farmers' children exhibit higher BAFF levels in cord blood than non-farmers' children. Here, we sought to investigate whether maternal-derived decidual stromal cells from placenta secrete BAFF and examine what factors could stimulate this production. We found that podoplanin is expressed in decidua basalis and in the underlying villous tissue as well as on isolated maternal-derived decidual stromal cells. Decidual stromal cells produced BAFF when stimulated with IFN-γ and IFN-α, and NK cells and NK-T-like cells competent of IFN-γ production were isolated from the decidua. Finally, B cells at different maturational stages are present in decidua and all expressed BAFF-R, while stromal cells did not. These findings suggest that decidual stromal cells are a cellular source of BAFF for B cells present in decidua during pregnancy.

  17. Investigation of FGFR2-IIIC signaling via FGF-2 ligand for advancing GCT stromal cell differentiation.

    Directory of Open Access Journals (Sweden)

    Shalini Singh

    Full Text Available Giant cell tumor of bone (GCT is an aggressive bone tumor consisting of multinucleated osteoclast-like giant cells and proliferating osteoblast-like stromal cells. The signaling mechanism involved in GCT stromal cell osteoblastic differentiation is not fully understood. Previous work in our lab reported that GCT stromal cells express high levels of TWIST1, a master transcription factor in skeletal development, which in turn down-regulates Runx2 expression and prevents terminal osteoblastic differentiation in these cells. The purpose of this study was to determine the upstream regulation of TWIST1 in GCT cells. Using GCT stromal cells obtained from patient specimens, we demonstrated that fibroblast growth factor receptor (FGFR-2 signaling plays an essential role in bone development and promotes differentiation of immature osteoblastic cells. Fibroblast growth factor (FGF-2 stimulates FGFR-2 expression, resulting in decreased TWIST1 expression and increased Runx2, alkaline phosphastase (ALP and osteopontin (OPN expression. Inhibition of FGFR-2 through siRNA decreased the expression of ALP, Runx2 and OPN in GCT stromal cells. Our study also confirmed that FGF-2 ligand activates downstream ERK1/2 signaling and pharmacological inhibition of the ERK1/2 signaling pathway suppresses FGF-2 stimulated osteogenic differentiation in these cells. Our results indicate a significant role of FGFR-2 signaling in osteoblastic differentiation in GCT stromal cells.

  18. Comparative characterization of stromal vascular cells derived from three types of vascular wall and adipose tissue.

    Science.gov (United States)

    Yang, Santsun; Eto, Hitomi; Kato, Harunosuke; Doi, Kentaro; Kuno, Shinichiro; Kinoshita, Kahori; Ma, Hsu; Tsai, Chi-Han; Chou, Wan-Ting; Yoshimura, Kotaro

    2013-12-01

    Multipotent stem/progenitor cells localize perivascularly in many organs and vessel walls. These tissue-resident stem/progenitor cells differentiate into vascular endothelial cells, pericytes, and other mesenchymal lineages, and participate in physiological maintenance and repair of vasculatures. In this study, we characterized stromal vascular cells obtained through the explant culture method from three different vessel walls in humans: arterial wall (ART; >500 μm in diameter), venous wall (VN; >500 μm in diameter), and small vessels in adipose tissue (SV; arterioles and venules, adipose-derived stem/stromal cells (ASCs). All stromal vascular cells of different origins presented fibroblast-like morphology and we could not visually discriminate one population from another. Flow cytometry showed that the cultured population heterogeneously expressed a variety of surface antigens associated with stem/progenitor cells, but CD105 was expressed by most cells in all groups, suggesting that the cells generally shared the characteristics of mesenchymal stem cells. Our histological and flow cytometric data suggested that the main population of vessel wall-derived stromal vascular cells were CD34(+)/CD31(-) and came from the tunica adventitia and areola tissue surrounding the adventitia. CD271 (p75NTR) was expressed by the vasa vasorum in the VN adventitia and by a limited population in the adventitia of SV. All three populations differentiated into multiple lineages as did ASCs. ART cells induced the largest quantity of calcium formation in the osteogenic medium, whereas ASCs showed the greatest adipogenic differentiation. SV and VN stromal cells had greater potency for network formation than did ART stromal cells. In conclusion, the three stromal vascular populations exhibited differential functional properties. Our results have clinical implications for vascular diseases such as arterial wall calcification and possible applications to regenerative therapies

  19. The cytokine regulation of SPARC production by rabbit corneal epithelial cells and fibroblasts in vitro.

    Science.gov (United States)

    Abe, Kosuke; Hibino, Tsuyoshi; Mishima, Hiroshi; Shimomura, Yoshikazu

    2004-03-01

    SPARC (osteonectin/BM40) is detected in the corneal stroma during the wound-healing process. To understand the metabolism of SPARC in the cornea, we investigated the effects of cytokines and growth factors on SPARC synthesis by rabbit corneal epithelial cells and fibroblasts. Rabbit corneal epithelial cells or fibroblasts were cultured for 3 days with serum-containing minimal essential medium (MEM), then subcultured for 3 days on serum-free MEM with epidermal growth factor (EGF), platelet-derived growth factor (PDGF), transforming growth factor-beta (TGF-beta), or interleukin-1beta (IL-1beta). SPARC concentration in the medium was measured by the ELISA method using anti-SPARC monoclonal antibody. The concentration of SPARC in the conditioned medium of the epithelial cells depended on either cell numbers or cultivation periods. When EGF was added to the medium, the amount of SPARC in the medium decreased. The addition of IL-1beta, PDGF, or TGF-beta did not affect SPARC synthesis by the epithelial cells. The production of SPARC by rabbit corneal fibroblasts was low compared with that by epithelial cells. However, the synthesis of SPARC by corneal fibroblasts was significantly enhanced by the addition of TGF-beta. The addition of IL-1beta, PDGF, or EGF slightly increased SPARC synthesis by corneal fibroblasts. Cytokines and growth factors modulate SPARC synthesis by rabbit corneal epithelial cells and fibroblasts. These results suggest that cytokines and growth factors modulate cell-matrix interaction in corneal wound healing, possibly by regulating SPARC synthesis.

  20. Concise Review: Wharton’s Jelly-Derived Cells Are a Primitive Stromal Cell Population

    Science.gov (United States)

    Troyer, Deryl L.; Weiss, Mark L.

    2012-01-01

    Here, the literature was reviewed to evaluate whether a population of mesenchymal stromal cells derived from Wharton’s jelly cells (WJCs) is a primitive stromal population. A clear case can be made for WJCs as a stromal population since they display the characteristics of MSCs as defined by the International Society for Cellular Therapy; for example, they grow as adherent cells with mesenchymal morphology, they are self-renewing, they express cell surface markers displayed by MSCs, and they may be differentiated into bone, cartilage, adipose, muscle, and neural cells. Like other stromal cells, WJCs support the expansion of other stem cells, such as hematopoietic stem cells, are well-tolerated by the immune system, and they have the ability to home to tumors. In contrast to bone marrow MSCs, WJCs have greater expansion capability, faster growth in vitro, and may synthesize different cytokines. WJCs are therapeutic in several different pre-clinical animal models of human disease such as neurodegenerative disease, cancer, heart disease, etc. The preclinical work suggests that the WJCs are therapeutic via trophic rescue and immune modulation. In summary, WJCs meet the definition of MSCs. Since WJCs expand faster and to a greater extent than adult-derived MSCs, these findings suggest that WJCs are a primitive stromal cell population with therapeutic potential. Further work is needed to determine whether WJCs engraft long-term and display self-renewal and multipotency in vivo and, as such, demonstrate whether Wharton’s jelly cells are a true stem cell population. PMID:18065397

  1. Differential gene expression in stromal cells of human giant cell tumor of bone.

    Science.gov (United States)

    Wuelling, M; Delling, G; Kaiser, E

    2004-12-01

    Giant cell tumor (GCT) offers a unique model for the hematopoietic-stromal cell interaction in human bone marrow. Evidence has been presented that GCT stromal cells (GCTSCs) promote accumulation, size and activity of the giant cells. Although GCTSCs are considered the neoplastic component of GCT, little is known about their genetic basis and, to date, a tumor-specific gene expression pattern has not been characterized. Mesenchymal stem cells (MSCs) have been identified as the origin of the GCT neoplastic stromal cell. Using state of the art array technology, expression profiling was applied to enriched stromal cell populations from five different GCTs and two primary MSCs as controls. Of the 29 differentially expressed genes found, 25 showed an increased expression. Differential mRNA expression was verified by real-time polymerase chain reaction analysis of 10 selected genes, supporting the validity of cDNA arrays as a tool to identify tumor-related genes in GCTSCs. Increased expression of two oncogenes, JUN and NME2, was substantiated at the protein level, utilizing immunohistochemical evaluation of GCT sections and Western-blot analysis. Increased phosphorylation of JUN Ser-63 was also found.

  2. Cryopreservation and Revival of Human Mesenchymal Stromal Cells.

    Science.gov (United States)

    Haack-Sørensen, Mandana; Ekblond, Annette; Kastrup, Jens

    2016-01-01

    Cell-based therapy is a promising and innovative new treatment for different degenerative and autoimmune diseases, and mesenchymal stromal cells (MSCs) from the bone marrow have demonstrated great therapeutic potential due to their immunosuppressive and regenerative capacities.The establishment of methods for large-scale expansion of clinical-grade MSCs in vitro has paved the way for their therapeutic use in clinical trials. However, the clinical application of MSCs also requires cryopreservation and banking of the cell products. To preserve autologous or allogeneic MSCs for future clinical applications, a reliable and effective cryopreservation method is required.Developing a successful cryopreservation protocol for clinical stem cell products, cryopreservation media, cryoprotectant agents (CPAs), the freezing container, the freezing temperature, and the cooling and warming rate are all aspects which should be considered.A major challenge is the selection of a suitable cryoprotectant which is able to penetrate the cells and yet has low toxicity.This chapter focuses on recent technological developments relevant for the cryopreservation of MSCs using the most commonly used cryopreservation medium containing DMSO and animal serum or human-derived products for research use and the animal protein-free cryopreservation media CryoStor (BioLife Solutions) for clinical use.

  3. Musculoskeletal tissue engineering with human umbilical cord mesenchymal stromal cells

    Science.gov (United States)

    Wang, Limin; Ott, Lindsey; Seshareddy, Kiran; Weiss, Mark L; Detamore, Michael S

    2011-01-01

    Multipotent mesenchymal stromal cells (MSCs) hold tremendous promise for tissue engineering and regenerative medicine, yet with so many sources of MSCs, what are the primary criteria for selecting leading candidates? Ideally, the cells will be multipotent, inexpensive, lack donor site morbidity, donor materials should be readily available in large numbers, immunocompatible, politically benign and expandable in vitro for several passages. Bone marrow MSCs do not meet all of these criteria and neither do embryonic stem cells. However, a promising new cell source is emerging in tissue engineering that appears to meet these criteria: MSCs derived from Wharton’s jelly of umbilical cord MSCs. Exposed to appropriate conditions, umbilical cord MSCs can differentiate in vitro along several cell lineages such as the chondrocyte, osteoblast, adipocyte, myocyte, neuronal, pancreatic or hepatocyte lineages. In animal models, umbilical cord MSCs have demonstrated in vivo differentiation ability and promising immunocompatibility with host organs/tissues, even in xenotransplantation. In this article, we address their cellular characteristics, multipotent differentiation ability and potential for tissue engineering with an emphasis on musculoskeletal tissue engineering. PMID:21175290

  4. Removal of hematopoietic cells and macrophages from mouse bone marrow cultures: isolation of fibroblastlike stromal cells.

    Science.gov (United States)

    Modderman, W E; Vrijheid-Lammers, T; Löwik, C W; Nijweide, P J

    1994-02-01

    A method is described that permits the removal of hematopoietic cells and macrophages from mouse bone marrow cultures. The method is based on the difference in effect of extracellular ATP4- ions (ATP in the absence of divalent, complexing cations) on cells of hematopoietic origin, including macrophages, and of nonhematopoietic origin, such as fibroblastlike stromal cells. In contrast to fibroblastlike cells, hematopoietic cells and macrophages form under the influence of ATP4- lesions in their plasma membranes, which allows the entrance of molecules such as ethidium bromide (EB) and potassium thiocyanate (KSCN), which normally do not easily cross the membrane. The lesions can be rapidly closed by the addition of Mg2+ to the incubation medium, leaving the EB or KSCN trapped in the cell. This method allows the selective introduction of cell-toxic substances such as KSCN into hematopoietic cells and macrophages. By using this method, fibroblastlike stromal cells can be isolated from mouse bone marrow cultures.

  5. Adipose-derived mesenchymal stem cell administration does not improve corneal graft survival outcome.

    Directory of Open Access Journals (Sweden)

    Sherezade Fuentes-Julián

    Full Text Available The effect of local and systemic injections of mesenchymal stem cells derived from adipose tissue (AD-MSC into rabbit models of corneal allograft rejection with either normal-risk or high-risk vascularized corneal beds was investigated. The models we present in this study are more similar to human corneal transplants than previously reported murine models. Our aim was to prevent transplant rejection and increase the length of graft survival. In the normal-risk transplant model, in contrast to our expectations, the injection of AD-MSC into the graft junction during surgery resulted in the induction of increased signs of inflammation such as corneal edema with increased thickness, and a higher level of infiltration of leukocytes. This process led to a lower survival of the graft compared with the sham-treated corneal transplants. In the high-risk transplant model, in which immune ocular privilege was undermined by the induction of neovascularization prior to graft surgery, we found the use of systemic rabbit AD-MSCs prior to surgery, during surgery, and at various time points after surgery resulted in a shorter survival of the graft compared with the non-treated corneal grafts. Based on our results, local or systemic treatment with AD-MSCs to prevent corneal rejection in rabbit corneal models at normal or high risk of rejection does not increase survival but rather can increase inflammation and neovascularization and break the innate ocular immune privilege. This result can be partially explained by the immunomarkers, lack of immunosuppressive ability and immunophenotypical secretion molecules characterization of AD-MSC used in this study. Parameters including the risk of rejection, the inflammatory/vascularization environment, the cell source, the time of injection, the immunosuppression, the number of cells, and the mode of delivery must be established before translating the possible benefits of the use of MSCs in corneal transplants to clinical

  6. Investigation the Porous Collagen-Chitosan /Glycosaminoglycans for Corneal Cell Culture as Tissue Engineering Scaffold

    Institute of Scientific and Technical Information of China (English)

    LI Qin-Hua; CHEN Jian-Su

    2005-01-01

    The objective of this study was to produce the porous collagen-chitosan/Glycosanminglycans (GAG) for corneal ceil-seed implant as a three-dimensional tissue engineering scaffold to improve the regeneration corneas. The effect of various content of glycerol as form porous agent to collagen-chitosan/GAG preserved a porous dimensional structure was investigated. The heat-drying was used to prepare porous collagen-chitosan /GAG scaffold. The pore morphology of collagenchitosan/GAG was controlled by changing the concentration of glycerol solution and drying methods. The porous structure morphology was observed by SEM. The diameter of the pores form 10 to 50 μm. The highly porous scaffold had interconnecting pores. The corneal cell morphology was observed under the light microscope. These results suggest that collagen-chitosan/GAG showed that corneal cell have formed confluent layers and resemble the surface of normal corneal cell surface.

  7. HOX and TALE signatures specify human stromal stem cell populations from different sources.

    Science.gov (United States)

    Picchi, Jacopo; Trombi, Luisa; Spugnesi, Laura; Barachini, Serena; Maroni, Giorgia; Brodano, Giovanni Barbanti; Boriani, Stefano; Valtieri, Mauro; Petrini, Mario; Magli, Maria Cristina

    2013-04-01

    Human stromal stem cell populations reside in different tissues and anatomical sites, however a critical question related to their efficient use in regenerative medicine is whether they exhibit equivalent biological properties. Here, we compared cellular and molecular characteristics of stromal stem cells derived from the bone marrow, at different body sites (iliac crest, sternum, and vertebrae) and other tissues (dental pulp and colon). In particular, we investigated whether homeobox genes of the HOX and TALE subfamilies might provide suitable markers to identify distinct stromal cell populations, as HOX proteins control cell positional identity and, together with their co-factors TALE, are involved in orchestrating differentiation of adult tissues. Our results show that stromal populations from different sources, although immunophenotypically similar, display distinct HOX and TALE signatures, as well as different growth and differentiation abilities. Stromal stem cells from different tissues are characterized by specific HOX profiles, differing in the number and type of active genes, as well as in their level of expression. Conversely, bone marrow-derived cell populations can be essentially distinguished for the expression levels of specific HOX members, strongly suggesting that quantitative differences in HOX activity may be crucial. Taken together, our data indicate that the HOX and TALE profiles provide positional, embryological and hierarchical identity of human stromal stem cells. Furthermore, our data suggest that cell populations derived from different body sites may not represent equivalent cell sources for cell-based therapeutical strategies for regeneration and repair of specific tissues.

  8. Bioenergetics of Stromal Cells as a Predictor of Aggressive Prostate Cancer

    Science.gov (United States)

    2016-11-01

    AWARD NUMBER: W81XWH-14-1-0255 TITLE: BIOENERGETICS OF STROMAL CELLS AS A PREDICTOR OF AGGRESSIVE PROSTATE CANCER PRINCIPAL INVESTIGATOR...CONTRACT NUMBER Bioenergetics Of Stromal Cells As A Predictor Of Aggressive Prostate Cancer 5b. GRANT NUMBER W81XWH-14-1-0255 5c. PROGRAM ELEMENT...oncobioenergetic profile of a cancer cell, which increases significantly upon transformation into localized premalignant form and rapidly falls below the

  9. The Stromal Microenvironment Modulates Mitochondrial Oxidative Phosphorylation in Chronic Lymphocytic Leukemia Cells

    Directory of Open Access Journals (Sweden)

    Hima V. Vangapandu

    2017-10-01

    Full Text Available Peripheral blood chronic lymphocytic leukemia (CLL cells are replicationally quiescent mature B-cells. In short-term cultures, supporting stromal cells provide a survival advantage to CLL cells by inducing transcription and translation without promoting proliferation. We hypothesized that the stromal microenvironment augments malignant B cells' metabolism to enable the cells to cope with their energy demands for transcription and translation. We used extracellular flux analysis to assess the two major energy-generating pathways, mitochondrial oxidative phosphorylation (OxPhos and glycolysis, in primary CLL cells in the presence of three different stromal cell lines. OxPhos, measured as the basal oxygen consumption rate (OCR and maximum respiration capacity, was significantly higher in 28 patients' CLL cells cocultured with bone marrow–derived NK.Tert stromal cells than in CLL cells cultured alone (P = .004 and <.0001, respectively. Similar OCR induction was observed in CLL cells cocultured with M2-10B4 and HS-5 stromal lines. In contrast, heterogeneous changes in the extracellular acidification rate (a measure of glycolysis were observed in CLL cells cocultured with stromal cells. Ingenuity Pathway Analysis of CLL cells' metabolomics profile indicated stroma-mediated stimulation of nucleotide synthesis. Quantitation of ribonucleotide pools showed a significant two-fold increase in CLL cells cocultured with stromal cells, indicating that the stroma may induce CLL cellular bioenergy and the RNA building blocks necessary for the transcriptional requirement of a prosurvival phenotype. The stroma did not impact the proliferation index (Ki-67 staining of CLL cells. Collectively, these data suggest that short-term interaction (≤24 hours with stroma increases OxPhos and bioenergy in replicationally quiescent CLL cells.

  10. NK cells are necessary for recovery of corneal CD11c+ dendritic cells after epithelial abrasion injury

    Science.gov (United States)

    Mechanisms controlling CD11c(+) MHCII(+) DCs during corneal epithelial wound healing were investigated in a murine model of corneal abrasion. Selective depletion of NKp46(+) CD3- NK cells that normally migrate into the cornea after epithelial abrasion resulted in >85% reduction of the epithelial CD1...

  11. First Identification of a Triple Corneal Dystrophy Association: Keratoconus, Epithelial Basement Membrane Corneal Dystrophy and Fuchs' Endothelial Corneal Dystrophy

    Directory of Open Access Journals (Sweden)

    Cosimo Mazzotta

    2014-09-01

    Full Text Available Purpose: To report the observation of a triple corneal dystrophy association consisting of keratoconus (KC, epithelial basement membrane corneal dystrophy (EBMCD and Fuchs' endothelial corneal dystrophy (FECD. Methods: A 55-year-old male patient was referred to our cornea service for blurred vision and recurrent foreign body sensation. He reported bilateral recurrent corneal erosions with diurnal visual fluctuations. He underwent corneal biomicroscopy, Scheimpflug tomography, in vivo HRT confocal laser scanning microscopy and genetic testing for TGFBI and ZEB1 mutations using direct DNA sequencing. Results: Biomicroscopic examination revealed the presence of subepithelial central and paracentral corneal opacities. The endothelium showed a bilateral flecked appearance, and the posterior corneal curvature suggested a possible concomitant ectatic disorder. Corneal tomography confirmed the presence of a stage II KC in both eyes. In vivo confocal laser scanning microscopy revealed a concomitant bilateral EBMCD with hyperreflective deposits in basal epithelial cells, subbasal Bowman's layer microfolds and ridges with truncated subbasal nerves as pseudodendritic elements. Stromal analysis revealed honeycomb edematous areas, and the endothelium showed a strawberry surface configuration typical of FECD. The genetic analysis resulted negative for TGFBI mutations and positive for a heterozygous mutation in exon 7 of the gene ZEB1. Conclusion: This is the first case reported in the literature in which KC, EBMCD and FECD are present in the same patient and associated with ZEB1 gene mutation. The triple association was previously established by means of morphological analysis of the cornea using corneal Scheimpflug tomography and in vivo HRT II confocal laser scanning microscopy.

  12. Focal adhesion protein abnormalities in myelodysplastic mesenchymal stromal cells

    Energy Technology Data Exchange (ETDEWEB)

    Aanei, Carmen Mariana, E-mail: caanei@yahoo.com [Laboratoire Hematologie, CHU de Saint-Etienne, 42055, Saint-Etienne (France); Department of Immunology, Gr. T. Popa University of Medicine and Pharmacy, 700115, Iasi (Romania); Eloae, Florin Zugun [Department of Immunology, Gr. T. Popa University of Medicine and Pharmacy, 700115, Iasi (Romania); Flandrin-Gresta, Pascale [Laboratoire Hematologie, CHU de Saint-Etienne, 42055, Saint-Etienne (France); CNRS UMR 5239, Universite de Lyon, 42023, Saint-Etienne (France); Tavernier, Emmanuelle [Service Hematologie Clinique, Institut de Cancerologie de la Loire, 42270, Saint-Priest-en-Jarez (France); CNRS UMR 5239, Universite de Lyon, 42023, Saint-Etienne (France); Carasevici, Eugen [Department of Immunology, Gr. T. Popa University of Medicine and Pharmacy, 700115, Iasi (Romania); Guyotat, Denis [Service Hematologie Clinique, Institut de Cancerologie de la Loire, 42270, Saint-Priest-en-Jarez (France); CNRS UMR 5239, Universite de Lyon, 42023, Saint-Etienne (France); Campos, Lydia [Laboratoire Hematologie, CHU de Saint-Etienne, 42055, Saint-Etienne (France); CNRS UMR 5239, Universite de Lyon, 42023, Saint-Etienne (France)

    2011-11-01

    Direct cell-cell contact between haematopoietic progenitor cells (HPCs) and their cellular microenvironment is essential to maintain 'stemness'. In cancer biology, focal adhesion (FA) proteins are involved in survival signal transduction in a wide variety of human tumours. To define the role of FA proteins in the haematopoietic microenvironment of myelodysplastic syndromes (MDS), CD73-positive mesenchymal stromal cells (MSCs) were immunostained for paxillin, pFAK [Y{sup 397}], and HSP90{alpha}/{beta} and p130CAS, and analysed for reactivity, intensity and cellular localisation. Immunofluorescence microscopy allowed us to identify qualitative and quantitative differences, and subcellular localisation analysis revealed that in pathological MSCs, paxillin, pFAK [Y{sup 397}], and HSP90{alpha}/{beta} formed nuclear molecular complexes. Increased expression of paxillin, pFAK [Y{sup 397}], and HSP90{alpha}/{beta} and enhanced nuclear co-localisation of these proteins correlated with a consistent proliferative advantage in MSCs from patients with refractory anaemia with excess blasts (RAEB) and negatively impacted clonogenicity of HPCs. These results suggest that signalling via FA proteins could be implicated in HPC-MSC interactions. Further, because FAK is an HSP90{alpha}/{beta} client protein, these results suggest the utility of HSP90{alpha}/{beta} inhibition as a target for adjuvant therapy for myelodysplasia.

  13. Aryl hydrocarbon receptor (AhR) agonists suppress interleukin-6 expression by bone marrow stromal cells: an immunotoxicology study

    OpenAIRE

    2003-01-01

    Abstract Background Bone marrow stromal cells produce cytokines required for the normal growth and development of all eight hematopoietic cell lineages. Aberrant cytokine production by stromal cells contributes to blood cell dyscrasias. Consequently, factors that alter stromal cell cytokine production may significantly compromise the development of normal blood cells. We have shown that environmental chemicals, such as aromatic hydrocarbon receptor (AhR) agonists, suppress B lymphopoiesis by ...

  14. Acacia honey accelerates in vitro corneal ulcer wound healing model.

    Science.gov (United States)

    Abd Ghafar, Norzana; Ker-Woon, Choy; Hui, Chua Kien; Mohd Yusof, Yasmin Anum; Wan Ngah, Wan Zurinah

    2016-07-29

    The study aimed to evaluate the effects of Acacia honey (AH) on the migration, differentiation and healing properties of the cultured rabbit corneal fibroblasts. Stromal derived corneal fibroblasts from New Zealand White rabbit (n = 6) were isolated and cultured until passage 1. In vitro corneal ulcer was created using a 4 mm corneal trephine onto confluent cultures and treated with basal medium (FD), medium containing serum (FDS), with and without 0.025 % AH. Wound areas were recorded at day 0, 3 and 6 post wound creation. Genes and proteins associated with wound healing and differentiation such as aldehyde dehydrogenase (ALDH), vimentin, alpha-smooth muscle actin (α-SMA), collagen type I, lumican and matrix metalloproteinase 12 (MMP12) were evaluated using qRT-PCR and immunocytochemistry respectively. Cells cultured with AH-enriched FDS media achieved complete wound closure at day 6 post wound creation. The cells cultured in AH-enriched FDS media increased the expression of vimentin, collagen type I and lumican genes and decreased the ALDH, α-SMA and MMP12 gene expressions. Protein expression of ALDH, vimentin and α-SMA were in accordance with the gene expression analyses. These results demonstrated AH accelerate corneal fibroblasts migration and differentiation of the in vitro corneal ulcer model while increasing the genes and proteins associated with stromal wound healing.

  15. CollagenVI-Cre mice: A new tool to target stromal cells in secondary lymphoid organs.

    Science.gov (United States)

    Prados, Alejandro; Kollias, George; Koliaraki, Vasiliki

    2016-09-08

    Stromal cells in secondary lymphoid organs (SLOs) are non-hematopoietic cells involved in the regulation of adaptive immune responses. Three major stromal populations have been identified in adult SLOs: fibroblastic reticular cells (FRCs), follicular dendritic cells (FDCs) and marginal reticular cells (MRCs). The properties of these individual populations are not clearly defined, mainly due to the lack of appropriate genetic tools, especially for MRCs. Here, we analyzed stromal cell targeting in SLOs from a transgenic mouse strain that expresses Cre recombinase under the CollagenVI promoter, using lineage tracing approaches. We show that these mice target specifically MRCs and FDCs, but not FRCs in Peyer's patches and isolated lymphoid follicles in the intestine. In contrast, stromal cells in lymph nodes and the spleen do not express the transgene, which renders ColVI-cre mice ideal for the specific targeting of stromal cells in the gut-associated lymphoid tissue (GALT). This funding further supports the hypothesis of organ-specific stromal precursors in SLOs. Interestingly, in all tissues analyzed, there was also high specificity for perivascular cells, which have been proposed to act as FDC precursors. Taken together, ColVI-Cre mice are a useful new tool for the dissection of MRC- and FDC-specific functions and plasticity in the GALT.

  16. Can Human Embryonic Stem Cell-Derived Stromal Cells Serve a Starting Material for Myoblasts?

    Directory of Open Access Journals (Sweden)

    Yu Ando

    2017-01-01

    Full Text Available A large number of myocytes are necessary to treat intractable muscular disorders such as Duchenne muscular dystrophy with cell-based therapies. However, starting materials for cellular therapy products such as myoblasts, marrow stromal cells, menstrual blood-derived cells, and placenta-derived cells have a limited lifespan and cease to proliferate in vitro. From the viewpoints of manufacturing and quality control, cells with a long lifespan are more suitable as a starting material. In this study, we generated stromal cells for future myoblast therapy from a working cell bank of human embryonic stem cells (ESCs. The ESC-derived CD105+ cells with extensive in vitro proliferation capability exhibited myogenesis and genetic stability in vitro. These results imply that ESC-derived CD105+ cells are another cell source for myoblasts in cell-based therapy for patients with genetic muscular disorders. Since ESCs are immortal, mesenchymal stromal cells generated from ESCs can be manufactured at a large scale in one lot for pharmaceutical purposes.

  17. Markers for Characterization of Bone Marrow Multipotential Stromal Cells

    Directory of Open Access Journals (Sweden)

    Sally A. Boxall

    2012-01-01

    Full Text Available Given the observed efficacy of culture-expanded multipotential stromal cells, also termed mesenchymal stem cells (MSCs, in the treatment of graft-versus host and cardiac disease, it remains surprising that purity and potency characterization of manufactured cell batches remains rather basic. In this paper, we will initially discuss surface and molecular markers that were proposed to serve as the indicators of the MSC potency, in terms of their proliferative potential or the ability to differentiate into desired lineages. The second part of this paper will be dedicated to a critical discussion of surface markers of uncultured (i.e., native bone marrow (BM MSCs. Although no formal consensus has yet been reached on which markers may be best suited for prospective BM MSC isolation, markers that cross-react with MSCs of animal models (such as CD271 and W8-B2/MSCA-1 may have the strongest translational value. Whereas small animal models are needed to discover the in vivo function on these markers, large animal models are required for safety and efficacy testing of isolated MSCs, particularly in the field of bone and cartilage tissue engineering.

  18. Corneal cell adhesion to contact lens hydrogel materials enhanced via tear film protein deposition.

    Directory of Open Access Journals (Sweden)

    Claire M Elkins

    Full Text Available Tear film protein deposition on contact lens hydrogels has been well characterized from the perspective of bacterial adhesion and viability. However, the effect of protein deposition on lens interactions with the corneal epithelium remains largely unexplored. The current study employs a live cell rheometer to quantify human corneal epithelial cell adhesion to soft contact lenses fouled with the tear film protein lysozyme. PureVision balafilcon A and AirOptix lotrafilcon B lenses were soaked for five days in either phosphate buffered saline (PBS, borate buffered saline (BBS, or Sensitive Eyes Plus Saline Solution (Sensitive Eyes, either pure or in the presence of lysozyme. Treated contact lenses were then contacted to a live monolayer of corneal epithelial cells for two hours, after which the contact lens was sheared laterally. The apparent cell monolayer relaxation modulus was then used to quantify the extent of cell adhesion to the contact lens surface. For both lens types, lysozyme increased corneal cell adhesion to the contact lens, with the apparent cell monolayer relaxation modulus increasing up to an order of magnitude in the presence of protein. The magnitude of this increase depended on the identity of the soaking solution: lenses soaked in borate-buffered solutions (BBS, Sensitive Eyes exhibited a much greater increase in cell attachment upon protein addition than those soaked in PBS. Significantly, all measurements were conducted while subjecting the cells to moderate surface pressures and shear rates, similar to those experienced by corneal cells in vivo.

  19. Chondrogenically differentiated mesenchymal stromal cell pellets stimulate endochondral bone regeneration in critical-sized bone defects

    NARCIS (Netherlands)

    J. van der Stok (Johan); M.K.E. Koolen; H. Jahr (Holger); N. Kops (Nicole); J.H. Waarsing (Jan); H.H. Weinans (Harrie); O.P. van der Jagt (Olav)

    2014-01-01

    markdownabstractAbstract: Grafting bone defects or atrophic non-unions with mesenchymal stromal cells (MSCs)-based grafts is not yet successful. MSC-based grafts typically use undifferentiated or osteogenically differentiated MSCs and regenerate bone through intramembranous ossification.

  20. Is it really an abscess? An unusual case of metastatic stromal cell sarcoma of the prostate

    Directory of Open Access Journals (Sweden)

    Shehan Wickramasinghe

    2015-01-01

    Conclusion: The preferred treatment for prostatic stromal cell sarcoma is surgery by radical prostatectomy or cystoprostatectomy. There is currently not enough literature on the topic to elucidate the role of chemo- or radiotherapy in loco-regional or distant spread.

  1. Radiation rescue: mesenchymal stromal cells protect from lethal irradiation.

    Directory of Open Access Journals (Sweden)

    Claudia Lange

    Full Text Available BACKGROUND: Successful treatment of acute radiation syndromes relies on immediate supportive care. In patients with limited hematopoietic recovery potential, hematopoietic stem cell (HSC transplantation is the only curative treatment option. Because of time consuming donor search and uncertain outcome we propose MSC treatment as an alternative treatment for severely radiation-affected individuals. METHODS AND FINDINGS: Mouse mesenchymal stromal cells (mMSCs were expanded from bone marrow, retrovirally labeled with eGFP (bulk cultures and cloned. Bulk and five selected clonal mMSCs populations were characterized in vitro for their multilineage differentiation potential and phenotype showing no contamination with hematopoietic cells. Lethally irradiated recipients were i.v. transplanted with bulk or clonal mMSCs. We found a long-term survival of recipients with fast hematopoietic recovery after the transplantation of MSCs exclusively without support by HSCs. Quantitative PCR based chimerism analysis detected eGFP-positive donor cells in peripheral blood immediately after injection and in lungs within 24 hours. However, no donor cells in any investigated tissue remained long-term. Despite the rapidly disappearing donor cells, microarray and quantitative RT-PCR gene expression analysis in the bone marrow of MSC-transplanted animals displayed enhanced regenerative features characterized by (i decreased proinflammatory, ECM formation and adhesion properties and (ii boosted anti-inflammation, detoxification, cell cycle and anti-oxidative stress control as compared to HSC-transplanted animals. CONCLUSIONS: Our data revealed that systemically administered MSCs provoke a protective mechanism counteracting the inflammatory events and also supporting detoxification and stress management after radiation exposure. Further our results suggest that MSCs, their release of trophic factors and their HSC-niche modulating activity rescue endogenous hematopoiesis

  2. Metabolic programming of mesenchymal stromal cells by oxygen tension directs chondrogenic cell fate

    NARCIS (Netherlands)

    Leijten, Jeroen Christianus Hermanus; Georgi, Nicole; Moreira Teixeira, Liliana; van Blitterswijk, Clemens; Post, Janine Nicole; Karperien, Hermanus Bernardus Johannes

    2014-01-01

    Actively steering the chondrogenic differentiation of mesenchymal stromal cells (MSCs) into either permanent cartilage or hypertrophic cartilage destined to be replaced by bone has not yet been possible. During limb development, the developing long bone is exposed to a concentration gradient of

  3. Autophagy activator promotes neuronal differentiation of adult adipose-derived stromal cells

    Institute of Scientific and Technical Information of China (English)

    Yanhui Lu; Xiaodong Yuan; Qiaoyu Sun; Ya Ou

    2013-01-01

    Preliminary research from our group found altered autophagy intensity during adipose-derived stromal cell differentiation into neuronal-like cells, and that this change was associated with morphological changes in differentiated cells. This study aimed to verify the role of rapamycin, an autophagy activator, in the process of adipose-derived stromal cell differentiation into neuronal-like cells. Immunohistochemical staining showed that expression of neuron-specific enolase and neurofilament-200 were gradually upregulated in adipose-derived stromal cells after 5 mM β-mercaptoethanol induction, and the differentiation rate gradually increased with induction time. Using transmission electron microscopy, induced cells were shown to exhibit cytoplasmic autophagosomes, with bilayer membranes, and autolysosomes. After rapamycin (200μg/L) induction for 1 hour, adipose-derived stromal cells began to extend long processes, similar to the morphology of neuronal-like cells, while untreated cells did not exhibit similar morphologies until 3 hours after induction. Moreover, the differentiation rate was significantly increased after rapamycin treatment. Compared with untreated cells, expression of LC3, an autophagy protein, was also significantly upregulated. Positive LC3 expression tended to concentrate at cell nuclei with increasing induction times. Our experimental findings indicate that autophagy can significantly increase the speed of adipose-derived stromal cell differentiation into neuronal-like cells.

  4. Characterization of corneal damage from Pseudomonas aeruginosa infection by the use of multiphoton microscopy

    Science.gov (United States)

    Chang, Yu-Lin; Chen, Wei-Liang; Lo, Wen; Chen, Shean-Jen; Tan, Hsin-Yuan; Dong, Chen-Yuan

    2010-11-01

    Using multiphoton autofluorescence (MAF) and second harmonic generation (SHG) microscopy, we investigate the morphology and the structure of the corneal epithelium and stroma collagen of bovine cornea following injection of Pseudomonas aeruginosa. We found that corneal epithelial cells are damaged and stromal collagen becoming increasingly autofluorescent with time. We also characterized infected cornea cultured for 0, 6, 12, and 24 h by quantitative ratiometric MAF to SHG index (MAFSI) analysis. MAFSI results show that the destruction of the stromal collagen corresponds to a decrease in SHG intensity and increase of MAF signal with time.

  5. Cell interactions between hematopoietic and stromal cells in the embryonic chick bone marrow.

    Science.gov (United States)

    Sorrell, J M; Weiss, L

    1980-05-01

    Light microscopic, scanning electron microscopic, and transmission electron microscopic studies of the early developmental stages of chick embryonic bone marrow disclose characteristic associations of the first hematopoietic cells with stromal cells. The first hematopoietic cells, large basophilic cells that we have termed presumptive stem cells, segregate into erythropoietic and granulopoietic regions. Intravascular erythropoietic cells associate with sinusoidal endothelial cells, while granulopoietic cells associate with extravascular reticular cells. Extensive, intimate contacts between erythroid and endothelial cells are maintained, in part, by marginal arrays of microtubules, which promote a flattening of the adherent erythroid cell surface. In addition, cell surface components of opposing cells, visualized by ruthenium red staining, appear to merge and possibly to interact. Granulopoietic cells establish intimate but less extensive associations with reticular cells through cell-surface interactions. Stationary granuloid cells appear to be held in place by small, thin processes emanating from the sheet-like reticular cells. Granuloid cells are capable of moving within the extravascular region, using reticular cell surfaces as a substrate. Intimate associations also occur among granulopoietic cells, the significance of which is unclear. Thus, sinusoidal endothelial cells and reticular cells comprise the critical non-hematopoietic or stromal elements of avian bone marrow, where they have a putative role in segregating presumptive stem cells into erythrocyteic and granulocytic compartments. They serve as an architectual, and possibly regulatory, framework on which hematopoiesis occurs.

  6. Envisaging an allogenic Corneal endothelial precursor/Stem Cell Bank (CESBANK

    Directory of Open Access Journals (Sweden)

    Parikumar P

    2008-01-01

    Full Text Available Bullous Keratopathy (BK affects thousands of people in India every year. Though in early stages it is manageable medically, advanced disease warrants either total corneal transplantation or partial thickness transplantation for which a donor-cadaver cornea is necessary. Amano et al have reported the successful treatment of BK in animal models using in-vitro expanded human corneal endothelial precursors; though the rabbits had to be kept facing eye down to allow gravity assisted settling of the cells to the summit of the cornea where the damage had been created. For successful treatment using the above method, a human being has to lie prone with eyes immobilized for 24-36 Hrs. This is extremely discomforting and hence not practical. Corneal endothelium removed from the button and transported at varying temperature conditions for 48Hrs was successfully cultured in NCRM and this was reported earlier. We are working on a suitable scaffold to retain the cells in situ until their attachment to the damaged portion of the corneal endothelium enabling it to heal without the patient having to lie prone. With such capability, we envisage to make a corneal endothelial precursor/stem cell (CES bank named as CESBANK to make in-vitro expanded CES available for patients with corneal diseases, most commonly Bullous Keratopathy (BK.

  7. N-Isopropylacrylamide-co-glycidylmethacrylate as a Thermoresponsive Substrate for Corneal Endothelial Cell Sheet Engineering

    Directory of Open Access Journals (Sweden)

    Bernadette K. Madathil

    2014-01-01

    Full Text Available Endothelial keratoplasty is a recent shift in the surgical treatment of corneal endothelial dystrophies, where the dysfunctional endothelium is replaced whilst retaining the unaffected corneal layers. To overcome the limitation of donor corneal shortage, alternative use of tissue engineered constructs is being researched. Tissue constructs with intact extracellular matrix are generated using stimuli responsive polymers. In this study we evaluated the feasibility of using the thermoresponsive poly(N-isopropylacrylamide-co-glycidylmethacrylate polymer as a culture surface to harvest viable corneal endothelial cell sheets. Incubation below the lower critical solution temperature of the polymer allowed the detachment of the intact endothelial cell sheet. Phase contrast and scanning electron microscopy revealed the intact architecture, cobble stone morphology, and cell-to-cell contact in the retrieved cell sheet. Strong extracellular matrix deposition was also observed. The RT-PCR analysis confirmed functionally active endothelial cells in the cell sheet as evidenced by the positive expression of aquaporin 1, collagen IV, Na+-K+ ATPase, and FLK-1. Na+-K+ ATPase protein expression was also visualized by immunofluorescence staining. These results suggest that the in-house developed thermoresponsive culture dish is a suitable substrate for the generation of intact corneal endothelial cell sheet towards transplantation for endothelial keratoplasty.

  8. The clinical application of mesenchymal stromal cells in hematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Ke Zhao

    2016-05-01

    Full Text Available Abstract Mesenchymal stromal cells (MSCs are multipotent stem cells well known for repairing tissue, supporting hematopoiesis, and modulating immune and inflammation response. These outstanding properties make MSCs as an attractive candidate for cellular therapy in immune-based disorders, especially hematopoietic stem cell transplantation (HSCT. In this review, we outline the progress of MSCs in preventing and treating engraftment failure (EF, graft-versus-host disease (GVHD following HSCT and critically discuss unsolved issues in clinical applications.

  9. Progenitors for the Corneal Endothelium and Trabecular Meshwork: A Potential Source for Personalized Stem Cell Therapy in Corneal Endothelial Diseases and Glaucoma

    Directory of Open Access Journals (Sweden)

    Wing Yan Yu

    2011-01-01

    Full Text Available Several adult stem cell types have been found in different parts of the eye, including the corneal epithelium, conjunctiva, and retina. In addition to these, there have been accumulating evidence that some stem-like cells reside in the transition area between the peripheral corneal endothelium (CE and the anterior nonfiltering portion of the trabecular meshwork (TM, which is known as the Schwalbe's Ring region. These stem/progenitor cells may supply new cells for the CE and TM. In fact, the CE and TM share certain similarities in terms of their embryonic origin and proliferative capacity in vivo. In this paper, we discuss the putative stem cell source which has the potential for replacement of lost and nonfunctional cells in CE diseases and glaucoma. The future development of personalized stem cell therapies for the CE and TM may reduce the requirement of corneal grafts and surgical treatments in glaucoma.

  10. Cultivation of corneal endothelial cells on a pericellular matrix prepared from human decidua-derived mesenchymal cells.

    Directory of Open Access Journals (Sweden)

    Ryohei Numata

    Full Text Available The barrier and pump functions of the corneal endothelium are essential for the maintenance of corneal transparency. Although corneal transplantation is the only current therapy for treating corneal endothelial dysfunction, the potential of tissue-engineering techniques to provide highly efficient and less invasive therapy in comparison to corneal transplantation has been highly anticipated. However, culturing human corneal endothelial cells (HCECs is technically difficult, and there is no established culture protocol. The aim of this study was to investigate the feasibility of using a pericellular matrix prepared from human decidua-derived mesenchymal cells (PCM-DM as an animal-free substrate for HCEC culture for future clinical applications. PCM-DM enhanced the adhesion of monkey CECs (MCECs via integrin, promoted cell proliferation, and suppressed apoptosis. The HCECs cultured on the PCM-DM showed a hexagonal morphology and a staining profile characteristic of Na⁺/K⁺-ATPase and ZO-1 at the plasma membrane in vivo, whereas the control HCECs showed a fibroblastic phenotype. The cell density of the cultured HCECs on the PCM-DM was significantly higher than that of the control cells. These results indicate that PCM-DM provides a feasible xeno-free matrix substrate and that it offers a viable in vitro expansion protocol for HCECs while maintaining cellular functions for use as a subsequent clinical intervention for tissue-engineered based therapy of corneal endothelial dysfunction.

  11. Cultivation of corneal endothelial cells on a pericellular matrix prepared from human decidua-derived mesenchymal cells.

    Science.gov (United States)

    Numata, Ryohei; Okumura, Naoki; Nakahara, Makiko; Ueno, Morio; Kinoshita, Shigeru; Kanematsu, Daisuke; Kanemura, Yonehiro; Sasai, Yoshiki; Koizumi, Noriko

    2014-01-01

    The barrier and pump functions of the corneal endothelium are essential for the maintenance of corneal transparency. Although corneal transplantation is the only current therapy for treating corneal endothelial dysfunction, the potential of tissue-engineering techniques to provide highly efficient and less invasive therapy in comparison to corneal transplantation has been highly anticipated. However, culturing human corneal endothelial cells (HCECs) is technically difficult, and there is no established culture protocol. The aim of this study was to investigate the feasibility of using a pericellular matrix prepared from human decidua-derived mesenchymal cells (PCM-DM) as an animal-free substrate for HCEC culture for future clinical applications. PCM-DM enhanced the adhesion of monkey CECs (MCECs) via integrin, promoted cell proliferation, and suppressed apoptosis. The HCECs cultured on the PCM-DM showed a hexagonal morphology and a staining profile characteristic of Na⁺/K⁺-ATPase and ZO-1 at the plasma membrane in vivo, whereas the control HCECs showed a fibroblastic phenotype. The cell density of the cultured HCECs on the PCM-DM was significantly higher than that of the control cells. These results indicate that PCM-DM provides a feasible xeno-free matrix substrate and that it offers a viable in vitro expansion protocol for HCECs while maintaining cellular functions for use as a subsequent clinical intervention for tissue-engineered based therapy of corneal endothelial dysfunction.

  12. Intrahippocampal transplantation of mesenchymal stromal cells promotes neuroplasticity.

    Science.gov (United States)

    Coquery, Nicolas; Blesch, Armin; Stroh, Albrecht; Fernández-Klett, Francisco; Klein, Julia; Winter, Christine; Priller, Josef

    2012-10-01

    Multipotent mesenchymal stromal cells (MSC) secrete soluble factors that stimulate the surrounding microenvironment. Such paracrine effects might underlie the potential benefits of many stem cell therapies. We tested the hypothesis that MSC are able to enhance intrinsic cellular plasticity in the adult rat hippocampus. Rat bone marrow-derived MSC were labeled with very small superparamagnetic iron oxide particles (VSOP), which allowed for non-invasive graft localization by magnetic resonance imaging (MRI). Moreover, MSC were transduced with lentiviral vectors to express the green fluorescent protein (GFP). The effects of bilateral MSC transplantation on hippocampal cellular plasticity were assessed using the thymidine analogs 5-bromo-2'-deoxyuridine (BrdU) and 5-iodo-2'-deoxyuridine (IdU). Behavioral testing was performed to examine the consequences of intrahippocampal MSC transplantation on locomotion, learning and memory, and anxiety-like and depression-like behavior. We found that intrahippocampal transplantation of MSC resulted in enhanced neurogenesis despite short-term graft survival. In contrast, systemic administration of the selective serotonin re-uptake inhibitor citalopram increased cell survival but did not affect cell proliferation. Intrahippocampal transplantation of MSC did not impair behavioral functions in rats, but only citalopram exerted anti-depressant effects. This is the first study to examine the effects of intrahippocampal transplantation of allogeneic MSC on hippocampal structural plasticity and behavioral functions in rats combined with non-invasive cell tracking by MRI. We found that iron oxide nanoparticles can be used to detect transplanted MSC in the brain. Although graft survival was short, intrahippocampal transplantation of MSC resulted in long-term changes in hippocampal plasticity. Our results suggest that MSC can be used to stimulate adult neurogenesis.

  13. Pro-B cells propagated in stromal cell-free cultures reconstitute functional B-cell compartments in immunodeficient mice.

    Science.gov (United States)

    von Muenchow, Lilly; Tsapogas, Panagiotis; Albertí-Servera, Llucia; Capoferri, Giuseppina; Doelz, Marianne; Rolink, Hannie; Bosco, Nabil; Ceredig, Rhodri; Rolink, Antonius G

    2017-02-01

    Up to now long-term in vitro growth of pro-B cells was thought to require stromal cells. However, here we show that fetal liver (FL) and bone marrow (BM) derived pro-B cells can be propagated long-term in stromal cell-free cultures supplemented with IL-7, stem cell factor and FLT3 ligand. Within a week, most cells expressed surface CD19, CD79A, λ5, and VpreB antigens and had rearranged immunoglobulin D-J heavy chain genes. Both FL and BM pro-B cells reconstituted the B-cell compartments of immuno-incompetent Rag2-deficient mice, with FL pro-B cells generating follicular, marginal zone (MZB) and B1a B cells, and BM pro-B cells giving rise mainly to MZB cells. Reconstituted Rag2-deficient mice generated significant levels of IgM and IgG antibodies to a type II T-independent antigen; mice reconstituted with FL pro-B cells generated surprisingly high IgG1 titers. Finally, we show for the first time that mice reconstituted with mixtures of pro-B and pro-T cells propagated in stromal cell-free in vitro cultures mounted a T-cell-dependent antibody response. This novel stromal cell-free culture system facilitates our understanding of B-cell development and might be applied clinically. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Primary corneal papilloma and squamous cell carcinoma associated with pigmentary keratitis in four dogs.

    Science.gov (United States)

    Bernays, M E; Flemming, D; Peiffer, R L

    1999-01-15

    Squamous cell carcinoma (SCC) and squamous papilloma are rarely reported as primary lesions of the cornea in dogs. One case of corneal papilloma and 3 cases of SCC, each arising as a primary central corneal neoplasm rather than spreading from adjacent limbal conjunctiva, were reviewed. The most common cause of SCC in animals is chronic exposure of lightly pigmented epithelium to UV light; however, all dogs in this study had a history of chronic pigmentary keratitis. Three of the 4 dogs were of brachycephalic breeds with naturally proptotic eyes and oversized palpebral fissures that may have exposed the cornea to greater excessive solar radiation. Alternatively, mechanical factors that caused chronic changes in the cornea may have been causative factors for induction of primary dysplastic or neoplastic changes. Primary corneal neoplasia should be considered in the differential diagnosis of corneal masses.

  15. The cannabinoid receptor type 2 as mediator of mesenchymal stromal cell immunosuppressive properties.

    Directory of Open Access Journals (Sweden)

    Francesca Rossi

    Full Text Available Mesenchymal stromal cells are non-hematopoietic, multipotent progenitor cells producing cytokines, chemokines, and extracellular matrix proteins that support hematopoietic stem cell survival and engraftment, influence immune effector cell development, maturation, and function, and inhibit alloreactive T-cell responses. The immunosuppressive properties of human mesenchymal stromal cells have attracted much attention from immunologists, stem cell biologists and clinicians. Recently, the presence of the endocannabinoid system in hematopoietic and neural stem cells has been demonstrated. Endocannabinoids, mainly acting through the cannabinoid receptor subtype 2, are able to modulate cytokine release and to act as immunosuppressant when added to activated T lymphocytes. In the present study, we have investigated, through a multidisciplinary approach, the involvement of the endocannabinoids in migration, viability and cytokine release of human mesenchymal stromal cells. We show, for the first time, that cultures of human mesenchymal stromal cells express all of the components of the endocannabinoid system, suggesting a potential role for the cannabinoid CB2 receptor as a mediator of anti-inflammatory properties of human mesenchymal stromal cells, as well as of their survival pathways and their capability to home and migrate towards endocannabinoid sources.

  16. Immunization of stromal cell targeting fibroblast activation protein providing immunotherapy to breast cancer mouse model.

    Science.gov (United States)

    Meng, Mingyao; Wang, Wenju; Yan, Jun; Tan, Jing; Liao, Liwei; Shi, Jianlin; Wei, Chuanyu; Xie, Yanhua; Jin, Xingfang; Yang, Li; Jin, Qing; Zhu, Huirong; Tan, Weiwei; Yang, Fang; Hou, Zongliu

    2016-08-01

    Unlike heterogeneous tumor cells, cancer-associated fibroblasts (CAF) are genetically more stable which serve as a reliable target for tumor immunotherapy. Fibroblast activation protein (FAP) which is restrictively expressed in tumor cells and CAF in vivo and plays a prominent role in tumor initiation, progression, and metastasis can function as a tumor rejection antigen. In the current study, we have constructed artificial FAP(+) stromal cells which mimicked the FAP(+) CAF in vivo. We immunized a breast cancer mouse model with FAP(+) stromal cells to perform immunotherapy against FAP(+) cells in the tumor microenvironment. By forced expression of FAP, we have obtained FAP(+) stromal cells whose phenotype was CD11b(+)/CD34(+)/Sca-1(+)/FSP-1(+)/MHC class I(+). Interestingly, proliferation capacity of the fibroblasts was significantly enhanced by FAP. In the breast cancer-bearing mouse model, vaccination with FAP(+) stromal cells has significantly inhibited the growth of allograft tumor and reduced lung metastasis indeed. Depletion of T cell assays has suggested that both CD4(+) and CD8(+) T cells were involved in the tumor cytotoxic immune response. Furthermore, tumor tissue from FAP-immunized mice revealed that targeting FAP(+) CAF has induced apoptosis and decreased collagen type I and CD31 expression in the tumor microenvironment. These results implicated that immunization with FAP(+) stromal cells led to the disruption of the tumor microenvironment. Our study may provide a novel strategy for immunotherapy of a broad range of cancer.

  17. Long-term corneal endothelial cell changes in pediatric intraocular lens reposition and exchange cases.

    Science.gov (United States)

    Wang, Yan; Wu, Mingxing; Zhu, Liyuan; Liu, Yizhi

    2012-04-01

    To evaluate long-term corneal endothelial cell changes of intraocular lens (IOL) reposition and exchange in children. State key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China In this retrospective study, all IOL reposition and exchange procedures performed in patients under 14 years old between January 1999 and April 2009 were included. Follow-up outcomes included corneal endothelial cell density, hexagonality, coefficient of variance, average cell size. IOL reposition procedures in 12 eyes (12 cases) (reposition group, RPG), and IOL exchanges in eight eyes (eight cases) (exchange group, EXG) were performed because of IOL pupillary capture or IOL dislocation. Median of follow-up was 44.5 months in RPG and 66.2 months in EXG. The density of corneal endothelial cells in RPG (2,053 ± 493/mm(2)) and EXG (2,100 ± 758/mm(2)) was significantly decreased in comparison to the control eyes (3,116 ± 335/mm(2)). Hexagonality of corneal endothelial cells and coefficient of variance showed no difference among the control group, RPG and EXG (P > 0.05). The density of corneal endothelial cells was conspicuously decreased after IOL reposition or exchange procedures in childhood cases. Longer follow-up must be conducted in these cases.

  18. A relativity concept in mesenchymal stromal cell manufacturing.

    Science.gov (United States)

    Martin, Ivan; De Boer, Jan; Sensebe, Luc

    2016-05-01

    Mesenchymal stromal cells (MSCs) are being experimentally tested in several biological systems and clinical settings with the aim of verifying possible therapeutic effects for a variety of indications. MSCs are also known to be heterogeneous populations, with phenotypic and functional features that depend heavily on the individual donor, the harvest site, and the culture conditions. In the context of this multidimensional complexity, a recurrent question is whether it is feasible to produce MSC batches as "standard" therapeutics, possibly within scalable manufacturing systems. Here, we provide a short overview of the literature on different culture methods for MSCs, including those employing innovative technologies, and of some typically assessed functional features (e.g., growth, senescence, genomic stability, clonogenicity, etc.). We then offer our perspective of a roadmap on how to identify and refine manufacturing systems for MSCs intended for specific clinical indications. We submit that the vision of producing MSCs according to a unique standard, although commercially attractive, cannot yet be scientifically substantiated. Instead, efforts should be concentrated on standardizing methods for characterization of MSCs generated by different groups, possibly covering a vast gamut of functionalities. Such assessments, combined with hypotheses on the therapeutic mode of action and associated clinical data, should ultimately allow definition of in-process controls and measurable release criteria for MSC manufacturing. These will have to be validated as predictive of potency in suitable pre-clinical models and of therapeutic efficacy in patients. Copyright © 2016 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  19. Mesenchymal Stromal Cell Dependent Regression of Pulmonary Metastasis from Ewing's

    Directory of Open Access Journals (Sweden)

    Andrea Anita Hayes-Jordan

    2014-05-01

    Full Text Available Introduction: Ewing’s sarcoma (ES is the second most common bone tumor in children. Survival has not improved over the last decade and once pulmonary metastatic disease is present, survival is dismal. Mesenchymal stromal cell (MSC therapy has shown potential benefit for Kaposi's sarcoma; however, the role of progenitor cell therapies for cancer remains controversial. MSC treatment of ES or pulmonary metastatic disease has not been demonstrated. We have developed an orthotopic xenograft model of ES in which animals develop spontaneous pulmonary metastases. Within this model, we demonstrate the use of MSCs to target ES lung metastasis. Materials and MethodsHuman ES cells were transfected with luciferase and injected into the rib of nude mice. Development of pulmonary metastases was confirmed by imaging. After flow cytometry based characterization, MSC’s were injected into the tail vein of nude mice with established local ES tumor or pulmonary metastasis. Mice were treated with intravenous MSCs weekly followed by bioluminescent imaging.ResultsThe intravenous injection of MSCs in an ES model decreases the volume of pulmonary metastatic lesions; however, no effect on primary chest wall tumor size is observed. Thus verifying the MSC preferential homing to the lung. MSCs are found to ‘home to’ the pulmonary parenchyma and remain engrafted up to 5 days after delivery. DiscussionMSC treatment of ES slows growth of pulmonary metastasis. MSC’s have more affinity for pulmonary metastasis and can effect a greater decrease in tumor growth in the lungs compared to the primary tumor site

  20. Osteogenic differentiation of amniotic fluid mesenchymal stromal cells and their bone regeneration potential.

    Science.gov (United States)

    Pipino, Caterina; Pandolfi, Assunta

    2015-05-26

    In orthopedics, tissue engineering approach using stem cells is a valid line of treatment for patients with bone defects. In this context, mesenchymal stromal cells of various origins have been extensively studied and continue to be a matter of debate. Although mesenchymal stromal cells from bone marrow are already clinically applied, recent evidence suggests that one may use mesenchymal stromal cells from extra-embryonic tissues, such as amniotic fluid, as an innovative and advantageous resource for bone regeneration. The use of cells from amniotic fluid does not raise ethical problems and provides a sufficient number of cells without invasive procedures. Furthermore, they do not develop into teratomas when transplanted, a consequence observed with pluripotent stem cells. In addition, their multipotent differentiation ability, low immunogenicity, and anti-inflammatory properties make them ideal candidates for bone regenerative medicine. We here present an overview of the features of amniotic fluid mesenchymal stromal cells and their potential in the osteogenic differentiation process. We have examined the papers actually available on this regard, with particular interest in the strategies applied to improve in vitro osteogenesis. Importantly, a detailed understanding of the behavior of amniotic fluid mesenchymal stromal cells and their osteogenic ability is desirable considering a feasible application in bone regenerative medicine.

  1. A role for ADAM12 in breast tumor progression and stromal cell apoptosis

    DEFF Research Database (Denmark)

    Kveiborg, Marie; Frohlich, Camilla; Albrechtsen, Reidar;

    2005-01-01

    of stromal fibroblasts in tumor initiation and progression has been elucidated. Here, we show that stromal cell apoptosis occurs in human breast carcinoma but is only rarely seen in nonmalignant breast lesions. Furthermore, we show that ADAM12, a disintegrin and metalloprotease up-regulated in human breast...... cancer, accelerates tumor progression in a mouse breast cancer model. ADAM12 does not influence tumor cell proliferation but rather confers both decreased tumor cell apoptosis and increased stromal cell apoptosis. This dual role of ADAM12 in governing cell survival is underscored by the finding that ADAM......12 increases the apoptotic sensitivity of nonneoplastic cells in vitro while rendering tumor cells more resistant to apoptosis. Together, these results show that the ability of ADAM12 to influence apoptosis may contribute to tumor progression....

  2. Mesenchymal Stromal Cells and Tissue-Specific Progenitor Cells: Their Role in Tissue Homeostasis

    Directory of Open Access Journals (Sweden)

    Aleksandra Klimczak

    2016-01-01

    Full Text Available Multipotent mesenchymal stromal/stem cells (MSCs reside in many human organs and comprise heterogeneous population of cells with self-renewal ability. These cells can be isolated from different tissues, and their morphology, immunophenotype, and differentiation potential are dependent on their tissue of origin. Each organ contains specific population of stromal cells which maintain regeneration process of the tissue where they reside, but some of them have much more wide plasticity and differentiate into multiple cells lineage. MSCs isolated from adult human tissues are ideal candidates for tissue regeneration and tissue engineering. However, MSCs do not only contribute to structurally tissue repair but also MSC possess strong immunomodulatory and anti-inflammatory properties and may influence in tissue repair by modulation of local environment. This paper is presenting an overview of the current knowledge of biology of tissue-resident mesenchymal stromal and progenitor cells (originated from bone marrow, liver, skeletal muscle, skin, heart, and lung associated with tissue regeneration and tissue homeostasis.

  3. Treatment of corneal squamous cell carcinoma using topical 1% 5-fluorouracil as monotherapy.

    Science.gov (United States)

    Dorbandt, Daniel M; Driskell, Elizabeth A; Hamor, Ralph E

    2016-05-01

    The purpose of this report is to discuss the use of topical 1% 5-fluorouracil as a sole therapy for canine corneal squamous cell carcinoma (SCC). A 12-year-old castrated male pug was evaluated for a well-demarcated, central, 3 mm in diameter, pale pink, raised, right corneal mass. An incisional biopsy was obtained using a #64 beaver blade after topical anesthesia and without sedation. A definitive diagnosis of corneal SCC was obtained after histopathologic evaluation of the biopsy. Topical 1% 5-fluorouracil ointment was applied to the right eye four times daily for 2 weeks followed by no treatment for 2 weeks, then treatment again twice daily for 2 weeks. The cornea remained free of recurrence 10 months after cessation of treatment. In dogs affected with corneal SCC, topical 1% 5-fluorouracil monotherapy may be a viable and cost-effective treatment option with minimal side effects. This chemotherapy agent may also have an effect on corneal pigmentation. Chronic cyclosporine therapy did not contribute to the pathogenesis of corneal SCC in the case described.

  4. Adult adipose-derived stromal cells differentiate into neurons with normal electrophysiological functions

    Institute of Scientific and Technical Information of China (English)

    Xiaodong Yuan; Yanan Cai; Ya Ou; Yanhui Lu

    2011-01-01

    β-mercaptoethanol was used to induce in vitro neuronal differentiation of adipose-derived stromal cells. Within an 8-hour period post-differentiation, the induced cells exhibited typical neuronal morphology, and expression of microtubule-associated protein 2 and neuron-specific enolase, which are markers of mature neurons, reached a peak at 5 hours. Specific organelle Nissl bodies of neurons were observed under transmission electron microscopy. Results of membrane potential showed that fluorescence intensity of cells was greater after 5 hours than adipose-derived stromal cells prior to induction. In addition, following stimulation with high-concentration potassium solution, fluorescence intensity increased. These experimental findings suggested that neurons differentiated from adipose-derived stromal cells and expressed mature K+ channels. In addition, following stimulation with high potassium solution, the membrane potential depolarized and fired an action potential, confirming that the induced cells possessed electrophysiological functions.

  5. Human-derived normal mesenchymal stem/stromal cells in anticancer therapies

    Science.gov (United States)

    Zhang, Cheng; Yang, Shi-Jie; Wen, Qin; Zhong, Jiang F; Chen, Xue-Lian; Stucky, Andres; Press, Michael F; Zhang, Xi

    2017-01-01

    The tumor microenvironment (TME) not only plays a pivotal role during cancer progression and metastasis, but also has profound effects on therapeutic efficacy. Stromal cells of the TME are increasingly becoming a key consideration in the development of active anticancer therapeutics. However, dispute concerning the role of stromal cells to fight cancer continues because the use of mesenchymal stem/stromal cells (MSCs) as an anticancer agent is dependent on the specific MSCs subtype, in vitro or in vivo conditions, factors secreted by MSCs, types of cancer cell lines and interactions between MSCs, cancer cells and host immune cells. In this review, we mainly focus on the role of human-derived normal MSCs in anticancer therapies. We first discuss the use of different MSCs in the therapies for various cancers. We then focus on their anticancer mechanism and clinical application. PMID:28123601

  6. Apoptosis during β-mercaptoethanol-induced differentiation of adult adipose-derived stromal cells into neurons

    Institute of Scientific and Technical Information of China (English)

    Yanan Cai; Xiaodong Yuan; Ya Ou; Yanhui Lu

    2011-01-01

    β-mercaptoethanol can induce adipose-derived stromal cells to rapidly and efficiently differentiate into neurons in vitro. However, because of the short survival time of the differentiated cells, clinical applications for this technique are limited. As such, we examined apoptosis of neurons differentiated from adipose-derived stromal cells induced with β-mercaptoethanol in vitro using terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling and transmission electron microscopy. The results revealed that the number of surviving cells decreased and apoptosis rate increased as induction time extended. Taken together, these results suggest that apoptosis occurring in the process of adipose-derived stromal cells differentiating into neurons is the main cause of cell death. However, the mechanism underlying cellular apoptosis should be researched further to develop methods of controlling apoptosis for clinical applications.

  7. Mesenchymal Stem Cell-Induced DDR2 Mediates Stromal-Breast Cancer Interactions and Metastasis Growth

    Directory of Open Access Journals (Sweden)

    Maria E. Gonzalez

    2017-01-01

    Full Text Available Increased collagen deposition by breast cancer (BC-associated mesenchymal stem/multipotent stromal cells (MSC promotes metastasis, but the mechanisms are unknown. Here, we report that the collagen receptor discoidin domain receptor 2 (DDR2 is essential for stromal-BC communication. In human BC metastasis, DDR2 is concordantly upregulated in metastatic cancer and multipotent mesenchymal stromal cells. In MSCs isolated from human BC metastasis, DDR2 maintains a fibroblastic phenotype with collagen deposition and induces pathological activation of DDR2 signaling in BC cells. Loss of DDR2 in MSCs impairs their ability to promote DDR2 phosphorylation in BC cells, as well as BC cell alignment, migration, and metastasis. Female ddr2-deficient mice homozygous for the slie mutation show inefficient spontaneous BC metastasis. These results point to a role for mesenchymal stem cell DDR2 in metastasis and suggest a therapeutic approach for metastatic BC.

  8. Mesenchymal Stem Cell-Induced DDR2 Mediates Stromal-Breast Cancer Interactions and Metastasis Growth.

    Science.gov (United States)

    Gonzalez, Maria E; Martin, Emily E; Anwar, Talha; Arellano-Garcia, Caroline; Medhora, Natasha; Lama, Arjun; Chen, Yu-Chih; Tanager, Kevin S; Yoon, Euisik; Kidwell, Kelley M; Ge, Chunxi; Franceschi, Renny T; Kleer, Celina G

    2017-01-31

    Increased collagen deposition by breast cancer (BC)-associated mesenchymal stem/multipotent stromal cells (MSC) promotes metastasis, but the mechanisms are unknown. Here, we report that the collagen receptor discoidin domain receptor 2 (DDR2) is essential for stromal-BC communication. In human BC metastasis, DDR2 is concordantly upregulated in metastatic cancer and multipotent mesenchymal stromal cells. In MSCs isolated from human BC metastasis, DDR2 maintains a fibroblastic phenotype with collagen deposition and induces pathological activation of DDR2 signaling in BC cells. Loss of DDR2 in MSCs impairs their ability to promote DDR2 phosphorylation in BC cells, as well as BC cell alignment, migration, and metastasis. Female ddr2-deficient mice homozygous for the slie mutation show inefficient spontaneous BC metastasis. These results point to a role for mesenchymal stem cell DDR2 in metastasis and suggest a therapeutic approach for metastatic BC.

  9. Molecular characterisation of stromal populations derived from human embryonic stem cells

    DEFF Research Database (Denmark)

    Harkness, L.; Twine, N. A.; Abu Dawud, R.;

    2015-01-01

    of hESC-stromal and immortalised BM-hMSC cells (hMSC-TERT). Of the 7379 genes expressed above baseline, only 9.3% of genes were differentially expressed between undifferentiated hESC-stromal and BM-hMSC. Following ex vivo osteoblast induction, 665 and 695 genes exhibited >. 2-fold change (FC) in h......ESC-stromal and BM-hMSC, respectively with 172 genes common to both cell types. Functional annotation of significantly changing genes revealed similarities in gene ontology between the two cell types. Interestingly, genes in categories of cell adhesion/motility and epithelial-mesenchymal transition (EMT) were highly...... enriched in hESC-stromal whereas genes associated with cell cycle processes were enriched in hMSC-TERT. This data suggests that while hESC-stromal cells exhibit a similar molecular phenotype to hMSC-TERT, differences exist that can be explained by ontological differences between these two cell types. h...

  10. Inflammatory response of a prostate stromal cell line induced by Trichomonas vaginalis.

    Science.gov (United States)

    Im, S J; Han, I H; Kim, J H; Gu, N Y; Seo, M Y; Chung, Y H; Ryu, J S

    2016-04-01

    While Trichomonas vaginalis, a cause of sexually transmitted infection, is known as a surface-dwelling protozoa, trichomonads have been detected in prostatic tissue from benign prostatic hyperplasia and prostatitis by immunoperoxidase assay or PCR. However, the immune response of prostate stromal cells infected with T. vaginalis has not been investigated. Our objective was to investigate whether T. vaginalis could induce an inflammatory response in prostate stromal cells. Incubation of a human prostate stromal myofibroblast cells (WPMY-1) with live T. vaginalis T016 increased expression of the inflammatory chemokines CXCL8 and CCL2. In addition, TLR4, ROS, MAPK and NF-κB expression increased, while inhibitors of TLR4, ROS, MAPKs and NF-κB reduced CXCL8 and CCL2 production. Medium conditioned by incubation of WPMY-1 cells with T. vaginalis stimulated the migration of human neutrophils and monocytes (THP-1 cells). We conclude that T. vaginalis increases CXCL8 and CCL2 production by human prostate stromal cells by activating TLR4, ROS, MAPKs and NF-κB, and this in turn attracts neutrophils and monocytes and leads to an inflammatory response. This study is the first attempt to demonstrate an inflammatory reaction in prostate stromal cells caused by T. vaginalis.

  11. Identification of a candidate proteomic signature to discriminate multipotent and non-multipotent stromal cells.

    Directory of Open Access Journals (Sweden)

    Michael Rosu-Myles

    Full Text Available Bone marrow stromal cell cultures contain multipotent cells that may have therapeutic utility for tissue restoration; however, the identity of the cell that maintains this function remains poorly characterized. We have utilized a unique model of murine bone marrow stroma in combination with liquid chromatography mass spectrometry to compare the nuclear, cytoplasmic and membrane associated proteomes of multipotent (MSC (CD105+ and non-multipotent (CD105- stromal cells. Among the 25 most reliably identified proteins, 10 were verified by both real-time PCR and Western Blot to be highly enriched, in CD105+ cells and were members of distinct biological pathways and functional networks. Five of these proteins were also identified as potentially expressed in human MSC derived from both standard and serum free human stromal cultures. The quantitative amount of each protein identified in human stromal cells was only minimally affected by media conditions but varied highly between bone marrow donors. This study provides further evidence of heterogeneity among cultured bone marrow stromal cells and identifies potential candidate proteins that may prove useful for identifying and quantifying both murine and human MSC in vitro.

  12. Mast Cell-activated Bone Marrow Mesenchymal Stromal Cells Regulate Proliferation and Lineage Commitment of CD34+ Progenitor cells

    Directory of Open Access Journals (Sweden)

    Zoulfia eAllakhverdi

    2013-12-01

    Full Text Available Background: Shortly after allergen exposure, the number of bone marrow and circulating CD34+ progenitors increases. We aim to analyze the possible mechanism whereby the allergic reaction stimulates bone marrow to release these effector cells in increased numbers. We hypothesize that mast cells may play a predominant role in this process. Objective: To examine the effect of IgE-activated mast cells on bone marrow mesenchymal stromal cells which regulate proliferation and differentiation of CD34+ progenitors. Methods: Primary mast cells were derived from CD34+ precursors and activated with IgE/anti-IgE. Bone marrow mesenchymal stromal cells were co-cultured with CD34+ progenitor cells and stimulated with IL1/TNF or IgE/anti-IgE activated mast cells in Transwell system. Results: Bone marrow mesenchymal stromal cells produce low level of TSLP under steady state conditions, which is markedly increased by stimulation with proinflammatory cytokines IL-1 and TNF or IgE-activated mast cells. The latter also triggers BM-MSCs production of G-CSF, and GM-CSF while inhibiting SDF-1. Mast cell-activated mesenchymal stromal cells stimulate CD34+ cells to proliferate and to regulate their expression of early allergy-associated genes. Conclusion and Clinical Relevance: This in vitro study indicates that IgE-activated mast cells trigger bone marrow mesenchymal stromal cells to release TSLP and hematopoietic growth factors and to regulate the proliferation and lineage commitment of CD34+ precursor cells. The data predict that the effective inhibition of mast cells should impair mobilization and accumulation of allergic effector cells and thereby reduce the severity of allergic diseases.

  13. [Morphometric changes of corneal endothelial cells in pseudoexfoliation syndrome and pseudoexfoliation glaucoma].

    Science.gov (United States)

    de Juan-Marcos, L; Cabrillo-Estévez, L; Escudero-Domínguez, F A; Sánchez-Jara, A; Hernández-Galilea, E

    2013-11-01

    To evaluate the corneal endothelial morphometry and central corneal thickness (CCT) in pseudoexfoliative (PEX) eyes with and without glaucoma and to compare with normal eyes and eyes with primary open-angle glaucoma (POAG). A total of 166 patients were included in this study: 36 eyes with pseudoexfoliation syndrome (PXS), 30 eyes with pseudoexfoliation glaucoma (PXG), 40 eyes with POAG, and 60 normal eyes. Corneal endothelial cell density (ECD), coefficient of variation (CV) in cell size, and percentage of hexagonal cells, were measured using a non-contact specular microscope, whereas CCT was measured with an ultrasonic pachymeter. ECD and percentage of hexagonal cells were lower in PEX groups and in the POAG group compared with normal eyes, while the CV in cell size was greater. There was a tendency for greater cell loss and morphological abnormalities of the corneal endothelial cells in PXG eyes compared to PXS eyes, when all pseudoexfoliative eyes were analyzed together. Changes in endothelial cells increased with age. There were no significant differences in mean CCT between the four groups. Endothelial cell density is significantly decreased, and pleomorphism and polymegathism of cells are increased in PEX eyes, particularly when intraocular pressure is high. Copyright © 2012 Sociedad Española de Oftalmología. Published by Elsevier Espana. All rights reserved.

  14. Confocal microscopy and electrophysiological study of single patient corneal endothelium cell cultures

    Science.gov (United States)

    Tatini, Francesca; Rossi, Francesca; Coppi, Elisabetta; Magni, Giada; Fusco, Irene; Menabuoni, Luca; Pedata, Felicita; Pugliese, Anna Maria; Pini, Roberto

    2016-04-01

    The characterization of the ion channels in corneal endothelial cells and the elucidation of their involvement in corneal pathologies would lead to the identification of new molecular target for pharmacological treatments and to the clarification of corneal physiology. The corneal endothelium is an amitotic cell monolayer with a major role in preserving corneal transparency and in regulating the water and solute flux across the posterior surface of the cornea. Although endothelial cells are non-excitable, they express a range of ion channels, such as voltage-dependent Na+ channels and K+ channels, L-type Ca2 channels and many others. Interestingly, purinergic receptors have been linked to a variety of conditions within the eye but their presence in the endothelium and their role in its pathophysiology is still uncertain. In this study, we were able to extract endothelial cells from single human corneas, thus obtaining primary cultures that represent the peculiarity of each donor. Corneas were from tissues not suitable for transplant in patients. We characterized the endothelial cells by confocal microscopy, both within the intact cornea and in the primary endothelial cells cultures. We also studied the functional role of the purinergic system (adenosine, ATP and their receptors) by means of electrophysiological recordings. The experiments were performed by patch clamp recordings and confocal time-lapse microscopy and our results indicate that the application of purinergic compounds modulates the amplitude of outward currents in the isolated endothelial cells. These findings may lead to the proposal of new therapies for endothelium-related corneal diseases.

  15. Fetal liver hepatic progenitors are supportive stromal cells for hematopoietic stem cells.

    Science.gov (United States)

    Chou, Song; Lodish, Harvey F

    2010-04-27

    Previously we showed that the ~2% of fetal liver cells reactive with an anti-CD3epsilon monoclonal antibody support ex vivo expansion of both fetal liver and bone marrow hematopoietic stem cells (HSCs); these cells express two proteins important for HSC ex vivo expansion, IGF2, and angiopoietin-like 3. Here we show that these cells do not express any CD3 protein and are not T cells; rather, we purified these HSC-supportive stromal cells based on the surface phenotype of SCF(+)DLK(+). Competitive repopulating experiments show that SCF(+)DLK(+) cells support the maintenance of HSCs in ex vivo culture. These are the principal fetal liver cells that express not only angiopoietin-like 3 and IGF2, but also SCF and thrombopoietin, two other growth factors important for HSC expansion. They are also the principal fetal liver cells that express CXCL12, a factor required for HSC homing, and also alpha-fetoprotein (AFP), indicating that they are fetal hepatic stem or progenitor cells. Immunocytochemistry shows that >93% of the SCF(+) cells express DLK and Angptl3, and a portion of SCF(+) cells also expresses CXCL12. Thus SCF(+)DLK(+) cells are a highly homogenous population that express a complete set of factors for HSC expansion and are likely the primary stromal cells that support HSC expansion in the fetal liver.

  16. Experimental Study of Plasmid TGF-β1 DNA Gene Transfer with Lipofectamine into Rabbit Corneal Epithelial Cells In Vitro

    Institute of Scientific and Technical Information of China (English)

    黄琼; 胡燕华; 姜发纲; 陈宏

    2002-01-01

    To investigate whether the TGF-β1 plasmid DNA carried by lipofectamine could be introduced into cultured rabbit corneal epithelial cells, specific expression of the plasmid pMAM TGF-β1in the cultured corneal epithelial cells was studied. Two days after 12 h of transfection of pMAMTGF-β1 mediated by lipofectamine into the cultured corneal epithelial cells, the TGF-β1 protein expression specific for pMAMTGF-β1 in the cells was detected by means of immunohistochemical staining and the positive rate was 23. 37 %. The results suggested that foreign plasmid DNA could be effectively delivered into cultured rabbit corneal epithelial cells by means of lipofectamine, and this will provide a promising method of studying TGF-β1 on the mechanism of physiology and pathology concerned with corneal epithelial cells.

  17. Prostaglandin E2 regulates macrophage colony stimulating factor secretion by human bone marrow stromal cells.

    Science.gov (United States)

    Besse, A; Trimoreau, F; Faucher, J L; Praloran, V; Denizot, Y

    1999-07-08

    Bone marrow stromal cells regulate marrow haematopoiesis by secreting growth factors such as macrophage colony stimulating factor (M-CSF) that regulates the proliferation, differentiation and several functions of cells of the mononuclear-phagocytic lineage. By using a specific ELISA we found that their constitutive secretion of M-CSF is enhanced by tumour necrosis factor-alpha (TNF-alpha). The lipid mediator prostaglandin E2 (PGE2) markedly reduces in a time- and dose-dependent manner the constitutive and TNF-alpha-induced M-CSF synthesis by bone marrow stromal cells. In contrast, other lipid mediators such as 12-HETE, 15-HETE, leukotriene B4, leukotriene C4 and lipoxin A4 have no effect. EP2/EP4 selective agonists (11-deoxy PGE1 and 1-OH PGE1) and EP2 agonist (19-OH PGE2) inhibit M-CSF synthesis by bone marrow stromal cells while an EP1/EP3 agonist (sulprostone) has no effect. Stimulation with PGE2 induces an increase of intracellular cAMP levels in bone marrow stromal cells. cAMP elevating agents (forskolin and cholera toxin) mimic the PGE2-induced inhibition of M-CSF production. In conclusion, PGE2 is a potent regulator of M-CSF production by human bone marrow stromal cells, its effects being mediated via cAMP and PGE receptor EP2/EP4 subtypes.

  18. Aligned Fibrous Scaffold Induced Aligned Growth of Corneal Stroma Cells in vitro Culture

    Institute of Scientific and Technical Information of China (English)

    GAO Yan; YAN Jing; CUI Xue-jun; WANG Hong-yan; WANG Qing

    2012-01-01

    To investigate the contribution of fibre arrangement to guiding the aligned growth of corneal stroma cells,aligned and randomly oriented fibrous scaffolds of gelatin and poly-L-lactic acid(PLLA) were fabricated by electrospinning.A comparative study of two different systems with corneal stroma cells on randomly organized and aligned fibres were conducted.The efficiency of the scaffolds for inducing the aligned growth of cells was assessed by morphological observation and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide(MTT) assay.Results show that the cells cultured on both randomly oriented and aligned scaffolds maintained normal morphology and well spreading as well as long term proliferation.Importantly,corneal stroma cells grew high orderly on the aligned scaffold,while the cells grew disordered on the randomly oriented scaffold.Moreover,the cells exhibited higher viability in aligned scaffold than that in randomly oriented scaffold.These results indcate that electrospinng to prepare aligned fibrous scaffolds has provided an effective approach to the aligned growth of corneal stroma cells in vitro.Our findings that fiber arrangement plays a crucial role in guiding the aligned growth of cells may be helpful to the development of better biomaterials for tissue engineered cornea.

  19. A Human Corneal Epithelial Cell Line Model for Limbal Stem Cell Biology and Limbal Immunobiology.

    Science.gov (United States)

    Shaharuddin, Bakiah; Ahmad, Sajjad; Md Latar, Nani; Ali, Simi; Meeson, Annette

    2016-10-14

    : Limbal stem cell (LSC) deficiency is a visually debilitating condition caused by abnormal maintenance of LSCs. It is treated by transplantation of donor-derived limbal epithelial cells (LECs), the success of which depends on the presence and quality of LSCs within the transplant. Understanding the immunobiological responses of these cells within the transplants could improve cell engraftment and survival. However, human corneal rings used as a source of LSCs are not always readily available for research purposes. As an alternative, we hypothesized that a human telomerase-immortalized corneal epithelial cell (HTCEC) line could be used as a model for studying LSC immunobiology. HTCEC constitutively expressed human leukocyte antigen (HLA) class I but not class II molecules. However, when stimulated by interferon-γ, HTCECs then expressed HLA class II antigens. Some HTCECs were also migratory in response to CXCL12 and expressed stem cell markers, Nanog, Oct4, and Sox2. In addition because both HTCECs and LECs contain side population (SP) cells, which are an enriched LSC population, we used these SP cells to show that some HTCEC SP cells coexpressed ABCG2 and ABCB5. HTCEC SP and non-side population (NSP) cells also expressed CXCR4, but the SP cells expressed higher levels. Both were capable of colony formation, but the NSP colonies were smaller and contained fewer cells. In addition, HTCECs expressed ΔNp63α. These results suggest the HTCEC line is a useful model for further understanding LSC biology by using an in vitro approach without reliance on a supply of human tissue. Limbal stem cell deficiency is a painful eye condition caused by abnormal maintenance of limbal stem cells. It is treated by transplantation of limbal epithelial cells derived from human tissue. The success of this treatment depends of the quality of the cells transplanted; however, some transplants fail. Understanding more about the immunobiology of these cells within the transplants could

  20. Establishment and characterization of a cell line (OMC-9) originating from a human endometrial stromal sarcoma.

    Science.gov (United States)

    Kakuno, Yoshiteru; Yamada, Takashi; Mori, Hiroshi; Narabayashi, Isamu

    2008-05-01

    Cell lines are very useful for clinical and basic research. The establishment of uterine malignant tumor cell lines with unusual histology is especially important. We describe the establishment and characterization of a new human endometrial stromal sarcoma cell line of the uterus. The cell line OMC-9 was established from a tumor mass in the uterine body of a 55-year-old woman. Characteristics of the cell line studied include morphology, chromosome analysis, heterotransplantation, tumor markers and chemosensitivity. This cell line has grown well for 196 months and has been subcultured more than 50 times. Monolayer cultured cells are polygonal in shape, appear to be spindle-shaped or multipolar and have a tendency to pile up without contact inhibition. The cells exhibit a human karyotype with a modal chromosomal number in the diploid range. The cells were able to be transplanted into the subcutis of nude mice and produced tumors resembling the original tumor. OMC-9 cells produced tissue polypeptide antigen. Both CD10, a sensitive and diagnostically useful marker of endometrial stromal neoplasms, and vimentin were identified immunohistochemically in the original tumor and the heterotransplanted tumor. The cells were sensitive to actinomycin D, doxorubicin, carboplatin, cisplatin and etoposide, drugs used commonly in the treatment of gynecologic cancer. Only three reports of uterine endometrial stromal sarcoma cell lines have thus far been reported in the literature. OMC-9 is the first endometrial stromal sarcoma cell line in which CD10 expression and chemosensitivity have been identified.

  1. In vitro ultraviolet–induced damage in human corneal, lens, and retinal pigment epithelial cells

    OpenAIRE

    Youn, Hyun-Yi; McCanna, David J.; Sivak, Jacob G.; Jones, Lyndon W.

    2011-01-01

    Purpose The purpose was to develop suitable in vitro methods to detect ocular epithelial cell damage when exposed to UV radiation, in an effort to evaluate UV-absorbing ophthalmic biomaterials. Methods Human corneal epithelial cells (HCEC), lens epithelial cells (HLEC), and retinal pigment epithelial cells (ARPE-19) were cultured and Ultraviolet A/Ultraviolet B (UVA/UVB) blocking filters and UVB-only blocking filters were placed between the cells and a UV light source. Cells were irradiated w...

  2. The Toxicity of Nonsteroidal Anti-inflammatory Eye Drops against Human Corneal Epithelial Cells in Vitro.

    Science.gov (United States)

    Lee, Jong Soo; Kim, Young Hi; Park, Young Min

    2015-12-01

    This study investigated the toxicity of commercial non-steroid anti-inflammatory drug (NSAID) eye solutions against corneal epithelial cells in vitro. The biologic effects of 1/100-, 1/50-, and 1/10-diluted bromfenac sodium, pranoprofen, diclofenac sodium, and the fluorometholone on corneal epithelial cells were evaluated after 1-, 4-, 12-, and 24-hr of exposure compared to corneal epithelial cell treated with balanced salt solution as control. Cellular metabolic activity, cellular damage, and morphology were assessed. Corneal epithelial cell migration was quantified by the scratch-wound assay. Compared to bromfenac and pranoprofen, the cellular metabolic activity of diclofenac and fluorometholone significantly decreased after 12-hr exposure, which was maintained for 24-hr compared to control. Especially, at 1/10-diluted eye solution for 24-hr exposure, the LDH titers of fluorometholone and diclofenac sodium markedly increased more than those of bromfenac and pranoprofen. In diclofenac sodium, the Na(+) concentration was lower and amount of preservatives was higher than other NSAIDs eye solutions tested. However, the K(+) and Cl(-) concentration, pH, and osmolarity were similar for all NSAIDs eye solutions. Bromfenac and pranoprofen significantly promoted cell migration, and restored wound gap after 48-hr exposure, compared with that of diclofenac or fluorometholone. At 1/50-diluted eye solution for 48-hr exposure, the corneal epithelial cellular morphology of diclofenac and fluorometholone induced more damage than that of bromfenac or pranoprofen. Overall, the corneal epithelial cells in bromfenac and pranoprofen NSAID eye solutions are less damaged compared to those in diclofenac, included fluorometholone as steroid eye solution.

  3. Discovery of molecular markers to discriminate corneal endothelial cells in the human body.

    Directory of Open Access Journals (Sweden)

    Masahito Yoshihara

    Full Text Available The corneal endothelium is a monolayer of hexagonal corneal endothelial cells (CECs on the inner surface of the cornea. CECs are critical in maintaining corneal transparency through their barrier and pump functions. CECs in vivo have a limited capacity in proliferation, and loss of a significant number of CECs results in corneal edema called bullous keratopathy which can lead to severe visual loss. Corneal transplantation is the most effective method to treat corneal endothelial dysfunction, where it suffers from donor shortage. Therefore, regeneration of CECs from other cell types attracts increasing interests, and specific markers of CECs are crucial to identify actual CECs. However, the currently used markers are far from satisfactory because of their non-specific expression in other cell types. Here, we explored molecular markers to discriminate CECs from other cell types in the human body by integrating the published RNA-seq data of CECs and the FANTOM5 atlas representing diverse range of cell types based on expression patterns. We identified five genes, CLRN1, MRGPRX3, HTR1D, GRIP1 and ZP4 as novel markers of CECs, and the specificities of these genes were successfully confirmed by independent experiments at both the RNA and protein levels. Notably none of them have been documented in the context of CEC function. These markers could be useful for the purification of actual CECs, and also available for the evaluation of the products derived from other cell types. Our results demonstrate an effective approach to identify molecular markers for CECs and open the door for the regeneration of CECs in vitro.

  4. Discovery of molecular markers to discriminate corneal endothelial cells in the human body.

    Science.gov (United States)

    Yoshihara, Masahito; Ohmiya, Hiroko; Hara, Susumu; Kawasaki, Satoshi; Hayashizaki, Yoshihide; Itoh, Masayoshi; Kawaji, Hideya; Tsujikawa, Motokazu; Nishida, Kohji

    2015-01-01

    The corneal endothelium is a monolayer of hexagonal corneal endothelial cells (CECs) on the inner surface of the cornea. CECs are critical in maintaining corneal transparency through their barrier and pump functions. CECs in vivo have a limited capacity in proliferation, and loss of a significant number of CECs results in corneal edema called bullous keratopathy which can lead to severe visual loss. Corneal transplantation is the most effective method to treat corneal endothelial dysfunction, where it suffers from donor shortage. Therefore, regeneration of CECs from other cell types attracts increasing interests, and specific markers of CECs are crucial to identify actual CECs. However, the currently used markers are far from satisfactory because of their non-specific expression in other cell types. Here, we explored molecular markers to discriminate CECs from other cell types in the human body by integrating the published RNA-seq data of CECs and the FANTOM5 atlas representing diverse range of cell types based on expression patterns. We identified five genes, CLRN1, MRGPRX3, HTR1D, GRIP1 and ZP4 as novel markers of CECs, and the specificities of these genes were successfully confirmed by independent experiments at both the RNA and protein levels. Notably none of them have been documented in the context of CEC function. These markers could be useful for the purification of actual CECs, and also available for the evaluation of the products derived from other cell types. Our results demonstrate an effective approach to identify molecular markers for CECs and open the door for the regeneration of CECs in vitro.

  5. Adhesion and metabolic activity of human corneal cells on PCL based nanofiber matrices.

    Science.gov (United States)

    Stafiej, Piotr; Küng, Florian; Thieme, Daniel; Czugala, Marta; Kruse, Friedrich E; Schubert, Dirk W; Fuchsluger, Thomas A

    2017-02-01

    In this work, polycaprolactone (PCL) was used as a basic polymer for electrospinning of random and aligned nanofiber matrices. Our aim was to develop a biocompatible substrate for ophthalmological application to improve wound closure in defects of the cornea as replacement for human amniotic membrane. We investigated whether blending the hydrophobic PCL with poly (glycerol sebacate) (PGS) or chitosan (CHI) improves the biocompatibility of the matrices for cell expansion. Human corneal epithelial cells (HCEp) and human corneal keratocytes (HCK) were used for in vitro biocompatibility studies. After optimization of the electrospinning parameters for all blends, scanning electron microscopy (SEM), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), and water contact angle were used to characterize the different matrices. Fluorescence staining of the F-actin cytoskeleton of the cells was performed to analyze the adherence of the cells to the different matrices. Metabolic activity of the cells was measured by cell counting kit-8 (CCK-8) for 20days to compare the biocompatibility of the materials. Our results show the feasibility of producing uniform nanofiber matrices with and without orientation for the used blends. All materials support adherence and proliferation of human corneal cell lines with oriented growth on aligned matrices. Although hydrophobicity of the materials was lowered by blending PCL, no increase in biocompatibility or proliferation, as was expected, could be measured. All tested matrices supported the expansion of human corneal cells, confirming their potential as substrates for biomedical applications.

  6. ICAM-1 is necessary for epithelial recruitment of gammadelta T cells and efficient corneal wound healing.

    Science.gov (United States)

    Wound healing and inflammation are both significantly reduced in mice that lack gammadelta T cells. Here, the role of epithelial intercellular adhesion molecule-1 (ICAM-1) in gammadelta T cell migration in corneal wound healing was assessed. Wild-type mice had an approximate fivefold increase in epi...

  7. NK cells modulate the inflammatory response to corneal epithelial abrasion and thereby support wound healing

    Science.gov (United States)

    Natural killer cells are lymphocytes of the innate immune system that have crucial cytotoxic and regulatory roles in adaptive immunity and inflammation. Herein, we consider a role for these cells in corneal wound healing. After a 2-mm central epithelial abrasion of the mouse cornea, a subset of clas...

  8. Effects of Phthalates on the Human Corneal Endothelial Cell Line B4G12

    DEFF Research Database (Denmark)

    Krüger, Tanja; Cao, Yi; Kjærgaard, Søren K.;

    2012-01-01

    Phthalates are industrial chemicals used in many cosmetics. We evaluated an in vitro model for eye irritancy testing using the human corneal endothelial cell line B4G12. Cell proliferation and toxicity were assessed after exposing to di-n-butyl phthalate (DBP), benzyl butyl phthalate (BBP), di-2...

  9. Effects of phacoemulsification on the intraocular pressure and corneal endothelial cells of the patients with glaucoma

    Institute of Scientific and Technical Information of China (English)

    Ye Zhao; Zhi-Feng Liu

    2016-01-01

    Objective:To explore the intraocular pressure and corneal endothelial cells integrity changes in cataract phacoemulsification after anti-glaucoma surgery.Methods:Phacoemulsification was performed in 102 patients (118 eyes) with cataract after anti-glaucoma surgery and the intraocular pressure and corneal endothelial cell integrity changes of patients were observed at Day 1 and 3, first week and first month before and after surgery, including central corneal endothelial cell density, average cell area (AVE), cell area of coefficient of variation (CV) and central corneal thickness (CCT).Results:The intraocular pressure was elevated, the central endothelial cell density was reduced, the AVE, the CV and CTT thicken were increased at Day 1 and 3, first week and first month after surgery. The difference compared with preoperative was statistically significant. The intraocular pressure and CTT almost recovered to preoperative levels in 1 month after cataract phacoemulsification and the difference was not statistically significant; while the central endothelial cell density was still decreased and AVE and CV were still increased and the difference of these indexes and the coefficient of the patients was statistically significant compared with before surgery.Conclusions:For the patients with anti-glaucoma after cataract phacoemulsification, intraocular pressure and endothelial cell integrity change was initially observed at Day 1 after surgery, whereas they can almost return to the preoperative level in a month after surgery.

  10. Hyperglycemia Induces Bioenergetic Changes in Adipose-Derived Stromal Cells While Their Pericytic Function Is Retained

    NARCIS (Netherlands)

    Hajmousa, Ghazaleh; Elorza, Alvaro A.; Nies, Vera J. M.; Jensen, Erik L.; Nagy, Ruxandra A.; Harmsen, Martin C.

    2016-01-01

    Diabetic retinopathy (DR) is a hyperglycemia (HG)-mediated microvascular complication. In DR, the loss of pericytes and subsequently endothelial cells leads to pathologic angiogenesis in retina. Adipose-derived stromal cells (ASC) are a promising source of therapeutic cells to replace lost pericytes

  11. Legumain Regulates Differentiation Fate of Human Bone Marrow Stromal Cells and Is Altered in Postmenopausal Osteoporosis

    DEFF Research Database (Denmark)

    Jafari Kermani, Abbas; Qanie, Diyako; Andersen, Thomas L

    2017-01-01

    Secreted factors are a key component of stem cell niche and their dysregulation compromises stem cell function. Legumain is a secreted cysteine protease involved in diverse biological processes. Here, we demonstrate that legumain regulates lineage commitment of human bone marrow stromal cells...

  12. Chemokine stromal cell-derived factor 1alpha activates basophils by means of CXCR4

    DEFF Research Database (Denmark)

    Jinquan, T; Jacobi, H H; Jing, C

    2000-01-01

    The CXC chemokine receptor 4 (CXCR4) is predominantly expressed on inactivated naive T lymphocytes, B lymphocytes, dendritic cells, and endothelial cells. CXC chemokine stromal cell-derived factor 1alpha (SDF-1alpha) is the only known ligand for CXCR4. To date, the CXCR4 expression and function...... of SDF-1alpha in basophils are unknown....

  13. The Origin of Human Mesenchymal Stromal Cells Dictates Their Reparative Properties

    DEFF Research Database (Denmark)

    Naftali-Shani, Nili; Itzhaki-Alfia, Ayelet; Landa-Rouben, Natalie

    2013-01-01

    Human mesenchymal stromal cells (hMSCs) from adipose cardiac tissue have attracted considerable interest in regard to cell-based therapies. We aimed to test the hypothesis that hMSCs from the heart and epicardial fat would be better cells for infarct repair....

  14. Relation between in vitro and in vivo osteogenic potential of cultured human bone marrow stromal cells

    NARCIS (Netherlands)

    Mendes, SC; Tibbe, JM; Veenhof, M; Both, S; Oner, FC; van Blitterswijk, CA; de Bruijn, Joost D.

    2004-01-01

    The use of cell therapies in bone reconstruction has been the subject of extensive research. It is known that human bone marrow stromal cell (HBMSC) cultures contain a population of progenitor cells capable of differentiation towards the osteogenic lineage. In the present study, the correlation betw

  15. Pro-osteogenic trophic effects by PKA activation in human mesenchymal stromal cells

    NARCIS (Netherlands)

    Doorn, Joyce; Peppel, van de Jeroen; Leeuwen, van Johannes P.T.M.; Groen, Nathalie; Blitterswijk, van Clemens A.; Boer, de Jan

    2011-01-01

    Human mesenchymal stromal cells (hMSCs) are able to differentiate into a wide variety of cell types, which makes them an interesting source for tissue engineering applications. On the other hand, these cells also secrete a broad panel of growth factors and cytokines that can exert trophic effects on

  16. Diverse effects of cyclic AMP variants on osteogenic and adipogenic differentiation of human mesenchymal stromal cells

    NARCIS (Netherlands)

    Doorn, J.; Leusink, Maarten; Groen, N.; Peppel, van de J.; Leeuwen, van J.P.T.M.; Blitterswijk, van C.A.; Boer, de J.

    2012-01-01

    Osteogenic differentiation of human mesenchymal stromal cells (hMSCs) may potentially be used in cell based bone tissue engineering applications to enhance the bone forming potential of these cells. Osteogenic and adipogenic differentiation are thought to be mutually exclusive and, although several

  17. PROSPECTS FOR APPLICATION OF Aplysinidae FAMILY MARINE SPONGE SKELETONS AND MESENCHYMAL STROMAL CELLS IN TISSUE ENGINEERING

    Directory of Open Access Journals (Sweden)

    О. Yu. Rogulska

    2011-10-01

    Full Text Available Development of the new types of tissue engineered structures is one of the promising trends of current biotechnology. The study was directed to the assessment of prospects for the application of chitin-based skeletons derived from marine sponges of Aplysinidae family (Aplysina fulva and Aplysina aerophoba for creation of bioengineered constructs based on human mesenchymal stromal cells. After cleaning and demineralization procedures, sponge skeletons appeared as three-dimensional macroporous matrices formed by intersecting chitin fibrils. After seeding into chitin-based matrices the cells were attached to the surface of the fibrils and were able to spread and proliferate. Mesenchymal stromal cells within Aplysina fulva differentiated into osteogenic and adipogenic directions under the influence of appropriate inductors. Demineralized skeletons derived from marine sponges of Aplysinidae family could be used as scaffolds for mesenchymal stromal cells which provides new opportunities for the creation of adipose and bone tissue engineered structures.

  18. p53 protein expression in corneal squamous cell carcinomas of dogs

    Directory of Open Access Journals (Sweden)

    Lucas Bahdour Cossi

    2015-06-01

    Full Text Available Ocular tumors play an increasing concern in veterinary ophthalmology. Corneal squamous cell carcinoma is unfrequent in dogs, and by this way it has little studies. Studies that investigated the carcinogenesis mechanisms wich could help to the development of ocular squamous cell carcinoma (SCC in dog are rare. The aim of this work was to identify by immunohistochemical techniques, the p53 protein expression in the spontaneous dog corneal SCC. For this work, were used five cases of corneal SCC and one case of actinic keratitis. The sections were obtained from paraffin-wax blocks and submitted to histopathological and immunohistochemical analysis. All the six samples showed immunolabeling to cytokeratin and p53 protein. These results support the conclusions that the immunoreactivity of p53 protein by immunohistochemistry is present in canine corneal SCC suppporting its role in carcinogenesis of this tumor, but not provides prognostic indicators in cases of SCC corneal in dog; and can be a association of exposure to solar radiation with the possible mutation of the TP53 gene.

  19. Cultivation of Human Microvascular Endothelial Cells on Topographical Substrates to Mimic the Human Corneal Endothelium

    Directory of Open Access Journals (Sweden)

    Jie Shi Chua

    2013-03-01

    Full Text Available Human corneal endothelial cells have a limited ability to replicate in vivo and in vitro. Allograft transplantation becomes necessary when an accident or trauma results in excessive cell loss. The reconstruction of the cornea endothelium using autologous cell sources is a promising alternative option for therapeutic or in vitro drug testing applications. The native corneal endothelium rests on the Descemet’s membrane, which has nanotopographies of fibers and pores. The use of synthetic topographies mimics the native environment, and it is hypothesized that this can direct the behavior and growth of human microvascular endothelial cells (HMVECs to resemble the corneal endothelium. In this study, HMVECs are cultivated on substrates with micron and nano-scaled pillar and well topographies. Closely packed HMVEC monolayers with polygonal cells and well-developed tight junctions were formed on the topographical substrates. Sodium/potassium (Na+/K+ adenine triphosphatase (ATPase expression was enhanced on the microwells substrate, which also promotes microvilli formation, while more hexagonal-like cells are found on the micropillars samples. The data obtained suggests that the use of optimized surface patterning, in particular, the microtopographies, can induce HMVECs to adopt a more corneal endothelium-like morphology with similar barrier and pump functions. The mechanism involved in cell contact guidance by the specific topographical features will be of interest for future studies.

  20. Rebamipide increases the mucin-like glycoprotein production in corneal epithelial cells.

    Science.gov (United States)

    Takeji, Yasuhiro; Urashima, Hiroki; Aoki, Akihiro; Shinohara, Hisashi

    2012-06-01

    Dry eye is a multifactorial disease of tears and the ocular surface due to tear deficiency or excessive tear evaporation. Tear film instability is due to a disturbance in ocular surface mucin leading to a dysfunction of mucin, resulting in dry eye. In this study, we examined the effect of rebamipide, an anti-ulcer agent, on glycoconjugate production, as an indicator of mucin-like glycoprotein in cultured corneal epithelial cells. Further, we investigated the effect of rebamipide on the gene expression of membrane-associated mucins. Confluent cultured human corneal epithelial cells were incubated with rebamipide for 24 h. The glycoconjugate content in the supernatant and the cell extracts was measured by wheat germ agglutinin-enzyme-linked lectin assay combined gel-filtration method. In the experiment on mucin gene expression, cultured human corneal epithelial cells were collected at 0, 3, 6, and 12 h after administration of rebamipide. Real-time quantitative polymerase chain reaction was used to analyze the quantity of MUC1, MUC 4, and MUC16 gene expression. Rebamipide significantly increased the glycoconjugate contents in the supernatant and cell extract. In the mucin gene expression in the cells, rebamipide increased MUC1 and MUC4 gene expression, but did not increase MUC16 gene expression. Rebamipide promoted glycoconjugate, which has a property as a mucin-like glycoprotein, in human corneal epithelial cells. The increased production was mediated by MUC1 and MUC4 gene expression.

  1. Mouse bone marrow stromal cells differentiate to neuron-like cells upon inhibition of BMP signaling.

    Science.gov (United States)

    Saxena, Monika; Prashar, Paritosh; Yadav, Prem Swaroop; Sen, Jonaki

    2016-01-01

    Bone marrow stromal cells (BMSCs) are a source of autologous stem cells that have the potential for undergoing differentiation into multiple cell types including neurons. Although the neuronal differentiation of mesenchymal stem cells has been studied for a long time, the molecular players involved are still not defined. Here we report that the genetic deletion of two members of the bone morphogenetic protein (Bmp) family, Bmp2 and Bmp4 in mouse BMSCs causes their differentiation into cells with neuron-like morphology. Surprisingly these cells expressed certain markers characteristic of both neuronal and glial cells. Based on this observation, we inhibited BMP signaling in mouse BMSCs through a brief exposure to Noggin protein which also led to their differentiation into cells expressing both neuronal and glial markers. Such cells seem to have the potential for further differentiation into subtypes of neuronal and glial cells and thus could be utilized for cell-based therapeutic applications.

  2. Large-scale gene expression profiling data of bone marrow stromal cells from osteoarthritic donors.

    Science.gov (United States)

    Stiehler, Maik; Rauh, Juliane; Bünger, Cody; Jacobi, Angela; Vater, Corina; Schildberg, Theresa; Liebers, Cornelia; Günther, Klaus-Peter; Bretschneider, Henriette

    2016-09-01

    This data article contains data related to the research article entitled, "in vitro characterization of bone marrow stromal cells from osteoarthritic donors" [1]. Osteoarthritis (OA) represents the main indication for total joint arthroplasty and is one of the most frequent degenerative joint disorders. However, the exact etiology of OA remains unknown. Bone marrow stromal cells (BMSCs) can be easily isolated from bone marrow aspirates and provide an excellent source of progenitor cells. The data shows the identification of pivotal genes and pathways involved in osteoarthritis by comparing gene expression patterns of BMSCs from osteoarthritic versus healthy donors using an array-based approach.

  3. Bone marrow-derived stromal cells are more beneficial cell sources for tooth regeneration compared with adipose-derived stromal cells.

    Science.gov (United States)

    Ye, Lanfeng; Chen, Lin; Feng, Fan; Cui, Junhui; Li, Kaide; Li, Zhiyong; Liu, Lei

    2015-10-01

    Tooth loss is presently a global epidemic and tooth regeneration is thought to be a feasible and ideal treatment approach. Choice of cell source is a primary concern in tooth regeneration. In this study, the odontogenic differentiation potential of two non-dental-derived stem cells, adipose-derived stromal cells (ADSCs) and bone marrow-derived stromal cells (BMSCs), were evaluated both in vitro and in vivo. ADSCs and BMSCs were induced in vitro in the presence of tooth germ cell-conditioned medium (TGC-CM) prior to implantation into the omentum majus of rats, in combination with inactivated dentin matrix (IDM). Real-time quantitative polymerase chain reaction (RT-qPCR) was used to detect the mRNA expression levels of odontogenic-related genes. Immunofluorescence and immunohistochemical assays were used to detect the protein levels of odontogenic-specific genes, such as DSP and DMP-1 both in vitro and in vivo. The results suggest that both ADSCs and BMSCs have odontogenic differentiation potential. However, the odontogenic potential of BMSCs was greater compared with ADSCs, showing that BMSCs are a more appropriate cell source for tooth regeneration.

  4. Identification of Meflin as a Potential Marker for Mesenchymal Stromal Cells.

    Science.gov (United States)

    Maeda, Keiko; Enomoto, Atsushi; Hara, Akitoshi; Asai, Naoya; Kobayashi, Takeshi; Horinouchi, Asuka; Maruyama, Shoichi; Ishikawa, Yuichi; Nishiyama, Takahiro; Kiyoi, Hitoshi; Kato, Takuya; Ando, Kenju; Weng, Liang; Mii, Shinji; Asai, Masato; Mizutani, Yasuyuki; Watanabe, Osamu; Hirooka, Yoshiki; Goto, Hidemi; Takahashi, Masahide

    2016-02-29

    Bone marrow-derived mesenchymal stromal cells (BM-MSCs) in culture are derived from BM stromal cells or skeletal stem cells. Whereas MSCs have been exploited in clinical medicine, the identification of MSC-specific markers has been limited. Here, we report that a cell surface and secreted protein, Meflin, is expressed in cultured MSCs, fibroblasts and pericytes, but not other types of cells including epithelial, endothelial and smooth muscle cells. In vivo, Meflin is expressed by immature osteoblasts and chondroblasts. In addition, Meflin is found on stromal cells distributed throughout the BM, and on pericytes and perivascular cells in multiple organs. Meflin maintains the undifferentiated state of cultured MSCs and is downregulated upon their differentiation, consistent with the observation that Meflin-deficient mice exhibit increased number of osteoblasts and accelerated bone development. In the bone and BM, Meflin is more highly expressed in primitive stromal cells that express platelet-derived growth factor receptor α and Sca-1 than the Sca-1-negative adipo-osteogenic progenitors, which create a niche for hematopoiesis. Those results are consistent with a decrease in the number of clonogenic colony-forming unit-fibroblasts within the BM of Meflin-deficient mice. These preliminary data suggest that Meflin is a potential marker for cultured MSCs and their source cells in vivo.

  5. Molecular characterisation of stromal populations derived from human embryonic stem cells

    DEFF Research Database (Denmark)

    Harkness, L.; Twine, N. A.; Abu Dawud, R.;

    2015-01-01

    Human bone marrow-derived stromal (skeletal) stem cells (BM-hMSC) are being employed in an increasing number of clinical trials for tissue regeneration. A limiting factor for their clinical use is the inability to obtain sufficient cell numbers. Human embryonic stem cells (hESC) can provide an un......ESC-stromal cells can thus be considered as a possible alternative candidate cells for hMSC, to be employed in regenerative medicine protocols.......Human bone marrow-derived stromal (skeletal) stem cells (BM-hMSC) are being employed in an increasing number of clinical trials for tissue regeneration. A limiting factor for their clinical use is the inability to obtain sufficient cell numbers. Human embryonic stem cells (hESC) can provide...... an unlimited source of clinical grade cells for therapy. We have generated MSC-like cells from hESC (called here hESC-stromal) that exhibit surface markers and differentiate to osteoblasts and adipocytes, similar to BM-hMSC. In the present study, we used microarray analysis to compare the molecular phenotype...

  6. Dental pulp-derived stromal cells exhibit a higher osteogenic potency than bone marrow-derived stromal cells in vitro and in a porcine critical-size bone defect model

    DEFF Research Database (Denmark)

    Jensen, Jonas; Tvedesøe, Claus; Rölfing, Jan Hendrik Duedal;

    2016-01-01

    INTRODUCTION: The osteogenic differentiation of bone marrow-derived mesenchymal stromal cells (BMSCs) was compared with that of dental pulp-derived stromal cells (DPSCs) in vitro and in a pig calvaria critical-size bone defect model. METHODS: BMSCs and DPSCs were extracted from the tibia bone...

  7. Interleukin-6 receptor in spindle-shaped stromal cells, a prognostic determinant of early breast cancer.

    Science.gov (United States)

    Labovsky, Vivian; Martinez, Leandro Marcelo; Calcagno, María de Luján; Davies, Kevin Mauro; García-Rivello, Hernán; Wernicke, Alejandra; Feldman, Leonardo; Giorello, María Belén; Matas, Ayelén; Borzone, Francisco Raúl; Howard, Scott C; Chasseing, Norma Alejandra

    2016-10-01

    Spindle-shaped stromal cells, like carcinoma-associated fibroblasts and mesenchymal stem cells, influence tumor behavior and can serve as parameters in the clinical diagnosis, therapy, and prognosis of early breast cancer. Therefore, the aim of this study is to explore the clinicopathological significance of tumor necrosis factor-related apoptosis-induced ligand (TRAIL) receptors (Rs) 2 and 4 (TRAIL-R2 and R4), and interleukin-6 R (IL-6R) in spindle-shaped stromal cells, not associated with the vasculature, as prognostic determinants of early breast cancer patients. Receptors are able to trigger the migratory activity, among other functions, of these stromal cells. We conducted immunohistochemical analysis for the expression of these receptors in spindle-shaped stromal cells, not associated with the vasculature, of primary tumors from early invasive breast cancer patients, and analyzed their association with clinicopathological characteristics. Here, we demonstrate that the elevated levels of TRAIL-R2, TRAIL-R4, and IL-6R in these stromal cells were significantly associated with a higher risk of metastatic occurrence (p = 0.034, 0.026, and 0.006; respectively). Moreover, high expression of TRAIL-R4 was associated with shorter disease-free survival and metastasis-free survival (p = 0.013 and 0.019; respectively). Also, high expression of IL-6R was associated with shorter disease-free survival, metastasis-free survival, and overall survival (p = 0.003, 0.001, and 0.003; respectively). Multivariate analysis showed that IL-6R expression was an independent prognostic factor for disease-free survival and metastasis-free survival (p = 0.035). This study is the first to demonstrate that high levels of IL-6R expression in spindle-shaped stromal cells, not associated with the vasculature, could be used to identify early breast cancer patients with poor outcomes.

  8. Role of Notch expression in premature senescence of murine bone marrow stromal cells

    Institute of Scientific and Technical Information of China (English)

    Kejie Zhang; Lifang Huang; Hanying Sun; Yan Zhu; Yi Xiao; Mei Huang; Wenli Liu

    2009-01-01

    The aim of the present study was to investigate the role of the Notch signaling pathway in premature senescence of murine bone marrow stromal cells in vitro.The intracellular domain of Notch 1 (ICN) was transfected into cultured murine bone marrow stromal cells by lipofectamine transfection.After three days,the proliferation of transfected cells was measured by MTT assay.Cell cycle distribution was analyzed by flow cytometry.Senescence-associated beta-galactosidase (SA-beta-gal) was measured,and the percentage of positive cells was evaluated by assessing 1000 cells in random fields of view.The expressions of p53 and p21cip1/waf1 were analyzed by both RT-PCR and Western blot analysis.The results showed that activation of Notch signaling inhibited proliferation of murine bone marrow stromal cells with induction of G1 arrest,increased the percentage of SA-beta-gal positive cells,and upregulated p53 and p21Cip1/Waf1 mRNA and protein expression levels.Thus,the activated Notch signaling could induce premature senescence of bone marrow stromal cells through the p53-p21Cip1/waf1 pathway.(C) 2009 National Natural Science Foundation of China and Chinese Academy of Sciences.Published by Elsevier Limited and Science in China Press.All fights reserved.

  9. Primary stromal cells isolated from human various histological/pathological prostate have different phenotypes and tumor promotion role

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-hai; ZHAO Fu-jun; HAN Bang-min; JIANG Qi; WANG Yong-chuan; WU Jian-hong; TANG Yue-qing; ZHANG Yue-ping; XIA Shu-jie

    2011-01-01

    Background Prostate stromal cells are known to regulate epithelial growth as well as support and maintain epithelial function. However, how stromal cells regulate epithelial cells and what differences among various histological/pathological prostate stromal cells in prostate cancer progression still remain unclear. This study aimed to investigate the different phenotypes of human various histological/pathological prostate stromal cells, and their role in tumor promotion.Methods The different phenotypes of the human normal prostatic peripheral zonal primary stromal cells (NPPF),transitional zonal primary stromal cells (NPTF), and prostate cancer associated primary stromal cells (CAF) were examined with growth curves and Annexin V-fluorescein isothiocyanate (FITC) assay. The different effects on prostate cancer cell line C4-2B by NPPF, NPTF, and CAF were examined with MTT assay and Annexin V-FITC assay. The gene expression of different histological/pathological prostate stromal cells was profiled by microarray and hierarchical cluster analysis.Results The growth rate of NPPF, NPTF and CAF gradually increased, followed by decreasing apoptosis. In vitro stromal-C4-2B cell line co-culture models, the proliferation and apoptosis of C4-2B cell line were differently affected by human various histological/pathological prostate stromal cells. CAF showed the most powerful effect to C4-2B cell line,as opposed to a weakest effect of NPTF. Microarray and hierarchical cluster analysis showed that the differentially expressed genes of CAF and NPPF were less than NPPF and NPTF, or CAF and NPTF. This was consistent with clinical observations that prostate cancer mostly derived from the peripheral zone and does not usually occur in the transitional zone.Conclusion NPPF, NPTF and CAF possess extremely different biological characteristics and gene expression, which may play an important role in genesis and development of prostate cancer.

  10. D609 induces vascular endothelial cells and marrow stromal cells differentiation into neuron-like cells

    Institute of Scientific and Technical Information of China (English)

    Nan WANG; Chun-qing DU; Shao-shan WANG; Kun XIE; Shang-li ZHANG; Jun-ying MIAO

    2004-01-01

    AIM: To investigate the effect of tricyclodecane-9-yl-xanthogenate (D609) on cell differentiation in vascular endothelial cells (VECs) and marrow stromal cells (MSCs). METHODS: Morphological changes were observed under phase contrast microscope. Electron microscope and immunostaining were used for VECs identification. The expressions of neuron-specific enolase (NSE) and glial fibrillary acidic protein (GFAP) were examined by immunohistochemistry. RESULTS: After 6 h of induction with D609, some VECs showed morphological changes characteristic of neurones. 9 h later, more VECs became neuron-like cells. About 30.8 % of VECs displayed positive NSE (P<0.01), while the expression of GFAP was negative. When MSCs were exposed to D609, the cells displayed neuronal morphologies, such as pyramidal cell bodies and processes formed extensive networks at 3 h. 6 h later, almost all of the cells exhibited a typical neuronal appearance, and 85.6 % of MSCs displayed intensive positive NSE, but GFAP did not express. CONCLUSION: D609 induces VECs and MSCs differentiation into neuron-like cells.

  11. Pterygium is related to a decrease in corneal endothelial cell density.

    Science.gov (United States)

    Hsu, Min-Yen; Lee, Hsin-Nung; Liang, Chiao-Ying; Wei, Li-Chen; Wang, Chun-Yuan; Lin, Keng-Hung; Shen, Ying-Cheng

    2014-07-01

    The aim of this study was to investigate the relationship between pterygium and a decrease in the corneal endothelial cell density (ECD) in patients with unilateral primary pterygium. In this retrospective cross-sectional study, 90 consecutive patients with unilateral primary pterygium were enrolled from January 2010 to June 2012. Corneal ECD was measured in both eyes, and the fellow eyes were considered as controls. The relationship between the percentage of pterygium to cornea and a decrease in the ECD was analyzed. An increase in astigmatism in eyes with pterygium was evaluated for association with decreased ECD using the Pearson correlation test. The percentage of pterygium to cornea ranged from 3.5% to 65.2%, with a median of 12.35%. The difference in the corneal ECD between eyes with pterygium and control eyes ranged from +9.6% to -37.7%, with a median of -9.75%. The results of the Pearson correlation statistical test showed a strong logarithmic correlation between a decrease in the corneal ECD and the percentage of pterygium to cornea (R = 0.688, P decrease in the ECD in eyes with pterygium. Pterygium is related to a decrease in corneal ECD. Surgical intervention should be considered in patients with extensive pterygium involvement in the cornea or a significant increase in astigmatism.

  12. Chondrogenic potential of mesenchymal stromal cells derived from equine bone marrow and umbilical cord blood

    DEFF Research Database (Denmark)

    Berg, Lise Charlotte; Koch, Thomas Gadegaard; Heerkens, T.

    2009-01-01

    Objective: Orthopaedic injury is the most common cause of lost training days or premature retirement in the equine athlete. Cell-based therapies are a potential new treatment option in musculo-skeletal diseases. Mesenthymal stromal cells (MSC) have been derived from multiple sources in the horse...

  13. Rethinking immunological privilege: implications for corneal and limbal stem cell transplantation.

    Science.gov (United States)

    Williams, K A; Coster, D J

    1997-11-01

    Immunological privilege operates within the normal eye by multiple passive and active mechanisms, including antigen sequestration, maintenance of an immunosuppressive local environment and induction of apoptotic death in infiltrating cells of the immune system. Ocular privilege might have developed to protect the eye from the collateral damage associated with an inflammatory response to invading pathogens. Nevertheless, corneal grafts do undergo irreversible immunological rejection and, furthermore, corneal graft rejection is very similar at a histological level to the rejection processes that operate in vascularized organ grafts. Ocular privilege is thus relative. The question arises as to how corneal grafts are rejected in the face of so many mechanisms designed to prevent immune responses from operating inside the eye--a question that is still essentially unanswered.

  14. Mesenchymal Stromal Cells: What Is the Mechanism in Acute Graft-Versus-Host Disease?

    Directory of Open Access Journals (Sweden)

    Neil Dunavin

    2017-07-01

    Full Text Available After more than a decade of preclinical and clinical development, therapeutic infusion of mesenchymal stromal cells is now a leading investigational strategy for the treatment of acute graft-versus-host disease (GVHD. While their clinical use continues to expand, it is still unknown which of their immunomodulatory properties contributes most to their therapeutic activity. Herein we describe the proposed mechanisms, focusing on the inhibitory activity of mesenchymal stromal cells (MSCs at immunologic checkpoints. A deeper understanding of the mechanism of action will allow us to design more effective treatment strategies.

  15. Estradiol modulates TGF-β1 expression and its signaling pathway in thyroid stromal cells.

    Science.gov (United States)

    Gantus, M A V; Alves, L M; Stipursky, J; Souza, E C L; Teodoro, A J; Alves, T R; Carvalho, D P; Martinez, A M B; Gomes, F C A; Nasciutti, L E

    2011-04-30

    The higher prevalence of thyroid disease in women suggests that estrogen (E2) might be involved in the pathophysiology of thyroid dysfunction. To approach the question of the effect of stromal cells in the modulation of thyroid epithelial cells activity, we established and characterized a homogeneous stromal cell population (TS7 cells) of rat thyroid gland. These fibroblastic cells synthesize the cytoskeleton proteins α-smooth muscle actin and vimentin, produce basement membrane components and express the cytokine transforming growth factor beta 1 (TGF-β1). Here, we hypothesized that the effects of E2 on follicular thyroid cells are mediated by TGF-β1 synthesis and secretion by stromal cells (paracrine action). Thus we investigated the effect of E2 on TGF-β1 synthesis and its signaling pathway in TS7 cells. In addition, we analyzed the role of TGF-β1 signaling pathway as mediator of TS7-PC CL3 thyroid epithelial cells interactions. We report that TS7 stromal cells expressed α and β estrogen receptors (ERα and ERβ). Further, both isoforms of TGF-β1 receptors, TGFRI and TGFRII, were also identified in TS7 cells, suggesting that these cells might be a target for this cytokine in vitro. Treatment of TS7 cells with E2 induced both synthesis and secretion of TGF-β1. This event was followed by phosphorylation of the transcription factor Smad2, a hallmark of TGF-β1 pathway activation. Co-culture of PC CL3 cells onto TS7 cells monolayers yielded round aggregates of PC CL3 cells surrounded by TS7 cells. TS7 cells induced a decrease in iodide uptake by PC CL3 cells, probably by a mechanism involving TGF-β1. Moreover, E2 affected synthesis and organization of the extracellular matrix (ECM) components, tenascin C and chondroitin sulfate, in these co-culture cells. Our results point to the TGF-β1/Smad-2 signaling pathway as a putative target of estrogen actions on thyroid stromal cells and contribute to understanding the interplay between stromal and follicular

  16. Mesenchymal stromal cell proliferation, gene expression and protein production in human platelet-rich plasma-supplemented media.

    Science.gov (United States)

    Amable, Paola Romina; Teixeira, Marcus Vinicius Telles; Carias, Rosana Bizon Vieira; Granjeiro, José Mauro; Borojevic, Radovan

    2014-01-01

    Platelet-rich plasma (PRP) is increasingly used as a cell culture supplement, in order to reduce the contact of human cells with animal-derived products during in vitro expansion. The effect of supplementation changes on cell growth and protein production is not fully characterized. Human mesenchymal stromal cells from bone marrow, adipose tissue and Wharton's Jelly were isolated and cultured in PRP-supplemented media. Proliferation, in vitro differentiation, expression of cell surface markers, mRNA expression of key genes and protein secretion were quantified. 10% PRP sustained five to tenfold increased cell proliferation as compared to 10% fetal bovine serum. Regarding cell differentiation, PRP reduced adipogenic differentiation and increased calcium deposits in bone marrow and adipose tissue-mesenchymal stromal cells. Wharton's Jelly derived mesenchymal stromal cells secreted higher concentrations of chemokines and growth factors than other mesenchymal stromal cells when cultured in PRP-supplemented media. Bone marrow derived mesenchymal stromal cells secreted higher concentrations of pro-inflammatory and pro-angiogenic proteins. Mesenchymal stromal cells isolated from adipose tissue secreted higher amounts of extracellular matrix components. Mesenchymal stromal cells purified from different tissues have distinct properties regarding differentiation, angiogenic, inflammatory and matrix remodeling potential when cultured in PRP supplemented media. These abilities should be further characterized in order to choose the best protocols for their therapeutic use.

  17. Characterizing natural hydrogel for reconstruction of three-dimensional lymphoid stromal network to model T-cell interactions.

    Science.gov (United States)

    Kim, Jiwon; Wu, Biming; Niedzielski, Steven M; Hill, Matthew T; Coleman, Rhima M; Ono, Akira; Shikanov, Ariella

    2015-08-01

    Hydrogels have been used in regenerative medicine because they provide a three-dimensional environment similar to soft tissues, allow diffusion of nutrients, present critical biological signals, and degrade via endogenous enzymatic mechanisms. Herein, we developed in vitro system mimicking cell-cell and cell-matrix interactions in secondary lymphoid organs (SLOs). Existing in vitro culture systems cannot accurately represent the complex interactions happening between T-cells and stromal cells in immune response. To model T-cell interaction in SLOs in vitro, we encapsulated stromal cells in fibrin, collagen, or fibrin-collagen hydrogels and studied how different mechanical and biological properties affect stromal network formation. Overall, fibrin supplemented with aprotinin was superior to collagen and fibrin-collagen in terms of network formation and promotion of T-cell penetration. After 8 days of culture, stromal networks formed through branching and joining with other adjacent cell populations. T-cells added to the newly formed stromal networks migrated and attached to stromal cells, similar to the T-cell zones of the lymph nodes in vivo. Our results suggest that the constructed three-dimensional lymphoid stromal network can mimic the in vivo environment and allow the modeling of T-cell interaction in SLOs.

  18. Splenic Stromal Cells from Aged Mice Produce Higher Levels of IL-6 Compared to Young Mice

    Science.gov (United States)

    Park, Jihyun; Miyakawa, Takuya; Shiokawa, Aya; Nakajima-Adachi, Haruyo; Hachimura, Satoshi

    2014-01-01

    Inflamm-aging indicates the chronic inflammatory state resulting from increased secretion of proinflammatory cytokines and mediators such as IL-6 in the elderly. Our principle objective was to identify cell types that were affected with aging concerning IL-6 secretion in the murine model. We compared IL-6 production in spleen cells from both young and aged mice and isolated several types of cells from spleen and investigated IL-6 mRNA expression and protein production. IL-6 protein productions in cultured stromal cells from aged mice spleen were significantly high compared to young mice upon LPS stimulation. IL-6 mRNA expression level of freshly isolated stromal cells from aged mice was high compared to young mice. Furthermore, stromal cells of aged mice highly expressed IL-6 mRNA after LPS injection in vivo. These results suggest that stromal cells play a role in producing IL-6 in aged mice and imply that they contribute to the chronic inflammatory condition in the elderly. PMID:24729663

  19. In Vitro Effects of Preserved and Unpreserved Anti-Allergic Drugs on Human Corneal Epithelial Cells

    OpenAIRE

    Guzman-Aranguez, Ana; Calvo, Patricia; Ropero, Inés; Pintor, Jesús

    2014-01-01

    Purpose: Treatment with topical eye drops for long-standing ocular diseases like allergy can induce detrimental side effects. The purpose of this study was to investigate in vitro cytotoxicity of commercially preserved and unpreserved anti-allergic eye drops on the viability and barrier function of monolayer and stratified human corneal-limbal epithelial cells.

  20. The effect of Lamium album extract on cultivated human corneal epithelial cells (10.014 pRSV-T

    Directory of Open Access Journals (Sweden)

    Roman Paduch

    2015-01-01

    Conclusion: Selected Lamium album extracts influence human corneal epithelial cells. Generally, while not toxic, they modulate pro-inflammatory and anti-inflammatory cytokines levels, and decrease NO release by cells; moreover, ethanol and ethyl acetate extracts reduce ROS levels.

  1. Corneal collagen crosslinking: a systematic review.

    Science.gov (United States)

    Sorkin, Nir; Varssano, David

    2014-01-01

    Keratoconus (KCN) is an ectatic disorder with progressive corneal thinning and a clinical picture of corneal protrusion, progressive irregular astigmatism, corneal fibrosis and visual deterioration. Other ectatic corneal disorders include: post-LASIK ectasia (PLE) and pellucid marginal degeneration (PMD). Corneal crosslinking (CXL) is a procedure whereby riboflavin sensitization with ultraviolet A radiation induces stromal crosslinks. This alters corneal biomechanics, causing an increase in corneal stiffness. In recent years, CXL has been an established treatment for the arrest of KCN, PLE and PMD progression. CXL has also been shown to be effective in the treatment of corneal infections, chemical burns, bullous keratopathy and other forms of corneal edema. This is a current review of CXL - its biomechanical principles, the evolution of CXL protocols in the past, present and future, indications for treatment, treatment efficacy and safety.

  2. Melanoma-Derived BRAF(V600E) Mutation in Peritumoral Stromal Cells: Implications for in Vivo Cell Fusion.

    Science.gov (United States)

    Kurgyis, Zsuzsanna; Kemény, Lajos V; Buknicz, Tünde; Groma, Gergely; Oláh, Judit; Jakab, Ádám; Polyánka, Hilda; Zänker, Kurt; Dittmar, Thomas; Kemény, Lajos; Németh, István B

    2016-06-21

    Melanoma often recurs in patients after the removal of the primary tumor, suggesting the presence of recurrent tumor-initiating cells that are undetectable using standard diagnostic methods. As cell fusion has been implicated to facilitate the alteration of a cell's phenotype, we hypothesized that cells in the peritumoral stroma having a stromal phenotype that initiate recurrent tumors might originate from the fusion of tumor and stromal cells. Here, we show that in patients with BRAF(V600E) melanoma, melanoma antigen recognized by T-cells (MART1)-negative peritumoral stromal cells express BRAF(V600E) protein. To confirm the presence of the oncogene at the genetic level, peritumoral stromal cells were microdissected and screened for the presence of BRAF(V600E) with a mutation-specific polymerase chain reaction. Interestingly, cells carrying the BRAF(V600E) mutation were not only found among cells surrounding the primary tumor but were also present in the stroma of melanoma metastases as well as in a histologically tumor-free re-excision sample from a patient who subsequently developed a local recurrence. We did not detect any BRAF(V600E) mutation or protein in the peritumoral stroma of BRAF(WT) melanoma. Therefore, our results suggest that peritumoral stromal cells contain melanoma-derived oncogenic information, potentially as a result of cell fusion. These hybrid cells display the phenotype of stromal cells and are therefore undetectable using routine histological assessments. Our results highlight the importance of genetic analyses and the application of mutation-specific antibodies in the identification of potentially recurrent-tumor-initiating cells, which may help better predict patient survival and disease outcome.

  3. Stromal cell markers are differentially expressed in the synovial tissue of patients with early arthritis.

    Science.gov (United States)

    Choi, Ivy Y; Karpus, Olga N; Turner, Jason D; Hardie, Debbie; Marshall, Jennifer L; de Hair, Maria J H; Maijer, Karen I; Tak, Paul P; Raza, Karim; Hamann, Jörg; Buckley, Christopher D; Gerlag, Danielle M; Filer, Andrew

    2017-01-01

    Previous studies have shown increased expression of stromal markers in synovial tissue (ST) of patients with established rheumatoid arthritis (RA). Here, ST expression of stromal markers in early arthritis in relationship to diagnosis and prognostic outcome was studied. ST from 56 patients included in two different early arthritis cohorts and 7 non-inflammatory controls was analysed using immunofluorescence to detect stromal markers CD55, CD248, fibroblast activation protein (FAP) and podoplanin. Diagnostic classification (gout, psoriatic arthritis, unclassified arthritis (UA), parvovirus associated arthritis, reactive arthritis and RA), disease outcome (resolving vs persistent) and clinical variables were determined at baseline and after follow-up, and related to the expression of stromal markers. We observed expression of all stromal markers in ST of early arthritis patients, independent of diagnosis or prognostic outcome. Synovial expression of FAP was significantly higher in patients developing early RA compared to other diagnostic groups and non-inflammatory controls. In RA FAP protein was expressed in both lining and sublining layers. Podoplanin expression was higher in all early inflammatory arthritis patients than controls, but did not differentiate diagnostic outcomes. Stromal marker expression was not associated with prognostic outcomes of disease persistence or resolution. There was no association with clinical or sonographic variables. Stromal cell markers CD55, CD248, FAP and podoplanin are expressed in ST in the earliest stage of arthritis. Baseline expression of FAP is higher in early synovitis patients who fulfil classification criteria for RA over time. These results suggest that significant fibroblast activation occurs in RA in the early window of disease.

  4. Differences in xenobiotic detoxifying activities between bone marrow stromal cells from mice and rats: Implications for benzene-induced hematotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Hong; Li, Yunbo; Trush, M.A. [Johns Hopkins Univ. School of Hygiene and Public Health, Baltimore, MD (United States)

    1995-10-01

    benzene is a human carcinogen; exposure can result in aplastic anemia and leukemia. Data from animal models are frequently used in benzene risk assessment. In rodent studies, mice are more sensitive to benzene-induced hematotoxicity than rats. Bone marrow stromal cells from mice were significantly more susceptible to the cytotoxicity induced by the benzene metabolites hydroquinone (HQ) and benzoquinone (BQ) than cells from rats. Since cellular gluthathione (GSH) and quinone reductase (QR) are known to play critical roles in modulating HQ-induced cytotoxicity, the GSH content and the QR and glutathione S-transferase (GST) activity in stromal cells from both species was measured. In rat cells, the GSH content and the QR specific activity were 2 and 28 times as much as those from mice, respectively. GSH and QR in both mouse and rat stromal cells were inducible by 1,2-dithiole-3-thione (D3T). D3T pretreatment of both mouse and rat stromal cells resulted in a marked protection against HQ-induced toxicity. Pretreatment of both mouse and rat stromal cells with GSH ethyl ester also provided a dramatic protection against HQ-induced toxicity. Conversely, dicoumarol, an inhibitor of QR, enhanced the HQ-induced toxicity in stromal cells from both mice and rats, indicating an important role for QR in modulating HQ-induced stromal toxicity. Buthionine sulfoximine (BSO), which depleted GSH significantly in both species, potentiated the HQ-induced toxicity in mouse but not in rat stromal cells. Surprisingly, incubation of stromal cells with BSO resulted in a significant induction of QR, especially in rats. Overall, this study demonstrates that the differences in stromal cellular GSH content and QR activity between mice and rats contribute to their respective susceptibility to HQ-induced cytotoxicity in vitro, and may be involved in the greater in vivo sensitivity of mice to benzene-induced hematotoxicity. 51 refs., 9 figs., 1 tab.

  5. Notch signalling drives bone marrow stromal cell-mediated chemoresistance in acute myeloid leukemia.

    Science.gov (United States)

    Takam Kamga, Paul; Bassi, Giulio; Cassaro, Adriana; Midolo, Martina; Di Trapani, Mariano; Gatti, Alessandro; Carusone, Roberta; Resci, Federica; Perbellini, Omar; Gottardi, Michele; Bonifacio, Massimiliano; Nwabo Kamdje, Armel Hervé; Ambrosetti, Achille; Krampera, Mauro

    2016-04-19

    Both preclinical and clinical investigations suggest that Notch signalling is critical for the development of many cancers and for their response to chemotherapy. We previously showed that Notch inhibition abrogates stromal-induced chemoresistance in lymphoid neoplasms. However, the role of Notch in acute myeloid leukemia (AML) and its contribution to the crosstalk between leukemia cells and bone marrow stromal cells remain controversial. Thus, we evaluated the role of the Notch pathway in the proliferation, survival and chemoresistance of AML cells in co-culture with bone marrow mesenchymal stromal cells expanded from both healthy donors (hBM-MSCs) and AML patients (hBM-MSCs*). As compared to hBM-MSCs, hBM-MSCs* showed higher level of Notch1, Jagged1 as well as the main Notch target gene HES1. Notably, hBM-MSCs* induced expression and activation of Notch signalling in AML cells, supporting AML proliferation and being more efficientin inducing AML chemoresistance than hBM-MSCs*. Pharmacological inhibition of Notch using combinations of Notch receptor-blocking antibodies or gamma-secretase inhibitors (GSIs), in presence of chemotherapeutic agents, significant lowered the supportive effect of hBM-MSCs and hBM-MSCs* towards AML cells, by activating apoptotic cascade and reducing protein level of STAT3, AKT and NF-κB.These results suggest that Notch signalling inhibition, by overcoming the stromal-mediated promotion of chemoresistance,may represent a potential therapeutic targetnot only for lymphoid neoplasms, but also for AML.

  6. Multidrug resistance-associated protein (MRP1, 2, 4 and 5) expression in human corneal cell culture models and animal corneal tissue.

    Science.gov (United States)

    Verstraelen, Jessica; Reichl, Stephan

    2014-07-07

    Preclinical studies addressing the transcorneal absorption of ophthalmic drugs are mainly performed using ex vivo animal corneas and in vitro corneal cell culture models, leaving open the question of transferability to humans in an in vivo situation. While passive drug absorption through corneal tissue is well understood, little is known about the expression of transporter proteins and active drug transport in human and animal corneas as well as corneal cell culture models. Therefore, the aim of this study was to conduct an expression analysis of four multidrug resistance-associated proteins (MRP1, 2, 4 and 5) in various in vitro and ex vivo corneal models, leading to a better understanding of the comparability of different corneal models regarding drug absorption and transferability to humans. Two well-established in vitro human corneal models, the HCE-T epithelial model and the more organotypic Hemicornea construct, both of which are based on the SV40 immortalized human corneal epithelial cell line HCE-T, were analyzed, as were excised rabbit and porcine cornea. Specimens of abraded epithelia from human donor corneas were also tested. MRP mRNA expression was determined via reverse transcriptase polymerase chain reaction. Protein expression was examined using Western blot experiments and immunohistochemistry. The functional activity of the MRP efflux transporter was detected in transport assays using specific marker and inhibitor substances. The functional expression of all of the tested MRP transporters was detected in the HCE-T epithelial model. Hemicornea constructs displayed a similar expression pattern for MRP1, 4 and 5, whereas no MRP2 protein expression or activity was detected. However, excised animal corneas exhibited different expression profiles. In porcine cornea, no functional expression of MRP1, 2, or 5 was observed, and we failed to detect MRP4 expression in rabbit cornea. The results suggest that MRP1, 2, 4, and 5 are expressed in the human corneal

  7. Melanoma-Derived BRAFV600E Mutation in Peritumoral Stromal Cells: Implications for in Vivo Cell Fusion

    Directory of Open Access Journals (Sweden)

    Zsuzsanna Kurgyis

    2016-06-01

    Full Text Available Melanoma often recurs in patients after the removal of the primary tumor, suggesting the presence of recurrent tumor-initiating cells that are undetectable using standard diagnostic methods. As cell fusion has been implicated to facilitate the alteration of a cell’s phenotype, we hypothesized that cells in the peritumoral stroma having a stromal phenotype that initiate recurrent tumors might originate from the fusion of tumor and stromal cells. Here, we show that in patients with BRAFV600E melanoma, melanoma antigen recognized by T-cells (MART1-negative peritumoral stromal cells express BRAFV600E protein. To confirm the presence of the oncogene at the genetic level, peritumoral stromal cells were microdissected and screened for the presence of BRAFV600E with a mutation-specific polymerase chain reaction. Interestingly, cells carrying the BRAFV600E mutation were not only found among cells surrounding the primary tumor but were also present in the stroma of melanoma metastases as well as in a histologically tumor-free re-excision sample from a patient who subsequently developed a local recurrence. We did not detect any BRAFV600E mutation or protein in the peritumoral stroma of BRAFWT melanoma. Therefore, our results suggest that peritumoral stromal cells contain melanoma-derived oncogenic information, potentially as a result of cell fusion. These hybrid cells display the phenotype of stromal cells and are therefore undetectable using routine histological assessments. Our results highlight the importance of genetic analyses and the application of mutation-specific antibodies in the identification of potentially recurrent-tumor-initiating cells, which may help better predict patient survival and disease outcome.

  8. Molecular Analysis of Stromal Cells-Induced Neural Differentiation of Mouse Embryonic Stem Cells.

    Science.gov (United States)

    Joshi, Ramila; Buchanan, James Carlton; Paruchuri, Sailaja; Morris, Nathan; Tavana, Hossein

    2016-01-01

    Deriving specific neural cells from embryonic stem cells (ESCs) is a promising approach for cell replacement therapies of neurodegenerative diseases. When co-cultured with certain stromal cells, mouse ESCs (mESCs) differentiate efficiently to neural cells. In this study, a comprehensive gene and protein expression analysis of differentiating mESCs is performed over a two-week culture period to track temporal progression of cells from a pluripotent state to specific terminally-differentiated neural cells such as neurons, astrocytes, and oligodendrocytes. Expression levels of 26 genes consisting of marker genes for pluripotency, neural progenitors, and specific neuronal, astroglial, and oligodendrocytic cells are tracked using real time q-PCR. The time-course gene expression analysis of differentiating mESCs is combined with the hierarchal clustering and functional principal component analysis (FPCA) to elucidate the evolution of specific neural cells from mESCs at a molecular level. These statistical analyses identify three major gene clusters representing distinct phases of transition of stem cells from a pluripotent state to a terminally-differentiated neuronal or glial state. Temporal protein expression studies using immunohistochemistry demonstrate the generation of neural stem/progenitor cells and specific neural lineages and show a close agreement with the gene expression profiles of selected markers. Importantly, parallel gene and protein expression analysis elucidates long-term stability of certain proteins compared to those with a quick turnover. Describing the molecular regulation of neural cells commitment of mESCs due to stromal signaling will help identify major promoters of differentiation into specific cell types for use in cell replacement therapy applications.

  9. Ubiquitin is associated with the survival of ectopic stromal cells in endometriosis

    Directory of Open Access Journals (Sweden)

    Bebington Catherine R

    2004-09-01

    Full Text Available Abstract Background Endometriosis is a condition that affects women of reproductive age, where the glandular and/or stromal tissues from the eutopic endometrium implant in ectopic locations. It is well established that the survival of ectopic implants is due to lower levels of apoptosis, but no consensus exists as to which pathway/s this is mediated by. The ubiquitin protein shares a similar sequence homology to an anti-apoptotic protein called BAG-1 and is expressed in the normal endometrium. Currently, no studies have been conducted to determine ubiquitin expression and its possible anti-apoptotic effects in endometriosis. Methods Archived endometrial tissues from endometriosis patients and women undergoing laparoscopic diagnosis (controls from January 2000 to July 2003 at Westmead Hospital were examined, where 14 cases of endometriosis and 55 controls were included in the study. Results Both the ubiquitin protein and apoptosis were expressed in both glandular and stromal cells throughout the menstrual cycle of the eutopic endometrium, in which ubiquitin exhibited a cyclic expression, reaching a peak in late proliferative phase. In contrast, ubiquitin was predominantly expressed in cells of stromal origin in endometriosis, was no longer regulated by a cyclic pattern and was associated with an aberrant level of cell survival. Conclusions For the first time, this study shows that ubiquitin is expressed in endometriotic cells and may contribute to a reduced sensitivity of ectopic endometrial tissue to apoptosis. These findings also suggest that stromal cells contribute differentially to the development of ectopic endometrial tissue.

  10. In vitro evaluation of the interactions between human corneal endothelial cells and extracellular matrix proteins.

    Science.gov (United States)

    Choi, Jin San; Kim, Eun Young; Kim, Min Jeong; Giegengack, Matthew; Khan, Faraaz A; Khang, Gilson; Soker, Shay

    2013-02-01

    The corneal endothelium is the innermost cell layer of the cornea and rests on Descemet's membrane consisting of various extracellular matrix (ECM) proteins which can directly affect the cellular behaviors such as cell adhesion, proliferation, polarity, morphogenesis and function. The objective of this study was to investigate the interactions between the ECM environment and human corneal endothelial cells (HCECs), with the ultimate goal to improve cell proliferation and function in vitro. To evaluate the interaction of HCECs with ECM proteins, cells were seeded on ECM-coated tissue culture dishes, including collagen type I (COL I), collagen type IV (COL IV), fibronectin (FN), FNC coating mix (FNC) and laminin (LM). Cell adhesion and proliferation of HCECs on each substratum and expression of CEC markers were studied. The results showed that HCECs plated on the COL I, COL IV, FN and FNC-coated plates had enhanced cell adhesion initially; the number for COL I, COL IV, FN and FNC was significantly higher than the control (P < 0.05). In addition, cells grown on ECM protein-coated dishes showed more compact cellular morphology and CEC marker expression compared to cells seeded on uncoated dishes. Collectively, our results suggest that an adequate ECM protein combination can provide a long-term culture environment for HCECs for corneal endothelium transplantation.

  11. CD146/MCAM defines functionality of human bone marrow stromal stem cell populations

    DEFF Research Database (Denmark)

    Harkness, Linda; Zaher, Walid; Ditzel, Nicholas

    2016-01-01

    BACKGROUND: Identification of surface markers for prospective isolation of functionally homogenous populations of human skeletal (stromal, mesenchymal) stem cells (hMSCs) is highly relevant for cell therapy protocols. Thus, we examined the possible use of CD146 to subtype a heterogeneous h......MSC population. METHODS: Using flow cytometry and cell sorting, we isolated two distinct hMSC-CD146(+) and hMSC-CD146(-) cell populations from the telomerized human bone marrow-derived stromal cell line (hMSC-TERT). Cells were examined for differences in their size, shape and texture by using high......-content analysis and additionally for their ability to differentiate toward osteogenesis in vitro and form bone in vivo, and their migrational ability in vivo and in vitro was investigated. RESULTS: In vitro, the two cell populations exhibited similar growth rate and differentiation capacity to osteoblasts...

  12. CD146/MCAM defines functionality of human bone marrow stromal stem cell populations

    DEFF Research Database (Denmark)

    Harkness, Linda; Zaher, Walid; Ditzel, Nicholas;

    2016-01-01

    BACKGROUND: Identification of surface markers for prospective isolation of functionally homogenous populations of human skeletal (stromal, mesenchymal) stem cells (hMSCs) is highly relevant for cell therapy protocols. Thus, we examined the possible use of CD146 to subtype a heterogeneous h......MSC population. METHODS: Using flow cytometry and cell sorting, we isolated two distinct hMSC-CD146(+) and hMSC-CD146(-) cell populations from the telomerized human bone marrow-derived stromal cell line (hMSC-TERT). Cells were examined for differences in their size, shape and texture by using high......-content analysis and additionally for their ability to differentiate toward osteogenesis in vitro and form bone in vivo, and their migrational ability in vivo and in vitro was investigated. RESULTS: In vitro, the two cell populations exhibited similar growth rate and differentiation capacity to osteoblasts...

  13. Tumor and Stromal-Based Contributions to Head and Neck Squamous Cell Carcinoma Invasion

    Energy Technology Data Exchange (ETDEWEB)

    Markwell, Steven M.; Weed, Scott A., E-mail: scweed@hsc.wvu.edu [Department of Neurobiology and Anatomy, Program in Cancer Cell Biology, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506 (United States)

    2015-02-27

    Head and neck squamous cell carcinoma (HNSCC) is typically diagnosed at advanced stages with evident loco-regional and/or distal metastases. The prevalence of metastatic lesions directly correlates with poor patient outcome, resulting in high patient mortality rates following metastatic development. The progression to metastatic disease requires changes not only in the carcinoma cells, but also in the surrounding stromal cells and tumor microenvironment. Within the microenvironment, acellular contributions from the surrounding extracellular matrix, along with contributions from various infiltrating immune cells, tumor associated fibroblasts, and endothelial cells facilitate the spread of tumor cells from the primary site to the rest of the body. Thus far, most attempts to limit metastatic spread through therapeutic intervention have failed to show patient benefit in clinic trails. The goal of this review is highlight the complexity of invasion-promoting interactions in the HNSCC tumor microenvironment, focusing on contributions from tumor and stromal cells in order to assist future therapeutic development and patient treatment.

  14. Reciprocal upregulation of Notch signaling molecules in hematopoietic progenitor and mesenchymal stromal cells

    Directory of Open Access Journals (Sweden)

    Kikuchi Y

    2011-01-01

    Full Text Available Although mesenchymal stem cells (MSCs play pivotal supportive roles in hematopoiesis, how they interact with hematopoietic stem cells (HSCs is not well understood. We investigated the interaction between HSCs and surrogate MSCs (C3H10T1/2 stromal cells, focusing on the molecular events induced by cell contact of these bipartite populations. C3H10T1/2 is a mesenchymal stromal cell line that can be induced to differentiate into preadipocytes (A54 and myoblasts (M1601. The stromal cell derivatives were cocultured with murine HSCs (Lineage-Sca1+, and gene expression profiles in stromal cells and HSCs were compared before and after the coculture. HSCs gave rise to cobblestone areas only on A54 cells, with ninefold more progenitors than on M1601 or undifferentiated C3H10T1/2 cells. Microarray-based screening and a quantitative reverse transcriptase directed-polymerase chain reaction showed that the levels of Notch ligands (Jagged1 and Delta-like 3 were increased in A54 cells upon interaction with HSCs. On the other hand, the expression of Notch1 and Hes1 was upregulated in the HSCs cocultured with A54 cells. A transwell assay revealed that the reciprocal upregulation was dependent on cell-to-cell contact. The result suggested that in the hematopoietic niche, HSCs help MSCs to produce Notch ligands, and in turn, MSCs help HSCs to express Notch receptor. Such a reciprocal upregulation would reinforce the downstream signaling to determine the fate of hematopoietic cell lineage. Clarification of the initiating events on cell contact should lead to the identification of specific molecular targets to facilitate HSC engraftment in transplantation therapy.

  15. Serial explant culture provides novel insights into the potential location and phenotype of corneal endothelial progenitor cells.

    Science.gov (United States)

    Walshe, Jennifer; Harkin, Damien G

    2014-10-01

    The routine cultivation of human corneal endothelial cells, with the view to treating patients with endothelial dysfunction, remains a challenging task. While progress in this field has been buoyed by the proposed existence of progenitor cells for the corneal endothelium at the corneal limbus, strategies for exploiting this concept remain unclear. In the course of evaluating methods for growing corneal endothelial cells, we have noted a case where remarkable growth was achieved using a serial explant culture technique. Over the course of 7 months, a single explant of corneal endothelium, acquired from cadaveric human tissue, was sequentially seeded into 7 culture plates and on each occasion produced a confluent cell monolayer. Sample cultures were confirmed as endothelial in origin by positive staining for glypican-4. On each occasion, small cells, closest to the tissue explant, developed into a highly compact layer with an almost homogenous structure. This layer was resistant to removal with trypsin and produced continuous cell outgrowth during multiple culture periods. The small cells gave rise to larger cells with phase-bright cell boundaries and prominent immunostaining for both nestin and telomerase. Nestin and telomerase were also strongly expressed in small cells immediately adjacent to the wound site, following transfer of the explant to another culture plate. These findings are consistent with the theory that progenitor cells for the corneal endothelium reside within the limbus and provide new insights into expected expression patterns for nestin and telomerase within the differentiation pathway.

  16. Stimulation of porcine bone marrow stromal cells by hyaluronan, dexamethasone and rhBMP-2

    DEFF Research Database (Denmark)

    Zou, Xuenong; Li, Haisheng; Chen, Li

    2004-01-01

    In the interest of optimizing osteogenesis in in vitro, the present study sought to determine how porcine bone marrow stromal cell (BMSc) would respond to different concentrations of hyaluronan (HY) and its different combinations with dexamethasone (Dex) and recombinant human bone morphogenic pro...

  17. Elevated circulating stromal-derived factor-1 levels in sickle cell disease

    NARCIS (Netherlands)

    Landburg, P P; Nur, E; Maria, N; Brandjes, D P M; Biemond, B J; Schnog, J B; Duits, A J

    2009-01-01

    Inflammation and angiogenesis are of importance in the pathophysiology of sickle cell disease (SCD). Recently, the chemokine stromal-derived factor-1 (SDF-1) has been shown to be a key mediator of angiogenesis and inflammation. In this study we determined serum SDF-1 levels in consecutive adult

  18. Conditioned Medium From Human Amniotic Mesenchymal Stromal Cells Limits Infarct Size and Enhances Angiogenesis

    NARCIS (Netherlands)

    Danieli, Patrizia; Malpasso, Giuseppe; Cluffreda, Maria Chiara; Cervio, Elisabetta; Calvillo, Laura; Copes, Francesco; Pisano, Federica; Mura, Manuela; Kleijn, Lennaert; de Boer, Rudolf A.; Viarengo, Gianluca; Rosti, Vittorio; Spinillo, Arsenio; Roccio, Marianna; Gnecchi, Massimiliano

    2015-01-01

    The paracrine properties of human amniotic membrane-derived mesenchymal stromal cells (hAMCs) have not been fully elucidated. The goal of the present study was to elucidate whether hAMCs can exert beneficial paracrine effects on infarcted rat hearts, in particular through cardioprotection and angiog

  19. Incidental detection of a bleeding gastrointestinal stromal tumor on Tc-99m red blood cell scintigraphy.

    Science.gov (United States)

    Santhosh, Sampath; Bhattacharya, Anish; Gupta, Vikas; Singh, Rajinder; Radotra, Bishan Dass; Mittal, Bhagwant Rai

    2012-10-01

    The role of 99m-technetium labeled red blood cell (RBC) scintigraphy in acute gastro-intestinal bleed is well-established. The authors report a case of a bleeding gastrointestinal stromal tumor (GIST) incidentally discovered on Tc-99m RBC scintigraphy.

  20. MicroRNA-138 regulates osteogenic differentiation of human stromal (mesenchymal) stem cells in vivo

    DEFF Research Database (Denmark)

    Eskildsen, Tilde; Taipaleenmäki, H.; Stenvang, Jan;

    2011-01-01

    Elucidating the molecular mechanisms that regulate human stromal (mesenchymal) stem cell (hMSC) differentiation into osteogenic lineage is important for the development of anabolic therapies for treatment of osteoporosis. MicroRNAs (miRNAs) are short, noncoding RNAs that act as key regulators...

  1. Nuclear receptors Nur77 and Nurr1 modulate mesenchymal stromal cell migration

    NARCIS (Netherlands)

    Maijenburg, M.W.; Gilissen, C.; Melief, S.M.; Kleijer, M.; Weijer, K.; Ten Brinke, A.; Roelofs, H.; Tiel, C.M. van; Veltman, J.A.; Vries, C.J. de; Schoot, C.E. van der; Voermans, C.

    2012-01-01

    Detailed understanding of mesenchymal stromal cells (MSC) migration is imperative for future cellular therapies. To identify genes involved in the process of MSC migration, we generated gene expression profiles of migrating and nonmigrating fetal bone marrow MSC (FBMSC). Only 12 genes showed differe

  2. Forskolin enhances in vivo bone formation by human mesenchymal stromal cells

    NARCIS (Netherlands)

    Doorn, J.; Siddappa, R.; Blitterswijk, van C.A.; Boer, de J.

    2012-01-01

    Activation of the protein kinase A (PKA) pathway with dibutyryl cyclic adenosine monophosphate (db-cAMP) was recently shown to enhance osteogenic differentiation of human mesenchymal stromal cells (hMSCs) in vitro and bone formation in vivo. The major drawback of this compound is its inhibitory effe

  3. Different wound healing properties of dermis, adipose, and gingiva mesenchymal stromal cells

    NARCIS (Netherlands)

    Boink, M.A.; van den Broek, L.J.; Roffel, S.; Nazmi, K.; Bolscher, J.G.M.; Gefen, A.; Veerman, E.C.I.; Gibbs, S.

    2016-01-01

    Oral wounds heal faster and with better scar quality than skin wounds. Deep skin wounds where adipose tissue is exposed, have a greater risk of forming hypertrophic scars. Differences in wound healing and final scar quality might be related to differences in mesenchymal stromal cells (MSC) and their

  4. Elevated circulating stromal-derived factor-1 levels in sickle cell disease

    NARCIS (Netherlands)

    Landburg, P P; Nur, E; Maria, N; Brandjes, D P M; Biemond, B J; Schnog, J B; Duits, A J

    2009-01-01

    Inflammation and angiogenesis are of importance in the pathophysiology of sickle cell disease (SCD). Recently, the chemokine stromal-derived factor-1 (SDF-1) has been shown to be a key mediator of angiogenesis and inflammation. In this study we determined serum SDF-1 levels in consecutive adult sick

  5. Cicatrización estromal y reinervación corneal por microscopia confocal en LASIK posterior a queratotomía radial de 15 años de evolución Stromal scaring and corneal re-inervation by using confocal microscopy in Lasik after radial postkeratotomy of 15 years of evolution

    Directory of Open Access Journals (Sweden)

    María del Carmen Benítez Merino

    2012-06-01

    Full Text Available Objetivo: Describir las alteraciones morfológicas de la cicatrización estromal y la reinervación por microscopia confocal en pacientes operados de LASIK posterior a queratotomía radial de 15 años de evolución. Métodos: Se realizó un estudio observacional, descriptivo y longitudinal prospectivo, en 25 pacientes (50 córneas operados de queratotomía radial no complicados y reintervenidos con LASIK. Se estudiaron las características de la cicatrización estromal y la regeneración de fibras nerviosas corneales mediante microscopia confocal de la córnea con Confoscan S4. Se emplearon medidas de resumen de estadística descriptiva. Resultados: La cicatrización estromal se limitó al borde del colgajo. Hubo un aumento de la actividad queratocitaria en el lecho estromal en las primeras semanas del postoperatorio y disminución de la densidad queratocitaria por apoptosis observada hasta el año de evolución. En el preoperatorio de LASIK el número de plexos nerviosos se encontraban normales en más del 80 % de las córneas. En los primeros tres meses posoperatorios existió ausencia de reinervacion, su recuperación comenzó entre el sexto y octavo mes, con evidente alteración de la morfología y cantidad de plexos nerviosos por campo de microscopia confocal al año. Conclusiones: Las características de la cicatrización estromal estudiadas evolucionaron de manera similar a lo descrito en pacientes que no presentaban dicha queratotomía radial como antecedente. La regeneración nerviosa comenzó a partir de los seis meses con la aparición de los nodos nerviosos y un aumento progresivo de la sensibilidad corneal.Objective: To describe the morphological alterations in the stromal scaring and re-inervation by using confocal microscopy in patients operated on with LASIK after radial postkeratotomy of 15 years old evolution. Methods: A prospective, longitudinal, observational and descriptive study was conducted in 25 patients (50 corneas

  6. Mouse adipose tissue stromal cells give rise to skeletal and cardiomyogenic cell sub-populations

    Directory of Open Access Journals (Sweden)

    Cécile eDromard

    2014-08-01

    Full Text Available We previously reported that adipose tissue could generate cardiomyocyte-like cells from crude stromal vascular fraction (SVF in vitro that improved cardiac function in a myocardial infarction context. However, it is not clear whether these adipose-derived cardiomyogenic cells (AD-CMG constitute a homogenous population and if AD-CMG progenitors could be isolated as a pure population from the SVF of adipose tissue. This study aims to characterize the different cell types that constitute myogenic clusters and identify the earliest AD-CMG progenitors in vitro for establishing a complete phenotype and use it to sort AD-CMG progenitors from crude SVF. Here, we report cell heterogeneity among adipose-derived clusters during their course of maturation and highlighted sub-populations that exhibit original mixed cardiac/skeletal muscle phenotypes with a progressive loss of cardiac phenotype with time in liquid culture conditions. Moreover, we completed the phenotype of AD-CMG progenitors but we failed to sort them from the stromal vascular fraction. We demonstrated that micro-environment is required for the maturation of myogenic phenotype by co-culture experiments. These findings bring complementary data on AD-CMG and suggest that their emergence results from in vitro events.

  7. Corneal Molecular and Cellular Biology for the Refractive Surgeon: The Critical Role of the Epithelial Basement Membrane.

    Science.gov (United States)

    Marino, Gustavo K; Santhiago, Marcony R; Torricelli, Andre A M; Santhanam, Abirami; Wilson, Steven E

    2016-02-01

    To provide an overview of the recent advances concerning the corneal molecular and cellular biology processes involved in the wound healing response after excimer laser surface ablation and LASIK surgery. Literature review. The corneal wound healing response is a complex cascade of events that impacts the predictability and stability of keratorefractive surgical procedures such as photorefractive keratectomy and LASIK. The generation and persistence of corneal myofibroblasts (contractile cells with reduced transparency) arise from the interaction of cytokines and growth factors such as transforming growth factor beta and interleukin 1 produced by epithelial and stromal cells in response to the corneal injury. Myofibroblasts, and the opaque extracellular matrix they secrete into the stroma, disturb the precise distribution and spacing of collagen fibers related to corneal transparency and lead to the development of vision-limiting corneal opacity (haze). The intact epithelial basement membrane has a pivotal role as a structure that regulates corneal epithelial-stromal interactions. Thus, defective regeneration of the epithelial basement membrane after surgery, trauma, or infection leads to the development of stromal haze. The apoptotic process following laser stromal ablation, which is proportional to the level of attempted correction, leads to an early decrease in anterior keratocyte density and the diminished contribution of these non-epithelial cells of components such as perlecan and nidogen-2 required for normal regeneration of the epithelial basement membrane. Haze persists until late repair of the defective epithelial basement membrane. Defective regeneration of the epithelial basement membrane has a critical role in determining whether a cornea heals with late haze after photorefractive keratectomy or with scarring at the flap edge in LASIK. Copyright 2016, SLACK Incorporated.

  8. Pleiotropic effects of cancer cells' secreted factors on human stromal (mesenchymal) stem cells

    DEFF Research Database (Denmark)

    Al-toub, Mashael; Almusa, Abdulaziz; Almajed, Mohammed

    2013-01-01

    INTRODUCTION: Studying cancer tumors' microenvironment may reveal a novel role in driving cancer progression and metastasis. The biological interaction between stromal (mesenchymal) stem cells (MSCs) and cancer cells remains incompletely understood. Herein, we investigated the effects of tumor...... cells' secreted factors as represented by a panel of human cancer cell lines (breast (MCF7 and MDA-MB-231); prostate (PC-3); lung (NCI-H522); colon (HT-29) and head & neck (FaDu)) on the biological characteristics of MSCs. METHODS: Morphological changes were assessed using fluorescence microscopy....... Changes in gene expression were assessed using Agilent microarray and qRT-PCR. GeneSpring 12.1 and DAVID tools were used for bioinformatic and signaling pathway analyses. Cell migration was assessed using a transwell migration system. SB-431542, PF-573228 and PD98059 were used to inhibit transforming...

  9. IL-1β up-regulates expression of IL-8 in endometrial stromal cells in vitro

    Institute of Scientific and Technical Information of China (English)

    Zhang Guiyu; Ren Shuwen; Zhang Youzhong; Yang Xingsheng

    2005-01-01

    Objective:To investigate the effects of interleukin-1beta (IL-1β) on expression of IL-8 in endometrial stromal cells (ESC) and evaluate the relationship between IL1 β and IL-8 ,and the significance of IL-1β in the development of endometriosis. Methods:The endometrial stromal cells obtained from patient with and without endometriosis cultured within 3 ~5 passage were exposed to various concentrations of IL-1β. The amount of IL-8 protein was assessed by ELISA. The expression of IL-8 mRNA was determined by RT-PCR. Results: 1. IL-8 protein was detected in culture supernatant of which the cells were not treated with IL-1β. The amount of IL-8 protein secretion increased obviously after stimulation with IL-1β at 1.0ng/ml for 4h and the peak of secretion was at 12h. 2. Expression of IL-8 mRNA was positive in unstimulated endometrial stromal cells. However, after stromal cells were incubated with IL-1β, the intensity of expression of IL-8 mRNA was obviously increased and demonstrated a dose-and timedependent manner. Increase of IL-8 mRNA was observed following stimulation with IL-1β for 4h ,and the peak at 12h. Conclusions:IL-1β induces endometrial stromal cell of endometriosis to express IL-8 not only at transcription level but also at post-transcription level. This up-regulation is dose-and time-dependent. IL-1β may play an important role in the onset of endometriosis.

  10. FGF7 supports hematopoietic stem and progenitor cells and niche-dependent myeloblastoma cells via autocrine action on bone marrow stromal cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Ishino, Ruri; Minami, Kaori; Tanaka, Satowa [Laboratory of Hematology, Division of Medical Biophysics, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe 654-0142 (Japan); Nagai, Mami [Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 159-8555 (Japan); Matsui, Keiji; Hasegawa, Natsumi [Laboratory of Hematology, Division of Medical Biophysics, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe 654-0142 (Japan); Roeder, Robert G. [Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065 (United States); Asano, Shigetaka [Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 159-8555 (Japan); Ito, Mitsuhiro, E-mail: itomi@med.kobe-u.ac.jp [Laboratory of Hematology, Division of Medical Biophysics, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe 654-0142 (Japan); Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065 (United States); Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 159-8555 (Japan); Department of Family and Community Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 654-0142 (Japan)

    2013-10-11

    Highlights: •FGF7 is downregulated in MED1-deficient mesenchymal cells. •FGF7 produced by mesenchymal stromal cells is a novel hematopoietic niche molecule. •FGF7 supports hematopoietic progenitor cells and niche-dependent leukemia cells. •FGF7 activates FGFR2IIIb of bone marrow stromal cells in an autocrine manner. •FGF7 indirectly acts on hematopoietic cells lacking FGFR2IIIb via stromal cells. -- Abstract: FGF1 and FGF2 support hematopoietic stem and progenitor cells (HSPCs) under stress conditions. In this study, we show that fibroblast growth factor (FGF7) may be a novel niche factor for HSPC support and leukemic growth. FGF7 expression was attenuated in mouse embryonic fibroblasts (MEFs) deficient for the MED1 subunit of the Mediator transcriptional coregulator complex. When normal mouse bone marrow (BM) cells were cocultured with Med1{sup +/+} MEFs or BM stromal cells in the presence of anti-FGF7 antibody, the growth of BM cells and the number of long-time culture-initiating cells (LTC-ICs) decreased significantly. Anti-FGF7 antibody also attenuated the proliferation and cobblestone formation of MB1 stromal cell-dependent myeloblastoma cells. The addition of recombinant FGF7 to the coculture of BM cells and Med1{sup −/−} MEFs increased BM cells and LTC-ICs. FGF7 and its cognate receptor, FGFR2IIIb, were undetectable in BM cells, but MEFs and BM stromal cells expressed both. FGF7 activated downstream targets of FGFR2IIIb in Med1{sup +/+} and Med1{sup −/−} MEFs and BM stromal cells. Taken together, we propose that FGF7 supports HSPCs and leukemia-initiating cells indirectly via FGFR2IIIb expressed on stromal cells.

  11. Inflammatory responses of stromal fibroblasts to inflammatory epithelial cells are involved in the pathogenesis of bovine mastitis.

    Science.gov (United States)

    Zhang, Wenyao; Li, Xuezhong; Xu, Tong; Ma, Mengru; Zhang, Yong; Gao, Ming-Qing

    2016-11-15

    Hypernomic secretion of epithelial cytokines has several effects on stromal cells. The contributions of inflammatory epithelial cells to stromal fibroblasts in bovine mammary glands with mastitis remain poorly understood. Here, we established an inflammatory epithelial cell model of bovine mastitis with gram-negative lipopolysaccharide (LPS) and gram-positive lipoteichoic acid (LTA) bacterial cell wall components. We characterized immune responses of mammary stromal fibroblasts induced by inflammatory epithelial cells. Our results showed that inflammatory epithelial cells affected stromal fibroblast characteristics by increasing inflammatory mediator expression, elevating extracellular matrix protein deposition, decreasing proliferation capacity, and enhancing migration ability. The changes in stromal fibroblast proliferation and migration abilities were mediated by signal molecules, such as WNT signal pathway components. LPS- and LTA-induced inflammatory epithelial cells triggered different immune responses in stromal fibroblasts. Thus, in mastitis, bovine mammary gland stromal fibroblasts were affected by inflammatory epithelial cells and displayed inflammation-specific changes, suggesting that fibroblasts play crucial roles in bovine mastitis. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. RECURRENT CORNEAL EROSION SYNDROME (a review

    Directory of Open Access Journals (Sweden)

    S. V. Trufanov

    2015-01-01

    Full Text Available Recurrent corneal erosion (RCE syndrome is characterized by episodes of recurrent spontaneous epithelial defects. Main clinical symptoms (pain, redness, photophobia, lacrimation occurred at night. Corneal lesions revealed by slit lamp exam vary depending on the presence of corneal epithelium raise, epithelial microcysts or epithelial erosions, stromal infiltrates and opacities. Microtraumas, anterior corneal dystrophies, and herpesvirus give rise to RCE. Other causes or factors which increase the risk of RCE syndrome include meibomian gland dysfunction, keratoconjunctivitis sicca, diabetes, and post-LASIK conditions. Basal membrane abnormalities and instability of epithelial adhesion to stroma play a key role in RCE pathogenesis. Ultrastructural changes in RCE include abnormalities of basal epithelial cells and epithelial basal membrane, absence or deficiency of semi-desmosomes, loss of anchor fibrils. Increase in matrix metalloproteinases and collagenases which contribute to basal membrane destruction results in recurrent erosions and further development of abnormal basal membrane. The goals of RCE therapy are to reduce pain (in acute stage, to stimulate re-epithelization, and to restore «adhesion complex» of basal membrane. In most cases, RCE responds to simple conservative treatment that includes lubricants, healing agents, and eye patches. RCEs that are resistant to simple treatment, require complex approach. Non-invasive methods include long-term contact lens use, instillations of autologous serum (eye drops, injections of botulinum toxin (induces ptosis, antiviral agent use or oral intake of metalloproteinase inhibitors. Cell membrane stabilizers, i.e., antioxidants, should be included into treatment approaches as well. Antioxidant effect of Emoxipine promotes tissue reparation due to the prevention of cell membrane lipid peroxidation as well as due to its anti-hypoxic, angioprotective, and antiplatelet effects. If conservative therapy

  13. Mesenchymal stromal cells for cardiovascular repair: current status and future challenges

    DEFF Research Database (Denmark)

    Mathiasen, Anders Bruun; Haack-Sørensen, Mandana; Kastrup, Jens

    2009-01-01

    studies are promising, but there are still many unanswered questions. In this review, we explore present preclinical and clinical knowledge regarding the use of stem cells in cardiovascular regenerative medicine, with special focus on mesenchymal stromal cells. We take a closer look at sources of stem...... for regenerative therapy. Clinical studies on stem cell therapy for cardiac regeneration have shown significant improvements in ventricular pump function, ventricular remodeling, myocardial perfusion, exercise potential and clinical symptoms compared with conventionally treated control groups. The results of most...... of treatments in patients with heart failure, the 1-year mortality is still approximately 20% after the diagnosis has been established. Treatment with stem cells with the potential to regenerate the damaged myocardium is a relatively new approach. Mesenchymal stromal cells are a promising source of stem cells...

  14. Honokiol, a constituent of Magnolia species, inhibits adrenergic contraction of human prostate strips and induces stromal cell death

    Directory of Open Access Journals (Sweden)

    Daniel Herrmann

    2014-09-01

    Conclusions: Honokiol inhibits smooth muscle contraction in the human prostate, and induces cell death in cultured stromal cells. Because prostate smooth muscle tone and prostate growth may cause LUTS, it appears possible that honokiol improves voiding symptoms.

  15. Evaluation of corneal cell growth on tissue engineering materials as artificial cornea scaffolds

    Directory of Open Access Journals (Sweden)

    Hai-Yan Wang

    2013-12-01

    Full Text Available The keratoprosthesis (KPro; artificial cornea is a special refractive device to replace human cornea by using heterogeneous forming materials for the implantation into the damaged eyes in order to obtain a certain vision. The main problems of artificial cornea are the biocompatibility and stability of the tissue particularly in penetrating keratoplasty. The current studies of tissue-engineered scaffold materials through comprising composites of natural and synthetic biopolymers together have developed a new way to artificial cornea. Although a wide agreement that the long-term stability of these devices would be greatly improved by the presence of cornea cells, modification of keratoprosthesis to support cornea cells remains elusive. Most of the studies on corneal substrate materials and surface modification of composites have tried to improve the growth and biocompatibility of cornea cells which can not only reduce the stimulus of heterogeneous materials, but also more importantly continuous and stable cornea cells can prevent the destruction of collagenase. The necrosis of stroma and spontaneous extrusion of the device, allow for maintenance of a precorneal tear layer, and play the role of ensuring a good optical surface and resisting bacterial infection. As a result, improvement in corneal cells has been the main aim of several recent investigations; some effort has focused on biomaterial for its well biological properties such as promoting the growth of cornea cells. The purpose of this review is to summary the growth status of the corneal cells after the implantation of several artificial corneas.

  16. Cancer cells enter dormancy after cannibalizing mesenchymal stem/stromal cells (MSCs)

    Science.gov (United States)

    Bartosh, Thomas J.; Ullah, Mujib; Zeitouni, Suzanne; Beaver, Joshua; Prockop, Darwin J.

    2016-01-01

    Patients with breast cancer often develop malignant regrowth of residual drug-resistant dormant tumor cells years after primary treatment, a process defined as cancer relapse. Deciphering the causal basis of tumor dormancy therefore has obvious therapeutic significance. Because cancer cell behavior is strongly influenced by stromal cells, particularly the mesenchymal stem/stromal cells (MSCs) that are actively recruited into tumor-associated stroma, we assessed the impact of MSCs on breast cancer cell (BCC) dormancy. Using 3D cocultures to mimic the cellular interactions of an emerging tumor niche, we observed that MSCs sequentially surrounded the BCCs, promoted formation of cancer spheroids, and then were internalized/degraded through a process resembling the well-documented yet ill-defined clinical phenomenon of cancer cell cannibalism. This suspected feeding behavior was less appreciable in the presence of a rho kinase inhibitor and in 2D monolayer cocultures. Notably, cannibalism of MSCs enhanced survival of BCCs deprived of nutrients but suppressed their tumorigenicity, together suggesting the cancer cells entered dormancy. Transcriptome profiles revealed that the resulting BCCs acquired a unique molecular signature enriched in prosurvival factors and tumor suppressors, as well as inflammatory mediators that demarcate the secretome of senescent cells, also referred to as the senescence-associated secretory phenotype. Overall, our results provide intriguing evidence that cancer cells under duress enter dormancy after cannibalizing MSCs. Importantly, our practical 3D coculture model could provide a valuable tool to understand the antitumor activity of MSCs and cell cannibalism further, and therefore open new therapeutic avenues for the prevention of cancer recurrence. PMID:27698134

  17. Selenium supplementation restores the antioxidative capacity and prevents cell damage in bone marrow stromal cells in vitro

    DEFF Research Database (Denmark)

    Ebert, Regina; Ulmer, Matthias; Zeck, Sabine

    2006-01-01

    Bone marrow stromal cells (BMSCs) and other cell populations derived from mesenchymal precursors are developed for cell-based therapeutic strategies and undergo cellular stress during ex vivo procedures. Reactive oxygen species (ROS) of cellular and environmental origin are involved in redox sign...

  18. Derivation of mesenchymal stromal cells from pluripotent stem cells through a neural crest lineage using small molecule compounds with defined media.

    Directory of Open Access Journals (Sweden)

    Makoto Fukuta

    Full Text Available Neural crest cells (NCCs are an embryonic migratory cell population with the ability to differentiate into a wide variety of cell types that contribute to the craniofacial skeleton, cornea, peripheral nervous system, and skin pigmentation. This ability suggests the promising role of NCCs as a source for cell-based therapy. Although several methods have been used to induce human NCCs (hNCCs from human pluripotent stem cells (hPSCs, such as embryonic stem cells (ESCs and induced pluripotent stem cells (iPSCs, further modifications are required to improve the robustness, efficacy, and simplicity of these methods. Chemically defined medium (CDM was used as the basal medium in the induction and maintenance steps. By optimizing the culture conditions, the combination of the GSK3β inhibitor and TGFβ inhibitor with a minimum growth factor (insulin very efficiently induced hNCCs (70-80% from hPSCs. The induced hNCCs expressed cranial NCC-related genes and stably proliferated in CDM supplemented with EGF and FGF2 up to at least 10 passages without changes being observed in the major gene expression profiles. Differentiation properties were confirmed for peripheral neurons, glia, melanocytes, and corneal endothelial cells. In addition, cells with differentiation characteristics similar to multipotent mesenchymal stromal cells (MSCs were induced from hNCCs using CDM specific for human MSCs. Our simple and robust induction protocol using small molecule compounds with defined media enabled the generation of hNCCs as an intermediate material producing terminally differentiated cells for cell-based innovative medicine.

  19. Lgr5 Marks Neural Crest Derived Multipotent Oral Stromal Stem Cells.

    Science.gov (United States)

    Boddupally, Keerthi; Wang, Guangfang; Chen, Yibu; Kobielak, Agnieszka

    2016-03-01

    It has been suggested that multipotent stem cells with neural crest (NC) origin persist into adulthood in oral mucosa. However their exact localization and role in normal homeostasis is unknown. In this study, we discovered that Lgr5 is expressed in NC cells during embryonic development, which give rise to the dormant stem cells in the adult tongue and oral mucosa. Those Lgr5 positive oral stromal stem cells display properties of NC stem cells including clonal growth and multipotent differentiation. RNA sequencing revealed that adult Lgr5+ oral stromal stem cells express high number of neural crest related markers like Sox9, Twist1, Snai1, Myc, Ets1, Crabp1, Epha2, and Itgb1. Using lineage-tracing experiments, we show that these cells persist more than a year in the ventral tongue and some areas of the oral mucosa and give rise to stromal progeny. In vivo transplantation demonstrated that these cells reconstitute the stroma. Our studies show for the first time that Lgr5 is expressed in the NC cells at embryonic day 9.5 (E9.5) and is maintained during embryonic development and postnataly in the stroma of the ventral tongue, and some areas of the oral mucosa and that Lgr5+ cells participate in the maintenance of the stroma.

  20. Epigenetic Alterations Affecting Transcription Factors and Signaling Pathways in Stromal Cells of Endometriosis

    Science.gov (United States)

    Yotova, Iveta; Hsu, Emily; Do, Catherine; Gaba, Aulona; Sczabolcs, Matthias; Dekan, Sabine; Kenner, Lukas; Wenzl, Rene; Tycko, Benjamin

    2017-01-01

    Endometriosis is characterized by growth of endometrial-like tissue outside the uterine cavity. Since its pathogenesis may involve epigenetic changes, we used Illumina 450K Methylation Beadchips to profile CpG methylation in endometriosis stromal cells compared to stromal cells from normal endometrium. We validated and extended the Beadchip data using bisulfite sequencing (bis-seq), and analyzed differential methylation (DM) at the CpG-level and by an element-level classification for groups of CpGs in chromatin domains. Genes found to have DM included examples encoding transporters (SLC22A23), signaling components (BDNF, DAPK1, ROR1, and WNT5A) and transcription factors (GATA family, HAND2, HOXA cluster, NR5A1, OSR2, TBX3). Intriguingly, among the TF genes with DM we also found JAZF1, a proto-oncogene affected by chromosomal translocations in endometrial stromal tumors. Using RNA-Seq we identified a subset of the DM genes showing differential expression (DE), with the likelihood of DE increasing with the extent of the DM and its location in enhancer elements. Supporting functional relevance, treatment of stromal cells with the hypomethylating drug 5aza-dC led to activation of DAPK1 and SLC22A23 and repression of HAND2, JAZF1, OSR2, and ROR1 mRNA expression. We found that global 5hmC is decreased in endometriotic versus normal epithelial but not stroma cells, and for JAZF1 and BDNF examined by oxidative bis-seq, found that when 5hmC is detected, patterns of 5hmC paralleled those of 5mC. Together with prior studies, these results define a consistent epigenetic signature in endometriosis stromal cells and nominate specific transcriptional and signaling pathways as therapeutic targets. PMID:28125717

  1. Cytotoxic effects of betaxolol on healthy corneal endothelial cells both in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Ying Miao

    2014-02-01

    Full Text Available AIM: To demonstrate the cytotoxic effect of betaxolol and its underlying mechanism on human corneal endothelial cells(HCE cells in vitro and cat corneal endothelial cells(CCE cells in vivo, providing experimental basis for safety anti-glaucoma drug usage in clinic of ophthalmology.METHODS: In vivo and in vitro experiments were conducted to explore whether and how betaxolol participates in corneal endothelial cell injury. The in vitro morphology, growth status, plasma membrane permeability, DNA fragmentation, and ultrastructure of HCE cells treated with 0.021875-0.28g/L betaxolol were examined by light microscope, 3-(4,5-dimethylthiahiazo (-z-y1-3,5-di-phenytetrazoliumromide (MTT assay, acridine orange (AO/ethidium bromide (EB double-fluorescent staining, DNA agarose gel electrophoresis, and transmission electron microscope (TEM. The in vivo density, morphology, and ultrastructure of CCE cells, corneal thickness, and eye pressure of cat eyes treated with 0.28g/L betaxolol were investigated by specular microscopy, applanation tonometer, alizarin red staining, scanning electron microscope (SEM, and TEM.RESULTS: Exposure to betaxolol at doses from 0.0875g/L to 2.8g/L induced morphological and ultrastructural changes of in vitro cultured HCE cells such as cytoplasmic vacuolation, cellular shrinkage, structural disorganization, chromatin condensation, and apoptotic body appearance. Simultaneously, betaxolol elevated plasma membrane permeability and induced DNA fragmentation of these cells in a dose-dependent manner in AO/EB staining. Furthermore, betaxolol at a dose of 2.8g/L also induced decrease of density of CCE cells in vivo, and non-hexagonal and shrunk apoptotic cells were also found in betaxolol-treated cat corneal endothelia.CONCLUSION: Betaxolol has significant cytotoxicity on HCE cells in vitro by inducing apoptosis of these cells, and induced apoptosis of CCE cells in vivo as well. The findings help provide new insight into the apoptosis

  2. Selective isolation and differentiation of a stromal population of human embryonic stem cells with osteogenic potential

    DEFF Research Database (Denmark)

    Harkness, Linda M; Mahmood, Amer; Ditzel, Nicholas

    2011-01-01

    The derivation of osteogenic cells from human embryonic stem cells (hESC) has been hampered by the absence of easy and reproducible protocols. hESC grown in feeder-free conditions, often show a sub population of fibroblast-like, stromal cells growing between the colonies. Thus, we examined...... the possibility that these cells represent a population of stromal (mesenchymal) stem cells (hESC-stromal). Two in house derived hES cell lines (Odense3 and KMEB3) as well as an externally derived cell line (Hues8) were transitioned to feeder-free conditions. A sub population of fibroblast-like cells established...... between the hESC colonies were isolated by selective adherence to hyaluronic acid-coated plates (100μg/ml) and were characterized using a combination of FACS analysis and staining. The cells were CD44(+), CD29(+), CD73(+), CD166(+), CD146(+), and CD105(+); and, Oct4(-), CD34(-), CD45(-) and CXCR4(-). When...

  3. Isolation and characterisation of mesenchymal stem/stromal cells in the ovine endometrium.

    Directory of Open Access Journals (Sweden)

    Vincent Letouzey

    Full Text Available Mesenchymal stem/stromal cells (MSC were recently discovered in the human endometrium. These cells possess key stem cell properties and show promising results in small animal models when used for preclinical tissue engineering studies. A small number of surface markers have been identified that enrich for MSC from bone marrow and human endometrium, including the Sushi Domain-containing 2 (SUSD2; W5C5 and CD271 markers. In preparation for developing a large animal preclinical model for urological and gynecological tissue engineering applications we aimed to identify and characterise MSC in ovine endometrium and determine surface markers to enable their prospective isolation.Ovine endometrium was obtained from hysterectomised ewes following progesterone synchronisation, dissociated into single cell suspensions and tested for MSC surface markers and key stem cell properties. Purified stromal cells were obtained by flow cytometry sorting with CD49f and CD45 to remove epithelial cells and leukocytes respectively, and MSC properties investigated.There was a small population CD271+ stromal cells (4.5 ± 2.3% in the ovine endometrium. Double labelling with CD271 and CD49f showed that the sorted CD271+CD49f- stromal cell population possessed significantly higher cloning efficiency, serial cloning capacity and a qualitative increased ability to differentiate into 4 mesodermal lineages (adipocytic, smooth muscle, chondrocytic and osteoblastic than CD271-CD49f- cells. Immunolabelling studies identified an adventitial perivascular location for ovine endometrial CD271+ cells.This is the first study to characterise MSC in the ovine endometrium and identify a surface marker profile identifying their location and enabling their prospective isolation. This knowledge will allow future preclinical studies with a large animal model that is well established for pelvic organ prolapse research.

  4. Isolation and differentiation of stromal vascular cells to beige/brite cells

    DEFF Research Database (Denmark)

    Aune, Ulrike Liisberg; Ruiz, Lauren; Kajimura, Shingo

    2013-01-01

    Brown adipocytes have the ability to uncouple the respiratory chain in mitochondria and dissipate chemical energy as heat. Development of UCP1-positive brown adipocytes in white adipose tissues (so called beige or brite cells) is highly induced by a variety of environmental cues such as chronic...... cold exposure or by PPARγ agonists, therefore, this cell type has potential as a therapeutic target for obesity treatment. Although most immortalized adipocyte lines cannot recapitulate the process of "browning" of white fat in culture, primary adipocytes isolated from stromal vascular fraction...... in subcutaneous white adipose tissue (WAT) provide a reliable cellular system to study the molecular control of beige/brite cell development. Here we describe a protocol for effective isolation of primary preadipocytes and for inducing differentiation to beige/brite cells in culture. The browning effect can...

  5. [Effects of recombinant human thrombopoietin on stromal cells in culture in vitro].

    Science.gov (United States)

    Shen, Jian-Liang; Huang, You-Zhang; Yin, Wen-Jie; Cen, Jian; Zheng, Pei-Hao; Gong, Li-Zhong; Zhang, Yan

    2008-12-01

    This study was aimed to investigate whether the thrombopoietin (rhTPO) may facilitate myelofibrosis or not. The modified Dexter culture system with various concentrations of rhTPO was used to culture the stromal cells in vitro; the proliferative activity of cells was detected by MTT method; the morphologic changes were observed by light and scanning electron microscopy; the staining changes of ALP, PAS, AS-D NCE and IV type collagen were observed by cytochemistry method; the changes of fibronectin, laminin and IV type collagen were assayed by immunohistochemistry method; the cell surface antigens were assayed by flow cytometry. The results indicated that rhTPO could promote the proliferation of stromal cells which was related to the concentrations of rhTPO. Proliferative activity of stromal cells increased with increasing of rhTPO concentration, and was not related to the exposure time. On day 3 stromal cells adhered to the wall, and became oval. On day 7 stromal cells turned to fusiform and scattered dispersively. On day 12 to 14 these cells ranged cyclically and became long fusiform. Cells covered 70%-80% area of bottle bottom at that time. By day 16 to 18 these cells covered more than 90% area of bottom and ranged cyclically. They displayed the same shape as fibroblasts. By light microscopy with Wrights-Giemsa staining, fibroblasts predominated morphologically, few macrophages, endothelial cells and adipose cells were found. There were no significant differences between experimental group and control group. On day 14 to 42 the adherent cells were positive with PAS staining, poorly positive with ALP and naphthol AS-D chloroacetate esterase (AS-D NCE) staining, and the difference in cytochemistry was not significant between two groups. When these cells were dyed with Masson's trichrome and Gomori's staining, neither collagen fibers nor reticular fibers were positive, but fibronectin, laminin, and collagen type IV appeared positive stronger in experimental group

  6. The Bone Marrow-Derived Stromal Cells: Commitment and Regulation of Adipogenesis

    Science.gov (United States)

    Tencerova, Michaela; Kassem, Moustapha

    2016-01-01

    Bone marrow (BM) microenvironment represents an important compartment of bone that regulates bone homeostasis and the balance between bone formation and bone resorption depending on the physiological needs of the organism. Abnormalities of BM microenvironmental dynamics can lead to metabolic bone diseases. BM stromal cells (also known as skeletal or mesenchymal stem cells) [bone marrow stromal stem cell (BMSC)] are multipotent stem cells located within BM stroma and give rise to osteoblasts and adipocytes. However, cellular and molecular mechanisms of BMSC lineage commitment to adipocytic lineage and regulation of BM adipocyte formation are not fully understood. In this review, we will discuss recent findings pertaining to identification and characterization of adipocyte progenitor cells in BM and the regulation of differentiation into mature adipocytes. We have also emphasized the clinical relevance of these findings. PMID:27708616

  7. Could cancer and infection be adverse effects ofmesenchymal stromal cell therapy?

    Institute of Scientific and Technical Information of China (English)

    Martha L Arango-Rodriguez; Fernando Ezquer; Marcelo Ezquer; Paulette Conget

    2015-01-01

    Multipotent mesenchymal stromal cells [also referred toas mesenchymal stem cells (MSCs)] are a heterogeneoussubset of stromal cells. They can be isolated from bonemarrow and many other types of tissue. MSCs arecurrently being tested for therapeutic purposes (i.e.,improving hematopoietic stem cell engraftment, managinginflammatory diseases and regenerating damagedorgans). Their tropism for tumors and inflamed sites andtheir context-dependent potential for producing trophicand immunomodulatory factors raises the question asto whether MSCs promote cancer and/or infection. Thisarticle reviews the effect of MSCs on tumor establishment,growth and metastasis and also susceptibility to infectionand its progression. Data published to date shows aparadoxical effect regarding MSCs, which seems todepend on isolation and expansion, cells source anddose and the route and timing of administration. Cancerand infection may thus be adverse or therapeutic effectsarising form MSC administration.

  8. Monitoring live human mesenchymal stromal cell differentiation and subsequent selection using fluorescent RNA-based probes

    DEFF Research Database (Denmark)

    Li, Bojun; Menzel, Ursula; Loebel, Claudia

    2016-01-01

    Investigating mesenchymal stromal cell differentiation requires time and multiple samples due to destructive endpoint assays. Osteogenesis of human bone marrow derived mesenchymal stromal cells (hBMSCs) has been widely studied for bone tissue engineering. Recent studies show that the osteogenic...... differentiation of hBMSCs can be assessed by quantifying the ratio of two important transcription factors (Runx2/Sox9). We demonstrate a method to observe mRNA expression of two genes in individual live cells using fluorescent probes specific for Runx2 and Sox9 mRNA. The changes of mRNA expression in cells can...... and isolating differentiating cells at early time points, prospective analysis of differentiation is also possible, which will lead to a greater understanding of MSC differentiation....

  9. VISUAL PERCEPTION BASED AUTOMATIC RECOGNITION OF CELL MOSAICS IN HUMAN CORNEAL ENDOTHELIUMMICROSCOPY IMAGES

    Directory of Open Access Journals (Sweden)

    Yann Gavet

    2011-05-01

    Full Text Available The human corneal endothelium can be observed with two types of microscopes: classical optical microscope for ex-vivo imaging, and specular optical microscope for in-vivo imaging. The quality of the cornea is correlated to the endothelial cell density and morphometry. Automatic methods to analyze the human corneal endothelium images are still not totally efficient. Image analysis methods that focus only on cell contours do not give good results in presence of noise and of bad conditions of acquisition. More elaborated methods introduce regional informations in order to performthe cell contours completion, thus implementing the duality contour-region. Their good performance can be explained by their connections with several basic principles of human visual perception (Gestalt Theory and Marr's computational theory.

  10. Natural Killer Cell Differentiation From Hematopoietic Stem Cells: A Comparative Analysis of Heparin and Stromal Cell Supported Methods

    OpenAIRE

    2011-01-01

    Natural killer (NK) cells differentiated from hematopietic stem cells (HSCs)may have significant clinical benefits over those from adult donors, including the ability to choose allo-reactive donors and potentially more robust in vivo expansion. Stromal-based methods have been used to study NK differentiation from HSCs. Stroma and cytokines support NK differentiation, but may have considerable regulatory hurdles. Recently, a clinical grade heparin-based method has been reported and could serve...

  11. Feasibility of Bone Marrow Stromal Cells Autologous Transplantation for Dilated Cardiomyopathy

    Institute of Scientific and Technical Information of China (English)

    ZHOU Cheng; YANG Chenyuan; XIAO Shiliang; FEI Hongwen

    2007-01-01

    The feasibility of bone marrow stromal cells autologous transplantation for rabbit model of dilated cardiomyopathy induced by adriamycin was studied. Twenty rabbits received 2 mg/kg of adriamycin intravenously once a week for 8 weeks (total dose, 16 mg/kg) to induce the cardiomyopathy model with the monitoring of cardiac function by transthoracic echocardiography. Marrow stromal cells were isolated from cell-transplanted group rabbits and were culture-expanded on the 8th week. On the 10th week, cells were labeled with 4,6-diamidino-2-phenylindole (DAPI), and then injected into the myocardium of the same rabbits. The results showed that viable cells labeled with DAPI could be identified in myocardium at 2nd week after transplantation. Histological findings showed the injury of the myocardium around the injection site was relieved with less apoptosis and more expression of bcl-2. The echocardiography found the improvement of local tissue movement from (2.12±0.51) cm/s to (3.81±0.47) cm/s (P<0.05) around the inject site, but no improvement of heart function as whole. It was concluded bone marrow stromal cells transplantation for dilated cardiomyopathy was feasibe. The management of cells in vitro, the quantity and the pattern of the cells transplantation and the action mechanism still need further research.

  12. Apoptosis induction of human endometriotic epithelial and stromal cells by noscapine

    Directory of Open Access Journals (Sweden)

    Mohammad Rasoul Khazaei

    2016-09-01

    Full Text Available Objective(s: Endometriosis is a complex gynecologic disease with unknown etiology. Noscapine has been introduced as a cancer cell suppressor. Endometriosis was considered as a cancer like disorder, The aim of present study was to investigate noscapine apoptotic effect on human endometriotic epithelial and stromal cells in vitro. Materials and Methods:In this in vitro study, endometrial biopsies from endometriosis patients (n=9 were prepared and digested by an enzymatic method (collagenase I, 2 mg/ml. Stromal and epithelial cells were separated by sequential filtration through a cell strainer and ficoll layering. The cells of each sample were divided into five groups: control (0, 10, 25, 50 and 100 micromole/liter (µM concentration of noscapine and were cultured for three different periods of times; 24, 48 and 72 hr. Cell viability was assessed by colorimetric assay. Nitric oxide (NO concentration was measured by Griess reagent. Cell death was analyzed by Acridine Orange (AO–Ethidium Bromide (EB double staining and Terminal deoxynucleotidyl transferase (TdT dUTP Nick-End Labeling (TUNEL assay. Data were analyzed by one-way ANOVA. Results: Viability of endometrial epithelial and stromal cells significantly decreased in 10, 25, 50 and 100 µM noscapine concentration in 24, 48, 72 hr (P

  13. Stromal modulation of bladder cancer-initiating cells in a subcutaneous tumor model.

    Science.gov (United States)

    Peek, Elizabeth M; Li, David R; Zhang, Hanwei; Kim, Hyun Pyo; Zhang, Baohui; Garraway, Isla P; Chin, Arnold I

    2012-01-01

    The development of new cancer therapeutics would benefit from incorporating efficient tumor models that mimic human disease. We have developed a subcutaneous bladder tumor regeneration system that recapitulates primary human bladder tumor architecture by recombining benign human fetal bladder stromal cells with SW780 bladder carcinoma cells. As a first step, SW780 cells were seeded in ultra low attachment cultures in order to select for sphere-forming cells, the putative cancer stem cell (CSC) phenotype. Spheroids were combined with primary human fetal stromal cells or vehicle control and injected subcutaneously with Matrigel into NSG mice. SW780 bladder tumors that formed in the presence of stroma showed accelerated growth, muscle invasion, epithelial to mesenchymal transition (EMT), decreased differentiation, and greater activation of growth pathways compared to tumors formed in the absence of fetal stroma. Tumors grown with stroma also demonstrated a greater similarity to typical malignant bladder architecture, including the formation of papillary structures. In an effort to determine if cancer cells from primary tumors could form similar structures in vivo using this recombinatorial approach, putative CSCs, sorted based on the CD44(+)CD49f(+) antigenic profile, were collected and recombined with fetal bladder stromal cells and Matrigel prior to subcutaneous implantation. Retrieved grafts contained tumors that exhibited the same structure as the original primary human tumor. Primary bladder tumor regeneration using human fetal bladder stroma may help elucidate the influences of stroma on tumor growth and development, as well as provide an efficient and accessible system for therapeutic testing.

  14. Paracrine Engineering of Human Explant-Derived Cardiac Stem Cells to Over-Express Stromal-Cell Derived Factor 1α Enhances Myocardial Repair.

    Science.gov (United States)

    Tilokee, Everad L; Latham, Nicholas; Jackson, Robyn; Mayfield, Audrey E; Ye, Bin; Mount, Seth; Lam, Buu-Khanh; Suuronen, Erik J; Ruel, Marc; Stewart, Duncan J; Davis, Darryl R

    2016-07-01

    First generation cardiac stem cell products provide indirect cardiac repair but variably produce key cardioprotective cytokines, such as stromal-cell derived factor 1α, which opens the prospect of maximizing up-front paracrine-mediated repair. The mesenchymal subpopulation within explant derived human cardiac stem cells underwent lentiviral mediated gene transfer of stromal-cell derived factor 1α. Unlike previous unsuccessful attempts to increase efficacy by boosting the paracrine signature of cardiac stem cells, cytokine profiling revealed that stromal-cell derived factor 1α over-expression prevented lv-mediated "loss of cytokines" through autocrine stimulation of CXCR4+ cardiac stem cells. Stromal-cell derived factor 1α enhanced angiogenesis and stem cell recruitment while priming cardiac stem cells to readily adopt a cardiac identity. As compared to injection with unmodified cardiac stem cells, transplant of stromal-cell derived factor 1α enhanced cells into immunodeficient mice improved myocardial function and angiogenesis while reducing scarring. Increases in myocardial stromal-cell derived factor 1α content paralleled reductions in myocyte apoptosis but did not influence long-term engraftment or the fate of transplanted cells. Transplantation of stromal-cell derived factor 1α transduced cardiac stem cells increased the generation of new myocytes, recruitment of bone marrow cells, new myocyte/vessel formation and the salvage of reversibly damaged myocardium to enhance cardiac repair after experimental infarction. Stem Cells 2016;34:1826-1835.

  15. Human amniotic membrane-derived stromal cells (hAMSC) interact depending on breast cancer cell type through secreted molecules.

    Science.gov (United States)

    Kim, Sun-Hee; Bang, So Hee; Kang, So Yeong; Park, Ki Dae; Eom, Jun Ho; Oh, Il Ung; Yoo, Si Hyung; Kim, Chan-Wha; Baek, Sun Young

    2015-02-01

    Human amniotic membrane-derived stromal cells (hAMSC) are candidates for cell-based therapies. We examined the characteristics of hAMSC including the interaction between hAMSC and breast cancer cells, MCF-7, and MDA-MB-231. Human amniotic membrane-derived stromal cells showed typical MSC properties, including fibroblast-like morphology, surface antigen expression, and mesodermal differentiation. To investigate cell-cell interaction via secreted molecules, we cultured breast cancer cells in hAMSC-conditioned medium (hAMSC-CM) and analyzed their proliferation, migration, and secretome profiles. MCF-7 and MDA-MB-231 cells exposed to hAMSC-CM showed increased proliferation and migration. However, in hAMSC-CM, MCF-7 cells proliferated significantly faster than MDA-MB-231 cells. When cultured in hAMSC-CM, MCF-7 cells migrated faster than MDA-MB-231 cells. Two cell types showed different profiles of secreted factors. MCF-7 cells expressed much amounts of IL-8, GRO, and MCP-1 in hAMSC-CM. Human amniotic membrane-derived stromal cells interact with breast cancer cells through secreted molecules. Factors secreted by hAMSCs promote the proliferation and migration of MCF-7 breast cancer cells. For much safe cell-based therapies using hAMSC, it is necessary to study carefully about interaction between hAMSC and cancer cells.

  16. Prediagnostic Obesity and Physical Inactivity Are Associated with Shorter Telomere Length in Prostate Stromal Cells.

    Science.gov (United States)

    Joshu, Corinne E; Peskoe, Sarah B; Heaphy, Christopher M; Kenfield, Stacey A; Van Blarigan, Erin L; Mucci, Lorelei A; Giovannucci, Edward L; Stampfer, Meir J; Yoon, GhilSuk; Lee, Thomas K; Hicks, Jessica L; De Marzo, Angelo M; Meeker, Alan K; Platz, Elizabeth A

    2015-08-01

    Obesity and inactivity have been associated with advanced-stage prostate cancer, and poor prostate cancer outcomes, though the underlying mechanism(s) is unknown. To determine whether telomere shortening, which has been associated with lethal prostate cancer, may be a potential underlying mechanism, we prospectively evaluated the association between measures of adiposity, physical activity, and telomere length in 596 participants in the Health Professionals Follow-up Study, who were surgically treated for prostate cancer. Using tissue microarrays, we measured telomere length in cancer and benign cells using a telomere-specific FISH assay. Adiposity and activity were assessed via questionnaire within 2 years of diagnosis. Adjusting for age, pathologic stage, and grade, the median and SD of the per cell telomere signals were determined for each man for stromal cells and cancer cells by adiposity and activity categories. Overweight/obese men (54%) were similar to normal weight men on most factors, but had higher Gleason sum and lower activity levels. Overweight/obese men had 7.4% shorter telomeres in stromal cells than normal weight men (P = 0.06). The least active men had shorter telomeres in stromal cells than more active men (Ptrend = 0.002). Men who were overweight/obese and the least active had the shortest telomeres in stromal cells (20.7% shorter; P = 0.0005) compared with normal weight men who were the most active. Cancer cell telomere length and telomere length variability did not differ by measures of adiposity or activity. Telomere shortening in prostate cells may be one mechanism through which lifestyle influences prostate cancer risk and outcomes. ©2015 American Association for Cancer Research.

  17. Comparison of different culture conditions for human mesenchymal stromal cells for clinical stem cell therapy

    DEFF Research Database (Denmark)

    Haack-Sorensen, M.; Friis, T.; Bindslev, L.

    2008-01-01

    OBJECTIVE: Mesenchymal stromal cells (MSCs) from adult bone marrow (BM) are considered potential candidates for therapeutic neovascularization in cardiovascular disease. When implementing results from animal trials in clinical treatment, it is essential to isolate and expand the MSCs under...... used for MSC cultivation in animal studies simulating clinical stem cell therapy. MATERIAL AND METHODS: Human mononuclear cells (MNCs) were isolated from BM aspirates by density gradient centrifugation and cultivated in a GMP-accepted medium (EMEA medium) or in one of four other media. RESULTS: FACS...... conditions following good manufacturing practice (GMP). The aims of the study were first to establish culture conditions following GMP quality demands for human MSC expansion and differentiation for use in clinical trials, and second to compare these MSCs with MSCs derived from culture in four media commonly...

  18. Expression of Phospholipases A2 and C in Human Corneal Epithelial Cells

    Science.gov (United States)

    Landreville, Solange; Coulombe, Stéphanie; Carrier, Patrick; Gelb, Michael H.; Guérin, Sylvain L.; Salesse, Christian

    2008-01-01

    Purpose To achieve a better understanding of the involvement of phospholipases in the inflammation and wound-healing processes in human corneal epithelial cells (HCECs), expression of phospholipase A2s (PLA2s) and phospholipase Cs (PLCs) was examined in the human corneal epithelium. Methods Specific primers were designed for RT-PCR amplification of the known secreted (s)PLA2, cytosolic (c)PLA2, and PLC mRNAs. Corresponding PCR products were cloned and the DNA sequenced. Immunofluorescence of flatmounted corneal sections and Western blot analyses were used to detect the PLA2s and PLCs expressed by HCECs. Results The mRNAs for the following phospholipases were detected by RT-PCR in the HCECs: sPLA2GIII, -GX, and -GXIIA; cPLA2α and -γ; PLCβ1, -β2, -β3, -β4, -γ1, -γ2, -δ1, -δ3, -δ4, and -ε. Immunofluorescence analyses conducted on corneal epithelium cryosections and Western blot on freshly isolated HCECs demonstrated the presence of sPLA2GIII, -GX, and -GXIIA; cPLA2α and -γ; and PLCβ2, -β3, -γ1, -γ2, and -δ3. Conclusions Many phospholipase isoforms are expressed by HCECs and may play a major role in signal transduction (PLCs) as well as in the release of precursors of potent mediators of inflammation, such as leukotrienes and prostaglandins (PLA2s). Moreover, the sPLA2s expressed by the corneal epithelium could be involved in the normal antibacterial activity in the tears and in wound healing. PMID:15505048

  19. Inhibins Tune the Thymocyte Selection Process by Regulating Thymic Stromal Cell Differentiation

    Directory of Open Access Journals (Sweden)

    Ebzadrel Carbajal-Franco

    2015-01-01

    Full Text Available Inhibins and Activins are members of the TGF-β superfamily that regulate the differentiation of several cell types. These ligands were initially identified as hormones that regulate the hypothalamus-pituitary-gonadal axis; however, increasing evidence has demonstrated that they are key regulators in the immune system. We have previously demonstrated that Inhibins are the main Activin ligands expressed in the murine thymus and that they regulate thymocyte differentiation, promoting the DN3-DN4 transition and the selection of SP thymocytes. As Inhibins are mainly produced by thymic stromal cells, which also express Activin receptors and Smad proteins, we hypothesized that Inhibins might play a role in stromal cell differentiation and function. Here, we demonstrate that, in the absence of Inhibins, thymic conventional dendritic cells display reduced levels of MHC Class II (MHCII and CD86. In addition, the ratio between cTECs and mTECs was affected, indicating that mTEC differentiation was favoured and cTEC diminished in the absence of Inhibins. These changes appeared to impact thymocyte selection leading to a decreased selection of CD4SP thymocytes and increased generation of natural regulatory T cells. These findings demonstrate that Inhibins tune the T cell selection process by regulating both thymocyte and stromal cell differentiation.

  20. Distinct effects of SIRT1 in cancer and stromal cells on tumor promotion.

    Science.gov (United States)

    Shin, Dong Hoon; Choi, Yong-Joon; Jin, Peng; Yoon, Haejin; Chun, Yang-Sook; Shin, Hyun-Woo; Kim, Ja-Eun; Park, Jong-Wan

    2016-04-26

    The lysyl deacetylase SIRT1 acts as a metabolic sensor in adjusting metabolic imbalance. To explore the role of SIRT1 in tumor-stroma interplay, we designed an in vivo tumor model using SIRT1-transgenic mice. B16F10 mouse melanoma grew more quickly in SIRT1-transgenic mice than in wild-type mice, whereas SIRT1-overexpressing one grew slowly in both mice. Of human tumors, SIRT1 expression in stromal fibroblasts was found to correlate with poor prognosis in ovarian cancer. B16F10 and human ovarian cancer (SKOV3 and SNU840) cells were more proliferative in co-culture with SIRT1-overexpressiong fibroblasts. In contrast, SIRT1 within cancer cells has a negative effect on cell proliferation. In conditioned media from SIRT1-overexpressing fibroblasts, matrix metalloproteinase-3 (MMP3) was identified in cytokine arrays to be secreted from fibroblasts SIRT1-dependently. Fibroblast-derived MMP3 stimulated cancer cell proliferation, and such a role of MMP3 was also demonstrated in cancer/fibroblast co-grafts. In conclusion, SIRT1 plays differential roles in cancer and stromal cells. SIRT1 in stromal cells promotes cancer growth by producing MMP3, whereas SIRT1 in cancer cells inhibits growth via an intracellular event. The present study provides a basis for setting new anticancer strategies targeting SIRT1.

  1. Inhibition of TGF-β signaling enables human corneal endothelial cell expansion in vitro for use in regenerative medicine.

    Directory of Open Access Journals (Sweden)

    Naoki Okumura

    Full Text Available Corneal endothelial dysfunctions occurring in patients with Fuchs' endothelial corneal dystrophy, pseudoexfoliation syndrome, corneal endotheliitis, and surgically induced corneal endothelial damage cause blindness due to the loss of endothelial function that maintains corneal transparency. Transplantation of cultivated corneal endothelial cells (CECs has been researched to repair endothelial dysfunction in animal models, though the in vitro expansion of human CECs (HCECs is a pivotal practical issue. In this study we established an optimum condition for the cultivation of HCECs. When exposed to culture conditions, both primate and human CECs showed two distinct phenotypes: contact-inhibited polygonal monolayer and fibroblastic phenotypes. The use of SB431542, a selective inhibitor of the transforming growth factor-beta (TGF-β receptor, counteracted the fibroblastic phenotypes to the normal contact-inhibited monolayer, and these polygonal cells maintained endothelial physiological functions. Expression of ZO-1 and Na(+/K(+-ATPase maintained their subcellular localization at the plasma membrane. Furthermore, expression of type I collagen and fibronectin was greatly reduced. This present study may prove to be the substantial protocol to provide the efficient in vitro expansion of HCECs with an inhibitor to the TGF-β receptor, and may ultimately provide clinicians with a new therapeutic modality in regenerative medicine for the treatment of corneal endothelial dysfunctions.

  2. Ex vivo expansion of bovine corneal endothelial cells in xeno-free medium supplemented with platelet releasate.

    Science.gov (United States)

    Chou, Ming-Li; Burnouf, Thierry; Wang, Tsung-Jen

    2014-01-01

    Clinical-grade ex vivo expansion of corneal endothelial cells can increase the availability of corneal tissues for transplantation and treatment of corneal blindness. However, these cells have very limited proliferative capacity. Successful propagation has required so far to use very complex growth media supplemented with fetal bovine serum and other xenocomponents. We hypothesized that human platelet releasates rich in multiple growth factors, and in particular neurotrophins, could potentially be a useful supplement for ex vivo expansion of corneal endothelium cells due to their neural crest origin. Platelet releasates were prepared by calcium salt activation of apheresis platelet concentrates, subjected or not to complement inactivation by heat treatment at 56°C for 30 minutes. Platelet releasates were characterized for their content in proteins and were found to contain high amount of growth factors including platelet-derived growth factor-AB (30.56 to 39.08 ng/ml) and brain-derived neurotrophic factor (30.57 to 37.11 ng/ml) neurotrophins. We compared the growth and viability of corneal endothelium cells in DMEM-F12 medium supplemented with different combinations of components, including 2.5%∼10% of the platelet releasates. Corneal endothelium cells expanded in platelet releasates exhibited good adhesion and a typical hexagonal morphology. Their growth and viability were enhanced when using the complement-inactivated platelet releasate at a concentration of 10%. Immunostaining and Western blots showed that CECs maintained the expressions of four important membrane markers: Na-K ATPase α1, zona occludens-1, phospho-connexin 43 and N-cadherin. In conclusion, our study provides the first proof-of-concept that human platelet releasates can be used for ex vivo expansion of corneal endothelium cells. These findings open a new paradigm for ex vivo propagation protocols of corneal endothelium cells in compliance with good tissue culture practices and regulatory

  3. Ex vivo expansion of bovine corneal endothelial cells in xeno-free medium supplemented with platelet releasate.

    Directory of Open Access Journals (Sweden)

    Ming-Li Chou

    Full Text Available Clinical-grade ex vivo expansion of corneal endothelial cells can increase the availability of corneal tissues for transplantation and treatment of corneal blindness. However, these cells have very limited proliferative capacity. Successful propagation has required so far to use very complex growth media supplemented with fetal bovine serum and other xenocomponents. We hypothesized that human platelet releasates rich in multiple growth factors, and in particular neurotrophins, could potentially be a useful supplement for ex vivo expansion of corneal endothelium cells due to their neural crest origin. Platelet releasates were prepared by calcium salt activation of apheresis platelet concentrates, subjected or not to complement inactivation by heat treatment at 56°C for 30 minutes. Platelet releasates were characterized for their content in proteins and were found to contain high amount of growth factors including platelet-derived growth factor-AB (30.56 to 39.08 ng/ml and brain-derived neurotrophic factor (30.57 to 37.11 ng/ml neurotrophins. We compared the growth and viability of corneal endothelium cells in DMEM-F12 medium supplemented with different combinations of components, including 2.5%∼10% of the platelet releasates. Corneal endothelium cells expanded in platelet releasates exhibited good adhesion and a typical hexagonal morphology. Their growth and viability were enhanced when using the complement-inactivated platelet releasate at a concentration of 10%. Immunostaining and Western blots showed that CECs maintained the expressions of four important membrane markers: Na-K ATPase α1, zona occludens-1, phospho-connexin 43 and N-cadherin. In conclusion, our study provides the first proof-of-concept that human platelet releasates can be used for ex vivo expansion of corneal endothelium cells. These findings open a new paradigm for ex vivo propagation protocols of corneal endothelium cells in compliance with good tissue culture practices

  4. Interphase FISH Demonstrates that Human Adipose Stromal Cells Maintain a High Level of Genomic Stability in Long-Term Culture

    OpenAIRE

    2008-01-01

    Human adipose stromal cells (ASCs) reside within the stromal-vascular fraction (SVF) in fat tissue, can be readily isolated, and include stem-like cells that may be useful for therapy. An important consideration for clinical application and functional studies of stem/progenitor cells is their capacity to maintain chromosome stability in culture. In this study, cultured ASC populations and ASC clones were evaluated at intervals for maintenance of chromosome stability. Uncultured SVF (uSVF) cel...

  5. Induction of corneal epithelial progenitors from bone-marrow mesenchymal stem cells of rhesus monkeys in vitro

    Institute of Scientific and Technical Information of China (English)

    YUAN Jing; YU JianXiong; HUANG Bing; LIU BingQian; LIU JingBo; JIANG RuZhang; GE Jian

    2007-01-01

    Bioengineered corneas are substitutes for human donor tissue that are designed to treat severe disease affecting ocular surfaces.However, a shortage of candidate seed cells for bioengineering corneas is still a problem.Bone-marrow mesenchymal stem cells (MSCs) are capable of multilineage differentiation.Therefore, we determined whether MSCs differentiate into corneal epithelial cells (ECs).We applied three exoteric-microenvironmental systems to induce MSCs to become ECs.Induced MSC were identified by means of morphologic examination, immunocytochemical analysis, and flow cytometry.MSCs grown in one microenvironment had characteristics similar to those of corneal epithelial progenitors.Induced MSCs expressed markers for EC, including integrin β1, Cx43, Pax6, and P63.MSCs were successfully induced to become corneal epithelial progenitors.Therefore, the use of MSCs may hold substantial promise for reconstructing the ocular surface after corneal injury.

  6. Active Pedicle Epithelial Flap Transposition Combined with Amniotic Membrane Transplantation for Treatment of Nonhealing Corneal Ulcers

    Directory of Open Access Journals (Sweden)

    Ting Zhang

    2016-01-01

    Full Text Available Introduction. The objective was to evaluate the efficacy of active pedicle epithelial flap transposition combined with amniotic membrane transplantation (AMT in treating nonhealing corneal ulcers. Material and Methods. Eleven patients (11 eyes with nonhealing corneal ulcer who underwent the combined surgery were included. Postoperatively, ulcer healing time was detected by corneal fluorescein staining. Visual acuity, intraocular pressure, surgical complications, and recurrence were recorded. Corneal status was inspected by the laser scanning confocal microscopy and anterior segment optical coherence tomography (AS-OCT. Results. The primary diseases were herpes simplex keratitis (8 eyes, corneal graft ulcer (2 eyes, and Stevens-Johnson syndrome (1 eye. All epithelial flaps were intact following surgery, without shedding or displacement. Mean ulcer healing time was 10.8±3.1 days, with a healing rate of 91%. Vision significantly improved from 1.70 to 0.82 log MAR (P=0.001. A significant decrease in inflammatory cell infiltration and corneal stromal edema was revealed 2 months postoperatively by confocal microscopy and AS-OCT. Corneal ulcer recurred in 1 eye. None of the patients developed major complications. Conclusion. Active pedicle epithelial flap transposition combined with AMT is a simple and effective treatment for nonhealing corneal ulcers.

  7. Pulsed Direct Current Electric Fields Enhance Osteogenesis in Adipose-Derived Stromal Cells

    OpenAIRE

    Hammerick, Kyle E.; James, Aaron W.; Huang, Zubin; Prinz, Fritz B.; Michael T. Longaker

    2009-01-01

    Adipose-derived stromal cells (ASCs) constitute a promising source of cells for regenerative medicine applications. Previous studies of osteogenic potential in ASCs have focused on chemicals, growth factors, and mechanical stimuli. Citing the demonstrated role electric fields play in enhancing healing in bone fractures and defects, we investigated the ability of pulsed direct current electric fields to drive osteogenic differentiation in mouse ASCs. Employing 50 Hz direct current electric fie...

  8. CXCL1 mediates obesity-associated adipose stromal cell trafficking and function in the tumour microenvironment

    OpenAIRE

    Zhang, Tao; Tseng, Chieh; Zhang, Yan; Sirin, Olga; Corn, Paul G.; Li-Ning-Tapia, Elsa M.; Troncoso, Patricia; Davis, John; Pettaway, Curtis; Ward, John; Frazier, Marsha L.; Logothetis, Christopher; Kolonin, Mikhail G.

    2016-01-01

    White adipose tissue (WAT) overgrowth in obesity is linked with increased aggressiveness of certain cancers. Adipose stromal cells (ASCs) can become mobilized from WAT, recruited by tumours and promote cancer progression. Mechanisms underlying ASC trafficking are unclear. Here we demonstrate that chemokines CXCL1 and CXCL8 chemoattract ASC by signalling through their receptors, CXCR1 and CXCR2, in cell culture models. We further show that obese patients with prostate cancer have increased epi...

  9. Ectopic bone formation in rat marrow stromal cell/titanium fiber mesh scaffold constructs: effect of initial cell phenotype.

    NARCIS (Netherlands)

    Holtorf, H.L.; Jansen, J.A.; Mikos, A.G.

    2005-01-01

    Titanium fiber mesh scaffolds have been shown to be a suitable material for culture of primary marrow stromal cells in an effort to create tissue engineered constructs for bone tissue replacement. In native bone tissue, these cells are known to attach to extracellular matrix molecules via integrin r

  10. Cell surface and transcriptional characterization of human adipose-derived adherent stromal (hADAS) cells.

    Science.gov (United States)

    Katz, Adam J; Tholpady, Ashok; Tholpady, Sunil S; Shang, Hulan; Ogle, Roy C

    2005-03-01

    Adult human subcutaneous adipose tissue contains cells with intriguing multilineage developmental plasticity, much like marrow-derived mesenchymal stem cells. Putative stem or progenitor cells from fat have been given many different names in the literature, reflecting an early and evolving consensus regarding their phenotypic characterization. The study reported here used microarrays to evaluate over 170 genes relating to angiogenesis and extracellular matrix in undifferentiated, early-passage human adipose-derived adherent stromal (hADAS) cells isolated from three separate donors. The hADAS populations unanimously transcribed 66% of the screened genes, and 83% were transcribed by at least two of the three populations. The most highly transcribed genes relate to functional groupings such as cell adhesion, matrix proteins, growth factors and receptors, and proteases. The transcriptome of hADAS cells demonstrated by this work reveals many similarities to published profiles of bone marrow mesenchymal stem cells (MSCs). In addition, flow analysis of over 24 hADAS cell surface proteins (n = 7 donors) both confirms and expands on the existing literature and reveals strong intergroup correlation, despite an inconsistent nomenclature and the lack of standardized protocols for cell isolation and culture. Finally, based on flow analysis and reverse transcription polymerase chain reaction studies, our results suggest that hADAS cells do not express several proteins that are implicated as markers of "stemness" in other stem cell populations, including telomerase, CD133, and the membrane transporter ABCG2.

  11. Human fetal liver stromal cells expressing erythropoietin promote hematopoietic development from human embryonic stem cells.

    Science.gov (United States)

    Yang, Chao; Ji, Lei; Yue, Wen; Shi, Shuang-Shuang; Wang, Ruo-Yong; Li, Yan-Hua; Xie, Xiao-Yan; Xi, Jia-Fei; He, Li-Juan; Nan, Xue; Pei, Xue-Tao

    2012-02-01

    Blood cells transfusion and hematopoietic stem cells (HSCs) transplantation are important methods for cell therapy. They are widely used in the treatment of incurable hematological disorder, infectious diseases, genetic diseases, and immunologic deficiency. However, their availability is limited by quantity, capacity of proliferation and the risk of blood transfusion complications. Recently, human embryonic stem cells (hESCs) have been shown to be an alternative resource for the generation of hematopoietic cells. In the current study, we describe a novel method for the efficient production of hematopoietic cells from hESCs. The stable human fetal liver stromal cell lines (hFLSCs) expressing erythropoietin (EPO) were established using the lentiviral system. We observed that the supernatant from the EPO transfected hFLSCs could induce the hESCs differentiation into hematopoietic cells, especially erythroid cells. They not only expressed fetal and embryonic globins but also expressed the adult-globin chain on further maturation. In addition, these hESCs-derived erythroid cells possess oxygen-transporting capacity, which indicated hESCs could generate terminally mature progenies. This should be useful for ultimately developing an animal-free culture system to generate large numbers of erythroid cells from hESCs and provide an experimental model to study early human erythropoiesis.

  12. Induction of T Cell Development In Vitro by Delta-Like (Dll)-Expressing Stromal Cells.

    Science.gov (United States)

    Mohtashami, Mahmood; Zarin, Payam; Zúñiga-Pflücker, Juan Carlos

    2016-01-01

    Recreating the thymic microenvironment in vitro poses a great challenge to immunologists. Until recently, the only approach was to utilize the thymic tissue in its three-dimensional form and to transfer the hematopoietic progenitors into this tissue to generate de novo T cells. With the advent of OP9-DL cells (bone marrow-derived cells that are transduced to express Notch ligand, Delta-like), hematopoietic stem cells (HSC) could be induced to differentiate into T cells in culture for the first time outside of the thymic tissue on a monolayer. We, as well as others, asked whether the ability to support T cell development in vitro in a monolayer is unique to BM-derived OP9 cells, and showed that provision of Delta-like expression to thymic epithelial cells and fibroblasts also allowed for T cell development. This provides the opportunity to design an autologous coculture system where the supportive stromal and the hematopoietic components are both derived from the same individual, which has obvious clinical implications. In this chapter, we describe methods for establishing a primary murine dermal fibroblast cell population that is transduced to express Delta-like 4, and describe the conditions for its coculture with HSCs to support T cell lineage initiation and expansion, while comparing it to the now classic OP9-DL coculture.

  13. Differential expression of the Slc4 bicarbonate transporter family in murine corneal endothelium and cell culture.

    Science.gov (United States)

    Shei, William; Liu, Jun; Htoon, Hla M; Aung, Tin; Vithana, Eranga N

    2013-01-01

    To characterize the relative expression levels of all the solute carrier 4 (Slc4) transporter family members (Slc4a1-Slc4a11) in murine corneal endothelium using real-time quantitative (qPCR), to identify further important members besides Slc4a11 and Slc4a4, and to explore how close to the baseline levels the gene expressions remain after cells have been subjected to expansion and culture. Descemet's membrane-endothelial layers of 8-10-week-old C57BL6 mice were stripped from corneas and used for both primary cell culture and direct RNA extraction. Total RNA (from uncultured cells as well as cultured cells at passages 2 and 7) was reverse transcribed, and the cDNA was used for real time qPCR using specific primers for all the Slc4 family members. The geNorm method was applied to determine the most stable housekeeping genes and normalization factor, which was calculated from multiple housekeeping genes for more accurate and robust quantification. qPCR analyses revealed that all Slc4 bicarbonate transporter family members were expressed in mouse corneal endothelium. Slc4a11 showed the highest expression, which was approximately three times higher than that of Slc4a4 (3.4±0.3; p=0.004). All Slc4 genes were also expressed in cultured cells, and interestingly, the expression of Slc4a11 in cultured cells was significantly reduced by approximately 20-fold (0.05±0.001; p=0.000001) in early passage and by approximately sevenfold (0.14±0.002; p=0.000002) in late passage cells. Given the known involvement of SLC4A4 and SLC4A11 in corneal dystrophies, we speculate that the other two highly expressed genes in the uncultured corneal endothelium, SLC4A2 and SLC4A7, are worthy of being considered as potential candidate genes for corneal endothelial diseases. Moreover, as cell culture can affect expression levels of Slc4 genes, caution and careful design of experiments are necessary when undertaking studies of Slc4-mediated ion transport in cultured cells.

  14. Mesenchymal stromal cells from bone marrow treated with bovine tendon extract acquire the phenotype of mature tenocytes☆

    Science.gov (United States)

    Augusto, Lívia Maria Mendonça; Aguiar, Diego Pinheiro; Bonfim, Danielle Cabral; dos Santos Cavalcanti, Amanda; Casado, Priscila Ladeira; Duarte, Maria Eugênia Leite

    2016-01-01

    Objective This study evaluated in vitro differentiation of mesenchymal stromal cells isolated from bone marrow, in tenocytes after treatment with bovine tendon extract. Methods Bovine tendons were used for preparation of the extract and were stored at −80 °C. Mesenchymal stromal cells from the bone marrow of three donors were used for cytotoxicity tests by means of MTT and cell differentiation by means of qPCR. Results The data showed that mesenchymal stromal cells from bone marrow treated for up to 21 days in the presence of bovine tendon extract diluted at diminishing concentrations (1:10, 1:50 and 1:250) promoted activation of biglycan, collagen type I and fibromodulin expression. Conclusion Our results show that bovine tendon extract is capable of promoting differentiation of bone marrow stromal cells in tenocytes. PMID:26962503

  15. Mesenchymal stromal cells from bone marrow treated with bovine tendon extract acquire the phenotype of mature tenocytes

    Directory of Open Access Journals (Sweden)

    Lívia Maria Mendonça Augusto

    2016-02-01

    Full Text Available ABSTRACT OBJECTIVE: This study evaluated in vitro differentiation of mesenchymal stromal cells isolated from bone marrow, in tenocytes after treatment with bovine tendon extract. METHODS: Bovine tendons were used for preparation of the extract and were stored at -80 °C. Mesenchymal stromal cells from the bone marrow of three donors were used for cytotoxicity tests by means of MTT and cell differentiation by means of qPCR. RESULTS: The data showed that mesenchymal stromal cells from bone marrow treated for up to 21 days in the presence of bovine tendon extract diluted at diminishing concentrations (1:10, 1:50 and 1:250 promoted activation of biglycan, collagen type I and fibromodulin expression. CONCLUSION: Our results show that bovine tendon extract is capable of promoting differentiation of bone marrow stromal cells in tenocytes.

  16. Effects of Granulocyte-Macrophage Colony-Stimulating (GM-CSF) Factor on Corneal Epithelial Cells in Corneal Wound Healing Model.

    Science.gov (United States)

    Rho, Chang Rae; Park, Mi-young; Kang, Seungbum

    2015-01-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a pleiotropic cytokine that activates granulocyte and macrophage cell lineages. It is also known to have an important function in wound healing. This study investigated the effect of GM-CSF in wound healing of human corneal epithelial cells (HCECs). We used human GM-CSF derived from rice cells (rice cell-derived recombinant human GM-CSF; rhGM-CSF). An in vitro migration assay was performed to investigate the migration rate of HCECs treated with various concentrations of rhGM-CSF (0.1, 1.0, and 10.0 μg/ml). MTT assay and flow cytometric analysis were used to evaluate the proliferative effect of rhGM-CSF. The protein level of p38MAPK was analyzed by western blotting. For in vivo analysis, 100 golden Syrian hamsters were divided into four groups, and their corneas were de-epithelialized with alcohol and a blade. The experimental groups were treated with 10, 20, or 50 μg/ml rhGM-CSF four times daily, and the control group was treated with phosphate-buffered saline. The corneal wound-healing rate was evaluated by fluorescein staining at the initial wounding and 12, 24, 36, and 48 hours after epithelial debridement. rhGM-CSF accelerated corneal epithelial wound healing both in vitro and in vivo. MTT assay and flow cytometric analysis revealed that rhGM-CSF treatment had no effects on HCEC proliferation. Western blot analysis demonstrated that the expression level of phosphorylated p38MAPK increased with rhGM-CSF treatment. These findings indicate that rhGM-CSF enhances corneal wound healing by accelerating cell migration.

  17. Effects of Granulocyte-Macrophage Colony-Stimulating (GM-CSF Factor on Corneal Epithelial Cells in Corneal Wound Healing Model.

    Directory of Open Access Journals (Sweden)

    Chang Rae Rho

    Full Text Available Granulocyte-macrophage colony-stimulating factor (GM-CSF is a pleiotropic cytokine that activates granulocyte and macrophage cell lineages. It is also known to have an important function in wound healing. This study investigated the effect of GM-CSF in wound healing of human corneal epithelial cells (HCECs. We used human GM-CSF derived from rice cells (rice cell-derived recombinant human GM-CSF; rhGM-CSF. An in vitro migration assay was performed to investigate the migration rate of HCECs treated with various concentrations of rhGM-CSF (0.1, 1.0, and 10.0 μg/ml. MTT assay and flow cytometric analysis were used to evaluate the proliferative effect of rhGM-CSF. The protein level of p38MAPK was analyzed by western blotting. For in vivo analysis, 100 golden Syrian hamsters were divided into four groups, and their corneas were de-epithelialized with alcohol and a blade. The experimental groups were treated with 10, 20, or 50 μg/ml rhGM-CSF four times daily, and the control group was treated with phosphate-buffered saline. The corneal wound-healing rate was evaluated by fluorescein staining at the initial wounding and 12, 24, 36, and 48 hours after epithelial debridement. rhGM-CSF accelerated corneal epithelial wound healing both in vitro and in vivo. MTT assay and flow cytometric analysis revealed that rhGM-CSF treatment had no effects on HCEC proliferation. Western blot analysis demonstrated that the expression level of phosphorylated p38MAPK increased with rhGM-CSF treatment. These findings indicate that rhGM-CSF enhances corneal wound healing by accelerating cell migration.

  18. Corneal Laceration

    Medline Plus

    Full Text Available ... Laceration? Corneal Laceration Diagnosis Corneal Laceration Treatment What Is Corneal Laceration? Written By: Daniel Porter Reviewed By: ... A Harrison MD Sep. 01, 2016 The cornea is the clear front window of the eye . A ...

  19. Adult human mesenchymal stromal cells and the treatment of graft versus host disease

    Directory of Open Access Journals (Sweden)

    Herrmann RP

    2014-02-01

    Full Text Available Richard P Herrmann, Marian J Sturm Cell and Tissue Therapies, Western Australia, Royal Perth Hospital, Wellington Street, Perth, WA, Australia Abstract: Graft versus host disease is a difficult and potentially lethal complication of hematopoietic stem cell transplantation. It occurs with minor human leucocyte antigen (HLA mismatch and is normally treated with corticosteroid and other immunosuppressive therapy. When it is refractory to steroid therapy, mortality approaches 80%. Mesenchymal stromal cells are rare cells found in bone marrow and other tissues. They can be expanded in culture and possess complex and diverse immunomodulatory activity. Moreover, human mesenchymal stromal cells carry low levels of class 1 and no class 2 HLA antigens, making them immunoprivileged and able to be used without HLA matching. Their use in steroid-refractory graft versus host disease was first described in 2004. Subsequently, they have been used in a number of Phase I and II trials in acute and chronic graft versus host disease trials with success. We discuss their mode of action, the results, their production, and potential dangers with a view to future application. Keywords: mesenchymal stromal cells, graft versus host disease, acute, chronic

  20. Primary Corneal Squamous Cell Carcinoma in a Dog: Clinical and Histopathological Evaluation

    OpenAIRE

    Giovanni Barsotti; Lorenzo Ressel; Riccardo Finotello; Veronica Marchetti; Francesca Millanta

    2012-01-01

    An 8-year-old male pug with a 12-month history of a progressive nonpainful mass on the left cornea was evaluated. Ocular examination showed a severe bilateral keratoconjunctivitis sicca, pigmentary keratitis, and an exophytic irregular pink mass occupying approximately 75% of the total corneal surface of the left eye. A squamous cell carcinoma (SCC) was suspected on cytology, and clinical investigations showed no evidence of metastases. A transpalpebral enucleation was therefore performed, an...

  1. Mitochondrial and Morphologic Alterations in Native Human Corneal Endothelial Cells Associated With Diabetes Mellitus.

    Science.gov (United States)

    Aldrich, Benjamin T; Schlötzer-Schrehardt, Ursula; Skeie, Jessica M; Burckart, Kimberlee A; Schmidt, Gregory A; Reed, Cynthia R; Zimmerman, M Bridget; Kruse, Friedrich E; Greiner, Mark A

    2017-04-01

    To characterize changes in the energy-producing metabolic activity and morphologic ultrastructure of corneal endothelial cells associated with diabetes mellitus. Transplant suitable corneoscleral tissue was obtained from donors aged 50 to 75 years. We assayed 3-mm punches of endothelium-Descemet membrane for mitochondrial respiration and glycolysis activity using extracellular flux analysis of oxygen and pH, respectively. Transmission electron microscopy was used to assess qualitative and quantitative ultrastructural changes in corneal endothelial cells and associated Descemet membrane. For purposes of analysis, samples were divided into four groups based on a medical history of diabetes regardless of type: (1) nondiabetic, (2) noninsulin-dependent diabetic, (3) insulin-dependent diabetic, and (4) insulin-dependent diabetic with specified complications due to diabetes (advanced diabetic). In total, 229 corneas from 159 donors were analyzed. Insulin-dependent diabetic samples with complications due to diabetes displayed the lowest spare respiratory values compared to all other groups (P ≤ 0.002). The remaining mitochondrial respiration and glycolysis metrics did not differ significantly among groups. Compared to nondiabetic controls, the endothelium from advanced diabetic samples had alterations in mitochondrial morphology, pronounced Golgi bodies associated with abundant vesicles, accumulation of lysosomal bodies/autophagosomes, and focal production of abnormal long-spacing collagen. Extracellular flux analysis suggests that corneal endothelial cells of donors with advanced diabetes have impaired mitochondrial function. Metabolic findings are supported by observed differences in mitochondrial morphology of advanced diabetic samples but not controls. Additional studies are needed to determine the precise mechanism(s) by which mitochondria become impaired in diabetic corneal endothelial cells.

  2. Stromal interaction molecule 1 regulates growth, cell cycle, and apoptosis of human tongue squamous carcinoma cells.

    Science.gov (United States)

    Cui, Xiaobo; Song, Laixiao; Bai, Yunfei; Wang, Yaping; Wang, Boqian; Wang, Wei

    2017-04-30

    Oral tongue squamous cell carcinoma (OTSCC) is the most common type of oral carcinomas. However, the molecular mechanism by which OTSCC developed is not fully identified. Stromal interaction molecule 1 (STIM1) is a transmembrane protein, mainly located in the endoplasmic reticulum (ER). STIM1 is involved in several types of cancers. Here, we report that STIM1 contributes to the development of human OTSCC. We knocked down STIM1 in OTSCC cell line Tca-8113 with lentivirus-mediated shRNA and found that STIM1 knockdown repressed the proliferation of Tca-8113 cells. In addition, we also showed that STIM1 deficiency reduced colony number of Tca-8113 cells. Knockdown of STIM1 repressed cells to enter M phase of cell cycle and induced cellular apoptosis. Furthermore, we performed microarray and bioinformatics analysis and found that STIM1 was associated with p53 and MAPK pathways, which may contribute to the effects of STIM1 on cell growth, cell cycle, and apoptosis. Finally, we confirmed that STIM1 controlled the expression of MDM2, cyclin-dependent kinase 4 (CDK4), and growth arrest and DNA damage inducible α (GADD45A) in OTSCC cells. In conclusion, we provide evidence that STIM1 contributes to the development of OTSCC partially through regulating p53 and MAPK pathways to promote cell cycle and survival.

  3. Stromal Cell-Derived Factor-1 Promotes Cell Migration, Tumor Growth of Colorectal Metastasis

    Directory of Open Access Journals (Sweden)

    Otto Kollmar

    2007-10-01

    Full Text Available In a mouse model of established extrahepatic colorectal metastasis, we analyzed whether stromal cellderived factor (SDF 1 stimulates tumor cell migration in vitro, angiogenesis, tumor growth in vivo. METHODS: Using chemotaxis chambers, CT26.WT colorectal tumor cell migration was studied under stimulation with different concentrations of SDF-1. To evaluate angiogenesis, tumor growth in vivo, green fluorescent protein-transfected CT26.WT cells were implanted in dorsal skinfold chambers of syngeneic BALB/c mice. After 5 days, tumors were locally exposed to SDF-1. Cell proliferation, tumor microvascularization, growth were studied during a further 9-day period using intravital fluorescence microscopy, histology, immunohistochemistry. Tumors exposed to PBS only served as controls. RESULTS:In vitro, > 30% of unstimulated CT26.WT cells showed expression of the SDF-1 receptor CXCR4. On chemotaxis assay, SDF-1 provoked a dose-dependent increase in cell migration. In vivo, SDF-1 accelerated neovascularization, induced a significant increase in tumor growth. Capillaries of SDF-1-treated tumors showed significant dilation. Of interest, SDF-1 treatment was associated with a significantly increased expression of proliferating cell nuclear antigen, a downregulation of cleaved caspase-3. CONCLUSION: Our study indicates that the CXC chemokine SDF-1 promotes tumor cell migration in vitro, tumor growth of established extrahepatic metastasis in vivo due to angiogenesis-dependent induction of tumor cell proliferation, inhibition of apoptotic cell death.

  4. Effects of Excess Copper Ions on Decidualization of Human Endometrial Stromal Cells.

    Science.gov (United States)

    Li, Ying; Kang, Zhen-Long; Qiao, Na; Hu, Lian-Mei; Ma, Yong-Jiang; Liang, Xiao-Huan; Liu, Ji-Long; Yang, Zeng-Ming

    2017-05-01

    The aim of this study was to investigate the effects of copper ions on decidualization of human endometrial stromal cells (HESCs) cultured in vitro. Firstly, non-toxic concentrations of copper D-gluconate were screened in HESCs based on cell activity. Then, the effects of non-toxic concentrations of copper ions (0~250 μM) were examined on decidualization of human endometrial stromal cells. Our data demonstrated that the mRNA expressions of insulin-like growth factor binding protein (IGFBP-1), prolactin (PRL), Mn-SOD, and FOXO1were down-regulated during decidualization following the treatments with 100 or 250 μM copper ions. Meanwhile, the amount of malonaldehyde (MDA) in the supernatant of HESCs was increased. These results showed that in vitro decidualization of HESCs was impaired by copper treatment.

  5. The SULFs, extracellular sulfatases for heparan sulfate, promote the migration of corneal epithelial cells during wound repair.

    Directory of Open Access Journals (Sweden)

    Inna Maltseva

    Full Text Available Corneal epithelial wound repair involves the migration of epithelial cells to cover the defect followed by the proliferation of the cells to restore thickness. Heparan sulfate proteoglycans (HSPGs are ubiquitous extracellular molecules that bind to a plethora of growth factors, cytokines, and morphogens and thereby regulate their signaling functions. Ligand binding by HS chains depends on the pattern of four sulfation modifications, one of which is 6-O-sulfation of glucosamine (6OS. SULF1 and SULF2 are highly homologous, extracellular endosulfatases, which post-synthetically edit the sulfation status of HS by removing 6OS from intact chains. The SULFs thereby modulate multiple signaling pathways including the augmentation of Wnt/ß-catenin signaling. We found that wounding of mouse corneal epithelium stimulated SULF1 expression in superficial epithelial cells proximal to the wound edge. Sulf1⁻/⁻, but not Sulf2⁻/⁻, mice, exhibited a marked delay in healing. Furthermore, corneal epithelial cells derived from Sulf1⁻/⁻ mice exhibited a reduced rate of migration in repair of a scratched monolayer compared to wild-type cells. In contrast, human primary corneal epithelial cells expressed SULF2, as did a human corneal epithelial cell line (THCE. Knockdown of SULF2 in THCE cells also slowed migration, which was restored by overexpression of either mouse SULF2 or human SULF1. The interchangeability of the two SULFs establishes their capacity for functional redundancy. Knockdown of SULF2 decreased Wnt/ß-catenin signaling in THCE cells. Extracellular antagonists of Wnt signaling reduced migration of THCE cells. However in SULF2- knockdown cells, these antagonists exerted no further effects on migration, consistent with the SULF functioning as an upstream regulator of Wnt signaling. Further understanding of the mechanistic action of the SULFs in promoting corneal repair may lead to new therapeutic approaches for the treatment of corneal injuries.

  6. THE ISOLATION OF NOVEL MESENCHYMAL STROMAL CELL CHEMOTACTIC FACTORS FROM THE CONDITIONED MEDIUM OF TUMOR CELLS

    Science.gov (United States)

    Lin, Siang-Yo; Yang, Jun; Everett, Allen D.; Clevenger, Charles V.; Koneru, Mythili; Mishra, Pravin J.; Kamen, Barton; Banerjee, Debabrata; Glod, John

    2008-01-01

    Bone marrow-derived mesenchymal stromal cells (MSCs) localize to solid tumors. Defining the signaling mechanisms that regulate this process is important to understanding the role of MSCs in tumor growth. Using a combination of chromatography and electrospray tandem mass spectrometry we have identified novel soluble signaling molecules that induce MSC chemotaxis present in conditioned medium of the breast carcinoma cell line MDA-MB231. Previous work has employed survey strategies using ELISA assay to identify known chemokines that promote MSC chemotaxis. While these studies provide valuable insights into the intercellular signals that impact MSC behavior, many less well-described, but potentially important soluble signaling molecules could be overlooked using these methods. Through the less directed method of column chromatography we have identified novel candidate MSC chemotactic peptides. Two proteins, cyclophilin B and hepatoma-derived growth factor were then further characterized and shown to promote MSC chemotaxis. PMID:18722367

  7. Functional Imaging of Proteolysis: Stromal and Inflammatory Cells Increase Tumor Proteolysis

    Directory of Open Access Journals (Sweden)

    Mansoureh Sameni

    2003-07-01

    Full Text Available The underlying basement membrane is degraded during progression of breast and colon carcinoma. Thus, we imaged degradation of a quenched fluorescent derivative of basement membrane type IV collagen (DQ-collagen IV by living human breast and colon tumor spheroids. Proteolysis of DQ-collagen IV by HCT 116 and HKh-2 human colon tumor spheroids was both intracellular and pericellular. In contrast, proteolysis of DQ-collagen IV by BT20 human breast tumor spheroids was pericellular. As stromal elements can contribute to proteolytic activities associated with tumors, we also examined degradation of DQ-collagen IV by human monocytes/macrophages and colon and breast fibroblasts. Fibroblasts themselves exhibited a modest amount of pericellular degradation. Degradation was increased 4–17-fold in cocultures of fibroblasts and tumor cells as compared to either cell type alone. Inhibitors of matrix metalloproteinases, plasmin, and the cysteine protease, cathepsin B, all reduced degradation in the cocultures. Monocytes did not degrade DQ-collagen IV; however, macrophages degraded DQ-collagen IV intracellularly. In coculture of tumor cells, fibroblasts, and macrophages, degradation of DQ-collagen IV was further increased. Imaging of living tumor and stromal cells has, thus, allowed us to establish that tumor proteolysis occurs pericellularly and intracellularly and that tumor, stromal, and inflammatory cells all contribute to degradative processes.

  8. Ultrastructure of neuronal-like cells differentiated from adult adipose-derived stromal cells

    Institute of Scientific and Technical Information of China (English)

    Changqing Ye; Xiaodong Yuan; Hui Liu; Yanan Cai; Ya Ou

    2010-01-01

    β-mercaptoethanol induces in vitro adult adipose-derived stromal cells (ADSCs) to differentiate into neurons. However, the ultrastructural features of the differentiated neuronal-like cells remain unknown. In the present study, inverted phase contrast microscopy was utilized to observe β-mercaptcethanol-induced differentiation of neuronal-like cells from human ADSCs, and immunocytochemistry and real-time polymerase chain reaction were employed to detect expression of a neural stem cells marker (nestin), a neuronal marker (neuron-specific enolase), and a glial marker (glial fibrillary acidic protein). In addition, ultrastructure of neuronal-like cells was observed by transmission election microscopy. Results revealed highest expression rate of nestin and neuron-specific enolase at 3 and 5 hours following induced differentiation; cells in the 5-hour induction group exhibited a neuronal-specific structure, i.e., Nissl bodies. However, when induction solution was replaced by complete culture medium after 8-hour induction, the differentiated cells reverted to the fibroblast-like morphology from day 1. These results demonstrate that β-mercaptoethanol-induced ADSCs induced differentiation into neural stem cells, followed by morphology of neuronal-like cells. However, this differentiation state was not stable.

  9. Human Umbilical Cord Mesenchymal Stromal Cells Support Viability of Umbilical Cord Blood Hematopoietic Stem Cells but not the "Stemness" of Their Progeny in Co-Culture.

    Science.gov (United States)

    Romanov, Yu A; Volgina, N E; Balashova, E E; Kabaeva, N V; Dugina, T N; Sukhikh, G T

    2017-08-01

    Cell-cell interactions and the ability of mesenchymal stromal cells to support the expansion of hematopoietic progenitor cells were studied in co-culture of human umbilical cord tissue-derived mesenchymal stromal cells and nucleated umbilical cord blood cells. It was found that hematopoietic stem cells from the umbilical cord blood are capable to adhere to mesenchymal stromal cells and proliferate during 3-4 weeks in co-culture. However, despite the formation of hematopoietic foci and accumulation of CD34(+) and CD133(+) cells in the adherent cell fraction, the ability of newly generated blood cells to form colonies in semi-solid culture medium was appreciably reduced. These findings suggest that human umbilical cord tissue-derived mesenchymal stromal cells display a weak capability to support the "stemness" of hematopoietic stem cell progeny despite long-term maintenance of their viability and proliferation.

  10. Osteogenic potential of bone marrow stromal cells on smooth, roughened, and tricalcium phosphate-modified titanium alloy surfaces.

    LENUS (Irish Health Repository)

    Colombo, John S

    2012-09-01

    This study investigated the influence of smooth, roughened, and tricalcium phosphate (TCP)-coated roughened titanium-aluminum-vanadium (Ti-6Al-4V) surfaces on the osteogenic potential of rat bone marrow stromal cells (BMSCs).

  11. Effect of allogeneic bone marrow derived stromal cells on induced third-degree skin burn healing in mouse

    Directory of Open Access Journals (Sweden)

    Leyla Soleymani

    2014-10-01

    Conclusion: This experimental modulation of wound healing suggests that bone marrow-derived stromal cells can significantly enhance the rate of wound healing possibly through stimulation of granulation tissue, angiogenesis, fibroblast proliferation and collagen deposition.

  12. Feasibility study of marrow stromal cells transplantation into guinea pig cochlea

    Institute of Scientific and Technical Information of China (English)

    GE Sheng-lei; XIE Ding-hua; CHEN Zhu-chu; XIAO Zhi-qiang; YANG Xin-min

    2005-01-01

    Objective This pilot-study was designed to evaluate the feasibility of cell transplantation into guinea pig cochlea. Methods Marrow stromal cells were labeled with DAPI, and then implanted into the cochlea of guinea pig.The existence and differentiation trend were observed roughly two weeks later by histologic analysis. Results Transplant-derived marrow stem cells survived in cochlea two weeks later with a trend of attaching to cochlear architecture but not differentiate into neuron. Conclusions Transplant-derived marrow stem cells can survive in cochlea,and cell transplantation may be a useful strategy in inner ear diseases.

  13. The proteomic dataset for bone marrow derived human mesenchymal stromal cells: Effect of in vitro passaging

    Directory of Open Access Journals (Sweden)

    Samuel T. Mindaye

    2015-12-01

    Full Text Available Bone-marrow derived mesenchymal stromal cells (BMSCs have been in clinical trials for therapy. One major bottleneck in the advancement of BMSC-based products is the challenge associated with cell isolation, characterization, and ensuring cell fitness over the course of in vitro cell propagation steps. The data in this report is part of publications that explored the proteomic changes following in vitro passaging of BMSCs [4] and the molecular heterogeneity in cultures obtained from different human donors [5,6].The methodological details involving cell manufacturing, proteome harvesting, protein identification and quantification as well as the bioinformatic analyses were described to ensure reproducibility of the results.

  14. In vitro inhibitory effects of imatinib mesylate on stromal cells and hematopoietic progenitors from bone marrow

    Directory of Open Access Journals (Sweden)

    P.B. Soares

    2013-01-01

    Full Text Available Imatinib mesylate (IM is used to treat chronic myeloid leukemia (CML because it selectively inhibits tyrosine kinase, which is a hallmark of CML oncogenesis. Recent studies have shown that IM inhibits the growth of several non-malignant hematopoietic and fibroblast cells from bone marrow (BM. The aim of the present study was to evaluate the effects of IM on stromal and hematopoietic progenitor cells, specifically in the colony-forming units of granulocyte/macrophage (CFU-GM, using BM cultures from 108 1.5- to 2-month-old healthy Swiss mice. The results showed that low concentrations of IM (1.25 µM reduced the growth of CFU-GM in clonogenic assays. In culture assays with stromal cells, fibroblast proliferation and α-SMA expression by immunocytochemistry analysis were also reduced in a concentration-dependent manner, with a survival rate of approximately 50% with a dose of 2.5 µM. Cell viability and morphology were analyzed using MTT and staining with acrydine orange/ethidium bromide. Most cells were found to be viable after treatment with 5 µM IM, although there was gradual growth inhibition of fibroblastic cells while the number of round cells (macrophage-like cells increased. At higher concentrations (15 µM, the majority of cells were apoptotic and cell growth ceased completely. Oil red staining revealed the presence of adipocytes only in untreated cells (control. Cell cycle analysis of stromal cells by flow cytometry showed a blockade at the G0/G1 phases in groups treated with 5-15 µM. These results suggest that IM differentially inhibits the survival of different types of BM cells since toxic effects were achieved.

  15. Human corneal fibroblast migration and ECM synthesis during stromal repair: Role played by PDGF-BB, bFGF, and TGFβ1.

    Science.gov (United States)

    Gallego-Muñoz, Patricia; Ibares-Frías, Lucía; Garrote, José A; Valsero-Blanco, María Cruz; Cantalapiedra-Rodríguez, Roberto; Merayo-Lloves, Jesús; Martínez-García, M Carmen

    2016-11-15

    The development of treatments that modulate corneal wound healing to avoid fibrosis during tissue repair is important for the restoration of corneal transparency after an injury. To date, few studies have studied the influence of growth factors (GFs) on human corneal fibroblast (HCF) expression of extracellular matrix (ECM) proteins such as collagen types I and III, proteoglycans such as perlecan, or proteins implicated in cellular migration such as α5β1-integrin and syndecan-4. Using in vitro HCFs, we developed a mechanical wound model to study the influence of the GFs basic fibroblast growth factor (bFGF), platelet-derived growth factor (PDGF-BB), and transforming growth factor beta 1 (TGFβ1) on ECM protein production and cellular migration. Our results show that mechanical wounding provokes the autocrine release of bFGF and TGFβ1 at different time points during the wound closure. The HCF response to PDGF-BB was a rapid closure due to fast cellular migration associated with a high focal adhesion replacement and a high expression of collagen and proteoglycans, producing a non-fibrotic healing. bFGF stimulated non-fibrotic ECM production and limited the migration process. Finally, TGFβ1 induced expression of the fibrotic markers collagen type III and α5β1 integrin, and it inhibited cellular migration due to the formation of focal adhesions with a low turnover rate. The novel in vitro HCF mechanical wound model can be used to understand the role played by GFs in human corneal repair. The model can also be used to test the effects of different treatments aimed at improving the healing process.

  16. Treatment of progressive keratoconus by riboflavin-UVA-induced cross-linking of corneal collagen: ultrastructural analysis by Heidelberg Retinal Tomograph II in vivo confocal microscopy in humans.

    Science.gov (United States)

    Mazzotta, Cosimo; Balestrazzi, Angelo; Traversi, Claudio; Baiocchi, Stefano; Caporossi, Tomaso; Tommasi, Cristina; Caporossi, Aldo

    2007-05-01

    To assess ultrastructural stromal modifications after riboflavin-UVA-induced cross-linking of corneal collagen in patients with progressive keratoconus. This was a second-phase prospective nonrandomized open study in 10 patients with progressive keratoconus treated by riboflavin-UVA-induced cross-linking of corneal collagen and assessed by means of Heidelberg Retinal Tomograph II Rostock Corneal Module (HRT II-RCM) in vivo confocal microscopy. The eye in the worst clinical condition was treated for each patient. Treatment under topical anesthesia included corneal deepithelization (9-mm diameter) and instillation of 0.1% riboflavin phosphate-20% dextran T 500 solution at 5 minutes before UVA irradiation and every 5 minutes for a total of 30 minutes. UVA irradiation was 7 mm in diameter. Patients were assessed by HRT II-RCM confocal microscopy in vivo at 1, 3, and 6 months after treatment. Rarefaction of keratocytes in the anterior and intermediate stroma, associated with stromal edema, was observed immediately after treatment. The observation at 3 months after the operation detected keratocyte repopulation in the central treated area, whereas the edema had disappeared. Cell density increased progressively over the postoperative period. At approximately 6 months, keratocyte repopulation was complete, accompanied by increased density of stromal fibers. No endothelial damage was observed at any time. Reduction in anterior and intermediate stromal keratocytes followed by gradual repopulation has been confirmed directly in vivo in humans by HRT II-RCM confocal microscopy after riboflavin-UVA-induced corneal collagen cross-linking.

  17. Corneal mucus plaques.

    Science.gov (United States)

    Fraunfelder, F T; Wright, P; Tripathi, R C

    1977-02-01

    Corneal mucus plaques adhered to the anterior corneal surface in 17 of 67 advanced cases of keratoconjunctivitis sicca. The plaques were translucent to opaque and varied in size and shape, from multiple isolated islands to bizarre patterns involving more than half the corneal surface. Ultrastructurally, they consisted of mucus mixed with desquamated degenerating epithelial cells and proteinaceous and lipoidal material. The condition may be symptomatic but can be controlled and prevented in most cases by topical ocular application of 10% acetylcysteine.

  18. Expression of Surface Molecules in Human Mesenchymal Stromal Cells Co-Cultured with Nucleated Umbilical Cord Blood Cells.

    Science.gov (United States)

    Romanov, Yu A; Balashova, E E; Volgina, N E; Kabaeva, N V; Dugina, T N; Sukhikh, G T

    2017-02-01

    We studied the expression of different classes of surface molecules (CD13, CD29, CD40, CD44, CD54, CD71, CD73, CD80, CD86, CD90, CD105, CD106, CD146, HLA-I, and HLA-DR) in mesenchymal stromal cells from human umbilical cord and bone marrow during co-culturing with nucleated umbilical cord blood cells. Expression of the majority of surface markers in both types of mesenchymal stromal cells was stable and did not depend on the presence of the blood cells. Significant differences were found only for cell adhesion molecules CD54 (ICAM-1) and CD106 (VCAM-1) responsible for direct cell-cell contacts with leukocytes and only for bone marrow derived cells.

  19. Differentiation of Equine Mesenchymal Stromal Cells into Cells of Neural Lineage: Potential for Clinical Applications

    Directory of Open Access Journals (Sweden)

    Claudia Cruz Villagrán

    2014-01-01

    Full Text Available Mesenchymal stromal cells (MSCs are able to differentiate into extramesodermal lineages, including neurons. Positive outcomes were obtained after transplantation of neurally induced MSCs in laboratory animals after nerve injury, but this is unknown in horses. Our objectives were to test the ability of equine MSCs to differentiate into cells of neural lineage in vitro, to assess differences in morphology and lineage-specific protein expression, and to investigate if horse age and cell passage number affected the ability to achieve differentiation. Bone marrow-derived MSCs were obtained from young and adult horses. Following demonstration of stemness, MSCs were neurally induced and microscopically assessed at different time points. Results showed that commercially available nitrogen-coated tissue culture plates supported proliferation and differentiation. Morphological changes were immediate and all the cells displayed a neural crest-like cell phenotype. Expression of neural progenitor proteins, was assessed via western blot or immunofluorescence. In our study, MSCs generated from young and middle-aged horses did not show differences in their ability to undergo differentiation. The effect of cell passage number, however, is inconsistent and further experiments are needed. Ongoing work is aimed at transdifferentiating these cells into Schwann cells for transplantation into a peripheral nerve injury model in horses.

  20. Effect of Cytokines Secreted by Human Adipose Stromal Cells on Endothelial Cells

    Institute of Scientific and Technical Information of China (English)

    LI Bingong; ZENG Qiutang; WANG Hongxiang; MAO Xiaobo

    2006-01-01

    To isolate and culture adipose stromal cells (ASCs), and study the effect of cytokines secreted by ASCs on endothelial cells, human adipose tissue was digested with collagenase type Ⅰ solution and ASCs were derived by culture. The cells surface phenotype was examined by flow cytometry. ELISA was used to detect the secretion of VEGF, HGF, SDF-1 α and RT-PCR was employed to detect the expression of their mRNA. Then the ASC medium was utilized to culture human umbilical vein endothelial cells ECV304. Cells were counted by hemacytometer to determine the proliferation and Annexin V/PI was employed for the examination of the apoptosis rate of ECV304. ASCs were derived by culture and expressed CD34, CD105 while they did not express CD31 or CD45. ASCs secreted cytokines such as VEGF, HGF and SDF-1 α so the ASC medium could stimulate proliferation and counteract apoptosis of endothelial cells (P<0.05). Bcl-2 mRNA was also found to be up-regulated in the endothelial cells. It is concluded that ASCs can secrete cytokines and has significant effect on the proliferation of endothelial cells and apoptosis.

  1. Mesenchymal stromal cells and immunomodulation: A gathering of regulatory immune cells.

    Science.gov (United States)

    Najar, Mehdi; Raicevic, Gordana; Fayyad-Kazan, Hussein; Bron, Dominique; Toungouz, Michel; Lagneaux, Laurence

    2016-02-01

    Because of their well-recognized immunomodulatory properties, mesenchymal stromal cells (MSCs) represent an attractive cell population for therapeutic purposes. In particular, there is growing interest in the use of MSCs as cellular immunotherapeutics for tolerance induction in allogeneic transplantations and the treatment of autoimmune diseases. However, multiple mechanisms have been identified to mediate the immunomodulatory effects of MSCs, sometimes with several ambiguities and inconsistencies. Although published studies have mainly reported the role of soluble factors, we believe that a sizeable cellular component plays a critical role in MSC immunomodulation. We refer to these cells as regulatory immune cells, which are generated from both the innate and adaptive responses after co-culture with MSCs. In this review, we discuss the nature and role of these immune regulatory cells as well as the role of different mediators, and, in particular, regulatory immune cell induction by MSCs through interleukin-10. Once induced, immune regulatory cells accumulate and converge their regulatory pathways to create a tolerogenic environment conducive for immunomodulation. Thus, a better understanding of these regulatory immune cells, in terms of how they can be optimally manipulated and induced, would be suitable for improving MSC-based immunomodulatory therapeutic strategies.

  2. Melanoma Cells Can Adopt the Phenotype of Stromal Fibroblasts and Macrophages by Spontaneous Cell Fusion in Vitro.

    Science.gov (United States)

    Kemény, Lajos V; Kurgyis, Zsuzsanna; Buknicz, Tünde; Groma, Gergely; Jakab, Ádám; Zänker, Kurt; Dittmar, Thomas; Kemény, Lajos; Németh, István B

    2016-06-02

    After the removal of primary cutaneous melanoma some patients develop local recurrences, even after having histologically tumor-free re-excision. A potential explanation behind this phenomenon is that tumor cells switch their phenotype, making their recognition via standard histopathological assessments extremely difficult. Tumor-stromal cell fusion has been proposed as a potential mechanism for tumor cells to acquire mesenchymal traits; therefore, we hypothesized that melanoma cells could acquire fibroblast- and macrophage-like phenotypes via cell fusion. We show that melanoma cells spontaneously fuse with human dermal fibroblasts and human peripheral blood monocytes in vitro. The hybrid cells' nuclei contain chromosomes from both parental cells and are indistinguishable from the parental fibroblasts or macrophages based on their morphology and immunophenotype, as they could lose the melanoma specific MART1 marker, but express the fibroblast marker smooth muscle actin or the macrophage marker CD68. Our results suggest that, by spontaneous cell fusion in vitro, tumor cells can adopt the morphology and immunophenotype of stromal cells while still carrying oncogenic, tumor-derived genetic information. Therefore, melanoma-stromal cell fusion might play a role in missing tumor cells by routine histopathological assessments.

  3. Inhibition of Tumor Cells Interacting with Stromal Cells by Xanthones Isolated from a Costa Rican Penicillium sp.

    Science.gov (United States)

    Cao, Shugeng; McMillin, Douglas W.; Tamayo, Giselle; Delmore, Jake; Mitsiades, Constantine S.; Clardy, Jon

    2012-01-01

    CR1642D, an endophytic isolate of Penicillium sp. collected from a Costa Rican rainforest, was identified through a high-throughput approach to identify natural products with enhanced anti-tumor activity in the context of tumor-stromal interactions. Bioassay-guided separation led to the identification of five xanthones (1-5) from CR1642D. The structures of the xanthone dimer penexanthone A (1) and monomer penexanthone B (2) were elucidated on the basis of spectroscopic analyses, including 2D NMR experiments. All of the compounds were tested against a panel of tumor cell lines in the presence and absence of bone marrow stromal cells. Compound 3 was the most active, with IC50 values of 1~17 μM, and its activity was enhanced two-fold against tumor cell line RPMI8226 in the presence of stromal cells (IC50 1.2 μM, but 2.4 μM without stromal cells). PMID:22458669

  4. ROS, MAPK/ERK and PKC play distinct roles in EGF-stimulated human corneal cell proliferation and migration.

    Science.gov (United States)

    Huo, Y-N; Chen, W; Zheng, X-X

    2015-11-08

    Cornea is at the outermost surface of eye globe, and it easily receives damage from ultraviolet light exposure, physiology wounding, and infections. It is essential to understand the mechanisms controlling human corneal epithelial (HCE) cell proliferation and wound healing. Epidermal growth factor (EGF) could stimulate cell proliferation and migration in various cell types. Therefore, we investigated the roles and mechanisms of EGF on HCE cell proliferation and migration. CCK-8 kit and wound healing experiment were used to investigate HCE cell proliferation and cell migration, respectively. ROS activity was quantified by DCFDA and flow cytometry. Western blot and Q-PCR were performed to examine protein and RNA levels. EGF could promote HCE cell proliferation and migration in both physiology status and UV irradiation conditions, which is used to mimic the disease condition in human corneal epithelial cells. Interestingly, the promotion effect of EGF on HCE cell proliferation is mainly mediated by activated ROS signaling under disease condition. However, the EGF function is mediated by ROS and MAPK/ERK pathway in EGF-treated corneal epithelial cells in physiology status, in which ROS and MAPK/ERK pathway have no mutual influence on the other signaling pathway in EGF-stimulated corneal epithelial cells. We also revealed that MAPK/ERK pathway instead of ROS mediates EGF-stimulated HCE cell migration. Interestingly, we found that PKC proteins were downregulated by EGF in HCE cells that is partially mediated by ROS signaling, while PKC pathway was not involved in EGF-stimulated corneal cell proliferation and migration. EGF promotes human corneal cell proliferation and migration both in physiology and disease conditions, and ROS, MAPK/ERK and PKC pathways play different roles in these processes.

  5. Intravital two-photon microscopy of immune cell dynamics in corneal lymphatic vessels.

    Directory of Open Access Journals (Sweden)

    Philipp Steven

    Full Text Available BACKGROUND: The role of lymphatic vessels in tissue and organ transplantation as well as in tumor growth and metastasis has drawn great attention in recent years. METHODOLOGY/PRINCIPAL FINDINGS: We now developed a novel method using non-invasive two-photon microscopy to simultaneously visualize and track specifically stained lymphatic vessels and autofluorescent adjacent tissues such as collagen fibrils, blood vessels and immune cells in the mouse model of corneal neovascularization in vivo. The mouse cornea serves as an ideal tissue for this technique due to its easy accessibility and its inducible and modifiable state of pathological hem- and lymphvascularization. Neovascularization was induced by suture placement in corneas of Balb/C mice. Two weeks after treatment, lymphatic vessels were stained intravital by intrastromal injection of a fluorescently labeled LYVE-1 antibody and the corneas were evaluated in vivo by two-photon microscopy (TPM. Intravital TPM was performed at 710 nm and 826 nm excitation wavelengths to detect immunofluorescence and tissue autofluorescence using a custom made animal holder. Corneas were then harvested, fixed and analyzed by histology. Time lapse imaging demonstrated the first in vivo evidence of immune cell migration into lymphatic vessels and luminal transport of individual cells. Cells immigrated within 1-5.5 min into the vessel lumen. Mean velocities of intrastromal corneal immune cells were around 9 µm/min and therefore comparable to those of T-cells and macrophages in other mucosal surfaces. CONCLUSIONS: To our knowledge we here demonstrate for the first time the intravital real-time transmigration of immune cells into lymphatic vessels. Overall this study demonstrates the valuable use of intravital autofluorescence two-photon microscopy in the model of suture-induced corneal vascularizations to study interactions of immune and subsequently tumor cells with lymphatic vessels under close as possible

  6. Adiponectin induces CXCL1 secretion from cancer cells and promotes tumor angiogenesis by inducing stromal fibroblast senescence.

    Science.gov (United States)

    Cai, Lun; Xu, Shengyuan; Piao, Chunmei; Qiu, Shulan; Li, Huihua; Du, Jie

    2016-11-01

    Adiponectin is an adipocyte-specific adipocytokine with proliferative and pro-angiogenic effects that regulates many biological processes, including immunity, insulin resistance, and inflammation. The oncogenic role of adiponectin has been implicated in several cancer types. Stromal cells within tumor contribute tumor growth and angiogenesis; however, it is not clear that how adiponectin regulates stromal cell-mediated tumorigenesis. In this study, using the tumor xenograft models, we demonstrated that tumor development was severely impaired in mouse subcutaneous cancer tissue and metastasis tumor tissue in adiponectin knockout mice. Our results indicated adiponectin deficiency resulted in decrease of blood vessel and stromal senescent fibroblasts in subcutaneous and metastasis tumor tissue. These observations were confirmed in vitro, in which co-cultured tumor cells and fibroblasts treated with adiponectin promoted ECs tube formation. A secretion of CXCL1 by adiponectin-treated tumor cells was observed during the process of inducing stromal fibroblast senescence. Furthermore, stromal cells senescence was through p53 and p16 pathways. Taken together, our results indicate that adiponectin promotes stromal cell senescence within invasive colon cancer contributing to angiogenesis and tumor growth in part through the production of CXCL1 and may serve as a therapeutic target for tumor patients. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  7. The Frequency of Proliferative Stromal Cells in Adipose Tissue Varies Between Inbred Mouse Strains

    Directory of Open Access Journals (Sweden)

    Mo J

    2009-01-01

    Full Text Available Stromal cells derived from adipose tissue (ASCs can proliferate as undifferentiated cells with a fibroblast-like morphology in cell culture, or can be induced to differentiate into a variety of cell types including, adipipogenic, myogenic, neurogenic, osteogenic, chondrogenic and hepatic cells. There is increasing interest to understand the factors controlling the proliferation of ASCs since these cells might provide a readily available source of autologous stem/progenitor cells for cell therapy applications. To explore potential genetic factors that modify the properties of ASCs, we tried to identify relevant properties of ASCs that differ between inbred mouse strains. Plating cells in a modified colony forming assay indicates that the percentage of high proliferative cells among ASCs differs more than 2-fold between 129x1/svj and C57Bl/6J mice. The identification of genetic factors affecting the proliferative capacity of stem cell populations could improve the efficacy of cell therapy.

  8. Organotins Are Potent Activators of PPARγ and Adipocyte Differentiation in Bone Marrow Multipotent Mesenchymal Stromal Cells

    OpenAIRE

    2011-01-01

    Adipocyte differentiation in bone marrow is potentially deleterious to both bone integrity and lymphopoiesis. Here, we examine the hypothesis that organotins, common environmental contaminants that are dual ligands for peroxisome proliferator–activated receptor (PPAR) γ and its heterodimerization partner retinoid X receptor (RXR), are potent activators of bone marrow adipogenesis. A C57Bl/6-derived bone marrow multipotent mesenchymal stromal cell (MSC) line, BMS2, was treated with rosiglitazo...

  9. Selenium-binding lactoferrin is taken into corneal epithelial cells by a receptor and prevents corneal damage in dry eye model animals.

    Science.gov (United States)

    Higuchi, Akihiro; Inoue, Hiroyoshi; Kaneko, Yoshio; Oonishi, Erina; Tsubota, Kazuo

    2016-11-11

    The ocular surface is strongly affected by oxidative stress, which causes many ocular diseases including dry eye. Previously, we showed that selenium compounds, e.g., selenoprotein P and Se-lactoferrin, were candidates for treatment of dry eye. This paper shows the efficacy of Se-lactoferrin for the treatment of dry eye compared with Diquas as a control drug using two dry eye models and incorporation of lactoferrin into corneal epithelial cells via lactoferrin receptors. We show the efficacy of Se-lactoferrin eye drops in the tobacco smoke exposure rat dry eye model and short-term rabbit dry eye model, although Diquas eye drops were only effective in the short-term rabbit dry eye model. These results indicate that Se-lactoferrin was useful in the oxidative stress-causing dry eye model. Se-lactoferrin was taken into corneal epithelium cells via lactoferrin receptors. We identified LRP1 as the lactoferrin receptor in the corneal epithelium involved in lactoferrin uptake. Se-lactoferrin eye drops did not irritate the ocular surface of rabbits. Se-lactoferrin was an excellent candidate for treatment of dry eye, reducing oxidative stress by a novel mechanism.

  10. Impact of temporary hyperthermia on corneal endothelial cell survival during organ culture preservation.

    Science.gov (United States)

    Schroeter, Jan; Ruggeri, Alfredo; Thieme, Hagen; Meltendorf, Christian

    2015-05-01

    To evaluate temporary exposure to hyperthermia for its impact on endothelial cell density of porcine corneas in organ culture medium containing dextran with regards to possible negative influences of high temperatures during the storage and transport of corneal grafts. Four groups of central discs (diameter 8 mm) from the corneas of both eyes in 40 pigs were first organ-cultured (MEM with 6% dextran 500) for 24 h at 32°C. Ten corneas were then exposed to 40°C in group 1, to 42°C in group 2, to 44°C in group 3, and to 50°C in group 4 for 12 h each. The paired corneal discs for all groups were not treated, stored at 32°C and served as controls. After further organ culture of all corneas for 48 h at 32°C to allow regenerative processes, corneal endothelium was stained with Alizarin Red S and examined by light microscopy. The endothelial cell densities were determined on three central images using a system for the automatic estimation of morphometric parameters of corneal endothelium. Exposure for 12 h to 40°C as well as to 42°C induced no endothelial cell loss. Statistical analysis showed no significant difference of the endothelial cell density between corneas exposed to 40°C and 42°C and the control corneas (40°C treatment: 4736 ± 426 cells/mm(2) and control: 4762 ± 344 cells/mm(2), p = 0.74; 42°C treatment: 4240 ± 363 cells/mm(2) and control: 4176 ± 448 cells/mm(2), p = 0.40). Exposure to 44°C and 50°C lead to total necrosis of the endothelial cell layer. Exposure of organ cultured porcine corneas in dextran containing medium up to 42°C for 12 h does not compromise the endothelial cell density in a clinically relevant manner. Temperatures above 42°C, as it might be the case during transports from the cornea bank to the ophthalmic surgeon, must be strictly avoided as they damage the endothelial cell layer.

  11. A Reproducible Method for Isolation and In Vitro Culture of Functional Human Lymphoid Stromal Cells from Tonsils

    Science.gov (United States)

    Bar-Ephraim, Yotam E.; Konijn, Tanja; Gönültas, Mehmet; Mebius, Reina E.

    2016-01-01

    The stromal compartment of secondary lymphoid organs is classicaly known for providing a mechanical scaffold for the complex interactions between hematopoietic cells during immune activation as well as for providing a niche which is favorable for survival of lymphocytes. In recent years, it became increasingly clear that these cells also play an active role during such a response. Currently, knowledge of the interactions between human lymphoid stroma and hematopoietic cells is still lacking and most insight is based on murine systems. Although methods to isolate stromal cells from tonsils have been reported, data on stability in culture, characterization, and functional properties are lacking. Here, we describe a reproducible and easy method for isolation and in vitro culture of functional human lymphoid stromal cells from palatine tonsils. The cells isolated express markers and characteristics of T cell zone fibroblastic reticular cells (FRCs) and react to inflammatory stimuli by upregulating inflammatory cytokines and chemokines as well as adhesion molecules, as previously described for mouse lymphoid stroma. Also, cultured tonsil stromal cells support survival of human innate lymphoid cells, showing that these stromal cells can function as bone fide FRCs, providing a favorable microenvironment for hematopoietic cells. PMID:27907202

  12. In vitro model for study the interaction between tumor and stromal cells

    Directory of Open Access Journals (Sweden)

    Shkarina K. A.

    2013-01-01

    Full Text Available Aim. To develop a model to study the interaction between tumor and stromal cells in three-dimensional culture. Methods. Cultivation of HeLa cell lines and human dermal fibroblasts in monolayer and three-dimensional culture, immunofluorescent and immunohistochemical analysis. Results. In this work we present an approach based on a direct interaction between the cells of multicellular tumor spheroids and spheroids of fibroblasts. Subsequent immunofluorescence analysis allows to determine an origin of cells in the area of their contact. Conclusions. This model will be useful to study the basic mechanisms of carcinogenesis, and to find targets for anticancer therapy.

  13. Downregulation of PTEN at Corneal Wound Sites Accelerates Wound Healing through Increased Cell Migration

    Science.gov (United States)

    Cao, Lin; Graue-Hernandez, Enrique O.; Tran, Vu; Reid, Brian; Pu, Jin; Mannis, Mark J.

    2011-01-01

    Purpose. The PI3K/Akt pathway is required for cell polarization and migration, whereas the phosphatase and tensin homologue deleted on chromosome 10 (PTEN) has inhibitory effects on the PI3K/Akt pathway. The authors therefore hypothesized that wounding would downregulate PTEN and that this downregulation would enhance wound healing. Methods. In human corneal epithelial (HCE) cell monolayer and rat cornea scratch wound models, the authors investigated PTEN and Akt expression using Western blot and immunofluorescence analyses. The effects of PTEN and PI3K inhibitors dipotassium bisperoxo (picolinato) oxovanadate (bpv(pic)) and LY294002 on cell migration and wound closure were investigated using time-lapse imaging. Finally, the authors investigated the effect of PTEN inhibition on wound healing in whole rat eyes. Results. In HCE cell monolayer and rat cornea, PTEN was downregulated at the wound edges within 30 minutes of wounding. The downregulation of PTEN was causal in a simultaneous increase in Akt activation, which was responsible for a significant increase in individual cell migration rate from 8.8 μm/h to 17.3 μm/h. An increased migration rate was maintained for 20 hours. PTEN inhibition significantly enhanced the wound healing rate in the HCE cell monolayer from 10 minutes onward after treatment and reduced the healing time in eye organ culture from 30 to 20 hours. Conclusions. Injury to the corneal epithelium downregulates the expression of PTEN at wound edges, allowing increased PI3K/Akt signaling, thereby contributing to a significant enhancement of cell migration and wound healing. These results suggest that PTEN inhibition may be an effective treatment for corneal injury. PMID:21212174

  14. The orphan nuclear receptor Nur77 regulates decidual prolactin expression in human endometrial stromal cells

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yue; Hu, Yali; Zhao, Jing; Zhen, Xin [Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008 (China); Yan, Guijun, E-mail: yanguijun33@gmail.com [Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008 (China); Sun, Haixiang, E-mail: stevensunz@163.com [Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008 (China)

    2011-01-14

    Research highlights: {yields} Decidually produced PRL plays a key role during pregnancy. {yields} Overexpression of Nur77 increased PRL mRNA expression and enhanced decidual PRL promoter activity. {yields} Knockdown of Nur77 decreased decidual PRL secretion induced by 8-Br-cAMP and MPA. {yields} Nur77 is a novel transcription factor that plays an active role in decidual prolactin expression. -- Abstract: Prolactin (PRL) is synthesized and released by several extrapituitary tissues, including decidualized stromal cells. Despite the important role of decidual PRL during pregnancy, little is understood about the factors involved in the proper regulation of decidual PRL expression. Here we present evidence that the transcription factor Nur77 plays an active role in decidual prolactin expression in human endometrial stromal cells (hESCs). Nur77 mRNA expression in hESCs was significantly increased after decidualization stimulated by 8-Br-cAMP and medroxyprogesterone acetate (MPA). Adenovirus-mediated overexpression of Nur77 in hESCs markedly increased PRL mRNA expression and enhanced decidual PRL promoter (dPRL/-332Luc) activity in a concentration-dependent manner. Furthermore, knockdown of Nur77 in hESCs significantly decreased decidual PRL promoter activation and substantially attenuated PRL mRNA expression and PRL secretion (P < 0.01) induced by 8-Br-cAMP and MPA. These results demonstrate that Nur77 is a novel transcription factor that contributes significantly to the regulation of prolactin gene expression in human endometrial stromal cells.

  15. Good Preservation of Stromal Cells and No Apoptosis in Human Ovarian Tissue after Vitrification

    Directory of Open Access Journals (Sweden)

    Raffaella Fabbri

    2014-01-01

    Full Text Available The aim of this study was to develop a vitrification procedure for human ovarian tissue cryopreservation in order to better preserve the ovarian tissue. Large size samples of ovarian tissue retrieved from 15 female-to-male transgender subjects (18–38 years were vitrified using two solutions (containing propylene glycol, ethylene glycol, and sucrose at different concentrations in an open system. Light microscopy, transmission electron microscopy, and TUNEL assay were applied to evaluate the efficiency of the vitrification protocol. After vitrification/warming, light microscopy showed oocyte nucleus with slightly thickened chromatin and irregular shape, while granulosa and stromal cells appeared well preserved. Transmission electron microscopy showed oocytes with slightly irregular nuclear shape and finely dispersed chromatin. Clear vacuoles and alterations in cellular organelles were seen in the oocyte cytoplasm. Stromal cells had a moderately dispersed chromatin and homogeneous cytoplasm with slight vacuolization. TUNEL assay revealed the lack of apoptosis induction by vitrification in all ovarian cell types. In conclusion after vitrification/warming the stromal compartment maintained morphological and ultrastructural features similar to fresh tissue, while the oocyte cytoplasm was slightly damaged. Although these data are encouraging, further studies are necessary and essential to optimize vitrification procedure.

  16. The Role of the Transcriptional Regulation of Stromal Cells in Chronic Inflammation

    Directory of Open Access Journals (Sweden)

    Alvaro Valin

    2015-10-01

    Full Text Available Chronic inflammation is a common process connecting pathologies that vary in their etiology and pathogenesis such as cancer, autoimmune diseases, and infections. The response of the immune system to tissue damage involves a carefully choreographed series of cellular interactions between immune and non-immune cells. In recent years, it has become clear that stromal resident cells have an essential role perpetuating the inflammatory environment and dictating in many cases the outcome of inflammatory based pathologies. Signal transduction pathways remain the main focus of study to understand how stimuli contribute to perpetuating the inflammatory response, mainly due to their potential role as therapeutic targets. However, molecular events orchestrated in the nucleus by transcription factors add additional levels of complexity and may be equally important for understanding the phenotypic differences of activated stromal components during the chronic inflammatory process. In this review, we focus on the contribution of transcription factors to the selective regulation of inducible proinflammatory genes, with special attention given to the regulation of the stromal fibroblastic cell function and response.

  17. Effects of androgen receptor and androgen on gene expression in prostate stromal fibroblasts and paracrine signaling to prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Matthew J Tanner

    Full Text Available The androgen receptor (AR is expressed in a subset of prostate stromal cells and functional stromal cell AR is required for normal prostate developmental and influences the growth of prostate tumors. Although we are broadly aware of the specifics of the genomic actions of AR in prostate cancer cells, relatively little is known regarding the gene targets of functional AR in prostate stromal cells. Here, we describe a novel human prostate