WorldWideScience

Sample records for corn maize production

  1. EFFICIENCY OF THE CHEMICAL TREATMENT AGAINST THE EUROPEAN CORN BORER IN SEED MAIZE PRODUCTION

    Directory of Open Access Journals (Sweden)

    Emilija Raspudić

    2013-06-01

    Full Text Available The aim of this study was to determine the effectiveness of a chemical treatment against larvae of the European corn borer (Ostrinia nubilalis Hubner. The experiment was set up in 2010 and 2011 in Čepin (eastern Croatia in two treatments: control treatment and insecticide treatment. The trial involved two hybrids of FAO group 400: PR37N01 and PR37F73. Biology of pests was monitored in order to determine population size and larvae development stage as well as the optimal time of insecticide application. After determination of thresholds, maize was treated with chemical formulations of active substance dimethoate. Towards the end of vegetation, length of stem damage, number of larvae in maize stalk and ear as well as grain yield were recorded by dissection of maize stalks. Statistical analysis shows that year, hybrid and chemical treatment significantly influenced the incidence of this pest and justified the use of chemical preparations with mandatory monitoring biology of this pest.

  2. Carbaryl residues in maize products

    International Nuclear Information System (INIS)

    Zayed, S.M.A.D.; Mansour, S.A.; Mostafa, I.Y.; Hassan, A.

    1976-01-01

    The 14 C-labelled insecticide carbaryl was synthesized from [1- 14 C]-1-naphthol at a specific activity of 3.18mCig -1 . Maize plants were treated with the labelled insecticide under simulated conditions of agricultural practice. Mature plants were harvested and studied for distribution of total residues in untreated grains as popularly roasted and consumed, and in the corn oil and corn germ products. Total residues found under these conditions in the respective products were 0.2, 0.1, 0.45 and 0.16ppm. (author)

  3. 19 CFR 10.57 - Certified seed potatoes, and seed corn or maize.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Certified seed potatoes, and seed corn or maize... Provisions Potatoes, Corn, Or Maize § 10.57 Certified seed potatoes, and seed corn or maize. Claim for classification as seed potatoes under subheading 0701.10.00, as seed corn (maize) under subheading 1005.10...

  4. THE IMPORTANCE OF WESTERN CORN ROOTWORM IN CONTINUOUS MAIZE

    Directory of Open Access Journals (Sweden)

    Marija Ivezić

    2006-06-01

    Full Text Available Western Corn Rootworm (Diabrotica virgifera virgifera LeConte is considered to be one of the most important and potentially most severe pest of maize worldwide. The pest was detected in Croatia for the first time in 1995. Since then it has been spread over all areas with maize production in Croatia. The economically most efficient and preventive control measure is crop rotation and growing maize hybrids that show tolerance to WCR. The trials were settled in the area near Dubosevica where in 2002 and 2003 the economic damages caused by WCR were up to 80%. The aim of this investigation is to determine damages on maize root caused by WCR and loss in grain yield on commercial maize hybrids in continuous farming. Pheromone traps, type Csal♀m♂N®, were used in order to monitor WCR population dynamics. In the period of two months, 366 WCR adult beetles in total were captured. Root damage was evaluated according to Iowa Node Injury Scale and grain yield was measured and corrected to 14% moisture. Furthermore, the plant lodging, as a consequence of larval feeding, was assessed. The results have shown that root damage for hybrid Bc 5982 was 1.15, and 0.73 damage was on Pr 35p 12 roots. The grain yield obtained from hybrid Bc 5982 was 11.7 t/ha, and Pr 35p 12 had 12.3 t/ha. Statistical analyses showed that there were no significant differences in root damage and losses in grain yield between the two investigated hybrids. Results of this investigation indicate that growing maize for 2 to 3 years in continuous farming, in the same field, would not cause economically significant loss in maize gain yield.

  5. Global maize production, utilization, and consumption.

    Science.gov (United States)

    Ranum, Peter; Peña-Rosas, Juan Pablo; Garcia-Casal, Maria Nieves

    2014-04-01

    Maize (Zea mays), also called corn, is believed to have originated in central Mexico 7000 years ago from a wild grass, and Native Americans transformed maize into a better source of food. Maize contains approximately 72% starch, 10% protein, and 4% fat, supplying an energy density of 365 Kcal/100 g and is grown throughout the world, with the United States, China, and Brazil being the top three maize-producing countries in the world, producing approximately 563 of the 717 million metric tons/year. Maize can be processed into a variety of food and industrial products, including starch, sweeteners, oil, beverages, glue, industrial alcohol, and fuel ethanol. In the last 10 years, the use of maize for fuel production significantly increased, accounting for approximately 40% of the maize production in the United States. As the ethanol industry absorbs a larger share of the maize crop, higher prices for maize will intensify demand competition and could affect maize prices for animal and human consumption. Low production costs, along with the high consumption of maize flour and cornmeal, especially where micronutrient deficiencies are common public health problems, make this food staple an ideal food vehicle for fortification. © 2014 New York Academy of Sciences. The World Health Organization retains copyright and all other rights in the manuscript of this article as submitted for publication.

  6. Utilization of Bioslurry on Maize Hydroponic Fodder as a Corn Silage Supplement on Nutrient Digestibility and Milk Production of Dairy Cows

    Directory of Open Access Journals (Sweden)

    H. D. Nugroho

    2015-04-01

    Full Text Available The research was conducted to study the effect of addition of 7% DM maize hydroponic fodder (MHF in corn silage on digestibility and milk production of dairy cows. The experiment used a completely randomized block design with two treatments, and four replications. The treatments were dairy cows fed with grass (Pennisetum purpureum, corn silage, and concentrate (R0, and dairy cows fed with grass (P. purpureum, corn silage, concentrate, and MHF (R1. This research used eight dairy cows with initial average milk production of 13.01±2.96 L/d. MHF was produced in a hydroponic system using bioslurry as a fertilizer enriched with mineral fertilizer. Variables observed were chemical composition of bioslurry, nutrient content of ration, daily dry matter intake, nutrient digestibility, Total Digestible Nutrient (TDN, and Digestible Energy (DE. Data were analyzed with ANOVA, except for milk production using ANCOVA. Supplementation of MHF resulted a higher total dry matter intake on R1 than R0 (P<0.05, 12.99±0.063 kg/head/d, and 11.98±0.295 kg/head/d, respectively. The digestibility of nutrients were not affected by the addition of MHF. Energy consumption in R1 was also higher than R0 (P<0.05, 49.95±0.36 Mkal/kg, and 46.11±0.54 Mkal/kg, respectively. Supplementation of MHF also increased nitrogen consumption, R1 was higher than R0 (P<0.05, 318.3±2.3 g/head/d, and 295.9±3.5 g/head/d, respectively, and could maintain the persistency of milk production at the end of lactation. It can be concluded that supplementation of MHF in corn silage can increase dry matter intake, energy consumption, and nitrogen consumption, also can maintain nutrient digestibility and maintain persistency of milk production during late lactation of dairy cows.

  7. RELATIONS AMONG WESTERN CORN ROOTWORM RESISTANCE TRAITS AND ELEMENTS CONCENTRATION IN MAIZE GERMPLASM ROOTS

    Directory of Open Access Journals (Sweden)

    Andrija Brkić

    2015-06-01

    Full Text Available Western corn rootworm – WCR (Diabrotica virgifera virgifera LeConte is an important maize pest in Croatia. Using native resistance of maize germplasm could reduce chemical treatments and other costs in maize production. Objectives of this study were: i to assess variability of WCR resistance traits (root injury, regrowth and size and concentrations of nine elements in roots of 128 maize genotypes, and ii to determine correlations among the traits and ion concentrations. Results revealed high variability of maize genotypes for both WCR resistance traits and ion concentrations. Significant moderate negative correlations (>-0.4 were detected between root injury and boron as well as between root regrowth and iron, manganese and zinc concentrations in root. Consequently, ion concentration in maize roots might have an impact on WCR resistance research.

  8. Analysis of potential fumonisin-producing Fusarium species in corn products from three main maize-producing areas in eastern China.

    Science.gov (United States)

    Zhang, Liping; Wang, Jiansheng; Zhang, Chulong; Wang, Qiaomei

    2013-02-01

    Fusarium species are common fungal contaminants of maize and a number of them can produce mycotoxin fumonisins. China is one of the largest maize producers in the world. This study investigated the contamination of maize samples from three areas in eastern China by Fusarium and fumonisin-producing fungi as well as their fumonisin-producing potential. A total of 22 Fusarium strains were isolated, 19 of which were able to produce fumonisin. Among the 19 strains, 16 belonged to F. verticillioides, two to F. subglutinans and one to F. proliferatum. The majority (17/19) of the fumonisin-forming strains were high FB(1) producers, which is a potential health risk for the population in these areas. Fusarium contamination in samples from the mideastern area was the most serious (11 Fusarium strains, with nine producing fumonisin, isolated from 24 samples), followed by the northeastern area (nine Fusarium strains, with all nine producing fumonisin, isolated from 21 samples) and the southeastern area (two Fusarium strains, with one producing fumonisin, isolated from 19 samples). Although the overall levels of FBs and contamination by fumonisin-producing fungi in corn samples were not serious, the contaminating Fusarium strains possessed fairly strong toxicogenic ability and potential risk for food safety. Copyright © 2012 Society of Chemical Industry.

  9. Biofuels derived from corn; Biocombustibles derivados del maiz

    Energy Technology Data Exchange (ETDEWEB)

    Arvizu Fernandez, Jose Luis [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2012-06-22

    The biofuels can be obtained from the biomass, are liquid, solid or gaseous from matter of vegetal or animal origin, by biological, chemical or physical processes and combinations of them. The biofuels appear as an alternating fuels in the transport sector, mainly due to the positive impact of greenhouse gases effect (GHG) and to the increase of oil prices. In theory the use of bioethanol and the biofuels, they not have CO{sub 2} emissions since this it is absorbed in the same amount by the cultures that generate them, as the corn or sugar cane. Our country has a deficit in the food production, mainly in corn, grain that can offer the opportunity not only to continue being the base of the national feeding, but also the raw material to produce bioethanol. The national yields are so diverse that they resemble to those of EUA or Africa, without a doubt this is indicative that is due to devise the way of increase the yields of this appraised culture, reach in average the six tons by hectare, improving the culture practice and access to fertilizers, water, transport, transparent markets and right prices. [Spanish] Los biocombustibles pueden ser obtenidos de la biomasa, son liquidos, solidos o gaseosos provenientes de material vegetal u origen animal, pueden obtenerse mediante procesos biologicos, quimicos o fisicos, y combinaciones de ellos. Se presentan como combustibles alternos en el sector transporte, debido principalmente al impacto positivo de la reduccion de gases de efecto invernadero (GEI) y al aumento de los precios del petroleo. En teoria el uso del bioetanol y los biocombustibles no produce emisiones de CO{sub 2} porque este se absorbe en la misma cantidad a traves de los cultivos que los generan, como el maiz y la cana de azucar. Mexico tiene deficit en la produccion de alimentos, principalmente maiz, grano que puede ofrecer la oportunidad no solo de continuar siendo la base de la alimentacion nacional, sino tambien la materia prima para producir bioetanol

  10. Chemical and nutritional values of maize and maize products ...

    African Journals Online (AJOL)

    Maize and maize products in selected grain markets within Kaduna, Nigeria, were obtained and investigated for proximate and mineral composition analysis using Atomic Absorption Spectrophotometer (AAS) and flame photometer. Proximate composition of maize and maize products were in the range of 11.6- 20 .0% ...

  11. RESOURCE ALLOCATION IN A MAIZE BREEDING PROGRAM FOR NATIVE RESISTANCE TO WESTERN CORN ROOTWORM

    Directory of Open Access Journals (Sweden)

    Ivan Brkić

    2012-06-01

    Full Text Available The objective of this study was to determine the optimum allocation of the number of plants sampled per plot and number of locations and years required for screening maize genotypes for reduced root damage caused by western corn rootworm (WCR larvae, major pest of maize in Croatia, Europe and in the USA. Field trials were conducted on two locations Eastern Croatia, a major maize production area with natural WCR occurrence under continuous maize growing conditions. The trials were set as an incomplete lattice block design in two replications in 2007, 2008 and 2009 including 128 genotypes from various maize gene-pools. Our results suggest that the effect of year and respective interactions including year were the most important factors in maize breeding programs for native resistance to WCR. Thus, screening germplasm for WCR resistance should be made in a multi-year experiment, but not necessarily as a multi-location experiment. Resource optimization should be done by reducing number of roots per plot to minimum 4 sampled plants due to small within-plot environmental variance.

  12. Molecular confirmation of Maize rayado fino virus as the Brazilian corn streak virus

    OpenAIRE

    Hammond,Rosemarie Wahnbaeck; Bedendo,Ivan Paulo

    2005-01-01

    Maize rayado fino virus (MRFV), present in various countries in Latin America, has shown similarities to corn streak virus that occurs in Brazil, regarding pathogenic, serological and histological characteristics. In the current report both virus were molecularly compared to confirm the similarities between them. MRFV was identified by nucleic acid hybridization in samples of maize tissues exhibiting symptoms of "corn stunt" disease, collected from two Brazilian States - São Paulo and Minas G...

  13. A Maize Inbred Exhibits Resistance Against Western Corn Rootwoorm, Diabrotica virgifera virgifera.

    Science.gov (United States)

    Castano-Duque, Lina; Loades, Kenneth W; Tooker, John F; Brown, Kathleen M; Paul Williams, W; Luthe, Dawn S

    2017-12-01

    Insect resistance against root herbivores like the western corn rootworm (WCR, Diabrotica virgifera virgifera) is not well understood in non-transgenic maize. We studied the responses of two American maize inbreds, Mp708 and Tx601, to WCR infestation using biomechanical, molecular, biochemical analyses, and laser ablation tomography. Previous studies performed on several inbreds indicated that these two maize genotypes differed in resistance to pests including fall armyworm (Spodoptera frugiperda) and WCR. Our data confirmed that Mp708 shows resistance against WCR, and demonstrates that the resistance mechanism is based in a multi-trait phenotype that includes increased resistance to cutting in nodal roots, stable root growth during insect infestation, constitutive and induced expression of known herbivore-defense genes, including ribosomal inhibitor protein 2 (rip2), terpene synthase 23 (tps23) and maize insect resistance cysteine protease-1 (mir1), as well high constitutive levels of jasmonic acid and production of (E)-β-caryophyllene. In contrast, Tx601 is susceptible to WCR. These findings will facilitate the use of Mp708 as a model to explore the wide variety of mechanisms and traits involved in plant defense responses and resistance to herbivory by insects with several different feeding habits.

  14. Organic Based Glutinous Corn (Zea maize Supplemented With Seaweeds Emulsion

    Directory of Open Access Journals (Sweden)

    Jayrome S. Butay

    2017-11-01

    Full Text Available The study was therefore design to generate scientific information that are vital for organic farming advocates as it uses natural organic farm inputs in the production of corn. It was conducted because of the insurmountable rising cost of inorganic fertilizers perspective the farmers have to look for alternative measures to sustain the profitability of their farming business by evaluating the efficacy of seaweeds emulsion (Carrageenan as nutrient supplement to organic fertilizer on glutinous corn production, a study was conducted at the Cagayan State University – Lal-lo, Cagayan from July 17 to September 25, 2016with the following treatments: T1- Control, T2 – 3 tons Organic Fertilizer, T3 - 1.5 liters Seaweeds Emulsion ha-1 , T4 - 3 liters Seaweeds Emulsion ha-1 , T5 - 4.5 liters Seaweeds Emulsion ha-1 and T6 - 6 liters Seaweeds Emulsion ha-1 arranged in Randomized Complete Block Design with three replications. The treatments have no significant effect on plant height. Application of seaweed emulsion affected the grain development as manifested by longer and heavier corn ear. Higher rates (3-6 li ha-1 proved to more efficient as indicated by the bigger ear, highest yield and ROI of 909.62 percent. The study revealed that 3 tons Organic Fertilizer with liters of seaweed emulsion improved glutinous corn production. Further study is recommended to validate the result and come up with a more reliable conclusion.

  15. Intercropping Maize With Legumes for Sustainable Highland Maize Production

    Directory of Open Access Journals (Sweden)

    Adirek Punyalue

    2018-02-01

    Full Text Available Residue burning to prepare soil for maize growing deprives the soil of both protective cover and organic matter, and it exacerbates environmental issues such as Southeast Asia's haze problem. This paper reports on a study that evaluated the effectiveness of maize/legume intercropping as an alternative to maize cultivation with residue burning. Cowpea (Vigna unguiculata, mung bean (V. radiata, rice bean (V. umbellata, and lablab (Lablab purpureus were sown into a standing maize crop 30 days before harvest, and the results were compared with a maize crop grown using residue burning as the method for land preparation at Pang Da Agricultural Station in Chiang Mai, Thailand, in a replicated trial conducted over 3 growing seasons from 2012 to 2014. Intercropping increased maize grain yield by 31–53% and left 70–170% more residue containing 113–230% more nitrogen than the maize sown after residue burning, depending on the legume, and decreased weed dry weight by two-thirds after 2 seasons. Soil biodiversity was enriched by the intercrops, with a doubling in the spore density of arbuscular mycorrhizal fungi in the root-zone soil and increased abundance, diversity (Shannon index, and richness of the soil macrofauna. The abundance of soil animals increased with crop residue dry weight (r = 0.90, P < 0.05 and nitrogen content (r = 0.98, P < 0.01. The effect of intercropping on maize grain yield and accumulation of residue and nitrogen were then confirmed in a participatory experiment involving farmers in 2 highland villages in the Phrao and Chiang Dao districts of Chiang Mai Province with maize and rice bean in 2015. The effects of maize/legume intercropping—increased nitrogen accumulation and crop residue, enhanced soil biodiversity, suppression of weeds, and protection of the soil surface, which enabled the maize to be sown without land clearing with fire—should all contribute to sustainable highland maize production.

  16. Production Systems and Potential Development of Corn in West Pasaman Districts

    Directory of Open Access Journals (Sweden)

    Yulmar Jastra

    2015-09-01

    Full Text Available Maize (Zea mays L. is the second national food crop after rice and its role is increasing in line increase of population, livestock operations, and development of raw material corn processing industry. This research is a descriptive qualitative and quantitative as well as done in stages, namely: pre -study in order neighbor information gathering and general condition of farmers in the districts of West Pasaman, intensive desk study on the extent of data and the development of hybrid corn and all information obtained from pre -study activities; observation, field survey. This study aims to: identify systems of maize production in West Pasaman, identify potential areas of development and analysis of maize farming, Prepare Corn Development Action Programme in West Pasaman. Age maize farmers in West Pasaman between 40-60 years old, with old school for 9 years and the number of family members of farmers 5. The highest maize production in West Pasaman district occurred in 2009 amounted to 364 287 tonnes with 44 793 ha of harvested area and productivity of 6.99 tonnes/ha, in 2010, a decline in production to 220 761 tonnes with a productivity of 6.3 tons /ha due to a decline in harvested area into 33 757 ha. And in 2011 the production of corn production back to normal by 286 078 tons / year with 44 360 ha of harvested area and productivity of 6.50 tonnes/ha. Potential land that can be used to achieve the 142 850 ha of maize farming dominated peat and mineral soil of each area of 7,550 ha and 16,550 ha. Of corn farming can provide a gain of Rp 8,860,000,-/ha . When the period of 4 months of the corn crop corn farmer income per month is Rp 2.215.000,-

  17. Field-Evolved Resistance to Bt Maize by Western Corn Rootworm

    Science.gov (United States)

    Gassmann, Aaron J.; Petzold-Maxwell, Jennifer L.; Keweshan, Ryan S.; Dunbar, Mike W.

    2011-01-01

    Background Crops engineered to produce insecticidal toxins derived from the bacterium Bacillus thuringiensis (Bt) are planted on millions of hectares annually, reducing the use of conventional insecticides and suppressing pests. However, the evolution of resistance could cut short these benefits. A primary pest targeted by Bt maize in the United States is the western corn rootworm Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae). Methodology/Principal Findings We report that fields identified by farmers as having severe rootworm feeding injury to Bt maize contained populations of western corn rootworm that displayed significantly higher survival on Cry3Bb1 maize in laboratory bioassays than did western corn rootworm from fields not associated with such feeding injury. In all cases, fields experiencing severe rootworm feeding contained Cry3Bb1 maize. Interviews with farmers indicated that Cry3Bb1 maize had been grown in those fields for at least three consecutive years. There was a significant positive correlation between the number of years Cry3Bb1 maize had been grown in a field and the survival of rootworm populations on Cry3Bb1 maize in bioassays. However, there was no significant correlation among populations for survival on Cry34/35Ab1 maize and Cry3Bb1 maize, suggesting a lack of cross resistance between these Bt toxins. Conclusions/Significance This is the first report of field-evolved resistance to a Bt toxin by the western corn rootworm and by any species of Coleoptera. Insufficient planting of refuges and non-recessive inheritance of resistance may have contributed to resistance. These results suggest that improvements in resistance management and a more integrated approach to the use of Bt crops may be necessary. PMID:21829470

  18. Impact of Cry3Bb1-expressing Bt maize on adults of the western corn rootworm, Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae).

    Science.gov (United States)

    Meissle, Michael; Hellmich, Richard L; Romeis, Jörg

    2011-07-01

    Genetically engineered maize producing insecticidal Cry3Bb1 protein from Bacillus thuringiensis (Bt) is protected from root damage by corn rootworm larvae. An examination was made to establish whether western corn rootworm (Diabrotica virgifera virgifera) adults are affected by Cry3Bb1-expressing maize (MON88017) when feeding on above-ground tissue. In laboratory bioassays, adult D. v. virgifera were fed for 7 weeks with silk, leaves or pollen from Bt maize or the corresponding near-isoline. Male, but not female, survival was reduced in the Bt-leaf treatment compared with the control. Female weight was lower when fed Bt maize, and egg production was reduced in the Bt-silk treatment. ELISA measurements demonstrated that beetles feeding on silk were exposed to higher Cry3Bb1 concentrations than beetles collected from Bt-maize fields in the United States. In contrast to silk and pollen, feeding on leaves resulted in high mortality and low fecundity. Females feeding on pollen produced more eggs than on silk. C:N ratios indicated that silk does not provide enough nitrogen for optimal egg production. Direct effects of Cry3Bb1 on adult beetles could explain the observed effects, but varietal differences between Bt and control maize are also possible. The impact of Bt maize on adult populations, however, is likely to be limited. Copyright © 2011 Society of Chemical Industry.

  19. genome-wide association and metabolic pathway analysis of corn earworm resistance in maize

    Science.gov (United States)

    Marilyn L. Warburton; Erika D. Womack; Juliet D. Tang; Adam Thrash; J. Spencer Smith; Wenwei Xu; Seth C. Murray; W. Paul Williams

    2018-01-01

    Maize (Zea mays mays L.) is a staple crop of economic, industrial, and food security importance. Damage to the growing ears by corn earworm [Helicoverpa zea (Boddie)] is a major economic burden and increases secondary fungal infections and mycotoxin levels. To identify biochemical pathways associated with native resistance mechanisms, a genome-wide...

  20. Timing clorpirifos + cypermethrin and indoxacarb applications to control European corn borer damage and fumonisin contamination in maize kernels.

    Science.gov (United States)

    Blandino, Massimo; Peila, Alessandro; Reyneri, Amedeo

    2010-02-01

    European corn borer (ECB) is the main maize pest in central and southern Europe and it promotes the infection of maize with Fusarium verticillioides, which is able to produce fumonisins. Field experiments were performed from 2006 to 2007 in northwestern Italy to determine the effects of the timing of insecticide applications on maize fungal ear rot and fumonisin contamination in natural infection conditions. Four application timings and two insecticides (clorpirifos + cypermethrin and indoxacarb) were compared each year. In both years, the treatments applied at the beginning of a consistent ECB flight activity and at the flight peak showed the best efficacy to control the insect damage on ears. Fungal ear rot and fumonisin contamination were clearly affected by ECB control. The efficacy of the best application timing to control fumonisin occurrence was 73% in 2006 and 84% in 2007. Earlier insecticide applications showed lower fumonisin contamination than treatments applied after the adult flight peak. The production of maize and maize-based foods with a low fumonisin content may be enhanced through correct insecticide application against the second ECB generation. The optimum timing of insecticides is between the beginning of a consistent adult flight activity and the flight peak.

  1. Ethylene Contributes to maize insect resistance1-Mediated Maize Defense against the Phloem Sap-Sucking Corn Leaf Aphid1[OPEN

    Science.gov (United States)

    Louis, Joe; Basu, Saumik; Varsani, Suresh; Castano-Duque, Lina; Jiang, Victoria; Williams, W. Paul; Felton, Gary W.; Luthe, Dawn S.

    2015-01-01

    Signaling networks among multiple phytohormones fine-tune plant defense responses to insect herbivore attack. Previously, it was reported that the synergistic combination of ethylene (ET) and jasmonic acid (JA) was required for accumulation of the maize insect resistance1 (mir1) gene product, a cysteine (Cys) proteinase that is a key defensive protein against chewing insect pests in maize (Zea mays). However, this study suggests that mir1-mediated resistance to corn leaf aphid (CLA; Rhopalosiphum maidis), a phloem sap-sucking insect pest, is independent of JA but regulated by the ET-signaling pathway. Feeding by CLA triggers the rapid accumulation of mir1 transcripts in the resistant maize genotype, Mp708. Furthermore, Mp708 provided elevated levels of antibiosis (limits aphid population)- and antixenosis (deters aphid settling)-mediated resistance to CLA compared with B73 and Tx601 maize susceptible inbred lines. Synthetic diet aphid feeding trial bioassays with recombinant Mir1-Cys Protease demonstrates that Mir1-Cys Protease provides direct toxicity to CLA. Furthermore, foliar feeding by CLA rapidly sends defensive signal(s) to the roots that trigger belowground accumulation of the mir1, signifying a potential role of long-distance signaling in maize defense against the phloem-feeding insects. Collectively, our data indicate that ET-regulated mir1 transcript accumulation, uncoupled from JA, contributed to heightened resistance to CLA in maize. In addition, our results underscore the significance of ET acting as a central node in regulating mir1 expression to different feeding guilds of insect herbivores. PMID:26253737

  2. Effects of application of corn straw on soil microbial community structure during the maize growing season.

    Science.gov (United States)

    Lu, Ping; Lin, Yin-Hua; Yang, Zhong-Qi; Xu, Yan-Peng; Tan, Fei; Jia, Xu-Dong; Wang, Miao; Xu, De-Rong; Wang, Xi-Zhuo

    2015-01-01

    This study investigated the influence of corn straw application on soil microbial communities and the relationship between such communities and soil properties in black soil. The crop used in this study was maize (Zea mays L.). The five treatments consisted of applying a gradient (50, 100, 150, and 200%) of shattered corn straw residue to the soil. Soil samples were taken from May through September during the 2012 maize growing season. The microbial community structure was determined using phospholipid fatty acid (PLFA) analysis. Our results revealed that the application of corn straw influenced the soil properties and increased the soil organic carbon and total nitrogen. Applying corn straw to fields also influenced the variation in soil microbial biomass and community composition, which is consistent with the variations found in soil total nitrogen (TN) and soil respiration (SR). However, the soil carbon-to-nitrogen ratio had no effect on soil microbial communities. The abundance of PLFAs, TN, and SR was higher in C1.5 than those in other treatments, suggesting that the soil properties and soil microbial community composition were affected positively by the application of corn straw to black soil. A Principal Component Analysis indicated that soil microbial communities were different in the straw decomposition processes. Moreover, the soil microbial communities from C1.5 were significantly different from those of CK (p soil and significant variations in the ratio of monounsaturated-to-branched fatty acids with different straw treatments that correlated with SR (p soil properties and soil microbial communities and that these properties affect these communities. The individual PLFA signatures were sensitive indicators that reflected the changes in the soil environment condition. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Aflatoxin levels in maize and maize products during the 2004 food ...

    African Journals Online (AJOL)

    Aflatoxin levels in maize and maize products during the 2004 food poisoning ... district were received at the National Public Health Laboratory Services (NPHLS). On analysis, they were found to be highly contaminated with aflatoxin B1.

  4. Evaluating different interrow distance between corn and soybean for optimum growth, production and nutritive value of intercropped forages.

    Science.gov (United States)

    Kim, Jeongtae; Song, Yowook; Kim, Dong Woo; Fiaz, Muhammad; Kwon, Chan Ho

    2018-01-01

    Maize fodder is being used as staple feed for livestock but it lacks protein and essential amino acids; lysine and tryptophan. Intercropping maize with leguminous soybean crop is promising technique under limited land resources of South Korea but it can only give considerable advantages when adequate distance is provided between corn and soybean rows. Main aim of present study was to find-out adequate distance between corn and soybean seeding rows for optimum growth, yield and nutritive value of intercropped forage. Different interrow distances between corn and soybean were evaluated under four treatments, viz. 1) Corn sole as positive control treatment 2) Zero cm between corn and soybean (control); 2) Five cm between corn and soybean; 3) 10 cm between corn and soybean, with three replicates under randomized block design. Findings depicted that height and number of corn stalks and ears were similar ( P  > 0.05) among different treatments. Numerically average corn ear height was decreased at zero cm distance. Dry matter percentage in all components; corn stalk, corn ear and soybean was also found not different ( P  > 0.05) but dry matter yield in component of corn ear was lower ( P  value, total digestible nutrient yield in intercropped corn was also found lower ( P  value of forage at wider interrow distance i.e. 5 cm between corn and soybean might be due to adequate interseed distance. Conclusively, pattern of corn and soybean seeding in rows at 5 cm distance was found suitable which provided adequate interrow distance to maintain enough mutual cooperation and decreased competition between both species for optimum production performance and nutritive value of intercropped forage.

  5. First report of Maize chlorotic mottle virus and maize (corn) lethal necrosis in Kenya

    Science.gov (United States)

    In September 2011, high incidence of a new maize (Zea mays L.) disease was reported at lower elevations (1900 masl) in the Longisa division of Bomet County, Southern Rift Valley of Kenya. Later the disease was noted in Bomet Central division, spreading into the neighboring Chepalungu and Narok South...

  6. Consumer preferences for maize products in urban Kenya.

    Science.gov (United States)

    De Groote, Hugo; Kimenju, Simon Chege

    2012-06-01

    New maize varieties have been biofortified with provitamin A, mainly a-carotene, which renders the grain yellow or orange. Unfortunately, many African consumers prefer white maize. The maize consumption patterns in Africa are, however, not known. To determine which maize products African consumers prefer to purchase and which maize preparations they prefer to eat. A survey of 600 consumers was conducted in Nairobi, Kenya, at three types of maize outlets: posho mills (small hammer mills), kiosks, and supermarkets. Clients of posho mills had lower incomes and less education than those of kiosks and supermarkets. The preferred maize product of the posho-mill clients was artisanal maize meal; the preferred product of the others was industrial maize meal. Maize is the preferred staple for lunch and dinner, eaten as a stiff porridge (ugali), followed by boiled maize and beans (githeri), regardless of socioeconomic background. For breakfast, only half the consumers prefer maize, mostly as a soft porridge (uji). This proportion is higher in low-income groups. Consumers show a strong preference for white maize over yellow, mostly for its organoleptic characteristics, and show less interest in biofortified maize. Maize is the major food staple in Nairobi, mostly eaten in a few distinct preparations. For biofortified yellow maize to be accepted, a strong public awareness campaign to inform consumers is needed, based on a sensory evaluation and the mass media, in particular on radio in the local language.

  7. Corn

    OpenAIRE

    Sherwood, Brianne; Hawks, Amanda

    2011-01-01

    We have so much corn right now it's coming out of our ears (great pun, right?). And it's SO incredibly cheap! This is probably because the US produces 42% of the world's corn! Most of it is used for animal feed, but other uses include exporting to other countries, human food, seed, and industrial uses such as ethanol production. Because there is so much corn available here in the U.S. You can find it in a lot more foods than you think. It's in peanut butter, snack foods, soft drinks, multivit...

  8. Fermentation Kinetic of Maize Straw-Gliricidia Feed Mixture Supplemented by Fermentable Carbohydrate Measured by In Vitro Gas Production

    Science.gov (United States)

    Yulistiani, D.; Nurhayati

    2018-02-01

    Utilization of crop by-products such as maize straw mixed with legume is expected to be able to overcome the limitation of forage availability during dry season and have similar nutritional value with grass. Addition of fermentable carbohydrate in this diet can be improved fermentability and reduced methane production. The objective of this study was to evaluate supplementation of ground corn grain or rice bran as fermentable carbohydrate in maize straw-gliricidiamixture. Treatment diets evaluated were: Maize straw + gliricidialeaf meal (Control/RO); Control + 10% ground maize grain (ROC); Control + 10% rice bran (RORB). Maize straw was chopped and ground then mixed with gliricidia leaf meal at ratio 60:40% DM. Maize straw-gliricidia mixture then supplemented either with ground corn grain or rice bran at 10% of DM basal diet (control). Sample was incubated for 48 hours, gas production was recorded at 4, 8,12, 16, 24, 36 and 48 hours. Study was conducted in randomized complete design. Results of the study showed that supplementation of fermentable carbohydrate from corn grain or rice bran was able to increased (Pfermentation and reduced methane production.

  9. Risk Adjusted Production Efficiency of Maize Farmers in Ethiopia: Implication for Improved Maize Varieties Adoption

    Directory of Open Access Journals (Sweden)

    Sisay Diriba Lemessa

    2017-09-01

    Full Text Available This study analyzes the technical efficiency and production risk of 862 maize farmers in major maize producing regions of Ethiopia. It employs the stochastic frontier approach (SFA to estimate the level of technical efficiencies of stallholder farmers. The stochastic frontier approach (SFA uses flexible risk properties to account for production risk. Thus, maize production variability is assessed from two perspectives, the production risk and the technical efficiency. The study also attempts to determine the socio-economic and farm characteristics that influence technical efficiency of maize production in the study area. The findings of the study showed the existence of both production risk and technical inefficiency in maize production process. Input variables (amounts per hectare such as fertilizer and labor positively influence maize output. The findings also show that farms in the study area exhibit decreasing returns to scale. Fertilizer and ox plough days reduce output risk while labor and improved seed increase output risk. The mean technical efficiency for maize farms is 48 percent. This study concludes that production risk and technical inefficiency prevents the maize farmers from realizing their frontier output. The best factors that improve the efficiency of the maize farmers in the study area include: frequency of extension contact, access to credit and use of intercropping. It was also realized that altitude and terracing in maize farms had influence on farmer efficiency.

  10. the influence of farmers' adoption behaviour on maize production ...

    African Journals Online (AJOL)

    p2333147

    The main cash crops grown in the country include coffee, sisal, cashew, cotton, tobacco ... Among these food crops, maize is the most important cereal food crop, and ... promoting recommended maize production practices in a package form.

  11. PROSPECTS OF CORN PRODUCTION DEVELOPMENT IN DRY LAND IN PAPUA PROVINCE

    Directory of Open Access Journals (Sweden)

    Afrizal Malik

    2016-01-01

    Full Text Available The development of dry land in the province of Papua were directed not only to commodities such as coffee, cocoa, and coconut but also for the development of upland rice, soybean, and corn. Corn has the largest composition for feed, industrial raw materials, edible oil, starch, and drinks. In agricultural development policy of Papua province, the government set the development of maize as one of the priority food commodities in addition to rice and soybeans. But productivity is less than 1.8 tons per hectare, while the results of the assessment of more than 10 tonnes per ha. This is due to the low productivity of yield improvement technologies (seeds, fertilizers are not yet fully mastered farmers and socioeconomic factors (a scarcity of capital. Need encouragement for improved productivity include Integrated Crop Management approaches in maize. The use of fertilizers such as Urea 250 kg + 100 kg SP-36 + KCl 100 kg per ha could increase the productivity of maize. There are 4,445,871 ha for maize development in Papua.

  12. Mapping of quantitative trait loci for resistance to fall armyworm and southwestern corn borer leaf-feeding damage in maize.

    Science.gov (United States)

    Fall armyworm (FAW), Spodoptera frugiperda (J. E. Smith), and southwestern corn borer (SWCB), Diatraea grandiosella Dyar are damaging insect pests of maize resulting in significant yield and economic losses. A previous study identified quantitative trait loci (QTL) that contribute to reduced leaf-fe...

  13. Neonicotinoid insecticide residues in surface water and soil associated with commercial maize (corn fields in southwestern Ontario.

    Directory of Open Access Journals (Sweden)

    Arthur Schaafsma

    Full Text Available Neonicotinoid insecticides have come under scrutiny for their potential unintended effects on non-target organisms, particularly pollinators in agro-ecosystems. As part of a larger study of neonicotinoid residues associated with maize (corn production, 76 water samples within or around the perimeter of 18 commercial maize fields and neighbouring apiaries were collected in 5 maize-producing counties of southwestern Ontario. Residues of clothianidin (mean = 2.28, max. = 43.60 ng/mL and thiamethoxam (mean = 1.12, max. = 16.50 ng/mL were detected in 100 and 98.7% of the water samples tested, respectively. The concentration of total neonicotinoid residues in water within maize fields increased six-fold during the first five weeks after planting, and returned to pre-plant levels seven weeks after planting. However, concentrations in water sampled from outside the fields were similar throughout the sampling period. Soil samples from the top 5 cm of the soil profile were also collected in these fields before and immediately following planting. The mean total neonicotinoid residue was 4.02 (range 0.07 to 20.30 ng/g, for samples taken before planting, and 9.94 (range 0.53 to 38.98 ng/g, for those taken immediately after planting. Two soil samples collected from within an conservation area contained detectable (0.03 and 0.11 ng/g concentrations of clothianidin. Of three drifted snow samples taken, the drift stratum containing the most wind-scoured soil had 0.16 and 0.20 ng/mL mainly clothianidin in the melted snow. The concentration was at the limit of detection (0.02 ng/mL taken across the entire vertical profile. With the exception of one sample, water samples tested had concentrations below those reported to have acute, chronic or sublethal effects to honey bees. Our results suggest that neonicotinoids may move off-target by wind erosion of contaminated soil. These results are informative to risk assessment models for other non-target species in maize

  14. Neonicotinoid Insecticide Residues in Surface Water and Soil Associated with Commercial Maize (Corn) Fields in Southwestern Ontario

    Science.gov (United States)

    Schaafsma, Arthur; Limay-Rios, Victor; Baute, Tracey; Smith, Jocelyn; Xue, Yingen

    2015-01-01

    Neonicotinoid insecticides have come under scrutiny for their potential unintended effects on non-target organisms, particularly pollinators in agro-ecosystems. As part of a larger study of neonicotinoid residues associated with maize (corn) production, 76 water samples within or around the perimeter of 18 commercial maize fields and neighbouring apiaries were collected in 5 maize-producing counties of southwestern Ontario. Residues of clothianidin (mean = 2.28, max. = 43.60 ng/mL) and thiamethoxam (mean = 1.12, max. = 16.50 ng/mL) were detected in 100 and 98.7% of the water samples tested, respectively. The concentration of total neonicotinoid residues in water within maize fields increased six-fold during the first five weeks after planting, and returned to pre-plant levels seven weeks after planting. However, concentrations in water sampled from outside the fields were similar throughout the sampling period. Soil samples from the top 5 cm of the soil profile were also collected in these fields before and immediately following planting. The mean total neonicotinoid residue was 4.02 (range 0.07 to 20.30) ng/g, for samples taken before planting, and 9.94 (range 0.53 to 38.98) ng/g, for those taken immediately after planting. Two soil samples collected from within an conservation area contained detectable (0.03 and 0.11 ng/g) concentrations of clothianidin. Of three drifted snow samples taken, the drift stratum containing the most wind-scoured soil had 0.16 and 0.20 ng/mL mainly clothianidin in the melted snow. The concentration was at the limit of detection (0.02 ng/mL) taken across the entire vertical profile. With the exception of one sample, water samples tested had concentrations below those reported to have acute, chronic or sublethal effects to honey bees. Our results suggest that neonicotinoids may move off-target by wind erosion of contaminated soil. These results are informative to risk assessment models for other non-target species in maize agro

  15. Analysis of Maize versus Ethanol Production in Nebraska, United States and International Agricultural Droughts: Lessons for Global Food Security

    Science.gov (United States)

    Boken, V.; Tenkorang, F.

    2012-04-01

    Nebraska is one of the eight main corn (maize) belt states of the United States. Maize is the major crop of Nebraska with an average annual production of about 38 million tons (about 12% of U.S. production), which contributes billions of dollars to the state's economy. The yield of maize has increased significantly over the past century - from 1.6 t/ha in 1900 to 10.4 t/ha in 2010. While the majority of maize (about 40%) is currently used for animal feed and ethanol production, only about six percent is exported. It is estimated that about one billion people accounting for about 15% population of the world live in chronic hunger because of low agricultural productivity and drought. Most of these people depend on the U.S. for grains including maize. If a greater quantity of maize is diverted to ethanol production, considerably less quantity of maize would be available for export to developing countries where it could be used for human consumption and to mitigate hunger and improve food security. This paper presents analysis of maize production in Nebraska for the past three decades and examines how its commercialization for ethanol production has affected its exports in the face of drought at an international level.

  16. Effect of organic fertilizers on maize production in Eastern Georgia

    Science.gov (United States)

    Jolokhava, Tamar; Kenchiashvili, Naira; Tarkhnishvili, Maia; Ghambashidze, Giorgi

    2016-04-01

    Maize remains to be the most important cereal crop in Georgia. Total area of arable land under cereal crops production equals to 184 thousands hectares (FAO statistical yearbook, 2014), from which maize takes the biggest share. Leading position of maize among other cereal crops is caused by its dual purpose as food and feed product. In Spite of a relatively high production of maize to other cereals there is still a high demand on it, especially as feed for animal husbandry. The same tendency is seen in organic production, where producers of livestock and poultry products require organically grown maize, the average yield of which is much less than those produced conventionally. Therefore, it is important to increase productivity of maize in organic farms. Current study aimed to improve maize yield using locally produced organic fertilizers and to compare them to the effect of mineral fertilizers. The study was carried out in Eastern Georgia under dry subtropical climate conditions on local hybrid of maize. This is the first attempt to use hybrid maize (developed with organic plant breeding method) in organic field trials in Georgia. The results shown, that grain yield from two different types of organic fertilizers reached 70% of the yields achieved with industrial mineral fertilizers. As on farm level differences between organic and conventional maize production are much severe, the results from the field trials seems to be promising for future improvement of organic cereal crop production.

  17. Determining the Feasibility of Yellow Corn Production in Mexico

    OpenAIRE

    Mejia, Maria; Peel, Derrell S.

    2009-01-01

    Mexico produces large quantities of white corn for human consumption. Yellow corn production, mostly used for feed, has increased lately. Driving factors include higher domestic demand (growing livestock industry) and greater international demand (ethanol industry). This study uses enterprise budgeting to determine the feasibility of producing yellow corn in Mexico.

  18. Production of ethanol and furfural from corn stover

    Science.gov (United States)

    Corn stover has potential for economical production of biofuels and value-added chemicals. The conversion of corn stover to sugars involves pretreatment and enzymatic hydrolysis. We have optimized hydrothermal, dilute H2SO4 and dilute H3PO4 pretreatments of corn stover for enzymatic saccharificati...

  19. Production of bioethanol from corn meal hydrolyzates

    Energy Technology Data Exchange (ETDEWEB)

    Ljiljana Mojovic; Svetlana Nikolic; Marica Rakin; Maja Vukasinovic [University of Belgrade, Belgrade (Serbia and Montenegro). Faculty of Technology and Metallurgy, Department of Biochemical Engineering and Biotechnology

    2006-09-15

    The two-step enzymatic hydrolysis of corn meal by commercially available {alpha}-amylase and glucoamylase and further ethanol fermentation of the obtained hydrolyzates by Saccharomyces cerevisiae yeast was studied. The conditions of starch hydrolysis such as substrate and enzyme concentration and the time required for enzymatic action were optimized taking into account both the effects of hydrolysis and ethanol fermentation. The corn meal hydrolyzates obtained were good substrates for ethanol fermentation by S. cerevisiae. The yield of ethanol of more than 80% (w/w) of the theoretical was achieved with a satisfactory volumetric productivity P (g/l h). No shortage of fermentable sugars was observed during simultaneous hydrolysis and fermentation. In this process, the savings in energy by carrying out the saccharification step at lower temperature (32{sup o}C) could be realized, as well as a reduction of the process time for 4 h. 31 refs., 5 figs., 2 tabs.

  20. [Corn.

    Science.gov (United States)

    Iowa History for Young People, 1993

    1993-01-01

    This theme issue focuses on corn. Iowa is the number one corn producing state in the United States. The featured articles in the issue concern, among other topics, Iowa children who live on farms, facts and statistics about corn, the Mesquakie Indians and corn shelling, corn hybrids, a short story, and the corn palaces of Sioux City. Activities,…

  1. Maize variety and method of production

    Science.gov (United States)

    Pauly, Markus; Hake, Sarah; Kraemer, Florian J

    2014-05-27

    The disclosure relates to a maize plant, seed, variety, and hybrid. More specifically, the disclosure relates to a maize plant containing a Cal-1 allele, whose expression results in increased cell wall-derived glucan content in the maize plant. The disclosure also relates to crossing inbreds, varieties, and hybrids containing the Cal-1 allele to produce novel types and varieties of maize plants.

  2. An outbreak of aflatoxin poisoning in dogs associated with aflatoxin B1-contaminated maize products.

    Science.gov (United States)

    Wouters, Angelica Terezinha Barth; Casagrande, Renata Assis; Wouters, Flademir; Watanabe, Tatiane Terumi Negrão; Boabaid, Fabiana Marques; Cruz, Cláudio Estêvão Farias; Driemeier, David

    2013-03-01

    An aflatoxicosis outbreak affected 65 dogs from 9 different farms after they were fed diets with cooked corn meal as a common ingredient. Of the dogs, 60 died. Numerous dogs died on additional farms, but those dogs were not included in the study. The farmers acquired the contaminated maize products, in the form of whole corn grain or as corn meal, from the same supplier. The corn product was mixed with meat that was left over from home or commercial rations to form corn polenta, which was fed to the dogs. Necropsy was performed on 3 dogs. Two of the dogs died after a few days of refusing food, showing anorexia, polydipsia, icteric mucous membranes, hematemesis, hematochezia, or melena, and bleeding of the skin, eye, ear, and mouth. The primary necropsy findings included jaundice, hemorrhages in several organs, and yellowish enlarged liver with enhanced lobular pattern. The dog that experienced chronic ascites had a yellowish liver with reduced volume, irregular surface, and increased consistency. The main histological findings included hepatocyte fatty degeneration, biliary duct hyperplasia, cholestasis and, in the chronic case, hepatic fibrosis. High-performance liquid chromatography analysis of the corn meal from 2 affected farms revealed 1,640 ppb and 1,770 ppb of aflatoxin B1, respectively. The current study demonstrates an additional way that dogs can be exposed to, poisoned, and killed by aflatoxin.

  3. Maize germplasm of eastern Croatia with native resistance to western corn rootworm (Diabrotica virgifera virgifera LeConte

    Directory of Open Access Journals (Sweden)

    Brkić Andrija

    2017-01-01

    Full Text Available The western corn rootworm (Diabrotica virgifera virgifera LeConte; WCR is a serious maize pest in Croatia. The species was first registered in Europe in the early 1990s and since then became one of the most dangerous maize pests, especially in parts of Central and Southeast Europe. Larvae that feed on the maize roots cause the most serious damages in maize fields. Management of this pest is difficult and expensive, with possible serious impact on the environment. Native (or host-plant resistance of maize against WCR could provide new economically and ecologically sustainable options in WCR management. Main goal of this study was to assess the variability of maize germplasm, correlations among resistance traits, and detect potential sources of resistance that could be used in breeding programs in order to develop hybrids with higher level of resistance against WCR. To our knowledge, the first native resistant hybrid is yet to be registered. Results showed great variability of estimated germplasm. Effect of the genotype was significant in all environments, as well as many interactions between genotype and the environment. Significant interactions emphasize the importance of the environment in WCR native resistance research. Significant positive correlations among all traits were detected. Several inbred lines were selected as a potentially useful germplasm for resistance breeding programs.

  4. Maize production in mid hills of Nepal: from food to feed security

    OpenAIRE

    Krishna Prasad Timsina; Yuga Nath Ghimire; Jeevan Lamichhane

    2016-01-01

    This study was undertaken in 2016 to analyze the production and utilization of maize in Nepal. Sixty maize growers from Kavre and Lamjung districts were selected using purposive, cluster and simple random sampling techniques. Similarly, six feed industries and five maize experts from Chitwan district were also interviewed. Study shows 56% of the total areas were used for maize production and 50% of the maize areas were covered by hybrid maize. There was no practice of contract maize productio...

  5. Maize bush stunt and corn stunt: Diseases of corn caused by molicutes/ Enfezamentos vermelho e pálido: Doenças em milho causadas por molicutes

    Directory of Open Access Journals (Sweden)

    Nelson Sidnei Massola Júnior

    2001-05-01

    Full Text Available Maize Bushy Stunt and Corn Stunt are diseases of corn caused respectively by a phytoplasma (maize bushy stunt phytoplasma and by Spiroplasma kunkelii. Both agents are restricted to the floem vessels of diseased plants. The leafhopper Dalbulus maidis is the vector of the diseases. The diseases are very harmfull to corn crops and can cause severe losses. Their importance increased very much in the last years mainly due to the continuous crops, which allow the perpetuation of corn, pathogens and vector over the year. Diseased plants show shortening, redening or yellowing and excessive proliferation of ears, among others symptoms. However, symptoms are variable according to the causal agent, environmental conditions and corn genotype. Correct diagnosis of the diseases has been reached with ELISA (“enzyme-linked immunosorbent assay” and PCR (“polymerase chain reaction”. The use of resistant genotypes of corn is the main strategy of control of the diseases.Os enfezamentos vermelho e pálido são doenças do milho causadas, respectivamente, por um fitoplasma (“maize bushy stunt phytoplasma” e pelo Spiroplasma kunkelii, organismos restritos ao floema das plantas infectadas. Ambas são transmitidas pela cigarrinha Dalbulus maidis. São doenças bastante destrutivas, podendo causar sérios prejuízos aos agricultores. A importância dessas doenças aumentou muito nos últimos anos, devido principalmente aos cultivos “safrinha”, que perpetuam o milho, os patógenos e o vetor no campo durante o ano todo. As plantas doentes exibem redução de crescimento, avermelhamento ou amarelecimento, proliferação excessiva de espigas pequenas e improdutivas, além de outros sintomas. No entanto, esses sintomas dependem do agente causal, condições climáticas e genótipo do milho. A diagnose correta tem sido feita por testes de ELISA (“enzyme-linked immunosorbent assay” e por PCR (“polymerase chain reaction”, devido à complexidade da

  6. The influence of farmers\\' adoption behaviour on maize production ...

    African Journals Online (AJOL)

    This study was therefore designed to determine the contribution of farmers\\' adoption of recommended maize production practices, namely maize varieties, seed spacing, fertilization and weeding on production efficiency in order to assess the soundness of the advice given to farmers. The research was conducted in the ...

  7. Net Farm Income Analysis of Maize Production in Gwagwalada Area ...

    African Journals Online (AJOL)

    Net Farm Income Analysis of Maize Production in Gwagwalada Area Council of Federal Capital Territory, Nigeria. OO Alabi, AAA Coker, ME Idegbesor. Abstract. This study examined net farm income of maize production in Gwagwalada Area Council of Federal Capital Territory. The specific objectives are to: identify the ...

  8. The response of maize production in Kenya to economic incentives

    Directory of Open Access Journals (Sweden)

    Onono, P.A.,

    2013-06-01

    Full Text Available Agricultural development policy in Kenya has emphasised the use of incentives towards increased production and therefore self-sufficiency in maize which is a basic staple for most households. The channels used to provide incentives to maize farmers over the years include setting higher producer prices; subsidisation of inputs; provision of agricultural credit, research and extension services; construction and maintenance of roads, development of irrigation and water systems; legislative, institutional and macroeconomic reforms. Despite these efforts outputof maize has remained below domestic requirements in most years and the country continues to rely on imports to meet the deficits. Studies have assessed the responsiveness of maize to output price and reported inelastic responses and have recommended policies targeting non-price incentives to complement prices for the required increased production of maize. The studies, however, did not analyse the influence of the non-price incentives on the production of the crop. The findings of those studies are therefore deficient in explaining the relative importance of different non-price incentives and how they complement prices in influencing maize production in Kenya. This study investigated the response of maize production to both price and non-price incentives. The aim of this study was to ascertain the relative importance of non-price factors in influencing production of the crops as well as complementarity between price and non-price incentives. The findings show that maize production responds positively to its output price, development expenditures in agriculture, maize sales to marketing boards, growth in per capita GDP, liberalisation and governance reforms. However, maize production responds negatively to fertiliser price and unfavourable weather conditions. The response of maize output to its price is lower with rising inflation and grain market liberalisation.

  9. Climate change impacts on corn phenology and productivity

    Science.gov (United States)

    Climate is changing around the world and will impact future production of all food and feed crops. Corn is no exception to these impacts and to ensure a future supply of this vital crop we must begin to understand how climate impacts both the phenological development of corn and the productivity. Te...

  10. Assessment of fitness costs in Cry3Bb1 resistant and susceptible western corn rootworm (Coleoptera:Chrysomelidae) laboratory colonies

    Science.gov (United States)

    Maize production in the United States is dominated by plants genetically modified with transgenes from Bacillus thuringiensis (Bt). Varieties of Bt maize expressing Cry3Bb endotoxins that specifically target corn rootworms (genus Diabrotica) have proven highly efficacious. Howeve...

  11. Evaluating Terra MODIS Satellite Sensor Data Products for Maize ...

    African Journals Online (AJOL)

    Evaluating Terra MODIS Satellite Sensor Data Products for Maize Yield Estimation in South Africa. C Frost, N Thiebaut, T Newby. Abstract. The Free State Province of the Republic of South Africa contains some of the most important maize-producing areas in South Africa. For this reason this province has also been selected ...

  12. Climate Change and Maize Production: Empirical Evidence from ...

    African Journals Online (AJOL)

    Michael Madukwe

    Time series data on aggregate maize production, fertilizer use, .... The maize response model (eqn 3) was estimated using the time series data for ... The R. 2 value obtained from the equation is 0.534. This further indicates that aggregate total.

  13. Effect of Organic Amendments and Chemical Fertilization in Production of Corn (Zea Mays L.

    Directory of Open Access Journals (Sweden)

    Fabio Emilio Forero Ulloa

    2014-11-01

    Full Text Available Corn is grown in 135 countries, and because of its uses and nutritional benefits is the world's most important cereal. In Colombia it is grown in various agro-ecological conditions of production. The bagasse is an organic residue resulting from the grinding of sugar cane (Saccharum officinarum L., used for the production of jaggery (solid resulting of boiling and evaporation of the juice from sugar cane, which can be used as an amendment and is a soil conditioner, as a rich source of phosphorus, calcium and nitrogen. The aim of the research was to evaluate the effect of bagasse against the application of other organic sources and chemical fertilization in maize, variety ICA-V-305. For this, a completely random statistical design with four treatments and absolute control was established. Results were subjected to analysis of variance and Tukey comparison test. Applying Bagasse + Abimgra® produced the greatest number of ears of corn, while the use of only bagasse, presented the second best results in terms of number of grains / ear and weight of 100 grains of corn, therefore bagasse becomes , through time, an important option as organic amendment, which would favor the production of corn, and an option as organic fertilizer.

  14. Quantitative Trait Loci Mapping of Western Corn Rootworm (Coleoptera: Chrysomelidae) Host Plant Resistance in Two Populations of Doubled Haploid Lines in Maize (Zea mays L.).

    Science.gov (United States)

    Bohn, Martin O; Marroquin, Juan J; Flint-Garcia, Sherry; Dashiell, Kenton; Willmot, David B; Hibbard, Bruce E

    2018-02-09

    Over the last 70 yr, more than 12,000 maize accessions have been screened for their level of resistance to western corn rootworm, Diabrotica virgifera virgifera (LeConte; Coleoptera: Chrysomelidae), larval feeding. Less than 1% of this germplasm was selected for initiating recurrent selection or other breeding programs. Selected genotypes were mostly characterized by large root systems and superior root regrowth after root damage caused by western corn rootworm larvae. However, no hybrids claiming native (i.e., host plant) resistance to western corn rootworm larval feeding are currently commercially available. We investigated the genetic basis of western corn rootworm resistance in maize materials with improved levels of resistance using linkage disequilibrium mapping approaches. Two populations of topcrossed doubled haploid maize lines (DHLs) derived from crosses between resistant and susceptible maize lines were evaluated for their level of resistance in three to four different environments. For each DHL topcross an average root damage score was estimated and used for quantitative trait loci (QTL) analysis. We found genomic regions contributing to western corn rootworm resistance on all maize chromosomes, except for chromosome 4. Models fitting all QTL simultaneously explained about 30 to 50% of the genotypic variance for root damage scores in both mapping populations. Our findings confirm the complex genetic structure of host plant resistance against western corn rootworm larval feeding in maize. Interestingly, three of these QTL regions also carry genes involved in ascorbate biosynthesis, a key compound we hypothesize is involved in the expression of western corn rootworm resistance. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Assessment of Inheritance and Fitness Costs Associated with Field-Evolved Resistance to Cry3Bb1 Maize by Western Corn Rootworm.

    Science.gov (United States)

    Paolino, Aubrey R; Gassmann, Aaron J

    2017-05-11

    The western corn rootworm, Diabrotica virgifera virgifera LeConte, is among the most serious insect pests of maize in North America. One strategy used to manage this pest is transgenic maize that produces one or more crystalline (Cry) toxins derived from the bacterium Bacillus thuringiensis (Bt). To delay Bt resistance by insect pests, refuges of non-Bt maize are grown in conjunction with Bt maize. Two factors influencing the success of the refuge strategy to delay resistance are the inheritance of resistance and fitness costs, with greater delays in resistance expected when inheritance of resistance is recessive and fitness costs are present. We measured inheritance and fitness costs of resistance for two strains of western corn rootworm with field-evolved resistance to Cry3Bb1 maize. Plant-based and diet-based bioassays revealed that the inheritance of resistance was non-recessive. In a greenhouse experiment, in which larvae were reared on whole maize plants in field soil, no fitness costs of resistance were detected. In a laboratory experiment, in which larvae experienced intraspecific and interspecific competition for food, a fitness cost of delayed larval development was identified, however, no other fitness costs were found. These findings of non-recessive inheritance of resistance and minimal fitness costs, highlight the potential for the rapid evolution of resistance to Cry3Bb1 maize by western corn rootworm, and may help to improve resistance management strategies for this pest.

  16. Assessment of Inheritance and Fitness Costs Associated with Field-Evolved Resistance to Cry3Bb1 Maize by Western Corn Rootworm

    Directory of Open Access Journals (Sweden)

    Aubrey R. Paolino

    2017-05-01

    Full Text Available The western corn rootworm, Diabrotica virgifera virgifera LeConte, is among the most serious insect pests of maize in North America. One strategy used to manage this pest is transgenic maize that produces one or more crystalline (Cry toxins derived from the bacterium Bacillus thuringiensis (Bt. To delay Bt resistance by insect pests, refuges of non-Bt maize are grown in conjunction with Bt maize. Two factors influencing the success of the refuge strategy to delay resistance are the inheritance of resistance and fitness costs, with greater delays in resistance expected when inheritance of resistance is recessive and fitness costs are present. We measured inheritance and fitness costs of resistance for two strains of western corn rootworm with field-evolved resistance to Cry3Bb1 maize. Plant-based and diet-based bioassays revealed that the inheritance of resistance was non-recessive. In a greenhouse experiment, in which larvae were reared on whole maize plants in field soil, no fitness costs of resistance were detected. In a laboratory experiment, in which larvae experienced intraspecific and interspecific competition for food, a fitness cost of delayed larval development was identified, however, no other fitness costs were found. These findings of non-recessive inheritance of resistance and minimal fitness costs, highlight the potential for the rapid evolution of resistance to Cry3Bb1 maize by western corn rootworm, and may help to improve resistance management strategies for this pest.

  17. Phenology and biomass production of adapted and non-adapted tropical corn populations in Central Iowa

    Science.gov (United States)

    Biofuel production in the Midwestern United States has largely focused on corn (Zea mays L.) grain for ethanol production and more recently, corn stover for lignocellulosic ethanol. As an alternative to conventional corn, tropical corn populations have been evaluated. Tropical corn is the term used ...

  18. Infection rates and comparative population dynamics of Peregrinus maidis (Hemiptera: Delphacidae) on corn plants with and without symptoms of maize mosaic virus (Rhabdoviridae: Nucleorhabdovirus) infection.

    Science.gov (United States)

    Higashi, C H V; Bressan, A

    2013-10-01

    We examined the population dynamics of the corn planthopper Peregrinus maidis (Ashmead) (Hemiptera: Delphacidae) throughout a cycle of corn (Zea mays L.) production on plants with or without symptoms of maize mosaic virus (MMV) (Rhabdoviridae: Nucleorhabdovirus) infection. Our results indicate that the timing of MMV plant infection greatly influenced the planthopper's host plant colonization patterns. Corn plants that expressed symptoms of MMV infection early in the crop cycle (28 d after planting) harbored, on average, 40 and 48% fewer planthoppers than plants that expressed symptoms of MMV infection later in the crop cycle (49 d after planting) and asymptomatic plants, respectively. We also observed a change in the number of brachypterous (short-wing type) and macropterous (long-wing type) winged forms produced; plants expressing early symptoms of MMV infection harbored, on average, 41 and 47% more of the brachypterous form than plants with late infections of MMV and plants with no symptoms of MMV, respectively. Furthermore, we determined the rates of MMV-infected planthoppers relative to their wing morphology (macropterous or brachypterous) and gender. MMV infection was 5 and 12% higher in females than in males in field and greenhouse experiments, respectively; however, these differences were not significantly different. This research provides evidence that MMV similarly infects P. maidis planthoppers regardless of the gender and wing morphotype. These results also suggest that the timing of symptom development greatly affects the population dynamics of the planthopper vector, and likely has important consequences for the dynamics of the disease in the field.

  19. Forecasting corn production in Serbia using ARIMA model

    Directory of Open Access Journals (Sweden)

    Ilić Ivana

    2016-01-01

    Full Text Available Agricultural crop production is closely related to climate, as a decisive success factor. Temperature fluctuations and changes in the volume of precipitation are the main factors affecting the growth and development of crops, and, ultimately, the quantity produced. Corn is the most common crop necessary to provide for domestic needs, and a strategic product for export. Production of corn in the period from 1947 to 2014 in Serbia had an oscillatory trend, with significant jumps and falls in production. The subject of this paper is the forecasting of future trends in corn production in Serbia. Building on the subject, the purpose of this paper is to create the model for forecasting future corn production and establishing its trends.

  20. Maize production in the central Kenya highlands using cattle ...

    African Journals Online (AJOL)

    Mo

    effective in the production of maize, compared to singular application of manures (5 t ha-1) and mineral fertilizer alone applied at rates below ...... A Handbook of Methods, 2nd. Edition. ... Manure management in the Kenya highlands: Practices.

  1. Evaluating the production of Ganoderma mushroom on corn cobs

    African Journals Online (AJOL)

    SAM

    2014-05-28

    May 28, 2014 ... Full Length Research Paper. Evaluating the production ... Key words: Ganoderma, corn cobs, substrate, mushrooms, sawdust, basidiocarp. INTRODUCTION .... those which have high lignin and low cellulose. This is because ...

  2. Utilization of corn residues for production of the polysaccharide schizophyllan

    Science.gov (United States)

    Abundant corn residues include fiber from wet milling operations and distillers' dried grains from dry grind ethanol plants. Biorefineries of the future will utilize such residues for the production of valuable bioproducts, particularly those traditionally produced from fossil fuels. Schizophyllan...

  3. Economic cost: Effectiveness of different nitrogen application in the production of corn on chernozems soil

    Directory of Open Access Journals (Sweden)

    Živanović Ljubiša

    2015-01-01

    Full Text Available The aim of this study is to determine the optimum quantity of nitrogen applied in corn production at which maximum profit is achieved. Optimal nitrogen application is important for two main reasons: first for achieving maximum profitability in the production of maize and other is to avoid environmental pollution as the nitrogen is one of the main polluters. In the three-year period (2005 - 2007 were performed research on the effects of nitrogen quantity (control - without fertilization, PKNfon, PKN60, PKN120 and PKN180 and hybrids of different vegetation length (ZPSC 434 ZPSC ZPSC 578 and 677 on yield and profitability. Increasing application of nitrogen tended to raise grain yield by 9.9 - 13.5%. The lowest average corn grain yield (9.49 t ha-1 was registered with the hybrid ZP 434. It was somewhat higher (9.75 t ha-1 with the hybrid ZP 578 and the highest corn grain yield (10.03 t ha-1 with ZP 677. Study shows that highest yield is not always most profitable. In production year with good water supply (2005 highest profit is achieved with moderate use of nitrogen (60 kg ha-1. In draught production years (2006 and 2007 highest profit was achieved with application of 60 to 120 kg ha-1.

  4. Compositional variability of nutrients and phytochemicals in corn after processing.

    Science.gov (United States)

    Prasanthi, P S; Naveena, N; Vishnuvardhana Rao, M; Bhaskarachary, K

    2017-04-01

    The result of various process strategies on the nutrient and phytochemical composition of corn samples were studied. Fresh and cooked baby corn, sweet corn, dent corn and industrially processed and cooked popcorn, corn grits, corn flour and corn flakes were analysed for the determination of proximate, minerals, xanthophylls and phenolic acids content. This study revealed that the proximate composition of popcorn is high compared to the other corn products analyzed while the mineral composition of these maize products showed higher concentration of magnesium, phosphorus, potassium and low concentration of calcium, manganese, zinc, iron, copper, and sodium. Popcorn was high in iron, zinc, copper, manganese, sodium, magnesium and phosphorus. The xanthophylls lutein and zeaxanthin were predominant in the dent corn and the total polyphenolic content was highest in dent corn while the phenolic acids distribution was variable in different corn products. This study showed preparation and processing brought significant reduction of xanthophylls and polyphenols.

  5. The potential of residues of furfural and biogas as calcareous soil amendments for corn seed production.

    Science.gov (United States)

    Zhao, Yunchen; Yan, Zhibin; Qin, Jiahai; Ma, Zhijun; Zhang, Youfu; Zhang, Li

    2016-04-01

    Intensive corn seed production in Northwest of China produced large amounts of furfural residues, which represents higher treatment cost and environmental issue. The broad calcareous soils in the Northwest of China exhibit low organic matter content and high pH, which led to lower fertility and lower productivity. Recycling furfural residues as soil organic and nutrient amendment might be a promising agricultural practice to calcareous soils. A 3-year field study was conducted to evaluate the effects of furfural as a soil amendment on corn seed production on calcareous soil with compared to biogas residues. Soil physical-chemical properties, soil enzyme activities, and soil heavy metal concentrations were assessed in the last year after the last application. Corn yield was determined in each year. Furfural residue amendments significantly decreased soil pH and soil bulk density. Furfural residues combined with commercial fertilizers resulted in the greater cumulative on soil organic matter, total phosphorus, available phosphorus, available potassium, and cation exchange capacity than that of biogas residue. Simultaneously, urease, invertase, catalase, and alkaline phosphatase increased even at the higher furfural application rates. Maize seed yield increased even with lower furfural residue application rates. Furfural residues resulted in lower Zn concentration and higher Cd concentration than that of biogas residues. Amendment of furfural residues led to higher soil electrical conductivity (EC) than that of biogas residues. The addition of furfural residues to maize seed production may be considered to be a good strategy for recycling the waste, converting it into a potential resource as organic amendment in arid and semi-arid calcareous soils, and may help to reduce the use of mineral chemical fertilizers in these soils. However, the impact of its application on soil health needs to be established in long-term basis.

  6. Effects of temperature changes on maize production in Mozambique

    Science.gov (United States)

    Harrison, L.; Michaelsen, J.; Funk, Chris; Husak, G.

    2011-01-01

    We examined intraseasonal changes in maize phenology and heat stress exposure over the 1979-2008 period, using Mozambique meteorological station data and maize growth requirements in a growing degree-day model. Identifying historical effects of warming on maize growth is particularly important in Mozambique because national food security is highly dependent on domestic food production, most of which is grown in already warm to hot environments. Warming temperatures speed plant development, shortening the length of growth periods necessary for optimum plant and grain size. This faster phenological development also alters the timing of maximum plant water demand. In hot growing environments, temperature increases during maize pollination threaten to make midseason crop failure the norm. In addition to creating a harsher thermal environment, we find that early season temperature increases have caused the maize reproductive period to start earlier, increasing the risk of heat and water stress. Declines in time to maize maturation suggest that, independent of effects to water availability, yield potential is becoming increasingly limited by warming itself. Regional variations in effects are a function of the timing and magnitude of temperature increases and growing season characteristics. Continuation of current climatic trends could induce substantial yield losses in some locations. Farmers could avoid some losses through simple changes to planting dates and maize varietal types.

  7. Utilizing protein-lean coproducts from corn containing recombinant pharmaceutical proteins for ethanol production.

    Science.gov (United States)

    Paraman, Ilankovan; Moeller, Lorena; Scott, M Paul; Wang, Kan; Glatz, Charles E; Johnson, Lawrence A

    2010-10-13

    Protein-lean fractions of corn (maize) containing recombinant (r) pharmaceutical proteins were evaluated as a potential feedstock to produce fuel ethanol. The levels of residual r-proteins in the coproduct, distillers dry grains with solubles (DDGS), were determined. Transgenic corn lines containing recombinant green fluorescence protein (r-GFP) and a recombinant subunit vaccine of Escherichia coli enterotoxin (r-LTB), primarily expressed in endosperm, and another two corn lines containing recombinant human collagen (r-CIα1) and r-GFP, primarily expressed in germ, were used as model systems. The kernels were either ground and used for fermentation or dry fractionated to recover germ-rich fractions prior to grinding for fermentation. The finished beers of whole ground kernels and r-protein-spent endosperm solids contained 127-139 and 138-155 g/L ethanol concentrations, respectively. The ethanol levels did not differ among transgenic and normal corn feedstocks, indicating the residual r-proteins did not negatively affect ethanol production. r-Protein extraction and germ removal also did not negatively affect fermentation of the remaining mass. Most r-proteins were inactivated during the mashing process used to prepare corn for fermentation. No functionally active r-GFP or r-LTB proteins were found after fermentation of the r-protein-spent solids; however, a small quantity of residual r-CIα1 was detected in DDGS, indicating that the safety of DDGS produced from transgenic grain for r-protein production needs to be evaluated for each event. Protease treatment during fermentation completely hydrolyzed the residual r-CIα1, and no residual r-proteins were detectable in DDGS.

  8. Breeding for Increased Water Use Efficiency in Corn (Maize) Using a Low-altitude Unmanned Aircraft System

    Science.gov (United States)

    Shi, Y.; Veeranampalayam-Sivakumar, A. N.; Li, J.; Ge, Y.; Schnable, J. C.; Rodriguez, O.; Liang, Z.; Miao, C.

    2017-12-01

    Low-altitude aerial imagery collected by unmanned aircraft systems (UAS) at centimeter-level spatial resolution provides great potential to collect high throughput plant phenotyping (HTP) data and accelerate plant breeding. This study is focused on UAS-based HTP for breeding increased water use efficiency in corn in eastern Nebraska. The field trail is part of an effort by the Genomes to Fields consortium effort to grow and phenotype many of the same corn (maize) hybrids at approximately 40 locations across the United States and Canada in order to stimulate new research in crop modeling, the development of new plant phenotyping technologies and the identification of genetic loci that control the adaptation of specific corn (maize) lines to specific environments. It included approximately 250 maize hybrids primary generated using recently off patent material from major seed companies. These lines are the closest material to what farmers are growing today which can be legally used for research purposes and genotyped by the public sector. During the growing season, a hexacopter equipped with a multispectral and a RGB cameras was flown and used to image this 1-hectare field trial near Mead, NE. Sensor data from the UAS were correlated directly with grain yield, measured at the end of the growing season, and were also be used to quantify other traits of interest to breeders including flowering date, plant height, leaf orientation, canopy spectral, and stand count. The existing challenges of field data acquisition (to ensure data quality) and development of effective image processing algorithms (such as detecting corn tassels) will be discussed. The success of this study and others like it will speed up the process of phenotypic data collection, and provide more accurate and detailed trait data for plant biologists, plant breeders, and other agricultural scientists. Employing advanced UAS-based machine vision technologies in agricultural applications have the potential

  9. Quantitative trait loci mapping of western corn rootworm (Coleoptera: Chrysomelidae) host plant resistance in two populations of doubled haploid lines in maize (Zea mays L.)

    Science.gov (United States)

    Over the last 70 years, more than 12,000 maize accessions have been screened for their level of resistance to western corn rootworm, Diabrotica virgifera virgifera LeConte, larval feeding. Less than 1% of this germplasm was selected for initiating recurrent selection or other breeding programs. Sele...

  10. Carbaryl residues in maize and processed products

    International Nuclear Information System (INIS)

    Qureshi, M.J.; Sattar, A. Jr.; Naqvi, M.H.

    1981-01-01

    Carbaryl residues in two local maize varieties were determined using a colorimetric method. No significant differences were observed for residues of the two varieties which ranged between 12.0 to 13.75 mg/kg in the crude oil, and averaged 1.04 and 0.67 mg/kg in the flour and cake respectively. In whole maize plants, carbaryl residues declined to approximately 2 mg/kg 35 days after treatment. Cooking in aqueous, oil or aqueous-oil media led to 63-83% loss of carbaryl residues, after 30 minutes. (author)

  11. The possibility of drought risk reduction in corn production

    Directory of Open Access Journals (Sweden)

    Pajić Nemanja

    2016-01-01

    Full Text Available Weather derivatives are contemporary instruments for insurance risk of drought in agricultural production. Corn production is particularly sensitive to this risk, and the amount of the yield of this crop is in significant correlation with the July-August rainfall amount. Oscillations of production output, caused by the risk of drought, are reflected directly on the fluctuations of the financial result. The application of weather derivatives may decrease the variability of the mentioned economic parameter in corn production. In the investigated example of corn production, simulating the application of the weather option the coefficient of variation of realized financial results decreased by 9.64% compared to the version without the insured risk. At the same time, using the analysed insurance instrument, the risk of achieving a negative financial result is eliminated.

  12. Returns, productivity and constraints analyses of cassava/maize ...

    African Journals Online (AJOL)

    The study was conducted in Isi-Uzo LGA of Enugu State, and evaluated the productivity and profitability of cassava/maize/melon mixed cropping with the aim to determine the degree and direction of influence of the production factors and identification of constraints militating against the enterprise. Multistage and purposive ...

  13. Effects Of Agricultural Extension On Cassava And Maize Production ...

    African Journals Online (AJOL)

    This study was carried out to assess the effects of agricultural extension on food production in Abak Agricultural zone of Akwa Ibom state. Specifically, the effect was measured using the productivity of small-scale maize and cassava farmers between the years 2004 and 2005. Data for the study were collected from 108 ...

  14. Biodiesel production from corn oil by transesterification process

    International Nuclear Information System (INIS)

    Khan, N.A.; Dessouky, H.

    2009-01-01

    There is much political demand and economic pressure to convert agricultural surpluses into material, such as motor fuel, in which the world is deficient. Transport industry is primary consumer of crude oil. Due to scarcity of known petroleum reserves, the possible alternative fuel for use in present engine technology is biofuels. Europe, USA and Brazil are successfully using biofuels. Biofuels causes less environmental pollution as compared to normal petro fuels. As a fuel, ethanol (gasohol) is used in internal combustion engine while methyester (Biodiesel) is used in diesel engines with same or better performance as compared to petro fuels. Corn is very valuable crop with numerous industrial applications, and is used in more than 300 modern industries, including the manufacture of textiles, paper, adhesives, insecticides, paints, soaps, explosives and many more. Presently the biggest source of ethanol production is from corn (produced by USA). Edible oil can also be extracted from corn which is normally used for cooking and it can be used for biodiesel production. Many countries are experimenting on fats and oil to get feasible data for production of biodiesel. Presently USA prefer to use soybean oil as raw material for commercial production of biodiesel while in Europe rapeseed oil is preferred, so therefore, it depends upon the availability of raw material in particular area and may change from location to location. In Pakistan we started with corn oil to produce biodiesel by transesterification method. In present study different design parameters such as effect of temperature, catalyst concentration, molar ratio, and Stirrer speed were founded for better conversion of neat and used corn oil into biodiesel. The optimum parameters proposed for neat corn oil are 0.5% of catalyst based on weight of corn oil, temperature between 50 deg. C to 60 deg. C, reaction time 15 minutes, molar ratio of 6:1 and speed of stirrer 155 rpm. In case of used corn oil high catalyst

  15. NS maize hybrids in production regions of Serbia

    Directory of Open Access Journals (Sweden)

    Stojaković Milisav

    2010-01-01

    Full Text Available Fifteen NS maize hybrids of FAO 300-700 maturity groups were evaluated in strip trials (plot size 1,120 m2 at 30 locations in Serbia. In all locations including all production regions, the most yielding hybrid was NS 6030 with average yield of 10.9 t ha-1. The additive Main Effects and Multiplicative Interaction (AMMI and the sites regression (SREG models were used to study basic structure of G x E interactions and the possible existence of different mega-environments in Serbian maize growing regions in 2009. The results of the 15 hybrids x 10 locations for grain yield in maize showed by biplot technique indicate several specific location-hybrid deviations (the AMMI biplot, and possible existence of at least one mega-environment (the GGE biplot. .

  16. DELPHI ANALYSIS OF CONSTRAINTS TO MAIZE PRODUCTION IN ...

    African Journals Online (AJOL)

    A descriptive Delphi study was conducted to: identify constraints to maize production on SNL from the perspectives of crop researchers, extension officers and farmers; categorise the constraints; rank them in order of importance; and identify ways of addressing them. A total of 33 constraint items were identified and ...

  17. Productivity of Maize hybrid maturity classes in Savanna ...

    African Journals Online (AJOL)

    With the continued development and release of such hybrids, there is need to continue to screen them in order to ascertain their potential productivity in different agro-ecologies. A study was, therefore, carried out between June and October 2011, to screen nine hybrid varieties of maize for growth and yield potentials in two ...

  18. Women Farmers' Contributions to Maize Production in Afijio Local ...

    African Journals Online (AJOL)

    user

    counts, percentages and mean while Pearson Product Moment Correlation and ... showed that age (r = 0.950, P<0.05), farm size (r = 0.174, P<0.05), ... literacy) be intensified, young women be encouraged to be more involved in maize ... farmers, only few of the studies actually ... socio-economic characteristics of women.

  19. Influence of some environmental factors on maize productivity in ...

    African Journals Online (AJOL)

    Temperature, humidity and direction of the prevailing wind are parts of significant environmental factors, which have greater impact on crop productivity, especially with the recent global climate change. These were researched into on maize seeds planted at three different furrow orientations on the field; Or. 900, Or. 600 and ...

  20. Production And Evaluation Of Doughnuts And Biscuits From Maize ...

    African Journals Online (AJOL)

    Flour blends of maize and pigeon pea were composite at replacement levels of 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80% and 90%. The nutrient contents of the flour blends were determined using standard methods. The various flour blends were used for the preparation of doughnuts and biscuits. These products were ...

  1. Maize cultivar performance under diverse organic production systems

    Science.gov (United States)

    Maize cultivar performance can vary widely among different production systems. The need for high-performing hybrids for organic systems with wide adaptation to various macroenvironments is becoming increasingly important. The goal of this study was to characterize inbred lines developed by distinc...

  2. Bacteriogical quality of 'Kafa' (maize product) marketed in Kaduna ...

    African Journals Online (AJOL)

    'Kafa' (a solid maize product, marketed wrapped in leaves), were purchased from four different locations in Kasuwan Barchi, Tudun wada, Kaduna. They were analysed for their microbial quality using the standard plate count (SPC) method. The mean total plate count using standard plate count Agar varied between 2.25 x ...

  3. Comparison of grain from corn rootworm resistant transgenic DAS-59122-7 maize with non-transgenic maize grain in a 90-day feeding study in Sprague-Dawley rats.

    Science.gov (United States)

    He, X Y; Huang, K L; Li, X; Qin, W; Delaney, B; Luo, Y B

    2008-06-01

    DAS-59122-7 (59122) is a transgenic maize (Zea mays L.) that contains genes encoding Cry34Ab1 and Cry35Ab1 proteins from Bacillus thuringiensis Berliner strain 149B1 and phosphinothricin acetyltransferase (PAT) protein from Streptomyces viridochromogenes. Expression of these proteins in planta confers resistance to corn rootworms and other Coleopteran parasites and tolerance to herbicides containing glufosinate ammonium, respectively. In the current study, processed flours from 59122 maize grain or its near isogenic control line (091) were used at two concentrations (50% and 70% wt/wt) to produce diets that were fed to rats for 90 days in accordance with Chinese toxicology guidelines (GB15193.13-2003). A commercial AIN93G diet was used as an additional negative control. No significant differences in body weight and feed utilization were observed between rats consuming diets formulated with 59122 and 091 Control corn. Statistical differences (p<0.05) were observed in certain hematology and serum chemistry response variables between rats consuming diets formulated with 59122 or 091 Control flour compared to AIN93G diet. However, the mean value of these response variables in the 59122 groups were not statistically different from those observed in diets formulated with corresponding high and low concentrations of the flour from the 091 Control maize grain. Therefore, the statistical differences were considered to be related to consumption of diets containing high concentrations of maize flour (compared to AIN93G diets) regardless of source rather than to consumption of flour from 59122 maize grain. The results from this study demonstrated that 59122 maize grain is as safe as non-transgenic maize grain.

  4. Corn stover-enhanced cellulase production by Aspergillus niger ...

    African Journals Online (AJOL)

    The production of extracellular cellulases by Aspergilus niger NRRL 567 on corn stover was studied in liquid state fermentation. In this study, three cellulases, exoglucanase (EXG), endoglucanase (EG) and β-glucosidase (BGL) were produced by A. niger NRRL 567. The optimal pH, temperature and incubation time for ...

  5. Climatic and non-climatic drivers of spatiotemporal maize-area dynamics across the northern limit for maize production

    DEFF Research Database (Denmark)

    Odgaard, Mette Vestergaard; Bøcher, Peder Klith; Dalgaard, Tommy

    2011-01-01

    It is expected that the ongoing anthropogenic climate change will drive changes in agricultural production and its geographic distribution. Here, we assess the extent to which climate change is already driving spatiotemporal dynamics in maize production in Denmark. We use advanced spatial...... regression modeling with multi-model averaging to assess the extent to which the recent spatiotemporal dynamics of the maize area in Denmark are driven by climate (temperature as represented by maize heating units [MHU] and growing-season precipitation), climate change and non-climatic factors (cattle...... cultivation and cattle farming, probably reflecting a change to a more favorable climate for maize cultivation: in the beginning of the study period, northern areas were mostly too cold for maize cultivation, irrespective of cattle density, but this limitation has been diminishing as climate has warmed...

  6. Adapting maize production to drought in the Northeast Farming Region of China

    DEFF Research Database (Denmark)

    Yin, Xiaogang; Olesen, Jørgen Eivind; Wang, M.

    2016-01-01

    Maize (Zea mays L.) is the most prominent crop in the Northeast Farming Region of China (NFR), and drought has been the largest limitation for maize production in this area during recent decades. The question of how to adapt maize production to drought has received great attention from policy...

  7. Examining the impacts of increased corn production on ...

    Science.gov (United States)

    This study demonstrates the value of a coupled chemical transport modeling system for investigating groundwater nitrate contamination responses associated with nitrogen (N) fertilizer application and increased corn production. The coupled Community Multiscale Air Quality Bidirectional and Environmental Policy Integrated Climate modeling system incorporates agricultural management practices and N exchange processes between the soil and atmosphere to estimate levels of N that may volatilize into the atmosphere, re-deposit, and seep or flow into surface and groundwater. Simulated values from this modeling system were used in a land-use regression model to examine associations between groundwater nitrate-N measurements and a suite of factors related to N fertilizer and groundwater nitrate contamination. Multi-variable modeling analysis revealed that the N-fertilizer rate (versus total) applied to irrigated (versus rainfed) grain corn (versus other crops) was the strongest N-related predictor variable of groundwater nitrate-N concentrations. Application of this multi-variable model considered groundwater nitrate-N concentration responses under two corn production scenarios. Findings suggest that increased corn production between 2002 and 2022 could result in 56% to 79% increase in areas vulnerable to groundwater nitrate-N concentrations ≥ 5 mg/L. These above-threshold areas occur on soils with a hydraulic conductivity 13% higher than the rest of the domain. Additio

  8. Distribution Development Strategy of Corn Processed (Corn Stick and Corn Dodol) Production to Achieve Corn Competitive Product Market in Gorontalo Province

    OpenAIRE

    Halid, Amir; Bahuwa, Mohammad Ikbal; Antuli, Zainudin K; Abdul, Irawati

    2017-01-01

    Reseach object are; 1) to know about the profile of maize farmer enterprise in Gorontalo Regency; 2) to know the people characteristic at home industry group in Todito village at Pulubala sub-district; 3) Economics analysis for Sweat Maize Dodol. Data analysis used is descriptive method, SWOT and economics analysis. The result of this research is 1) Groups of farmers enterprise, the more much of members and land is worked on by maize farmer found at Dunggala village in Batudaa sub-district. A...

  9. Distribution development strategy of corn processed (corn stick and corn dodol) production to achieve corn competitive product market in Gorontalo Province

    OpenAIRE

    Halid, Amir; Bahuwa, Mohammad Ikbal; Antuli, Zainudin K; Abdul, Irawati

    2017-01-01

    Reseach object are; 1) to know about the profile of maize farmer enterprise in Gorontalo Regency; 2) to know the people characteristic at home industry group in Todito village at Pulubala sub-district; 3) Economics analysis for Sweat Maize Dodol. Data analysis used is descriptive method, SWOT and economics analysis. The result of this research is 1) Groups of farmers enterprise, the more much of members and land is worked on by maize farmer found at Dunggala village in Batudaa sub-district. A...

  10. Corn Production. A Unit for Teachers of Vocational Agriculture. Production Agriculture Curriculum Materials Project.

    Science.gov (United States)

    Grace, Clyde, Jr.

    Designed to provide instructional materials for use by vocational agriculture teachers, this unit contains nine lessons based upon competencies needed to maximize profits in corn production. The lessons cover opportunities for growing corn; seed selection; seedbed preparation; planting methods and practices; fertilizer rates and application;…

  11. Production of high-amylose maize lines using RNA interference in ...

    African Journals Online (AJOL)

    amylose maize lines with a low T-DNA copy number, demonstrating that RNAi is an efficient method for the production of high-amylose maize lines. Key words: Maize, high-amylose, RNA interference, starch branching enzyme gene sbe2a.

  12. Effects of N application on agronomic and environmental parameters in silage maize production on sandy soils

    NARCIS (Netherlands)

    Schröder, J.J.; Neeteson, J.J.; Withagen, J.C.M.; Noy, I.G.A.M.

    1998-01-01

    The current nitrogen (N) use in silage maize production can lead to considerable N losses to the environment. Maize growers fear that a reduction of N inputs needed to minimize N losses might depress yields. The objective of this study was therefore to quantify: (1) the response of silage maize dry

  13. Molecular confirmation of Maize rayado fino virus as the Brazilian corn streak virus Confirmação molecular do 'Maize rayado fino virus' como vírus da estria do milho

    Directory of Open Access Journals (Sweden)

    Rosemarie Wahnbaeck Hammond

    2005-12-01

    Full Text Available Maize rayado fino virus (MRFV, present in various countries in Latin America, has shown similarities to corn streak virus that occurs in Brazil, regarding pathogenic, serological and histological characteristics. In the current report both virus were molecularly compared to confirm the similarities between them. MRFV was identified by nucleic acid hybridization in samples of maize tissues exhibiting symptoms of "corn stunt" disease, collected from two Brazilian States - São Paulo and Minas Gerais. The coat protein gene and 3'non-translated region of MRFV were amplified from infected tissues by reverse transcription-polymerase chain reaction (RT-PCR using MRFV-specific primers, and were characterized by nucleotide sequence and phylogenetic analysis of the cloned PCR products. Phylogenetic analysis of the relationships between the Brazilian isolates and isolates obtained from Latin America and the United States reveals a close relationship to isolates from Brazil, Peru and Bolivia. Results support the proposal that the Brazilian corn streak virus be regarded as an isolate of MRFV and provide evidence for the presence of MRFV in "corn stunt' disease in Brazil.O vírus do rayado fino do milho (MRFV, presente em vários países da América Latina, tem mostrado semelhança ao vírus da risca do milho que ocorre no Brasil, em relação a características patogênicas, sorológicas e histológicas. No presente trabalho, ambos os vírus foram comparados molecularmente, visando confirmar a similaridade entre os mesmos. O MRFV foi identificado por hibridização de ácido nucléico em amostras de tecido que apresentavam sintomas de enfezamento, coletadas nos estados de São Paulo e Minas Gerais. O gene da capa protéica e a região 3' não traduzida do MRFV foram amplificados, a partir de tecidos infectados, através da transcrição reversa por reação em cadeia da polimerase (RT-PCR, usando-se os iniciadores específicos para o vírus, obtendo-se a seq

  14. Evaluation of SmartStax and SmartStax PRO maize against western corn rootworm and northern corn rootworm: efficacy and resistance management.

    Science.gov (United States)

    Head, Graham P; Carroll, Matthew W; Evans, Sean P; Rule, Dwain M; Willse, Alan R; Clark, Thomas L; Storer, Nicholas P; Flannagan, Ronald D; Samuel, Luke W; Meinke, Lance J

    2017-09-01

    Cases of western corn rootworm (WCR) field-evolved resistance to Cry3Bb1 and other corn rootworm (CRW) control traits have been reported. Pyramid products expressing multiple CRW traits can delay resistance compared to single trait products. We used field studies to assess the pyramid CRW corn products, SmartStax (expressing Cry3Bb1 and Cry34Ab1/Cry35Ab1) and SmartStax PRO (expressing Cry3Bb1, Cry34Ab1/Cry35Ab1 and DvSnf7), at locations with high WCR densities and possible Cry3Bb1 resistance, and to assess the reduction in adult emergence attributable to DvSnf7 and other traits. Insect resistance models were used to assess durability of SmartStax and SmartStax PRO to WCR resistance. SmartStax significantly reduced root injury compared to non-CRW-trait controls at all but one location with measurable WCR pressure, while SmartStax PRO significantly reduced root injury at all locations, despite evidence of Cry3Bb1 resistance at some locations. The advantage of SmartStax PRO over SmartStax in reducing root damage was positively correlated with root damage on non-CRW-trait controls. DvSnf7 was estimated to reduce WCR emergence by approximately 80-95%, which modeling indicated will improve durability of Cry3Bb1 and Cry34Ab1/Cry35Ab1 compared to SmartStax. The addition of DvSnf7 in SmartStax PRO can reduce root damage under high WCR densities and prolong Cry3Bb1 and Cry34Ab1/Cry35Ab1 durability. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  15. SWEET CORN FARMING: THE EFFECT OF PRODUCTION FACTOR, EFFICIENCY AND RETURN TO SCALE

    Directory of Open Access Journals (Sweden)

    Dwijatenaya I.B.M.A.

    2017-10-01

    Full Text Available This research aims to determine the effect of production factors on the sweet corn production, the efficiency of sweet corn farming, and the return to scale of sweet corn production. The sampling technique was taken by proportionate stratified random sampling method with the sample number of 57 people while the analyzer used was the program of Frointer 4.1c. The results show that the production factors of the land farm, seed, and fertilizer have a positive and significant effect on sweet corn production. On the other hand, labor production factors have a positive but not significant effect on sweet corn production. It also found that technical efficiency, price efficiency, and economic efficiency of sweet corn farming in Muara Wis Sub-district of Kutai Kartanegara Regency are not efficient yet. The return to scale of sweet corn yield has an increasing return to scale condition.

  16. Estimation of Production KWS Maize Hybrids Using Nonlinear Regression

    Directory of Open Access Journals (Sweden)

    Florica MORAR

    2018-06-01

    Full Text Available This article approaches the model of non-linear regression and the method of smallest squares with examples, including calculations for the model of logarithmic function. This required data obtained from a study which involved the observation of the phases of growth and development in KWS maize hybrids in order to analyze the influence of the MMB quality indicator on grain production per hectare.

  17. Agronomic impacts of production scale harvesting of corn stover for cellulosic ethanol production in Central Iowa

    Science.gov (United States)

    Schau, Dustin

    This thesis investigates the impacts of corn stover harvest in Central Iowa with regards to nutrient removal, grain yield impacts and soil tilth. Focusing on phosphorus and potassium removal due to production of large, square bales of corn stover, 3.7 lb P2O5 and 18.7 lb K 2O per ton of corn stover were removed in 2011. P2O 5 removal remained statistically the same in 2012, but K2O decreased to 15.1 lb per ton of corn stover. Grain cart data showed no statistical difference in grain yield between harvest treatments, but yield monitor data showed a 3 - 17 bu/ac increase in 2012 and hand samples showed a 4 - 21 bu/ac increase in 2013. Corn stover residue levels decreased below 30% coverage when corn stover was harvested the previous fall and conventional tillage methods were used, but incorporating reduced tillage practices following corn stover harvest increased residue levels back up to 30% coverage. Corn emergence rates increased by at least 2,470 more plants per acre within the first three days of spiking, but final populations between harvest and nonharvest corn stover treatments were the same. Inorganic soil nitrogen in the form of ammonium and nitrate were not directly impacted by corn stover harvest, but it is hypothesized that weather patterns had a greater impact on nitrogen availability. Lastly, soil organic matter did not statistically change from 2011 to 2013 due to corn stover removal, even when analyzed within single soil types.

  18. Production of bio-gas from maize cobs

    Energy Technology Data Exchange (ETDEWEB)

    Leke, Luter [College of Physical Sciences, University of Aberdeen, AB24 3UE, Aberdeen (United Kingdom); Department of Chemistry, Benue State University, P M B 102119, Makurdi (Nigeria); Ogbanje, Anne Ada [Department of Chemistry, Benue State University, P M B 102119, Makurdi (Nigeria); Department of Renewable Energy, Energy Commission of Nigeria, Garki-Abuja (Nigeria); Terfa, Dekaa Henry [Department of Chemistry, Benue State University, P M B 102119, Makurdi (Nigeria); Ikyaagba, Tyoalumun [College of Physical Sciences, University of Aberdeen, AB24 3UE, Aberdeen (United Kingdom)

    2013-07-01

    Anaerobic digestion of energy crop residues and wastes is of increasing interest in order to reduce greenhouse gas emissions and to facilitate a sustainable development of energy supply. Production of biogas provides a versatile carrier of renewable energy, as methane can be used for replacement of fossil fuels in both heat and power generation as vehicle fuel. Biogas fuel production from blends of biological wastes such as Cow rumen liquor (CL), Poultry droppings (PD), and Goat Faeces (GF) with Maize cobs (M) were studied. 20 g of each inoculum was mixed with 100g of degraded maize cobs in the first three digesters while the fourth contained CL 10g, PD 10 g, and M 100 g. 100 g of M alone in the fifth digester served as the control. The blends were subjected to anaerobic digestion for 10 days on the prevailing atmospheric ambient temperature and pressure conditions. Physiochemical properties of the blends such as moisture content, crude protein, ash, fat, crude fibre, carbohydrate content, C/N ratio, and pH were also determined. Results of the daily performances of each system showed that maize cobs (M) alone had cumulative biogas yield of 1.50 cm3 while those of the blends (MCL, MPD, MGF and MCLPD) were 6.11 cm3, 3.05 cm3, 2.50 cm3, and 63.00 cm3 respectively, pH and C/N ratio affected the biogas yield of the systems significantly. These results indicate that the low biogas production from maize cobs can be enhanced significantly by blending with cow rumen liquor and poultry droppings.

  19. Influence of the corn resistance gene Mv on the fitness of Peregrinus maidis (Hemiptera: Delphacidae) and on the transmission of maize mosaic virus (Rhabdoviridae: Nucleorhabdovirus).

    Science.gov (United States)

    Higashi, C H V; Brewbaker, J L; Bressan, A

    2013-08-01

    Crops that are resistant to pests and pathogens are cost-effective for the management of pests and diseases. A corn (Zea mays L.) breeding program conducted in Hawaii has identified a source of heritable resistance to maize mosaic virus (MMV) (Rhabdoviridae: Nucleorhabdovirus). This resistance is controlled by the gene Mv, which has been shown to have a codominant action. To date, no studies have examined whether the resistance associated with this gene affects only MMV or whether it also affects the insect vector, the corn planthopper Peregrinus maidis (Ashmead) (Hemiptera: Delphacidae). Here, we examined the life history of the corn planthopper and its ability to transmit MMV on near isogenic lines that were homozygous dominant (Mv/Mv), homozygous recessive (mv/mv), or heterozygous (Mv/mv) for the gene. A field trial was also conducted to study the colonization of the corn plants with different genotypes by the planthopper. Although field observations revealed slightly lower densities ofplanthoppers on corn with the genotype Mv/Mv than on the inbreds with the genotype mv/mv and their hybrids with the genotype Mv/mv, laboratory assays showed no effects of the gene on planthopper development, longevity, or fecundity. In the field, the corn lines Mv/Mv had a lower incidence of MMV-infected plants. However, in the greenhouse, the transmission of MMV to corn seedlings did not differ across the near isogenic lines, although the corn lines Mv/Mv showed a delayed onset of symptoms compared with the corn lines mv/mv and Mv/mv. The acquisition of MMV by corn planthoppers on the corn genotypes Mv/Mv and Mv/mv averaged 0.2, whereas the acquisition on the corn genotypes mv/mv averaged > 0.3. Our results show that the Mv gene does not influence the fitness of the planthopper vector, suggesting that it may confer resistance by other means, possibly by limiting virus replication or movement within the host plant.

  20. "Omics" of maize stress response for sustainable food production: opportunities and challenges.

    Science.gov (United States)

    Gong, Fangping; Yang, Le; Tai, Fuju; Hu, Xiuli; Wang, Wei

    2014-12-01

    Maize originated in the highlands of Mexico approximately 8700 years ago and is one of the most commonly grown cereal crops worldwide, followed by wheat and rice. Abiotic stresses (primarily drought, salinity, and high and low temperatures), together with biotic stresses (primarily fungi, viruses, and pests), negatively affect maize growth, development, and eventually production. To understand the response of maize to abiotic and biotic stresses and its mechanism of stress tolerance, high-throughput omics approaches have been used in maize stress studies. Integrated omics approaches are crucial for dissecting the temporal and spatial system-level changes that occur in maize under various stresses. In this comprehensive analysis, we review the primary types of stresses that threaten sustainable maize production; underscore the recent advances in maize stress omics, especially proteomics; and discuss the opportunities, challenges, and future directions of maize stress omics, with a view to sustainable food production. The knowledge gained from studying maize stress omics is instrumental for improving maize to cope with various stresses and to meet the food demands of the exponentially growing global population. Omics systems science offers actionable potential solutions for sustainable food production, and we present maize as a notable case study.

  1. Using observed warming to identify hazards to Mozambique maize production

    Science.gov (United States)

    Funk, Christopher C.; Harrison, Laura; Eilerts, Gary

    2011-01-01

    New Perspectives on Crop Yield Constraints because of Climate Change. Climate change impact assessments usually focus on changes to precipitation because most global food production is from rainfed cropping systems; however, other aspects of climate change may affect crop growth and potential yields.A recent (2011) study by the University of California, Santa Barbara (UCSB) Climate Hazards Group, determined that climate change may be affecting Mozambique's primary food crop in a usually overlooked, but potentially significant way (Harrison and others, 2011). The study focused on the direct relation between maize crop development and growing season temperature. It determined that warming during the past three decades in Mozambique may be causing more frequent crop stress and yield reductions in that country's maize crop, independent of any changes occurring in rainfall. This report summarizes the findings and conclusions of that study.

  2. Maize kernel size and texture: production parameters, quality of eggs of the laying hens and electricity intake

    OpenAIRE

    Javer Alves Vieira Filho; Edivaldo Antônio Garcia; Odivaldo José Seraphim; Elise Saori Floriano Murakami; Andréa Britto Molino; Graciene Conceição dos Santos

    2015-01-01

    The influence of maize corn size and texture on the performance parameters of laying hens and power consumption required for grinding maize corn were evaluated. The experiment was carried out on 384 Isa Brown hens, 36 weeks old, penned in a conventional aviary with 562.5 cm2 bird-1 stocking rate. The treatments were distributed in a completely randomized 2 x 3 factorial design (maize textures: flint and dent; and milling degree: fine, medium and coarse) with eight replicates of eight birds pe...

  3. Land usage attributed to corn ethanol production in the United States: sensitivity to technological advances in corn grain yield, ethanol conversion, and co-product utilization.

    Science.gov (United States)

    Mumm, Rita H; Goldsmith, Peter D; Rausch, Kent D; Stein, Hans H

    2014-01-01

    Although the system for producing yellow corn grain is well established in the US, its role among other biofeedstock alternatives to petroleum-based energy sources has to be balanced with its predominant purpose for food and feed as well as economics, land use, and environmental stewardship. We model land usage attributed to corn ethanol production in the US to evaluate the effects of anticipated technological change in corn grain production, ethanol processing, and livestock feeding through a multi-disciplinary approach. Seven scenarios are evaluated: four considering the impact of technological advances on corn grain production, two focused on improved efficiencies in ethanol processing, and one reflecting greater use of ethanol co-products (that is, distillers dried grains with solubles) in diets for dairy cattle, pigs, and poultry. For each scenario, land area attributed to corn ethanol production is estimated for three time horizons: 2011 (current), the time period at which the 15 billion gallon cap for corn ethanol as per the Renewable Fuel Standard is achieved, and 2026 (15 years out). Although 40.5% of corn grain was channeled to ethanol processing in 2011, only 25% of US corn acreage was attributable to ethanol when accounting for feed co-product utilization. By 2026, land area attributed to corn ethanol production is reduced to 11% to 19% depending on the corn grain yield level associated with the four corn production scenarios, considering oil replacement associated with the soybean meal substituted in livestock diets with distillers dried grains with solubles. Efficiencies in ethanol processing, although producing more ethanol per bushel of processed corn, result in less co-products and therefore less offset of corn acreage. Shifting the use of distillers dried grains with solubles in feed to dairy cattle, pigs, and poultry substantially reduces land area attributed to corn ethanol production. However, because distillers dried grains with solubles

  4. Productivity and profitability of maize-pumpkin mix cropping in Chitwan, Nepal

    OpenAIRE

    Shiva Chandra Dhakal; Punya Prasad Regmi; Resham Bahadur Thapa; Shrawan Kumar Sah; Dilli Bahadur Khatri-Chhetri

    2015-01-01

    The study was conducted to determine the productivity, profitability and resource use efficiency of maize-pumpkin mix crop production in Chitwan. The study used 53 maize-pumpkin mix crop adopting farmers from among 300 farmers adopting different pollinator friendly practices. Descriptive and statistical tools including Cobb-Douglas production function were used to analyze data, collected from structured interview schedule. The benefit cost ratio (1.58) indicates that maize-pumpkin mix croppin...

  5. Agricultural production and nutrient runoff in the Corn Belt ...

    Science.gov (United States)

    Agricultural production in the Corn Belt region of the Upper Mississippi River Basin (UMRB) remains a leading source of nitrogen runoff that contributes to the annual hypoxic 'Dead Zone' in the Gulf of Mexico. The rise of corn production, land conversion, and fertilizer use in response to ethanol policy incentives in recent years is well documented and may worsen this effect. We develop a spatially distributed dynamic environmental performance index (EPI), accounting for both desirable agricultural outputs and undesirable nonpoint source emissions from farm production, to examine the corresponding changes in environmental performance within the UMRB between 2002 and 2007, which is characterized by increasing policy incentives for ethanol production. County-level production data from the USDA agricultural census are aggregated to hydrologic unit code (HUC8) boundaries using a geographic information system (GIS), and a previously developed statistical model, which includes net anthropogenic nitrogen inputs (NANI) as well as precipitation and land use characteristics as inputs, is used to estimate annual nitrogen loadings delivered to streams from HUC8 watersheds. The EPI allows us to decompose performance of each HUC8 region over time into changes in productive efficiency and emissions efficiency. To our knowledge, this is the first study to examine the corresponding changes in environmental performance for producers in this region at the watershed scale. The resu

  6. Making better maize plants for sustainable grain production in a changing climate.

    Science.gov (United States)

    Gong, Fangping; Wu, Xiaolin; Zhang, Huiyong; Chen, Yanhui; Wang, Wei

    2015-01-01

    Achieving grain supply security with limited arable land is a major challenge in the twenty-first century, owing to the changing climate and increasing global population. Maize plays an increasingly vital role in global grain production. As a C4 plant, maize has a high yield potential. Maize is predicted to become the number one cereal in the world by 2020. However, maize production has plateaued in many countries, and hybrid and production technologies have been fully exploited. Thus, there is an urgent need to shape maize traits and architectures for increased stress tolerance and higher yield in a changing climate. Recent achievements in genomics, proteomics, and metabolomics have provided an unprecedented opportunity to make better maize. In this paper, we discuss the current challenges and potential of maize production, particularly in China. We also highlight the need for enhancing maize tolerance to drought and heat waves, summarize the elite shoot and root traits and phenotypes, and propose an ideotype for sustainable maize production in a changing climate. This will facilitate targeted maize improvement through a conventional breeding program combined with molecular techniques.

  7. milled degermed maize products for tropical countries

    African Journals Online (AJOL)

    STORAGESEVER

    2009-01-19

    Jan 19, 2009 ... satisfaction scores were registered for the different products after increasing ... tion, particularly as a thick dough prepared by boiling ... particular to residual lipids originating from the germ, .... dispersed in 300 ml of cold water.

  8. Maize production in mid hills of Nepal: from food to feed security

    Directory of Open Access Journals (Sweden)

    Krishna Prasad Timsina

    2016-12-01

    Full Text Available This study was undertaken in 2016 to analyze the production and utilization of maize in Nepal. Sixty maize growers from Kavre and Lamjung districts were selected using purposive, cluster and simple random sampling techniques. Similarly, six feed industries and five maize experts from Chitwan district were also interviewed. Study shows 56% of the total areas were used for maize production and 50% of the maize areas were covered by hybrid maize. There was no practice of contract maize production. The results revealed that 60%, 25% and 3% of the grain were used for animal feed, food and seed respectively in hill districts. Whereas the remaining amount of the maize (12% was sold to the different buyers. The proportion of maize feed supply to different animals in the study area was varying. Result shows that at least 1.5 million tons of maize is required only to the feed industries affiliated with national feed industry association in Nepal. Similarly, out of total maize used in feed production, 87% of the maize was imported from India each year by feed industries. Analysis shows negative correlation between scale of feed production and use of domestic maize due to unavailability of required quantity of maize in time. The major pre-condition of feed industries for maize buying was moisture content which must be equal or less than 14%. Very little or no inert materials and physical injury, free from fungal attack and bigger size were also the criteria for maize buying. However, some of the feed industries were also thinking about protein and amino acid contents. Result shows 13% and 8.5% increasing demand of poultry feed and animal feed, respectively over the last five year in Nepal. Most likely, maize is known as a means of food security in Nepal, however, in the context of changing utilization patterns at the farm level and also tremendous increasing demand of maize at the industry level suggest to give more focus on development and dissemination of

  9. Comparison of kinetic model for biogas production from corn cob

    Science.gov (United States)

    Shitophyta, L. M.; Maryudi

    2018-04-01

    Energy demand increases every day, while the energy source especially fossil energy depletes increasingly. One of the solutions to overcome the energy depletion is to provide renewable energies such as biogas. Biogas can be generated by corn cob and food waste. In this study, biogas production was carried out by solid-state anaerobic digestion. The steps of biogas production were the preparation of feedstock, the solid-state anaerobic digestion, and the measurement of biogas volume. This study was conducted on TS content of 20%, 22%, and 24%. The aim of this research was to compare kinetic models of biogas production from corn cob and food waste as a co-digestion using the linear, exponential equation, and first-kinetic models. The result showed that the exponential equation had a better correlation than the linear equation on the ascending graph of biogas production. On the contrary, the linear equation had a better correlation than the exponential equation on the descending graph of biogas production. The correlation values on the first-kinetic model had the smallest value compared to the linear and exponential models.

  10. Impact of climate change on maize potential productivity and the potential productivity gap in southwest China

    Science.gov (United States)

    He, Di; Wang, Jing; Dai, Tong; Feng, Liping; Zhang, Jianping; Pan, Xuebiao; Pan, Zhihua

    2014-12-01

    The impact of climate change on maize potential productivity and the potential productivity gap in Southwest China (SWC) are investigated in this paper. We analyze the impact of climate change on the photosynthetic, light-temperature, and climatic potential productivity of maize and their gaps in SWC, by using a crop growth dynamics statistical method. During the maize growing season from 1961 to 2010, minimum temperature increased by 0.20°C per decade ( p gap between light-temperature and climatic potential productivity varied from 12 to 2729 kg ha-1, with the high value areas centered in northern and southwestern SWC. Climatic productivity of these areas reached only 10%-24% of the light-temperature potential productivity, suggesting that there is great potential to increase the maize potential yield by improving water management in these areas. In particular, the gap has become larger in the most recent 10 years. Sensitivity analysis shows that the climatic potential productivity of maize is most sensitive to changes in temperature in SWC. The findings of this study are helpful for quantification of irrigation water requirements so as to achieve maximum yield potentials in SWC.

  11. Fumonisins B1 and B2 in the corn-milling process and corn-based products, and evaluation of estimated daily intake.

    Science.gov (United States)

    Savi, Geovana D; Piacentini, Karim C; Marchi, Djeini; Scussel, Vildes M

    2016-01-01

    The distribution of fumonisins (FBs: FB1 and FB2) in the corn-milling process and in corn-based products, as well as daily intake estimates for the Brazilian population were evaluated. Among corn fractions samples, corn meal had the highest mean concentration of FB1 (1305 µg kg(-1)) and FB2 (651 µg kg(-1)) and a distribution factors of 452% and 256% in relation to corn grain, respectively. On the other hand, the distribution factor of FB1 and FB2 in corn flour was found to be 144% and 88% respectively, which demonstrates that fumonisins in this fraction were reduced compared with corn grain. As a result, almost half the corn meal samples (47%) would be non-compliant with future Brazilian regulation (2017) for fumonisins. However, corn-based products, such as corn flakes and popcorn, were in compliance with the regulation. The average probable daily intake and maximum probable daily intake of fumonisins estimated for the Santa Catarina state (Brazil) population were below the provisional maximum tolerable daily intake of 2 µg kg(-1) body weight day(-1) for all corn samples. Despite this, the adoption of practices to control the occurrence of fumonisins should be applied to the corn-milling fractions that may contain a higher concentration of this toxin, such as corn meal, often used for animal feed in Brazil.

  12. COMPETITIVENESS OF NIGERIAN RICE AND MAIZE PRODUCTION ECOLOGIES: A POLICY ANALYSIS APPROACH

    OpenAIRE

    Victor Olusegun Okoruwa

    2011-01-01

    The Nigerian rice and maize sectors are faced with decreasing supply and increasing demand as rice and maize have taken a strategic place of other staples leading to excessive importation and increasing government intervention. This study therefore assesses the competitiveness of Nigerian rice and maize production ecologies using the policy analysis matrix (PAM) on a sample of 122 farmers. Results of the PAM revealed that outputs from the production ecologies are taxed. This is further confir...

  13. Assessment of soil attributes and crop productivity after diversification of the ubiquitous corn-soybean rotation in the northwestern U.S. Corn Belt

    Science.gov (United States)

    Highly specialized cash-grain production systems based upon corn-soybean rotations under tilled soil management are common in the northwestern U.S. Corn Belt. This study, initiated in 1997, was conducted to determine if diversification of this ubiquitous corn-soybean rotation would affect soil char...

  14. Energy yield for the production of ethanol from corn

    International Nuclear Information System (INIS)

    Chavanne, X.; Frangi, J.P.

    2008-01-01

    This article establishes the primary energy balance for making ethanol out of corn in the USA, calculated from the farm to the fuel station, following a methodology described in Chavanne and Frangi (C. R. Geoscience 339 (2007) 519-535). Raw data (direct energy and material consumption as well as their heat value and external costs) come from published papers related to this topic, technical textbooks, as well as reports from the US Departments of Agriculture and Energy. For the 2001 harvest, over the area producing more than 90% of ethanol and for the 2005 network of working refineries, 100 J of ethanol and recovery of by-products (the energy saved by the replacement of animal feed by these by-products is around 12% of the ethanol heat value) needed 86 ± 3 J of energy spending, of which more than 50 J is natural gas and 62 J is used in refineries. A third of the area of Nebraska corn must be irrigated with water pumped from underground, at an added cost of 26 ± 3 J. In 1996, the extra drying required, because of heavy rains, added 6 J. By comparison, 100 J of gasoline cost less than 25 J to be produced out of crude oil. Complementary studies of resource availability are not performed here. The largest possible reduction in energy costs can be achieved at the refinery stage, by fermenting by-products, gas residues, (from 62 J to around 12 J). The article gives also an expression for the expenditure to enable comparison between different energy systems, including everything from biomass to transport. For the ethanol case, the average cost is 130 J for 100 J of corn grain heat. (authors)

  15. Fumonisins B₁, B₂ and B₃ in corn products, wheat flour and corn oil marketed in Shandong province of China.

    Science.gov (United States)

    Li, Fenghua; Jiang, Dafeng; Zheng, Fengjia; Chen, Jindong; Li, Wei

    2015-01-01

    In this study a total of 522 samples were collected from Shandong province of China in 2014 and analysed for the occurrence of fumonisin B1 (FB1), FB2 and FB3 by isotope dilution ultrahigh performance liquid chromatography-tandem mass spectrometry. Fumonisins were detected in 98.1% of the corn products, with the average total level of 369.2 μg kg(-1). The individual average values of FB1, FB2 and FB3 in corn products were 268.3, 53.7 and 47.2 μg kg(-1), respectively. The simultaneous occurrence of FB1, FB2 and FB3 was observed in 76.7% of the corn products. Especially, the results demonstrated that the difference in the contamination levels for fumonisins in these three types of corn products was apparent. In addition, 6.2% of the wheat flour samples were contaminated with FB1, with concentrations ranging from 0.3 to 34.6 µg kg(-1). No FB2 or FB3 was detected in wheat flour. In corn oil samples no fumonisins were detected.

  16. Maize silk antibiotic polyphenol compounds and molecular genetic improvement of resistance to corn earworm (Helicoverpa zea Boddie) in sh2 sweet corn

    OpenAIRE

    Baozhu Guo; Ana Butrón; Brian T. Scully

    2010-01-01

    The flavor of sh2 super-sweet corn is preferred by consumers. Unfortunately, sh2 sweet corn has little genetic variation for insect resistance. In this paper we review the functions of two loci, p1 and a1. The P1 allele has a major role in sh2 sweet corn resistance to corn earworm, an allele that was lost in historical selection because of its pleiotropic effect on undesirable cob color and silk browning. The P1 allele has significant effects on biosyntheses of silk antibiotic compounds, mays...

  17. The causes and unintended consequences of a paradigm shift in corn production practices

    International Nuclear Information System (INIS)

    Fausti, Scott W.

    2015-01-01

    Highlights: • Biotechnology adoption and the U.S. corn production system are causally linked. • U.S. agriculture and energy policy choices merged to incentivize U.S. corn production. • U.S. biofuel energy policy contributed to the adoption of Bt corn seed technology. • Policy alternatives to modify the corn-based ethanol production system are provided. - Abstract: Independent but simultaneously occurring changes in U.S. agricultural and energy policies in conjunction with advances in biotechnology converged to create an economic and regulatory environment that incentivized corn acreage expansion. Advancements in Bt seed and ethanol production technologies contributed to scale efficiency gains in corn and biofuel production. These advancements were accompanied by changes in market forces that altered the balance between corn and other agricultural crop production. The causal linkages among Bt adoption, ethanol production, and corn production are explored along with a discussion of how this shift toward corn production generated unexpected economic and environmental consequences. Alternative policy solutions to mitigate the negative consequences and enhance the resiliency of U.S. agriculture are discussed

  18. Performance of laying hens fed diets containing DAS-59122-7 maize grain compared with diets containing nontransgenic maize grain.

    Science.gov (United States)

    Jacobs, C M; Utterback, P L; Parsons, C M; Rice, D; Smith, B; Hinds, M; Liebergesell, M; Sauber, T

    2008-03-01

    An experiment using 216 Hy-Line W-36 pullets was conducted to evaluate transgenic maize grain containing the cry34Ab1 and cry35Ab1 genes from a Bacillus thuringiensis (Bt) strain and the phosphinothricin ace-tyltransferase (pat) gene from Streptomyces viridochromogenes. Expression of the cry34Ab1 and cry35Ab1 genes confers resistance to corn rootworms, and the pat gene confers tolerance to herbicides containing glufosinate-ammonium. Pullets (20 wk of age) were placed in cage lots (3 hens/cage, 2 cages/lot) and were randomly assigned to 1 of 3 corn-soybean meal dietary treatments (12 lots/treatment) formulated with the following maize grains: near-isogenic control (control), conventional maize, and transgenic test corn line 59122 containing event DAS-59122-7. Differences between 59122 and control group means were evaluated with statistical significance at P < 0.05. Body weight and gain, egg production, egg mass, and feed efficiency for hens fed the 59122 corn were not significantly different from the respective values for hens fed diets formulated with control maize grain. Egg component weights, Haugh unit measures, and egg weight class distribution were similar regardless of the corn source. This research indicates that performance of hens fed diets containing 59122 maize grain, as measured by egg production and egg quality, was similar to that of hens fed diets formulated with near-isogenic corn grain.

  19. Costs and Returns of Yam/Maize Production in Bosso Local ...

    African Journals Online (AJOL)

    In Nigeria, yam is the most important stable food crop while maize is the third most important cereal crop. However, small scale farmers do not always realize appreciable net returns from their combined production. Therefore, this study examined the costs and returns of yam/maize (mixed cropping) production in Bosso ...

  20. Spatial pattern characteristics of water footprint for maize production in Northeast China.

    Science.gov (United States)

    Duan, Peili; Qin, Lijie; Wang, Yeqiao; He, Hongshi

    2016-01-30

    Water footprint (WF) methodology is essential for quantifying total water consumption of crop production and making efficient water management policies. This study calculated the green, blue, grey and total WFs of maize production in Northeast China from 1998 to 2012 and compared the values of the provinces. This study also analyzed the spatial variation and structure characteristics of the WFs at the prefecture level. The annual average WF of maize production was 1029 m(3) per ton, which was 51% green, 21% blue and 28% grey. The WF of maize production was highest in Liaoning Province, moderate in Heilongjiang Province and lowest in Jilin Province. The spatial differences of the WFs calculated for the 36 major maize production prefectures were significant in Northeast China. There was a moderate positive spatial autocorrelation among prefectures that had similar WFs. Local indicator of spatial autocorrelation index (LISA) analysis identified prefectures with higher WFs in the southeast region of Liaoning Province and the southwest region of Heilongjiang Province and prefectures with lower WFs in the middle of Jilin Province. Spatial differences in the WF of maize production were caused mainly by variations in climate conditions, soil quality, irrigation facilities and maize yield. The spatial distribution of WFs can help provide a scientific basis for optimizing maize production distribution and then formulate strategies to reduce the WF of maize production. © 2015 Society of Chemical Industry.

  1. Impact of Corn Residue Removal on Crop and Soil Productivity

    Science.gov (United States)

    Johnson, J. M.; Wilhelm, W. W.; Hatfield, J. L.; Voorhees, W. B.; Linden, D.

    2003-12-01

    Over-reliance on imported fuels, increasing atmospheric levels of greenhouses and sustaining food production for a growing population are three of the most important problems facing society in the mid-term. The US Department of Energy and private enterprise are developing technology necessary to use high cellulose feedstock, such as crop residues, for ethanol production. Based on production levels, corn (Zea mays L.) residue has potential as a biofuel feedstock. Crop residues are a renewable and domestic fuel source, which can reduce the rate of fossil fuel use (both imported and domestic) and provide an additional farm commodity. Crop residues protect the soil from wind and water erosion, provide inputs to form soil organic matter (a critical component determining soil quality) and play a role in nutrient cycling. Crop residues impact radiation balance and energy fluxes and reduce evaporation. Therefore, the benefits of using crop residues as fuel, which removes crop residues from the field, must be balanced against negative environmental impacts (e.g. soil erosion), maintaining soil organic matter levels, and preserving or enhancing productivity. All ramifications of new management practices and crop uses must be explored and evaluated fully before an industry is established. There are limited numbers of long-term studies with soil and crop responses to residue removal that range from negative to negligible. The range of crop and soil responses to crop residue removal was attributed to interactions with climate, management and soil type. Within limits, corn residue can be harvested for ethanol production to provide a renewable, domestic source of energy feedstock that reduces greenhouse gases. Removal rates must vary based on regional yield, climatic conditions and cultural practices. Agronomists are challenged to develop a protocol (tool) for recommending maximum permissible removal rates that ensure sustained soil productivity.

  2. Review: Maize research and production in Nigeria | Iken | African ...

    African Journals Online (AJOL)

    Maize (Zea mays) is a major important cereal being cultivated in the rainforest and the derived Savannah zones of Nigeria. Land races, improved high yielding and pest and diseases resistant varieties of maize have been developed. Key words: Maize, Zea mays, Nigeria. African Journal of Biotechnology Vol.3(6) 2004: 302- ...

  3. Possibilities of utilization of co-products from corn grain ethanol and starch production

    Directory of Open Access Journals (Sweden)

    Semenčenko Valentina V.

    2013-01-01

    Full Text Available In recent decades, the expansion of alternative fuels production from crops traditionally used for food and animal feed has led to significant changes in the field of energy production, agriculture and food industry. Starch and sugar feedstocks for ethanol production (corn, wheat, sugar beet, sugar cane, etc. require increasing arable land to meet market demands for the biofuel production. Although intensive studies are being carried out in order to identify improved and more cost-effective methods for the utilization of lignocellulosic and communal waste in the production of alcohol fuel, the possibility of using dry distillers’ grains with solubles (DDGS, by-product of bioethanol production from corn and wheat as well as alcoholic beverages industry, is now in focus. Application of DDGS in livestock and poultry diets in concentrations greater than traditional could positively affect the economic viability of this biofuel production, but also stabilize the current imbalance in the food and animal feed market. However, DDGS feedstuff should not be treated as a perfect substitute for corn because the complexity of ration formulation determined at the farm or feedlot level is driven by energy and protein and other nutrient requirements, as well as their relative costs in the ration. Nevertheless, processing of corn by wet milling provides a multitude of co-products suitable for feedstuffs, food industry, pharmaceuticals, chemistry etc. Some of the most important wet milling co-products that have their use in feedstuffs are corn gluten feed and corn gluten meal. The use of DDGS as a substitute for traditional feed could prevent indirect land-use changes associated with biofuel production, and therefore preserve the environmental destruction by saving the forests and permanent pastures. The use of distiller’s grains can be beneficial to biofuel growth as this is an additional, the second largest, source of income accounting of 10-20% total

  4. Glycerol from biodiesel production: the new corn for dairy cattle

    Directory of Open Access Journals (Sweden)

    Shawn S Donkin

    2008-07-01

    Full Text Available Glycerol, also known as glycerin, is a colorless, odorless, hygroscopic, and sweet-tasting viscous liquid. It is a sugar alcohol with high solubility index in water and has a wide range of applications in the food, pharmaceutical, and cosmetic industries. The use of glycerol in diets for dairy cattle is not novel; however, this interest has been renewed due to the increased availability and favorable pricing of glycerol as a consequence of recent growth in the biofuels industry. Experimental evidence supports the use of glycerol as a transition cow therapy but feeding rates are low, ranging from 5 to 8 % of the diet DM. There is a paucity of research that examines the use of glycerol as a macro-ingredient in rations for lactating dairy cows. Most reports indicate a lack of effect of addition of glycerol to the diet when it replaces corn or corn starch. Recent feeding experiments with lactating dairy cows indicate replacing corn with glycerol to a level of 15% of the ration DM does not adversely effect milk production or composition. Milk production was 37.0, 36.9, 37.3, 36.4 ± 0.6 kg/d and feed intake was 24.0, 24.5, 24.6, 24.1 ± 0.5 kg/d for 0, 5, 10 and 15% glycerol treatments respectively and did not differ (P > 0.05 except for a modest reduction in feed intake during the first 7 days for the 15% glycerol treatment. Glycerol fed to dairy cattle is fermented to volatile fatty acids in the rumen and early reports indicated that glycerol is almost entirely fermented to propionate. In vitro data indicates glycerol fermentation increases the production of propionate and butyrate at the expense of acetate. Rumen microbes appear to adapt to glycerol feeding and consequently, cows fed glycerol also require an adaptation period to glycerol inclusion. Debate exists regarding the fate of glycerol in the rumen and although most reports suggest that glycerol is largely fermented in the rumen, the extent of rumen digestion may depend on level of

  5. Enhanced pest resistance and increased phenolic production in maize callus transgenically expressing a maize chalcone isomerase -3 like gene

    Science.gov (United States)

    Significant losses in maize production are due to damage by insects and ear rot fungi. A gene designated as chalcone-isomerase-like, located in a quantitative trait locus for resistance to Fusarium ear rot fungi, was cloned from a Fusarium ear rot resistant inbred and transgenically expressed in mai...

  6. Agricultural production and nutrient runoff in the Corn Belt: Assessing dynamic environmental performance

    Science.gov (United States)

    Agricultural production in the Corn Belt region of the Upper Mississippi River Basin (UMRB) remains a leading source of nitrogen runoff that contributes to the annual hypoxic 'Dead Zone' in the Gulf of Mexico. The rise of corn production, land conversion, and fertilizer use in re...

  7. Environmentally friendly alternatives to bean and corn seeds production on the “Soterrado” farm in Cienfuegos

    Directory of Open Access Journals (Sweden)

    Mailiu Díaz Peña

    2015-01-01

    Full Text Available The main objective of this research is to evaluate the environmental impact associated with the life cycle of seed production of bean (Phaseolus vulgaris L. var. CC 25-9 N and maize (Zea mays L. var. TGH on the Soterrado farm. The life cycle assessment (LCA methodology is applied, according to the NC-ISO14040, which includes the life cycle inventory of the crop, the assessment of the environmental impact of beans and maize crops and the assessment of the alternatives for environmental, agricultural and economic improvement. The environmental impact assessment helped determine the most affected impact categories: the non-renewable energy, global warming and respiratory inorganics. The most affected damage categories were damage to resources, human health and climate change. The consumption of urea, NPK and diesel represented an environmental impact with the highest contribution percentage. Two alternatives of environmental, agricultural and economic improvement for each crop were evaluated. They could reduce the environmental impact of the production of beans in 53.28 % and 79.25 % respectively and corn on 47.64 % and 63.48 % respectively. These alternatives would increase yields and soil characteristics, and help to reduce the production cost. It is recommended to inform the results of research to producers of Soterrado farm, validate the results, and apply this methodology to other crops in order to reduce the impact associated with agriculture.

  8. Detection of genetically modified maize events in Brazilian maize-derived food products

    Directory of Open Access Journals (Sweden)

    Maria Regina Branquinho

    2013-09-01

    Full Text Available The Brazilian government has approved many transgenic maize lines for commercialization and has established a threshold of 1% for food labeling, which underscores need for monitoring programs. Thirty four samples including flours and different types of nacho chips were analyzed by conventional and real-time PCR in 2011 and 2012. The events MON810, Bt11, and TC1507 were detected in most of the samples, and NK603 was present only in the samples analyzed in 2012. The authorized lines GA21, T25, and the unauthorized Bt176 were not detected. All positive samples in the qualitative tests collected in 2011 showed a transgenic content higher than 1%, and none of them was correctly labeled. Regarding the samples collected in 2012, all positive samples were quantified higher than the threshold, and 47.0% were not correctly labeled. The overall results indicated that the major genetically modified organisms detected were MON810, TC1507, Bt11, and NK603 events. Some industries that had failed to label their products in 2011 started labeling them in 2012, demonstrating compliance with the current legislation observing the consumer rights. Although these results are encouraging, it has been clearly demonstrated the need for continuous monitoring programs to ensure consumers that food products are labeled properly.

  9. Effects of social network on production output of maize farmers in ...

    African Journals Online (AJOL)

    Social is as a veritable factor for getting access to resources. Thus, the effect of social network on productivity of maize farmers in Kwara State, Nigeria was investigated. Primary data were collected from one hundred and fifty maize farmers using a multistage random sampling procedure. Data were analysed using ...

  10. Biomass production and composition of temperate and tropical maize in central Iowa

    Science.gov (United States)

    Bioethanol production in the Midwestern U.S. has largely focused on corn (Zea mays L.) grain for starch-based ethanol production. There has been growing interest in lignocellulosic biomass as a feedstock for biofuels. Because corn adapted to the tropics does not initiate senescence as early as ada...

  11. Impact of Climate Variability on Maize Production in Pakistan using Remote Sensing and Machine Learning

    Science.gov (United States)

    Richetti, J.; Ahmad, I.; Aristizabal, F.; Judge, J.

    2017-12-01

    Determining maize agricultural production under climate variability is valuable to policy makers in Pakistan since maize is the third most produced crop by area after wheat and rice. This study aims to predict the maize production under climate variability. Two-hundred ground truth points of both maize and non-maize land covers were collected from the Faisalabad district during the growing seasons of 2015 and 2016. Landsat-8 images taken in second week of May which correspond spatially and temporally to the local, peak growing season for maize were gathered. For classifying the region training data was constructed for a variety of machine learning algorithms by sampling the second, third, and fourth bands of the Landsat-8 imagery at these reference locations. Cross validation was used for parameter tuning as well as estimating the generalized performances. All the classifiers resulted in overall accuracies of greater than 90% for both years and a support vector machine with a radial basis kernel recorded the maximum accuracy of 97%. The tuned models were used to determine the spatial distribution of maize fields for both growing seasons in the Faisalabad district using parallel processing to improve computation time. The overall classified maize growing area represented 12% difference than that reported by the Crop Reporting Service (CRS) of Punjab Pakistan for both 2015 and 2016. For the agricultural production normalized difference vegetation index from Landsat-8 and climate indicators from ground stations will be used as inputs in a variety of machine learning regression algorithms. The expected results will be compared to actual yield from 64 commercial farms. To verify the impact of climate variability in the maize agricultural production historical climate data from previous 30 years will be used in the developed model to asses the impact of climate variability on the maize production.

  12. Growth performance and carcass characteristics of Tanzania Shorthorn Zebu cattle finished on molasses or maize grain with rice or maize by-products

    DEFF Research Database (Denmark)

    Asimwe, I.; Kimambo, A. E.; Laswai, G. H.

    2015-01-01

    Forty five steers (2.5–3.0 years of age and 200±5 (SEM) kg body weight) were allotted randomly into five diets to assess the effects of finishing Tanzania Shorthorn Zebu (TSZ) cattle in feedlot using diets based on either molasses or maize grain combined with maize or rice by-products. The diets...... were hay and concentrate mixtures of hominy feed with molasses (HFMO), rice polishing with molasses (RPMO), hominy feed with maize meal (HFMM), rice polishing with maize meal (RPMM) and a control of maize meal with molasses (MMMO). All concentrate mixtures contained cotton seed cake, mineral mixture.......35 for HFMO) than in maize grain based diets (6.94, 6.73 and 6.19 for RPMM, MMMO and HFMM, respectively). Energy intake was highest (P

  13. Accounting for alfalfa N credits increases returns to corn production

    Science.gov (United States)

    Guidelines are relatively consistent across the Upper Midwest regarding the N benefit of alfalfa to the following grain crops. With higher corn yields and prices, however, some growers have questioned these guidelines and whether more N fertilizer is needed for first-year corn following a good stand...

  14. Enhancing biogas production of corn stover by fast pyrolysis pretreatment.

    Science.gov (United States)

    Wang, Fang; Zhang, Deli; Wu, Houkai; Yi, Weiming; Fu, Peng; Li, Yongjun; Li, Zhihe

    2016-10-01

    A new thermo-chemical pretreatment by a lower temperature fast pyrolysis (LTFP) was applied to promote anaerobic digestion (AD) efficiency of corn stover (CS). The pretreatment experiment was performed by a fluidized bed pyrolysis reactor at 180, 200 and 220°C with a carrier gas flow rate of 4 and 3m(3)/h. The components characteristics, Scanning Electron Microscope (SEM) images and Crystal Intensity (CrI) of the pretreated CS were tested to explore effectiveness of the pretreatment. The results showed that the cumulative methane production at 180°C for 4 and 3m(3)/h were 199.8 and 200.3mL/g TS, respectively. As compared to the untreated CS, the LTFP pretreatment significantly (a<0.05) increased the methane production by 18.07% and 18.33%, respectively. Methane production was well fitted by the Gompertz models, and the maximum methane potential and AD efficiency was obtained at 180°C for 3m(3)/h. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Influence of land area and capital strengthening fund of rural economic enterprises toward corn production in North Sumatera province

    Science.gov (United States)

    Rahmanta

    2018-02-01

    Corn is one of the staple food crops. Corn can also be processed into various foods and also as animal feed. The need for corn will continue to increase from year to year so it is necessary to increase production. The government has targeted corn crop self-sufficiency to achieve the corn production standards required by the animal feed industry. The purpose of this study is to analyze the effect of land area and capital strengthening funds to rural economic enterprises on corn production. This study uses secondary data obtained from the Central Statistical Agency of North Sumatra Province. The research method used is panel regression method. The result shows that the area of land has a significant effect on corn production and the capital strengthening fund to the rural economy institution has an insignificant effect on corn production in North Sumatera Province.

  16. Evaluating Terra MODIS Satellite Sensor Data Products for Maize ...

    African Journals Online (AJOL)

    Celeste

    Maize plants mature on average from 120 to 165 days after planting. ... is a maize yield estimation timing model, developed using data from the ... The objective yields were surveyed and randomly selected from results of the stratified point ... are used in formulae (Frost, 2006) to derive plant population and a predicted ...

  17. CO2 emissions from the production and combustion of fuel ethanol from corn

    International Nuclear Information System (INIS)

    Marland, G.; Turhollow, A.F.

    1991-01-01

    This paper deals with the carbon dioxide fluxes associated with the use of one biomass fuel, ethanol derived from corn. In a sustainable agricultural system, there is no net CO 2 flux to the atmosphere from the corn itself but there is a net CO 2 flux due to the fossil-fuel supplements currently used to produce and process corn. A comparison between ethanol from corn and gasoline from crude oil becomes very complex because of the variability of corn yield, the lack of available data on corn processing, and the complexity of treating the multiple products from corn processing. When the comparison is made on an energy content basis only, with no consideration of how the products are to be used, and at the margin of the current U.S. energy system, it appears that there is a net CO 2 saving associated with ethanol from corn. This net saving in CO 2 emissions may be as large as 40% or as small as 20%, depending on how one chooses to evaluate the by-product credits. This analysis also demonstrates that the frequently posed question, whether the energy inputs to ethanol exceed the energy outputs, would not be an over-riding consideration even if it were true, because most of the inputs are as coal and natural gas, whereas the output is as a high-quality liquid fuel. (author)

  18. Fast pyrolysis product distribution of biopretreated corn stalk by methanogen.

    Science.gov (United States)

    Wang, Tipeng; Ye, Xiaoning; Yin, Jun; Jin, Zaixing; Lu, Qiang; Zheng, Zongming; Dong, Changqing

    2014-10-01

    After pretreated by methanogen for 5, 15 and 25 days, corn stalk (CS) were pyrolyzed at 250, 300, 350, 400, 450 and 500 °C by Py-GC/MS and product distribution in bio-oil was analyzed. Results indicated that methanogen pretreatment changed considerably the product distribution: the contents of sugar and phenols increased; the contents of linear carbonyls and furans decreased; the contents of linear ketones and linear acids changed slightly. Methanogen pretreatment improved significantly the pyrolysis selectivity of CS to phenols especially 4-VP. At 250 °C, the phenols content increased from 42.25% for untreated CS to 79.32% for biopretreated CS for 5 days; the 4-VP content increased from 28.6% to 60.9%. Increasing temperature was contributed to convert more lignin into 4-VP, but decreased its content in bio-oil due to more other chemicals formed. The effects of biopretreatment time on the chemicals contents were insignificant. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Usage of γ-ray treatment for productivity increasing of maize

    International Nuclear Information System (INIS)

    Ilieva, V.; Dimov, K.

    2003-01-01

    The aim of this study is to determine the influence of γ irradiation on phosphorus nutrition and maize productivity increasing. The vegetation experiment with irradiated and non-irradiated maize seeds in controlled conditions (moisture and temperature) for determination of phosphorus and phosphorus-gypsum absorption was carried out. The influence of γ irradiation on maize growth, export of mineral elements in maize, phosphorus fertilizing and dry biomass of maize plants are presented. The effect of the moisture of γ irradiated maize seeds (sort 'Knezha' - 3L - 621) on dry substance and yield of green mass is also discussed. Based on the presented experimental data the following conclusion have been made: the maize seeds (sort 'Knezha, hybrid H-708) simulation is useful; in all variants of phosphorus-gypsum absorption the increasing of plant mass yield (absolutely dry) is observed; the absorbed phosphates reserve is enhanced twice; the efficiency of 32 P use in stimulated seeds is higher than in non-stimulated seeds; the phosphorus content in maize (sort 'Knezha' - 2L - 611) is increasing mainly in leaves after X-ray irradiation (750 - 1500 R); γ irradiation (7.5 Gy) stimulate the root system (18%) and side roots development and drying up overcome

  20. An assessment of the effect of human faeces and urine on maize production and water productivity

    Science.gov (United States)

    Guzha, Edward; Nhapi, Innocent; Rockstrom, Johan

    The key challenge facing many catchment authorities in Zimbabwe and elsewhere is the challenge of feeding the growing populations within their catchment boundaries. Modern agricultural practices continue to mine valuable crop nutrients through increased food production to satisfy ever-increasing food demand. In recent diagnostic survey of smallholder agricultural sector in the Manyame catchments of Zimbabwe it was revealed that exhausted soils depleted of their natural mineral and organic constituents by many years of cropping with little fertilization or manuring were the major factors contributing to low yields and poor food security in this sector in Zimbabwe. The objective of the study was to assess the effect of using sanitized human excreta on maize production and water productivity. The study involved six volunteer farmers with four 10 m × 10 m trial plots each with the following treatments the control, commercial fertilizer treatment urine only plot, and the feacal matter and urine plot. Harvest determination was carried by weighing the yield from each of the treatment plots and comparisons done. Water productivity was computed by calculating the amount of water used to produce a tone of maize per ha. The study showed that human excreta improves maize crop production and water productivity in rain-fed agriculture. The study recommends that the ecological sanitation concept and the reuse of human excreta both humanure and (ecofert) urine can be considered as alternative excreta management options in catchment areas.

  1. Microbial pretreatment of corn stovers by solid-state cultivation of Phanerochaete chrysosporium for biogas production.

    Science.gov (United States)

    Liu, Shan; Wu, Shubiao; Pang, Changle; Li, Wei; Dong, Renjie

    2014-02-01

    The microbial pretreatment of corn stover and corn stover silage was achieved via the solid-state cultivation of Phanerochaete chrysosporium; pretreatment effects on the biodegradability and subsequent anaerobic production of biogas were investigated. The peak levels of daily biogas production and CH₄ yield from corn stover silage were approximately twice that of corn stover. Results suggested that ensiling was a potential pretreatment method to stimulate biogas production from corn stover. Surface morphology and Fourier-transform infrared spectroscopy analyses demonstrated that the microbial pretreatment of corn stover silage improved biogas production by 10.5 to 19.7% and CH4 yield by 11.7 to 21.2% because pretreatment could decrease dry mass loss (14.2%) and increase substrate biodegradability (19.9% cellulose, 32.4% hemicellulose, and 22.6% lignin). By contrast, the higher dry mass loss in corn stover (55.3%) after microbial pretreatment was accompanied by 54.7% cellulose, 64.0% hemicellulose, and 61.1% lignin degradation but did not significantly influence biogas production.

  2. Susceptibility and aversion of Spodoptera frugiperda to Cry1F Bt maize and considerations for insect resistance management

    Science.gov (United States)

    Bacillus thuringiensis (Bt) maize was developed primarily for North American pests such as European corn borer (Ostrinia nubilalis Hubner). However, most Bt maize products also are cultivated outside of North America, where the primary pests are different and often have lower susceptibility to Bt to...

  3. Productivity and profitability of maize-pumpkin mix cropping in Chitwan, Nepal

    Directory of Open Access Journals (Sweden)

    Shiva Chandra Dhakal

    2015-12-01

    Full Text Available The study was conducted to determine the productivity, profitability and resource use efficiency of maize-pumpkin mix crop production in Chitwan. The study used 53 maize-pumpkin mix crop adopting farmers from among 300 farmers adopting different pollinator friendly practices. Descriptive and statistical tools including Cobb-Douglas production function were used to analyze data, collected from structured interview schedule. The benefit cost ratio (1.58 indicates that maize-pumpkin mix cropping was profitable with productivity of 2.83 ton per ha on maize main product equivalent basis. The magnitude of regression coefficients of maize-pumpkin mix cropping implied that expenditure on seed and fertilizer and irrigation had significant positive effect on gross return with estimated decreasing return to scale (0.85. According to estimated allocative efficiency indices, it is suggested to increase expenditure on seed and fertilizer cum irrigation by about 90% and 55% respectively. Extension of modern technologies with adjustment on resource use is to be encouraged for increase in productivity and profitability of maize-pumpkin mix crop production which indirectly promotes and ensure forage for pollinators

  4. Feasibility of Hydrothermal Pretreatment on Maize Silage for Bioethanol Production

    DEFF Research Database (Denmark)

    Xu, Jian; Thomsen, Mette Hedegaard; Thomsen, Anne Belinda

    2010-01-01

    The potential of maize silage as a feedstock to produce bioethanol was evaluated in the present study. The hydrothermal pretreatment with five different pretreatment severity factors (PSF) was employed to pretreat the maize silage and compared in terms of sugar recovery, toxic test, and ethanol...... the liquors from the five conditions were not toxic to the Baker’s yeast. Pretreatment under 195°C for 7 min had the similar PSF with that of 185°C for 15 min, and both gave the higher ethanol concentration of 19.92 and 19.98 g/L, respectively. The ethanol concentration from untreated maize silage was only 7...

  5. Understanding the reductions in US corn ethanol production costs: An experience curve approach

    International Nuclear Information System (INIS)

    Hettinga, W.G.; Junginger, H.M.; Dekker, S.C.; Hoogwijk, M.; McAloon, A.J.; Hicks, K.B.

    2009-01-01

    The US is currently the world's largest ethanol producer. An increasing percentage is used as transportation fuel, but debates continue on its costs competitiveness and energy balance. In this study, technological development of ethanol production and resulting cost reductions are investigated by using the experience curve approach, scrutinizing costs of dry grind ethanol production over the timeframe 1980-2005. Cost reductions are differentiated between feedstock (corn) production and industrial (ethanol) processing. Corn production costs in the US have declined by 62% over 30 years, down to 100$ 2005 /tonne in 2005, while corn production volumes almost doubled since 1975. A progress ratio (PR) of 0.55 is calculated indicating a 45% cost decline over each doubling in cumulative production. Higher corn yields and increasing farm sizes are the most important drivers behind this cost decline. Industrial processing costs of ethanol have declined by 45% since 1983, to below 130$ 2005 /m 3 in 2005 (excluding costs for corn and capital), equivalent to a PR of 0.87. Total ethanol production costs (including capital and net corn costs) have declined approximately 60% from 800$ 2005 /m 3 in the early 1980s, to 300$ 2005 /m 3 in 2005. Higher ethanol yields, lower energy use and the replacement of beverage alcohol-based production technologies have mostly contributed to this substantial cost decline. In addition, the average size of dry grind ethanol plants increased by 235% since 1990. For the future it is estimated that solely due to technological learning, production costs of ethanol may decline 28-44%, though this excludes effects of the current rising corn and fossil fuel costs. It is also concluded that experience curves are a valuable tool to describe both past and potential future cost reductions in US corn-based ethanol production

  6. Comparison of fumonisin contamination using HPLC and ELISA methods in bt and near-isogenic maize hybrids infested with European corn borer or western bean cutworm.

    Science.gov (United States)

    Bowers, Erin; Hellmich, Richard; Munkvold, Gary

    2014-07-09

    Field trials were conducted from 2007 to 2010 to compare grain fumonisin levels among non-Bt maize hybrids and Bt hybrids with transgenic protection against manual infestations of European corn borer (ECB) and Western bean cutworm (WBC). HPLC and ELISA were used to measure fumonisin levels. Results of the methods were highly correlated, but ELISA estimates were higher. Bt hybrids experienced less insect injury, Fusarium ear rot, and fumonisin contamination compared to non-Bt hybrids. WBC infestation increased fumonisin content compared to natural infestation in non-Bt and hybrids expressing Cry1Ab protein in five of eight possible comparisons; in Cry1F hybrids, WBC did not impact fumonisins. These results indicate that WBC is capable of increasing fumonisin levels in maize. Under WBC infestation, Cry1F mitigated this risk more consistently than Cry1Ab or non-Bt hybrids. Transgenically expressed Bt proteins active against multiple lepidopteran pests can provide broad, consistent reductions in the risk of fumonisin contamination.

  7. Examining the impacts of increased corn production on groundwater quality using a coupled modeling system

    Science.gov (United States)

    This study demonstrates the value of a coupled chemical transport modeling system for investigating groundwater nitrate contamination responses associated with nitrogen (N) fertilizer application and increased corn production. The coupled Community Multiscale Air Quality Bidirect...

  8. Examining the impacts of increased corn production on groundwater quality using a coupled modeling system

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset was used to create graphics associated with manuscript: Garcia et al., Examining the impacts of increased corn production on groundwater quality using a...

  9. Evaluation of Conservation Tillage Techniques for Maize Production ...

    African Journals Online (AJOL)

    conservation tillage techniques and evaluate the impacts of the system on ... biological soil manipulation to optimize conditions for seed germination, emergence and ..... planting and weeding operations as total expense and sales from maize ...

  10. Bio-oil and bio-char production from corn cobs and stover by fast pyrolysis

    International Nuclear Information System (INIS)

    Mullen, Charles A.; Boateng, Akwasi A.; Goldberg, Neil M.; Lima, Isabel M.; Laird, David A.; Hicks, Kevin B.

    2010-01-01

    Bio-oil and bio-char were produced from corn cobs and corn stover (stalks, leaves and husks) by fast pyrolysis using a pilot scale fluidized bed reactor. Yields of 60% (mass/mass) bio-oil (high heating values are ∼20 MJ kg -1 , and densities >1.0 Mg m -3 ) were realized from both corn cobs and from corn stover. The high energy density of bio-oil, ∼20-32 times on a per unit volume basis over the raw corn residues, offers potentially significant savings in transportation costs particularly for a distributed 'farm scale' bio-refinery system. Bio-char yield was 18.9% and 17.0% (mass/mass) from corn cobs and corn stover, respectively. Deploying the bio-char co-product, which contains most of the nutrient minerals from the corn residues, as well as a significant amount of carbon, to the land can enhance soil quality, sequester carbon, and alleviate environmental problems associated with removal of crop residues from fields.

  11. Bio-oil and bio-char production from corn cobs and stover by fast pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Mullen, Charles A.; Boateng, Akwasi A.; Goldberg, Neil M.; Hicks, Kevin B. [Eastern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, 600 E. Mermaid Lane, Wyndmoor, PA 19038 (United States); Lima, Isabel M. [Southern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, 1100 Robert E. Lee Blvd., New Orleans, LA 70124 (United States); Laird, David A. [National Soil Tilth Laboratory, U.S. Agricultural Research Service, U.S. Department of Agriculture, 2110 University Blvd., Ames, IA 50011 (United States)

    2010-01-15

    Bio-oil and bio-char were produced from corn cobs and corn stover (stalks, leaves and husks) by fast pyrolysis using a pilot scale fluidized bed reactor. Yields of 60% (mass/mass) bio-oil (high heating values are {proportional_to}20 MJ kg{sup -1}, and densities >1.0 Mg m{sup -3}) were realized from both corn cobs and from corn stover. The high energy density of bio-oil, {proportional_to}20-32 times on a per unit volume basis over the raw corn residues, offers potentially significant savings in transportation costs particularly for a distributed ''farm scale'' bio-refinery system. Bio-char yield was 18.9% and 17.0% (mass/mass) from corn cobs and corn stover, respectively. Deploying the bio-char co-product, which contains most of the nutrient minerals from the corn residues, as well as a significant amount of carbon, to the land can enhance soil quality, sequester carbon, and alleviate environmental problems associated with removal of crop residues from fields. (author)

  12. Value of Neonicotinoid Insecticide Seed Treatments in Mid-South Corn (Zea mays) Production Systems.

    Science.gov (United States)

    North, J H; Gore, J; Catchot, A L; Stewart, S D; Lorenz, G M; Musser, F R; Cook, D R; Kerns, D L; Leonard, B R; Dodds, D M

    2018-02-09

    Neonicotinoid seed treatments are one of several effective control options used in corn, Zea mays L., production in the Mid-South for early season insect pests. An analysis was performed on 91 insecticide seed treatment trials from Arkansas, Louisiana, Mississippi, and Tennessee to determine the value of neonicotinoids in corn production systems. The analysis compared neonicotinoid insecticide treated seed plus a fungicide to seed only with the same fungicide. When analyzed by state, corn yields were significantly higher when neonicotinoid seed treatments were used compared to fungicide only treated seed in Louisiana and Mississippi. Corn seed treated with neonicotinoid seed treatments yielded 111, 1,093, 416, and 140 kg/ha, higher than fungicide only treatments for Arkansas, Louisiana, Mississippi, and Tennessee, respectively. Across all states, neonicotinoid seed treatments resulted in a 700 kg/ha advantage compared to fungicide only treated corn seed. Net returns for corn treated with neonicotinoid seed treatment were $1,446/ha compared with $1,390/ha for fungicide only treated corn seed across the Mid-South. Economic returns for neonicotinoid seed treated corn were significantly greater than fungicide-only-treated corn seed in 8 out of 14 yr. When analyzed by state, economic returns for neonicotinoid seed treatments were significantly greater than fungicide-only-treated seed in Louisiana. In some areas, dependent on year, neonicotinoid seed treatments provide significant yield and economic benefits in Mid-South corn. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. COMPETITIVENESS OF NIGERIAN RICE AND MAIZE PRODUCTION ECOLOGIES: A POLICY ANALYSIS APPROACH

    Directory of Open Access Journals (Sweden)

    Victor Olusegun Okoruwa

    2011-05-01

    Full Text Available The Nigerian rice and maize sectors are faced with decreasing supply and increasing demand as rice and maize have taken a strategic place of other staples leading to excessive importation and increasing government intervention. This study therefore assesses the competitiveness of Nigerian rice and maize production ecologies using the policy analysis matrix (PAM on a sample of 122 farmers. Results of the PAM revealed that outputs from the production ecologies are taxed. This is further confirmed by the Effective protection coefficient (EPC and Subsidy ratio to producers (SRP values, however, the production ecologies are subsidized on the use of tradable inputs. The production ecologies show a strong competitiveness at the farm level (under irrigated rice, upland rice and upland maize and a strong comparative advantage. Sensitivity analysis indicated that a 50 percent increase in output and a 13.3 percent depreciation of the domestic currency will increase competitiveness and comparative advantage of rice and maize production in all ecologies. The study recommends that government should ensure a level of policy stability in the rice and maize sectors, assist farmers with irrigated water scheme to ensure constant water supply, and increase the level of output through provision of improved seed varieties.

  14. Health Impacts from Corn Production Pre-and Post-NAFTA Trade Agreement (1986–2013)

    Science.gov (United States)

    Mendoza-Cano, Oliver; Sánchez-Piña, Ramón Alberto; González-Ibarra, Álvaro Jesús; Murillo-Zamora, Efrén; Nava-Garibaldi, Cynthia Monique

    2016-01-01

    Life cycle assessment (LCA) is a powerful methodology for the study of health impacts and public policies. We performed this study to quantitatively explain the potential health impacts on disability-adjusted life years (DALYs) of corn produced in Mexico and imported from the United States of America (U.S.) from 1984 until 2014. The processes are hybrid and organic corn production. The functional unit was defined as 1 ton of corn production. Results indicate a total value of 178,431, 244,175, and 283,426 DALYs of three decades: 1984–1993, 1994–2003, and 2004–2013, of Mexican production; the U.S. production and transport were also calculated, showing values of 29,815, 65,837, and 107,729 for the same three decades. Additionally, DALYs were obtained for the category of human health and climate change by functional unit: 802.31 (1984–1993), 802.67 (1994–2003), and 803.92 (2004–2013), and for imported corn transported to Mexico from the U.S., 859.12 (1984–2013). DALYs on human toxicity were obtained: 99.05 (1984–1993), 99.05 (1994–2003), and 99.04 (2004–2013), and for the corn imported and transported to Mexico from the U.S., 116.25 (1984–2013). Conclusions: Environmental and health impacts in terms of DALYs are higher when corn is imported versus the corn produced in Mexico. Environmental health and nominal corn cultivation and transport impacts have increased as a result of the North American Free Trade Agreement (NAFTA). Mexico needs to redefine its public policies to suffer less of an environmental burden from corn to ensure global environmental health and food security. PMID:27420088

  15. Health Impacts from Corn Production Pre-and Post-NAFTA Trade Agreement (1986-2013).

    Science.gov (United States)

    Mendoza-Cano, Oliver; Sánchez-Piña, Ramón Alberto; González-Ibarra, Álvaro Jesús; Murillo-Zamora, Efrén; Nava-Garibaldi, Cynthia Monique

    2016-07-13

    Life cycle assessment (LCA) is a powerful methodology for the study of health impacts and public policies. We performed this study to quantitatively explain the potential health impacts on disability-adjusted life years (DALYs) of corn produced in Mexico and imported from the United States of America (U.S.) from 1984 until 2014. The processes are hybrid and organic corn production. The functional unit was defined as 1 ton of corn production. Results indicate a total value of 178,431, 244,175, and 283,426 DALYs of three decades: 1984-1993, 1994-2003, and 2004-2013, of Mexican production; the U.S. production and transport were also calculated, showing values of 29,815, 65,837, and 107,729 for the same three decades. Additionally, DALYs were obtained for the category of human health and climate change by functional unit: 802.31 (1984-1993), 802.67 (1994-2003), and 803.92 (2004-2013), and for imported corn transported to Mexico from the U.S., 859.12 (1984-2013). DALYs on human toxicity were obtained: 99.05 (1984-1993), 99.05 (1994-2003), and 99.04 (2004-2013), and for the corn imported and transported to Mexico from the U.S., 116.25 (1984-2013). Environmental and health impacts in terms of DALYs are higher when corn is imported versus the corn produced in Mexico. Environmental health and nominal corn cultivation and transport impacts have increased as a result of the North American Free Trade Agreement (NAFTA). Mexico needs to redefine its public policies to suffer less of an environmental burden from corn to ensure global environmental health and food security.

  16. Economic effectiveness of direct drill in maize production

    Directory of Open Access Journals (Sweden)

    Žuža Desanka

    2017-01-01

    Full Text Available Within the concept of sustainable agriculture, raising environmental awareness of farmers and the preservation of natural resources, the implementation of the so-called conservation tillage began during the 1960s in the USA. It involves the application of a reduced or completely eliminated (no-till, zero tillage, direct drill sowing tillage, which prevents soil erosion, improves soil quality and biodiversity, also significantly reducing gas emissions by implementing a set of technical solutions. The application of this concept requires the existence of appropriate machinery that enables the use of direct seeding on land where plant residues of previous crops are present in the amount of minimum 30%. In addition to significant environmental impacts, this concept provides positive economic effects: for the whole society by eliminating the cost caused by soil degradation, but also for individual agricultural producers through the elimination of a significant number of complex machining operations and savings in diesel fuel and working hours of machines and employees. A comparative analysis of the economic effectiveness of maize production in terms of conventional tillage and no-till on a farm in Novi Sad showed that the application of direct drill allows skipping 4 to 5 machining operations, leading to a saving of 59 litres of diesel fuel per hectare of cultivated area while retaining the same average yield per ha, which resulted in increased profits by 4,246 RSD ha-1 compared to conventional tillage.

  17. [Evolution of maize climate productivity and its response to climate change in Heilongjiang Province, China.

    Science.gov (United States)

    Li, Xiu Fen; Zhao, Hui Ying; Zhu, Hai Xia; Wang, Ping; Wang, Qiu Jing; Wang, Ming; Li, Yu Guang

    2016-08-01

    Under the background of climate change, revealing the change trend and spatial diffe-rence of maize climate productivity in-depth and understanding the regularity of maize climatic resources utilization can provide scientific basis for the macro-decision of agricultural production in Heilongjiang Province. Based on the 1981-2014 meteorological data of 72 weather stations and the corresponding maize yield data in Heilongjiang Province, by the methods of step by step revisal, spatial interpolation and linear trend analysis, this paper studied the photosynthetic productivity (PP), light-temperature productivity (LTP), and climatic productivity (CP) of spring maize, and their temporal and spatial variation characteristics, main influencing factors and light energy utilization efficiency, and evaluated the maize climate productivities under different climate scenarios in the future. The results showed that during the study period, the mean PP, LTP and CP in Heilongjiang Province were 26558, 19953, 18742 kg·hm -2 , respectively. Maize PP, LTP and CP were high in plains and low in mountains, and gradually decreased from southwest to northeast. PP, LTP and CP presented significantly increasing trends, and the increase rates were 378, 723 and 560 kg·hm -2 ·(10 a) -1 , respectively. The increase of radiation and temperature had positive effect on maize production in Heilongjiang Province. The potential productivity of maize presented significant response to climate change. The decrease of solar radiation led to the decline of PP in western Songnen Plain, but the increased temperature compensated the negative effect of solar radiation, so the downward trend of LTP was slowed. The response to climate warming was particularly evident in North and East, and LTP was significantly increased, which was sensitive to the change of precipitation in southwest of Songnen Plain and part of Sanjiang Plain. The average ratio of maize actual yield to its climate productivity was only 24

  18. Biomass production of 12 winter cereal cover crop cultivars and their effect on subsequent no-till corn yield

    Science.gov (United States)

    Cover crops can improve the sustainability and resilience of corn and soybean production systems. However, there have been isolated reports of corn yield reductions following winter rye cover crops. Although there are many possible causes of corn yield reductions following winter cereal cover crops,...

  19. Corn in consortium with forages

    Directory of Open Access Journals (Sweden)

    Cássia Maria de Paula Garcia

    2013-12-01

    Full Text Available The basic premises for sustainable agricultural development with focus on rural producers are reducing the costs of production and aggregation of values through the use crop-livestock system (CLS throughout the year. The CLS is based on the consortium of grain crops, especially corn with tropical forages, mainly of the genus Panicum and Urochloa. The study aimed to evaluate the grain yield of irrigated corn crop intercropped with forage of the genus Panicum and Urochloa. The experiment was conducted at the Fazenda de Ensino, Pesquisa e Extensão – FEPE  of the Faculdade de Engenharia - UNESP, Ilha Solteira in an Oxisol in savannah conditions and in the autumn winter of 2009. The experimental area was irrigated by a center pivot and had a history of no-tillage system for 8 years. The corn hybrid used was simple DKB 390 YG at distances of 0.90 m. The seeds of grasses were sown in 0.34 m spacing in the amount of 5 kg ha-1, they were mixed with fertilizer minutes before sowing  and placed in a compartment fertilizer seeder and fertilizers were mechanically deposited in the soil at a depth of 0.03 m. The experimental design used was a randomized block with four replications and five treatments: Panicum maximum cv. Tanzania sown during the nitrogen fertilization (CTD of the corn; Panicum maximum cv. Mombaça sown during the nitrogen fertilization (CMD of the corn; Urochloa brizantha cv. Xaraés sown during the occasion of nitrogen fertilization (CBD of the corn; Urochloa ruziziensis cv. Comumsown during the nitrogen fertilization (CRD of the corn and single corn (control. The production components of corn: plant population per hectare (PlPo, number of ears per hectare (NE ha-1, number of rows per ear (NRE, number of kernels per row on the cob (NKR, number of grain in the ear (NGE and mass of 100 grains (M100G were not influenced by consortium with forage. Comparing grain yield (GY single corn and maize intercropped with forage of the genus Panicum

  20. Microfungi on the kernels of transgenic and non-transgenic maize damaged by the European corn borer

    Czech Academy of Sciences Publication Activity Database

    Remešová, J.; Kolařík, Miroslav; Prášil, K.

    2007-01-01

    Roč. 59, č. 2 (2007), s. 205-213 ISSN 1211-0981 Grant - others:GA MZe(CZ) 1B53043 Program:1B Institutional research plan: CEZ:AV0Z50200510 Source of funding: V - iné verejné zdroje Keywords : bt-maize * microfungi * plant protection Subject RIV: EE - Microbiology, Virology

  1. Evaluation of corn germ from ethanol production as an alternative fat source in dairy cow diets.

    Science.gov (United States)

    Abdelqader, M M; Hippen, A R; Kalscheur, K F; Schingoethe, D J; Karges, K; Gibson, M L

    2009-03-01

    . Germ removed from corn grain before ethanol production provides an alternative source of fat for energy in lactating dairy cows when fed at 7 and 14% of diet DM. Our results suggest that fat from corn germ may be relatively protected with no adverse effect on DM intake, milk production, and milk composition when fed up to 14% of diet DM.

  2. Socioeconomic analysis and problems of maize seed production in mid hill area of Nepal

    Directory of Open Access Journals (Sweden)

    Mahesh Sapkota

    2017-06-01

    Full Text Available Maize is considered as staple food and is a way of life for the hilly region of Nepal. The production and yield of maize crop is very low which is unable to meet the current demand and is mostly affected by various insect/pests and diseases. For such a backdrop, 182 cross sectional data were collected using simple random techniques in Palpa in June, 2016. Forced scaling technique was used to rank problems based on index value. The total average landholding was 0.91 hectare with 0.32 ha under maize seed cultivation. About 90.7 and 69.8% farmers were access to extension service and had received training respectively. Infestation of insect/pests ranked at first as a major problem in maize seed production with 0.79 index value followed by infrastructure/credit, storage, unavailability of inputs and marketing problems. Similarly poor bargaining power ranked as a 1st major marketing problem. Better access to extension service as well as frequent training service to farmers should be provided to increase production and yield of maize seed. Government and other stakeholder organizations should focus to develop irrigation infrastructure for the overall development of maize sector.

  3. Weed Dynamics during Transition to Conservation Agriculture in Western Kenya Maize Production.

    Directory of Open Access Journals (Sweden)

    Judith A Odhiambo

    Full Text Available Weed competition is a significant problem in maize (Zea mays, L. production in Sub-Saharan Africa. Better understanding of weed management and costs in maize intercropped with beans (Phaseolus vulgaris, L. during transition to conservation agricultural systems is needed. Changes in weed population and maize growth were assessed for a period of three years at Bungoma where crops are grown twice per year and at Trans-Nzoia where crops are grown once per year. Treatments included three tillage practices: minimum (MT, no-till (NT and conventional (CT applied to three cropping systems: continuous maize/bean intercropping (TYPICAL, maize/bean intercropping with relayed mucuna after bean harvest (RELAY and maize, bean and mucuna planted in a strip intercropping arrangement (STRIP. Herbicides were used in NT, shallow hand hoeing and herbicides were used in MT and deep hoeing with no herbicides were used in CT. Weed and maize performance in the maize phase of each cropping system were assessed at both locations and costs of weed control were estimated at Manor House only. Weed density of grass and forb species declined significantly under MT and NT at Manor House and of grass species only at Mabanga. The greatest declines of more than 50% were observed as early as within one year of the transition to MT and NT in STRIP and TYPICAL cropping systems at Manor House. Transitioning to conservation based systems resulted in a decline of four out of five most dominant weed species. At the same time, no negative impact of MT or NT on maize growth was observed. Corresponding costs of weed management were reduced by $148.40 ha(-1 in MT and $149.60 ha(-1 in NT compared with CT. In conclusion, farmers can benefit from effective and less expensive weed management alternatives early in the process of transitioning to reduced tillage operations.

  4. Weed Dynamics during Transition to Conservation Agriculture in Western Kenya Maize Production.

    Science.gov (United States)

    Odhiambo, Judith A; Norton, Urszula; Ashilenje, Dennis; Omondi, Emmanuel C; Norton, Jay B

    2015-01-01

    Weed competition is a significant problem in maize (Zea mays, L.) production in Sub-Saharan Africa. Better understanding of weed management and costs in maize intercropped with beans (Phaseolus vulgaris, L.) during transition to conservation agricultural systems is needed. Changes in weed population and maize growth were assessed for a period of three years at Bungoma where crops are grown twice per year and at Trans-Nzoia where crops are grown once per year. Treatments included three tillage practices: minimum (MT), no-till (NT) and conventional (CT) applied to three cropping systems: continuous maize/bean intercropping (TYPICAL), maize/bean intercropping with relayed mucuna after bean harvest (RELAY) and maize, bean and mucuna planted in a strip intercropping arrangement (STRIP). Herbicides were used in NT, shallow hand hoeing and herbicides were used in MT and deep hoeing with no herbicides were used in CT. Weed and maize performance in the maize phase of each cropping system were assessed at both locations and costs of weed control were estimated at Manor House only. Weed density of grass and forb species declined significantly under MT and NT at Manor House and of grass species only at Mabanga. The greatest declines of more than 50% were observed as early as within one year of the transition to MT and NT in STRIP and TYPICAL cropping systems at Manor House. Transitioning to conservation based systems resulted in a decline of four out of five most dominant weed species. At the same time, no negative impact of MT or NT on maize growth was observed. Corresponding costs of weed management were reduced by $148.40 ha(-1) in MT and $149.60 ha(-1) in NT compared with CT. In conclusion, farmers can benefit from effective and less expensive weed management alternatives early in the process of transitioning to reduced tillage operations.

  5. Physiochemical Properties and Probiotic Survivability of Symbiotic Corn-Based Yogurt-Like Product.

    Science.gov (United States)

    Wang, Cuina; Zheng, Huajie; Liu, Tingting; Wang, Dawei; Guo, Mingruo

    2017-09-01

    Corn is a major grain produced in northern China. Corn-based functional food products are very limited. In this study, a symbiotic corn-based yogurt-like product was developed. Corn milk was prepared through grinding, extrusion and milling, and hydration processes. Corn extrudate was prepared under the optimized conditions of corn flour particle size fermented at 35 °C for 6 h using a probiotic starter culture containing L. plantarum. Chemical composition (%) of the symbiotic corn-based yogurt-like product was: total solids (17.13 ± 0.31), protein (1.12 ± 0.03), fat (0.30 ± 0.05), carbohydrates (15.14 ± 0.19), and ash (0.16 ± 0.02), respectively. pH value of this symbiotic product decreased from 4.50 ± 0.03 to 3.88 ± 0.13 and the population of L. plantarum declined from 7.8 ± 0.09 to 7.1 ± 0.14 log CFU/mL during storage at 4 °C. SDS-PAGE analysis showed that there were no changes in protein profile during storage. Texture and consistency were also stable during the period of this study. It can be concluded that a set-type corn-based symbiotic yogurt-like product with good texture and stability was successfully developed that would be a good alternative to the dairy yogurt. © 2017 Institute of Food Technologists®.

  6. Changes in Phenolic Acid Content in Maize during Food Product Processing.

    Science.gov (United States)

    Butts-Wilmsmeyer, Carrie J; Mumm, Rita H; Rausch, Kent D; Kandhola, Gurshagan; Yana, Nicole A; Happ, Mary M; Ostezan, Alexandra; Wasmund, Matthew; Bohn, Martin O

    2018-04-04

    The notion that many nutrients and beneficial phytochemicals in maize are lost due to food product processing is common, but this has not been studied in detail for the phenolic acids. Information regarding changes in phenolic acid content throughout processing is highly valuable because some phenolic acids are chemopreventive agents of aging-related diseases. It is unknown when and why these changes in phenolic acid content might occur during processing, whether some maize genotypes might be more resistant to processing induced changes in phenolic acid content than other genotypes, or if processing affects the bioavailability of phenolic acids in maize-based food products. For this study, a laboratory-scale processing protocol was developed and used to process whole maize kernels into toasted cornflakes. High-throughput microscale wet-lab analyses were applied to determine the concentrations of soluble and insoluble-bound phenolic acids in samples of grain, three intermediate processing stages, and toasted cornflakes obtained from 12 ex-PVP maize inbreds and seven hybrids. In the grain, insoluble-bound ferulic acid was the most common phenolic acid, followed by insoluble-bound p-coumaric acid and soluble cinnamic acid, a precursor to the phenolic acids. Notably, the ferulic acid content was approximately 1950 μg/g, more than ten-times the concentration of many fruits and vegetables. Processing reduced the content of the phenolic acids regardless of the genotype. Most changes occurred during dry milling due to the removal of the bran. The concentration of bioavailable soluble ferulic and p-coumaric acid increased negligibly due to thermal stresses. Therefore, the current dry milling based processing techniques used to manufacture many maize-based foods, including breakfast cereals, are not conducive for increasing the content of bioavailable phenolics in processed maize food products. This suggests that while maize is an excellent source of phenolics, alternative

  7. Improving yield and water productivity of maize grown under deficit-irrigated in dry area conditions

    Directory of Open Access Journals (Sweden)

    Mohamed H. Abd el-wahed

    2015-10-01

    Full Text Available Scarcity of water is the most severe constraint for development of maize in arid and semi-arid areas. Based on the actual crop need, the irrigation management has to be improved so that the water supply to the crop can be reduced while still achieving high yield. Therefore, the current study has been organized to evaluate the effects of deficit sprinkler irrigation (DSI and farmyard manure (FYM on Grain yield (GY and crop water productivity (CWP of corn, a 2-year experiment was conducted in arid region of Libya. The DSI treatments were (I100 = 100%, I85 = 85% or I70 = 70% of the crop evapotranspiration. FYM treatments were (0, 10 ton ha−1 spread either on the soil surface, incorporated with surface or subsurface layer (FYM10s, FYM10m or FYM10ss, respectively and 20 ton ha−1 spread as before (FYM20s, FYM20m or FYM20ss, respectively. Results indicated that the highest values of grain yield (GY were obtained from I100 treatment, while the lowest were observed in I70. FYM20ss enhanced GY than other FYM treatments in both seasons. The highest GY and CWP were recorded with I100 and received FYM20ss. It could be considered as a suitable under arid environmental conditions and similar regions, the treatment (I100 × FYM20ss is the most suitable for producing high GY and CWP. Under limited irrigation water, application of (I85 ×FYM20ss treatment was found to be favorable to save 15% of the applied irrigation water, at the time in which produced the same GY.

  8. Intercropping of corn, brachiaria grass and leguminous plants: productivity, quality and composition of silages

    Directory of Open Access Journals (Sweden)

    Patrícia Monteiro Costa

    2012-10-01

    Full Text Available The present study was carried out with the objective to evaluate the productive and qualitative characteristics of forages produced in systems of intercropping of corn, brachiaria grass and different leguminous plants. Productivity, bromatological composition and the fermentative profile of the silages from the following treatments were evaluated: corn in exclusive cultivation (CEC; intercropping of corn with brachiaria grass (CB; intercropping of corn, brachiaria grass and Calopogonium mucunoides (CBCal; intercropping of corn, brachiaria grass and Macrotyloma axillare (CBMac; and intercropping of corn, brachiaria grass and Stylozanthes capitata (CBSty. The experimental design utilized was completely randomized. For each type of cultivation, five plots or replications of three linear meters were harvested, and the material was separated. The variables assessed were: dry matter productivity per area; dry matter productivity of corn per area; crude protein production per area and productivity of total digestible nutrients per area. The material originated from the cultures was ensiled, with dry matter between 28 and 32%. After, the material was placed and compacted appropriately in bucket silos. A sample was collected from each replication for determination of the contents of DM, crude protein (CP, ether extract (EE, lignin, neutral and acid detergent fibers (NDF and ADF and TDN. A fraction of the sample of silages from each treatment was compressed for extraction of the juice and determination of the silage quality. There was difference between the forms of cultivation for the dry matter production per hectare. The CEC with production of 11920.1 kg DM/ha did not differ from CB (8997.41 kg DM/ha or CBCal (10452.10 kg DM/ha; however, it was superior to CBMac (8429.75 kg DM/ha and to CBSty (8164.83 kg DM/ha. The contents of DM, CP, NDF, ADF, lignin and TDN did not differ between the silages from the different treatments. All the silages presented

  9. Effect of γ-ray irradiation on alcohol production from corn

    International Nuclear Information System (INIS)

    Han, Y.W.; Cho, Y.K.; Ciegler, A.

    1983-01-01

    Cracked corn was irradiated with γ rays at 0-100 Mrad and the effects of the irradiation on sugar yield, susceptibility to enzymatic hydrolysis of starch, yeast growth, and alcohol production were studied. Gamma irradiation at 50 Mrad or greater produced a considerable amount of reducing sugar but little glucose. At lower dosages, γ irradiation significantly increased the susceptibility of corn starch to enzymatic hydrolysis, but dosages of 50 Mrad or greater decomposed the starch molecules as indicated by the reduction in iodine uptake. About 12.5% reducing sugar was produced by amylase treatment of uncooked, irradiated corn. This amount exceeded the level of sugar produced from cooked (gelatinized) corn by the same enzyme treatment. The yeast numbers in submerged cultivation were lower on a corn substrate that was irradiated at 50 Mrad or greater compared to that on an unirradiated control. About the same level of alcohol was produced on uncooked, irradiated (10 5 - 10 6 rad) corn as from cooked (121 degrees C for 30 min) corn. Therefore, the conventional cooking process for gelatinization of starch prior to its saccharification can be eliminated by irradiation. Irradiation also eliminated the necessity of sterilization of the medium and reduced the viscosity of high levels of substrate in the fermentation broth. (Refs. 10)

  10. Evaluating the production of Ganoderma mushroom on corn cobs ...

    African Journals Online (AJOL)

    The corn cobs and saw dust (control) were sterilized, inoculated under aseptic conditions in clear plastic bags and incubated at room temperature. Fruit bodies were observed within 30 to 50 days, results considerably shorter compared to when using saw dust, which can take up to four months before mushrooms are ...

  11. Production of high fructose corn syrup Streptomyces sp

    Energy Technology Data Exchange (ETDEWEB)

    Bhatia, M; Prabhu, K A

    1978-01-01

    A Streptomyces strain exhibiting considerable glucose isomerase activity was isolated from soil. The cell free extract of the culture was able to convert glucose to fructose in a period of 48 ha and gave 40% conversion. With acid hydrolyzates of corn and bagasse as substrates, the cell-free extract gave glucose to fructose conversions of 39.8 and 29%, respectively.

  12. Influence of Kernel Age on Fumonisin B1 Production in Maize by Fusarium moniliforme

    Science.gov (United States)

    Warfield, Colleen Y.; Gilchrist, David G.

    1999-01-01

    Production of fumonisins by Fusarium moniliforme on naturally infected maize ears is an important food safety concern due to the toxic nature of this class of mycotoxins. Assessing the potential risk of fumonisin production in developing maize ears prior to harvest requires an understanding of the regulation of toxin biosynthesis during kernel maturation. We investigated the developmental-stage-dependent relationship between maize kernels and fumonisin B1 production by using kernels collected at the blister (R2), milk (R3), dough (R4), and dent (R5) stages following inoculation in culture at their respective field moisture contents with F. moniliforme. Highly significant differences (P ≤ 0.001) in fumonisin B1 production were found among kernels at the different developmental stages. The highest levels of fumonisin B1 were produced on the dent stage kernels, and the lowest levels were produced on the blister stage kernels. The differences in fumonisin B1 production among kernels at the different developmental stages remained significant (P ≤ 0.001) when the moisture contents of the kernels were adjusted to the same level prior to inoculation. We concluded that toxin production is affected by substrate composition as well as by moisture content. Our study also demonstrated that fumonisin B1 biosynthesis on maize kernels is influenced by factors which vary with the developmental age of the tissue. The risk of fumonisin contamination may begin early in maize ear development and increases as the kernels reach physiological maturity. PMID:10388675

  13. Maize kernel size and texture: production parameters, quality of eggs of the laying hens and electricity intake

    Directory of Open Access Journals (Sweden)

    Javer Alves Vieira Filho

    2015-08-01

    Full Text Available The influence of maize corn size and texture on the performance parameters of laying hens and power consumption required for grinding maize corn were evaluated. The experiment was carried out on 384 Isa Brown hens, 36 weeks old, penned in a conventional aviary with 562.5 cm2 bird-1 stocking rate. The treatments were distributed in a completely randomized 2 x 3 factorial design (maize textures: flint and dent; and milling degree: fine, medium and coarse with eight replicates of eight birds per plot. Data were evaluated with SISVAR and means were compared by Tukey’s test at 5% probability. Difference was reported for the variable texture and flint increased the variables feed intake and egg weight. Significant difference in the characteristics of egg quality occurred only for the colorof the yolk. Larger corn sizes consumed less electricity during grinding. The maize flint cultivar had a lower 31.7% power consumption when compared to that of the dent cultivar.

  14. DISEÑO MECANICO DE UN PROTOTIPO DE SEMBRADORA DE MAIZ MECHANICAL DESIGN OF A PROTOTYPE CORN SOWER

    Directory of Open Access Journals (Sweden)

    Salvador Barragán G

    2006-08-01

    Full Text Available La agricultura mexicana es un sector estratégico para el desarrollo nacional. El maíz desempeña un papel importante en la industria, ya que se procesa derivando una gran cantidad de productos y subproductos. En la actualidad hay campesinos que siembran en terrenos irregulares como cerros o terrenos de superficie inclinada; este tipo de siembra la mayoría de las veces es agricultura de subsistencia, pero no por eso menos importante que la comercial. La siembra en este tipo de terrenos se realiza por medio de herramientas rústicas debido al difícil acceso de maquinaria moderna y los pocos recursos económicos para conseguirla; este tipo de herramienta representa un gran esfuerzo físico y jornadas muy largas de trabajo para el campesino. En el presente proyecto se propone una máquina para sembrar maíz, la cual evitaría los problemas anteriormente expuestos, además de realizar la actividad en menor tiempo y de manera económica, rentable y segura.Mexican agriculture is a strategic sector for national development. Corn has an important role in the industry due to the fact that it is processed into a great variety of products and by-products. There are some agricultural workers that sow in irregular grounds such as hills and sloping surfaces. This kind of sowing is often for their own consumption, but it is not less important than the industrial counterpart. Sowing in this type of grounds is done with rustic tools owing to lack of access to modern equipment, due to its cost and other reasons. The use of rustic tools is hard work and time-consuming for the workers. In this project, a proposal to make this job easier on sloping grounds is presented. This proposal consists of a machine that reduces the physical exertion and time required of the workers, by increasing the sowing speed, making the operation less expensive, safer and more efficient.

  15. Corn-based ethanol production compromises goal of reducing nitrogen export by the Mississippi River.

    Science.gov (United States)

    Donner, Simon D; Kucharik, Christopher J

    2008-03-18

    Corn cultivation in the United States is expected to increase to meet demand for ethanol. Nitrogen leaching from fertilized corn fields to the Mississippi-Atchafalaya River system is a primary cause of the bottom-water hypoxia that develops on the continental shelf of the northern Gulf of Mexico each summer. In this study, we combine agricultural land use scenarios with physically based models of terrestrial and aquatic nitrogen to examine the effect of present and future expansion of corn-based ethanol production on nitrogen export by the Mississippi and Atchafalaya Rivers to the Gulf of Mexico. The results show that the increase in corn cultivation required to meet the goal of 15-36 billion gallons of renewable fuels by the year 2022 suggested by a recent U.S. Senate energy policy would increase the annual average flux of dissolved inorganic nitrogen (DIN) export by the Mississippi and Atchafalaya Rivers by 10-34%. Generating 15 billion gallons of corn-based ethanol by the year 2022 will increase the odds that annual DIN export exceeds the target set for reducing hypoxia in the Gulf of Mexico to >95%. Examination of extreme mitigation options shows that expanding corn-based ethanol production would make the already difficult challenges of reducing nitrogen export to the Gulf of Mexico and the extent of hypoxia practically impossible without large shifts in food production and agricultural management.

  16. Temporal Variations of Water Productivity in Irrigated Corn: An Analysis of Factors Influencing Yield and Water Use across Central Nebraska.

    Directory of Open Access Journals (Sweden)

    Tony Carr

    Full Text Available Water Productivity (WP of a crop defines the relationship between the economic or physical yield of the crop and its water use. With this concept it is possible to identify disproportionate water use or water-limited yield gaps and thereby support improvements in agricultural water management. However, too often important qualitative and quantitative environmental factors are not part of a WP analysis and therefore neglect the aspect of maintaining a sustainable agricultural system. In this study, we examine both the physical and economic WP in perspective with temporally changing environmental conditions. The physical WP analysis was performed by comparing simulated maximum attainable corn yields per unit of water using the crop model Hybrid-Maize with observed data from 2005 through 2013 from 108 farm plots in the Central Platte and the Tri Basin Natural Resource Districts of Nebraska. In order to expand the WP analysis on external factors influencing yields, a second model, Maize-N, was used to estimate optimal nitrogen (N-fertilizer rate for specific fields in the study area. Finally, a vadose zone flow and transport model, HYDRUS-1D for simulating vertical nutrient transport in the soil, was used to estimate locations of nitrogen pulses in the soil profile. The comparison of simulated and observed data revealed that WP was not on an optimal level, mainly due to large amounts of irrigation used in the study area. The further analysis illustrated year-to-year variations of WP during the nine consecutive years, as well as the need to improve fertilizer management to favor WP and environmental quality. In addition, we addressed the negative influence of groundwater depletion on the economic WP through increasing pumping costs. In summary, this study demonstrated that involving temporal variations of WP as well as associated environmental and economic issues can represent a bigger picture of WP that can help to create incentives to sustainably

  17. Economic Efficiency of Maize Production in Yola North Local ...

    African Journals Online (AJOL)

    user

    ABSTRACT. This study was carried out in Abeokuta, South-western Nigeria in 2008 and 2009 to assess the impact of tillage and poultry manure (PM) on soil infiltration rate and maize root growth. The experiment was a split-plot design with three replications. The main plot consisted of three tillage treatments: zero tillage.

  18. productivity of maize hybrid maturity classes in savanna agro

    African Journals Online (AJOL)

    Prof. Adipala Ekwamu

    11, ... it requires fertile, well-drained loam soil, well- ... This was equivalent to 320 g per ... Agronomic characteristics of hybrid varieties of maize used in the field experiment in ... moisture content, at which figure it is believed to ..... Textural class.

  19. Assessing the Economic Efficiency of Maize Production in Northern ...

    African Journals Online (AJOL)

    2017-05-01

    May 1, 2017 ... successes of the green revolution in Asia brought to the fore agriculture's ... Maize is a very important staple food in Ghana accounting for more than 50% of total .... The cost efficiency function is specified by changing the error from the to ..... A Guide to Frontier Version 4.1: A computer program for Frontier.

  20. Climate Change and Maize Production: Empirical Evidence from ...

    African Journals Online (AJOL)

    An estimated 80% of the maize crop suffers periodic yield reduction due to drought stress. Drought at flowering and grain filling period may cause losses of 40-90%. Predicated on the argument that climate change resulted from changes in climatic elements such as rainfall, this study aimed at investigating the relationship ...

  1. climate variability and implications for maize production in benin

    African Journals Online (AJOL)

    Prof. Adipala Ekwamu

    1971-1990, and (iv) that maize crop during its development in Benin is more likely to be subject to dry dekads successions than wet .... from the Atlantic Ocean to the Niger River. The ..... Ouagadougou, Burkina-Faso 18-23 Février. Pub. IWRA ...

  2. Sustainable Dry Land Management Model on Corn Agribusiness System

    Directory of Open Access Journals (Sweden)

    Yulia Pujiharti

    2008-01-01

    Full Text Available The study aimed at building model of dry land management. Dynamic System Analysis was used to build model and Powersim 2.51 version for simulating. The parameter used in model were fertilizer (urea, SP-36, ACL, productivity (corn, cassava, mungbean, soil nutrient (N, P, K, crop nutrient requirements (corn, cassava, mungbean, mucuna, price (corn, cassava, mungbeans corn flour, feed, urea, SP-36, KCl, food security credit, area planted of (maize, cassava, mungbean, area harvested of (maize, cassava, mungbean, (corn, cassava, mungbean production, wages and farmer income. Sustainable indicator for ecology aspect was soil fertility level, economic aspects were productivity and farmer income, and social aspects were job possibility and traditions. The simulation result indicated that sustainable dry land management can improve soil fertility and increase farmer revenue, became sustainable farming system and farmer society. On the other hand, conventional dry land management decreased soil fertility and yield, caused farmer earnings to decrease and a farm activity could not be continued. Fertilizer distribution did not fulfill farmer requirement, which caused fertilizer scarcity. Food security credit increased fertilizer application. Corn was processed to corn flour or feed to give value added.

  3. Improving hybrid seed production in corn with glyphosate-mediated male sterility.

    Science.gov (United States)

    Feng, Paul C C; Qi, Youlin; Chiu, Tommy; Stoecker, Martin A; Schuster, Christopher L; Johnson, Scott C; Fonseca, Augustine E; Huang, Jintai

    2014-02-01

    Hybrid corn varieties exhibit benefits associated with heterosis and account for most of the corn acreage in the USA. Hybrid seed corn is produced by crossing a female parent which is male-sterile and therefore incapable of self-pollination with a male parent as the pollen donor. The majority of hybrid seed corn is produced by mechanical detasseling which involves physically removing the tassel, a process that is laborious and costly. Glyphosate-resistant corn was developed via expression of a glyphosate insensitive 5-enolpyruvyl-shikimate 3-phosphate synthase enzyme (CP4-EPSPS). Experimentation with molecular expression elements resulted in selective reduction of CP4-EPSPS expression in male reproductive tissues. The resulting plant demonstrated sterile tassel following glyphosate application with little to no injury to the rest of the plant. Using (14)C-glyphosate as a marker, we also examined the translocation of glyphosate to the tassel via spray application in a track sprayer to simulate field application. The results allowed optimization of spray parameters such as dose, spray timing and target to maximize tassel delivery of glyphosate for efficient sterilization. The Roundup hybridization system (RHS) is a novel process for hybrid seed production based on glyphosate-mediated male sterility. RHS replaces mechanical detasseling with glyphosate spray and greatly simplifies the process of hybrid seed corn production. © 2013 Society of Chemical Industry.

  4. Ethanol production using Saccharomyces cerevisiae cells immobilised on corn stem ground tissue

    Directory of Open Access Journals (Sweden)

    Vučurović Vesna M.

    2009-01-01

    Full Text Available Cell immobilisation in alcoholic fermentation has been extensively studied during the past few decades because of its technical and economical advantages over those of free cell systems. A biocatalyst was prepared by immobilising a commercial Saccharomyces cerevisiae strain (baker yeast on corn stem ground tissue for use in alcoholic fermentation. For this purpose, the yeast cells were submitted to the batch tests 'in situ' adsorption onto pieces of the corn stem ground tissue. Cells immobilisation was analysed by optical microscopy. It was determined that the addition of the corn stem ground tissue led to an increase of the pH value, total dissolved salts content, and sugar content in fermentation medium. The addition of 5 and 10g of the corn stem ground tissue per liter of medium, increased ethanol yield, decreased amount of residual sugar and the cells immobilisation was effective. Corn stem is one of the abundant, available, inexpensive, stable, reusable, nontoxic celulosic biomaterial with high porosity, which facilitates the transmission of substrates and products between carrier and medium. The prepared immobilised biocatalyst showed higher fermentation activity than free cells. The results indicate that corn stem might be an interesting support for yeast cell immobilisation, and also a cheap alternative recourse of mineral components with possibility of application for improving ethanol productivities.

  5. Inhibition of Fusarium Growth and Mycotoxin Production in Culture Medium and in Maize Kernels by Natural Phenolic Acids.

    Science.gov (United States)

    Ferruz, Elena; Loran, Susana; Herrera, Marta; Gimenez, Isabel; Bervis, Noemi; Barcena, Carmen; Carramiñana, Juan Jose; Juan, Teresa; Herrera, Antonio; Ariño, Agustin

    2016-10-01

    The possible role of natural phenolic compounds in inhibiting fungal growth and toxin production has been of recent interest as an alternative strategy to the use of chemical fungicides for the maintenance of food safety. Fusarium is a worldwide fungal genus mainly associated with cereal crops. The most important Fusarium mycotoxins are trichothecenes, zearalenone, and fumonisins. This study was conducted to evaluate the potential of four natural phenolic acids (caffeic, ferulic, p-coumaric, and chlorogenic) for the control of mycelial growth and mycotoxin production by six toxigenic species of Fusarium . The addition of phenolic acids to corn meal agar had a marked inhibitory effect on the radial growth of all Fusarium species at levels of 2.5 to 10 mM in a dose-response pattern, causing total inhibition (100%) in all species except F. sporotrichioides and F. langsethiae . However, the effects of phenolic acids on mycotoxin production in maize kernels were less evident than the effects on growth. The fungal species differed in their responses to the phenolic acid treatments, and significant reductions in toxin concentrations were observed only for T-2 and HT-2 (90% reduction) and zearalenone (48 to 77% reduction). These results provide data that could be used for developing pre- and postharvest strategies for controlling Fusarium infection and subsequent toxin production in cereal grains.

  6. Management of ammonium sulfate fertilization on productive performance of corn grown after oats and wheat

    Directory of Open Access Journals (Sweden)

    Maria Anita Gonçalves Silva

    2014-02-01

    Full Text Available The time, dose and applied nutrients in corn have a direct effect on its productivity. Therefore, the objective was to study the application of N and S in corn as ammonium sulfate, in succession to wheat and oats and evaluate different forms of fertilizer management. The experiment was conducted in a randomized block design in Oxisol (Hapludox. The five treatments with N, at a dose of 120 kg ha-1 were applied in 20 plots (5x4, according to the management of fertilizer: T1-N (120 kg ha-1 full at sowing, T2-N (120 kg ha-1 total coverage; T3 –N (40 kg ha-1 at sowing and N (80 kg ha-1 in coverage; T4-N advance in wheat sowing and sowing oats (120 kg ha-1, T5- (control. The S doses were corresponding to their concentrations in the fertilizer. Only wheat received a dose of 24 kg N ha-1 at sowing all plots and oats received 24 kg N ha- 1 at sowing only the portions related to treatment with anticipation of corn N ( T4 . We evaluated the biomass production of winter crops (oats and wheat, according to the fertilization at sowing, and also the influence of winter crops and management of ammonium sulfate, the corn yield. The oats produced more dry matter in relation to wheat, positively influencing the corn yield, regardless of fertilizer management. The anticipation of ammonium sulfate, the sowing of oats, was favorable to corn yield, equating to other forms of management of fertilizer. Rotation corn and oats, forms management, ammonium sulphate, at seeding, topdressing or applied in split were equally efficient in corn yields.

  7. Conservation agriculture practices in rainfed uplands of India improve maize-based system productivity and profitability

    Directory of Open Access Journals (Sweden)

    Aliza Pradhan

    2016-07-01

    Full Text Available Traditional agriculture in rainfed uplands of India has been experiencing low agricultural productivity as the lands suffer from poor soil fertility, susceptibility to water erosion and other external pressures of development and climate change. A shift towards more sustainable cropping systems such as conservation agriculture production systems (CAPS may help in maintaining soil quality as well as improving crop production and farmer’s net economic benefit. This research assessed the effects over three years (2011-2014 of reduced tillage, intercropping, and cover cropping practices customized for maize-based production systems in upland areas of Odisha, India. The study focused on crop yield, system productivity and profitability through maize equivalent yield and dominance analysis. Results showed that maize grain yield did not differ significantly over time or among CAPS treatments while cowpea yield was considered as an additional yield in intercropping systems. Mustard and horsegram grown in plots after maize cowpea intercropping recorded higher grain yields of 25 and 37%, respectively, as compared to those without intercropping. Overall, the full CAPS implementation i.e. minimum tillage, maize-cowpea intercropping and mustard residue retention had significantly higher system productivity and net benefits than traditional farmer practices, i.e. conventional tillage, sole maize cropping, and no mustard residue retention. The dominance analysis demonstrated increasing benefits of combining conservation practices that exceeded thresholds for farmer adoption. Given the use of familiar crops and technologies and the magnitude of yield and income improvements, these types of CAPS should be acceptable and attractive for smallholder farmers in the area. This in turn should support a move toward sustainable intensification of crop production to meet future household income and nutritional needs.

  8. Conservation Agriculture Practices in Rainfed Uplands of India Improve Maize-Based System Productivity and Profitability.

    Science.gov (United States)

    Pradhan, Aliza; Idol, Travis; Roul, Pravat K

    2016-01-01

    Traditional agriculture in rainfed uplands of India has been experiencing low agricultural productivity as the lands suffer from poor soil fertility, susceptibility to water erosion and other external pressures of development and climate change. A shift toward more sustainable cropping systems such as conservation agriculture production systems (CAPSs) may help in maintaining soil quality as well as improving crop production and farmer's net economic benefit. This research assessed the effects over 3 years (2011-2014) of reduced tillage, intercropping, and cover cropping practices customized for maize-based production systems in upland areas of Odisha, India. The study focused on crop yield, system productivity and profitability through maize equivalent yield and dominance analysis. Results showed that maize grain yield did not differ significantly over time or among CAPS treatments while cowpea yield was considered as an additional yield in intercropping systems. Mustard and horsegram grown in plots after maize cowpea intercropping recorded higher grain yields of 25 and 37%, respectively, as compared to those without intercropping. Overall, the full CAPS implementation, i.e., minimum tillage, maize-cowpea intercropping and mustard residue retention had significantly higher system productivity and net benefits than traditional farmer practices, i.e., conventional tillage, sole maize cropping, and no mustard residue retention. The dominance analysis demonstrated increasing benefits of combining conservation practices that exceeded thresholds for farmer adoption. Given the use of familiar crops and technologies and the magnitude of yield and income improvements, these types of CAPS should be acceptable and attractive for smallholder farmers in the area. This in turn should support a move toward sustainable intensification of crop production to meet future household income and nutritional needs.

  9. Performance evaluation of quality protein maize genotypes across various maize production agro ecologies of Nepal

    Directory of Open Access Journals (Sweden)

    Jiban Shrestha

    2015-12-01

    Full Text Available To identify superior quality protein maize genotypes for grain yield under different agro climatic conditions of terai and hill districts in Nepal, the coordinated varietal trials (CVT were conducted at Dailekh, Doti, Salyan, Lumle and Pakhribas in 2013 and Salyan, Pakhribas and Kabre in 2014 during summer season and coordinated farmer’s field trials (CFFT at Surkhet and Dailekh in 2013 and Salyan, Pakhribas and Khumaltar in 2014 during summer season. The experiment was carried out using randomized complete block design with three replications for CVT and CFFT. Across the locations and years the superior genotypes found under CVT were S01SIYQ, S01SIWQ-2 and Poshilo Makai-1 where as S99TLYQ-HG-AB, S99TLYQ-B and Poshilo Makai-1 were found superior genotypes under CFFT. The superior genotypes derived from CFFT will be promoted further for similar environments across the country.

  10. The Environmental Mitigation Potential of Photovoltaic-Powered Irrigation in the Production of South African Maize

    Directory of Open Access Journals (Sweden)

    Sarah Wettstein

    2017-09-01

    Full Text Available Agriculture is under pressure to reduce its environmental impact. The use of renewable energy sources has potential to decrease these impacts. Maize is one of the most significant crops in South Africa and approximately 241,000 hectares are irrigated. This irrigation is most commonly powered by grid electricity generated using coal. However, South Africa has high solar irradiation, which could be used to generate photovoltaic electricity. The aim of this study was to determine the environmental mitigation potential of replacing grid-powered irrigation in South African maize production with photovoltaic irrigation systems using Life Cycle Assessment. The study included the value chain of maize production from cultivation to storage. Replacing grid electricity with photovoltaic-generated electricity leads to a 34% reduction in the global warming potential of maize produced under irrigation, and—applied at a national level—could potentially reduce South Africa’s greenhouse gas emissions by 536,000 t CO2-eq. per year. Non-renewable energy demand, freshwater eutrophication, acidification, and particulate matter emissions are also significantly lowered. Replacing grid electricity with renewable energy in irrigation has been shown to be an effective means of reducing the environmental impacts associated with South African maize production.

  11. PATH-ANALYSIS ON SEVERAL CHARACTERS IN POTENTIAL OF CORN PRODUCTION AND RESISTANCE TO DOWNY MILDEW

    Directory of Open Access Journals (Sweden)

    Eko Hary Pudjiwati

    2013-06-01

    Full Text Available This research was aimed at investigating both direct and indirect impacts, and heritability values of characters regarding the potential of corn production and resistance to downy mildew. The result of this investigation is required to determine some criteria taken into account for selection process of downy mildew-resistant corn breeding with high yield. The field experiment was conducted at Research Centre of Agriculture Faculty, Brawijaya University from January to April 2012. Five varieties of hybrid crown and five inbreeding lines were employed, and Randomised Block Design was applied with two replications. As observed, the characters held heritability ranging from average to high, except for heritability of length and width of stomata on the lower surface of the leaves which was categorised as low. Moreover, the stomata density found on lower surface of the leaves was directly and positively correlated to the intensity of attack by downy mildew, which, then, was used as criteria selection in downy mildew-resistance. The intensity of disease and the density of the stomata on lower surface of the leaves accounted for direct and negative correlation to corn production, while the length and diameter of corncob was responsible for direct and positive correlation to corn production. The betterment of corn production can be coped by improving the plant resistance to downy mildew and characters of corncob diameter.

  12. Production of xylitol from corn cob hydrolysate through acid and enzymatic hydrolysis by yeast

    Science.gov (United States)

    Mardawati, Efri; Andoyo, R.; Syukra, K. A.; Kresnowati, MTAP; Bindar, Y.

    2018-03-01

    The abundance of corn production in Indonesia offers the potential for its application as the raw material for biorefinery process. The hemicellulose content in corn cobs can be considered to be used as a raw material for xylitol production. The purpose of this research was to study the effect of hydrolysis methods for xylitol production and the effect of the hydrolyzed corn cobs to produce xylitol through fermentation. Hydrolysis methods that would be evaluated were acid and enzymatic hydrolysis. The result showed that the xylitol yield of fermented solution using enzymatic hydrolysates was 0.216 g-xylitol/g-xylose, which was higher than the one that used acid hydrolysates, which was 0.100 g-xylitol/g-xylose. Moreover, the specific growth rate of biomass in fermentation using enzymatic hydrolysates was also higher than the one that used acid hydrolysates, 0.039/h compared to 0.0056/h.

  13. Socio-economic assessment on maize production and adoption of open pollinated improved varieties in Dang, Nepal

    OpenAIRE

    Sanjiv Subedi; Yuga Nath Ghimire; Deepa Devkota

    2017-01-01

    Research was conducted from February to May, 2017 for socioeconomic assessment on maize production and adoption of open pollinated improved maize varieties in Dang district of Nepal. Altogether, 100 samples were taken by simple random sampling from the major maize growing areas and relevant publications were reviewed. Focal Group Discussion and Key Informant Survey were also done. Descriptive statistics, unpaired t-test, probit regression and indexing were used for data analysis using statist...

  14. High temperature dilute phosphoric acid pretreatment of corn stover for furfural and ethanol production

    Science.gov (United States)

    Furfural was produced from corn stover by one stage pretreatment process using dilute H3PO4 and solid residues following furfural production were used for ethanol production by Saccharomyces cerevisiae NRRL- Y2034. A series of experiments were conducted at varied temperatures (140-200 oC) and acid ...

  15. EMPIRICAL ASSESSMENT OF THE GROWTH RATE OF MAIZE PRODUCTION IN THE PRE - SAP, SAP AND POST - SAP PERIODS IN NIGERIA

    Directory of Open Access Journals (Sweden)

    Oyinbo Oyakhilomen

    2012-05-01

    Full Text Available This study was carried out to provide empirical evidence on the growth rates of maize production in three sub - periods in Nigeria namely pre - Structural Adjustment Programme period, Structural Adjustment Program period and post - Structural Adjustment Programme period. Secondary data on maize production in Nigeria during the Pre - Structural Adjustment Programme period (1970 to 1985, Structural Adjustment period (1986 to 1994 and post - Structural Adjustment Programme period (1995 to 2007 were employed in this study. A growth rate model was used to estimate the growth rates of maize in the three sub - periods. The results of the analysis showed that the instantaneous growth rates of maize production are - 0.1%, 5.7% and 2.4% and the compound rates of growth of maize production are - 0.001%, 0.059% and 0.024% for the pre - Structural Adjustment Programme, Structural Adjustment Programme and post - Structural Adjustment Programme periods respectively. The higher compound growth rate of maize production in the Structural Adjustment Programme period implies that the policy reforms in the period was more effective in ensuring increased growth of maize production over that of other periods in Nigeria. Therefore, despite the myriads of problems associated with the programme in Nigeria, it was beneficial to maize production in Nigeria.

  16. Evaluation of different biomass production systems hydroponic corn

    Directory of Open Access Journals (Sweden)

    Néstor Vicente Acosta Lozano

    2017-02-01

    Full Text Available It was assessed the effect of three nutritive solutions (Hoagland, La Molina y FAO and three harvesting time (12, 15 and 18 days on forage yield and nutritive value of green fodder hydroponic from maize (Zea mays, L.. The experiment was developed in “La Sevilla” farm placed in San Marcos town, municipality and province of Santa Elena, Ecuador. The maize seeds 2,5 kg/m2 were washed, disinfected, soaked during 24 hours and placed in germination plates (1 x 1 x 0,04 m in dark condition during three days. It was applied to a fully randomized design with factorial arrangement without interaction 4 x 3 (3 nutritive solutions + 1 control (water x 3 harvesting time and 3 repetitions per treatments. The highest yields in terms of dry matter (137 and 114 kg DM/m2/year and crude protein (21,3 y 15,5 kg CP/m2/year were reached with the Hoagland and FAO solutions at 12 days of age, respectively. It was concluded that the best harvesting time independently of the nutritive solution was at 12 days and in all harvesting time the Hoagland and FAO solutions showed the best agronomic and chemical results.

  17. Evaluation of Net Primary Productivity and Carbon Allocation to Different Parts of Corn in Different Tillage and Nutrient Management Systems

    Directory of Open Access Journals (Sweden)

    esmat mohammadi

    2017-09-01

    significant on belowground and aboveground biomasses, total weight and net primary productivity. Maximum and minimum of shoot, seed, total weight and aboveground net primary productivity were obtained in chemical fertilizer and control respectively. Nitrogen plays a key role in several physiological crop processes. As a result of increasing N doses, the photosynthetic activity, leaf area index (LAI and leaf area density (LAD increase. Maximum and minimum of root weight and belowground net primary productivity were obtained in chemical fertilizer + manure and control respectively. Manure and biochar increased root weight 56/03 and 54/31 percent compared to control respectively that had no significant different to chemical fertilizer. Manure increased root growth, possibly through improved physical properties and increased nutrient and water availability. Manure decreases soil compatibility with increasing of stability of soil structure and soil resilient. Impact of adding manure on improving of root length density has been reported by Mosaddeghi et al. (2009. The increased maize yield in biochar amended soil could be attributed to increased nutrient availability (Chan et al. 2008; Zhang et al. 2010 and to improved soil physical properties indicated by decreased soil bulk density. Conclusions The results showed that nutrient management had significant effect on belowground and aboveground biomasses, total weight, below and aboveground net primary productivity and carbon allocated to different organs of corn. Maximum and minimum of belowground and aboveground net primary productivity was obtained in chemical fertilizer, manure+ chemical fertilizer and control respectively. Manure and biochar increased belowground net primary productivity 54/91 and 53/21 percent compared to control respectively that had no significant different to chemical fertilizer. Tillage systems had no significant effect on measured traits. The results showed that with application reduced tillage and manure

  18. Influence of gamma radiation on productivity parameters of chicken fed mycotoxin-contaminated corn

    International Nuclear Information System (INIS)

    Simas, Monica M.S.; Albuquerque, Ricardo; Oliveira, Carlos A.; Rottinghaus, George E.; Correa, Benedito

    2010-01-01

    The aim of this study was to evaluate productivity parameters and carcass yield of broiler chickens fed irradiated corn contaminated with mycotoxins. For this purpose, 180 one-day-old male chicks were divided into nine treatments and fed for 42 days. The results indicated that irradiation of corn with 5 kGy improved the productivity parameters studied. Therefore, gamma radiation may become an alternative for the control of the deleterious effects of mycotoxins on broiler chickens, which cause marked economic losses for rural producers.

  19. Influence of gamma radiation on productivity parameters of chicken fed mycotoxin-contaminated corn

    Energy Technology Data Exchange (ETDEWEB)

    Simas, Monica M.S., E-mail: monicamssimas@yahoo.com.b [Microbiology Department, Biomedical Sciences Institute, University of Sao Paulo, Av. Prof. Lineu Prestes, 1374, Sao Paulo 05508-900 (Brazil); Albuquerque, Ricardo, E-mail: ricalbuq@usp.b [Nutrition and Animal Production Department, College of Veterinary Medicine, University of Sao Paulo, Av. Duque de Caxias Norte, 225 Pirassununga, Sao Paulo 13695-900 (Brazil); Oliveira, Carlos A., E-mail: carlosaf@usp.b [Food Science Department, College of Food Science, University of Sao Paulo, Av. Duque de Caxias Norte, 225, Pirassununga, Sao Paulo 13695-900 (Brazil); Rottinghaus, George E., E-mail: rottinghausg@missouri.ed [College of Veterinary Medicine, University of Missouri, 1600 East Rollins, Columbia, MO 65211 (United States); Correa, Benedito, E-mail: correabe@usp.b [Microbiology Department, Biomedical Sciences Institute, University of Sao Paulo, Av. Prof. Lineu Prestes, 1374, Sao Paulo 05508-900 (Brazil)

    2010-10-15

    The aim of this study was to evaluate productivity parameters and carcass yield of broiler chickens fed irradiated corn contaminated with mycotoxins. For this purpose, 180 one-day-old male chicks were divided into nine treatments and fed for 42 days. The results indicated that irradiation of corn with 5 kGy improved the productivity parameters studied. Therefore, gamma radiation may become an alternative for the control of the deleterious effects of mycotoxins on broiler chickens, which cause marked economic losses for rural producers.

  20. DNA extraction techniques compared for accurate detection of genetically modified organisms (GMOs) in maize food and feed products.

    Science.gov (United States)

    Turkec, Aydin; Kazan, Hande; Karacanli, Burçin; Lucas, Stuart J

    2015-08-01

    In this paper, DNA extraction methods have been evaluated to detect the presence of genetically modified organisms (GMOs) in maize food and feed products commercialised in Turkey. All the extraction methods tested performed well for the majority of maize foods and feed products analysed. However, the highest DNA content was achieved by the Wizard, Genespin or the CTAB method, all of which produced optimal DNA yield and purity for different maize food and feed products. The samples were then screened for the presence of GM elements, along with certified reference materials. Of the food and feed samples, 8 % tested positive for the presence of one GM element (NOS terminator), of which half (4 % of the total) also contained a second element (the Cauliflower Mosaic Virus 35S promoter). The results obtained herein clearly demonstrate the presence of GM maize in the Turkish market, and that the Foodproof GMO Screening Kit provides reliable screening of maize food and feed products.

  1. A practical method for extending the biuret assay to protein determination of corn-based products.

    Science.gov (United States)

    Liu, Zelong; Pan, Junhui

    2017-06-01

    A modified biuret method suitable for protein determination of corn-based products was developed by introducing a combination of an alkaline reagent with sodium dodecyl sulfate (reagent A) and heat treatments. The method was tested on seven corn-based samples. The results showed mostly good agreement (P>0.05) as compared to the Kjeldahl values. The proposed method was found to enhance the accuracy of prediction on zein content using bovine serum albumin as standard. Reagent A and sample treatment were proved to effectively improve protein solubilization for the thermally-dried corn-based products, e.g. corn gluten meal. The absorbance was stable for at least 1-h. Moreover, the whole measurement of protein content only needs 15-20min more than the traditional biuret assay, and can be performed in batches. The findings suggest that the proposed method could be a timesaving alternative for routine protein analyses in corn processing factories. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Succinic acid production from acid hydrolysate of corn fiber by Actinobacillus succinogenes.

    Science.gov (United States)

    Chen, Kequan; Jiang, Min; Wei, Ping; Yao, Jiaming; Wu, Hao

    2010-01-01

    Dilute acid hydrolysate of corn fiber was used as carbon source for the production of succinic acid by Actinobacillus succinogenes NJ113. The optimized hydrolysis conditions were obtained by orthogonal experiments. When corn fiber particles were of 20 mesh in size and treated with 1.0% sulfuric acid at 121 degrees C for 2 h, the total sugar yield could reach 63.3%. It was found that CaCO(3) neutralization combined with activated carbon adsorption was an effective method to remove fermentation inhibitors especially furfural that presented in the acid hydrolysate of corn fiber. Only 5.2% of the total sugar was lost, while 91.9% of furfural was removed. The yield of succinic acid was higher than 72.0% with the detoxified corn fiber hydrolysate as the carbon source in anaerobic bottles or 7.5 L fermentor cultures. It was proved that the corn fiber hydrolysate could be an alternative to glucose for the production of succinic acid by A. succinogenes NJ113.

  3. A CORN STEM AS BIOMATERIAL FOR SACCHAROMYCES CEREVISIAE CELLS IMMOBILIZATION FOR THE ETHANOL PRODUCTION

    Directory of Open Access Journals (Sweden)

    Vesna Vučurović

    2008-11-01

    Full Text Available This study provides a preliminary contribution to the development of a bioprocess for the production of ethanol using Saccharomyces cerevisiae cells immobilized onto a corn stem. For this purpose, the yeast cells were submitted to the batch tests in situ adsorption onto 0.5 cm long corn stem. Cells immobilization was analyzed by optical microscopy. The number of the yeast cells, fermentation kinetics, the ethanol yield in the presence or the absence of the support in the fermentation medium was investigated. It was determined that the addition of the corn stem led to the abrupt increase of the yeast cells number in substrate, ethanol yield, pH value, a total dissolved salts content and substrate conductivity. The addition of 5 and 10g of the corn stem pith per liter of the medium decreased the amount of residual sugar. The results indicate that a corn stem might be a good carrier for the yeast cell immobilization, and also a cheap alternative recourse of mineral components with the possibility of application for improving ethanol productivities.

  4. Conservation Agriculture Practices in Rainfed Uplands of India Improve Maize-Based System Productivity and Profitability

    Science.gov (United States)

    Pradhan, Aliza; Idol, Travis; Roul, Pravat K.

    2016-01-01

    Traditional agriculture in rainfed uplands of India has been experiencing low agricultural productivity as the lands suffer from poor soil fertility, susceptibility to water erosion and other external pressures of development and climate change. A shift toward more sustainable cropping systems such as conservation agriculture production systems (CAPSs) may help in maintaining soil quality as well as improving crop production and farmer’s net economic benefit. This research assessed the effects over 3 years (2011–2014) of reduced tillage, intercropping, and cover cropping practices customized for maize-based production systems in upland areas of Odisha, India. The study focused on crop yield, system productivity and profitability through maize equivalent yield and dominance analysis. Results showed that maize grain yield did not differ significantly over time or among CAPS treatments while cowpea yield was considered as an additional yield in intercropping systems. Mustard and horsegram grown in plots after maize cowpea intercropping recorded higher grain yields of 25 and 37%, respectively, as compared to those without intercropping. Overall, the full CAPS implementation, i.e., minimum tillage, maize–cowpea intercropping and mustard residue retention had significantly higher system productivity and net benefits than traditional farmer practices, i.e., conventional tillage, sole maize cropping, and no mustard residue retention. The dominance analysis demonstrated increasing benefits of combining conservation practices that exceeded thresholds for farmer adoption. Given the use of familiar crops and technologies and the magnitude of yield and income improvements, these types of CAPS should be acceptable and attractive for smallholder farmers in the area. This in turn should support a move toward sustainable intensification of crop production to meet future household income and nutritional needs. PMID:27471508

  5. The influence of feeding crimped kernel maize silage on broiler production, nutrient digestibility and meat quality

    DEFF Research Database (Denmark)

    Ranjitkar, Samir; Karlsson, Anders H.; Petersen, Mikael A.

    2016-01-01

    . Broiler mortality decreased significantly when CKMS was added to the diet. 5. The consumption of drinking water was significantly lower in all maize based diets as compared to WBF and was lowest in broilers fed CKMS-30. 6. An improved litter quality in terms of dry matter content and a lower frequency...... and positively influenced bird welfare in terms of mortality and foot pad health. Therefore, the addition of 15% CKMS to maize based diets is considered an advantageous feeding strategy in broiler production...

  6. Study of Agronomical and Ecological Parameters of Additive and Replacement Intercropping Systems of Corn (Zea maize L. and Soybean (Glycine max L. Merr.

    Directory of Open Access Journals (Sweden)

    Issa Piri

    2017-12-01

    Full Text Available Introduction Intercropping is a multiple cropping agricultural practice involves growing two or more crops in close proximity. Intercropping of compatible plants also encourages biodiversity, by providing a habitat for a variety of insects and soil organisms that would not be present in a monocrop environment. This in turn can help limit outbreaks of crop pests by increasing predator biodiversity. Additionally, reducing the homogeneity of crops increases the barriers against biological dispersal of pests through the crops. Cereal–legume intercropping plays an important role in subsistence food production in developing countries, especially in the situations of limited resources. Nitrogen fixing legumes can be included to a greater extent in arable cropping systems via intercrops. Legumes contribute to maintaining the soil fertility via nitrogen fixation, which is increased in intercrops due to the more competitive character of the cereal for soil inorganic N. Ariel et al., (2013 showed that,Legume-Cereal Intercropping of corn and soybean may be advantageous compared to monocultures. Corn and soybean intercropping produce high yields of green matter and seed concentrates especially when the corn-soybean ratio is 1:2. Due to the importance of cereal–legume intercropping in the sustainability of agricultural systems, the objective of this study was to determine the effects of cereal-legume intercropping on the total biomass and grain yield and to find the best pattern of additive and replacement intercropping systems in Iranshahr Region. Material and Methods In order to study the agronomical and ecological parameters of additive and replacement intercropping systems of corn and soybean, a field experiment was conducted in 2012-13 in the south of Iranshahr city on a randomized complete block design with three replications. Treatments consisted of 8 different intercropping ratios: corn monoculture (C100S0 and soybean monoculture (C0S100 as sole

  7. Enhancing Corn Productivity through Application of Vermi Tea as Foliar Spray

    Directory of Open Access Journals (Sweden)

    Stephen P. Bulalin

    2015-12-01

    Full Text Available One of the major commodities in the Province of Apayao is corn. In the municipality of Conner, a previous study conducted showed that corn farmers heavily rely on the use of inorganic fertilizers and still produce low yield. This study was then conducted to compare traditional farming against the use of an intervention using Vermi Tea as supplemental spray. Results of this endeavor showed that the farms applied with supplemental organic spray performed better that that of the usual farmer’s practice in various aspects of corn growth and yield. Findings show that vermi tea, when used as a foliar spray can significantly improve the growth and yield of corn . Due to the presence of plant growth regulators, and its ability to improve the condition of the soil, the corn farm sprayed with vermi tea produced taller corn crops with longer and thicker ears. As reflected in this study, corn when applied with the vermi tea can have an increased yield which can go as high as two tons/ha. More importantly, vermi tea promotes the use of organic fertilizer which does not entail high cost and can be prepared using agricultural wastes and other locally available materials. This will not only contribute to the reduction of the amount of total waste but will also help minimize the use of chemical fertilizers. The technology intervention promoted in this project complements and supports various government agency thrusts and priorities which are geared towards improving the agriculture industry, maintaining environmental quality and sustainable use of resources, climate change adaptation and mitigation; and production of excellent researches that will promote quality education and contribute to the upliftment of the country and encourage multisectoral/ multidisciplinary research along the priority areas like food safety and security among others.

  8. How does increased corn-ethanol production affect US natural gas prices?

    International Nuclear Information System (INIS)

    Whistance, Jarrett; Thompson, Wyatt

    2010-01-01

    In recent years, there has been a push to increase biofuel production in the United States. The biofuel of choice, so far, has been ethanol produced from corn. The effects of increased corn-ethanol production on the consumer prices of food and energy continue to be studied and debated. This study examines, in particular, the effects of increased corn-ethanol production on US natural gas prices. A structural model of the natural gas market is developed and estimated using two stage least squares. A baseline projection for the period 2007-2018 is determined, and two scenarios are simulated. In the first scenario, current biofuel policies including EISA mandates, tariffs, and tax credits are removed. In the second scenario, we hold ethanol production to the level required only for largely obligatory additive use. The results indicate that the increased level of corn-ethanol production occurring as a result of the current US biofuel policies may lead to natural gas prices that are as much as 0.25% higher, on average, than if no biofuel policies were in place. A similar comparison between the baseline and second scenario indicates natural gas prices could be as much as 0.5% higher, on average, for the same period.

  9. The use of cobs, a by-product of maize grain, for energy production in anaerobic digestion

    Directory of Open Access Journals (Sweden)

    Massimo Blandino

    2016-08-01

    Full Text Available Owing to the rising energy demand and the conflict between food, feed and energy crops for agricultural land, there is a growing need for alternative biomasses for energy purposes. New developments in harvesting technology have created the possibility of harvesting cobs as a by-product of maize grain harvesting. The aim of the present work has been to evaluate the potential and limitations of maize cob utilisation in an anaerobic digestion chain, considering the main agronomic, productive and qualitative traits. Maize grain and cob yields as well as the moisture content of samples collected from 1044 (farm fields (located in North West Italy have been determined over the 2012 growing season. Moreover, 27 representative fields were harvested using a modified combine-harvester that is able to collect maize grains and threshed cobs separately. The chemical composition and biochemical methane potential (BMP of the cobs have been analysed. The relative potential yield of maize cobs was established as 18.7% of the grain mass, while the wet cob yield recorded in the field after mechanical harvesting was 1.6 t ha–1. The total solid content was 60%. Fibre fractions represented over 85% of the dry cob matter, lignin content was about 16%, while the protein, ash, lipids and macro-elements (nitrogen, phosphorus, potassium contents were very low compared to the whole-plant maize used for silage. The average BMP of wet threshed cob was 250±20 Nm3 t VS–1. Collected data have underlined that maize cobs could be used as a sustainable feedstock for anaerobic digestion processes.

  10. Physiology of forage maize (Zea mays L.) in relation to its production and quality

    NARCIS (Netherlands)

    Struik, P.C.

    1983-01-01

    This thesis describes and discusses the quantitative effects of changes in temperature, light intensity and photoperiod on the development, dry-matter production, dry-matter distribution, digestibility and dry-matter content of forage maize. Cultivation techniques and hybrid choice are also

  11. Managing dry spell risks to improve rainfed maize productivity in the ...

    African Journals Online (AJOL)

    This empirical research was conducted on-station during June to September main growing season over two years (2000 and 2001) to substantiate that, managing dry spell risks through development of compatible technologies can improve rainfed maize productivity in the semi-arid zones of Ethiopia. Firstly, two soil water ...

  12. Socio-economic analysis of maize seed production in Arghakhanchi district of Nepal

    Directory of Open Access Journals (Sweden)

    Mahima Bajracharya

    2016-12-01

    Full Text Available The purpose of this study was to assess the socioeconomic condition of maize seed and non-seed producers. A field survey was carried out in sixty households of Khanchikot VDC of Arghakhanchi district during May, 2014. The district was major seed producing district and Khanchikot was found better in seed production than other VDC in district. Simple random sampling technique was used to collect data using pre-tested interview schedule. About 57% were seed producer among the sample. The average family size of household was 5. Dependency ratio was less in seed producing households (0.41 than non-seed producers (0.72. Farmers were involved in the production of certified seed and the major (50% source of foundation seed was National Maize Research Program, Rampur, Chitwan. The external input like chemical fertilizer was used in fewer amounts in the study area. The seed test was done at regional laboratory, Bhairahawa and sold to DADO, Arghakhanchi. Decision on loan taking, business operation and bank account were taken by males whereas cropping pattern, deficit labor use, religious and social works related decision were taken by females in the household. Major problem in maize production were lack of technical assistance followed by inadequate irrigation facilities. Proper training, extension service and government support on inputs would help in better socio-economic condition and production of maize.

  13. Technical efficiency of certified maize seed in Palpa district, Nepal: A stochastic frontier production approach

    Directory of Open Access Journals (Sweden)

    Mahima Bajracharya

    2017-12-01

    Full Text Available The cereal crop, maize is regarded as staple food mainly in hill areas of Nepal. Seed is one of the vital input which determines the production and yield of any crop. Farmers are found using the required inputs in haphazard way which had increased the cost of production and inefficiency of resources used. The study on seed sector is limited. For such a backdrop, this study was aimed to assess the level of technical efficiency (TE of certified maize seed production. The total of 164 certified seed producer were interviewed in June, 2016 using simple random sampling technique in Palpa district of Nepal. The result revealed that increase in amount of seed and labor by one percent would increase the yield of certified maize seed by 0.29 and 0.34 percent respectively. The TE was estimated using stochastic production frontier model in Stata software. The average TE was found 70 percent which revealed the scope of increasing TE by 30 percent using the existing available resources. There were about 29 percent farmers who had TE of ≥0.7-0.8 followed by 27.44 percent at ≥0.8-0.9. Government and other stakeholders should prioritize to provide technical knowledge via training and increase the visit of extension worker to increase TE of certified maize seed producer in the district.

  14. Effects of cover crops on the nitrogen fluxes in a silage maize production system

    NARCIS (Netherlands)

    Schröder, J.J.; Dijk, van W.; Groot, de W.J.M.

    1996-01-01

    Rye and grass cover crops can potentially intercept residual soil mineral nitrogen (SMN), reduce overwinter leaching, transfer SMN to next growing seasons and reduce the fertilizer need of subsequent crops. These aspects were studied for 6 years in continuous silage maize cv. LG 2080 production

  15. Comparison of ethanol production from corn cobs and switchgrass following a pyrolysis-based biorefinery approach.

    Science.gov (United States)

    Luque, Luis; Oudenhoven, Stijn; Westerhof, Roel; van Rossum, Guus; Berruti, Franco; Kersten, Sascha; Rehmann, Lars

    2016-01-01

    One of the main obstacles in lignocellulosic ethanol production is the necessity of pretreatment and fractionation of the biomass feedstocks to produce sufficiently pure fermentable carbohydrates. In addition, the by-products (hemicellulose and lignin fraction) are of low value, when compared to dried distillers grains (DDG), the main by-product of corn ethanol. Fast pyrolysis is an alternative thermal conversion technology for processing biomass. It has recently been optimized to produce a stream rich in levoglucosan, a fermentable glucose precursor for biofuel production. Additional product streams might be of value to the petrochemical industry. However, biomass heterogeneity is known to impact the composition of pyrolytic product streams, as a complex mixture of aromatic compounds is recovered with the sugars, interfering with subsequent fermentation. The present study investigates the feasibility of fast pyrolysis to produce fermentable pyrolytic glucose from two abundant lignocellulosic biomass sources in Ontario, switchgrass (potential energy crop) and corn cobs (by-product of corn industry). Demineralization of biomass removes catalytic centers and increases the levoglucosan yield during pyrolysis. The ash content of biomass was significantly decreased by 82-90% in corn cobs when demineralized with acetic or nitric acid, respectively. In switchgrass, a reduction of only 50% for both acids could be achieved. Conversely, levoglucosan production increased 9- and 14-fold in corn cobs when rinsed with acetic and nitric acid, respectively, and increased 11-fold in switchgrass regardless of the acid used. After pyrolysis, different configurations for upgrading the pyrolytic sugars were assessed and the presence of potentially inhibitory compounds was approximated at each step as double integral of the UV spectrum signal of an HPLC assay. The results showed that water extraction followed by acid hydrolysis and solvent extraction was the best upgrading strategy

  16. Energy productivity and efficiency of maize accounting for the choice of growing season and environmental factors: An empirical analysis from Bangladesh

    International Nuclear Information System (INIS)

    Rahman, Sanzidur; Rahman, Md. Sayedur

    2013-01-01

    The paper evaluates sustainability of maize cultivation in Bangladesh in terms of energy use while taking into account factors affecting choice of the growing season and farmers' production environment using a sample selection framework applied to stochastic frontier models. Results reveal that the probability of growing winter maize is influenced positively by gross return, irrigation, subsistence pressure, soil suitability and temperature variability whereas extension contact influences choice negatively. Significant differences exist between winter and summer maize regarding yield, specific energy, net energy balance, energy use efficiency and technical energy efficiency although both systems are highly sustainable and efficient. The energy output from winter maize is 199,585 MJ/ha which is 53.9% higher than the summer maize output of 129,701 MJ/ha. Also, energy input use of winter maize is 110.6% higher than the summer maize. Energy inputs from mechanical power, seeds, fertilizers and organic manures significantly increase energy productivity of winter maize whereas only mechanical power influences summer maize productivity. However, temperature variation and rainfall significantly reduce energy productivity of summer maize. Policy implications include investments in soil conservation and irrigation, development of weather resistant varieties and raising maize price will boost maize cultivation in Bangladesh, a highly sustainable production technology. -- Highlights: ► Maize energy productivity is evaluated subject to season and environmental factors. ► Maize farming for both seasons is highly sustainable in terms of energy use. ► Socio-economic and environmental factors influence choice of growing winter maize. ► Mechanical power, rainfall and temperature influence summer maize productivity. ► Maize farmers of both seasons are highly technically efficient.

  17. Water management options based on rainfall analysis for rainfed maize (Zea Mays L.) production in Rushinga district Zimbabwe

    NARCIS (Netherlands)

    Nyakudya, I.W.; Stroosnijder, L.

    2011-01-01

    Maize (Zea mays L.), the dominant and staple food crop in Southern and Eastern Africa, is preferred to the drought-tolerant sorghum and pearl millet even in semi-arid areas. In semi-arid areas production of maize is constrained by droughts and poor rainfall distribution. The best way to grow crops

  18. Very high expander processing of maize on animal performance, digestibility and product quality of finishing pigs and broilers.

    Science.gov (United States)

    Puntigam, R; Schedle, K; Schwarz, C; Wanzenböck, E; Eipper, J; Lechner, E-M; Yin, L; Gierus, M

    2017-11-06

    The present study investigated the effect of hydrothermic maize processing and supplementation of amino acids (AA) in two experiments. In total, 60 barrows and 384 broilers were fed four diets including either unprocessed (T1), or hydrothermically processed maize, that is short- (T2), or long-term conditioned (LC) (T3), and subsequently expanded maize of the same batch. Assuming a higher metabolizable energy (ME) content after processing, the fourth diet (T4) contains maize processed as treatment T3, but AA were supplemented to maintain the ideal protein value. Performance, digestibility and product quality in both species were assessed. Results show that in pigs receiving T4 the average daily feed intake was lower compared with the other treatments, whereas no difference was observed in broilers. The T3 improved the feed conversion rate compared with T1 (Panimal species, suggesting a higher ME content in diets with processed maize. The higher ME content of diets with processed maize is supported also by measurements of product quality. Supplementation of AA in T4 enhanced the loin depth in pigs as well as the amount of breast meat in broilers. Further effects of processing maize on meat quality were the reduced yellowness and antioxidative capacity (Panimal performance and digestibility in both species. However, effects on carcass characteristics and product quality differed. The negative effects on product quality could be partly compensated with the AA supplementation, whereas a change in meat colour and reduced antioxidative capacity was observed in all groups fed hydrothermic maize processing.

  19. Regional application of a cropping systems simulation model: crop residue retention in maize production systems of Jalisco, Mexico

    NARCIS (Netherlands)

    Hartkamp, A.D.; White, J.W.; Rossing, W.A.H.; Ittersum, van M.K.; Bakker, E.J.; Rabbinge, R.

    2004-01-01

    To ensure the productivity of smallholder maize production systems in Central America, increased attention must be paid to conserving soil and water resources. Various stakeholders from national agricultural research services (NARS), networks, non-governmental organizations (NGO's) and research

  20. Microwave-assisted co-pyrolysis of brown coal and corn stover for oil production.

    Science.gov (United States)

    Zhang, Yaning; Fan, Liangliang; Liu, Shiyu; Zhou, Nan; Ding, Kuan; Peng, Peng; Anderson, Erik; Addy, Min; Cheng, Yanling; Liu, Yuhuan; Li, Bingxi; Snyder, John; Chen, Paul; Ruan, Roger

    2018-07-01

    The controversial synergistic effect between brown coal and biomass during co-pyrolysis deserves further investigation. This study detailed the oil production from microwave-assisted co-pyrolysis of brown coal (BC) and corn stover (CS) at different CS/BC ratios (0, 0.33, 0.50, 0.67, and 1) and pyrolysis temperatures (500, 550, and 600 °C). The results showed that a higher CS/BC ratio resulted in higher oil yield, and a higher pyrolysis temperature increased oil yield for brown coal and coal/corn mixtures. Corn stover and brown coal showed different pyrolysis characteristics, and positive synergistic effect on oil yield was observed only at CS/BC ratio of 0.33 and pyrolysis temperature of 600 °C. Oils from brown coal mainly included hydrocarbons and phenols whereas oils from corn stover and coal/corn mixtures were dominated by ketones, phenols, and aldehydes. Positive synergistic effects were observed for ketones, aldehydes, acids, and esters whereas negative synergistic effects for hydrocarbons, phenols and alcohols. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Alfalfa interseeded into silage corn can enhance productivity and soil and water conservation

    Science.gov (United States)

    Alfalfa and corn silage are widely planted for dairy forage production systems throughout the northern regions of the USA, accounting for about 0.8 and 1.9 million hectares per year, respectively. Much of this area could benefit from strategies to reduce soil erosion and nutrient losses. Because the...

  2. Impact of Increased Corn Production on Ground Water Quality and Human Health

    Science.gov (United States)

    In this study, we use a complex coupled modeling system to assess the impacts of increased corn production on groundwater. In particular, we show how the models provide new information on the drivers of contamination in groundwater, and then relate pollutant concentration change...

  3. MAPPING AND SCOUTING CORN PEST INFESTATIONS IN A PRODUCTION AGRICULTURE ENVIRONMENT USING REMOTE SENSING.

    Science.gov (United States)

    Hyperspectral imagery was acquired three times during the 2006 agricultural growing season (late July to mid-September) over 35 corn fields in east central Illinois. The imagery was processed with an emphasis on rapid image product development (turnabround time of less than 24 ho...

  4. Effect of Different Mulches under Rainfall Concentration System on Corn Production in the Semi-arid Areas of the Loess Plateau

    Science.gov (United States)

    Ren, Xiaolong; Zhang, Peng; Chen, Xiaoli; Guo, Jingjing; Jia, Zhikuan

    2016-01-01

    The ridge and furrow farming system for rainfall concentration (RC) has gradually been popularized to improve the water availability for crops and to increase the water use efficiency (WUE), thereby stabilizing high yields. In the RC system, plastic-covered ridges are rainfall harvesting zones and furrows are planting zones. In this study, we optimized the mulching patterns for RC planting to mitigate the risks of drought during crop production in semi-arid agricultural areas. We conducted a four-year field study to determine the effects on corn production of mulching with 0.08-mm plastic film, maize straw, 8% biodegradable film, liquid film, bare furrow, and conventional flat (CF) farming. We found that RC significantly increased (P > 0.05) the soil moisture storage in the top 0-100 cm layer and the topsoil temperature (0-10 cm) during the corn-growing season. Combining RC with mulching further improved the rain-harvesting, moisture-retaining, and yield-increasing effects in furrows. Compared with CF, the four-year average yield increased by 1497.1 kg ha-1 to 2937.3 kg ha-1 using RC with mulch treatments and the WUE increased by 2.3 kg ha-1 mm-1 to 5.1 kg ha-1 mm-1.

  5. Using manure as fertilizer for maize could improve sustainability of milk production

    Directory of Open Access Journals (Sweden)

    José D. Jiménez-Calderón

    2018-04-01

    Full Text Available This study evaluated the effect of organic or chemical fertilization of maize on cow performance, economic outcomes, and greenhouse gas emission. Each type of maize silage according its different fertilization was used in two rations offered to two different groups of nine Friesian-Holstein cows throughout 4 months. The production cost of the maize silage was 8.8% lower for organic than for chemical fertilization. Both silages had similar nutritive value, except a higher concentration of starch in maize with organic fertilization, which allowed a reduction in the proportion of concentrate in the ration, saving 25.3 eurocents per cow in the daily ration, generating a positive balance of 21.8 eurocents per cow and day. The milk yield and composition were unaffected depending on the type of fertilization, whereas the estimation of CH4 and N2O emissions with chemical fertilization was higher than emissions with organic fertilization. As a result, it is possible to increase the sustainability and profitability of dairy production with reuse and recycling of manure.

  6. Using manure as fertilizer for maize could improve sustainability of milk production

    International Nuclear Information System (INIS)

    Jiménez-Calderón, J.M.; Martínez-Fernández, A.; Prospero-Bernal, F.; Velarde-Guillén, J.; Arriaga-Jordán, C.M.; Vicente, F.

    2018-01-01

    This study evaluated the effect of organic or chemical fertilization of maize on cow performance, economic outcomes, and greenhouse gas emission. Each type of maize silage according its different fertilization was used in two rations offered to two different groups of nine Friesian-Holstein cows throughout 4 months. The production cost of the maize silage was 8.8% lower for organic than for chemical fertilization. Both silages had similar nutritive value, except a higher concentration of starch in maize with organic fertilization, which allowed a reduction in the proportion of concentrate in the ration, saving 25.3 eurocents per cow in the daily ration, generating a positive balance of 21.8 eurocents per cow and day. The milk yield and composition were unaffected depending on the type of fertilization, whereas the estimation of CH4 and N2O emissions with chemical fertilization was higher than emissions with organic fertilization. As a result, it is possible to increase the sustainability and profitability of dairy production with reuse and recycling of manure.

  7. Soil water capture trends over 50 years of single-cross maize (Zea mays L.) breeding in the US corn-belt.

    Science.gov (United States)

    Reyes, Andres; Messina, Carlos D; Hammer, Graeme L; Liu, Lu; van Oosterom, Erik; Lafitte, Renee; Cooper, Mark

    2015-12-01

    Breeders have successfully improved maize (Zea mays L.) grain yield for the conditions of the US corn-belt over the past 80 years, with the past 50 years utilizing single-cross hybrids. Long-term improvement for grain yield under water-limited conditions has also been reported. Grain yield under water-limited conditions depends on water use, water use efficiency, and harvest index. It has been hypothesized that long-term genetic gain for yield could be due, in part, to increased water capture from the soil. This hypothesis was tested using a set of elite single-cross hybrids that were released by DuPont Pioneer between 1963 and 2009. Eighteen hybrids were grown in the field during 2010 and 2011 growing seasons at Woodland, CA, USA. Crops grew predominantly on stored soil water and drought stress increased as the season progressed. Soil water content was measured to 300cm depth throughout the growing season. Significant water extraction occurred to a depth of 240-300cm and seasonal water use was calculated from the change in soil water over this rooting zone. Grain yield increased significantly with year of commercialization, but no such trend was observed for total water extraction. Therefore, the measured genetic gain for yield for the period represented by this set of hybrids must be related to either increased efficiency of water use or increased carbon partitioning to the grain, rather than increased soil water uptake. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  8. Production, carbon and nitrogen in stover fractions of corn (Zea mays L.) in response to cultivar development

    Science.gov (United States)

    The contribution of genetic selection of corn to quantity and quality of stover is still poor-known. The aim of the study was to evaluate production, C and N in fractions of corn stover in response to the cultivar development. Two field experiments were conducted in the city of Rolândia (Paraná - Br...

  9. Effect of the corn breaking method on oil distribution between stillage phases of dry-grind corn ethanol production.

    Science.gov (United States)

    Wang, H; Wang, T; Johnson, L A; Pometto, A L

    2008-11-12

    The majority of fuel ethanol in the United States is produced by using the dry-grind corn ethanol process. The corn oil that is contained in the coproduct, distillers' dried grains with solubles (DDGS), can be recovered for use as a biodiesel feedstock. Oil removal will also improve the feed quality of DDGS. The most economical way to remove oil is considered to be at the centrifugation step for separating thin stillage (liquid) from coarse solids after distilling the ethanol. The more oil there is in the liquid, the more it can be recovered by centrifugation. Therefore, we studied the effects of corn preparation and grinding methods on oil distribution between liquid and solid phases. Grinding the corn to three different particle sizes, flaking, flaking and grinding, and flaking and extruding were used to break up the corn kernel before fermentation, and their effects on oil distribution between the liquid and solid phases were examined by simulating an industrial decanter centrifuge. Total oil contents were measured in the liquid and solids after centrifugation. Dry matter yield and oil partitioning in the thin stillage were highly positively correlated. Flaking slightly reduced bound fat. The flaked and then extruded corn meal released the highest amount of free oil, about 25% compared to 7% for the average of the other treatments. The freed oil from flaking, however, became nonextractable after the flaked corn was ground. Fine grinding alone had little effect on oil partitioning.

  10. Changes in drought tolerance in maize associated with fifty years of breeding for yield in the US Corn Belt [Zea mays L.

    International Nuclear Information System (INIS)

    Campos, H.; Cooper, M.; Edmeades, G.O.; Löffler, C.; Schussler, J.R.; Ibanez, M.

    2006-01-01

    Understanding the changes underlying past breeding progress may help to focus research efforts and accelerate future genetic gains. The major abiotic stress affecting maize production on a worldwide basis is drought. We addressed the improvements in drought tolerance over a 50-year period of hybrid breeding by evaluating, under targeted stress conditions, a set of 18 Pioneer-brand hybrids that had been released during the 1953-2001 period. Stress treatments were designed as overlapping windows of water deficit covering the pre-flowering to late grain filling development stages. Data were collected on grain yield, yield components and anthesis-silking interval (ASI) and were analyzed using a linear mixed model approach. Genetic gain was measured as the slope of the regression of the trait on the year of hybrid release. Significant, positive genetic gains of varying magnitude were observed for grain yield in all windows of stress evaluated. The largest genetic gains for grain yield were observed under conditions of full irrigation and severe flowering stress. ASI and barrenness, especially under stress at flowering, were significantly reduced by selection. Though flowering remains the most susceptible stage to drought in maize, selection has reduced its negative effects and susceptibility during early grain filling is now of similar importance in many modern hybrids. Yield under drought at flowering has more than kept pace with the increase in yield potential because of the emphasis breeders have placed on improved floral synchrony [it

  11. Sequential saccharification of corn fiber and ethanol production by the brown rot fungus Gloeophyllum trabeum.

    Science.gov (United States)

    Rasmussen, M L; Shrestha, P; Khanal, S K; Pometto, A L; Hans van Leeuwen, J

    2010-05-01

    Degradation of lignocellulosic biomass to sugars through a purely biological process is a key to sustainable biofuel production. Hydrolysis of the corn wet-milling co-product-corn fiber-to simple sugars by the brown rot fungus Gloeophyllum trabeum was studied in suspended-culture and solid-state fermentations. Suspended-culture experiments were not effective in producing harvestable sugars from the corn fiber. The fungus consumed sugars released by fungal extracellular enzymes. Solid-state fermentation demonstrated up to 40% fiber degradation within 9days. Enzyme activity assays on solid-state fermentation filtrates confirmed the involvement of starch- and cellulose-degrading enzymes. To reduce fungal consumption of sugars and to accelerate enzyme activity, 2- and 3-d solid-state fermentation biomasses (fiber and fungus) were submerged in buffer and incubated at 37 degrees C without shaking. This anaerobic incubation converted up to almost 11% of the corn fiber into harvestable reducing sugars. Sugars released by G. trabeum were fermented to a maximum yield of 3.3g ethanol/100g fiber. This is the first report, to our knowledge, of G. trabeum fermenting sugar to ethanol. The addition of Saccharomyces cerevisiae as a co-culture led to more rapid fermentation to a maximum yield of 4.0g ethanol/100g fiber. The findings demonstrate the potential for this simple fungal process, requiring no pretreatment of the corn fiber, to produce more ethanol by hydrolyzing and fermenting carbohydrates in this lignocellulosic co-product. Copyright 2010 Elsevier Ltd. All rights reserved.

  12. Lost P1 allele in sh2 sweet corn: quantitative effects of p1 and a1 genes on concentrations of maysin, apimaysin, methoxymaysin, and chlorogenic acid in maize silk.

    Science.gov (United States)

    Guo, B Z; Zhang, Z J; Butrón, A; Widstrom, N W; Snook, M E; Lynch, R E; Plaisted, D

    2004-12-01

    In the United States, insecticide is used extensively in the production of sweet corn due to consumer demand for zero damage to ears and to a sweet corn genetic base with little or no resistance to ear-feeding insects. Growers in the southern United States depend on scheduled pesticide applications to control ear-feeding insects. In a study of quantitative genetic control over silk maysin, AM-maysin (apimaysin and methoxymaysin), and chlorogenic acid contents in an F2 population derived from GE37 (dent corn, P1A1) and 565 (sh2 sweet corn, p1a1), we demonstrate that the P1 allele from field corn, which was selected against in the development of sweet corn, has a strong epistatic interaction with the a1 allele in sh2 sweet corn. We detected that the p1 gene has significant effects (P silk maysin concentrations but also on AM-maysin, and chlorogenic acid concentrations. The a1 gene also has significant (P silk antibiotic chemicals. Successful selection from the fourth and fifth selfed backcrosses for high-maysin individuals of sweet corn homozygous for the recessive a1 allele (tightly linked to sh2) and the dominant P1 allele has been demonstrated. These selected lines have much higher (2 to 3 times) concentrations of silk maysin and other chemicals (AM-maysin and chlorogenic acid) than the donor parent GE37 and could enhance sweet corn resistance to corn earworm and reduce the number of applications of insecticide required to produce sweet corn.

  13. Socio-economic assessment on maize production and adoption of open pollinated improved varieties in Dang, Nepal

    Directory of Open Access Journals (Sweden)

    Sanjiv Subedi

    2017-12-01

    Full Text Available Research was conducted from February to May, 2017 for socioeconomic assessment on maize production and adoption of open pollinated improved maize varieties in Dang district of Nepal. Altogether, 100 samples were taken by simple random sampling from the major maize growing areas and relevant publications were reviewed. Focal Group Discussion and Key Informant Survey were also done. Descriptive statistics, unpaired t-test, probit regression and indexing were used for data analysis using statistical tools- SPSS, STATA and MS-Excel. Probit econometric model revealed that ethnicity (1% level, gender (5% level, area under open pollinated improved maize (1% level, seed source dummy (1 % level and number of visits by farmers to agrovet (5% level significantly determined the adoption of open pollinated improved maize varieties. In addition, unpaired t-test revealed that the productivity of open pollinated improved maize varieties was significantly higher (at 1% level than local; also, the multinational companies' hybrids showed significantly higher productivity (at 1% level when compared to open pollinated improved varieties. Furthermore, indexing identified- lack of availability of quality seeds and fertilizers (I= 0.86 as the major problem associated with the maize production. Giving aggressive subsidy on open pollinated improved seeds and dealership to registered agrovets for selling the subsidy seeds could enhance the adoption. Moreover, government organizations working in the areas of agricultural extension and research must focus on adoption of open pollinated improved maize varieties among the farmers, substituting the local and developing the high yielding hybrid varieties in Nepal to increase the maize productivity.

  14. Maize production and land degradation: a Portuguese agriculture field case study

    Science.gov (United States)

    Ferreira, Carla S. S.; Pato, João V.; Moreira, Pedro M.; Valério, Luís M.; Guilherme, Rosa; Casau, Fernando J.; Santos, Daniela; Keizer, Jacob J.; Ferreira, António J. D.

    2016-04-01

    While food security is a main challenge faced by human kind, intensive agriculture often leads to soil degradation which then can threaten productivity. Maize is one of the most important crops across the world, with 869 million tons produced worldwide in 2012/2013 (IGC 2015), of which 929.5 thousand tons in Portugal (INE 2014). In Portugal, maize is sown in April/May and harvest occurs generally in October. Conventional maize production requires high inputs of water and fertilizers to achieve higher yields. As Portuguese farmers are typically rather old (on average, 63 years) and typically have a low education level (INE 2014), sustainability of their land management practises is often not a principal concern. This could explain why, in 2009, only 4% of the Portuguese temporary crops were under no-tillage, why only 8% of the farmers performed soil analyses in the previous three years, and why many soils have a low organic matter content (INE 2014). Nonetheless, sustainable land management practices are generally accepted to be the key to reducing agricultural soil degradation, preventing water pollution, and assuring long-term crop production objectives and food security. Sustainable land management should therefore not only be a concern for policy makers but also for farmers, since land degradation will have negative repercussions on the productivity, thus, on their economical income. This paper aims to assess the impact of maize production on soil properties. The study focusses on an 8 ha maize field located in central Portugal, with a Mediterranean climate on a gently sloping terrain (<3%) and with a soil classified as Eutric Fluvisol. On the field, several experiments were carried out with different maize varieties as well as with different fertilizers (solid, liquid and both). Centre pivot irrigation was largely used. Data is available from 2003, and concerns crop yield, fertilization and irrigation practices, as well as soil properties assessed through

  15. Dynamic Analysis of Bioethanol Production from Corn Stover and Immobilized Yeast

    Directory of Open Access Journals (Sweden)

    Shuang-Qi Tian

    2016-05-01

    Full Text Available The use of low cost and abundant corn stover in yeast fermentation can reduce product costs. In this study, bioethanol was produced from a hydrolysate of corn stover using immobilized yeast. A kinetic model was established for the total reducing sugar consumption and the production of bioethanol. The parameter estimation for kinetic modeling considered the main process variables during bioethanol production from corn stover. Total reducing sugar concentrations decreased exponentially in the bioethanol fermentation for 6 h; consumption was more than 90%. To use kinetic modelling of yeast growth for bioethanol fermentation, the value of μmax reached 0.2891 h-1, and the matrix inhibition constant (KIS and production inhibition constant (KIP were 8.9154 g/dm3 and 0.00676 g/dm3, respectively. To use kinetic modelling of fermentation time on bioethanol, the maximum ratio of bioethanol production rate (qmax reached 1.427 g/g•L. However, KIS was 2.813 g/dm3, and KIP was 0.0149 g/dm3.

  16. Enhanced furfural production from raw corn stover employing a novel heterogeneous acid catalyst.

    Science.gov (United States)

    Li, Wenzhi; Zhu, Yuanshuai; Lu, Yijuan; Liu, Qiyu; Guan, Shennan; Chang, Hou-Min; Jameel, Hasan; Ma, Longlong

    2017-12-01

    With the aim to enhance the direct conversion of raw corn stover into furfural, a promising approach was proposed employing a novel heterogeneous strong acid catalyst (SC-CaC t -700) in different solvents. The novel catalyst was characterized by elemental analysis, N 2 adsorption-desorption, FT-IR, XPS, TEM and SEM. The developed catalytic system demonstrated superior efficacy for furfural production from raw corn stover. The effects of reaction temperature, residence time, catalyst loading, substrate concentration and solvent were investigated and optimized. 93% furfural yield was obtained from 150mg corn stover at 200°C in 100min using 45mg catalyst in γ-valerolactone (GVL). In comparison, 51.5% furfural yield was achieved in aqueous media under the same conditions (200°C, 5h, and 45mg catalyst), which is of great industrial interest. Furfural was obtained from both hemicelluloses and cellulose in corn stover, which demonstrated a promising routine to make the full use of biomass. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Studies on the traditional methods of production of maize tuwo (a ...

    African Journals Online (AJOL)

    African Journal of Food, Agriculture, Nutrition and Development ... on the quality characteristics of maize tuwo (a Nigerian nonfermented maize dumpling) ... The sequential mixing of flour and water during maize tuwo preparation should also ...

  18. Crop Management Effects on the Energy and Carbon Balances of Maize Stover-Based Ethanol Production

    Directory of Open Access Journals (Sweden)

    Prem Woli

    2014-12-01

    Full Text Available This study was conducted to identify the crop management options—the combinations of various cultivars, irrigation amounts, planting dates, and soils—that would maximize the energy sustainability and eco-friendliness of maize (Zea mays L. stover-based ethanol production systems in the Mississippi Delta. Stover yields simulated with CERES-Maize were used to compute net energy value (NEV and carbon credit balance (CCB, the indicators of sustainability and eco-friendliness of ethanol production, respectively, for various scenarios. As the results showed, deeper soils with higher water holding capacities had larger NEV and CCB values. Both NEV and CCB had sigmoid relationships with irrigation amount and planting date and could be maximized by planting the crop during the optimum planting window. Stover yield had positive effects on NEV and CCB, whereas travel distance had negative. The influence of stover yield was larger than that of travel distance, indicating that increasing feedstock yields should be emphasized over reducing travel distance. The NEV and CCB values indicated that stover-based ethanol production in the Mississippi Delta is sustainable and environmentally friendly. The study demonstrated that the energy sustainability and eco-friendliness of maize stover-based ethanol production could be increased with alternative crop management options.

  19. Soil microbial activity under conventional and organic production of bean and maize

    Directory of Open Access Journals (Sweden)

    Marinković Jelena B.

    2016-01-01

    Full Text Available The objective of this study was to compare the effects of conventional and organic production system on microbial activity in the soil cultivated with bean and maize crops. The trial in Đurđevo was set up according to the conventional farming system, while organic farming system was used in Futog. Two maize hybrids and two bean cultivars were used in the trial. Soil samples were collected in two periods during 2014 (before sowing, at flowering stage of bean crops, and at 9-11 leaf stage of maize at two depths, at both locations. The following microbiological parameters were tested: the total number of micro­organisms, number of ammonifiers, Azotobacter sp., free nitrogen fixing bacteria, fungi, actinomycetes, and activity of dehydrogenase enzyme. The results showed that the total number of microorganisms, number of free N-fixers and dehydrogenase activity were higher within organic production, while Azotobacter sp. was more abundant in conventional production. Variations in the number of ammonifiers, fungi and actinomycetes in relation to the type of production were not obtained. Significant differences in microbial activity were also obtained between period and depths of sampling.

  20. Fuel ethanol production from sugarcane and corn: Comparative analysis for a Colombian case

    International Nuclear Information System (INIS)

    Quintero, J.A.; Montoya, M.I.; Sanchez, O.J.; Giraldo, O.H.; Cardona, C.A.

    2008-01-01

    The Colombian government has defined the use of bioethanol as a gasoline enhancer to reduce greenhouse gases, gasoline imports, and to boost the rural economy. To meet the projected fuel ethanol demand needed to oxygenate the gasoline in the whole country, the construction of about five additional ethanol production plants is required. For this, a comparative analysis of the technological options using different feedstocks should be performed. In this work, a comparison of the economical and environmental performance of the ethanol production process from sugarcane and corn under Colombian conditions has been carried out. Net present value and total output rate of potential environmental impact were used as the economical and environmental indicators, respectively. Through the integration of these indicators into one index by using the analytical hierarchy process (AHP) approach, sugarcane ethanol process was determined as the best choice for Colombian ethanol production facilities. AHP scores obtained in this study for sugarcane and corn ethanol were 0.571 and 0.429, respectively. However, starchy crops like corn, cassava or potatoes used as feedstock for ethanol production could potentially cause a higher impact on the rural communities and boost their economies if social matters are considered

  1. Assessing the Impact of Climatic Variability and Change on Maize Production in the Midwestern USA

    Science.gov (United States)

    Andresen, J.; Jain, A. K.; Niyogi, D. S.; Alagarswamy, G.; Biehl, L.; Delamater, P.; Doering, O.; Elias, A.; Elmore, R.; Gramig, B.; Hart, C.; Kellner, O.; Liu, X.; Mohankumar, E.; Prokopy, L. S.; Song, C.; Todey, D.; Widhalm, M.

    2013-12-01

    Weather and climate remain among the most important uncontrollable factors in agricultural production systems. In this study, three process-based crop simulation models were used to identify the impacts of climate on the production of maize in the Midwestern U.S.A. during the past century. The 12-state region is a key global production area, responsible for more than 80% of U.S. domestic and 25% of total global production. The study is a part of the Useful to Useable (U2U) Project, a USDA NIFA-sponsored project seeking to improve the resilience and profitability of farming operations in the region amid climate variability and change. Three process-based crop simulation models were used in the study: CERES-Maize (DSSAT, Hoogenboom et al., 2012), the Hybrid-Maize model (Yang et al., 2004), and the Integrated Science Assessment Model (ISAM, Song et al., 2013). Model validation was carried out with individual plot and county observations. The models were run with 4 to 50 km spatial resolution gridded weather data for representative soils and cultivars, 1981-2012, to examine spatial and temporal yield variability within the region. We also examined the influence of different crop models and spatial scales on regional scale yield estimation, as well as a yield gap analysis between observed and attainable yields. An additional study was carried out with the CERES-Maize model at 18 individual site locations 1901-2012 to examine longer term historical trends. For all simulations, all input variables were held constant in order to isolate the impacts of climate. In general, the model estimates were in good agreement with observed yields, especially in central sections of the region. Regionally, low precipitation and soil moisture stress were chief limitations to simulated crop yields. The study suggests that at least part of the observed yield increases in the region during recent decades have occurred as the result of wetter, less stressful growing season weather conditions.

  2. Banding urea and lignosulfonate in corn (Zea mays L.) production and 15N recovery

    International Nuclear Information System (INIS)

    Alkanani, T.; MacKenzie, A.F.

    1996-01-01

    The use of urea in corn (Zea mays L.) production is common. Under current N fertilizer recommendations for corn, urea may have adverse effects on corn growth when applied in a band. The effects of ammonium lignosulfonate (LS) on corn growth and on N uptake from the banded application of urea and diammonium phosphate (DAP) mixtures were investigated on two soils from eastern Quebec. Field experiments were initiated in the first week of May 1991 on an Ormstown silty clay and a Ste. Rosalie clay soils (fine, mixed, nonacid, mesic Typic Humaquepts). Treatments were two rates of urea (30 and 90 kg urea-N ha -1 ) in a combination with DAP (14kg N ha 1 ), with or without banded fertilizer solutions of LS (8 kg N ha -1 ) applied at planting 5 cm to the side and 3 cm below the seed. A no treatment control was included. The low rate of urea compared with the unfertilized plots. When compared with the unfertilized treatment, the high rate of urea and DAP (no LS added) caused 10% increase in grain yield. However, addition of LS to the high rate of urea and DAP increase grain yield by band 20%. In general, LS significantly increased corn N uptake from urea on both soils. Separate 15 N field experiments were initiated in June 1991. Mean recovery of 15 N ranged from 17.8% to 30.9% of the applied labelled urea. The rate of urea-N banded had no significant effect on immobilization, but LS resulted in significantly less 15 N immobilized. These observations suggest that LS can reduce the biological immobilization of urea-N and increase the efficiency of urea fertilizer by reducing the negative effects of banding high levels of urea, while attaining benefits of band placement. (author). 29 refs., 6 tabs

  3. Production of lactic acid from corn cobs through fermentation lactobacillus delbruekii

    International Nuclear Information System (INIS)

    Ali, Z.; Anjum, M.; Zahoor, T.

    2007-01-01

    Corn cobs were used as the source of reducing sugars for conversion into lactic acid through fermentation by a local strain of Lactobacillus delbruekii, under varying parameters of time, temperature, pH and glucose concentration, The production of lactic acid significantly increased with increase in Ph, fermentation time and glucose concentration (1-5%) and was significantly high (8.40 g/1) at pH 6, while significantly low (7.67 g/1) at pH 5. (author)

  4. Organics and mineral fertilizers and biological control on the incidence of stalk rot and corn yield

    Directory of Open Access Journals (Sweden)

    Elena Blume

    2014-06-01

    Full Text Available The expansion of area under maize (Zea mays L. and the use of no tillage have favored the incidence of stalk rot on this crop. The study aimed to evaluate the organic fertilizers and the treatment of corn seeds with Trichoderma spp. on the production of dry matter (DM of shoot, incidence of stalk rot and corn yield. The experiment consisted in a factorial with split-plot in strips, on the randomized block design with four replicates, and the fertilization treatments (pig slurry; swine deep bedding; cattle slurry; mineral fertilizer; control treatment were applied to the plots and the seeds treatment (with and without Trichoderma spp. in the subplots. At the flowering stage, three corn plants per subplot were collected for the assessment of DM production. At physiological maturity stage, the incidence of stalk rot was assessed, and the ears of corn harvested for productivity assessment. The organic and mineral fertilizers increased the production of DM and productivity of corn. Trichoderma spp. increased the production of DM of corn, but had no reflection on productivity. The incidence of stalk rot in corn was higher in treatments with organic and mineral fertilization. Organic fertilizers increase dry matter production of shoot and corn yield, and Trichoderma spp. provides an increase in dry matter production of shoot.

  5. CONTROL OF WESTERN CORN ROOTWORM (Diabrotica virgifera virgifera LeConte IN CORN PRODUCTION OF EASTERN CROATIA

    Directory of Open Access Journals (Sweden)

    Dražen Džoić

    2003-12-01

    Full Text Available A new insect pest - the western corn rootworm (Diabrotica virgifera virgifera LeConte was identified in Croatia in 1995. The first objective of this research was to determine the population density of all stages, except eggs in commercial cor fields. The second objective was to investigate the efficacy of three organophosphate insecticides on larvae. The experiment was conducted in Gunja, Croatia in 1999 and 2000. Treatments were commercial corn hybrids (OSSK 444, OSSK 552, Florencia, and three soil insecticides (terbuphos, chlorpyriphos-ethyl, chlormephos applied at planting. Results showed the highest number of larvae per plant (0.70 in the untreated plot of OSSK 552. In 1999, significant differences in larval numbers occurred among hybrids, but not among the insecticides. In 2000, larval numbers only differed statistically between the insecticide treatments. The highest beetles population counted per plant was 0.55 in 2000. This population level is very close to economic threshold of 0.70 beetles per plant. Significant differences in beetle numbers per plant between hybrids were only detected in 2000. Pheromone traps containing the lure, Csal♀m♂N, caught significantly more beetles than the Multigard yellow sticky-trap. Terbufos was the only soil insecticide providing a significant yield advantage to the hybrids. Based on the current value of corn and cost of insecticide, terbufos is the only soil insecticide cost-effective for growers. These studies should be conducted with other insecticides, and growers should avoid planting corn after corn in their fields.

  6. Quantifying cradle-to-farm gate life-cycle impacts associated with fertilizer used for corn, soybean, and stover production

    Energy Technology Data Exchange (ETDEWEB)

    Powers, Susan E. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2005-05-01

    Fertilizer use can cause environmental problems, particularly eutrophication of water bodies from excess nitrogen or phosphorus. Increased fertilizer runoff is a concern for harvesting corn stover for ethanol production.

  7. Effects of enzymatic hydrolysis and ultrasounds pretreatments on corn cob and vine trimming shoots for biogas production.

    Science.gov (United States)

    Pérez-Rodríguez, N; García-Bernet, D; Domínguez, J M

    2016-12-01

    Due to their lignocellulosic nature, corn cob and vine trimming shoots (VTS) could be valorized by anaerobic digestion for biogas production. To enhance the digestibility of substrates, pretreatments of lignocellulosic materials are recommended. The effect of enzymatic hydrolysis, ultrasounds pretreatments (US) and the combination of both was assayed in lignocellulosic composition, methane, and biogas yields. The pretreatments leaded to a reduction in lignin and an increase in neutral detergent soluble compounds making corn cob and VTS more amendable for biogas conversion. The US were negative for biogas production from both substrates and in particular strongly detrimental for VTS. On the opposite side, the enzymatic hydrolysis was certainly beneficial increasing 59.8% and 14.6% the methane production from VTS and corn cob, respectively. The prior application of US did not potentiate (or not sufficiently) the improvement in the methane production reflected by the enzymatic hydrolysis pretreatment of VTS and corn cob. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Feasibility study for co-locating and integrating ethanol production plants from corn starch and lignocellulosic feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ibsen, Kelly [National Renewable Energy Lab. (NREL), Golden, CO (United States); McAloon, Andrew [U.S. Department of Agriculture, Washington, D.C. (United States); Yee, Winnie [U.S. Department of Agriculture, Washington, D.C. (United States)

    2005-01-01

    Analysis of the feasibility of co-locating corn-grain-to-ethanol and lignocellulosic ethanol plants and potential savings from combining utilities, ethanol purification, product processing, and fermentation.

  9. Ultrasonic pretreatment for enhanced saccharification and fermentation of ethanol production from corn

    Science.gov (United States)

    Montalbo-Lomboy, Melissa T.

    during pretreatment. Ultrasonication of sugary-2 corn was also investigated in the study. Results similar to those for commodity corn (dent corn) were found, in terms of glucose yield and starch conversion. SEM and polarized-light microscope pictures showed the partial gelatinization of corn slurry due to ultrasound. In the 96-h saccharification time, a model was formulated to fit the sugar release curve. The results have shown 17-21% increase in the extent of sugar production from sonicated samples relative to the control group. Additionally, the reaction rates of the sonicated samples were 2- to 10-fold higher than the reaction rates for the control group. In comparing sugary-2 corn with commodity corn, it was found that sonicated sugary-2 corn saccharified faster than sonicated commodity corn. It is important to note, without ultrasonic treatment, sugary-2 corn released more reducing sugar than commodity corn during saccharification. To further investigate the potential of ultrasonics for scale-up, a continuous flow system was studied. An ultrasonic continuous flow system was tested using Branson's flow-through "donut" horn. The donut horn, which vibrates radially, was placed inside a 5.5 L stainless steel reactor. The amplitude was maintained at 12 mumpp and the feed flow rate was varied from 8-27 L/min (2-7 gal/min) with reactor retention times varying from 12-40 seconds. Samples sonicated in continuous flow system showed lower reducing sugar yield than batch ultrasonication. However, considering the ultrasonic energy density of batch and continuous systems, the continuous systems proved to be more energy efficient in terms of glucose production compared with the batch system. It was also seen that particle size disintegration was proportional to energy density regardless of the type of ultrasonic system used. To compare ultrasonics with jet cooking, fermentation experiments were conducted. There were only marginal differences between jet cooked samples and the

  10. Kinetic modeling of simultaneous saccharification and fermentation of corn starch for ethanol production.

    Science.gov (United States)

    Białas, Wojciech; Czerniak, Adrian; Szymanowska-Powałowska, Daria

    2014-01-01

    Fuel ethanol production, using a simultaneous saccharification and fermentation process (SSF) of native starch from corn flour, has been performed using Saccharomyces cerevisiae and a granular starch hydrolyzing enzyme. The quantitative effects of mash concentration, enzyme dose and pH were investigated with the use of a Box-Wilson central composite design protocol. Proceeding from results obtained in optimal fermentation conditions, a kinetics model relating the utilization rates of starch and glucose as well as the production rates of ethanol and biomass was tested. Moreover, scanning electron microscopy (SEM) was applied to investigate corn starch granule surface after the SFF process. A maximum ethanol concentration of 110.36 g/l was obtained for native corn starch using a mash concentration of 25%, which resulted in ethanol yield of 85.71%. The optimal conditions for the above yield were found with an enzyme dose of 2.05 ml/kg and pH of 5.0. These results indicate that by using a central composite design, it is possible to determine optimal values of the fermentation parameters for maximum ethanol production. The investigated kinetics model can be used to describe SSF process conducted with granular starch hydrolyzing enzymes. The SEM micrographs reveal randomly distributed holes on the surface of granules.

  11. Dry-grind processing using amylase corn and superior yeast to reduce the exogenous enzyme requirements in bioethanol production.

    Science.gov (United States)

    Kumar, Deepak; Singh, Vijay

    2016-01-01

    Conventional corn dry-grind ethanol production process requires exogenous alpha and glucoamylases enzymes to breakdown starch into glucose, which is fermented to ethanol by yeast. This study evaluates the potential use of new genetically engineered corn and yeast, which can eliminate or minimize the use of these external enzymes, improve the economics and process efficiencies, and simplify the process. An approach of in situ ethanol removal during fermentation was also investigated for its potential to improve the efficiency of high-solid fermentation, which can significantly reduce the downstream ethanol and co-product recovery cost. The fermentation of amylase corn (producing endogenous α-amylase) using conventional yeast and no addition of exogenous α-amylase resulted in ethanol concentration of 4.1 % higher compared to control treatment (conventional corn using exogenous α-amylase). Conventional corn processed with exogenous α-amylase and superior yeast (producing glucoamylase or GA) with no exogenous glucoamylase addition resulted in ethanol concentration similar to control treatment (conventional yeast with exogenous glucoamylase addition). Combination of amylase corn and superior yeast required only 25 % of recommended glucoamylase dose to complete fermentation and achieve ethanol concentration and yield similar to control treatment (conventional corn with exogenous α-amylase, conventional yeast with exogenous glucoamylase). Use of superior yeast with 50 % GA addition resulted in similar increases in yield for conventional or amylase corn of approximately 7 % compared to that of control treatment. Combination of amylase corn, superior yeast, and in situ ethanol removal resulted in a process that allowed complete fermentation of 40 % slurry solids with only 50 % of exogenous GA enzyme requirements and 64.6 % higher ethanol yield compared to that of conventional process. Use of amylase corn and superior yeast in the dry-grind processing industry

  12. Quantifying Cradle-to-Farm Gate Life-Cycle Impacts Associated with Fertilizer used for Corn, Soybean, and Stover Production

    Energy Technology Data Exchange (ETDEWEB)

    Powers, S. E.

    2005-05-01

    Fertilizer use can cause environmental problems, particular eutrophication of water bodies from excess nitrogen or phosphorus. Increased fertilizer runoff is a concern for harvesting corn stover for ethanol production. This modeling study found that eutrophication potential for the base case already exceeds proposed water quality standards, that switching to no-till cultivation and collecting stover increased that eutrophication potential by 21%, and that switching to continuous-corn production on top of that would triple eutrophication potential.

  13. Economic Efficiency of Maize Production in Yola North Local ...

    African Journals Online (AJOL)

    user

    should include the basic nutrients necessary to meet the needs of the ... economic production and home production, often have damaging ..... economic citizens in Nigeria (Ankroyd and. Doughty, 1984). ... Nutritional Guide. University of.

  14. Huitlacoche yield in some maize varieties in the Mediterranean region of Turkey

    Directory of Open Access Journals (Sweden)

    Mehmet Aydoğdu

    2015-06-01

    Full Text Available Huitlacoche is the Aztecs name given to the smut galls on ears of maize caused by the pathogenic plant fungus Ustilago maydis [(DC Corda.]. It is known as maize mushroom, and it has been considered a delicacy and in Mesoamerica. The aim of the present study was to determine the responses of some maize varieties to the growth of the fungus in order to evaluate the prospect production of these smutty ears as a maize mushroom. A 2-year study was conducted in the Mediterranean region of Turkey in 2010 and 2011. Inoculations were performed by injecting inoculum into the ear through the silk channel of plants in plots. Each treatment had control plots. Average ear-gall (huitlacoche severity and incidence of all the varieties were at the rates of 4.0 and 41.6%, respectively. However, the highest severity of ear-gall (6.5 and incidence (60.6% were found in Karadeniz Yıldızı flint maize variety; colossal smutty ears were formed in the maize cultivars. This study showed that certain maize cultivars (flint corn and dent corn can be used efficiently in the production of huitlacoche.

  15. A Review of Growth Stage Deficit Irrigation Effecting Sticky Maize Production

    Directory of Open Access Journals (Sweden)

    Ha Bui Manh

    2017-06-01

    Full Text Available The shortage of water resources influences the future sustainability of sticky Maize (Zea mays L. production. Deficit irrigation (DI - a water management strategy - has gained much attention from scientists because of enhanced water use efficiency (WUE. Nonetheless, in reality, when applying this technique, its impact on yield and economic returns should be considered. Through an analytical literature review, this study examined the effect of growth stage DI on Maize production factors, i.e. yield, WUE, and economic returns. The results revealed that Maize’s WUE could be improved with the lowest reduction in yield as water stress was imposed during the vegetative or maturation growth stages. Therefore, the profitable returns could be reached even if the yield was reduced; however, the economic return was sensitive to commodity prices. The present review addressed that the Maize flexible capacities under growth stage water stress presented an opportunity for the optimization of irrigated water and profit preservation by accurately judging the managing time of irrigation implementation.

  16. Planting pattern and weed control method influence on yield production of corn (Zea mays L.)

    Science.gov (United States)

    Purba, E.; Nasution, D. P.

    2018-02-01

    Field experiment was carried out to evaluate the influence of planting patterns and weed control methods on the growth and yield of corn. The effect of the planting pattern and weed control method was studied in a split plot design. The main plots were that of planting pattern single row (25cm x 60cm), double row (25cm x 25cm x 60cm) and triangle row ( 25cm x 25cm x 25cm). Subplot was that of weed control method consisted five methods namely weed free throughout the growing season, hand weeding, sprayed with glyphosate, sprayed with paraquat, and no weeding.. Result showed that both planting pattern and weed control method did not affect the growth of corn. However, planting pattern and weed control method significantly affected yield production. Yield resulted from double row and triangle planting pattern was 14% and 41% higher, consecutively, than that of single row pattern. The triangle planting pattern combined with any weed control method produced the highest yield production of corn.

  17. A new magnesium bisulfite pretreatment (MBSP) development for bio-ethanol production from corn stover.

    Science.gov (United States)

    Yu, Heng; Ren, Jiwei; Liu, Lei; Zheng, Zhaojuan; Zhu, Junjun; Yong, Qiang; Ouyang, Jia

    2016-01-01

    This study established a new more neutral magnesium bisulfate pretreatment (MBSP) using magnesium bisulfate as sulfonating agent for improving the enzymatic hydrolysis efficiency of corn stover. Using the MBSP with 5.21% magnesium bisulfate, 170°C and pH 5.2 for 60 min, about 90% of lignin and 80% of hemicellulose were removed from biomass and more than 90% cellulose conversion of substrate was achieved after 48 h hydrolysis. About 6.19 kg raw corn stover could produce 1 kg ethanol by Saccharomyces cerevisiae. Meanwhile, MBSP also could protect sugars from excessive degradation, prevent fermentation inhibition formation and directly convert the hemicelluloses into xylooligosaccharides as higher-value products. These results suggested that the MBSP method offers an alternative approach to the efficient conversion of nonwoody lignocellulosic biomass to ethanol and had broad space for development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Standardized Ileal Amino Acid Digestibility of Corn, Corn Distillers' Dried Grains with Solubles, Wheat Middlings, and Bakery By-Products in Broilers and Laying Hens.

    Science.gov (United States)

    Adedokun, S A; Jaynes, P; Payne, R L; Applegate, T J

    2015-10-01

    Standardized ileal amino acid digestibility (SIAAD) of 5 samples of corn distillers dried grain with solubles (DDGS), 5 samples of bakery by-products (BBP), 3 samples of corn, and 1 sample of wheat middlings (WM) were evaluated in broilers and laying hens. Diets containing each of the 14 feed ingredients were evaluated in 21 day-old broiler chickens. The DDGS and BBP containing diets were fed to 30-week-old laying hens, while corn and wheat middling were evaluated in 50-week-old laying hens. All the diets were semi-purified with each feed ingredient being the only source of amino acid (AA). To obtain SIAAD values, apparent ileal AA digestibility was corrected for basal ileal endogenous AA losses using values generated from broilers and laying hens fed a nitrogen-free diet. Ileal crude protein digestibility for the 5 DDGS samples was higher (P digestibility values for broilers were higher (P digestibility for corn 1 was higher (P digestibility exists between different samples of DDGS. Differences in SIAAD between broilers and laying hens were observed in some samples of DDGS and BBP. © 2015 Poultry Science Association Inc.

  19. Dependence of the productivity of maize and soybean intercropping systems on hybrid type and plant arrangement pattern

    Directory of Open Access Journals (Sweden)

    Dolijanović Željko

    2013-01-01

    Full Text Available Intercropping systems could improve utilization of the most important resources (soil, water and nutrients, provide a better control of weeds, pests and diseases, and finally higher productivity, especially under rain-fed growing conditions. This study aimed to determine the effects of three maize (Zea mays L. prolific hybrids (FAO 500, 600 and 700 and the spatial intercrop patterns on the above-ground biomass and grain yields of maize and soybean (Glycine max L. Merrill, on chernozem soil type at Zemun Polje, Belgrade, in 2003, 2004 and 2005. The experimental design was a complete randomized block with four replications and three treatments: 3 rows of maize and 3 rows of soybean in strips for each maize hybrid (three variants, 3 rows of maize and 3 rows of soybean in alternate rows for each hybrid (another three variants and monocrops of both maize and soybeans. To optimize the ecological and economic benefits of maize/soybean intercrop in terms of yield, variety selection and compatibility of the component crops should be made using established agronomic management practices involving the two crops. Suitable maize varieties for maize/soybean intercrop systems are varieties that have less dense canopy. These varieties would therefore have lesser shading effect to the understory beans. However, establishment of an appropriate spatial arrangement of the component crops would be essential to alleviate negative effects especially on the less competitive crop. The intercropping system in alternate rows showed significantly higher above-ground biomass and grain yields in comparation with both the strip intercropping system and maize monocrops in 2004. Soybean gave significantly lower above-ground biomass and grain yield in intercrops than in monocrops. Maize prolific hybrid growing in intercropping with soybean as legume crop, increased productivity of cropping system, especially in favourable agroecological conditions. Maize and soybean yields

  20. Natural occurrence of Fusarium species, fumonisin production by toxigenic strains, and concentrations of fumonisins B1, and B2 in conventional and organic maize grown in Spain.

    Science.gov (United States)

    Ariño, Agustín; Juan, Teresa; Estopañan, Gloria; González-Cabo, José F

    2007-01-01

    Sixty samples of corn from both conventional and organic farms were tested for internal fungal contamination. Molds were identified to genus, and those belonging to the genus Fusarium were identified to species. Twenty isolates of Fusarium verticillioides were tested with a high-performance liquid chromatography-naphthalene dicarboxaldehyde-fluorescence method for their ability to produce fumonisins B1 and B2. The internal fungal infection in organic maize (63.20%) was significantly higher than that in conventional maize (40.27%) (P fumonisins on conventional or organic corn. Up to 13.3% of the conventional corn samples contained fumonisins B1 and B2 at mean concentrations of 43 and 22 ng/g, respectively. Organic corn samples had somewhat lower levels of contamination: 35 ng/g fumonisin B1 and 19 ng/g fumonisin B2 (P > 0.05). The organic farming system, with well-balanced crop rotation, tillage, and compost fertilization, produced corn that was less likely to be contaminated with Fusarium species, although no significant difference in fumonisin concentrations was found between the two types of contaminated corn.

  1. Resistance of maize varieties to the maize weevil Sitophilus zeamais

    African Journals Online (AJOL)

    This study aimed at evaluating commonly used maize varieties, collected from Melkasa and Bako Agricultural Research Centers and Haramaya University, Ethiopia, against the maize weevil Sitophilus zeamais Motsch., one of the most important cosmopolitan stored product pests in maize. A total of 13 improved maize ...

  2. Protein and starch digestibilities and mineral availability of products developed from potato, soy and corn flour.

    Science.gov (United States)

    Gahlawat, P; Sehgal, S

    1998-01-01

    A technique for development of potato flour was standardized. Five products viz. cake, biscuit, weaning food, panjiri and ladoo were prepared incorporating potato flour, defatted soy flour and corn flour. Baking and roasting were the major processing techniques employed for the development of these products. Protein, ash and fat contents of potato flour were almost similar to those of raw potatoes. Significant differences in protein, ash and fat contents of all the products were observed. Protein and starch digestibility of potato flour was significantly higher than that of raw potatoes. Protein digestibility increased by 12 to 17 percent on baking or roasting of products. Processed products had significantly higher starch digestibility and mineral availability compared to raw products. Thus, it can be concluded that roasting and baking are effective means of improving starch and protein digestibility and mineral availability of products.

  3. Analysis of Chi-square Automatic Interaction Detection (CHAID) and Classification and Regression Tree (CRT) for Classification of Corn Production

    Science.gov (United States)

    Susanti, Yuliana; Zukhronah, Etik; Pratiwi, Hasih; Respatiwulan; Sri Sulistijowati, H.

    2017-11-01

    To achieve food resilience in Indonesia, food diversification by exploring potentials of local food is required. Corn is one of alternating staple food of Javanese society. For that reason, corn production needs to be improved by considering the influencing factors. CHAID and CRT are methods of data mining which can be used to classify the influencing variables. The present study seeks to dig up information on the potentials of local food availability of corn in regencies and cities in Java Island. CHAID analysis yields four classifications with accuracy of 78.8%, while CRT analysis yields seven classifications with accuracy of 79.6%.

  4. Simultaneous saccharification and cofermentation of lignocellulosic residues from commercial furfural production and corn kernels using different nutrient media

    Directory of Open Access Journals (Sweden)

    Cristhian Carrasco

    2011-07-01

    Full Text Available Abstract Background As the supply of starch grain and sugar cane, currently the main feedstocks for bioethanol production, become limited, lignocelluloses will be sought as alternative materials for bioethanol production. Production of cellulosic ethanol is still cost-inefficient because of the low final ethanol concentration and the addition of nutrients. We report the use of simultaneous saccharification and cofermentation (SSCF of lignocellulosic residues from commercial furfural production (furfural residue, FR and corn kernels to compare different nutritional media. The final ethanol concentration, yield, number of live yeast cells, and yeast-cell death ratio were investigated to evaluate the effectiveness of integrating cellulosic and starch ethanol. Results Both the ethanol yield and number of live yeast cells increased with increasing corn-kernel concentration, whereas the yeast-cell death ratio decreased in SSCF of FR and corn kernels. An ethanol concentration of 73.1 g/L at 120 h, which corresponded to a 101.1% ethanol yield based on FR cellulose and corn starch, was obtained in SSCF of 7.5% FR and 14.5% corn kernels with mineral-salt medium. SSCF could simultaneously convert cellulose into ethanol from both corn kernels and FR, and SSCF ethanol yield was similar between the organic and mineral-salt media. Conclusions Starch ethanol promotes cellulosic ethanol by providing important nutrients for fermentative organisms, and in turn cellulosic ethanol promotes starch ethanol by providing cellulosic enzymes that convert the cellulosic polysaccharides in starch materials into additional ethanol. It is feasible to produce ethanol in SSCF of FR and corn kernels with mineral-salt medium. It would be cost-efficient to produce ethanol in SSCF of high concentrations of water-insoluble solids of lignocellulosic materials and corn kernels. Compared with prehydrolysis and fed-batch strategy using lignocellulosic materials, addition of starch

  5. Global nitrogen budgets in cereals: A 50-year assessment for maize, rice, and wheat production systems.

    Science.gov (United States)

    Ladha, J K; Tirol-Padre, A; Reddy, C K; Cassman, K G; Verma, Sudhir; Powlson, D S; van Kessel, C; de B Richter, Daniel; Chakraborty, Debashis; Pathak, Himanshu

    2016-01-18

    Industrially produced N-fertilizer is essential to the production of cereals that supports current and projected human populations. We constructed a top-down global N budget for maize, rice, and wheat for a 50-year period (1961 to 2010). Cereals harvested a total of 1551 Tg of N, of which 48% was supplied through fertilizer-N and 4% came from net soil depletion. An estimated 48% (737 Tg) of crop N, equal to 29, 38, and 25 kg ha(-1) yr(-1) for maize, rice, and wheat, respectively, is contributed by sources other than fertilizer- or soil-N. Non-symbiotic N2 fixation appears to be the major source of this N, which is 370 Tg or 24% of total N in the crop, corresponding to 13, 22, and 13 kg ha(-1) yr(-1) for maize, rice, and wheat, respectively. Manure (217 Tg or 14%) and atmospheric deposition (96 Tg or 6%) are the other sources of N. Crop residues and seed contribute marginally. Our scaling-down approach to estimate the contribution of non-symbiotic N2 fixation is robust because it focuses on global quantities of N in sources and sinks that are easier to estimate, in contrast to estimating N losses per se, because losses are highly soil-, climate-, and crop-specific.

  6. Pollen viability, physiology, and production of maize plants exposed to pyraclostrobin+epoxiconazole.

    Science.gov (United States)

    Junqueira, Verônica Barbosa; Costa, Alan Carlos; Boff, Tatiana; Müller, Caroline; Mendonça, Maria Andréia Corrêa; Batista, Priscila Ferreira

    2017-04-01

    The use of fungicides in maize has been more frequent due to an increase in the incidence of diseases and also the possible physiological benefits that some of these products may cause. However, some of these products (e.g., strobilurins and triazoles) may interfere with physiological processes and the formation of reproductive organs. Therefore, the effect of these products on plants at different developmental stages needs to be better understood to reduce losses and maximize production. The effect of the fungicide pyraclostrobin+epoxiconazole (P+E) was evaluated at different growth stages in meiosis, pollen grain viability and germination, physiology, and production of maize plants in the absence of disease. An experiment was carried out with the hybrid DKB390 PROII and the application of pyraclostrobin+epoxiconazole at the recommended dose and an untreated control at 3 different timings (S1 - V10; S2 - V14; S3 - R1) with 5 replications. Gas exchange, chlorophyll fluorescence, pollen viability and germination, as well as the hundred-grain weight were evaluated. Anthers were collected from plants of S1 for cytogenetic analysis. The fungicide pyraclostrobin+epoxiconazole reduced the viability of pollen grains (1.4%), but this was not enough to reduce production. Moreover, no differences were observed in any of the other parameters analyzed, suggesting that P+E at the recommended dose and the tested stages does not cause toxic effects. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Process Optimization for Biodiesel Production from Corn Oil and Its Oxidative Stability

    Directory of Open Access Journals (Sweden)

    N. El Boulifi

    2010-01-01

    Full Text Available Response surface methodology (RSM based on central composite design (CCD was used to optimize biodiesel production process from corn oil. The process variables, temperature and catalyst concentration were found to have significant influence on biodiesel yield. The optimum combination derived via RSM for high corn oil methyl ester yield (99.48% was found to be 1.18% wt catalyst concentration at a reaction temperature of 55.6∘C. To determine how long biodiesel can safely be stored, it is desirable to have a measurement for the stability of the biodiesel against such oxidation. Storage time and oxygen availability have been considered as possible factors influencing oxidative instability. Biodiesel from corn oil was stored for a period of 30 months, and the physico-chemical parameters of samples were measured at regular interval of time. Results show that the acid value (AV, peroxide value (PV, and viscosity (ν increased while the iodine value (IV decreased. These parameters changed very significantly when the sample was stored under normal oxygen atmosphere. However, the ν, AV, and IV of the biodiesel sample which was stored under argon atmosphere were within the limit by the European specifications (EN 14214.

  8. Integrated Production of Xylonic Acid and Bioethanol from Acid-Catalyzed Steam-Exploded Corn Stover.

    Science.gov (United States)

    Zhu, Junjun; Rong, Yayun; Yang, Jinlong; Zhou, Xin; Xu, Yong; Zhang, Lingling; Chen, Jiahui; Yong, Qiang; Yu, Shiyuan

    2015-07-01

    High-efficiency xylose utilization is one of the restrictive factors of bioethanol industrialization. However, xylonic acid (XA) as a new bio-based platform chemical can be produced by oxidation of xylose with microbial. So, an applicable technology of XA bioconversion was integrated into the process of bioethanol production. After corn stover was pretreated with acid-catalyzed steam-explosion, solid and liquid fractions were obtained. The liquid fraction, also named as acid-catalyzed steam-exploded corn stover (ASC) prehydrolyzate (mainly containing xylose), was catalyzed with Gluconobacter oxydans NL71 to prepare XA. After 72 h of bioconversion of concentrated ASC prehydrolyzate (containing 55.0 g/L of xylose), the XA concentration reached a peak value of 54.97 g/L, the sugar utilization ratio and XA yield were 94.08 and 95.45 %, respectively. The solid fraction was hydrolyzed to produce glucose with cellulase and then fermented with Saccharomyces cerevisiae NL22 to produce ethanol. After 18 h of fermentation of concentrated enzymatic hydrolyzate (containing 86.22 g/L of glucose), the ethanol concentration reached its highest value of 41.48 g/L, the sugar utilization ratio and ethanol yield were 98.72 and 95.25 %, respectively. The mass balance showed that 1 t ethanol and 1.3 t XA were produced from 7.8 t oven dry corn stover.

  9. Baby corn, green corn, and dry corn yield of corn cultivars

    OpenAIRE

    Castro,Renato S; Silva,Paulo Sérgio L; Cardoso,Milton J

    2013-01-01

    In corn, when the first female inflorescence is removed, the plant often produces new female inflorescences. This allows the first ear to be harvested as baby corn (BC) and the second as green corn (GC) or dry corn (DC), that is, mature corn. The flexibility provided by a variety of harvested products allows the grower to compete with better conditions in the markets. We evaluated BC, GC, and DC yields in corn cultivars AG 1051, AG 2060, and BRS 2020, after the first ear was harvested as BC. ...

  10. Effect of incorporation of corn byproducts on quality of baked and extruded products from wheat flour and semolina.

    Science.gov (United States)

    Sharma, Savita; Gupta, Jatinder Pal; Nagi, H P S; Kumar, Rakesh

    2012-10-01

    The effect of blending level (0, 5, 10, 15 and 20%) of corn bran, defatted germ and gluten with wheat flour on the physico-chemical properties (protein, crude fiber, phosphorus, iron and calcium), baking properties of bread, muffins and cookies, and extrusion properties of noodles and extruded snacks prepared from semolina were examined. Blending of wheat flour and corn byproducts significantly increased the protein, crude fiber, phosphorus, iron and calcium contents. Breads from gluten blends had higher loaf volume as compared to bran and germ breads. Among corn byproducts, gluten cookies were rated superior with respect to top grain. Muffins from germ blends and gluten blends had higher acceptability scores than the bran muffins. Blending of corn bran, defatted germ and gluten at 5 and 10% with wheat flour resulted in satisfactory bread, cookie, and muffin score. Quality of noodles was significantly influenced by addition of corn byproducts and their levels. Corn byproducts blending had significant influence on cooking time, however, gruel solid loss affected non-significantly in case of noodles. Expansion ratio and density of extruded snacks was affected non significantly by blending source and blending level. However, significant effect was observed on amperage, pressure, yield and overall acceptability of extruded snacks. Acceptable extruded products (noodles and extruded snacks) could be produced by blending corn byproducts with semolina upto 10% level.

  11. Improving maize productivity through tillage and nitrogen management

    African Journals Online (AJOL)

    Continuous cultivation of fields with same implement (cultivator) creates a hard pan in the subsoil which adversely affects crop productivity. In addition to tillage, nitrogen management is a key factor for better crop growth and yield. Impact of different tillage systems and nitrogen management on yield attributes and grain yield ...

  12. Working with smallholder farmers to improve maize production and ...

    African Journals Online (AJOL)

    Mo

    Smallhold farmers in Western Kenya face crop production and marketing constraints that bind them within ... Local sales become more important from March to May, serving as a strategic community food .... scare cash is required for critical medical and educational ... 46% greater fertilizer use efficiency and 54% understorey.

  13. laboratory production of alcohol from rice and maize chaffs

    African Journals Online (AJOL)

    Abdulrahman Issa Muse

    2010-09-22

    Sep 22, 2010 ... The alcohol content of the samples were determined by distillation method. ... and cosmetics. It serves as a .... Reducing sugar production was determined .... did not lead to a decrease in water activity (aw) as it was noticed by ...

  14. Economic efficiency of maize production in Yola North Local ...

    African Journals Online (AJOL)

    Similarly, the efficiency ratio computed showed that land, seed and fertilizer had MVP/MFC ratio greater than unity implying that the inputs were underutilized and output could be increased by increasing the levels of their utilization. The elasticity of production was greater than 1.00 which implied increasing return to scale.

  15. Economic Efficiency of Maize Production in Yola North Local ...

    African Journals Online (AJOL)

    user

    ABSTRACT. The ability of herbaceous legumes to supply nitrogen to subsequent cereal crops could be harnessed to alleviate the difficulties in cereal production due to poor soil fertility and expensive inorganic fertilizers. Field experiments were carried out in Zaria, Nigeria to determine the soil improvement potential of ...

  16. Physical Properties And Maize Production In A Spent Oil ...

    African Journals Online (AJOL)

    Information on the use of plant species and organic nutrients to improve the physical properties of oil-contaminated soil, with a view to making it conducive for crop production, is very important. Three legumes (Gliricidia sepium, Leucenae leucocephala and Calapogonium caeruleam) combined or not with poultry manure ...

  17. FORAGE YIELD, CHEMICAL COMPOSITION AND IN VITRO GAS PRODUCTION OF YELLOW HYBRID MAIZE GROWN IN MEXICO

    Directory of Open Access Journals (Sweden)

    Lizbeth Esmeralda Roblez Jimenez

    2017-12-01

    Full Text Available Maize is the most important forage in feed cattle, due to its higher energy content, however, it is characterized by its wide range of varieties and the possibility of generating a large quantity of final products. The objective of the present study was to evaluate and compare the forage yield, chemical composition and in vitro gas production as fresh and hay of a local yellow criollo maize and six varieties of yellow hybrid maize (HIT13, CML460, PIONER, COPPER, CDMO80001 and CLO80902. Fresh and dry yield did not show differences between treatments (P>0.05, their chemical composition (g / kg DM showed differences (P ˂ 0.05 for the protein content by various storage methods ranging from 59.87 to 59.61 g kg-1 DM per conservation method, NDF ranged from 591 to 686 g kg-1 DM by variety and by the method ranged from 619 to 639 g kg -1 DM, ADF ranged from 298 to 345 g kg-1 DM by variety and 317 to 340 g kg-1 DM by conservation method; ADL ranged from 58 to 41 g kg-1 DM by variety and 41 to 57 g kg-1 DM by conservation method, in vitro gas production  there were no differences (P>0.05 between varieties and conservation method. It is concluded that according to the results obtained, the varieties studied show the same forage yields in both hay and fresh, chemical composition, and in vitro gas production.

  18. Biological Hydrogen Production from Corn-Syrup Waste Using a Novel System

    Directory of Open Access Journals (Sweden)

    George Nakhla

    2009-06-01

    Full Text Available The reported patent-pending system comprises a novel biohydrogen reactor with a gravity settler for decoupling of SRT from HRT. The biohydrogenator was operated for 100 days at 37 °C, hydraulic retention time 8 h and solids retention time ranging from 2.2–2.5 days. The feed was a corn-syrup waste generated as a byproduct from an industrial facility for bioethanol production located in southwestern Ontario, Canada. The system was initially started up with a synthetic feed containing glucose at concentration of 8 g/L and other essential inorganics. Anaerobicaly-digested sludge from the St. Mary’s wastewater treatment plant (St. Mary, Ontario, Canada was used as the seed, and was heat treated at 70 °C for 30 min to inhibit methanogens. After 10 days, when the hydrogen production was steady, the corn-syrup waste was introduced to the system. Glucose was the main constituent in the corn-syrup; its concentration was varied over a period of 90 days from 8 to 25 g/L. The change in glucose concentration was used to study the impact of variable organic loading on the stability of hydrogen production in the biohydrogenator. Hydrogen production rate increased from 10 L H2/L·d to 34 L H2/L·d with the increase of organic loading rate (OLR from 26 to 81 gCOD/L·d, while a maximum hydrogen yield of 430 mL H2/gCOD was achieved in the system with an overall average of 385 mL H2/gCOD.

  19. Productivity differences and food security: a metafrontier analysis of rain-fed maize farmers in MasAgro in Mexico

    Directory of Open Access Journals (Sweden)

    M. Laura Donnet

    2017-04-01

    Full Text Available Rain-fed maize production in Mexico includes approximately 6 million hectares which variation in productivity represents huge challenges to meeting the sustainable intensification goals of the Sustainable Modernization of Traditional Agriculture (MasAgro program. We use the information available from farmers participating in this program to investigate the differences in productivity and the effects of the promoted practices and technologies in seven defined rain-fed maize regions. We do this by applying metafrontier analysis to measure the technical efficiency and the technology gap. The results show a range of technical efficiency from 70 to 100%, which indicates the gains that can be achieved through improved management of the current inputs and practices of farmers in the program, and a range of the environment–technology gap between 32 and 82%, which indicates the limitations of the production environment which would require innovations in technologies and policies particularly adapted for the dry, the tropical and the more traditional regions. Furthermore, the results show that the use of hybrid seed and selling into maize markets have the largest impact in increasing maize yields in all regions. The difference between the MasAgro farmers and the average farmers in each region suggest that scaling the project will contribute to increasing maize production and Mexico’s food self-sufficiency.

  20. Importance of NDF digestibility of whole crop maize silage for dry matter intake and milk production in dairy cows

    DEFF Research Database (Denmark)

    Krämer, Monika; Lund, Peter; Weisbjerg, Martin Riis

    2016-01-01

    The importance of maize silage as a feed component in cattle rations and for biogas production has substantially increased. Whole crop maize silage is a forage with a high starch concentration, but also the cell wall fraction, commonly analysed as neutral detergent fibre (aNDFom) is a major energy...... source for use in ruminant nutrition. Even though ruminants require forage fibre to maintain rumen function and maximize productivity, excess fibre limits feed intake due to its contribution to physical fill in the rumen. As feed intake is the most important factor for milk production, both a......NDFom concentration and aNDFom digestibility are key determinants of the nutritive value of a diet. Therefore, the importance of maize silage aNDFom digestibility on nutritive value, dry matter (DM) intake (DMI) and milk production was investigated in a literature review across a wide range of studies varying...

  1. Ethanol production from concentrated food waste hydrolysates with yeast cells immobilized on corn stalk

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Shoubao [Huainan Normal Univ., Anhui (China). School of Life Science; Chen, Xiangsong; Wu, Jingyong; Wang, Pingchao [Chinese Academy of Sciences, Hefei (China). Key Lab. of Ion Beam Bio-engineering of Inst. of Plasma Physics

    2012-05-15

    The aim of the present study was to examine ethanol production from concentrated food waste hydrolysates using whole cells of S. cerevisiae immobilized on corn stalks. In order to improve cell immobilization efficiency, biological modification of the carrier was carried out by cellulase hydrolysis. The results show that proper modification of the carrier with cellulase hydrolysis was suitable for cell immobilization. The mechanism proposed, cellulase hydrolysis, not only increased the immobilized cell concentration, but also disrupted the sleek surface to become rough and porous, which enhanced ethanol production. In batch fermentation with an initial reducing sugar concentration of 202.64 {+-} 1.86 g/l, an optimal ethanol concentration of 87.91 {+-} 1.98 g/l was obtained using a modified corn stalk-immobilized cell system. The ethanol concentration produced by the immobilized cells was 6.9% higher than that produced by the free cells. Ethanol production in the 14th cycle repeated batch fermentation demonstrated the enhanced stability of the immobilized yeast cells. Under continuous fermentation in an immobilized cell reactor, the maximum ethanol concentration of 84.85 g/l, and the highest ethanol yield of 0.43 g/g (of reducing sugar) were achieved at hydraulic retention time (HRT) of 3.10 h, whereas the maximum volumetric ethanol productivity of 43.54 g/l/h was observed at a HRT of 1.55 h. (orig.)

  2. Succinic acid production by Actinobacillus succinogenes using hydrolysates of spent yeast cells and corn fiber.

    Science.gov (United States)

    Chen, Ke-Quan; Li, Jian; Ma, Jiang-Feng; Jiang, Min; Wei, Ping; Liu, Zhong-Min; Ying, Han-Jie

    2011-01-01

    The enzymatic hydrolysate of spent yeast cells was evaluated as a nitrogen source for succinic acid production by Actinobacillus succinogenes NJ113, using corn fiber hydrolysate as a carbon source. When spent yeast cell hydrolysate was used directly as a nitrogen source, a maximum succinic acid concentration of 35.5 g/l was obtained from a glucose concentration of 50 g/l, with a glucose utilization of 95.2%. Supplementation with individual vitamins showed that biotin was the most likely factor to be limiting for succinic acid production with spent yeast cell hydrolysate. After supplementing spent yeast cell hydrolysate and 90 g/l of glucose with 150 μg/l of biotin, cell growth increased 32.5%, glucose utilization increased 37.6%, and succinic acid concentration was enhanced 49.0%. As a result, when biotin-supplemented spent yeast cell hydrolysate was used with corn fiber hydrolysate, a succinic acid yield of 67.7% was obtained from 70.3 g/l of total sugar concentration, with a productivity of 0.63 g/(l h). Our results suggest that biotin-supplemented spent yeast cell hydrolysate may be an alternative nitrogen source for the efficient production of succinic acid by A. succinogenes NJ113, using renewable resources. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  3. Effect of browned and unbrowned corn products intrinsically labeled with 65Zn on absorption of 65Zn in humans

    International Nuclear Information System (INIS)

    Lykken, G.I.; Mahalko, J.; Johnson, P.E.; Milne, D.; Sandstead, H.H.; Garcia, W.J.; Dintzis, F.R.; Inglett, G.E.

    1986-01-01

    Experimental browned and unbrowned corn products were formulated and processed from unenriched, degermed yellow corngrits. The browned product (cornflakes) contained more insoluble dietary fiber and bound more zinc (in vitro) than the unbrowned product (corngrits). During processing some of the cornflakes and corngrits were combined with a small amount of yellow corn endospermhull intrinsically labeled with 65 Zn. The intrinsically labeled corn products were fed, in a crossover design, as components of two breakfasts to six normal, unconfined volunteers. Each volunteer absorbed more 65 Zn from the corngrits than from the cornflakes. The reduced 65 Zn absorption from cornflakes was attributed to heating and toasting reaction products, possibly Maillard, which bound zinc and consequently made the zinc less available for absorption

  4. Maize production in terms of global climate changes

    Directory of Open Access Journals (Sweden)

    Bekavac Goran

    2010-01-01

    Full Text Available Climate changes and expected variability of climatic parameters represent a serious concern of the 21st century agriculture. At the global level, the further rise in temperature, changed quantity and distribution of precipitation, increased variability of climate parameters and the occurrence of extreme climate events are expected. In order to avoid, or at least reduce the negative effects of global climate change, several adaptation strategies are proposed. Adjustment of production technology and breeding for tolerance to changed environment are proposed as two most important adaptation measures.

  5. In vitro wheat haploid embryo production by wheat x maize cross system under different environmental conditions

    International Nuclear Information System (INIS)

    Khan, M.A.; Ahmad, J.

    2011-01-01

    Haploids are helpful in studies for inter genomic relationship, identifying molecular markers, reducing time period of varietal development and increasing efficiency of breeding program. In case of bread wheat (Triticum aestivum L.), wheat x maize cross system is the most successful system due to its higher efficiency, more haploid embryo production and low genetic specificity. The haploid embryo production is affected by many factors i.e. light, temperature, relative humidity and tiller culture media. A study was carried out comprising 25 genotypes of bread wheat for haploid embryo production using 100 mgL/sup -1/ 2,4-D, 40Gl/sup -1/ Sucrose and 8mlL/sup -1/ Sulphurous acid. Haploid embryo production was observed at various levels of environmental factors i.e. maize pollen collection temperature, time of pollination after tiller emasculation, light intensity and relative humidity during haploid seed formation. Maximum haploid embryo formation recorded was 9.52%. Best temperature observed for pollination was 21-26 degree C, optimum time duration for pollination was 24 hours after emasculation, light intensity was 10,000 Lux and relative humidity was 60-65% at 20-22 degree C. (author)

  6. Effect of topsoil thickness on soil water infiltration in corn-soybean rotation and switchgrass production systems

    Science.gov (United States)

    Switchgrass and corn are sometimes used as a resource for biofuel production. The effect of production management systems on water infiltration is very critical in claypan landscape to increase production as well as minimize economic and environmental risks. The objective of this study was to evalua...

  7. Conservação pós-colheita de espigas de milho verde minimamente processado sob diferentes temperaturas Post-harvest conservation of fresh-cut corn on the cob (Zea maiz L. under different temperatures

    Directory of Open Access Journals (Sweden)

    Alexandra Mara Goulart Nunes Mamede

    2009-02-01

    Full Text Available Objetivou-se, neste trabalho, avaliar o efeito de três temperaturas (5ºC, 8ºC e 11ºC, na qualidade de híbridos de milho verde (Zea maiz L. com endosperma normal, minimamente processado, durante oito dias de armazenamento, com avaliações a cada dois dias. Foram utilizadas espigas de dois híbridos, sendo um comercial da Sementes Agroceres (Ag 1051 e outro do programa de melhoramento da Embrapa Milho e Sorgo (Embrapa HT1. A temperatura de 5ºC foi a que melhor preservou a qualidade das espigas dos híbridos de milho verde estudados, por proporcionar perda de massa reduzida e manutenção dos teores de sólidos solúveis, frutose e glicose. O híbrido Ag 1051 apresentou menor perda de massa, maiores valores de umidade e maior teor de frutose. O Embrapa HT1 apresentou maiores valores iniciais e finais para os teores de sólidos solúveis e maior valor para a coloração b*. O valor L*, que indica quãoclaro e escuro é produto, também diminuiu ao longo do armazenamento, indicando escurecimento das espigas ao longo do armazenamento.This work had the aim of evaluating the effect of three temperatures (5ºC, 8ºC and 11ºC on the quality of fresh-cut corn on the cob (Zea maiz L. with normal endosperm, for 8 days, with analyses taken every two days. Corn on the cob of two hybrids was used, a commercial common type from Sementes Agroceres (Ag 1051 and the other from the breeding program Embrapa Milho e Sorgo (Embrapa HT1. The temperature of 5ºC was more efficient to preserve the quality of normal corn by promoting reduced mass loss and higher contents of soluble solids, fructose and glucose. The hybrid Ag 1051 presented lower mass loss, higher contents of moisture and higher content of fructose. The hybrid Embrapa HT1 presented higher initial and final values for soluble solids and higher b* value. The L* value also decreased along storage, indicating browning of the corns along the storage.

  8. THE EFFECT OF FORMULATION HUMIC SUBSTANCE AND Trichoderma sp TO INCREASE PRODUCTION AND GROWTH OF CORN (Zea Mays,L

    Directory of Open Access Journals (Sweden)

    Ruly Eko Kusuma Kurniawan

    2017-06-01

    Full Text Available Research to determine of formulation humic subtance and Trichoderma sp to increase the production and growth of corn (zea mays,L. This research was conducted by extracting humic substance with fractionation organic matter method from cattle manure organic material. Trichoderma sp grow on corn medium and harvested after reaching a density of 1015 cfu. Created this compound formulation with mixing humic substance and Trichoderma sp. Indicator plant with F1 sweet corn Jago varieties. Aplication used humic substance in range 8%, 16%, and 32% on the recommended use NPK fertilizer for corn, as well as control without humic substance. The result showed application use 8% humic substance most good for plant growth and harvest. Additionally, nutrient uptake NPK fertilizer efficiency is increased and more effective than control and use of the formulation 16% and 32% humic substance.

  9. Production of antihypertensive peptides by enzymatic zein hydrolysate from maize-zea mays ssp. mexicana introgression line

    International Nuclear Information System (INIS)

    Wang, L.; Zhang, X.; Qiao, Y.; Qu, M.

    2014-01-01

    Teosintes are essential gene reservoir for maize breeding improvement, among which Zea mays ssp. mexicana has many valuable traits deserved to be transferred into maize genetic background. In this study, one maize-teosinte introgression line SD00100 was selected from the population of Zea mays ssp. mexicana as wild parent. This introgression line manifested the outstanding agricultural traits similar to maize parent Ye 515 and alien genetic material was identified by genomic in situ hybridization (GISH). To produce bioactive peptides with potent angiotensin converting enzyme (ACE) inhibitory activity, zein extracted from endosperm meal was then undergone enzymatic hydrolysis with thermolysin and the hydrolysate was then filtered through a 3 kDa cut-off membrane. ACE inhibitory activity of permeate from Ye 515 and SD00100 was evaluated by RP-HPLC. The IC50 values of the peptides obtained from maize parent and the introgression line were 96.9 micro g/ml and 22.9 micro g/ml, respectively, with significant difference between them. Our results showed that an outstanding inbred maize line was obtained for production of antihypertensive peptides as well as for further development of functional food. (author)

  10. Importance of NDF digestibility of whole crop maize silage for dry matter intake and milk production in dairy cows

    DEFF Research Database (Denmark)

    Krämer, Monika; Lund, Peter; Weisbjerg, Martin Riis

    2016-01-01

    The importance of maize silage as a feed component in cattle rations and for biogas production has substantially increased. Whole crop maize silage is a forage with a high starch concentration, but also the cell wall fraction, commonly analysed as neutral detergent fibre (aNDFom) is a major energ...... silage aNDFom digestibility improved daily milk yield with 82 g (P = 0.04) and daily weight gain with 12 g (P = 0.03). Therefore, aNDFom digestibility is an important trait in maize used as whole crop silage for dairy cows.......The importance of maize silage as a feed component in cattle rations and for biogas production has substantially increased. Whole crop maize silage is a forage with a high starch concentration, but also the cell wall fraction, commonly analysed as neutral detergent fibre (aNDFom) is a major energy...... source for use in ruminant nutrition. Even though ruminants require forage fibre to maintain rumen function and maximize productivity, excess fibre limits feed intake due to its contribution to physical fill in the rumen. As feed intake is the most important factor for milk production, both a...

  11. Digestate as nutrient source for biomass production of sida, lucerne and maize

    Science.gov (United States)

    Bueno Piaz Barbosa, Daniela; Nabel, Moritz; Horsch, David; Tsay, Gabriela; Jablonowski, Nicolai

    2014-05-01

    Biogas as a renewable energy source is supported in many countries driven by climate and energy policies. Nowadays, Germany is the largest biogas producer in the European Union. A sustainable resource management has to be considered within this growing scenario of biogas production systems and its environmental impacts. In this respect, studies aiming to enhance the management of biogas residues, which represents a valuable source of nutrients and organic fertilization, are needed. Our objective was to evaluate the digestate (biogas residue after fermentation process) application as nutrient source for biomass production of three different plants: sida (Sida hermaphrodita - Malvaceae), lucerne (Medicago sativa - Fabaceae) and maize (Zea mays - Poaceae). The digestate was collected from an operating biogas facility (fermenter volume 2500m³, ADRW Natur Power GmbH & Co.KG Titz/Ameln, Germany) composed of maize silage as the major feedstock, and minor amounts of chicken manure, with a composition of 3,29% N; 1,07% P; 3,42% K; and 41,2% C. An arable field soil (Endogleyic Stagnosol) was collected from 0-30 cm depth and 5 mm sieved. The fertilizer treatments of the plants were established in five replicates including digestate (application amount equivalent to 40 t ha-1) and NPK fertilizer (application amount equivalent to 200:100:300 kg ha-1) applications, according to the recommended agricultural doses, and a control (no fertilizer application). The digestate and the NPK fertilizer were thoroughly mixed with the soil in a rotatory shaker for 30 min. The 1L pots were filled with the fertilized soil and the seedlings were transplanted and grown for 30 days under greenhouse conditions (16 h day/8 h night: 24ºC/18ºC; 60% air humidity). After harvesting, the leaf area was immediately measured, and the roots were washed to allow above and below-ground biomass determination. Subsequently, shoots and roots were dried at 60ºC for 48 hours. The biomass and leaf area of sida

  12. Sensory characteristics of high-amylose maize-resistant starch in three food products

    OpenAIRE

    Maziarz, Mindy; Sherrard, Melanie; Juma, Shanil; Prasad, Chandan; Imrhan, Victorine; Vijayagopal, Parakat

    2012-01-01

    Type 2 resistant starch from high-amylose maize (HAM-RS2) is considered a functional ingredient due to its positive organoleptic and physiochemical modifications associated with food and physiological benefits related to human health. The sensory characteristics of three types of food products (muffins, focaccia bread, and chicken curry) with and without HAM-RS2 were evaluated using a 9-point hedonic scale. The HAM-RS2-enriched muffins, focaccia bread, and chicken curry contained 5.50 g/100 g...

  13. Napping-Ultra Flash Profile as a Tool for Category Identification and Subsequent Model System Formulation of Caramel Corn Products.

    Science.gov (United States)

    Mayhew, Emily; Schmidt, Shelly; Lee, Soo-Yeun

    2016-07-01

    In a novel approach to formulation, the flash descriptive profiling technique Napping-Ultra Flash Profile (Napping-UFP) was used to characterize a wide range of commercial caramel corn products. The objectives were to identify product categories, develop model systems based on product categories, and correlate analytical parameters with sensory terms generated through the Napping-UFP exercise. In one 2 h session, 12 panelists participated in 4 Napping-UFP exercises, describing and grouping, on a 43×56 cm paper sheet, 12 commercial caramel corn samples by degree of similarity, globally and in terms of aroma-by-mouth, texture, and taste. The coordinates of each sample's placement on the paper sheet and descriptive terms generated by the panelists were used to conduct Multiple Factor Analysis (MFA) and hierarchical clustering of the samples. Strong trends in the clustering of samples across the 4 Napping-UFP exercises resulted in the determination of 3 overarching types of commercial caramel corn: "small-scale dark" (typified by burnt, rich caramel corn), "large-scale light" (typified by light and buttery caramel corn), and "large-scale dark" (typified by sweet and molasses-like caramel corn). Representative samples that best exemplified the properties of each category were used as guides in the formulation of 3 model systems that represent the spread of commercial caramel corn products. Analytical testing of the commercial products, including aw measurement, moisture content determination, and thermal characterization via differential scanning calorimetry, were conducted and results related to sensory descriptors using Spearman's correlation. © 2016 Institute of Food Technologists®

  14. Corn rootworm area-wide management across the United States

    International Nuclear Information System (INIS)

    Chandler, Laurence D.; Coppedge, James R.; Richard Edwards, C.; Tollefson, Jon J.; Wilde, Gerald E.

    2000-01-01

    The western corn rootworm, Diabrotica virgifera virgifera LeConte, northern corn rootworm, D. barberi Smith and Lawrence, and Mexican corn rootworm, D. virgifera zeae Krysan and Smith are among the most economically and environmentally important pests of United States maize (Zea mays L.) production systems (Metcalf 1986). Annually, 8 to 10 million hectares of maize are treated with soil applied insecticides to protect the crop from larval feeding damage. Crop rotation, however, is also widely used to minimise the need for soil insecticide applications. Insecticides for adult rootworm management are also frequently used. Numerous problems are currently associated with corn rootworm management approaches. Soil insecticides are normally used to protect maize roots from larval feeding damage. However, they are ineffective in controlling the management of corn rootworm populations (Gray et al. 1992, Sutter et al. 1991). It is not uncommon for large numbers of rootworms to develop within treated fields. Thus, when maize is grown in the same field year after year (continuous cropping), soil insecticide applications must be used to protect the plant. These applications are generally made without knowledge (prophylactic) of the rootworm population levels within the field due to the difficulty of sampling for immature life stages. Western corn rootworm resistance to chlorinated hydrocarbon insecticides has been extensively documented (Ball and Weekman 1962). Recently, two distinct populations of western corn rootworms in Nebraska were found to be resistant to carbaryl and methyl parathion which are commonly used for adult control (Meinke et al. 1998). Although the occurrence of resistance has not spread outside of these areas, the potential for increased tolerance of western corn rootworm populations to carbamate and organophosphate insecticides across the region does exist. In response to many of the management problems discussed above, scientists with the USDA Agricultural

  15. Utilization of microwave and ultrasound pretreatments in the production of bioethanol from corn

    Energy Technology Data Exchange (ETDEWEB)

    Nikolic, Svetlana; Mojovic, Ljiljana; Rakin, Marica [University of Belgrade, Faculty of Technology and Metallurgy, Belgrade (Serbia); Pejin, Dusanka; Pejin, Jelena [University of Novi Sad, Faculty of Technology, Novi Sad (Serbia)

    2011-08-15

    Bioethanol production by simultaneous saccharification and fermentation (SSF) of corn meal by Saccharomyces cerevisiae var. ellipsoideus yeast in a batch system with prior ultrasound or microwave treatment was studied. The optimal duration of the pretreatments and the SSF process kinetics were assessed and determined. Also, the effect of ultrasound and microwave pretreatments on ethanol yield and productivity was investigated. An optimal duration of 5 min was determined for both pretreatments. Ultrasonic and microwave pretreatments effectively increased the glucose concentration obtained after liquefaction by 6.82 and 8.48%, respectively, compared to untreated control sample. Also, both pretreatments improved ethanol yield and productivity during the SSF process. Ultrasound and microwave pretreatments increased the maximum ethanol concentration produced in the SSF process by 11.15 and 13.40% (compared to the control sample), respectively. The application of microwave pretreatment resulted in higher glucose release during liquefaction and consequently in higher ethanol concentration, compared to ultrasound pretreatment. A maximum ethanol concentration of 9.91% (w/w) and percentage of theoretical ethanol yield of 92.27% were achieved after 44 h of the SSF process of corn meal with prior microwave treatment. (orig.)

  16. Water and nitrogen use efficiency under limited water supply for maize to increase land productivity

    International Nuclear Information System (INIS)

    Craciun, I.; Craciun, M.

    1995-01-01

    As drought is the main environmental factor limiting productivity, the study of plant response to water deficit has been one of the major research topics. The increasing of maize evapotranspiration ET does not always mean the increase of efficiency because, the brightest ET value does not always mean the highest grain yield value, AS the result of the mechanisms relating to the grain yield and ET which are far from simple. The rain amount and distribution during the reproductive stage is the main meteorological factor in flouncing yield. In our study 1991, the high soil moisture content determines a reduction of maize grain yield, in the wet years due to excess of water under irrigation conditions which normally limits root development as a result of insufficient oxygen for transpiration and lac ha of nitrate formation, the yield response to water deficit of different hybrids is of major importance in production planing. The available water supply would be directed towards fully meeting requirements of the hybrids with the higher K sub y over the restricted area and for the hybrids with a lower K sub y, the overall production will increase by extending the area under irrigation, without fully meeting water requirement provided water deficit do not exceed critical values.1 tab; 9 figs (Author)

  17. The Black Aspergillus Species of Maize and Peanuts and Their Potential for Mycotoxin Production

    Science.gov (United States)

    Palencia, Edwin R.; Hinton, Dorothy M.; Bacon, Charles W.

    2010-01-01

    The black spored fungi of the subgenera Circumdata, the section Nigri (=Aspergillus niger group) is reviewed relative to their production of mycotoxins and their effects on plants as pathogens. Molecular methods have revealed more than 18 cryptic species, of which several have been characterized as potential mycotoxin producers. Others are defined as benign relative to their ability to produce mycotoxins. However, these characterizations are based on in vitro culture and toxins production. Several can produce the ochratoxins that are toxic to livestock, poultry, and humans. The black aspergilli produce rots of grapes, maize, and numerous other fruits and grain and they are generally viewed as post-harvest pathogens. Data are review to suggest that black aspergilli, as so many others, are symptomless endophytes. These fungi and their mycotoxins contaminate several major grains, foodstuffs, and products made from them such as wine, and coffee. Evidence is presented that the black aspergilli are producers of other classes of mycotoxins such as the fumonisins, which are known carcinogenic and known prior investigations as being produced by the Fusarium species. Three species are identified in U.S. maize and peanuts as symptomless endophytes, which suggests the potential for concern as pathogens and as food safety hazards. PMID:22069592

  18. Monitoring the prevalence of genetically modified maize in commercial animal feeds and food products in Turkey.

    Science.gov (United States)

    Turkec, Aydin; Lucas, Stuart J; Karlık, Elif

    2016-07-01

    EU legislation strictly controls use of genetically modified (GM) crops in food and feed products, and requires them to be labelled if the total GM content is greater than 9 g kg(-1) (for approved GM crops). We screened maize-containing food and feed products from Turkey to assess the prevalence of GM material. With this aim, 83 food and feed products - none labelled as containing GM material - were screened using multiplex real-time polymerase chain reaction (PCR) for four common GM elements (35S/NOS/bar/FMV). Of these, 18.2% of feeds and 6% of food samples tested positive for one or more of these elements, and were subjected to event-specific PCR to identify which GM organisms they contained. Most samples were negative for the approved GM events tested, suggesting that they may contain adventitious GM contaminants. One sample was shown to contain an unapproved GM event (MON810, along with GA21) at a concentration well above the statutory labelling requirement. Current legislation has restricted the penetration of GM maize into the Turkish food industry but not eliminated it, and the proliferation of different GM events is making monitoring increasingly complex. Our results indicate that labelling requirements are not being followed in some cases. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  19. Using climate model simulations to assess the current climate risk to maize production

    Science.gov (United States)

    Kent, Chris; Pope, Edward; Thompson, Vikki; Lewis, Kirsty; Scaife, Adam A.; Dunstone, Nick

    2017-05-01

    The relationship between the climate and agricultural production is of considerable importance to global food security. However, there has been relatively little exploration of climate-variability related yield shocks. The short observational yield record does not adequately sample natural inter-annual variability thereby limiting the accuracy of probability assessments. Focusing on the United States and China, we present an innovative use of initialised ensemble climate simulations and a new agro-climatic indicator, to calculate the risk of severe water stress. Combined, these regions provide 60% of the world’s maize, and therefore, are crucial to global food security. To probe a greater range of inter-annual variability, the indicator is applied to 1400 simulations of the present day climate. The probability of severe water stress in the major maize producing regions is quantified, and in many regions an increased risk is found compared to calculations from observed historical data. Analysis suggests that the present day climate is also capable of producing unprecedented severe water stress conditions. Therefore, adaptation plans and policies based solely on observed events from the recent past may considerably under-estimate the true risk of climate-related maize shocks. The probability of a major impact event occurring simultaneously across both regions—a multi-breadbasket failure—is estimated to be up to 6% per decade and arises from a physically plausible climate state. This novel approach highlights the significance of climate impacts on crop production shocks and provides a platform for considerably improving food security assessments, in the present day or under a changing climate, as well as development of new risk based climate services.

  20. Optimization of biofuel production from corn stover under supply uncertainty in Ontario

    Directory of Open Access Journals (Sweden)

    Jonathan Ranisau

    2017-12-01

    Full Text Available In this paper, a biofuel production supply chain optimization framework is developed that can supply the fuel demand for 10% of Ontario. Different biomass conversion technologies are considered, such as pyrolysis and gasification and subsequent hydro processing and the Fischer-Tropsch process. A supply chain network approach is used for the modeling, which enables the optimization of both the biorefinery locations and the associated transportation networks. Gasification of corn stover is examined to convert waste biomass into valuable fuel. Biomass-derived fuel has several advantages over traditional fuels including substantial greenhouse gas reduction, generating higher quality synthetic fuels, providing a use for biomass waste, and potential for use without much change to existing infrastructure. The objective of this work is to show the feasibility of the use of corn stover as a biomass feedstock to a hydrocarbon biofuel supply chain in Ontario using a mixed-integer linear programming model while accounting for the uncertainty in the availability of corn stover. In the case study, the exact number of biorefineries is left as a policy decision and the optimization is carried out over a range of the possible numbers of facilities. The results obtained from the case study suggests implementing gasification technology followed by Fischer-Tropsch at two different sites in Ontario. The optimal solution satisfied 10% of the yearly fuel demand of Ontario with two production plants (14.8 billion L of fuel and requires an investment of $42.9 billion, with a payback period of about 3 years.

  1. Maize-common bean/lupine intercrop productivity and profitability in ...

    African Journals Online (AJOL)

    Phaseolus vulgaris L.), narrow-leaf lupine (Lupinus angustifolius L.), and white lupine (Lupinus albus L.) with maize (Zea mays L.) were conducted under two intercrop planting arrangements (IPA), single row of legume in between maize rows and ...

  2. Ácido fítico de híbridos de milho e alguns produtos industrializados = Phytic acid in corn hybrids and in some industrialized corn products

    Directory of Open Access Journals (Sweden)

    Tatiana Shizue Fukuji

    2008-01-01

    Full Text Available O ácido fítico (AF ou mio-inositol hexafosfato está presente principalmente em cereais, e o germe de milho apresenta teor elevado, com cerca de 6,0 a 7,0% em base seca. Devido a sua propriedade quelante com metais di e tri-valentes, o AF apresenta capacidade antioxidante com eficaz atuação na inibição de reações de oxidação. O teor de AF foi determinado no germe e endosperma de 11 híbridos de milhos, cultivados no Estado do Paraná, e em diferentes produtos industrializados de milho. Os germes de híbridos de milho foram caracterizados como componentes do milho, com elevado teor e osendospermas com baixo teor de AF. Os produtos derivados de milho, elaborados basicamente com endosperma tais como canjica, creme de milho, farinha de milho e fubá fino, apresentaram menor teor de AF, enquanto aqueles originários dos germes desengordurado, fino, gordo e película de milho apresentaram maior teor de AF.Phytic acid (PA, also known as myoinositol hexaphosphate, is found mainly in cereal grains. Corn germ has high concentrations of PA – from 6.0 to 7.0% on a dry weight basis. Due to its chelating properties on di- and trivalent metals, PA has antioxidantattributes, effectively inhibiting oxidation reactions. In this study, PA levels were determined in the germ and endosperm of eleven corn hybrids cultivate in Paraná State (Brazil, and also in several industrialized corn products. Corn hybrid germs were characterized as corn components with high PA levels, whereas endosperms featuredlow levels of PA. Corn-based industrialized products, derived mostly from corn endosperm (such as canjica, creamed corn, corn flour and cornmeal featured the lowest PA values. Conversely, defatted corn germs and corn cuticle showed the highest PA levels.

  3. Farmland Rental and Productivity of Wheat and Maize: An Empirical Study in Gansu, China

    Directory of Open Access Journals (Sweden)

    Ying Liu

    2017-09-01

    Full Text Available The rapid growth of farmland rental markets in China raises questions about the association of farmland rental and agricultural productivity. Although this issue has been extensively studied, the majority of studies have focused on yields and technical efficiency, with input use and cost efficiency receiving little attention. This study aimed to determine the statistical association of wheat and maize farmers’ farmland rental behaviors (renting land, not renting land and renting out land and input use, and the consequent association of farmers’ farmland rental behaviors and cost efficiency. For this purpose, the linear regression model and stochastic frontier model were employed, based on a survey data of 419 wheat and maize farmers in 25 villages in five counties of Gansu Province, China. The study found that farmland rental enhanced productivity and sustainability of agriculture through transferring farmland from households with less productivity to those with high productivity, and it was also helpful to reducing the consumption of fertilizers and chemicals in agricultural production. The results suggest that replacing labor with machines is an important way to reduce production costs, and households specializing in agricultural production use more rational amounts of fertilizers and chemicals than those with low productivity. Thus, the machinery purchase policy in China should continue to give great benefit to farmers. In addition, the machinery purchase subsidization policy has achieved satisfactory results in China, and it could be a good reference for other developing countries. However, some efficiency loss was found in households that rented out their land, and policy makers need to pay some attention to these households.

  4. ENSO and implications on rainfall characteristics with reference to maize production in the Free State Province of South Africa

    CSIR Research Space (South Africa)

    Moeletsi, ME

    2011-08-01

    Full Text Available normal in El Niño years while in La Niña years more cumulative rainfall is mostly observed. As a result, maize production is favoured in La Niña years and reduction in production is normally observed during El Niño years....

  5. Effect of Corn Dried Distiller Grains with Solubles (DDGS in Dairy Cow Diets on Manure Bioenergy Production Potential

    Directory of Open Access Journals (Sweden)

    Daniel I. Massé

    2014-03-01

    Full Text Available The main objective of this study was to obtain scientifically sound data on the bioenergy potential of dairy manures from cows fed different levels of corn dried distillers grains with solubles (DDGS. Three diets differing in corn DDGS content were formulated: 0% corn DDGS (DDGS0; control diet, 10% corn DDGS (DDGS10 and 30% corn DDGS (DDGS30. Bioenergy production was determined in psychrophilic (25 ± 1 °C sequencing batch reactors (SBRs fed 3 g COD L−1·day−1 during a two-week feeding period followed by a two-week react period. Compared to the control diet, adding DDGS10 and DDGS30 to the dairy cow diet increased the daily amount of fat excreted in slurry by 29% and 70%, respectively. The addition of DDGS30 increased the cows’ daily production of fresh feces and slurry by 15% and 11%, respectively. Furthermore, the incorporation of DDGS30 in the diet increased the daily amounts of dry matter (DM, volatile solids (VS, neutral detergent fiber (NDF, acid detergent fiber (ADF and hemicellulose by 18%, 18%, 30%, 15% and 53%, respectively, compared to the control diet. While the addition of DDGS did not significantly affect the specific CH4 production per kg VS compared to the control diet, DDGS30 increased the per cow daily CH4 production by 14% compared to the control diet.

  6. Effect of Corn Dried Distiller Grains with Solubles (DDGS) in Dairy Cow Diets on Manure Bioenergy Production Potential.

    Science.gov (United States)

    Massé, Daniel I; Jarret, Guillaume; Benchaar, Chaouki; Saady, Noori M Cata

    2014-03-05

    The main objective of this study was to obtain scientifically sound data on the bioenergy potential of dairy manures from cows fed different levels of corn dried distillers grains with solubles (DDGS). Three diets differing in corn DDGS content were formulated: 0% corn DDGS (DDGS0; control diet), 10% corn DDGS (DDGS10) and 30% corn DDGS (DDGS30). Bioenergy production was determined in psychrophilic (25 ± 1 °C) sequencing batch reactors (SBRs) fed 3 g COD L(-1)·day(-1) during a two-week feeding period followed by a two-week react period. Compared to the control diet, adding DDGS10 and DDGS30 to the dairy cow diet increased the daily amount of fat excreted in slurry by 29% and 70%, respectively. The addition of DDGS30 increased the cows' daily production of fresh feces and slurry by 15% and 11%, respectively. Furthermore, the incorporation of DDGS30 in the diet increased the daily amounts of dry matter (DM), volatile solids (VS), neutral detergent fiber (NDF), acid detergent fiber (ADF) and hemicellulose by 18%, 18%, 30%, 15% and 53%, respectively, compared to the control diet. While the addition of DDGS did not significantly affect the specific CH₄ production per kg VS compared to the control diet, DDGS30 increased the per cow daily CH₄ production by 14% compared to the control diet.

  7. Establishment and assessment of a novel cleaner production process of corn grain fuel ethanol.

    Science.gov (United States)

    Wang, Ke; Zhang, Jianhua; Tang, Lei; Zhang, Hongjian; Zhang, Guiying; Yang, Xizhao; Liu, Pei; Mao, Zhonggui

    2013-11-01

    An integrated corn ethanol-methane fermentation system was proposed to solve the problem of stillage handling, where thin stillage was treated by anaerobic digestion and then reused to make mash for the following ethanol fermentation. This system was evaluated at laboratory and pilot scale. Anaerobic digestion of thin stillage ran steadily with total chemical oxygen demand removal efficiency of 98% at laboratory scale and 97% at pilot scale. Ethanol production was not influenced by recycling anaerobic digestion effluent at laboratory and pilot scale. Compared with dried distillers' grains with solubles produced in conventional process, dried distillers' grains in the proposed system exhibited higher quality because of increased protein concentration and decreased salts concentration. Energetic assessment indicated that application of this novel process enhanced the net energy balance ratio from 1.26 (conventional process) to 1.76. In conclusion, the proposed system possessed technical advantage over the conventional process for corn fuel ethanol production. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Production of red pigments by Monascus ruber in culture media containing corn steep liquor

    Directory of Open Access Journals (Sweden)

    P. S. Hamano

    2006-12-01

    Full Text Available The production of red pigments by Monascus ruber was evaluated utilizing complex culture media composed of glucose or sucrose (10 g/L, corn steep liquor (5 or 10 g/L and monosodium glutamate (0, 5.0, 7.6, 11.4 or 15.2 g/L. Medium containing 10 g/L glucose, 5 g/L corn steep liquor and 7.6 g/L monosodium glutamate resulted the highest values of extracellular red pigment absorbance (20.7 U and productivity (0.35 U/h. This medium also produced better results than using semi-synthetic medium with analytical grade reagents (12.4 U and 0.21 U/h. The cell growth was similar in both media (X @ 6.5 g/L, indicating that the capacity of the cells to produce red pigments was higher in complex culture media. In addition, in the complex culture medium, less of the intracellular red pigments accumulated than in semi-synthetic medium (9.1% and 30%, respectively.

  9. Optimization of corn, rice and buckwheat formulations for gluten-free wafer production.

    Science.gov (United States)

    Dogan, Ismail Sait; Yildiz, Onder; Meral, Raciye

    2016-07-01

    Gluten-free baked products for celiac sufferers are essential for healthy living. Cereals having gluten such as wheat and rye must be removed from the diet for the clinical and histological improvement. The variety of gluten-free foods should be offered for the sufferers. In the study, gluten-free wafer formulas were optimized using corn, rice and buckwheat flours, xanthan and guar gum blend as an alternative product for celiac sufferers. Wafer sheet attributes and textural properties were investigated. Considering all wafer sheet properties in gluten-free formulas, better results were obtained by using 163.5% water, 0.5% guar and 0.1% xanthan in corn formula; 173.3% water, 0.45% guar and 0.15% xanthan gum in rice formula; 176% water, 0.1% guar and 0.5% xanthan gum in buckwheat formula. Average desirability values in gluten-free formulas were between 0.86 and 0.91 indicating they had similar visual and textural profiles to control sheet made with wheat flour. © The Author(s) 2015.

  10. Near-Continuous Isotopic Characterization of Soil N2O Fluxes from Maize Production

    Science.gov (United States)

    Anex, R. P.; Francis Clar, J.

    2015-12-01

    Isotopomer ratios of N2O and especially intramolecular 15N site preference (SP) have been proposed as indicators of the sources of N2O and for providing insight into the contributions of different microbial processes. Current knowledge, however, is mainly based on pure culture studies and laboratory flask studies using mass spectrometric analysis. Recent development of laser spectroscopic methods has made possible high-precision, in situ measurements. We present results from a maize production field in Columbia County, Wisconsin, USA. Data were collected from the fertilized maize phase of a maize-soybean rotation. N2O mole fractions and isotopic composition were determined using an automatic gas flux measurement system comprising a set of custom-designed automatic chambers, circulating gas paths and an OA-ICOS N2O Isotope Analyzer (Los Gatos Research, Inc., Model 914-0027). The instrument system allows for up to 15 user programmable soil gas chambers. Wide dynamic range and parts-per-billion precision of OA-ICOS laser absorption instrument allows for extremely rapid estimation of N2O fluxes. Current operational settings provide measurements of N2O and its isotopes every 20 seconds with a precision of 0.1 ± 0.050 PPB. Comparison of measurements from four chambers (two between row and two in-row) show very different aggregate N2O flux, but SP values suggest similar sources from nitrifier denitrification and incomplete bacterial denitrification. SP values reported are being measured throughout the current growing season. To date, the majority of values are consistent with an origin from bacterial denitrification and coincide with periods of high water filled pore space.

  11. Ethanol Production by Soy Fiber Treatment and Simultaneous Saccharification and Co-Fermentation in an Integrated Corn-Soy Biorefinery

    Directory of Open Access Journals (Sweden)

    Jasreen K. Sekhon

    2018-05-01

    Full Text Available Insoluble fiber (IF recovered from the enzyme-assisted aqueous extraction process (EAEP of soybeans is a fraction rich in carbohydrates and proteins. It can be used to enhance ethanol production in an integrated corn-soy biorefinery, which combines EAEP with traditional corn-based ethanol processing. The present study evaluated IF as a substrate for ethanol production. The effects of treatment of IF (soaking in aqueous ammonia (SAA, liquid hot water (LHW, and enzymatic hydrolysis, primarily simultaneous saccharification and co-fermentation (SSCF, as well as scaling up (250 mL to 60 L on ethanol production from IF alone or a corn and IF slurry were investigated. Enzymatic hydrolysis (pectinase, cellulase, and xylanase, each added at 5% soy solids during simultaneous saccharification and fermentation/SSCF was the best treatment to maximize ethanol production from IF. Ethanol yield almost doubled when SSCF of IF was performed with Saccharomyces cerevisiae and Escherichia coli KO11. Addition of IF in dry-grind corn fermentation increased the ethanol production rate (~31%, but low ethanol tolerance of E. coli KO11 was a limiting factor for employing SSCF in combination corn and IF fermentation. Nonlinear Monod modeling accurately predicted the effect of ethanol concentration on E. coli KO11 growth kinetics by Hanes-Woolf linearization. Collectively, the results from this study suggest a potential of IF as a substrate, alone or in dry-grind corn fermentation, where it enhances the ethanol production rate. IF can be incorporated in the current bioethanol industry with no added capital investment, except enzymes.

  12. Comparison of species composition and fumonisin production in Aspergillus section Nigri populations in maize kernels from USA and Italy.

    Science.gov (United States)

    Susca, Antonia; Moretti, Antonio; Stea, Gaetano; Villani, Alessandra; Haidukowski, Miriam; Logrieco, Antonio; Munkvold, Gary

    2014-10-01

    Fumonisin contamination of maize is considered a serious problem in most maize-growing regions of the world, due to the widespread occurrence of these mycotoxins and their association with toxicosis in livestock and humans. Fumonisins are produced primarily by species of Fusarium that are common in maize grain, but also by some species of Aspergillus sect. Nigri, which can also occur on maize kernels as opportunistic pathogens. Understanding the origin of fumonisin contamination in maize is a key component in developing effective management strategies. Although some fungi in Aspergillus sect. Nigri are known to produce fumonisins, little is known about the species which are common in maize and whether they make a measurable contribution to fumonisin contamination of maize grain. In this work, we evaluated populations of Aspergillus sect. Nigri isolated from maize in USA and Italy, focusing on analysis of housekeeping genes, the fum8 gene and in vitro capability of producing fumonisins. DNA sequencing was used to identify Aspergillus strains belonging to sect. Nigri, in order to compare species composition between the two populations, which might influence specific mycotoxicological risks. Combined beta-tubulin/calmodulin sequences were used to genetically characterize 300 strains (199 from Italy and 101 from USA) which grouped into 4 clades: Aspergillus welwitschiae (syn. Aspergillus awamori, 14.7%), Aspergillus tubingensis (37.0%) and Aspergillus niger group 1 (6.7%) and group 2 (41.3%). Only one strain was identified as Aspergillus carbonarius. Species composition differed between the two populations; A. niger predominated among the USA isolates (69%), but comprised a smaller percentage (38%) of Italian isolates. Conversely, A. tubingensis and A. welwitschiae occurred at higher frequencies in the Italian population (42% and 20%, respectively) than in the USA population (27% and 5%). The evaluation of FB2 production on CY20S agar revealed 118 FB2 producing and 84

  13. Biochar helps enhance maize productivity and reduce greenhouse gas emissions under balanced fertilization in a rainfed low fertility inceptisol.

    Science.gov (United States)

    Zhang, Dengxiao; Pan, Genxing; Wu, Gang; Kibue, Grace Wanjiru; Li, Lianqing; Zhang, Xuhui; Zheng, Jinwei; Zheng, Jufeng; Cheng, Kun; Joseph, Stephen; Liu, Xiaoyu

    2016-01-01

    Maize production plays an important role in global food security, especially in arid and poor-soil regions. Its production is also increasing in China in terms of both planting area and yield. However, maize productivity in rainfed croplands is constrained by low soil fertility and moisture insufficiency. To increase the maize yield, local farmers use NPK fertilizer. However, the fertilization regime (CF) they practice is unbalanced with too much nitrogen in proportion to both phosphorus and potassium, which has led to low fertilizer use efficiency and excessive greenhouse gases emissions. A two-year field experiment was conducted to assess whether a high yielding but low greenhouse gases emission system could be developed by the combination of balanced fertilization (BF) and biochar amendment in a rainfed farmland located in the Northern region of China. Biochar was applied at rates of 0, 20, and 40 t/ha. Results show that BF and biochar increased maize yield and partial nutrient productivity and decreased nitrous oxide (N2O) emission. Under BF the maize yield was 23.7% greater than under CF. N2O emissions under BF were less than half that under CF due to a reduced N fertilizer application rate. Biochar amendment decreased N2O by more than 31% under CF, while it had no effect on N2O emissions under BF. Thus BF was effective at maintaining a high maize yield and reducing greenhouse gases emissions. If combined with biochar amendment, BF would be a good way of sustaining low carbon agriculture in rainfed areas. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Maize-grain legume intercropping for enhanced resource use efficiency and crop productivity in the Guinea savanna of northern Ghana.

    Science.gov (United States)

    Kermah, Michael; Franke, Angelinus C; Adjei-Nsiah, Samuel; Ahiabor, Benjamin D K; Abaidoo, Robert C; Giller, Ken E

    2017-11-01

    Smallholder farmers in the Guinea savanna practise cereal-legume intercropping to mitigate risks of crop failure in mono-cropping. The productivity of cereal-legume intercrops could be influenced by the spatial arrangement of the intercrops and the soil fertility status. Knowledge on the effect of soil fertility status on intercrop productivity is generally lacking in the Guinea savanna despite the wide variability in soil fertility status in farmers' fields, and the productivity of within-row spatial arrangement of intercrops relative to the distinct-row systems under on-farm conditions has not been studied in the region. We studied effects of maize-legume spatial intercropping patterns and soil fertility status on resource use efficiency, crop productivity and economic profitability under on-farm conditions in the Guinea savanna. Treatments consisted of maize-legume intercropped within-row, 1 row of maize alternated with one row of legume, 2 rows of maize alternated with 2 rows of legume, a sole maize crop and a sole legume crop. These were assessed in the southern Guinea savanna (SGS) and the northern Guinea savanna (NGS) of northern Ghana for two seasons using three fields differing in soil fertility in each agro-ecological zone. Each treatment received 25 kg P and 30 kg K ha -1 at sowing, while maize received 25 kg (intercrop) or 50 kg (sole) N ha -1 at 3 and 6 weeks after sowing. The experiment was conducted in a randomised complete block design with each block of treatments replicated four times per fertility level at each site. Better soil conditions and rainfall in the SGS resulted in 48, 38 and 9% more maize, soybean and groundnut grain yield, respectively produced than in the NGS, while 11% more cowpea grain yield was produced in the NGS. Sole crops of maize and legumes produced significantly more grain yield per unit area than the respective intercrops of maize and legumes. Land equivalent ratios (LERs) of all intercrop patterns were greater than

  15. Separation and Analysis of Microwave-assisted Liquefied Products of Corn Stover

    Directory of Open Access Journals (Sweden)

    Weihua Xiao

    2014-10-01

    Full Text Available Corn stover was successfully liquefied by microwave heating at 160 °C with ethylene glycol (EG used as the solvent and sulfuric acid as a catalyst. Gas chromatography and mass spectrometry (GC-MS data indicated that methyl esters, including 3-(2-methyl-1,3-doxolane-2-yl propionic acid methyl ester (PAME, levulinic acid isopropyl ester (LAE, methyl laurate, and methyl palmitate were the major degradation compounds, in addition to EG derivatives in the liquefied product of corn stover (LPCS. For high value-added utilization of LPCS, solvent extraction was applied to characterize the components and to separate it into useful fractions. After being dispersed in water, the water-soluble fraction of the LPCS was then extracted with organic solvents, including hexane, chloroform, diethyl ether, and ethyl acetate. Levulinic acid isopropyl ester showed the highest distribution in chloroform and ethyl acetate, while the lowest in hexane and ether. Levulinic acid isopropyl ester was selectively enriched to 28.76% and 43.65% by sequential extraction with chloroform and ethyl acetate, respectively, in accordance with the quantitative analysis.

  16. Current and potential sustainable corn stover feedstock for biofuel production in the United States

    Science.gov (United States)

    Tan, Zhengxi; Liu, Shu-Guang; Tieszen, Larry L.; Bliss, Norman

    2012-01-01

    Increased demand for corn (Zea mays L.) stover as a feedstock for cellulosic ethanol raises concerns about agricultural sustainability. Excessive corn stover harvesting could have long-term impacts on soil quality. We estimated current and future stover production and evaluated the potential harvestable stover amount (HSA) that could be used for biofuel feedstock in the United States by defining the minimum stover requirement (MSR) associated with the current soil organic carbon (SOC) content, tillage practices, and crop rotation systems. Here we show that the magnitude of the current HSA is limited (31 Tg y−1, dry matter) due to the high MSR for maintaining the current SOC content levels of soils that have a high carbon content. An alternative definition of MSR for soils with a moderate level of SOC content could significantly elevate the annual HSA to 68.7 Tg, or even to 132.2 Tg if the amount of currently applied manure is counted to partially offset the MSR. In the future, a greater potential for stover feedstock could come from an increase in stover yield, areal harvest index, and/or the total planted area. These results suggest that further field experiments on MSR should be designed to identify differences in MSR magnitude between maintaining SOC content and preventing soil erosion, and to understand the role of current SOC content level in determining MSR from soils with a wide range of carbon contents and climatic conditions.

  17. FUNGICIDES IN SECOND HARVEST CORN: CERCOSPORIOSE CONTROL AND BLOTCH, PRODUCTIVITY, ECONOMIC RETURN AND GRAIN QUALITY

    Directory of Open Access Journals (Sweden)

    P. Rezende

    2017-10-01

    Full Text Available Os objetivos desse trabalho foram avaliar a eficiência de The aim of this study was evaluate efficacy fungicides to control cercospora leaf spot (Cercospora zeae-maydis and helminthosporium leaf blight (Exserohilumturcicum, productivity, economic returns and quality of grain of corn culture of second crop in Farm Bandeirantes at Feliz Natal/MT. The treatments evaluated were: pyraclostrobina+epoxiconazol (0,7 L ha-1, trifloxistrobina+protioconazol (0,3L ha-1, azoxistrobina+cyproconazol(0,3 L ha-1, azoxystrobina (0,25 L ha-1, trifloxistrobina+ciproconazol (0,2 L ha-1 and control. Theapplicationof products occurred when corn was with 55 days, with a high propelled sprayer. The experimental design was a randomized block, with 6 treatments and 3 replications. The severity of each disease was visually determined through periodic analyses and ten plants were marked in each repetition, which were evaluated during the entire crop cycle. The data of severity obtained were used to calculate the area under disease progress curve (AUDPC. It was also obtained the production per ha, the economic return (R$ ha-1 and physiological quality of grain was evaluated by germination tests and accelerated aging of the grains. All treatments had significant difference compared to the control sample in controlling cercospora leaf spot about the control of helminthosporiumleat blight, the fungicides trifloxystrobin+prothioconazol and trifloxystrobin+cyproconazol were not efficient, and the fungicides pyraclostrobina+epoxiconazol, azoxystrobina, azoxistrobina+cyproconazol were efficient. The treatments that had major production are from the group of triazoles+strobilurine and the fungicide pyraclostrobin+epoxyconazol showed greater economic viability. Not were differences among fungicides, and neither of the treatments compared to control, in germination and accelerated aging tests, showing that the grains have good quality characteristics

  18. The influence of gadolinium and yttrium on biomass production and nutrient balance of maize plants

    International Nuclear Information System (INIS)

    Saatz, Jessica; Vetterlein, Doris; Mattusch, Jürgen; Otto, Matthias; Daus, Birgit

    2015-01-01

    Rare earth elements (REE) are expected to become pollutants by enriching in the environment due to their wide applications nowadays. The uptake and distribution of gadolinium and yttrium and its influence on biomass production and nutrient balance was investigated in hydroponic solution experiments with maize plants using increasing application doses of 0.1, 1 and 10 mg L −1 . It could be shown that concentrations of up to 1 mg L −1 of Gd and Y did not reduce or enhance the plant growth or alter the nutrient balance. 10 mg L −1  Gd or Y resulted in REE concentrations of up to 1.2 weight-% in the roots and severe phosphate deficiency symptoms. Transfer rates showed that there was only little transport of Gd and Y from roots to shoots. Significant correlations were found between the concentration of Gd and Y in the nutrient solution and the root tissue concentration of Ca, Mg and P. - Highlights: • Roots accumulate REE in very high concentrations. • Transfer factors from root to shoot tissue are very low, with HREE higher than MREE. • The nutrient balance of the plant is severely influenced by REE addition. • Phosphate deficiency appears at high concentrations of REE addition. - The addition of the rare-earth elements Gd and Y results in less Ca and Mg uptake and phosphate deficiency in maize plants grown in hydroponics

  19. Characterization of rhizobacteria associated to maize crop in IAA, siderophores and salicylic acid metabolite production

    Directory of Open Access Journals (Sweden)

    Annia Hernández

    2004-01-01

    Full Text Available It has been demonstrated that rhizobacteria are able to produce metabolites having agricultural interest, including salicylic acid, the siderophores and phytohormones. Indol acetic acid (IAA is the most well-known and studied auxin, playing a governing role in culture growth. The object of this work was to characterise rhizobacteria associated with the maize crop in terms of producing IAA, siderophores and salicylic acid metabolites. Burkholderia cepacia and Pseudomonas fluorescens strains previously isolated from maize Francisco variety rhizosphere were used. Colorimetric and chromatographic techniques for detecting these metabolites were studied; multi-variable analysis of hierarchic conglomerate and complete ligament were used for selecting the best strains for producing metabolites of interest. These results demonstrated that all rhizobacteria strains studied produced IAA, siderophores and salicylic acid metabolites. Burkholderia cepacia MBf21, MBp1, MBp2, MBf22, MBp3, MBf20, MBf 15 and Pseudomonas fluorescens MPp4strains have presented the greatest production of these metabolites, showing that these strains could be used in promoting vegetal growth in economically important cultures. Key words: Pseudomonas fluorescens, Burkholderia cepacia, IAA, siderophore, salicylic acid.

  20. Energy balance of maize production in Brazil: the energetic constraints of a net positive outcome

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Luis Henrique de Barros; Alves, Bruno Jose Rodrigues; Urquiaga, Segundo

    2008-07-01

    Among the factors used to analyze and to establish the sustainability of a whole agricultural production system, the energy balance is one of the most powerful and robust. The maize production in Brazil is surely the reflex of an energy intensive system that demands many field operations and heavy fertilizer applications, notably nitrogen in urea form. This work presents an energy balance of this major crop adjusted to the Brazilian conditions of cultivation. The input components were grouped based on their energy contents, and the possible improvements in the agricultural practices that could improve energy balance and net energy withdrawn from the farming were considered. The replacement of N synthetic fertilizer by biological nitrogen fixation, whether the process is directly carried out by endophytic diazotroph bacteria or by means of a N{sub 2}- fixing legume culture planted before the main crop as a green-manure is also discussed. (author)

  1. The effect of using irradiated sludge as an organic fertilizer on the soil characteristics and productivity of yellow corn

    International Nuclear Information System (INIS)

    Takriti, S.; Khalifa, K.

    2003-08-01

    A field experiment was conducted at Deir- El-Hajar research station near Damascus, to study the effect of using irradiated sludge (5 KGy) and unirradiated sludge (0 KGy) as an organic fertilizer on productivity of corn and some soil characteristics. The results showed that increment of grain yield of corn by 20% when applying 1kg/m 2 from unirradiated sludge and 37% when applying irradiated sludge. Also it was found increment in productivity of the other parts of corn (cobs, stems and leaves) compared with control plots. The concentration and accumulation of heavy metals (Zn, Co, Cu, Pb, Cr) in corn were low and less than critical limits for all treatment. The accumulation for these metals in corn plants was not clear at end of the experiment. The highest accumulation for Cu was in grain, Cr and Zn in cobs, and Fe was in stems and leaves. Addition of sludge at different rates had no negative effect on the accumulation of the studied heavy metals in the soil. (author)

  2. Oviposition behaviour and egg distribution of the European corn borer, Ostrinia nubilalis, on maize, and its effect on host finding by Trichogramma egg parasitoids

    NARCIS (Netherlands)

    Suverkropp, B.P.; Dutton, A.; Bigler, F.; Lenteren, van J.C.

    2008-01-01

    Oviposition behaviour and egg distribution of Ostrinia nubilalis is reviewed based on published information and new research. The position of egg masses of O. nubilalis on maize plants and leaves were sampled in the field. Most egg masses were found on the lower leaf side, on the middle part of the

  3. Environmental life cycle assessment of grain maize production: An analysis of factors causing variability.

    Science.gov (United States)

    Boone, Lieselot; Van Linden, Veerle; De Meester, Steven; Vandecasteele, Bart; Muylle, Hilde; Roldán-Ruiz, Isabel; Nemecek, Thomas; Dewulf, Jo

    2016-05-15

    To meet the growing demand, high yielding, but environmentally sustainable agricultural plant production systems are desired. Today, life cycle assessment (LCA) is increasingly used to assess the environmental impact of these agricultural systems. However, the impact results are very diverse due to management decisions or local natural conditions. The impact of grain maize is often generalized and an average is taken. Therefore, we studied variation in production systems. Four types of drivers for variability are distinguished: policy, farm management, year-to-year weather variation and innovation. For each driver, scenarios are elaborated using ReCiPe and CEENE (Cumulative Exergy Extraction from the Natural Environment) to assess the environmental footprint. Policy limits fertilisation levels in a soil-specific way. The resource consumption is lower for non-sandy soils than for sandy soils, but entails however more eutrophication. Farm management seems to have less influence on the environmental impact when considering the CEENE only. But farm management choices such as fertiliser type have a large effect on emission-related problems (e.g. eutrophication and acidification). In contrast, year-to-year weather variation results in large differences in the environmental footprint. The difference in impact results between favourable and poor environmental conditions amounts to 19% and 17% in terms of resources and emissions respectively, and irrigation clearly is an unfavourable environmental process. The best environmental performance is obtained by innovation as plant breeding results in a steadily increasing yield over 25 years. Finally, a comparison is made between grain maize production in Flanders and a generically applied dataset, based on Swiss practices. These very different results endorse the importance of using local data to conduct LCA of plant production systems. The results of this study show decision makers and farmers how they can improve the

  4. The effect of partial replacement of corn silage on rumen degradability, milk production and composition in lactating primiparous dairy cows

    Directory of Open Access Journals (Sweden)

    Hakan Biricik

    2010-01-01

    Full Text Available The objective of this experiment was to evaluate the effects of partial replacement of corn silage with long alfalfa hay and/or coarse chopped wheat straw on neutral detergent fibre (NDF rumen degradability, milk yield and composition in late lactating dairy cows fed diets with 50% forage on dry matter basis. Twelve late lactating Holstein primiparous cows including four cows equipped with a rumen cannula, averaging 210 ± 20 d in milk and weighing 575 ± 50 kg were randomly assigned in a 4x4 Latin square design. During each of four 21-d periods, cows were fed 4 total mixed diets that were varied in the forage sources: 1 50% corn silage (CS, 2 35% corn silage + 15% wheat straw (CSW, 3 35% corn silage + 15% alfalfa hay (CSA, 4 25% corn silage + 10% wheat straw + 15% alfalfa hay (CSWA. The production of milk averaged 18.55, 20.41 and 20.06 kg/d for unadjusted milk production, 4% fat corrected milk and solid corrected milk, respectively, and was not affected by treatments. Likewise, milk composition or production of milk components was not affected by diets and averaged 4.69% fat, 3.66% protein, 4.51% lactose, 866 g/d fat, 665 g/d protein, 824 g/d lactose. Treatments had no effect on in situ NDF soluble, degradable and potential degradability of all diets, whereas the effective degradability (ED of NDF was greater for cows fed CS diet than for cows fed CSW, CSA and CSWA diets (P<0.05. These values suggested that the partial replacement of corn silage with alfalfa hay and/or wheat straw has no unfavourable effect on the productive parameters.

  5. Assessment of productivity and water use efficiency in three maize (zea mays L.) varieties in Kwabenya-Atomic area

    International Nuclear Information System (INIS)

    Frimpong, J. O.

    2010-06-01

    The production of rain-fed maize in the Kwabenya-Atomic area of the coastal savannah environment of Ghana is limited by low and erratic rainfall. Enhancing maize production in the area will require the use of maize varieties efficient in the use of soil moisture. The study was, therefore, conducted to evaluate three recently released maize varieties (Obatanpa, Mamaba, and Golden Crystal) for their efficiency in the use of soil moisture for total dry matter and grain production and consequently identify the maize varieties suitable for rain-fed production in the Kwabenya-Atomic area. Field experiments were conducted m 2008 during the major and minor cropping seasons at Kwabenya-Atomic area in Ghana using three maize varieties grown at a planting distance of 0.4 m within rows and 0.8 m between rows. The experimental design used was the randomised complete block design in four replicates. Plants were sampled every two weeks throughout the maize growing seasons. Access tubes installed in each sub-plot facilitated simultaneous moisture monitoring with the aid of a neutron probe (CPN (R) 503 Hydroprobe) in a 120 cm soil profile. The moisture content values were used for the estimation of actual evapotranspiration of the maize crop using the water balance approach. Grain yield (GY) and its associated water use efficiency (WUE GY ) were significantly different (P ≤ 0.05) among the maize varieties during the major cropping season with Mamaba producing the highest grain yield of 7250.0 kg ha -1 and WUE GY of 13.2 kg ha -1 mm -1 . For the minor cropping season, no significant difference was observed in grain yield, which ranged between 5800.0 and 7200.0 kg ha -1 , with Obatanpa producing the highest grain yield. No significant difference was observed in WUE GY during the minor cropping season which ranged between 14.6 and 19.1 kg ha -1 mm -1 with Obatanpa having the highest WUE GY . The maize genotype produced similar total dry matter (TDM) during each of the cropping

  6. Prevalence of genetically modified rice, maize, and soy in Saudi food products.

    Science.gov (United States)

    Elsanhoty, Rafaat M; Al-Turki, A I; Ramadan, Mohamed Fawzy

    2013-10-01

    Qualitative and quantitative DNA-based methods were applied to detect genetically modified foods in samples from markets in the Kingdom of Saudi Arabia. Two hundred samples were collected from Al-Qassim, Riyadh, and Mahdina in 2009 and 2010. GMOScreen 35S and NOS test kits for the detection of genetically modified organism varieties in samples were used. The positive results obtained from GMOScreen 35S and NOS were identified using specific primer pairs. The results indicated that all rice samples gave negative results for the presence of 35S and NOS terminator. About 26 % of samples containing soybean were positive for 35S and NOS terminator and 44 % of samples containing maize were positive for the presence of 35S and/or NOS terminator. The results showed that 20.4 % of samples was positive for maize line Bt176, 8.8 % was positive for maize line Bt11, 8.8 % was positive for maize line T25, 5.9 % was positive for maize line MON 810, and 5.9 % was positive for StarLink maize. Twelve samples were shown to contain genetically modified (GM) soy and 6 samples >10 % of GM soy. Four samples containing GM maize were shown to contain >5 % of GM maize MON 810. Four samples containing GM maize were shown to contain >1 % of StarLink maize. Establishing strong regulations and certified laboratories to monitor GM foods or crops in Saudi market is recommended.

  7. Fermentation of maize (Zea mays L.) meal or mawe production in Benin : physical, chemical and microbiological aspects

    NARCIS (Netherlands)

    Hounhouigan, D.J.

    1994-01-01

    Mawè is a sour dough made from partially dehulled maize meal, which has undergone natural fermentation for 1 to 3 days.

    In this thesis, the processing methods, the characteristics of the products and the physical, chemical and microbiological changes during natural fermentation of

  8. Productive performance and blood parameters of bulls fed diets containing babassu mesocarp bran and whole or ground corn

    Directory of Open Access Journals (Sweden)

    Aline Evangelista Machado Santana

    2015-01-01

    Full Text Available The objective of the present study was to evaluate the effects of corn milling and the inclusion of babassu mesocarp bran (BMB on productive performance, digestibility of dietary nutrients, and blood parameters of dairy crossbred (Holstein-Gyr bulls finished in confinement. Twenty-four bulls were fed four different experimental diets, containing two levels of inclusion of BMB (0 and 41.24% and corn supplied in two different forms (ground and whole, for 98 days (77 days of data collection and 21 days of adaptation. The intakes and digestibility coefficients of the dry matter (DM and nutrients were determined. There were no significant interaction effects of the BMB inclusion level and the form of corn used on the performance and digestibility variables. The intakes of DM, crude protein (CP, and neutral detergent fibre (NDF increased with the inclusion of BMB in the diets. However, the inclusion of BMB in the diets decreased the ether extract intake, the NDF apparent digestibility, and the feed efficiency of DM and CP. Dry matter and NDF intakes also increased with the use of ground corn in the diet, which promoted an increase in the intake of total digestible nutrients (TDN, digestibility of non-fibrous carbohydrates, and average daily gain. However, the supply of ground corn reduced the feed efficiency of TDN. The remaining measured variables did not vary with the tested diets. The levels of plasma protein and albumin remained normal, but glucose concentrations were always high, irrespective of the tested diet. The form of corn supplied and the level of BMB inclusion had a significant interaction effect on the levels of triglycerides, urea, aspartate aminotransferase, and alkaline phosphatase. Babassu mesocarp bran can be included up to 41.24% in the diet of confined bulls without a negative effect on the animal weight gain. Corn should be supplied ground because this form improves the performance of crossbred bulls

  9. WATER BOND FORMS IN THE DOUGH AND SORBTION PROPERTIES OF GLUTEN-FREE MACARONI PRODUCTS MADE FROM CORN FLOUR

    Directory of Open Access Journals (Sweden)

    Olexandr ROZHNO

    2017-09-01

    Full Text Available Authors have developed macaroni products made from fine meal corn flour by structure forming additives of different nature and without them. The correlation between water of different bond forms in macaroni dough with different structural forming additives and without them has been investigated. Results show that water of macro and microcapillaries is prevalent in the corn dough – 39.40 - 54.69 % of overall amount of water. Osmotically bound water amounts 18.75 – 28.04 %, adsorbically bound water -18.49 – 23.13 % of overall amount of water. The absorbtion capability of the macaroni products and amount of adsorbed water has been determined. The micropore structure of these samples was characterized. The correlation between structures of macaroni products, both amount of adsorbed moisture and energy of sorption were proven. The amount of monomolecular layer’s moisture for gluten-free corn macaroni products is significantly higher – in 1.2 – 1.5 times – when compared to the wheat macaroni products. Due to this fact, corn samples obtained higher energy of moisture sorption. The correlation between structural characteristics of the macaroni samples and their quality was shown.

  10. Fusarium diseases of maize associated with mycotoxin contamination of agricultural products intended to be used for food and feed.

    Science.gov (United States)

    Oldenburg, Elisabeth; Höppner, Frank; Ellner, Frank; Weinert, Joachim

    2017-08-01

    Infections of maize with phytopathogenic and toxinogenic Fusarium spp. may occur throughout the cultivation period. This can cause different types of diseases in vegetative and generative organs of the plant. Along with these infections, mycotoxins are often produced and accumulated in affected tissues, which could pose a significant risk on human and animal health when entering the food and feed chain. Most important fungal species infecting European maize belong to the Fusarium sections Discolour and Liseola, the first being more prevalent in cooler and humid climate regions than the second predominating in warmer and dryer areas. Coexistence of several Fusarium spp. pathogens in growing maize under field conditions is the usual case and may lead to multi-contamination with mycotoxins like trichothecenes, zearalenone and fumonisins. The pathways how the fungi gain access to the target organs of the plant are extensively described in relation to specific symptoms of typical rot diseases regarding ears, kernels, rudimentary ears, roots, stem, leaves, seed and seedlings. Both Gibberella and Fusarium ear rots are of major importance in affecting the toxinogenic quality of grain or ear-based products as well as forage maize used for human or animal nutrition. Although rudimentary ears may contain high amounts of Fusarium toxins, the contribution to the contamination of forage maize is minor due to their small proportion on the whole plant dry matter yield. The impact of foliar diseases on forage maize contamination is regarded to be low, as Fusarium infections are restricted to some parts on the leaf sheaths and husks. Mycotoxins produced in rotted basal part of the stem may contribute to forage maize contamination, but usually remain in the stubbles after harvest. As the probability of a more severe disease progression is increasing with a prolonged cultivation period, maize should be harvested at the appropriate maturity stage to keep Fusarium toxin contamination as

  11. Integrating Plant Science and Crop Modeling: Assessment of the Impact of Climate Change on Soybean and Maize Production.

    Science.gov (United States)

    Fodor, Nándor; Challinor, Andrew; Droutsas, Ioannis; Ramirez-Villegas, Julian; Zabel, Florian; Koehler, Ann-Kristin; Foyer, Christine H

    2017-11-01

    Increasing global CO2 emissions have profound consequences for plant biology, not least because of direct influences on carbon gain. However, much remains uncertain regarding how our major crops will respond to a future high CO2 world. Crop model inter-comparison studies have identified large uncertainties and biases associated with climate change. The need to quantify uncertainty has drawn the fields of plant molecular physiology, crop breeding and biology, and climate change modeling closer together. Comparing data from different models that have been used to assess the potential climate change impacts on soybean and maize production, future yield losses have been predicted for both major crops. When CO2 fertilization effects are taken into account significant yield gains are predicted for soybean, together with a shift in global production from the Southern to the Northern hemisphere. Maize production is also forecast to shift northwards. However, unless plant breeders are able to produce new hybrids with improved traits, the forecasted yield losses for maize will only be mitigated by agro-management adaptations. In addition, the increasing demands of a growing world population will require larger areas of marginal land to be used for maize and soybean production. We summarize the outputs of crop models, together with mitigation options for decreasing the negative impacts of climate on the global maize and soybean production, providing an overview of projected land-use change as a major determining factor for future global crop production. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  12. Economic Viability of Small Scale Organic Production of Rice, Common Bean and Maize in Goias State, Brazil

    Directory of Open Access Journals (Sweden)

    Alcido Elenor Wander

    2007-04-01

    Full Text Available This study was conducted to assess the economic feasibility of small scale organic production of rice, common bean and maize in Goias State, Brazil. During 2004/05 and 2005/06 growing seasons, rice, common bean and maize were produced at the organic farm of Embrapa Rice and Beans in five mulching systems (fallow, Crotalaria juncea, Cajanus cajan, Mucuna aterrima and Sorghum bicolor , with and without tillage. Soil tillage consisted of heavy disc harrowing followed by light disc harrowing. All operations and used inputs were recorded. Based on those records, the production costs for each crop were estimated for each cropping season. The costs included operations like sowing, ploughing, harrowing, spraying, fertilizer broadcasting and harvesting, as well as inputs like seeds, inoculant strains of Rhizobium, neem oil and organic fertilizers. The benefits include the gross revenue obtained by multiplying the production amount with the market price for non-organic products. For the purpose of analysis of competitiveness of organic production in comparison to conventional farming the market prices assumed were those of conventional production. In the analysis, the costs of certification were not considered yet due to lack of certifiers in the region. For comparison between traits, net revenue, the benefit-cost-ratio (BCR and the break even point were used. In 2004/05 growing season the BCR varied from 0.27 for common bean on S. bicolor mulch system with tillage up to 4.05 for green harvested maize produced after C. juncea in no tillage system. Common bean and rice were not economically viable in this growing season. In 2005/06 growing season the BCR varied between 0.75 for common bean after S. bicolor in tillage system and 4.50 for green harvested maize produced after fallow in no tillage system. In this season common bean was economically viable in leguminous mulching systems and green harvested maize was viable in all mulching systems.

  13. In vitro gas and methane production of silages from whole-plant corn harvested at 4 different stages of maturity and a comparison with in vivo methane production

    NARCIS (Netherlands)

    Macome, F. M.; Pellikaan, Wilbert F; Hendriks, W H; Dijkstra, J; Hatew, B.; Schonewille, J T; Cone, John W

    2017-01-01

    The current study investigated the relationship between in vitro and in vivo CH4 production by cows fed corn silage (CS)-based rations. In vivo CH4 production was measured in climate respiration chambers using 8 rumen-cannulated Holstein-Friesian cows. In vitro CH4 production was measured using

  14. Metabolic engineering of Aspergillus oryzae for efficient production of l-malate directly from corn starch.

    Science.gov (United States)

    Liu, Jingjing; Li, Jianghua; Shin, Hyun-Dong; Du, Guocheng; Chen, Jian; Liu, Long

    2017-11-20

    l-Malate, an important chemical building block, has been widely applied in the food, pharmaceutical, and bio-based materials industries. In previous work, we engineered Aspergillus oryzae by rewiring the reductive tricarboxylic acid pathway to produce l-malate from glucose. To decrease the production cost, here, we further engineered A. oryzae to efficiently produce l-malate directly from corn starch with simultaneous liquefaction-saccharification and fermentation. First, a promoter PN5 was constructed by quintuple tandem of the 97-bp fragment containing the cis-element of the glucoamylase gene promoter (PglaA), and with the promoter PN5, the transcriptional level of glaA gene increased by 25-45%. Then, by co-overexpression of glaA, a-amylase (amyB) and a-glucosidase (agdA) genes with the promoter PN5, the l-malate titer increased from 55.5g/L to 72.0g/L with 100g/L corn starch in shake flask. In addition, to reduce the concentration of byproducts succinate and fumarate, a fumarase from Saccharomyces cerevisiae, which facilitated the transformation of fumarate to l-malate, was overexpressed. As a result, the concentration of succinate and fumarate decreased from 12.6 and 1.29g/L to 7.8 and 0.59g/L, and the l-malate titer increased from 72.0g/L to 78.5g/L. Finally, we found that the addition of glucose at the initial fermentation stage facilitated the cell growth and l-malate synthesis, and the l-malate titer further increased to 82.3g/L by co-fermentation of 30g/L glucose and 70g/L corn starch, with a productivity of 1.18g/L/h and a yield of 0.82g/g total carbon sources. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. SHIFTING WEED COMPOSITIONS AND BIOMASS PRODUCTION IN SWEET CORN FIELD TREATED WITH ORGANIC COMPOSTS AND CHEMICAL WEED CONTROLS

    Directory of Open Access Journals (Sweden)

    Marulak Simarmata

    2015-10-01

    Full Text Available The objectives of the research were to study the shift of weed compositions in sweet corn field treated with organic compost and chemical weed controls and to compare the effect of treatment combinations on weed growth, weed biomass and sweet corn biomass. The research was conducted in Bengkulu, Indonesia, from April to July 2014. Results showed that the number of weed species decreased after the trials from 14 to 13. There was a shift in weed compositions because 5 species of weeds did not emerge after the trials, but 4 new species were found. Chemical weed control used a herbiside mixture of atrazine and mesotrione applied during postemergence was the most effective method to control weeds, which was observed on decreased weed emergence and weed biomass down to 22.33 and 25.00 percent of control, respectively. Subsequently, biomass production of sweet corn increased up to 195.64 percent at the same trials. Biomass of weeds and sweet corn were also affected by the organic composts. Weed biomass was inhibited by treatment of composted empty fruith bunches of oil palm, whereas significantly increased of sweet corn biomass were observed in the plots of organic manure.

  16. Comparative Advantage of Maize- and Grass-Silage Based Feedstock for Biogas Production with Respect to Greenhouse Gas Mitigation

    Directory of Open Access Journals (Sweden)

    Andreas Meyer-Aurich

    2016-06-01

    Full Text Available This paper analyses the comparative advantage of using silage maize or grass as feedstock for anaerobic digestion to biogas from a greenhouse gas (GHG mitigation point of view, taking into account site-specific yield potentials, management options, and land-use change effects. GHG emissions due to the production of biogas were calculated using a life-cycle assessment approach for three different site conditions with specific yield potentials and adjusted management options. While for the use of silage maize, GHG emissions per energy unit were the same for different yield potentials, and the emissions varied substantially for different grassland systems. Without land-use change effects, silage maize-based biogas had lower GHG emissions per energy unit compared to grass-based biogas. Taking land-use change into account, results in a comparative advantage of biogas production from grass-based feedstock produced on arable land compared to silage maize-based feedstock. However, under current frame conditions, it is quite unrealistic that grass production systems would be established on arable land at larger scale.

  17. Estimation of technical efficiency and it's determinants in the hybrid maize production in district chiniot: a cobb douglas model approach

    International Nuclear Information System (INIS)

    Naqvi, S.A.A.; Ashfaq, M.

    2014-01-01

    High yielding crop like maize is very important for countries like Pakistan, which is third cereal crop after wheat and rice. Maize accounts for 4.8 percent of the total cropped area and 4.82 percent of the value of agricultural production. It is grown all over the country but major areas are Sahiwal, Okara and Faisalabad. Chiniot is one of the distinct agroecological domains of central Punjab for the maize cultivation, that's why this district was selected for the study and the technical efficiency of hybrid maize farmers was estimated. The primary data of 120 farmers, 40 farmers from each of the three tehsils of Chiniot were collected in the year 2011. Causes of low yields for various farmers than the others, while using the same input bundle were estimated. The managerial factors causing the inefficiency of production were also measured. The average technical efficiency was estimated to be 91 percent, while it was found to be 94.8, 92.7 and 90.8 for large, medium and small farmers, respectively. Stochastic frontier production model was used to measure technical efficiency. Statistical software Frontier 4.1 was used to analyse the data to generate inferences because the estimates of efficiency were produced as a direct output from package. It was concluded that the efficiency can be enhanced by covering the inefficiency from the environmental variables, farmers personal characteristics and farming conditions. (author)

  18. Feasibility Study for Co-Locating and Integrating Ethanol Production Plants from Corn Starch and Lignocellulosic Feedstocks (Revised)

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, R.; Ibsen, K.; McAloon, A.; Yee, W.

    2005-01-01

    Analysis of the feasibility of co-locating corn-grain-to-ethanol and lignocellulosic ethanol plants and potential savings from combining utilities, ethanol purification, product processing, and fermentation. Although none of the scenarios identified could produce ethanol at lower cost than a straight grain ethanol plant, several were lower cost than a straight cellulosic ethanol plant.

  19. Residue management practices and planter attachments for corn production in a conservation agriculture system

    Directory of Open Access Journals (Sweden)

    J. Nejadi

    2013-11-01

    Full Text Available Seed placement and failure to establish a uniform plant stand are critical problems associated with production of corn (Zea mays following wheat (Triticum aestivum in a conservation agriculture system in Iran. Our objectives were to evaluate the performance of a corn row- crop planter equipped with two planter attachments (smooth/toothed coulters at six wheat residue management systems (three tillage systems and two levels of surface residue at two forward speeds of 5 and 7 km h-1. Residue retained after planting, seeding depth, emergence rate index (ERI and seed spacing indices were determined. The baled residue plots tilled by chisel plow followed by disc harrow (BRCD resulted in minimum residue after planting as compared to other residue treatments. Furthermore, the maximum values of the ERI and uniformity of plant spacing pertained to this treatment. Other results showed that the ERI increased up to 18% for the toothed coulter as compared to the smooth coulter. The toothed coulter also established a deeper seed placement as compared to the smooth coulter. Planting at forward speed of 5 km h-1 resulted in deeper seeding depth as compared to a forward speed of 7 km h-1. However, lower values of miss and precision indices were obtained at forward speed of 7 km h-1, indicating a more uniformity of plant spacing. Results of this study showed that equipping the conventional planter with toothed coulter and planting in soil prepared under the BRCD residue management system can result in a satisfactory conservation crop production system.

  20. A whole cell biocatalyst for cellulosic ethanol production from dilute acid-pretreated corn stover hydrolyzates

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Seunghyun; Karim, Muhammad Nazmul [Texas Tech Univ., Lubbock, TX (United States). Dept. of Chemical Engineering

    2011-08-15

    In this research, a recombinant whole cell biocatalyst was developed by expressing three cellulases from Clostridium cellulolyticum - endoglucanase (Cel5A), exoglucanase (Cel9E), and {beta}-glucosidase - on the surface of the Escherichia coli LY01. The modified strain is identified as LY01/pRE1H-AEB. The cellulases were displayed on the surface of the cell by fusing with an anchor protein, PgsA. The developed whole cell biocatalyst was used for single-step ethanol fermentation using the phosphoric acid-swollen cellulose (PASC) and the dilute acid-pretreated corn stover. Ethanol production was 3.59 {+-} 0.15 g/L using 10 g/L of PASC, which corresponds to a theoretical yield of 95.4 {+-} 0.15%. Ethanol production was 0.30 {+-} 0.02 g/L when 1 g/L equivalent of glucose in the cellulosic fraction of the dilute sulfuric acid-pretreated corn stover (PCS) was fermented for 84 h. A total of 0.71 {+-} 0.12 g/L ethanol was produced in 48 h when the PCS was fermented in the simultaneous saccharification and co-fermentation mode using the hemicellulosic (1 g/L of total soluble sugar) and as well as the cellulosic (1 g/L of glucose equivalent) parts of PCS. In a control experiment, 0.48 g/L ethanol was obtained from 1 g/L of hemicellulosic PCS. It was concluded that the whole cell biocatalyst could convert both cellulosic and hemicellulosic substrates into ethanol in a single reactor. The developed C. cellulolyticum-E. coli whole cell biocatalyst also overcame the incompatible temperature problem of the frequently reported fungal-yeast systems. (orig.)

  1. Fumonisins production potential of Fusarium verticillioides isolated from Serbian maize and wheat kernels

    Directory of Open Access Journals (Sweden)

    Krstović Saša Z.

    2017-01-01

    Full Text Available The production of fumonisins by potentially toxigenic Fusarium verticillioides isolates originating from Serbian maize and wheat kernels was tested in vitro. A total of six F. verticillioides isolates were incubated on yeast extract sucrose medium (YESA for 4 weeks at 25 °C in the dark. Their toxin production potential was tested by applying a modified HPLC method for determination of fumonisins in cereals, since the TLC method gave no results. Analyses were performed on a HPLC-FLD system after sample extraction from YESA and extract cleanup on a SPE column. Although the isolates were tested for fumonisin B1, B2 and B3, only fumonisin B1 was detected. The results showed that all tested isolates had toxigenic potential for fumonisin B1 production. The average fumonisin B1 production of the isolates ranged from 7 to 289 μg/kg, thus indicating a highly variable toxigenic potential among the isolates. Isolate 1282 expressed the highest toxigenic potential for fumonisin B1 production (289 μg/kg, while isolate 2533/A showed a questionable potential for fumonisin production (7 μg/kg. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. TR 31023

  2. Effects of nitrogen fertilizer application on greenhouse gas emissions and economics of corn production.

    Science.gov (United States)

    Kim, Seungdo; Dale, Bruce E

    2008-08-15

    Nitrogen fertilizer plays an important role in corn cultivation in terms of both economic and environmental aspects. Nitrogen fertilizer positively affects corn yield and the soil organic carbon level, but it also has negative environmental effects through nitrogen-related emissions from soil (e.g., N20, NOx, NO3(-) leaching, etc.). Effects of nitrogen fertilizer on greenhouse gas emissions associated with corn grain are investigated via life cycle assessment. Ecoefficiency analysis is also used to determine an economically and environmentally optimal nitrogen application rate (NAR). The ecoefficiency index in this study is defined as the ratio of economic return due to nitrogen fertilizer to the greenhouse gas emissions of corn cultivation. Greenhouse gas emissions associated with corn grain decrease as NAR increases at a lower NAR until a minimum greenhouse gas emission level is reached because corn yield and soil organic carbon level increase with NAR. Further increasing NAR after a minimum greenhouse gas emission level raises greenhouse gas emissions associated with corn grain. Increased greenhouse gas emissions of corn grain due to nitrous oxide emissions from soil are much higher than reductions of greenhouse gas emissions of corn grain due to corn yield and changes in soil organic carbon levels at a higher NAR. Thus, there exists an environmentally optimal NAR in terms of greenhouse gas emissions. The trends of the ecoefficiency index are similar to those of economic return to nitrogen and greenhouse gas emissions associated with corn grain. Therefore, an appropriate NAR could enhance profitability as well as reduce greenhouse gas emissions associated with corn grain.

  3. An evaluation of cassava, sweet potato and field corn as potential carbohydrate sources for bioethanol production in Alabama and Maryland

    Energy Technology Data Exchange (ETDEWEB)

    Ziska, Lewis H.; Tomecek, Martha; Sicher, Richard [United States Department of Agriculture, Agricultural Research Service, Crop Systems and Global Change Lab, 10300 Baltimore Avenue, Building 1, Beltsville, MD 20705 (United States); Runion, G. Brett; Prior, Stephen A.; Torbet, H. Allen [United States Department of Agriculture, Agricultural Research Service, National Soil Dynamics Laboratory, 411 South Donahue Drive, Auburn, AL 36832 (United States)

    2009-11-15

    The recent emphasis on corn production to meet the increasing demand for bioethanol has resulted in trepidation regarding the sustainability of the global food supply. To assess the potential of alternative crops as sources of bioethanol production, we grew sweet potato (Ipomoea batatas) and cassava (Manihot esculentum) at locations near Auburn, Alabama and Beltsville, Maryland in order to measure root carbohydrate (starch, sucrose, glucose) and root biomass. Averaged for both locations, sweet potato yielded the highest concentration of root carbohydrate (ca 80%), primarily in the form of starch (ca 50%) and sucrose (ca 30%); whereas cassava had root carbohydrate concentrations of (ca 55%), almost entirely as starch. For sweet potato, overall carbohydrate production was 9.4 and 12.7 Mg ha{sup -1} for the Alabama and Maryland sites, respectively. For cassava, carbohydrate production in Maryland was poor, yielding only 2.9 Mg ha{sup -1}. However, in Alabama, carbohydrate production from cassava averaged {proportional_to}10 Mg ha{sup -1}. Relative to carbohydrate production from corn in each location, sweet potato and cassava yielded approximately 1.5 x and 1.6 x as much carbohydrate as corn in Alabama; 2.3 x and 0.5 x for the Maryland site. If economical harvesting and processing techniques could be developed, these data suggest that sweet potato in Maryland, and sweet potato and cassava in Alabama, have greater potential as ethanol sources than existing corn systems, and as such, could be used to replace or offset corn as a source of biofuels. (author)

  4. The effect of CO2 regulations on the cost of corn ethanol production

    Science.gov (United States)

    Plevin, R. J.; Mueller, S.

    2008-04-01

    To explore the effect of CO2 price on the effective cost of ethanol production we have developed a model that integrates financial and emissions accounting for dry-mill corn ethanol plants. Three policy options are modeled: (1) a charge per unit of life cycle CO2 emissions, (2) a charge per unit of direct biorefinery emissions only, and (3) a low carbon fuel standard (LCFS). A CO2 charge on life cycle emissions increases production costs by between 0.005 and 0.008 l-1 per 10 Mg-1 CO2 price increment, across all modeled plant energy systems, with increases under direct emissions somewhat lower in all cases. In contrast, a LCFS increases the cost of production for selected plant energy systems only: a LCFS requiring reductions in average fuel global warming intensity (GWI) with a target of 10% below the 2005 baseline increases the production costs for coal-fired plants only. For all other plant types, the LCFS operates as a subsidy. The findings depend strongly on the magnitude of a land use change adder. Some land use change adders currently discussed in the literature will push the GWI of all modeled production systems above the LCFS target, flipping the CO2 price from a subsidy to a tax.

  5. Características físicas e químicas de cultivares de milho para produção de minimilho Physics and chemistry characteristics of corn cultivars to babycorn production

    Directory of Open Access Journals (Sweden)

    Renzo Garcia Von Pinho

    2003-12-01

    Full Text Available Minimilho, também conhecido como "baby corn", é o nome dado à espiga jovem, em desenvolvimento, não fertilizada de uma planta de milho. Várias cultivares de milhos especiais, como doce, pipoca, e cultivares prolíficas de milho comum têm sido utilizadas para a produção do minimilho. Há escassez de informações no Brasil com referência ao manejo de produção do minimilho, bem como sobre o desempenho das cultivares, principalmente sobre tecnologia para processamento agroindustrial e constituição química do minimilho. Objetivou-se com este trabalho determinar características físicas e químicas de cultivares visando à produção de minimilho. O experimento foi instalado em 10/02/2001 na área experimental do Departamento de Agricultura no campus da UFLA, em Lavras, MG. Para a determinação das características, foi retirada uma amostra das espigas de cada cultivar avaliada. Realizaram-se três colheitas, a intervalos de três dias, sendo a primeira três dias após a emissão dos estilos-estigma. Foram determinados composição química, teores de açúcares, vitamina C, compostos fenólicos e indicadores de qualidade. Os valores de umidade, de carboidratos, de proteína, de açúcares e de vitaminas das cultivares analisadas apresentaram-se similares aos comumente relatados na literatura. Os valores obtidos para cada característica variam em função da cultivar considerada.Baby corn is the name given to the young corn-cob when the ear has not been fertilized yet. Several sweet, popcorn and high yield cultivars selected from regular maize have been chosen for baby corn production. There is few information about baby corn production and performance in Brazil, its nutritional values, as well as its processing and storage techniques. The objective of this work was to determine physical and chemical parameters of baby corn. An experiment was established in the research area of the Agricultural Department of Federal University of

  6. Green ear yield and grain yield of maize after harvest of the first ear as baby corn Rendimentos de espigas verdes e de grãos de milho após a colheita da primeira espiga como minimilho

    Directory of Open Access Journals (Sweden)

    Paulo Sérgio L e Silva

    2006-06-01

    Full Text Available Baby corn (BC consists of the corn ear harvested two or three days after silk emergence. BC is a profitable crop, making possible a diversification of production, aggregation of value and increased income. Removing the first female inflorescence induces corn to produce others, making possible to produce several BC ears or, alternatively, BC (by harvesting the first ear and green ears or grain. The objective of this work was to evaluate green ear yield and grain yield, after harvesting the first ear as BC. Corn cultivar AG 1051 was submitted to the following treatments, in a random block design with ten replicates (52 plants per plot: BC harvesting; green ear harvesting (grain moisture content between 60 and 70%; mature ear harvesting; BC harvesting and harvesting of other ears as green or mature ears. Marketable green ears yield or grain yield produced without removing the first inflorescence were superior to the green ears yield or grain yield produced after removal of the first inflorescence harvested as baby corn. Harvesting only the first ear as baby corn, and then harvesting green ears or the mature ears, provided lower baby corn yields than that obtained by harvesting all ears as baby corn. Economically, the best net revenues would be obtained by exploring the crop for the production of green ears, green ears + baby corn, baby corn, baby corn + grain, and grain, in this order.O minimilho (MM é a espiga do milho colhida dois a três dias após a emergência dos estilo-estigmas. O MM é rentável e propicia diversificação da produção, agregação de valor e ampliação de renda. A remoção da primeira inflorescência feminina induz o milho a produzir outras. Isso possibilita a produção de várias espigas de MM ou, alternativamente, MM (colhendo-se a primeira espiga e espigas verdes ou grãos. O objetivo do trabalho foi avaliar os rendimentos de espigas verdes e de grãos, após a colheita da primeira espiga como MM. A cultivar AG

  7. Role of Weed Emergence Time for the Relative Seed Production in Maize

    Directory of Open Access Journals (Sweden)

    Stefano Benvenuti

    2007-03-01

    Full Text Available Trials were carried out in 2000 and 2001 to investigate the effect of weed emergence time on weed seed production in a maize field. Datura stramonium L., Solanum nigrum L. and Abutilon theophrasti Medicus were selected for their importance as summer weeds. Emergence time was found to be crucial since delay would involve an unfavourable light environment determined by crop canopy elongation and resulting shade production. Only the early emergence of D. stramonium and A. theophrasti showed the capacity to exposing their leaves over the crop canopy. Generally the weed seed production under shade conditions decreased for the reduction of the fruit per plant since the number of seed per plant showed only a light reduction. However, while D. stramonium and A. theophrasti compete with the crop by increasing height, Solanum nigrum tends to adjust to shade without excessive reduction in number of seeds produced. Thus in D. stramonium and A. theophrasti late emergence reduced seed production to only 15%, while S. nigrum maintained 25% of the seed production level generally observed with greater light exposure. This environmental adaptation was confirmed by the less marked decrease in S. nigrum harvest index. Agroecological involvements are discussed.

  8. Role of Weed Emergence Time for the Relative Seed Production in Maize

    Directory of Open Access Journals (Sweden)

    Stefano Benvenuti

    Full Text Available Trials were carried out in 2000 and 2001 to investigate the effect of weed emergence time on weed seed production in a maize field. Datura stramonium L., Solanum nigrum L. and Abutilon theophrasti Medicus were selected for their importance as summer weeds. Emergence time was found to be crucial since delay would involve an unfavourable light environment determined by crop canopy elongation and resulting shade production. Only the early emergence of D. stramonium and A. theophrasti showed the capacity to exposing their leaves over the crop canopy. Generally the weed seed production under shade conditions decreased for the reduction of the fruit per plant since the number of seed per plant showed only a light reduction. However, while D. stramonium and A. theophrasti compete with the crop by increasing height, Solanum nigrum tends to adjust to shade without excessive reduction in number of seeds produced. Thus in D. stramonium and A. theophrasti late emergence reduced seed production to only 15%, while S. nigrum maintained 25% of the seed production level generally observed with greater light exposure. This environmental adaptation was confirmed by the less marked decrease in S. nigrum harvest index. Agroecological involvements are discussed.

  9. Using deficit irrigation with treated wastewater to improve crop water productivity of sweet corn, chickpea, faba bean and quinoa

    Directory of Open Access Journals (Sweden)

    Abdelaziz HIRICH

    2014-07-01

    Full Text Available Several experiments were conducted in the south of Morocco (IAV-CHA, Agadir during two seasons 2010 and 2011 in order to evaluate the effect of deficit irrigation with treated wastewater on several crops (quinoa, sweet corn, faba bean and chickpeas. During the first season (2010 three crops were tested, quinoa, chickpeas and sweet corn applying 6 deficit irrigation treatments during all crop stages alternating 100% of full irrigation as non-stress condition and 50% of full irrigation as water deficit condition applied during vegetative growth, flowering and grain filling stage. For all crops, the highest water productivity and yield were obtained when deficit irrigation was applied during the vegetative growth stage. During the second season (2011 two cultivars of quinoa, faba bean and sweet corn have been cultivated applying 6 deficit irrigation treatments (rainfed, 0, 25, 50, 75 and 100% of full irrigation only during the vegetative growth stage, while in the rest of crop cycle full irrigation was provided except for rainfed treatment. For quinoa and faba bean, treatment receiving 50% of full irrigation during vegetative growth stage recorded the highest yield and water productivity, while for sweet corn applying 75% of full irrigation was the optimal treatment in terms of yield and water productivity.

  10. Immobilization of Recombinant Glucose Isomerase for Efficient Production of High Fructose Corn Syrup.

    Science.gov (United States)

    Jin, Li-Qun; Xu, Qi; Liu, Zhi-Qiang; Jia, Dong-Xu; Liao, Cheng-Jun; Chen, De-Shui; Zheng, Yu-Guo

    2017-09-01

    Glucose isomerase is the important enzyme for the production of high fructose corn syrup (HFCS). One-step production of HFCS containing more than 55% fructose (HFCS-55) is receiving much attention for its industrial applications. In this work, the Escherichia coli harboring glucose isomerase mutant TEGI-W139F/V186T was immobilized for efficient production of HFCS-55. The immobilization conditions were optimized, and the maximum enzyme activity recovery of 92% was obtained. The immobilized glucose isomerase showed higher pH, temperature, and operational stabilities with a K m value of 272 mM and maximum reaction rate of 23.8 mM min -1 . The fructose concentration still retained above 55% after the immobilized glucose isomerase was reused for 10 cycles, and more than 85% of its initial activity was reserved even after 15 recycles of usage at temperature of 90 °C. The results highlighted the immobilized glucose isomerase as a potential biocatalyst for HFCS-55 production.

  11. Assessment of impact of climate change and adaptation strategies on maize production in Uganda

    Science.gov (United States)

    Kikoyo, Duncan A.; Nobert, Joel

    2016-06-01

    Globally, various climatic studies have estimated a reduction of crop yields due to changes in surface temperature and precipitation especially for the developing countries which is heavily dependent on agriculture and lacks resources to counter the negative effects of climate change. Uganda's economy and the wellbeing of its populace depend on rain-fed agriculture which is susceptible to climate change. This study quantified the impacts of climate change and variability in Uganda and how coping strategies can enhance crop production against climate change and/or variability. The study used statistical methods to establish various climate change and variability indicators across the country, and uses the FAO AquaCrop model to simulate yields under possible future climate scenarios with and without adaptation strategies. Maize, the most widely grown crop was used for the study. Meteorological, soil and crop data were collected for various districts representing the maize growing ecological zones in the country. Based on this study, it was found that temperatures have increased by up to 1 °C across much of Uganda since the 1970s, with rates of warming around 0.3 °C per decade across the country. High altitude, low rainfall regions experience the highest level of warming, with over 0.5 °C/decade recorded in Kasese. Rainfall is variable and does not follow a specific significant increasing or decreasing trend. For both future climate scenarios, Maize yields will reduce in excess of 4.7% for the fast warming-low rainfall climates but increase on average by 3.5% for slow warming-high rainfall regions, by 2050. Improved soil fertility can improve yields by over 50% while mulching and use of surface water management practices improve yields by single digit percentages. The use of fertilizer application needs to go hand in hand with other water management strategies since more yields as a result of the improved soil fertility leads to increased water stress, especially

  12. Carbon Footprint Analysis for Mechanization of Maize Production Based on Life Cycle Assessment: A Case Study in Jilin Province, China

    Directory of Open Access Journals (Sweden)

    Haina Wang

    2015-11-01

    Full Text Available The theory on the carbon footprint of agriculture can systematically evaluate the carbon emissions caused by artificial factors from the agricultural production process, which is the theoretical basis for constructing low-carbon agriculture and has important guiding significance for realizing low-carbon agriculture. Based on farm production survey data from Jilin Province in 2014, this paper aims to obtain a clear understanding of the carbon footprint of maize production through the following method: (1 one ton of maize production was evaluated systematically by using the Life Cycle Assessment (LCA; (2 the carbon emissions of the whole system were estimated based on field measurement data, (3 using the emission factors we estimated Jilin’s carbon footprint for the period 2006–2013, and forecasted it for the period from 2014 to 2020 using the grey system model GM (1, 1.

  13. Soil nutrient budgets following projected corn stover harvest for biofuel production in the conterminous United States

    Science.gov (United States)

    Tan, Zhengxi; Liu, Shuguang

    2015-01-01

    Increasing demand for food and biofuel feedstocks may substantially affect soil nutrient budgets, especially in the United States where there is great potential for corn (Zea mays L) stover as a biofuel feedstock. This study was designed to evaluate impacts of projected stover harvest scenarios on budgets of soil nitrogen (N), phosphorus (P), and potassium (K) currently and in the future across the conterminous United States. The required and removed N, P, and K amounts under each scenario were estimated on the basis of both their average contents in grain and stover and from an empirical model. Our analyses indicate a small depletion of soil N (−4 ± 35 kg ha−1) and K (−6 ± 36 kg ha−1) and a moderate surplus of P (37 ± 21 kg ha−1) currently on the national average, but with a noticeable variation from state to state. After harvesting both grain and projected stover, the deficits of soil N, P, and K were estimated at 114–127, 26–27, and 36–53 kg ha−1 yr−1, respectively, in 2006–2010; 131–173, 29–32, and 41–96 kg ha−1 yr−1, respectively, in 2020; and 161–207, 35–39, and 51–111 kg ha−1 yr−1, respectively, in 2050. This study indicates that the harvestable stover amount derived from the minimum stover requirement for maintaining soil organic carbon level scenarios under current fertilization rates can be sustainable for soil nutrient supply and corn production at present, but the deficit of P and K at the national scale would become larger in the future.

  14. Techno-economic and ex-ante environmental assessment of C6 sugars production from spruce and corn. Comparison of organosolv and wet milling technologies

    NARCIS (Netherlands)

    Moncada, Jonathan; Vural Gursel, Iris; Huijgen, Wouter J J; Dijkstra, Jan Wilco; Ramírez, Andrea

    2018-01-01

    This study assesses the techno-economic and environmental performance of C6 sugars production from softwood (spruce) and corn. Two technologies were considered in the assessment: organosolv of spruce woodchips (2nd generation) and corn wet milling (1st generation). Process models were developed to

  15. Seed production and quality of maize in High Valleys of Mexico.

    Directory of Open Access Journals (Sweden)

    Juan Virgen-Vargas

    2015-12-01

    Full Text Available The objective of this study was to increase the productivity of maize in High Valleys of Mexico, at the Valley of México and Bajio Experimental Stations of the National Institute for Forestry, Agriculture and Livestock Research (INIFAP. The following activities were carried out: production of registered seed to strengthen seed micro- enterprises of national capital, quality evaluation of certified seed, and generation of production technology. Between 2005 and 2013, 46.71 tons of registered seed of the hybrids parents: H-40, H-48, H-50, H-52, H-66, H-70 and H-161, and the varieties: VS-22, V-54A and V-55A were produced and sold to 31 seed producers in the Estado de Mexico, Tlaxcala, Puebla, Hidalgo, Morelos, Guanajuato, Michoacan, and Jalisco; that satisfied 60 % of demand per year (8.68 t. In 2013 and 2014, agreements were signed between INIFAP and four micro-enterprises to produce registered seeds. The certified seed produced by companies reached certification standards, germination percentage ≥ 85, 98% pure seed and less than 2% inert matter; test weight between 72 and 78 kg/hl, thousand seed weight between 288 and 361 g and genetic quality between 96 and 98 % of the true type plants. The study identified information about locations, potential yields, population density, and planting dates for the production of parents, lines and single crosses, in the Estado de Mexico and Tlaxcala.

  16. Drought effects on US maize and soybean production: spatiotemporal patterns and historical changes

    Science.gov (United States)

    Zipper, Samuel C.; Qiu, Jiangxiao; Kucharik, Christopher J.

    2016-09-01

    Maximizing agricultural production on existing cropland is one pillar of meeting future global food security needs. To close crop yield gaps, it is critical to understand how climate extremes such as drought impact yield. Here, we use gridded, daily meteorological data and county-level annual yield data to quantify meteorological drought sensitivity of US maize and soybean production from 1958 to 2007. Meteorological drought negatively affects crop yield over most US crop-producing areas, and yield is most sensitive to short-term (1-3 month) droughts during critical development periods from July to August. While meteorological drought is associated with 13% of overall yield variability, substantial spatial variability in drought effects and sensitivity exists, with central and southeastern US becoming increasingly sensitive to drought over time. Our study illustrates fine-scale spatiotemporal patterns of drought effects, highlighting where variability in crop production is most strongly associated with drought, and suggests that management strategies that buffer against short-term water stress may be most effective at sustaining long-term crop productivity.

  17. Corn Production and Marketing. An Instructional Unit for Teachers of Adult Vocational Education in Agriculture.

    Science.gov (United States)

    Grace, Clyde, Jr.; Iverson, Maynard J.

    The instructional unit designed to develop the effective ability of farmers to produce, harvest, store, and market corn profitably is structured in 11 lessons. The unit was developed as a guide for use by teachers in planning and conducting young farmer or adult farmer classes. The specific topic areas include varieties of corn, principles of…

  18. Linking Air Land & Water to Examine the Vulnerability of Groundwater Nitrate Contamination from Increased Corn Production

    Science.gov (United States)

    The Renewable Fuel Standard (RFS) requires oil refiners to reach a target of 15 billion gallons of corn-based ethanol by 2022. However, there are concerns that the broad-scale use of corn as a source of ethanol may lead to unintended economic and environmental consequences. Thi...

  19. Increasing corn for biofuel production reduces biocontrol services in agricultural landscapes

    NARCIS (Netherlands)

    Landis, D.A.; Gardiner, M.M.; Werf, van der W.; Swinton, S.M.

    2008-01-01

    Increased demand for corn grain as an ethanol feedstock is altering U. S. agricultural landscapes and the ecosystem services they provide. From 2006 to 2007, corn acreage increased 19% nationally, resulting in reduced crop diversity in many areas. Biological control of insects is an ecosystem

  20. 7 CFR 319.24-4 - Notice of arrival of corn by permittee.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Notice of arrival of corn by permittee. 319.24-4... HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE FOREIGN QUARANTINE NOTICES Corn Diseases Regulations Governing Entry of Indian Corn Or Maize § 319.24-4 Notice of arrival of corn by permittee. Immediately upon...

  1. Contrasting insect attraction and herbivore-induced plant volatile production in maize

    Science.gov (United States)

    Maize inbred line W22 is an important resource for genetic studies due to the availability of the UniformMu mutant population and a complete genome sequence. In this study, we assessed the suitability of W22 as a model for tritrophic interactions between maize, Spodoptera frugiperda (fall armyworm) ...

  2. Effect of γ-irradiation on F-2 and T-2 toxin production in corn a rice

    International Nuclear Information System (INIS)

    Halasz, A.; Badaway, A.; Sawinsky, J.; Kozma-Kovacs, E.; Beczner, J.

    1989-01-01

    Fusarium graminearum and F. tricinctum were grown on moistened corn and rice. After inoculation the substrates were exposed to γ radiation and the growth rate and mycotoxin production were measured. A delay in mycelium growth and an increase in F-2 and T-2 toxin production occurred after irradiation with 1 and 3 kGy. The maximum F-2 production was 10.7 mg/kg for rice at 3 kGy whereas for T-2 it was 735 μg/kg for rice at 3 kGy. At 9 kGy neither growth nor toxin production could be detected in any inoculated corn and rice substrate. (author). 3 tabs., 12 refs

  3. Biochemical markers of embryogenesis in tissue cultures of the maize inbred B73

    International Nuclear Information System (INIS)

    Everett, N.P.; Wach, M.J.; Ashworth, D.J.

    1985-01-01

    Stable embryogenic, organogenic and undifferentiated cell lines of the maize (Zea mays L.) inbred B73 were used to assess the value of using isozyme analyses and the composition of secreted polysaccharides to identify embryogenic cells. Esterase, glutamate dehydrogenase, alcohol dehydrogenase and β-glucosidase all possessed developmentally regulated isozymes but only esterase and glutamate dehydrogenase could be used to distinguish between embryogenic and shoot-forming cultures. Embryogenic callus and suspension cultures secreted a mucilagenous polysaccharide whose production was stimulated by 2, 4-dichlorophenozyacetic acid (2, 4-D). The polysaccharide was different from root slime and corn hull gum and may be related to the 'cementing layer' in maize kernels (author)

  4. Optimization of polyhydroxybutyrate production by Bacillus sp. CFR 256 with corn steep liquor as a nitrogen source

    OpenAIRE

    Vijayendra, S. V. N.; Rastogi, N. K.; Shamala, T. R.; Anil Kumar, P. K.; Kshama, L.; Joshi, G. J.

    2007-01-01

    Polyhydroxyalkanotes (PHAs), the eco-friendly biopolymers produced by many bacteria, are gaining importance in curtailing the environmental pollution by replacing the non-biodegradable plastics derived from petroleum. The present study was carried out to economize the polyhydroxybutyrate (PHB) production by optimizing the fermentation medium using corn steep liquor (CSL), a by-product of starch processing industry, as a cheap nitrogen source, by Bacillus sp. CFR 256. Response surface methodol...

  5. Spatiotemporal Correlations between Water Footprint and Agricultural Inputs: A Case Study of Maize Production in Northeast China

    Directory of Open Access Journals (Sweden)

    Peili Duan

    2015-07-01

    Full Text Available To effectively manage water resources in agricultural production, it is necessary to understand the spatiotemporal variation of the water footprint (WF and the influences of agricultural inputs. Employing spatial autocorrelation analysis and a geographically weighted regression (GWR model, we explored the spatial variations of the WF and their relationships with agricultural inputs from 1998 to 2012 in Northeast China. The results indicated that: (1 the spatial distribution of WFs for the 36 major maize production prefectures was heterogeneous in Northeast China; (2 a cluster of high WFs was found in southeast Liaoning Province, while a cluster of low WFs was found in central Jilin Province, and (3 spatial and temporal differentiation in the correlations between the WF of maize production and agricultural inputs existed according to the GWR model. These correlations increased over time. Our results suggested that localized strategies for reducing the WF should be formulated based on specific relationships between the WF and agricultural inputs.

  6. The production of corn kernel miso based on rice-koji fermented by Aspergillus oryzae and Rhizopus oligosporus

    Directory of Open Access Journals (Sweden)

    Diah Ratnaningrum

    2018-04-01

    Full Text Available The suitability of corn kernel as raw material to produce miso fermented by rice-koji containing Aspergillus oryzae and Rhizopus oligosporus has been investigated. The optimization was conducted on two important factors in miso production namely mold composition in rice-koji and salt concentration. The mold composition was prepared by inoculating the spores of 2% A. oryzae, 2% R. oligosporus, and 2% the mixture of both in a ratio of 1:1, 2:1, and 1:2 (v/v into different rice media. The mold composition was optimized to produce rice-koji with high α-amylase and protease activity. Different NaCl concentrations of 10%, 15%, and 20% were subjected to optimization process and added to each mixture after five days of fermentation. The salt concentration was also optimized to produce corn kernel miso with high glucose and high dissolved protein concentration. The result showed that rice-koji containing A. oryzae and R. oligosporus in the ratio of 1:1 had the highest α-amylase and protease activity of 0.42 U/mL and 0.45 U/mL respectively. In addition, the presence of 10% NaCl in corn kernel miso fermented by A. oryzae and R. oligosporus in the ratio of 1:1 exhibited the highest glucose and dissolved protein concentration of 0.64 mg/mL and 8.80 mg/mL respectively. The optimized corn kernel miso by A. oryzae and R. oligosporus in the ratio of 1:1 with 10% NaCl was subjected to nutrient content analysis and compared to the result before the corn kernel was fermented. The nutrient content analysis showed nutrient enhancement after corn kernel was fermented and transformed into a miso. Glucose, dissolved protein, and fat content increased 6.74, 1.34, 7.63 times respectively. This study concludes corn kernel could be utilized to produce a novel corn kernel miso for dietary diversification and for improving nutritional and health status.

  7. Phosphorus and Compost Management Influence Maize (Zea mays) Productivity Under Semiarid Condition with and without Phosphate Solubilizing Bacteria

    Science.gov (United States)

    Amanullah

    2015-01-01

    Phosphorus (P) unavailability and lack of organic matter in the soils under semiarid climates are the two major constraints for low crop productivity. Field trial was conducted to study the effects of P levels, compost application times and seed inoculation with phosphate solubilizing bacteria (PSB) on the yield and yield components of maize (Zea mays L., cv. Azam). The experiment was conducted at the Agronomy Research Farm of The University of Agriculture Peshawar-Pakistan during summer 2014. The experiment was laid out in randomized complete block design with split plot arrangement using three replications. The two PSB levels [(1) inoculated seed with PSB (+) and (2) seed not inoculated with PSB (- or control)] and three compost application times (30, 15, and 0 days before sowing) combination (six treatments) were used as main plot factor, while four P levels (25, 50, 75, and 100 kg P ha-1) used as subplot factor. The results confirmed that compost applied at sowing time and P applied at the two higher rates (75 and 100 kg P ha-1) had significantly increased yield and yield components of maize under semiarid condition. Maize seed inoculated with PSB (+) had tremendously increased yield and yield components of maize over PSB-control plots (-) under semiarid condition. PMID:26697038

  8. Awareness of Health Implications of Agrochemical Use: Effects on Maize Production in Ejura-Sekyedumase Municipality, Ghana

    Directory of Open Access Journals (Sweden)

    Franklin N. Mabe

    2017-01-01

    Full Text Available This study assessed factors that affect awareness of health implications of agrochemical use and its effects on maize production in Ejura-Sekyedumase Municipality of Ashanti Region, Ghana. One hundred and fifty-four (154 maize farmers were randomly sampled from the municipality. The study used awareness indicators to estimate an index representing farmers’ awareness levels of health implications of agrochemical use. An ordered logit compliment with multivariate linear regression model was used to identify the drivers of farmers’ awareness level of health implications of agrochemical use. Also, a multivariate linear regression model was used to analyze the effects of health implications of agrochemical use on maize output. On average, the respondents have the moderate awareness level of health implications of agrochemical use (0.578. The awareness level was significantly explained by education, the number of children in school, ownership of TV/radio, experience in agrochemicals use, and farm size. The multivariate linear regression results showed that awareness levels of health implications of agrochemical use increase maize output. It is therefore recommended that interventions aimed at increasing farmers’ awareness levels of health implications of agrochemicals use should focus on educating farmers through interactive radio discussion and training sessions on the field and incorporate safety use of agrochemical in our educational curriculum.

  9. Phosphorus and compost management influence maize (Zea mays productivity under semiarid condition with and without phosphate solubilizing bacteria

    Directory of Open Access Journals (Sweden)

    Amanullah eAmanullah

    2015-12-01

    Full Text Available Phosphorus (P unavailability and lack of organic matter in the soils under semiarid climates are the two major constraints for low crop productivity. Field trial was conducted to study the effects of P levels, compost application times and seed inoculation with phosphate solubilizing bacteria (PSB on the yield and yield components of maize (Zea mays L., cv. Azam. The experiment was conducted at the Agronomy Research Farm of The University of Agriculture Peshawar-Pakistan during summer 2014. The experiment was laid out in randomized complete block design with split plot arrangement using three replications. The two PSB levels [(1 inoculated seed with PSB (+ and (2 seed not inoculated with PSB (- or control] and three compost application times [(30, 15 and 0 days before sowing (DBS] combination (six treatments were used as main plot factor, while four P levels (25, 50, 75 and 100 kg P ha-1 used as subplot factor. The results confirmed that compost applied at sowing time and P applied at the two higher rates (75 and 100 kg P ha-1 had significantly increased yield and yield components of maize under semiarid condition. Maize seed inoculated with PSB (+ had tremendously increased yield and yield components of maize over PSB-control plots (- under semiarid condition.

  10. Farmers Participatory Research in the Evaluation of Maize Crop Residues for Improved Dairy Cattle Production in Eastern Kenya

    International Nuclear Information System (INIS)

    Kiruiro, E.M.; Kariuki, I.W.; Kang'ara, J.; Ouma, O.

    1999-01-01

    Informal and formal surveys, and participatory rural appraisal conducted within the coffee land-use system of Embu District in Eastern Kenya identified feed shortage as a major constraint to increased dairy production on small holder farms. To address this constraint, a two-year (1996-1998) on-farm research project involving 20 farms in Manyatta division, Embu District was initiated with broad objectives of developing components technologies that would use maize crop residues. This was due to the recognition of the fact that the greatest potential for improving field availability would be in the exploitation of crop residues, especially those derived from maize, the main staple crop in the region. Based on these reality appropriate technologies that would offer viable offers for the use of crop residues were identified and discussed during workshops and meetings with farmers. Component technologies considered included drying of maize leaves after defoliation and post-harvest storage methods for dry maize stover. this paper discussed the results of the participatory research in context of farmers' involvement in the technology development, testing, evaluation and promotion. The study demonstrated that involving farmers in all stages of the research process, enhanced their interest and participation in the testing and subsequent adoption of appropriate technologies

  11. Point of view. Maize for biogas production in Thuringia; Standpunkt. Maisanbau fuer die Biogaserzeugung in Thueringen

    Energy Technology Data Exchange (ETDEWEB)

    Reinhold, Gerd; Peyker, Walter; Zorn, Wilfried; Strauss, Christoph; Struempfel, Juergen; Vetter, Armin; Degner, Joachim

    2011-04-15

    In Thuringia the maize represents with a current size of the cultivation of less than 10% and a cultivation concentration of less than 20% in every county an enrichment of crop rotation. The recycling of the digestate in the farm results due to higher C-reduction stability of the fermentation products to any deterioration of the C balance and soil fertility. Especially in Thuringia farming regions with very low livestock the introduction of biogas plants introduces to a higher diversity of agricultural production and dispersal of crop rotation. Practiced by the combination of locally adapted biogas plants with animal husbandry (milk production = use manure, pig = heat utilization) positive economic and environmental effects can be achieved for the Thuringian farmers. [German] In Thueringen stellt der Mais bei einem gegenwaertigen Anbauumfang von unter 10 % und einer Anbaukonzentration von unter 20 % in jedem Landkreis eine Bereicherung der Fruchtfolge dar. Die Verwertung der Gaerreste im Betrieb fuehrt infolge hoeherer C-Abbaustabilitaet der Gaerprodukte zu keiner Verschlechterung der C-Bilanz und der Bodenfruchtbarkeit. Besonders in Thueringer Ackerbauregionen mit sehr geringem Tierbesatz traegt die Einfuehrung von Biogasanlagen zu einer hoeheren Vielfalt der landwirtschaftlichen Produktion und Auflockerung der Fruchtfolgen bei. Durch die praktizierte Kombination von standortangepassten Biogasanlagen mit der Tierhaltung (Milcherzeugung = Guellenutzung, Schweinehaltung = Waermenutzung) werden fuer die Thueringer Landwirte positive oekonomische und oekologische Effekte erzielt.

  12. Exploring climate change impacts and adaptation options for maize production in the Central Rift Valley of Ethiopia using different climate change scenarios and crop models

    NARCIS (Netherlands)

    Kassie, B.T.; Asseng, S.; Rotter, R.P.; Hengsdijk, H.; Ruane, A.C.; Ittersum, van M.K.

    2015-01-01

    Exploring adaptation strategies for different climate change scenarios to support agricultural production and food security is a major concern to vulnerable regions, including Ethiopia. This study assesses the potential impacts of climate change on maize yield and explores specific adaptation

  13. Efficient production of 2,3-butanediol from corn stover hydrolysate by using a thermophilic Bacillus licheniformis strain.

    Science.gov (United States)

    Li, Lixiang; Li, Kun; Wang, Kai; Chen, Chao; Gao, Chao; Ma, Cuiqing; Xu, Ping

    2014-10-01

    In this study, a thermophilic Bacillus licheniformis strain X10 was newly isolated for 2,3-butanediol (2,3-BD) production from lignocellulosic hydrolysate. Strain X10 could utilize glucose and xylose simultaneously without carbon catabolite repression. In addition, strain X10 possesses high tolerance to fermentation inhibitors including furfural, vanillin, formic acid, and acetic acid. In a fed-batch fermentation, 74.0g/L of 2,3-BD was obtained from corn stover hydrolysate, with a productivity of 2.1g/Lh and a yield of 94.6%. Thus, this thermophilic B. licheniformis strain is a candidate for the development of efficient industrial production of 2,3-BD from corn stover hydrolysate. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Simultaneous saccharification and bioethanol production from corn cobs: Process optimization and kinetic studies.

    Science.gov (United States)

    Sewsynker-Sukai, Yeshona; Gueguim Kana, E B

    2018-08-01

    This study investigates the simultaneous saccharification and fermentation (SSF) process for bioethanol production from corn cobs with prehydrolysis (PSSF) and without prehydrolysis (OSSF). Two response surface models were developed with high coefficients of determination (>0.90). Process optimization gave high bioethanol concentrations and bioethanol conversions for the PSSF (36.92 ± 1.34 g/L and 62.36 ± 2.27%) and OSSF (35.04 ± 0.170 g/L and 58.13 ± 0.283%) models respectively. Additionally, the logistic and modified Gompertz models were used to study the kinetics of microbial cell growth and ethanol formation under microaerophilic and anaerobic conditions. Cell growth in the OSSF microaerophilic process gave the highest maximum specific growth rate (µ max ) of 0.274 h -1 . The PSSF microaerophilic bioprocess gave the highest potential maximum bioethanol concentration (P m ) (42.24 g/L). This study demonstrated that microaerophilic rather than anaerobic culture conditions enhanced cell growth and bioethanol production, and that additional prehydrolysis steps do not significantly impact on the bioethanol concentration and conversion in SSF process. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Blending municipal solid waste with corn stover for sugar production using ionic liquid process

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Ning [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Xu, Feng [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Sathitsuksanoh, Noppadon [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Thompson, Vicki S. [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Cafferty, Kara [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Li, Chenlin [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Tanjore, Deepti [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Narani, Akash [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Pray, Todd R. [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Simmons, Blake A. [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Singh, Seema [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Sandia National Laboratories (SNL-CA), Livermore, CA (United States)

    2015-06-01

    Municipal solid waste (MSW) represents an attractive cellulosic resource for sustainable fuel production because of its abundance and its low or perhaps negative cost. However, the significant heterogeneity and toxic contaminants are barriers to efficient conversion to ethanol and other products. In this study, we generated MSW paper mix, blended with corn stover (CS), and have shown that both MSW paper mix alone and MSW/CS blends can be efficiently pretreated in certain ionic liquids (ILs) with high yields of fermentable sugars. After pretreatment in 1-ethyl-3-methylimidazolium acetate ([C2C1Im][OAc]), over 80% glucose has been released with enzymatic saccharification. We have also applied an enzyme free process by adding mineral acid and water directly into the IL/biomass slurry to induce hydrolysis. With the acidolysis process in the IL 1-ethyl-3-methylimidazolium chloride ([C2C1Im]Cl), up to 80% glucose and 90% xylose are released for MSW. The results indicate the feasibility of incorporating MSW as a robust blending agent for biorefineries.

  16. Potential of Black Liquor of Potassium Hydroxide to Pretreat Corn Stover for Biomethane Production

    Directory of Open Access Journals (Sweden)

    Muhammad Abdul Hanan Siddhu

    2016-04-01

    Full Text Available Reducing the pretreatment cost of lignocellulosic biomass by utilizing alkali to alter its recalcitrant nature is an effective method for biofuel production. In this experiment, 1.5% KOH solution and its black liquor (spent liquor of KOH (BL were applied to pretreat corn stover (CS at a temperature of 20 °C to enhance the digestibility for anaerobic digestion (AD. Results showed no significant difference in weighted average methane content on the basis of experimental methane and biogas yields between BL-treated and original KOH-treated CS after AD. The BL process significantly increased the overall methane yield by 52.4% compared with untreated CS (135.2 mL/gVS, whereas no significant difference between the overall methane yields of 1.5% KOH-treated and BL-treated CS was observed. In addition, the BL process significantly saved water and KOH consumption, by 56.2% and 57.4%, respectively, compared with the 1.5% KOH pretreatment. Overall methane production was well explained by the modified Gompertz model. The physiochemical changes to CS after BL pretreatment were confirmed by SEM, FTIR, and XRD analyses. Our findings collectively suggest that recycling and reuse of KOH black liquor might be an efficient method for lignocellulosic biomass treatment and have the capability to reduce input costs in future AD processes.

  17. Importance of stand density, inter row spacing, "mother" and "father" row distance in corn seed production

    Directory of Open Access Journals (Sweden)

    Marinković Branko

    2006-01-01

    Full Text Available Importance of stand density, "mother" and "father" row distance is very important for corn seed production. Inter row spacing from 70,60 and 50 cm, and their influence on "mother" grain yield was investigated during 7 years trials. In seed production, at density ratio 6 + 2, beside inter row spacing, yield influence on stand density was followed as well. Five stand densities (40.8000, 52.900, 64.900, 79.400, 89.300, total plant number per ha and density ration 6 + 2, was investigated. The next results were obtained: at 70 cm inter row spacing, the highest yield was achieved with the 64.900 plant/ha stand density (4.35 tha-1 "mother" seed. At the first row, yield was higher for 360 and 550 kgha-1 in dependence from the second and the third "mother" row. At 60 cm inter row spacing, yield was increasing till the highest density, and significant difference, in relation to 40.800 plants/ha, was at 79.400 plants/ha stands density. At the second and the third row in rela­tion to the first "mother" row, yield difference was 430 and 510 kgha-1. The same conclusions can be made at the 50 cm inter row spacing. With the "mother" row space increasing, yield was decreased for 370 and 460 kgha-1.

  18. Ethanol production in a membrane bioreactor: pilot-scale trials in a corn wet mill.

    Science.gov (United States)

    Escobar, J M; Rane, K D; Cheryan, M

    2001-01-01

    Pilot plant trials were conducted in a corn wet mill with a 7000-L membrane recycle bioreactor (MRB) that integrated ceramic microfiltration membranes in a semi-closed loop configuration with a stirred-tank reactor. Residence times of 7.5-10 h with ethanol outputs of 10-11.5% (v/v) were obtained when the cell concentration was 60-100 g/L dry wt of yeast, equivalent to about 10(9)-10(10) cells/mL. The performance of the membrane was dependent on the startup mode and pressure management techniques. A steady flux of 70 L/(m2 x h) could be maintained for several days before cleaning was necessary. The benefits of the MRB include better productivity; a clear product stream containing no particulates or yeast cells, which should improve subsequent stripping and distillation operations; and substantially reduced stillage handling. The capital cost of the MRB is $21-$34/(m3 x yr) ($0.08-$0.13/[gal x yr]) of ethanol capacity. Operating cost, including depreciation, energy, membrane replacement, maintenance, labor, and cleaning, is $4.5-9/m3 ($0.017-$0.034/gal) of ethanol.

  19. Metabolic Engineering of Lactobacillus plantarum for Direct l-Lactic Acid Production From Raw Corn Starch.

    Science.gov (United States)

    Okano, Kenji; Uematsu, Gentaro; Hama, Shinji; Tanaka, Tsutomu; Noda, Hideo; Kondo, Akihiko; Honda, Kohsuke

    2018-05-01

    Fermentative production of optically pure lactic acid (LA) has attracted great interest because of the increased demand for plant-based plastics. For cost-effective LA production, an engineered Lactobacillus plantarum NCIMB 8826 strain, which enables the production of optically pure l-LA from raw starch, is constructed. The wild-type strain produces a racemic mixture of d- and l-LA from pyruvate by the action of the respective lactate dehydrogenases (LDHs). Therefore, the gene encoding D-LDH (ldhD) is deleted. Although no decrease in d-LA formation is observed in the ΔldhD mutant, additional disruption of the operon encoding lactate racemase (larA-E), which catalyzes the interconversion between d- and l-LA, completely abolished d-LA production. From 100 g L -1 glucose, the ΔldhD ΔlarA-E mutant produces 87.0 g L -1 of l-LA with an optical purity of 99.4%. Subsequently, a plasmid is introduced into the ΔldhD ΔlarA-E mutant for the secretion of α-amylase from Streptococcus bovis 148. The resulting strain could produce 50.3 g L -1 of l-LA from raw corn starch with a yield of 0.91 (g per g of consumed sugar) and an optical purity of 98.6%. The engineered L. plantarum strain would be useful in the production of l-LA from starchy materials. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Cost Efficiency In U.S. Corn, Soybean, Wheat, and Cotton Production

    OpenAIRE

    Cooke, Stephen C.

    1991-01-01

    Between 1974 and 1983, intertemporal cost efficiency for u.s. field crops increased about 1.4 to 1.2% percent for corn, soybeans, and wheat and .2% per year for cotton. competitive advantage in 1983 was held by central Illinois and north central Iowa in corn, central Illinois in soybeans, the Washington Palouse and central North Dakota in wheat, and southern California in cotton relative to the other selected regions in the study. Scale economies exist in corn, soybean and wheat but not in co...

  1. Expression of a maize Myb transcription factor driven by a putative silk-specific promoter significantly enhances resistance to Helicoverpa zea in transgenic maize.

    Science.gov (United States)

    Johnson, Eric T; Berhow, Mark A; Dowd, Patrick F

    2007-04-18

    Hi II maize (Zea mays) plants were engineered to express maize p1 cDNA, a Myb transcription factor, controlled by a putative silk specific promoter, for secondary metabolite production and corn earworm resistance. Transgene expression did not enhance silk color, but about half of the transformed plant silks displayed browning when cut, which indicated the presence of p1-produced secondary metabolites. Levels of maysin, a secondary metabolite with insect toxicity, were highest in newly emerged browning silks. The insect resistance of transgenic silks was also highest at emergence, regardless of maysin levels, which suggests that other unidentified p1-induced molecules likely contributed to larval mortality. Mean survivor weights of corn earworm larvae fed mature browning transgenic silks were significantly lower than weights of those fed mature nonbrowning transgenic silks. Some transgenic pericarps browned with drying and contained similar molecules found in pericarps expressing a dominant p1 allele, suggesting that the promoter may not be silk-specific.

  2. Complementation of CTB7 in the Maize Pathogen Cercospora zeina Overcomes the Lack of In Vitro Cercosporin Production.

    Science.gov (United States)

    Swart, Velushka; Crampton, Bridget G; Ridenour, John B; Bluhm, Burt H; Olivier, Nicholas A; Meyer, J J Marion; Berger, Dave K

    2017-09-01

    Gray leaf spot (GLS), caused by the sibling species Cercospora zeina or Cercospora zeae-maydis, is cited as one of the most important diseases threatening global maize production. C. zeina fails to produce cercosporin in vitro and, in most cases, causes large coalescing lesions during maize infection, a symptom generally absent from cercosporin-deficient mutants in other Cercospora spp. Here, we describe the C. zeina cercosporin toxin biosynthetic (CTB) gene cluster. The oxidoreductase gene CTB7 contained several insertions and deletions as compared with the C. zeae-maydis ortholog. We set out to determine whether complementing the defective CTB7 gene with the full-length gene from C. zeae-maydis could confer in vitro cercosporin production. C. zeina transformants containing C. zeae-maydis CTB7 were generated by Agrobacterium tumefaciens-mediated transformation and were evaluated for in vitro cercosporin production. When grown on nitrogen-limited medium in the light-conditions conducive to cercosporin production in other Cercospora spp.-one transformant accumulated a red pigment that was confirmed to be cercosporin by the KOH assay, thin-layer chromatography, and ultra performance liquid chromatography-quadrupole-time-of-flight mass spectrometry. Our results indicated that C. zeina has a defective CTB7, but all other necessary machinery required for synthesizing cercosporin-like molecules and, thus, C. zeina may produce a structural variant of cercosporin during maize infection.

  3. Expression of ZmLEC1 and ZmWRI1 increases seed oil production in maize.

    Science.gov (United States)

    Shen, Bo; Allen, William B; Zheng, Peizhong; Li, Changjiang; Glassman, Kimberly; Ranch, Jerry; Nubel, Douglas; Tarczynski, Mitchell C

    2010-07-01

    Increasing seed oil production is a major goal for global agriculture to meet the strong demand for oil consumption by humans and for biodiesel production. Previous studies to increase oil synthesis in plants have focused mainly on manipulation of oil pathway genes. As an alternative to single-enzyme approaches, transcription factors provide an attractive solution for altering complex traits, with the caveat that transcription factors may face the challenge of undesirable pleiotropic effects. Here, we report that overexpression of maize (Zea mays) LEAFY COTYLEDON1 (ZmLEC1) increases seed oil by as much as 48% but reduces seed germination and leaf growth in maize. To uncouple oil increase from the undesirable agronomic traits, we identified a LEC1 downstream transcription factor, maize WRINKLED1 (ZmWRI1). Overexpression of ZmWRI1 results in an oil increase similar to overexpression of ZmLEC1 without affecting germination, seedling growth, or grain yield. These results emphasize the importance of field testing for developing a commercial high-oil product and highlight ZmWRI1 as a promising target for increasing oil production in crops.

  4. [Deep frying snack product of legume/cereal mixture based on corn and three varieties of beans].

    Science.gov (United States)

    Hurtado, M L; Escobar, B; Estévez, A M

    2001-09-01

    To increase legume consumption and give a better protein quality in the snack products, mixtures of fried beans-corn were formulate in different proportions: 60:40 (A); 50:50 (B) and 40:60 (C). Fried corn used in mixtures was previously soaked in a predetermined solution (NaOH/EDTA) and then blanched. Three beans varieties (Pinto 114, Suave 85 and Tórtola Inia) were mixed with fried yellow dent corn in the above described proportions, obtaining nine mixtures whose physical, chemical and sensorial characteristics were evaluated. The mixtures were very homogeneous in all the analyzed characteristics. The protein content for the A mix was the greatest, nevertheless the sensorial analysis showed the last acceptance. The moisture content and water activity of these mixtures was low assuring a good microbiological stability under storage conditions. The protein contribution of each species in different prepared mixtures determined the selection of the best cereal/legume mix. From a nutritional stand point the best results were obtained when the 50% of protein was supplied by bans and the 50% by corn. From the mixtures tried in this study, mix C with bean Pinto 114 one closed to the recommended conditions. Nevertheless, for each cereal/legume mix, the best proportion was C, due to its better acceptability, even though it had less nutritional value.

  5. The evaluation of IAA-production ability in indigenous Azospirillum isolates and their growth promoting effects on sweet corn

    Directory of Open Access Journals (Sweden)

    mahdi arab

    2009-06-01

    Full Text Available It has been years that Azospirillum is known to promote plant growth. Phytohormone (especially Auxin production has the most important role in increasing the yield of inoculated plants. According to this, 60 strains of this genus were isolated, identified, and purified. This ability was evaluated in both qualitative and quantitative assays using colorimetric method and the effects of superior isolate on sweet corn were measured. Results revealed that the abundance and probability of the bacteria isolation is low and 17%. About 31.2% and 100% of Azospirillum strains were capable of producing IAA in qualitative and quantitative methods respectively. In greenhouse experiment, bacteria treatments had significant effects on corn fresh weight, total dry weight, root dry weight and total nitrogen and phosphorus content of the plant. This was considered to be as the result of more lateral root formation which enhances nutrition uptake. In conclusion, the green house results in respect to in vitro achievements show that fortunately it can be claimed that bacteria of the genus Azospirillum can be used widely for not only strategic gramineous plants like: corn, wheat, barely etc. but also for other useful plants. Key words: Azospirillum, Auxin, qualitative and quantitative methods, sweet corn.

  6. Successful application of entomopathogenic nematodes for the biological control of western corn rootworm larvae in Europe – a mini review

    Directory of Open Access Journals (Sweden)

    Toepfer, Stefan

    2014-02-01

    Full Text Available 10 years of joint efforts in research and development have led to a nematode-based biological control solution for one of the most destructive maize pests, the western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae. Commercially mass-produced Heterorhabditis species of beneficial entomopathogenic nematodes are ready to use. They can be applied into the soil during sowing of maize for controlling the subsequently hatching larvae of D. virgifera virgifera thus preventing root feeding and damage to maize. Policy bodies, decision makers and farmers are advised to consider biological control as one of the alternatives to synthetic pesticides in maize production, and according to the EC Directive on the sustainable use of pesticides and implementation of integrated pest management.

  7. Influence of brick air scrubber by-product on growth and development of corn and hybrid poplar.

    Science.gov (United States)

    Thomas, Carla N; Bauerle, William L; Owino, Tom O; Chastain, John P; Klaine, Stephen J

    2007-03-01

    Studies were conducted to determine the effects of spent reagent from air pollution control scrubbers used at a brick manufacturing facility on emergence, growth, and physiological responses of corn and hybrid poplar plants. Scrubber by-product was obtained from General Shale Brick, Louisville, KY. Potting substrate was weighed and quantities of scrubber by-product were added to the substrate to obtain treatments of 0%, 6.25%, 12.5%, 25%, 50%, 75%, and 100% scrubber by-product (w:w) for the corn study. Each treatment mix was potted into nine replicate polyethylene pots and four corn seeds were sown per pot. The pots were randomized in a greenhouse at Clemson University and the number of seedlings emerging from each treatment, dark-adapted leaf chlorophyll a fluorescence, and shoot heights were measured at the end of a 21-day growth period. Then, dry shoot biomass was determined for plants from each treatment and plant tissues were analyzed for selected constituents. For the poplar study, nine-inch cuttings of hybrid poplar clone 15-29 (Populus trichocarpa x P. deltoides) and clone OP367 (P. deltoides x P. nigra) were planted in treatments of scrubber by-product-potting soil mixes of 0% , 5% , 10% , and 25% w:w. Leaf chlorophyll a fluorescence was measured over six weeks and cumulative leaf area, dry biomass, and nutrient content of tissues were determined upon harvest. Results of these studies indicate that percent seedling emergence for corn plants decreased with increasing scrubber by-product application rates. Application rates up to 12.5% scrubber by-product w:w had no adverse effect on corn seedling emergence. Shoot elongation, biomass production, and the status of the photosynthetic apparatus of the seedlings were also not severely impaired at applications below this level. A critical value of 58.2% w:w scrubber by-product was estimated to cause 25% inhibition of seedling emergence. Biomass production, cumulative leaf area, and chlorophyll a fluorescence of

  8. [Impacts of climate change on summer maize production and adaptive selection of varieties in Xingtai County, Hebei, China].

    Science.gov (United States)

    Wang, Hong-Fei; Chen, Xin-Ping; Cui, Zhen-Ling; Meng, Qing-Feng

    2014-01-01

    Understanding the impacts of climate change on agriculture production and the underlying mechanism in North China Plain is important to take effective adaptations for national food security. Using Hybrid-Maize model, this paper investigated the impacts of climate change on summer maize yield potential and famers' adaptation by changing varieties with longer growth periods from 1981 to 2010 in Xingtai County, Hebei Province. Results showed a significant warming trend with the average temperature increasing by 0.49 degrees C x 10 a(-1) since the 1980s. Both solar radiation and sunshine hours decreased significantly since the 1980s. The sunshine hours decreased by 0.56 h x d(-1) x 10 a(-1) and the solar radiation decreased by 265.1 MJ x m(-2) x 10 a(-1), while the precipitation kept constant with large variation among years since 1981. Yield potentials of both irrigated and rainfed maize were simulated to decrease by 0.63-0.64 Mg x hm(-2) x 10 a(-1) since 1981 if varieties were assumed fixed with the 1980s. This was mainly due to the decrease of solar radiation during the maize growth season and the shortened growth stage by warming, and around 60% of grain yield decrease was attributed to the decreased solar radiation. In practice, by changing varieties with longer growth periods, the growing degree days of varieties adopted by local farmers since the 2000s increased by 19% (280 degrees C) compared to the 1980s, and consequently the yield potential was simulated to increase by 34%-40% (2.73-3.40 Mg x hm(-2)) for both irrigated and rainfed maize.

  9. Identification of Pathogenic Fusarium spp. Causing Maize Ear Rot and Poten tial Mycotoxin Production in China

    Directory of Open Access Journals (Sweden)

    Canxing Duan

    2016-06-01

    Full Text Available Ear rot is a serious disease that affects maize yield and grain quality worldwide. The mycotoxins are often hazardous to humans and livestock. In samples collected in China between 2009 and 2014, Fusarium verticillioides and F. graminearum species complex were the dominant fungi causing ear rot. According to the TEF-1α gene sequence, F. graminearum species complex in China included three independent species: F. graminearum, F. meridionale, and F. boothii. The key gene FUM1 responsible for the biosynthesis of fumonisin was detected in all 82 F. verticillioides isolates. Among these, 57 isolates mainly produced fumonisin B1, ranging from 2.52 to 18,416.44 µg/g for each gram of dry hyphal weight, in vitro. Three different toxigenic chemotypes were detected among 78 F. graminearum species complex: 15-ADON, NIV and 15-ADON+NIV. Sixty and 16 isolates represented the 15-ADON and NIV chemotypes, respectively; two isolates carried both 15-ADON and NIV-producing segments. All the isolates carrying NIV-specific segment were F. meridionale. The in vitro production of 15-ADON, 3-ADON, DON, and ZEN varied from 5.43 to 81,539.49; 6.04 to 19,590.61; 13.35 to 19,795.33; and 1.77 to 430.24 µg/g of dry hyphal weight, respectively. Altogether, our present data demonstrate potential main mycotoxin production of dominant pathogenic Fusarium in China.

  10. Identification of Pathogenic Fusarium spp. Causing Maize Ear Rot and Potential Mycotoxin Production in China

    Science.gov (United States)

    Duan, Canxing; Qin, Zihui; Yang, Zhihuan; Li, Weixi; Sun, Suli; Zhu, Zhendong; Wang, Xiaoming

    2016-01-01

    Ear rot is a serious disease that affects maize yield and grain quality worldwide. The mycotoxins are often hazardous to humans and livestock. In samples collected in China between 2009 and 2014, Fusarium verticillioides and F. graminearum species complex were the dominant fungi causing ear rot. According to the TEF-1α gene sequence, F. graminearum species complex in China included three independent species: F. graminearum, F. meridionale, and F. boothii. The key gene FUM1 responsible for the biosynthesis of fumonisin was detected in all 82 F. verticillioides isolates. Among these, 57 isolates mainly produced fumonisin B1, ranging from 2.52 to 18,416.44 µg/g for each gram of dry hyphal weight, in vitro. Three different toxigenic chemotypes were detected among 78 F. graminearum species complex: 15-ADON, NIV and 15-ADON+NIV. Sixty and 16 isolates represented the 15-ADON and NIV chemotypes, respectively; two isolates carried both 15-ADON and NIV-producing segments. All the isolates carrying NIV-specific segment were F. meridionale. The in vitro production of 15-ADON, 3-ADON, DON, and ZEN varied from 5.43 to 81,539.49; 6.04 to 19,590.61; 13.35 to 19,795.33; and 1.77 to 430.24 µg/g of dry hyphal weight, respectively. Altogether, our present data demonstrate potential main mycotoxin production of dominant pathogenic Fusarium in China. PMID:27338476

  11. Identification of Pathogenic Fusarium spp. Causing Maize Ear Rot and Potential Mycotoxin Production in China.

    Science.gov (United States)

    Duan, Canxing; Qin, Zihui; Yang, Zhihuan; Li, Weixi; Sun, Suli; Zhu, Zhendong; Wang, Xiaoming

    2016-06-21

    Ear rot is a serious disease that affects maize yield and grain quality worldwide. The mycotoxins are often hazardous to humans and livestock. In samples collected in China between 2009 and 2014, Fusarium verticillioides and F. graminearum species complex were the dominant fungi causing ear rot. According to the TEF-1α gene sequence, F. graminearum species complex in China included three independent species: F. graminearum, F. meridionale, and F. boothii. The key gene FUM1 responsible for the biosynthesis of fumonisin was detected in all 82 F. verticillioides isolates. Among these, 57 isolates mainly produced fumonisin B₁, ranging from 2.52 to 18,416.44 µg/g for each gram of dry hyphal weight, in vitro. Three different toxigenic chemotypes were detected among 78 F. graminearum species complex: 15-ADON, NIV and 15-ADON+NIV. Sixty and 16 isolates represented the 15-ADON and NIV chemotypes, respectively; two isolates carried both 15-ADON and NIV-producing segments. All the isolates carrying NIV-specific segment were F. meridionale. The in vitro production of 15-ADON, 3-ADON, DON, and ZEN varied from 5.43 to 81,539.49; 6.04 to 19,590.61; 13.35 to 19,795.33; and 1.77 to 430.24 µg/g of dry hyphal weight, respectively. Altogether, our present data demonstrate potential main mycotoxin production of dominant pathogenic Fusarium in China.

  12. Responses by earthworms to reduced tillage in herbicide tolerant maize and Bt maize cropping systems

    DEFF Research Database (Denmark)

    Krogh, P. H.; Griffiths, B.; Demsar, D.

    2007-01-01

    -toxin producing transgenic maize line MON810 was studied for 1 year. At a Danish study site, Foulum (Jutland), one year of Bt corn was followed by 2 years of herbicide tolerant corn. At the French study site the most prominent effects observed were due to the tillage method where RT significantly reduced...

  13. Effects of No-tillage Combined with Reused Plastic Film Mulching on Maize Yield and Irrigation Water Productivity

    OpenAIRE

    SU Yong-zhong; ZHANG Ke; LIU Ting-na; WANG Ting

    2016-01-01

    A field experiment was conducted to determine the effects of reused plastic film mulching and no-tillage on maize yield and irriga-tion water productivity(IWP) in the marginal oasis in the middle of Hexi Corridor region of northwestern China. The aim is to provide an alternative tillage and cultivation pattern for reducing plastic film pollution, saving cost and increasing income, and improving resource use efficiency. The field experiment was carried out in three soils with different texture...

  14. A Production Efficiency Model-Based Method for Satellite Estimates of Corn and Soybean Yields in the Midwestern US

    Directory of Open Access Journals (Sweden)

    Andrew E. Suyker

    2013-11-01

    Full Text Available Remote sensing techniques that provide synoptic and repetitive observations over large geographic areas have become increasingly important in studying the role of agriculture in global carbon cycles. However, it is still challenging to model crop yields based on remotely sensed data due to the variation in radiation use efficiency (RUE across crop types and the effects of spatial heterogeneity. In this paper, we propose a production efficiency model-based method to estimate corn and soybean yields with MODerate Resolution Imaging Spectroradiometer (MODIS data by explicitly handling the following two issues: (1 field-measured RUE values for corn and soybean are applied to relatively pure pixels instead of the biome-wide RUE value prescribed in the MODIS vegetation productivity product (MOD17; and (2 contributions to productivity from vegetation other than crops in mixed pixels are deducted at the level of MODIS resolution. Our estimated yields statistically correlate with the national survey data for rainfed counties in the Midwestern US with low errors for both corn (R2 = 0.77; RMSE = 0.89 MT/ha and soybeans (R2 = 0.66; RMSE = 0.38 MT/ha. Because the proposed algorithm does not require any retrospective analysis that constructs empirical relationships between the reported yields and remotely sensed data, it could monitor crop yields over large areas.

  15. Fumonisins in conventional and transgenic, insect-resistant maize intended for fuel ethanol production: implications for fermentation efficiency and DDGS co-product quality.

    Science.gov (United States)

    Bowers, Erin L; Munkvold, Gary P

    2014-09-22

    Mycotoxins in maize grain intended for ethanol production are enriched in co-product dried distiller's grains and solubles (DDGS) and may be detrimental to yeast in fermentation. This study was conducted to examine the magnitude of fumonisin enrichment in DDGS and to analyze the impacts of insect injury, Fusarium ear rot severity, and fumonisin contamination on final ethanol yield. Samples of naturally-contaminated grain (0 to 35 mg/kg fumonisins) from field trials conducted in 2008-2011 were fermented and DDGS collected and analyzed for fumonisin content. Ethanol yield (determined gravimetrically) was unaffected by fumonisins in the range occurring in this study, and was not correlated with insect injury or Fusarium ear rot severity. Ethanol production was unaffected in fumonisin B1-spiked grain with concentrations from 0 to 37 mg/kg. Bacillus thuringiensis (Bt) maize often has reduced fumonisins due to its protection from insect injury and subsequent fungal infection. DDGS derived from Bt and non-Bt maize averaged 2.04 mg/kg and 8.25 mg/kg fumonisins, respectively. Fumonisins were enriched by 3.0× for 50 out of 57 hybrid × insect infestation treatment combinations; those seven that differed were fumonisin enrichment in DDGS, with measurements traceable to individual samples. Under significant insect pest pressures, DDGS derived from Bt maize hybrids were consistently lower in fumonisins than DDGS derived from non-Bt hybrids.

  16. Utilization of maize cob biochar and rice husk charcoal as soil amendments for improving acid soil fertility and productivity

    Directory of Open Access Journals (Sweden)

    Nurhidayati

    2014-10-01

    Full Text Available The decline in soil fertility in agricultural land is a major problem that causes a decrease in the production of food crops. One of the causes of the decline in soil fertility is declining soil pH that caused the decline in the availability of nutrients in the soil. This study aimed to assess the influence of alternative liming materials derived from maize cob biochar and rice husk charcoal compared to conventional lime to improve soil pH, soil nutrient availability and maize production. The experiment used a factorial complete randomized design which consisting of two factors. The first factor is the type of soil amendment which consists of three levels (calcite lime, rice husk charcoal and cob maize biochar. The second factor is the application rates of the soil amendment consisted of three levels (3, 6 and 9 t/ha and one control treatment (without soil amendment. The results of this study showed that the application of various soil amendment increased soil pH, which the pH increase of the lime application was relatively more stable over time compared to biochar and husk charcoal. The average of the soil pH increased for each soil amendment by 23% (lime, 20% (rice husk charcoal and 23% (biochar as compared with control. The increase in soil pH can increase the availability of soil N, P and K. The greatest influence of soil pH on nutrient availability was shown by the relationship between soil pH and K nutrient availability with R2 = 0.712, while for the N by R2 = 0.462 and for the P by R2 = 0.245. The relationship between the availability of N and maize yield showed a linear equation. While the relationship between the availability of P and K with the maize yield showed a quadratic equation. The highest maize yield was found in the application of biochar and rice husk charcoal with a dose of 6-9 t/ha. The results of this study suggested that biochar and husk charcoal could be used as an alternative liming material in improving acid soil

  17. Effect of time of maize silage supplementation on herbage intake, milk production, and nitrogen excretion of grazing dairy cows.

    Science.gov (United States)

    Al-Marashdeh, O; Gregorini, P; Edwards, G R

    2016-09-01

    The objective of this study was to evaluate the effect of feeding maize silage at different times before a short grazing bout on dry matter (DM) intake, milk production, and N excretion of dairy cows. Thirty-six Friesian × Jersey crossbred lactating dairy cows were blocked in 9groups of 4 cows by milk solids (sum of protein and fat) production (1.26±0.25kg/d), body weight (466±65kg), body condition score (4±0.48), and days in milk (197±15). Groups were then randomly assigned to 1 of 3 replicates of 3 treatments: control; herbage only, supplemented with 3kg of DM/cow of maize silage after morning milking approximately 9h before pasture allocation (9BH); and supplemented with 3kg of DM/cow of maize silage before afternoon milking approximately 2h before pasture allocation (2BH). Herbage allowance (above the ground level) was 22kg of DM/cow per day for all groups of cows. Cows were allocated to pasture from 1530 to 2030 h. Maize silage DM intake did not differ between treatments, averaging 3kg of DM/cow per day. Herbage DM intake was greater for control than 2BH and 9BH, and greater for 9BH than 2BH (11.1, 10.1, and 10.9kg of DM/cow per day for control, 2BH, and 9BH, respectively). The substitution rate (kilograms of herbage DM per kilograms of maize silage DM) was greater for 2BH (0.47) than 9BH (0.19). Milk solids production was similar between treatments (overall mean 1.2kg/cow per day). Body weight loss tended to be less for supplemented than control cows (-0.95, -0.44, and -0.58kg/cow per day for control, 2BH, and 9BH, respectively). Nitrogen concentration in urine was not affected by supplementation or time of supplementation, but estimated urinary N excretion tended to be greater for control than supplemented cows when urinary N excretion estimated using plasma or milk urea N. At the time of herbage meal, nonesterified fatty acid concentration was greater for control than supplemented cows and greater for 9BH than 2BH (0.58, 0.14, and 0.26mmol/L for

  18. Lactic Acid Production from Pretreated Hydrolysates of Corn Stover by a Newly Developed Bacillus coagulans Strain

    Science.gov (United States)

    Jiang, Ting; Qiao, Hui; Zheng, Zhaojuan; Chu, Qiulu; Li, Xin; Yong, Qiang; Ouyang, Jia

    2016-01-01

    An inhibitor-tolerance strain, Bacillus coagulans GKN316, was developed through atmospheric and room temperature plasma (ARTP) mutation and evolution experiment in condensed dilute-acid hydrolysate (CDH) of corn stover. The fermentabilities of other hydrolysates with B. coagulans GKN316 and the parental strain B. coagulans NL01 were assessed. When using condensed acid-catalyzed steam-exploded hydrolysate (CASEH), condensed acid-catalyzed liquid hot water hydrolysate (CALH) and condensed acid-catalyzed sulfite hydrolysate (CASH) as substrates, the concentration of lactic acid reached 45.39, 16.83, and 18.71 g/L by B. coagulans GKN316, respectively. But for B. coagulans NL01, only CASEH could be directly fermented to produce 15.47 g/L lactic acid. The individual inhibitory effect of furfural, 5-hydroxymethylfurfural (HMF), vanillin, syringaldehyde and p-hydroxybenzaldehyde (pHBal) on xylose utilization by B. coagulans GKN316 was also studied. The strain B. coagulans GKN316 could effectively convert these toxic inhibitors to the less toxic corresponding alcohols in situ. These results suggested that B. coagulans GKN316 was well suited to production of lactic acid from undetoxified lignocellulosic hydrolysates. PMID:26863012

  19. Lactic Acid Production from Pretreated Hydrolysates of Corn Stover by a Newly Developed Bacillus coagulans Strain.

    Science.gov (United States)

    Jiang, Ting; Qiao, Hui; Zheng, Zhaojuan; Chu, Qiulu; Li, Xin; Yong, Qiang; Ouyang, Jia

    2016-01-01

    An inhibitor-tolerance strain, Bacillus coagulans GKN316, was developed through atmospheric and room temperature plasma (ARTP) mutation and evolution experiment in condensed dilute-acid hydrolysate (CDH) of corn stover. The fermentabilities of other hydrolysates with B. coagulans GKN316 and the parental strain B. coagulans NL01 were assessed. When using condensed acid-catalyzed steam-exploded hydrolysate (CASEH), condensed acid-catalyzed liquid hot water hydrolysate (CALH) and condensed acid-catalyzed sulfite hydrolysate (CASH) as substrates, the concentration of lactic acid reached 45.39, 16.83, and 18.71 g/L by B. coagulans GKN316, respectively. But for B. coagulans NL01, only CASEH could be directly fermented to produce 15.47 g/L lactic acid. The individual inhibitory effect of furfural, 5-hydroxymethylfurfural (HMF), vanillin, syringaldehyde and p-hydroxybenzaldehyde (pHBal) on xylose utilization by B. coagulans GKN316 was also studied. The strain B. coagulans GKN316 could effectively convert these toxic inhibitors to the less toxic corresponding alcohols in situ. These results suggested that B. coagulans GKN316 was well suited to production of lactic acid from undetoxified lignocellulosic hydrolysates.

  20. Lactic Acid Production from Pretreated Hydrolysates of Corn Stover by a Newly Developed Bacillus coagulans Strain.

    Directory of Open Access Journals (Sweden)

    Ting Jiang

    Full Text Available An inhibitor-tolerance strain, Bacillus coagulans GKN316, was developed through atmospheric and room temperature plasma (ARTP mutation and evolution experiment in condensed dilute-acid hydrolysate (CDH of corn stover. The fermentabilities of other hydrolysates with B. coagulans GKN316 and the parental strain B. coagulans NL01 were assessed. When using condensed acid-catalyzed steam-exploded hydrolysate (CASEH, condensed acid-catalyzed liquid hot water hydrolysate (CALH and condensed acid-catalyzed sulfite hydrolysate (CASH as substrates, the concentration of lactic acid reached 45.39, 16.83, and 18.71 g/L by B. coagulans GKN316, respectively. But for B. coagulans NL01, only CASEH could be directly fermented to produce 15.47 g/L lactic acid. The individual inhibitory effect of furfural, 5-hydroxymethylfurfural (HMF, vanillin, syringaldehyde and p-hydroxybenzaldehyde (pHBal on xylose utilization by B. coagulans GKN316 was also studied. The strain B. coagulans GKN316 could effectively convert these toxic inhibitors to the less toxic corresponding alcohols in situ. These results suggested that B. coagulans GKN316 was well suited to production of lactic acid from undetoxified lignocellulosic hydrolysates.

  1. Nitrous oxide emissions in cover crop-based corn production systems

    Science.gov (United States)

    Davis, Brian Wesley

    Nitrous oxide (N2O) is a potent greenhouse gas; the majority of N2O emissions are the result of agricultural management, particularly the application of N fertilizers to soils. The relationship of N2O emissions to varying sources of N (manures, mineral fertilizers, and cover crops) has not been well-evaluated. Here we discussed a novel methodology for estimating precipitation-induced pulses of N2O using flux measurements; results indicated that short-term intensive time-series sampling methods can adequately describe the magnitude of these pulses. We also evaluated the annual N2O emissions from corn-cover crop (Zea mays; cereal rye [Secale cereale], hairy vetch [Vicia villosa ], or biculture) production systems when fertilized with multiple rates of subsurface banded poultry litter, as compared with tillage incorporation or mineral fertilizer. N2O emissions increased exponentially with total N rate; tillage decreased emissions following cover crops with legume components, while the effect of mineral fertilizer was mixed across cover crops.

  2. Defatted flaxseed meal incorporated corn-rice flour blend based extruded product by response surface methodology.

    Science.gov (United States)

    Ganorkar, Pravin M; Patel, Jhanvi M; Shah, Vrushti; Rangrej, Vihang V

    2016-04-01

    Considering the evidence of flaxseed and its defatted flaxseed meal (DFM) for human health benefits, response surface methodology (RSM) based on three level four factor central composite rotatable design (CCRD) was employed for the development of DFM incorporated corn - rice flour blend based extruded snack. The effect of DFM fortification (7.5-20 %), moisture content of feed (14-20 %, wb), extruder barrel temperature (115-135 °C) and screw speed (300-330 RPM) on expansion ratio (ER), breaking strength (BS), overall acceptability (OAA) score and water solubility index (WSI) of extrudates were investigated using central composite rotatable design (CCRD). Significant regression models explained the effect of considered variables on all responses. DFM incorporation level was found to be most significant independent variable affecting on extrudates characteristics followed by extruder barrel temperature and then screw rpm. Feed moisture content did not affect extrudates characteristics. As DFM level increased (7.5 % to 20 %), ER and OAA value decreased. However, BS and WSI values were found to increase with increase in DFM level. Based on the defined criteria for numerical optimization, the combination for the production of DFM incorporated extruded snack with desired sensory attributes was achieved by incorporating 10 % DFM (replacing rice flour in flour blend) and by keeping 20 % moisture content, 312 screw rpm and 125 °C barrel temperature.

  3. Ethanol production from hydrothermal pretreated corn stover with a loop reactor

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jian; Thomsen, Mette Hedegaard; Thomsen, Anne Belinda [National Lab for Sustainable Energy, Biosystems Department, Risoe-DTU, P.O. Box 49, DK-4000 Roskilde (Denmark)

    2010-03-15

    Hydrothermal pretreatment on raw corn stover (RCS) with a loop reactor was investigated at 195 C for different times varying between 10 min and 30 min. After pretreatment, the slurry was separated into water-insoluble solid (WIS) and liquid phase. Glucan and xylan were found in the both phases. The pretreatment condition showed a significant impact on xylan recovery. As the pretreatment time prolonged from 10 min to 30 min, the xylan recovery from liquid phase changed between 39.5% and 45.6% and the total xylan recoveries decreased from 84.7% to 61.6%. While the glucan recovery seemed not sensitive to the different pretreatment times. The glucan recovered from liquid was from 4.9% to 5.6% and the total glucan recoveries from all the pretreatments were higher than 98%. Besides HMF and furfural, acetic, lactic, formic and glycolic acids were also found in the liquid phase. All the concentrations of these potential inhibitors were lower enough not to affect the activity of the Saccharomyces cerevisiae (S. cerevisiae). Compared with the ethanol production of 32.4% from the RCS with S. cerevisiae, all the WISs gave higher ethanol productions ranging between 61.2% and 71.2%. When the xylan was taken into consideration, the best pretreatment condition would be 195 C, 15 min and the estimated total ethanol production was 201 g kg{sup -1} RCS by assuming the fermentation of both C-6 and C-5 with the ethanol yield of 0.51 g g{sup -1} and 0.47 g g{sup -1}, respectively. (author)

  4. Ethanol production from hydrothermal pretreated corn stover with a loop reactor

    International Nuclear Information System (INIS)

    Xu, Jian; Thomsen, Mette Hedegaard; Thomsen, Anne Belinda

    2010-01-01

    Hydrothermal pretreatment on raw corn stover (RCS) with a loop reactor was investigated at 195 o C for different times varying between 10 min and 30 min. After pretreatment, the slurry was separated into water-insoluble solid (WIS) and liquid phase. Glucan and xylan were found in the both phases. The pretreatment condition showed a significant impact on xylan recovery. As the pretreatment time prolonged from 10 min to 30 min, the xylan recovery from liquid phase changed between 39.5% and 45.6% and the total xylan recoveries decreased from 84.7% to 61.6%. While the glucan recovery seemed not sensitive to the different pretreatment times. The glucan recovered from liquid was from 4.9% to 5.6% and the total glucan recoveries from all the pretreatments were higher than 98%. Besides HMF and furfural, acetic, lactic, formic and glycolic acids were also found in the liquid phase. All the concentrations of these potential inhibitors were lower enough not to affect the activity of the Saccharomyces cerevisiae (S. cerevisiae). Compared with the ethanol production of 32.4% from the RCS with S. cerevisiae, all the WISs gave higher ethanol productions ranging between 61.2% and 71.2%. When the xylan was taken into consideration, the best pretreatment condition would be 195 o C, 15 min and the estimated total ethanol production was 201 g kg -1 RCS by assuming the fermentation of both C-6 and C-5 with the ethanol yield of 0.51 g g -1 and 0.47 g g -1 , respectively.

  5. Assessing the impact of future climate extremes on the US corn and soybean production

    Science.gov (United States)

    Jin, Z.

    2015-12-01

    Future climate changes will place big challenges to the US agricultural system, among which increasing heat stress and precipitation variability were the two major concerns. Reliable prediction of crop productions in response to the increasingly frequent and severe extreme climate is a prerequisite for developing adaptive strategies on agricultural risk management. However, the progress has been slow on quantifying the uncertainty of computational predictions at high spatial resolutions. Here we assessed the risks of future climate extremes on the US corn and soybean production using the Agricultural Production System sIMulator (APSIM) model under different climate scenarios. To quantify the uncertainty due to conceptual representations of heat, drought and flooding stress in crop models, we proposed a new strategy of algorithm ensemble in which different methods for simulating crop responses to those extreme climatic events were incorporated into the APSIM. This strategy allowed us to isolate irrelevant structure differences among existing crop models but only focus on the process of interest. Future climate inputs were derived from high-spatial-resolution (12km × 12km) Weather Research and Forecasting (WRF) simulations under Representative Concentration Pathways 4.5 (RCP 4.5) and 8.5 (RCP 8.5). Based on crop model simulations, we analyzed the magnitude and frequency of heat, drought and flooding stress for the 21st century. We also evaluated the water use efficiency and water deficit on regional scales if farmers were to boost their yield by applying more fertilizers. Finally we proposed spatially explicit adaptation strategies of irrigation and fertilizing for different management zones.

  6. Effects of No-tillage Combined with Reused Plastic Film Mulching on Maize Yield and Irrigation Water Productivity

    Directory of Open Access Journals (Sweden)

    SU Yong-zhong

    2016-09-01

    Full Text Available A field experiment was conducted to determine the effects of reused plastic film mulching and no-tillage on maize yield and irriga-tion water productivity(IWP in the marginal oasis in the middle of Hexi Corridor region of northwestern China. The aim is to provide an alternative tillage and cultivation pattern for reducing plastic film pollution, saving cost and increasing income, and improving resource use efficiency. The field experiment was carried out in three soils with different textures and fertility levels. Three treatments for each soil were set up:(1 conventional tillage,winter irrigation, and new plastic mulching cultivation(NM;(2 no tillage, less winter irrigation and reused plastic mulching cultivation (RM;(3 no tillage, less winter irrigation and reused plastic mulching combined with straw mulching (RMS. The results showed that the average daily soil temperature in the two reused plastic mulching treatment(RM and RMS during maize sowing and elongation stage was lower 0.6~1.0℃(5 cm depth and 0.5~0.8℃(15 cm depth than that in the NM. This result suggested that no tillage and reused plastic mulching cultivation still had the effect of increasing soil temperature. Maize grain yield in the RM was reduced by 4.4%~10.6% compared with the conventional cultivation(NM, while the net income increased due to saving in plastic film and tillage ex-penses. There was no significant difference in maize grain yield between the RMS and NM treatment, but the net income in the RMS was in-creased by 12.5%~17.1% than that in the NM. Compared with the NM, the two reused plastic film mulching treatments (RM and RMS decreased the volume of winter irrigation, but maize IWP increased. Soil texture and fertility level affected significantly maize nitrogen uptake and IWP. In the arid oases with the shortage of water resources, cultivation practices of conservation tillage with recycle of plastic film is an ideal option for saving cost and increasing income

  7. Influence of Soil Tillage Systems on Soil Respiration and Production on Wheat, Maize and Soybean Crop

    Science.gov (United States)

    Moraru, P. I.; Rusu, T.

    2012-04-01

    Soil respiration leads to CO2 emissions from soil to the atmosphere, in significant amounts for the global carbon cycle. Soil capacity to produce CO2 varies depending on soil, season, intensity and quality of agrotechnical tillage, soil water, cultivated plant, fertilizer etc. The data presented in this paper were obtained on argic-stagnic Faeoziom (SRTS, 2003). These areas were was our research, presents a medium multiannual temperature of 8.20C, medium of multiannual rain drowns: 613 mm. The experimental variants chosen were: A. Conventional system (CS): V1-reversible plough (22-25 cm)+rotary grape (8-10 cm); B. Minimum tillage system (MT): V2 - paraplow (18-22 cm) + rotary grape (8-10 cm); V3 - chisel (18-22 cm) + rotary grape (8-10 cm);V4 - rotary grape (10-12 cm); C. No-Tillage systems (NT): V5 - direct sowing. The experimental design was a split-plot design with three replications. In one variant the area of a plot was 300 m2. The experimental variants were studied in the 3 years crop rotation: maize - soy-bean - autumn wheat. To soil respiration under different tillage practices, determinations were made for each crop in four vegetative stages (spring, 5-6 leaves, bean forming, harvest) using ACE Automated Soil CO2 Exchange System. Soil respiration varies throughout the year for all three crops of rotation, with a maximum in late spring (1383 to 2480 mmoli m-2s-1) and another in fall (2141 to 2350 mmoli m-2s-1). The determinations confirm the effect of soil tillage system on soil respiration, the daily average is lower at NT (315-1914 mmoli m-2s-1), followed by MT (318-2395 mmoli m-2s-1) and is higher in the CS (321-2480 mmol m-2s-1). Productions obtained at MT and NT don't have significant differences at wheat and are higher at soybean. The differences in crop yields are recorded at maize and can be a direct consequence of loosening, mineralization and intensive mobilization of soil fertility. Acknowledgments: This work was supported by CNCSIS

  8. The critical role of extreme heat for maize production in the United States

    Science.gov (United States)

    Lobell, David B.; Hammer, Graeme L.; McLean, Greg; Messina, Carlos; Roberts, Michael J.; Schlenker, Wolfram

    2013-05-01

    Statistical studies of rainfed maize yields in the United States and elsewhere have indicated two clear features: a strong negative yield response to accumulation of temperatures above 30°C (or extreme degree days (EDD)), and a relatively weak response to seasonal rainfall. Here we show that the process-based Agricultural Production Systems Simulator (APSIM) is able to reproduce both of these relationships in the Midwestern United States and provide insight into underlying mechanisms. The predominant effects of EDD in APSIM are associated with increased vapour pressure deficit, which contributes to water stress in two ways: by increasing demand for soil water to sustain a given rate of carbon assimilation, and by reducing future supply of soil water by raising transpiration rates. APSIM computes daily water stress as the ratio of water supply to demand, and during the critical month of July this ratio is three times more responsive to 2°C warming than to a 20% precipitation reduction. The results suggest a relatively minor role for direct heat stress on reproductive organs at present temperatures in this region. Effects of elevated CO2 on transpiration efficiency should reduce yield sensitivity to EDD in the coming decades, but at most by 25%.

  9. Dynamic Maize Responses to Aphid Feeding Are Revealed by a Time Series of Transcriptomic and Metabolomic Assays1[OPEN

    Science.gov (United States)

    Tzin, Vered; Fernandez-Pozo, Noe; Richter, Annett; Schmelz, Eric A.; Schoettner, Matthias; Schäfer, Martin; Ahern, Kevin R.; Meihls, Lisa N.; Kaur, Harleen; Huffaker, Alisa; Mori, Naoki; Degenhardt, Joerg; Mueller, Lukas A.; Jander, Georg

    2015-01-01

    As a response to insect attack, maize (Zea mays) has inducible defenses that involve large changes in gene expression and metabolism. Piercing/sucking insects such as corn leaf aphid (Rhopalosiphum maidis) cause direct damage by acquiring phloem nutrients as well as indirect damage through the transmission of plant viruses. To elucidate the metabolic processes and gene expression changes involved in maize responses to aphid attack, leaves of inbred line B73 were infested with corn leaf aphids for 2 to 96 h. Analysis of infested maize leaves showed two distinct response phases, with the most significant transcriptional and metabolic changes occurring in the first few hours after the initiation of aphid feeding. After 4 d, both gene expression and metabolite profiles of aphid-infested maize reverted to being more similar to those of control plants. Although there was a predominant effect of salicylic acid regulation, gene expression changes also indicated prolonged induction of oxylipins, although not necessarily jasmonic acid, in aphid-infested maize. The role of specific metabolic pathways was confirmed using Dissociator transposon insertions in maize inbred line W22. Mutations in three benzoxazinoid biosynthesis genes, Bx1, Bx2, and Bx6, increased aphid reproduction. In contrast, progeny production was greatly decreased by a transposon insertion in the single W22 homolog of the previously uncharacterized B73 terpene synthases TPS2 and TPS3. Together, these results show that maize leaves shift to implementation of physical and chemical defenses within hours after the initiation of aphid feeding and that the production of specific metabolites can have major effects in maize-aphid interactions. PMID:26378100

  10. Effect of progressive drought stress on growth, leaf gas exchange, and antioxidant production in two maize cultivars.

    Science.gov (United States)

    Anjum, Shakeel Ahmad; Tanveer, Mohsin; Ashraf, Umair; Hussain, Saddam; Shahzad, Babar; Khan, Imran; Wang, Longchang

    2016-09-01

    Drought stress is one of the major environmental factors responsible for reduction in crop productivity. In the present study, responses of two maize cultivars (Rung Nong 35 and Dong Dan 80) were examined to explicate the growth, yield, leaf gas exchange, leaf water contents, osmolyte accumulation, membrane lipid peroxidation, and antioxidant activity under progressive drought stress. Maize cultivars were subjected to varying field capacities (FC) viz., well-watered (80 % FC) and drought-stressed (35 % FC) at 45 days after sowing. The effects of drought stress were analyzed at 5, 10, 15, 20, ad 25 days after drought stress (DAS) imposition. Under prolonged drought stress, Rung Nong 35 exhibited higher reduction in growth and yield as compared to Dong Dan 80. Maize cultivar Dong Dan 80 showed higher leaf relative water content (RWC), free proline, and total carbohydrate accumulation than Run Nong 35. Malondialdehyde (MDA) and superoxide anion were increased with prolongation of drought stress, with higher rates in cultivar Run Nong 35 than cultivar Dong Dan 80. Higher production of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) and glutathione reductase (GR) resulted in improved growth and yield in Dong Dan 80. Overall, the cultivar Dong Dan 80 was better able to resist the detrimental effects of progressive drought stress as indicated by better growth and yield due to higher antioxidant enzymes, reduced lipid peroxidation, better accumulation of osmolytes, and maintenance of tissue water contents.

  11. Environmental Performance of Miscanthus, Switchgrass and Maize: Can C4 Perennials Increase the Sustainability of Biogas Production?

    Directory of Open Access Journals (Sweden)

    Andreas Kiesel

    2016-12-01

    Full Text Available Biogas is considered a promising option for complementing the fluctuating energy supply from other renewable sources. Maize is currently the dominant biogas crop, but its environmental performance is questionable. Through its replacement with high-yielding and nutrient-efficient perennial C4 grasses, the environmental impact of biogas could be considerably improved. The objective of this paper is to assess and compare the environmental performance of the biogas production and utilization of perennial miscanthus and switchgrass and annual maize. An LCA was performed using data from field trials, assessing the impact in the five categories: climate change (CC, fossil fuel depletion (FFD, terrestrial acidification (TA, freshwater eutrophication (FE and marine eutrophication (ME. A system expansion approach was adopted to include a fossil reference. All three crops showed significantly lower CC and FFD potentials than the fossil reference, but higher TA and FE potentials, with nitrogen fertilizer production and fertilizer-induced emissions identified as hot spots. Miscanthus performed best and changing the input substrate from maize to miscanthus led to average reductions of −66% CC; −74% FFD; −63% FE; −60% ME and −21% TA. These results show that perennial C4 grasses and miscanthus in particular have the potential to improve the sustainability of the biogas sector.

  12. Projected Climate Impacts to South African Maize and Wheat Production in 2055: A Comparison of Empirical and Mechanistic Modeling Approaches

    Science.gov (United States)

    Estes, Lyndon D.; Beukes, Hein; Bradley, Bethany A.; Debats, Stephanie R.; Oppenheimer, Michael; Ruane, Alex C.; Schulze, Roland; Tadross, Mark

    2013-01-01

    Crop model-specific biases are a key uncertainty affecting our understanding of climate change impacts to agriculture. There is increasing research focus on intermodel variation, but comparisons between mechanistic (MMs) and empirical models (EMs) are rare despite both being used widely in this field. We combined MMs and EMs to project future (2055) changes in the potential distribution (suitability) and productivity of maize and spring wheat in South Africa under 18 downscaled climate scenarios (9 models run under 2 emissions scenarios). EMs projected larger yield losses or smaller gains than MMs. The EMs' median-projected maize and wheat yield changes were 3.6% and 6.2%, respectively, compared to 6.5% and 15.2% for the MM. The EM projected a 10% reduction in the potential maize growing area, where the MM projected a 9% gain. Both models showed increases in the potential spring wheat production region (EM = 48%, MM = 20%), but these results were more equivocal because both models (particularly the EM) substantially overestimated the extent of current suitability. The substantial water-use efficiency gains simulated by the MMs under elevated CO2 accounted for much of the EMMM difference, but EMs may have more accurately represented crop temperature sensitivities. Our results align with earlier studies showing that EMs may show larger climate change losses than MMs. Crop forecasting efforts should expand to include EMMM comparisons to provide a fuller picture of crop-climate response uncertainties.

  13. Bioethanol production from corn stover residues. Process design and Life Cycle Assessment

    International Nuclear Information System (INIS)

    De Bari, I.; Dinnino, G.; Braccio, G.

    2008-01-01

    In this report, the mass and energy balance along with a land-to-wheel Life Cycle Assessment (LCA) is described for a corn stover-to-ethanol industrial process assumed to consist of the main technologies being researched at ENEA TRISAIA: pretreatment by steam explosion and enzymatic hydrolysis. The modelled plant has a processing capacity of 60kt/y (dimensioned on realistic supplying basins of residues in Italy); biomass is pre-treated by acid catalyzed-steam explosion; cellulose and hemicelluloses are hydrolyzed and separately fermented; enzymes are on-site produced. The main target was to minimize the consumption of fresh water, enzymes and energy. The results indicate that the production of 1kg bio ethanol (95.4 wt%) requires 3.5 kg biomass dry matter and produces an energy surplus up to 740 Wh. The main purpose of the LCA analysis was to assess the environmental impact of the entire life cycle from the bio ethanol production up to its end-use as E10 blended gasoline. Boustead Model was used as tool to compile the life cycle inventory. The results obtained and discussed in this reports suffer of some limitations deriving from the following main points: some process yields have been extrapolated according to optimistic development scenarios; the energy and steam recovery could be lower than that projected because of lacks in the real systems; water recycle could be limited by the yeast tolerance toward the potential accumulation of toxic compounds. Nevertheless, the detailed process analysis here provided has its usefulness in: showing the challenging targets (even if they are ambitious) to bet on to make the integrated process feasible; driving the choice of the most suitable technologies to bypass some process bottlenecks [it

  14. Experimental co-digestion of corn stalk and vermicompost to improve biogas production

    International Nuclear Information System (INIS)

    Chen Guangyin; Zheng Zheng; Yang Shiguan; Fang Caixia; Zou Xingxing; Luo Yan

    2010-01-01

    Anaerobic co-digestion of corn stalk and vermicompost (VC) as well as mono-digestion of corn stalk were investigated. Batch mono-digestion experiments were performed at 35 ± 1 o C and initial total solid loading (TSL) ranged from 1.2% to 6.0%. Batch co-digestion experiments were performed at 35 ± 1 o C and initial TSL of 6% with VC proportions ranged from 20% to 80% of total solid (TS). For mono-digestion of corn stalk, a maximum methane yield of 217.60 ± 13.87 mL/g TS added was obtained at initial TSL of 4.8%, and acidification was found at initial TSL of 6.0% with the lowest pH value of 5.10 on day 4. Co-digestion improved the methane yields by 4.42-58.61% via enhancing volatile fatty acids (VFAs) concentration and pH value compared with mono-digestion of corn stalk. The maximum biogas yield of 410.30 ± 11.01 mL/g TS added and methane yield of 259.35 ± 13.85 mL/g TS added were obtained for 40% VC addition. Structure analysis by X-ray diffractometry (XRD) showed that the lowest crystallinity of 35.04 of digested corn stalk was obtained from co-digestion with 40% VC, which decreased 29.4% compared to 49.6 obtained from un-treated corn stalk. It is concluded that co-digestion with VC is beneficial for improving biodigestibility and methane yield from corn stalk.

  15. Greenhouse gas emission of biogas production out of silage maize and sugar beet – An assessment along the entire production chain

    International Nuclear Information System (INIS)

    Jacobs, Anna; Auburger, Sebastian; Bahrs, Enno; Brauer-Siebrecht, Wiebke; Christen, Olaf; Götze, Philipp; Koch, Heinz-Josef; Rücknagel, Jan; Märländer, Bernward

    2017-01-01

    Highlights: • GHG-emission, bioenergy yield, GHG-saving potential based on field trial data. • Results complement the absence of default values, especially for sugar beet. • Results represent Central European conditions of crop and biogas production. - Abstract: The study delivers values on greenhouse gas (GHG)-emission via cultivation of silage maize and sugar beet and of GHG-saving potential of electricity produced from biogas out of both biomass crops. Data are based on three rainfed crop rotation field trials in Germany (2011–2014) representative for Central Europe and can serve as default values. It was found that GHG-emission via crop cultivation was driven mainly by nitrous oxide emission from soil and mineral N-fertilizer use and was 2575–3390 kg carbon dioxide equivalents (CO_2eq) per hectare for silage maize and 2551–2852 kg CO_2eq ha"−"1 for sugar beet (without biogas digestate application). Integrating a GHG-credit for surplus N in the biogas digestate reduced total GHG-emission via crop cultivation to 65–69% for silage maize but only to 84–97% for sugar beet. The GHG-saving potential of electricity production from biogas was calculated for three biogas plants differing in technical characteristics. The GHG-saving potentials were generally >70% (silage maize: 78–80%, sugar beet: 72–76%) and the authors concluded that the technical setting of the biogas plant had a slight impact only. Overall, the authors assumed that the major potential for GHG-emission's reduction along the bioenergy production chain were N-management during crop cultivation and methane losses at the biogas plant. Finally, sugar beet, if cultivated in crop rotation, was shown to be an efficient alternative to silage maize as a biomass crop in order to achieve a higher diversity in biomass crop cultivation.

  16. Factors Controlling Pre-Columbian and Early Historic Maize Productivity in the American Southwest, Part 1: The Southern Colorado Plateau and Rio Grande Regions

    Science.gov (United States)

    Benson, L.V.

    2011-01-01

    Maize is the New World's preeminent grain crop and it provided the economic basis for human culture in many regions within the Americas. To flourish, maize needs water, sunlight (heat), and nutrients (e. g., nitrogen). In this paper, climate and soil chemistry data are used to evaluate the potential for dryland (rainon-field) agriculture in the semiarid southeastern Colorado Plateau and Rio Grande regions. Processes that impact maize agriculture such as nitrogen mineralization, infiltration of precipitation, bare soil evaporation, and transpiration are discussed and evaluated. Most of the study area, excepting high-elevation regions, receives sufficient solar radiation to grow maize. The salinities of subsurface soils in the central San Juan Basin are very high and their nitrogen concentrations are very low. In addition, soils of the central San Juan Basin are characterized by pH values that exceed 8.0, which limit the availability of both nitrogen and phosphorous. In general, the San Juan Basin, including Chaco Canyon, is the least promising part of the study area in terms of dryland farming. Calculations of field life, using values of organic nitrogen for the upper 50 cm of soil in the study area, indicate that most of the study area could not support a 10-bushel/acre crop of maize. The concepts, methods, and calculations used to quantify maize productivity in this study are applicable to maize cultivation in other environmental settings across the Americas. ?? 2010 US Government.

  17. Assessment of dietary ratios of red clover and corn silages on milk production and milk quality in dairy cows.

    Science.gov (United States)

    Moorby, J M; Ellis, N M; Davies, D R

    2016-10-01

    Twenty-four multiparous Holstein-Friesian dairy cows were used in a replicated 3×3 Latin square changeover design experiment to test the effects of changing from corn (Zea mays) silage to red clover (Trifolium pratense) silage in graded proportions on feed intakes, milk production, and whole-body N and P partitioning. Three dietary treatments with ad libitum access to 1 of 3 forage mixtures plus a standard allowance of 4kg/d dairy concentrates were offered. The 3 treatment forage mixtures were, on a dry matter (DM) basis: (1) R10: 90% corn silage and 10% red clover silage, (2) R50: 50% corn silage and 50% red clover silage, and (3) R90: 10% corn silage and 90% red clover silage. In each of 3 experimental periods, there were 21d for adaptation to diets, and 7d for measurements. Diet crude protein intakes increased, and starch intakes decreased, as the silage mixture changed from 90% corn to 90% red clover, although the highest forage DM intakes and milk yields were achieved on diet R50. Although milk fat yields were unaffected by diet, milk protein yields were highest with the R 0250 diet. Whole-body partitioning of N was measured in a subset of cows (n=9), and both the daily amount and proportion of N consumed that was excreted in feces and urine increased as the proportion of red clover silage in the diet increased. However, the apparent efficiency of utilization of feed N for milk protein production decreased from 0.33g/g for diet R10 to 0.25g/g for diet R90. The urinary excretion of purine derivatives (sum of allantoin and uric acid) tended to increase, suggesting greater flow of microbial protein from the rumen, as the proportion of red clover silage in the diet increased, and urinary creatinine excretion was affected by diet. Fecal shedding of E. coli was not affected by dietary treatment. In conclusion, even though microbial protein flow may have been greatest from the R 0450 diet, optimum feed intakes and milk yields were achieved on a diet that contained a

  18. Metodologias analíticas para determinação das fumonisinas em milho e alimentos à base de milho Analitycal metodologies for the determination of fumonisins in maize and maize-based food products

    Directory of Open Access Journals (Sweden)

    Celeste M. Lino

    2006-04-01

    Full Text Available Fumonisins are mycotoxins occurring worldwide, mainly in maize and maize-based food products, which could affect animal and human health. This paper reviews analytical methodologies for the determination of these fungal toxins in foods. It includes extraction, cleanup, derivatization procedures, detection, quantification, and confirmation procedures. Initial attempts at gas chromatographic methods and thin layer chromatography were supplanted by liquid chromatographic methods, mainly performed with fluorometric detection, or mass spectrometry detection, enabling the analysis of polar and thermolabile chemicals without chemical derivatization, which results in lower limits of detection. Alternative methods, such as enzyme linked immunosorbent assay or zone capillary zone electrophoresis, are also described.

  19. Woody legume fallow productivity, biological N2-fixation and residual benefits to two successive maize crops in Zimbabwe

    NARCIS (Netherlands)

    Chikowo, R.; Mapfumo, P.; Nyamugafata, P.; Giller, K.E.

    2004-01-01

    Three woody legumes were planted as two-year 'improved fallows' to evaluate their residual nitrogen (N) effects on two subsequent maize crops under minimum and conventional tillage management. Maize monoculture and cowpea-maize-maize sequence treatments were included as controls. N-2-fixation was

  20. Development of corn silk as a biocarrier for Zymomonas mobilis biofilms in ethanol production from rice straw.

    Science.gov (United States)

    Todhanakasem, Tatsaporn; Tiwari, Rashmi; Thanonkeo, Pornthap

    2016-01-01

    Z. mobilis cell immobilization has been proposed as an effective means of improving ethanol production. In this work, polystyrene and corn silk were used as biofilm developmental matrices for Z. mobilis ethanol production with rice straw hydrolysate as a substrate. Rice straw was hydrolyzed by dilute sulfuric acid (H2SO4) and enzymatic hydrolysis. The final hydrolysate contained furfural (271.95 ± 76.30 ppm), 5-hydroxymethyl furfural (0.07 ± 0.00 ppm), vanillin (1.81 ± 0.00 ppm), syringaldehyde (5.07 ± 0.83 ppm), 4-hydroxybenzaldehyde (4-HB) (2.39 ± 1.20 ppm) and acetic acid (0.26 ± 0.08%). Bacterial attachment or biofilm formation of Z. mobilis strain TISTR 551 on polystyrene and delignified corn silk carrier provided significant ethanol yields. Results showed up to 0.40 ± 0.15 g ethanol produced/g glucose consumed when Z. mobilis was immobilized on a polystyrene carrier and 0.51 ± 0.13 g ethanol produced/g glucose consumed when immobilized on delignified corn silk carrier under batch fermentation by Z. mobilis TISTR 551 biofilm. The higher ethanol yield from immobilized, rather than free living, Z. mobilis could possibly be explained by a higher cell density, better control of anaerobic conditions and higher toxic tolerance of Z. mobilis biofilms over free cells.

  1. Corn industrial wastewater (nejayote): a promising substrate in Mexico for methane production in a coupled system (APCR-UASB).

    Science.gov (United States)

    España-Gamboa, Elda; Domínguez-Maldonado, Jorge Arturo; Tapia-Tussell, Raul; Chale-Canul, Jose Silvano; Alzate-Gaviria, Liliana

    2018-01-01

    In Mexico, the corn tortilla is a food of great economic importance. Corn tortilla production generates about 1500-2000 m 3 of wastewater per 600 tons of processed corn. Although this wastewater (also known as nejayote) has a high organic matter content, few studies in Mexico have analyzed its treatment. This study presents fresh data on the potential methane production capacity of nejayote in a two-phase anaerobic digestion system using an Anaerobic-Packed Column Reactor (APCR) to optimize the acidogenic phase and an up-flow anaerobic sludge blanket (UASB) reactor to enhance the methanogenic process. Results indicate that day 8 was ideal to couple the APCR to the UASB reactor. This allowed for a 19-day treatment that yielded 96% COD removal and generated a biogas containing 84% methane. The methane yield was 282 L kg -1 of COD removed . Thus, two-phase anaerobic digestion is an efficient process to treat nejayote; furthermore, this study demonstrated the possibility of using an industrial application by coupling the APCR to the UASB reactor system, in order to assess its feasibility for biomethane generation as a sustainable bioenergy source.

  2. Possible effects of the Worldwide production of ethanol in two of the main countries that imports corn. South Korea and Mexico

    Directory of Open Access Journals (Sweden)

    Saúl Martínez González

    2010-01-01

    Full Text Available South Korea is the second largest importer of corn and Mexico is the third. Although the corn has its origin in this country, since 1994 Mexico has become one of the major importers in the world. This essay examines the possible economic implications for Mexico and Korea for the increased production of ethanol from corn. The analysis parts of the close relationship of three interconnected problems, which are at the root of the current energy crisis: global warming, oil crisis and biofuel production. This is causing a global food crisis. The production of ethanol from corn is emerging as an alternative that may address global warming and attacking the alleged shortage of oil, which has resulted in rising prices. The point in discussion is what are the possible effects of policies to induce the production of biofuels (ethanol on the main importers of corn. That’s why the current status of the ethanol industry is analyzed, whose main protagonists on the world stage are the United States and Brazil. Then we made a brief analysis of the market of corn. Finally, based on the foregoing, we reflect on the possible implications it might have on the development of food production of etanol.

  3. The Food Safety of Livestock Products (Meatball, Corned Beef, Beef Burger and Sausage Studied from Heavy Metal Residues Contamination

    Directory of Open Access Journals (Sweden)

    E Harlia

    2010-01-01

    Full Text Available The aims of animal husbandry improvements are to increase both the quality and the quantity of livestock production and to ensure the safety of the product. It is necessarry for consumers to pay attention to the food safety of livestock product because it is related to human's health. The research was conducted to determine the food safety of livestock product condition by detecting heavy metal residues on several food products from livestock like meatball, corned beef, burger’s beef, and sausages. This research was explored by using survey's method and purposive technique sampling, then the resulted data were descriptively analyzed. The observed variables were heavy metal contents such as Plumbum (Pb and Cadmium (Cd in which being measured by using AAS (Atomic Absorption Spectrophotometri . The result showed that in general, heavy metal residue of Pb from several livestock products (meatball, corned beef, beef burger, and sausages were smaller than Maximum Residue Limit (MRL, while the Cd’s residue was partly over the MRL concentration, therefore further action has to be taken as it affects the human's health. (Animal Production 12(1: 50-54 (2010 Key words : food safety, MRL, heavy metal Pb, Cd.

  4. Mucuna pruriens and its effect on the productivity of sweet corn (Zea mays L.

    Directory of Open Access Journals (Sweden)

    Oscar Eduardo Sanclemente Reyes

    2013-10-01

    Full Text Available The nitrogen contribution to the soil Typic Haplustalfs through the species Mucuna pruriens as a green manure and cover crop, and its effects on sweet corn yield were evaluated. There was a max fixation in the soil of 201 kg ha-1 which contrasted with the control. The treatment using the green manure and compost 2.5 t ha-1 and chemical fertilizer 125 kg ha-1 obtained the highest yield of dry corn grain 7 t ha-1 which is con­sidered very high for this agro ecological zone. The use of compost and fertilizer synthesis as a cover had no significant effect on the corn yield, possibly due to its dynamic losses.

  5. Fully-Automated High-Throughput NMR System for Screening of Haploid Kernels of Maize (Corn by Measurement of Oil Content.

    Directory of Open Access Journals (Sweden)

    Hongzhi Wang

    Full Text Available One of the modern crop breeding techniques uses doubled haploid plants that contain an identical pair of chromosomes in order to accelerate the breeding process. Rapid haploid identification method is critical for large-scale selections of double haploids. The conventional methods based on the color of the endosperm and embryo seeds are slow, manual and prone to error. On the other hand, there exists a significant difference between diploid and haploid seeds generated by high oil inducer, which makes it possible to use oil content to identify the haploid. This paper describes a fully-automated high-throughput NMR screening system for maize haploid kernel identification. The system is comprised of a sampler unit to select a single kernel to feed for measurement of NMR and weight, and a kernel sorter to distribute the kernel according to the measurement result. Tests of the system show a consistent accuracy of 94% with an average screening time of 4 seconds per kernel. Field test result is described and the directions for future improvement are discussed.

  6. Fully-Automated High-Throughput NMR System for Screening of Haploid Kernels of Maize (Corn) by Measurement of Oil Content

    Science.gov (United States)

    Xu, Xiaoping; Huang, Qingming; Chen, Shanshan; Yang, Peiqiang; Chen, Shaojiang; Song, Yiqiao

    2016-01-01

    One of the modern crop breeding techniques uses doubled haploid plants that contain an identical pair of chromosomes in order to accelerate the breeding process. Rapid haploid identification method is critical for large-scale selections of double haploids. The conventional methods based on the color of the endosperm and embryo seeds are slow, manual and prone to error. On the other hand, there exists a significant difference between diploid and haploid seeds generated by high oil inducer, which makes it possible to use oil content to identify the haploid. This paper describes a fully-automated high-throughput NMR screening system for maize haploid kernel identification. The system is comprised of a sampler unit to select a single kernel to feed for measurement of NMR and weight, and a kernel sorter to distribute the kernel according to the measurement result. Tests of the system show a consistent accuracy of 94% with an average screening time of 4 seconds per kernel. Field test result is described and the directions for future improvement are discussed. PMID:27454427

  7. Photosynthetic properties of erect leaf maize inbred lines as the efficient photo-model in breeding and seed production

    Directory of Open Access Journals (Sweden)

    Radenović Čedomir N.

    2003-01-01

    Full Text Available The initial idea of this study was a hypothesis that erect leaf maize inbred lines were characterized by properties of an efficient photo-model and that as such were very desirable in increasing the number of plants per area unit (plant density in the process of contemporary selection and seed production. The application of a non-invasive bioluminescence-photosynthetic method, suitable for the efficiency estimation of the photo-model, verified the hypothesis. Obtained photosynthetic properties of observed erect leaf maize inbred lines were based on the effects and characteristics of thermal processes of delayed chlorophyll fluorescence occurring in their thylakoid membranes. The temperature dependence of the delayed chlorophyll fluorescence intensity phase transitions (critical temperatures in the thylakoid membranes and activation energy are the principal parameters of the thermal processes. Based on obtained photosynthetic properties it is possible to select erect leaf maize inbred lines that are resistant and tolerant to high and very high temperatures, as well as, to drought. They could be good and efficient photo-models wherewith.

  8. Presence and biological activity of antibiotics used in fuel ethanol and corn co-product production.

    Science.gov (United States)

    Compart, D M Paulus; Carlson, A M; Crawford, G I; Fink, R C; Diez-Gonzalez, F; Dicostanzo, A; Shurson, G C

    2013-05-01

    Antibiotics are used in ethanol production to control bacteria from competing with yeast for nutrients during starch fermentation. However, there is no published scientific information on whether antibiotic residues are present in distillers grains (DG), co-products from ethanol production, or whether they retain their biological activity. Therefore, the objectives of this study were to quantify concentrations of various antibiotic residues in DG and determine whether residues were biologically active. Twenty distillers wet grains and 20 distillers dried grains samples were collected quarterly from 9 states and 43 ethanol plants in the United States. Samples were analyzed for DM, CP, NDF, crude fat, S, P, and pH to describe the nutritional characteristics of the samples evaluated. Samples were also analyzed for the presence of erythromycin, penicillin G, tetracycline, tylosin, and virginiamycin M1, using liquid chromatography and mass spectrometry. Additionally, virginiamycin residues were determined, using a U.S. Food and Drug Administration-approved bioassay method. Samples were extracted and further analyzed for biological activity by exposing the sample extracts to 10(4) to 10(7) CFU/mL concentrations of sentinel bacterial strains Escherichia coli ATCC 8739 and Listeria monocytogenes ATCC 19115. Extracts that inhibited bacterial growth were considered to have biological activity. Physiochemical characteristics varied among samples but were consistent with previous findings. Thirteen percent of all samples contained low (≤1.12 mg/kg) antibiotic concentrations. Only 1 sample extract inhibited growth of Escherichia coli at 10(4) CFU/mL, but this sample contained no detectable concentrations of antibiotic residues. No extracts inhibited Listeria monocytogenes growth. These data indicate that the likelihood of detectable concentrations of antibiotic residues in DG is low; and if detected, they are found in very low concentrations. The inhibition in only 1 DG

  9. Development by extrusion of soyabari snack sticks: a nutritionally improved soya-maize product based on the Nigerian snack (kokoro).

    Science.gov (United States)

    Omueti, O; Morton, I D

    1996-01-01

    A nutritionally improved local snack compared to existing kokoro has been developed by extrusion cooking of different formulations of maize, soybean and condiments such as pepper, onion, salt, palm oil, plantain and banana. The improved snack was named as the 'soyabari snack stick'. The chemical composition of representative extruded products indicates a high level of crude protein, fat, energy, available lysine and improved in vitro digestibility compared to the usual maize-based products. The level of stachyose and raffinose were greatly reduced in the extruded products compared to raw soya. Formulations using various additives yielded products suitable for different consumers' preferences such as hot, sweet, bland, gritty or crispy and acceptable to taste assessors. Soyabari snack sticks were equally acceptable as Bombay mix, a product on the market in London. Sensory analysis showed no significant differences in the two products but the crude fibre content of Bombay mix was higher while the protein was slightly lower than for soyabari sticks. Local ingredients can produce acceptable extrudates.

  10. A mutation of Aspergillus niger for hyper-production of citric acid from corn meal hydrolysate in a bioreactor*

    Science.gov (United States)

    Hu, Wei; Liu, Jing; Chen, Ji-hong; Wang, Shu-yang; Lu, Dong; Wu, Qing-hua; Li, Wen-jian

    2014-01-01

    The properties of the screened mutants for hyper-production of citric acid induced by carbon (12C6+) ion beams and X-ray irradiation were investigated in our current study. Among these mutants, mutant H4002 screened from 12C6+ ion irradiation had a higher yield of citric acid production than the parental strain in a 250-ml shaking flash. These expanded submerged experiments in a bioreactor were also carried out for mutant H4002. The results showed that (177.7–196.0) g/L citric acid was accumulated by H4002 through exploiting corn meal hydrolysate (containing initial 200.0–235.7 g/L sugar) with the productivity of (2.96–3.27) g/(L∙h). This was especially true when the initial sugar concentration was 210 g/L, and the best economical citric acid production reached (187.5±0.7) g/L with a productivity of 3.13 g/(L∙h). It was observed that mutant H4002 can utilize low-cost corn meal as a feedstock to efficiently produce citric acid. These results imply that the H4002 strain has the industrial production potentiality for citric acid and offers strong competition for the citric acid industry. PMID:25367793

  11. A mutation of Aspergillus niger for hyper-production of citric acid from corn meal hydrolysate in a bioreactor.

    Science.gov (United States)

    Hu, Wei; Liu, Jing; Chen, Ji-hong; Wang, Shu-yang; Lu, Dong; Wu, Qing-hua; Li, Wen-jian

    2014-11-01

    The properties of the screened mutants for hyper-production of citric acid induced by carbon ((12)C(6+)) ion beams and X-ray irradiation were investigated in our current study. Among these mutants, mutant H4002 screened from (12)C(6+) ion irradiation had a higher yield of citric acid production than the parental strain in a 250-ml shaking flash. These expanded submerged experiments in a bioreactor were also carried out for mutant H4002. The results showed that (177.7-196.0) g/L citric acid was accumulated by H4002 through exploiting corn meal hydrolysate (containing initial 200.0-235.7 g/L sugar) with the productivity of (2.96-3.27) g/(L∙h). This was especially true when the initial sugar concentration was 210 g/L, and the best economical citric acid production reached (187.5±0.7) g/L with a productivity of 3.13 g/(L∙h). It was observed that mutant H4002 can utilize low-cost corn meal as a feedstock to efficiently produce citric acid. These results imply that the H4002 strain has the industrial production potentiality for citric acid and offers strong competition for the citric acid industry.

  12. Effect of Cover Crops and Nitrogen Fertilizer on Total Production of Forage Corn and Dry Weight of Weeds

    Directory of Open Access Journals (Sweden)

    R Fakhari

    2014-10-01

    Full Text Available To evaluate the effect of cover crops, split application of nitrogen and control weeds on forage corn and weed biomass a factorial experiment based on randomized complete block design with three replications and three factors was conducted at the Agricultural Research Station of Ardabil (Iran during 2012 crop year. The first factor was cover crops (consisting of winter rye, hairy vetch, berseem clover, with and without weeding as controls. The second factor was two levels of split application of 225 kg.ha-1 urea at two growth stages forage corn: the first level (N1= 1/2 at planting and 1/2 at 8-10 leaf stage, second level (N2= 1/3 at planting, 1/3 at 8-10 leaf and 1/3 one week before tasselling stage. The third factor consisted of two levels of weed control: weeding at 8 leaves and weeding one week before tasselling. Results showed that winter rye, hairy vetch and berseem clover cover crops decreased total weed dry weights up to 87, 82 and 65 % respectively as compared to control (without weeding. Cover crops and nitrogen application time had a significant effect on yield of fresh forage corn and cover crops. Based on the advantages of effective weed control and higher forage production of hairy vetch it can be recommended as proper cover crop.

  13. Growth and Production of Some Variety Corn (Zea mays L.). Planted under the Canopy of Palm Oil 12 Years Old in Swamp Land

    Science.gov (United States)

    Syafrullah; Marlina, N.; Rahim, S. E.; Aminah, R. I. S.; Midranisiah; Rosmiah; Sakalena, F.

    2017-06-01

    This research was conducted in wetlands Semambu Village, District of North Indralaya, Ogan Ilir, South Sumatra Province, Indonesia, which lasted from July 2015 to February 2016. The observation of a microclimate indicate that the average intensity of light outside the auspices of the plot 1968.9 m2s mol1, under waranet 1502.40 mol1 m2s, below paranet 721.99 mol1 m2s-1 and under waranet 439.25 μmol m2s-1 - equivalent to the light interception 1 or 100%, 76%, 37% and 22%. Results of soil chemical analysis that the soil has a low fertility study (H2O pH of 3.32, organic C 4.47%, total N 0.35%, Bray P 13.30 ppm, K-ea 0.26 me / 100g, CEC 19.6 rne / 100g and Al-ea 3.28 me / 100g). Tests on 22 genotypes of maize grown with light interception 100%, 76%. 37% and 22%, by calculating tolerance index based on the weight of dry seed cob-1 was found four genotypes of maize tend to be tolerant to low-intensity light that were genotype B 41, Pioneer 27, Sukmaraga and Sugihan. The test results of corn planted in beds shade with light interception 100%, 76%, 37% and 22% for groups of maize tolerant and sensitive, followed by application of urea 0 kg ha1, 100 kg ha-1 200 kg ha-1, 300 kg ha-1 and 400 kg ha-1 indicate that maize and 41 and Pioneer 27 by Urea 300 kg ha-1 gives better results than other varieties at different intensities of light oil palm age of 12 years with applications Urea fertilizer 300 kg ha-1, indicating that the B 41 and Pioneer 27 tends to give better results compared with other varieties. The application of a polyculture system palm-maize can produce 1000 kg of dry grain of corn in a 1 ha of oil palm cultivation.

  14. RELATIONSHIP BETWEEN EUROPEAN CORN BORER FEEDING ACTIVITY AND NITROGEN LEAF CONTENT UNDER DIFFERENT AGRICULTURAL PRACTICES

    Directory of Open Access Journals (Sweden)

    Ankica Sarajlić

    2015-06-01

    Full Text Available One of the most destructive maize pest in Croatia is European corn borer (Ostrinia nubilalis Hübner (ECB. The aim of this study was to determine the influence of irrigation, nitrogen fertilization, different maize genotypes and nitrogen leaf content on ECB feeding activity. The experiment was set up in Osijek, Croatia under field conditions during 2012-2013 vegetation season. Experiment treatments were as follows: three irrigation levels (A1 - control, A2 from 60% to 80% field water capacity - FWC and A3 from 80% to100% FWC, three nitrogen fertilizer levels (B1 - 0, B2 - 100 and B3 - 200 kg N/ha and four different genotypes (C1 - OSSK 596; C2 - OSSK 617; C3 - OSSK 602 and C4 - OSSK 552. Ear weight, number of larvae in stem and shank, tunnel length and nitrogen leaf content were evaluated. Genotype C1 was the most susceptible for following the tested variables of ECB feeding: tunnel length (TL, larvae in stalk (LS and total number of larvae (TNL at P<0.05 probability level. By raising the level of irrigation, European corn borer feeding activity was reduced while by raising the level of nitrogen fertilization feeding activity was increased. These results suggest that good production practices can significantly affect the susceptibility of maize to European corn borer.

  15. The greenhouse gas intensity and potential biofuel production capacity of maize stover harvest in the US Midwest

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Curtis D. [Department of Geographical Sciences, University of Maryland, College Park MD 20742 USA; Zhang, Xuesong [Joint Global Change Research Institute, Pacific Northwest National Laboratory and University of Maryland, College Park MD 20740 USA; Reddy, Ashwan D. [Department of Geographical Sciences, University of Maryland, College Park MD 20742 USA; Robertson, G. Philip [Great Lakes Bioenergy Research Center, Michigan State University, East Lansing MI 48824 USA; W.K. Kellogg Biological Station, Michigan State University, Hickory Corners MI 49060 USA; Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing MI 48824 USA; Izaurralde, Roberto César [Department of Geographical Sciences, University of Maryland, College Park MD 20742 USA; Texas A& M AgriLife Research & Extension Center, Temple TX 76502 USA

    2017-08-11

    Agricultural residues are important sources of feedstock for a cellulosic biofuels industry that is being developed to reduce greenhouse gas emissions and improve energy independence. While the US Midwest has been recognized as key to providing maize stover for meeting near-term cellulosic biofuel production goals, there is uncertainty that such feedstocks can produce biofuels that meet federal cellulosic standards. Here, we conducted extensive site-level calibration of the Environmental Policy Integrated Climate (EPIC) terrestrial ecosystems model and applied the model at high spatial resolution across the US Midwest to improve estimates of the maximum production potential and greenhouse gas emissions expected from continuous maize residue-derived biofuels. A comparison of methodologies for calculating the soil carbon impacts of residue harvesting demonstrates the large impact of study duration, depth of soil considered, and inclusion of litter carbon in soil carbon change calculations on the estimated greenhouse gas intensity of maize stover-derived biofuels. Using the most representative methodology for assessing long-term residue harvesting impacts, we estimate that only 5.3 billion liters per year (bly) of ethanol, or 8.7% of the near-term US cellulosic biofuel demand, could be met under common no-till farming practices. However, appreciably more feedstock becomes available at modestly higher emissions levels, with potential for 89.0 bly of ethanol production meeting US advanced biofuel standards. Adjustments to management practices, such as adding cover crops to no-till management, will be required to produce sufficient quantities of residue meeting the greenhouse gas emission reduction standard for cellulosic biofuels. Considering the rapid increase in residue availability with modest relaxations in GHG reduction level, it is expected that management practices with modest benefits to soil carbon would allow considerable expansion of potential cellulosic

  16. Ethanol production from corn cobs by co-culture of Saccharomyces ...

    African Journals Online (AJOL)

    Saccharomyces cerevisiae and Aspergillus niger were used in a co-culture for the simultaneous saccharification and fermentation (SSF) of 1% and 10% (w/v) dry pre-treated corn cobs to ethanol. Positive controls of glucose of same concentrations in a synthetic medium were also fermented. At 1% substrate concentration, ...

  17. Influence of different SSF conditions on ethanol production from corn stover at high solids loadings

    DEFF Research Database (Denmark)

    Gladis, Arne; Bondesson, Pia-Maria; Galbe, Mats

    2015-01-01

    In this study, three different kinds of simultaneous saccharification and fermentation (SSF) of washed pretreated corn stover with water-insoluble solids (WIS) content of 20% were investigated to find which one resulted in highest ethanol yield at high-solids loadings. The different methods were...

  18. Energy issues affecting corn/soybean systems: Challenges for sustainable production

    Science.gov (United States)

    Quantifying energy issues associated with agricultural systems, even for a simple two-crop corn (Zea mays L.) and soybean (Glycine max [L.] Merr.) rotation, is not a simple task. It becomes even more complicated if the goal is to include all aspects of sustainability (i.e., economic, environmental, ...

  19. Xylitol production from DEO hydrolysate of corn stover by Pichia stipitis YS-30

    Science.gov (United States)

    Rita C.L.B. Rodrigues; William R. Kenealy; Thomas W. Jeffries

    2011-01-01

    Corn stover that had been treated with vapor-phase diethyl oxalate released a mixture of mono-and oligosaccharides consisting mainly of xylose and glucose. Following overliming and neutralization, a D-xylulokinase mutant of Pichia stipitis, FPL-YS30 (xyl3 -Ä1), converted the stover hydrolysate into xylitol. This research examined the effects of phosphoric or gluconic...

  20. Monitoring Crop Productivity over the U.S. Corn Belt using an Improved Light Use Efficiency Model

    Science.gov (United States)

    Wu, X.; Xiao, X.; Zhang, Y.; Qin, Y.; Doughty, R.

    2017-12-01

    Large-scale monitoring of crop yield is of great significance for forecasting food production and prices and ensuring food security. Satellite data that provide temporally and spatially continuous information that by themselves or in combination with other data or models, raises possibilities to monitor and understand agricultural productivity regionally. In this study, we first used an improved light use efficiency model-Vegetation Photosynthesis Model (VPM) to simulate the gross primary production (GPP). Model evaluation showed that the simulated GPP (GPPVPM) could well captured the spatio-temporal variation of GPP derived from FLUXNET sites. Then we applied the GPPVPM to further monitor crop productivity for corn and soybean over the U.S. Corn Belt and benchmarked with county-level crop yield statistics. We found VPM-based approach provides pretty good estimates (R2 = 0.88, slope = 1.03). We further showed the impacts of climate extremes on the crop productivity and carbon use efficiency. The study indicates the great potential of VPM in estimating crop yield and in understanding of crop yield responses to climate variability and change.

  1. Improvement of D-Ribose Production from Corn Starch Hydrolysate by a Transketolase-Deficient Strain Bacillus subtilis UJS0717

    Science.gov (United States)

    Wei, Zhuan; Zhou, Jue; Sun, WenJing; Cui, FengJie; Xu, QinHua; Liu, ChangFeng

    2015-01-01

    D-Ribose is a five-carbon sugar and generally used as an energy source to improve athletic performance and the ability. The culture conditions for maximum D-ribose production performance from cheap raw material corn starch hydrolysate were improved by using one-factor-at-a-time experiments and a three-level Box-Behnken factorial design. The optimal fermentation parameters were obtained as 36°C culture temperature, 10% inoculum volume, and 7.0 initial pH. The mathematical model was then developed to show the effect of each medium composition and their interactions on the production of D-ribose and estimated that the optimized D-ribose production performance with the concentration of 62.13 g/L, yield of 0.40 g/g, and volumetric productivity of 0.86 g/L·h could be obtained when the medium compositions were set as 157 g/L glucose, 21 g/L corn steep liquor, 3.2 g/L (NH4)2SO4, 1 g/L yeast extract, 0.05 g/L MnSO4·H2O, and 20 g/L CaCO3. These findings indicated the D-ribose production performance was significantly improved compared to that under original conditions. PMID:26759810

  2. Fusarium verticillioides strains isolated from corn feed: characterization by fumonisin production and RAPD fingerprinting

    Directory of Open Access Journals (Sweden)

    Elisabete Yurie Sataque Ono

    2010-08-01

    Full Text Available In this study a total of 16 Fusarium verticillioides strains isolated from corn feed samples were characterized by fumonisin (FB production and random amplified polymorphic DNA (RAPD. All the strains produced FB1 and FB2 with levels ranging from 2.41 to 3996.36 µg/g, and from 1.18 to 1209.91 µg/g, respectively. From the 16 F. verticillioides strains, four were identified as low (3.59 to 1289.84 µg/g, eight as intermediate (>1289.84 to 3772.44 µg/g and four strains as high (>3772.44 µg/g fumonisin producers. From the total of 105 loci amplified, 60 (57.14% were polymorphic. RAPD analysis showed very similar patterns among low, moderate and high fumonisin-producing strains. Although RAPD markers were capable of discriminating the different F. verticillioides strains, there was no clear association between these makers and fumonisin production.Neste estudo, 16 cepas de F. verticillioides isoladas de amostras de ração de milho foram caracterizadas com base na produção de fumonisinas (FB e em marcadores de polimorfismos de DNA amplificado ao acaso (RAPD. Todas as cepas produziram FB1 e FB2, com níveis variando, respectivamente, de 2,41 a 3996,36 µg/g e 1,18 a 1209,91 µg/g. De acordo com a produção de fumonisinas totais (FB1 + FB2 e a distribuição por análise de quartis, do total de 16 cepas de F. verticillioides, quatro foram identificadas como baixas produtoras de fumonisinas (3,59 a 1289,84 µg/g, oito como intermediárias (>1289,84 a 3772,44 µg/g e quatro como altas produtoras de fumonisinas (>3772,44 µg/g. Os 10 primers utilizados amplificaram 105 locos, 60 (57,14% dos quais foram polimórficos. As análises de RAPD mostraram padrões muito similares entre as cepas baixas, médias e altas produtoras de fumonisinas. Embora os marcadores RAPD tenham se mostrado capazes de discriminar as diferentes cepas de F. verticillioides, não foi detectada nenhuma associação entre estes marcadores e a produção de fumonisinas.

  3. Production of Bacterial Cellulose by Gluconacetobacter hansenii Using Corn Steep Liquor As Nutrient Sources

    Directory of Open Access Journals (Sweden)

    Andrea F. S. Costa

    2017-10-01

    Full Text Available Cellulose is mainly produced by plants, although many bacteria, especially those belonging to the genus Gluconacetobacter, produce a very peculiar form of cellulose with mechanical and structural properties that can be exploited in numerous applications. However, the production cost of bacterial cellulose (BC is very high to the use of expensive culture media, poor yields, downstream processing, and operating costs. Thus, the purpose of this work was to evaluate the use of industrial residues as nutrients for the production of BC by Gluconacetobacter hansenii UCP1619. BC pellicles were synthesized using the Hestrin–Schramm (HS medium and alternative media formulated with different carbon (sugarcane molasses and acetylated glucose and nitrogen sources [yeast extract, peptone, and corn steep liquor (CSL]. A jeans laundry was also tested. None of the tested sources (beside CSL worked as carbon and nutrient substitute. The alternative medium formulated with 1.5% glucose and 2.5% CSL led to the highest yield in terms of dry and hydrated mass. The BC mass produced in the alternative culture medium corresponded to 73% of that achieved with the HS culture medium. The BC pellicles demonstrated a high concentration of microfibrils and nanofibrils forming a homogenous, compact, and three-dimensional structure. The biopolymer produced in the alternative medium had greater thermal stability, as degradation began at 240°C, while degradation of the biopolymer produced in the HS medium began at 195°C. Both biopolymers exhibited high crystallinity. The mechanical tensile test revealed the maximum breaking strength and the elongation of the break of hydrated and dry pellicles. The dry BC film supported up to 48 MPa of the breaking strength and exhibited greater than 96.98% stiffness in comparison with the hydrated film. The dry film supported up to 48 MPa of the breaking strength and exhibited greater than 96.98% stiffness in comparison with the hydrated film

  4. Surplus N in US maize production: Informing data-driven policies using the Adapt-N model

    Science.gov (United States)

    Sela, Shai; van-Es, Harold; McLellan, Eileen; Margerison, Rebecca; Melkonian, Jeff

    2016-04-01

    Maize (Zea mays L.) production accounts for the largest share of crop land area in the U.S, and is the largest consumer of nitrogen (N) fertilizers of all US crops. Over-application of N fertilizer in excess of crop needs often lead to surplus of N in the soil, resulting in well-documented environmental problems and social costs associated with high reactive N losses. There is a potential to reduce these costs through better application timing, use of enhanced efficiency products, and more precise rate calculations. However, promoting management changes by means of environmental policies requires robust analysis of the possible environmental outcomes associated with these policies. This research gap is addressed using Adapt-N, a computational tool that combines soil, crop and management information with near-real-time weather data to estimate optimum N application rates for maize. Using results from a large synthetic dataset of 8100 simulations spanning 6 years (2010-2015), we have explored the total applied N rates, surplus of N (total N applied minus N removed by the crop) and the environmental losses resulting from seven N management scenarios applied in the top 5 US maize production states - IL, IN, IA, MN and NE. To cover a wide range of weather and production environments, all scenarios were applied at five randomly selected locations in each state, using combinations of three soil texture classes and two organic matter contents. The results indicate that fall applications typically lead to the highest total amount of N applied, highest N surplus and substantial amounts of environmental N losses. Nitrification inhibitors were found to have a marginal benefits for fall applied N. Spring pre-plant N applications were found to have lower N surplus than fall applications, but could still lead to high N losses under wet spring conditions. These losses were reduced (12%) when nitrification and urease inhibitors were applied. Out of all simulated N management

  5. Genetic Markers for Western Corn Rootworm Resistance to Bt Toxin

    OpenAIRE

    Flagel, Lex E.; Swarup, Shilpa; Chen, Mao; Bauer, Christopher; Wanjugi, Humphrey; Carroll, Matthew; Hill, Patrick; Tuscan, Meghan; Bansal, Raman; Flannagan, Ronald; Clark, Thomas L.; Michel, Andrew P.; Head, Graham P.; Goldman, Barry S.

    2015-01-01

    Western corn rootworm (WCR) is a major maize (Zea mays L.) pest leading to annual economic losses of more than 1 billion dollars in the United States. Transgenic maize expressing insecticidal toxins derived from the bacterium Bacillus thuringiensis (Bt) are widely used for the management of WCR. However, cultivation of Bt-expressing maize places intense selection pressure on pest populations to evolve resistance. Instances of resistance to Bt toxins have been reported in WCR. Developing genet...

  6. The Effect of Moisture Content of Maize Grits on Physicochemical Properties of Its Puffed Food Products Properties of Its Puffed Food Products

    Directory of Open Access Journals (Sweden)

    S. Sharifi

    2016-02-01

    Full Text Available In this study the effect of different levels of moisture content of maize grits (10, 13, 16 and 19% as an attribute of physicochemical properties of extruder-derived puffed products, was investigated. The results showed that with increasing maize grits' moisture content, water absorption index (WAI and water solubility index (WSI were decreased. Moreover, with changing in feed moisture content from 10 to 16%, the volume and sectional expansion index (SEI increased but further increase of moisture content to 19% caused a reduction in these parameters. The textural tests also revealed that with increase in moisture content, the compression energy (Nmm, maximum force (N and time to achieve the first major peak (s were increased but the number of peaks was decreased. With increase in the moisture content, specific mechanical energy (SME was decreased, due probably to the reduction in the viscosity of melt. With increase in the moisture content the L and b values were increased but the value of the samples were decreased due to the reduction of Maillard reaction rate. Our data confirms that the moisture content of maize grits may play an important role in the quality of produced extruded snacks and a high quality product can be achieved by optimizing this parameter. In this research, the maximum volume of the extruder product was obtained in 16% of moisture level.

  7. Response of S.C.704 maize hybrid seed production to planting pattern

    African Journals Online (AJOL)

    In order to determine the best planting pattern for producing the S.C.704 hybrid seed of maize, a field experiment was conducted in 2007 at Safiabad Dezful Research Center via a complete block design with four treatments and replicates each. The treatments were: D1 (one row each of paternal and maternal lines), D2 (two ...

  8. Consumption and wastage of home-fortified maize flour products in ...

    African Journals Online (AJOL)

    Other foods were porridge and chigumu, whole maize flour-based bread. Overall, the daily average consumption of fortified foods (nsima, porridge and chigumu) was 332 g/day for children, and 1011 g/day for women. Plate waste accounted for 25% of the food served to the children, and 12% served to the women.

  9. Pests, pesticide use and alternative options in European maize production: current status and future prospects

    NARCIS (Netherlands)

    Meissle, M.; Mouron, P.; Musa, T.; Weide, van der R.Y.; Groten, J.A.M.

    2010-01-01

    Political efforts are made in the European Union (EU) to reduce pesticide use and to increase the implementation of integrated pest management (IPM). Within the EU project ENDURE, research priorities on pesticide reduction are defined. Using maize, one of the most important crops in Europe, as a

  10. Improving weed management and crop productivity in maize systems in Zimbabwe

    NARCIS (Netherlands)

    Mashingaidze, A.B.

    2004-01-01

    Keywords: Intercropping, narrow planting, precise fertilizer placement, radiation interception, leaf stripping, detasselling, Land Equivalent Ratio, maize, pumpkin, dry beans, reduced herbicide dosagesIn the tropics, weeds cause more

  11. Towards improved nitrogen management in silage maize production on sandy soils

    NARCIS (Netherlands)

    Schroeder, J.

    1998-01-01

    Maize has become a highly appreciated crop in Dutch dairy farming during the last 25 years. The current cropping technique, however, is associated with a low recovery of soil mineral nitrogen (N) and serious losses of N to the environment. This gave rise to the research described in this

  12. IMPACT OF AGROFORESTRY PARKLAND SYSTEM ON MAIZE PRODUCTIVITY BY SMALLHOLDER FARMERS IN EASTERN HIGHLANDS OF KENYA

    Directory of Open Access Journals (Sweden)

    Elton Ndlovu

    2016-12-01

    Full Text Available A field experiment was carried on farms at Kyeni South in Eastern highlands of Kenya. The purpose of this study was to investigate on the effects of identified common tree species on growth and yield of maize on farms. The selected tree species found to be prevalently growing on farms were Croton macrostachyus Hochst. Ex Delile, Cordia africana Lam. and Grevillea robusta A. Cunn. Growth in basal diameter, height, leaf chlorophyll content and final grain yield was assessed on maize plants selected from the plots under the trees and control plots (away from trees. The maize plants in G. robusta plots had significantly lower mean basal diameter of 1.67 cm at 6 weeks after crop emergence (WACE and 1.96 cm at 9 WACE. No significant differences were observed in plant height in plots under different tree species. Significant suppression of chlorophyll development in maize (indicated by SPAD readings was observed in all the plots under the identified tree species at 6 WACE (P < 0.01. G. robusta plots had significantly lower grain yield of 1.57 t ha-1 compared to the control plots that had the highest mean yield of 2.21 t ha-1. Proper crown management is necessary in agroforestry systems.

  13. Temporal analysis of vegetation indices related to biophysical parameters using Sentinel 2A images to estimate maize production

    Science.gov (United States)

    Macedo, Lucas Saran; Kawakubo, Fernando Shinji

    2017-10-01

    Agricultural production is one of the most important Brazilian economic activities accounting for about 21,5% of total Gross Domestic Product. In this scenario, the use of satellite images for estimating biophysical parameters along the phenological development of agricultural crops allows the conclusion about the sanity of planting and helps the projection on design production trends. The objective of this study is to analyze the temporal patterns and variation of six vegetion indexes obtained from the bands of Sentinel 2A satellite, associated with greenness (NDVI and ClRE), senescence (mARI and PSRI) and water content (DSWI and NDWI) to estimate maize production. The temporal pattern of the indices was analyzed in function of productivity data collected in-situ. The results obtained evidenced the importance of the SWIR and Red Edge ranges with Pearson correlation values of the temporal mean for NDWI 0.88 and 0.76 for CLRE.

  14. Production of butanol (a biofuel) from agricultural residues: Part II - Use of corn stover and switchgrass hydrolysates

    Energy Technology Data Exchange (ETDEWEB)

    Qureshi, Nasib; Saha, Badal C.; Hector, Ronald E.; Dien, Bruce; Iten, Loren; Bowman, Michael J.; Cotta, Michael A. [United States Department of Agriculture (USDA), Agricultural Research Service (ARS), National Center for Agricultural Utilization Research (NCAUR), Bioenergy Research, 1815 N. University Street, Peoria, IL 61604 (United States); Hughes, Stephen; Liu, Siqing [USDA-ARS-NCAUR, Renewable Product Technology, 1815 N. University Street, Peoria, IL 61604 (United States); Sarath, Gautam [USDA-ARS, Grain, Forage, and Bioenergy Research Unit, University of Nebraska, 314 Biochemistry Hall, East Campus, Lincoln, NE 68583 (United States)

    2010-04-15

    Acetone butanol ethanol (ABE) was produced from hydrolysed corn stover and switchgrass using Clostridium beijerinckii P260. A control experiment using glucose resulted in the production of 21.06 g L{sup -1} total ABE. In this experiment an ABE yield and productivity of 0.41 and 0.31 g L{sup -1} h{sup -1} was achieved, respectively. Fermentation of untreated corn stover hydrolysate (CSH) exhibited no growth and no ABE production; however, upon dilution with water (two fold) and wheat straw hydrolysate (WSH, ratio 1:1), 16.00 and 18.04 g L{sup -1} ABE was produced, respectively. These experiments resulted in ABE productivity of 0.17-0.21 g L{sup -1} h{sup -1}. Inhibitors present in CSH were removed by treating the hydrolysate with Ca(OH){sub 2} (overliming). The culture was able to produce 26.27 g L{sup -1} ABE after inhibitor removal. Untreated switchgrass hydrolysate (SGH) was poorly fermented and the culture did not produce more than 1.48 g L{sup -1} ABE which was improved to 14.61 g L{sup -1}. It is suggested that biomass pretreatment methods that do not generate inhibitors be investigated. Alternately, cultures resistant to inhibitors and able to produce butanol at high concentrations may be another approach to improve the current process. (author)

  15. Optimization of polyhydroxybutyrate production by Bacillus sp. CFR 256 with corn steep liquor as a nitrogen source.

    Science.gov (United States)

    Vijayendra, S V N; Rastogi, N K; Shamala, T R; Anil Kumar, P K; Kshama, L; Joshi, G J

    2007-06-01

    Polyhydroxyalkanotes (PHAs), the eco-friendly biopolymers produced by many bacteria, are gaining importance in curtailing the environmental pollution by replacing the non-biodegradable plastics derived from petroleum. The present study was carried out to economize the polyhydroxybutyrate (PHB) production by optimizing the fermentation medium using corn steep liquor (CSL), a by-product of starch processing industry, as a cheap nitrogen source, by Bacillus sp. CFR 256. Response surface methodology (RSM) was used to optimize the fermentation medium using the variables such as corn steep liquor (5-25 g l(-1)), Na(2)HPO(4) 2H(2)O (2.2-6.2 g l(-1)), KH(2)PO(4) (0.5-2.5 g l(-1)), sucrose (5-55 g l(-1)) and inoculum concentration (1-25 ml l(-1)). Central composite rotatable design (CCRD) experiments were carried out to study the complex interactions of the variables.The optimum conditions for maximum PHB production were (g l(-1)): CSL-25, Na(2)HPO(4) 2H(2)O-2.2, KH(2)PO(4) - 0.5, sucrose - 55 and inoculum - 10 (ml l(-1)). After 72 h of fermentation, the amount of PHA produced was 8.20 g l(-1) (51.20% of dry cell biomass). It is the first report on optimization of fermentation medium using CSL as a nitrogen source, for PHB production by Bacillus sp.

  16. Reduced irrigation increases the water use efficiency and productivity of winter wheat-summer maize rotation on the North China Plain.

    Science.gov (United States)

    Wang, Yunqi; Zhang, Yinghua; Zhang, Rui; Li, Jinpeng; Zhang, Meng; Zhou, Shunli; Wang, Zhimin

    2018-03-15

    The groundwater table has fallen sharply over the last 30years on the North China Plain, resulting in a shortage of water for winter wheat irrigation. Reducing irrigation may be an important strategy to maintain agricultural sustainability in the region; however, few studies have evaluated the transition from conventional irrigation management practices to reduced irrigation management practices in the winter wheat-summer maize rotation system. Here, we compare the yield, water consumption, and water use efficiency of winter wheat-summer maize rotation under conventional irrigation and reduced irrigation on the North China Plain from 2012 to 2015. Reducing irrigation decreased the yield but increased the water use efficiency and significantly advanced the harvest date of winter wheat. As a result, the summer maize sowing date advanced significantly, and the flowering date subsequently advanced 2-8days, thus extending the summer maize grain-filling stage. Therefore, the yield and water use efficiency of summer maize were higher under reduced irrigation than conventional irrigation, which compensated for the winter wheat yield loss under reduced irrigation. In addition, under reduced irrigation from 2012 to 2015, the yield and water use efficiency advantage of the winter wheat-summer maize rotation ranged from 0.0 to 9.7% and from 4.1 to 14.7%, respectively, and water consumption and irrigated water decreased by 20-61mm and 150mm, respectively, compared to conventional irrigation. Overall, the reduced irrigation management practice involving no irrigation after sowing winter wheat, and sowing summer maize on June 7 produced the most favorable grain yield with superb water use efficiency in the winter wheat-summer maize rotation. This study indicates that reducing irrigation could be an efficient means to cope with water resource shortages while maintaining crop production sustainability on the North China Plain. Copyright © 2017. Published by Elsevier B.V.

  17. Genetic markers for western corn rootworm resistance to Bt toxin.

    Science.gov (United States)

    Flagel, Lex E; Swarup, Shilpa; Chen, Mao; Bauer, Christopher; Wanjugi, Humphrey; Carroll, Matthew; Hill, Patrick; Tuscan, Meghan; Bansal, Raman; Flannagan, Ronald; Clark, Thomas L; Michel, Andrew P; Head, Graham P; Goldman, Barry S

    2015-01-07

    Western corn rootworm (WCR) is a major maize (Zea mays L.) pest leading to annual economic losses of more than 1 billion dollars in the United States. Transgenic maize expressing insecticidal toxins derived from the bacterium Bacillus thuringiensis (Bt) are widely used for the management of WCR. However, cultivation of Bt-expressing maize places intense selection pressure on pest populations to evolve resistance. Instances of resistance to Bt toxins have been reported in WCR. Developing genetic markers for resistance will help in characterizing the extent of existing issues, predicting where future field failures may occur, improving insect resistance management strategies, and in designing and sustainably implementing forthcoming WCR control products. Here, we discover and validate genetic markers in WCR that are associated with resistance to the Cry3Bb1 Bt toxin. A field-derived WCR population known to be resistant to the Cry3Bb1 Bt toxin was used to generate a genetic map and to identify a genomic region associated with Cry3Bb1 resistance. Our results indicate that resistance is inherited in a nearly recessive manner and associated with a single autosomal linkage group. Markers tightly linked with resistance were validated using WCR populations collected from Cry3Bb1 maize fields showing significant WCR damage from across the US Corn Belt. Two markers were found to be correlated with both diet (R2 = 0.14) and plant (R2 = 0.23) bioassays for resistance. These results will assist in assessing resistance risk for different WCR populations, and can be used to improve insect resistance management strategies. Copyright © 2015 Flagel et al.

  18. Agroclimatic mapping of maize crop based on soil physical properties

    International Nuclear Information System (INIS)

    Dourado Neto, Durval; Sparovek, G.; Reichardt, K.; Timm, Luiz Carlos; Nielsen, D.R.

    2004-01-01

    With the purpose of estimating water deficit to forecast yield knowing productivity (potential yield), the water balance is useful tool to recommend maize exploration and to define the sowing date. The computation can be done for each region with the objective of mapping maize grain yield based on agro-climatic data and soil physical properties. Based on agro-climatic data, air temperature and solar radiation, a model was built to estimate the corn grain productivity (the energy conversion results in dry mass production). The carbon dioxide (CO 2 ) fixation by plants is related to gross carbohydrate (CH 2 O) production and solar radiation. The CO 2 assimilation by C4 plants depends on the photosynthetic active radiation and temperature. From agro-climatic data and soil physical properties, a map with region identification can be built for solar radiation, air temperature, rainfall, maize grain productivity and yield, potential and real evapo-transpiration and water deficit. The map allows to identify the agro-climatic and the soil physical restrictions. This procedure can be used in different spatial (farm to State) and temporal (daily to monthly data) scales. The statistical analysis allows to compare estimated and observed values in different situations to validate the model and to verify which scale is more appropriate

  19. Complementation of sweet corn mutants: a method for grouping ...

    Indian Academy of Sciences (India)

    for sweet corn are now expanding and the demands are increasing due to ... tropical/tropical regions of India is amongst one of the factors ... Maize endosperm mutant genes that affect quality of sweet corn can ... Thus, the concept of comple-.

  20. IMAZAPYR-RESISTANT MAIZE TECHNOLOGY ADOPTION FOR ...

    African Journals Online (AJOL)

    Prof. Adipala Ekwamu

    decisions by protecting maize (Zea mays L.) crop in western Kenya from Striga. Key Words: Adopters, Zea ... Africa, efficient and profitable production of maize is severely constrained by ..... gap by understanding its source. African. Journal of ...

  1. Maize gene banks helps farmers adapt to new challenges | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2010-10-28

    Oct 28, 2010 ... English · Français ... The farmers use a multitude of maize (corn) varieties – landraces – that are “very well adapted to harsh environments and poor soils, and ... These varieties were then “frozen in time” in maize gene banks.

  2. Ion beam biotechnology and its application to maize breeding

    International Nuclear Information System (INIS)

    Yu Lixia; Li Wenjian; Dong Xicun; Zhou Libin; Ma Shuang

    2008-01-01

    Since the mid of 1980's, ion beam had been widely used in mutagenic breeding of various crops. Ion beam biotechnology had provided a new way for improving corn variety and creating new germplasm resources, and had promoted the development of maize breeding. The ion beam characteristics, the mutagenic mechanism and its application in maize breeding were described. (authors)

  3. Development of a perfusion reversed-phase high performance liquid chromatography method for the characterisation of maize products using multivariate analysis.

    Science.gov (United States)

    Rodriguez-Nogales, J M; Garcia, M C; Marina, M L

    2006-02-03

    A perfusion reversed-phase high performance liquid chromatography (RP-HPLC) method has been designed to allow rapid (3.4 min) separations of maize proteins with high resolution. Several factors, such as extraction conditions, temperature, detection wavelength and type and concentration of ion-pairing agent were optimised. A fine optimisation of the gradient elution was also performed by applying experimental design. Commercial maize products for human consumption (flours, precocked flours, fried snacks and extruded snacks) were characterised for the first time by perfusion RP-HPLC and their chromatographic profiles allowed a differentiation among products relating the different technological process used for their preparation. Furthermore, applying discriminant analysis makes it possible to group the samples according with the technological process suffered by maize products, obtaining a good prediction in 92% of the samples.

  4. Influência da cultura antecessora e da adubação nitrogenada na produtividade de milho em sistema plantio direto e solo preparado Influence of the previous winter crop and nitrogen fertilization to corn productivity in notillage and conventional tillage

    Directory of Open Access Journals (Sweden)

    Waldo Alejandro Rubén Lara Cabezas

    2004-08-01

    respectivamente, 1.166 e 166kg ha-1 de grãos nas sucessões milheto-milho e nabo-milho, em SP.In the Cerrado region a proportion of the top dressed N for corn might be applied to the previous cover crop. This could accelerate the decomposition rate and increase overall N availability to corn. Therefore, the objectives of this experiment were: a to evaluate maize productivity after oil radish and millet grown in winter with and without nitrogen applied and b to determine the efficiency of recovery of N fertilizer by corn and quantify the losses by volatilization of ammonia of N fertilizers in no-tillage (NT and conventional tillage (CT. The experimental design was a randomized complete block in strips with four replications. At flowering, the dry matter production and N accumulation of the oil radish were, respectively, 2,274 and 53.0kg ha-1 under NT, and 2,546 and 61.6kg ha-1 under CT. For millet the results obtained were 5,202 and 107.8kg ha-1 under NT, and 5,101 and 104.1kg ha-1 under CT. Until the seeding of the maize under NT, after desiccation by knife rolling the winter crops, 77.3 and 130.7kg N ha-1 were released in the sequences of oil radish - maize and of millet - maize, respectively. Under CT the winter crops were incorporated into the soil before the seeding of the maize. In the growth cycle of corn the losses of N via ammonia volatilization were less than 2.0% of the N applied at pre-seeding (71.3kg N ha-1 in a mixture urea:ammonium sulphate of 4:1 and 14% of the N at the 6-leaf stage (35.7kg N ha-1 of ammonium sulphate, evaluated in NT and CT in the sequence oil radish - corn. Under NT the fertilizer-N-use-efficiency was 57.1 and 42.1% of the N applied in the sequence millet - corn and oil radish-maize, respectively. Under CT these values were 46.8 and 46.3%, respectively. The application of N fertilizer caused a mean yield increase of 2,396kg grain ha-1 in the sequence millet-corn under NT compared to the non-fertilized control. These increase under CT was 895kg

  5. 7 CFR 319.24-1 - Applications for permits for importation of corn.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Applications for permits for importation of corn. 319... PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE FOREIGN QUARANTINE NOTICES Corn Diseases Regulations Governing Entry of Indian Corn Or Maize § 319.24-1 Applications for permits for importation of...

  6. Lactic Acid Production from Pretreated Hydrolysates of Corn Stover by a Newly Developed Bacillus coagulans Strain

    OpenAIRE

    Jiang, Ting; Qiao, Hui; Zheng, Zhaojuan; Chu, Qiulu; Li, Xin; Yong, Qiang; Ouyang, Jia

    2016-01-01

    An inhibitor-tolerance strain, Bacillus coagulans GKN316, was developed through atmospheric and room temperature plasma (ARTP) mutation and evolution experiment in condensed dilute-acid hydrolysate (CDH) of corn stover. The fermentabilities of other hydrolysates with B. coagulans GKN316 and the parental strain B. coagulans NL01 were assessed. When using condensed acid-catalyzed steam-exploded hydrolysate (CASEH), condensed acid-catalyzed liquid hot water hydrolysate (CALH) and condensed acid-...

  7. Fast and efficient nanoshear hybrid alkaline pretreatment of corn stover for biofuel and materials production

    International Nuclear Information System (INIS)

    Wang, Wei; Ji, Shaowen; Lee, Ilsoon

    2013-01-01

    We report a fast and efficient nano-scale shear hybrid alkaline (NSHA) pretreatment method of lignocellulosic biomass. In this work, corn stover was pretreated in a modified Taylor–Couette reactor with alkali (sodium hydroxide) at room temperature for two minutes. Up to 82% of high cellulose content in the remaining solids was achieved with the novel NSHA pretreatment process. Compared with untreated corn stover, an approximately 4-fold increase in enzymatic cellulose conversion and a 5-fold increase in hemicellulose conversion were achieved. Compositional analysis proved significant removals of both lignin and hemicellulose after the NSHA pretreatment. SEM images revealed that the synergistic effect of NSHA pretreatment caused the severe disruption of biomass structure and exposure of cellulose microfibril aggregates in NSHA pretreated corn stover. Highlights: ► A fast nanoshear hybrid alkaline (NSHA) pretreatment method is reported. ► A modified Taylor–Couette reactor was applied. ► The retention time of the NSHA method is only 2 min. ► A 100% conversion of glucan was achieved in one day. ► NSHA greatly removed both lignin and xylan

  8. Enhanced biohydrogen production from corn stover by the combination of Clostridium cellulolyticum and hydrogen fermentation bacteria.

    Science.gov (United States)

    Zhang, Shou-Chi; Lai, Qi-Heng; Lu, Yuan; Liu, Zhi-Dan; Wang, Tian-Min; Zhang, Chong; Xing, Xin-Hui

    2016-10-01

    Hydrogen was produced from steam-exploded corn stover by using a combination of the cellulolytic bacterium Clostridium cellulolyticum and non-cellulolytic hydrogen-producing bacteria. The highest hydrogen yield of the co-culture system with C. cellulolyticum and Citrobacter amalonaticus reached 51.9 L H2/kg total solid (TS). The metabolites from the co-culture system were significantly different from those of the mono-culture systems. Formate, which inhibits the growth of C. cellulolyticum, could be consumed by the hydrogen-evolving bacteria, and transformed into hydrogen. Glucose and xylose were released from corn stover via hydrolysis by C. cellulolyticum and were quickly utilized in dark fermentation with the co-cultured hydrogen-producing bacteria. Because the hydrolysis of corn stover by C. cellulolyticum was much slower than the utilization of glucose and xylose by the hydrogen-evolving bacteria, the sugar concentrations were always maintained at low levels, which favored a high hydrogen molar yield. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  9. Optical crop sensor for variable-rate nitrogen fertilization in corn: i - plant nutrition and dry matter production

    Directory of Open Access Journals (Sweden)

    Jardes Bragagnolo

    2013-10-01

    Full Text Available Variable-rate nitrogen fertilization (VRF based on optical spectrometry sensors of crops is a technological innovation capable of improving the nutrient use efficiency (NUE and mitigate environmental impacts. However, studies addressing fertilization based on crop sensors are still scarce in Brazilian agriculture. This study aims to evaluate the efficiency of an optical crop sensor to assess the nutritional status of corn and compare VRF with the standard strategy of traditional single-rate N fertilization (TSF used by farmers. With this purpose, three experiments were conducted at different locations in Southern Brazil, in the growing seasons 2008/09 and 2010/11. The following crop properties were evaluated: above-ground dry matter production, nitrogen (N content, N uptake, relative chlorophyll content (SPAD reading, and a vegetation index measured by the optical sensor N-Sensor® ALS. The plants were evaluated in the stages V4, V6, V8, V10, V12 and at corn flowering. The experiments had a completely randomized design at three different sites that were analyzed separately. The vegetation index was directly related to above-ground dry matter production (R² = 0.91; p<0.0001, total N uptake (R² = 0.87; p<0.0001 and SPAD reading (R² = 0.63; p<0.0001 and inversely related to plant N content (R² = 0.53; p<0.0001. The efficiency of VRF for plant nutrition was influenced by the specific climatic conditions of each site. Therefore, the efficiency of the VRF strategy was similar to that of the standard farmer fertilizer strategy at sites 1 and 2. However, at site 3 where the climatic conditions were favorable for corn growth, the use of optical sensors to determine VRF resulted in a 12 % increase in N plant uptake in relation to the standard fertilization, indicating the potential of this technology to improve NUE.

  10. Effects of total replacement of soybean meal and corn on ruminal fermentation, volatile fatty acids, protozoa concentration, and gas production

    Directory of Open Access Journals (Sweden)

    A. Bahri

    2018-03-01

    Full Text Available The main purpose of this study is to evaluate the effect of total replacement of soybean meal and corn with triticale and faba bean or field pea on rumen fermentation, protozoa counts, and gas production of lactating ewes. A total of 30 Sicilo-Sarde ewes were randomly allocated into three groups and were fed 1.8 kg drymatter of oat hay plus 500 g of one of three concentrates: the first concentrate (CS was mainly composed of soybean meal, corn, and barley; the second (TFB was formed by triticale and faba bean; and the third (TFP was composed of triticale and field pea. The type of concentrate did not affect ruminal pH or ammonia nitrogen concentration (P  >  0.05. The individual concentrations of volatile fatty acids showed a significant interaction between the type of concentrate and sampling time (P  <  0.05, except for Butyric and Isobutyric acids. Within a post-feeding time, the pattern of evolution of total volatile fatty, acetic, and propionic acids differed significantly at 2 h post feeding (P  <  0.05, while butyric and valeric acid changed at 0 and 4 h post feeding. The type of concentrate affected the total number of ciliate protozoa and the Isotricha species (P  <  0.05, whereas Entodinium, Ophryoscolex, and Polyplastron were similar among concentrates (P  >  0.05. The cumulative gas production from the in vitro fermentation, the time of incubation, and their interaction was affected by concentrate (P  <  0.001. The substitution of soybean meal and corn in the concentrate with faba bean or field peas and triticale might maintain rumen parameters of dairy ewes.

  11. Application of PestLCI model to site-specific soil and climate conditions: the case of maize production in Northern Italy

    DEFF Research Database (Denmark)

    Fantin, Valentina; Righi, Serena; Buscaroli, Alessandro

    2016-01-01

    The calculation of emissions from the use of pesticides is a critical issue in LCA studies of agrifood products and only occasionally discussed in details in literature studies. The objective of this study is to assess the results of the application of PestLCI 2.0 model to the production of maize...

  12. Farmers' agronomic and social evaluation of productivity yield and N2-fixation in different cowpea varieties and their subsequent residual N effects on a succeeding maize crop

    NARCIS (Netherlands)

    Adjei-Nsiah, S.; Kuyper, T.W.; Leeuwis, C.; Abekoe, M.K.; Cobbinah, J.; Sakyi-Dawson, O.; Giller, K.E.

    2008-01-01

    Cowpea-maize rotations form an important component of the farming systems of smallholder farmers in the forest/savannah transitional agro-ecological zone of Ghana. We evaluated five cowpea varieties for grain yield, N-2-fixation, biomass production, and contribution to productivity of subsequent

  13. 21 CFR 137.215 - Yellow corn flour.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Yellow corn flour. 137.215 Section 137.215 Food... Flours and Related Products § 137.215 Yellow corn flour. Yellow corn flour conforms to the definition and standard of identity prescribed by § 137.211 for white corn flour except that cleaned yellow corn is used...

  14. 21 CFR 137.265 - Degerminated white corn meal.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Degerminated white corn meal. 137.265 Section 137... Cereal Flours and Related Products § 137.265 Degerminated white corn meal. (a) Degerminated white corn meal, degermed white corn meal, is the food prepared by grinding cleaned white corn and removing bran...

  15. Susceptibility and aversion of Spodoptera frugiperda (Lepidoptera: Noctuidae) to Cry1F Bt maize and considerations for insect resistance management.

    Science.gov (United States)

    Binning, Rachel R; Coats, Joel; Kong, Xiaoxiao; Hellmich, Richard L

    2014-02-01

    Bacillus thuringiensis (Bt) maize was developed primarily for North American pests such as European corn borer (Ostrinia nubilalis (Hübner)). However, most Bt maize products are also cultivated outside of North America, where the primary pests may be different and may have lower susceptibility to Bt toxins. Fall armyworm (Spodoptera frugiperda JE Smith) is an important pest and primary target of Bt maize in Central and South America. S. frugiperda susceptibility to Cry1F (expressed in event TC1507) is an example of a pest-by-toxin interaction that does not meet the high-dose definition. In this study, the behavioral and toxic response of S. frugiperda to Cry1F maize was investigated by measuring the percentage of time naive third instars spent feeding during a 3-min exposure. S. frugiperda also were exposed as third instars to Cry1F maize for 14 d to measure weight gain and survival. S. frugiperda demonstrated an initial, postingestive aversive response to Cry1F maize, and few larvae survived the 14 d exposure. The role of susceptibility and avoidance are discussed in the context of global IRM refuge strategy development for Bt products.

  16. The combined and separate impacts of climate extremes on the current and future US rainfed maize and soybean production under elevated CO2.

    Science.gov (United States)

    Jin, Zhenong; Zhuang, Qianlai; Wang, Jiali; Archontoulis, Sotirios V; Zobel, Zachary; Kotamarthi, Veerabhadra R

    2017-07-01

    Heat and drought are two emerging climatic threats to the US maize and soybean production, yet their impacts on yields are collectively determined by the magnitude of climate change and rising atmospheric CO 2 concentrations. This study quantifies the combined and separate impacts of high temperature, heat and drought stresses on the current and future US rainfed maize and soybean production and for the first time characterizes spatial shifts in the relative importance of individual stress. Crop yields are simulated using the Agricultural Production Systems Simulator (APSIM), driven by high-resolution (12 km) dynamically downscaled climate projections for 1995-2004 and 2085-2094. Results show that maize and soybean yield losses are prominent in the US Midwest by the late 21st century under both Representative Concentration Pathway (RCP) 4.5 and RCP8.5 scenarios, and the magnitude of loss highly depends on the current vulnerability and changes in climate extremes. Elevated atmospheric CO 2 partially but not completely offsets the yield gaps caused by climate extremes, and the effect is greater in soybean than in maize. Our simulations suggest that drought will continue to be the largest threat to US rainfed maize production under RCP4.5 and soybean production under both RCP scenarios, whereas high temperature and heat stress take over the dominant stress of drought on maize under RCP8.5. We also reveal that shifts in the geographic distributions of dominant stresses are characterized by the increase in concurrent stresses, especially for the US Midwest. These findings imply the importance of considering heat and drought stresses simultaneously for future agronomic adaptation and mitigation strategies, particularly for breeding programs and crop management. The modeling framework of partitioning the total effects of climate change into individual stress impacts can be applied to the study of other crops and agriculture systems. © 2017 John Wiley & Sons Ltd.

  17. Morphological Characterization and Determination of Aflatoxin-Production Potentials of Aspergillus flavus Isolated from Maize and Soil in Kenya

    Directory of Open Access Journals (Sweden)

    Matome Gabriel Thathana

    2017-09-01

    Full Text Available This study aimed at morphologically identifying Aspergillus flavus in soil and maize and at determining their aflatoxin-producing potentials. Five hundred and fourteen isolates obtained from maize and soil in Kenya were cultivated on Czapeck Dox Agar, Malt Extract Agar, Sabouraud Dextrose Agar, Potato Dextrose Agar, and Rose-Bengal Chloramphenicol Agar. Isolates were identified using macro-morphological characteristics. Micromorphological characteristics were determined using slide cultures. Aflatoxin production was determined by direct visual determination of the UV fluorescence of colonies on Coconut Agar Medium, Yeast Extract Sucrose agar, and Yeast Extract Cyclodextrin Sodium Deoxycholate agar and by Thin Layer Chromatography. Forty-three presumptive A. flavus isolates were identified; aflatoxin was detected in 23% of the isolates by UV fluorescence screening and in 30% by Thin-Layer Chromatography (TLC. The aflatoxins produced were: aflatoxin B1 (AFB1, aflatoxin B2 (AFB2, and aflatoxin G1 (AFG1; some isolates produced only AFB1, whereas others produced either AFB1 and AFB2 or AFB1 and AFG1. The highest incidence of A. flavus (63% and aflatoxin production (28% was recorded in samples from Makueni District. Isolates from Uasin Gishu (21% and Nyeri (5% were non-aflatoxigenic. Bungoma District recorded 11% positive isolates of which 2% were aflatoxin producers. The occurrence of aflatoxin-producing A. flavus emphasises the need for measures to eliminate their presence in food crops.

  18. Highly efficient production of optically pure l-lactic acid from corn stover hydrolysate by thermophilic Bacillus coagulans.

    Science.gov (United States)

    Ma, Kedong; Hu, Guoquan; Pan, Liwei; Wang, Zichao; Zhou, Yi; Wang, Yanwei; Ruan, Zhiyong; He, Mingxiong

    2016-11-01

    A thermophilic strain Bacillus coagulans (NBRC 12714) was employed to produce l-lactic acid from corn stover hydrolysate in membrane integrated continuous fermentation. The strain NBRC 12714 metabolized glucose and xylose by the Embden-Meyerhof-Parnas pathway (EMP) and the pentose phosphate pathway (PPP), producing l-lactic acid with optical purity >99.5%. The overall l-lactic acid titer of 92g/l with a yield of 0.91g/g and a productivity of 13.8g/l/h were achieved at a dilution rate of 0.15h(-1). The productivity obtained was 1.6-fold than that of conventional continuous fermentation without cell recycling, and also was the highest among the relevant studies ever reported. These results indicated that the process developed had great potential for economical industrial production of l-lactic acid from lignocellulosic biomass. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Over-expression of zmarg encoding an arginase improves grain production in maize

    International Nuclear Information System (INIS)

    Hong, D.; Tian, Y.; Meng, X.; Zhang, P.

    2016-01-01

    Arginase, as one of the three key enzymes in nitrogen catabolism, the physiological role of Arg catabolism in cereal crops has not been fully clarified. Studies have shown that arginase-encoding genes play a key role in providing nitrogen to developing seedlings in many plant species.Yield is a primary trait in many crop breeding programs, which can be increased by modification of genes related to photosynthesis, nitrogen assimilation, carbon distribution, plant architecture, and transcriptional networks controlling plant development. In the present study, a maize arginase gene ZmARG was cloned and introduced into maize inbred lines by Agrobacterium tumefaciens- mediated transformation. Putative transgenic plants were confirmed by PCR, Southern blotting RT-PCR analysis. The expression of the ZmARG gene increased arginase activity in several tissues in transgenic lines. Transgenic maize plants had significantly higher ear weight and 100-seed weight as compared with wild-type control. Our results suggested that ZmARG was a potential target gene for crop yield improvement. (author)

  20. Assessment of energy crops alternative to maize for biogas production in the Greater Region.

    Science.gov (United States)

    Mayer, Frédéric; Gerin, Patrick A; Noo, Anaïs; Lemaigre, Sébastien; Stilmant, Didier; Schmit, Thomas; Leclech, Nathael; Ruelle, Luc; Gennen, Jerome; von Francken-Welz, Herbert; Foucart, Guy; Flammang, Jos; Weyland, Marc; Delfosse, Philippe

    2014-08-01

    The biomethane yield of various energy crops, selected among potential alternatives to maize in the Greater Region, was assessed. The biomass yield, the volatile solids (VS) content and the biochemical methane potential (BMP) were measured to calculate the biomethane yield per hectare of all plant species. For all species, the dry matter biomass yield and the VS content were the main factors that influence, respectively, the biomethane yield and the BMP. Both values were predicted with good accuracy by linear regressions using the biomass yield and the VS as independent variable. The perennial crop miscanthus appeared to be the most promising alternative to maize when harvested as green matter in autumn and ensiled. Miscanthus reached a biomethane yield of 5.5 ± 1 × 10(3)m(3)ha(-1) during the second year after the establishment, as compared to 5.3 ± 1 × 10(3)m(3)ha(-1) for maize under similar crop conditions. Copyright © 2014. Published by Elsevier Ltd.

  1. Ethanol and biogas production after steam pretreatment of corn stover with or without the addition of sulphuric acid

    Directory of Open Access Journals (Sweden)

    Bondesson Pia-Maria

    2013-01-01

    Full Text Available Abstract Background Lignocellulosic biomass, such as corn stover, is a potential raw material for ethanol production. One step in the process of producing ethanol from lignocellulose is enzymatic hydrolysis, which produces fermentable sugars from carbohydrates present in the corn stover in the form of cellulose and hemicellulose. A pretreatment step is crucial to achieve efficient conversion of lignocellulosic biomass to soluble sugars, and later ethanol. This study has investigated steam pretreatment of corn stover, with and without sulphuric acid as catalyst, and examined the effect of residence time (5–10 min and temperature (190–210°C on glucose and xylose recovery. The pretreatment conditions with and without dilute acid that gave the highest glucose yield were then used in subsequent experiments. Materials pretreated at the optimal conditions were subjected to simultaneous saccharification and fermentation (SSF to produce ethanol, and remaining organic compounds were used to produce biogas by anaerobic digestion (AD. Results The highest glucose yield achieved was 86%, obtained after pretreatment at 210°C for 10 minutes in the absence of catalyst, followed by enzymatic hydrolysis. The highest yield using sulphuric acid, 78%, was achieved using pretreatment at 200°C for 10 minutes. These two pretreatment conditions were investigated using two different process configurations. The highest ethanol and methane yields were obtained from the material pretreated in the presence of sulphuric acid. The slurry in this case was split into a solid fraction and a liquid fraction, where the solid fraction was used to produce ethanol and the liquid fraction to produce biogas. The total energy recovery in this case was 86% of the enthalpy of combustion energy in corn stover. Conclusions The highest yield, comprising ethanol, methane and solids, was achieved using pretreatment in the presence of sulphuric acid followed by a process configuration in

  2. Integrated use of plant growth promoting rhizobacteria, biogas slurry and chemical nitrogen for sustainable production of maize under salt-affected conditions

    International Nuclear Information System (INIS)

    Ahmad, M.; Jamil, M.; Akhtar, F.U.Z.

    2014-01-01

    Salinity is one of the most critical constraints hampering agricultural production throughout the world, including Pakistan. Some plant growth promoting rhizobacteria (PGPR) have the ability to reduce the deleterious effect of salinity on plants due to the presence of ACC-deaminase enzyme along with some other mechanisms. The integrated use of organic, chemical and biofertilizers can reduce dependence on expensive chemical inputs. To sustain high crop yields without deterioration of soil fertility, it is important to work out optimal combination of chemical and biofertilizers, and manures in the cropping system. A pot trial was conducted to study the effect of integrated use of PGPR, chemical nitrogen, and biogas slurry for sustainable production of maize under salt-stressed conditions and for good soil health. Results showed that sole application of PGPR, chemical nitrogen and biogas slurry enhanced maize growth but their combined application was more effective. Maximum improvement in maize growth, yield, ionic concentration in leaves and nutrient concentration in grains was observed in the treatment where PGPR and biogas slurry was used in the presence of 100% recommended nitrogen as chemical fertilizer. It also improved the soil pH, ECe, and available N, P and K contents. It is concluded that integrated use of PGPR, biogas slurry and chemical nitrogen not only enhanced maize growth, yield and quality but also improved soil health. So, it may be evaluated under field conditions to get sustained yield of maize from salt-affected soils. (author)

  3. A MICROWAVE-ASSISTED LIQUEFACTION AS A PRETREATMENT FOR THE BIOETHANOL PRODUCTION BY THE SIMULTANEOUS SACCHARIFICATION AND FERMENTATION OF CORN MEAL

    Directory of Open Access Journals (Sweden)

    Svetlana Nikolić

    2008-11-01

    Full Text Available A microwave-assisted liquefaction as a pretreatment for the bioethanol production by the simultaneous saccharification and fer entation (SSF of corn meal using Saccharomyces cerevisiae var. ellipsoideus yeast in a batch system was studied. An optimal power of microwaves of 80 W and the 5-min duration of the microwave treatment were selected by following the concentration of glucose released from the corn meal suspensions at hidromodul of 1:3 (corn meal to water ratio in the liquefaction step. The results indicated that the microwave pretreatment could increase the maximum ethanol concentration produced in the SSF process for 13.4 %. Consequently, a significant increase of the ethanol productivity on substrate (YP/S, as well as the volumetric ethanol productivity (P in this process, could be achieved

  4. Weed Diversity Affects Soybean and Maize Yield in a Long Term Experiment in Michigan, USA.

    Science.gov (United States)

    Ferrero, Rosana; Lima, Mauricio; Davis, Adam S; Gonzalez-Andujar, Jose L

    2017-01-01

    Managing production environments in ways that promote weed community diversity may enhance both crop production and the development of a more sustainable agriculture. This study analyzed data of productivity of maize (corn) and soybean in plots in the Main Cropping System Experiment (MCSE) at the W. K. Kellogg Biological Station Long-Term Ecological Research (KBS-LTER) in Michigan, USA, from 1996 to 2011. We used models derived from population ecology to explore how weed diversity, temperature, and precipitation interact with crop yields. Using three types of models that considered internal and external (climate and weeds) factors, with additive or non-linear variants, we found that changes in weed diversity were associated with changes in rates of crop yield increase over time for both maize and soybeans. The intrinsic capacity for soybean yield increase in response to the environment was greater under more diverse weed communities. Soybean production risks were greatest in the least weed diverse systems, in which each weed species lost was associated with progressively greater crop yield losses. Managing for weed community diversity, while suppressing dominant, highly competitive weeds, may be a helpful strategy for supporting long term increases in soybean productivity. In maize, there was a negative and non-additive response of yields to the interaction between weed diversity and minimum air temperatures. When cold temperatures constrained potential maize productivity through limited resources, negative interactions with weed diversity became more pronounced. We suggest that: (1) maize was less competitive in cold years allowing higher weed diversity and the dominance of some weed species; or (2) that cold years resulted in increased weed richness and prevalence of competitive weeds, thus reducing crop yields. Therefore, we propose to control dominant weed species especially in the years of low yield and extreme minimum temperatures to improve maize yields

  5. PRODUCTIVITY OF MAIZE (ZEA MAYS) BASED INTERCROPPING SYSTEM DURING KHARIF SEASON UNDER RED AND LATERITIC TRACT OF WEST BENGAL

    OpenAIRE

    M K MANDAL; M BANERJEE; H BANERJEE; A ALIPATRA; G C MALIK

    2014-01-01

    A FIELD EXPERIMENT WAS CARRIED OUT DURING KHARIF SEASON OF 2010 AND 2011 AT SRINIKETAN RESEARCH FARM, VISVA BHARTI, WEST BENGAL. THE GRAIN YILED AND STOVER YIELD OF MAIZE WERE SIGNIFICANTLY HIGHER IN CASE OF PURE STAND OF MAIZE THAN EITHER OF ITS INTERCROPPING SYSTEMS WITH LEGUMES, WHILE THE COB YILED WAS HIGHEST IN THE MAIZE WITH SOYBEAN (1:2) INTERCROPPING SYSTEM AND IT WAS STATISTICALLY AT PAR WITH THE YIELD OBTAINED IN SOLE MAIZE. THE GRAIN YIELD OF LEGUMES WAS HIGHEST IN MAIZE WITH GROUN...

  6. A stochastic frontier analysis of technical efficiency in smallholder maize production in Zimbabwe: The post-fast-track land reform outlook

    Directory of Open Access Journals (Sweden)

    Nelson Mango

    2015-12-01

    Full Text Available This article analyses the technical efficiency of maize production in Zimbabwe’s smallholder farming communities following the fast-track land reform of the year 2000 with a view of highlighting key entry points for policy. Using a randomly selected sample of 522 smallholder maize producers, a stochastic frontier production model was applied, using a linearised Cobb–Douglas production function to determine the production elasticity coefficients of inputs, technical efficiency and the determinants of efficiency. The study finds that maize output responds positively to increases in inorganic fertilisers, seed quantity, the use of labour and the area planted. The technical efficiency analysis suggests that about 90% of farmers in the sample are between 60 and 75% efficient, with an average efficiency in the sample of 65%. The significant determinants of technical efficiency were the gender of the household head, household size, frequency of extension visits, farm size and the farming region. The results imply that the average efficiency of maize production could be improved by 35% through better use of existing resources and technology. The results highlight the need for government and private sector assistance in improving efficiency by promoting access to productive resources and ensuring better and more reliable agricultural extension services.

  7. Efeito de esterco bovino sobre os rendimentos de espigas verdes e de grãos de milho The effect of cattle manure on yield of green corn ears and maize grains

    Directory of Open Access Journals (Sweden)

    Jaeveson da Silva

    2004-06-01

    Full Text Available Avaliaram-se os efeitos de doses de esterco bovino (0; 8; 16; 24; 32 e 40 t ha-1 sobre os rendimentos de espigas verdes e de grãos de duas cultivares de milho (Centralmex e AG-9012. O trabalho foi realizado em Mossoró (RN, de setembro a dezembro/99, com irrigação por aspersão. Utilizou-se esquema de parcelas subdivididas no delineamento de blocos completos casualizados com três repetições. As doses de esterco foram aplicadas às parcelas e as cultivares, às subparcelas. O rendimento de milho verde foi avaliado pelo número e peso totais de espigas verdes empalhadas e pelo número e peso de espigas comercializáveis, empalhadas e despalhadas. O rendimento de grãos foi avaliado pelo peso dos grãos corrigido para 15,5% de umidade. Análises do solo, realizadas aos 120 dias após o plantio, constataram que o esterco aumentou a retenção e a disponibilidade de água e os teores de fósforo, potássio e sódio, na camada do solo de 20-40 cm, mas não influenciou o pH e os teores de cálcio, soma de bases e de matéria orgânica. Tanto o rendimento de espigas verdes como o rendimento de grãos aumentaram com o aumento da dose de esterco, exceto o número e o peso totais de espigas verdes da cultivar Centralmex. A cultivar AG-9012 foi superior à cultivar Centralmex quanto aos rendimentos de espigas verdes e de grãos. A receita líquida, calculada com a comercialização de espigas empalhadas comercializáveis, foi maior na ausência de esterco para a cultivar AG-9012 e com a aplicação de 8 t ha-1para a Centralmex.The effect of different levels of cattle manure (0; 8; 16; 24; 32 and 40 t ha-1 on yield of green corn ears and grains of two maize cultivars was evaluated (Centralmex and AG-9012. The study was carried out at Mossoró, Rio Grande do Norte State, Brazil, from September to Dezember 1999 using sprinkler irrigation. The experimental design was complete random blocks arranged in splitplot with three replications. The manure was

  8. Analysis of supply chain, scale factor, and optimum plant capacity for the production of ethanol from corn stover

    International Nuclear Information System (INIS)

    Leboreiro, Jose; Hilaly, Ahmad K.

    2013-01-01

    A detailed model is used to perform a thorough analysis on ethanol production from corn stover via the dilute acid process. The biomass supply chain cost model accounts for all steps needed to source corn stover including collection, transportation, and storage. The manufacturing cost model is based on work done at NREL; attainable conversions of key process parameters are used to calculate production cost. The choice of capital investment scaling function and scaling parameter has a significant impact on the optimum plant capacity. For the widely used exponential function, the scaling factors are functions of plant capacity. The pre-exponential factor decreases with increasing plant capacity while the exponential factor increases as the plant capacity increases. The use of scaling parameters calculated for small plant capacities leads to falsely large optimum plants; data from a wide range of plant capacities is required to produce accurate results. A mathematical expression to scale capital investment for fermentation-based biorefineries is proposed which accounts for the linear scaling behavior of bio-reactors (such as saccharification vessels and fermentors) as well as the exponential nature of all other plant equipment. Ignoring the linear scaling behavior of bio-reactors leads to artificially large optimum plant capacities. The minimum production cost is found to be in the range of 789–830 $ m −3 which is significantly higher than previously reported. Optimum plant capacities are in the range of 5750–9850 Mg d −1 . The optimum plant capacity and production cost are highly sensitive to farmer participation in biomass harvest for low participation rates. -- Highlights: •A detailed model is used to perform a technoeconomic analysis for the production of ethanol from corn stover. •The capital investment scaling factors were found to be a function of plant capacity. •Bio-reactors (such as saccharification vessels and fermentors) in large size

  9. Global warming presents new challenges for maize pest management

    International Nuclear Information System (INIS)

    Diffenbaugh, Noah S; Krupke, Christian H; White, Michael A; Alexander, Corinne E

    2008-01-01

    It has been conjectured that global warming will increase the prevalence of insect pests in many agro-ecosystems. In this paper, we quantitatively assess four of the key pests of maize, one of the most important systems in North American grain production. Using empirically generated estimates of pest overwintering thresholds and degree-day requirements, along with climate change projections from a high-resolution climate model, we project potential future ranges for each of these pests in the United States. Our analysis suggests the possibility of increased winter survival and greater degree-day accumulations for each of the pests surveyed. We find that relaxed cold limitation could expand the range of all four pest taxa, including a substantial range expansion in the case of corn earworm (H. zea), a migratory, cold-intolerant pest. Because the corn earworm is a cosmopolitan pest that has shown resistance to insecticides, our results suggest that this expansion could also threaten other crops, including those in high-value areas of the western United States. Because managing significant additional pressure from this suite of established pests would require additional pest management inputs, the projected decreases in cold limitation and increases in heat accumulation have the potential to significantly alter the pest management landscape for North American maize production. Further, these range expansions could have substantial economic impacts through increased seed and insecticide costs, decreased yields, and the downstream effects of changes in crop yield variability.

  10. Effects of potassium sorbate and Lactobacillus plantarum MTD1 on production of ethanol and other volatile organic compounds in corn silage

    DEFF Research Database (Denmark)

    Hafner, Sasha D.; Windle, Michelle; Merrill, Caitlyn

    2015-01-01

    was to evaluate the effect of additives on production of nine silage VOC in corn silage, including compounds thought to contribute to poor air quality or affect feed intake (alcohols: methanol, ethanol, 1-propanol; esters: methyl acetate, ethyl acetate, ethyl lactate; and aldehydes: acetaldehyde, valeraldehyde....... These results provide additional evidence that potassium sorbate is an effective additive for reducing production of ethanol and ethyl esters in corn silage. Combining potassium sorbate with L. plantarum may provide additional benefits, although the persistence of this effect for silages with higher VOC...

  11. Comparison of methods for estimating production of methane from whole plant maize silage

    OpenAIRE

    Zbigniew Podkówka; Witold Podkówka

    2014-01-01

    Laboratory methods to measure the amount of methane gas evolved in the fermentation process require specialized equipment and are long-lasting and expensive. Therefore a number of methods are developed to estimate the efficiency of biogas and methane from the chemical composition of the substrate. The aim of this study was to compare different methods to estimate the efficiency of methane from the silages made from whole plant corn. The study was based on test results of silage from whole pla...

  12. Maize kernel evolution:From teosinte to maize

    Science.gov (United States)

    Maize is the most productive and highest value commodity in the US and around the world: over 1 billion tons were produced each year in 2013 and 2014. Together, maize, rice and wheat comprise over 60% of the world’s caloric intake, with wide regional variability in the importance of each crop. The i...

  13. Effective method of fermentation of Riga hydrolyzates of corn cobs and other vegetable waste products for butanol and acetone

    Energy Technology Data Exchange (ETDEWEB)

    Nakhmanovich, B M; Kameneva, L; Kalnina, V

    1963-01-01

    A simplified method is described for the production of butanol and acetone. The acid mixture (H/sub 3/PO/sub 4/, 10 to 20%; H/sub 2/SO/sub 4/, 90 to 80%) used to hydrolyze corn cobs and other vegetable waste products served also to invert the sugar of molasses which was added in 3 parts to 1 part hydrolyzate on the basis of reducing sugar content. The mixture was then diluted and neutralized with NH/sub 4/OH to pH 6.3 to 6.8. In this way a suitable hydrolyzate medium containing the appropriate amounts of mineral salts as well as invert sugar was provided for fermentation by Clostridium butyricum Prazmowsky. Lignin which precipitated during hydrolysis served as a solid phase which helped to accelerate fermentation. Combined yields of butanol, acetone, and small amounts of ethanol amounted to 30 to 38% of the available sugar; approximately 67% consisted of butanol.

  14. Energy inputs and outputs and sustainability of corn silage production; Balanco energetico e sutentabilidade na producao de silagem de milho

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Alessandro Torres; Daga, Jacir [Universidade Estadual do Oeste do Parana (UNIOESTE), Marechal Candido Rondon, PR (Brazil). Grupo de Pesquisas em Ambiencia do Oeste do Parana], e-mail: atcampos3@yahoo.com.br; Zanini, Agostinho; Prestes, Tania Maria Vicentini; Dalmolin, Maria Fatima da Silva [Centro Federal de Educacao Tecnologica do Parana (CEFET-PR), Medianeira, PR (Brazil); Universidade Estadual do Oeste do Parana (UNIOESTE), Marechal Candido Rondon, PR (Brazil). Centro de Ciencias Agrarias; Campos, Aloisio Torres de [EMBRAPA Gado de Leite, Juiz de Fora, MG (Brazil); Universidade Estadual do Oeste do Parana (UNIOESTE), Marechal Candido Rondon, PR (Brazil). Grupo de Pesquisas em Ambiencia do Oeste do Parana

    2004-07-01

    The agricultural ecosystem as way of converting solar energy in products, needs several energy sources, among that sources stand out fertilizers, agricultural defensives and others. These inputs are derived from fossils. In the present paper, it was studied the energy flows involved in corn silage production in a no tillage crop system, in Sao Miguel of Iguacu-Parana State/Brazil. In the direct energy flow, the fuels and lubricants were the largest consumers, representing 45.90% of the total, the agricultural defensives were responsible for the consumption of 24.12% of the total, while the fertilizers for 10.53% of the total consumption. By computing the fossil origin components, fuels, lubricants, defensive and fertilizers, the participation of the total consumption of energy was of 84.07%. (author)

  15. Corn Storage Protein - A Molecular Genetic Model

    Energy Technology Data Exchange (ETDEWEB)

    Messing, Joachim [Rutgers Univ., Piscataway, NJ (United States)

    2013-05-31

    Corn is the highest yielding crop on earth and probably the most valuable agricultural product of the United States. Because it converts sun energy through photosynthesis into starch and proteins, we addressed energy savings by focusing on protein quality. People and animals require essential amino acids derived from the digestion of proteins. If proteins are relatively low in certain essential amino acids, the crop becomes nutritionally defective and has to be supplemented. Such deficiency affects meat and fish production and countries where corn is a staple. Because corn seed proteins have relatively low levels of lysine and methionine, a diet has to be supplemented with soybeans for the missing lysine and with chemically synthesized methionine. We therefore have studied genes expressed during maize seed development and their chromosomal organization. A critical technical requirement for the understanding of the molecular structure of genes and their positional information was DNA sequencing. Because of the length of sequences, DNA sequencing methods themselves were insufficient for this type of analysis. We therefore developed the so-called “DNA shotgun sequencing” strategy, where overlapping DNA fragments were sequenced in parallel and used to reconstruct large DNA molecules via overlaps. Our publications became the most frequently cited ones during the decade of 1981-1990 and former Associate Director of Science for the Office of Basic Energy Sciences Patricia M. Dehmer presented our work as one of the great successes of this program. A major component of the sequencing strategy was the development of bacterial strains and vectors, which were also used to develop the first biotechnology crops. These crops possessed new traits thanks to the expression of foreign genes in plants. To enable such expression, chimeric genes had to be constructed using our materials and methods by the industry. Because we made our materials and methods freely available to

  16. Dynamic model-based N management reduces surplus nitrogen and improves the environmental performance of corn production

    Science.gov (United States)

    Sela, S.; Woodbury, P. B.; van Es, H. M.

    2018-05-01

    The US Midwest is the largest and most intensive corn (Zea mays, L.) production region in the world. However, N losses from corn systems cause serious environmental impacts including dead zones in coastal waters, groundwater pollution, particulate air pollution, and global warming. New approaches to reducing N losses are urgently needed. N surplus is gaining attention as such an approach for multiple cropping systems. We combined experimental data from 127 on-farm field trials conducted in seven US states during the 2011–2016 growing seasons with biochemical simulations using the PNM model to quantify the benefits of a dynamic location-adapted management approach to reduce N surplus. We found that this approach allowed large reductions in N rate (32%) and N surplus (36%) compared to existing static approaches, without reducing yield and substantially reducing yield-scaled N losses (11%). Across all sites, yield-scaled N losses increased linearly with N surplus values above ~48 kg ha‑1. Using the dynamic model-based N management approach enabled growers to get much closer to this target than using existing static methods, while maintaining yield. Therefore, this approach can substantially reduce N surplus and N pollution potential compared to static N management.

  17. Bio-Oil Production from Fast Pyrolysis of Corn Wastes and Eucalyptus Wood in a Fluidized Bed Reactor

    Directory of Open Access Journals (Sweden)

    M.A Ebrahimi-Nik

    2014-09-01

    Full Text Available Fast pyrolysis is an attractive technology for biomass conversion, from which bio-oil is the preferred product with a great potential for use in industry and transport. Corn wastes (cob and stover and eucalyptus wood are widely being produced throughout the world. In this study, fast pyrolysis of these two materials were examined under the temperature of 500 °C; career gas flow rate of 660 l h-1; particle size of 1-2 mm; 80 and 110 g h-1 of feed rate. The experiments were carried out in a continuous fluidized bed reactor. Pyrolysis vapor was condensed in 3 cooling traps (15, 0 and -40 °C plus an electrostatic one. Eucalyptus wood was pyrolyised to 12.4, 61.4, and 26.2 percent of bio-char, bio-oil and gas, respectively while these figures were as 20.15, 49.9, and 29.95 for corn wastes. In all experiments, the bio-oil obtained from electrostatic trap was a dark brown and highly viscose liquid.

  18. Mycoflora and aflatoxin/fumonisin production by fungal isolates from freshly harvested corn hybrids

    Directory of Open Access Journals (Sweden)

    Almeida Adriana P.

    2000-01-01

    Full Text Available The mycoflora of 3 hybrids of freshly harvested corn grains collected from three regions of the state of São Paulo, Brazil (Assis, Capão Bonito and Ribeirão Preto was investigated. A total of 66 samples were analyzed focusing on the influence of abiotic factors (moisture content, water activity, temperature and rainfall on both the prevalence of Aspergillus flavus and Fusarium moniliforme, and the ability of these genera isolates to produce aflatoxins and fumonisins, respectively. In the three surveyed regions, the fungal population comprised mainly Fusarium spp., Penicillium spp., Aspergillus spp. and 2 others filamentous fungal genera, which were isolated from corn kernels showing water activity of 0.30 to 0.99 and moisture content of 5.0% to 20.2%. Among the genera Fusarium and Aspergillus, the most frequent species were F. moniliforme and A. flavus, respectively. Concerning the toxigenic potential of F. moniliforme, all isolated strains (40 produced fumonisins at 20 mug/g to 2168 mug/g (FB1 and/or 10 mug/g to 380 mug/g (FB2. From