WorldWideScience

Sample records for core-shell structured nanocomposites

  1. The impact of core-shell nanotube structures on fracture in ceramic nanocomposites

    International Nuclear Information System (INIS)

    Liang, Xin; Yang, Yingchao; Lou, Jun; Sheldon, Brian W.

    2017-01-01

    Multi-wall carbon nanotubes (MWCNTs) can be used to create ceramic nanocomposites with improved fracture toughness. In the present work, atomic layer deposition (ALD) was employed to deposit thin oxide layers on MWCNTs. These core-shell structures were then used to create nanocomposites by using a polymer derived ceramic (PDC) to produce the matrix. Variations in both the initial MWCNT structure and the oxide layers led to substantial differences in fiber-pullout behavior. Single tube pullout tests also showed that the oxide coatings led to stronger bonding with the ceramic matrix. With high defect density MWCNTs, this led to shorter pull-out lengths which is consistent with the conventional understanding of fracture in ceramic matrix composites. However, with low defect density MWCNTs longer pullout lengths were observed with the oxide layers. To interpret the different trends that were observed, we believe that the ALD coatings should not be viewed simply as a means of altering the interfacial properties. Instead, the coated MWCNTs should be viewed as more complex core-shell fibers where both interface and internal properties can be controlled with the ALD layers. - Graphical abstract: Fracture properties of core-shell nanotubes reinforced ceramic nanocomposites.

  2. Organic-Inorganic Hydrophobic Nanocomposite Film with a Core-Shell Structure

    Directory of Open Access Journals (Sweden)

    Peng Liu

    2016-12-01

    Full Text Available A method to prepare novel organic-inorganic hydrophobic nanocomposite films was proposed by a site-specific polymerization process. The inorganic part, the core of the nanocomposite, is a ternary SiO2–Al2O3–TiO2 nanoparticles, which is grafted with methacryloxy propyl trimethoxyl silane (KH570, and wrapped by fluoride and siloxane polymers. The synthesized samples are characterized by transmission electron microscopy (TEM, Fourier transform infrared (FTIR spectrscopy, X-ray diffractometry (XRD, contact angle meter (CA, and scanning electron microscope (SEM. The results indicate that the novel organic-inorganic hydrophobic nanocomposite with a core-shell structure was synthesized successfully. XRD analysis reveals the nanocomposite film has an amorphous structure, and FTIR analysis indicates the nanoparticles react with a silane coupling agent (methacryloxy propyl trimethoxyl silane KH570. Interestingly, the morphology of the nanoparticle film is influenced by the composition of the core. Further, comparing with the film synthesized by silica nanoparticles, the film formed from SiO2–Al2O3–TiO2 nanoparticles has higher hydrophobic performance, i.e., the contact angle is greater than 101.7°. In addition, the TEM analysis reveals that the crystal structure of the particles can be changed at high temperatures.

  3. Energy storage in ferroelectric polymer nanocomposites filled with core-shell structured polymer@BaTiO3 nanoparticles: understanding the role of polymer shells in the interfacial regions.

    Science.gov (United States)

    Zhu, Ming; Huang, Xingyi; Yang, Ke; Zhai, Xing; Zhang, Jun; He, Jinliang; Jiang, Pingkai

    2014-11-26

    The interfacial region plays a critical role in determining the electrical properties and energy storage density of dielectric polymer nanocomposites. However, we still know a little about the effects of electrical properties of the interfacial regions on the electrical properties and energy storage of dielectric polymer nanocomposites. In this work, three types of core-shell structured polymer@BaTiO3 nanoparticles with polymer shells having different electrical properties were used as fillers to prepare ferroelectric polymer nanocomposites. All the polymer@BaTiO3 nanoparticles were prepared by surface-initiated reversible-addition-fragmentation chain transfer (RAFT) polymerization, and the polymer shells were controlled to have the same thickness. The morphology, crystal structure, frequency-dependent dielectric properties, breakdown strength, leakage currents, energy storage capability, and energy storage efficiency of the polymer nanocomposites were investigated. On the other hand, the pure polymers having the same molecular structure as the shells of polymer@BaTiO3 nanoparticles were also prepared by RAFT polymerization, and their electrical properties were provided. Our results show that, to achieve nanocomposites with high discharged energy density, the core-shell nanoparticle filler should simultaneously have high dielectric constant and low electrical conductivity. On the other hand, the breakdown strength of the polymer@BaTiO3-based nanocomposites is highly affected by the electrical properties of the polymer shells. It is believed that the electrical conductivity of the polymer shells should be as low as possible to achieve nanocomposites with high breakdown strength.

  4. Nickel oxide/polypyrrole/silver nanocomposites with core/shell/shell structure: Synthesis, characterization and their electrochemical behaviour with antimicrobial activities

    Energy Technology Data Exchange (ETDEWEB)

    Das, Dhaneswar; Nath, Bikash C. [Department of Chemical Sciences, Tezpur University, Tezpur 784028, Assam (India); Phukon, Pinkee [Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam (India); Saikia, Bhaskar J.; Kamrupi, Isha R. [Department of Chemical Sciences, Tezpur University, Tezpur 784028, Assam (India); Dolui, Swapan K., E-mail: dolui@tezu.ernet.in [Department of Chemical Sciences, Tezpur University, Tezpur 784028, Assam (India)

    2013-10-01

    Magnetic and conducting Nickel oxide–polypyrrole (NiO/PPy) nanoparticles with core–shell structure were prepared in the presence of Nickel oxide (NiO) in aqueous solution containing sodium dodecyl benzenesulfonate (SDBS) as a surfactant as well as dopant. A stable dispersion of silver (Ag) nanoparticles was synthesized by chemical (citrate reduction) method. NiO/PPy nanocomposites were added to the Ag colloid under stirring. Ag nanoparticles could be electrostatically attracted on the surface of NiO/PPy nanocomposites, leading to formation of NiO/PPy/Ag nanocomposites with core/shell/shell structure. The morphology, structure, particle size and composition of the products were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, cyclic voltammetry (CV) and current–voltage (I–V) analysis. The resultant nanocomposites have the good conductivity and excellent electrochemical and catalytic properties of PPy and Ag nanoparticles. Furthermore, the nanocomposites showed excellent antibacterial behaviour due to the presence of Ag nanoparticles in the composite. The thermal stability of NiO–PPy as well as NiO/PPy/Ag nanocomposites was higher than that of pristine PPy. Studies of IR spectra suggest that the increased thermal stability may be due to interactions between NiO and Ag nanoparticles with the PPy backbone. - Highlights: • NiO nanoparticles were synthesized by two step soft chemical synthesis route. • Ag nanoparticles were prepared by using citrate reduction method. • NiO/PPy nanocomposites are synthesized by chemical oxidative polymerization process. • NiO/PPy/Ag nanocomposites can be used in the water purification technology.

  5. Nickel oxide/polypyrrole/silver nanocomposites with core/shell/shell structure: Synthesis, characterization and their electrochemical behaviour with antimicrobial activities

    International Nuclear Information System (INIS)

    Das, Dhaneswar; Nath, Bikash C.; Phukon, Pinkee; Saikia, Bhaskar J.; Kamrupi, Isha R.; Dolui, Swapan K.

    2013-01-01

    Magnetic and conducting Nickel oxide–polypyrrole (NiO/PPy) nanoparticles with core–shell structure were prepared in the presence of Nickel oxide (NiO) in aqueous solution containing sodium dodecyl benzenesulfonate (SDBS) as a surfactant as well as dopant. A stable dispersion of silver (Ag) nanoparticles was synthesized by chemical (citrate reduction) method. NiO/PPy nanocomposites were added to the Ag colloid under stirring. Ag nanoparticles could be electrostatically attracted on the surface of NiO/PPy nanocomposites, leading to formation of NiO/PPy/Ag nanocomposites with core/shell/shell structure. The morphology, structure, particle size and composition of the products were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, cyclic voltammetry (CV) and current–voltage (I–V) analysis. The resultant nanocomposites have the good conductivity and excellent electrochemical and catalytic properties of PPy and Ag nanoparticles. Furthermore, the nanocomposites showed excellent antibacterial behaviour due to the presence of Ag nanoparticles in the composite. The thermal stability of NiO–PPy as well as NiO/PPy/Ag nanocomposites was higher than that of pristine PPy. Studies of IR spectra suggest that the increased thermal stability may be due to interactions between NiO and Ag nanoparticles with the PPy backbone. - Highlights: • NiO nanoparticles were synthesized by two step soft chemical synthesis route. • Ag nanoparticles were prepared by using citrate reduction method. • NiO/PPy nanocomposites are synthesized by chemical oxidative polymerization process. • NiO/PPy/Ag nanocomposites can be used in the water purification technology

  6. Inorganic/organic nanocomposites: Reaching a high filler content without increasing viscosity using core-shell structured nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Benhadjala, W., E-mail: warda.benhadjala@cea.fr [IMS Laboratory - UMR CNRS 5218, University of Bordeaux, 351 Cours de la Libération, 33405 Talence (France); CEA, LETI, Minatec Campus, 38000 Grenoble (France); Gravoueille, M.; Weiss, M. [EDF, Centre d' Expertise et d' Inspection dans les Domaines de la Réalisation et de l' Exploitation (CEIDRE), Chinon, BP 80, 37420 Avoine (France); Bord-Majek, I.; Béchou, L.; Ousten, Y. [IMS Laboratory - UMR CNRS 5218, University of Bordeaux, 351 Cours de la Libération, 33405 Talence (France); Suhir, E. [Maseeh College of Engineering and Computer Science, Portland State University, Oregon 97201 (United States); Buet, M.; Louarn, M.; Rougé, F.; Gaud, V. [Polyrise SAS, 16 Avenue Pey Berland, 33607 Pessac (France)

    2015-11-23

    Extensive research is being conducted on the development of inorganic/organic nanocomposites for a wide variety of applications in microelectronics, biotechnologies, photonics, adhesives, or optical coatings. High filler contents are usually required to fully optimize the nanocomposites properties. However, numerous studies demonstrated that traditional composite viscosity increases with increasing the filler concentration reducing therefore significantly the material processability. In this work, we synthesized inorganic/organic core-shell nanocomposites with different shell thicknesses. By reducing the shell thickness while maintaining a constant core size, the nanoparticle molecular mass decreases but the nanocomposite filler fraction is correlatively increased. We performed viscosity measurements, which clearly highlighted that intrinsic viscosity of hybrid nanoparticles decreases as the molecular mass decreases, and thus, as the filler fraction increases, as opposed to Einstein predictions about the viscosity of traditional inorganic/polymer two-phase mixtures. This exceptional behavior, modeled by Mark-Houwink-Sakurada equation, proves to be a significant breakthrough for the development of industrializable nanocomposites with high filler contents.

  7. Laser ablation of Au-CuO core-shell nanocomposite in water for optoelectronic devices

    Science.gov (United States)

    Ismail, Raid A.; Abdul-Hamed, Ryam S.

    2017-12-01

    Core-shell gold-copper oxide Au-CuO nanocomposites were synthesized using laser ablation of CuO target in colloidal solution of Au nanoparticles (NPs). The effect of laser fluence on the structural, morphological, electrical, and optical properties of Au-CuO nanocomposites was investigated using x-ray diffraction (XRD), atomic force microscope (AFM), scanning electron microscope (SEM), transmission electron microscope (TEM), photoluminescence (PL), Fourier transformed infrared spectroscopy (FTIR), Hall measurement, and UV-vis spectroscopy. X-ray diffraction results confirm the formation of polycrystalline Au-CuO NPs with monoclinic structure. The optical energy gap for CuO was 4 eV and for the Au-CuO core-shell nanocomposites was found to be in the range of 3.4-3.7 eV. SEM and TEM investigations revealed that the structure and morphology of Au-CuO core-shell nanocomposites were strongly depending on the laser fluence. A formation of Au-CuO nanospheres and platelets structures was observed. The photoluminescence data showed an emission of broad visible peaks between 407 and 420 nm. The effect of laser fluence on the dark and illuminated I-V characteristics of Au-CuO/n-Si heterojunction photodetectors was investigated and analyzed. The experimental data demonstrated that the photodetector prepared at optimum laser fluence exhibited photosensitivity of 0.6 AW-1 at 800 nm.

  8. Enzyme-free hydrogen peroxide sensor based on Au@Ag@C core-double shell nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yancai, E-mail: liyancai@mnnu.edu.cn [College of Chemistry & Environment, Minnan Normal University, Zhangzhou 363000 (China); Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000 (China); Zhang, Yayun; Zhong, Yanmei [College of Chemistry & Environment, Minnan Normal University, Zhangzhou 363000 (China); Li, Shunxing [College of Chemistry & Environment, Minnan Normal University, Zhangzhou 363000 (China); Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000 (China)

    2015-08-30

    Graphical abstract: - Highlights: • A facile method was designed to synthesize Au@Ag@C core-double shell nanocomposites. • Carbon nanomaterials at the outermost layer could protect Au and Ag nanoparticles from oxidation and aggregation. • The Au@Ag@C core-double shell nanocomposites showed high sensitivity and selectivity to electrocatalytic reduction of hydrogen peroxide. • The hydrogen peroxide sensor has a wide linear range of 5.0 μM to 4.75 mM and a limit of detection as low as 0.14 μM. - Abstract: The well-designed Au@Ag@C core-double shell nanocomposites were synthesized via a facile method, and were used to fabricate an enzyme-free amperometric hydrogen peroxide (H{sub 2}O{sub 2}) sensor. The size, shape, elementary composition and structure of the nanocomposites were characterized by transmission electron microscope (TEM), energy-dispersed spectrum (EDS) and X-ray diffraction (XRD). The outermost layer of the nanocomposites was amorphous carbon, the second layer was Ag and the core was Au. The Au@Ag@C core-double shell nanocomposites exhibit attractive activity for electrocatalytic reduction of H{sub 2}O{sub 2} according to the electrochemical experiments. It also demonstrates the H{sub 2}O{sub 2} sensor possess well performance with a wide linear range of 5.0 μM to 4.75 mM and a limit of detection (LOD) as low as 0.14 μM (S/N = 3). Furthermore, the interference from the common interfering species, such as glucose, ascorbic acid, dopamine and uric acid can be effectively avoided. In a word, the Au@Ag@C nanocomposites are promising candidates for enzyme-free H{sub 2}O{sub 2} sensor.

  9. Electrospun pH-sensitive core-shell polymer nanocomposites fabricated using a tri-axial process.

    Science.gov (United States)

    Yang, Chen; Yu, Deng-Guang; Pan, Deng; Liu, Xin-Kuan; Wang, Xia; Bligh, S W Annie; Williams, Gareth R

    2016-04-15

    A modified tri-axial electrospinning process was developed for the generation of a new type of pH-sensitive polymer/lipid nanocomposite. The systems produced are able to promote both dissolution and permeation of a model poorly water-soluble drug. First, we show that it is possible to run a tri-axial process with only one of the three fluids being electrospinnable. Using an electrospinnable middle fluid of Eudragit S100 (ES100) with pure ethanol as the outer solvent and an unspinnable lecithin-diclofenac sodium (PL-DS) core solution, nanofibers with linear morphology and clear core/shell structures can be fabricated continuously and smoothly. X-ray diffraction proved that these nanofibers are structural nanocomposites with the drug present in an amorphous state. In vitro dissolution tests demonstrated that the formulations could preclude release in acidic conditions, and that the drug was released from the fibers in two successive steps at neutral pH. The first step is the dissolution of the shell ES100 and the conversion of the core PL-DS into sub-micron sized particles. This frees some DS into solution, and later the remaining DS is gradually released from the PL-DS particles through diffusion. Ex vivo permeation results showed that the composite nanofibers give a more than twofold uplift in the amount of DS passing through the colonic membrane as compared to pure DS; 74% of the transmitted drug was in the form of PL-DS particles. The new tri-axial electrospinning process developed in this work provides a platform to fabricate structural nanomaterials, and the core-shell polymer-PL nanocomposites we have produced have significant potential applications for oral colon-targeted drug delivery. A modified tri-axial electrospinning is demonstrated to create a new type of core-shell pH-sensitive polymer/lipid nanocomposites, in which an electrospinnable middle fluid is exploited to support the un-spinnable outer and inner fluids. The structural nanocomposites are able

  10. Synthesis of Co/MFe(2)O(4) (M = Fe, Mn) Core/Shell Nanocomposite Particles.

    Science.gov (United States)

    Peng, Sheng; Xie, Jin; Sun, Shouheng

    2008-01-01

    Monodispersed cobalt nanoparticles (NPs) with controllable size (8-14 nm) have been synthesized using thermal decomposition of dicobaltoctacarbonyl in organic solvent. The as-synthesized high magnetic moment (125 emu/g) Co NPs are dispersible in various organic solvents, and can be easily transferred into aqueous phase by surface modification using phospholipids. However, the modified hydrophilic Co NPs are not stable as they are quickly oxidized, agglomerated in buffer. Co NPs are stabilized by coating the MFe(2)O(4) (M = Fe, Mn) ferrite shell. Core/shell structured bimagnetic Co/MFe(2)O(4) nanocomposites are prepared with tunable shell thickness (1-5 nm). The Co/MFe(2)O(4) nanocomposites retain the high magnetic moment density from the Co core, while gaining chemical and magnetic stability from the ferrite shell. Comparing to Co NPs, the nanocomposites show much enhanced stability in buffer solution at elevated temperatures, making them promising for biomedical applications.

  11. Preparation and Characterization of WS2@SiO2 and WS2@PANI Core-Shell Nanocomposites

    Directory of Open Access Journals (Sweden)

    Hagit Sade

    2018-03-01

    Full Text Available Two tungsten disulfide (WS2-based core-shell nanocomposites were fabricated using readily available reagents and simple procedures. The surface was pre-treated with a surfactant couple in a layer-by-layer approach, enabling good dispersion of the WS2 nanostructures in aqueous media and providing a template for the polymerization of a silica (SiO2 shell. After a Stöber-like reaction, a conformal silica coating was achieved. Inspired by the resulting nanocomposite, a second one was prepared by reacting the surfactant-modified WS2 nanostructures with aniline and an oxidizing agent in an aqueous medium. Here too, a conformal coating of polyaniline (PANI was obtained, giving a WS2@PANI nanocomposite. Both nanocomposites were analyzed by electron microscopy, energy dispersive X-ray spectroscopy (EDS and FTIR, verifying the core-shell structure and the character of shells. The silica shell was amorphous and mesoporous and the surface area of the composite increases with shell thickness. Polyaniline shells slightly differ in their morphologies dependent on the acid used in the polymerization process and are amorphous like the silica shell. Electron paramagnetic resonance (EPR spectroscopy of the WS2@PANI nanocomposite showed variation between bulk PANI and the PANI shell. These two nanocomposites have great potential to expand the use of transition metals dichalcogenides (TMDCs for new applications in different fields.

  12. Fabrication of ammonium perchlorate/copper-chromium oxides core-shell nanocomposites for catalytic thermal decomposition of ammonium perchlorate

    Energy Technology Data Exchange (ETDEWEB)

    Eslami, Abbas, E-mail: eslami@umz.ac.ir [Department of Inorganic Chemistry, Faculty of Chemistry, University of Mazandaran, P.O.Box 47416-95447, Babolsar (Iran, Islamic Republic of); Juibari, Nafise Modanlou [Department of Inorganic Chemistry, Faculty of Chemistry, University of Mazandaran, P.O.Box 47416-95447, Babolsar (Iran, Islamic Republic of); Hosseini, Seyed Ghorban [Department of Chemistry, Malek Ashtar University of Technology, P.O. Box 16765-3454, Tehran (Iran, Islamic Republic of)

    2016-09-15

    The ammonium perchlorate/Cu(II)-Cr(III)-oxides(AP/Cu-Cr-O) core-shell nanocomposites were in-situ prepared by deposition of copper and chromium oxides on suspended ammonium perchlorate particles in ethyl acetate as solvent. The results of differential scanning calorimetery (DSC) and thermal gravimetric analysis (TGA) experiments showed that the nanocomposites have excellent catalytic effect on the thermal decomposition of AP, so that the released heat increases up to about 3-fold over initial values, changing from 450 J/g for pure AP to 1510 J/g for most appropriate mixture. For better comparison, single metal oxide/AP core-shell nanocomposite have also been prepared and the results showed that they have less catalytic effect respect to mixed metal oxides system. Scanning electron microscopy (SEM) results revealed homogenous deposition of nanoparticles on the surface of AP and fabrication of core-shell structures. The kinetic parameters of thermal decomposition of both pure AP and AP/Cu-Cr-O samples have been calculated by Kissinger method and the results showed that the values of pre-exponential factor and activation energy are higher for AP/Cu-Cr-O nanocomposite. The better catalytic effect of Cu-Cr-O nanocomposites is probably attributed to the synergistic effect between Cu{sup 2+} and Cr{sup 3+} in the nanocomposites, smaller particle size and more crystal defect. - Highlights: • The Cu-Cr-O nanoparticles were synthesized by chemical liquid deposition method. • Then, the AP/Cu-Cr-O core-shell nanocomposites were prepared. • The core-shell samples showed high catalytic activity for AP decomposition. • Thermal decomposition of samples occurs at lower temperature range.

  13. One-pot synthesis of porous Fe{sub 3}O{sub 4} shell/silver core nanocomposites used as recyclable magnetic antibacterial agents

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Weijun, E-mail: wjfang81@gmail.com [College of Basic Medicine, Anhui Medical University, Hefei 230032, Anhui (China); Zheng, Jun; Chen, Cheng [Center of Modern Experimental Technology, Anhui University, Hefei 230039, Anhui (China); Zhang, Huabing; Lu, Yunxia [College of Basic Medicine, Anhui Medical University, Hefei 230032, Anhui (China); Ma, Ling [Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian (China); Chen, Guangjun [College of Basic Medicine, Anhui Medical University, Hefei 230032, Anhui (China)

    2014-05-01

    Porous Fe{sub 3}O{sub 4} shell/silver core nanocomposites featuring sustainable and recyclable antibacterial activity have been successfully prepared via a facile one-pot hydrothermal method. The unique structural feature of the Ag@Fe{sub 3}O{sub 4} nanocomposites with Ag embedded in porous Fe{sub 3}O{sub 4} shell endows them with the ability of sustained-release of silver ions. Their antimicrobial activity studies were investigated on both Gram negative Escherichia coli and Gram positive Bacillus subtilis, which demonstrate that the nanocomposites are highly toxic to microorganisms and exhibit sustainable antibacterial activity. Besides, the Ag@Fe{sub 3}O{sub 4} nanocomposites can be separated easily from the medium by a small magnet, which provided an effective way to eliminate the residual nanosilver from the surroundings. We finally demonstrate that the recovered nanocomposites exhibit recyclable antibacterial activity, acting as an ideal long-acting antibacterial agent. - Highlights: • The porous Fe{sub 3}O{sub 4} shell/silver core nanocomposites have been successfully prepared via a simple one-pot hydrothermal method. • The as-prepared Ag@Fe{sub 3}O{sub 4} nanocomposites exhibit high antibacterial activity against both Gram-positive and Gram-negative bacteria. • The porous Fe{sub 3}O{sub 4} shell/silver core nanocomposites show a stronger antibacterial ability than the solid Fe{sub 3}O{sub 4} shell/silver core nanocomposites. • The recovery nanocomposites still have antibacterial activity and can be reused.

  14. Structural and magnetic properties of CoFe{sub 2}O{sub 4}/NiFe{sub 2}O{sub 4} core/shell nanocomposite prepared by the hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Sattar, A.A. [Department of Physics, Faculty of Science, Ain Shams University, 11566 Abbasia, Cairo (Egypt); EL-Sayed, H.M., E-mail: h_m_elsaid@hotmail.com [Department of Physics, Faculty of Science, Ain Shams University, 11566 Abbasia, Cairo (Egypt); ALsuqia, Ibrahim [Department of Physics, Faculty of Education and Applied Science, Hajjah University, Alshahli, Hajjah (Yemen)

    2015-12-01

    CoFe{sub 2}O{sub 4}/NiFe{sub 2}O{sub 4} core/shell magnetic nanocomposite was synthesized by using hydrothermal method.The analysis of XRD indicated the coexistence of CoFe{sub 2}O{sub 4}, NiFe{sub 2}O{sub 4}as core/shell composite. The core/shell structure of the composite sample has been confirmed by HR-TEM images, EDX and FT-IR measurements. The size of obtained core/shell nanoparticles was 17 nm in core diameter and about 3 nm in shell thickness. The magnetization measurements showed that both the coercive field and the saturation magnetization of the resulting core/shell nanocomposite were slightly decreased compared to those of the CoFe{sub 2}O{sub 4} core but the thermal stability is of the magnetization parameter was enhanced. Furthermore, superparamagnetic phase is established at temperatures higher than the room temperature. The results were discussed in terms of the surface pinning and the magnetic interaction at the interface between the core and shell. - Highlights: • CoFe{sub 2}O{sub 4}/NiFe{sub 2}O{sub 4} core/shell could be prepared by hydrothermal method. • The structural analysis proved the formation of NiFe{sub 2}O{sub 4} shell with thickness 3 nm. • The thermal stability of M{sub s} and H{sub c} is enhanced due to the presence of NiFe{sub 2}O{sub 4} as a shell. • Super paramagnetic transition is confirmed and the effective magnetic anisotropy was calculated.

  15. A novel magnetic core-shell nanocomposite Fe3O4@chitosan@ZnO for the green synthesis of 2-benzimidazoles

    Science.gov (United States)

    Tian, Fei; Niu, Libo; Chen, Bo; Gao, Xuejia; Lan, Xingwang; Huo, Li; Bai, Guoyi

    2017-10-01

    A novel magnetic core-shell nanocomposite Fe3O4@Chitosan@ZnO was successfully prepared by in situ chemical precipitation method. It has a clear core-shell structure with magnetic Fe3O4 (about 160 nm in diameter) as core, chitosan as the inner shell, and ZnO as the outer shell, as demonstrated by the transmission electron microscopy and the related elemental mapping. Moreover, this nanocomposite has high magnetization (43.6 emu g-1) so that it can be easily separated from the reaction mixture within 4 s by an external magnetic field. The introduction of the natural chitosan shell, instead of the conventional SiO2 shell, and its combination with the active ZnO ensures this novel nanocomposite green character and good catalytic performance in the synthesis of 2-benzimidazoles with moderate to excellent isolated yields at room temperature. Notably, it can be recycled seven times without appreciable loss of its initial catalytic activity, demonstrating its good stability and making it an attractive candidate for the green synthesis of 2-benzimidazoles. [Figure not available: see fulltext.

  16. Preparation and Properties of PTFE-PMMA Core-Shell Nanoparticles and Nanocomposites

    Directory of Open Access Journals (Sweden)

    Diego Antonioli

    2012-01-01

    Full Text Available The preparation of polytetrafluoroethylene-poly(methyl methacrylate (PTFE-PMMA core-shell particles was described, featuring controlled size and narrow size distribution over a wide compositional range, through a seeded emulsion polymerization starting from a PTFE seed of 26 nanometers. Over the entire MMA/PTFE range, the particle size increases as the MMA/PTFE ratio increases. A very precise control over the particle size can be exerted by properly adjusting the ratio between the monomer and the PTFE seed. Particles in the 80–240 nm range can be prepared with uniformity indexes suited to build 2D and 3D colloidal crystals. These core-shell particles were employed to prepare nanocomposites with different compositions, through an annealing procedure at a temperature higher than the glass transition temperature of the shell forming polymer. A perfect dispersion of the PTFE particles within the PMMA matrix was obtained and optically transparent nanocomposites were prepared containing a very high PTFE amount.

  17. Synthesis and characterization of multifunctional silica core-shell nanocomposites with magnetic and fluorescent functionalities

    International Nuclear Information System (INIS)

    Ma Zhiya; Dosev, Dosi; Nichkova, Mikaela; Dumas, Randy K.; Gee, Shirley J.; Hammock, Bruce D.; Liu Kai; Kennedy, Ian M.

    2009-01-01

    Multifunctional core-shell nanocomposites with a magnetic core and a silica shell doped with lanthanide chelate have been prepared by a simple method. First, citric acid-modified magnetite nanoparticles were synthesized by a chemical coprecipitation method. Then the magnetite nanoparticles were coated with silica shells doped with terbium (Tb 3+ ) complex by a modified Stoeber method based on hydrolyzing and condensation of tetraethyl orthosilicate (TEOS) and a silane precursor. These multifunctional nanocomposites are potentially useful in a variety of biological areas such as bio-imaging, bio-labeling and bioassays because they can be simultaneously manipulated with an external magnetic field and exhibit unique phosphorescence properties.

  18. Enhanced energy density and thermostability in polyimide nanocomposites containing core-shell structured BaTiO3@SiO2 nanofibers

    Science.gov (United States)

    Wang, Junchuan; Long, Yunchen; Sun, Ying; Zhang, Xueqin; Yang, Hong; Lin, Baoping

    2017-12-01

    High energy density polymer nanocomposites with high-temperature resistance are quite desirable for film capacitors and many other power electronics. In this study, polyimide-based (PI) nanocomposite films containing the core-shell structured barium titanate@silicon dioxide (BT@SiO2) nanofibers have been successfully synthesized by the solution casting method. In the BT@SiO2/PI nanocomposite films, the dielectric permittivity as well as the breakdown strength increase significantly. The SiO2 shell layers with moderate dielectric permittivity could effectively mitigate the local field concentration induced by the large mismatch between the dielectric permittivity of BT and PI, which contributes to the enhancement of the breakdown strength of the PI nanocomposite films. As a result, the PI nanocomposite film filled with 3 vol% BT@SiO2 nanofibers exhibits a maximal energy density of 2.31 J cm-3 under the field of 346 kV/mm, which is 62% over the pristine PI (1.42 J cm-3 at 308 kV/mm) and about 200% greater than the best commercial polymer, i.e. biaxially oriented polypropylenes (BOPP) (≈1.2 J cm-3). The thermogravimetric analysis results indicate that the BT@SiO2/PI nanocomposite films have good thermal stability below 500 °C.

  19. Reduced energy loss in poly(vinylidene fluoride) nanocomposites by filling with a small loading of core-shell structured BaTiO3/SiO2 nanofibers

    Science.gov (United States)

    Liu, Shaohui; Xue, Shuangxi; Shen, Bo; Zhai, Jiwei

    2015-07-01

    Homogeneous ceramic-polymer nanocomposites consisting of core-shell structured BaTiO3/SiO2 nanofibers and a p oly(vinylidene fluoride) (PVDF) polymer matrix have been prepared. The correlation between the energy discharged density and interfacial polarization is studied in PVDF nanocomposites by the measurements of the discharge performance and impedance spectroscopy. According to the results of dielectric constant, breakdown strength, and complex impedance analysis, coating SiO2 layers on the surface of BaTiO3 nanofibers can block the movement of charge carriers through the nanocomposites by playing a shielding role on the charge-rich inter layer, which resulted in weak Maxwell-Wagner-Sillars interfacial polarization and thus reduces the energy loss and improved the energy discharged density of the nanocomposites. The energy discharged density in the nanocomposite with 2.5 vol. % BaTiO3/SiO2 core-shell nanofibers is 6.28 J/cm3 at 3.3 MV/cm, which is over 11.94% higher than that of nanocomposite with BaTiO3 nanofibers at the same electric field.

  20. Development of silane grafted ZnO core shell nanoparticles loaded diglycidyl epoxy nanocomposites film for antimicrobial applications.

    Science.gov (United States)

    Suresh, S; Saravanan, P; Jayamoorthy, K; Ananda Kumar, S; Karthikeyan, S

    2016-07-01

    In this article a series of epoxy nanocomposites film were developed using amine functionalized (ZnO-APTES) core shell nanoparticles as the dispersed phase and a commercially available epoxy resin as the matrix phase. The functional group of the samples was characterized using FT-IR spectra. The most prominent peaks of epoxy resin were found in bare epoxy and in all the functionalized ZnO dispersed epoxy nanocomposites (ZnO-APTES-DGEBA). The XRD analysis of all the samples exhibits considerable shift in 2θ, intensity and d-spacing values but the best and optimum concentration is found to be 3% ZnO-APTES core shell nanoparticles loaded epoxy nanocomposites supported by FT-IR results. From TGA measurements, 100wt% residue is obtained in bare ZnO nanoparticles whereas in ZnO core shell nanoparticles grafted DGEBA residue percentages are 37, 41, 45, 46 and 52% for 0, 1, 3, 5 and 7% ZnO-APTES-DGEBA respectively, which is confirmed with ICP-OES analysis. From antimicrobial activity test, it was notable that antimicrobial activity of 7% ZnO-APTES core shell nanoparticles loaded epoxy nanocomposite film has best inhibition zone effect against all pathogens under study. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Facile Synthesis of Au Nanocube-CdS Core-Shell Nanocomposites with Enhanced Photocatalytic Activity

    Science.gov (United States)

    Liu, Xiao-Li; Liang, Shan; Li, Min; Yu, Xue-Feng; Zhou, Li; Wang, Qu-Qua

    2014-06-01

    Au nanocube-CdS core-shell nanocomposites are prepared by using a one-pot method in aqueous phase with cetyltrimethylammonium bromide as the surfactant. The extinction properties and photocatalytic activity of Au-CdS nanocomposites are investigated. Compared with the pure Au nanocubes, the Au-CdS nanocomposites exhibit enhanced extinction intensity. Compared with CdS nanoparticles, the Au-CdS nanocomposites exhibit improved photocatalytic activity. Furthermore, the photocatalytic efficiency is even better with the increase in the core size of the Au-CdS nanocomposites. Typically, the photocatalytic efficiency of the Au-CdS with 62 nm sized Au nanocubes is about two times higher than that of the pure CdS. It is believed that the Au-CdS nanocomposites may find potential applications in environmental fields, and this synthesis method can be extended to prepare a wide variety of functional composites with Au cores.

  2. Core-shell Si/Cu nanocomposites synthesized by self-limiting surface reaction as anodes for lithium ion batteries

    Science.gov (United States)

    Xu, Kaiqi; Zhang, Zhizhen; Su, Wei; Huang, Xuejie

    Core-shell Si/Cu nanocomposites were synthesized via a flexible self-limiting surface reaction without extra reductant for the first time. The nano Si was uniformly coated with Cu nanoparticles with a diameter of 5-10nm, which can enhance the electronic conductivity of the nanocomposites and buffer the huge volume change during charge/discharge owing to its high ductility. Benefited from the unique structure, the Si/Cu nanocomposites exhibited a good electrochemical performance as anodes for lithium ion batteries, which exhibited a capacity retention of 656mAh/g after 50 cycles and a coulombic efficiency of more than 99%.

  3. A Study on Dielectric Properties of Cadmium Sulfide-Zinc Sulfide Core-Shell Nanocomposites for Application as Nanoelectronic Filter Component in the Microwave Domain

    Science.gov (United States)

    Devi, Jutika; Datta, Pranayee

    2018-03-01

    Complex permittivities of cadmium sulfide (CdS), zinc sulfide (ZnS), and of cadmium sulfide-zinc sulfide (CdS/ZnS) core-shell nanoparticles embedded in a polyvinyl alcohol matrix (PVA) were measured in liquid phase using a VectorNetwork Analyzer in the frequency range of 500 MHz-10 GHz. These nanocomposites are modeled as an embedded capacitor, and their electric field distribution and polarization have been studied using COMSOL Multiphysics software. By varying the thickness of the shell and the number of inclusions, the capacitance values were estimated. It was observed that CdS, ZnS and CdS/ZnS core-shell nanoparticles embedded in a polyvinyl alcohol matrix show capacitive behavior. There is a strong influence of the dielectric properties in the capacitive behavior of the embedded nanocapacitor. The capping matrix, position and filling factors of nanoinclusions all affect the capacitive behavior of the tested nanocomposites. Application of the CdS, ZnS and CdS/ZnS core-shell nanocomposite as the passive low-pass filter circuit has also been investigated. From the present study, it has been found that CdS/ZnS core-shell nanoparticles embedded in PVA matrix are potential structures for application as nanoelectronic filter components in different areas of communication.

  4. NaYF4:Er,Yb/Bi2MoO6 core/shell nanocomposite: A highly efficient visible-light-driven photocatalyst utilizing upconversion

    International Nuclear Information System (INIS)

    Sun, Yuanyuan; Wang, Wenzhong; Sun, Songmei; Zhang, Ling

    2014-01-01

    Highlights: • Design and synthesis of NaYF 4 :Er,Yb/Bi 2 MoO 6 based on upconversion. • NaYF 4 :Er,Yb/Bi 2 MoO 6 nanocomposite was prepared for the first time. • Core–shell structure benefits the properties. • Upconversion contributed to the enhanced photocatalytic activity. • Helps to understand the functionality of new type photocatalysts. - Abstract: NaYF 4 :Er,Yb/Bi 2 MoO 6 core/shell nanocomposite was designed and prepared for the first time based on upconversion. The products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution TEM (HRTEM), energy dispersive X-ray spectroscopy (EDS) and diffuse reflectance spectra (DRS). The results revealed that the as-synthesized NaYF 4 :Er,Yb/Bi 2 MoO 6 consisted of spheres with a core diameter of about 26 nm and a shell diameter of around 6 nm. The core was upconversion illuminant NaYF 4 :Er,Yb and the shell was Bi 2 MoO 6 around the core, which was confirmed by EDS. The NaYF 4 :Er,Yb/Bi 2 MoO 6 exhibited higher photocatalytic activity for the photodecomposition of Rhodamine B (RhB) under the irradiation of Xe lamp and green light emitting diode (g-LED). The mechanism of the high photocatalytic activity was discussed by photoluminescence spectra (PL), which is mainly attributed to upconversion of NaYF 4 :Er,Yb in the NaYF 4 :Er,Yb/Bi 2 MoO 6 nanocomposite and the core–shell structure

  5. High dielectric constant and energy density induced by the tunable TiO2 interfacial buffer layer in PVDF nanocomposite contained with core-shell structured TiO2@BaTiO3 nanoparticles

    Science.gov (United States)

    Hu, Penghao; Jia, Zhuye; Shen, Zhonghui; Wang, Peng; Liu, Xiaoru

    2018-05-01

    To realize application in high-capacity capacitors and portable electric devices, large energy density is eagerly desired for polymer-based nanocomposite. The core-shell structured nanofillers with inorganic buffer layer are recently supposed to be promising in improving the dielectric property of polymer nanocomposite. In this work, core-shell structured TO@BT nanoparticles with crystalline TiO2 buffer layer coated on BaTiO3 nanoparticle were fabricated via solution method and heat treatment. The thickness of the TO buffer layer can be tailored by modulating the additive amount of the titanate coupling agent in preparation process, and the apparent dielectric properties of nanocomposite are much related to the thickness of the TO layer. The relatively thin TO layer prefer to generate high polarization to increase dielectric constant while the relatively thick TO layer would rather to homogenize field to maintain breakdown strength. Simulation of electric field distribution in the interfacial region reveals the improving effect of the TO buffer layer on the dielectric properties of nanocomposite which accords with the experimental results well. The optimized nanoparticle TO@BT-2 with a mean thickness of 3-5 nm buffer layer of TO is effective in increasing both the ε and Eb in the PVDF composite film. The maximal discharged energy density of 8.78 J/cm3 with high energy efficiency above 0.6 is obtained in TO@BT-2/PVDF nanocomposite with 2.5 vol% loading close to the breakdown strength of 380 kV/mm. The present study demonstrates the approach to optimize the structure of core-shell nanoparticles by modulating buffer layer and provides a new way to further enlarge energy density in polymer nanocomposite.

  6. Synthesis of NiO@MnO_2 core/shell nanocomposites for supercapacitor application

    International Nuclear Information System (INIS)

    Chen, Junjiao; Huang, Ying; Li, Chao; Chen, Xuefang; Zhang, Xiang

    2016-01-01

    Graphical abstract: - Highlights: • MnO_2 nanosheets were grown on the surface of porous NiO microtube. • The NiO@MnO_2 nanocomposite exhibits excellent cycle performance. • The nanocomposite exhibits specific capacitance of 266.7 F g"−"1 at 0.5 A g"−"1. - Abstract: In this work, NiO@MnO_2 core/shell nanocomposites were fabricated by a two-step method. The morphology and structure of the nanocomposites were characterized by scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction analysis and thermal gravity analysis. In addition, the supercapacitive performances were examined by cyclic voltammogram (CV), galvanostatic charge–discharge and electrochemical impedance spectroscopy (EIS). The electrochemical results indicate that the composite exhibits a specific capacitance of 266.7 F g"−"1 at 0.5 A g"−"1 and excellent cycling stability (81.7% retention after 2000 cycles at 1 A g"−"1). Therefore, this wok offers meaningful reference for supercpacitor applications in the future.

  7. The Fabrication and High-Efficiency Electromagnetic Wave Absorption Performance of CoFe/C Core-Shell Structured Nanocomposites

    Science.gov (United States)

    Wan, Gengping; Luo, Yongming; Wu, Lihong; Wang, Guizhen

    2018-03-01

    CoFe/C core-shell structured nanocomposites (CoFe@C) have been fabricated through the thermal decomposition of acetylene with CoFe2O4 as precursor. The as-prepared CoFe@C was characterized by X-ray powder diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy, transmission electron microscopy, and thermogravimetric analysis. The results demonstrate that the carbon shell in CoFe@C has a poor crystallization with a thickness about 5-30 nm and a content approximately 48.5 wt.%. Due to a good combination between intrinsic magnetic properties and high-electrical conductivity, the CoFe@C exhibits not only excellent absorption intensity but also wide frequency bandwidth. The minimum RL value of CoFe@C can reach - 44 dB at a thickness of 4.0 mm, and RL values below - 10 dB is up to 4.3 GHz at a thickness of 2.5 mm. The present CoFe@C may be a potential candidate for microwave absorption application.

  8. Sensitive electrochemical sensor of tryptophan based on Ag-C core-shell nanocomposite modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Mao Shuxian [College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 (China); Li Weifeng, E-mail: liweifeng@suda.edu.cn [College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 (China); Long Yumei, E-mail: yumeilong@suda.edu.cn [College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 (China); Tu Yifeng; Deng, Anping [College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 (China)

    2012-08-13

    Graphical abstract: Ag-C and Colloidal carbon sphere modified glassy carbon electrodes were prepared. It was clear that the Ag-C/GCE exhibited enhanced electrocatalytic activity towards Trp, which could result from the synergistic effect between Ag core and carbon shell. The Ag-C/GCE showed excellent analytical properties in the determination of Trp. Highlights: Black-Right-Pointing-Pointer The electrochemical behavior of Ag-C core-shell nanocomposite was firstly proposed. Black-Right-Pointing-Pointer Ag-C/GC electrode exhibited favorable electrocatalytic properties towards Trp. Black-Right-Pointing-Pointer The good electrocatalysis was due to the synergistic effect of Ag-core and C-shell. Black-Right-Pointing-Pointer The Ag-C/GC electrode displayed excellent analytical properties in determining Trp. - Abstract: We here reported a simple electrochemical method for the detection of tryptophan (Trp) based on the Ag-C modified glassy carbon (Ag-C/GC) electrode. The Ag-C core-shell structured nanoparticles were synthesized using one-pot hydrothermal method and characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), and Fourier transform-infrared spectroscopy (FTIR). The electrochemical behaviors of Trp on Ag-C/GC electrode were investigated and exhibited a direct electrochemical process. The favorable electrochemical properties of Ag-C/GC electrode were attributed to the synergistic effect of the Ag core and carbon shell. The carbon shell cannot only protect Ag core but also contribute to the enhanced substrate accessibility and Trp-substrate interactions, while nano-Ag core can display good electrocatalytic activity to Trp at the same time. Under the optimum experimental conditions the oxidation peak current was linearly dependent on the Trp concentration in the range of 1.0 Multiplication-Sign 10{sup -7} to 1.0 Multiplication-Sign 10{sup -4} M with a detection limit of 4.0 Multiplication-Sign 10{sup -8} M (S/N = 3). In addition

  9. TiN/VN composites with core/shell structure for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Shanmu; Chen, Xiao [Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101 (China); Gu, Lin [WPI Advanced Institute for Materials Research, Tohoku University, Sendai 9808577 (Japan); Zhou, Xinhong [Qingdao University of Science and Technology, Qingdao 266101 (China); Wang, Haibo; Liu, Zhihong; Han, Pengxian; Yao, Jianhua; Wang, Li [Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101 (China); Cui, Guanglei, E-mail: cuigl@qibebt.ac.cn [Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101 (China); Chen, Liquan [Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101 (China); Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China)

    2011-06-15

    Research highlights: {yields} Vanadium and titanium nitride nanocomposite with core-shell structure was prepared. {yields} TiN/VN composites with different V:Ti molar ratios were obtained. {yields} TiN/VN composites can provide promising electronic conductivity and favorable capacity storage. -- Abstract: TiN/VN core-shell composites are prepared by a two-step strategy involving coating of commercial TiN nanoparticles with V{sub 2}O{sub 5}.nH{sub 2}O sols followed by ammonia reduction. The highest specific capacitance of 170 F g{sup -1} is obtained when scanned at 2 mV s{sup -1} and a promising rate capacity performance is maintained at higher voltage sweep rates. These results indicate that these composites with good electronic conductivity can deliver a favorable capacity performance.

  10. Interfacial redox reaction-directed synthesis of silver@cerium oxide core-shell nanocomposites as catalysts for rechargeable lithium-air batteries

    Science.gov (United States)

    Liu, Ying; Wang, Man; Cao, Lu-Jie; Yang, Ming-Yang; Ho-Sum Cheng, Samson; Cao, Chen-Wei; Leung, Kwan-Lan; Chung, Chi-Yuen; Lu, Zhou-Guang

    2015-07-01

    A facile oxidation-reduction reaction method has been implemented to prepare pomegranate-like Ag@CeO2 multicore-shell structured nanocomposites. Under Ar atmosphere, redox reaction automatically occurs between AgNO3 and Ce(NO3)3 in an alkaline solution, where Ag+ is reduced to Ag nanopartilces and Ce3+ is simultaneously oxidized to form CeO2, followed by the self-assembly to form the pomegranate-like multicore-shell structured Ag@CeO2 nanocomposites driven by thermodynamic equilibrium. No other organic amines or surfactants are utilized in the whole reaction system and only NaOH instead of organic reducing agent is used to prevent the introduction of a secondary reducing byproduct. The as-obtained pomegranate-like Ag@CeO2 multicore-shell structured nanocomposites have been characterized as electro-catalysts for the air cathode of lithium-air batteries operated in a simulated air environment. Superior electrochemical performance with high discharge capacity of 3415 mAh g-1 at 100 mA g-1, stable cycling and small charge/discharge polarization voltage is achieved, which is much better than that of the CeO2 or simple mixture of CeO2 and Ag. The enhanced properties can be primarily attributed to the synergy effect between the Ag core and the CeO2 shell resulting from the unique pomegranate-like multicore-shell nanostructures possessing plenty of active sites to promote the facile formation and decomposition of Li2O2.

  11. Ductile all-cellulose nanocomposite films fabricated from core-shell structured cellulose nanofibrils.

    Science.gov (United States)

    Larsson, Per A; Berglund, Lars A; Wågberg, Lars

    2014-06-09

    Cellulosic materials have many desirable properties such as high mechanical strength and low oxygen permeability and will be an important component in a sustainable biomaterial-based society, but unfortunately they often lack the ductility and formability offered by petroleum-based materials. This paper describes the fabrication and characterization of nanocomposite films made of core-shell modified cellulose nanofibrils (CNFs) surrounded by a shell of ductile dialcohol cellulose, created by heterogeneous periodate oxidation followed by borohydride reduction of the native cellulose in the external parts of the individual fibrils. The oxidation with periodate selectively produces dialdehyde cellulose, and the process does not increase the charge density of the material. Yet the modified cellulose fibers could easily be homogenized to CNFs. Prior to film fabrication, the CNF was shown by atomic force microscopy to be 0.5-2 μm long and 4-10 nm wide. The films were fabricated by filtration, and besides uniaxial tensile testing at different relative humidities, they were characterized by scanning electron microscopy and oxygen permeability. The strength-at-break at 23 °C and 50% RH was 175 MPa, and the films could, before rupture, be strained, mainly by plastic deformation, to about 15% and 37% at 50% RH and 90% RH, respectively. This moisture plasticization was further utilized to form a demonstrator consisting of a double-curved structure with a nominal strain of 24% over the curvature. At a relative humidity of 80%, the films still acted as a good oxygen barrier, having an oxygen permeability of 5.5 mL·μL/(m(2)·24 h·kPa). These properties indicate that this new material has a potential for use as a barrier in complex-shaped structures and hence ultimately reduce the need for petroleum-based plastics.

  12. Synthesis of NiO@MnO{sub 2} core/shell nanocomposites for supercapacitor application

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Junjiao; Huang, Ying, E-mail: chenjunjiao001@163.com; Li, Chao; Chen, Xuefang; Zhang, Xiang

    2016-01-01

    Graphical abstract: - Highlights: • MnO{sub 2} nanosheets were grown on the surface of porous NiO microtube. • The NiO@MnO{sub 2} nanocomposite exhibits excellent cycle performance. • The nanocomposite exhibits specific capacitance of 266.7 F g{sup −1} at 0.5 A g{sup −1}. - Abstract: In this work, NiO@MnO{sub 2} core/shell nanocomposites were fabricated by a two-step method. The morphology and structure of the nanocomposites were characterized by scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction analysis and thermal gravity analysis. In addition, the supercapacitive performances were examined by cyclic voltammogram (CV), galvanostatic charge–discharge and electrochemical impedance spectroscopy (EIS). The electrochemical results indicate that the composite exhibits a specific capacitance of 266.7 F g{sup −1} at 0.5 A g{sup −1} and excellent cycling stability (81.7% retention after 2000 cycles at 1 A g{sup −1}). Therefore, this wok offers meaningful reference for supercpacitor applications in the future.

  13. Preparation of novel magnetic polyurethane foam nanocomposites by using core-shell nanoparticles

    OpenAIRE

    Nikje,Mir Mohammad Alavi; Moghaddam,Sahebeh Tamaddoni; Noruzian,Maede

    2016-01-01

    Abstract Iron oxide magnetic nanoparticles (NP's) converted to the core- shell structres by reacting with by n-(2-aminoethyl)-3-aminopropyl trimethoxysilane (AEAP) incorporated in polyurethane flexible (PUF) foam formulations. Fourier transform spectra, thermal gravimetric analysis, scanning electron images, thermo-mechanical analysis and magnetic properties of the prepared nanocomposites were studied. Obtained data shown that by the increasing of the amine modified magnetic iron oxide NP's u...

  14. Designing of an artificial light energy converter in the form of short-chain dyad when combined with core-shell gold/silver nanocomposites.

    Science.gov (United States)

    Dutta Pal, Gopa; Paul, Somnath; Bardhan, Munmun; De, Asish; Ganguly, Tapan

    2017-06-05

    UV-vis absorption, steady state and time resolved fluorescence and absorption spectroscopic investigations demonstrate that the short chain dyad MNTMA when combined with gold-silver core-shell (Au@Ag) nanocomposite , forms elongated conformers in the excited state whereas for the dyad - Ag (spherical) system the majority of dyads remains in a folded conformation. In the dyad-core-shell nanocomposite system, energy wasting charge recombination rate slows down primarily due to elongated conformation and thus it may be anticipated that this hybrid nanocomposite system may serve as a better light energy conversion device. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Preparation and characterisation of core-shell CNTs@MIPs nanocomposites and selective removal of estrone from water samples.

    Science.gov (United States)

    Gao, Ruixia; Su, Xiaoqian; He, Xiwen; Chen, Langxing; Zhang, Yukui

    2011-01-15

    This paper reports the preparation of carbon nanotubes (CNTs) functionalized with molecularly imprinted polymers (MIPs) for advanced removal of estrone. CNTs@Est-MIPs nanocomposites with a well-defined core-shell structure were obtained using a semi-covalent imprinting strategy, which employed a thermally reversible covalent bond at the surface of silica-coated CNTs for a large-scale production. The morphology and structure of the products were characterised by transmission electron microscopy and Fourier transform infrared spectroscopy. The adsorption properties were demonstrated by equilibrium rebinding experiments and Scatchard analysis. The results demonstrate that the imprinted nanocomposites possess favourable selectivity, high capacity and fast kinetics for template molecule uptake, yielding an adsorption capacity of 113.5 μmol/g. The synthetic process is quite simple, and the different batches of synthesized CNTs@Est-MIPs nanocomposites showed good reproducibility in template binding. The feasibility of removing estrogenic compounds from environmental water using the CNTs@Est-MIPs nanocomposites was demonstrated using water samples spiked with estrone. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. The synthesis of Au@C@Pt core-double shell nanocomposite and its application in enzyme-free hydrogen peroxide sensing

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yayun; Li, Yuhui; Jiang, Yingying [College of Chemistry & Environment, Minnan Normal University, Zhangzhou 363000 (China); Li, Yancai, E-mail: liyancai@mnnu.edu.cn [College of Chemistry & Environment, Minnan Normal University, Zhangzhou 363000 (China); Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000 (China); Li, Shunxing [College of Chemistry & Environment, Minnan Normal University, Zhangzhou 363000 (China); Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000 (China)

    2016-08-15

    Highlights: • A novel Au@C@Pt core-double shell nanocomposite was synthesized and characterized by SEM(*), TEM and EDS, etc. • The synthesized Au@C@Pt core-double shell nanocomposite showed high sensitivity and selectivity to electrocatalytic reduction of hydrogen peroxide (H{sub 2}O{sub 2}) and can be used to fabricate enzyme-free H{sub 2}O{sub 2} electrochemical sensor. • The H{sub 2}O{sub 2} sensor has two linear range of 9.0 μM–1.86 mM and 1.86 mM–7.11 mM, respectively, with a low limit of detection of 0.13 μM. • The H{sub 2}O{sub 2} sensor also displays high anti-interference ability, good stability and reproducibility. - Abstract: A novel Au@C@Pt core-double shell nanocomposite was synthesized and used to fabricate enzyme-free electrochemical sensor for rapid and sensitive detection of hydrogen peroxide (H{sub 2}O{sub 2}). The well-designed Au@C@Pt core-double shell nanocomposite was characterized by scanning electron microscopy (SEM), transmission electron microscope (TEM) and energy-dispersed spectrum (EDS). The Au@C@Pt core-double shell nanocomposite modified glassy carbon electrode (Au@C@Pt/GCE) exhibits good electrocatalytic activity towards H{sub 2}O{sub 2} reduction at 0.0 V and can be used as H{sub 2}O{sub 2} sensor. The sensor displays two wide linear ranges towards H{sub 2}O{sub 2} detection. The one is 9.0 μM–1.86 mM with high sensitivity of 144.7 μA mM{sup −1} cm{sup −2}, and the other is 1.86 mM–7.11 mM with sensitivity of 80.1 μA mM{sup −1} cm{sup −2}. When signal to noise (S/N) is 3, the calculated detection limit (LOD) is 0.13 μM. Furthermore, the interference from the common interfering species such as glucose, ascorbic acid, dopamine and uric acid can be effectively avoided to H{sub 2}O{sub 2} detection. Additionally, the H{sub 2}O{sub 2} sensor also displays good stability and reproducibility.

  17. Core-shell structured polystyrene/BaTiO3 hybrid nanodielectrics prepared by in situ RAFT polymerization: a route to high dielectric constant and low loss materials with weak frequency dependence.

    Science.gov (United States)

    Yang, Ke; Huang, Xingyi; Xie, Liyuan; Wu, Chao; Jiang, Pingkai; Tanaka, Toshikatsu

    2012-11-23

    A novel route to prepare core-shell structured nanocomposites with excellent dielectric performance is reported. This approach involves the grafting of polystyrene (PS) from the surface of BaTiO(3) by an in situ RAFT polymerization. The core-shell structured PS/BaTiO(3) nanocomposites not only show significantly increased dielectric constant and very low dielectric loss, but also have a weak frequency dependence of dielectric properties over a wide range of frequencies. In addition, the dielectric constant of the nanocomposites can also be easily tuned by varying the thickness of the PS shell. Our method is very promising for preparing high-performance nanocomposites used in energy-storage devices. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Fabrication and evaluation of Au-Pd core-shell nanocomposites for dechlorination of diclofenac in water.

    Science.gov (United States)

    Wang, Xu; Li, Jian-Rong; Fu, Ming-Lai; Yuan, Baoling; Cui, Hao-Jie; Wang, Ya-Fen

    2015-01-01

    Nanocomposites with core-shell structure usually exhibit excellent catalytic properties due to unique interfaces and synergistic effect among composites. In this study, Au-Pd bimetallic nanoparticles (NPs) with core-shell structure (Au-Pd cs) by using Au NPs as core and Pd as shell were successfully fabricated and, for the first time, were used to investigate the dechlorination of diclofenac (DCF) at H2 atmosphere in water at room temperature. The degradation products were studied as well by using HPLC/Q-ToF MS/MS. The operational factors such as pH and composition of the Au-Pd cs were also studied. The results showed that nearly 100% of DCF (30 mg L(-1), 50 mL, pH=7) was dechlorinated in 4.5 h by 10 mL of 56 mg L(-1) of Au-Pd cs. Ninety per cent of DCF was degraded in 6.5 h by the mixture of Au and Pd NPs. However, the individual Au NPs had no obvious effect in degrading DCF and the monometallic Pd NPs with comparable concentration only degraded less than 20% of DCF. Furthermore, the reaction mechanism of this catalytic process was studied in detail. It was found that the degradation was a second-order exponential reaction. The two main degradation products were obtained by cleaving the carbon-halogen bond of DCF and this made the degradation products more environmentally friendly.

  19. Electrochemical characterization of core@shell CoFe{sub 2}O{sub 4}/Au composite

    Energy Technology Data Exchange (ETDEWEB)

    Carla, Francesco [' Ugo Schiff' , Universita degli Studi di Firenze, Dipartimento di Chimica (Italy); Campo, Giulio; Sangregorio, Claudio; Caneschi, Andrea; Julian Fernandez, Cesar de; Cabrera, Lourdes I., E-mail: lourisa_cabrera@yahoo.com [Universita degli Studi di Firenze, Laboratorio di Magnetismo Molecolare, INSTM, Dipartimento di Chimica (Italy)

    2013-08-15

    In this paper, we address the synthesis and characterization of the core@shell composite magneto-plasmonic cobalt ferrite-gold (Co-ferrite/Au) nanosystem. The synthesis Co-ferrite/Au nanocomposite is not obvious, hence it was of interest to generate it in a simple straightforward method. Co-ferrite/Au nanocomposite was generated by synthesizing first by thermal decomposition Co-ferrite nanoparticles (NPs). On a second step, ionic gold (Au{sup 3+}) was reduced at the surface of Co-ferrite NPs by ultrasound, to obtain the metallic Au shell. The characterization of the nanomaterial was achieved by microscopy, spectroscopy, and performing magnetic measurements. However, what is attractive about our work is the use of electrochemical techniques as analytical tools. The key technique was cyclic voltammetry, which provided information about the nature and structure of the nanocomposite, allowing us to confirm the core@shell structure.

  20. Synthesis of a carbon-coated NiO/MgO core/shell nanocomposite as a Pd electro-catalyst support for ethanol oxidation

    International Nuclear Information System (INIS)

    Mahendiran, C.; Maiyalagan, T.; Scott, K.; Gedanken, A.

    2011-01-01

    Highlights: → Carbon coated on NiO/MgO in a core/shell nanostructure is synthesized by RAPET. → The carbon-coated NiO/MgO is supported by Pd. → The electrocatalytic properties of the Pd/(NiO/MgO-C) catalyst for ethanol oxidation studied. - Abstract: Carbon coated on NiO/MgO in a core/shell nanostructure was synthesized by the single-step RAPET (reaction under autogenic pressure at elevated temperatures) technique, and the obtained formation mechanism of the core/shell nanocomposite was presented. The carbon-coated NiO/MgO and its supported Pd catalyst, Pd/(NiO/MgO-C), were characterized by SEM, HR-TEM, XRD and cyclic voltammetry. The X-ray diffraction patterns confirmed the face-centered cubic crystal structure of NiO/MgO. Raman spectroscopy measurements provided structural evidence for the formation of a NiO/MgO composite and the nature of the coated carbon shell. The high-resolution transmission electron microscopy images showed the core and shell morphologies individually. The electrocatalytic properties of the Pd/(NiO/MgO-C) catalyst for ethanol oxidation were investigated in an alkaline solution. The results indicated that the prepared Pd-NiO/MgO-C catalyst has excellent electrocatalytic activity and stability.

  1. Process to make core-shell structured nanoparticles

    Science.gov (United States)

    Luhrs, Claudia; Phillips, Jonathan; Richard, Monique N

    2014-01-07

    Disclosed is a process for making a composite material that contains core-shell structured nanoparticles. The process includes providing a precursor in the form of a powder a liquid and/or a vapor of a liquid that contains a core material and a shell material, and suspending the precursor in an aerosol gas to produce an aerosol containing the precursor. In addition, the process includes providing a plasma that has a hot zone and passing the aerosol through the hot zone of the plasma. As the aerosol passes through the hot zone of the plasma, at least part of the core material and at least part of the shell material in the aerosol is vaporized. Vapor that contains the core material and the shell material that has been vaporized is removed from the hot zone of the plasma and allowed to condense into core-shell structured nanoparticles.

  2. Substantial enhancement of energy storage capability in polymer nanocomposites by encapsulation of BaTiO3 NWs with variable shell thickness.

    Science.gov (United States)

    Wang, Guanyao; Huang, Yanhui; Wang, Yuxin; Jiang, Pingkai; Huang, Xingyi

    2017-08-09

    Dielectric polymer nanocomposites have received keen interest due to their potential application in energy storage. Nevertheless, the large contrast in dielectric constant between the polymer and nanofillers usually results in a significant decrease of breakdown strength of the nanocomposites, which is unfavorable for enhancing energy storage capability. Herein, BaTiO 3 nanowires (NWs) encapsulated by TiO 2 shells of variable thickness were utilized to fabricate dielectric polymer nanocomposites. Compared with nanocomposites with bare BaTiO 3 NWs, significantly enhanced energy storage capability was achieved for nanocomposites with TiO 2 encapsulated BaTiO 3 NWs. For instance, an ultrahigh energy density of 9.53 J cm -3 at 440 MV m -1 could be obtained for nanocomposites comprising core-shell structured nanowires, much higher than that of nanocomposites with 5 wt% raw ones (5.60 J cm -3 at 360 MV m -1 ). The discharged energy density of the proposed nanocomposites with 5 wt% mTiO 2 @BaTiO 3 -1 NWs at 440 MV m -1 seems to rival or exceed those of some previously reported nanocomposites (mostly comprising core-shell structured nanofillers). More notably, this study revealed that the energy storage capability of the nanocomposites can be tailored by the TiO 2 shell thickness. Finite element simulations were employed to analyze the electric field distribution in the nanocomposites. The enhanced energy storage capability should be mainly attributed to the smoother gradient of dielectric constant between the nanofillers and polymer matrix, which alleviated the electric field concentration and leakage current in the polymer matrix. The methods and results herein offer a feasible approach to construct high-energy-density polymer nanocomposites with core-shell structured nanowires.

  3. High-performance polyimide nanocomposites with core-shell AgNWs@BN for electronic packagings

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yongcun; Liu, Feng, E-mail: liufeng@nwpu.edu.cn [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an Shaanxi 710072 (China)

    2016-08-22

    The increasing density of electronic devices underscores the need for efficient thermal management. Silver nanowires (AgNWs), as one-dimensional nanostructures, possess a high aspect ratio and intrinsic thermal conductivity. However, high electrical conductivity of AgNWs limits their application for electronic packaging. We synthesized boron nitride-coated silver nanowires (AgNWs@BN) using a flexible and fast method followed by incorporation into synthetic polyimide (PI) for enhanced thermal conductivity and dielectric properties of nanocomposites. The thinner boron nitride intermediate nanolayer on AgNWs not only alleviated the mismatch between AgNWs and PI but also enhanced their interfacial interaction. Hence, the maximum thermal conductivity of an AgNWs@BN/PI composite with a filler loading up to 20% volume was increased to 4.33 W/m K, which is an enhancement by nearly 23.3 times compared with that of the PI matrix. The relative permittivity and dielectric loss were about 9.89 and 0.015 at 1 MHz, respectively. Compared with AgNWs@SiO{sub 2}/PI and Ag@BN/PI composites, boron nitride-coated core-shell structures effectively increased the thermal conductivity and reduced the permittivity of nanocomposites. The relative mechanism was studied and discussed. This study enables the identification of appropriate modifier fillers for polymer matrix nanocomposites.

  4. Controlling interface characteristics by adjusting core-shell structure

    International Nuclear Information System (INIS)

    Chang, H.Y.; Cheng, S.Y.; Sheu, C.I.

    2004-01-01

    Most grain boundary layer ceramics comprise semiconductive/conductive grains and insulated grain boundaries. Such a structure can be theoretically regarded as a shell (grain boundary layer) surrounds a core (conductive or semiconductive grain). The core-shell structure of titanium (Ti)-strontium titanate (ST) is composed of three zones - ST, non-stoichiometric strontium-titanium oxide and Ti, in order from shell to core. It was successfully prepared using a hydrothermal method. The Ti-ST core-shell structure was sintered in a reducing atmosphere and then annealed in air to achieve the metal-insulator-metal structure (MIM structure). The resulting MIM structure, annealed in air, changes with the oxygen stoichiometry of the ST shell (insulator layer) at various temperatures, which is thus used to tune its electrical characteristics. The characteristics exhibit nonlinear behavior. Accordingly, the thickness of the insulator layer can be adjusted in various annealing atmospheres and at various temperatures to develop various interfacial devices, such as varistors, capacitors and thermistors, without the use of complex donor/acceptor doping technology

  5. High-frequency dielectric spectroscopy of BaTiO3 core - silica shell nanocomposites: problem of interdiffusion

    Czech Academy of Sciences Publication Activity Database

    Nuzhnyy, Dmitry; Petzelt, Jan; Bovtun, Viktor; Kempa, Martin; Savinov, Maxim; Elissalde, C.; Chung, U.-C.; Michau, D.; Estournes, C.; Maglione, M.

    2011-01-01

    Roč. 1, č. 3 (2011), 309-317 ISSN 2010-135X R&D Projects: GA ČR GA202/09/0430 Institutional research plan: CEZ:AV0Z10100520 Keywords : core-shell nanocomposites * infrared and THz spectroscopy * barium titanate * effective medium approximation Subject RIV: BM - Solid Matter Physics ; Magnetism

  6. Fabrication of Fe3O4@CuO core-shell from MOF based materials and its antibacterial activity

    Science.gov (United States)

    Rajabi, S. K.; Sohrabnezhad, Sh.; Ghafourian, S.

    2016-12-01

    Magnetic Fe3O4@CuO nanocomposite with a core/shell structure was successfully synthesized via direct calcinations of magnetic Fe3O4@HKUST-1 in air atmosphere. The morphology, structure, magnetic and porous properties of the as-synthesized nano composites were characterized by using scanning electron microscope (SEM), transmission electron microscopy (TEM), powder X-ray diffraction (PXRD), and vibration sample magnetometer (VSM). The results showed that the nanocomposite material included a Fe3O4 core and a CuO shell. The Fe3O4@CuO core-shell can be separated easily from the medium by a small magnet. The antibacterial activity of Fe3O4-CuO core-shell was investigated against gram-positive and gram-negative bacteria. A new mechanism was proposed for inactivation of bacteria over the prepared sample. It was demonstrated that the core-shell exhibit recyclable antibacterial activity, acting as an ideal long-acting antibacterial agent.

  7. Enhanced energy storage and suppressed dielectric loss in oxide core-shell-polyolefin nanocomposites by moderating internal surface area and increasing shell thickness

    Energy Technology Data Exchange (ETDEWEB)

    Fredin, Lisa A.; Li, Zhong; Ratner, Mark A.; Marks, Tobin J. [Department of Chemistry Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Lanagan, Michael T. [Center for Dielectric Studies, Materials Research Institute, The Pennsylvania State University, University Park, PA 16802-4800 (United States)

    2012-11-20

    Dielectric loss in metal oxide core/Al{sub 2}O{sub 3} shell polypropylene nanocomposites scales with the particle surface area. By moderating the interfacial surface area between the phases and using increasing shell thicknesses, dielectric loss is significantly reduced, and thus the energy stored within, and recoverable from, capacitors fabricated from these materials is significantly increased, to as high as 2.05 J/cm{sup 3}. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Multifunctional antitumor magnetite/chitosan-l-glutamic acid (core/shell) nanocomposites

    International Nuclear Information System (INIS)

    Santos, Daniela P.; Ruiz, M. Adolfina; Gallardo, Visitación; Zanoni, Maria Valnice B.; Arias, José L.

    2011-01-01

    The development of anticancer drug delivery systems based on biodegradable nanoparticles has been intended to maximize the localization of chemotherapy agents within tumor interstitium, along with negligible drug distribution into healthy tissues. Interestingly, passive and active drug targeting strategies to cancer have led to improved nanomedicines with great tumor specificity and efficient chemotherapy effect. One of the most promising areas in the formulation of such nanoplatforms is the engineering of magnetically responsive nanoparticles. In this way, we have followed a chemical modification method for the synthesis of magnetite/chitosan-l-glutamic acid (core/shell) nanostructures. These magnetic nanocomposites (average size ≈340 nm) exhibited multifunctional properties based on its capability to load the antitumor drug doxorubicin (along with an adequate sustained release) and its potential for hyperthermia applications. Compared to drug surface adsorption, doxorubicin entrapment into the nanocomposites matrix yielded a higher drug loading and a slower drug release profile. Heating characteristics of the magnetic nanocomposites were investigated in a high-frequency alternating magnetic gradient: a stable maximum temperature of 46 °C was successfully achieved within 40 min. To our knowledge, this is the first time that such kind of stimuli-sensitive nanoformulation with very important properties (i.e., magnetic targeting capabilities, hyperthermia, high drug loading, and little burst drug release) has been formulated for combined antitumor therapy against cancer.

  9. Multifunctional antitumor magnetite/chitosan- l-glutamic acid (core/shell) nanocomposites

    Science.gov (United States)

    Santos, Daniela P.; Ruiz, M. Adolfina; Gallardo, Visitación; Zanoni, Maria Valnice B.; Arias, José L.

    2011-09-01

    The development of anticancer drug delivery systems based on biodegradable nanoparticles has been intended to maximize the localization of chemotherapy agents within tumor interstitium, along with negligible drug distribution into healthy tissues. Interestingly, passive and active drug targeting strategies to cancer have led to improved nanomedicines with great tumor specificity and efficient chemotherapy effect. One of the most promising areas in the formulation of such nanoplatforms is the engineering of magnetically responsive nanoparticles. In this way, we have followed a chemical modification method for the synthesis of magnetite/chitosan- l-glutamic acid (core/shell) nanostructures. These magnetic nanocomposites (average size ≈340 nm) exhibited multifunctional properties based on its capability to load the antitumor drug doxorubicin (along with an adequate sustained release) and its potential for hyperthermia applications. Compared to drug surface adsorption, doxorubicin entrapment into the nanocomposites matrix yielded a higher drug loading and a slower drug release profile. Heating characteristics of the magnetic nanocomposites were investigated in a high-frequency alternating magnetic gradient: a stable maximum temperature of 46 °C was successfully achieved within 40 min. To our knowledge, this is the first time that such kind of stimuli-sensitive nanoformulation with very important properties (i.e., magnetic targeting capabilities, hyperthermia, high drug loading, and little burst drug release) has been formulated for combined antitumor therapy against cancer.

  10. Fabrication of Fe3O4@CuO core-shell from MOF based materials and its antibacterial activity

    International Nuclear Information System (INIS)

    Rajabi, S.K.; Sohrabnezhad, Sh.; Ghafourian, S.

    2016-01-01

    Magnetic Fe 3 O 4 @CuO nanocomposite with a core/shell structure was successfully synthesized via direct calcinations of magnetic Fe 3 O 4 @HKUST-1 in air atmosphere. The morphology, structure, magnetic and porous properties of the as-synthesized nano composites were characterized by using scanning electron microscope (SEM), transmission electron microscopy (TEM), powder X-ray diffraction (PXRD), and vibration sample magnetometer (VSM). The results showed that the nanocomposite material included a Fe 3 O 4 core and a CuO shell. The Fe 3 O 4 @CuO core-shell can be separated easily from the medium by a small magnet. The antibacterial activity of Fe 3 O 4 -CuO core-shell was investigated against gram-positive and gram-negative bacteria. A new mechanism was proposed for inactivation of bacteria over the prepared sample. It was demonstrated that the core-shell exhibit recyclable antibacterial activity, acting as an ideal long-acting antibacterial agent. - Graphical abstract: Fe 3 O 4 @CuO core-shell release of copper ions. These Cu 2+ ions were responsible for the exhibited antibacterial activity. - Highlights: • The Fe 3 O 4 @CuO core-shell was prepared by MOF method. • This is the first study of antibacterial activity of core-shell consist of CuO and Fe 3 O 4 . • The core-shell can be reused effectively. • Core-shell was separated from the reaction solution by external magnetic field.

  11. L-cysteine-capped core/shell/shell quantum dot-graphene oxide nanocomposite fluorescence probe for polycyclic aromatic hydrocarbon detection.

    Science.gov (United States)

    Adegoke, Oluwasesan; Forbes, Patricia B C

    2016-01-01

    Environmental pollutants, such as the polycyclic aromatic hydrocarbons (PAHs), become widely distributed in the environment after emission from a range of sources, and they have potential biological effects, including toxicity and carcinogenity. In this work, we have demonstrated the analytical potential of a covalently linked L-cysteine-capped CdSeTe/ZnSe/ZnS core/shell/shell quantum dot (QD)-graphene oxide (GO) nanocomposite fluorescence probe to detect PAH compounds in aqueous solution. Water-soluble L-cysteine-capped CdSeTe/ZnSe/ZnS QDs were synthesized for the first time and were covalently bonded to GO. The fluorescence of the QD-GO nanocomposite was enhanced relative to the unconjugated QDs. Various techniques including TEM, SEM, HRSEM, XRD, Raman, FT-IR, UV/vis and fluorescence spectrophotometry were employed to characterize both the QDs and the QD-GO nanocomposite. Four commonly found priority PAH analytes namely; phenanthrene (Phe), anthracene (Ant), pyrene (Py) and naphthalene (Naph), were tested and it was found that each of the PAH analytes enhanced the fluorescence of the QD-GO probe. Phe was selected for further studies as the PL enhancement was significantly greater for this PAH. A limit of detection (LOD) of 0.19 µg/L was obtained for Phe under optimum conditions, whilst the LOD of Ant, Py and Naph were estimated to be ~0.26 µg/L. The fluorescence detection mechanism is proposed. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Modified ferrite core-shell nanoparticles magneto-structural characterization

    Science.gov (United States)

    Klekotka, Urszula; Piotrowska, Beata; Satuła, Dariusz; Kalska-Szostko, Beata

    2018-06-01

    In this study, ferrite nanoparticles with core-shell structures and different chemical compositions of both the core and shell were prepared with success. Proposed nanoparticles have in the first and second series magnetite core, and the shell is composed of a mixture of ferrites with Fe3+, Fe2+ and M ions (where M = Co2+, Mn2+ or Ni2+) with a general composition of M0.5Fe2.5O4. In the third series, the composition is inverted, the core is composed of a mixture of ferrites and as a shell magnetite is placed. Morphology and structural characterization of nanoparticles were done using Transmission Electron Microscopy (TEM), X-ray diffraction (XRD), and Infrared spectroscopy (IR). While room temperature magnetic properties were measured using Mössbauer spectroscopy (MS). It is seen from Mössbauer measurements that Co always increases hyperfine magnetic field on Fe atoms at RT, while Ni and Mn have opposite influences in comparison to pure Fe ferrite, regardless of the nanoparticles structure.

  13. Heterogeneous nanocomposites composed of silver sulfide and hollow structured Pd nanoparticles with enhanced catalytic activity toward formic acid oxidation

    International Nuclear Information System (INIS)

    Chen, Dong; Cui, Penglei; Liu, Hui; Yang, Jun

    2015-01-01

    Highlights: • Core–shell Ag-Ag/Pd nanoparticles with an Ag core and an Ag/Pd alloy shell are prepared via galvanic replacement reaction. • Heterogeneous Ag2S-hollow Pd nanocomposites are fabricated by converting the Ag component into Ag2S using element sulfur. • The heterogeneous Ag2S-hollow Pd nanocomposites display enhanced activity for formic acid oxidation due to electronic coupling effect. • The methodology may find applications to produce the semiconductor-metal nanocomposites with interesting architectures and tailored functionalities. - Abstract: Nanocomposites consisting semiconductor and noble metal domains are of great interest for their synergistic effect-based enhanced properties in a given application. Herein, we demonstrate a facile approach for the synthesis of heterogeneous nanocomposites consisting of silver sulfide (Ag 2 S) and hollow structured Pd nanoparticles (hPd). It begins with the preparation of core–shell nanoparticles with an Ag core and an alloy Ag/Pd shell in an organic solvent via galvanic replacement reaction (GRR) between Ag seed particles pre-synthesized and Pd 2+ ion precursors. The Ag component is then removed from the core and shell regions of core–shell Ag-Ag/Pd nanoparticles, and converted into Ag 2 S by elemental sulfur (S). The Ag 2 S forms the semiconductor domain in the nanocomposite and shares the solid-state interface with the resultant hollow structured Pd nanoparticle. As demonstrated, the Ag 2 S-hPd nanocomposites exhibit superior catalytic activity and durability for formic acid oxidation, compared to the pure Pd nanoparticles prepared by oleylamine reduction of Pd ion precursors and commercial Pd/C catalyst, due to the electronic coupling between semiconductor and noble metal domains in the nanocomposites. In addition, the structural transformation from core–shell to heterogeneous nanocomposites may provide new opportunities to design and fabricate hybrid nanostructures with interesting

  14. Ultrathin TiO2 layer coated-CdS spheres core-shell nanocomposite with enhanced visible-light photoactivity.

    Science.gov (United States)

    Chen, Zhang; Xu, Yi-Jun

    2013-12-26

    Development of various strategies for controllable fabrication of core-shell nanocomposites (CSNs) with highly active photocatalytic performance has been attracting ever-increasing research attention. In particular, control of the ultrathin layer TiO2 shell in constructing CSNs in an aqueous phase is a significant but technologically challenging issue. Here, this paper demonstrates the interface assembly synthesis of CdS nanospheres@TiO2 core-shell photocatalyst via the electrostatic interaction of negatively charged water-stable titania precursor with positively charged CdS nanospheres (CdS NSPs), followed by the formation of the ultrathin-layer TiO2 shell through a facile refluxing process in aqueous phase. The as-formed CdS NSPs@TiO2 core-shell nanohybrid exhibits a high visible-light-driven photoactivity for selective transformation and reduction of heavy metal ions. The ultrathin TiO2 layer coated on CdS NSPs results in excellent light transmission property, enhanced adsorption capacity, and improved transfer of charge carriers and lifespan of photoinduced electron-hole pairs, which would prominently contribute to the significant photoactivity enhancement. It is anticipated that this facile aqueous-phase synthesis strategy could be extended to design a variety of more efficient CSN photocatalysts with controllable morphology toward target applications in diverse photoredox processes.

  15. Reinforcement of Natural Rubber with Core-Shell Structure Silica-Poly(Methyl Methacrylate Nanoparticles

    Directory of Open Access Journals (Sweden)

    Qinghuang Wang

    2012-01-01

    Full Text Available A highly performing natural rubber/silica (NR/SiO2 nanocomposite with a SiO2 loading of 2 wt% was prepared by combining similar dissolve mutually theory with latex compounding techniques. Before polymerization, double bonds were introduced onto the surface of the SiO2 particles with the silane-coupling agent. The core-shell structure silica-poly(methyl methacrylate, SiO2-PMMA, nanoparticles were formed by grafting polymerization of MMA on the surface of the modified SiO2 particles via in situ emulsion, and then NR/SiO2 nanocomposite was prepared by blending SiO2-PMMA and PMMA-modified NR (NR-PMMA. The Fourier transform infrared spectroscopy results show that PMMA has been successfully introduced onto the surface of SiO2, which can be well dispersed in NR matrix and present good interfacial adhesion with NR phase. Compared with those of pure NR, the thermal resistance and tensile properties of NR/SiO2 nanocomposite are significantly improved.

  16. Preparation of novel magnetic polyurethane foam nanocomposites by using core-shell nanoparticles

    Directory of Open Access Journals (Sweden)

    Mir Mohammad Alavi Nikje

    Full Text Available Abstract Iron oxide magnetic nanoparticles (NP's converted to the core- shell structres by reacting with by n-(2-aminoethyl-3-aminopropyl trimethoxysilane (AEAP incorporated in polyurethane flexible (PUF foam formulations. Fourier transform spectra, thermal gravimetric analysis, scanning electron images, thermo-mechanical analysis and magnetic properties of the prepared nanocomposites were studied. Obtained data shown that by the increasing of the amine modified magnetic iron oxide NP's up to 3% in the polymer matrix, thermal and magnetic properties improved in comparison with pristine foams. In addition, due to the presence of functional groups on the magnetic NP's surface, hard phases formation decrease in the bulk polymer and cause decreasing of glass transition temperature.

  17. Fabrication of Fe{sub 3}O{sub 4}@CuO core-shell from MOF based materials and its antibacterial activity

    Energy Technology Data Exchange (ETDEWEB)

    Rajabi, S.K. [Department of Chemistry, University of Guilan, University Campus 2, Rasht (Iran, Islamic Republic of); Sohrabnezhad, Sh., E-mail: sohrabnezhad@guilan.ac.ir [Department of Chemistry, Faculty of Science, University of Guilan, P.O. Box 1914, Rasht (Iran, Islamic Republic of); Ghafourian, S. [Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam (Iran, Islamic Republic of)

    2016-12-15

    Magnetic Fe{sub 3}O{sub 4}@CuO nanocomposite with a core/shell structure was successfully synthesized via direct calcinations of magnetic Fe{sub 3}O{sub 4}@HKUST-1 in air atmosphere. The morphology, structure, magnetic and porous properties of the as-synthesized nano composites were characterized by using scanning electron microscope (SEM), transmission electron microscopy (TEM), powder X-ray diffraction (PXRD), and vibration sample magnetometer (VSM). The results showed that the nanocomposite material included a Fe{sub 3}O{sub 4} core and a CuO shell. The Fe{sub 3}O{sub 4}@CuO core-shell can be separated easily from the medium by a small magnet. The antibacterial activity of Fe{sub 3}O{sub 4}-CuO core-shell was investigated against gram-positive and gram-negative bacteria. A new mechanism was proposed for inactivation of bacteria over the prepared sample. It was demonstrated that the core-shell exhibit recyclable antibacterial activity, acting as an ideal long-acting antibacterial agent. - Graphical abstract: Fe{sub 3}O{sub 4}@CuO core-shell release of copper ions. These Cu{sup 2+} ions were responsible for the exhibited antibacterial activity. - Highlights: • The Fe{sub 3}O{sub 4}@CuO core-shell was prepared by MOF method. • This is the first study of antibacterial activity of core-shell consist of CuO and Fe{sub 3}O{sub 4}. • The core-shell can be reused effectively. • Core-shell was separated from the reaction solution by external magnetic field.

  18. Study of the effect of varying core diameter, shell thickness and strain velocity on the tensile properties of single crystals of Cu-Ag core-shell nanowire using molecular dynamics simulations

    Science.gov (United States)

    Sarkar, Jit; Das, D. K.

    2018-01-01

    Core-shell type nanostructures show exceptional properties due to their unique structure having a central solid core of one type and an outer thin shell of another type which draw immense attention among researchers. In this study, molecular dynamics simulations are carried out on single crystals of copper-silver core-shell nanowires having wire diameter ranging from 9 to 30 nm with varying core diameter, shell thickness, and strain velocity. The tensile properties like yield strength, ultimate tensile strength, and Young's modulus are studied and correlated by varying one parameter at a time and keeping the other two parameters constant. The results obtained for a fixed wire size and different strain velocities were extrapolated to calculate the tensile properties like yield strength and Young's modulus at standard strain rate of 1 mm/min. The results show ultra-high tensile properties of copper-silver core-shell nanowires, several times than that of bulk copper and silver. These copper-silver core-shell nanowires can be used as a reinforcing agent in bulk metal matrix for developing ultra-high strength nanocomposites.

  19. A novel core–shell nanocomposite Ni–Ca@mSiO_2 for benzophenone selective hydrogenation

    International Nuclear Information System (INIS)

    Han, Xue; Feng, Wenhui; Chu, Xiaoning; Chu, Hailong; Niu, Libo; Bai, Guoyi

    2017-01-01

    A novel core–shell nanocomposite Ni–Ca@mSiO_2 was first prepared by a modified Stöber method in this paper. It has a core–shell structure with Ni (about 8 nm in diameter) and Ca as the cores and mesoporous silica as the outer shell, as proven by the transmission electron microscopy. This nanocomposite exhibited good catalytic performance in the selective hydrogenation of benzophenone, with 96.1% conversion and 94.9% selectivity for benzhydrol under relatively mild reaction conditions. It was demonstrated that addition of small amounts of alkaline Ca can not only markedly improve the dispersion of the active species but also tune the acid–base property of this nanocomposite, resulting in the efficient suppression of benzhydrol dehydration to achieve a high selectivity. Furthermore, the core–shell nanocomposite Ni–Ca@mSiO_2 can be recycled four runs without appreciable loss of its initial activity, more stable than the traditional supported nanocatalyst Ni–Ca/mSiO_2. It was suggested that the outer mesoporous silica shell of Ni–Ca@mSiO_2 can prevent both the aggregation and the leaching of the active Ni species, accounting for its relatively good stability.

  20. An ultrasensitive electrochemical biosensor for glucose using CdTe-CdS core-shell quantum dot as ultrafast electron transfer relay between graphene-gold nanocomposite and gold nanoparticle

    International Nuclear Information System (INIS)

    Gu Zhiguo; Yang Shuping; Li Zaijun; Sun Xiulan; Wang Guangli; Fang Yinjun; Liu Junkang

    2011-01-01

    Graphical abstract: We first reported an ultrasensitive electrochemical biosensor for glucose using CdTe-CdS core-shell quantum dot as ultrafast electron transfer relay between graphene-gold nanocomposite and gold nanoparticle. Since promising their electrocatalytic synergy towards glucose was achieved, the biosensor showed high sensitivity (5762.8 nA nM -1 cm -2 ), low detection limit (S/N = 3) (3 x 10 -12 M) and fast response time (0.045 s). - Abstract: The paper reported an ultrasensitive electrochemical biosensor for glucose which was based on CdTe-CdS core-shell quantum dot as ultrafast electron transfer relay between graphene-gold nanocomposite and gold nanoparticle. Since efficient electron transfer between glucose oxidase and the electrode was achieved, the biosensor showed high sensitivity (5762.8 nA nM -1 cm -2 ), low detection limit (S/N = 3) (3 x 10 -12 M), fast response time (0.045 s), wide calibration range (from 1 x 10 -11 M to 1 x 10 -8 M) and good long-term stability (26 weeks). The apparent Michaelis-Menten constant of the glucose oxidase on the medium, 5.24 x 10 -6 mM, indicates excellent bioelectrocatalytic activity of the immobilized enzyme towards glucose oxidation. Moreover, the effects of omitting graphene-gold nanocomposite, CdTe-CdS core-shell quantum dot and gold nanoparticle were also investigated. The result showed sensitivity of the biosensor is 7.67-fold better if graphene-gold nanocomposite, CdTe-CdS core-shell quantum dot and gold nanoparticle are used. This could be ascribed to improvement of the conductivity between graphene nanosheets due to introduction of gold nanoparticles, ultrafast charge transfer from CdTe-CdS core-shell quantum dot to graphene nanosheets and gold nanoparticle due to unique electrochemical properties of the CdTe-CdS core-shell quantum dot and good biocompatibility of gold nanoparticle for glucose oxidase. The biosensor is of best sensitivity in all glucose biosensors based on graphene nanomaterials up to

  1. An ultrasensitive electrochemical biosensor for glucose using CdTe-CdS core-shell quantum dot as ultrafast electron transfer relay between graphene-gold nanocomposite and gold nanoparticle

    Energy Technology Data Exchange (ETDEWEB)

    Gu Zhiguo; Yang Shuping [School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122 (China); Li Zaijun, E-mail: zaijunli@263.net [School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122 (China); Sun Xiulan [School of Food Science and Technology, Jiangnan University, Wuxi 214122 (China); Wang Guangli [School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122 (China); Fang Yinjun [Zhejiang Zanyu Technology Co., Ltd., Hangzhou 310009 (China); Liu Junkang [School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122 (China)

    2011-10-30

    Graphical abstract: We first reported an ultrasensitive electrochemical biosensor for glucose using CdTe-CdS core-shell quantum dot as ultrafast electron transfer relay between graphene-gold nanocomposite and gold nanoparticle. Since promising their electrocatalytic synergy towards glucose was achieved, the biosensor showed high sensitivity (5762.8 nA nM{sup -1} cm{sup -2}), low detection limit (S/N = 3) (3 x 10{sup -12} M) and fast response time (0.045 s). - Abstract: The paper reported an ultrasensitive electrochemical biosensor for glucose which was based on CdTe-CdS core-shell quantum dot as ultrafast electron transfer relay between graphene-gold nanocomposite and gold nanoparticle. Since efficient electron transfer between glucose oxidase and the electrode was achieved, the biosensor showed high sensitivity (5762.8 nA nM{sup -1} cm{sup -2}), low detection limit (S/N = 3) (3 x 10{sup -12} M), fast response time (0.045 s), wide calibration range (from 1 x 10{sup -11} M to 1 x 10{sup -8} M) and good long-term stability (26 weeks). The apparent Michaelis-Menten constant of the glucose oxidase on the medium, 5.24 x 10{sup -6} mM, indicates excellent bioelectrocatalytic activity of the immobilized enzyme towards glucose oxidation. Moreover, the effects of omitting graphene-gold nanocomposite, CdTe-CdS core-shell quantum dot and gold nanoparticle were also investigated. The result showed sensitivity of the biosensor is 7.67-fold better if graphene-gold nanocomposite, CdTe-CdS core-shell quantum dot and gold nanoparticle are used. This could be ascribed to improvement of the conductivity between graphene nanosheets due to introduction of gold nanoparticles, ultrafast charge transfer from CdTe-CdS core-shell quantum dot to graphene nanosheets and gold nanoparticle due to unique electrochemical properties of the CdTe-CdS core-shell quantum dot and good biocompatibility of gold nanoparticle for glucose oxidase. The biosensor is of best sensitivity in all glucose

  2. A novel core–shell nanocomposite Ni–Ca@mSiO{sub 2} for benzophenone selective hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Han, Xue; Feng, Wenhui; Chu, Xiaoning; Chu, Hailong; Niu, Libo; Bai, Guoyi, E-mail: baiguoyi@hotmail.com [Hebei University, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science (China)

    2017-02-15

    A novel core–shell nanocomposite Ni–Ca@mSiO{sub 2} was first prepared by a modified Stöber method in this paper. It has a core–shell structure with Ni (about 8 nm in diameter) and Ca as the cores and mesoporous silica as the outer shell, as proven by the transmission electron microscopy. This nanocomposite exhibited good catalytic performance in the selective hydrogenation of benzophenone, with 96.1% conversion and 94.9% selectivity for benzhydrol under relatively mild reaction conditions. It was demonstrated that addition of small amounts of alkaline Ca can not only markedly improve the dispersion of the active species but also tune the acid–base property of this nanocomposite, resulting in the efficient suppression of benzhydrol dehydration to achieve a high selectivity. Furthermore, the core–shell nanocomposite Ni–Ca@mSiO{sub 2} can be recycled four runs without appreciable loss of its initial activity, more stable than the traditional supported nanocatalyst Ni–Ca/mSiO{sub 2}. It was suggested that the outer mesoporous silica shell of Ni–Ca@mSiO{sub 2} can prevent both the aggregation and the leaching of the active Ni species, accounting for its relatively good stability.

  3. A facile approach to fabrication of novel CeO{sub 2}-TiO{sub 2} core-shell nanocomposite leads to excellent UV-shielding ability and lower catalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Bahadur, Newaz Mohammed, E-mail: nmbahadur@yahoo.com [Utsunomiya University, Laboratory of Powder Technology, Graduate School of Engineering, Venture Business Laboratry (Japan); Kurayama, Fumio [Utsunomiya University, Center for Optical Research and Education (Japan); Furusawa, Takeshi; Sato, Masahide [Utsunomiya University, Department of Advanced Interdisciplinary Sciences (Japan); Siddiquey, Iqbal Ahmed [Utsunomiya University, Laboratory of Powder Technology, Graduate School of Engineering, Venture Business Laboratry (Japan); Hossain, Md. Mufazzal [University of Dhaka, Department of Chemistry (Bangladesh); Suzuki, Noboru [Utsunomiya University, Laboratory of Powder Technology, Graduate School of Engineering, Venture Business Laboratry (Japan)

    2013-01-15

    This study reports the development of a fast and facile route for the synthesis of novel CeO{sub 2}-TiO{sub 2} core-shell nanocomposite particles using microwave (MW) irradiation of the mixture of commercial CeO{sub 2}, titanium-tetra-n-butoxide (TBOT) and aqueous ammonia. Solutions of TBOT in ethanol and ammonia were mixed with dispersed CeO{sub 2} nanoparticles in ethanol, and the mixture was rapidly MW irradiated at 70 Degree-Sign C for 2 min. The resulting nanocomposite particles were characterized in terms of phase, shell thickness, composition, surface charge, morphology, and chemical state of the elements by XRD, TEM, XPS, SEM, Zeta potential analyzer, XRF, and FT-IR. Conventional methods of the synthesis of CeO{sub 2}-TiO{sub 2} nanocomposite require a long time, and TiO{sub 2} is rarely found as a coated material. In contrast, the MW method was able to synthesize CeO{sub 2}-TiO{sub 2} core-shell nanocompsite particles within a very short time. CeO{sub 2}-TiO{sub 2} nanocomposite particles were fairly unaggregated with an average titania layer thickness of 2-5 nm. The obtained nanocomposites retained the crystalline cubic phase of CeO{sub 2}, and the phase of coated TiO{sub 2} was amorphous. The catalytic activities of uncoated and TiO{sub 2}-coated CeO{sub 2} nanoparticles for the oxidation of organic compounds were evaluated by the degradation study of methylene blue in air atmosphere at 403 K. The enhanced UV-shielding ability and visible transparency of the nanocomposite obtained by UV visible spectroscopic measurements suggested that the core-shell material has novel characteristics for using as a sunscreen material.

  4. Core-Shell Structured Electro- and Magneto-Responsive Materials: Fabrication and Characteristics

    Directory of Open Access Journals (Sweden)

    Hyoung Jin Choi

    2014-11-01

    Full Text Available Core-shell structured electrorheological (ER and magnetorheological (MR particles have attracted increasing interest owing to their outstanding field-responsive properties, including morphology, chemical and dispersion stability, and rheological characteristics of shear stress and yield stress. This study covers recent progress in the preparation of core-shell structured materials as well as their critical characteristics and advantages. Broad emphasises from the synthetic strategy of various core-shell particles to their feature behaviours in the magnetic and electric fields have been elaborated.

  5. The rates of charge separation and energy destructive charge recombination processes within an organic dyad in presence of metal-semiconductor core shell nanocomposites.

    Science.gov (United States)

    Mandal, Gopa; Bhattacharya, Sudeshna; Das, Subrata; Ganguly, Tapan

    2012-01-01

    Steady state and time resolved spectroscopic measurements were made at the ambient temperature on an organic dyad, 1-(4-Chloro-phenyl)-3-(4-methoxy-naphthalen-1-yl)-propenone (MNCA), where the donor 1-methoxynaphthalene (1 MNT) is connected with the acceptor p-chloroacetophenone (PCA) by an unsaturated olefinic bond, in presence of Ag@TiO2 nanoparticles. Time resolved fluorescence and absorption measurements reveal that the rate parameters associated with charge separation, k(CS), within the dyad increases whereas charge recombination rate k(CR) reduces significantly when the surrounding medium is changed from only chloroform to mixture of chloroform and Ag@TiO2 (noble metal-semiconductor) nanocomposites. The observed results indicate that the dyad being combined with core-shell nanocomposites may form organic-inorganic nanocomposite system useful for developing light energy conversion devices. Use of metal-semiconductor nanoparticles may provide thus new ways to modulate charge recombination processes in light energy conversion devices. From comparison with the results obtained in our earlier investigations with only TiO2 nanoparticles, it is inferred that much improved version of light energy conversion device, where charge-separated species could be protected for longer period of time of the order of millisecond, could be designed by using metal-semiconductor core-shell nanocomposites rather than semiconductor nanoparticles only.

  6. Structural and magnetic properties of core-shell iron-iron oxide nanoparticles

    DEFF Research Database (Denmark)

    Kuhn, Luise Theil; Bojesen, A.; Timmermann, L.

    2002-01-01

    We present studies of the structural and magnetic properties of core-shell iron-iron oxide nanoparticles. alpha-Fe nanoparticles were fabricated by sputtering and subsequently covered with a protective nanocrystalline oxide shell consisting of either maghaemite (gamma-Fe2O3) or partially oxidized...... magnetite (Fe3O4). We observed that the nanoparticles were stable against further oxidation, and Mossbauer spectroscopy at high applied magnetic fields and low temperatures revealed a stable form of partly oxidized magnetite. The nanocrystalline structure of the oxide shell results in strong canting...... of the spin structure in the oxide shell, which thereby modifies the magnetic properties of the core-shell nanoparticles....

  7. Effect of Core-Shell Ag@TiO2 Volume Ratio on Characteristics of TiO2-Based DSSCs

    Directory of Open Access Journals (Sweden)

    Ho Chang

    2014-01-01

    Full Text Available This paper aims to develop photoanode material required by dye-sensitized solar cells. The material prepared is in the form of Ag@TiO2 core-shell-type nanocomposites. This material is used to replace the titanium oxide powder commonly used in general DSSCs. The prepared Ag@TiO2 core-shell-type nanocomposites are mixed with Degussa P25 TiO2 in different proportions. Triton X-100 is added and polyethylene glycol (PEG at 20 wt% is used as a polymer additive. This study tests the particle size and material properties of Ag@TiO2 core-shell-type nanocomposites and measures the photoelectric conversion efficiency and IPCE of DSSCs. Experimental results show that the DSSC prepared by Ag@TiO2 core-shell-type nanocomposites can achieve a photoelectric conversion efficiency of 3.67%. When Ag@TiO2 core-shell-type nanocomposites are mixed with P25 nanoparticles in specific proportions, and when the thickness of the photoelectrode thin film is 28 μm, the photoelectric conversion efficiency can reach 6.06%, with a fill factor of 0.52, open-circuit voltage of 0.64V, and short-circuit density of 18.22 mAcm−2. Compared to the DSSC prepared by P25 TiO2 only, the photoelectric conversion efficiency can be raised by 38% under the proposed approach.

  8. Facile synthesis of core–shell structured PANI-Co_3O_4 nanocomposites with superior electrochemical performance in supercapacitors

    International Nuclear Information System (INIS)

    Hai, Zhenyin; Gao, Libo; Zhang, Qiang; Xu, Hongyan; Cui, Danfeng; Zhang, Zengxing; Tsoukalas, Dimitris; Tang, Jun; Yan, Shubin; Xue, Chenyang

    2016-01-01

    Graphical abstract: - Highlights: • PANI-Co_3O_4 is synthesized by carbon-assisted and in situ polymerization methods. • PANI coating improves the properties of Co_3O_4 affecting electrochemical performance. • The nanocomposites exhibit a high specific capacitance of 1184 F g"−"1 at 1.25 A g"−"1. - Abstract: Core–shell structured PANI-Co_3O_4 nanocomposites for supercapacitor applications were synthesized by combination of carbon-assisted method and in situ polymerization method. The crystalline structure, optical band gap, morphology, and hydrophilic property, as the major factors affecting the performances of supercapacitors, were investigated by X-ray diffraction (XRD), UV–vis spectrophotometry (UV–vis), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and water contact angle (WCA). The core–shell structured PANI-Co_3O_4 nanocomposites are characterized by amorphous PANI, small bandgaps, large surface area and favorable hydrophilicity, which indicates the superior electrochemical performances of the nanocomposites as electrode material for supercapacitors. Cyclic voltammetry (CV), galvanostatic charge/discharge and electrochemical impedance spectroscopy (EIS) measurements were conducted in 6 M KOH aqueous solution to evaluate the electrochemical performances. The results shows that core–shell structured PANI-Co_3O_4 nanocomposites exhibit a high specific capacitance of 1184 F g"−"1 at 1.25 A g"−"1, excellent cycling stability of a capacitance retention of 84.9% after 1000 galvanostatic charge/discharge cycles, good electrical conductivity and ion diffusion behavior.

  9. Engineered inorganic core/shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Mélinon, Patrice, E-mail: patrice.melinon@univ-lyon1.fr [Institut Lumière matière Université Claude Bernard Lyon 1 et CNRS et OMNT, Domaine Scientifique de la Doua, Bâtiment Léon Brillouin, 43 Boulevard du 11 Novembre 1918, F 69622 Villeurbanne (France); Begin-Colin, Sylvie [IPCMS et OMNT, 23 rue du Loess BP 43, 67034 STRASBOURG Cedex 2 (France); Duvail, Jean Luc [IMN UMR 6502 et OMNT Campus Sciences : 2 rue de la Houssinire, BP32229, 44322 Nantes Cedex3 (France); Gauffre, Fabienne [SPM et OMNT : Institut des sciences chimiques de Rennes - UMR 6226, 263 Avenue du General Leclerc, CS 74205, 35042 RENNES Cedex (France); Boime, Nathalie Herlin [IRAMIS-NIMBE, Laboratoire Francis Perrin (CEA CNRS URA 2453) et OMNT, Bat 522, CEA Saclay, 91191 Gif sur Yvette Cedex (France); Ledoux, Gilles [Institut Lumière Matière Université Claude Bernard Lyon 1 et CNRS et OMNT, Domaine Scientifique de la Doua, Bâtiment Alfred Kastler 43 Boulevard du 11 Novembre 1918 F 69622 Villeurbanne (France); Plain, Jérôme [Universit de technologie de Troyes LNIO-ICD, CNRS et OMNT 12 rue Marie Curie - CS 42060 - 10004 Troyes cedex (France); Reiss, Peter [CEA Grenoble, INAC-SPrAM, UMR 5819 CEA-CNRS-UJF et OMNT, Grenoble cedex 9 (France); Silly, Fabien [CEA, IRAMIS, SPEC, TITANS, CNRS 2464 et OMNT, F-91191 Gif sur Yvette (France); Warot-Fonrose, Bénédicte [CEMES-CNRS, Université de Toulouse et OMNT, 29 rue Jeanne Marvig F 31055 Toulouse (France)

    2014-10-20

    It has been for a long time recognized that nanoparticles are of great scientific interest as they are effectively a bridge between bulk materials and atomic structures. At first, size effects occurring in single elements have been studied. More recently, progress in chemical and physical synthesis routes permitted the preparation of more complex structures. Such structures take advantages of new adjustable parameters including stoichiometry, chemical ordering, shape and segregation opening new fields with tailored materials for biology, mechanics, optics magnetism, chemistry catalysis, solar cells and microelectronics. Among them, core/shell structures are a particular class of nanoparticles made with an inorganic core and one or several inorganic shell layer(s). In earlier work, the shell was merely used as a protective coating for the core. More recently, it has been shown that it is possible to tune the physical properties in a larger range than that of each material taken separately. The goal of the present review is to discuss the basic properties of the different types of core/shell nanoparticles including a large variety of heterostructures. We restrict ourselves on all inorganic (on inorganic/inorganic) core/shell structures. In the light of recent developments, the applications of inorganic core/shell particles are found in many fields including biology, chemistry, physics and engineering. In addition to a representative overview of the properties, general concepts based on solid state physics are considered for material selection and for identifying criteria linking the core/shell structure and its resulting properties. Chemical and physical routes for the synthesis and specific methods for the study of core/shell nanoparticle are briefly discussed.

  10. Glass transition of poly (methyl methacrylate) filled with nanosilica and core-shell structured silica

    DEFF Research Database (Denmark)

    Song, Yihu; Bu, Jing; Zuo, Min

    2017-01-01

    transition and segmental dynamics of PMMA in the nanocomposites prepared via solution casting was compared. The remarkable depression (≥10 °C) of glass transition temperature (Tg) induced by the incorporation of SiO2 and CS was both observed at low loadings. Here, different mechanisms were responsible...... for the effect of SiO2 and CS on the segmental acceleration of PMMA matrix. The formation of rigid amorphous fraction (RAF) layer around SiO2 with the thickness of 16.4 nm led to the adjacent molecular packing frustration, while the “lubrication” effect of nonwetting interface between the grafted crosslinked......Core-shell (CS) nanocomposite particles with 53.4 wt% cross-linked poly (methyl methacrylate) (PMMA) shell of 11.6 nm in thickness were fabricated via miniemulsion polymerization of methyl methacrylate in the presence of modified nanosilica. The influence of nanosilica and CS nanoparticles on glass...

  11. Synthesis and characterization of organic–inorganic core–shell structure nanocomposite and application for Zn ions removal from aqueous solution in a fixed-bed column

    Energy Technology Data Exchange (ETDEWEB)

    Ghasemi, Shokoofeh [Faculty of Chemical, Gas and Petroleum Engineering, Semnan University, Semnan 35131-19111 (Iran, Islamic Republic of); Ghorbani, Mohsen, E-mail: M.ghorbani@nit.ac.ir [Faculty of Chemical Engineering, Babol University of Technology, P.O. Box 484, Babol (Iran, Islamic Republic of); Ghazi, Mohsen Mehdipour [Faculty of Chemical, Gas and Petroleum Engineering, Semnan University, Semnan 35131-19111 (Iran, Islamic Republic of)

    2015-12-30

    Graphical abstract: - Highlights: • The γ-Fe{sub 2}O{sub 3} nanoparticles were prepared in one step using ultrasonic radiation and coated by polyrhodanine. • Nanocomposite synthesized with core average diameter of 15 nm and polyrhodanine as shell with thickness of 1.5 nm • Application of products was investigated to separate zinc ions from aqueous solution in a fixed-bed column. • The Adams–Bohart, BDST, Thomas and Yoon–Nelson models used to predict model parameters. • The models were nearly in good agreement with the experimental data. - Abstract: An organic–inorganic core/shell structure, γ-Fe{sub 2}O{sub 3}/polyrhodanine nanocomposite with γ-Fe{sub 2}O{sub 3} nanoparticle as core with average diameter of 15 nm and polyrhodanine as shell with thickness of 1.5 nm, has been synthesized via chemical oxidation polymerization and applied for adsorption of Zn ions from aqueous solution in a fixed-bed column. The properties of nanocomposite were characterized with transmission electron microscope (TEM), Fourier transform infrared (FT-IR) spectroscopy and vibrating sample magnetometer (VSM). The performance of the column was assessed under variable bed heights (10, 15 and 20 cm) and influent Zn concentrations (50, 100 and 150 ppm) at a constant flow rate (0.5 mL/min). The results demonstrated that the breakthrough curves are S-shaped and the breakthrough time increases with increasing bed height and decreases with increasing influent concentration. Moreover, the dynamics of the adsorption process were evaluated by using Adams–Bohart, bed depth service time (BDST), Thomas and Yoon–Nelson kinetic models. The models were nearly in good agreement with the experimental data.

  12. Exfoliated BN shell-based high-frequency magnetic core-shell materials.

    Science.gov (United States)

    Zhang, Wei; Patel, Ketan; Ren, Shenqiang

    2017-09-14

    The miniaturization of electric machines demands high frequency magnetic materials with large magnetic-flux density and low energy loss to achieve a decreased dimension of high rotational speed motors. Herein, we report a solution-processed high frequency magnetic composite (containing a nanometal FeCo core and a boron nitride (BN) shell) that simultaneously exhibits high electrical resistivity and magnetic permeability. The frequency dependent complex initial permeability and the mechanical robustness of nanocomposites are intensely dependent on the content of BN insulating phase. The results shown here suggest that insulating magnetic nanocomposites have potential for application in next-generation high-frequency electric machines with large electrical resistivity and permeability.

  13. Development of a novel resin-based dental material with dual biocidal modes and sustained release of Ag+ ions based on photocurable core-shell AgBr/cationic polymer nanocomposites.

    Science.gov (United States)

    Cao, Weiwei; Zhang, Yu; Wang, Xi; Chen, Yinyan; Li, Qiang; Xing, Xiaodong; Xiao, Yuhong; Peng, Xuefeng; Ye, Zhiwen

    2017-07-01

    Research on the incorporation of cutting-edge nano-antibacterial agent for designing dental materials with potent and long-lasting antibacterial property is demanding and provoking work. In this study, a novel resin-based dental material containing photocurable core-shell AgBr/cationic polymer nanocomposite (AgBr/BHPVP) was designed and developed. The shell of polymerizable cationic polymer not only provided non-releasing antibacterial capability for dental resins, but also had the potential to polymerize with other methacrylate monomers and prevented nanoparticles from aggregating in the resin matrix. As a result, incorporation of AgBr/BHPVP nanocomposites did not adversely affect the flexural strength and modulus but greatly increased the Vicker's hardness of resin disks. By continuing to release Ag + ions without the impact of anaerobic environment, resins containing AgBr/BHPVP nanoparticles are particularly suitable to combat anaerobic cariogenic bacteria. By reason of the combined bactericidal effect of the contact-killing cationic polymers and the releasing-killing Ag + ions, AgBr/BHPVP-containing resin disks had potent bactericidal activity against S. mutans. The long-lasting antibacterial activity was also achieved through the sustained release of Ag + ions due to the core-shell structure of the nanocomposites. The results of macrophage cytotoxicity showed that the cell viability of dental resins loading less than 1.0 wt% AgBr/BHPVP was close to that of neat resins. The AgBr/BHPVP-containing dental resin with dual bactericidal capability and long term antimicrobial effect is a promising material aimed at preventing second caries and prolonging the longevity of resin composite restorations.

  14. Determination of Core-Shell Structures in Pd-Hg Nanoparticles by STEM-EDX

    DEFF Research Database (Denmark)

    Deiana, Davide; Verdaguer Casadevall, Arnau; Malacrida, Paolo

    2015-01-01

    The structural and elemental configuration of a high-performing Pd-Hg electrocatalyst for oxygen reduction to hydrogen peroxide has been studied by means of high-resolution scanning transmission electron microscopy. Pd-Hg nanoparticles are shown to have a crystalline core-shell structure, with a Pd...... core and a Pd-Hg ordered alloy shell. The ordered shell is responsible for the high oxygen reduction selectivity to H2O2....

  15. Core/Shell Structured Magnetic Nanoparticles for Biological Applications

    International Nuclear Information System (INIS)

    Park, Jeong Chan; Jung, Myung Hwan

    2013-01-01

    Magnetic nanoparticles have been widely used for biomedical applications, such as magnetic resonance imaging (MRI), hyperthermia, drug delivery and cell signaling. The surface modification of the nanomaterials is required for biomedical use to give physiogical stability, surface reactivity and targeting properties. Among many approaches for the surface modification with materials, such as polymers, organic ligands and metals, one of the most attractive ways is using metals. The fabrication of metal-based, monolayer-coated magnetic nanoparticles has been intensively studied. However, the synthesis of metal-capped magnetic nanoparticles with monodispersities and controllable sizes is still challenged. Recently, gold-capped magnetic nanoparticles have been reported to increase stability and to provide biocompatibility. Magnetic nanoparticle with gold coating is an attractive system, which can be stabilized in biological conditions and readily functionalized in biological conditions and readily functionalized through well-established surface modification (Au-S) chemistry. The Au coating offers plasmonic properties to magnetic nanoparticles. This makes the magnetic/Au core/shell combinations interesting for magnetic and optical applications. Herein, the synthesis and characterization of gold capped-magnetic core structured nanomaterials with different gold sources, such as gold acetate and chloroauric acid have been reported. The core/shell nanoparticles were transferred from organic to aqueous solutions for biomedical applications. Magnetic core/shell structured nanoparticles have been prepared and transferred from organic phase to aqueous solutions. The resulting Au-coated magnetic core nanoparticles might be an attractive system for biomedical applications, which are needed both magnetic resonance imaging and optical imaging

  16. A core–shell structured nanocomposite of NiO with carbon nanotubes as positive electrode material of high capacitance for supercapacitors

    International Nuclear Information System (INIS)

    Wen, Z.B.; Yu, F.; You, T.; Zhu, L.; Zhang, L.; Wu, Y.P.

    2016-01-01

    Highlights: • A core–shell structured NiO@CNTs nanocomposite is synthesized by a simple hydrothermal method. • The CNTs core effectively improves the capacitance, rate and cycling performance of NiO. • A supercapacitor is assembled when activated carbon is used as the negative electrode. • The supercapacitor presents an energy density up to 52.6 Wh kg"−"1. - Abstract: A nanocomposite of carbon nanotubes coated with nickel oxide was prepared by a simple hydrothermal method. The structure, morphology and electrochemical performance of the nanocomposite were investigated by X-ray diffraction, scanning electron microscopy and transmission electron microscopy, electrochemical tests including cyclic voltammogram, galvanostatic charge–discharge and electrochemical impedance spectroscopy, respectively. It presents the highest specific capacitance of 1844 F g"−"1 at 1 A g"−"1 and 1145 F g"−"1 at current density of 10 A g"−"1 with 88.9% (at 1 A g"−"1) capacitance retention after 1000 cycles. The specific capacitance of the nanocomposite is almost double of that of the virginal NiO (972 F g"−"1 at 1 A g"−"1). Its cycling behavior is also very good. When combined with activated carbon as the negative electrode, the energy density can be up to 52.6 Wh kg"−"1. Such good electrochemical behavior indicates that the nanocomposite is a promising electrode material for supercapacitors.

  17. Elastic stability of cylindrical shells with soft elastic cores: Biomimicking natural tubular structures

    Science.gov (United States)

    Karam, Gebran Nizar

    1994-01-01

    Thin walled cylindrical shell structures are widespread in nature: examples include plant stems, porcupine quills, and hedgehog spines. All have an outer shell of almost fully dense material supported by a low density, cellular core. In nature, all are loaded in combination of axial compression and bending: failure is typically by buckling. Natural structures are often optimized. Here we have analyzed the elastic buckling of a thin cylindrical shell supported by an elastic core to show that this structural configuration achieves significant weight saving over a hollow cylinder. The results of the analysis are compared with data from an extensive experimental program on uniaxial compression and four point bending tests on silicone rubber shells with and without compliant foam cores. The analysis describes the results of the mechanical tests well. Characterization of the microstructures of several natural tubular structures with foamlike cores (plant stems, quills, and spines) revealed them to be close to the optimal configurations predicted by the analytical model. Biomimicking of natural cylindrical shell structures and evolutionary design processes may offer the potential to increase the mechanical efficiency of engineering cylindrical shells.

  18. Methanol oxidation reaction on core-shell structured Ruthenium-Palladium nanoparticles: Relationship between structure and electrochemical behavior

    Science.gov (United States)

    Kübler, Markus; Jurzinsky, Tilman; Ziegenbalg, Dirk; Cremers, Carsten

    2018-01-01

    In this work the relationship between structural composition and electrochemical characteristics of Palladium(Pd)-Ruthenium(Ru) nanoparticles during alkaline methanol oxidation reaction is investigated. The comparative study of a standard alloyed and a precisely Ru-core-Pd-shell structured catalyst allows for a distinct investigation of the electronic effect and the bifunctional mechanism. Core-shell catalysts benefit from a strong electronic effect and an efficient Pd utilization. It is found that core-shell nanoparticles are highly active towards methanol oxidation reaction for potentials ≥0.6 V, whereas alloyed catalysts show higher current outputs in the lower potential range. However, differential electrochemical mass spectrometry (DEMS) experiments reveal that the methanol oxidation reaction on core-shell structured catalysts proceeds via the incomplete oxidation pathway yielding formaldehyde, formic acid or methyl formate. Contrary, the alloyed catalyst benefits from the Ru atoms at its surface. Those are found to be responsible for high methanol oxidation activity at lower potentials as well as for complete oxidation of CH3OH to CO2 via the bifunctional mechanism. Based on these findings a new Ru-core-Pd-shell-Ru-terrace catalyst was synthesized, which combines the advantages of the core-shell structure and the alloy. This novel catalyst shows high methanol electrooxidation activity as well as excellent selectivity for the complete oxidation pathway.

  19. Ag@ZnO core-shell nanoparticles study by first principle: The structural, magnetic and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Hai-Xia [Department of Physics, University of Science and Technology Beijing, Beijing 100083 (China); Wang, Xiao-Xu [Department of Physics, University of Science and Technology Beijing, Beijing 100083 (China); Beijing Computing Center, Beijing 100094 (China); Hu, Yao-Wen [Department of Physics, Tsinghua University, Beijing 100084 (China); Song, Hong-Quan; Huo, Jin-Rong; Li, Lu [Department of Physics, University of Science and Technology Beijing, Beijing 100083 (China); Qian, Ping, E-mail: ustbqianp@163.com [Department of Physics, University of Science and Technology Beijing, Beijing 100083 (China); Song, Yu-Jun [Department of Physics, University of Science and Technology Beijing, Beijing 100083 (China)

    2016-12-15

    Ag@ZnO core-shell nanoparticles of around 72 atoms have been investigated by the density functional theory, revealing proving for the first time that the core-shell structure exhibits a shrinkage phenomenon from outer shell in agreement with the other studies in literatures. Our calculations predict that the Ag@ZnO core-shell structure is a ferromagnetic spin polarized state, and the magnetism mainly stems from the spin splitting of 2p electrons of O atoms. In addition, the total and partial DOS of Ag@ZnO indicate that the nanostructure is a half-metallic nanoparticle and has the characters of the p-type semiconductor. Furthermore, the optical properties calculations show that the absorption edge of Ag@ZnO have a red shift and good photocatalysis compare to that of the bulk ZnO. These results of the Ag@ZnO core-shell structure obtain a well agreement with the experimental measurement. - Graphical abstract: Geometric structure of (a) Ag@ZnO core-shell nanostructure; (b) the core of Ag; (c) the shell of ZnO The core-shell nanoparticle Ag@ZnO contains Ag inner core of radius of 4 Å and ZnO outer shell with thickness of 2 Å. Ag@ZnO core-shell nanoparticles of around 72 atoms have been proved for the first time that the core-shell structure exhibit a shrinkage phenomenon from outer shell. Our calculations predict that the Ag@ZnO core-shell structure is a half-metallic nanoparticle and has the characters of the p-type semiconductor. The absorption edge of Ag@ZnO have a red shift and get good photo-catalysis compare to that of the bulk ZnO.

  20. Controlled self-assembly of multiferroic core-shell nanoparticles exhibiting strong magneto-electric effects

    Energy Technology Data Exchange (ETDEWEB)

    Sreenivasulu, Gollapudi; Hamilton, Sean L.; Lehto, Piper R.; Srinivasan, Gopalan, E-mail: srinivas@oakland.edu [Physics Department, Oakland University, Rochester, Michigan 48309-4401 (United States); Popov, Maksym [Physics Department, Oakland University, Rochester, Michigan 48309-4401 (United States); Radiophysics Department, Taras Shevchenko National University of Kyiv, Kyiv 01601 (Ukraine); Chavez, Ferman A. [Chemistry Department, Oakland University, Rochester, Michigan 48309-4401 (United States)

    2014-02-03

    Ferromagnetic-ferroelectric composites show strain mediated coupling between the magnetic and electric sub-systems due to magnetostriction and piezoelectric effects associated with the ferroic phases. We have synthesized core-shell multiferroic nano-composites by functionalizing 10–100 nm barium titanate and nickel ferrite nanoparticles with complementary coupling groups and allowing them to self-assemble in the presence of a catalyst. The core-shell structure was confirmed by electron microscopy and magnetic force microscopy. Evidence for strong strain mediated magneto-electric coupling was obtained by static magnetic field induced variations in the permittivity over 16–18 GHz and polarization and by electric field induced by low-frequency ac magnetic fields.

  1. Coercivity enhancement in Ce-Fe-B based magnets by core-shell grain structuring

    Directory of Open Access Journals (Sweden)

    M. Ito

    2016-05-01

    Full Text Available Ce-based R2Fe14B (R= rare-earth nano-structured permanent magnets consisting of (Ce,Nd2Fe14B core-shell grains separated by a non-magnetic grain boundary phase, in which the relative amount of Nd to Ce is higher in the shell of the magnetic grain than in its core, were fabricated by Nd-Cu infiltration into (Ce,Nd2Fe14B hot-deformed magnets. The coercivity values of infiltrated core-shell structured magnets are superior to those of as-hot-deformed magnets with the same overall Nd content. This is attributed to the higher value of magnetocrystalline anisotropy of the shell phase in the core-shell structured infiltrated magnets compared to the homogeneous R2Fe14B grains of the as-hot-deformed magnets, and to magnetic isolation of R2Fe14B grains by the infiltrated grain boundary phase. First order reversal curve (FORC diagrams suggest that the higher anisotropy shell suppresses initial magnetization reversal at the edges and corners of the R2Fe14B grains.

  2. Synthesis of polystyrene@(silver-polypyrrole) core/shell nanocomposite microspheres and study on their antibacterial activities

    Science.gov (United States)

    Guo, Longhai; Ren, Shanshan; Qiu, Teng; Wang, Leilei; Zhang, Jiangru; He, Lifan; Li, Xiaoyu

    2015-01-01

    We reported the synthesis of polystyrene@(silver-polypyrrole) (PS@(Ag-PPy)) nanocomposite microspheres with the well-defined core/shell structure, in which the functionalized PS microspheres by the sulfonic acid groups were employed as template. The diameter of the synthesized PS microsphere template and AgNP was 1.26 μm and 50 nm, respectively. In order to well control the redox reaction between Ag+ and Py monomer and to avoid the accumulation of these AgNPs during synthesis process, the complexation of triethanolamine (TEA) and silver ion ([Ag(TEA)2]+) was employed as the oxidant, so that the generation rate of AgNPs was in turn decreased. Moreover, compared with the redox reaction between AgNO3 and Py, the introduction of [Ag(TEA)2]+ ions resulted in the improved coverage and distribution of AgNPs around the surface of PS microspheres. Meanwhile, the loading amount of Ag-PPy nanocomposites on the final microspheres was adjustable. The increasing concentrations of Py monomer and [Ag(TEA)2]+ ions resulted in the increase of Ag-PPy nanocomposite loading. The results of antibacterial experiment suggested that the synthesized PS@(Ag-PPy) composite microspheres showed the prominent antibacterial properties against both the Gram-negative bacteria of Escherichia coli and the Gram-positive bacteria of Staphylococcus aureus. For the bacteria with concentration at 1 × 105 - 9×105 cfu/mL, the microspheres can kill the bacteria above 3-log reduction with the concentration of PS@(Ag-PPy) composite microspheres at 50 μg/mL, in which the weight fraction of Py in the composite microspheres was above 10 wt%. When the weight fraction of Py in the composite microspheres was at 5 wt%, the 2-log reduction of in bacterial viability could also be obtained.

  3. Ge/Si core/shell quantum dots in alumina: tuning the optical absorption by the core and shell size

    Directory of Open Access Journals (Sweden)

    Nekić Nikolina

    2017-03-01

    Full Text Available Ge/Si core/shell quantum dots (QDs recently received extensive attention due to their specific properties induced by the confinement effects of the core and shell structure. They have a type II confinement resulting in spatially separated charge carriers, the electronic structure strongly dependent on the core and shell size. Herein, the experimental realization of Ge/Si core/shell QDs with strongly tunable optical properties is demonstrated. QDs embedded in an amorphous alumina glass matrix are produced by simple magnetron sputtering deposition. In addition, they are regularly arranged within the matrix due to their self-assembled growth regime. QDs with different Ge core and Si shell sizes are made. These core/shell structures have a significantly stronger absorption compared to pure Ge QDs and a highly tunable absorption peak dependent on the size of the core and shell. The optical properties are in agreement with recent theoretical predictions showing the dramatic influence of the shell size on optical gap, resulting in 0.7 eV blue shift for only 0.4 nm decrease at the shell thickness. Therefore, these materials are very promising for light-harvesting applications.

  4. Flexible, silver nanowire network nickel hydroxide core-shell electrodes for supercapacitors

    Science.gov (United States)

    Yuksel, Recep; Coskun, Sahin; Kalay, Yunus Eren; Unalan, Husnu Emrah

    2016-10-01

    We present a novel one-dimensional coaxial architecture composed of silver nanowire (Ag NW) network core and nickel hydroxide (Ni(OH)2) shell for the realization of coaxial nanocomposite electrode materials for supercapacitors. Ag NWs are formed conductive networks via spray coating onto polyethylene terephthalate (PET) substrates and Ni(OH)2 is gradually electrodeposited onto the Ag NW network to fabricate core-shell electrodes for supercapacitors. Synergy of highly conductive Ag NWs and high capacitive Ni(OH)2 facilitate ion and electron transport, enhance electrochemical properties and result in a specific capacitance of 1165.2 F g-1 at a current density of 3 A g-1. After 3000 cycles, fabricated nanocomposite electrodes show 93% capacity retention. The rational design explored in this study points out the potential of nanowire based coaxial energy storage devices.

  5. Facile synthesis of core–shell structured PANI-Co{sub 3}O{sub 4} nanocomposites with superior electrochemical performance in supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Hai, Zhenyin [Key Laboratory of Instrumentation and Dynamic Measurement of Ministry of Education, North University of China, Taiyuan, Shanxi 030051 (China); Gao, Libo [Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, Kowloon 999077 (Hong Kong); Zhang, Qiang [Key Laboratory of Instrumentation and Dynamic Measurement of Ministry of Education, North University of China, Taiyuan, Shanxi 030051 (China); Xu, Hongyan [School of Materials Science and Engineering, North University of China, Taiyuan, Shanxi 030051 (China); Cui, Danfeng; Zhang, Zengxing [Key Laboratory of Instrumentation and Dynamic Measurement of Ministry of Education, North University of China, Taiyuan, Shanxi 030051 (China); Tsoukalas, Dimitris [Department of Applied Physics, National Technical University of Athens, Zografou GR-15780 (Greece); Tang, Jun; Yan, Shubin [Key Laboratory of Instrumentation and Dynamic Measurement of Ministry of Education, North University of China, Taiyuan, Shanxi 030051 (China); Xue, Chenyang, E-mail: xuechenyang@nuc.edu.cn [Key Laboratory of Instrumentation and Dynamic Measurement of Ministry of Education, North University of China, Taiyuan, Shanxi 030051 (China)

    2016-01-15

    Graphical abstract: - Highlights: • PANI-Co{sub 3}O{sub 4} is synthesized by carbon-assisted and in situ polymerization methods. • PANI coating improves the properties of Co{sub 3}O{sub 4} affecting electrochemical performance. • The nanocomposites exhibit a high specific capacitance of 1184 F g{sup −1} at 1.25 A g{sup −1}. - Abstract: Core–shell structured PANI-Co{sub 3}O{sub 4} nanocomposites for supercapacitor applications were synthesized by combination of carbon-assisted method and in situ polymerization method. The crystalline structure, optical band gap, morphology, and hydrophilic property, as the major factors affecting the performances of supercapacitors, were investigated by X-ray diffraction (XRD), UV–vis spectrophotometry (UV–vis), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and water contact angle (WCA). The core–shell structured PANI-Co{sub 3}O{sub 4} nanocomposites are characterized by amorphous PANI, small bandgaps, large surface area and favorable hydrophilicity, which indicates the superior electrochemical performances of the nanocomposites as electrode material for supercapacitors. Cyclic voltammetry (CV), galvanostatic charge/discharge and electrochemical impedance spectroscopy (EIS) measurements were conducted in 6 M KOH aqueous solution to evaluate the electrochemical performances. The results shows that core–shell structured PANI-Co{sub 3}O{sub 4} nanocomposites exhibit a high specific capacitance of 1184 F g{sup −1} at 1.25 A g{sup −1}, excellent cycling stability of a capacitance retention of 84.9% after 1000 galvanostatic charge/discharge cycles, good electrical conductivity and ion diffusion behavior.

  6. Effect of nitrogen on the electrochemical performance of core–shell structured Si/C nanocomposites as anode materials for Li-ion batteries

    International Nuclear Information System (INIS)

    Tao, Hua-Chao; Huang, Mian; Fan, Li-Zhen; Qu, Xuanhui

    2013-01-01

    Highlights: ► N-containing core–shell structured Si/C nanocomposites are prepared via two steps. ► The N-containing Si/C nanocomposites exhibit high capacity and excellent cycling stability. ► The appropriate nitrogen has a beneficial effect on the electrochemical performance. -- Abstract: Core–shell structured Si/C nanocomposites with different nitrogen contents are prepared by in situ polymerization of aniline in the suspension of silicon nanoparticles followed by carbonization of Si/polyaniline (PANI) nanocomposites at different temperatures. The nitrogen contents of Si/C nanocomposites decrease gradually with increasing carbonization temperatures. The effect of nitrogen contents on the electrochemical performance of Si/C nanocomposites as anode materials for lithium ion batteries is investigated. It is found that the Si/C nanocomposites with 4.75 wt.% nitrogen exhibit the high specific capacity of 795 mAh g −1 after 50 cycles at a current density of 100 mA g −1 and excellent cycling stability. The appropriate nitrogen in Si/C nanocomposites plays a beneficial role in the improvement of electrochemical performance. The nitrogen in Si/C nanocomposites increases the reversible capacity, which may be due to the formation of vacancies and dangling bonds around the nitrogen sites

  7. A core–shell structured nanocomposite of NiO with carbon nanotubes as positive electrode material of high capacitance for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Z.B., E-mail: zbwen@jxnu.edu.cn [College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022 (China); Yu, F. [College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022 (China); College of Energy, Nanjing Tech University, Nanjing 211816, Jiangsu Province (China); New Energy and Material Laboratory (NEML), Department of Chemistry & Shanghai Key Laboratory of Molecular Catalysis and Innovative Material, Fudan University, Shanghai 200433 (China); You, T.; Zhu, L. [College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022 (China); Zhang, L., E-mail: lzhang@jxnu.edu.cn [College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022 (China); Wu, Y.P., E-mail: wuyp@fudan.edu.cn [College of Energy, Nanjing Tech University, Nanjing 211816, Jiangsu Province (China); New Energy and Material Laboratory (NEML), Department of Chemistry & Shanghai Key Laboratory of Molecular Catalysis and Innovative Material, Fudan University, Shanghai 200433 (China)

    2016-02-15

    Highlights: • A core–shell structured NiO@CNTs nanocomposite is synthesized by a simple hydrothermal method. • The CNTs core effectively improves the capacitance, rate and cycling performance of NiO. • A supercapacitor is assembled when activated carbon is used as the negative electrode. • The supercapacitor presents an energy density up to 52.6 Wh kg{sup −1}. - Abstract: A nanocomposite of carbon nanotubes coated with nickel oxide was prepared by a simple hydrothermal method. The structure, morphology and electrochemical performance of the nanocomposite were investigated by X-ray diffraction, scanning electron microscopy and transmission electron microscopy, electrochemical tests including cyclic voltammogram, galvanostatic charge–discharge and electrochemical impedance spectroscopy, respectively. It presents the highest specific capacitance of 1844 F g{sup −1} at 1 A g{sup −1} and 1145 F g{sup −1} at current density of 10 A g{sup −1} with 88.9% (at 1 A g{sup −1}) capacitance retention after 1000 cycles. The specific capacitance of the nanocomposite is almost double of that of the virginal NiO (972 F g{sup −1} at 1 A g{sup −1}). Its cycling behavior is also very good. When combined with activated carbon as the negative electrode, the energy density can be up to 52.6 Wh kg{sup −1}. Such good electrochemical behavior indicates that the nanocomposite is a promising electrode material for supercapacitors.

  8. Sensitive electrochemical sensor of tryptophan based on Ag-C core–shell nanocomposite modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Mao Shuxian; Li Weifeng; Long Yumei; Tu Yifeng; Deng, Anping

    2012-01-01

    Graphical abstract: Ag-C and Colloidal carbon sphere modified glassy carbon electrodes were prepared. It was clear that the Ag-C/GCE exhibited enhanced electrocatalytic activity towards Trp, which could result from the synergistic effect between Ag core and carbon shell. The Ag-C/GCE showed excellent analytical properties in the determination of Trp. Highlights: ► The electrochemical behavior of Ag-C core–shell nanocomposite was firstly proposed. ► Ag-C/GC electrode exhibited favorable electrocatalytic properties towards Trp. ► The good electrocatalysis was due to the synergistic effect of Ag-core and C-shell. ► The Ag-C/GC electrode displayed excellent analytical properties in determining Trp. - Abstract: We here reported a simple electrochemical method for the detection of tryptophan (Trp) based on the Ag-C modified glassy carbon (Ag-C/GC) electrode. The Ag-C core–shell structured nanoparticles were synthesized using one-pot hydrothermal method and characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), and Fourier transform-infrared spectroscopy (FTIR). The electrochemical behaviors of Trp on Ag-C/GC electrode were investigated and exhibited a direct electrochemical process. The favorable electrochemical properties of Ag-C/GC electrode were attributed to the synergistic effect of the Ag core and carbon shell. The carbon shell cannot only protect Ag core but also contribute to the enhanced substrate accessibility and Trp-substrate interactions, while nano-Ag core can display good electrocatalytic activity to Trp at the same time. Under the optimum experimental conditions the oxidation peak current was linearly dependent on the Trp concentration in the range of 1.0 × 10 −7 to 1.0 × 10 −4 M with a detection limit of 4.0 × 10 −8 M (S/N = 3). In addition, the proposed electrode was applied for the determination of Trp concentration in real samples and satisfactory results were obtained. The technique offers

  9. Thermoelectric-pyroelectric hybrid energy generation from thermopower waves in core-shell structured carbon nanotube-PZT nanocomposites.

    Science.gov (United States)

    Yeo, Taehan; Hwang, Hayoung; Shin, Dongjoon; Seo, Byungseok; Choi, Wonjoon

    2017-02-10

    There is an urgent need to develop a suitable energy source owing to the rapid development of various innovative devices using micro-nanotechnology. The thermopower wave (TW), which produces a high specific power during the combustion of solid fuel inside micro-nanostructure materials, is a unique energy source for unusual platforms that cannot use conventional energy sources. Here, we report on the significant enhancement of hybrid energy generation of pyroelectrics and thermoelectrics from TWs in carbon nanotube (CNT)-PZT (lead zirconate titanate, P(Z 0.5 -T 0.5 )) composites for the first time. Conventional TWs use only charge carrier transport driven by the temperature gradient along the core materials to produce voltage. In this study, a core-shell structure of CNTs-PZTs was prepared to utilize both the temperature gradient along the core material (thermoelectrics) and the dynamic change in the temperature of the shell structure (pyroelectrics) induced by TWs. The dual mechanism of energy generation in CNT-PZT composites amplified the average peak and duration of the voltage up to 403 mV and 612 ms, respectively, by a factor of 2 and 60 times those for the composites without a PZT layer. Furthermore, dynamic voltage measurements and structural analysis in repetitive TWs confirmed that CNT-PZT composites maintain the original performance in multiple TWs, which improves the reusability of materials. The advanced TWs obtained by the application of a PZT layer as a pyroelectric material contributes to the extension of the usable energy portion as well as the development of TW-based operating devices.

  10. Preparation of porous carbon particle with shell/core structure

    Directory of Open Access Journals (Sweden)

    2007-05-01

    Full Text Available Porous carbon particles with a shell/core structure have been prepared successfully by controlled precipitation of the polymer from droplets of oil-in-water emulsion, followed by curing and carbonization. The droplets of the oil phase are composed of phenolic resin (PFR, a good solvent (ethyl acetate and porogen (Poly(methyl methacrylate, PMMA. The microstructure was characterized in detail by scanning electron microscopy (SEM, transmission electron microscopy (TEM, nitrogen adsorption, and thermo gravimetric analysis (TGA. The obtained carbon particles have a capsular structure with a microporous carbon shell and a mesoporous carbon core. The BET surface area and porous volume are calculated to be 499 m2g-1 and 0.56 cm3g-1, respectively. The effects of the amount of porogen (PMMA, co-solvent (acetone and surfactant on the resultant structure were studied in detail.

  11. Core@shell@shell structured carbon-based magnetic ternary nanohybrids: Synthesis and their enhanced microwave absorption properties

    Science.gov (United States)

    Yang, Erqi; Qi, Xiaosi; Xie, Ren; Bai, Zhongchen; Jiang, Yang; Qin, Shuijie; Zhong, Wei; Du, Youwei

    2018-05-01

    High encapsulation efficiency of core@shell@shell structured carbon-based magnetic ternary nanohybrids have been synthesized in high yield by chemical vapor deposition of acetylene directly over octahedral-shaped Fe2O3 nanoparticles. By controlling the pyrolysis temperature, Fe3O4@Fe3C@carbon nanotubes (CNTs) and Fe@Fe3C@CNTs ternary nanohybrids could be selectively produced. The optimal RL values for the as-prepared ternary nanohybrids could reach up to ca. -46.7, -52.7 and -29.5 dB, respectively. The excellent microwave absorption properties of the obtaiend ternary nanohybrids were proved to ascribe to the quarter-wavelength matching model. Moreover, the as-prepared Fe@Fe3C@CNTs ternary nanohybrids displayed remarkably enhanced EM wave absorption capabilities compared to Fe3O4@Fe3C@CNTs due to their excellent dielectric loss abilities, good complementarities between the dielectric loss and the magnetic loss, and high attenuation constant. Generally, this strategy can be extended to explore other categories of core@shell or core@shell@shell structured carbon-based nanohybrids, which is very beneficial to accelerate the advancements of high performance MAMs.

  12. Platinum-nanoparticle-supported core-shell polymer nanospheres with unexpected water stability and facile further modification

    Science.gov (United States)

    Yuan, Conghui; Xu, Yiting; Luo, Weiang; Zeng, Birong; Qiu, Wuhui; Liu, Jie; Huang, Huiling; Dai, Lizong

    2012-05-01

    Core-shell nanospheres (CSNSs) with hydrophobic cores and hydrophilic shells were fabricated via a simple mini-emulsion polymerization for the stabilization of platinum nanoparticles (Pt-NPs). The CSNSs showed extremely high loading capacity of Pt-NPs (the largest loading amount of the Pt-NPs was about 49.2 wt%). Importantly, the Pt-NPs/CSNSs nanocomposites had unexpected stability in aqueous solution. DLS results revealed that the CSNSs loaded with Pt-NPs exhibited almost no aggregation after standing for a long time . However, the Pt-NPs immobilized on the CSNSs were not straitlaced: they could transport and redistribute between CSNSs freely when the environmental temperature was higher than the melting point of the CSNS shell. Owing to their excellent stability in aqueous solution, the surface of the Pt-NPs/CSNSs nanocomposites could be further decorated easily. For example, polyaniline (PANI)-coated Pt-NPs/CSNSs, nickel (Ni)-coated Pt-NPs/CSNSs and PANI/Pt-NPs dual-layer hollow nanospheres were facilely fabricated from the Pt-NPs/CSNS nanocomposites.

  13. Controllable Fabrication of Fe3O4/ZnO Core–Shell Nanocomposites and Their Electromagnetic Wave Absorption Performance in the 2–18 GHz Frequency Range

    Directory of Open Access Journals (Sweden)

    Xiaodong Sun

    2018-05-01

    Full Text Available In this study, Fe3O4/ZnO core–shell nanocomposites were synthesized through a chemical method of coating the magnetic core (Fe3O4 with ZnO by co-precipitation of Fe3O4 with zinc acetate in a basic medium of ammonium hydroxide. The phase structure, morphology and electromagnetic parameters of the Fe3O4/ZnO core–shell nanocomposites were investigated. The results indicated that the concentration of the solvent was responsible for controlling the morphology of the composites, which further influenced their impedance matching and microwave absorption properties. Moreover, Fe3O4/ZnO nanocomposites exhibited an enhanced absorption capacity in comparison with the naked Fe3O4 nanospheres. Specifically, the minimum reflection loss value reached −50.79 dB at 4.38 GHz when the thickness was 4.5 mm. It is expected that the Fe3O4/ZnO core–shell structured nanocomposites could be a promising candidate as high-performance microwave absorbers.

  14. Controllable synthesis and characterization of novel copper-carbon core-shell structured nanoparticles

    International Nuclear Information System (INIS)

    Zhai, Jing; Tao, Xia; Pu, Yuan; Zeng, Xiao-Fei; Chen, Jian-Feng

    2011-01-01

    Highlights: → We reported a facile, green and cheap hydrothermal method to obtain novel copper-carbon core-shell nanoparticles. → The as-formed particles with controllable size and morphology are antioxidant. → The particles with organic-group-loaded surfaces and protective shells are expected to be applied in fields of medicine, electronics, sensors and lubricant. -- Abstract: A facile hydrothermal method was developed for preparing copper-carbon core-shell structured particles through a reaction at 160 o C in which glucose, copper sulfate pentahydrate and cetyltrimethylammonium bromide were used as starting materials. The original copper-carbon core-shell structured particles obtained were sized of 100-250 nm. The thickness of carbonaceous shells was controlled ranging from 25 to 100 nm by adjusting the hydrothermal duration time and the concentrations of glucose in the process. Products were characterized with transmission electron microscopy, X-ray diffraction, energy dispersive spectroscopy, Fourier transform infrared spectroscopy. Since no toxic materials were involved in the preparation, particles with stable carbonaceous framework and reactive surface also showed promising applications in medicine, electronics, sensors, lubricant, etc.

  15. Controllable synthesis and characterization of novel copper-carbon core-shell structured nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Jing [Sin-China Nano Technology Center, Key Lab for Nanomaterials, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029 (China); Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, No. 15 Beisanhuan Dong Lu, Beijing 100029 (China); Tao, Xia; Pu, Yuan; Zeng, Xiao-Fei [Sin-China Nano Technology Center, Key Lab for Nanomaterials, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029 (China); Chen, Jian-Feng, E-mail: chenjf@mail.buct.edu.cn [Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, No. 15 Beisanhuan Dong Lu, Beijing 100029 (China)

    2011-06-15

    Highlights: {yields} We reported a facile, green and cheap hydrothermal method to obtain novel copper-carbon core-shell nanoparticles. {yields} The as-formed particles with controllable size and morphology are antioxidant. {yields} The particles with organic-group-loaded surfaces and protective shells are expected to be applied in fields of medicine, electronics, sensors and lubricant. -- Abstract: A facile hydrothermal method was developed for preparing copper-carbon core-shell structured particles through a reaction at 160 {sup o}C in which glucose, copper sulfate pentahydrate and cetyltrimethylammonium bromide were used as starting materials. The original copper-carbon core-shell structured particles obtained were sized of 100-250 nm. The thickness of carbonaceous shells was controlled ranging from 25 to 100 nm by adjusting the hydrothermal duration time and the concentrations of glucose in the process. Products were characterized with transmission electron microscopy, X-ray diffraction, energy dispersive spectroscopy, Fourier transform infrared spectroscopy. Since no toxic materials were involved in the preparation, particles with stable carbonaceous framework and reactive surface also showed promising applications in medicine, electronics, sensors, lubricant, etc.

  16. Broadband absorption and enhanced photothermal conversion property of octopod-like Ag@Ag2S core@shell structures with gradually varying shell thickness.

    Science.gov (United States)

    Jiang, Qian; Zeng, Wenxia; Zhang, Canying; Meng, Zhaoguo; Wu, Jiawei; Zhu, Qunzhi; Wu, Daxiong; Zhu, Haitao

    2017-12-19

    Photothermal conversion materials have promising applications in many fields and therefore they have attracted tremendous attention. However, the multi-functionalization of a single nanostructure to meet the requirements of multiple photothermal applications is still a challenge. The difficulty is that most nanostructures have specific absoprtion band and are not flexible to different demands. In the current work, we reported the synthesis and multi-band photothermal conversion of Ag@Ag 2 S core@shell structures with gradually varying shell thickness. We synthesized the core@shell structures through the sulfidation of Ag nanocubes by taking the advantage of their spatially different reactivity. The resulting core@shell structures show an octopod-like mopgorlogy with a Ag 2 S bulge sitting at each corner of the Ag nanocubes. The thickness of the Ag 2 S shell gradually increases from the central surface towards the corners of the structure. The synthesized core@shell structures show a broad band absorption spectrum from 300 to 1100 nm. Enhanced photothermal conversion effect is observed under the illuminations of 635, 808, and 1064 nm lasers. The results indicate that the octopod-like Ag@Ag 2 S core@shell structures have characteristics of multi-band photothermal conversion. The current work might provide a guidance for the design and synthesis of multifunctional photothermal conversion materials.

  17. Synthesis of parallel and antiparallel core-shell triangular nanoparticles

    Science.gov (United States)

    Bhattacharjee, Gourab; Satpati, Biswarup

    2018-04-01

    Core-shell triangular nanoparticles were synthesized by seed mediated growth. Using triangular gold (Au) nanoparticle as template, we have grown silver (Ag) shellto get core-shell nanoparticle. Here by changing the chemistry we have grown two types of core-shell structures where core and shell is having same symmetry and also having opposite symmetry. Both core and core-shell nanoparticles were characterized using transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX) to know the crystal structure and composition of these synthesized core-shell nanoparticles. From diffraction pattern analysis and energy filtered TEM (EFTEM) we have confirmed the crystal facet in core is responsible for such two dimensional growth of core-shell nanostructures.

  18. Self-assembly of multiferroic core-shell particulate nanocomposites through DNA-DNA hybridization and magnetic field directed assembly of superstructures

    Energy Technology Data Exchange (ETDEWEB)

    Sreenivasulu, Gollapudi; Srinivasan, Gopalan, E-mail: srinivas@oakland.edu, E-mail: chavez@oakland.edu [Department of Physics, Oakland University, Rochester, MI 48309-4401 (United States); Lochbiler, Thomas A.; Panda, Manashi; Chavez, Ferman A., E-mail: srinivas@oakland.edu, E-mail: chavez@oakland.edu [Department of Chemistry, Oakland University, Rochester, MI 48309-4401 (United States)

    2016-04-15

    Multiferroic composites of ferromagnetic and ferroelectric phases are of importance for studies on mechanical strain mediated coupling between the magnetic and electric subsystems. This work is on DNA-assisted self-assembly of superstructures of such composites with nanometer periodicity. The synthesis involved oligomeric DNA-functionalized ferroelectric and ferromagnetic nanoparticles, 600 nm BaTiO{sub 3} (BTO) and 200 nm NiFe{sub 2}O{sub 4} (NFO), respectively. Mixing BTO and NFO particles, possessing complementary DNA sequences, resulted in the formation of ordered core-shell heteronanocomposites held together by DNA hybridization. The composites were imaged by scanning electron microscopy and scanning microwave microscopy. The presence of heteroassemblies along with core-shell architecture is clearly observed. The reversible nature of the DNA hybridization allows for restructuring the composites into mm-long linear chains and 2D-arrays in the presence of a static magnetic field and ring-like structures in a rotating-magnetic field. Strong magneto-electric (ME) coupling in as-assembled composites is evident from static magnetic field H induced polarization and low-frequency magnetoelectric voltage coefficient measurements. Upon annealing the nanocomposites at high temperatures, evidence for the formation of bulk composites with excellent cross-coupling between the electric and magnetic subsystems is obtained by H-induced polarization and low-frequency ME voltage coefficient. The ME coupling strength in the self-assembled composites is measured to be much stronger than in bulk composites with randomly distributed NFO and BTO prepared by direct mixing and sintering.

  19. Rapid Synthesis and Formation Mechanism of Core-Shell-Structured La-Doped SrTiO3 with a Nb-Doped Shell

    Directory of Open Access Journals (Sweden)

    Nam-Hee Park

    2015-07-01

    Full Text Available To provide a convenient and practical synthesis process for metal ion doping on the surface of nanoparticles in an assembled nanostructure, core-shell-structured La-doped SrTiO3 nanocubes with a Nb-doped surface layer were synthesized via a rapid synthesis combining a rapid sol-precipitation and hydrothermal process. The La-doped SrTiO3 nanocubes were formed at room temperature by a rapid dissolution of NaOH pellets during the rapid sol-precipitation process, and the Nb-doped surface (shell along with Nb-rich edges formed on the core nanocubes via the hydrothermal process. The formation mechanism of the core-shell-structured nanocubes and their shape evolution as a function of the Nb doping level were investigated. The synthesized core-shell-structured nanocubes could be arranged face-to-face on a SiO2/Si substrate by a slow evaporation process, and this nanostructured 10 μm thick thin film showed a smooth surface.

  20. Synthesis of polystyrene@(silver–polypyrrole) core/shell nanocomposite microspheres and study on their antibacterial activities

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Longhai; Ren, Shanshan; Qiu, Teng, E-mail: qiuteng@mail.buct.edu.cn; Wang, Leilei; Zhang, Jiangru; He, Lifan; Li, Xiaoyu, E-mail: lixy@mail.buct.edu.cn [Ministry of Education, Beijing University of Chemical Technology, Key Laboratory of Carbon Fiber and Functional Polymer (China)

    2015-01-15

    We reported the synthesis of polystyrene@(silver–polypyrrole) (PS@(Ag–PPy)) nanocomposite microspheres with the well-defined core/shell structure, in which the functionalized PS microspheres by the sulfonic acid groups were employed as template. The diameter of the synthesized PS microsphere template and AgNP was 1.26 μm and 50 nm, respectively. In order to well control the redox reaction between Ag{sup +} and Py monomer and to avoid the accumulation of these AgNPs during synthesis process, the complexation of triethanolamine (TEA) and silver ion ([Ag(TEA){sub 2}]{sup +}) was employed as the oxidant, so that the generation rate of AgNPs was in turn decreased. Moreover, compared with the redox reaction between AgNO{sub 3} and Py, the introduction of [Ag(TEA){sub 2}]{sup +} ions resulted in the improved coverage and distribution of AgNPs around the surface of PS microspheres. Meanwhile, the loading amount of Ag–PPy nanocomposites on the final microspheres was adjustable. The increasing concentrations of Py monomer and [Ag(TEA){sub 2}]{sup +} ions resulted in the increase of Ag–PPy nanocomposite loading. The results of antibacterial experiment suggested that the synthesized PS@(Ag–PPy) composite microspheres showed the prominent antibacterial properties against both the Gram-negative bacteria of Escherichia coli and the Gram-positive bacteria of Staphylococcus aureus. For the bacteria with concentration at 1 × 10{sup 5} – 9×10{sup 5} cfu/mL, the microspheres can kill the bacteria above 3-log reduction with the concentration of PS@(Ag–PPy) composite microspheres at 50 μg/mL, in which the weight fraction of Py in the composite microspheres was above 10 wt%. When the weight fraction of Py in the composite microspheres was at 5 wt%, the 2-log reduction of in bacterial viability could also be obtained.Graphical Abstract.

  1. Synthesis of polystyrene@(silver–polypyrrole) core/shell nanocomposite microspheres and study on their antibacterial activities

    International Nuclear Information System (INIS)

    Guo, Longhai; Ren, Shanshan; Qiu, Teng; Wang, Leilei; Zhang, Jiangru; He, Lifan; Li, Xiaoyu

    2015-01-01

    We reported the synthesis of polystyrene@(silver–polypyrrole) (PS@(Ag–PPy)) nanocomposite microspheres with the well-defined core/shell structure, in which the functionalized PS microspheres by the sulfonic acid groups were employed as template. The diameter of the synthesized PS microsphere template and AgNP was 1.26 μm and 50 nm, respectively. In order to well control the redox reaction between Ag + and Py monomer and to avoid the accumulation of these AgNPs during synthesis process, the complexation of triethanolamine (TEA) and silver ion ([Ag(TEA) 2 ] + ) was employed as the oxidant, so that the generation rate of AgNPs was in turn decreased. Moreover, compared with the redox reaction between AgNO 3 and Py, the introduction of [Ag(TEA) 2 ] + ions resulted in the improved coverage and distribution of AgNPs around the surface of PS microspheres. Meanwhile, the loading amount of Ag–PPy nanocomposites on the final microspheres was adjustable. The increasing concentrations of Py monomer and [Ag(TEA) 2 ] + ions resulted in the increase of Ag–PPy nanocomposite loading. The results of antibacterial experiment suggested that the synthesized PS@(Ag–PPy) composite microspheres showed the prominent antibacterial properties against both the Gram-negative bacteria of Escherichia coli and the Gram-positive bacteria of Staphylococcus aureus. For the bacteria with concentration at 1 × 10 5  – 9×10 5  cfu/mL, the microspheres can kill the bacteria above 3-log reduction with the concentration of PS@(Ag–PPy) composite microspheres at 50 μg/mL, in which the weight fraction of Py in the composite microspheres was above 10 wt%. When the weight fraction of Py in the composite microspheres was at 5 wt%, the 2-log reduction of in bacterial viability could also be obtained.Graphical Abstract

  2. Atomistic tight-binding computations of the structural and optical properties of CdTe/CdX (X=S and Se)/ZnS core/shell/shell nanocrystals

    Science.gov (United States)

    Sukkabot, Worasak

    2018-05-01

    A study of CdTe/CdX (X=S and Se)/ZnS core/shell/shell nanocrystals is carried out using atomistic tight-binding theory and the configuration interaction method to provide information for applications in bioimaging, biolabeling, display devices and near-infrared electronic instruments. The calculations yield the dependences of the internal and external passivated shells on the natural behaviours of CdTe/CdX (X=S and Se)/ZnS core/shell/shell nanocrystals. The reduction of the optical band gaps is observed with increasing numbers of monolayers in the external ZnS shell due to quantum confinement. Interestingly, the optical band gaps of CdTe/CdS/ZnS core/shell/shell nanocrystals are greater than those of CdTe/CdSe/ZnS core/shell/shell nanocrystals. In the presence of an external ZnS-coated shell, electron-hole wave function overlaps, oscillation strengths, ground-state exchange energies and Stokes shift are improved, whereas ground-state coulomb energies and fine-structure splitting are reduced. The oscillation strengths, Stokes shift and fine-structure splitting are reduced with the increase in external ZnS shell thickness. The oscillation strengths, Stokes shift and fine-structure splitting of CdTe/CdS/ZnS core/shell/shell nanocrystals are larger than those of CdTe/CdSe/ZnS core/shell/shell nanocrystals. Reduction of the atomistic electron-hole interactions is observed with increasing external ZnS shell size. The strong electron-hole interactions are more probed in CdTe/CdS/ZnS core/shell/shell nanocrystals than in CdTe/CdSe/ZnS core/shell/shell nanocrystals.

  3. Metal-core@metal oxide-shell nanomaterials for gas-sensing applications: a review

    Energy Technology Data Exchange (ETDEWEB)

    Mirzaei, A.; Janghorban, K.; Hashemi, B. [Shiraz University, Department of Materials Science and Engineering (Iran, Islamic Republic of); Neri, G., E-mail: gneri@unime.it [University of Messina, Department of Electronic Engineering, Chemistry and Industrial Engineering (Italy)

    2015-09-15

    With an ever-increasing number of applications in many advanced fields, gas sensors are becoming indispensable devices in our daily life. Among different types of gas sensors, conductometric metal oxide semiconductor (MOS) gas sensors are found to be the most appealing for advanced applications in the automotive, biomedical, environmental, and safety sectors because of the their high sensitivity, reduced size, and low cost. To improve their sensing characteristics, new metal oxide-based nanostructures have thus been proposed in recent years as sensing materials. In this review, we extensively review gas-sensing properties of core@ shell nanocomposites in which metals as the core and metal oxides as the shell structure, both of nanometer sizes, are assembled into a single metal@metal oxide core–shell. These nanostructures not only combine the properties of both noble metals and metal oxides, but also bring unique synergetic functions in comparison with single-component materials. Up-dated achievements in the synthesis and characterization of metal@metal oxide core–shell nanostructures as well as their use in MOS sensors are here reported with the main objective of providing an overview about their gas-sensing properties.

  4. Novel synthesis of core-shell Au-Pt dendritic nanoparticles supported on carbon black for enhanced methanol electro-oxidation

    Science.gov (United States)

    Cao, Ribing; Xia, Tiantian; Zhu, Ruizhi; Liu, Zhihua; Guo, Jinming; Chang, Gang; Zhang, Zaoli; Liu, Xiong; He, Yunbin

    2018-03-01

    Core-shell Au-Pt dendritic nanoparticles (Au-Pt NPs) has been synthesized via a facile seed-mediated growth method, in which dendritic Pt nanoparticles as shell grow on the surface of gold nanocores by using ascorbic acid (AA) as "green" reducing reagents. The morphologies and compositions of the as-prepared nanocomposites with core-shell structure are characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). Electrochemical experiments, including cyclic voltammetry (CV) and chronoamperometry (CA) are performed to investigate the electrocatalytic properties of the Au-Pt NPs loaded carbon black composites (Au-Pt NPs/V) towards methanol oxidation in an alkaline solution. It is found that the reduction time of AA could regulate the thickness and amount of Pt on the Au nanocores, which significantly affect catalytic activity of the Au-Pt NPs/V toward methanol oxidation. Au-Pt NPs/V with optimum reduction time 4 h exhibit 2.3-times higher electrocatalytic activity than that of a commercial catalyst (Pt/carbon black) and an excellent CO tolerance toward methanol oxidation. This behavior is attributed to large active electrochemical area of the bimetallic nanocomposites and the change in the electronic structure of Pt when Au surface modified with fewer Pt nanoparticles.

  5. Modification of Ag shell on upconversion populating paths of NaYF4:Yb3+,Er3+@Ag nanocomposites

    International Nuclear Information System (INIS)

    Sun, Jiao; Liu, Haipeng; Wu, Di; Dong, Biao; Sun, Liankun

    2013-01-01

    NaYF 4 :Yb 3+ ,Er 3+ @Ag core–shell nanocomposites were prepared. Due to the outer shell of Ag, some modifications were found on the upconversion (UC) processes of NaYF 4 :Yb 3+ ,Er 3+ core nanoparticles (NPs) caused by the co-interaction of surface effect, surface plasma absorption effect and local thermal effect under infrared radiation. Upon 980 nm excitation, the relative UC intensity of the green ( 2 H 11/2 , 4 S 3/2 – 4 I 15/2 ) to red ( 4 F 9/2 – 4 I 15/2 ) and the slope of power-dependence increased intensively, and three-photon population process for the green level appeared. -- Highlights: ► NaYF 4 :Yb 3+ ,Er 3+ @Ag core/shell nanocomposites were fabricated. ► The coating of Ag outer shell leads to the increase of the green UCL. ► Three-photon population process for the green level appeared after Ag coating.

  6. Core/shell structured ZnO/SiO2 nanoparticles: Preparation, characterization and photocatalytic property

    International Nuclear Information System (INIS)

    Zhai Jing; Tao Xia; Pu Yuan; Zeng Xiaofei; Chen Jianfeng

    2010-01-01

    ZnO nanoparticles were prepared by a simple chemical synthesis route. Subsequently, SiO 2 layers were successfully coated onto the surface of ZnO nanoparticles to modify the photocatalytic activity in acidic or alkaline solutions. The obtained particles were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive spectrometry (EDS) and zeta potential. It was found that ultrafine core/shell structured ZnO/SiO 2 nanoparticles were successfully obtained. The photocatalytic performance of ZnO/SiO 2 core/shell structured nanoparticles in Rhodamine B aqueous solution at varied pH value were also investigated. Compared with uncoated ZnO nanoparticles, core/shell structured ZnO/SiO 2 nanoparticles with thinner SiO 2 shell possess improved stability and relatively better photocatalytic activity in acidic or alkaline solutions, which would broaden its potential application in pollutant treatment.

  7. Super-paramagnetic core-shell material with tunable magnetic behavior by regulating electron transfer efficiency and structure stability of the shell

    Directory of Open Access Journals (Sweden)

    Wenyan Zhang

    Full Text Available In this work, a spherical nano core-shell material was constructed by encapsulating Fe3O4 microsphere into conductive polymer-metal composite shell. The Fe3O4 microspheres were fabricated by assembling large amounts of Fe3O4 nano-crystals, which endowed the microspheres with super-paramagnetic property and high saturation magnetization. The polymer-metal composite shell was constructed by inserting Pt nano-particles (NPs into the conductive polymer polypyrrole (PPy. As size and dispersion of the Pt NPs has an important influence on their surface area and surface energy, it was effective to enlarge the interface area between PPy and Pt NPs, enhance the electron transfer efficiency of PPy/Pt composite shell, and reinforced the shell’s structural stability just by tuning the size and dispersion of Pt NPs. Moreover, core-shell structure of the materials made it convenient to investigate the PPy/Pt shell’s shielding effect on the Fe3O4 core’s magnetic response to external magnetic fields. It was found that the saturation magnetization of Fe3O4/PPy/Pt core-shell material could be reduced by 20.5% by regulating the conductivity of the PPy/Pt shell. Keywords: Super-paramagnetic, Conductivity, Magnetic shielding, Structural stability

  8. Core-shell structure of polypyrrole grown on V{sub 2}O{sub 5} nanoribbon as high performance anode material for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Qunting [New Energy and Materials Laboratory (NEML), Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai (China); School of Energy, Soochow University, Suzhou, Jiangsu (China); Zhu, Yusong; Gao, Xiangwen; Wu, Yuping [New Energy and Materials Laboratory (NEML), Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai (China)

    2012-08-15

    A core-shell structure of polypyrrole grown on V{sub 2}O{sub 5} nanoribbons as a high performance anode material for supercapacitors is fabricated using anionic dodecylbenzenesulfonate (DBS{sup -}) as surfactant. Benefiting from the nanoribbon morphology of V{sub 2}O{sub 5}, the improved charge-transfer and polymeric coating effect of PPy, PPy rate at V{sub 2}O{sub 5} nanocomposites exhibits high energy density, and excellent cycling and rate capability in K{sub 2}SO{sub 4} aqueous electrolyte. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Hydrogen storage and hydrolysis properties of core-shell structured Mg-MFx (M=V, Ni, La and Ce) nano-composites prepared by arc plasma method

    Science.gov (United States)

    Mao, Jianfeng; Zou, Jianxin; Lu, Chong; Zeng, Xiaoqin; Ding, Wenjiang

    2017-10-01

    In this work, core-shell structured Mg-MFx (M = V, Ni, La and Ce) nano-composites are prepared by using arc plasma method. The particle size distribution, phase components, microstructures, hydrogen sorption properties of these composites and hydrolysis properties of their corresponding hydrogenated powders are carefully investigated. It is shown that the addition of MFx through arc plasma method can improve both the hydrogen absorption kinetics of Mg and the hydrolysis properties of corresponding hydrogenated powders. Among them, the Mg-NiF2 composite shows the best hydrogen absorption properties at relatively low temperatures, which can absorb 3.26 wt% of H2 at 373 K in 2 h. Such rapid hydrogen absorption rate is mainly due to the formation of Mg2Ni and MgF2 on Mg particles during arc evaporation and condensation. In contrast, measurements also show that the hydrogenated Mg-VF3 composite has the lowest peak desorption temperature and the fastest hydrolysis rate among all the hydrogenated Mg-MFx composites. The less agglomeration tendency of Mg particles and VO2 covered on MgH2 particles account for the reduced hydrogen desorption temperature and enhanced hydrolysis rate.

  10. Nanostructured core-shell electrode materials for electrochemical capacitors

    Science.gov (United States)

    Jiang, Long-bo; Yuan, Xing-zhong; Liang, Jie; Zhang, Jin; Wang, Hou; Zeng, Guang-ming

    2016-11-01

    Core-shell nanostructure represents a unique system for applications in electrochemical energy storage devices. Owing to the unique characteristics featuring high power delivery and long-term cycling stability, electrochemical capacitors (ECs) have emerged as one of the most attractive electrochemical storage systems since they can complement or even replace batteries in the energy storage field, especially when high power delivery or uptake is needed. This review aims to summarize recent progress on core-shell nanostructures for advanced supercapacitor applications in view of their hierarchical architecture which not only create the desired hierarchical porous channels, but also possess higher electrical conductivity and better structural mechanical stability. The core-shell nanostructures include carbon/carbon, carbon/metal oxide, carbon/conducting polymer, metal oxide/metal oxide, metal oxide/conducting polymer, conducting polymer/conducting polymer, and even more complex ternary core-shell nanoparticles. The preparation strategies, electrochemical performances, and structural stabilities of core-shell materials for ECs are summarized. The relationship between core-shell nanostructure and electrochemical performance is discussed in detail. In addition, the challenges and new trends in core-shell nanomaterials development have also been proposed.

  11. Synthesis and properties MFe2O4 (M = Fe, Co) nanoparticles and core-shell structures

    Science.gov (United States)

    Yelenich, O. V.; Solopan, S. O.; Greneche, J. M.; Belous, A. G.

    2015-08-01

    Individual Fe3-xO4 and CoFe2O4 nanoparticles, as well as Fe3-xO4/CoFe2O4 core/shell structures were synthesized by the method of co-precipitation from diethylene glycol solutions. Core/shell structure were synthesized with CoFe2O4-shell thickness of 1.0, 2.5 and 3.5 nm. X-ray diffraction patterns of individual nanoparticles and core/shell are similar and indicate that all synthesized samples have a cubic spinel structure. Compares Mössbauer studies of CoFe2O4, Fe3-xO4 nanoparticles indicate superparamagnetic properties at 300 K. It was shown that individual magnetite nanoparticles are transformed into maghemite through oxidation during the synthesis procedure, wherein the smallest nanoparticles are completely oxidized while a magnetite core does occur in the case of the largest nanoparticles. The Mössbauer spectra of core/shell nanoparticles with increasing CoFe2O4-shell thickness show a gradual decrease in the relative intensity of the quadrupole doublet and significant decrease of the mean isomer shift value at both RT and 77 K indicating a decrease of the superparamagnetic relaxation phenomena. Specific loss power for the prepared ferrofluids was experimentally calculated and it was determined that under influence of ac-magnetic field magnetic fluid based on individual CoFe2O4 and Fe3-xO4 particles are characterized by very low heating temperature, when magnetic fluids based on core/shell nanoparticles demonstrate higher heating effect.

  12. HER2 Targeted Breast Cancer Therapy with Switchable "Off/On" Multifunctional "Smart" Magnetic Polymer Core-Shell Nanocomposites.

    Science.gov (United States)

    Vivek, Raju; Thangam, Ramar; Kumar, Selvaraj Rajesh; Rejeeth, Chandrababu; Kumar, Gopal Senthil; Sivasubramanian, Srinivasan; Vincent, Savariar; Gopi, Dhanaraj; Kannan, Soundarapandian

    2016-01-27

    Multifunctional magnetic polymer nanocombinations are gaining importance in cancer nanotheranostics due to their safety and their potential in delivering targeted functions. Herein, we report a novel multifunctional core-shell magnetic polymer therapeutic nanocomposites (NCs) exhibiting pH dependent "Off-On" release of drug against breast cancer cells. The NCs are intact in blood circulation ("Off" state), i.e., at physiological pH, whereas activated ("On" state) at intracellular acidic pH environment of the targeted breast cancer cells. The NCs are prepared by coating the cannonball (iron nanocore) with hydrophobic nanopockets of pH-responsive poly(d,l-lactic-co-glycolic acid) (PLGA) polymer nanoshell that allows efficient loading of therapeutics. Further, the nanocore-polymer shell is stabilized by poly(vinylpyrrolidone) (PVP) and functionalized with a targeting HER2 ligand. The prepared Her-Fe3O4@PLGA-PVP nanocomposites facilitate packing of anticancer drug (Tamoxifen) without premature release in the bloodstream, recognizing the target cells through binding of Herceptin antibody to HER2, a cell surface receptor expressed by breast cancer cells to promote HER2 receptor mediated endocytosis and finally releasing the drug at the intracellular site of tumor cells ("On" state) to induce apoptosis. The therapeutic efficiency of hemo/cytocompatible NCs drug delivery system (DDS) in terms of targeted delivery and sustained release of therapeutic agent against breast cancer cells was substantiated by in vitro and in vivo studies. The multifunctional properties of Her-Tam-Fe3O4@PLGA-PVP NCs may open up new avenues in cancer therapy through overcoming the limitations of conventional cancer therapy.

  13. Construction of carbon nanoflakes shell on CuO nanowires core as enhanced core/shell arrays anode of lithium ion batteries

    International Nuclear Information System (INIS)

    Cao, F.; Xia, X.H.; Pan, G.X.; Chen, J.; Zhang, Y.J.

    2015-01-01

    Highlights: • CuO/C core/shell nanowire arrays are prepared by electro-deposition + ALD method. • Carbon shell is favorable for structural stability. • CuO/C core/shell arrays show enhanced cycle stability and high capacity. - Abstract: Tailored metal oxide/carbon composite structures have attracted great attention due to potential synergistic effects and enhanced properties. In this work, novel CuO/C core/shell nanowire arrays are prepared by the combination of electro-deposition of CuO and atomic-layer-deposition-assisted formation of carbon nanoflakes shell. The CuO nanowires with diameters of ∼200 nm are homogenously coated by carbon nanoflakes shell. When evaluated as anode materials for lithium ion batteries (LIBs), compared to the unmodified CuO nanowire arrays, the CuO/C core/shell nanowire arrays exhibit improved electrochemical performances with higher capacity, better electrochemical reactivity and high-rate capability as well as superior cycling life (610 mAh g"−"1 at 0.5C after 290 cycles). The enhanced electrochemical performance is mainly attributed to the introduction of carbon flake shell in the core/shell nanowire arrays structure, which provides higher active material-electrolyte contact area, improved electrical conductivity, and better accommodation of volume change. The proposed method provides a new way for fabrication of high-performance metal oxides anodes of LIBs.

  14. Electrical Conductivity of Ni-YSZ Anode for SOFCs According to the Ni Powder Size Variations in Core-shell Structure

    International Nuclear Information System (INIS)

    Kang, Young Jin; Jung, Sung-Hun; An, Yong-Tae; Choi, Byung-Hyun; Ji, Mi-Jung

    2015-01-01

    Ni-YSZ (Y_2O_3-stabilized ZrO_2) core-shell structures were prepared by a high-speed mixing method, starting from Ni particles of three different average sizes of 0.2, 0.4, and 1.8 μm. The Ni-YSZ core-shell structures prepared using Ni particles of size 0.2, 0.4, and 1.8 μm exhibited dense core, porous core, and random-morphology core, respectively. Subsequently, nano structured cermet anodes were fabricated using the prepared Ni-YSZ core-shell powders. During the formation of cermet, the heat treatment of Ni-YSZ core-shell powder results in the eruption of Ni core out of the YSZ shell layers, thereby facilitating the formation of nano structured Ni-YSZ cermet. Systematic studies indicated that the morphology and electrical conductivity of the prepared Ni-YSZ core-shell powders and the cermet anode varied, depending on the initial particle size of the Ni particles. Of the different samples prepared in this study, the Ni-YSZ cermet prepared using Ni particles of size 0.4 μm showed the highest electrical conductivity at 750 ℃.

  15. Electrical Conductivity of Ni-YSZ Anode for SOFCs According to the Ni Powder Size Variations in Core-shell Structure

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Young Jin; Jung, Sung-Hun; An, Yong-Tae; Choi, Byung-Hyun; Ji, Mi-Jung [Korea Institute of Ceramic Engineering and Technology (KICET), Seoul (Korea, Republic of)

    2015-04-15

    Ni-YSZ (Y{sub 2}O{sub 3}-stabilized ZrO{sub 2}) core-shell structures were prepared by a high-speed mixing method, starting from Ni particles of three different average sizes of 0.2, 0.4, and 1.8 μm. The Ni-YSZ core-shell structures prepared using Ni particles of size 0.2, 0.4, and 1.8 μm exhibited dense core, porous core, and random-morphology core, respectively. Subsequently, nano structured cermet anodes were fabricated using the prepared Ni-YSZ core-shell powders. During the formation of cermet, the heat treatment of Ni-YSZ core-shell powder results in the eruption of Ni core out of the YSZ shell layers, thereby facilitating the formation of nano structured Ni-YSZ cermet. Systematic studies indicated that the morphology and electrical conductivity of the prepared Ni-YSZ core-shell powders and the cermet anode varied, depending on the initial particle size of the Ni particles. Of the different samples prepared in this study, the Ni-YSZ cermet prepared using Ni particles of size 0.4 μm showed the highest electrical conductivity at 750 ℃.

  16. Core-shell architectures as nano-size transporters

    International Nuclear Information System (INIS)

    Adeli, M.; Zarnegar, Z.; Kabiri, R.; Salimi, F.; Dadkah, A.

    2006-01-01

    Core-shell architectures containing poly (ethylene imine) (PEI) as a core and poly (lactide) (PLA) as arms were prepared. PEI was used as macro initiator for ring opening polymerization of lactide. PEI-PLA core-shell architectures were able to encapsulate guest molecules. Size of the core-shell architectures was between 10- 100 nm, hence they can be considered as nano carriers to transport the guest molecules. Transport capacity of nano carriers depends on their nano-environments and type of self-assembly in solvent. In solid state nano carriers self-assemble as long structures with nano-size diameter or they form network structures. Aggregations type depends on the concentration of nano carriers in solution. Effect of the shell thickness and aggregation type on the release rate are also investigated

  17. Green synthesis of the reduced graphene oxide–CuI quasi-shell–core nanocomposite: A highly efficient and stable solar-light-induced catalyst for organic dye degradation in water

    International Nuclear Information System (INIS)

    Choi, Jiha; Reddy, D. Amaranatha; Islam, M. Jahurul; Seo, Bora; Joo, Sang Hoon; Kim, Tae Kyu

    2015-01-01

    Graphical abstract: - Highlights: • Green synthesis of RGO–CuI quasi-shell–core nanocomposites without any surfactant. • Promising candidates as solar light active photocatalyst for dye degradation. • Significant improvement of the photocatalytic activity in RGO wrapped composites. • The best photocatalytic activity to RhB has been attained for CuI–RGO (2 mg mL −1 ). - Abstract: Surfactant-free, reduced graphene oxide (RGO)–CuI quasi-shell−core nanocomposites were successfully synthesized using ultra-sonication assisted chemical method at room temperature. The morphologies, structures and optical properties of the CuI and CuI–RGO nanocomposites were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier-transformed infrared spectroscopy (FTIR), UV–visible absorption spectroscopy, and photoluminescence (PL) spectroscopy. Morphological and structural analyses indicated that the CuI–RGO core–shell nanocomposites comprise single-crystalline face-centered cubic phase CuI nanostructures, coated with a thin RGO quasi-shell. Photocatalysis experiments revealed that the as-synthesized CuI–RGO nanocomposites exhibit remarkably enhanced photocatalytic activities and stabilities for photo degradation of Rhodamine-B (RhB) organic dye under simulated solar light irradiation. The photo degradation ability is strongly affected by the concentration of RGO in the nanocomposites; the highest photodegradation rate was obtained at a graphene loading content of 2 mg mL −1 nanocomposite. The remarkable photocatalytic performance of the CuI–RGO nanocomposites mainly originates from their unique adsorption and electron-accepting and electron-transporting properties of RGO. The present work provides a novel green synthetic route to producing CuI–RGO nanocomposites without toxic solvents or reducing agents, thereby providing highly efficient and stable solar light-induced RGO

  18. Green synthesis of the reduced graphene oxide–CuI quasi-shell–core nanocomposite: A highly efficient and stable solar-light-induced catalyst for organic dye degradation in water

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jiha; Reddy, D. Amaranatha; Islam, M. Jahurul [Department of Chemistry and Chemical Institute for Functional Materials, Pusan National University, Busan 609-735 (Korea, Republic of); Seo, Bora [Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798 (Korea, Republic of); Joo, Sang Hoon [Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798 (Korea, Republic of); School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798 (Korea, Republic of); Kim, Tae Kyu, E-mail: tkkim@pusan.ac.kr [Department of Chemistry and Chemical Institute for Functional Materials, Pusan National University, Busan 609-735 (Korea, Republic of)

    2015-12-15

    Graphical abstract: - Highlights: • Green synthesis of RGO–CuI quasi-shell–core nanocomposites without any surfactant. • Promising candidates as solar light active photocatalyst for dye degradation. • Significant improvement of the photocatalytic activity in RGO wrapped composites. • The best photocatalytic activity to RhB has been attained for CuI–RGO (2 mg mL{sup −1}). - Abstract: Surfactant-free, reduced graphene oxide (RGO)–CuI quasi-shell−core nanocomposites were successfully synthesized using ultra-sonication assisted chemical method at room temperature. The morphologies, structures and optical properties of the CuI and CuI–RGO nanocomposites were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier-transformed infrared spectroscopy (FTIR), UV–visible absorption spectroscopy, and photoluminescence (PL) spectroscopy. Morphological and structural analyses indicated that the CuI–RGO core–shell nanocomposites comprise single-crystalline face-centered cubic phase CuI nanostructures, coated with a thin RGO quasi-shell. Photocatalysis experiments revealed that the as-synthesized CuI–RGO nanocomposites exhibit remarkably enhanced photocatalytic activities and stabilities for photo degradation of Rhodamine-B (RhB) organic dye under simulated solar light irradiation. The photo degradation ability is strongly affected by the concentration of RGO in the nanocomposites; the highest photodegradation rate was obtained at a graphene loading content of 2 mg mL{sup −1} nanocomposite. The remarkable photocatalytic performance of the CuI–RGO nanocomposites mainly originates from their unique adsorption and electron-accepting and electron-transporting properties of RGO. The present work provides a novel green synthetic route to producing CuI–RGO nanocomposites without toxic solvents or reducing agents, thereby providing highly efficient and stable solar light

  19. Core/shell particles containing liquid cores : morphology prediction, synthesis and characterization

    NARCIS (Netherlands)

    Zyl, van A.J.P.; Sanderson, R.D.; Wet-Roos, de D.; Klumperman, B.

    2003-01-01

    The ability to synthesize core/shell particles with distinct geometries is becoming increasingly important due to their potential applications. In this study structured particles with liquid cores and polymeric shells were synthesized by an in situ miniemulsion polymerization reaction. The resulting

  20. Modification of Ag shell on upconversion populating paths of NaYF{sub 4}:Yb{sup 3+},Er{sup 3+}@Ag nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Jiao [Norman Bethune College of Medicine, Jilin University, Changchun, Jilin Province 130021 (China); Liu, Haipeng [Department of Plastic and Reconstructive Surgery, The First Hospital of JiLin University, Jilin Province 130021 (China); Wu, Di [Norman Bethune College of Medicine, Jilin University, Changchun, Jilin Province 130021 (China); Dong, Biao, E-mail: dongb@jlu.edu.cn [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China); Sun, Liankun [Norman Bethune College of Medicine, Jilin University, Changchun, Jilin Province 130021 (China)

    2013-01-15

    NaYF{sub 4}:Yb{sup 3+},Er{sup 3+}@Ag core-shell nanocomposites were prepared. Due to the outer shell of Ag, some modifications were found on the upconversion (UC) processes of NaYF{sub 4}:Yb{sup 3+},Er{sup 3+} core nanoparticles (NPs) caused by the co-interaction of surface effect, surface plasma absorption effect and local thermal effect under infrared radiation. Upon 980 nm excitation, the relative UC intensity of the green ({sup 2}H{sub 11/2}, {sup 4}S{sub 3/2}-{sup 4}I{sub 15/2}) to red ({sup 4}F{sub 9/2}-{sup 4}I{sub 15/2}) and the slope of power-dependence increased intensively, and three-photon population process for the green level appeared. -- Highlights: Black-Right-Pointing-Pointer NaYF{sub 4}:Yb{sup 3+},Er{sup 3+}@Ag core/shell nanocomposites were fabricated. Black-Right-Pointing-Pointer The coating of Ag outer shell leads to the increase of the green UCL. Black-Right-Pointing-Pointer Three-photon population process for the green level appeared after Ag coating.

  1. Structural Color Palettes of Core-Shell Photonic Ink Capsules Containing Cholesteric Liquid Crystals.

    Science.gov (United States)

    Lee, Sang Seok; Seo, Hyeon Jin; Kim, Yun Ho; Kim, Shin-Hyun

    2017-06-01

    Photonic microcapsules with onion-like topology are microfluidically designed to have cholesteric liquid crystals with opposite handedness in their core and shell. The microcapsules exhibit structural colors caused by dual photonic bandgaps, resulting in a rich variety of color on the optical palette. Moreover, the microcapsules can switch the colors from either core or shell depending on the selection of light-handedness. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Growth of InAs/InP core-shell nanowires with various pure crystal structures.

    Science.gov (United States)

    Gorji Ghalamestani, Sepideh; Heurlin, Magnus; Wernersson, Lars-Erik; Lehmann, Sebastian; Dick, Kimberly A

    2012-07-20

    We have studied the epitaxial growth of an InP shell on various pure InAs core nanowire crystal structures by metal-organic vapor phase epitaxy. The InP shell is grown on wurtzite (WZ), zinc-blende (ZB), and {111}- and {110}-type faceted ZB twin-plane superlattice (TSL) structures by tuning the InP shell growth parameters and controlling the shell thickness. The growth results, particularly on the WZ nanowires, show that homogeneous InP shell growth is promoted at relatively high temperatures (∼500 °C), but that the InAs nanowires decompose under the applied conditions. In order to protect the InAs core nanowires from decomposition, a short protective InP segment is first grown axially at lower temperatures (420-460 °C), before commencing the radial growth at a higher temperature. Further studies revealed that the InP radial growth rate is significantly higher on the ZB and TSL nanowires compared to WZ counterparts, and shows a strong anisotropy in polar directions. As a result, thin shells were obtained during low temperature InP growth on ZB structures, while a higher temperature was used to obtain uniform thick shells. In addition, a schematic growth model is suggested to explain the basic processes occurring during the shell growth on the TSL crystal structures.

  3. Gap state related blue light emitting boron-carbon core shell structures

    International Nuclear Information System (INIS)

    Singh, Paviter; Kaur, Manpreet; Singh, Bikramjeet; Kaur, Gurpreet; Singh, Kulwinder; Kumar, Akshay; Kumar, Manjeet; Bala, Rajni; Thakur, Anup

    2016-01-01

    Boron-carbon core shell structures have been synthesized by solvo-thermal synthesis route. The synthesized material is highly pure. X-ray diffraction analysis confirms the reduction of reactants in to boron and carbon. Scanning Electron Microscopy (SEM) analysis showed that the shell is uniform with average thickness of 340 nm. Photo luminescence studies showed that the material is blue light emitting with CIE color coordinates: x=0.16085, y=0.07554.

  4. XNBR-grafted halloysite nanotube core-shell as a potential compatibilizer for immiscible polymer systems

    Energy Technology Data Exchange (ETDEWEB)

    Paran, S.M.R.; Naderi, G., E-mail: g.naderi@ippi.ac.ir; Ghoreishy, M.H.R.

    2016-09-30

    Highlights: • Attached an utilitarian silane coupling agent to the HNT via a sol-gel method. • Developed and analyzed the HNT/XNBR core-shell particles via sol-gel technique. • Enhanced the reactivity of the surface of HNT through XNBR grafting. • The act of HNT/XNBR as a compatibilizer in PA6/NBR TPEs. • Immiscible Polymer System with a good balanced physical and mechanical properties. - Abstract: Halloysite nanotubes (HNTs) grafted with carboxylated nitrile byutadiene rubber (XNBR) were synthesized via a sol-gel method. The HNTs as an inorganic cores were pre-treated with 3-Glycidoxypropyl trimethoxysilane, then successfully coated with the XNBR as an organic shell. The properties of XNBR-grafted HNTs were characterized by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The results suggested that the XNBR grafted to the surfaces of HNTs successfully. Then the TPE nanocomposites based on polyamide-6 (PA6) and nitrile butadiene rubber (NBR) containing various XNBR-grafted and pristine HNTs were prepared via a direct melt mixing method. The morphology, mechanical, dynamic mechanical and rheological properties of the prepared TPE nanocomposites were investigated. The results show that the XNBR-grafted HNTs can effectively improve the morphology and mechanical properties of the PA6/NBR TPEs. The morphology study of the prepared nanocomposites show that the effect of XNBR-grafted HNTs on the size reduction of NBR phase is markedly more effective than the pristine HNTs and rose by 50% in the same concentrations. Mechanical measurements show that the Young’s modulus of the TPE nanocomposites rose by 60% in just 7 wt% of XNBR-grafted HNT loading. The results indicate that the introduction of HNT/XNBR core-shells into the PA6/NBR TPEs can enhances the interfacial interactions

  5. XNBR-grafted halloysite nanotube core-shell as a potential compatibilizer for immiscible polymer systems

    International Nuclear Information System (INIS)

    Paran, S.M.R.; Naderi, G.; Ghoreishy, M.H.R.

    2016-01-01

    Highlights: • Attached an utilitarian silane coupling agent to the HNT via a sol-gel method. • Developed and analyzed the HNT/XNBR core-shell particles via sol-gel technique. • Enhanced the reactivity of the surface of HNT through XNBR grafting. • The act of HNT/XNBR as a compatibilizer in PA6/NBR TPEs. • Immiscible Polymer System with a good balanced physical and mechanical properties. - Abstract: Halloysite nanotubes (HNTs) grafted with carboxylated nitrile byutadiene rubber (XNBR) were synthesized via a sol-gel method. The HNTs as an inorganic cores were pre-treated with 3-Glycidoxypropyl trimethoxysilane, then successfully coated with the XNBR as an organic shell. The properties of XNBR-grafted HNTs were characterized by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The results suggested that the XNBR grafted to the surfaces of HNTs successfully. Then the TPE nanocomposites based on polyamide-6 (PA6) and nitrile butadiene rubber (NBR) containing various XNBR-grafted and pristine HNTs were prepared via a direct melt mixing method. The morphology, mechanical, dynamic mechanical and rheological properties of the prepared TPE nanocomposites were investigated. The results show that the XNBR-grafted HNTs can effectively improve the morphology and mechanical properties of the PA6/NBR TPEs. The morphology study of the prepared nanocomposites show that the effect of XNBR-grafted HNTs on the size reduction of NBR phase is markedly more effective than the pristine HNTs and rose by 50% in the same concentrations. Mechanical measurements show that the Young’s modulus of the TPE nanocomposites rose by 60% in just 7 wt% of XNBR-grafted HNT loading. The results indicate that the introduction of HNT/XNBR core-shells into the PA6/NBR TPEs can enhances the interfacial interactions

  6. Facile Synthesis of Yolk/Core-Shell Structured TS-1@Mesosilica Composites for Enhanced Hydroxylation of Phenol

    KAUST Repository

    Zou, Houbing

    2015-12-14

    © 2015 by the authors. In the current work, we developed a facile synthesis of yolk/core-shell structured TS-1@mesosilica composites and studied their catalytic performances in the hydroxylation of phenol with H2O2 as the oxidant. The core-shell TS-1@mesosilica composites were prepared via a uniform coating process, while the yolk-shell TS-1@mesosilica composite was prepared using a resorcinol-formaldehyde resin (RF) middle-layer as the sacrificial template. The obtained materials were characterized by X-ray diffraction (XRD), N2 sorption, Fourier transform infrared spectoscopy (FT-IR) UV-Visible spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The characterization results showed that these samples possessed highly uniform yolk/core-shell structures, high surface area (560–700 m2 g−1) and hierarchical pore structures from oriented mesochannels to zeolite micropores. Importantly, owing to their unique structural properties, these composites exhibited enhanced activity, and also selectivity in the phenol hydroxylation reaction.

  7. Preparation and characterization of WO{sub 3} nanoparticles, WO{sub 3}/TiO{sub 2} core/shell nanocomposites and PEDOT:PSS/WO{sub 3} composite thin films for photocatalytic and electrochromic applications

    Energy Technology Data Exchange (ETDEWEB)

    Boyadjiev, Stefan I., E-mail: boiajiev@gmail.com [MTA-BME Technical Analytical Chemistry Research Group, Szent Gellért tér 4, Budapest, H-1111 (Hungary); Santos, Gustavo dos Lopes; Szűcs, Júlia [Budapest University of Technology and Economics, Department of Inorganic and Analytical Chemistry, Szent Gellért tér 4, Budapest, H-1111 (Hungary); Szilágyi, Imre M., E-mail: imre.szilagyi@mail.bme.hu [MTA-BME Technical Analytical Chemistry Research Group, Szent Gellért tér 4, Budapest, H-1111 (Hungary); Budapest University of Technology and Economics, Department of Inorganic and Analytical Chemistry, Szent Gellért tér 4, Budapest, H-1111 (Hungary)

    2016-03-25

    In this study, monoclinic WO{sub 3} nanoparticles were obtained by thermal decomposition of (NH{sub 4}){sub x}WO{sub 3} in air at 600 °C. On them by atomic layer deposition (ALD) TiO{sub 2} films were deposited, and thus core/shell WO{sub 3}/TiO{sub 2} nanocomposites were prepared. We prepared composites of WO{sub 3} nanoparticles with conductive polymer as PEDOT:PSS, and deposited thin films of them on glass and ITO substrates by spin coating. The formation, morphology, composition and structure of the as-prepared pure and composite nanoparticles, as well thin films, were studied by TEM, SEM-EDX and XRD. The photocatalytic activity of both the WO{sub 3} and core/shell WO{sub 3}/TiO{sub 2} nanoparticles was studied by decomposing methyl orange in aqueous solution under UV light irradiation. Cyclic voltammetry measurements were performed on the composite PEDOT:PSS/WO{sub 3} thin films, and the coloring and bleaching states were studied.

  8. Electrostatically assisted fabrication of silver-dielectric core/shell nanoparticles thin film capacitor with uniform metal nanoparticle distribution and controlled spacing.

    Science.gov (United States)

    Li, Xue; Niitsoo, Olivia; Couzis, Alexander

    2016-03-01

    An electrostatically-assisted strategy for fabrication of thin film composite capacitors with controllable dielectric constant (k) has been developed. The capacitor is composed of metal-dielectric core/shell nanoparticle (silver/silica, Ag@SiO2) multilayer films, and a backfilling polymer. Compared with the simple metal particle-polymer mixtures where the metal nanoparticles (NP) are randomly dispersed in the polymer matrix, the metal volume fraction in our capacitor was significantly increased, owing to the densely packed NP multilayers formed by the electrostatically assisted assembly process. Moreover, the insulating layer of silica shell provides a potential barrier that reduces the tunneling current between neighboring Ag cores, endowing the core/shell nanocomposites with a stable and relatively high dielectric constant (k) and low dielectric loss (D). Our work also shows that the thickness of the SiO2 shell plays a dominant role in controlling the dielectric properties of the nanocomposites. Control over metal NP separation distance was realized not only by variation the shell thickness of the core/shell NPs but also by introducing a high k nanoparticle, barium strontium titanate (BST) of relatively smaller size (∼8nm) compared to 80-160nm of the core/shell Ag@SiO2 NPs. The BST assemble between the Ag@SiO2 and fill the void space between the closely packed core/shell NPs leading to significant enhancement of the dielectric constant. This electrostatically assisted assembly method is promising for generating multilayer films of a large variety of NPs over large areas at low cost. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Light-stimulated cargo release from a core–shell structured nanocomposite for site-specific delivery

    International Nuclear Information System (INIS)

    Cai, Yun; Ling, Li; Li, Xiaofang; Chen, Meng; Su, Likai

    2015-01-01

    This paper reported a core–shell structured site-specific delivery system with a light switch triggered by low energy light (λ=510 nm). Its core was composed of supermagnetic Fe 3 O 4 nanoparticles for magnetic guiding and targeting. Its outer shell consisted of mesoporous silica molecular sieve MCM-41 which offered highly ordered hexagonal tunnels for cargo capacity. A light switch N1-(4aH-cyclopenta[1,2-b:5,4-b′]dipyridin-5(5aH)-ylidene)benzene-1, 4-diamine (CBD) was covalently grafted into these hexagonal tunnels, serving as light stimuli acceptor with loading content of 1.1 μM/g. This composite was fully characterized and confirmed by SEM, TEM, XRD patterns, N 2 adsorption/desorption, thermogravimetric analysis, IR, UV–vis absorption and emission spectra. Experimental data suggested that this composite had a core as wide as 150 nm and could be magnetically guided to specific sites. Its hexagonal tunnels were as long as 180 nm. Upon light stimuli of “on” and “off” states, controllable release was observed with short release time of ~900 s (90% capacity). - Graphical abstract: A core–shell structured site-specific delivery system with a light switch triggered by yellow light was constructed. Controllable release was observed with short release time of ~900 s (90% capacity). - Highlights: • A core–shell structured site-specific delivery system was constructed. • It consisted of Fe 3 O 4 core and MCM-41 shell grafted with light switch. • This delivery system was triggered by low energy light. • Controllable release was observed with short release time of ~900 s

  10. Light-stimulated cargo release from a core–shell structured nanocomposite for site-specific delivery

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yun; Ling, Li; Li, Xiaofang [Department of Neurology, Affiliated Hospital of Hebei University, Baoding 071000 (China); Chen, Meng [Department of Rheumatology, Affiliated Hospital of Hebei University, Baoding 071000 (China); Su, Likai, E-mail: zhangdong19992003@163.com [Department of Neurology, Affiliated Hospital of Hebei University, Baoding 071000 (China)

    2015-03-15

    This paper reported a core–shell structured site-specific delivery system with a light switch triggered by low energy light (λ=510 nm). Its core was composed of supermagnetic Fe{sub 3}O{sub 4} nanoparticles for magnetic guiding and targeting. Its outer shell consisted of mesoporous silica molecular sieve MCM-41 which offered highly ordered hexagonal tunnels for cargo capacity. A light switch N1-(4aH-cyclopenta[1,2-b:5,4-b′]dipyridin-5(5aH)-ylidene)benzene-1, 4-diamine (CBD) was covalently grafted into these hexagonal tunnels, serving as light stimuli acceptor with loading content of 1.1 μM/g. This composite was fully characterized and confirmed by SEM, TEM, XRD patterns, N{sub 2} adsorption/desorption, thermogravimetric analysis, IR, UV–vis absorption and emission spectra. Experimental data suggested that this composite had a core as wide as 150 nm and could be magnetically guided to specific sites. Its hexagonal tunnels were as long as 180 nm. Upon light stimuli of “on” and “off” states, controllable release was observed with short release time of ~900 s (90% capacity). - Graphical abstract: A core–shell structured site-specific delivery system with a light switch triggered by yellow light was constructed. Controllable release was observed with short release time of ~900 s (90% capacity). - Highlights: • A core–shell structured site-specific delivery system was constructed. • It consisted of Fe{sub 3}O{sub 4} core and MCM-41 shell grafted with light switch. • This delivery system was triggered by low energy light. • Controllable release was observed with short release time of ~900 s.

  11. Mechanical ball-milling preparation of fullerene/cobalt core/shell nanocomposites with high electrochemical hydrogen storage ability.

    Science.gov (United States)

    Bao, Di; Gao, Peng; Shen, Xiande; Chang, Cheng; Wang, Longqiang; Wang, Ying; Chen, Yujin; Zhou, Xiaoming; Sun, Shuchao; Li, Guobao; Yang, Piaoping

    2014-02-26

    The design and synthesis of new hydrogen storage nanomaterials with high capacity at low cost is extremely desirable but remains challenging for today's development of hydrogen economy. Because of the special honeycomb structures and excellent physical and chemical characters, fullerenes have been extensively considered as ideal materials for hydrogen storage materials. To take the most advantage of its distinctive symmetrical carbon cage structure, we have uniformly coated C60's surface with metal cobalt in nanoscale to form a core/shell structure through a simple ball-milling process in this work. The X-ray diffraction (XRD), scanning electron microscope (SEM), Raman spectra, high-solution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectrometry (EDX) elemental mappings, and X-ray photoelectron spectroscopy (XPS) measurements have been conducted to evaluate the size and the composition of the composites. In addition, the blue shift of C60 pentagonal pinch mode demonstrates the formation of Co-C chemical bond, and which enhances the stability of the as-obtained nanocomposites. And their electrochemical experimental results demonstrate that the as-obtained C60/Co composites have excellent electrochemical hydrogen storage cycle reversibility and considerably high hydrogen storage capacities of 907 mAh/g (3.32 wt % hydrogen) under room temperature and ambient pressure, which is very close to the theoretical hydrogen storage capacities of individual metal Co (3.33 wt % hydrogen). Furthermore, their hydrogen storage processes and the mechanism have also been investigated, in which the quasi-reversible C60/Co↔C60/Co-Hx reaction is the dominant cycle process.

  12. Controllable dielectric and electrical performance of polymer composites with novel core/shell-structured conductive particles through biomimetic method

    International Nuclear Information System (INIS)

    Yang, Dan; Tian, Ming; Wang, Wencai; Li, Dongdong; Li, Runyuan; Liu, Haoliang; Zhang, Liqun

    2013-01-01

    Highlights: ► Conductive core/shell-structured particles were synthesized by biomimetic method. ► These particles with silica/poly(dopamine)/silver core and poly(dopamine) shell. ► Dielectric composites were prepared with resulted particles and silicone elastomer. ► The dielectric properties of the composites can be controlled by shell thickness. ► This biomimetic method is simple, nontoxic, efficient and easy to control. - Abstract: Novel silica/poly(dopamine)/silver (from inner to outer) (denoted as SiO 2 /PDA/Ag) conductive micro-particles were first synthesized by biomimetic poly(dopamine) coating. These micro-particles were then coated with a poly(dopamine) layer to form core/shell-structured particles, with silica/poly(dopamine)/silver core and poly(dopamine) shell (denoted as SiO 2 /PDA/Ag/PDA). This multilayer core/shell micro-particles were confirmed by scanning electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and transmission electron microscope. Polymer composites were then prepared by mechanical blending of poly(dimethyl siloxane) and the core/shell-structured particles. It was found that the silver layer and the poly(dopamine) shell had good adhesion with substrate and they kept intact even under violent shearing stress during mechanical mixing. The effect of the thickness of outermost poly(dopamine) shell as well as the loading amount of this filler on the dielectric and electrical properties of the composites was further studied. The results showed that the dielectric constant, dielectric loss, and conductivity of the composites decreased with increasing shell thickness (10–53 nm) at the same loading level. And the maximal dielectric constant of composites was achieved in the composites filled with SiO 2 /PDA/Ag/PDA (with 10–15 nm PDA shell) particles, which was much larger than that of the composite filled with SiO 2 /PDA/Ag particles without insulative PDA shell. At the same time, the composites can change

  13. Core-Shell Structuring of Pure Metallic Aerogels towards Highly Efficient Platinum Utilization for the Oxygen Reduction Reaction.

    Science.gov (United States)

    Cai, Bin; Hübner, René; Sasaki, Kotaro; Zhang, Yuanzhe; Su, Dong; Ziegler, Christoph; Vukmirovic, Miomir B; Rellinghaus, Bernd; Adzic, Radoslav R; Eychmüller, Alexander

    2018-03-05

    The development of core-shell structures remains a fundamental challenge for pure metallic aerogels. Here we report the synthesis of Pd x Au-Pt core-shell aerogels composed of an ultrathin Pt shell and a composition-tunable Pd x Au alloy core. The universality of this strategy ensures the extension of core compositions to Pd transition-metal alloys. The core-shell aerogels exhibited largely improved Pt utilization efficiencies for the oxygen reduction reaction and their activities show a volcano-type relationship as a function of the lattice parameter of the core substrate. The maximum mass and specific activities are 5.25 A mg Pt -1 and 2.53 mA cm -2 , which are 18.7 and 4.1 times higher than those of Pt/C, respectively, demonstrating the superiority of the core-shell metallic aerogels. The proposed core-based activity descriptor provides a new possible strategy for the design of future core-shell electrocatalysts. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Hydrogenated CoOx nanowire@Ni(OH)2 nanosheet core-shell nanostructures for high-performance asymmetric supercapacitors

    Science.gov (United States)

    Zhu, Jianxiao; Huang, Lei; Xiao, Yuxiu; Shen, Leo; Chen, Qi; Shi, Wangzhou

    2014-05-01

    We report a facile strategy to prepare 3D core-shell nanowire heterostructures with microporous hydrogenated CoOx (H-CoOx) nanowires as the conducting scaffold to support Ni(OH)2 nanosheets. Benefiting from the H-CoOx nanowire core to provide the effective pathway for charge transport and the core-shell heterostructures with synergistic effects, the H-CoOx@Ni(OH)2 core-shell nanowire electrode achieved the specific capacitance of 2196 F g-1 (areal capacitance of 5.73 F cm-2), which is approximately a 1.4-fold enhancement compared with the Co3O4@Ni(OH)2 core-shell nanowires. An aqueous asymmetric supercapacitor (ASC) device was fabricated by using H-CoOx@Ni(OH)2 nanowires as the positive electrode and reduced graphene oxide @Fe3O4 nanocomposites as the negative electrode. The ASCs achieved high energy density (~45.3 W h kg-1 at 1010 W kg-1), high power density (~7080 W kg-1 at 23.4 W h kg-1) and high cycling stability. Furthermore, after charging for ~1 min, one such 22 cm2 ASC device demonstrated to be able to drive a small windmill (0.8 V, 0.1 W) for 20 min. Two such ASCs connected in series can power up a seven-color LED (3.2 V) efficiently.We report a facile strategy to prepare 3D core-shell nanowire heterostructures with microporous hydrogenated CoOx (H-CoOx) nanowires as the conducting scaffold to support Ni(OH)2 nanosheets. Benefiting from the H-CoOx nanowire core to provide the effective pathway for charge transport and the core-shell heterostructures with synergistic effects, the H-CoOx@Ni(OH)2 core-shell nanowire electrode achieved the specific capacitance of 2196 F g-1 (areal capacitance of 5.73 F cm-2), which is approximately a 1.4-fold enhancement compared with the Co3O4@Ni(OH)2 core-shell nanowires. An aqueous asymmetric supercapacitor (ASC) device was fabricated by using H-CoOx@Ni(OH)2 nanowires as the positive electrode and reduced graphene oxide @Fe3O4 nanocomposites as the negative electrode. The ASCs achieved high energy density (~45.3 W h kg-1 at

  15. One-step synthesis of magnetite core/zirconia shell nanocomposite for high efficiency removal of phosphate from water

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhe; Xing, Mingchao; Fang, Wenkan; Wu, Deyi, E-mail: dywu@sjtu.edu.cn

    2016-03-15

    Graphical abstract: - Highlights: • Magnetite core/zirconia shell nanocomposite was prepared by one-step method. • Fe/Zr molar ratio of 4/1 allowed high magnetization and high adsorption capacity. • The nanocomposite had good selectivity towards phosphate. • Ligand exchange was the adsorption mechanism of phosphate. • Desorption of adsorbed phosphate could be achieved by NaOH treatment. - Abstract: A self-assembled magnetite core/zirconia shell (Fe{sub 3}O{sub 4}@ZrO{sub 2}) nanoparticle material was fabricated by the one-step co-precipitation method to capture phosphate from water. Fe{sub 3}O{sub 4}@ZrO{sub 2} with different Fe/Zr molar ratios were obtained and characterized by XRD, TEM, BET surface area and magnetization. It was shown that, with the decreasing of Fe/Zr molar ratio, magnetization decreased whereas surface area and adsorption capacity of phosphate increased. Fe{sub 3}O{sub 4}@ZrO{sub 2} with the ratio of higher than 4:1 had satisfactory magnetization property (>23.65 emu/g), enabling rapid magnetic separation from water and recycle of the spent adsorbent. The Langmuir adsorption capacity of Fe{sub 3}O{sub 4}@ZrO{sub 2} reached 27.93–69.44 mg/g, and the adsorption was fast (90% of phosphate removal within 20 min). The adsorption decreases with increasing pH, and higher ionic strength caused slight increase in adsorption at pH > about 5.5. The presence of chloride, nitrate and sulfate anions did not bring about significant changes in adsorption. As a result, Fe{sub 3}O{sub 4}@ZrO{sub 2} performed well to remove phosphate from real wastewater. These results were interpreted by the ligand exchange mechanism, i.e., the direct coordination of phosphate onto zirconium by replacement of hydroxyl groups. Results suggested that phosphate reacted mainly with surface hydroxyl groups but diffusion into interior of zirconia phase also contributed to adsorption. The adsorbed phosphate could be desorbed with a NaOH treatment and the regenerated Fe

  16. Ni@Ru and NiCo@Ru Core-Shell Hexagonal Nanosandwiches with a Compositionally Tunable Core and a Regioselectively Grown Shell.

    Science.gov (United States)

    Hwang, Hyeyoun; Kwon, Taehyun; Kim, Ho Young; Park, Jongsik; Oh, Aram; Kim, Byeongyoon; Baik, Hionsuck; Joo, Sang Hoon; Lee, Kwangyeol

    2018-01-01

    The development of highly active electrocatalysts is crucial for the advancement of renewable energy conversion devices. The design of core-shell nanoparticle catalysts represents a promising approach to boost catalytic activity as well as save the use of expensive precious metals. Here, a simple, one-step synthetic route is reported to prepare hexagonal nanosandwich-shaped Ni@Ru core-shell nanoparticles (Ni@Ru HNS), in which Ru shell layers are overgrown in a regioselective manner on the top and bottom, and around the center section of a hexagonal Ni nanoplate core. Notably, the synthesis can be extended to NiCo@Ru core-shell nanoparticles with tunable core compositions (Ni 3 Co x @Ru HNS). Core-shell HNS structures show superior electrocatalytic activity for the oxygen evolution reaction (OER) to a commercial RuO 2 black catalyst, with their OER activity being dependent on their core compositions. The observed trend in OER activity is correlated to the population of Ru oxide (Ru 4+ ) species, which can be modulated by the core compositions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Core-shell microstructured nanocomposites for synergistic adjustment of environmental temperature and humidity

    Science.gov (United States)

    Zhang, Haiquan; Yuan, Yanping; Zhang, Nan; Sun, Qingrong; Cao, Xiaoling

    2016-11-01

    The adjustment of temperature and humidity is of great importance in a variety of fields. Composites that can perform both functions are prepared by mixing phase change materials (PCMs) with hygroscopic materials. However, the contact area between the adsorbent and humid air is inevitably decreased in such structures, which reduces the number of mass transfer channels for water vapor. An approach entailing the increase in the mass ratio of the adsorbent is presented here to improve the adsorption capacity. A core-shell CuSO4/polyethylene glycol (PEG) nanomaterial was developed to satisfy the conflicting requirements of temperature control and dehumidification. The results show that the equilibrium adsorption capacity of the PEG coating layer was enhanced by a factor of 188 compared with that of the pure PEG powder. The coating layer easily concentrates vapor, providing better adsorption properties for the composite. Furthermore, the volume modification of the CuSO4 matrix was reduced by 80% by the PEG coated layer, a factor that increases the stability of the composite. For the phase change process, the crystallization temperature of the coating layer was adjusted between 37.2 and 46.3 °C by interfacial tension. The core-shell CuSO4/PEG composite reported here provides a new general approach for the simultaneous control of temperature and humidity.

  18. XNBR-grafted halloysite nanotube core-shell as a potential compatibilizer for immiscible polymer systems

    Science.gov (United States)

    Paran, S. M. R.; Naderi, G.; Ghoreishy, M. H. R.

    2016-09-01

    Halloysite nanotubes (HNTs) grafted with carboxylated nitrile byutadiene rubber (XNBR) were synthesized via a sol-gel method. The HNTs as an inorganic cores were pre-treated with 3-Glycidoxypropyl trimethoxysilane, then successfully coated with the XNBR as an organic shell. The properties of XNBR-grafted HNTs were characterized by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The results suggested that the XNBR grafted to the surfaces of HNTs successfully. Then the TPE nanocomposites based on polyamide-6 (PA6) and nitrile butadiene rubber (NBR) containing various XNBR-grafted and pristine HNTs were prepared via a direct melt mixing method. The morphology, mechanical, dynamic mechanical and rheological properties of the prepared TPE nanocomposites were investigated. The results show that the XNBR-grafted HNTs can effectively improve the morphology and mechanical properties of the PA6/NBR TPEs. The morphology study of the prepared nanocomposites show that the effect of XNBR-grafted HNTs on the size reduction of NBR phase is markedly more effective than the pristine HNTs and rose by 50% in the same concentrations. Mechanical measurements show that the Young's modulus of the TPE nanocomposites rose by 60% in just 7 wt% of XNBR-grafted HNT loading. The results indicate that the introduction of HNT/XNBR core-shells into the PA6/NBR TPEs can enhances the interfacial interactions and provides a more fine rubber phase morphology and controlled mechanical properties in comparison with the accordingly TPE nanocomposites containing pristine HNTs.

  19. Core–shell interaction and its impact on the optical absorption of pure and doped core-shell CdSe/ZnSe nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xinqin; Cui, Yingqi; Zeng, Qun; Yang, Mingli, E-mail: myang@scu.edu.cn [Institute of Atomic and Molecular Physics, Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610065 (China); Yu, Shengping [College of Chemistry and Environment Protection Engineering, Southwest University for Nationalities, Chengdu 610041 (China)

    2016-04-07

    The structural, electronic, and optical properties of core-shell nanoclusters, (CdSe){sub x}@(CdSe){sub y} and their Zn-substituted complexes of x = 2–4 and y = 16–28, were studied with density functional theory calculations. The substitution was applied in the cores, the shells, and/or the whole clusters. All these clusters are characterized by their core-shell structures in which the core-shell interaction was found different from those in core or in shell, as reflected by their bondlengths, volumes, and binding energies. Moreover, the core and shell combine together to compose a new cluster with electronic and optical properties different from those of separated individuals, as reflected by their HOMO-LUMO gaps and optical absorptions. With the substitution of Cd by Zn, the structural, electronic, and optical properties of clusters change regularly. The binding energy increases with Zn content, attributed to the strong Zn–Se bonding. For the same core/shell, the structure with a CdSe shell/core has a narrower gap than that with a ZnSe shell/core. The optical absorption spectra also change accordingly with Zn substitution. The peaks blueshift with increasing Zn concentration, accompanying with shape variations in case large number of Cd atoms are substituted. Our calculations reveal the core-shell interaction and its influence on the electronic and optical properties of the core-shell clusters, suggesting a composition–structure–property relationship for the design of core-shell CdSe and ZnSe nanoclusters.

  20. ZnO-nanocarbon core-shell type hybrid quantum dots

    CERN Document Server

    Choi, Won Kook

    2017-01-01

    This book offers a comprehensive overview of ZnO-nano carbon core shell hybrid issues. There is significant interest in metal oxide/nanocarbon hybrid functional materials in the field of energy conversion and storage as electrode materials for supercapacitors, Li ion secondary battery, electrocatalysts for water splitting, and optoelectronic devices such as light emitting diodes and solar photovoltaic cells. Despite efforts to manipulate more uniform metal oxide-nanocarbon nanocomposite structures, they have shown poor performance because they are randomly scattered and non-uniformly attached to the nanocarbon surface. For higher and more effective performance of the hybrid structure, 3D conformal coating on metal oxides are highly desirable. In the first part of the book, the physical and chemical properties of ZnO and nanocarbons and the state-of-the-art in related research are briefly summarized. In the next part, the 3D conformal coating synthetic processes of ZnO templated nanocarbon hybrid materials suc...

  1. Magnetic core-shell silica particles

    NARCIS (Netherlands)

    Claesson, E.M.

    2007-01-01

    This thesis deals with magnetic silica core-shell colloids and related functionalized silica structures. Synthesis routes have been developed and optimized. The physical properties of these colloids have been investigated, such as the magnetic dipole moment, dipolar structure formation and

  2. The influence of MOVPE growth conditions on the shell of core-shell GaN microrod structures

    Science.gov (United States)

    Schimpke, Tilman; Avramescu, Adrian; Koller, Andreas; Fernando-Saavedra, Amalia; Hartmann, Jana; Ledig, Johannes; Waag, Andreas; Strassburg, Martin; Lugauer, Hans-Jürgen

    2017-05-01

    A core-shell geometry is employed for most next-generation, three-dimensional opto-electric devices based on III-V semiconductors and grown by metal organic vapor phase epitaxy (MOVPE). Controlling the shape of the shell layers is fundamental for device optimization, however no detailed analysis of the influence of growth conditions has been published to date. We study homogeneous arrays of gallium nitride core-shell microrods with height and diameter in the micrometer range and grown in a two-step selective area MOVPE process. Changes in shell shape and homogeneity effected by deliberately altered shell growth conditions were accurately assessed by digital analysis of high-resolution scanning electron microscope images. Most notably, two temperature regimes could be established, which show a significantly different behavior with regard to material distribution. Above 900 °C of wafer carrier temperature, the shell thickness along the growth axis of the rods was very homogeneous, however variations between vicinal rods increase. In contrast, below 830 °C the shell thickness is higher close to the microrod tip than at the base of the rods, while the lateral homogeneity between neighboring microrods is very uniform. This temperature effect could be either amplified or attenuated by changing the remaining growth parameters such as reactor pressure, structure distance, gallium precursor, carrier gas composition and dopant materials. Possible reasons for these findings are discussed with respect to GaN decomposition as well as the surface and gas phase diffusion of growth species, leading to an improved control of the functional layers in next-generation 3D V-III devices.

  3. Fabrication, characterization and gas sensing studies of PPy/MWCNT/SLS nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, D. C., E-mail: dctiwari2001@yahoo.com; Atri, Priyanka, E-mail: dctiwari2001@yahoo.com [SOS Electronics, Jiwaji University, Gwalior (M.P.)-474011 (India); Sharma, R. [CSIR-CEERI, Pilani (Rajasthan)-333031 (India)

    2014-04-24

    Multiwall carbon nanotubes (MWCNT) coated with polypyrrole nanocomposite was prepared by in-situ chemical oxidative polymerization method in the presence of surfactant (SLS). The scanning electron microscope (SEM) pictures indicate the core shell structure of PPy/MWCNT/SLS nanocomposite. Nature of the prepared material was investigated by X-ray diffraction spectroscopy. This nanocomposite shows the excellent gas sensing behaviour for ammonia gas at 150 ppm and 300 ppm levels.

  4. Nano-sized LiFePO4/C composite with core-shell structure as cathode material for lithium ion battery

    International Nuclear Information System (INIS)

    Liu, Yang; Zhang, Min; Li, Ying; Hu, Yemin; Zhu, Mingyuan; Jin, Hongming; Li, Wenxian

    2015-01-01

    Graphical abstract: Nano-sized LiFePO4/C composite with core-shell structure was fabricated via a well-designed approach as cathode material forlithium ion battery. The nano-sized LiFePO4/C composite with whole carbon shell coating layer showed an excellent electrical performance. - Abstract: Nano-sized composite with LiFePO 4 -core and carbon-shell was synthesized via a facile route followed by heat treatment at 650 °C. X-ray diffraction (XRD) shows that the core is well crystallized LiFePO 4 . The electron microscopy (SEM and TEM) observations show that the core-shell structured LiFePO 4 /C composite coating with whole carbon shell layer of ∼2.8 nm, possesses a specific surface area of 51 m 2 g −1 . As cathode material for lithium ion battery, the core-shell LiFePO 4 /C composite exhibits high initial capacity of 161 mAh g −1 at 0.1 C, excellent high-rate discharge capacity of 135 mAh g −1 at 5 C and perfect cycling retention of 99.6% at 100 th cycle. All these promising results should be contributed to the core-shell nanostructure which prevents collapse of the particle structure in the long-term charge and discharge cycles, as well as the large surface area of the nano-sized LiFePO 4 /C composite which enhances the electronic conductivity and shortens the distance of lithium ion diffusion

  5. Size-selective QD@MOF core-shell nanocomposites for the highly sensitive monitoring of oxidase activities.

    Science.gov (United States)

    Wang, Ke; Li, Nan; Zhang, Jing; Zhang, Zhiqi; Dang, Fuquan

    2017-01-15

    In this work, we proposed a novel and facile method to monitor oxidase activities based on size-selective fluorescent quantum dot (QD)@metal-organic framework (MOF) core-shell nanocomposites (CSNCPs). The CSNCPs were synthesized from ZIF-8 and CdTe QDs in aqueous solution in 40min at room temperature with stirring. The prepared CdTe@ZIF-8 CSNCPs , which have excellent water dispersibility and stability, displays distinct fluorescence responses to hole scavengers of different molecular sizes (e.g., H 2 O 2 , substrate, and oxidase) due to the aperture limitation of the ZIF-8 shell. H 2 O 2 can efficiently quench the fluorescence of CdTe@ZIF-8 CSNCPs over a linearity range of 1-100nM with a detection limit of 0.29nM, whereas large molecules such as substrate and oxidase have very little effect on its fluorescence. Therefore, the highly sensitive detection of oxidase activities was achieved by monitoring the fluorescence quenching of CdTe@ZIF-8 CSNCPs by H 2 O 2 produced in the presence of substrate and oxidase, which is proportional to the oxidase activities. The linearity ranges of the uricase and glucose oxidase activity are 0.1-50U/L and 1-100U/L, respectively, and their detection limits are 0.024U/L and 0.26U/L, respectively. Therefore, the current QD@MOF CSNCPs based sensing system is a promising, widely applicable means of monitoring oxidase activities in biochemical research. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Influence of NiO concentration on structural, dielectric and magnetic properties of core/shell CuFe{sub 2}O{sub 4}/NiO nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Kashif [Department of Physics, International Islamic University, Islamabad (Pakistan); Iqbal, Javed, E-mail: javed.saggu@qau.edu.pk [Laboratory of Nanoscience and Technology (LNT), Department of Physics, Quaid-i-Azam University, Islamabad (Pakistan); Jan, Tariq [Department of Physics, University of Lahore, Sargodha Campus, Sargodha (Pakistan); Ahmad, Ishaq [Experimental Physics Labs, National Center for Physics, Islamabad (Pakistan); Wan, Dongyun [School of Materials Science and Engineering, Shanghai University, Shanghai 200444 (China); Ahmad, Ijaz [Department of Chemistry, Allama Iqbal Open University, Islamabad (Pakistan)

    2017-07-01

    Nanocomposites of (1-x)CuFe{sub 2}O{sub 4}/xNiO (x = 10% to 50 wt %) have been synthesized utilizing a chemical co-precipitation method. In order to obtain the required phase, the samples have been annealed at 600 °C for 6 h. The x-ray Diffraction (XRD) technique has been used for the crystallographic structure analysis which not only confirms the coexistent of both copper ferrite (CuFe{sub 2}O{sub 4}) and nickel oxide (NiO) phases in all samples but also verifies the absence of any impurity phases. The average crystallite size as estimated via XRD patterns show that the average size lies in the range of 22–36 nm which has also been confirmed by TEM. The FTIR absorbance spectra also show the characteristic vibration modes of cation at tetrahedral and octahedral sites. The electrical properties like A.C. conductivity, impedance, Dielectric constant, and Tangent loss has been measured by LCR meter. The results show that with the increase in NiO concentration, electrical conductivity increases for all concentration while dielectric constant decreases up to 30% NiO wt% and increases with further addition of NiO. The real and imaginary parts of impedance depict same dispersion i.e the impedance decreases at higher frequency due to increase in conductivity. Moreover the magnetic characterizations performed by VSM, reveal that the hysteresis loops exhibit normal behavior of ferromagnetic/ferrimagnetic materials for all compositions but the coercivity (H{sub c}), and saturation magnetization (M{sub s}) decreases with the increase in NiO contents that transform the material in to soft magnetic. - Highlights: • This novel core/shell nanocomposite synthesized by a facile wet chemical route. • The decrease in coercivity with NiO contents is due to pinning of moments at surface. • Increase in NiO contents makes CuFe{sub 2}O{sub 4} a high dielectric loss material. • The antiferromagnetic nature of NiO shift CuFe{sub 2}O{sub 4} toward a soft magnetic material.

  7. A novel approach to preparing magnetic protein microspheres with core-shell structure

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Wei, E-mail: climentjw@126.co [National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, Nanjing 210094 (China); Sun Zhendong; Li Fengsheng [National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, Nanjing 210094 (China); Chen Kai; Liu Tianyu; Liu Jialing [Department of Physics, Nanjing University of Science and Technology, Nanjing 210094 (China); Zhou Tianle [Department of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Guo Rui [Department of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China)

    2011-03-15

    Magnetic protein microspheres with core-shell structure were prepared through a novel approach based on the sonochemical method and the emulsion solvent evaporation method. The microspheres are composed of the oleic acid and undecylenic acid modified Fe{sub 3}O{sub 4} cores and coated with globular bovine serum albumin (BSA). Under an optimized condition, up to 57.8 wt% of approximately 10 nm superparamagnetic Fe{sub 3}O{sub 4} nanoparticles could be uniformly encapsulated into the BSA microspheres with the diameter of approximately 160 nm and the high saturation magnetization of 38.5 emu/g, besides of the abundant functional groups. The possible formation mechanism of magnetic microspheres was discussed in detail. - Research Highlights: Magnetic protein microspheres with core-shell structure were prepared through a novel approach based on the sonochemical method and the emulsion solvent evaporation method. The microspheres are composed of the oleic acid and undecylenic acid modified Fe{sub 3}O{sub 4} cores and coated with globular bovine serum albumin (BSA). 57.8 wt% of approximately 10 nm superparamagnetic Fe{sub 3}O{sub 4} nanoparticles could be uniformly encapsulated into the BSA microspheres with the diameter of approximately 160 nm and the high saturation magnetization of 38.5 emu/g, besides the abundant functional groups.

  8. A novel approach to preparing magnetic protein microspheres with core-shell structure

    International Nuclear Information System (INIS)

    Jiang Wei; Sun Zhendong; Li Fengsheng; Chen Kai; Liu Tianyu; Liu Jialing; Zhou Tianle; Guo Rui

    2011-01-01

    Magnetic protein microspheres with core-shell structure were prepared through a novel approach based on the sonochemical method and the emulsion solvent evaporation method. The microspheres are composed of the oleic acid and undecylenic acid modified Fe 3 O 4 cores and coated with globular bovine serum albumin (BSA). Under an optimized condition, up to 57.8 wt% of approximately 10 nm superparamagnetic Fe 3 O 4 nanoparticles could be uniformly encapsulated into the BSA microspheres with the diameter of approximately 160 nm and the high saturation magnetization of 38.5 emu/g, besides of the abundant functional groups. The possible formation mechanism of magnetic microspheres was discussed in detail. - Research Highlights: → Magnetic protein microspheres with core-shell structure were prepared through a novel approach based on the sonochemical method and the emulsion solvent evaporation method.→ The microspheres are composed of the oleic acid and undecylenic acid modified Fe 3 O 4 cores and coated with globular bovine serum albumin (BSA).→ 57.8 wt% of approximately 10 nm superparamagnetic Fe 3 O 4 nanoparticles could be uniformly encapsulated into the BSA microspheres with the diameter of approximately 160 nm and the high saturation magnetization of 38.5 emu/g, besides the abundant functional groups.

  9. Core-shell microspheres with porous nanostructured shells for liquid chromatography.

    Science.gov (United States)

    Ahmed, Adham; Skinley, Kevin; Herodotou, Stephanie; Zhang, Haifei

    2018-01-01

    The development of new stationary phases has been the key aspect for fast and efficient high-performance liquid chromatography separation with relatively low backpressure. Core-shell particles, with a solid core and porous shell, have been extensively investigated and commercially manufactured in the last decade. The excellent performance of core-shell particles columns has been recorded for a wide range of analytes, covering small and large molecules, neutral and ionic (acidic and basic), biomolecules and metabolites. In this review, we first introduce the advance and advantages of core-shell particles (or more widely known as superficially porous particles) against non-porous particles and fully porous particles. This is followed by the detailed description of various methods used to fabricate core-shell particles. We then discuss the applications of common silica core-shell particles (mostly commercially manufactured), spheres-on-sphere particles and core-shell particles with a non-silica shell. This review concludes with a summary and perspective on the development of stationary phase materials for high-performance liquid chromatography applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Electronic structure and intersubband magnetoabsorption spectra of CdSe/CdS core-shell nanowires

    Science.gov (United States)

    Xiong, Wen

    2016-10-01

    The electronic structures of CdSe/CdS core-shell nanowires are calculated based on the effective-mass theory, and it is found that the hole states in CdSe/CdS core-shell nanowires are strongly mixed, which are very different from the hole states in CdSe or CdS nanowires. In addition, we find the three highest hole states at the Γ point are almost localized in the CdSe core and the energies of the hole states in CdSe/CdS core-shell nanowires can be enhanced greatly when the core radius Rc increases and the total radius R is fixed. The degenerate hole states are split by the magnetic field, and the split energies will increase when |Jh | increases from 1/2 to 7/2, while they are almost not influenced by the change of the core radius Rc. The absorption spectra of CdSe/CdS core-shell nanowires at the Γ point are also studied in the magnetic field when the temperature T is considered, and we find there are only two peaks will arise if the core radius Rc and the temperature T increase. The intensity of each optical absorption can be considerably enhanced by increasing the core radius Rc when the temperature T is fixed, it is due to the increase of their optical transition matrix element. Meanwhile, the intensity of each optical absorption can be decreased when the temperature T increases and the core radius Rc is fixed, and this is because the Fermi-Dirac distribution function of the corresponding hole states will increase as the increase of the temperature T.

  11. Optical properties of core-shell and multi-shell nanorods

    Science.gov (United States)

    Mokkath, Junais Habeeb; Shehata, Nader

    2018-05-01

    We report a first-principles time dependent density functional theory study of the optical response modulations in bimetallic core-shell (Na@Al and Al@Na) and multi-shell (Al@Na@Al@Na and Na@Al@Na@Al: concentric shells of Al and Na alternate) nanorods. All of the core-shell and multi-shell configurations display highly enhanced absorption intensity with respect to the pure Al and Na nanorods, showing sensitivity to both composition and chemical ordering. Remarkably large spectral intensity enhancements were found in a couple of core-shell configurations, indicative that optical response averaging based on the individual components can not be considered as true as always in the case of bimetallic core-shell nanorods. We believe that our theoretical results would be useful in promising applications depending on Aluminum-based plasmonic materials such as solar cells and sensors.

  12. Isostructural solid-solid phase transition in monolayers of soft core-shell particles at fluid interfaces: structure and mechanics.

    Science.gov (United States)

    Rey, Marcel; Fernández-Rodríguez, Miguel Ángel; Steinacher, Mathias; Scheidegger, Laura; Geisel, Karen; Richtering, Walter; Squires, Todd M; Isa, Lucio

    2016-04-21

    We have studied the complete two-dimensional phase diagram of a core-shell microgel-laden fluid interface by synchronizing its compression with the deposition of the interfacial monolayer. Applying a new protocol, different positions on the substrate correspond to different values of the monolayer surface pressure and specific area. Analyzing the microstructure of the deposited monolayers, we discovered an isostructural solid-solid phase transition between two crystalline phases with the same hexagonal symmetry, but with two different lattice constants. The two phases corresponded to shell-shell and core-core inter-particle contacts, respectively; with increasing surface pressure the former mechanically failed enabling the particle cores to come into contact. In the phase-transition region, clusters of particles in core-core contacts nucleate, melting the surrounding shell-shell crystal, until the whole monolayer moves into the second phase. We furthermore measured the interfacial rheology of the monolayers as a function of the surface pressure using an interfacial microdisk rheometer. The interfaces always showed a strong elastic response, with a dip in the shear elastic modulus in correspondence with the melting of the shell-shell phase, followed by a steep increase upon the formation of a percolating network of the core-core contacts. These results demonstrate that the core-shell nature of the particles leads to a rich mechanical and structural behavior that can be externally tuned by compressing the interface, indicating new routes for applications, e.g. in surface patterning or emulsion stabilization.

  13. Synthesis and characterization of core-shell Fe3O4-gold-chitosan nanostructure

    Directory of Open Access Journals (Sweden)

    Salehizadeh Hossein

    2012-01-01

    Full Text Available Abstract Background Fe3O4-gold-chitosan core-shell nanostructure can be used in biotechnological and biomedical applications such as magnetic bioseparation, water and wastewater treatment, biodetection and bioimaging, drug delivery, and cancer treatment. Results Magnetite nanoparticles with an average size of 9.8 nm in diameter were synthesized using the chemical co-precipitation method. A gold-coated Fe3O4 monotonous core-shell nanostructure was produced with an average size of 15 nm in diameter by glucose reduction of Au3+ which is then stabilized with a chitosan cross linked by formaldehyde. The results of analyses with X-ray diffraction (XRD, Fourier Transformed Infrared Spectroscopy (FTIR, Transmission Electron Microscopy (TEM, and Atomic Force Microscopy (AFM indicated that the nanoparticles were regularly shaped, and agglomerate-free, with a narrow size distribution. Conclusions A rapid, mild method for synthesizing Fe3O4-gold nanoparticles using chitosan was investigated. A magnetic core-shell-chitosan nanocomposite, including both the supermagnetic properties of iron oxide and the optical characteristics of colloidal gold nanoparticles, was synthesized.

  14. Multiple Fano resonances in single-layer nonconcentric core-shell nanostructures

    DEFF Research Database (Denmark)

    Zhang, Jingjing; Zayats, Anatoly

    2013-01-01

    where the multiple dark modes appear due to the geometrical symmetry breaking induced by axial offset of the core. Both dielectric-core-metal-shell (DCMS) and metal-core-dielectric-shell (MCDS) configurations have been studied. Compared to the MCDS structure, the DCMS configuration provides higher...

  15. DNA nanoparticles with core-shell morphology.

    Science.gov (United States)

    Chandran, Preethi L; Dimitriadis, Emilios K; Lisziewicz, Julianna; Speransky, Vlad; Horkay, Ferenc

    2014-10-14

    Mannobiose-modified polyethylenimines (PEI) are used in gene therapy to generate nanoparticles of DNA that can be targeted to the antigen-presenting cells of the immune system. We report that the sugar modification alters the DNA organization within the nanoparticles from homogenous to shell-like packing. The depth-dependent packing of DNA within the nanoparticles was probed using AFM nano-indentation. Unmodified PEI-DNA nanoparticles display linear elastic properties and depth-independent mechanics, characteristic of homogenous materials. Mannobiose-modified nanoparticles, however, showed distinct force regimes that were dependent on indentation depth, with 'buckling'-like response that is reproducible and not due to particle failure. By comparison with theoretical studies of spherical shell mechanics, the structure of mannobiosylated particles was deduced to be a thin shell with wall thickness in the order of few nanometers, and a fluid-filled core. The shell-core structure is also consistent with observations of nanoparticle denting in altered solution conditions, with measurements of nanoparticle water content from AFM images, and with images of DNA distribution in Transmission Electron Microscopy.

  16. In-situ synthetize multi-walled carbon nanotubes@MnO2 nanoflake core-shell structured materials for supercapacitors

    Science.gov (United States)

    Zheng, Huajun; Wang, Jiaoxia; Jia, Yi; Ma, Chun'an

    2012-10-01

    A new type of core-shell structured material consisting of multi-walled carbon nanotubes (MWCNTs) and manganese dioxide (MnO2) nanoflake is synthesized using an in-situ co-precipitation method. By scanning electron microscopy and transition electron microscope, it is confirmed that the core-shell nanostructure is formed by the uniform incorporation of birnessite-type MnO2 nanoflake growth round the surface of the activated-MWCNTs. That core-shell structured material electrode presents excellent electrochemical capacitance properties with the specific capacitance reaching 380 F g-1 at the current density of 5 A g-1 in 0.5 M Na2SO4 electrolyte. In addition, the electrode also exhibits good performance (the power density: 11.28 kW kg-1 at 5 A g-1) and long-term cycling stability (retaining 82.7% of its initial capacitance after 3500 cycles at 5 A g-1). It mainly attributes to MWCNTs not only providing considerable specific surface area for high mass loading of MnO2 nanoflakes to ensure effective utilization of MnO2 nanoflake, but also offering an electron pathway to improve electrical conductivity of the electrode materials. It is clearly indicated that such core-shell structured materials including MWCNTs and MnO2 nanoflake may find important applications for supercapacitors.

  17. Synthesis of triangular Au core-Ag shell nanoparticles

    International Nuclear Information System (INIS)

    Rai, Akhilesh; Chaudhary, Minakshi; Ahmad, Absar; Bhargava, Suresh; Sastry, Murali

    2007-01-01

    In this paper, we demonstrate a simple and reproducible method for the synthesis of triangular Au core-Ag shell nanoparticles. The triangular gold core is obtained by the reduction of gold ions by lemongrass extract. Utilizing the negative charge on the gold nanotriangles, silver ions are bound to their surface and thereafter reduced by ascorbic acid under alkaline conditions. The thickness of the silver shell may be modulated by varying the pH of the reaction medium. The formation of the Au core-Ag shell triangular nanostructures has been followed by UV-vis-NIR Spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy (TEM) and atomic force microscopy (AFM) measurements. The sharp vertices of the triangles coupled with the core-shell structure is expected to have potential for application in surface enhanced Raman spectroscopy and in the sensitive detection of biomolecules

  18. Non-conductive ferromagnetic carbon-coated (Co, Ni) metal/polystyrene nanocomposites films

    Energy Technology Data Exchange (ETDEWEB)

    Takacs, H., E-mail: helene.takacs@gmail.com [CEA, LETI, MINATEC Campus, Grenoble 38054 (France); LTM-CNRS-UJF, CEA, LETI, Minatec Campus, Grenoble 38054 (France); Viala, B.; Hermán, V. [CEA, LETI, MINATEC Campus, Grenoble 38054 (France); Tortai, J.-H. [LTM-CNRS-UJF, CEA, LETI, Minatec Campus, Grenoble 38054 (France); Duclairoir, F. [Université Grenoble Alpes, INAC, Grenoble 38054 (France); CEA, INAC, Grenoble 38054 (France)

    2016-03-07

    This article reports non-conductive ferromagnetic properties of metal/polymer nanocomposite films intended to be used for RF applications. The nanocomposite arrangement is unique showing a core double-shell structure of metal-carbon-polystyrene: M/C//P{sub 1}/P{sub 2}, where M = Co, Ni is the core material, C = graphene or carbon is the first shell acting as a protective layer against oxidation, P{sub 1} = pyrene-terminated polystyrene is the second shell for electrical insulation, and P{sub 2} = polystyrene is a supporting matrix (// indicates actual grafting). The nanocomposite formulation is briefly described, and the film deposition by spin-coating is detailed. Original spin-curves are reported and analyzed. One key outcome is the achievement of uniform and cohesive films at the wafer scale. Structural properties of films are thoroughly detailed, and weight and volume fractions of M/C are considered. Then, a comprehensive overview of DC magnetic and electrical properties is reported. A discussion follows on the magnetic softness of the nanocomposites vs. that of a single particle (theoretical) and the raw powder (experimental). Finally, unprecedented achievement of high magnetization (∼0.6 T) and ultra-high resistivity (∼10{sup 10 }μΩ cm) is shown. High magnetization comes from the preservation of the existing protective shell C, with no significant degradation on the particle net-moment, and high electrical insulation is ensured by adequate grafting of the secondary shell P{sub 1}. To conclude, the metal/polymer nanocomposites are situated in the landscape of soft ferromagnetic materials for RF applications (i.e., inductors and antennas), by means of two phase-diagrams, where they play a crucial role.

  19. Preparation of core-shell structured CaCO3 microspheres as rapid and recyclable adsorbent for anionic dyes

    Science.gov (United States)

    Zhao, Mengen; Chen, Zhenhua; Lv, Xinyan; Zhou, Kang; Zhang, Jie; Tian, Xiaohan; Ren, Xiuli; Mei, Xifan

    2017-09-01

    Core-shell structured CaCO3 microspheres (MSs) were prepared by a facile, one-pot method at room temperature. The adsorbent dosage and adsorption time of the obtained CaCO3 MSs were investigated. The results suggest that these CaCO3 MSs can rapidly and efficiently remove 99-100% of anionic dyes within the first 2 min. The obtained CaCO3 MSs have a high Brunauer-Emmett-Teller surface area (211.77 m2 g-1). In addition, the maximum adsorption capacity of the obtained CaCO3 MSs towards Congo red was 99.6 mg g-1. We also found that the core-shell structured CaCO3 MSs have a high recycling capability for removing dyes from water. Our results demonstrate that the prepared core-shell structured CaCO3 MSs can be used as an ideal, rapid, efficient and recyclable adsorbent to remove dyes from aqueous solution.

  20. On the core-mass-shell-luminosity relation for shell-burning stars

    International Nuclear Information System (INIS)

    Jeffery, C.S.; Saint Andrews Univ.

    1988-01-01

    Core-mass-shell-luminosity relations for several types of shell-burning star have been calculated using simultaneous differential equations derived from simple homology approximations. The principal objective of obtaining a mass-luminosity relation for helium giants was achieved. This relation gives substantially higher luminosities than the equivalent relation for H-shell stars with core masses greater than 1 solar mass. The algorithm for calculating mass-luminosity relations in this fashion was investigated in detail. Most of the assumptions regarding the physics in the shell do not play a critical role in determining the core-mass-shell-luminosity relation. The behaviour of the core-mass-core-radius relation for a growing degenerate core as a single unique function of mass and growth rate needs to be defined before a single core-mass-shell-luminosity relation for all H-shell stars can be obtained directly from the homology approximations. (author)

  1. Laser Heating of the Core-Shell Nanowires

    Science.gov (United States)

    Astefanoaei, Iordana; Dumitru, Ioan; Stancu, Alexandru

    2016-12-01

    The induced thermal stress in a heating process is an important parameter to be known and controlled in the magnetization process of core-shell nanowires. This paper analyses the stress produced by a laser heating source placed at one end of a core-shell type structure. The thermal field was computed with the non-Fourier heat transport equation using a finite element method (FEM) implemented in Comsol Multiphysics. The internal stresses are essentially due to thermal gradients and different expansion characteristics of core and shell materials. The stress values were computed using the thermo elastic formalism and are depending on the laser beam parameters (spot size, power etc.) and system characteristics (dimensions, thermal characteristics). Stresses in the GPa range were estimated and consequently we find that the magnetic state of the system can be influenced significantly. A shell material as the glass which is a good thermal insulator induces in the magnetic core, the smaller stresses and consequently the smaller magnetoelastic energy. These results lead to a better understanding of the switching process in the magnetic materials.

  2. Hierarchical core-shell structure of ZnO nanorod@NiO/MoO₂ composite nanosheet arrays for high-performance supercapacitors.

    Science.gov (United States)

    Hou, Sucheng; Zhang, Guanhua; Zeng, Wei; Zhu, Jian; Gong, Feilong; Li, Feng; Duan, Huigao

    2014-08-27

    A hierarchical core-shell structure of ZnO nanorod@NiO/MoO2 composite nanosheet arrays on nickel foam substrate for high-performance supercapacitors was constructed by a two-step solution-based method involving two hydrothermal processes followed by a calcination treatment. Compared to one composed of pure NiO/MoO2 composite nanosheets, the hierarchical core-shell structure electrode displays better pseudocapacitive behaviors in 2 M KOH, including high areal specific capacitance values of 1.18 F cm(-2) at 5 mA cm(-2) and 0.6 F cm(-2) at 30 mA cm(-2) as well as relatively good rate capability at high current densities. Furthermore, it also shows remarkable cycle stability, remaining at 91.7% of the initial value even after 4000 cycles at a current density of 10 mA cm(-2). The enhanced pseudocapacitive behaviors are mainly due to the unique hierarchical core-shell structure and the synergistic effect of combining ZnO nanorod arrays and NiO/MoO2 composite nanosheets. This novel hierarchical core-shell structure shows promise for use in next-generation supercapacitors.

  3. Hierarchical Mesoporous Organosilica-Silica Core-Shell Nanoparticles Capable of Controlled Fungicide Release.

    Science.gov (United States)

    Luo, Leilei; Liang, Yucang; Erichsen, Egil Severin; Anwander, Reiner

    2018-05-17

    A new class of hierarchically structured mesoporous silica core-shell nanoparticles (HSMSCSNs) with a periodic mesoporous organosilica (PMO) core and a mesoporous silica (MS) shell is reported. The applied one-pot, two-step strategy allows rational control over the core/shell chemical composition, topology, and pore/particle size, simply by adjusting the reaction conditions in the presence of cetyltrimethylammonium bromide (CTAB) as structure-directing agent under basic conditions. The spherical, ethylene- or methylene-bridged PMO cores feature hexagonal (p6mm) or cage-like cubic symmetry (Pm3‾ n) depending on the organosilica precursor. The hexagonal MS shell was obtained by n-hexane-induced controlled hydrolysis of TEOS followed by directional co-assembly/condensation of silicate/CTAB composites at the PMO cores. The HSMSCSNs feature a hierarchical pore structure with pore diameters of about 2.7 and 5.6 nm in the core and shell domains, respectively. The core sizes and shell thicknesses are adjustable in the ranges of 90-275 and 15-50 nm, respectively, and the surface areas (max. 1300 m 2  g -1 ) and pore volumes (max. 1.83 cm 3  g -1 ) are among the highest reported for core-shell nanoparticles. The adsorption and controlled release of the fungicide propiconazole by the HSMSCSNs showed a three-stage release profile. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Preparation and characterization of antibacterial Au/C core-shell composite

    Energy Technology Data Exchange (ETDEWEB)

    Gao Yanhong [Department of Chemistry and Institute of Nanochemistry, Jinan University, 601 Huangpudadaoxi Road, Guangzhou 510632, Guangdong (China); Centers for Disease Control and Prevention of Guangdong Province, Guangzhou 510300, Guangdong (China); Zhang Nianchun [Department of Chemistry and Institute of Nanochemistry, Jinan University, 601 Huangpudadaoxi Road, Guangzhou 510632, Guangdong (China); Zhong Yuwen [Centers for Disease Control and Prevention of Guangdong Province, Guangzhou 510300, Guangdong (China); Cai Huaihong [Department of Chemistry and Institute of Nanochemistry, Jinan University, 601 Huangpudadaoxi Road, Guangzhou 510632, Guangdong (China); Liu Yingliang, E-mail: tliuyl@jnu.edu.cn [Department of Chemistry and Institute of Nanochemistry, Jinan University, 601 Huangpudadaoxi Road, Guangzhou 510632, Guangdong (China)

    2010-09-01

    An environment-friendly oxidation-reduction method was used to prepare Au/C core-shell composite using carbon as core and gold as shell. The chemical structures and morphologies of Au/C core-shell composite and carbon sphere were characterized by X-ray diffraction, transmission electron microscope, energy dispersion X-ray spectrometry (EDS) and X-ray photoelectron spectroscopy (XPS). The antibacterial properties of the Au/C core-shell composite against Escherichia coli (E. coli), Staphylococcus aureus (S. aureus) and Candida albicans (C. albicans) were examined by the disk diffusion assay and minimal inhibition concentration (MIC) methods. In addition, antibacterial ability of Au/C core-shell composite was observed by atomic force microscope. Results demonstrated that gold homogeneously supported on the surface of carbon spheres without aggregation and showed efficient antibacterial abilities.

  5. Ionic core–shell dendrimers with a polycationic core: structural aspects and host–guest binding properties

    NARCIS (Netherlands)

    van de Coevering, R.; Bruijnincx, P.C.A.; Lutz, M.; Spek, A.L.; van Koten, G.; Klein Gebbink, R.J.M.

    2007-01-01

    The structural aspects and host–guest binding properties of ionic core–shell dendrimers [1]Br8 and [2]Br4, which bear a polycationic core and a neutral shell of Fréchet-type poly(benzyl aryl ether) dendrons, have been investigated by means of dendritic wedges [3]Br2 and [4]Br, that resemble one of

  6. Core-shell magnetic nanowires fabrication and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Kalska-Szostko, B., E-mail: kalska@uwb.edu.pl [Institute of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok (Poland); Faculty of Physics, University of Bialystok, Ciolkowskiego 1L, 15-245 Bialystok, Poland (Poland); Klekotka, U.; Satuła, D. [Institute of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok (Poland); Faculty of Physics, University of Bialystok, Ciolkowskiego 1L, 15-245 Bialystok, Poland (Poland)

    2017-02-28

    Highlights: • New approach for nanowires modification are presented. • Physical and chemical characterization of the nanowires are shown. • Properties modulations as an effect of the surface layer composition are discussed. - Abstract: In this paper, a new way of the preparation of core-shell magnetic nanowires has been proposed. For the modification Fe nanowires were prepared by electrodeposition in anodic aluminium oxide matrixes, in first step. In second, by wetting chemical deposition, shell layers of Ag, Au or Cu were obtained. Resultant core-shell nanowires structure was characterized by X-ray diffraction, infrared spectroscopy, transmission electron microscopy, and energy dispersive x-ray. Whereas magnetic properties by Mössbauer spectroscopy.

  7. Coaxial electrospun polyurethane core-shell nanofibers for shape memory and antibacterial nanomaterials

    Directory of Open Access Journals (Sweden)

    2011-02-01

    Full Text Available A novel kind of shape memory polyurethane (SMPU nanofibers with core-shell nanostructure is fabricated using coaxial electrospinning. Transmission electron microscopy (TEM and scanning electron microscopy (SEM results show that nanofibers with core-shell structure or bead-on-string structure can be electrospun successfully from the core solution of polycaprolactone based SMPU (CLSMPU and shell solution of pyridine containing polyurethane (PySMPU. In addition to the excellent shape memory effect with good shape fixity, excellent antibacterial activity against both gramnegative bacteria and gram-positive bacteria are achieved in the CLSMPU-PySMPU core-shell nanofiber. Finally, it is proposed that the antibacterial mechanism should be resulted from the PySMPU shell materials containing amido group in γ position and the high surface area per unit mass of nanofibers. Thus, the CLSMPU-PySMPU core shell nanofibers can be used as both shape memory nanomaterials and antibacterial nanomaterials.

  8. Rare Earth-Activated Silica-Based Nanocomposites

    Directory of Open Access Journals (Sweden)

    C. Armellini

    2007-01-01

    Full Text Available Two different kinds of rare earth-activated glass-based nanocomposite photonic materials, which allow to tailor the spectroscopic properties of rare-earth ions: (i Er3+-activated SiO2-HfO2 waveguide glass ceramic, and (ii core-shell-like structures of Er3+-activated silica spheres obtained by a seed growth method, are presented.

  9. Fabrication of Ni@Ti core-shell nanoparticles by modified gas aggregation source

    Science.gov (United States)

    Hanuš, J.; Vaidulych, M.; Kylián, O.; Choukourov, A.; Kousal, J.; Khalakhan, I.; Cieslar, M.; Solař, P.; Biederman, H.

    2017-11-01

    Ni@Ti core-shell nanoparticles were prepared by a vacuum based method using the gas aggregation source (GAS) of nanoparticles. Ni nanoparticles fabricated in the GAS were afterwards coated by a Ti shell. The Ti shell was deposited by means of magnetron sputtering. The Ni nanoparticles were decelerated in the vicinity of the magnetron to the Ar drift velocity in the second deposition chamber. X-ray photoelectron spectroscopy and energy dispersive x-ray spectroscopy analysis of the nanoparticles showed the core-shell structure. It was shown that the thickness of the shell can be easily tuned by the process parameters with a maximum achieved thickness of the Ti shell ~2.5 nm. The core-shell structure was confirmed by the STEM analysis of the particles.

  10. Simple Synthesis and Growth Mechanism of Core/Shell CdSe/SiOx Nanowires

    Directory of Open Access Journals (Sweden)

    Guozhang Dai

    2010-01-01

    Full Text Available Core-shell-structured CdSe/SiOx nanowires were synthesized on an equilateral triangle Si (111 substrate through a simple one-step thermal evaporation process. SEM, TEM, and XRD investigations confirmed the core-shell structure; that is, the core zone is single crystalline CdSe and the shell zone is SiOx amorphous layer and CdSe core was grown along (001 direction. Two-stage growth process was present to explain the growth mechanism of the core/shell nanwires. The silicon substrate of designed equilateral triangle providing the silicon source is the key factor to form the core-shell nanowires, which is significant for fabrication of nanowire-core sheathed with a silica system. The PL of the product studied at room temperature showed two emission bands around 715 and 560 nm, which originate from the band-band transition of CdSe cores and the amorphous SiOx shells, respectively.

  11. Synthesis of Aqueous CdTe/CdS/ZnS Core/shell/shell Quantum Dots by a Chemical Aerosol Flow Method

    Directory of Open Access Journals (Sweden)

    Chen Dong

    2009-01-01

    Full Text Available Abstract This work described a continuous method to synthesize CdTe/CdS/ZnS core/shell/shell quantum dots. In an integrated system by flawlessly combining the chemical aerosol flow system working at high temperature (200–300°C to generate CdTe/CdS intermediate products and an additional heat-up setup at relatively low temperature to overcoat the ZnS shells, the CdTe/CdS/ZnS multishell structures were realized. The as-synthesized CdTe/CdS/ZnS core/shell/shell quantum dots are characterized by photoluminescence spectra, X-ray diffraction (XRD, energy-dispersive X-ray spectra (EDS, transmission electron microscopy (TEM, and high-resolution transmission electron microscopy (HRTEM. Fluorescence and XRD results confirm that the obtained quantum dots have a core/shell/shell structure. It shows the highest quantum yield above 45% when compared to the rhodamine 6G. The core/shell/shell QDs were more stable via the oxidation experiment by H2O2.

  12. Electrosprayed core-shell polymer-lipid nanoparticles for active component delivery

    Science.gov (United States)

    Eltayeb, Megdi; Stride, Eleanor; Edirisinghe, Mohan

    2013-11-01

    A key challenge in the production of multicomponent nanoparticles for healthcare applications is obtaining reproducible monodisperse nanoparticles with the minimum number of preparation steps. This paper focus on the use of electrohydrodynamic (EHD) techniques to produce core-shell polymer-lipid structures with a narrow size distribution in a single step process. These nanoparticles are composed of a hydrophilic core for active component encapsulation and a lipid shell. It was found that core-shell nanoparticles with a tunable size range between 30 and 90 nm and a narrow size distribution could be reproducibly manufactured. The results indicate that the lipid component (stearic acid) stabilizes the nanoparticles against collapse and aggregation and improves entrapment of active components, in this case vanillin, ethylmaltol and maltol. The overall structure of the nanoparticles produced was examined by multiple methods, including transmission electron microscopy and differential scanning calorimetry, to confirm that they were of core-shell form.

  13. Structure and stability of nickel/nickel oxide core-shell nanoparticles

    International Nuclear Information System (INIS)

    D'Addato, S; Grillo, V; Valeri, S; Frabboni, S; Altieri, S; Tondi, R

    2011-01-01

    The results of a combined x-ray photoelectron spectroscopy (XPS) and high resolution transmission electron microscopy (HR-TEM) study of Ni nanoparticles (NP), before and after oxidation, are presented. An experimental set-up was realized for the preparation and study of pre-formed NP films, concentrating the attention on Ni NP in the diameter range between 4 and 8 nm. The XPS data were taken in situ from NPs after different stages of oxidation, including controlled dosing of O 2 gas in the experimental system and exposure to the atmosphere. The Ni 2p structure is a combination of spectra from metallic Ni in the NP core and from the oxide shell. The signal from the NP core was observed even for samples after exposure to air. From the comparison of HR-TEM experimental images with theoretical simulations, it was found that the Ni NP core has a regular multitwinned icosahedral structure, composed of single-crystal tetrahedra with (111) faces. The NiO phase is clearly observed forming islands on the NP surface.

  14. Structure and stability of nickel/nickel oxide core-shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    D' Addato, S; Grillo, V; Valeri, S; Frabboni, S [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); Altieri, S; Tondi, R, E-mail: sergio.daddato@unimore.it [Dipartimento di Fisica, Universita di Modena e Reggio Emilia, via G Campi 213/a, I-41125 Modena (Italy)

    2011-05-04

    The results of a combined x-ray photoelectron spectroscopy (XPS) and high resolution transmission electron microscopy (HR-TEM) study of Ni nanoparticles (NP), before and after oxidation, are presented. An experimental set-up was realized for the preparation and study of pre-formed NP films, concentrating the attention on Ni NP in the diameter range between 4 and 8 nm. The XPS data were taken in situ from NPs after different stages of oxidation, including controlled dosing of O{sub 2} gas in the experimental system and exposure to the atmosphere. The Ni 2p structure is a combination of spectra from metallic Ni in the NP core and from the oxide shell. The signal from the NP core was observed even for samples after exposure to air. From the comparison of HR-TEM experimental images with theoretical simulations, it was found that the Ni NP core has a regular multitwinned icosahedral structure, composed of single-crystal tetrahedra with (111) faces. The NiO phase is clearly observed forming islands on the NP surface.

  15. Preparation of water-soluble CdTe/CdS core/shell quantum dots with enhanced photostability

    International Nuclear Information System (INIS)

    Peng Hui; Zhang Lijuan; Soeller, Christian; Travas-Sejdic, Jadranka

    2007-01-01

    CdTe/CdS core/shell quantum dots (QDs) have been synthesized in an aqueous phase using thioacetamide as a sulfur source. The quantum yield was greatly enhanced by the epitaxial growth of a CdS shell, which was confirmed by X-ray photoelectron spectroscopy (XPS) results. The quantum yield of as-prepared CdTe/CdS core/shell QDs without any post-preparative processing reached 58%. The experimental results illustrate that the QDs with core/shell structure show better photostability than thioglycolic acid (TGA)-capped CdTe QDs. The cyclic voltammograms reveal higher oxidation potentials for CdTe/CdS core/shell QDs than for TGA-capped CdTe QDs, which explains the superior photostability of QDs with a core/shell structure. This enhanced photostability makes these QDs with core/shell structure more suitable for bio-labeling and imaging

  16. Strippable core-shell polymer emulsion for decontamination of radioactive surface contamination

    International Nuclear Information System (INIS)

    Hwang, Ho-Sang; Seo, Bum-Kyoung; Lee, Kune-Woo

    2011-01-01

    In this study, the core-shell composite polymer for decontamination from the surface contamination was synthesized by the method of emulsion polymerization and blends of polymers. The strippable polymer emulsion is composed of the poly(styrene-ethyl acrylate) [poly(St-EA)] composite polymer, poly(vinyl alcohol) (PVA) and polyvinylpyrrolidone (PVP). The morphology of the poly(St-EA) composite emulsion particle was core-shell structure, with polystyrene (PS) as the core and poly(ethyl acrylate) (PEA) as the shell. Core-shell polymers of styrene (St)/ethyl acrylate (EA) pair were prepared by sequential emulsion polymerization in the presence of sodium dodecyl sulfate (SDS) as an emulsifier using ammonium persulfate (APS) as an initiator. Related tests and analysis confirmed the success in synthesis of composite polymer. The products are characterized by FT-IR spectroscopy, TGA that were used, respectively, to show the structure, the thermal stability of the prepared polymer. Two-phase particles with a core-shell structure were obtained in experiments where the estimated glass transition temperature and the morphologies of emulsion particles. Decontamination factors of the strippable polymeric emulsion were evaluated with the polymer blend contents. (author)

  17. Sidewall coring shell

    Energy Technology Data Exchange (ETDEWEB)

    Edelman, Ya A; Konstantinov, L P; Martyshin, A N

    1966-12-12

    A sidewall coring shell consists of a housing and a detachable core catcher. The core lifter is provided with projections, the ends of which are situated in another plane, along the longitudinal axis of the lifter. The chamber has corresponding projections.

  18. Core-shell silk hydrogels with spatially tuned conformations as drug-delivery system.

    Science.gov (United States)

    Yan, Le-Ping; Oliveira, Joaquim M; Oliveira, Ana L; Reis, Rui L

    2017-11-01

    Hydrogels of spatially controlled physicochemical properties are appealing platforms for tissue engineering and drug delivery. In this study, core-shell silk fibroin (SF) hydrogels of spatially controlled conformation were developed. The core-shell structure in the hydrogels was formed by means of soaking the preformed (enzymatically crosslinked) random coil SF hydrogels in methanol. When increasing the methanol treatment time from 1 to 10 min, the thickness of the shell layer can be tuned from about 200 to about 850 μm as measured in wet status. After lyophilization of the rehydrated core-shell hydrogels, the shell layer displayed compact morphology and the core layer presented porous structure, when observed by scanning electron microscopy. The conformation of the hydrogels was evaluated by Fourier transform infrared spectroscopy in wet status. The results revealed that the shell layer possessed dominant β-sheet conformation and the core layer maintained mainly random coil conformation. Enzymatic degradation data showed that the shell layers presented superior stability to the core layer. The mechanical analysis displayed that the compressive modulus of the core-shell hydrogels ranged from about 25 kPa to about 1.1 MPa by increasing the immersion time in methanol. When incorporated with albumin, the core-shell SF hydrogels demonstrated slower and more controllable release profiles compared with the non-treated hydrogel. These core-shell SF hydrogels of highly tuned properties are useful systems as drug-delivery system and may be applied as cartilage substitute. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  19. Chemical and thermal stability of core-shelled magnetite nanoparticles and solid silica

    Science.gov (United States)

    Cendrowski, Krzysztof; Sikora, Pawel; Zielinska, Beata; Horszczaruk, Elzbieta; Mijowska, Ewa

    2017-06-01

    Pristine nanoparticles of magnetite were coated by solid silica shell forming core/shell structure. 20 nm thick silica coating significantly enhanced the chemical and thermal stability of the iron oxide. Chemical and thermal stability of this structure has been compared to the magnetite coated by mesoporous shell and pristine magnetite nanoparticles. It is assumed that six-membered silica rings in a solid silica shell limit the rate of oxygen diffusion during thermal treatment in air and prevent the access of HCl molecules to the core during chemical etching. Therefore, the core/shell structure with a solid shell requires a longer time to induce the oxidation of iron oxide to a higher oxidation state and, basically, even strong concentrated acid such as HCl is not able to dissolve it totally in one month. This leads to the desired performance of the material in potential applications such as catalysis and environmental protection.

  20. Synthesis of eccentric titania-silica core-shell and composite particles

    NARCIS (Netherlands)

    Demirors, A.F.; van Blaaderen, A.; Imhof, A.

    2009-01-01

    We describe a novel method to synthesize colloidal particles with an eccentric core-shell structure. Titania-silica core-shell particles were synthesized by silica coating of porous titania particles under Sto¨ber (Sto¨ber et al. J. Colloid Interface Sci. 1968, 26, 62) conditions. We can control

  1. New nanocomposites of polystyrene with polyaniline doped with lauryl sulfuric acid

    Science.gov (United States)

    Pud, A. A.; Nikolayeva, O. A.; Vretik, L. O.; Noskov, Yu. V.; Ogurtsov, N. A.; Kruglyak, O. S.; Fedorenko, E. A.

    2017-08-01

    This work is concentrated on synthesis and investigation of new core-shell nanocomposites of polystyrene (PS) with doped polyaniline (PANI). The latex containing PS nanoparticles with sizes of 15-30 nm was prepared by microemulsion polymerization of styrene in water media. The PS/PANI nanocomposites were synthesized by chemical oxidative polymerization of aniline in the PS latex media in a presence of lauryl sulfuric acid (LSA), which served as both dopant and plasticizer. The real content of PANI in the synthesized nanocomposites was determined by UV-Vis spectroscopy method. The composition of the nanocomposites and oxidation state of the doped polyaniline were characterized by FTIR spectroscopy. The core-shell morphology of the nanocomposite nanoparticles was proved by transmission and scanning electron microscopy. It was found that conductivity and thermal behavior in air of these nanocomposites not only nonlinearly depended on the doped polyaniline content but also were strongly effected both by plasticizing properties of the acid-dopant and presence of the polyaniline shell. A possibility of application of these nanocomposites as sensor materials has been demonstrated.

  2. Porous Core-Shell Nanostructures for Catalytic Applications

    Science.gov (United States)

    Ewers, Trevor David

    Porous core-shell nanostructures have recently received much attention for their enhanced thermal stability. They show great potential in the field of catalysis, as reactant gases can diffuse in and out of the porous shell while the core particle is protected from sintering, a process in which particles coalesce to form larger particles. Sintering is a large problem in industry and is the primary cause of irreversible deactivation. Despite the obvious advantages of high thermal stability, porous core-shell nanoparticles can be developed to have additional interactive properties from the combination of the core and shell together, rather than just the core particle alone. This dissertation focuses on developing new porous core-shell systems in which both the core and shell take part in catalysis. Two types of systems are explored; (1) yolk-shell nanostructures with reducible oxide shells formed using the Kirkendall effect and (2) ceramic-based porous oxide shells formed using sol-gel chemistry. Of the Kirkendall-based systems, Au FexOy and Cu CoO were synthesized and studied for catalytic applications. Additionally, ZnO was explored as a potential shelling material. Sol-gel work focused on optimizing synthetic methods to allow for coating of small gold particles, which remains a challenge today. Mixed metal oxides were explored as a shelling material to make dual catalysts in which the product of a reaction on the core particle becomes a reactant within the shell.

  3. Zero-valent iron treatment of dark brown colored coffee effluent: Contributions of a core-shell structure to pollutant removals.

    Science.gov (United States)

    Tomizawa, Mayuka; Kurosu, Shunji; Kobayashi, Maki; Kawase, Yoshinori

    2016-12-01

    The decolorization and total organic carbon (TOC) removal of dark brown colored coffee effluent by zero-valent iron (ZVI) have been systematically examined with solution pH of 3.0, 4.0, 6.0 and 8.0 under oxic and anoxic conditions. The optimal decolorization and TOC removal were obtained at pH 8.0 with oxic condition. The maximum efficiencies of decolorization and TOC removal were 92.6 and 60.2%, respectively. ZVI presented potential properties for pollutant removal at nearly neutral pH because of its core-shell structure in which shell or iron oxide/hydroxide layer on ZVI surface dominated the decolorization and TOC removal of coffee effluent. To elucidate the contribution of the core-shell structure to removals of color and TOC at the optimal condition, the characterization of ZVI surface by scanning electron microscopy (SEM) with an energy dispersive X-ray spectroscope (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) was conducted. It was confirmed that the core-shell structure was formed and the shell on ZVI particulate surface and the precipitates formed during the course of ZVI treatment consisted of iron oxides and hydroxides. They were significantly responsible for decolorization and TOC removal of coffee effluent via adsorption to shell on ZVI surface and inclusion into the precipitates rather than the oxidative degradation by OH radicals and the reduction by emitted electrons. The presence of dissolved oxygen (DO) enhanced the formation of the core-shell structure and as a result improved the efficiency of ZVI treatment for the removal of colored components in coffee effluents. ZVI was found to be an efficient material toward the treatment of coffee effluents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Enhanced linear photonic nanojet generated by core-shell optical microfibers

    Science.gov (United States)

    Liu, Cheng-Yang; Yen, Tzu-Ping; Chen, Chien-Wen

    2017-05-01

    The generation of linear photonic nanojet using core-shell optical microfiber is demonstrated numerically and experimentally in the visible light region. The power flow patterns for the core-shell optical microfiber are calculated by using the finite-difference time-domain method. The focusing properties of linear photonic nanojet are evaluated in terms of length and width along propagation and transversal directions. In experiment, the silica optical fiber is etched chemically down to 6 μm diameter and coated with metallic thin film by using glancing angle deposition. We show that the linear photonic nanojet is enhanced clearly by metallic shell due to surface plasmon polaritons. The large-area superresolution imaging can be performed by using a core-shell optical microfiber in the far-field system. The potential applications of this core-shell optical microfiber include micro-fluidics and nano-structure measurements.

  5. Influence of core size on the upconversion luminescence properties of spherical Gd2O3:Yb3+/Er3+@SiO2 particles with core-shell structures

    International Nuclear Information System (INIS)

    Zheng, Kezhi; Liu, Zhenyu; Liu, Ye; Song, Weiye; Qin, Weiping

    2013-01-01

    Spherical SiO 2 particles with different sizes (30, 80, 120, and 180 nm) have been coated with Gd 2 O 3 :Yb 3+ /Er 3+ layers by a heterogeneous precipitation method, leading to the formation of core-shell structural Gd 2 O 3 :Yb 3+ /Er 3+ @SiO 2 particles. The samples were characterized by using X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, upconversion (UC) emission spectra, and fluorescent dynamical analysis. The obtained core-shell particles have perfect spherical shape with narrow size distribution. Under the excitation of 980 nm diode laser, the core-shell samples showed size-dependent upconversion luminescence (UCL) properties. The inner SiO 2 cores in core-shell samples were proved to have limited effect on the total UCL intensities of Er 3+ ions. The UCL intensities of core-shell particles were demonstrated much higher than the values obtained in pure Gd 2 O 3 :Yb 3+ /Er 3+ with the same phosphor volume. The dependence of the specific area of a UCL shell on the size of its inner SiO 2 particle was calculated and analyzed for the first time. It was confirmed that the surface effect came from the outer surfaces of emitting shells is dominant in influencing the UCL property in the core-shell samples. Three-photon UC processes for the green emissions were observed in the samples with small sizes of SiO 2 cores. The results of dynamical analysis illustrated that more nonradiative relaxation occurred in the core-shell samples with smaller SiO 2 core sizes

  6. Ge/Si core/multi shell heterostructure FETs

    Energy Technology Data Exchange (ETDEWEB)

    Picraux, Samuel T [Los Alamos National Laboratory; Dayeh, Shadi A [Los Alamos National Laboratory

    2010-01-01

    Concentric heterostructured materials provide numerous design opportunities for engineering strain and interfaces, as well as tailoring energy band-edge combinations for optimal device performance. Key to the realization of such novel device concepts is the complete understanding and full control over their growth, crystal structure, and hetero-epitaxy. We report here on a new route for synthesizing Ge/Si core/multi-shell heterostructure nanowires that eliminate Au seed diffusion on the nanowire sidewalls by engineering the interface energy density difference. We show that such control over core/shell synthesis enable experimental realization of heterostructure FET devices beyond those available in the literature with enhanced transport characteristics. We provide a side-by-side comparison on the transport properties of Ge/Si core/multi-shell nanowires grown with and without Au diffusion and demonstrate heterostructure FETs with drive currents that are {approx} 2X higher than record results for p-type FETs.

  7. How to Determine the Core-Shell Nature in Bimetallic Catalyst Particles?

    Directory of Open Access Journals (Sweden)

    Emma Westsson

    2014-11-01

    Full Text Available Nanometer-sized materials have significantly different chemical and physical properties compared to bulk material. However, these properties do not only depend on the elemental composition but also on the structure, shape, size and arrangement. Hence, it is not only of great importance to develop synthesis routes that enable control over the final structure but also characterization strategies that verify the exact nature of the nanoparticles obtained. Here, we consider the verification of contemporary synthesis strategies for the preparation of bimetallic core-shell particles in particular in relation to potential particle structures, such as partial absence of core, alloying and raspberry-like surface. It is discussed what properties must be investigated in order to fully confirm a covering, pin-hole free shell and which characterization techniques can provide such information. Not uncommonly, characterization strategies of core-shell particles rely heavily on visual imaging like transmission electron microscopy. The strengths and weaknesses of various techniques based on scattering, diffraction, transmission and absorption for investigating core-shell particles are discussed and, in particular, cases where structural ambiguities still remain will be highlighted. Our main conclusion is that for particles with extremely thin or mono-layered shells—i.e., structures outside the limitation of most imaging techniques—other strategies, not involving spectroscopy or imaging, are to be employed. We will provide a specific example of Fe-Pt core-shell particles prepared in bicontinuous microemulsion and point out the difficulties that arise in the characterization process of such particles.

  8. Mesoporous coaxial titanium nitride-vanadium nitride fibers of core-shell structures for high-performance supercapacitors.

    Science.gov (United States)

    Zhou, Xinhong; Shang, Chaoqun; Gu, Lin; Dong, Shanmu; Chen, Xiao; Han, Pengxian; Li, Lanfeng; Yao, Jianhua; Liu, Zhihong; Xu, Hongxia; Zhu, Yuwei; Cui, Guanglei

    2011-08-01

    In this study, titanium nitride-vanadium nitride fibers of core-shell structures were prepared by the coaxial electrospinning, and subsequently annealed in the ammonia for supercapacitor applications. These core-shell (TiN-VN) fibers incorporated mesoporous structure into high electronic conducting transition nitride hybrids, which combined higher specific capacitance of VN and better rate capability of TiN. These hybrids exhibited higher specific capacitance (2 mV s(-1), 247.5 F g(-1)) and better rate capability (50 mV s(-1), 160.8 F g(-1)), which promise a good candidate for high-performance supercapacitors. It was also revealed by electrochemical impedance spectroscopy (EIS) and X-ray photoelectron spectroscopy (XPS) characterization that the minor capacitance fade originated from the surface oxidation of VN and TiN.

  9. Ni3Si(Al)/a-SiOx core shell nanoparticles: characterization, shell formation, and stability

    Science.gov (United States)

    Pigozzi, G.; Mukherji, D.; Gilles, R.; Barbier, B.; Kostorz, G.

    2006-08-01

    We have used an electrochemical selective phase dissolution method to extract nanoprecipitates of the Ni3Si-type intermetallic phase from two-phase Ni-Si and Ni-Si-Al alloys by dissolving the matrix phase. The extracted nanoparticles are characterized by transmission electron microscopy, energy-dispersive x-ray spectrometry, x-ray powder diffraction, and electron powder diffraction. It is found that the Ni3Si-type nanoparticles have a core-shell structure. The core maintains the size, the shape, and the crystal structure of the precipitates that existed in the bulk alloys, while the shell is an amorphous phase, containing only Si and O (SiOx). The shell forms around the precipitates during the extraction process. After annealing the nanoparticles in nitrogen at 700 °C, the tridymite phase recrystallizes within the shell, which remains partially amorphous. In contrast, on annealing in air at 1000 °C, no changes in the composition or the structure of the nanoparticles occur. It is suggested that the shell forms after dealloying of the matrix phase, where Si atoms, the main constituents of the shell, migrate to the surface of the precipitates.

  10. Recent advances in the synthesis of Fe3O4@AU core/shell nanoparticles

    International Nuclear Information System (INIS)

    Salihov, Sergei V.; Ivanenkov, Yan A.; Krechetov, Sergei P.; Veselov, Mark S.; Sviridenkova, Natalia V.; Savchenko, Alexander G.; Klyachko, Natalya L.; Golovin, Yury I.; Chufarova, Nina V.; Beloglazkina, Elena K.; Majouga, Alexander G.

    2015-01-01

    Fe 3 O 4 @Au core/shell nanoparticles have unique magnetic and optical properties. These nanoparticles are used for biomedical applications, such as magnetic resonance imaging, photothermal therapy, controlled drug delivery, protein separation, biosensors, DNA detection, and immunosensors. In this review, recent methods for the synthesis of core/shell nanoparticles are discussed. We divided all of the synthetic methods in two groups: methods of synthesis of bi-layer structures and methods of synthesis of multilayer composite structures. The latter methods have a layer of “glue” material between the core and the shell. - Highlights: • Fe 3 O 4 nanoparticles are promising for biomedical applications but have some disadvantages. • Covering Fe 3 O 4 nanoparticles with Au shell leads to better stability and biocompatibility. • Core/shell nanoparticles are widely used for biomedical applications. • There are two types of Fe 3 O 4 @Au core/shell nanoparticles structures: bi-layer and multilayer composite. • Different synthetic methods enable production of nanoparticles of different sizes

  11. Catalyst-free fabrication of novel ZnO/CuO core-Shell nanowires heterojunction: Controlled growth, structural and optoelectronic properties

    Science.gov (United States)

    Khan, Muhammad Arif; Wahab, Yussof; Muhammad, Rosnita; Tahir, Muhammad; Sakrani, Samsudi

    2018-03-01

    Development of controlled growth and vertically aligned ZnO/CuO core-shell heterojunction nanowires (NWs) with large area by a catalyst free vapor deposition and oxidation approach has been investigated. Structural characterization reveals successful fabrication of a core ZnO nanowire having single crystalline hexagonal wurtzite structure along [002] direction and CuO nanostructure shell with thickness (8-10 nm) having polycrystalline monoclinic structure. The optical property analysis suggests that the reflectance spectrum of ZnO/CuO heterostructure nanowires is decreased by 18% in the visible range, which correspondingly shows high absorption in this region as compared to pristine ZnO nanowires. The current-voltage (I-V) characteristics of core-shell heterojunction nanowires measured by conductive atomic force microscopy (C-AFM) shows excellent rectifying behavior, which indicates the characteristics of a good p-n junction. The high-resolution transmission electron microscopy (HRTEM) has confirmed the sharp junction interface between the core-shell heterojunction nanowire arrays. The valence band offset and conduction band offset at ZnO/CuO heterointerfaces are measured to be 2.4 ± 0.05 and 0.23 ± 0.005 eV respectively, using X-ray photoelectron spectroscopy (XPS) and a type-II band alignment structure is found. The results of this study contribute to the development of new advanced device heterostructures for solar energy conversion and optoelectronics applications.

  12. Optical absorption of carbon-gold core-shell nanoparticles

    Science.gov (United States)

    Wang, Zhaolong; Quan, Xiaojun; Zhang, Zhuomin; Cheng, Ping

    2018-01-01

    In order to enhance the solar thermal energy conversion efficiency, we propose to use carbon-gold core-shell nanoparticles dispersed in liquid water. This work demonstrates theoretically that an absorbing carbon (C) core enclosed in a plasmonic gold (Au) nanoshell can enhance the absorption peak while broadening the absorption band; giving rise to a much higher solar absorption than most previously studied core-shell combinations. The exact Mie solution is used to evaluate the absorption efficiency factor of spherical nanoparticles in the wavelength region from 300 nm to 1100 nm as well as the electric field and power dissipation profiles inside the nanoparticles at specified wavelengths (mostly at the localized surface plasmon resonance wavelength). The field enhancement by the localized plasmons at the gold surfaces boosts the absorption of the carbon particle, resulting in a redshift of the absorption peak with increased peak height and bandwidth. In addition to spherical nanoparticles, we use the finite-difference time-domain method to calculate the absorption of cubic core-shell nanoparticles. Even stronger enhancement can be achieved with cubic C-Au core-shell structures due to the localized plasmonic resonances at the sharp edges of the Au shell. The solar absorption efficiency factor can exceed 1.5 in the spherical case and reach 2.3 in the cubic case with a shell thickness of 10 nm. Such broadband absorption enhancement is in great demand for solar thermal applications including steam generation.

  13. Studies on II-VI and III-V semiconductor nanostructures. Introduction of the core/shell/shell structure and development of CdSe nanocrystals in an automatized procedure; Untersuchungen an II-VI und III-V Halbleiternanostrukturen. Einfuehrung der Core/shell/shell-Struktur und Darstellung von CdSe-Nanokristallen in einem automatisierten Verfahren

    Energy Technology Data Exchange (ETDEWEB)

    Mekis, I.

    2005-11-15

    The work in this dissertation is focused on the development and characterization of fluorescent II-VI and III-V-Nanomaterials. Highly luminescent and photostable Nanocrystals with narrow size distributions were prepared. It was shown that nearly monodisperse CdSe-Nanocrystals could be prepared from Cd(Ac){sub 2} and TOPSe in a mixture of TOPO/TOP/HDA/TDPA. Nearly monodisperse CdSe/CdS-Core/shell-Nanocrystals have been prepared in a one-pot-synthesis by injection of H{sub 2}S-Gas into a freshly prepared crude solution of CdSe. The passivation of the CdSe-core with an inorganic shell of CdS resulted in the drastic improvement of the photoluminescence-efficiency of the colloidal solution. Reproducible room-temperature quantum yields reached up to a value of 85%. Photostability investigations have proved the enhanced stability of CdSe/CdS-Nanocrystals compared to CdSe-Nanocrystals under illumination with UV-Light. A novel type of luminescent semiconductor nanocrystal structure has been developed, consisting of a CdSe core and two anorganic shells. Highly fluorescent and nearly monodisperse CdSe/CdS/ZnS- and CdSe/ZnSe/ZnS-Core/shell/shell-nanocrystals have been prepared via organometallic- and acetate-precursors. The Core/she ll/shell particles reached reproducible room-temperature quantum yields up to 85%. Photostability investigations among CdSe-core, CdSe/CdS-Core/shell- and CdSe/CdS/ZnS- Core/shell/-shell-nanocrystals under illumination with UV-light have proved the highest photostability of the Core/shell/shell-particles. The photostabilities of CdSe/ZnSe/ZnS-and CdSe/ZnS-nanocrystals were compared under illumination with intense laser-beam in air. Another part of this work focused on the development of an automated synthesis procedure of CdSe-nanocrystals by constructing and implementing a flow-reactor system. The size and structure of prepared nanocrystals depended considerably on the Cd:Se-precursorratio and the flow-rate. The preparation of CdSe using Cd(Ac)2

  14. Magnetic Behavior of Ni-Fe Core-Shell and Alloy Nanowires

    Science.gov (United States)

    Tripathy, Jagnyaseni; Vargas, Jose; Spinu, Leonard; Wiley, John

    2013-03-01

    Template assisted synthesis was used to fabricate a series of Ni-Fe core-shell and alloy nanowires. By controlling reaction conditions as well as pore structure, both systems could be targeted and magnetic properties followed as a function of architectures. In the core-shell structure coercivity increases with decrease in shell thickness while for the alloys, coercivity squareness improve with increase pore diameter. Details on the systematic studies of these materials will be presented in terms of hysteretic measurements, including first order reversal curves (FORC), and FMR data. Magnetic variation as a function of structure and nanowire aspect ratios will be presented and the origins of these behaviors discussed. Advanced Material Research Institute

  15. Predictable Particle Engineering: Programming the Energy Level, Carrier Generation, and Conductivity of Core-Shell Particles.

    Science.gov (United States)

    Yuan, Conghui; Wu, Tong; Mao, Jie; Chen, Ting; Li, Yuntong; Li, Min; Xu, Yiting; Zeng, Birong; Luo, Weiang; Yu, Lingke; Zheng, Gaofeng; Dai, Lizong

    2018-06-20

    Core-shell structures are of particular interest in the development of advanced composite materials as they can efficiently bring different components together at nanoscale. The advantage of this structure greatly relies on the crucial design of both core and shell, thus achieving an intercomponent synergistic effect. In this report, we show that decorating semiconductor nanocrystals with a boronate polymer shell can easily achieve programmable core-shell interactions. Taking ZnO and anatase TiO 2 nanocrystals as inner core examples, the effective core-shell interactions can narrow the band gap of semiconductor nanocrystals, change the HOMO and LUMO levels of boronate polymer shell, and significantly improve the carrier density of core-shell particles. The hole mobility of core-shell particles can be improved by almost 9 orders of magnitude in comparison with net boronate polymer, while the conductivity of core-shell particles is at most 30-fold of nanocrystals. The particle engineering strategy is based on two driving forces: catechol-surface binding and B-N dative bonding and having a high ability to control and predict the shell thickness. Also, this approach is applicable to various inorganic nanoparticles with different components, sizes, and shapes.

  16. Highly selective and sensitive methanol gas sensor based on molecular imprinted silver-doped LaFeO3 core-shell and cage structures

    Science.gov (United States)

    Rong, Qian; Zhang, Yumin; Lv, Tianping; Shen, Kaiyuan; Zi, Baoye; Zhu, Zhongqi; Zhang, Jin; Liu, Qingju

    2018-04-01

    Silver-doped LaFeO3 molecularly imprinted polymers (SLMIPs) were synthesized by a sol-gel method combined with molecularly imprinted technology as precursors. The precursors were then used to prepare SLMIPs cage (SLM-cage) and SLMIPs core-shell (SLM-core-shell) structures by using a carbon sphere as the template and hydrothermal synthesis, respectively. The structures, morphologies, and surface areas of these materials were determined, as well as their gas-sensing properties and related mechanisms. The SLM-cage and SLM-core-shell samples exhibited good responses to methanol gas, with excellent selectivity. The response and optimum working temperature were 16.98 °C and 215 °C, 33.7 °C and 195 °C, respectively, with corresponding response and recovery times of 45 and 50 s (SLM-cage) and 42 and 57 s (SLM-core-shell) for 5 ppm methanol gas. Notably, the SLM-cage and SLM-core-shell samples exhibited lower responses (≤5 and ≤7, respectively) to other gases, including ethanol, ammonia, benzene, acetone, and toluene. Thus, these materials show potential as practical methanol detectors.

  17. Structural Control of InP/ZnS Core/Shell Quantum Dots Enables High-quality White LEDs.

    Science.gov (United States)

    Ganesh Kumar, Baskaran; Sadeghi, Sadra; Melikov, Rustamzhon; Mohammadi Aria, Mohammed; Bahmani Jalali, Houman; Ow-Yang, Cleva; Nizamoglu, Sedat

    2018-05-30

    Herein, we demonstrate that the structural and optical control of InP-based quantum dots can lead to high-performance LEDs. Zinc sulphide (ZnS) shells passivate the InP quantum dot core and increase the quantum yield in green-emitting quantum dots by 13-fold and red-emitting quantum dots by 8-fold. The optimised quantum dots are integrated in the liquid-state to eliminate aggregation induced emission quenching and we fabricated white LEDs with warm, neutral, and cool white appearance by the down-conversion mechanism. The quantum dot-functionalized white LEDs achieve luminous efficiency up to 14.7 lm/W and colour-rendering index up to 80. The structural and optical control of InP/ZnS core/shell quantum dots enable 23-fold enhancement in luminous efficiency of white LEDs compared to ones containing only QDs of InP core. © 2018 IOP Publishing Ltd.

  18. Magnetite and magnetite/silver core/shell nanoparticles with diluted magnet-like behavior

    International Nuclear Information System (INIS)

    Garza-Navarro, Marco; Torres-Castro, Alejandro; Gonzalez, Virgilio; Ortiz, Ubaldo; De la Rosa, Elder

    2010-01-01

    In the present work is reported the use of the biopolymer chitosan as template for the preparation of magnetite and magnetite/silver core/shell nanoparticles systems, following a two step procedure of magnetite nanoparticles in situ precipitation and subsequent silver ions reduction. The crystalline and morphological characteristics of both magnetite and magnetite/silver core/shell nanoparticles systems were analyzed by high resolution transmission electron microscopy (HRTEM) and nanobeam diffraction patterns (NBD). The results of these studies corroborate the core/shell morphology and the crystalline structure of the magnetite core and the silver shell. Moreover, magnetization temperature dependent, M(T), measurements show an unusual diluted magnetic behavior attributed to the dilution of the magnetic ordering in the magnetite and magnetite/silver core/shell nanoparticles systems. - Graphical abstract: Biopolymer chitosan was used as stabilization media to synthesize both magnetite and magnetite/silver core/shell nanoparticles. Results of HRTEM and NBD patterns confirm core/shell morphology of the obtained nanoparticles. It was found that the composites show diluted magnet-like behavior.

  19. Soft shell hard core concept for aircraft impact resistant design

    International Nuclear Information System (INIS)

    Chen, C.; Rieck, P.J.

    1978-01-01

    For nuclear power plants sited in the vicinity of airports, the hypothetical events of aircraft impact have to be designed for. The conventional design concept is to strengthen the exterior structure to resist the impact induced force. The stiffened structures have two (2) disadvantages; one is the high construction cost, and the other is the high reaction force induced as well as the vibrational effects on the interior equipment and piping systems. This new soft shell hard core concept can relieve the above shortcomings. In this concept, the essential equipment required for safety are installed inside the hard core area for protection and the non-essential equipment are maintained between the hard core and soft shell area. During a hypothetical impact event, the soft shell will collapse locally and absorb large amounts of kinetic energy; hence, it reduces the reaction force and the vibrational effects. The design and analysis of the soft shell concept are discussed. (Author)

  20. Characterization of core-shell nanoparticles by small angle neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Strunz, P. [Nuclear Physics Institute (NPI), Rez (Czech Republic); Research Centre Rez, Rez (Czech Republic); Mukherji, D. [TU Braunschweig, IfW, Braunschweig (Germany); Pigozzi, G. [ETH Zuerich, Laboratory for Nanometallurgy, Zuerich (Switzerland); Gilles, R. [TU Muenchen, ZWE FRM-II, Garching (Germany); Geue, T. [PSI and ETH Zuerich, Laboratory for Neutron Scattering, Villigen PSI (Switzerland); Pranzas, K. [GKSS Research Centre, Institute of Materials Research, Geesthacht (Germany)

    2007-08-15

    The Ni{sub 3}Si-type nanoparticles dispersed in a mixture of H{sub 2}O/D{sub 2}O were characterised by SANS using the contrast variation method. The existence of a core-shell structure in the nanoparticles with a Ni{sub 3}Si(Al) core and amorphous SiO{sub x} shell is confirmed by the SANS measurements. The nanoparticles were produced by extracting precipitates from a bulk Ni-13.3Si-2Al (at. %) alloy using electrochemical phase separation technique and were pre-characterised by X-ray diffraction and transmission electron microscopy. By comparing the precipitate morphology in the Ni-Si-Al alloy with the extracted nanoparticles in the SANS measurements, it is clearly established that the precipitates shape and size are unaffected by the extraction process and that the amorphous shell forms on top of the particle core. However, the present measurement could not confirm or exclude the presence of H atoms in the shell structure. (orig.)

  1. Magnetic response of hybrid ferromagnetic and antiferromagnetic core-shell nanostructures.

    Science.gov (United States)

    Khan, U; Li, W J; Adeela, N; Irfan, M; Javed, K; Wan, C H; Riaz, S; Han, X F

    2016-03-21

    The synthesis of FeTiO3-Ni(Ni80Fe20) core-shell nanostructures by a two-step method (sol-gel and DC electrodeposition) has been demonstrated. XRD analysis confirms the rhombohedral crystal structure of FeTiO3(FTO) with space group R3[combining macron]. Transmission electron microscopy clearly depicts better morphology of nanostructures with shell thicknesses of ∼25 nm. Room temperature magnetic measurements showed significant enhancement of magnetic anisotropy for the permalloy (Ni80Fe20)-FTO over Ni-FTO core-shell nanostructures. Low temperature magnetic measurements of permalloy-FeTiO3 core-shell structure indicated a strong exchange bias mechanism with magnetic coercivity below the antiferromagnetic Neel temperature (TN = 59 K). The exchange bias is attributed to the alignment of magnetic moments in the antiferromagnetic material at low temperature. Our scheme opens a path towards optimum automotive systems and wireless communications wherein broader bandwidths and smaller sizes are required.

  2. An ultrasonic methodology for in-service inspection of shell weld of core support structure in a sodium cooled fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Anish, E-mail: anish@igcar.gov.in; Rajkumar, K.V.; Sharma, Govind K.; Dhayalan, R.; Jayakumar, T.

    2015-02-15

    Highlights: • We demonstrate a novel ultrasonic methodology for in-service inspection of shell weld of core support structure in a sodium cooled fast breeder reactor. • The methodology comprises of the inspection of shell weld immersed in sodium from the outside surface of the main vessel using ultrasonic guided wave. • The formation and propagation of guided wave modes are validated by finite element simulation of the inspection methodology. • A defect down to 20% of 30 mm thick wall (∼6 mm) in the shell weld can be detected reliably using the developed methodology. - Abstract: The paper presents a novel ultrasonic methodology developed for in-service inspection (ISI) of shell weld of core support structure of main vessel of 500 MWe prototype fast breeder reactor (PFBR). The methodology comprises of the inspection of shell weld immersed in sodium from the outsider surface of the main vessel using a normal beam longitudinal wave ultrasonic transducer. Because of the presence of curvature in the knuckle region of the main vessel, the normal beam longitudinal wave enters the support shell plate at an angle and forms the guided waves by mode conversion and multiple reflections from the boundaries of the shell plate. Hence, this methodology can be used to detect defects in the shell weld of the core support structure. The successful demonstration of the methodology on a mock-up sector made of stainless steel indicated that an artificial defect down to 20% of 30 mm thick wall (∼6 mm) in the shell weld can be detected reliably.

  3. Preparation, Characterization, and Electrochromic Properties of Nanocellulose-Based Polyaniline Nanocomposite Films.

    Science.gov (United States)

    Zhang, Sihang; Sun, Gang; He, Yongfeng; Fu, Runfang; Gu, Yingchun; Chen, Sheng

    2017-05-17

    On the basis of nanocellulose obtained by acidic swelling and ultrasonication, rodlike nanocellulose/polyaniline nanocomposites with a core-shell structure have been prepared via in situ polymerization. Compared to pure polyaniline, the nanocomposites show superior film-forming properties, and the prepared nanocomposite films demonstrate excellent electrochemical and electrochromic properties in electrolyte solution. Nanocomposite films, especially the one prepared with 40% polyaniline coated nanocomposite, exhibited faster response time (1.5 s for bleaching and 1.0 s for coloring), higher optical contrast (62.9%), higher coloration efficiency (206.2 cm 2 /C), and more remarkable switching stability (over 500 cycles). These novel nanocellulose-based nanorod network films are promising novel electrochromic materials with excellent properties.

  4. Synthesis of Au NP@MoS2 Quantum Dots Core@Shell Nanocomposites for SERS Bio-Analysis and Label-Free Bio-Imaging

    Directory of Open Access Journals (Sweden)

    Xixi Fei

    2017-06-01

    Full Text Available In this work, we report a facile method using MoS2 quantum dots (QDs as reducers to directly react with HAuCl4 for the synthesis of Au nanoparticle@MoS2 quantum dots (Au NP@MoS2 QDs core@shell nanocomposites with an ultrathin shell of ca. 1 nm. The prepared Au NP@MoS2 QDs reveal high surface enhanced Raman scattering (SERS performance regarding sensitivity as well as the satisfactory SERS reproducibility and stability. The limit of detection of the hybrids for crystal violet can reach 0.5 nM with a reasonable linear response range from 0.5 μM to 0.5 nM (R2 ≈ 0.974. Furthermore, the near-infrared SERS detection based on Au NP@MoS2 QDs in living cells is achieved with distinct Raman signals which are clearly assigned to the various cellular components. Meanwhile, the distinguishable SERS images are acquired from the 4T1 cells with the incubation of Au NP@MoS2 QDs. Consequently, the straightforward strategy of using Au NP@MoS2 QDs exhibits great potential as a superior SERS substrate for chemical and biological detection as well as bio-imaging.

  5. Multi-core MgO NPs(at)C core-shell nanospheres for selective CO2 capture under mild conditions

    International Nuclear Information System (INIS)

    Tae Kyung Kim; Kyung Joo Lee; Hoi Ri Moon; Junhan Yuh; Sang Kyu Kwak

    2014-01-01

    The core-shell structures have attracted attention in catalysis, because the outer shells isolate the catalytically active NP cores and prevent the possibility of sintering of core particles during catalytic reaction under physically and chemically harsh conditions. We aimed to adopt this core-shell system for CO 2 sorption materials. In this study, a composite material of multi-core 3 nm-sized magnesium oxide nanoparticles embedded in porous carbon nanospheres (MgO NPs(at)C) was synthesized by a gas phase reaction via a solvent-free process. It showed selective CO 2 adsorption capacity over N 2 under mild regeneration conditions. (authors)

  6. Ni(3)Si(Al)/a-SiO(x) core-shell nanoparticles: characterization, shell formation, and stability.

    Science.gov (United States)

    Pigozzi, G; Mukherji, D; Gilles, R; Barbier, B; Kostorz, G

    2006-08-28

    We have used an electrochemical selective phase dissolution method to extract nanoprecipitates of the Ni(3)Si-type intermetallic phase from two-phase Ni-Si and Ni-Si-Al alloys by dissolving the matrix phase. The extracted nanoparticles are characterized by transmission electron microscopy, energy-dispersive x-ray spectrometry, x-ray powder diffraction, and electron powder diffraction. It is found that the Ni(3)Si-type nanoparticles have a core-shell structure. The core maintains the size, the shape, and the crystal structure of the precipitates that existed in the bulk alloys, while the shell is an amorphous phase, containing only Si and O (SiO(x)). The shell forms around the precipitates during the extraction process. After annealing the nanoparticles in nitrogen at 700 °C, the tridymite phase recrystallizes within the shell, which remains partially amorphous. In contrast, on annealing in air at 1000 °C, no changes in the composition or the structure of the nanoparticles occur. It is suggested that the shell forms after dealloying of the matrix phase, where Si atoms, the main constituents of the shell, migrate to the surface of the precipitates.

  7. Characterization of core/shell structures based on CdTe and GaAs nanocrystalline layers deposited on SnO2 microwires

    Science.gov (United States)

    Ghimpu, L.; Ursaki, V. V.; Pantazi, A.; Mesterca, R.; Brâncoveanu, O.; Shree, Sindu; Adelung, R.; Tiginyanu, I. M.; Enachescu, M.

    2018-04-01

    We report the fabrication and characterization of SnO2/CdTe and SnO2/GaAs core/shell microstructures. CdTe or GaAs shell layers were deposited by radio-frequency (RF) magnetron sputtering on core SnO2 microwires synthesized by a flame-based thermal oxidation method. The produced structures were characterized by scanning electron microscopy (SEM), high-resolution scanning transmission electron microscope (HR-STEM), X-ray diffraction (XRD), Raman scattering and FTIR spectroscopy. It was found that the SnO2 core is of the rutile type, while the shells are composed of CdTe or GaAs nanocrystallites of zincblende structure with the dimensions of crystallites in the range of 10-20 nm. The Raman scattering investigations demonstrated that the quality of the porous nanostructured shell is improved by annealing at temperatures of 420-450 °C. The prospects of implementing these microstructures in intrinsic type fiber optic sensors are discussed.

  8. Synthesis, characterization and nitrite ion sensing performance of reclaimable composite samples through a core-shell structure

    Science.gov (United States)

    Cui, Xiao; Yuqing, Zhao; Cui, Jiantao; Zheng, Qian; Bo, Wang

    2018-02-01

    The following paper reported and discussed a nitrite ion optical sensing platform based on a core-shell structure, using superamagnetic nanoparticles as the core, a silica molecular sieve MCM-41 as the shell and two rhodamine derivatives as probe, respectively. This superamagnetic core made this sensing platform reclaimable after finishing nitrite ion sensing procedure. This sensing platform was carefully characterized by means of electron microscopy images, porous structure analysis, magnetic response, IR spectra and thermal stability analysis. Detailed analysis suggested that the emission of these composite samples was quenchable by nitrite ion, showing emission turn off effect. A static sensing mechanism based on an additive reaction between chemosensors and nitrite ion was proposed. These composite samples followed Demas quenching equation against different nitrite ion concentrations. Limit of detection value was obtained as low as 0.4 μM. It was found that, after being quenched by nitrite ion, these composite samples could be reclaimed and recovered by sulphamic acid, confirming their recyclability.

  9. Electrostatic Self-Assembly of Au Nanoparticles onto Thermosensitive Magnetic Core-Shell Microgels for Thermally Tunable and Magnetically Recyclable Catalysis.

    Science.gov (United States)

    Liu, Guoqiang; Wang, Daoai; Zhou, Feng; Liu, Weimin

    2015-06-01

    A facile route to fabricate a nanocomposite of Fe3O4@poly[N-isopropylacrylamide (NIPAM)-co-2-(dimethylamino)ethyl methacrylate (DMAEMA)]@Au (Fe3O4@PND@Au) is developed for magnetically recyclable and thermally tunable catalysis. The negatively charged Au nanoparticles with an average diameter of 10 nm are homogeneously loaded onto positively charged thermoresponsive magnetic core-shell microgels of Fe3O4@poly(NIPAM-co-DMAEMA) (Fe3O4@PND) through electrostatic self-assembly. This type of attachment offers perspectives for using charged polymeric shell on a broad variety of nanoparticles to immobilize the opposite-charged nanoparticles. The thermosensitive PND shell with swollen or collapsed properties can be as a retractable Au carrier, thereby tuning the aggregation or dispersion of Au nanoparticles, which leads to an increase or decrease of catalytic activity. Therefore, the catalytic activity of Fe3O4@PND@Au can be modulated by the volume transition of thermosensitive microgel shells. Importantly, the mode of tuning the aggregation or dispersion of Au nanoparticles using a thermosensitive carrier offers a novel strategy to adjust and control the catalytic activity, which is completely different with the traditional regulation mode of controlling the diffusion of reactants toward the catalytic Au core using the thermosensitive poly(N-isopropylacrylamide) network as a nanogate. Concurrent with the thermally tunable catalysis, the magnetic susceptibility of magnetic cores enables the Fe3O4@PND@Au nanocomposites to be capable of serving as smart nanoreactors for thermally tunable and magnetically recyclable catalysis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Nano-engineering of three-dimensional core/shell nanotube arrays for high performance supercapacitors

    Science.gov (United States)

    Grote, Fabian; Wen, Liaoyong; Lei, Yong

    2014-06-01

    Large-scale arrays of core/shell nanostructures are highly desirable to enhance the performance of supercapacitors. Here we demonstrate an innovative template-based fabrication technique with high structural controllability, which is capable of synthesizing well-ordered three-dimensional arrays of SnO2/MnO2 core/shell nanotubes for electrochemical energy storage in supercapacitor applications. The SnO2 core is fabricated by atomic layer deposition and provides a highly electrical conductive matrix. Subsequently a thin MnO2 shell is coated by electrochemical deposition onto the SnO2 core, which guarantees a short ion diffusion length within the shell. The core/shell structure shows an excellent electrochemical performance with a high specific capacitance of 910 F g-1 at 1 A g-1 and a good rate capability of remaining 217 F g-1 at 50 A g-1. These results shall pave the way to realize aqueous based asymmetric supercapacitors with high specific power and high specific energy.

  11. Design and intestinal mucus penetration mechanism of core-shell nanocomplex.

    Science.gov (United States)

    Zhang, Xin; Cheng, Hongbo; Dong, Wei; Zhang, Meixia; Liu, Qiaoyu; Wang, Xiuhua; Guan, Jian; Wu, Haiyang; Mao, Shirui

    2018-02-28

    The objective of this study was to design intestinal mucus-penetrating core-shell nanocomplex by functionally mimicking the surface of virus, which can be used as the carrier for peroral delivery of macromolecules, and further understand the influence of nanocomplex surface properties on the mucosal permeation capacity. Taking insulin as a model drug, the core was formed by the self-assembly among positively charged chitosan, insulin and negatively charged sodium tripolyphosphate, different types of alginates were used as the shell forming material. The nanocomplex was characterized by dynamic light scattering (DLS), atomic force microscopy (AFM) and FTIR. Nanocomplex movement in mucus was recorded using multiple particle tracking (MPT) method. Permeation and uptake of different nanocomplex were studied in rat intestine. It was demonstrated that alginate coating layer was successfully formed on the core and the core-shell nanocomplex showed a good physical stability and improved enzymatic degradation protection. The mucus penetration and MPT study showed that the mucus penetration capacity of the nanocomplex was surface charge and coating polymer structure dependent, nanocomplex with negative alginate coating had 1.6-2.5 times higher mucus penetration ability than that of positively charged chitosan-insulin nanocomplex. Moreover, the mucus penetration ability of the core-shell nanocomplex was alginate structure dependent, whereas alginate with lower G content and lower molecular weight showed the best permeation enhancing ability. The improvement of intestine permeation and intestinal villi uptake of the core-shell nanocomplex were further confirmed in rat intestine and multiple uptake mechanisms were involved in the transport process. In conclusion, core-shell nanocomplex composed of oppositely charged materials could provide a strategy to overcome the mucus barrier and enhance the mucosal permeability. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. A novel approach to preparing magnetic protein microspheres with core-shell structure

    Science.gov (United States)

    Jiang, Wei; Sun, Zhendong; Li, Fengsheng; Chen, Kai; Liu, Tianyu; Liu, Jialing; Zhou, Tianle; Guo, Rui

    2011-03-01

    Magnetic protein microspheres with core-shell structure were prepared through a novel approach based on the sonochemical method and the emulsion solvent evaporation method. The microspheres are composed of the oleic acid and undecylenic acid modified Fe 3O 4 cores and coated with globular bovine serum albumin (BSA). Under an optimized condition, up to 57.8 wt% of approximately 10 nm superparamagnetic Fe 3O 4 nanoparticles could be uniformly encapsulated into the BSA microspheres with the diameter of approximately 160 nm and the high saturation magnetization of 38.5 emu/g, besides of the abundant functional groups. The possible formation mechanism of magnetic microspheres was discussed in detail.

  13. Magnetic and photoluminescence properties of Fe{sub 3}O{sub 4}-SiO{sub 2}-YP{sub 1-x}V{sub x}O{sub 4}:Dy{sup 3+} nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Shi Jianhui; Liu Deming; Tong Lizhu; Yang Xuwei [College of Chemistry, Jilin University, Changchun, 130012 (China); Yang Hua, E-mail: huayang86@sina.com [College of Chemistry, Jilin University, Changchun, 130012 (China)

    2011-10-20

    Highlights: > Bifunctional Fe{sub 3}O{sub 4}-SiO{sub 2}-YP{sub 0.1}V{sub 0.9}O{sub 4}:Dy{sup 3+} nanocomposite was fabricated by a sol-gel method. > The structure, luminescent and magnetic properties were characterized of the nanocomposites. > It is shown that the nanocomposite with a core-shell structure has excellent fluorescent and magnetic properties. > The effects of the magnetic field on the luminescence properties of nanocomposite were discussed. - Abstract: In this paper, we report on the bifunctional Fe{sub 3}O{sub 4}-SiO{sub 2}-YP{sub 0.1}V{sub 0.9}O{sub 4}:Dy{sup 3+} nanocomposites were prepared by the solvothermal method and sol-gel method. The structure, photoluminescence (PL) and magnetic properties of the nanocomposites were characterized by means of X-ray diffraction, scanning electron microscope, transmission electron microscope, PL excitation and emission spectra and vibration sample magnetometry. It is shown that Fe{sub 3}O{sub 4}-SiO{sub 2}-YP{sub 0.1}V{sub 0.9}O{sub 4}:Dy{sup 3+} nanocomposites with a core-shell structure present excellent fluorescent and magnetic properties. Additionally, the effects of the magnetic field on the luminescence properties of nanocomposites were discussed.

  14. A Study on the Plasmonic Properties of Silver Core Gold Shell Nanoparticles: Optical Assessment of the Particle Structure

    Science.gov (United States)

    Mott, Derrick; Lee, JaeDong; Thi Bich Thuy, Nguyen; Aoki, Yoshiya; Singh, Prerna; Maenosono, Shinya

    2011-06-01

    This paper reports a qualitative comparison between the optical properties of a set of silver core, gold shell nanoparticles with varying composition and structure to those calculated using the Mie solution. To achieve this, silver nanoparticles were synthesized in aqueous phase from a silver hydroxide precursor with sodium acrylate as dual reducing-capping agent. The particles were then coated with a layer of gold with controllable thickness through a reduction-deposition process. The resulting nanoparticles reveal well defined optical properties that make them suitable for comparison to ideal calculated results using the Mie solution. The discussion focuses on the correlation between the synthesized core shell nanoparticles with varying Au shell thickness and the Mie solution results in terms of the optical properties. The results give insight in how to design and synthesize silver core, gold shell nanoparticles with controllable optical properties (e.g., SPR band in terms of intensity and position), and has implications in creating nanoparticle materials to be used as biological probes and sensing elements.

  15. Multiple Interfacial Fe3O4@BaTiO3/P(VDF-HFP) Core-Shell-Matrix Films with Internal Barrier Layer Capacitor (IBLC) Effects and High Energy Storage Density.

    Science.gov (United States)

    Zhou, Ling; Fu, Qiuyun; Xue, Fei; Tang, Xiahui; Zhou, Dongxiang; Tian, Yahui; Wang, Geng; Wang, Chaohong; Gou, Haibo; Xu, Lei

    2017-11-22

    Flexible nanocomposites composed of high dielectric constant fillers and polymer matrix have shown great potential for electrostatic capacitors and energy storage applications. To obtain the composited material with high dielectric constant and high breakdown strength, multi-interfacial composited particles, which composed of conductive cores and insulating shells and possessed the internal barrier layer capacitor (IBLC) effect, were adopted as fillers. Thus, Fe 3 O 4 @BaTiO 3 core-shell particles were prepared and loaded into the poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-HFP)) polymer matrix. As the mass fraction of core-shell fillers increased from 2.5 wt % to 30 wt %, the dielectric constant of the films increased, while the loss tangent remained at a low level (capacitor model was also adopted to interpret the efficiency of IBLC effects on the suppressed loss tangent and the superior breakdown strength. This work explored an effective approach to prepare dielectric nanocomposites for energy storage applications experimentally and theoretically.

  16. Nitride stabilized core/shell nanoparticles

    Science.gov (United States)

    Kuttiyiel, Kurian Abraham; Sasaki, Kotaro; Adzic, Radoslav R.

    2018-01-30

    Nitride stabilized metal nanoparticles and methods for their manufacture are disclosed. In one embodiment the metal nanoparticles have a continuous and nonporous noble metal shell with a nitride-stabilized non-noble metal core. The nitride-stabilized core provides a stabilizing effect under high oxidizing conditions suppressing the noble metal dissolution during potential cycling. The nitride stabilized nanoparticles may be fabricated by a process in which a core is coated with a shell layer that encapsulates the entire core. Introduction of nitrogen into the core by annealing produces metal nitride(s) that are less susceptible to dissolution during potential cycling under high oxidizing conditions.

  17. Large-area super-resolution optical imaging by using core-shell microfibers

    Science.gov (United States)

    Liu, Cheng-Yang; Lo, Wei-Chieh

    2017-09-01

    We first numerically and experimentally report large-area super-resolution optical imaging achieved by using core-shell microfibers. The particular spatial electromagnetic waves for different core-shell microfibers are studied by using finite-difference time-domain and ray tracing calculations. The focusing properties of photonic nanojets are evaluated in terms of intensity profile and full width at half-maximum along propagation and transversal directions. In experiment, the general optical fiber is chemically etched down to 6 μm diameter and coated with different metallic thin films by using glancing angle deposition. The direct imaging of photonic nanojets for different core-shell microfibers is performed with a scanning optical microscope system. We show that the intensity distribution of a photonic nanojet is highly related to the metallic shell due to the surface plasmon polaritons. Furthermore, large-area super-resolution optical imaging is performed by using different core-shell microfibers placed over the nano-scale grating with 150 nm line width. The core-shell microfiber-assisted imaging is achieved with super-resolution and hundreds of times the field-of-view in contrast to microspheres. The possible applications of these core-shell optical microfibers include real-time large-area micro-fluidics and nano-structure inspections.

  18. Novel three-dimensional tin/carbon hybrid core/shell architecture with large amount of solid cross-linked micro/nanochannels for lithium ion battery application

    International Nuclear Information System (INIS)

    Yang, Zunxian; Meng, Qing; Yan, Wenhuan; Lv, Jun; Guo, Zaiping; Yu, Xuebin; Chen, Zhixin; Guo, Tailiang; Zeng, Rong

    2015-01-01

    Uniform Sn/C hybrid core/shell nanocomposites were synthesized by a combination of electrospinning and subsequent thermal treatment in a reducing atmosphere. The particular three-dimensional architecture, consisting of a Sn@C nanoparticle core and porous hollow carbon nanofiber shell, is characterized by many micro/nanochannels, enhanced mechanical support from the three-dimensional hollow carbon shell, and the abundant porous carbon matrix. The as-prepared Sn/C core/shell nanomaterials exhibit excellent electrochemical performance. They display a reversible capacity of 546.7 mAhg −1 up to 100 cycles at the current density of 40 mAg −1 and good rate capability of 181.8 mAhg −1 at 4000 mAg −1 . These results indicate that the composite could be a promising anode candidate for lithium ion batteries. - Highlights: • Sn/C core/shell composites were synthesized by an electrospinning, a hydrothermal process, and further thermal treatment. • The best-performing 3D composite consists of a Sn@C nanoparticle core and porous hollow carbon nanofiber shell. • The Sn/C composite electrode exhibit excellent Li ion storage capacity and cycling stability

  19. Alternating current dielectrophoresis of core-shell nanoparticles: Experiments and comparison with theory

    Science.gov (United States)

    Yang, Chungja

    Nanoparticles are fascinating where physical and optical properties are related to size. Highly controllable synthesis methods and nanoparticle assembly are essential for highly innovative technological applications. Well-defined shaped and sized nanoparticles enable comparisons between experiments, theory and subsequent new models to explain experimentally observed phenomena. Among nanoparticles, nonhomogeneous core-shell nanoparticles (CSnp) have new properties that arise when varying the relative dimensions of the core and the shell. This CSnp structure enables various optical resonances, and engineered energy barriers, in addition to the high charge to surface ratio. Assembly of homogeneous nanoparticles into functional structures has become ubiquitous in biosensors (i.e. optical labeling), nanocoatings, and electrical circuits. Limited nonhomogenous nanoparticle assembly has only been explored. Many conventional nanoparticle assembly methods exist, but this work explores dielectrophoresis (DEP) as a new method. DEP is particle polarization via non-uniform electric fields while suspended in conductive fluids. Most prior DEP efforts involve microscale particles. Prior work on core-shell nanoparticle assemblies and separately, nanoparticle characterizations with dielectrophoresis and electrorotation, did not systematically explore particle size, dielectric properties (permittivity and electrical conductivity), shell thickness, particle concentration, medium conductivity, and frequency. This work is the first, to the best of our knowledge, to systematically examine these dielectrophoretic properties for core-shell nanoparticles. Further, we conduct a parametric fitting to traditional core-shell models. These biocompatible core-shell nanoparticles were studied to fill a knowledge gap in the DEP field. Experimental results (chapter 5) first examine medium conductivity, size and shell material dependencies of dielectrophoretic behaviors of spherical CSnp into 2D and

  20. Development of core-shell coaxially electrospun composite PCL/chitosan scaffolds.

    Science.gov (United States)

    Surucu, Seda; Turkoglu Sasmazel, Hilal

    2016-11-01

    This study was related to combining of synthetic Poly (ε-caprolactone) (PCL) and natural chitosan polymers to develop three dimensional (3D) PCL/chitosan core-shell scaffolds for tissue engineering applications. The scaffolds were fabricated with coaxial electrospinning technique and the characterizations of the samples were done by thickness and contact angle (CA) measurements, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-Ray Photoelectron Spectroscopy (XPS) analyses, mechanical and PBS absorption and shrinkage tests. The average inter-fiber diameter values were calculated for PCL (0.717±0.001μm), chitosan (0.660±0.007μm) and PCL/chitosan core-shell scaffolds (0.412±0.003μm), also the average inter-fiber pore size values exhibited decreases of 66.91% and 61.90% for the PCL and chitosan scaffolds respectively, compared to PCL/chitosan core-shell ones. XPS analysis of the PCL/chitosan core-shell structures exhibited the characteristic peaks of PCL and chitosan polymers. The cell culture studies (MTT assay, Confocal Laser Scanning Microscope (CLSM) and SEM analyses) carried out with L929 ATCC CCL-1 mouse fibroblast cell line proved that the biocompatibility performance of the scaffolds. The obtained results showed that the created micro/nano fibrous structure of the PCL/chitosan core-shell scaffolds in this study increased the cell viability and proliferation on/within scaffolds. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Core/shell structure NiCo2O4@MnCo2O4 nanofibers fabricated by different temperatures for high-performance supercapacitors

    Science.gov (United States)

    Wang, Qing; Qin, Xuefeng; Jiang, Pengcheng; Dai, Jianfeng; Li, Weixue; Gao, Haoran

    2018-03-01

    Core/shell structure NiCo2O4@MnCo2O4 nanofibers (NiCo2O4@MnCo2O4 NFs) were prepared by a facile co-electrospinning method and heat treatment. The composites annealed at 500 °C have a complete, continuously obvious core/shell structure, and clear interface of composites with good morphology, while annealed at 600 °C were stacked on each other and were unable to sustain three-dimensional network structures and 700 °C calcination have completely lost one-dimensional structure. The core NiCo2O4 is about 70 nm in diameter and the MnCo2O4 shell behaves a thickness about 60 nm. When investigated as an electrode material for supercapacitors, the NiCo2O4@MnCo2O4 NFs annealed at 500 °C exihibited the specific capacitance of 463 F g-1 (0.926 F cm-2) at 1 A g-1, higher than that annealed at 600 °C 362 F g-1, 1 A g-1 (0.724 F cm-2, 1 A g-1) and 700 °C 283 F g-1, 1 A g-1 (0.566 F cm-2, 1 A g-1). These results suggest that core/shell NiCo2O4@MnCo2O4 NFs annealed at 500 °C have formed a good morphology with continuously complete core/shell structure which lead to good properties would be potential electrodes for supercapacitors.

  2. Core-Shell Composite Fibers for High-Performance Flexible Supercapacitor Electrodes.

    Science.gov (United States)

    Lu, Xiaoyan; Shen, Chen; Zhang, Zeyang; Barrios, Elizabeth; Zhai, Lei

    2018-01-31

    Core-shell nanofibers containing poly(acrylic acid) (PAA) and manganese oxide nanoparticles as the core and polypyrrole (PPy) as the shell were fabricated through electrospinning the solution of PAA and manganese ions (PAA/Mn 2+ ). The obtained nanofibers were stabilized by Fe 3+ through the interaction between Fe 3+ ions and carboxylate groups. Subsequent oxidation of Mn 2+ by KMnO 4 produced uniform manganese dioxide (MnO 2 ) nanoparticles in the fibers. A PPy shell was created on the fibers by immersing the fibers in a pyrrole solution where the Fe 3+ ions in the fiber polymerized the pyrrole on the fiber surfaces. In the MnO 2 @PAA/PPy core-shell composite fibers, MnO 2 nanoparticles function as high-capacity materials, while the PPy shell prevents the loss of MnO 2 during the charge/discharge process. Such a unique structure makes the composite fibers efficient electrode materials for supercapacitors. The gravimetric specific capacity of the MnO 2 @PAA/PPy core-shell composite fibers was 564 F/g based on cyclic voltammetry curves at 10 mV/s and 580 F/g based on galvanostatic charge/discharge studies at 5 A/g. The MnO 2 @PAA/PPy core-shell composite fibers also present stable cycling performance with 100% capacitance retention after 5000 cycles.

  3. Fe3O4@ZnO core-shell nanocomposites for efficient and repetitive removal of low density lipoprotein in plasma and on blood vessel

    International Nuclear Information System (INIS)

    Huang, Xiao; Lu, Juan; Yue, Danyang; Fan, Yijuan; Yi, Caixia; Wang, Xiaoying; Zhang, Mengxue; Pan, Jun

    2015-01-01

    Low density lipoprotein (LDL)-apheresis therapy, which directly removes LDL from plasma by LDL-adsorbents in vitro is found to be clinically effective and safe to lower the LDL content in blood to prevent cardiovascular disease. Thus, developing excellent LDL adsorbents are becoming more and more attractive. Herein, functional Fe 3 O 4 @ZnO core–shell nanocomposites have been synthesized by a facile and eco-friendly two-step method. Not only do they possess high LDL adsorption (in PBS/plasma as well as on blood vessels) and favorable magnetic targeting ability but they can also be reused conveniently, which offer the Fe 3 O 4 @ZnO core–shell nanocomposites significant potential in the removal of LDL in vitro and in vivo. (paper)

  4. Nitrite sensing composite systems based on a core-shell emissive-superamagnetic structure: Construction, characterization and sensing behavior

    Science.gov (United States)

    Yang, Yan; Liu, Liang; Zha, Jianhua; Yuan, Ningyi

    2017-04-01

    Two recyclable nitrite sensing composite samples were designed and constructed through a core-shell structure, with Fe3O4 nanoparticles as core, silica molecular sieve MCM-41 as shell and two rhodamine derivatives as chemosensors, respectively. These samples and their structure were identified with their electron microscopy images, N2 adsorption/desorption isotherms, magnetic response, IR spectra and thermogravimetric analysis. Their nitrite sensing behavior was discussed based on emission intensity quenching, their limit of detection was found as low as 1.2 μM. Further analysis suggested a static sensing mechanism between nitrite and chemosensors through an additive reaction between NO+ and chemosensors. After finishing their nitrite sensing, these composite samples and their emission could be recycled and recovered by sulphamic acid.

  5. Single and multi-layered core-shell structures based on ZnO nanorods obtained by aerosol assisted chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Sáenz-Trevizo, A.; Amézaga-Madrid, P.; Pizá-Ruiz, P.; Antúnez-Flores, W.; Ornelas-Gutiérrez, C.; Miki-Yoshida, M., E-mail: mario.miki@cimav.edu.mx

    2015-07-15

    Core–shell nanorod structures were prepared by a sequential synthesis using an aerosol assisted chemical vapor deposition technique. Several samples consisting of ZnO nanorods were initially grown over TiO{sub 2} film-coated borosilicate glass substrates, following the synthesis conditions reported elsewhere. Later on, a uniform layer consisting of individual Al, Ni, Ti or Fe oxides was grown onto ZnO nanorod samples forming the so-called single MO{sub x}/ZnO nanorod core–shell structures, where MO{sub x} was the metal oxide shell. Additionally, a three-layer core–shell sample was developed by growing Fe, Ti and Fe oxides alternately, onto the ZnO nanorods. The microstructure of the core–shell materials was characterized by grazing incidence X-ray diffraction, scanning and transmission electron microscopy. Energy dispersive X-ray spectroscopy was employed to corroborate the formation of different metal oxides. X-ray diffraction outcomes for single core–shell structures showed solely the presence of ZnO as wurtzite and TiO{sub 2} as anatase. For the multi-layered shell sample, the existence of Fe{sub 2}O{sub 3} as hematite was also detected. Morphological observations suggested the existence of an outer material grown onto the nanorods and further microstructural analysis by HR-STEM confirmed the development of core–shell structures in all cases. These studies also showed that the individual Al, Fe, Ni and Ti oxide layers are amorphous; an observation that matched with X-ray diffraction analysis where no apparent extra oxides were detected. For the multi-layered sample, the development of a shell consisting of three different oxide layers onto the nanorods was found. Overall results showed that no alteration in the primary ZnO core was produced during the growth of the shells, indicating that the deposition technique used herein was and it is suitable for the synthesis of homogeneous and complex nanomaterials high in quality and purity. In addition

  6. Addressing Challenges and Scalability in the Synthesis of Thin Uniform Metal Shells on Large Metal Nanoparticle Cores: Case Study of Ag-Pt Core-Shell Nanocubes.

    Science.gov (United States)

    Aslam, Umar; Linic, Suljo

    2017-12-13

    Bimetallic nanoparticles in which a metal is coated with an ultrathin (∼1 nm) layer of a second metal are often desired for their unique chemical and physical properties. Current synthesis methods for producing such core-shell nanostructures often require incremental addition of a shell metal precursor which is rapidly reduced onto metal cores. A major shortcoming of this approach is that it necessitates precise concentrations of chemical reagents, making it difficult to perform at large scales. To address this issue, we considered an approach whereby the reduction of the shell metal precursor was controlled through in situ chemical modification of the precursor. We used this approach to develop a highly scalable synthesis for coating atomic layers of Pt onto Ag nanocubes. We show that Ag-Pt core-shell nanostructures are synthesized in high yields and that these structures effectively combine the optical properties of the plasmonic Ag nanocube core with the surface properties of the thin Pt shell. Additionally, we demonstrate the scalability of the synthesis by performing a 10 times scale-up.

  7. Synthesis of hydrophobic zeolite X-SiO{sub 2} core-shell composites

    Energy Technology Data Exchange (ETDEWEB)

    Liu Liying [School of Material and Metallurgy, Northeastern University, Shenyang, Liaoning 110004 (China); Cooperative Research Centre for Greenhouse Gas Technologies (CO-2CRC) (Australia); Singh, Ranjeet; Li Gang; Xiao Gongkui [Cooperative Research Centre for Greenhouse Gas Technologies (CO-2CRC) (Australia); Department of Chemical Engineering, Monash University, Clayton, Victoria 3800 (Australia); Webley, Paul A., E-mail: paul.webley@eng.monash.edu.au [Cooperative Research Centre for Greenhouse Gas Technologies (CO-2CRC) (Australia); Department of Chemical and Biomolecular Engineering, University of Melbourne, Victoria 3010 (Australia); Zhai Yuchun [School of Material and Metallurgy, Northeastern University, Shenyang, Liaoning 110004 (China)

    2012-04-16

    Highlights: Black-Right-Pointing-Pointer Hydrophobic 13X zeolite composites with silicalite and mesoporous silica shells are designed. Black-Right-Pointing-Pointer These core-shell composites are silynated and their hydrophobicity is tested. Black-Right-Pointing-Pointer Addition of silica layer increases the density of surface hydroxyl groups which makes the improvement of the hydrophobicity possible by further silynation. - Abstract: Core-shell structures of zeolite X coated with silicalite as well as mesoporous (MCM-41) have been synthesized. Furthermore, the surfaces of the silicalite and mesoporous silica shells were silylated using organosilanes. The materials were characterized by X-ray diffraction, nitrogen adsorption/desorption, scanning and transmission electron microscopy. The results show that the properties of zeolite 13X-silicalite and zeolite 13X-mesoporous silica core-shells composite structures are well maintained even after the modification. As expected, the shell thickness increased with increase in synthesis time, however, the micropore volume decreased. Silylation with smaller organosilanes (trimethyl chlorosilane) resulted in decrease in surface area as they diffused through the pores; however, bulkier silane reacted with surface hydroxyl groups and maintained the pore structure. Contact angle measurements revealed that hydrophobicity of zeolite 13X was enhanced by the microporous and mesoporous shell coating and was further improved by silylation.

  8. Core-shell SrTiO3/graphene structure by chemical vapor deposition for enhanced photocatalytic performance

    Science.gov (United States)

    He, Chenye; Bu, Xiuming; Yang, Siwei; He, Peng; Ding, Guqiao; Xie, Xiaoming

    2018-04-01

    Direct growth of high quality graphene on the surface of SrTiO3 (STO) was realized through chemical vapor deposition (CVD), to construct few-layer 'graphene shell' on every STO nanoparticle. The STO/graphene composite shows significantly enhanced UV light photocatalytic activity compared with the STO/rGO reference. Mechanism analysis confirms the role of special core-shell structure and chemical bond (Tisbnd C) for rapid interfacial electron transfer and effective electron-hole separation.

  9. Effects of crystalline grain size and packing ratio of self-forming core/shell nanoparticles on magnetic properties at up to GHz bands

    International Nuclear Information System (INIS)

    Suetsuna, Tomohiro; Suenaga, Seiichi; Sakurada, Shinya; Harada, Koichi; Tomimatsu, Maki; Takahashi, Toshihide

    2011-01-01

    Self-forming core/shell nanoparticles of magnetic metal/oxide with crystalline grain size of less than 40 nm were synthesized. The nanoparticles were highly concentrated in an insulating matrix to fabricate a nanocomposite, whose magnetic properties were investigated. The crystalline grain size of the nanoparticles strongly influenced the magnetic anisotropy field, magnetic coercivity, relative permeability, and loss factor (tan δ=μ''/μ') at high frequency. The packing ratio of the magnetic metallic phase in the nanocomposite also influenced those properties. High permeability with low tan δ of less than 1.5% at up to 1 GHz was obtained in the case of the nanoparticles with crystalline grain size of around 15 nm with large packing ratio of the nanoparticles. - Research highlights: → Self-forming core/shell nanoparticles of magnetic metal/oxide were synthesized. → Crystalline grain size of the nanoparticle and its packing ratio were controlled. → Magnetic properties changed according to the size and packing ratio.

  10. Direct Production of a Novel Iron-Based Nanocomposite from the Laser Pyrolysis of Fe(CO5/MMA Mixtures: Structural and Sensing Properties

    Directory of Open Access Journals (Sweden)

    R. Alexandrescu

    2010-01-01

    Full Text Available Iron/iron oxide-based nanocomposites were prepared by IR laser sensitized pyrolysis of Fe(CO5 and methyl methacrylate (MMA mixtures. The morphology of nanopowder analyzed by TEM indicated that mainly core-shell structures were obtained. X-ray diffraction techniques evidence the cores as formed mainly by iron/iron oxide crystalline phases. A partially degraded (carbonized polymeric matrix is suggested for the coverage of the metallic particles. The nanocomposite structure at the variation of the laser density and of the MMA flow was studied. The new materials prepared as thick films were tested for their potential for acting as gas sensors. The temporal variation of the electrical resistance in presence of NO2, CO, and CO2, in dry and humid air was recorded. Preliminary results show that the samples obtained at higher laser power density exhibit rather high sensitivity towards NO2 detection and NO2 selectivity relatively to CO and CO2. An optimum working temperature of 200°C was found.

  11. Core - shell upconversion nanoparticle - semiconductor heterostructures for photodynamic therapy

    Science.gov (United States)

    Dou, Qing Qing; Rengaramchandran, Adith; Selvan, Subramanian Tamil; Paulmurugan, Ramasamy; Zhang, Yong

    2015-02-01

    Core-shell nanoparticles (CSNPs) with diverse chemical compositions have been attracting greater attention in recent years. However, it has been a challenge to develop CSNPs with different crystal structures due to the lattice mismatch of the nanocrystals. Here we report a rational design of core-shell heterostructure consisting of NaYF4:Yb,Tm upconversion nanoparticle (UCN) as the core and ZnO semiconductor as the shell for potential application in photodynamic therapy (PDT). The core-shell architecture (confirmed by TEM and STEM) enables for improving the loading efficiency of photosensitizer (ZnO) as the semiconductor is directly coated on the UCN core. Importantly, UCN acts as a transducer to sensitize ZnO and trigger the generation of cytotoxic reactive oxygen species (ROS) to induce cancer cell death. We also present a firefly luciferase (FLuc) reporter gene based molecular biosensor (ARE-FLuc) to measure the antioxidant signaling response activated in cells during the release of ROS in response to the exposure of CSNPs under 980 nm NIR light. The breast cancer cells (MDA-MB-231 and 4T1) exposed to CSNPs showed significant release of ROS as measured by aminophenyl fluorescein (APF) and ARE-FLuc luciferase assays, and ~45% cancer cell death as measured by MTT assay, when illuminated with 980 nm NIR light.

  12. Metal oxide core shell nanostructures as building blocks for efficient light emission (SISGR)

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Jane P [Univ. of California, Los Angeles, CA (United States); Dorman, James [Univ. of California, Los Angeles, CA (United States); Cheung, Cyrus [Univ. of California, Los Angeles, CA (United States)

    2016-01-12

    The objective of this research is to synthesize core-shell nano-structured metal oxide materials and investigate their structural, electronic and optical properties to understand the microscopic pathways governing the energy conversion process, thereby controlling and improving their efficiency. Specifically, the goal is to use a single metal oxide core-shell nanostructure and a single excitation source to generate photons with long emission lifetime over the entire visible spectrum and when controlled at the right ratio, generating white light. In order to achieve this goal, we need to control the energy transfer between light emitting elements, which dictates the control of their interatomic spacing and spatial distribution. We developed an economical wet chemical process to form the nanostructured core and to control the thickness and composition of the shell layers. With the help from using DOE funded synchrotron radiation facility, we delineated the growth mechanism of the nano-structured core and the shell layers, thereby enhancing our understanding of structure-property relation in these materials. Using the upconversion luminescence and the lifetime measurements as effective feedback to materials sysnthes is and integration, we demonstrated improved luminescence lifetimes of the core-shell nano-structures and quantified the optimal core-multi-shell structure with optimum shell thickness and composition. We developed a rare-earths co-doped LaPO4 core-multishell structure in order to produce a single white light source. It was decided that the mutli-shell method would produce the largest increase in luminescence efficiency while limiting any energy transfer that may occur between the dopant ions. All samples resulted in emission spectra within the accepted range of white light generation based on the converted CIE color coordinates. The white light obtained varied between warm and cool white depending on the layering architecture, allowing for the

  13. Crossover from disordered to core-shell structures of nano-oxide Y{sub 2}O{sub 3} dispersed particles in Fe

    Energy Technology Data Exchange (ETDEWEB)

    Higgins, M. P.; Wang, L. M.; Gao, F., E-mail: gaofeium@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States); Lu, C. Y. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States); Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang, Liaoning 110819 (China); Lu, Z. [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang, Liaoning 110819 (China); Shao, L. [Department of Nuclear Engineering, Texas A& M University, College Station, Texas 77843 (United States)

    2016-07-18

    Molecular dynamic simulations of Y{sub 2}O{sub 3} in bcc Fe and transmission electron microscopy (TEM) observations were used to understand the structure of Y{sub 2}O{sub 3} nano-clusters in an oxide dispersion strengthened steel matrix. The study showed that Y{sub 2}O{sub 3} nano-clusters below 2 nm were completely disordered. Y{sub 2}O{sub 3} nano-clusters above 2 nm, however, form a core-shell structure, with a shell thickness of 0.5–0.7 nm that is independent of nano-cluster size. Y{sub 2}O{sub 3} nano-clusters were surrounded by off-lattice Fe atoms, further increasing the stability of these nano-clusters. TEM was used to corroborate our simulation results and showed a crossover from a disordered nano-cluster to a core-shell structure.

  14. Synthesis of Cationic Core-Shell Latex Particles

    NARCIS (Netherlands)

    Dziomkina, N.; Hempenius, Mark A.; Vancso, Gyula J.

    2006-01-01

    Surfactant-free seeded (core-shell) polymerization of cationic polymer colloids is presented. Polystyrene core particles with sizes between 200 nm and 500 nm were synthesized. The number average diameter of the colloidal core particles increased with increasing monomer concentration. Cationic shells

  15. Micromagnetic studies of three-dimensional pyramidal shell structures

    International Nuclear Information System (INIS)

    Knittel, A; Franchin, M; Fischbacher, T; Fangohr, H; Nasirpouri, F; Bending, S J

    2010-01-01

    We present a systematic numerical analysis of the magnetic properties of pyramidal-shaped core-shell structures in a size range below 400 nm. These are three-dimensional structures consisting of a ferromagnetic shell which is grown on top of a non-magnetic core. The standard micromagnetic model without the magnetocrystalline anisotropy term is used to describe the properties of the shell. We vary the thickness of the shell between the limiting cases of an ultra-thin shell and a conventional pyramid and delineate different stable magnetic configurations. We find different kinds of single-domain states, which predominantly occur at smaller system sizes. In analogy to equivalent states in thin square films we term these onion, flower, C and S states. At larger system sizes, we also observe two types of vortex states, which we refer to as symmetric and asymmetric vortex states. For a classification of the observed states, we derive a phase diagram that specifies the magnetic ground state as a function of structure size and shell thickness. The transitions between different ground states can be understood qualitatively. We address the issue of metastability by investigating the stability of all occurring configurations for different shell thicknesses. For selected geometries and directions hysteresis measurements are analysed and discussed. We observe that the magnetic behaviour changes distinctively in the limit of ultra-thin shells. The study has been motivated by the recent progress made in the growth of faceted core-shell structures.

  16. Monolithic photonic crystals created by partial coalescence of core-shell particles.

    Science.gov (United States)

    Lee, Joon-Seok; Lim, Che Ho; Yang, Seung-Man; Kim, Shin-Hyun

    2014-03-11

    Colloidal crystals and their derivatives have been intensively studied and developed during the past two decades due to their unique photonic band gap properties. However, complex fabrication procedures and low mechanical stability severely limit their practical uses. Here, we report stable photonic structures created by using colloidal building blocks composed of an inorganic core and an organic shell. The core-shell particles are convectively assembled into an opal structure, which is then subjected to thermal annealing. During the heat treatment, the inorganic cores, which are insensitive to heat, retain their regular arrangement in a face-centered cubic lattice, while the organic shells are partially fused with their neighbors; this forms a monolithic structure with high mechanical stability. The interparticle distance and therefore stop band position are precisely controlled by the annealing time; the distance decreases and the stop band blue shifts during the annealing. The composite films can be further treated to give a high contrast in the refractive index. The inorganic cores are selectively removed from the composite by wet etching, thereby providing an organic film containing regular arrays of air cavities. The high refractive index contrast of the porous structure gives rise to pronounced structural colors and high reflectivity at the stop band position.

  17. Optical Bistability in Graded Core-Shell Granular Composites

    International Nuclear Information System (INIS)

    Wu Ya-Min; Chen Guo-Qing; Xue Si-Zhong; Zhu Zhuo-Wei; Ma Chao-Qun

    2012-01-01

    The intrinsic optical bistability (OB) of graded core-shell granular composites is investigated. The coated particles are made of cores with gradient dielectric function in c (r) = A(r/a) k and nonlinear shells. In view of the exponential distribution of the core dielectric constant, the potential functions of each region are obtained by solving the Maxwell equations, and the mathematical expressions of electric field in the shells and cores are determined. Numerical study reveals that the optical bistable threshold and the threshold width of the composite medium are dependent on the shell thickness, core dielectric exponent, and power function coefficient. The optical bistable width increases with the decreasing shell thickness and the power exponent and with the increasing power function coefficient

  18. Eco-friendly synthesis of core-shell structured (TiO2/Li2CO3) nanomaterials for low cost dye-sensitized solar cells.

    Science.gov (United States)

    Karuppuchamy, S; Brundha, C

    2016-12-01

    Core-shell structured TiO 2 /Li 2 CO 3 electrode was successfully synthesized by eco-friendly solution growth technique. TiO 2 /Li 2 CO 3 electrodes were characterized using X-ray Diffractometer (XRD), Scanning electron microscopy (SEM) and photocurrent-voltage measurements. The synthesized core-shell electrode material was sensitized with tetrabutylammonium cis-di(thiocyanato)-N,N'-bis(4-carboxylato-4'-carboxylic acid-2,2'-bipyridine)ruthenate(II) (N-719). The performance of dye-sensitized solar cells (DSCs) based on N719 dye modified TiO 2 /Li 2 CO 3 electrodes was investigated. The effect of various shell thickness on the photovoltaic performance of the core-shell structured electrode is also investigated. We found that Li 2 CO 3 shells of all thicknesses perform as inert barriers which improve open-circuit voltage (V oc ) of the DSCs. The energy conversion efficiency was greatly dependent on the thickness of Li 2 CO 3 on TiO 2 film, and the highest efficiency of 3.7% was achieved at the optimum Li 2 CO 3 shell layer. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Influence of Shell Thickness on the Colloidal Stability of Magnetic Core-Shell Particle Suspensions.

    Science.gov (United States)

    Neville, Frances; Moreno-Atanasio, Roberto

    2018-01-01

    We present a Discrete Element study of the behavior of magnetic core-shell particles in which the properties of the core and the shell are explicitly defined. Particle cores were considered to be made of pure iron and thus possessed ferromagnetic properties, while particle shells were considered to be made of silica. Core sizes ranged between 0.5 and 4.0 μm with the actual particle size of the core-shell particles in the range between 0.6 and 21 μm. The magnetic cores were considered to have a magnetization of one tenth of the saturation magnetization of iron. This study aimed to understand how the thickness of the shell hinders the formation of particle chains. Chain formation was studied with different shell thicknesses and particle sizes in the presence and absence of an electrical double layer force in order to investigate the effect of surface charge density on the magnetic core-shell particle interactions. For core sizes of 0.5 and 4.0 μm the relative shell thicknesses needed to hinder the aggregation process were approximately 0.4 and 0.6 respectively, indicating that larger core sizes are detrimental to be used in applications in which no flocculation is needed. In addition, the presence of an electrical double layer, for values of surface charge density of less than 20 mC/m 2 , could stop the contact between particles without hindering their vertical alignment. Only when the shell thickness was considerably larger, was the electrical double layer able to contribute to the full disruption of the magnetic flocculation process.

  20. Investigation of dosimetric characteristics of a core-shell quantum dots nano composite (CdTe/CdS/PMMA): fabrication of a new gamma sensor

    Science.gov (United States)

    Feizi, Shahzad; Zare, Hakimeh; Hoseinpour, Masoumeh

    2018-06-01

    CdTe/CdS-PMMA nanocomposite was prepared using dispersion of CdTe/CdS core-shell quantum dots (QDs) in poly methyl methacrylate (PMMA) polymer matrix. High-quality CdTe/CdS core/shell quantum dots were synthesized in aqueous solution and were transferred from water to chloroform using ligand-exchange process in the presence of 1-dodecanethiol (1-DDT). Transmission electron microscopy analysis reveals that the obtained nano-particles are highly crystalline nature with mean diameter of 3.6 nm. To prepare an ohmic contact detector, a conductive cell with two silver coated walls was designed and fabricated for exploring gamma detecting properties of the nano composite. New detector was assessed for the linearity of doserate response, angular dependence, sensitivity and repeatability. The results show that the dose rate response of the prepared sensor is linear in the dose rate range of 50-145 mGy/min. So this nanocomposite can be utilized as a potential gamma sensor in the medical radiation device design.

  1. Recent advances in the synthesis of Fe{sub 3}O{sub 4}@AU core/shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Salihov, Sergei V. [National University of Science and Technology MISiS, Leninskiy, Building 9, Moscow, 119049, Russian Federation, (Russian Federation); Ivanenkov, Yan A.; Krechetov, Sergei P.; Veselov, Mark S. [Moscow Institute of Physics and Technology (State University), 9 Institutskiy lane, Dolgoprudny City, Moscow Region, 141700 (Russian Federation); Sviridenkova, Natalia V.; Savchenko, Alexander G. [National University of Science and Technology MISiS, Leninskiy, Building 9, Moscow, 119049, Russian Federation, (Russian Federation); Klyachko, Natalya L. [National University of Science and Technology MISiS, Leninskiy, Building 9, Moscow, 119049, Russian Federation, (Russian Federation); Moscow State University, Chemistry Department, Lenins kie gory, Building 1/3, GSP-1, Moscow, 119991 (Russian Federation); Golovin, Yury I. [Moscow State University, Chemistry Department, Lenins kie gory, Building 1/3, GSP-1, Moscow, 119991 (Russian Federation); Chufarova, Nina V., E-mail: chnv@pharmcluster.ru [Moscow Institute of Physics and Technology (State University), 9 Institutskiy lane, Dolgoprudny City, Moscow Region, 141700 (Russian Federation); Beloglazkina, Elena K. [National University of Science and Technology MISiS, Leninskiy, Building 9, Moscow, 119049, Russian Federation, (Russian Federation); Moscow State University, Chemistry Department, Lenins kie gory, Building 1/3, GSP-1, Moscow, 119991 (Russian Federation); Majouga, Alexander G., E-mail: majouga@org.chem.msu.ru [National University of Science and Technology MISiS, Leninskiy, Building 9, Moscow, 119049, Russian Federation, (Russian Federation); Moscow State University, Chemistry Department, Lenins kie gory, Building 1/3, GSP-1, Moscow, 119991 (Russian Federation)

    2015-11-15

    Fe{sub 3}O{sub 4}@Au core/shell nanoparticles have unique magnetic and optical properties. These nanoparticles are used for biomedical applications, such as magnetic resonance imaging, photothermal therapy, controlled drug delivery, protein separation, biosensors, DNA detection, and immunosensors. In this review, recent methods for the synthesis of core/shell nanoparticles are discussed. We divided all of the synthetic methods in two groups: methods of synthesis of bi-layer structures and methods of synthesis of multilayer composite structures. The latter methods have a layer of “glue” material between the core and the shell. - Highlights: • Fe{sub 3}O{sub 4} nanoparticles are promising for biomedical applications but have some disadvantages. • Covering Fe{sub 3}O{sub 4} nanoparticles with Au shell leads to better stability and biocompatibility. • Core/shell nanoparticles are widely used for biomedical applications. • There are two types of Fe{sub 3}O{sub 4}@Au core/shell nanoparticles structures: bi-layer and multilayer composite. • Different synthetic methods enable production of nanoparticles of different sizes.

  2. Core-shell structure of Miglyol/poly(D,L-lactide)/Poloxamer nanocapsules studied by small-angle neutron scattering.

    Science.gov (United States)

    Rübe, Andrea; Hause, Gerd; Mäder, Karsten; Kohlbrecher, Joachim

    2005-10-03

    The contrast variation technique in small angle neutron scattering (SANS) was used to investigate the inner structure of nanocapsules on the example of poly(D,L-lactide) (PLA) nanocapsules. The determination of the PLA and Poloxamer shell thickness was the focus of this study. Highest sensitivity on the inner structure of the nanocapsules was obtained when the scattering length density of the solvent was varied between the one of the Miglyol core and the PLA shell. According to the fit data the PLA shell thickness was 9.8 nm. The z-averaged radius determined by SANS experiments correlated well with dynamic light scattering (DLS) results, although DLS values were systematically slightly higher than the ones measured by SANS. This could be explained by taking into account the influence of Poloxamer attached to the nanocapsules surface. For a refined fit model with a second shell consisting of Poloxamer, SANS values and DLS values fitted well with each other. The characterization method presented here is significant because detailed insights into the nanocapsule and the Poloxamer shell were gained for the first time. This method could be used to develop strategies for the optimization of the shell properties concerning controlled release and to study changes in the shell structure during degradation processes.

  3. Eosin-Y sensitized core-shell TiO2-ZnO nano-structured photoanodes for dye-sensitized solar cell applications.

    Science.gov (United States)

    Manikandan, V S; Palai, Akshaya K; Mohanty, Smita; Nayak, Sanjay K

    2018-06-01

    In the current investigation, TiO 2 and TiO 2 -ZnO (core-shell) spherical nanoparticles were synthesized by simple combined hydrolysis and refluxing method. A TiO 2 core nanomaterial on the shell material of ZnO was synthesized by utilizing variable ratios of ZnO. The structural characterization of TiO 2 -ZnO core/shell nanoparticles were done by XRD analysis. The spherical structured morphology of the TiO 2 -ZnO has been confirmed through field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) studies. The UV-visible spectra of TiO 2 -ZnO nanostructures were also compared with the pristine TiO 2 to investigate the shift of wavelength. The TiO 2 -ZnO core/shell nanoparticles at the interface efficiently collect the photogenarated electrons from ZnO and also ZnO act a barrier for reduced charge recombination of electrolyte and dye-nanoparticles interface. This combination improved the light absorption which induced the charge transfer ability and dye loading capacity of core-shell nanoparticles. An enhancement in the short circuit current (J sc ) from 1.67 mA/cm 2 to 2.1 mA/cm 2 has been observed for TiO 2 -ZnObased photoanode (with platinum free counter electrode), promises an improvement in the energy conversion efficiency by 57% in comparison with that of the DSSCs based on the pristine TiO 2 . Henceforth, TiO 2 -ZnO photoelectrode in ZnO will effectively act as barrier at the interface of TiO 2 -ZnO and TiO 2 , ensuring the potential for DSSC application. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Development of Special Tools for the Straightness Measurement of JRTR Core Inner Shell

    International Nuclear Information System (INIS)

    Sinjlawi, Abdullah; Cho, Yeong-Garp; Chung, Jong-Ha

    2014-01-01

    Jordan Research and Training Reactor (JRTR) is an open pool type nuclear research reactor, 5 MW power, JRTR core made from Zircaloy. The JRTR will be used for nuclear applications such as isotopes production, nuclear researches, neutron transmutation doping (NTD), and training. JRTR core structures will be exposed to a large amount of neutron irradiation during the life time of the reactor. The core inner shell also will be exposed to a pressure that comes from heavy water system. JRTR core inner shell will deform due to the neutron irradiation and the mechanical stress. Therefore, the dimensional change of the core inner shell should be periodically (every 10 years) measured as an in-service inspection to confirm the structural integrity. As a result of neutron irradiation, pressure difference of the heavy water vessel, and the mechanical stress, the reactor core will deform as shown in figure 2 to figure 4. The maximum deformation to the normal direction of inner shell wall is 0.75 mm as shown in figure 3. This study discusses development of special tools that will be used for pre-service and in-service inspection of JRTR inner shell. The performance and procedure for the measurements tools will be verified using by the real inner shell of the heavy water vessel at factory before shipping to Jordan.. There will be very delicate working procedure for the measurement in the limited space in JRTR core. Therefore, we will develop the detail procedures to cover the removal of the core components, installation of the measurement tools, measurement, and re-installation of the core components. The measurement of the inner shell at JAEC site during commissioning stage will be the first remote measurement at the same conditions of pool water and heavy water system

  5. Composites Based on Core-Shell Structured HBCuPc@CNTs-Fe3O4 and Polyarylene Ether Nitriles with Excellent Dielectric and Mechanical Properties

    Science.gov (United States)

    Pu, Zejun; Zhong, Jiachun; Liu, Xiaobo

    2017-10-01

    Core-shell structured magnetic carbon nanotubes (CNTs-Fe3O4) coated with hyperbranched copper phthalocyanine (HBCuPc) (HBCuPc@CNTs-Fe3O4) hybrids were prepared by the solvent-thermal method. The results indicated that the HBCuPc molecules were decorated on the surface of CNTs-Fe3O4 through coordination behavior of phthalocyanines, and the CNTs-Fe3O4 core was completely coaxial wrapped by a functional intermediate HBCuPc shell. Then, polymer-based composites with a relatively high dielectric constant and low dielectric loss were fabricated by using core-shell structured HBCuPc@CNTs-Fe3O4 hybrids as fillers and polyarylene ether nitriles (PEN) as the polymer matrix. The cross-sectional scanning electron microscopy (SEM) images of composites showed that there is almost no agglomeration and internal delamination. In addition, the rheological analysis reveals that the core-shell structured HBCuPc@CNTs-Fe3O4 hybrids present better dispersion and stronger interface adhesion with the PEN matrix than CNTs-Fe3O4, thus resulting in significant improvement of the mechanical, thermal and dielectric properties of polymer-based composites.

  6. Synthesis and Plasmonic Understanding of Core/Satellite and Core Shell Nanostructures

    Science.gov (United States)

    Ruan, Qifeng

    Localized surface plasmon resonance, which stems from the collective oscillations of conduction-band electrons, endows Au nanocrystals with unique optical properties. Au nanocrystals possess extremely large scattering/absorption cross-sections and enhanced local electromagnetic field, both of which are synthetically tunable. Moreover, when Au nanocrystals are closely placed or hybridized with semiconductors, the coupling and interaction between the individual components bring about more fascinating phenomena and promising applications, including plasmon-enhanced spectroscopies, solar energy harvesting, and cancer therapy. The continuous development in the field of plasmonics calls for further advancements in the preparation of high-quality plasmonic nanocrystals, the facile construction of hybrid plasmonic nanostructures with desired functionalities, as well as deeper understanding and efficient utilization of the interaction between plasmonic nanocrystals and semiconductor components. In this thesis, I developed a seed-mediated growth method for producing size-controlled Au nanospheres with high monodispersity and assembled Au nanospheres of different sizes into core/satellite nanostructures for enhancing Raman signals. For investigating the interactions between Au nanocrystals and semiconductors, I first prepared (Au core) (TiO2 shell) nanostructures, and then studied their synthetically controlled plasmonic properties and light-harvesting applications. Au nanocrystals with spherical shapes are desirable in plasmon-coupled systems owing to their high geometrical symmetry, which facilitates the analysis of electrodynamic responses in a classical electromagnetic framework and the investigation of quantum tunneling and nonlocal effects. I prepared remarkably uniform Au nanospheres with diameters ranging from 20 nm to 220 nm using a simple seed-mediated growth method associated with mild oxidation. Core/satellite nanostructures were assembled out of differently sized

  7. Dehydration of core/shell fruits

    OpenAIRE

    Liu, Y.; Yang, Xiaosong; Cao, Y.; Wang, Z.; Chen, B.; Zhang, Jian J.; Zhang, H.

    2015-01-01

    Dehydrated core/shell fruits, such as jujubes, raisins and plums, show very complex buckles and wrinkles on their exocarp. It is a challenging task to model such complicated patterns and their evolution in a virtual environment even for professional animators. This paper presents a unified physically-based approach to simulate the morphological transformation for the core/shell fruits in the dehydration process. A finite element method (FEM), which is based on the multiplicative decomposition...

  8. Investigation of CuInSe2 nanowire arrays with core-shell structure electrodeposited at various duty cycles into anodic alumina templates

    Science.gov (United States)

    Cheng, Yu-Song; Wang, Na-Fu; Tsai, Yu-Zen; Lin, Jia-Jun; Houng, Mau-Phon

    2017-02-01

    Copper indium selenide (CuInSe2) nanowire (NW) arrays were prepared at various electrolyte duty cycles by filling anodic alumina templates through the pulsed electrodeposition technique. X-ray diffraction and scanning electron microscopy (SEM) images showed that the nucleation mechanism of CuInSe2 NW arrays was affected by the electrodeposition duty cycle. Moreover, SEM images showed that the diameter and length of the NWs were 80 nm and 2 μm, respectively. Furthermore, PEDOT/CuInSe2 NW core-shell arrays were fabricated using surfactant-modified CuInSe2 NW surfaces showing the lotus effect. Transmission electron microscopy images confirmed that a core-shell structure was achieved. Current-voltage plots revealed that the CuInSe2 NW arrays were p-type semiconductors; moreover, the core-shell structure improved the diode ideality factor from 3.91 to 2.63.

  9. Synthesis of Various Metal/TiO2 Core/shell Nanorod Arrays

    Science.gov (United States)

    Zhu, Wei; Wang, Guan-zhong; Hong, Xun; Shen, Xiao-shuang

    2011-02-01

    We present a general approach to fabricate metal/TiO2 core/shell nanorod structures by two-step electrodeposition. Firstly, TiO2 nanotubes with uniform wall thickness are prepared in anodic aluminum oxide (AAO) membranes by electrodeposition. The wall thickness of the nanotubes could be easily controlled by modulating the deposition time, and their outer diameter and length are only limited by the channel diameter and the thickness of the AAO membranes, respectively. The nanotubes' tops prepared by this method are open, while the bottoms are connected directly with the Au film at the back of the AAO membranes. Secondly, Pd, Cu, and Fe elements are filled into the TiO2 nanotubes to form core/shell structures. The core/shell nanorods prepared by this two-step process are high density and free-standing, and their length is dependent on the deposition time.

  10. Synthesis and characterization of diethylenetriaminepentaacetic acid-chitosan-coated cobalt ferrite core/shell nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Runhua, Qin [Department of Physics, North University of China, Taiyuan 030051 (China); National Special Superfine Powder Engineering Research Center, Nanjing University Science and Technology, Xiaolingwei 200, Nanjing 210094 (China); Li Fengsheng, E-mail: qinrunh@126.com [National Special Superfine Powder Engineering Research Center, Nanjing University Science and Technology, Xiaolingwei 200, Nanjing 210094 (China); Wei, Jiang; Mingyue, Chen [National Special Superfine Powder Engineering Research Center, Nanjing University Science and Technology, Xiaolingwei 200, Nanjing 210094 (China)

    2010-08-01

    Special diethylenetriaminepentaacetic acid (DTPA)-chitosan-coated cobalt ferrite core/shell nanoparticles have been synthesized via a novel zero-length emulsion crosslinking process and characterized via crosslinking degree, simultaneous thermogravimetric analysis and differential scanning calorimetry, X-ray diffractometry, Fourier transform infrared spectrometer, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and vibration sample magnetometry. The experimental results showed that the CoFe{sub 2}O{sub 4} nanoparticles were really encapsulated with a DTPA-chitosan hybrid layer and the nanocomposites were proved to be nearly superparamagnetic with saturation magnetization of 26.6 emu g{sup -1}.

  11. Electrochemical synthesis of CORE-shell magnetic nanowires

    KAUST Repository

    Ovejero, Jesús G.

    2015-04-16

    (Fe, Ni, CoFe) @ Au core-shell magnetic nanowires have been synthesized by optimized two-step potentiostatic electrodeposition inside self-assembled nanopores of anodic aluminium templates. The optimal electrochemical parameters (e.g., potential) have been firstly determined for the growth of continuous Au nanotubes at the inner wall of pores. Then, a magnetic core was synthesized inside the Au shells under suitable electrochemical conditions for a wide spectrum of single elements and alloy compositions (e.g., Fe, Ni and CoFe alloys). Novel opportunities offered by such nanowires are discussed particularly the magnetic behavior of (Fe, Ni, CoFe) @ Au core-shell nanowires was tested and compared with that of bare TM nanowires. These core-shell nanowires can be released from the template so, opening novel opportunities for biofunctionalization of individual nanowires.

  12. Facile synthesis of core-shell Cu2O@ ZnO structure with enhanced photocatalytic H2 production

    Science.gov (United States)

    Zhang, Yong-Hui; Jiu, Bei-Bei; Gong, Fei-Long; Lu, Kuan; Jiang, Nan; Zhang, Hao-Li; Chen, Jun-Li

    2018-05-01

    Core-shell Cu2O@ZnO composites were synthesized successfully based on a one-pot hydrothermal method in the presence of dioctyl sulfosuccinate sodium salt (AOT) surfactant. The Cu2O can be converted to rough core-shell Cu2O@ZnO structure by adjusting the amount of zinc powder added. The as-synthesized Cu2O@ZnO composites exhibited excellent photocatalytic activity and the amount of H2 generated using these composites was 4.5-fold more than that produced with Cu2O cubes. A possible photocatalytic mechanism for the Cu2O@ZnO composites with enhanced photocatalytic activity could be the separation by ZnO of the effective charge carriers.

  13. High performance and durability of order-structured cathode catalyst layer based on TiO_2@PANI core-shell nanowire arrays

    International Nuclear Information System (INIS)

    Chen, Ming; Wang, Meng; Yang, Zhaoyi; Wang, Xindong

    2017-01-01

    Highlights: • TiO_2@PANI core-shell nanowire arrays were prepared and applied as catalyst support. • As-prepared Pt-TiO_2@PANI core-shell nanowire arrays were applied as order-structured cathode catalyst layer. • The novel cathode catalyst structure without Nafion"® ionomer enhance the performance and durability of PEMFC. - Abstract: In this paper, an order-structured cathode catalyst layer consisting of Pt-TiO_2@PANI core-shell nanowire arrays that in situ grown on commercial gas diffusion layer (GDL) are prepared and applied to membrane electrode assembly (MEA) of proton exchange membrane fuel cell (PEMFC). In order to prepare the TiO_2@PANI core-shell nanowire arrays with suitable porosity and prominent conductivity, the morphologies of the TiO_2 nanoarray and electrochemical polymerization process of aniline are schematically investigated. The MEA with order-structured cathode catalyst layer is assembled in the single cell to evaluate the electrochemical performance and durability of PEMFC. As a result, the PEMFC with order-structured cathode catalyst layer shows higher peak power density (773.54 mW cm"−"2) than conventional PEMFC (699.30 mW cm"−"2). Electrochemically active surface area (ECSA) and charge transfer impedance (R_c_t) are measured before and after accelerated degradation test (ADT), and the corresponding experimental results indicate the novel cathode structure exhibits a better stability with respect to conventional cathode. The enhanced electrochemical performance and durability toward PEMFC can be ascribed to the order-structured cathode nanoarray structure with high specific surface area increases the utilization of catalyst and reduces the tortuosity of transport pathways, and the synergistic effect between TiO_2@PANI support and Pt nanoparticles promotes the high efficiency of electrochemical reaction and improves the stability of catalyst. This research provides a facile and controllable method to prepare order-structured

  14. Core-Shell-Corona Micelles with a Responsive Shell.

    Science.gov (United States)

    Gohy, Jean-François; Willet, Nicolas; Varshney, Sunil; Zhang, Jian-Xin; Jérôme, Robert

    2001-09-03

    A reactor for the synthesis of gold nanoparticles is one of the uses of a poly(styrene)-block-poly(2-vinylpyridine)-block-poly(ethylene oxide) triblock copolymer (PS-b-P2VP-b-PEO) which forms core-shell-corona micelles in water. Very low polydispersity spherical micelles are observed that consist of a PS core surrounded by a pH-sensitive P2VP shell and a corona of PEO chains end-capped by a hydroxyl group. The corona can act as a site for attaching responsive or sensing molecules. © 2001 WILEY-VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany.

  15. Graded core/shell semiconductor nanorods and nanorod barcodes

    Science.gov (United States)

    Alivisatos, A. Paul; Scher, Erik C.; Manna, Liberato

    2010-12-14

    Graded core/shell semiconductor nanorods and shaped nanorods are disclosed comprising Group II-VI, Group III-V and Group IV semiconductors and methods of making the same. Also disclosed are nanorod barcodes using core/shell nanorods where the core is a semiconductor or metal material, and with or without a shell. Methods of labeling analytes using the nanorod barcodes are also disclosed.

  16. Modified solvothermal synthesis and characterization of CdS/ZnS core/shell nanorods

    International Nuclear Information System (INIS)

    Baby Suganthi, A.R.; Sagayaraj, P.

    2013-01-01

    Core/shell CdS/ZnS nanorods were synthesized using a two-step solvothermal approach. The first step is the formation of CdS nanoparticles initiated using nucleation followed by growth through coalescence-exchange and particle coagulation. The second step leads to the formation of ZnS and further coalescence-exchange leading to deposition and growth of a ZnS shell around CdS nanoparticles. The structural, morphological and chemical studies were performed using X-ray diffraction, Energy Dispersive X-ray spectroscopy (EDX) Scanning electron Microscopy (SEM), UV–vis absorption spectra and Transmission Electron Microscopy (TEM), provide direct evidence for shell growth. The present synthesis provides a rational approach to the design of novel core/shell nanomaterials with appealing applications in optoelectronic devices. - Graphical abstract: From the resulting TEM images, the formation of core/shell could be observed. The apparent microscopy contrast between the CdS core and the ZnS shell offers evidence for the formation of CdS/ZnS core/shell nanostructures. It is clearly evident that the surfaces of the nanorods became rough after coating and also the diameter of the nanorod is seen increased up to 40–50 nm. Highlights: ► CdS/ZnS core/shell nanorods were synthesized using two-step solvothermal approach. ► The nanoparticles were characterized by XRD, EDX, SEM, UV–vis and TEM. ► SEM images revealed the surface roughness after ZnS shell growth. ► TEM microscopy offers evidence for the formation of core/shell nanostructures

  17. Preparation and characterization of water-soluble ZnSe:Cu/ZnS core/shell quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lei; Cao, Lixin, E-mail: caolixin@ouc.edu.cn; Su, Ge; Liu, Wei; Xia, Chenghui; Zhou, Huajian

    2013-09-01

    The synthesis and luminescent properties of water-soluble ZnSe:Cu/ZnS core/shell quantum dots (QDs) with different shell thickness are reported in this paper. X-ray powder diffraction (XRD) studies present that the ZnSe:Cu/ZnS core/shell QDs with different shell thickness have a cubic zinc-blende structure. The tests of transmission electron microscope (TEM) pictures exhibit that the QDs obtained are spherical-shaped particles and the average grain size increased from 2.7 to 3.8 nm with the growth of ZnS shell. The emission peak position of QDs has a small redshift from 461 to 475 nm with the growth of ZnS shell within the blue spectral window. The photoluminescence (PL) emission intensity and stability of the ZnSe:Cu core d-dots are both enhanced by coating ZnS shell on the surface of core d-dots. The largest PL intensity of the core/shell QDs is almost 3 times larger than that of Cu doped ZnSe quantum dots (ZnSe:Cu d-dots). The redshift of core/shell QDs compared with the core QDs are observed in both the absorption and the photoluminescence excitation spectra.

  18. The effect of varying the capping agent of magnetic/luminescent Fe{sub 3}O{sub 4}–InP/ZnSe core–shell nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Paulsen, Zuraan [Department of Chemistry, University of the Western Cape, Private Bag X17, Bellville (South Africa); Onani, Martin O., E-mail: monani@uwc.ac.za [Department of Chemistry, University of the Western Cape, Private Bag X17, Bellville (South Africa); Allard, Garvin R.J.; Kiplagat, Ayabei [Department of Chemistry, University of the Western Cape, Private Bag X17, Bellville (South Africa); Okil, Joseph O. [532 Winchester Avenue, Union, NJ 07083 (United States); Dejene, Francis B. [Department of Physics, University of the Free State, QwaQwa Campus, Private bag X13, Phuthaditjhaba 9866 (South Africa); Mahanga, Geoffrey M. [Department of Physical Sciences, Jaramogi Oginga Odinga University of Science and Technology, P.O. Box 210, 40601 Bondo (Kenya)

    2016-01-01

    Magnetic–luminescent nanoparticles have shown great promise in various biomedical applications namely: contrast agents for magnetic resonance imaging, multifunctional drug carrier system, magnetic separation of cells, cell tracking, immunoassay, and magnetic bioseparation. This experiment describes the synthesis of a nanocomposite material, which is composed of an iron oxide (Fe{sub 3}O{sub 4}) superparamagnetic core and an indium phosphide/zinc selenide (InP/ZnSe) quantum dot shell. The magnetic nanoparticles (MNP’s) and quantum dots (QD’s) were synthesized separately before allowing them to conjugate. The MNP’s were functionalized with a thiol-group allowing the QD shell to bind to the surface of the MNP by the formation of a thiol–metal bond. The nanocomposite was capped with 3-mercaptopropionic acid, oleylamine, β-cyclodextrin and their influence on the photoluminescence investigated. The synthesized nanocomposite was characterized with high- resolution transmission electron microscopy (HR-TEM), energy-dispersive spectroscopy (EDS), selective electron area diffraction (SAED), scanning electron microscopy (SEM), superconducting quantum interference device (SQUID), and photoluminescence. These techniques yielded particle size, morphology, dispersion, and chemical composition including luminescence and florescence.

  19. Core-shell microparticles for protein sequestration and controlled release of a protein-laden core.

    Science.gov (United States)

    Rinker, Torri E; Philbrick, Brandon D; Temenoff, Johnna S

    2017-07-01

    Development of multifunctional biomaterials that sequester, isolate, and redeliver cell-secreted proteins at a specific timepoint may be required to achieve the level of temporal control needed to more fully regulate tissue regeneration and repair. In response, we fabricated core-shell heparin-poly(ethylene-glycol) (PEG) microparticles (MPs) with a degradable PEG-based shell that can temporally control delivery of protein-laden heparin MPs. Core-shell MPs were fabricated via a re-emulsification technique and the number of heparin MPs per PEG-based shell could be tuned by varying the mass of heparin MPs in the precursor PEG phase. When heparin MPs were loaded with bone morphogenetic protein-2 (BMP-2) and then encapsulated into core-shell MPs, degradable core-shell MPs initiated similar C2C12 cell alkaline phosphatase (ALP) activity as the soluble control, while non-degradable core-shell MPs initiated a significantly lower response (85+19% vs. 9.0+4.8% of the soluble control, respectively). Similarly, when degradable core-shell MPs were formed and then loaded with BMP-2, they induced a ∼7-fold higher C2C12 ALP activity than the soluble control. As C2C12 ALP activity was enhanced by BMP-2, these studies indicated that degradable core-shell MPs were able to deliver a bioactive, BMP-2-laden heparin MP core. Overall, these dynamic core-shell MPs have the potential to sequester, isolate, and then redeliver proteins attached to a heparin core to initiate a cell response, which could be of great benefit to tissue regeneration applications requiring tight temporal control over protein presentation. Tissue repair requires temporally controlled presentation of potent proteins. Recently, biomaterial-mediated binding (sequestration) of cell-secreted proteins has emerged as a strategy to harness the regenerative potential of naturally produced proteins, but this strategy currently only allows immediate amplification and re-delivery of these signals. The multifunctional, dynamic

  20. Fluorescent Quantification of DNA Based on Core-Shell Fe3O4@SiO2@Au Nanocomposites and Multiplex Ligation-Dependent Probe Amplification.

    Science.gov (United States)

    Fan, Jing; Yang, Haowen; Liu, Ming; Wu, Dan; Jiang, Hongrong; Zeng, Xin; Elingarami, Sauli; Ll, Zhiyang; Li, Song; Liu, Hongna; He, Nongyue

    2015-02-01

    In this research, a novel method for relative fluorescent quantification of DNA based on Fe3O4@SiO2@Au gold-coated magnetic nanocomposites (GMNPs) and multiplex ligation- dependent probe amplification (MLPA) has been developed. With the help of self-assembly, seed-mediated growth and chemical reduction method, core-shell Fe3O4@SiO2@Au GMNPs were synthesized. Through modified streptavidin on the GMNPs surface, we obtained a bead chip which can capture the biotinylated probes. Then we designed MLPA probes which were tagged with biotin or Cy3 and target DNA on the basis of human APP gene sequence. The products from the thermostable DNA ligase induced ligation reactions and PCR amplifications were incubated with SA-GMNPs. After washing, magnetic separation, spotting, the fluorescent scanning results showed our method can be used for the relative quantitative analysis of the target DNA in the concentration range of 03004~0.5 µM.

  1. Development of SiO2@TiO2 core-shell nanospheres for catalytic applications

    Science.gov (United States)

    Kitsou, I.; Panagopoulos, P.; Maggos, Th.; Arkas, M.; Tsetsekou, A.

    2018-05-01

    Silica-titania core-shell nanospheres, CSNp, were prepared via a simple and environmentally friendly two step route. First, silica cores were prepared through the hydrolysis-condensation reaction of silicic acid in the presence of hyperbranched poly(ethylene)imine (HBPEI) followed by repeating washing, centrifugation and, finally, calcination steps. To create the core-shell structure, various amounts of titanium isopropoxide were added to the cores and after that a HBPEI-water solution was added to hydrolyze the titanium precursor. Washing with ethanol and heat treatment followed. The optimization of processing parameters led to well-developed core-shell structures bearing a homogeneous nanocrystalline anatase coating over each silica core. The photocatalytic activity for NO was examined in a continuous flux photocatalytic reactor under real environmental conditions. The results revealed a very potent photocatalyst as the degradation percentage reached 84.27% for the core-shell material compared to the 82% of pure titania with the photodecomposition rates measured at 0.62 and 0.55 μg·m-2·s-1, respectively. In addition, catalytic activities of the CSNp and pure titania were investigated by monitoring the reduction of 4-nitrophenol to 4-aminophenol by an excess of NaBH4. Both materials exhibited excellent catalytic activity (100%), making the core-shell material a promising alternative catalyst to pure titania for various applications.

  2. The Synthesis and Characterization of Gold-Core/LDH-Shell Nanoparticles

    Science.gov (United States)

    Rearick, Colton

    In recent years, the field of nanomedicine has progressed at an astonishing rate, particularly with respect to applications in cancer treatment and molecular imaging. Although organic systems have been the frontrunners, inorganic systems have also begun to show promise, especially those based upon silica and magnetic nanoparticles (NPs). Many of these systems are being designed for simultaneous therapeutic and diagnostic capabilities, thus coining the term, theranostics. A unique class of inorganic systems that shows great promise as theranostics is that of layered double hydroxides (LDH). By synthesis of a core/shell structures, e.g. a gold nanoparticle (NP) core and LDH shell, the multifunctional theranostic may be developed without a drastic increase in the structural complexity. To demonstrate initial proof-of-concept of a potential (inorganic) theranostic platform, a Au-core/LDH-shell nanovector has been synthesized and characterized. The LDH shell was heterogeneously nucleated and grown on the surface of silica coated gold NPs via a coprecipitation method. Polyethylene glycol (PEG) was introduced in the initial synthesis steps to improve crystallinity and colloidal stability. Additionally, during synthesis, fluorescein isothiocyanate (FITC) was intercalated into the interlayer spacing of the LDH. In contrast to the PEG stabilization, a post synthesis citric acid treatment was used as a method to control the size and short-term stability. The heterogeneous core-shell system was characterized with scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDX), dynamic light scattering (DLS), and powder x-ray diffraction (PXRD). A preliminary in vitro study carried out with the assistance of Dr. Kaushal Rege's group at Arizona State University was to demonstrate the endocytosis capability of homogeneously-grown LDH NPs. The DLS measurements of the core-shell NPs indicated an average particle size of 212nm. The PXRD analysis showed that PEG

  3. Synthesis and characterization of ZnSe:Fe/ZnSe core/shell nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Lin; Zhu, Jianguo, E-mail: yanglin_1028@163.com; Xiao, Dingquan

    2014-04-15

    High-quality ZnSe:Fe/ZnSe core/shell nanocrystals were prepared via a hydrothermal microemulsion technique. Effective surface passivation of monodisperse ZnSe:Fe nanocrystals is achieved by overcoating them with a ZnSe shell. The samples were characterized by means of XRD, EDX, TEM, PSD, XPS, photoluminescence, and Raman spectrum. The results show that the as-synthesized nanocrystals are cubic zinc blende ZnSe structure with high purity and the average particle size of ZnSe:Fe/ZnSe core/shell nanocrystal is larger than that of ZnSe:Fe core. The growth of ZnSe shell causes a small red shift in PL spectra, and then the PL quantum yield (QY) increases from 16% before shell growth to the maximum of 37% after increasing shell thickness up to 1.2 monolayers (ML). Moreover, both transverse optic (TO) and longitudinal optic (LO) phonon modes of ZnSe are shifted toward lower frequency as compared with the reported ones. -- Highlights: • ZnSe:Fe/ZnSe core/shell QDs were prepared by a hydrothermal microemulsion method. • ZnSe shell efficiently passivates surface defects by serving as a physical barrier. • The particle size and PL properties can be turned with the growth of ZnSe shell. • The luminescence efficiency and stability of QDs could be improved in this manner.

  4. Axial strain in GaAs/InAs core-shell nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Biermanns, Andreas; Pietsch, Ullrich [Universitaet Siegen, Festkoerperphysik, 57068 Siegen (Germany); Rieger, Torsten; Gruetzmacher, Detlev; Ion Lepsa, Mihail [Peter Gruenberg Institute (PGI-9), Forschungszentrum, 52425 Juelich (Germany); JARA-Fundamentals of Future Information Technology, 52425 Juelich (Germany); Bussone, Genziana [Universitaet Siegen, Festkoerperphysik, 57068 Siegen (Germany); ESRF, 6 rue Jules Horowitz, BP220, F-38043 Grenoble Cedex (France)

    2013-01-28

    We study the axial strain relaxation in GaAs/InAs core-shell nanowire heterostructures grown by molecular beam epitaxy. Besides a gradual strain relaxation of the shell material, we find a significant strain in the GaAs core, increasing with shell thickness. This strain is explained by a saturation of the dislocation density at the core-shell interface. Independent measurements of core and shell lattice parameters by x-ray diffraction reveal a relaxation of 93% in a 35 nm thick InAs shell surrounding cores of 80 nm diameter. The compressive strain of -0.5% compared to bulk InAs is accompanied by a tensile strain up to 0.9% in the GaAs core.

  5. Wave Function Engineering in CdSe/PbS Core/Shell Quantum Dots.

    Science.gov (United States)

    Wieliczka, Brian M; Kaledin, Alexey L; Buhro, William E; Loomis, Richard A

    2018-05-25

    The synthesis of epitaxial CdSe/PbS core/shell quantum dots (QDs) is reported. The PbS shell grows in a rock salt structure on the zinc blende CdSe core, thereby creating a crystal structure mismatch through additive growth. Absorption and photoluminescence (PL) band edge features shift to lower energies with increasing shell thickness, but remain above the CdSe bulk band gap. Nevertheless, the profiles of the absorption spectra vary with shell growth, indicating that the overlap of the electron and hole wave functions is changing significantly. This leads to over an order of magnitude reduction of absorption near the band gap and a large, tunable energy shift, of up to 550 meV, between the onset of strong absorption and the band edge PL. While the bulk valence and conduction bands adopt an inverse type-I alignment, the observed spectroscopic behavior is consistent with a transition between quasi-type-I and quasi-type-II behavior depending on shell thickness. Three effective mass approximation models support this hypothesis and suggest that the large difference in effective masses between the core and shell results in hole localization in the CdSe core and a delocalization of the electron across the entire QD. These results show the tuning of wave functions and transition energies in CdSe/PbS nanoheterostructures with prospects for use in optoelectronic devices for luminescent solar concentration or multiexciton generation.

  6. Size-exclusion chromatography using core-shell particles.

    Science.gov (United States)

    Pirok, Bob W J; Breuer, Pascal; Hoppe, Serafine J M; Chitty, Mike; Welch, Emmet; Farkas, Tivadar; van der Wal, Sjoerd; Peters, Ron; Schoenmakers, Peter J

    2017-02-24

    Size-exclusion chromatography (SEC) is an indispensable technique for the separation of high-molecular-weight analytes and for determining molar-mass distributions. The potential application of SEC as second-dimension separation in comprehensive two-dimensional liquid chromatography demands very short analysis times. Liquid chromatography benefits from the advent of highly efficient core-shell packing materials, but because of the reduced total pore volume these materials have so far not been explored in SEC. The feasibility of using core-shell particles in SEC has been investigated and contemporary core-shell materials were compared with conventional packing materials for SEC. Columns packed with very small core-shell particles showed excellent resolution in specific molar-mass ranges, depending on the pore size. The analysis times were about an order of magnitude shorter than what could be achieved using conventional SEC columns. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Facile fabrication of siloxane @ poly (methylacrylic acid) core-shell microparticles with different functional groups

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Zheng-Bai; Tai, Li; Zhang, Da-Ming; Jiang, Yong, E-mail: yj@seu.edu.cn [Southeast University, School of Chemistry and Chemical Engineering (China)

    2017-02-15

    Siloxane @ poly (methylacrylic acid) core-shell microparticles with functional groups were prepared by a facile hydrolysis-condensation method in this work. Three different silane coupling agents 3-methacryloxypropyltrimethoxysilane (MPS), 3-triethoxysilylpropylamine (APTES), and 3-glycidoxypropyltrimethoxysilane (GPTMS) were added along with tetraethoxysilane (TEOS) into the polymethylacrylic acid (PMAA) microparticle ethanol dispersion to form the Si@PMAA core-shell microparticles with different functional groups. The core-shell structure and the surface special functional groups of the resulting microparticles were measured by transmission electron microscopy and FTIR. The sizes of these core-shell microparticles were about 350–400 nm. The corresponding preparation conditions and mechanism were discussed in detail. This hydrolysis-condensation method also could be used to functionalize other microparticles which contain active groups on the surface. Meanwhile, the Si@PMAA core-shell microparticles with carbon-carbon double bonds and amino groups have further been applied to prepare hydrophobic coatings.

  8. Facile fabrication of siloxane @ poly (methylacrylic acid) core-shell microparticles with different functional groups

    International Nuclear Information System (INIS)

    Zhao, Zheng-Bai; Tai, Li; Zhang, Da-Ming; Jiang, Yong

    2017-01-01

    Siloxane @ poly (methylacrylic acid) core-shell microparticles with functional groups were prepared by a facile hydrolysis-condensation method in this work. Three different silane coupling agents 3-methacryloxypropyltrimethoxysilane (MPS), 3-triethoxysilylpropylamine (APTES), and 3-glycidoxypropyltrimethoxysilane (GPTMS) were added along with tetraethoxysilane (TEOS) into the polymethylacrylic acid (PMAA) microparticle ethanol dispersion to form the Si@PMAA core-shell microparticles with different functional groups. The core-shell structure and the surface special functional groups of the resulting microparticles were measured by transmission electron microscopy and FTIR. The sizes of these core-shell microparticles were about 350–400 nm. The corresponding preparation conditions and mechanism were discussed in detail. This hydrolysis-condensation method also could be used to functionalize other microparticles which contain active groups on the surface. Meanwhile, the Si@PMAA core-shell microparticles with carbon-carbon double bonds and amino groups have further been applied to prepare hydrophobic coatings.

  9. Poly(glycidyl methacrylate)-A soft template for the facile preparation of poly(glycidyl methacrylate) core-copper nanoparticle shell nanocomposite

    Science.gov (United States)

    Mohammed Safiullah, S.; Abdul Wasi, K.; Anver Basha, K.

    2015-12-01

    Poly(glycidyl methacrylate) core/copper nanoparticle shell nanocomposite (PGMA/Cu nanohybrid) was prepared by simple two step method (i) The synthesis of poly(glycidyl methacrylate) (PGMA) beads by free radical suspension polymerization followed by (ii) direct deposition of copper nanoparticles (CuNPs) on activated PGMA beads. The PGMA beads were used as a soft template to host the CuNPs without surface modification of it. In this method the CuNPs were formed by chemical reduction of copper salts using sodium borohydride in water medium and deposited directly on the activated PGMA. Two different concentrations of copper salts were employed to know the effect of concentration on the shape and size of nanoparticles. The results showed that, the different sizes and shapes of CuNPs were deposited on the PGMA matrix. The X-ray Diffraction study results showed that the CuNPs were embedded on the surface of the PGMA matrix. The scanning electron microscopic images revealed that the fabrication of CuNPs on the PGMA matrix possess different shapes and changes the morphology and nature of PGMA beads significantly. The fluorescent micrograph also confirmed that the CuNPs were doped on the PGMA surface. The thermal studies have demonstrated that the CuNPs deposition on the surface of PGMA beads had a significant effect.

  10. No-Core Shell Model and Reactions

    International Nuclear Information System (INIS)

    Navratil, P; Ormand, W E; Caurier, E; Bertulani, C

    2005-01-01

    There has been a significant progress in ab initio approaches to the structure of light nuclei. Starting from realistic two- and three-nucleon interactions the ab initio no-core shell model (NCSM) can predict low-lying levels in p-shell nuclei. It is a challenging task to extend ab initio methods to describe nuclear reactions. In this contribution, we present a brief overview of the NCSM with examples of recent applications as well as the first steps taken toward nuclear reaction applications. In particular, we discuss cross section calculations of p+ 6 Li and 6 He+p scattering as well as a calculation of the astrophysically important 7 Be(p, γ) 8 B S-factor

  11. Immobilization of cholesterol oxidase on magnetic fluorescent core-shell-structured nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jun, E-mail: hjun@whut.edu.cn; Liu, Huichao; Zhang, Peipei; Zhang, Pengfei; Li, Mengshi; Ding, Liyun

    2015-12-01

    The magnetic fluorescent core-shell structured nanoparticles, Fe{sub 3}O{sub 4}@SiO{sub 2}(F)@meso–SiO{sub 2} nanoparticles, were prepared. Cholesterol oxidase (COD) was immobilized on their surface to form Fe{sub 3}O{sub 4}@SiO{sub 2}(F)@meso–SiO{sub 2}@COD nanoparticles. Optimal immobilization was achieved with 2.5% (v/v) APTES, 2.0% (v/v) GA, 10 mg COD (in 15 mg carrier) and solution pH of 7.0. Fe{sub 3}O{sub 4}@SiO{sub 2}(F)@meso–SiO{sub 2}@COD nanoparticles showed maximal catalytic activity at pH 7.0 and 50 °C. The thermal, storage and operational stabilities of COD were improved greatly after its immobilization. After the incubation at 50 °C for 5 h, the nanoparticles and free COD retained 80% and 46% of its initial activity, respectively. After kept at 4 °C for 30 days, the nanoparticles and free COD maintained 86% and 65% of initial activity, respectively. The nanoparticles retained 71% of its initial activity after 7 consecutive operations. Since Fe{sub 3}O{sub 4}@SiO{sub 2}(F)@meso–SiO{sub 2}@COD nanoparticles contained tris(2,2-bipyridyl)dichloro-ruthenium(II) hexahydrate (Ru(bpy){sub 3}Cl{sub 2}) and were optical sensitive to oxygen in solution, it might be used as the sensing material and has the application potential in multi parameter fiber optic biosensor based on enzyme catalysis and oxygen consumption. - Highlights: • COD was immobilized on magnetic fluorescent core-shell structured nanoparticles. • The nanoparticles were optical sensitive to oxygen in water solution. • The nanoparticles have remarkable improved stability compared with free COD. • The nanoparticles can probably be used in multi parameter fiber optic Biosensor.

  12. Au@Pd core-shell nanobricks with concave structures and their catalysis of ethanol oxidation.

    Science.gov (United States)

    Wang, Wenjin; Zhang, Jie; Yang, Shengchun; Ding, Bingjun; Song, Xiaoping

    2013-10-01

    Au@Pd core-shell nanobricks (CNBs) with concave surfaces and Pd shells with a thickness of approximately 5 nm were synthesized by co-reduction of HAuCl4 and H2 PdCl4 in the presence of Au seeds and Ag ions. These as-synthesized concave CNBs exhibit significantly enhanced catalytic activity for the electrooxidation of ethanol in alkaline media compared to the commercially-used Pd black. The improved performance of the Au@Pd CNBs can be attributed to the exposed stepped surfaces, high-index facets, and the synergistic effects of the core and shell metals. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Enhanced visible light photocatalytic activity in SnO{sub 2}@g-C{sub 3}N{sub 4} core-shell structures

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Hao; Zhao, Xiaoru, E-mail: xrzhao@nwpu.edu.cn; Duan, Libing; Liu, Ruidi; Li, Hui

    2017-04-15

    Highlights: • Novel SnO{sub 2}@g-C{sub 3}N{sub 4} core-shell structures were successfully synthesized. • The core-shell structures exhibited enhanced visible light photocatalytic activity. • The enhanced photocatalytic activity was due to synergic action of SnO{sub 2} and g-C{sub 3}N{sub 4}. - Abstract: SnO{sub 2}@g-C{sub 3}N{sub 4} core-shell structures were successfully synthesized by simple calcination of SnO{sub 2} microspheres and urea in a muffle furnace. The investigation of morphologies and microstructures showed that g-C{sub 3}N{sub 4} was wrapped tightly on the surface of SnO{sub 2} microspheres with large intimate interface contact areas between the g-C{sub 3}N{sub 4} shells and SnO{sub 2} cores. The X-ray photoelectron spectroscopy results and photoluminescence spectra demonstrated that the intimate interface contacts could facilitate the transfer and separation of the photogenerated charge carriers at their interface, thus the recombination of the photogenerated electron-hole pairs was impeded. The photocatalytic activity of the synthesized composites was evaluated by the photodegradation of methyl orange under visible light irradiation. It was found that SnO{sub 2}@g-C{sub 3}N{sub 4} exhibited higher photodegradation rate (k = 0.013 min{sup −1}) than that of g-C{sub 3}N{sub 4} (k = 0.008 min{sup −1}) and pure SnO{sub 2}. The enhanced photocatalytic activity could be attributed to the synergic action of SnO{sub 2} and g-C{sub 3}N{sub 4}.

  14. Nanocellulose Derivative/Silica Hybrid Core-Shell Chiral Stationary Phase: Preparation and Enantioseparation Performance

    Directory of Open Access Journals (Sweden)

    Xiaoli Zhang

    2016-05-01

    Full Text Available Core-shell silica microspheres with a nanocellulose derivative in the hybrid shell were successfully prepared as a chiral stationary phase by a layer-by-layer self-assembly method. The hybrid shell assembled on the silica core was formed using a surfactant as template by the copolymerization reaction of tetraethyl orthosilicate and the nanocellulose derivative bearing triethoxysilyl and 3,5-dimethylphenyl groups. The resulting nanocellulose hybrid core-shell chiral packing materials (CPMs were characterized and packed into columns, and their enantioseparation performance was evaluated by high performance liquid chromatography. The results showed that CPMs exhibited uniform surface morphology and core-shell structures. Various types of chiral compounds were efficiently separated under normal and reversed phase mode. Moreover, chloroform and tetrahydrofuran as mobile phase additives could obviously improve the resolution during the chiral separation processes. CPMs still have good chiral separation property when eluted with solvent systems with a high content of tetrahydrofuran and chloroform, which proved the high solvent resistance of this new material.

  15. Three-dimensional core-shell Fe_2O_3 @ carbon/carbon cloth as binder-free anode for the high-performance lithium-ion batteries

    International Nuclear Information System (INIS)

    Wang, Xiaohua; Zhang, Miao; Liu, Enzuo; He, Fang; Shi, Chunsheng; He, Chunnian; Li, Jiajun; Zhao, Naiqin

    2016-01-01

    Highlights: • The 3D core-shell Fe_2O_3@C/CC structure is fabricated by simple hydrothermal route. • The composite connected 3D carbon networks consist of carbon cloth, Fe_2O_3 nanorods and outer carbon layer. • The Fe_2O_3@C/CC used as binder-free anode in LIBs, demonstrates excellent performances. - Abstract: A facile and scalable strategy is developed to fabricate three dimensional core-shell Fe_2O_3 @ carbon/carbon cloth structure by simple hydrothermal route as binder-free lithium-ion battery anode. In the unique structure, carbon coated Fe_2O_3 nanorods uniformly disperse on carbon cloth which forms the conductive carbon network. The hierarchical porous Fe_2O_3 nanorods in situ grown on the carbon cloth can effectively shorten the transfer paths of lithium ions and reduce the contact resistance. The carbon coating significantly inhibits pulverization of active materials during the repeated Li-ion insertion/extraction, as well as the direct exposure of Fe_2O_3 to the electrolyte. Benefiting from the structural integrity and flexibility, the nanocomposites used as binder-free anode for lithium-ion batteries, demonstrate high reversible capacity and excellent cyclability. Moreover, this kind of material represents an alternative promising candidate for flexible, cost-effective, and binder-free energy storage devices.

  16. High performance and durability of order-structured cathode catalyst layer based on TiO{sub 2}@PANI core-shell nanowire arrays

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ming; Wang, Meng; Yang, Zhaoyi [State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, 30 College Road, Beijing 100083 (China); School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, 30 College Road, Beijing 100083 (China); Wang, Xindong, E-mail: echem@ustb.edu.cn [State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, 30 College Road, Beijing 100083 (China); School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, 30 College Road, Beijing 100083 (China)

    2017-06-01

    Highlights: • TiO{sub 2}@PANI core-shell nanowire arrays were prepared and applied as catalyst support. • As-prepared Pt-TiO{sub 2}@PANI core-shell nanowire arrays were applied as order-structured cathode catalyst layer. • The novel cathode catalyst structure without Nafion{sup ®} ionomer enhance the performance and durability of PEMFC. - Abstract: In this paper, an order-structured cathode catalyst layer consisting of Pt-TiO{sub 2}@PANI core-shell nanowire arrays that in situ grown on commercial gas diffusion layer (GDL) are prepared and applied to membrane electrode assembly (MEA) of proton exchange membrane fuel cell (PEMFC). In order to prepare the TiO{sub 2}@PANI core-shell nanowire arrays with suitable porosity and prominent conductivity, the morphologies of the TiO{sub 2} nanoarray and electrochemical polymerization process of aniline are schematically investigated. The MEA with order-structured cathode catalyst layer is assembled in the single cell to evaluate the electrochemical performance and durability of PEMFC. As a result, the PEMFC with order-structured cathode catalyst layer shows higher peak power density (773.54 mW cm{sup −2}) than conventional PEMFC (699.30 mW cm{sup −2}). Electrochemically active surface area (ECSA) and charge transfer impedance (R{sub ct}) are measured before and after accelerated degradation test (ADT), and the corresponding experimental results indicate the novel cathode structure exhibits a better stability with respect to conventional cathode. The enhanced electrochemical performance and durability toward PEMFC can be ascribed to the order-structured cathode nanoarray structure with high specific surface area increases the utilization of catalyst and reduces the tortuosity of transport pathways, and the synergistic effect between TiO{sub 2}@PANI support and Pt nanoparticles promotes the high efficiency of electrochemical reaction and improves the stability of catalyst. This research provides a facile and

  17. Investigation of novel inverted NiO@NixCo1-xO core-shell nanoparticles

    Science.gov (United States)

    Hasan, Samiul; Mayanovic, R. A.; Benamara, Mourad

    2018-05-01

    Inverse core-shell nanoparticles, comprised of an antiferromagnetic (AFM) core covered by a ferromagnetic (FM) or ferrimagnetic (FiM) shell, are of current interest due to their different potential application and due to the tunability of their magnetic properties. The antiferromagnetic nature of NiO and high Néel temperature (523 K) makes this material well suited for inverse core-shell nanoparticle applications. Our primary objective in this project has been to synthesize and characterize inverted core-shell nanoparticles (CSNs) comprised of a NiO (AFM) core and a shell consisting of a NixCo1-xO (FiM) compound. The synthesis of the CSNs was made using a two-step process. The NiO nanoparticles were synthesized using a chemical reaction method. Subsequently, the NiO nanoparticles were used to grow the NiO@NixCo1-xO CSNs using our hydrothermal nano-phase epitaxy method. XRD structural characterization shows that the NiO@NixCo1-xO CSNs have the rock salt cubic crystal structure. SEM-EDS data indicates the presence of Co in the CSNs. Magnetic measurements show that the CSNs exhibit AFM/FiM characteristics with a small coercivity field of 30 Oe at 5 K. The field cooled vs zero field cooled hysteresis loop measurements show a magnetization axis shift which is attributed to the exchange bias effect between the AFM NiO core and an FiM NixCo1-xO shell of the CSNs. Our ab initio based calculations of the NixCo1-xO rock salt structure confirm a weak FiM character and a charge transfer insulator property of the compound.

  18. Investigation of novel inverted NiO@NixCo1-xO core-shell nanoparticles

    Directory of Open Access Journals (Sweden)

    Samiul Hasan

    2018-05-01

    Full Text Available Inverse core-shell nanoparticles, comprised of an antiferromagnetic (AFM core covered by a ferromagnetic (FM or ferrimagnetic (FiM shell, are of current interest due to their different potential application and due to the tunability of their magnetic properties. The antiferromagnetic nature of NiO and high Néel temperature (523 K makes this material well suited for inverse core-shell nanoparticle applications. Our primary objective in this project has been to synthesize and characterize inverted core-shell nanoparticles (CSNs comprised of a NiO (AFM core and a shell consisting of a NixCo1-xO (FiM compound. The synthesis of the CSNs was made using a two-step process. The NiO nanoparticles were synthesized using a chemical reaction method. Subsequently, the NiO nanoparticles were used to grow the NiO@NixCo1-xO CSNs using our hydrothermal nano-phase epitaxy method. XRD structural characterization shows that the NiO@NixCo1-xO CSNs have the rock salt cubic crystal structure. SEM-EDS data indicates the presence of Co in the CSNs. Magnetic measurements show that the CSNs exhibit AFM/FiM characteristics with a small coercivity field of 30 Oe at 5 K. The field cooled vs zero field cooled hysteresis loop measurements show a magnetization axis shift which is attributed to the exchange bias effect between the AFM NiO core and an FiM NixCo1-xO shell of the CSNs. Our ab initio based calculations of the NixCo1-xO rock salt structure confirm a weak FiM character and a charge transfer insulator property of the compound.

  19. Au@MnO2 core-shell nanomesh electrodes for transparent flexible supercapacitors.

    Science.gov (United States)

    Qiu, Tengfei; Luo, Bin; Giersig, Michael; Akinoglu, Eser Metin; Hao, Long; Wang, Xiangjun; Shi, Lin; Jin, Meihua; Zhi, Linjie

    2014-10-29

    A novel Au@MnO2 supercapacitor is presented. The sophisticated core-shell architecture combining an Au nanomesh core with a MnO2 shell on a flexible polymeric substrate is demonstrated as an electrode for high performance transparent flexible supercapacitors (TFSCs). Due to their unique structure, high areal/gravimetric capacitance and rate capability for TFSCs are achieved. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Electrochemical performance and structure evolution of core-shell nano-ring α-Fe_2O_3@Carbon anodes for lithium-ion batteries

    International Nuclear Information System (INIS)

    Sun, Yan-Hui; Liu, Shan; Zhou, Feng-Chen; Nan, Jun-Min

    2016-01-01

    Core-shell nano-ring α-Fe_2O_3@Carbon (CSNR) composites with different carbon content (CSNR-5%C and CSNR-13%C) are synthesized using a hydrothermal method by controlling different amounts of glucose and α-Fe_2O_3 nano-rings with further annealing. The CSNR electrodes exhibit much improved specific capacity, cycling stability and rate capability compared with that of bare nano-ring α-Fe_2O_3 (BNR), which is attributed to the core-shell nano-ring structure of CSNR. The carbon shell in the inner and outer surface of CSNR composite can increase electron conductivity of the electrode and inhibit the volume change of α-Fe_2O_3 during discharge/charge processes, and the nano-ring structure of CSNR can buffer the volume change too. The CSNR-5%C electrode shows super high initial discharge/charge capacities of 1570/1220 mAh g"−"1 and retains 920/897 mAh g"−"1 after 200 cycles at 500 mA g"−"1 (0.5C). Even at 2000 mA g"−"1 (2C), the electrode delivers the initial capacities of 1400/900 mAh g"−"1, and still maintains 630/610 mAh g"−"1 after 200 cycles. The core-shell nano-rings opened during cycling and rebuilt a new flower-like structure consisting of α-Fe_2O_3@Carbon nano-sheets. The space among the nano-sheet networks can further buffer the volume expansion of α-Fe_2O_3 and facilitate the transportation of electrons and Li"+ ions during the charge/discharge processes, which increases the capacity and rate capability of the electrode. It is the first time that the evolution of core-shell α-Fe_2O_3@Carbon changing to flower-like networks during lithiation/de-lithiation has been reported.

  1. Electrochemical performance and structure evolution of core-shell nano-ring α-Fe2O3@Carbon anodes for lithium-ion batteries

    Science.gov (United States)

    Sun, Yan-Hui; Liu, Shan; Zhou, Feng-Chen; Nan, Jun-Min

    2016-12-01

    Core-shell nano-ring α-Fe2O3@Carbon (CSNR) composites with different carbon content (CSNR-5%C and CSNR-13%C) are synthesized using a hydrothermal method by controlling different amounts of glucose and α-Fe2O3 nano-rings with further annealing. The CSNR electrodes exhibit much improved specific capacity, cycling stability and rate capability compared with that of bare nano-ring α-Fe2O3 (BNR), which is attributed to the core-shell nano-ring structure of CSNR. The carbon shell in the inner and outer surface of CSNR composite can increase electron conductivity of the electrode and inhibit the volume change of α-Fe2O3 during discharge/charge processes, and the nano-ring structure of CSNR can buffer the volume change too. The CSNR-5%C electrode shows super high initial discharge/charge capacities of 1570/1220 mAh g-1 and retains 920/897 mAh g-1 after 200 cycles at 500 mA g-1 (0.5C). Even at 2000 mA g-1 (2C), the electrode delivers the initial capacities of 1400/900 mAh g-1, and still maintains 630/610 mAh g-1 after 200 cycles. The core-shell nano-rings opened during cycling and rebuilt a new flower-like structure consisting of α-Fe2O3@Carbon nano-sheets. The space among the nano-sheet networks can further buffer the volume expansion of α-Fe2O3 and facilitate the transportation of electrons and Li+ ions during the charge/discharge processes, which increases the capacity and rate capability of the electrode. It is the first time that the evolution of core-shell α-Fe2O3@Carbon changing to flower-like networks during lithiation/de-lithiation has been reported.

  2. Design and optimization of Ag-dielectric core-shell nanostructures for silicon solar cells

    Directory of Open Access Journals (Sweden)

    Feng-Xiang Chen

    2015-09-01

    Full Text Available Metal-dielectric core-shell nanostructures have been proposed as a light trapping scheme for enhancing the optical absorption of silicon solar cells. As a potential application of such enhanced effects, the scattering efficiencies of three core-shell structures (Ag@SiO2, Ag@TiO2, and Ag@ZrO2 are discussed using the Mie Scattering theory. For compatibility with experiment results, the core diameter and shell thickness are limited to 100 and 30 nm, respectively, and a weighted scattering efficiency is introduced to evaluate the scattering abilities of different nanoparticles under the solar spectrum AM 1.5. The simulated results indicate that the shell material and thickness are two key parameters affecting the weighted scattering efficiency. The SiO2 is found to be an unsuitable shell medium because of its low refractive index. However, using the high refractive index mediumTiO2 in Ag@TiO2 nanoparticles, only the thicker shell (30 nm is more beneficial for light scattering. The ZrO2 is an intermediate refractive index material, so Ag@ZrO2 nanoparticles are the most effective core-shell nanostructures in these silicon solar cells applications.

  3. Nanocomposite YSZ-NiO Particles with Tailored Structure Synthesized in a Two-Stage Continuous Hydrothermal Flow Reactor

    DEFF Research Database (Denmark)

    Zielke, Philipp; Xu, Yu; Kiebach, Wolff-Ragnar

    2016-01-01

    core-shell structures or surface decorated particles could exhibit better performance compared with single phase materials. To obtain such advanced structures is the aim of the ProEco project (www.proeco.dk). In this project, a two-stage continuous reactor is built and used to synthesize such nano...... the performance of energy storage and conversion devices such as fuel cells, electrolyzers and batteries is important. One promising approach to further improve these devices is the use of carefully structured nanosized materials. Nano-composite particles combining different materials in advanced geometries like......-of-the-art solid oxide fuel and electrolysis cells. The prepared particles were characterized by X-ray powder diffraction, (high resolution) transmission electron microscopy, scanning tunnel transmission microscopy and Raman spectroscopy in order to determine crystal structure, particle size, surface morphology...

  4. Gold nanorod@iron oxide core-shell heterostructures: synthesis, characterization, and photocatalytic performance.

    Science.gov (United States)

    Li, Yue; Zhao, Junwei; You, Wenlong; Cheng, Danhong; Ni, Weihai

    2017-03-17

    Iron oxides are directly coated on the surface of cetyl-trimethylammonium bromide (CTAB)-capped gold nanorods (AuNRs) in aqueous solutions at room temperature, which results in AuNR@Fe 2 O 3 , AuNR@Fe 3 O 4 , and AuNR@Fe 2 O 3 @Fe 3 O 4 core-shell heterostructures. The iron oxide shells are uniform, smooth, with characteristic porous structure, and their thickness can be readily tuned. The shell formation is highly dependent on the reaction parameters including pH and CTAB concentration. The Fe 2 O 3 shell is amorphous and exhibits nearly zero remanence and coercivity, while the Fe 3 O 4 shell is ferromagnetic with a low saturation magnetization of about 0.5 emu g -1 due to its low crystallinity and the porous structure. At elevated temperatures achieved by plasmonic heating of the Au core, the Fe 2 O 3 shell transforms from amorphous to γ-Fe 2 O 3 and α-Fe 2 O 3 phases, while the Fe 3 O 4 phase disappears because of the oxidation of Fe 2+ . A 1.4-fold increase of photocatalytic performance is observed due to the plasmonic resonance provided by the Au core. The photocatalytic efficiency of Fe 3 O 4 is about 1.7-fold higher than Fe 2 O 3 as more surface defects are present on the Fe 3 O 4 shell, promoting the adsorption and activation of reagents on the surface during the catalytic reactions. This approach can be readily extended to other nanostructures including Au spherical nanoparticles and nanostars. These highly uniform and multifunctional core-shell heterostructures can be of great potential in a variety of energy, magnetic, and environment applications.

  5. Iridium-decorated palladium-platinum core-shell catalysts for oxygen reduction reaction in proton exchange membrane fuel cell.

    Science.gov (United States)

    Wang, Chen-Hao; Hsu, Hsin-Cheng; Wang, Kai-Ching

    2014-08-01

    Carbon-supported Pt, Pd, Pd-Pt core-shell (Pt(shell)-Pd(core)/C) and Ir-decorated Pd-Pt core-shell (Ir-decorated Pt(shell)-Pd(core)/C) catalysts were synthesized, and their physical properties, electrochemical behaviors, oxygen reduction reaction (ORR) characteristics and proton exchange membrane fuel cell (PEMFC) performances were investigated herein. From the XRD patterns and TEM images, Ir-decorated Pt(shell)-Pd(core)/C has been confirmed that Pt was deposited on the Pd nanoparticle which had the core-shell structure. Ir-decorated Pt(shell)-Pd(core)/C has more positive OH reduction peak than Pt/C, which is beneficial to weaken the binding energy of Pt-OH during the ORR. Thus, Ir-decorated Pt(shell)-Pd(core)/C has higher ORR activity than Pt/C. The maximum power density of H2-O2 PEMFC using Ir-decorated Pt(shell)-Pd(core)/C is 792.2 mW cm(-2) at 70°C, which is 24% higher than that using Pt/C. The single-cell accelerated degradation test of PEMFC using Ir-decorated Pt(shell)-Pd(core)/C shows good durability by the potential cycling of 40,000 cycles. This study concludes that Ir-decorated Pt(shell)-Pd(core)/C has the low Pt content, but it can facilitate the low-cost and high-efficient PEMFC. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Ultrafast Dynamics of Metallo-Dielectric Core-Shell Particles

    NARCIS (Netherlands)

    Shan, X.

    2008-01-01

    Optical properties of metallic nano-structures have attracted a lot of attention in the past decades. In this thesis, we focus on nano-sized silica-core gold-shell particles, study the linear, nonlinear and acoustic vibrations of the particles. The linear optical properties in the visible range of

  7. Interface engineered ferrite@ferroelectric core-shell nanostructures: A facile approach to impart superior magneto-electric coupling

    Science.gov (United States)

    Abraham, Ann Rose; Raneesh, B.; Das, Dipankar; Oluwafemi, Oluwatobi Samuel; Thomas, Sabu; Kalarikkal, Nandakumar

    2018-04-01

    The electric field control of magnetism in multiferroics is attractive for the realization of ultra-fast and miniaturized low power device applications like nonvolatile memories. Room temperature hybrid multiferroic heterostructures with core-shell (0-0) architecture (ferrite core and ferroelectric shell) were developed via a two-step method. High-Resolution Transmission Electron Microscopy (HRTEM) images confirm the core-shell structure. The temperature dependant magnetization measurements and Mossbauer spectra reveal superparamagnetic nature of the core-shell sample. The ferroelectric hysteresis loops reveal leaky nature of the samples. The results indicate the promising applications of the samples for magneto-electric memories and spintronics.

  8. Room temperature nanojoining of Cu-Ag core-shell nanoparticles and nanowires

    International Nuclear Information System (INIS)

    Wang, Jiaqi; Shin, Seungha

    2017-01-01

    Room temperature (T room , 300 K) nanojoining of Ag has been widely employed in fabrication of microelectronic applications where the shapes and structures of microelectronic components must be maintained. In this research, the joining processes of pure Ag nanoparticles (NPs), Cu-Ag core-shell NPs, and nanowires (NWs) are studied using molecular dynamics simulations at T room . The evolution of densification, potential energy, and structural deformation during joining process are analyzed to identify joining mechanisms. Depending on geometry, different joining mechanisms including crystallization-amorphization, reorientation, Shockley partial dislocation are determined. A three-stage joining scenario is observed in both joining process of NPs and NWs. Besides, the Cu core does not participate in all joining processes, however, it enhances the mobility of Ag shell atoms, contributing to a higher densification and bonding strength at T room , compared with pure Ag nanomaterials. The tensile test shows that the nanojoint bears higher rupture strength than the core-shell NW itself. This study deepens understanding in the underlying joining mechanisms and thus nanojoint with desirable thermal, electrical, and mechanical properties could be potentially achieved.

  9. The One-Step Pickering Emulsion Polymerization Route for Synthesizing Organic-Inorganic Nanocomposite Particles

    Directory of Open Access Journals (Sweden)

    Kaushal Rege

    2010-02-01

    Full Text Available Polystyrene-silica core-shell nanocomposite particles are successfully prepared via one-step Pickering emulsion polymerization. Possible mechanisms of Pickering emulsion polymerization are addressed in the synthesis of polystyrene-silica nanocomposite particles using 2,2-azobis(2-methyl-N-(2-hydroxyethylpropionamide (VA-086 and potassium persulfate (KPS as the initiator. Motivated by potential applications of “smart” composite particles in controlled drug delivery, the one-step Pickering emulsion polymerization route is further applied to synthesize polystyrene/poly(N-isopropylacrylamide (PNIPAAm-silica core-shell nanoparticles with N-isopropylacrylamide incorporated into the core as a co-monomer. The polystyrene/PNIPAAm-silica composite nanoparticles are temperature sensitive and can be taken up by human prostate cancer (PC3-PSMA cells.

  10. Bandgap engineered reverse type-I CdTe/InP/ZnS core-shell nanocrystals for the near-infrared.

    Science.gov (United States)

    Kim, Sunghoon; Shim, Wooyoung; Seo, Heonjin; Hyun Bae, Je; Sung, Jaeyoung; Choi, Seung Hong; Moon, Woo Kyung; Lee, Gwang; Lee, Bunyeoul; Kim, Sang-Wook

    2009-03-14

    New quantum dots were fabricated with a core/shell/shell structure consisting of CdTe core/InP shell/ZnS shell of which the InP shell causes a red-shift to the NIR region and the ZnS shell imparts photo-stability; toxicity tests on mammalian cells and NIR imaging of a mouse highlight their potential applications in biomedical imaging.

  11. Direct correlations of structural and optical properties of three-dimensional GaN/InGaN core/shell micro-light emitting diodes

    Science.gov (United States)

    Sadat Mohajerani, Matin; Müller, Marcus; Hartmann, Jana; Zhou, Hao; Wehmann, Hergo-H.; Veit, Peter; Bertram, Frank; Christen, Jürgen; Waag, Andreas

    2016-05-01

    Three-dimensional (3D) InGaN/GaN quantum-well (QW) core-shell light emitting diodes (LEDs) are a promising candidate for the future solid state lighting. In this contribution, we study direct correlations of structural and optical properties of the core-shell LEDs using highly spatially-resolved cathodoluminescence spectroscopy (CL) in combination with scanning electron microscopy (SEM) and scanning transmission electron microscopy (STEM). Temperature-dependent resonant photoluminescence (PL) spectroscopy has been performed to understand recombination mechanisms and to estimate the internal quantum efficiency (IQE).

  12. Nanocrystalline p-hydroxyacetanilide (paracetamol) and gold core-shell structure as a model drug deliverable organic-inorganic hybrid nanostructure

    Science.gov (United States)

    Das, Subhojit; Paul, Anumita; Chattopadhyay, Arun

    2013-09-01

    We report on the generation of core-shell nanoparticles (NPs) having an organic nanocrystal (NC) core coated with an inorganic metallic shell, being dispersed in aqueous medium. First, NCs of p-hydroxyacetanilide (pHA)--known also as paracetamol--were generated in an aqueous medium. Transmission electron microscopy (TEM) and powder X-ray diffraction (XRD) evidenced the formation of pHA NCs and of their crystalline nature. The NCs were then coated with Au to form pHA@Au core-shell NPs, where the thickness of the Au shell was on the order of nanometers. The formation of Au nanoshell--surrounding pHA NC--was confirmed from its surface plasmon resonance (SPR) band in the UV/Vis spectrum and by TEM measurements. Further, on treatment of the core-shell particles with a solution comprising NaCl and HCl (pH paracetamol--were generated in an aqueous medium. Transmission electron microscopy (TEM) and powder X-ray diffraction (XRD) evidenced the formation of pHA NCs and of their crystalline nature. The NCs were then coated with Au to form pHA@Au core-shell NPs, where the thickness of the Au shell was on the order of nanometers. The formation of Au nanoshell--surrounding pHA NC--was confirmed from its surface plasmon resonance (SPR) band in the UV/Vis spectrum and by TEM measurements. Further, on treatment of the core-shell particles with a solution comprising NaCl and HCl (pH < 3), the Au shell could be dissolved, subsequently releasing pHA molecules. The dissolution of Au shell was marked by a gradual diminishing of its SPR band, while the release of pHA molecules in the solution was confirmed from TEM and FTIR studies. The findings suggest that the core-shell NP could be hypothesized to be a model for encapsulating drug molecules, in their crystalline forms, for slow as well as targeted release. Electronic supplementary information (ESI) available: See DOI: 10.1039/c3nr03566b

  13. Magnetite Core-Shell Nanoparticles in Nondestructive Flaw Detection of Polymeric Materials.

    Science.gov (United States)

    Hetti, Mimi; Wei, Qiang; Pohl, Rainer; Casperson, Ralf; Bartusch, Matthias; Neu, Volker; Pospiech, Doris; Voit, Brigitte

    2016-10-04

    Nondestructive flaw detection in polymeric materials is important but difficult to achieve. In this research, the application of magnetite nanoparticles (MNPs) in nondestructive flaw detection is studied and realized, to the best of our knowledge, for the first time. Superparamagnetic and highly magnetic (up to 63 emu/g) magnetite core-shell nanoparticles are prepared by grafting bromo-end-group-functionalized poly(glycidyl methacrylate) (Br-PGMA) onto surface-modified Fe 3 O 4 NPs. These Fe 3 O 4 -PGMA NPs are blended into bisphenol A diglycidylether (BADGE)-based epoxy to form homogeneously distributed magnetic epoxy nanocomposites (MENCs) after curing. The core Fe 3 O 4 of the Fe 3 O 4 -PGMA NPs endows the MENCs with magnetic property, which is crucial for nondestructive flaw detection of the materials, while the shell PGMA promotes colloidal stability and prevents NP aggregation during curing. The eddy current testing (ET) technique is first applied to detect flaws in the MENCs. Through the brightness contrast of the ET image, surficial and subsurficial flaws in MENCs can be detected, even for MENCs with low content of Fe 3 O 4 -PGMA NPs (1 wt %). The incorporation of Fe 3 O 4 -PGMA NPs can be easily extended to other polymer and polymer-based composite systems and opens a new and very promising pathway toward MNP-based nondestructive flaw detection in polymeric materials.

  14. Facile synthesis of CdS@TiO2 core–shell nanorods with controllable shell thickness and enhanced photocatalytic activity under visible light irradiation

    International Nuclear Information System (INIS)

    Dong, Wenhao; Pan, Feng; Xu, Leilei; Zheng, Minrui; Sow, Chorng Haur; Wu, Kai; Xu, Guo Qin

    2015-01-01

    Graphical abstract: - Highlights: • CdS nanorods were coated with amorphous TiO 2 shells under a mild condition. • The TiO 2 shell thickness can be controlled from 3.5 to 40 nm. • CdS@TiO 2 nanorods exhibit enhanced photocatalytic activities under visible light. • Efficient charge carriers separation leads to the improved photocatalytic activity. - Abstract: Amorphous TiO 2 layers with a controllable thickness from 3.5 to 40 nm were coated on the one-dimensional CdS nanorods surface under mild conditions. Compared to the bare CdS nanorods, the as-prepared CdS@TiO 2 nanorods exhibit enhanced photocatalytic activities for phenol photodecomposition under visible light irradiation. The improved photoactivity is ascribed to the efficient separation of photogenerated electron and hole charge carriers between CdS cores and TiO 2 shells. This study promises a simple approach to fabricating CdS@TiO 2 core–shell structure nanocomposites, and can be applied for other semiconductor cores with TiO 2 shells

  15. Tuning the field distribution and fabrication of an Al@ZnO core-shell nanostructure for a SPR-based fiber optic phenyl hydrazine sensor.

    Science.gov (United States)

    Tabassum, Rana; Kaur, Parvinder; Gupta, Banshi D

    2016-05-27

    We report the fabrication and characterization of a surface plasmon resonance (SPR)-based fiber optic sensor that uses coatings of silver and aluminum (Al)-zinc oxide (ZnO) core-shell nanostructure (Al@ZnO) for the detection of phenyl hydrazine (Ph-Hyd). To optimize the volume fraction (f) of Al in ZnO and the thickness of the core-shell nanostructure layer (d), the electric field intensity along the normal to the multilayer system is simulated using the two-dimensional multilayer matrix method. The Al@ZnO core-shell nanostructure is prepared using the laser ablation technique. Various probes are fabricated with different values of f and an optimized thickness of core-shell nanostructure for the characterization of the Ph-Hyd sensor. The performance of the Ph-Hyd sensor is evaluated in terms of sensitivity. It is found that the Ag/Al@ZnO nanostructure core-shell-coated SPR probe with f = 0.25 and d = 0.040 μm possesses the maximum sensitivity towards Ph-Hyd. These results are in agreement with the simulated ones obtained using electric field intensity. In addition, the performance of the proposed probe is compared with that of probes coated with (i) Al@ZnO nanocomposite, (ii) Al nanoparticles and (iii) ZnO nanoparticles. It is found that the probe coated with an Al@ZnO core-shell nanostructure shows the largest resonance wavelength shift. The detailed mechanism of the sensing (involving chemical reactions) is presented. The sensor also manifests optimum performance at pH 7.

  16. Synthesis and cytotoxicity study of magnesium ferrite-gold core-shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Nonkumwong, Jeeranan [Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Pakawanit, Phakkhananan [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Wipatanawin, Angkana [Division of Biochemistry and Biochemical Technology, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Jantaratana, Pongsakorn [Department of Physics, Faculty of Science, Kasetsart University, Bangkok 11900 (Thailand); Ananta, Supon [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Srisombat, Laongnuan, E-mail: slaongnuan@yahoo.com [Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2016-04-01

    In this work, the core-magnesium ferrite (MgFe{sub 2}O{sub 4}) nanoparticles were prepared by hydrothermal technique. Completed gold (Au) shell coating on the surfaces of MgFe{sub 2}O{sub 4} nanoparticles was obtained by varying core/shell ratios via a reduction method. Phase identification, morphological evolution, optical properties, magnetic properties and cytotoxicity to mammalian cells of these MgFe{sub 2}O{sub 4} core coated with Au nanoparticles were examined by using a combination of X-ray diffraction, scanning electron microscopy, transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy, UV–visible spectroscopy (UV–vis), vibrating sample magnetometry and resazurin microplate assay techniques. In general, TEM images revealed different sizes of the core-shell nanoparticles generated from various core/shell ratios and confirmed the completed Au shell coating on MgFe{sub 2}O{sub 4} core nanoparticles via suitable core/shell ratio with particle size less than 100 nm. The core-shell nanoparticle size and the quality of coating influence the optical properties of the products. The UV–vis spectra of complete coated MgFe{sub 2}O{sub 4}-Au core-shell nanoparticles exhibit the absorption bands in the near-Infrared (NIR) region indicating high potential for therapeutic applications. Based on the magnetic property measurement, it was found that the obtained MgFe{sub 2}O{sub 4}-Au core-shell nanoparticles still exhibit superparamagnetism with lower saturation magnetization value, compared with MgFe{sub 2}O{sub 4} core. Both of MgFe{sub 2}O{sub 4} and MgFe{sub 2}O{sub 4}-Au core-shell also showed in vitro non-cytotoxicity to mouse areola fibroblast (L-929) cell line. - Highlights: • Synthesis of MgFe{sub 2}O{sub 4}-Au core-shell nanoparticles with particle size < 100 nm • Complete Au shell coating on the surfaces of MgFe{sub 2}O{sub 4} nanoparticles • In vitro cytotoxicity study of complete coated MgFe{sub 2}O{sub 4}-Au core-shell

  17. Synthesis and cytotoxicity study of magnesium ferrite-gold core-shell nanoparticles

    International Nuclear Information System (INIS)

    Nonkumwong, Jeeranan; Pakawanit, Phakkhananan; Wipatanawin, Angkana; Jantaratana, Pongsakorn; Ananta, Supon; Srisombat, Laongnuan

    2016-01-01

    In this work, the core-magnesium ferrite (MgFe_2O_4) nanoparticles were prepared by hydrothermal technique. Completed gold (Au) shell coating on the surfaces of MgFe_2O_4 nanoparticles was obtained by varying core/shell ratios via a reduction method. Phase identification, morphological evolution, optical properties, magnetic properties and cytotoxicity to mammalian cells of these MgFe_2O_4 core coated with Au nanoparticles were examined by using a combination of X-ray diffraction, scanning electron microscopy, transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy, UV–visible spectroscopy (UV–vis), vibrating sample magnetometry and resazurin microplate assay techniques. In general, TEM images revealed different sizes of the core-shell nanoparticles generated from various core/shell ratios and confirmed the completed Au shell coating on MgFe_2O_4 core nanoparticles via suitable core/shell ratio with particle size less than 100 nm. The core-shell nanoparticle size and the quality of coating influence the optical properties of the products. The UV–vis spectra of complete coated MgFe_2O_4-Au core-shell nanoparticles exhibit the absorption bands in the near-Infrared (NIR) region indicating high potential for therapeutic applications. Based on the magnetic property measurement, it was found that the obtained MgFe_2O_4-Au core-shell nanoparticles still exhibit superparamagnetism with lower saturation magnetization value, compared with MgFe_2O_4 core. Both of MgFe_2O_4 and MgFe_2O_4-Au core-shell also showed in vitro non-cytotoxicity to mouse areola fibroblast (L-929) cell line. - Highlights: • Synthesis of MgFe_2O_4-Au core-shell nanoparticles with particle size < 100 nm • Complete Au shell coating on the surfaces of MgFe_2O_4 nanoparticles • In vitro cytotoxicity study of complete coated MgFe_2O_4-Au core-shell nanoparticles

  18. Current directions in core-shell nanoparticle design

    Science.gov (United States)

    Schärtl, Wolfgang

    2010-06-01

    Ten years ago I wrote a review about the important field of core-shell nanoparticles, focussing mainly on our own work about tracer systems, and briefly addressing polymer-coated nanoparticles as fillers for homogeneous polymer-colloid composites. Since then, the potential use of core-shell nanoparticles as multifunctional sensors or potential smart drug-delivery vehicles in biology and medicine has gained more and more importance, affording special types of multi-functionalized and bio-compatible nanoparticles. In this new review article, I try to address the most important developments during the last ten years. This overview is mainly based on frequently cited and more specialized recent review articles from leaders in their respective field. We will consider a variety of nanoscopic core-shell architectures from highly fluorescent nanoparticles (NPs), protected magnetic NPs, multifunctional NPs, thermoresponsive NPs and biocompatible systems to, finally, smart drug-delivery systems.Ten years ago I wrote a review about the important field of core-shell nanoparticles, focussing mainly on our own work about tracer systems, and briefly addressing polymer-coated nanoparticles as fillers for homogeneous polymer-colloid composites. Since then, the potential use of core-shell nanoparticles as multifunctional sensors or potential smart drug-delivery vehicles in biology and medicine has gained more and more importance, affording special types of multi-functionalized and bio-compatible nanoparticles. In this new review article, I try to address the most important developments during the last ten years. This overview is mainly based on frequently cited and more specialized recent review articles from leaders in their respective field. We will consider a variety of nanoscopic core-shell architectures from highly fluorescent nanoparticles (NPs), protected magnetic NPs, multifunctional NPs, thermoresponsive NPs and biocompatible systems to, finally, smart drug-delivery systems

  19. Synthesis and Characterization of Core-Shell Acrylate Based Latex and Study of Its Reactive Blends

    Directory of Open Access Journals (Sweden)

    Ying Nie

    2008-03-01

    Full Text Available Techniques in resin blending are simple and efficient method for improving the properties of polymers, and have been used widely in polymer modification field. However, polymer latex blends such as the combination of latexes, especially the latexes with water-soluble polymers, were rarely reported. Here, we report a core-shell composite latex synthesized using methyl methacrylate (MMA, butyl acrylate (BA, 2-ethylhexyl acrylate (EHA and glycidyl methacrylate (GMA as monomers and ammonium persulfate and sodium bisulfite redox system as the initiator. Two stages seeded semi-continuous emulsion polymerization were employed for constructing a core-shell structure with P(MMA-co-BA component as the core and P(EHA-co-GMA component as the shell. Results of Transmission Electron Microscopy (TEM and Dynamics Light Scattering (DLS tests confirmed that the particles obtained are indeed possessing a desired core-shell structural character. Stable reactive latex blends were prepared by adding the latex with waterborne melamine-formaldehyde resin (MF or urea-formaldehyde resin (UF. It was found that the glass transition temperature, the mechanical strength and the hygroscopic property of films cast from the latex blends present marked enhancements under higher thermal treatment temperature. It was revealed that the physical properties of chemically reactive latexes with core-shell structure could be altered via the change of crosslinking density both from the addition of crosslinkers and the thermal treatment.

  20. Simulations of the Light Scattering Properties of Metal/Oxide Core/Shell Nanospheres

    International Nuclear Information System (INIS)

    Ruffino, F.; Piccitto, G.; Grimaldi, M.G.; Ruffino, F.; Grimaldi, M.G.

    2014-01-01

    Given the importance of the optical properties of metal/dielectric core/shell nanoparticles, in this work we focus our attention on the light scattering properties, within the Mie framework, of some specific categories of these noteworthy nano structures. In particular, we report theoretical results of angle-dependent light scattering intensity and scattering efficiency for Ag/Ag 2 O, Al/Al 2 O 2 , Cu/Cu 2 O, Pd/PdO, and Ti/TiO 2 core/shell nanoparticles as a function of the core radius/shell thickness ratio and on a relative comparison. The results highlight the light scattering characteristics of these systems as a function of the radius/shell thickness ratio, helping in the choice of the more suitable materials and sizes for specific applications (i.e., dynamic light scattering for biological and molecular recognition, increasing light trapping in thin-film silicon, organic solar cells for achieving a higher photocurrent).

  1. Core@shell Nanoparticles: Greener Synthesis Using Natural Plant Products

    Directory of Open Access Journals (Sweden)

    Mehrdad Khatami

    2018-03-01

    Full Text Available Among an array of hybrid nanoparticles, core-shell nanoparticles comprise of two or more materials, such as metals and biomolecules, wherein one of them forms the core at the center, while the other material/materials that were located around the central core develops a shell. Core-shell nanostructures are useful entities with high thermal and chemical stability, lower toxicity, greater solubility, and higher permeability to specific target cells. Plant or natural products-mediated synthesis of nanostructures refers to the use of plants or its extracts for the synthesis of nanostructures, an emerging field of sustainable nanotechnology. Various physiochemical and greener methods have been advanced for the synthesis of nanostructures, in contrast to conventional approaches that require the use of synthetic compounds for the assembly of nanostructures. Although several biological resources have been exploited for the synthesis of core-shell nanoparticles, but plant-based materials appear to be the ideal candidates for large-scale green synthesis of core-shell nanoparticles. This review summarizes the known strategies for the greener production of core-shell nanoparticles using plants extract or their derivatives and highlights their salient attributes, such as low costs, the lack of dependence on the use of any toxic materials, and the environmental friendliness for the sustainable assembly of stabile nanostructures.

  2. Fabrication of Au{sub nanoparticle}@mSiO{sub 2}@Y{sub 2}O{sub 3}:Eu nanocomposites with enhanced fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Li, Huiqin [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi' an, 710069 (China); College of Chemistry & Chemical Engineering, Baoji University of Arts & Sciences, Baoji, 721013 (China); Kang, Jianmiao [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi' an, 710069 (China); Yang, Jianhui, E-mail: jianhui@nwu.edu.cn [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi' an, 710069 (China); Wu, Biao, E-mail: wubiao@nwu.edu.cn [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi' an, 710069 (China)

    2016-07-15

    Herein, Au{sub nanoparticle}@mSiO{sub 2}@Y{sub 2}O{sub 3}:Eu nanocomposites are synthesized through layer-by-layer assembly technology. Au{sub nanoparticle}@mSiO{sub 2} core–shell nanospheres were prepared at first in the presence of CTAB in aqueous solution system by the modified one-pot method. A chemical precipitation method and a succeeding calcination process were adopted to the growth of Y{sub 2}O{sub 3}:Eu shells on the surfaces of Au{sub nanoparticle}@mSiO{sub 2} core–shell nanospheres. The structure, morphology and composition of the nanocomposites were confirmed by XRD, TEM and UV–vis absorption spectrum. The prepared Au{sub nanoparticle}@mSiO{sub 2}@Y{sub 2}O{sub 3}:Eu nanocomposites have showed the emission intensity enhances to 6.23 times at 30 nm thickness of the silica spacer between the core of Au nanoparticle and the shell of Y{sub 2}O{sub 3}:Eu. According to the observations of fluorescent lifetime and the modeling of local electric field, the metal-enhanced and quenched fluorescence is closely related with the enhancement of excitation and radiative decay rate and the quenching by NRET comes as a result of competition between the distance-dependent mechanisms. This kind of multifunctional inorganic material will be widely used in electronics, biology and medical drug loading, etc. - Highlights: • Fabrication of Au{sub nanoparticle}@mSiO{sub 2}@Y{sub 2}O{sub 3}:Eu nanocomposites with core-spacer-shell structure. • The controllable fluorescence is achieved by adjusting the spacer thickness of silica. • The fluorescence enhancement is 6.23-fold at an optimal spacer thickness about 30 nm. • The metal-enhanced fluorescence mechanism is proposed.

  3. Coaxial silver nanowire network core molybdenum oxide shell supercapacitor electrodes

    International Nuclear Information System (INIS)

    Yuksel, Recep; Coskun, Sahin; Unalan, Husnu Emrah

    2016-01-01

    We present a new hybrid material composed of molybdenum (IV) oxide (MoO 2 ) shell on highly conducting silver nanowire (Ag NW) core in the network form for the realization of coaxial Ag NW/MoO 2 nanocomposite supercapacitor electrodes. Ag NWs were simply spray coated onto glass substrates to form conductive networks and conformal MoO 2 layer was electrodeposited onto the Ag NW network to create binder-free coaxial supercapacitor electrodes. Combination of Ag NWs and pseudocapacitive MoO 2 generated an enhanced electrochemical energy storage capacity and a specific capacitance of 500.7 F/g was obtained at a current density of 0.25 A/g. Fabricated supercapacitor electrodes showed excellent capacity retention after 5000 cycles. The methods and the design investigated herein open a wide range of opportunities for nanowire based coaxial supercapacitors.

  4. Synthesis and optical properties of core-multi-shell CdSe/CdS/ZnS quantum dots: Surface modifications

    Science.gov (United States)

    Ratnesh, R. K.; Mehata, Mohan Singh

    2017-02-01

    We report two port synthesis of CdSe/CdS/ZnS core-multi-shell quantum dots (Q-dots) and their structural properties. The multi-shell structures of Q-dots were developed by using successive ionic layer adsorption and reaction (SILAR) technique. The obtained Q-dots show high crystallinity with the step-wise adjustment of lattice parameters in the radial direction. The size of the core and core-shell Q-dots estimated by transmission electron microscopy images and absorption spectra is about 3.4 and 5.3 nm, respectively. The water soluble Q-dots (scheme-1) were prepared by using ligand exchange method, and the effect of pH was discussed regarding the variation of quantum yield (QY). The decrease of a lifetime of core-multi-shell Q-dots with respect to core CdSe indicates that the shell growth may be tuned by the lifetimes. Thus, the study clearly demonstrates that the core-shell approach can be used to substantially improve the optical properties of Q-dots desired for various applications.

  5. CuO-In2O3 Core-Shell Nanowire Based Chemical Gas Sensors

    Directory of Open Access Journals (Sweden)

    Xiaoxin Li

    2014-01-01

    Full Text Available The CuO-In2O3 core-shell nanowire was fabricated by a two-step method. The CuO nanowire core (NWs was firstly grown by the conventional thermal oxidation of Cu meshes at 500°C for 5 hours. Then, the CuO nanowires were immersed into the suspension of amorphous indium hydroxide deposited from the In(AC3 solution by ammonia. The CuO nanowires coated with In(OH3 were subsequently heated at 600°C to form the crystalline CuO-In2O3 core-shell structure, with In2O3 nanocrystals uniformly anchored on the CuO nanowires. The gas sensing properties of the formed CuO-In2O3 core-shell nanowires were investigated by various reducing gases such as hydrogen, carbon monoxide, and propane at elevated temperature. The sensors using the CuO-In2O3 nanowires show improved sensing performance to hydrogen and propane but a suppressed response to carbon monoxide, which could be attributed to the enhanced catalytic properties of CuO with the coated porous In2O3 shell and the p-n junction formed at the core-shell interface.

  6. Synthesis of Au@Ag core-shell nanocubes containing varying shaped cores and their localized surface plasmon resonances.

    Science.gov (United States)

    Gong, Jianxiao; Zhou, Fei; Li, Zhiyuan; Tang, Zhiyong

    2012-06-19

    We have synthesized Au@Ag core-shell nanocubes containing Au cores with varying shapes and sizes through modified seed-mediated methods. Bromide ions are found to be crucial in the epitaxial growth of Ag atoms onto Au cores and in the formation of the shell's cubic shape. The Au@Ag core-shell nanocubes exhibit very abundant and distinct localized surface plasmon resonance (LSPR) properties, which are core-shape and size-dependent. With the help of theoretical calculation, the physical origin and the resonance mode profile of each LSPR peak are identified and studied. The core-shell nanocrystals with varying shaped cores offer a new rich category for LSPR control through the plasmonic coupling effect between core and shell materials.

  7. Shape-controlled synthesis of Au@Pd core-shell nanoparticles and their corresponding electrochemical properties

    KAUST Repository

    Song, Hyon Min

    2012-01-01

    The shape-controlled synthesis of Au@Pd core-shell nanoparticles (NPs) was successfully achieved through the emulsion phase generated during the phase transfer from organic to aqueous medium. Contrary to conventional epitaxial growth for obtaining core-shell structures, this method does not require high temperatures and does not have shape restrictions. © 2012 The Royal Society of Chemistry.

  8. High-performance asymmetric supercapacitors based on core/shell cobalt oxide/carbon nanowire arrays with enhanced electrochemical energy storage

    International Nuclear Information System (INIS)

    Pan, G.X.; Xia, X.H.; Cao, F.; Chen, J.; Tang, P.S.; Zhang, Y.J.; Chen, H.F.

    2014-01-01

    Graphical abstract: - Highlights: • We prepared a self-supported porous Co 3 O 4 /C core/shell nanowire array. • Core/shell nanowire array showed high pseudo-capacitive properties. • Core/shell array structure was favorable for fast ion and electron transfer. - Abstract: High-reactivity electrode materials are indispensible for developing high-performance electrochemical energy storage devices. Herein, we report self-supported core/shell Co 3 O 4 /C nanowire arrays by using hydrothermal synthesis and chemical vapor deposition methods. A uniform and thin carbon shell is coated on the surface of Co 3 O 4 nanowire forming core/shell nanowires with diameters of ∼100 nm. Asymmetric supercapacitors have been assembled with the core/shell Co 3 O 4 /C nanowire arrays as the positive electrode and activated carbon (AC) as the negative electrode. The core/shell Co 3 O 4 /C nanowire arrays exhibit a specific capacity of 116 mAh g −1 at the working current of 100 mA (4 A g −1 ), and a long cycle life along with ∼ 92% retention after 8000 cycles at 4 A g −1 , higher than the unmodified Co 3 O 4 nanowire arrays (81 mAh g −1 at 4 A g −1 ). The introduction of uniform carbon layer into the core/shell structure is favorable for the enhancement of supercapacitor due to the improved electrical conductivity and reaction kinetics

  9. Scalable Synthesis of Triple-Core-Shell Nanostructures of TiO2 @MnO2 @C for High Performance Supercapacitors Using Structure-Guided Combustion Waves.

    Science.gov (United States)

    Shin, Dongjoon; Shin, Jungho; Yeo, Taehan; Hwang, Hayoung; Park, Seonghyun; Choi, Wonjoon

    2018-03-01

    Core-shell nanostructures of metal oxides and carbon-based materials have emerged as outstanding electrode materials for supercapacitors and batteries. However, their synthesis requires complex procedures that incur high costs and long processing times. Herein, a new route is proposed for synthesizing triple-core-shell nanoparticles of TiO 2 @MnO 2 @C using structure-guided combustion waves (SGCWs), which originate from incomplete combustion inside chemical-fuel-wrapped nanostructures, and their application in supercapacitor electrodes. SGCWs transform TiO 2 to TiO 2 @C and TiO 2 @MnO 2 to TiO 2 @MnO 2 @C via the incompletely combusted carbonaceous fuels under an open-air atmosphere, in seconds. The synthesized carbon layers act as templates for MnO 2 shells in TiO 2 @C and organic shells of TiO 2 @MnO 2 @C. The TiO 2 @MnO 2 @C-based electrodes exhibit a greater specific capacitance (488 F g -1 at 5 mV s -1 ) and capacitance retention (97.4% after 10 000 cycles at 1.0 V s -1 ), while the absence of MnO 2 and carbon shells reveals a severe degradation in the specific capacitance and capacitance retention. Because the core-TiO 2 nanoparticles and carbon shell prevent the deformation of the inner and outer sides of the MnO 2 shell, the nanostructures of the TiO 2 @MnO 2 @C are preserved despite the long-term cycling, giving the superior performance. This SGCW-driven fabrication enables the scalable synthesis of multiple-core-shell structures applicable to diverse electrochemical applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Mechanical properties of zirconia core-shell rods with porous core and dense shell prepared by thermoplastic co-extrusion

    Czech Academy of Sciences Publication Activity Database

    Kaštyl, J.; Chlup, Zdeněk; Clemen, F.; Trunec, M.

    2017-01-01

    Roč. 37, č. 6 (2017), s. 2439-2447 ISSN 0955-2219 R&D Projects: GA MŠk(CZ) LQ1601 Institutional support: RVO:68081723 Keywords : ceramic injection moldings * oxide fuel -cells * electrophoretic deposition * large pores * alumina * fabrication * behavior * tubes * bioceramics * composites * Zirconia * Co-extrusion * Core-shell * Porous structure * Mechanical properties Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass OBOR OECD: Ceramics Impact factor: 3.411, year: 2016

  11. An ultrasensitive hydrogen peroxide biosensor based on electrocatalytic synergy of graphene-gold nanocomposite, CdTe-CdS core-shell quantum dots and gold nanoparticles

    International Nuclear Information System (INIS)

    Gu Zhiguo; Yang Shuping; Li Zaijun; Sun Xiulan; Wang Guangli; Fang Yinjun; Liu Junkang

    2011-01-01

    Graphical abstract: We first reported an ultrasensitive hydrogen peroxide biosensor in this work, which was fabricated by coating graphene-gold nanocomposite, CdTe-CdS core-shell quantum dots, gold nanoparticles and horseradish peroxidase in sequence on the surface of gold electrode. Since a promising their electrocatalytic synergy towards hydrogen peroxide was achieved, the biosensor displayed very high sensitivity, low detection limit (S/N = 3) (3.2 x 10 -11 M) and good long-term stability (20 weeks). Highlights: · We for the first time integrated novel hydrogen peroxide biosensor based on G-AuNP, CdTe-CdS and AuNPs. · Three nanomaterials show remarkable synergistic electrocatalysis towards hydrogen peroxide. · The biosensor provides the best sensitivity in all biosensors based on graphene for detection of glucose up to now. - Abstract: We first reported an ultrasensitive hydrogen peroxide biosensor in this work. The biosensor was fabricated by coating graphene-gold nanocomposite (G-AuNP), CdTe-CdS core-shell quantum dots (CdTe-CdS), gold nanoparticles (AuNPs) and horseradish peroxidase (HRP) in sequence on the surface of gold electrode (GE). Cyclic voltammetry and differential pulse voltammetry were used to investigate electrochemical performances of the biosensor. Since promising electrocatalytic synergy of G-AuNP, CdTe-CdS and AuNPs towards hydrogen peroxide was achieved, the biosensor displayed a high sensitivity, low detection limit (S/N = 3) (3.2 x 10 -11 M), wide calibration range (from 1 x 10 -10 M to 1.2 x 10 -8 M) and good long-term stability (20 weeks). Moreover, the effects of omitting G-AuNP, CdTe-CdS and AuNP were also examined. It was found that sensitivity of the biosensor is more 11-fold better if G-AuNP, CdTe-CdS and AuNPs are used. This could be ascribed to improvement of the conductivity between graphene nanosheets in the G-AuNP due to introduction of the AuNPs, ultrafast charge transfer from CdTe-CdS to the graphene sheets and AuNP due to

  12. Strain relaxation and ambipolar electrical transport in GaAs/InSb core-shell nanowires.

    Science.gov (United States)

    Rieger, Torsten; Zellekens, Patrick; Demarina, Natalia; Hassan, Ali Al; Hackemüller, Franz Josef; Lüth, Hans; Pietsch, Ullrich; Schäpers, Thomas; Grützmacher, Detlev; Lepsa, Mihail Ion

    2017-11-30

    The growth, crystal structure, strain relaxation and room temperature transport characteristics of GaAs/InSb core-shell nanowires grown using molecular beam epitaxy are investigated. Due to the large lattice mismatch between GaAs and InSb of 14%, a transition from island-based to layer-like growth occurs during the formation of the shell. High resolution transmission electron microscopy in combination with geometric phase analyses as well as X-ray diffraction with synchrotron radiation are used to investigate the strain relaxation and prove the existence of different dislocations relaxing the strain on zinc blende and wurtzite core-shell nanowire segments. While on the wurtzite phase only Frank partial dislocations are found, the strain on the zinc blende phase is relaxed by dislocations with perfect, Shockley partial and Frank partial dislocations. Even for ultrathin shells of about 2 nm thickness, the strain caused by the high lattice mismatch between GaAs and InSb is relaxed almost completely. Transfer characteristics of the core-shell nanowires show an ambipolar conductance behavior whose strength strongly depends on the dimensions of the nanowires. The interpretation is given based on an electronic band profile which is calculated for completely relaxed core/shell structures. The peculiarities of the band alignment in this situation implies simultaneously occupied electron and hole channels in the InSb shell. The ambipolar behavior is then explained by the change of carrier concentration in both channels by the gate voltage.

  13. Pearl-necklace structures in core-shell molecular brushes: Experiments, Monte Carlo simulations and self-consistent field modeling

    NARCIS (Netherlands)

    Polotsky, A.; Charlaganov, M.; Xu, Y.P.; Leermakers, F.A.M.; Daoud, M.; Muller, A.H.E.; Dotera, T.; Borisov, O.V.

    2008-01-01

    We present theoretical arguments and experimental evidence for a longitudinal instability in core-shell cylindrical polymer brushes with a solvophobic inner (core) block and a solvophilic outer (shell) block in selective solvents. The two-gradient self-consistent field Scheutjens-Fleer (SCF-SF)

  14. Aqueous-phase synthesis and color-tuning of core/shell/shell inorganic nanocrystals consisting of ZnSe, (Cu, Mn)-doped ZnS, and ZnS

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jongwan; Yoon, Sujin [Department of Chemistry and Research Institute for Natural Science, Hanyang University, Seoul, 133-791 (Korea, Republic of); Kim, Felix Sunjoo, E-mail: fskim@cau.ac.kr [School of Chemical Engineering and Materials Science, Chung-Ang University, Seoul, 156-756 (Korea, Republic of); Kim, Nakjoong, E-mail: kimnj@hanyang.ac.kr [Department of Chemistry and Research Institute for Natural Science, Hanyang University, Seoul, 133-791 (Korea, Republic of)

    2016-06-25

    We report synthesis of colloidal nanocrystals based on ZnSe core, (Cu,Mn)-doped ZnS inner-shell, and ZnS outer-shell by using an eco-friendly method and their optical properties. Synthesis of core/shell/shell nanocrystals was performed by using a one-pot/three-step colloidal method with 3-mercaptopropionic acid as a stabilizer in aqueous phase at low temperature. A double-shell structure was employed with inner-shell as a host for doping and outer-shell as a passivation layer for covering surface defects. Copper and manganese were introduced as single- or co-dopants during inner-shell formation, providing an effective means to control the emission color of the nanocrystals. The synthesized nanocrystals showed fluorescent emission ranging from blue to green, to white, and to orange, adjusted by doping components, amounts, and ratios. The photoluminescence quantum yields of the core/doped-shell/shell nanocrystals approached 36%. - Highlights: • ZnSe/ZnS:(Cu,Ms)/ZnS core/(doped)shell/shell nanocrystals were synthesized in an aqueous phase. • Emission color of nanocrystals was controlled from blue to white to orange by adjusting the atomic ratio of Cu and Mn co-dopants. • Photoluminescence quantum yields of the colloidal nanocrystals approached 36%.

  15. Structural Studies of dielectric HDPE+ZrO2 polymer nanocomposites: filler concentration dependences

    Science.gov (United States)

    Nabiyev, A. A.; Islamov, A. Kh; Maharramov, A. M.; Nuriyev, M. A.; Ismayilova, R. S.; Doroshkevic, A. S.; Pawlukojc, A.; Turchenko, V. A.; Olejniczak, A.; Rulev, M. İ.; Almasan, V.; Kuklin, A. I.

    2018-03-01

    Structural properties of HDPE+ZrO2 polymer nanocomposites thin films of 80-100μm thicknesses were investigated using SANS, XRD, Laser Raman and FTIR spectroscopy. The mass fraction of the filler was 1, 3, 10, and 20%. Results of XRD analysis showed that ZrO2 powder was crystallized both in monoclinic and in cubic phase under normal conditions. The percentages of monoclinic and cubic phase were found to be 99.8% and 0.2%, respectively. It was found that ZrO2 nanoparticles did not affect the main crystal and chemical structure of HDPE, but the degree of crystallinity of the polymer decreases with increasing concentration of zirconium oxide. SANS experiments showed that at ambient conditions ZrO2 nanoparticles mainly distributed like mono-particles in the polymer matrix at all concentrations of filler.The structure of HDPE+ZrO2 does not changes up to 132°C at 1-3% of filler, excepting changing of the polymer structure at temperatures upper 82°C. At high concentrations of filler 10-20% the aggregation of ZrO2 nanoparticles occurs, forming domains of 2.5μm. The results of Raman and FTIR spectroscopy did not show additional specific chemical bonds between the filler and the polymer matrix. New peaks formation was not observed. These results suggest that core-shell structure does not exist in the polymer nanocomposite system.

  16. Nanospheres with a smectic hydrophobic core and an amorphous PEG hydrophilic shell: structural changes and implications for drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Murthy, N. Sanjeeva [New Jersey Center for Biomaterials; Rutgers; The State University of New Jersey; Piscataway; USA; Zhang, Zheng [New Jersey Center for Biomaterials; Rutgers; The State University of New Jersey; Piscataway; USA; Borsadia, Siddharth [New Jersey Center for Biomaterials; Rutgers; The State University of New Jersey; Piscataway; USA; Kohn, Joachim [New Jersey Center for Biomaterials; Rutgers; The State University of New Jersey; Piscataway; USA

    2018-01-01

    The structural changes in nanospheres with a crystalline core and an amorphous diffuse shell were investigated by small-angle neutron scattering (SANS), small-, medium-, and wide-angle X-ray scattering (SAXS, MAXS and WAXS), and differential scanning calorimetry (DSC).

  17. (FeCo)3Si-SiOx core-shell nanoparticles fabricated in the gas phase

    International Nuclear Information System (INIS)

    Bai Jianmin; Xu Yunhao; Thomas, John; Wang Jianping

    2007-01-01

    A method of fabricating core-shell nanoparticles by using an integrated nanoparticle deposition technique in the gas phase is reported. The principle of the method is based on nanoparticle growth from the vapour phase, during which elements showing lower surface energies prefer to form the shells and elements showing higher surface energies prefer to stay in the cores. This method was applied successfully to the Fe-Co-Si ternary system to fabricate core-shell-type nanoparticles. The nanoparticles were exposed in air after collection to achieve oxidation. The analysis results based on transmission electron microscopy (TEM), Auger electron spectroscopy (AES), x-ray diffraction (XRD), and a superconducting quantum interference device (SQUID) showed that the core parts are magnetic materials of body-centred cubic (bcc) structured (FeCo) 3 Si of 15 nm in diameter, and the shell parts are amorphous SiO x of 2 nm in thickness. These core-shell-type nanoparticles show a magnetic anisotropy constant of about 7 x 10 5 erg cm -3 and a saturation magnetization of around 1160 emu cm -3 , which is much higher than that of iron oxide. After annealing at 300 deg. C in air (FeCo) 3 Si-SiO x core-shell-type nanoparticles showed a little bit of a drop in magnetic moment, while pure FeCo nanopariticles totally lost their magnetic moment. This means that the shells of SiO x are dense enough to prevent the magnetic cores from oxidation

  18. Efficient tungsten oxide/bismuth oxyiodide core/shell photoanode for photoelectrochemical water splitting

    Science.gov (United States)

    Ma, Haipeng; Zhang, Jing; Liu, Zhifeng

    2017-11-01

    The novel WO3 nanorods (NRs)/BiOI core/shell structure composite is used as an efficient photoanode applied in photoelectrochemical (PEC) water splitting for the first time. It is synthesized via facile hydrothermal method and, successive ionic layer adsorption and reaction (SILAR) process. This facile synthesis route can achieve uniform WO3/BiOI core/shell composite nanostructures and obtain varied BiOI morphologies simultaneously. The WO3 NRs/BiOI-20 composite exhibits enhanced PEC activity compared to pristine WO3 with a photocurrent density of 0.79 mA cm-2 measured at 0.8 V vs. RHE under AM 1.5G. This excellent performance benefits from the broader absorption spectrum and suppressed electron-hole recombination. This novel core/shell composite may provide insight in developing more efficient solar driven photoelectrodes.

  19. Ellipsoidal all-dielectric Fano resonant core-shell metamaterials

    Science.gov (United States)

    Reena, Reena; Kalra, Yogita; Kumar, Ajeet

    2018-06-01

    In this paper, ellipsoidal core (Si) and shell (SiO2) metamaterial has been proposed for highly directional properties. At the wavelength of magnetic resonance, Fano dip occurs in the backward scattering cross section and forward scattering enhancement takes place at the same wavelength so that there is an increment in the directivity. Effect on the directivity by changing the length of ellipsoidal nanoparticle along semi-axes has been analyzed. Two Fano resonances have been observed by decreasing the length of the nanoparticle along the semi-axis having electric polarization, where first and second Fano resonances are attributed to the dipole and quadrupole moments, respectively. These Fano resonant wavelengths in ellipsoidal nanoparticle exhibit higher directivity than the Kerker's type scattering or forward scattering shown by symmetrical structures like sphere. So, this core-shell metamaterial can act as an efficient directional nanoantenna.

  20. Hollow Au@Pd and Au@Pt core-shell nanoparticles as electrocatalysts for ethanol oxidation reactions

    KAUST Repository

    Song, Hyon Min

    2012-09-27

    Hybrid alloys among gold, palladium and platinum become a new category of catalysts primarily due to their enhanced catalytic effects. Enhancement means not only their effectiveness, but also their uniqueness as catalysts for the reactions that individual metals may not catalyze. Here, preparation of hollow Au@Pd and Au@Pt core-shell nanoparticles (NPs) and their use as electrocatalysts are reported. Galvanic displacement with Ag NPs is used to obtain hollow NPs, and higher reduction potential of Au compared to Ag, Pd, and Pt helps to produce hollow Au cores first, followed by Pd or Pt shell growth. Continuous and highly crystalline shell growth was observed in Au@Pd core-shell NPs, but the sporadic and porous-like structure was observed in Au@Pt core-shell NPs. Along with hollow core-shell NPs, hollow porous Pt and hollow Au NPs are also prepared from Ag seed NPs. Twin boundaries which are typically observed in large size (>20 nm) Au NPs were not observed in hollow Au NPs. This absence is believed to be due to the role of the hollows, which significantly reduce the strain energy of edges where the two lattice planes meet. In ethanol oxidation reactions in alkaline medium, hollow Au@Pd core-shell NPs show highest current density in forward scan. Hollow Au@Pt core-shell NPs maintain better catalytic activities than metallic Pt, which is thought to be due to the better crystallinity of Pt shells as well as the alloy effect of Au cores. © 2012 The Royal Society of Chemistry.

  1. The sustained-release behavior and in vitro and in vivo transfection of pEGFP-loaded core-shell-structured chitosan-based composite particles

    Science.gov (United States)

    Wang, Yun; Lin, Fu-xing; Zhao, Yu; Wang, Mo-zhen; Ge, Xue-wu; Gong, Zheng-xing; Bao, Dan-dan; Gu, Yu-fang

    2014-01-01

    Novel submicron core-shell-structured chitosan-based composite particles encapsulated with enhanced green fluorescent protein plasmids (pEGFP) were prepared by complex coacervation method. The core was pEGFP-loaded thiolated N-alkylated chitosan (TACS) and the shell was pH- and temperature-responsive hydroxybutyl chitosan (HBC). pEGFP-loaded TACS-HBC composite particles were spherical, and had a mean diameter of approximately 120 nm, as measured by transmission electron microscopy and particle size analyzer. pEGFP showed sustained release in vitro for >15 days. Furthermore, in vitro transfection in human embryonic kidney 293T and human cervix epithelial cells, and in vivo transfection in mice skeletal muscle of loaded pEGFP, were investigated. Results showed that the expression of loaded pEGFP, both in vitro and in vivo, was slow but could be sustained over a long period. pEGFP expression in mice skeletal muscle was sustained for >60 days. This work indicates that these submicron core-shell-structured chitosan-based composite particles could potentially be used as a gene vector for in vivo controlled gene transfection. PMID:25364253

  2. Core-shell polymer nanorods by a two-step template wetting process

    International Nuclear Information System (INIS)

    Dougherty, S; Liang, J

    2009-01-01

    One-dimensional core-shell polymer nanowires offer many advantages and great potential for many different applications. In this paper we introduce a highly versatile two-step template wetting process to fabricate two-component core-shell polymer nanowires with controllable shell thickness. PLLA and PMMA were chosen as model polymers to demonstrate the feasibility of this process. Solution wetting with different concentrations of polymer solutions was used to fabricate the shell layer and melt wetting was used to fill the shell with the core polymer. The shell thickness was analyzed as a function of the polymer solution concentration and viscosity, and the core-shell morphology was observed with TEM. This paper demonstrates the feasibility of fabricating polymer core-shell nanostructures using our two-step template wetting process and opens the arena for optimization and future experiments with polymers that are desirable for specific applications.

  3. Magnetic properties of Co-ferrite-doped hydroxyapatite nanoparticles having a core/shell structure

    International Nuclear Information System (INIS)

    Petchsang, N.; Pon-On, W.; Hodak, J.H.; Tang, I.M.

    2009-01-01

    The magnetic properties of Co-ferrite-doped hydroxyapatite (HAP) nanoparticles of composition Ca 10-3x Fe 2x Co x (PO 4 ) 6 (OH) 2 (where x=0, 0.1, 0.2, 0.3, 0.4 and 0.5% mole) are studied. Transmission electron microscope micrograms show that the 90 nm size nanoparticles annealed at 1250 o C have a core/shell structure. Their electron diffraction patterns show that the shell is composed of the hydroxyapatite and the core is composed of the Co-ferrite, CoFe 2 O 4 . Electron spin resonance measurements indicate that the Co 2+ ions are being substituted into the Ca(1) sites in HAP lattice. X-ray diffraction studies show the formation of impurity phases as higher amounts of the Fe 3+ /Co 2+ ions which are substituted into the HAP host matrix. The presence of two sextets (one for the A-site Fe 3+ and the other for the B-site Fe 3+ ) in the Moessbauer spectrum for all the doped samples clearly indicates that the CoFe 2 O 4 .cores are in the ferromagnetic state. Evidence of the impurity phases is seen in the appearance of doublet patterns in the Moessbauer spectrums for the heavier-doped (x=0.4 and 0.5) specimens. The decrease in the saturation magnetizations and other magnetic properties of the nanoparticles at the higher doping levels is consistent with some of the Fe 3+ and Co 2+ which being used to form the CoO and Fe 2 O 3 impurity phase seen in the XRD patterns.

  4. Fabrication and Characterization of ZnS/Diamond-Like Carbon Core-Shell Nanowires

    Directory of Open Access Journals (Sweden)

    Jung Han Kim

    2016-01-01

    Full Text Available We fabricated ZnS/diamond-like carbon (DLC core-shell heterostructure nanowire using a simple two-step process: the vapor-liquid-solid method combined with radio frequency plasma enhanced chemical vapor deposition (rf PECVD. As a core nanowire, ZnS nanowires with face-centered cubic structure were synthesized with a sputtered Au thin film, which exhibit a length and a diameter of ~10 μm and ~30–120 nm . After rf PECVD for DLC coating, The length and width of the dense ZnS/DLC core-shell nanowires were a range of ~10 μm  and 50–150 nm , respectively. In addition, ZnS/DLC core-shell nanowires were characterized with scanning transmission electron microscopy. From the results, the products have flat and uniform DLC coating layer on ZnS nanowire in spite of high residual stress induced by the high sp3 fraction. To further understanding of the DLC coating layer, Raman spectroscopy was employed with ZnS/DLC core-shell nanowires, which reveals two Raman bands at 1550 cm−1 (G peak and 1330 cm−1 (D peak. Finally, we investigated the optical properties from ultraviolet to infrared wavelength region using ultraviolet-visible (UV-Vis and Fourier transform infrared (FT-IR spectrometry. Related to optical properties, ZnS/DLC core-shell nanowires exhibit relatively lower absorbance and higher IR transmittance than that of ZnS nanowires.

  5. Synthesis and Growth Mechanism of Multimetallic Core-Shell and Hollow-Like Nanoparticles

    Science.gov (United States)

    Londono-Calderon, Alejandra

    A thorough control of nanoscale systems is crucial for developing and improving their activity in a variety of application fields. These range from nanocatalysis, plasmonics, nanosensors, nanomedicine, communications, and others. Controlling and understanding the growth and spatial distribution of multi metallic systems allow us to explore the correlation between the characteristics of the nanoparticle (composition, surface chemistry, crystallinity, etc.) and their properties (mechanical, optical, structural, etc.). In this dissertation bimetallic and multi-metallic nanoparticles were obtained by a seed mediated method and galvanic replacement. Combinations of the type core shell of Au Ag, Au Pd and Au Pd-Au Au multi-metallic systems were studied. A galvanic replacement method was used to obtain hollow-like Au/Pt nanoboxes and Au AgM (M = Au, Pd or Pt) yolk-shell structures with voids in the middle shell. Characterization regarding composition, morphology, optical properties and atomic structures was performed. The mechanical properties of Au Pd nanocubes were studied in situ by the use of a TEM-AFM nanomechanical holder. The nanoparticles strengthening mechanism relies on the Au core resistance to the motion of partial dislocations. The catalytic efficiency of core-shell and nanorattles structures were tested with a model reaction for the decomposition of 4-ntp to 4-amp. Yolk-shell systems exhibit an enhancement in the catalytic decomposition rate in comparison with solid and bimetallic system. Finally, the development of an Electrospray assisted Langmuir Blodgett technique was successfully employed for the deposition of nanoparticles monolayer on a substrate. High particle density and coverage of the substrate makes this a promising technique to finely tune nanoparticles self-assembly.

  6. Control of the Speed of a Light-Induced Spin Transition through Mesoscale Core-Shell Architecture.

    Science.gov (United States)

    Felts, Ashley C; Slimani, Ahmed; Cain, John M; Andrus, Matthew J; Ahir, Akhil R; Abboud, Khalil A; Meisel, Mark W; Boukheddaden, Kamel; Talham, Daniel R

    2018-05-02

    The rate of the light-induced spin transition in a coordination polymer network solid dramatically increases when included as the core in mesoscale core-shell particles. A series of photomagnetic coordination polymer core-shell heterostructures, based on the light-switchable Rb a Co b [Fe(CN) 6 ] c · mH 2 O (RbCoFe-PBA) as core with the isostructural K j Ni k [Cr(CN) 6 ] l · nH 2 O (KNiCr-PBA) as shell, are studied using temperature-dependent powder X-ray diffraction and SQUID magnetometry. The core RbCoFe-PBA exhibits a charge transfer-induced spin transition (CTIST), which can be thermally and optically induced. When coupled to the shell, the rate of the optically induced transition from low spin to high spin increases. Isothermal relaxation from the optically induced high spin state of the core back to the low spin state and activation energies associated with the transition between these states were measured. The presence of a shell decreases the activation energy, which is associated with the elastic properties of the core. Numerical simulations using an electro-elastic model for the spin transition in core-shell particles supports the findings, demonstrating how coupling of the core to the shell changes the elastic properties of the system. The ability to tune the rate of optically induced magnetic and structural phase transitions through control of mesoscale architecture presents a new approach to the development of photoswitchable materials with tailored properties.

  7. Room temperature nanojoining of Cu-Ag core-shell nanoparticles and nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jiaqi; Shin, Seungha, E-mail: sshin@utk.edu [The University of Tennessee, Department of Mechanical, Aerospace and Biomedical Engineering (United States)

    2017-02-15

    Room temperature (T{sub room}, 300 K) nanojoining of Ag has been widely employed in fabrication of microelectronic applications where the shapes and structures of microelectronic components must be maintained. In this research, the joining processes of pure Ag nanoparticles (NPs), Cu-Ag core-shell NPs, and nanowires (NWs) are studied using molecular dynamics simulations at T{sub room}. The evolution of densification, potential energy, and structural deformation during joining process are analyzed to identify joining mechanisms. Depending on geometry, different joining mechanisms including crystallization-amorphization, reorientation, Shockley partial dislocation are determined. A three-stage joining scenario is observed in both joining process of NPs and NWs. Besides, the Cu core does not participate in all joining processes, however, it enhances the mobility of Ag shell atoms, contributing to a higher densification and bonding strength at T{sub room}, compared with pure Ag nanomaterials. The tensile test shows that the nanojoint bears higher rupture strength than the core-shell NW itself. This study deepens understanding in the underlying joining mechanisms and thus nanojoint with desirable thermal, electrical, and mechanical properties could be potentially achieved.

  8. Enhancement of the core near-band-edge emission induced by an amorphous shell in coaxial one-dimensional nanostructure: the case of SiC/SiO{sub 2} core/shell self-organized nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Fabbri, Filippo; Rossi, Francesca; Attolini, Giovanni; Salviati, Giancarlo; Iannotta, Salvatore [IMEM-CNR Institute, Viale Usberti 37/A, I-43124 Parma (Italy); Aversa, Lucrezia; Verucchi, Roberto; Nardi, Marco [IFN-CNR Institute, Via alla Cascata 56/C-Povo, I-38123 Trento (Italy); Fukata, Naoki [International Center for Materials Nanoarchitectonics, National Institute for Materials Science and PRESTO JST, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Dierre, Benjamin; Sekiguchi, Takashi [Nano Device Characterization Group, Advanced Electronic Materials Center, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

    2010-08-27

    We report the influence of the native amorphous SiO{sub 2} shell on the cathodoluminescence emission of 3C-SiC/SiO{sub 2} core/shell nanowires. A shell-induced enhancement of the SiC near-band-edge emission is observed and studied as a function of the silicon dioxide thickness. Since the diameter of the investigated SiC cores rules out any direct bandgap optical transitions due to confinement effects, this enhancement is ascribed to a carrier diffusion from the shell to the core, promoted by the alignment of the SiO{sub 2} and SiC bands in a type I quantum well. An accurate correlation between the optical emission and structural and SiO{sub 2}-SiC interface properties is also reported.

  9. Structural and magnetic properties of CoO-Pt core-shell nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Zeleňáková, A.; Zeleňák, V.; Michalik, Štefan; Kováč, J.; Meisel, M. W.

    2014-01-01

    Roč. 89, č. 10 (2014), "104417-1"-"104417-10" ISSN 1098-0121 Institutional support: RVO:68378271 Keywords : CoO-Pt core shell nanoparticles * superparamagnetism * superspin glass state * x-ray diffraction * x-ray absorption spectroscopy Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 3.736, year: 2014

  10. Synthesis, Characterization and Gas Sensing Properties of Ag@α-Fe2O3 Core–Shell Nanocomposites

    Directory of Open Access Journals (Sweden)

    Ali Mirzaei

    2015-05-01

    Full Text Available Ag@α-Fe2O3 nanocomposite having a core–shell structure was synthesized by a two-step reduction-sol gel approach, including Ag nanoparticles synthesis by sodium borohydride as the reducing agent in a first step and the subsequent mixing with a Fe+3 sol for α-Fe2O3 coating. The synthesized Ag@α-Fe2O3 nanocomposite has been characterized by various techniques, such as SEM, TEM and UV-Vis spectroscopy. The electrical and gas sensing properties of the synthesized composite towards low concentrations of ethanol have been evaluated. The Ag@α-Fe2O3 nanocomposite showed better sensing characteristics than the pure α-Fe2O3. The peculiar hierarchical nano-architecture and the chemical and electronic sensitization effect of Ag nanoparticles in Ag@α-Fe2O3 sensors were postulated to play a key role in modulating gas-sensing properties in comparison to pristine α-Fe2O3 sensors.

  11. Probing the structure of CuInS{sub 2}-ZnS core-shell and similar nanocrystals by Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dzhagan, Volodymyr, E-mail: dzhagan@isp.kiev.ua [Semiconductor Physics, Technische Universität Chemnitz, 09107 Chemnitz (Germany); V. E. Lashkaryov Institute of Semiconductors Physics, National Academy of Sciences of Ukraine, Kyiv 03028 (Ukraine); Kempken, Björn [Energy and Semiconductor Research Laboratory, Department of Physics, Carl von Ossietzky University of Oldenburg, 26111 Oldenburg (Germany); Valakh, Mykhailo [V. E. Lashkaryov Institute of Semiconductors Physics, National Academy of Sciences of Ukraine, Kyiv 03028 (Ukraine); Parisi, Jürgen; Kolny-Olesiak, Joanna [Energy and Semiconductor Research Laboratory, Department of Physics, Carl von Ossietzky University of Oldenburg, 26111 Oldenburg (Germany); Zahn, Dietrich R.T. [Semiconductor Physics, Technische Universität Chemnitz, 09107 Chemnitz (Germany)

    2017-02-15

    CuInS{sub 2}/ZnS core-shell and alloyed nanocrystals (NCs) are promising candidates for applications in biolabeling, photocatalysis, solar energy conversion, and light emitting diodes. The growth mechanism and subsequent internal structure of such heterogeneous NCs are therefore of crucial importance, as it strongly affects their optical and electronic properties. Here, we investigated using resonant Raman spectroscopy the structure of CuInS{sub 2}/ZnS and Cu-Zn-In-S/ZnS core-shell NCs, as well as the evolution of Cu{sub 2−x}S NCs into CuInS{sub 2}via the heterogeneous Cu{sub 2−x}S/CuInS{sub 2} phase. We demonstrate that the particular phases can be distinguished based on their characteristic Raman modes and tuning the exciting laser energy into resonance with the bandgap of the particular phase.

  12. Tuning upconversion through energy migration in core-shell nanoparticles

    KAUST Repository

    Wang, Feng; Deng, Renren; Wang, Juan; Wang, Qingxiao; Han, Yu; Zhu, Haomiao; Chen, Xueyuan; Liu, Xiaogang

    2011-01-01

    Photon upconversion is promising for applications such as biological imaging, data storage or solar cells. Here, we have investigated upconversion processes in a broad range of gadolinium-based nanoparticles of varying composition. We show that by rational design of a core-shell structure with a set of lanthanide ions incorporated into separated layers at precisely defined concentrations, efficient upconversion emission can be realized through gadolinium sublattice-mediated energy migration for a wide range of lanthanide activators without long-lived intermediary energy states. Furthermore, the use of the core-shell structure allows the elimination of deleterious cross-relaxation. This effect enables fine-tuning of upconversion emission through trapping of the migrating energy by the activators. Indeed, the findings described here suggest a general approach to constructing a new class of luminescent materials with tunable upconversion emissions by controlled manipulation of energy transfer within a nanoscopic region. © 2011 Macmillan Publishers Limited. All rights reserved.

  13. Tuning upconversion through energy migration in core-shell nanoparticles

    KAUST Repository

    Wang, Feng

    2011-10-23

    Photon upconversion is promising for applications such as biological imaging, data storage or solar cells. Here, we have investigated upconversion processes in a broad range of gadolinium-based nanoparticles of varying composition. We show that by rational design of a core-shell structure with a set of lanthanide ions incorporated into separated layers at precisely defined concentrations, efficient upconversion emission can be realized through gadolinium sublattice-mediated energy migration for a wide range of lanthanide activators without long-lived intermediary energy states. Furthermore, the use of the core-shell structure allows the elimination of deleterious cross-relaxation. This effect enables fine-tuning of upconversion emission through trapping of the migrating energy by the activators. Indeed, the findings described here suggest a general approach to constructing a new class of luminescent materials with tunable upconversion emissions by controlled manipulation of energy transfer within a nanoscopic region. © 2011 Macmillan Publishers Limited. All rights reserved.

  14. Tailored Synthesis of Core-Shell Mesoporous Silica Particles—Optimization of Dye Sorption Properties

    Directory of Open Access Journals (Sweden)

    Andrzej Baliś

    2018-04-01

    Full Text Available Monodisperse spherical silica particles, with solid cores and mesoporous shells (SCMS, were synthesized at various temperatures using a one-pot method utilizing a cationic surfactant template. The temperature of the synthesis was found to significantly affect the diameters of both the cores (ca. 170–800 nm and shells (ca. 11–80 nm of the particles, which can be tailored for specific applications that require a high specific surface area of the nanocarriers (mesoporous shells and simultaneously their mechanical robustness for, e.g., facile isolation from suspensions (dense cores. The applied method enabled the formation of the relatively thick mesoporous shells at conditions below room temperature. Radially ordered pores with narrow distributions of their sizes in 3–4 nm range were found in the shells. The adsorption ability of the SCMS particles was studied using rhodamine 6G as a model dye. Decolorization of the dye solution in the presence of the SCMS particles was correlated with their structure and specific surface area and reached its maximum for the particles synthesized at 15 °C. The presented strategy may be applied for the fine-tuning of the structure of SCMS particles and the enhancement of their adsorption capabilities.

  15. Photo-physical properties enhancement of bare and core-shell quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Mumin, Md Abdul, E-mail: pcharpentier@eng.uwo.ca; Akhter, Kazi Farida, E-mail: pcharpentier@eng.uwo.ca; Charpentier, Paul A., E-mail: pcharpentier@eng.uwo.ca [Chemical and Biochemical Engineering, Western University, London Ontario (Canada)

    2014-03-31

    Semiconductor nanocrystals (NCs) (also known as quantum dots, QDs) have attracted immense attention for their size-tunable optical properties that makes them impressive candidates for solar cells, light emitting devices, lasers, as well as biomedical imaging. However monodispersity, high and consistent photoluminescence, photostability, and biocompatibility are still major challenges. This work focuses on optimizing the photophysical properties and biocompatibility of QDs by forming core-shell nanostructures and their encapsulation by a carrier. Highly luminescent CdS and CdS-ZnS core-shell QDs with 5 nm sizes were synthesized using a facile approach based on pyrolysis of the single molecule precursors. After capping the CdS QDs with a thin layer of ZnS to reduce toxicity, the photoluminescence and photostability of the core-shell QDs was significantly enhanced. To make both the bare and core/shell structure QDs more resistant against photochemical reactions, a mesoporous silica layer was grown on the QDs through a reverse microemulsion technique based on hydrophobic interaction. This encapsulation enhanced the quantum yield and photostability compared to the bare QDs by providing much stronger resistance to oxidation and Oswald ripening of QDs. Encapsulation also improved biocompatibility of QDs that was evaluated with human umbilical vein endothelial cell lines (HUVEC)

  16. Polyaniline/multi-walled carbon nanotubes composite with core-shell structures as a cathode material for rechargeable lithium-polymer cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Pan [School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209 (China); Han, Jia-Jun, E-mail: hanjiajunhitweihai@163.com [School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209 (China); Jiang, Li-Feng [Dalian Chemical Institute of Chinese Academy of Sciences, Dalian 116011 (China); Li, Zhao-Yu; Cheng, Jin-Ning [School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209 (China)

    2017-04-01

    Highlights: • The polyaniline multi-walled carbon nanotubes composite with core-shell structures was synthetized via in situ chemical oxidative polymerization, and the materials were characterized by physical and chemical methods. • The PANI/WMCNTs was synthetized via in situ chemical oxidative polymerization with core-shell structures. • The WMCNTs highly enhanced the conductivity of composites. • The comopsites were more conducive to the intercalation and deintercalation of anions and cations. • The much better performance as the cathode for lithium-ion cells was acquired for the composites. • The composites are low cost and eco-friendly which have a good prospect in future. - Abstract: The aniline was polymerized onto functionalized multi-walled carbon nanotubes in order to obtain a cathode material with core-shell structures for lithium batteries. The structure and morphology of the samples were investigated by Fourier transform infrared spectroscopy analysis, scanning electron microscope, transmission electron microscope and X-ray diffraction. The electrochemical properties of the composite were characterized by the cyclic voltammetry, the charge/discharge property, coulombic efficiency, and ac impedance spectroscopy in detail. At a constant current density of 0.2 C, the first specific discharge capacity of the reduced and oxidized PANI/WMCNTs were 181.8 mAh/g and 135.1 mAh/g separately, and the capacity retention rates were corresponding to 76.75% and 86.04% for 100 cycles with 99% coulombic efficiency. It was confirmed that the CNTs obviously enhanced the conductivity and electrochemical performance of polyaniline, and compared with the pure PANI, the reduced composite possessed a quite good performance for the cathode of lithium batteries.

  17. Core-shell particle composition by liquid phase infrared spectroscopy

    International Nuclear Information System (INIS)

    Ribeiro, Luiz F.B.; Machado, Ricardo A.F.; Goncalves, Odinei H.; Bona, Evandro

    2011-01-01

    Polymeric particles with core-shell morphology can offer advantages over conventional particles improving properties like mechanical and chemical resistance. However, particle composition must be known due to its influence on the final properties. In this work liquid phase infrared spectroscopy was used to determine the overall composition of core-shell particles composed by polystyrene (core) and poly(methyl methacrylate) (shell). Results were in agreement with those obtained with H 1 Nuclear Magnetic Resonance data (Goncalves et al, 2008). (author)

  18. Preparation, process optimization and characterization of core-shell polyurethane/chitosan nanofibers as a potential platform for bioactive scaffolds.

    Science.gov (United States)

    Maleknia, Laleh; Dilamian, Mandana; Pilehrood, Mohammad Kazemi; Sadeghi-Aliabadi, Hojjat; Hekmati, Amir Houshang

    2018-06-01

    In this paper, polyurethane (PU), chitosan (Cs)/polyethylene oxide (PEO), and core-shell PU/Cs nanofibers were produced at the optimal processing conditions using electrospinning technique. Several methods including SEM, TEM, FTIR, XRD, DSC, TGA and image analysis were utilized to characterize these nanofibrous structures. SEM images exhibited that the core-shell PU/Cs nanofibers were spun without any structural imperfections at the optimized processing conditions. TEM image confirmed the PU/Cs core-shell nanofibers were formed apparently. It that seems the inclusion of Cs/PEO to the shell, did not induce the significant variations in the crystallinity in the core-shell nanofibers. DSC analysis showed that the inclusion of Cs/PEO led to the glass temperature of the composition increased significantly compared to those of neat PU nanofibers. The thermal degradation of core-shell PU/Cs was similar to PU nanofibers degradation due to the higher PU concentration compared to other components. It was hypothesized that the core-shell PU/Cs nanofibers can be used as a potential platform for the bioactive scaffolds in tissue engineering. Further biological tests should be conducted to evaluate this platform as a three dimensional scaffold with the capabilities of releasing the bioactive molecules in a sustained manner.

  19. Optimization and photomodification of extremely broadband optical response of plasmonic core-shell obscurants.

    Science.gov (United States)

    de Silva, Vashista C; Nyga, Piotr; Drachev, Vladimir P

    2016-12-15

    Plasmonic resonances of the metallic shells depend on their nanostructure and geometry of the core, which can be optimized for the broadband extinction normalized by mass. The fractal nanostructures can provide a broadband extinction. It allows as well for a laser photoburning of holes in the extinction spectra and consequently windows of transparency in a controlled manner. The studied core-shell microparticles synthesized using colloidal chemistry consist of gold fractal nanostructures grown on precipitated calcium carbonate (PCC) microparticles or silica (SiO 2 ) microspheres. The optimization includes different core sizes and shapes, and shell nanostructures. It shows that the rich surface of the PCC flakes is the best core for the fractal shells providing the highest mass normalized extinction over the extremely broad spectral range. The mass normalized extinction cross section up to 3m 2 /g has been demonstrated in the broad spectral range from the visible to mid-infrared. Essentially, the broadband response is a characteristic feature of each core-shell microparticle in contrast to a combination of several structures resonant at different wavelengths, for example nanorods with different aspect ratios. The photomodification at an IR wavelength makes the window of transparency at the longer wavelength side. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. One pot synthesis, growth mechanism and optical properties of Zn{sub 1-x}Cd{sub x}Se graded core/shell and alloy nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Sonawane, Kiran G. [Department of Physics, University of Pune, Pune 411 007 (India); Patil, K.R. [Centre for Materials Characterization, National Chemical Laboratory, Pune 411 008 (India); Mahamuni, Shailaja, E-mail: shailajamahamuni@yahoo.co.in [Department of Physics, University of Pune, Pune 411 007 (India)

    2013-03-15

    Comparatively higher photoluminescence yield along with robustness of core/shell semiconductor nanocrystals make them attractive candidates for studying intricate quantum size effects. Here, we report, one pot synthesis of Zn{sub 1-x}Cd{sub x}Se graded core/shell structures by exploiting change in the reactivity of precursors. Optical and structural measurements indicate formation of graded structure. Growth mechanism probed by inductively coupled plasma atomic emission spectroscopy shows formation of graded core/shell structure, with CdSe rich core and ZnSe rich shell. Annealing these nanocrystals, in chemical bath, leads to diffusion of Cd from core to shell region. Formation of Zn{sub 1-x}Cd{sub x}Se alloy is also observed in X-ray photoelectron spectroscopic measurements, confirming the diffusion of Cd from core to shell region. Substantially high photoluminescence quantum efficiency of 60% with narrow line width of about 27 nm, was observed and is attributable to the reduced strain due to graded core/shell structure. - Highlights: Black-Right-Pointing-Pointer Graded CdSe/ZnSe core-shell nanocrystals are synthesized exploiting reactivity of precursors. Black-Right-Pointing-Pointer Growth mechanism is probed using ICP-AES spectroscopy. Black-Right-Pointing-Pointer Reduced strain leads to luminescence efficiency as high as 60%. Black-Right-Pointing-Pointer Alloy formation by annealing in chemical bath is probed using XPS.

  1. A comparative approach to synthesis and sintering of alumina/yttria nanocomposite powders using different precipitants

    Energy Technology Data Exchange (ETDEWEB)

    Kafili, G. [Department of Nanotechnology Engineering, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, 81746-73441 (Iran, Islamic Republic of); Movahedi, B., E-mail: b.movahedi@ast.ui.ac.ir [Department of Nanotechnology Engineering, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, 81746-73441 (Iran, Islamic Republic of); Milani, M. [Faculty of Advanced Materials and Renewable Energy Research Center, Tehran (Iran, Islamic Republic of)

    2016-11-01

    Alumina/yttria nanocomposite powder as an yttrium aluminum garnet (YAG) precursor was synthesized via partial wet route using urea and ammonium hydrogen carbonate (AHC) as precipitants, respectively. The products were characterized using X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy and energy dispersive spectroscopy. The use of urea produced very tiny spherical Y-compounds with chemical composition of Y{sub 2}(CO{sub 3}){sub 3}·nH{sub 2}O, which were attracted to the surface of alumina nanoparticles and consequently, a core-shell structure was obtained. The use of ammonium hydrogen carbonate produced sheets of Y-compounds with chemical composition of Y(OH)CO{sub 3} covering the alumina nanoparticles. A fine-grained YAG ceramic (about 500 nm), presenting a non-negligible transparency (45% RIT at IR range) was obtained by the spark plasma sintering (SPS) of alumina-yttria nanocomposite synthesized in the urea system. This amount of transmission was obtained by only the sintering of the powder specimen without any colloidal forming process before sintering or adding any sintering aids or dopant elements. However, by spark plasma sintering of alumina-yttria nanocomposite powder synthesized in AHC system, an opaque YAG ceramic with an average grain size of 1.2 μm was obtained. - Highlights: • Urea proved to be an appropriate precipitant for obtaining a core-shell alumina/yttria nanocomposite. • Alumina/yttria nanocomposite powders with more appropriate morphology and highly sinterability. • A fine-grained YAG ceramic was obtained by SPS of alumina-yttria nanocomposite.

  2. Core/shell fluorescent magnetic silica-coated composite nanoparticles for bioconjugation

    Science.gov (United States)

    He, Rong; You, Xiaogang; Shao, Jun; Gao, Feng; Pan, Bifeng; Cui, Daxiang

    2007-08-01

    A new class of highly fluorescent, photostable, and magnetic core/shell nanoparticles has been synthesized from a reverse microemulsion method. The obtained bifunctional nanocomposites were characterized by transmission electron microscopy (TEM), ultraviolet-visible (UV-vis) spectrometry, photoluminescence (PL) spectrometry, and fluorescence microscopy in a magnetic field. To further improve their biocompatibility, the silica-coated nanoparticles were functionalized with amino groups. The fluorescent magnetic composite nanoparticles (FMCNPs) had a typical diameter of 50 ± 5 nm and a saturation magnetization of 3.21 emu g-1 at room temperature, and exhibited strong excitonic photoluminescence. Through activation with glutaraldehyde, the FMCNPs were successfully conjugated with goat anti-mouse immunoglobin G (GM IgG), and the bioactivity and binding specificity of the as-prepared FMCNPs-GM IgG were confirmed via immunofluorescence assays, commonly used in bioanalysis. So they are potentially useful for many applications in biolabelling, imaging, drug targeting, bioseparation and bioassays.

  3. Core/shell fluorescent magnetic silica-coated composite nanoparticles for bioconjugation

    International Nuclear Information System (INIS)

    He Rong; You Xiaogang; Shao Jun; Gao Feng; Pan Bifeng; Cui Daxiang

    2007-01-01

    A new class of highly fluorescent, photostable, and magnetic core/shell nanoparticles has been synthesized from a reverse microemulsion method. The obtained bifunctional nanocomposites were characterized by transmission electron microscopy (TEM), ultraviolet-visible (UV-vis) spectrometry, photoluminescence (PL) spectrometry, and fluorescence microscopy in a magnetic field. To further improve their biocompatibility, the silica-coated nanoparticles were functionalized with amino groups. The fluorescent magnetic composite nanoparticles (FMCNPs) had a typical diameter of 50 ± 5 nm and a saturation magnetization of 3.21 emu g -1 at room temperature, and exhibited strong excitonic photoluminescence. Through activation with glutaraldehyde, the FMCNPs were successfully conjugated with goat anti-mouse immunoglobin G (GM IgG), and the bioactivity and binding specificity of the as-prepared FMCNPs-GM IgG were confirmed via immunofluorescence assays, commonly used in bioanalysis. So they are potentially useful for many applications in biolabelling, imaging, drug targeting, bioseparation and bioassays

  4. Process Development of Gallium Nitride Phosphide Core-Shell Nanowire Array Solar Cell

    Science.gov (United States)

    Chuang, Chen

    Dilute Nitride GaNP is a promising materials for opto-electronic applications due to its band gap tunability. The efficiency of GaNxP1-x /GaNyP1-y core-shell nanowire solar cell (NWSC) is expected to reach as high as 44% by 1% N and 9% N in the core and shell, respectively. By developing such high efficiency NWSCs on silicon substrate, a further reduction of the cost of solar photovoltaic can be further reduced to 61$/MWh, which is competitive to levelized cost of electricity (LCOE) of fossil fuels. Therefore, a suitable NWSC structure and fabrication process need to be developed to achieve this promising NWSC. This thesis is devoted to the study on the development of fabrication process of GaNxP 1-x/GaNyP1-y core-shell Nanowire solar cell. The thesis is divided into two major parts. In the first parts, previously grown GaP/GaNyP1-y core-shell nanowire samples are used to develop the fabrication process of Gallium Nitride Phosphide nanowire solar cell. The design for nanowire arrays, passivation layer, polymeric filler spacer, transparent col- lecting layer and metal contact are discussed and fabricated. The property of these NWSCs are also characterized to point out the future development of Gal- lium Nitride Phosphide NWSC. In the second part, a nano-hole template made by nanosphere lithography is studied for selective area growth of nanowires to improve the structure of core-shell NWSC. The fabrication process of nano-hole templates and the results are presented. To have a consistent features of nano-hole tem- plate, the Taguchi Method is used to optimize the fabrication process of nano-hole templates.

  5. Modeling of absorption and scattering properties of core -shell nanoparticles for application as nanoantenna in optical domain

    Science.gov (United States)

    Devi, Jutika; Saikia, Rashmi; Datta, Pranayee

    2016-10-01

    The present paper describes the study of core-shell nanoparticles for application as nanoantenna in the optical domain. To obtain the absorption and extinction efficiencies as well as the angular distribution of the far field radiation pattern and the resonance wavelengths for these metal-dielectric, dielectric-metal and metal-metal core-shell nanoparticles in optical domain, we have used Finite Element Method based COMSOL Multiphysics Software and Mie Theory. From the comparative study of the extinction efficiencies of core-shell nanoparticles of different materials, it is found that for silica - gold core - shell nanoparticles, the resonant wavelength is greater than that of the gold - silver, silver-gold and gold-silica core - shell nanoparticles and also the radiation pattern of the silica-gold core-shell nanoparticle is the most suitable one from the point of view of directivity. The dielectric functions of the core and shell material as well as of the embedded matrix are extremely important and plays a very major role to tune the directivity and resonance wavelength. Such highly controllable parameters of the dielectric - metal core - shell nanoparticles make them suitable for efficient coupling of optical radiation into nanoscale structures for a broad range of applications in the field of communications.

  6. Modeling of absorption and scattering properties of core -shell nanoparticles for application as nanoantenna in optical domain

    International Nuclear Information System (INIS)

    Devi, Jutika; Datta, Pranayee; Saikia, Rashmi

    2016-01-01

    The present paper describes the study of core-shell nanoparticles for application as nanoantenna in the optical domain. To obtain the absorption and extinction efficiencies as well as the angular distribution of the far field radiation pattern and the resonance wavelengths for these metal-dielectric, dielectric-metal and metal-metal core-shell nanoparticles in optical domain, we have used Finite Element Method based COMSOL Multiphysics Software and Mie Theory. From the comparative study of the extinction efficiencies of core-shell nanoparticles of different materials, it is found that for silica - gold core - shell nanoparticles, the resonant wavelength is greater than that of the gold - silver, silver-gold and gold-silica core - shell nanoparticles and also the radiation pattern of the silica-gold core-shell nanoparticle is the most suitable one from the point of view of directivity. The dielectric functions of the core and shell material as well as of the embedded matrix are extremely important and plays a very major role to tune the directivity and resonance wavelength. Such highly controllable parameters of the dielectric - metal core - shell nanoparticles make them suitable for efficient coupling of optical radiation into nanoscale structures for a broad range of applications in the field of communications. (paper)

  7. Core/shell magnetic mesoporous silica nanoparticles with radially oriented wide mesopores

    Directory of Open Access Journals (Sweden)

    Nikola Ž. Knežević

    2014-06-01

    Full Text Available Core/shell nanoparticles, containing magnetic iron-oxide (maghemite core and mesoporous shell with radial porous structure, were prepared by dispersing magnetite nanoparticles and adding tetraethylorthosilicate to a basic aqueous solution containing structure-templating cetyltrimethylammonium bromide and a pore-swelling mesithylene. The material is characterized by SEM and TEM imaging, nitrogen sorption and powder X-ray diffraction. Distinctive features of the prepared material are its high surface area (959 m2/g, wide average pore diameter (12.4 nm and large pore volume (2.3 cm3/g. The material exhibits radial pore structure and the high angle XRD pattern characteristic for maghemite nanoparticles, which are obtained upon calcination of the magnetite-containing material. The observed properties of the prepared material may render the material applicable in separation, drug delivery, sensing and heterogeneous catalysis.

  8. Fabrication and micro-photoluminescence property of CdSe/CdS core/shell nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Guozhang; Gou, Guangyang; Wu, Zeming; Chen, Yu; Li, Hongjian [Central South University, Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics and Electronics, Changsha, Hunan (China); Wan, Qiang [Hunan University, School of Physics and Electronics, Changsha (China); Zou, Bingsuo [Beijing Institute of Technology, Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing (China)

    2015-04-01

    Hetero-epitaxial CdSe/CdS core/shell nanowires (NWs) were prepared by a source-controllable chemical vapor deposition method. A two-stage growth mechanism was proposed to the growth process of the core/shell NWs. Micro-photoluminescence (μ-PL) property of individual NW was studied by a confocal microscopy system. The pure CdSe NW emits a red light with peak at 712.3 nm, which is inconsistent with the CdSe band-edge emission. The CdSe/CdS core/shell NW emits two apparent peaks, one is an intensive red emission peak centered at 715.2 nm and the other is a weak green emission peak located at 516.2 nm. The room temperature μ-PL spectrum shows that the PL intensity of CdSe NW was evidently promoted by coating the CdS shell, and this is because CdS improves the surface state optimizing the energy band structure of CdSe NW. The as-synthesized CdSe/CdS core/shell NW has more efficient PL quantum yields than pure CdSe NW and may find potential applications in nanoscale photonic devices. (orig.)

  9. Fabrication and micro-photoluminescence property of CdSe/CdS core/shell nanowires

    International Nuclear Information System (INIS)

    Dai, Guozhang; Gou, Guangyang; Wu, Zeming; Chen, Yu; Li, Hongjian; Wan, Qiang; Zou, Bingsuo

    2015-01-01

    Hetero-epitaxial CdSe/CdS core/shell nanowires (NWs) were prepared by a source-controllable chemical vapor deposition method. A two-stage growth mechanism was proposed to the growth process of the core/shell NWs. Micro-photoluminescence (μ-PL) property of individual NW was studied by a confocal microscopy system. The pure CdSe NW emits a red light with peak at 712.3 nm, which is inconsistent with the CdSe band-edge emission. The CdSe/CdS core/shell NW emits two apparent peaks, one is an intensive red emission peak centered at 715.2 nm and the other is a weak green emission peak located at 516.2 nm. The room temperature μ-PL spectrum shows that the PL intensity of CdSe NW was evidently promoted by coating the CdS shell, and this is because CdS improves the surface state optimizing the energy band structure of CdSe NW. The as-synthesized CdSe/CdS core/shell NW has more efficient PL quantum yields than pure CdSe NW and may find potential applications in nanoscale photonic devices. (orig.)

  10. Simple and convenient preparation of Au-Pt core-shell nanoparticles on surface via a seed growth method

    International Nuclear Information System (INIS)

    Qian Lei; Sha Yufang; Yang Xiurong

    2006-01-01

    Au-Pt core-shell nanoparticles were prepared on glass surface by a seed growth method. Gold nanoparticles were used as seeds and ascorbic acid-H 2 PtCl 6 solutions as growth solutions to deposit Pt shell on the surface of gold nanoparticles. These core-shell nanoparticles and their growth process were examined by UV-Vis spectroscopy, X-ray photoelectron spectroscopy, atomic force microscopy and field-emission environmental scanning electron microscopy and the results indicated that the deposition speed was fast and nanoparticles with obvious core-shell structure could be obtained after 2 min. Moreover, this seed growth method for preparation of the core-shell nanoparticles is simple and convenient compared with other seed growth methods with NH 4 OH as a mild reductant. In addition, electrochemical experiments indicated that these Au-Pt core-shell nanoparticles had similar electrochemical properties to those of the bulk Pt electrode

  11. High ink absorption performance of inkjet printing based on SiO2@Al13 core-shell composites

    Science.gov (United States)

    Chen, YiFan; Jiang, Bo; Liu, Li; Du, Yunzhe; Zhang, Tong; Zhao, LiWei; Huang, YuDong

    2018-04-01

    The increasing growth of the inkjet market makes the inkjet printing more necessary. A composite material based on core-shell structure has been developed and applied to prepare inkjet printing layer. In this contribution, the ink printing record layers based on SiO2@Al13 core-shell composite was elaborated. The prepared core-shell composite materials were characterized by X-ray photoelectron spectroscopy (XPS), zeta potential, X-ray diffraction (XRD), scanning electron microscopy (SEM). The results proved the presence of electrostatic adsorption between SiO2 molecules and Al13 molecules with the formation of the well-dispersed system. In addition, based on the adsorption and the liquid permeability analysis, SiO2@Al13 ink printing record layer achieved a relatively high ink uptake (2.5 gmm-1) and permeability (87%), respectively. The smoothness and glossiness of SiO2@Al13 record layers were higher than SiO2 record layers. The core-shell structure facilitated the dispersion of the silica, thereby improved its ink absorption performance and made the clear printed image. Thus, the proposed procedure based on SiO2@Al13 core-shell structure of dye particles could be applied as a promising strategy for inkjet printing.

  12. Highly active dealloyed Cu@Pt core-shell electrocatalyst towards 2-propanol electrooxidation in acidic solution

    Energy Technology Data Exchange (ETDEWEB)

    Poochai, Chatwarin, E-mail: p_chatwarin@yahoo.com

    2017-02-28

    Highlights: • This is the first report on electrooxidation of 2-propanol in acidic media on dealloyed Cu@Pt/CP core-shell electrocatalyst. • The dealloyed Cu@Pt/CP is prepared using cyclic co-electrodeposition and selective Cu dealloying (CCEd-sCuD). • The structure of dealloyed Cu@Pt/CP is core-shell structure with Cu-rich core and Pt-rich surface. • The dealloyed Cu@Pt/CP shows high activity and great stability towards 2-propanol electrooxidation in acidic media. - Abstract: Dealloyed Cu@Pt core-shell electrocatalyst was fabricated by cyclic co-electrodeposition and selective Cu dealloying (CCEd-sCuD) on carbon paper (CP), namely Cu@Pt/CP. The Cu@Pt/CP exhibited a core-shell structure comprising with a Cu-rich core and a Pt-rich shell. The crystalline phases of Pt/CP and Cu@Pt/CP were a face-centered cubic (fcc). The compressive lattice strain approximately 0.85% was found in the Cu@Pt/CP owing to a lattice mismatch between a core and a shell region. In the core-region, Cu was formed Pt-Cu alloy as major and copper oxide and also metallic copper as minor. The morphology and grain size of the Cu@Pt/CP displayed a porous spherical shape with 100 nm in diameter, while those of Pt/CP seemed to be a cubic shape with smaller diameter of 40 nm. In electrochemical and catalytic activity, the surface of Cu@Pt/CP had a larger electrochemical active surface area (ECSA) than that of Pt/CP due to a porous formation caused by Cu dealloying. It is not surprising that the Cu@Pt/CP showed higher catalytic activity and greater stability towards 0.5 M 2-propanol electrooxidation in 0.5 M H{sub 2}SO{sub 4} in terms of peak current density (j{sub p}), peak potential (E{sub p}), onset potential (E{sub onset}), diffusion coefficient (D), and charge transfer resistance (R{sub ct}) which were caused by electronic structure modification, higher compressive lattice strain, and larger ECSA, compared with Pt/CP.

  13. One-pot synthesis and characterization of rhodamine derivative-loaded magnetic core-shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Jin, E-mail: jzhang@eng.uwo.ca; Li Jiaxin [University of Western Ontario, Department of Chemical and Biochemical Engineering (Canada); Razavi, Fereidoon S. [Brock University, Department of Physics (Canada); Mumin, Abdul Md. [University of Western Ontario, Department of Chemical and Biochemical Engineering (Canada)

    2011-05-15

    A new method to produce elaborate nanostructure with magnetic and fluorescent properties in one entity is reported in this article. Magnetite (Fe{sub 3}O{sub 4}) coated with fluorescent silica (SiO{sub 2}) shell was produced through the one-pot reaction, in which one reactor was utilized to realize the synthesis of superparamagnetic core of Fe{sub 3}O{sub 4}, the formation of SiO{sub 2} coating through the condensation and polymerization of tetraethylorthosilicate (TEOS), and the encapsulation of tetramethyl rhodamine isothiocyanate-dextran (TRITC-dextran) within silica shell. Transmission electron microscopy (TEM), energy dispersive X-ray (EDX) analysis, and X-ray diffraction (XRD) were carried out to investigate the core-shell structure. The magnetic core of the core-shell nanoparticles is 60 {+-} 10 nm in diameter. The thickness of the fluorescent SiO{sub 2} shell is estimated at 15 {+-} 5 nm. In addition, the fluorescent signal of the SiO{sub 2} shell has been detected by the laser confocal scanning microscopy (LCSM) with emission wavelength ({lambda}{sub em}) at 566 nm. In addition, the magnetic properties of TRITC-dextran loaded silica-coating iron oxide nanoparticles (Fe{sub 3}O{sub 4}-SiO{sub 2} NPs) were studied. The hysteresis loop of the core-shell NPs measured at room temperature shows that the saturation magnetization (M{sub s}) is not reached even at the field of 70 kOe (7T). Meanwhile, the very low coercivity (H{sub c}) and remanent magnetization (M{sub r}) are 0.375 kOe and 6.6 emu/g, respectively, at room temperature. It indicates that the core-shell particles have the superparamagnetic properties. The measured blocking temperature (T{sub B}) of the TRITC-dextran loaded Fe{sub 3}O{sub 4}-SiO{sub 2} NPs is about 122.5 K. It is expected that the multifunctional core-shell nanoparticles can be used in bio-imaging.

  14. Symplectic no-core shell-model approach to intermediate-mass nuclei

    Science.gov (United States)

    Tobin, G. K.; Ferriss, M. C.; Launey, K. D.; Dytrych, T.; Draayer, J. P.; Dreyfuss, A. C.; Bahri, C.

    2014-03-01

    We present a microscopic description of nuclei in the intermediate-mass region, including the proximity to the proton drip line, based on a no-core shell model with a schematic many-nucleon long-range interaction with no parameter adjustments. The outcome confirms the essential role played by the symplectic symmetry to inform the interaction and the winnowing of shell-model spaces. We show that it is imperative that model spaces be expanded well beyond the current limits up through 15 major shells to accommodate particle excitations, which appear critical to highly deformed spatial structures and the convergence of associated observables.

  15. Synthesis of core-shell hematite (α-Fe2O3) nanoplates: Quantitative analysis of the particle structure and shape, high coercivity and low cytotoxicity

    Science.gov (United States)

    Tadic, Marin; Kopanja, Lazar; Panjan, Matjaz; Kralj, Slavko; Nikodinovic-Runic, Jasmina; Stojanovic, Zoran

    2017-05-01

    Hematite core-shell nanoparticles with plate-like morphology were synthesized using a one-step hydrothermal synthesis. An XRPD analysis indicates that the sample consist of single-phase α-Fe2O3 nanoparticles. SEM and TEM measurements show that the hematite sample is composed of uniform core-shell nanoplates with 10-20 nm thickness, 80-100 nm landscape dimensions (aspect ratio ∼5) and 3-4 nm thickness of the surface shells. We used computational methods for the quantitative analysis of the core-shell particle structure and circularity shape descriptor for the quantitative shape analysis of the nanoparticles from TEM micrographs. The calculated results indicated that a percentage of the shell area in the nanoparticle area (share [%]) is significant. The determined values of circularity in the perpendicular and oblique perspective clearly show shape anisotropy of the nanoplates. The magnetic properties revealed the ferromagnetic-like properties at room temperature with high coercivity HC = 2340 Oe, pointing to the shape and surface effects. These results signify core-shell hematite nanoparticles' for practical applications in magnetic devices. The synthesized hematite plate-like nanoparticles exhibit low cytotoxicity levels on the human lung fibroblasts (MRC5) cell line demonstrating the safe use of these nanoparticles for biomedical applications.

  16. Improving the electrode performance of Ge through Ge@C core-shell nanoparticles and graphene networks.

    Science.gov (United States)

    Xue, Ding-Jiang; Xin, Sen; Yan, Yang; Jiang, Ke-Cheng; Yin, Ya-Xia; Guo, Yu-Guo; Wan, Li-Jun

    2012-02-08

    Germanium is a promising high-capacity anode material for lithium ion batteries, but it usually exhibits poor cycling stability because of its huge volume variation during the lithium uptake and release process. A double protection strategy to improve the electrode performance of Ge through the use of Ge@C core-shell nanostructures and reduced graphene oxide (RGO) networks has been developed. The as-synthesized Ge@C/RGO nanocomposite showed excellent cycling performance and rate capability in comparison with Ge@C nanoparticles when used as an anode material for Li ion batteries, which can be attributed to the electronically conductive and elastic RGO networks in addition to the carbon shells and small particle sizes of Ge. The strategy is simple yet very effective, and because of its versatility, it may be extended to other high-capacity electrode materials with large volume variations and low electrical conductivities.

  17. Coherently Strained Si-SixGe1-x Core-Shell Nanowire Heterostructures.

    Science.gov (United States)

    Dillen, David C; Wen, Feng; Kim, Kyounghwan; Tutuc, Emanuel

    2016-01-13

    Coherently strained Si-SixGe1-x core-shell nanowire heterostructures are expected to possess a positive shell-to-core conduction band offset, allowing for quantum confinement of electrons in the Si core. We report the growth of epitaxial, coherently strained Si-SixGe1-x core-shell heterostructures through the vapor-liquid-solid mechanism for the Si core, followed in situ by the epitaxial SixGe1-x shell growth using ultrahigh vacuum chemical vapor deposition. The Raman spectra of individual nanowires reveal peaks associated with the Si-Si optical phonon mode in the Si core and the Si-Si, Si-Ge, and Ge-Ge vibrational modes of the SixGe1-x shell. The core Si-Si mode displays a clear red-shift compared to unstrained, bare Si nanowires thanks to the lattice mismatch-induced tensile strain, in agreement with calculated values using a finite-element continuum elasticity model combined with lattice dynamic theory. N-type field-effect transistors using Si-SixGe1-x core-shell nanowires as channel are demonstrated.

  18. Protective agent-free synthesis of Ni-Ag core-shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Chen, D.-H. [Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China)]. E-mail: chendh@mail.ncku.edu.tw; Wang, S.-R. [Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China)

    2006-12-10

    Ni-Ag core-shell nanoparticles have been prepared by successive hydrazine reduction in ethylene glycol in the absence of protective agents. TEM analysis indicated the product was very fine and the thickness of Ag nanoshells could be controlled by the added silver nitrate concentration. The analyses of electron diffraction pattern and XRD revealed that both Ni cores and Ag shells had a fcc structure. The surface composition analysis by XPS indicated that Ni cores were fully covered by Ag nanoshells. Because of the absence of protective agent, the appropriate nickel concentration for the coating of Ag nanoshells should be less than 1.0 mM to avoid particle agglomeration. The product possessed the surface character of Ag and the magnetic property of Ni, and may have many potential applications in optical, magnetic, catalytic, biochemical, and biomedical fields.

  19. Enhanced oxidation stability of quasi core-shell alloyed CdSeS quantum dots prepared through aqueous microwave synthesis technique.

    Science.gov (United States)

    Zhan, Hong-Ju; Zhou, Pei-Jiang; Ma, Rong; Liu, Xi-Jing; He, Yu-Ning; Zhou, Chuan-Yun

    2014-01-01

    Quasi core shell alloyed CdSeS quantum dots (QDs) have been prepared through a facile aqueous-phase route employing microwave irradiation technique. The optical spectroscopy and structure characterization evidenced the quasi core shell alloyed structures of CdSeS QDs. The X-ray diffraction patterns of the obtained CdSeS QDs displayed peak positions very close to those of bulk cubic CdS crystal structures and the result of X-ray photoelectron spectroscopy data re-confirmed the thick CdS shell on the CdSe core. The TEM images and HRTEM images of the CdSeS QDs ascertained the well-defined spherical particles and a relatively narrow size distribution. On the basis, the stability of the obtained QDs in an oxidative environment was also discussed using etching reaction by H2O2. The experiments result showed the as-prepared QDs present high tolerance towards H2O2, obviously superior to the commonly used CdTe QDs and core-shell CdTe/CdS QDs, which was attributed to the unique quasi core-shell CdSeS crystal structure and the small lattice mismatch between CdSe and CdS semiconductor materials. This assay provided insight to obtain high stable crystal structured semiconductor nanocrystals in the design and synthesis process.

  20. NaF-loaded core-shell PAN-PMMA nanofibers as reinforcements for Bis-GMA/TEGDMA restorative resins.

    Science.gov (United States)

    Cheng, Liyuan; Zhou, Xuegang; Zhong, Hong; Deng, Xuliang; Cai, Qing; Yang, Xiaoping

    2014-01-01

    A kind of core-shell nanofibers containing sodium fluoride (NaF) was produced and used as reinforcing materials for dimethacrylate-based dental restorative resins in this study. The core-shell nanofibers were prepared by coaxial-electrospinning with polyacrylonitrile (PAN) and poly(methyl methacrylate) (PMMA) solutions as core and shell fluids, respectively. The produced PAN-PMMA nanofibers varied in fiber diameter and the thickness of PMMA shell depending on electrospinning parameters. NaF-loaded nanofibers were obtained by incorporating NaF nanocrystals into the core fluid at two loadings (0.8 or 1.0wt.%). Embedment of NaF nanocrystals into the PAN core did not damage the core-shell structure. The addition of PAN-PMMA nanofibers into Bis-GMA/TEGDMA clearly showed the reinforcement due to the good interfacial adhesion between fibers and resin. The flexural strength (Fs) and flexural modulus (Ey) of the composites decreased slightly as the thickness of PMMA shell increasing. Sustained fluoride releases with minor initial burst release were achieved from NaF-loaded core-shell nanofibers and the corresponding composites, which was quite different from the case of embedding NaF nanocrystals into the dental resin directly. The study demonstrated that NaF-loaded PAN-PMMA core-shell nanofibers were not only able to improve the mechanical properties of restorative resin, but also able to provide sustained fluoride release to help in preventing secondary caries. © 2013.

  1. Synthesis and characterization of mesoporous silica core-shell particles

    Directory of Open Access Journals (Sweden)

    Milan Nikolić

    2010-06-01

    Full Text Available Core-shell particles were formed by deposition of primary silica particles synthesized from sodium silicate solution on functionalized silica core particles (having size of ~0.5 µm prepared by hydrolysis and condensation of tetraethylortosilicate. The obtained mesoporous shell has thickness of about 60 nm and consists of primary silica particles with average size of ~21 nm. Scanning electron microscopy and zeta potential measurements showed that continuous silica shell exists around functionalized core particles which was additionally proved by FTIR and TEM results.

  2. Synthesis of Multicolor Core/Shell NaLuF4:Yb3+/Ln3+@CaF2 Upconversion Nanocrystals

    Directory of Open Access Journals (Sweden)

    Hui Li

    2017-02-01

    Full Text Available The ability to synthesize high-quality hierarchical core/shell nanocrystals from an efficient host lattice is important to realize efficacious photon upconversion for applications ranging from bioimaging to solar cells. Here, we describe a strategy to fabricate multicolor core @ shell α-NaLuF4:Yb3+/Ln3+@CaF2 (Ln = Er, Ho, Tm upconversion nanocrystals (UCNCs based on the newly established host lattice of sodium lutetium fluoride (NaLuF4. We exploited the liquid-solid-solution method to synthesize the NaLuF4 core of pure cubic phase and the thermal decomposition approach to expitaxially grow the calcium fluoride (CaF2 shell onto the core UCNCs, yielding cubic core/shell nanocrystals with a size of 15.6 ± 1.2 nm (the core ~9 ± 0.9 nm, the shell ~3.3 ± 0.3 nm. We showed that those core/shell UCNCs could emit activator-defined multicolor emissions up to about 772 times more efficient than the core nanocrystals due to effective suppression of surface-related quenching effects. Our results provide a new paradigm on heterogeneous core/shell structure for enhanced multicolor upconversion photoluminescence from colloidal nanocrystals.

  3. Fabrication of Core-Shell Structural SiO2@H3[PM12O40] Material and Its Catalytic Activity

    Directory of Open Access Journals (Sweden)

    Xin Yang

    2014-01-01

    Full Text Available Through a natural tree grain template and sol-gel technology, the heterogeneous catalytic materials based on polyoxometalate compounds H3[PM12O40] encapsulating SiO2: SiO2@H3[PM12O40] (SiO2@PM12, M = W, Mo with core-shell structure had been prepared. The structure and morphology of the core-shell microspheres were characterized by the XRD, IR spectroscopy, UV-Vis absorbance, and SEM. These microsphere materials can be used as heterogeneous catalysts with high activity and stability for catalytic wet air oxidation of pollutant dyes safranine T (ST at room condition. The results show that the catalysts have excellent catalytic activity in treatment of wastewater containing 10 mg/L ST, and 94% of color can be removed within 60 min. Under different cycling runs, it is shown that the catalysts are stable under such operating conditions and the leaching tests show negligible leaching effect owing to the lesser dissolution.

  4. Epitaxial TiO 2/SnO 2 core-shell heterostructure by atomic layer deposition

    KAUST Repository

    Nie, Anmin

    2012-01-01

    Taking TiO 2/SnO 2 core-shell nanowires (NWs) as a model system, we systematically investigate the structure and the morphological evolution of this heterostructure synthesized by atomic layer deposition/epitaxy (ALD/ALE). All characterizations, by X-ray diffraction, high-resolution transmission electron microscopy, selected area electron diffraction and Raman spectra, reveal that single crystalline rutile TiO 2 shells can be epitaxially grown on SnO 2 NWs with an atomically sharp interface at low temperature (250 °C). The growth behavior of the TiO 2 shells highly depends on the surface orientations and the geometrical shape of the core SnO 2 NW cross-section. Atomically smooth surfaces are found for growth on the {110} surface. Rough surfaces develop on {100} surfaces due to (100) - (1 × 3) reconstruction, by introducing steps in the [010] direction as a continuation of {110} facets. Lattice mismatch induces superlattice structures in the TiO 2 shell and misfit dislocations along the interface. Conformal epitaxial growth has been observed for SnO 2 NW cores with an octagonal cross-section ({100} and {110} surfaces). However, for a rectangular core ({101} and {010} surfaces), the shell also derives an octagonal shape from the epitaxial growth, which was explained by a proposed model based on ALD kinetics. The surface steps and defects induced by the lattice mismatch likely lead to improved photoluminescence (PL) performance for the yellow emission. Compared to the pure SnO 2 NWs, the PL spectrum of the core-shell nanostructures exhibits a stronger emission peak, which suggests potential applications in optoelectronics. © The Royal Society of Chemistry 2012.

  5. Effective enhancement of gas separation performance in mixed matrix membranes using core/shell structured multi-walled carbon nanotube/graphene oxide nanoribbons

    Science.gov (United States)

    Xue, Qingzhong; Pan, Xinglong; Li, Xiaofang; Zhang, Jianqiang; Guo, Qikai

    2017-02-01

    Novel core/shell structured multi-walled carbon nanotube/graphene oxide nanoribbons (MWCNT@GONRs) nanohybrids were successfully prepared using a modified chemical longitudinal unzipping method. Subsequently, the MWCNT@GONRs nanohybrids were used as fillers to enhance the gas separation performance of polyimide based mixed matrix membranes (MMMs). It is found that MMMs concurrently exhibited higher gas selectivity and higher gas permeability compared to pristine polyimide. The high gas selectivity could be attributed to the GONRs shell, which provided a selective barrier and large gas adsorbed area, while the high gas permeability resulted from the hollow structured MWCNTs core with smooth internal surface, which acted as a rapid transport channel. MWCNT@GONRs could be promising candidates to improve gas separation performance of MMMs due to the unique microstructures, ease of synthesis and low filling loading.

  6. Synthesis of CuO-NiO core-shell nanoparticles by homogeneous precipitation method

    International Nuclear Information System (INIS)

    Bayal, Nisha; Jeevanandam, P.

    2012-01-01

    Highlights: ► CuO-NiO core-shell nanoparticles have been synthesized using a simple homogeneous precipitation method for the first time. ► Mechanism of the formation of core-shell nanoparticles has been investigated. ► The synthesis route may be extended for the synthesis of other mixed metal oxide core-shell nanoparticles. - Abstract: Core-shell CuO–NiO mixed metal oxide nanoparticles in which CuO is the core and NiO is the shell have been successfully synthesized using homogeneous precipitation method. This is a simple synthetic method which produces first a layered double hydroxide precursor with core-shell morphology which on calcination at 350 °C yields the mixed metal oxide nanoparticles with the retention of core-shell morphology. The CuO–NiO mixed metal oxide precursor and the core-shell nanoparticles were characterized by powder X-ray diffraction, FT-IR spectroscopy, thermal gravimetric analysis, elemental analysis, scanning electron microscopy, transmission electron microscopy, and diffuse reflectance spectroscopy. The chemical reactivity of the core-shell nanoparticles was tested using catalytic reduction of 4-nitrophenol with NaBH 4 . The possible growth mechanism of the particles with core-shell morphology has also been investigated.

  7. Chitosan mediated synthesis of core/double shell ternary polyaniline/Chitosan/cobalt oxide nano composite-as high energy storage electrode material in supercapacitors

    International Nuclear Information System (INIS)

    Vellakkat, Mini; Hundekkal, Devendrappa

    2016-01-01

    Nanostructured ternary composite of polyaniline (PANI), Co 3 O 4 nanoparticles, and Chitosan (CS) has been prepared by an in situ chemical oxidation method, and the nanocomposites (CPAESCO) were used as supercapacitor electrodes. The Co 3 O 4 nanoparticles are uniformly coated with CS and PANI layers in it. Different techniques (Fourier transform infrared spectrophotometry, x-ray diffraction, thermal gravimetric analysis, UV−visible spectroscopy, scanning electron microscopy, transmission electron microscopy and electro chemical analysis-cyclic voltammetry, galvanostatic charge/discharge (GCD), and electrochemical impedance spectroscopy) were used to analyse the optical, structural, thermal, chemical and supercapacitive aspects of the nanocomposites. Core/double shell ternary composite electrode exhibits significantly increased specific capacitance than PANI/Co 3 O 4 or PANI/CS binary composites in supercapacitors. The ternary nanocomposite with 40% nanoparticle exhibits a highest specific capacitance reaching 687 F g −1 , Energy density of (95.42 Wh kg −1 at 1 A g −1 ) and power density of (1549 W kg −1 at 3 A g −1 ) and outstanding cycling performance, with, 91% capacitance retained over 5000 cycles. It is found that this unique bio compatible nano composite with synergy is a new multifunctional material which will be useful in the design of supercapacitor electrodes and other energy conversion devices too. (paper)

  8. Atomistic Tight-Binding Theory of Electron-Hole Exchange Interaction in Morphological Evolution of CdSe/ZnS Core/Shell Nanodisk to CdSe/ZnS Core/Shell Nanorod

    Directory of Open Access Journals (Sweden)

    Worasak Sukkabot

    2016-01-01

    Full Text Available Based on the atomistic tight-binding theory (TB and a configuration interaction (CI description, the electron-hole exchange interaction in the morphological transformation of CdSe/ZnS core/shell nanodisk to CdSe/ZnS core/shell nanorod is described with the aim of understanding the impact of the structural shapes on the change of the electron-hole exchange interaction. Normally, the ground hole states confined in typical CdSe/ZnS core/shell nanocrystals are of heavy hole-like character. However, the atomistic tight-binding theory shows that a transition of the ground hole states from heavy hole-like to light hole-like contribution with the increasing aspect ratios of the CdSe/ZnS core/shell nanostructures is recognized. According to the change in the ground-state hole characters, the electron-hole exchange interaction is also significantly altered. To do so, optical band gaps, ground-state electron character, ground-state hole character, oscillation strengths, ground-state coulomb energies, ground-state exchange energies, and dark-bright (DB excitonic splitting (stoke shift are numerically demonstrated. These atomistic computations obviously show the sensitivity with the aspect ratios. Finally, the alteration in the hole character has a prominent effect on dark-bright (DB excitonic splitting.

  9. One-pot synthesis of stable water soluble Mn:ZnSe/ZnS core/shell quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Hao; Gao Xue; Liu Siyu; Su Xingguang, E-mail: suxg@jlu.edu.cn [College of Chemistry, Jilin University, Department of Analytical Chemistry (China)

    2013-06-15

    In this paper, Mn:ZnSe/ZnS core/shell-doped quantum dots (d-dots) with 3-mercaptopropionic acid as the stabilizer are successfully synthesized through a simple one-pot synthesis procedure in aqueous solution. The average diameter of Mn:ZnSe/ZnS core/shell d-dots is about 2.9 nm, which is lager than that of Mn:ZnSe cores (about 1.9 nm). The optical features and structure of the obtained Mn:ZnSe/ZnS core/shell quantum dots have been characterized by UV-Vis and fluorescence spectroscopy, X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy. The photostability against UV irradiation and chemical stability against H{sub 2}O{sub 2} etching have been studied, and the results showed that the prepared Mn:ZnSe/ZnS core/shell d-dots are more stable than CdTe quantum dots prepared in aqueous solution. Finally, the resulting core/shell quantum dots are used as fluorescent label in human osteoblast-like HepG2 cell imaging.

  10. MnO2@colloid carbon spheres nanocomposites with tunable interior architecture for supercapacitors

    International Nuclear Information System (INIS)

    Zhang, Yuxin; Dong, Meng; Zhu, Shijin; Liu, Chuanpu; Wen, Zhongquan

    2014-01-01

    Graphical abstract: - Highlights: • MnO 2 @CSs nanocomposites have been successfully synthesized in room temperature. • The composites exhibited three structures: core–shell, yolk–shell and hollow structure. • The yolk–shell structure exhibited a high specific capacitance and cycling stability. - Abstract: MnO 2 @colloid carbon spheres nanocomposites with tunable interior architecture have been synthesized by a facile and cost-effective strategy at room temperature. The structure and morphology of as-prepared nanocomposites were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), nitrogen adsorption, focused ion beam scanning electron microscopy (FIB/SEM) and high-resolution transmission electron microscopy (HRTEM). The as-obtained composites exhibited a three-dimensional architecture with core–shell, yolk–shell and hollow interior structure. Furthermore, the electrochemical properties of composites were evaluated by cycle voltammetric (CV) and galvanostatic charge–discharge measurements. The yolk–shell structure exhibited the optimized pseudocapacitance performance, revealing a specific capacitance (273 F g −1 ) with a good rate and cycling stability, owing to its unique structure and the poor crystallinity of MnO 2 nanofilms. Therefore, this facile synthetic strategy could be useful to design and synthesis of tunable nanostructures with enhanced supercapacitor behavior

  11. Local structure information by EXAFS analysis using two algorithms for Fourier transform calculation

    International Nuclear Information System (INIS)

    Aldea, N; Pintea, S; Rednic, V; Matei, F; Hu Tiandou; Xie Yaning

    2009-01-01

    The present work is a comparison study between different algorithms of Fourier transform for obtaining very accurate local structure results using Extended X-ray Absorption Fine Structure technique. In this paper we focus on the local structural characteristics of supported nickel catalysts and Fe 3 O 4 core-shell nanocomposites. The radial distribution function could be efficiently calculated by the fast Fourier transform when the coordination shells are well separated while the Filon quadrature gave remarkable results for close-shell coordination.

  12. Enhancing photocatalytic activity by using TiO2-MgO core-shell-structured nanoparticles

    International Nuclear Information System (INIS)

    Jung, Hyun Suk; Lee, Jung-Kun; Nastasi, Michael; Kim, Jeong-Ryeol; Lee, Sang-Wook; Kim, Jin Young; Park, Jong-Sung; Hong, Kug Sun; Shin, Hyunho

    2006-01-01

    Hygroscopic Mg(OH) 2 gel was topotactically decomposed on TiO 2 particle surfaces, resulting in highly nanoporous MgO-coated TiO 2 particles. The highly hygroscopic and nanoporous MgO shell absorbed more water molecules and hydroxyl groups from the environment to yield an improved photocatalytic property of the core-shell particles as compared to the uncoated TiO 2 counterpart

  13. In-medium no-core shell model for ab initio nuclear structure calculations

    International Nuclear Information System (INIS)

    Gebrerufael, Eskendr

    2017-01-01

    In this work, we merge two successful ab initio nuclear-structure methods, the no-core shell model (NCSM) and the multi-reference in-medium similarity renormalization group (IM-SRG), to define a novel many-body approach for the comprehensive description of ground and excited states of closed- and open-shell medium-mass nuclei. Building on the key advantages of the two methods - the decoupling of excitations at the many-body level in the IM-SRG, and the exact diagonalization in the NCSM applicable up to medium-light nuclei - their combination enables fully converged no-core calculations for an unprecedented range of nuclei and observables at moderate computational cost. The efficiency and rapid model-space convergence of the new approach make it ideally suited for ab initio studies of ground and low-lying excited states of nuclei up to the medium-mass regime. Interactions constructed within the framework of chiral effective field theory provide an excellent opportunity to describe properties of nuclei from first principles, i.e., rooted in quantum chromodynamics, they overcome the lack of predictive power of phenomenological potentials. The hard core of these interactions causes strong short-range correlations, which we soften by using the similarity-renormalization-group transformation that accelerates the model-space convergence of many-body calculations. Three-nucleon effects, which are mandatory for the correct description of bulk properties of nuclei, are included in our calculations by using the normal-ordered two-body approximation, which has been shown to be sufficient to capture the main effects of the three-nucleon interaction. Using these interactions, we analyze energies of ground and excited states in the carbon and oxygen isotopic chains, where conventional NCSM calculations are still feasible and provide an important benchmark. Furthermore, we study the Hoyle state in 12 C - a three-alpha cluster state that cannot be converged in standard NCSM

  14. Graded index and randomly oriented core-shell silicon nanowires for broadband and wide angle antireflection

    Directory of Open Access Journals (Sweden)

    P. Pignalosa

    2011-09-01

    Full Text Available Antireflection with broadband and wide angle properties is important for a wide range of applications on photovoltaic cells and display. The SiOx shell layer provides a natural antireflection from air to the Si core absorption layer. In this work, we have demonstrated the random core-shell silicon nanowires with both broadband (from 400nm to 900nm and wide angle (from normal incidence to 60º antireflection characteristics within AM1.5 solar spectrum. The graded index structure from the randomly oriented core-shell (Air/SiOx/Si nanowires may provide a potential avenue to realize a broadband and wide angle antireflection layer.

  15. Silver-nickel oxide core-shell nanoflower arrays as high-performance anode for lithium-ion batteries

    Science.gov (United States)

    Zhao, Wenjia; Du, Ning; Zhang, Hui; Yang, Deren

    2015-07-01

    We demonstrate the synthesis of Ag-NiO core-shell nanoflower arrays via a one-step solution-immersion process and subsequent RF-sputtering method. The aligned Ag nanoflower arrays on copper substrate are prepared by a facile displacement reaction in absence of any surfactant at a mild temperature. When used as anode materials for lithium-ion batteries, the Ag-NiO core-shell nanoflower arrays show better cycling performance and higher capacity than the planar NiO electrodes. The improved performance should be attributed to the core-shell structures that can enhance the conductivity and accommodate the volume change during the charge-discharge process.

  16. Synthesis and detection the oxidization of Co cores of Co@SiO2 core-shell nanoparticles by in situ XRD and EXAFS.

    Science.gov (United States)

    Zhang, Kunhao; Zhao, Ziyan; Wu, Zhonghua; Zhou, Ying

    2015-01-01

    In this paper, the Co@SiO2 core-shell nanoparticles were prepared by the sol-gel method. The oxidization of Co core nanoparticles was studied by the synchrotron radiation-based techniques including in situ X-ray diffraction (XRD) and X-ray absorption fine structure (XAFS) up to 800°C in air and N2 protection conditions, respectively. It was found that the oxidization of Co cores is undergoing three steps regardless of being in air or in N2 protection condition. In the first step ranging from room temperature to 200°C, the Co cores were dominated by Co(0) state as well as small amount of Co(2+) ions. When temperature was above 300°C, the interface between Co cores and SiO2 shells was gradually oxidized into Co(2+), and the CoO layer was observed. As the temperature increasing to 800°C, the Co cores were oxidized to Co3O4 or Co3O4/CoO. Nevertheless, the oxidization kinetics of Co cores is different for the Co@SiO2 in air and N2 gas conditions. Generally, the O2 in the air could get through the SiO2 shells easily onto the Co core surface and induce the oxidization of the Co cores due to the mesoporous nature of the SiO2 shells. However, in N2 gas condition, the O atoms can only be from the SiO2 shells, so the diffusion effect of O atoms in the interface between Co core and SiO2 shell plays a key role.

  17. Core-shell fluorescent silica nanoparticles for sensing near-neutral pH values

    International Nuclear Information System (INIS)

    Gao, F.; Chen, X.; Ye, Q.; Yao, Z.; Guo, X.; Wang, L.

    2011-01-01

    pH-responsive fluorescent core-shell silica nanoparticles (SiNPs) were prepared by encapsulating the pH-sensitive fluorophore 8-hydroxypyrene-1,3, 6-trisulfonate into their silica shell via a facile reverse microemulsion method. The resulting SiNPs were characterized by SEM, TEM, fluorescence lifetime spectroscopy, photobleaching experiments, and photoluminescence. The core-shell structure endows the SiNPs with reduced photobleaching, excellent photostability, minimized solvatachromic shift, and increased fluorescence efficiency compared to the free fluorophore in aqueous solution. The dynamic range for sensing pH ranges from 5. 5 to 9. 0. The nanosensors show excellent stability, are highly reproducible, and enable rapid detection of pH. The results obtained with the SiNPs are in good agreement with data obtained with a glass electrode. (author)

  18. A Platinum Monolayer Core-Shell Catalyst with a Ternary Alloy Nanoparticle Core and Enhanced Stability for the Oxygen Reduction Reaction

    Directory of Open Access Journals (Sweden)

    Haoxiong Nan

    2015-01-01

    Full Text Available We synthesize a platinum monolayer core-shell catalyst with a ternary alloy nanoparticle core of Pd, Ir, and Ni. A Pt monolayer is deposited on carbon-supported PdIrNi nanoparticles using an underpotential deposition method, in which a copper monolayer is applied to the ternary nanoparticles; this is followed by the galvanic displacement of Cu with Pt to generate a Pt monolayer on the surface of the core. The core-shell Pd1Ir1Ni2@Pt/C catalyst exhibits excellent oxygen reduction reaction activity, yielding a mass activity significantly higher than that of Pt monolayer catalysts containing PdIr or PdNi nanoparticles as cores and four times higher than that of a commercial Pt/C electrocatalyst. In 0.1 M HClO4, the half-wave potential reaches 0.91 V, about 30 mV higher than that of Pt/C. We verify the structure and composition of the carbon-supported PdIrNi nanoparticles using X-ray powder diffraction, X-ray photoelectron spectroscopy, thermogravimetry, transmission electron microscopy, and energy dispersive X-ray spectrometry, and we perform a stability test that confirms the excellent stability of our core-shell catalyst. We suggest that the porous structure resulting from the dissolution of Ni in the alloy nanoparticles may be the main reason for the catalyst’s enhanced performance.

  19. Core-shell designed scaffolds for drug delivery and tissue engineering.

    Science.gov (United States)

    Perez, Roman A; Kim, Hae-Won

    2015-07-01

    Scaffolds that secure and deliver therapeutic ingredients like signaling molecules and stem cells hold great promise for drug delivery and tissue engineering. Employing a core-shell design for scaffolds provides a promising solution. Some unique methods, such as co-concentric nozzle extrusion, microfluidics generation, and chemical confinement reactions, have been successful in producing core-shelled nano/microfibers and nano/microspheres. Signaling molecules and drugs, spatially allocated to the core and/or shell part, can be delivered in a controllable and sequential manner for optimal therapeutic effects. Stem cells can be loaded within the core part on-demand, safely protected from the environments, which ultimately affords ex vivo culture and in vivo tissue engineering. The encapsulated cells experience three-dimensional tissue-mimic microenvironments in which therapeutic molecules are secreted to the surrounding tissues through the semi-permeable shell. Tuning the material properties of the core and shell, changing the geometrical parameters, and shaping them into proper forms significantly influence the release behaviors of biomolecules and the fate of the cells. This topical issue highlights the immense usefulness of core-shell designs for the therapeutic actions of scaffolds in the delivery of signaling molecules and stem cells for tissue regeneration and disease treatment. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Synthesis of novel core-shell structured dual-mesoporous silica nanospheres and their application for enhancing the dissolution rate of poorly water-soluble drugs

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Chao, E-mail: wuchao27@126.com [Department of Pharmaceutics, Liaoning Medical University, 40 Songpo Road, Linghe District, Jinzhou, Liaoning Province 121001 (China); Sun, Xiaohu [Management Center for Experiments, Bohai University, 19 Keji Road, Songshan District, Jinzhou, Liaoning Province 121000 (China); Zhao, Zongzhe; Zhao, Ying; Hao, Yanna; Liu, Ying [Department of Pharmaceutics, Liaoning Medical University, 40 Songpo Road, Linghe District, Jinzhou, Liaoning Province 121001 (China); Gao, Yu, E-mail: gaoyu_1116@163.com [Department of Medical Oncology, First Affiliated Hospital of Liaoning Medical University, 40 Songpo Road, Linghe District, Jinzhou, Liaoning Province 121001 (China)

    2014-11-01

    Novel core-shell dual-mesoporous silica nanospheres (DMSS) with a tunable pore size were synthesized successfully using a styrene monomer as a channel template for the core and cetyltrimethyl ammonium bromide (CTAB) as a channel template for the shell in order to improve the dissolution rate of poorly water-soluble drugs. Simvastatin was used as a model drug and loaded into DMSS and the mesoporous core without the shell (MSC) by the solvent evaporation method. The drug loading efficiency of DMSS and MSC were determined by thermogravimetric analysis (TGA) and ultraviolet spectroscopy (UV). Characterization, using scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption, powder X-ray diffraction (XRD), differential scanning calorimetry (DSC), and Fourier transform infrared spectroscopy (FTIR) showed that simvastatin adsorbed in DMSS and MSC was in an amorphous state, and in vitro release test results demonstrated that both DMSS and MSC increased the water solubility and dissolution rate of simvastatin. The shell structure of DMSS was able to regulate the release of simvastatin compared with MSC. It is worth noting that DMSS has significant potential as a carrier for improving the dissolution of poorly water-soluble drugs and reducing the rapid release. - Highlights: • A novel core-shell DMSS is prepared for improving the dissolution rate of simvastatin. • The diffusional resistance of the mesoporous shell can delay and regulate drug release. • Simvastatin absorbed in DMSS exists in amorphous form due to spatial confinement.

  1. Synthesis of novel core-shell structured dual-mesoporous silica nanospheres and their application for enhancing the dissolution rate of poorly water-soluble drugs

    International Nuclear Information System (INIS)

    Wu, Chao; Sun, Xiaohu; Zhao, Zongzhe; Zhao, Ying; Hao, Yanna; Liu, Ying; Gao, Yu

    2014-01-01

    Novel core-shell dual-mesoporous silica nanospheres (DMSS) with a tunable pore size were synthesized successfully using a styrene monomer as a channel template for the core and cetyltrimethyl ammonium bromide (CTAB) as a channel template for the shell in order to improve the dissolution rate of poorly water-soluble drugs. Simvastatin was used as a model drug and loaded into DMSS and the mesoporous core without the shell (MSC) by the solvent evaporation method. The drug loading efficiency of DMSS and MSC were determined by thermogravimetric analysis (TGA) and ultraviolet spectroscopy (UV). Characterization, using scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption, powder X-ray diffraction (XRD), differential scanning calorimetry (DSC), and Fourier transform infrared spectroscopy (FTIR) showed that simvastatin adsorbed in DMSS and MSC was in an amorphous state, and in vitro release test results demonstrated that both DMSS and MSC increased the water solubility and dissolution rate of simvastatin. The shell structure of DMSS was able to regulate the release of simvastatin compared with MSC. It is worth noting that DMSS has significant potential as a carrier for improving the dissolution of poorly water-soluble drugs and reducing the rapid release. - Highlights: • A novel core-shell DMSS is prepared for improving the dissolution rate of simvastatin. • The diffusional resistance of the mesoporous shell can delay and regulate drug release. • Simvastatin absorbed in DMSS exists in amorphous form due to spatial confinement

  2. Structural and optical properties of alloyed quaternary CdSeTeS core and CdSeTeS/ZnS core–shell quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Adegoke, Oluwasesan, E-mail: adegoke.sesan@mailbox.co.za [Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Lynnwood Road, Pretoria 0002 (South Africa); Nyokong, Tebello, E-mail: t.nyokong@ru.ac.za [Department of Chemistry, Rhodes University, Grahamstown 6140 (South Africa); Forbes, Patricia B.C., E-mail: patricia.forbes@up.ac.za [Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Lynnwood Road, Pretoria 0002 (South Africa)

    2015-10-05

    Highlights: • Alloyed quaternary CdSeTeS core quantum dots (QDs) were synthesized. • Passivation was carried out using a ZnS shell. • Quaternary CdSeTeS core exhibited unique optical properties over CdSeTe/ZnS. • CdSeTeS can be employed as a useful alternative to core/shell QDs. - Abstract: Synthesis of fluorescent alloyed quantum dots (QDs) with unique optical properties suitable for a wide array of chemical, physical and biological applications is of research interest. In this work, highly luminescent and photostable alloyed quaternary CdSeTeS core QDs of two different sizes were fabricated via the organometallic hot-injection synthetic route. Characterization of the nanocrystals were performed using TEM, XRD, UV/vis and fluorescence spectrophotometric techniques. We have demonstrated in this work that the well fabricated alloyed quaternary CdSeTeS core QDs possess unique optical properties that are advantageous over conventional core/shell systems. Formation of the CdSeTeS/ZnS core/shell with the desired optical properties comes with a number of challenges, hence the advantages of the quaternary alloyed core over the core/shell QDs are (i) avoidance of the challenging process of determining the proper shell thickness which can provide the desired optical properties in the core/shell system and (ii) avoidance of the lattice-induced mismatch between the core and the shell material which can either lead to incomplete exciton confinement or dislocation at the core/shell interface.

  3. Core-in-shell sorbent for hot coal gas desulfurization

    Science.gov (United States)

    Wheelock, Thomas D.; Akiti, Jr., Tetteh T.

    2004-02-10

    A core-in-shell sorbent is described herein. The core is reactive to the compounds of interest, and is preferably calcium-based, such as limestone for hot gas desulfurization. The shell is a porous protective layer, preferably inert, which allows the reactive core to remove the desired compounds while maintaining the desired physical characteristics to withstand the conditions of use.

  4. Fabrication of Magnetite/Silica/Titania Core-Shell Nanoparticles

    Directory of Open Access Journals (Sweden)

    Suh Cem Pang

    2012-01-01

    Full Text Available Fe3O4/SiO2/TiO2 core-shell nanoparticles were synthesized via a sol-gel method with the aid of sonication. Fe3O4 nanoparticles were being encapsulated within discrete silica nanospheres, and a layer of TiO2 shell was then coated directly onto each silica nanosphere. As-synthesized Fe3O4/SiO2/TiO2 core-shell nanoparticles showed enhanced photocatalytic properties as evidenced by the enhanced photodegradation of methylene blue under UV light irradiation.

  5. Hypersonic vibrations of Ag@SiO2 (cubic core)-shell nanospheres.

    Science.gov (United States)

    Sun, Jing Ya; Wang, Zhi Kui; Lim, Hock Siah; Ng, Ser Choon; Kuok, Meng Hau; Tran, Toan Trong; Lu, Xianmao

    2010-12-28

    The intriguing optical and catalytic properties of metal-silica core-shell nanoparticles, inherited from their plasmonic metallic cores together with the rich surface chemistry and increased stability offered by their silica shells, have enabled a wide variety of applications. In this work, we investigate the confined vibrational modes of a series of monodisperse Ag@SiO(2) (cubic core)-shell nanospheres synthesized using a modified Stöber sol-gel method. The particle-size dependence of their mode frequencies has been mapped by Brillouin light scattering, a powerful tool for probing hypersonic vibrations. Unlike the larger particles, the observed spheroidal-like mode frequencies of the smaller ones do not scale with inverse diameter. Interestingly, the onset of the deviation from this linearity occurs at a smaller particle size for higher-energy modes than for lower-energy ones. Finite element simulations show that the mode displacement profiles of the Ag@SiO(2) core-shells closely resemble those of a homogeneous SiO(2) sphere. Simulations have also been performed to ascertain the effects that the core shape and the relative hardness of the core and shell materials have on the vibrations of the core-shell as a whole. As the vibrational modes of a particle have a bearing on its thermal and mechanical properties, the findings would be of value in designing core-shell nanostructures with customized thermal and mechanical characteristics.

  6. Biodegradation Study of Nanocomposites of Phenol Novolac Epoxy/Unsaturated Polyester Resin/Egg Shell Nanoparticles Using Natural Polymers

    Directory of Open Access Journals (Sweden)

    S. M. Mousavi

    2015-01-01

    Full Text Available Nanocomposite materials refer to those materials whose reinforcing phase has dimensions on a scale from one to one hundred nanometers. In this study, the nanocomposite biodegradation of the phenol Novolac epoxy and the unsaturated polyester resins was investigated using the egg shell nanoparticle as bioceramic as well as starch and glycerin as natural polymers to modify their properties. The phenol Novolac epoxy resin has a good compatibility with the unsaturated polyester resin. The prepared samples with different composition of materials for specified time were buried under soil and their biodegradation was studied using FTIR and SEM. The FTIR results before and after degradation showed that the presence of the hydroxyl group increased the samples degradation. Also adding the egg shell nanoparticle to samples had a positive effect on its degradation. The SEM results with and without the egg shell nanoparticle also showed that use of the egg shell nanoparticle increases the samples degradation. Additionally, increasing the amount of starch, and glycerol and the presence of egg shell nanoparticles can increase water adsorption.

  7. Synthesis and magnetic properties of cobalt-iron/cobalt-ferrite soft/hard magnetic core/shell nanowires

    Science.gov (United States)

    Leandro Londoño-Calderón, César; Moscoso-Londoño, Oscar; Muraca, Diego; Arzuza, Luis; Carvalho, Peterson; Pirota, Kleber Roberto; Knobel, Marcelo; Pampillo, Laura Gabriela; Martínez-García, Ricardo

    2017-06-01

    A straightforward method for the synthesis of CoFe2.7/CoFe2O4 core/shell nanowires is described. The proposed method starts with a conventional pulsed electrodeposition procedure on alumina nanoporous template. The obtained CoFe2.7 nanowires are released from the template and allowed to oxidize at room conditions over several weeks. The effects of partial oxidation on the structural and magnetic properties were studied by x-ray spectrometry, magnetometry, and scanning and transmission electron microscopy. The results indicate that the final nanowires are composed of 5 nm iron-cobalt alloy nanoparticles. Releasing the nanowires at room conditions promoted surface oxidation of the nanoparticles and created a CoFe2O4 shell spinel-like structure. The shell avoids internal oxidation and promotes the formation of bi-magnetic soft/hard magnetic core/shell nanowires. The magnetic properties of both the initial single-phase CoFe2.7 nanowires and the final core/shell nanowires, reveal that the changes in the properties from the array are due to the oxidation more than effects associated with released processes (disorder and agglomeration).

  8. Rational Construction of Uniform CoNi-Based Core-Shell Microspheres with Tunable Electromagnetic Wave Absorption Properties.

    Science.gov (United States)

    Chen, Na; Jiang, Jian-Tang; Xu, Cheng-Yan; Yan, Shao-Jiu; Zhen, Liang

    2018-02-16

    Core-shell particles with integration of ferromagnetic core and dielectric shell are attracting extensive attention for promising microwave absorption applications. In this work, CoNi microspheres with conical bulges were synthesized by a simple and scalable liquid-phase reduction method. Subsequent coating of dielectric materials was conducted to acquire core-shell structured CoNi@TiO 2 composite particles, in which the thickness of TiO 2 is about 40 nm. The coating of TiO 2 enables the absorption band of CoNi to effectively shift from K u to S band, and endows CoNi@TiO 2 microspheres with outstanding electromagnetic wave absorption performance along with a maximum reflection loss of 76.6 dB at 3.3 GHz, much better than that of bare CoNi microspheres (54.4 dB at 17.8 GHz). The enhanced EMA performance is attributed to the unique core-shell structures, which can induce dipole polarization and interfacial polarization, and tune the dielectric properties to achieve good impedance matching. Impressively, TiO 2 coating endows the composites with better microwave absorption capability than CoNi@SiO 2 microspheres. Compared with SiO 2 , TiO 2 dielectric shells could protect CoNi microspheres from merger and agglomeration during annealed. These results indicate that CoNi@TiO 2 core-shell microspheres can serve as high-performance absorbers for electromagnetic wave absorbing application.

  9. Three-dimensional core-shell Fe{sub 2}O{sub 3} @ carbon/carbon cloth as binder-free anode for the high-performance lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaohua; Zhang, Miao [School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin 300350 (China); Liu, Enzuo, E-mail: ezliu@tju.edu.cn [School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin 300350 (China); Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300350 (China); He, Fang; Shi, Chunsheng [School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin 300350 (China); He, Chunnian [School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin 300350 (China); Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300350 (China); Li, Jiajun [School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin 300350 (China); Zhao, Naiqin, E-mail: nqzhao@tju.edu.cn [School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin 300350 (China); Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300350 (China)

    2016-12-30

    Highlights: • The 3D core-shell Fe{sub 2}O{sub 3}@C/CC structure is fabricated by simple hydrothermal route. • The composite connected 3D carbon networks consist of carbon cloth, Fe{sub 2}O{sub 3} nanorods and outer carbon layer. • The Fe{sub 2}O{sub 3}@C/CC used as binder-free anode in LIBs, demonstrates excellent performances. - Abstract: A facile and scalable strategy is developed to fabricate three dimensional core-shell Fe{sub 2}O{sub 3} @ carbon/carbon cloth structure by simple hydrothermal route as binder-free lithium-ion battery anode. In the unique structure, carbon coated Fe{sub 2}O{sub 3} nanorods uniformly disperse on carbon cloth which forms the conductive carbon network. The hierarchical porous Fe{sub 2}O{sub 3} nanorods in situ grown on the carbon cloth can effectively shorten the transfer paths of lithium ions and reduce the contact resistance. The carbon coating significantly inhibits pulverization of active materials during the repeated Li-ion insertion/extraction, as well as the direct exposure of Fe{sub 2}O{sub 3} to the electrolyte. Benefiting from the structural integrity and flexibility, the nanocomposites used as binder-free anode for lithium-ion batteries, demonstrate high reversible capacity and excellent cyclability. Moreover, this kind of material represents an alternative promising candidate for flexible, cost-effective, and binder-free energy storage devices.

  10. Benefits of Silica Core-Shell Structures on the Temperature Sensing Properties of Er,Yb:GdVO4 Up-Conversion Nanoparticles.

    Science.gov (United States)

    Savchuk, Oleksandr A; Carvajal, Joan J; Cascales, C; Aguiló, M; Díaz, F

    2016-03-23

    We studied the temperature-dependent luminescence of GdVO4 nanoparticles co-doped with Er(3+) (1 mol %) and Yb(3+) (20 mol %) and determined their thermal sensing properties through the fluorescence intensity ratio (FIR) technique. We also analyzed how a silica coating, in a core-shell structure, affects the temperature sensing properties of this material. Spectra were recorded in the range of biological temperatures (298-343 K). The absolute sensitivity for temperature determination calculated for the core-shell nanoparticles is double the one calculated for bare nanoparticles, achieving a thermal resolution of 0.4 K. Moreover, silica-coated nanoparticles show good dispersibility in different solvents, such as water, DMSO, and methanol. Also, they show good luminescence stability without interactions with solvent molecules. Furthermore, we also observed that the silica coating shell prevents progressive heating of the nanoparticles during prolonged excitation periods with the 980 nm laser, preventing effects on their thermometric applications.

  11. Significant efficiency enhancement of hybrid solar cells using core-shell nanowire geometry for energy harvesting.

    Science.gov (United States)

    Tsai, Shin-Hung; Chang, Hung-Chih; Wang, Hsin-Hua; Chen, Szu-Ying; Lin, Chin-An; Chen, Show-An; Chueh, Yu-Lun; He, Jr-Hau

    2011-12-27

    A novel strategy employing core-shell nanowire arrays (NWAs) consisting of Si/regioregular poly(3-hexylthiophene) (P3HT) was demonstrated to facilitate efficient light harvesting and exciton dissociation/charge collection for hybrid solar cells (HSCs). We experimentally demonstrate broadband and omnidirectional light-harvesting characteristics of core-shell NWA HSCs due to their subwavelength features, further supported by the simulation based on finite-difference time domain analysis. Meanwhile, core-shell geometry of NWA HSCs guarantees efficient charge separation since the thickness of the P3HT shells is comparable to the exciton diffusion length. Consequently, core-shell HSCs exhibit a 61% improvement of short-circuit current for a conversion efficiency (η) enhancement of 31.1% as compared to the P3HT-infiltrated Si NWA HSCs with layers forming a flat air/polymer cell interface. The improvement of crystal quality of P3HT shells due to the formation of ordering structure at Si interfaces after air mass 1.5 global (AM 1.5G) illumination was confirmed by transmission electron microscopy and Raman spectroscopy. The core-shell geometry with the interfacial improvement by AM 1.5G illumination promotes more efficient exciton dissociation and charge separation, leading to η improvement (∼140.6%) due to the considerable increase in V(oc) from 257 to 346 mV, J(sc) from 11.7 to 18.9 mA/cm(2), and FF from 32.2 to 35.2%, which is not observed in conventional P3HT-infiltrated Si NWA HSCs. The stability of the Si/P3HT core-shell NWA HSCs in air ambient was carefully examined. The core-shell geometry should be applicable to many other material systems of solar cells and thus holds high potential in third-generation solar cells.

  12. Large enhanced dielectric permittivity in polyaniline passivated core-shell nano magnetic iron oxide by plasma polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Joy, Lija K.; Sooraj, V.; Sethulakshmi, N.; Anantharaman, M. R., E-mail: mraiyer@yahoo.com [Department of Physics, Cochin University of Science and Technology, Cochin-682022, Kerala (India); Sajeev, U. S. [Department of Physics, Government College, Kottayam-686613, Kerala (India); Nair, Swapna S. [Department of Physics, School of Mathematical and Physical Sciences, Central University of Kerala, Kasargode-671123, Kerala (India); Narayanan, T. N. [CSIR-Central Electrochemical Research Institute, Karaikkudi-630006, Tamil Nadu (India); Ajayan, P. M. [Department of Material Science and Nano Engineering, Rice University, 6100 Main Street, Houston, Texas 7700 (United States)

    2014-03-24

    Commercial samples of Magnetite with size ranging from 25–30 nm were coated with polyaniline by using radio frequency plasma polymerization to achieve a core shell structure of magnetic nanoparticle (core)–Polyaniline (shell). High resolution transmission electron microscopy images confirm the core shell architecture of polyaniline coated iron oxide. The dielectric properties of the material were studied before and after plasma treatment. The polymer coated magnetite particles exhibited a large dielectric permittivity with respect to uncoated samples. The dielectric behavior was modeled using a Maxwell–Wagner capacitor model. A plausible mechanism for the enhancement of dielectric permittivity is proposed.

  13. [Adsorption of Cu on Core-shell Structured Magnetic Particles: Relationship Between Adsorption Performance and Surface Properties].

    Science.gov (United States)

    Li, Qiu-mei; Chen, Jing; Li, Hai-ning; Zhang, Xiao-lei; Zhang, Gao-sheng

    2015-12-01

    In order to reveal the relationship between the adsorption performance of adsorbents and their compositions, structure, and surface properties, the core-shell structured Fe₃O₄/MnO2 and Fe-Mn/Mn₂2 magnetic particles were systematically characterized using multiple techniques and their Cu adsorption behaviors as well as mechanism were also investigated in details. It was found that both Fe₃O4 and Fe-Mn had spinel structure and no obvious crystalline phase change was observed after coating with MnO₂. The introduction of Mn might improve the affinity between the core and the shell, and therefore enhanced the amount and distribution uniformity of the MnO₂ coated. Consequently, Fe-Mn/MnO₂ exhibited a higher BET specific surface area and a lower isoelectric point. The results of sorption experiments showed that Fe-Mn had a higher maximal Cu adsorption capacity of 33.7 mg · g⁻¹ at pH 5.5, compared with 17.5 mg · g⁻¹ of Fe₃O4. After coating, the maximal adsorption capacity of Fe-Mn/MnO₂ was increased to 58.2 mg · g⁻¹, which was 2.6 times as high as that of Fe₃O₄/MnO₂ and outperformed the majority of magnetic adsorbents reported in literature. In addition, a specific adsorption of Cu occurred at the surface of Fe₃O₄/MnO₂ or Fe-Mn/MnO₂ through the formation of inner-sphere complexes. In conclusion, the adsorption performance of the magnetic particles was positively related to their compositions, structure, and surface properties.

  14. Ru-core/Cu-shell bimetallic nanoparticles with controlled size formed in one-pot synthesis.

    Science.gov (United States)

    Helgadottir, I; Freychet, G; Arquillière, P; Maret, M; Gergaud, P; Haumesser, P H; Santini, C C

    2014-12-21

    Suspensions of bimetallic nanoparticles (NPs) of Ru and Cu have been synthesized by simultaneous decomposition of two organometallic compounds in an ionic liquid. These suspensions have been characterized by Anomalous Small-Angle X-ray Scattering (ASAXS) at energies slightly below the Ru K-edge. It is found that the NPs adopt a Ru-core, a Cu-shell structure, with a constant Ru core diameter of 1.9 nm for all Ru : Cu compositions, while the Cu shell thickness increases with Cu content up to 0.9 nm. The formation of RuCuNPs thus proceeds through rapid decomposition of the Ru precursor into RuNPs of constant size followed by the reaction of the Cu precursor and agglomeration as a Cu shell. Thus, the different decomposition kinetics of precursors make possible the elaboration of core-shell NPs composed of two metals without chemical affinity.

  15. Fixed-bed adsorption separation of xylene isomers over sio2/silicallite-1 core-shell adsorbents

    KAUST Repository

    Khan, Easir A.

    2013-12-29

    SiO2/Silicalite-1 core-shell material has been demonstrated as potential shape selective adsorbent in gas phase separation of p-xylene from a mixture of p/o-xylene isomers. The core-shell composite comprised of large silica core and thin polycrystalline silicalite-1 shell which was synthesized via a self-assembly of silicalite-1 nanocrystals on core silica surface followed by a secondary seeded growth method. The core materials, SiO2 used in this study has mesoporosity with an average pore diameter of 60Å and hence offers no shape selectivity for xylene isomers. However, the shell, silicalite-1 contains rigid pore structures and preferentially adsorbs p-xylene from their isomers mixtures. A series of adsorption fixed bed breakthrough adsorption/desorption experiment was performed to obtain the equilibrium isotherms and adsorption isotherm parameters of xylene isomers. The equilibrium isotherms of xylene isomers follow the Langmuir\\'s model. A chromatographic adsorption model has been used to describe the fixed-bed breakthrough profiles of xylene isomers. The model has successfully predicted the responses of the binary mixtures of p/o-xylene isomers. The SiO2/silicalite-1 core-shell adsorbents have shown para-selectivity as high as 15. © Bangladesh Uni. of Engg. & Tech.

  16. Shape-controlled synthesis of Pt-Pd core-shell nanoparticles exhibiting polyhedral morphologies by modified polyol method

    International Nuclear Information System (INIS)

    Long, Nguyen Viet; Asaka, Toru; Matsubara, Takashi; Nogami, Masayuki

    2011-01-01

    Pt-Pd core-shell nanoparticles were synthesized by a simple synthetic method. First, Pt nanoparticles were synthesized in a controlled manner via the reduction of chloroplantinic acid hexahydrate in ethylene glycol (EG) at 160 deg. C in the presence of silver nitrate and the stabilization of polyvinylpyrrolidon. AgNO 3 used acts as a structure-modifying agent to the morphology of the Pt nanoparticles. These Pt nanoparticles function as the seeds for the successive reduction of sodium tetrachloropalladate (II) hydrate in EG under stirring for 15 min at 160 deg. C in order to synthesize Pt-Pd core-shell nanoparticles. To characterize the as-prepared Pt-Pd nanoparticles, transmission electron microscopy (TEM) and high-resolution TEM are used. The high-resolution elemental mappings were carried out using the combination of scanning TEM and X-ray energy-dispersive spectroscopy. The results also demonstrate the homogeneous nucleation and growth of the Pd metal shell on the definite Pt core. The synthesized Pt-Pd core-shell nanoparticles exhibit a sharp and polyhedral morphology. The epitaxial growth of the controlled Pd shells on the Pt cores via a polyol method was observed. It is suggested that Frank-van der Merwe and Stranski-Krastanov growth modes coexisted in the nucleation and growth of Pt-Pd core-shell nanoparticles.

  17. High-temperature electrochemical characterization of Ru core Pt shell fuel cell catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Bokach, D.; Fuente, J.L.G. de la; Tsypkin, M.; Ochal, P.; Tunold, R.; Sunde, S.; Seland, F. [Department of Materials Science and Engineering, Norwegian University of Science and Technology (NTNU), Sem Saelands veg 12, N-7491 Trondheim (Norway); Endsjoe, I.C. [Washington Mills AS, NO-7300 Orkanger (Norway)

    2011-12-15

    The electrooxidation of methanol was studied at elevated temperature and pressure by cyclic voltammetry and constant potential experiments at real fuel cell electrocatalysts. Ruthenium core and platinum shell nanoparticles were synthesized by a sequential polyol route, and characterized electrochemically by CO stripping at room temperature to quickly confirm the structure of the synthesized core-shell structure as compared to pure commercial Pt/C and Pt-Ru/C alloy catalysts. A significant promotional effect of Pt decorated Ru cores in the methanol oxidation was found at elevated temperatures and rather high-electrode potentials. A negative potential shift of the methanol oxidation peak is observed for the Ru rate at Pt/C core-shell catalyst at moderate temperatures, while a significant shift to positive potentials of the methanol oxidation peak occurs for Pt/C catalysts. The onset potential for methanol oxidation is lowered some 200 mV from room temperature and up to 120 C for all electrocatalysts, indicating that it is the thermal activity of water adsorption that dictates the onset potential. Direct methanol fuel cell experiments showed only small performance differences between Ru rate at Pt/C and Pt/C anode electrocatalysts, suggesting the necessity of render possible the formation of surface oxygen species at lower electrode potentials. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Morphology and electronic structure of the oxide shell on the surface of iron nanoparticles.

    Science.gov (United States)

    Wang, Chongmin; Baer, Donald R; Amonette, James E; Engelhard, Mark H; Antony, Jiji; Qiang, You

    2009-07-01

    An iron (Fe) nanoparticle exposed to air at room temperature will be instantly covered by an oxide shell that is typically approximately 3 nm thick. The nature of this native oxide shell, in combination with the underlying Fe(0) core, determines the physical and chemical behavior of the core-shell nanoparticle. One of the challenges of characterizing core-shell nanoparticles is determining the structure of the oxide shell, that is, whether it is FeO, Fe(3)O(4), gamma-Fe(2)O(3), alpha-Fe(2)O(3), or something else. The results of prior characterization efforts, which have mostly used X-ray diffraction and spectroscopy, electron diffraction, and transmission electron microscopic imaging, have been framed in terms of one of the known Fe-oxide structures, although it is not necessarily true that the thin layer of Fe oxide is a known Fe oxide. In this Article, we probe the structure of the oxide shell on Fe nanoparticles using electron energy loss spectroscopy (EELS) at the oxygen (O) K-edge with a spatial resolution of several nanometers (i.e., less than that of an individual particle). We studied two types of representative particles: small particles that are fully oxidized (no Fe(0) core) and larger core-shell particles that possess an Fe core. We found that O K-edge spectra collected for the oxide shell in nanoparticles show distinct differences from those of known Fe oxides. Typically, the prepeak of the spectra collected on both the core-shell and the fully oxidized particles is weaker than that collected on standard Fe(3)O(4). Given the fact that the origin of this prepeak corresponds to the transition of the O 1s electron to the unoccupied state of O 2p hybridized with Fe 3d, a weak pre-edge peak indicates a combination of the following four factors: a higher degree of occupancy of the Fe 3d orbital; a longer Fe-O bond length; a decreased covalency of the Fe-O bond; and a measure of cation vacancies. These results suggest that the coordination configuration in

  19. Centrifugal Deposited Au-Pd Core-Shell Nanoparticle Film for Room-Temperature Optical Detection of Hydrogen Gas.

    Science.gov (United States)

    Song, Han; Luo, Zhijie; Liu, Mingyao; Zhang, Gang; Peng, Wang; Wang, Boyi; Zhu, Yong

    2018-05-06

    In the present work, centrifugal deposited Au-Pd core-shell nanoparticle (NP) film was proposed for the room-temperature optical detection of hydrogen gas. The size dimension of 44, 48, 54, and 62 nm Au-Pd core-shell nanocubes with 40 nm Au core were synthesized following a solution-based seed-mediated growth method. Compared to a pure Pd NP, this core-shell structure with an inert Au core could decrease the H diffusion length in the Pd shell. Through a modified centrifugal deposition process, continues film samples with different core-shell NPs were deposited on 10 mm diameter quartz substrates. Under various hydrogen concentration conditions, the optical response properties of these samples were characterized by an intensity-based optical fiber bundle sensor. Experimental results show that the continues film that was composed of 62 nm Au-Pd core-shell NPs has achieved a stable and repeatable reflectance response with low zero drift in the range of 4 to 0.1% hydrogen after a stress relaxation mechanism at first few loading/unloading cycles. Because of the short H diffusion length due to the thinner Pd shell, the film sample composed of 44 nm Au-Pd NPs has achieved a dramatically decreased response/recovery time to 4 s/30 s. The experiments present the promising prospect of this simple method to fabricate optical hydrogen sensors with controllable high sensitivity and response rate at low cost.

  20. Core-Shell Nano structure of a-Fe2O3/Fe3O4: Synthesis and Photo catalysis for Methyl Orange

    International Nuclear Information System (INIS)

    Tian, Y.; Wu, D.; Yu, B.; Jia, X.; Zhan, S.

    2011-01-01

    Fe 3 O 4 nanoparticle was synthesized in the solution involving water and ethanol. Then, a-Fe 2 O 3 shell was produced in situ on the surface of the Fe 3 O 4 nanoparticle by surface oxidation in molten salts, forming α-Fe 2 O 3 /Fe 3 O 4 core-shell nano structure. It was showed that the magnetic properties transformed from ferromagnetism to superparamagnetism after the primary Fe 3 O 4 nanoparticles were oxidized. Furthermore, the obtained a-Fe 2 O 3 /Fe 3 O 4 core-shell nanoparticles were used to photo catalyse solution of methyl orange, and the results revealed that a-Fe 2 O 3 /Fe 3 O 4 nanoparticles were more efficient than the self-prepared α-Fe 2 O 3 nanoparticles. At the same time, the photo catalyzer was recyclable by applying an appropriate magnetic field.

  1. Natural Biowaste-Cocoon-Derived Granular Activated Carbon-Coated ZnO Nanorods: A Simple Route To Synthesizing a Core-Shell Structure and Its Highly Enhanced UV and Hydrogen Sensing Properties.

    Science.gov (United States)

    Saravanan, Adhimoorthy; Huang, Bohr-Ran; Kathiravan, Deepa; Prasannan, Adhimoorthy

    2017-11-15

    Granular activated carbon (GAC) materials were prepared via simple gas activation of silkworm cocoons and were coated on ZnO nanorods (ZNRs) by the facile hydrothermal method. The present combination of GAC and ZNRs shows a core-shell structure (where the GAC is coated on the surface of ZNRs) and is exposed by systematic material analysis. The as-prepared samples were then fabricated as dual-functional sensors and, most fascinatingly, the as-fabricated core-shell structure exhibits better UV and H 2 sensing properties than those of as-fabricated ZNRs and GAC. Thus, the present core-shell structure-based H 2 sensor exhibits fast responses of 11% (10 ppm) and 23.2% (200 ppm) with ultrafast response and recovery. However, the UV sensor offers an ultrahigh photoresponsivity of 57.9 A W -1 , which is superior to that of as-grown ZNRs (0.6 A W -1 ). Besides this, switching photoresponse of GAC/ZNR core-shell structures exhibits a higher switching ratio (between dark and photocurrent) of 1585, with ultrafast response and recovery, than that of as-grown ZNRs (40). Because of the fast adsorption ability of GAC, it was observed that the finest distribution of GAC on ZNRs results in rapid electron transportation between the conduction bands of GAC and ZNRs while sensing H 2 and UV. Furthermore, the present core-shell structure-based UV and H 2 sensors also well-retained excellent sensitivity, repeatability, and long-term stability. Thus, the salient feature of this combination is that it provides a dual-functional sensor with biowaste cocoon and ZnO, which is ecological and inexpensive.

  2. Two-way actuation behavior of shape memory polymer/elastomer core/shell composites

    International Nuclear Information System (INIS)

    Kang, Tae-Hyung; Lee, Jeong-Min; Yu, Woong-Ryeol; Youk, Ji Ho; Ryu, Hee Wook

    2012-01-01

    Semi-crystalline shape memory polymers (SMPs) show net two-way shape memory (2W-SM) behavior under constant stresses by the recoverable creep strain upon heating and stress-induced crystallization under the application of creep stress upon cooling. The applied constant stress is the key factor in this 2W-SM behavior. A core/shell structure is manufactured for the purpose of imparting a constant stress upon SMPs. An SMP in film or fiber form is dipped into a solution of an elastomer, photoinitiator, and curing agent and then dried out. After this dip coating process is repeatedly carried out, the SMP/elastomer core/shell composite is deformed into a temporary shape after being heated up above the transition temperature of the SMP. Under constant strain conditions, the composite is cooled down, after which the shell elastomer is cured using ultraviolet light. Then, the SMP/elastomer core/shell composite extends and contracts upon cooling and heating, respectively, without any external load. This cyclic deformation behavior is characterized, demonstrating that the current method offers a simple macroscopic processing technique to manufacture 2W-SM polymer composites. (paper)

  3. Growth control, structure, chemical state, and photoresponse of CuO-CdS core-shell heterostructure nanowires.

    Science.gov (United States)

    El Mel, A A; Buffière, M; Bouts, N; Gautron, E; Tessier, P Y; Henzler, K; Guttmann, P; Konstantinidis, S; Bittencourt, C; Snyders, R

    2013-07-05

    The growth of single-crystal CuO nanowires by thermal annealing of copper thin films in air is studied. We show that the density, length, and diameter of the nanowires can be controlled by tuning the morphology and structure of the copper thin films deposited by DC magnetron sputtering. After identifying the optimal conditions for the growth of CuO nanowires, chemical bath deposition is employed to coat the CuO nanowires with CdS in order to form p-n nanojunction arrays. As revealed by high-resolution TEM analysis, the thickness of the polycrystalline CdS shell increases when decreasing the diameter of the CuO core for a given time of CdS deposition. Near-edge x-ray absorption fine-structure spectroscopy combined with transmission x-ray microscopy allows the chemical analysis of isolated nanowires. The absence of modification in the spectra at the Cu L and O K edges after the deposition of CdS on the CuO nanowires indicates that neither Cd nor S diffuse into the CuO phase. We further demonstrate that the core-shell nanowires exhibit the I-V characteristic of a resistor instead of a diode. The electrical behavior of the device was found to be photosensitive, since increasing the incident light intensity induces an increase in the collected electrical current.

  4. Electrochemical performance and structure evolution of core-shell nano-ring α-Fe{sub 2}O{sub 3}@Carbon anodes for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yan-Hui, E-mail: sunyanhui0102@163.com; Liu, Shan; Zhou, Feng-Chen; Nan, Jun-Min

    2016-12-30

    Core-shell nano-ring α-Fe{sub 2}O{sub 3}@Carbon (CSNR) composites with different carbon content (CSNR-5%C and CSNR-13%C) are synthesized using a hydrothermal method by controlling different amounts of glucose and α-Fe{sub 2}O{sub 3} nano-rings with further annealing. The CSNR electrodes exhibit much improved specific capacity, cycling stability and rate capability compared with that of bare nano-ring α-Fe{sub 2}O{sub 3} (BNR), which is attributed to the core-shell nano-ring structure of CSNR. The carbon shell in the inner and outer surface of CSNR composite can increase electron conductivity of the electrode and inhibit the volume change of α-Fe{sub 2}O{sub 3} during discharge/charge processes, and the nano-ring structure of CSNR can buffer the volume change too. The CSNR-5%C electrode shows super high initial discharge/charge capacities of 1570/1220 mAh g{sup −1} and retains 920/897 mAh g{sup −1} after 200 cycles at 500 mA g{sup −1} (0.5C). Even at 2000 mA g{sup −1} (2C), the electrode delivers the initial capacities of 1400/900 mAh g{sup −1}, and still maintains 630/610 mAh g{sup −1} after 200 cycles. The core-shell nano-rings opened during cycling and rebuilt a new flower-like structure consisting of α-Fe{sub 2}O{sub 3}@Carbon nano-sheets. The space among the nano-sheet networks can further buffer the volume expansion of α-Fe{sub 2}O{sub 3} and facilitate the transportation of electrons and Li{sup +} ions during the charge/discharge processes, which increases the capacity and rate capability of the electrode. It is the first time that the evolution of core-shell α-Fe{sub 2}O{sub 3}@Carbon changing to flower-like networks during lithiation/de-lithiation has been reported.

  5. Fabrication of Cu-Ag core-shell bimetallic superfine powders by eco-friendly reagents and structures characterization

    International Nuclear Information System (INIS)

    Zhao Jun; Zhang Dongming; Zhao Jie

    2011-01-01

    Superfine bimetallic Cu-Ag core-shell powders were synthesized by reduction of copper sulfate pentahydrate and silver nitrate with eco-friendly ascorbic acid as a reducing agent and cyclodextrins as a protective agent in an aqueous system. The influence of Ag/Cu ratio on coatings was investigated. Ag was homogeneously distributed on the surface of Cu particles at a mole ratio of Ag/Cu=1. FE-SEM showed an uniformity of Ag coatings on Cu particles. Antioxidation of Cu particles was improved by increasing Ag/Cu ratio. TEM-EDX and UV-vis spectra also revealed that Cu cores were covered by Ag nanoshells on the whole. The surface composition analysis by XPS indicated that only small parts of Cu atoms in the surface were oxidized. It was noted that the hindrance of cyclodextrins chemisorbed on particles plays an important role in forming high quality and good dispersity Cu-Ag (Cu-Ag) core-shell powders. - Graphical abstract: Mechanism of fabricating Cu-Ag particles with good dispersibility using β-CDs as a protective agent was studied because of its special structure. Highlights: → Green supramolecular β-CD used as a protective agent and ascorbic acid(Vc) as a reducing agent to fabricate Cu-Ag powders. → Particles are monodisperse and the diameter is close to nanoscale(100-150 nm). → Resistance of Cu particles to oxidation was higher. → Formation mechanism explained.

  6. Au@Ag core-shell nanocubes with finely tuned and well-controlled sizes, shell thicknesses, and optical properties.

    Science.gov (United States)

    Ma, Yanyun; Li, Weiyang; Cho, Eun Chul; Li, Zhiyuan; Yu, Taekyung; Zeng, Jie; Xie, Zhaoxiong; Xia, Younan

    2010-11-23

    This paper describes a facile method for generating Au@Ag core-shell nanocubes with edge lengths controllable in the range of 13.4-50 nm. The synthesis involved the use of single-crystal, spherical Au nanocrystals of 11 nm in size as the seeds in an aqueous system, with ascorbic acid serving as the reductant and cetyltrimethylammonium chloride (CTAC) as the capping agent. The thickness of the Ag shells could be finely tuned from 1.2 to 20 nm by varying the ratio of AgNO(3) precursor to Au seeds. We also investigated the growth mechanism by examining the effects of seeds (capped by CTAC or cetyltrimethylammonium bromide(CTAB)) and capping agent (CTAC vs CTAB) on both size and shape of the resultant core-shell nanocrystals. Our results clearly indicate that CTAC worked much better than CTAB as a capping agent in both the syntheses of Au seeds and Au@Ag core-shell nanocubes. We further studied the localized surface plasmon resonance properties of the Au@Ag nanocubes as a function of the Ag shell thickness. By comparing with the extinction spectra obtained from theoretical calculations, we derived a critical value of ca. 3 nm for the shell thickness at which the plasmon excitation of the Au cores would be completely screened by the Ag shells. Moreover, these Au@Ag core-shell nanocubes could be converted into Au-based hollow nanostructures containing the original Au seeds in the interiors through a galvanic replacement reaction.

  7. A novel durable double-conductive core-shell structure applying to the synthesis of silicon anode for lithium ion batteries

    Science.gov (United States)

    Xing, Yan; Shen, Tong; Guo, Ting; Wang, Xiuli; Xia, Xinhui; Gu, Changdong; Tu, Jiangping

    2018-04-01

    Si/C composites are currently the most commercially viable next-generation lithium-ion battery anode materials due to their high specific capacity. However, there are still many obstacles need to be overcome such as short cycle life and poor conductivity. In this work, we design and successfully synthesis an excellent durable double-conductive core-shell structure p-Si-Ag/C composites. Interestingly, this well-designed structure offers remarkable conductivity (both internal and external) due to the introduction of silver particles and carbon layer. The carbon layer acts as a protective layer to maintain the integrity of the structure as well as avoids the direct contact of silicon with electrolyte. As a result, the durable double-conductive core-shell structure p-Si-Ag/C composites exhibit outstanding cycling stability of roughly 1000 mAh g-1 after 200 cycles at a current density of 0.2 A g-1 and retain 765 mAh g-1 even at a high current density of 2 A g-1, indicating a great improvement in electrochemical performance compared with traditional silicon electrode. Our research results provide a novel pathway for production of high-performance Si-based anodes to extending the cycle life and specific capacity of commercial lithium ion batteries.

  8. Structure and magnetic properties of chromium doped cobalt molybdenum nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Guskos, Niko; Żołnierkiewicz, Grzegorz; Typek, Janusz; Guskos, Aleksander [Institute of Physics, Faculty of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology, Szczecin, Piastów 48, 70-311 Szczecin (Poland); Adamski, Paweł; Moszyński, Dariusz [Institute of Inorganic Chemical Technology and Environment Engineering, West Pomeranian University of Technology, Szczecin, Pułaskiego 10, 70-322 Szczecin (Poland)

    2016-09-15

    Four nanocomposites containing mixed phases of Co{sub 3}Mo{sub 3}N and Co{sub 2}Mo{sub 3}N doped with chromium have been prepared. A linear fit is found for relation between Co{sub 2}Mo{sub 3}N and chromium concentrations. The magnetization in ZFC and FC modes at different temperatures (2–300 K) and in applied magnetic fields (up to 70 kOe) have been investigated. It has been detected that many magnetic characteristics of the studied four nanocomposites correlate not with the chromium concentration but with nanocrystallite sizes. The obtained results were interpreted in terms of magnetic core-shell model of a nanoparticle involving paramagnetic core with two magnetic sublattices and a ferromagnetic shell related to chromium doping. - Highlights: • A new chromium doped mixed Co-Mn-N nanocomposites were synthesized. • Surface ferromagnetism was detected in a wide temperature range. • Core-shell model was applied to explain nanocomposites magnetism.

  9. Tailored Core Shell Cathode Powders for Solid Oxide Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Swartz, Scott [NexTech Materials, Ltd.,Lewis Center, OH (United States)

    2015-03-23

    In this Phase I SBIR project, a “core-shell” composite cathode approach was evaluated for improving SOFC performance and reducing degradation of lanthanum strontium cobalt ferrite (LSCF) cathode materials, following previous successful demonstrations of infiltration approaches for achieving the same goals. The intent was to establish core-shell cathode powders that enabled high performance to be obtained with “drop-in” process capability for SOFC manufacturing (i.e., rather than adding an infiltration step to the SOFC manufacturing process). Milling, precipitation and hetero-coagulation methods were evaluated for making core-shell composite cathode powders comprised of coarse LSCF “core” particles and nanoscale “shell” particles of lanthanum strontium manganite (LSM) or praseodymium strontium manganite (PSM). Precipitation and hetero-coagulation methods were successful for obtaining the targeted core-shell morphology, although perfect coverage of the LSCF core particles by the LSM and PSM particles was not obtained. Electrochemical characterization of core-shell cathode powders and conventional (baseline) cathode powders was performed via electrochemical impedance spectroscopy (EIS) half-cell measurements and single-cell SOFC testing. Reliable EIS testing methods were established, which enabled comparative area-specific resistance measurements to be obtained. A single-cell SOFC testing approach also was established that enabled cathode resistance to be separated from overall cell resistance, and for cathode degradation to be separated from overall cell degradation. The results of these EIS and SOFC tests conclusively determined that the core-shell cathode powders resulted in significant lowering of performance, compared to the baseline cathodes. Based on the results of this project, it was concluded that the core-shell cathode approach did not warrant further investigation.

  10. Life-time of the bound layer in nanocomposites

    Science.gov (United States)

    Zhao, Dan; Jestin, Jacques; Kumar, Sanat K.

    2015-03-01

    It is now well accepted that an effectively irreversibly adsorbed monolayer of polymer forms when a polymer melt is intimately mixed with nanoparticles, in the limit where their enthalpic interactions are favorable. This bound layer has been postulated as being a central player in many of the highly favorable properties that result from polymer based nanocomposite materials. We investigated well-defined nanocomposites formed with different combinations of deuterated and hydrogenated polymers (P2VP and PMMA) and silica nanoparticles. SANS, in conjunction with contrast variation, then provides a direct means of probing the structure of the bound layer as a core-shell and its exchange kinetics with bulk (unbound) chains with annealing time and temperature. SAXS directly provides information on the particle-particle partial structure factor and particle dispersion. Thermodynamic equilibrium of the bound layer is reached around one day at 150 °C while its exchange life time is ~ one hour at 180 °C.

  11. Fracture resistance improvement of polypropylene by joint action of core-shell particles and nucleating agent

    International Nuclear Information System (INIS)

    Yang Gang; Han Liang; Ding Haifeng; Wu Haiyan; Huang Ting; Li Xiaoxi; Wang Yong

    2011-01-01

    Research highlights: →The core-shell particles, which were prepared from melt blending of POE and nano-CaCO 3 , and different nucleating agents (α-form NA or β-form NA) were first introduced into PP to prepare the super toughened PP materials. →NAs control the crystalline structures of PP matrix including the spherulites diameter and the crystal form. →NAs and core-shell particles exhibit apparent joint effect in improving the fracture resistance of PP. - Abstract: As a serial work about the fracture resistance improvement of polypropylene (PP), this work reports the joint effect of core-shell particles and nucleating agent (NA) on the microstructure and fracture resistance of PP. Core-shell particles were prepared through melt blending of ethylene-octene copolymer (POE) and calcium carbonate (CaCO 3 ). Different NA, i.e. α-form NA (P-tert-butylbenzoic acid-Al, MD-NA-28) and β-form NA (aryl amides compound, TMB-5) were introduced into PP matrix to control the crystalline structure. The phase morphology of POE and the distribution of CaCO 3 were characterized by using scanning electron microscope (SEM), and the crystallization behavior of PP matrix were investigated by using differential scanning calorimetry (DSC), wide angle X-ray diffraction (WAXD) and polarization optical microscope (POM). The mechanical properties were obtained through universal tensile measurement and notched Izod impact measurement. Surprisingly, the results show that through addition of so-called core-shell particles and NA simultaneously, the fracture resistance of PP can be dramatically improved.

  12. New method to evaluate optical properties of core-shell nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Renteria-Tapia, V. [Universidad de Guadalajara, Ameca, Departamento de Ciencias Naturales y Exactas, Centro Universitario de Los Valles (Mexico); Franco, A., E-mail: alfredofranco@fisica.unam.mx; Garcia-Macedo, J. [Universidad Nacional Autonoma de Mexico, Departamento de Estado Solido, Instituto de Fisica (Mexico)

    2012-06-15

    A new method is presented to calculate, for metallic core-dielectric shell nanostructures, the local refractive index, resonance condition, maximum spectral shift, plasma wavelength, and the sensitivity of the wavelength maximum to variations in the refractive index of the environment. The equations that describe these properties are directly related to the surface plasmon peak position, refractive index of the shell, and to the surrounding medium. The method is based on the approach that a layered core dispersed in a dielectric environment (core-shell model) can be figured out as an uncoated sphere dispersed in a medium with a local refractive index (local refractive index model). Thus, in the Mie theory, the same spectral position of the surface plasmon resonance peak can be obtained by varying the volume fraction of the shell or by varying the local refractive index. The assumed equivalence between plasmon resonance wavelengths enable us to show that the local refractive index depends geometrically on the shell volume fraction. Hence, simple relationships between optical and geometrical properties of these core-shell nanostructures are obtained. Furthermore, good agreement is observed between the new relationships and experimental data corresponding to gold nanoparticles (radius = 7.5 nm) covered with silica shells (with thicknesses up to 29.19 nm), which insured that the equivalence hypothesis is correct.

  13. Core and shell sizing of small silver-coated nanospheres by optical extinction spectroscopy

    International Nuclear Information System (INIS)

    Schinca, D C; Scaffardi, L B

    2008-01-01

    Silver metal nanoparticles (Nps) are extensively used in different areas of research and technology due to their interesting optical, thermal and electric properties, especially for bare core and core-shell nanostructures with sizes smaller than 10 nm. Since these properties are core-shell size-dependent, size measurement is important in manipulating their potential functionalization and applications. Bare and coated small silver Nps fabricated by physical and chemical methods present specific characteristics in their extinction spectra that are potentially useful for sizing purposes. This work presents a novel procedure to size mean core radius smaller than 10 nm and mean shell thickness of silver core-shell Nps based on a comparative study of the characteristics in their optical extinction spectra in different media as a function of core radii, shell thickness and coating refractive index. From the regularities derived from these relationships, it can be concluded that plasmon full width at half-maximum (FWHM) is sensitive to core size but not to coating thickness, while plasmon resonance wavelength (PRW) is related to shell thickness and mostly independent of core radius. These facts, which allow sizing simultaneously both mean core radius and shell thickness, can also be used to size bare silver Nps as a special case of core-shell Nps with zero shell thickness. The proposed method was applied to size experimental samples and the results show good agreement with conventional TEM microscopy.

  14. Micro-Raman investigations of InN-GaN core-shell nanowires on Si (111) substrate

    Science.gov (United States)

    Sangeetha, P.; Jeganathan, K.; Ramakrishnan, V.

    2013-06-01

    The electron-phonon interactions in InN-GaN core-shell nanowires grown by plasma assisted- molecular beam epitaxy (MBE) on Si (111) substrate have been analysed using micro-Raman spectroscopic technique with the excitation wavelength of 633, 488 and 325 nm. The Raman scattering at 633 nm reveals the characteristic E2 (high) and A1 (LO) phonon mode of InN core at 490 and 590 cm-1 respectively and E2 (high) phonon mode of GaN shell at 573 cm-1. The free carrier concentration of InN core is found to be low in the order ˜ 1016 cm-3 due to the screening of charge carriers by thin GaN shell. Diameter of InN core evaluated using the spatial correlation model is consistent with the transmission electron microscopic measurement of ˜15 nm. The phonon-life time of core-shell nanowire structure is estimated to be ˜0.4 ps. The micro-Raman mapping and its corresponding localised spectra for 325 nm excitation exhibit intense E2 (high) phonon mode of GaN shell at 573 cm-1 as the decrease of laser interaction length and the signal intensity is quenched at the voids due to high spacing of NWs.

  15. Micro-Raman investigations of InN-GaN core-shell nanowires on Si (111 substrate

    Directory of Open Access Journals (Sweden)

    P. Sangeetha

    2013-06-01

    Full Text Available The electron-phonon interactions in InN-GaN core-shell nanowires grown by plasma assisted- molecular beam epitaxy (MBE on Si (111 substrate have been analysed using micro-Raman spectroscopic technique with the excitation wavelength of 633, 488 and 325 nm. The Raman scattering at 633 nm reveals the characteristic E2 (high and A1 (LO phonon mode of InN core at 490 and 590 cm−1 respectively and E2 (high phonon mode of GaN shell at 573 cm−1. The free carrier concentration of InN core is found to be low in the order ∼ 1016 cm−3 due to the screening of charge carriers by thin GaN shell. Diameter of InN core evaluated using the spatial correlation model is consistent with the transmission electron microscopic measurement of ∼15 nm. The phonon-life time of core-shell nanowire structure is estimated to be ∼0.4 ps. The micro-Raman mapping and its corresponding localised spectra for 325 nm excitation exhibit intense E2 (high phonon mode of GaN shell at 573 cm−1 as the decrease of laser interaction length and the signal intensity is quenched at the voids due to high spacing of NWs.

  16. Micro-Raman investigations of InN-GaN core-shell nanowires on Si (111) substrate

    International Nuclear Information System (INIS)

    Sangeetha, P.; Ramakrishnan, V.; Jeganathan, K.

    2013-01-01

    The electron-phonon interactions in InN-GaN core-shell nanowires grown by plasma assisted- molecular beam epitaxy (MBE) on Si (111) substrate have been analysed using micro-Raman spectroscopic technique with the excitation wavelength of 633, 488 and 325 nm. The Raman scattering at 633 nm reveals the characteristic E 2 (high) and A 1 (LO) phonon mode of InN core at 490 and 590 cm −1 respectively and E 2 (high) phonon mode of GaN shell at 573 cm −1 . The free carrier concentration of InN core is found to be low in the order ∼ 10 16 cm −3 due to the screening of charge carriers by thin GaN shell. Diameter of InN core evaluated using the spatial correlation model is consistent with the transmission electron microscopic measurement of ∼15 nm. The phonon-life time of core-shell nanowire structure is estimated to be ∼0.4 ps. The micro-Raman mapping and its corresponding localised spectra for 325 nm excitation exhibit intense E 2 (high) phonon mode of GaN shell at 573 cm −1 as the decrease of laser interaction length and the signal intensity is quenched at the voids due to high spacing of NWs.

  17. Novel method for the preparation of core-shell nanoparticles with movable Ag core and polystyrene loop shell

    International Nuclear Information System (INIS)

    Liu Weijun; Zhang Zhicheng; He Weidong; Zheng Cheng; Ge Xuewu; Li, Jian; Liu Huarong; Jiang Hao

    2006-01-01

    Core/shell nanoparticles with movable silver (Ag) core and polystyrene (PSt) shell (Ag at PSt nanoparticle) were successfully synthesized at room temperature and under ambient pressure via two steps: γ-irradiation and interfacial-initiated polymerization. Firstly, mono-dispersed Ag nanoparticles with diameters 20 nm were synthesized in inversed microemulsion by reducing silver nitrate under γ-irradiation. Then, Ag nanoparticles were coated with PSt via interfacial-initiated polymerization with cumene hydroperoxide/ferrous sulfate/disodium ethylenediaminetetraacetate/sodium formaldehyde sulfoxylate (CHPO-Fe 2+ -EDTA-SFS) as the redox initiation pair. The resulted Ag at PSt nanoparticles were identified by transmission electron microscopy (TEM), dynamic light scattering (DLS), X-ray powder diffraction (XRD) and X-ray photoelectron spectroscopy (XPS)

  18. Uniform silver/polypyrrole core-shell nanoparticles synthesized by hydrothermal reaction

    Energy Technology Data Exchange (ETDEWEB)

    Wang Shibin [Department of Chemistry, Tsinghua University, Beijing 100084 (China); Shi Gaoquan [Department of Chemistry, Tsinghua University, Beijing 100084 (China)]. E-mail: gshi@tsinghua.edu.cn

    2007-04-15

    Uniformly sized silver/polypyrrole (Ag/PPy) core-shell nanoparticles were synthesized by one-step hydrothermal reaction of pyrrole and silver nitrate in the presence of polyvinyl pyrrolidone (PVP) as protection agent. The morphology and structures of the nanoparticles have been studied by scanning and transmission electronic microscopes, X-ray diffractometer and Raman spectroscopy. The experimental results indicated that the particles had 120 nm silver cores with 20 nm polypyrrole (PPy) coatings. The reaction conditions have strong effects on the morphology of the nanoparticles.

  19. Uniform silver/polypyrrole core-shell nanoparticles synthesized by hydrothermal reaction

    International Nuclear Information System (INIS)

    Wang Shibin; Shi Gaoquan

    2007-01-01

    Uniformly sized silver/polypyrrole (Ag/PPy) core-shell nanoparticles were synthesized by one-step hydrothermal reaction of pyrrole and silver nitrate in the presence of polyvinyl pyrrolidone (PVP) as protection agent. The morphology and structures of the nanoparticles have been studied by scanning and transmission electronic microscopes, X-ray diffractometer and Raman spectroscopy. The experimental results indicated that the particles had 120 nm silver cores with 20 nm polypyrrole (PPy) coatings. The reaction conditions have strong effects on the morphology of the nanoparticles

  20. Preparation and recognition of surface molecularly imprinted core-shell microbeads for protein in aqueous solutions

    International Nuclear Information System (INIS)

    Lu Yan; Yan Changling; Gao Shuyan

    2009-01-01

    In this paper, a surface molecular imprinting technique was reported for preparing core-shell microbeads of protein imprinting, and bovine hemoglobin or bovine serum albumin were used as model proteins for studying the imprinted core-shell microbeads. 3-Aminophenylboronic acid (APBA) was polymerized onto the surface of polystyrene microbead in the presence of the protein templates to create protein-imprinted core-shell microbeads. The various samples were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and Brunauer-Emmett-Teller (BET) methods. The effect of pH on rebinding of the template hemoglobin, the specific binding and selective recognition were studied for the imprinted microbeads. The results show that the bovine hemoglobin-imprinted core-shell microbeads were successfully created. The shell was a sort of imprinted thin films with porous structure and larger surface areas. The imprinted microbeads have good selectivity for templates and high stability. Due to the recognition sites locating at or closing to the surface, these imprinted microbeads have good property of mass-transport. Unfortunately, the imprint technology was not successfully applied to imprinting bovine serum albumin (BSA).

  1. Preparation and recognition of surface molecularly imprinted core-shell microbeads for protein in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Lu Yan, E-mail: yanlu2001@sohu.com [College of Chemistry and Environmental Science, Henan Normal University, 46 Jlanshe Road, Xinxiang 453007 (China); Yan Changling; Gao Shuyan [College of Chemistry and Environmental Science, Henan Normal University, 46 Jlanshe Road, Xinxiang 453007 (China)

    2009-04-01

    In this paper, a surface molecular imprinting technique was reported for preparing core-shell microbeads of protein imprinting, and bovine hemoglobin or bovine serum albumin were used as model proteins for studying the imprinted core-shell microbeads. 3-Aminophenylboronic acid (APBA) was polymerized onto the surface of polystyrene microbead in the presence of the protein templates to create protein-imprinted core-shell microbeads. The various samples were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and Brunauer-Emmett-Teller (BET) methods. The effect of pH on rebinding of the template hemoglobin, the specific binding and selective recognition were studied for the imprinted microbeads. The results show that the bovine hemoglobin-imprinted core-shell microbeads were successfully created. The shell was a sort of imprinted thin films with porous structure and larger surface areas. The imprinted microbeads have good selectivity for templates and high stability. Due to the recognition sites locating at or closing to the surface, these imprinted microbeads have good property of mass-transport. Unfortunately, the imprint technology was not successfully applied to imprinting bovine serum albumin (BSA).

  2. One-step synthesis of gold-polyaniline core-shell particles

    International Nuclear Information System (INIS)

    Wang Zhijuan; Yuan Junhua; Han Dongxue; Niu Li; Ivaska, Ari

    2007-01-01

    A one-step method has been developed for synthesizing gold-polyaniline (Au-PANI) core-shell particles by using chlorauric acid (HAuCl 4 ) to oxidize aniline in the presence of acetic acid and Tween 40 at room temperature. SEM images indicated that the resulting core-shell particles were composed of submicrometre-scale Au particles and PANI shells with an average thickness of 25 nm. Furthermore, a possible mechanism concerning the growth of Au-PANI particles was also proposed based on the results of control experiments

  3. Morphological control of Ni/NiO core/shell nanoparticles and production of hollow NiO nanostructures

    International Nuclear Information System (INIS)

    Chopra, Nitin; Claypoole, Leslie; Bachas, Leonidas G.

    2010-01-01

    Chemical synthesis coupled with a microwave irradiation process allowed for the control of size (6-40 nm), shape, and shell thickness of Ni/NiO core/shell nanoparticles. In this unique synthetic route, the size of Ni nanoparticles (NiNPs) was strongly influenced by the nickel salt-to-stabilizer ratio and the amount of the stabilizer. Interestingly, it was observed that the shape of the nanoparticles was altered by varying the reaction time, where longer reaction times resulted in annealing effects and rupture of the stabilizer micelle leading to distinct shapes of Ni/NiO core/shell nanostructures. Product cooling rate was another important parameter identified in this study that not only affected the shape, but also the crystal structure of the core/shell nanoparticles. In addition, a simple and cost-effective method of microwave irradiation of NiNPs led to the formation of distinctly shaped hollow NiO nanoparticles. These high surface area core/shell nanoparticles with well-controlled morphologies are important and can lead to significant advancement in the design of improved fuel cells, electrochromic display devices, and catalysis systems.

  4. Morphological control of Ni/NiO core/shell nanoparticles and production of hollow NiO nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Chopra, Nitin [University of Alabama, Department of Metallurgical and Materials Engineering, Center for Materials for Information Technology (MINT) (United States); Claypoole, Leslie [Fairmont State University (United States); Bachas, Leonidas G., E-mail: bachas@uky.ed [University of Kentucky, Department of Chemistry (United States)

    2010-10-15

    Chemical synthesis coupled with a microwave irradiation process allowed for the control of size (6-40 nm), shape, and shell thickness of Ni/NiO core/shell nanoparticles. In this unique synthetic route, the size of Ni nanoparticles (NiNPs) was strongly influenced by the nickel salt-to-stabilizer ratio and the amount of the stabilizer. Interestingly, it was observed that the shape of the nanoparticles was altered by varying the reaction time, where longer reaction times resulted in annealing effects and rupture of the stabilizer micelle leading to distinct shapes of Ni/NiO core/shell nanostructures. Product cooling rate was another important parameter identified in this study that not only affected the shape, but also the crystal structure of the core/shell nanoparticles. In addition, a simple and cost-effective method of microwave irradiation of NiNPs led to the formation of distinctly shaped hollow NiO nanoparticles. These high surface area core/shell nanoparticles with well-controlled morphologies are important and can lead to significant advancement in the design of improved fuel cells, electrochromic display devices, and catalysis systems.

  5. MnO{sub 2}@colloid carbon spheres nanocomposites with tunable interior architecture for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuxin, E-mail: zhangyuxin@cqu.edu.cn [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); National Key Laboratory of Fundamental Science of Micro/Nano-Devices and System Technology, Chongqing University, Chongqing 400044 (China); Dong, Meng; Zhu, Shijin [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); Liu, Chuanpu, E-mail: liuchuanpu@163.com [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); Wen, Zhongquan [National Key Laboratory of Fundamental Science of Micro/Nano-Devices and System Technology, Chongqing University, Chongqing 400044 (China)

    2014-01-01

    Graphical abstract: - Highlights: • MnO{sub 2}@CSs nanocomposites have been successfully synthesized in room temperature. • The composites exhibited three structures: core–shell, yolk–shell and hollow structure. • The yolk–shell structure exhibited a high specific capacitance and cycling stability. - Abstract: MnO{sub 2}@colloid carbon spheres nanocomposites with tunable interior architecture have been synthesized by a facile and cost-effective strategy at room temperature. The structure and morphology of as-prepared nanocomposites were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), nitrogen adsorption, focused ion beam scanning electron microscopy (FIB/SEM) and high-resolution transmission electron microscopy (HRTEM). The as-obtained composites exhibited a three-dimensional architecture with core–shell, yolk–shell and hollow interior structure. Furthermore, the electrochemical properties of composites were evaluated by cycle voltammetric (CV) and galvanostatic charge–discharge measurements. The yolk–shell structure exhibited the optimized pseudocapacitance performance, revealing a specific capacitance (273 F g{sup −1}) with a good rate and cycling stability, owing to its unique structure and the poor crystallinity of MnO{sub 2} nanofilms. Therefore, this facile synthetic strategy could be useful to design and synthesis of tunable nanostructures with enhanced supercapacitor behavior.

  6. Polyaniline Coated Core-Shell Typed Stimuli-Responsive Microspheres and Their Electrorheology

    Directory of Open Access Journals (Sweden)

    Yu Zhen Dong

    2018-03-01

    Full Text Available Functional core-shell-structured particles have attracted considerable attention recently. This paper reviews the synthetic methods and morphologies of various electro-stimuli responsive polyaniline (PANI-coated core-shell-type microspheres, including PANI-coated Fe3O4, SiO2, Fe2O3, TiO2, poly(methyl methacrylate, poly(glycidyl methacrylate, and polystyrene along with their electrorheological (ER characteristics when prepared by dispersing these particles in an insulating medium. In addition to the various rheological characteristics and their analysis, such as shear stress and yield stress of their ER fluids, this paper summarizes some of the mechanisms proposed for ER fluids to further understand the responses of ER fluids to an externally applied electric field.

  7. Core-shell rhodium sulfide catalyst for hydrogen evolution reaction / hydrogen oxidation reaction in hydrogen-bromine reversible fuel cell

    Science.gov (United States)

    Li, Yuanchao; Nguyen, Trung Van

    2018-04-01

    Synthesis and characterization of high electrochemical active surface area (ECSA) core-shell RhxSy catalysts for hydrogen evolution oxidation (HER)/hydrogen oxidation reaction (HOR) in H2-Br2 fuel cell are discussed. Catalysts with RhxSy as shell and different percentages (5%, 10%, and 20%) of platinum on carbon as core materials are synthesized. Cyclic voltammetry is used to evaluate the Pt-equivalent mass specific ECSA and durability of these catalysts. Transmission electron microscopy (TEM), X-ray Photoelectron spectroscopy (XPS) and Energy-dispersive X-ray spectroscopy (EDX) techniques are utilized to characterize the bulk and surface compositions and to confirm the core-shell structure of the catalysts, respectively. Cycling test and polarization curve measurements in the H2-Br2 fuel cell are used to assess the catalyst stability and performance in a fuel cell. The results show that the catalysts with core-shell structure have higher mass specific ECSA (50 m2 gm-Rh-1) compared to a commercial catalyst (RhxSy/C catalyst from BASF, 6.9 m2 gm-Rh-1). It also shows better HOR/HER performance in the fuel cell. Compared to the platinum catalyst, the core-shell catalysts show more stable performance in the fuel cell cycling test.

  8. High-resolution TEM characterization of ZnO core-shell nanowires for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Divitini, G; Ducati, C [Department of Materials Science, Pembroke Street, Cambridge, CB2 3QZ (United Kingdom); Plank, N O V; Welland, M E [Nanoscience Centre, Department of Engineering, University of Cambridge, CB3 0FF (United Kingdom); Snaith, H J, E-mail: gd322@cam.ac.u [Clarendon Laboratory, Department of Physics, University of Oxford, OX1 3PU (United Kingdom)

    2010-07-01

    Recently ZnO nanowire films have been used in very promising and inexpensive dye-sensitized solar cells (DSSC). It was found that the performance of the devices can be enhanced by functionalising the nanowires with a thin metal oxide coating. This nm-scale shell is believed to tailor the electronic structure of the nanowire, and help the absorption of the dye. Core-shell ZnO nanowire structures are synthesised at low temperature (below 120{sup 0}C) by consecutive hydrothermal growth steps. Different materials are investigated for the coating, including Mg, Al, Cs and Zr oxides. High resolution TEM is used to characterise the quality of both the nanowire core and the shell, and to monitor the thickness and the degree of crystallisation of the oxide coating. The interface between the nanowire core and the outer shell is investigated in order to understand the adhesion of the coating, and give valuable feedback for the synthesis process. Nanowire films are packaged into dye-sensitised solar cell prototypes; samples coated with ZrO{sub 2} and MgO show the largest enhancement in the photocurrent and open-circuit voltage and look very promising for further improvement.

  9. Effects of Alloying Elements on the Formation of Core-Shell-Structured Reinforcing Particles during Heating of Al–Ti Powder Compacts

    Science.gov (United States)

    Chen, Tijun; Gao, Min; Tong, Yunqi

    2018-01-01

    To prepare core-shell-structured Ti@compound particle (Ti@compoundp) reinforced Al matrix composite via powder thixoforming, the effects of alloying elements, such as Si, Cu, Mg, and Zn, on the reaction between Ti powders and Al melt, and the microstructure of the resulting reinforcements were investigated during heating of powder compacts at 993 K (720 °C). Simultaneously, the situations of the reinforcing particles in the corresponding semisolid compacts were also studied. Both thermodynamic analysis and experiment results all indicate that Si participated in the reaction and promoted the formation of Al–Ti–Si ternary compounds, while Cu, Mg, and Zn did not take part in the reaction and facilitated Al3Ti phase to form to different degrees. The first-formed Al–Ti–Si ternary compound was τ1 phase, and then it gradually transformed into (Al,Si)3Ti phase. The proportion and existing time of τ1 phase all increased as the Si content increased. In contrast, Mg had the largest, Cu had the least, and Si and Zn had an equivalent middle effect on accelerating the reaction. The thicker the reaction shell was, the larger the stress generated in the shell was, and thus the looser the shell microstructure was. The stress generated in (Al,Si)3Ti phase was larger than that in τ1 phase, but smaller than that in Al3Ti phase. So, the shells in the Al–Ti–Si system were more compact than those in the other systems, and Si element was beneficial to obtain thick and compact compound shells. Most of the above results were consistent to those in the semisolid state ones except the product phase constituents in the Al–Ti–Mg system and the reaction rate in the Al–Ti–Zn system. More importantly, the desirable core-shell structured Ti@compoundp was only achieved in the semisolid Al–Ti–Si system. PMID:29342946

  10. Effects of Alloying Elements on the Formation of Core-Shell-Structured Reinforcing Particles during Heating of Al-Ti Powder Compacts.

    Science.gov (United States)

    Chen, Tijun; Gao, Min; Tong, Yunqi

    2018-01-15

    To prepare core-shell-structured Ti@compound particle (Ti@compound p ) reinforced Al matrix composite via powder thixoforming, the effects of alloying elements, such as Si, Cu, Mg, and Zn, on the reaction between Ti powders and Al melt, and the microstructure of the resulting reinforcements were investigated during heating of powder compacts at 993 K (720 °C). Simultaneously, the situations of the reinforcing particles in the corresponding semisolid compacts were also studied. Both thermodynamic analysis and experiment results all indicate that Si participated in the reaction and promoted the formation of Al-Ti-Si ternary compounds, while Cu, Mg, and Zn did not take part in the reaction and facilitated Al₃Ti phase to form to different degrees. The first-formed Al-Ti-Si ternary compound was τ1 phase, and then it gradually transformed into (Al,Si)₃Ti phase. The proportion and existing time of τ1 phase all increased as the Si content increased. In contrast, Mg had the largest, Cu had the least, and Si and Zn had an equivalent middle effect on accelerating the reaction. The thicker the reaction shell was, the larger the stress generated in the shell was, and thus the looser the shell microstructure was. The stress generated in (Al,Si)₃Ti phase was larger than that in τ1 phase, but smaller than that in Al₃Ti phase. So, the shells in the Al-Ti-Si system were more compact than those in the other systems, and Si element was beneficial to obtain thick and compact compound shells. Most of the above results were consistent to those in the semisolid state ones except the product phase constituents in the Al-Ti-Mg system and the reaction rate in the Al-Ti-Zn system. More importantly, the desirable core-shell structured Ti@compound p was only achieved in the semisolid Al-Ti-Si system.

  11. Core excitations across the neutron shell gap in 207Tl

    Directory of Open Access Journals (Sweden)

    E. Wilson

    2015-07-01

    Full Text Available The single closed-neutron-shell, one proton–hole nucleus 207Tl was populated in deep-inelastic collisions of a 208Pb beam with a 208Pb target. The yrast and near-yrast level scheme has been established up to high excitation energy, comprising an octupole phonon state and a large number of core excited states. Based on shell-model calculations, all observed single core excitations were established to arise from the breaking of the N=126 neutron core. While the shell-model calculations correctly predict the ordering of these states, their energies are compressed at high spins. It is concluded that this compression is an intrinsic feature of shell-model calculations using two-body matrix elements developed for the description of two-body states, and that multiple core excitations need to be considered in order to accurately calculate the energy spacings of the predominantly three-quasiparticle states.

  12. Investigation of Ni@CoO core-shell nanoparticle films synthesized by sequential layer deposition

    International Nuclear Information System (INIS)

    Spadaro, M.C.; Luches, P.; Benedetti, F.; Valeri, S.; Turchini, S.; Bertoni, G.; Ferretti, A.M.; Capetti, E.; Ponti, A.; D’Addato, S.

    2017-01-01

    Highlights: • We studied Ni/CoO core-shell nanoparticles (NP) obtained with a gas aggregation source. • The NP oxide shells were produced bye reactive deposition of Co in Oxygen atmosphere (p_O_2 ≈ 10"−"7 mbar). • XPS, SEM, STEM were used to obtain information on Ni chemical state and NP structure and morphology. • XMCD result showed evidence of remanent magnetization at room temperature. • We interpret XMCD results as due to stabilization induced by exchange bias due to AFM/FM coupling at the core/shell interface. - Abstract: Films of Ni@CoO core-shell nanoparticles (NP Ni core size d ≈ 11 nm) have been grown on Si/SiO_x and lacey carbon supports, by a sequential layer deposition method: a first layer of CoO was evaporated on the substrate, followed by the deposition of a layer of pre-formed, mass-selected Ni NPs, and finally an overlayer of CoO was added. The Ni NPs were formed by a magnetron gas aggregation source, and mass selected with a quadrupole mass filter. The morphology of the films was investigated with Scanning Electron Microscopy and Scanning Transmission Electron Microscopy. The Ni NP cores have a shape compatible with McKay icosahedron, caused by multitwinning occurring during their growth in the source, and the Ni NP layer shows the typical random paving growth mode. After the deposition of the CoO overlayer, CoO islands are observed, gradually extending and tending to merge with each other, with the formation of shells that enclose the Ni NP cores. In situ X-ray Photoelectron Spectroscopy showed that a few Ni atomic layers localized at the core-shell interface are oxidized, hinting at the possibility of creating an intermediate NiO shell between Ni and CoO, depending on the deposition conditions. Finally, X-ray Magnetic Circular Dichroism at the Ni L_2_,_3 absorption edge showed the presence of magnetization at room temperature even at remanence, revealing the possibility of magnetic stabilization of the NP film.

  13. Majorana states in prismatic core-shell nanowires

    Science.gov (United States)

    Manolescu, Andrei; Sitek, Anna; Osca, Javier; Serra, Llorenç; Gudmundsson, Vidar; Stanescu, Tudor Dan

    2017-09-01

    We consider core-shell nanowires with conductive shell and insulating core and with polygonal cross section. We investigate the implications of this geometry on Majorana states expected in the presence of proximity-induced superconductivity and an external magnetic field. A typical prismatic nanowire has a hexagonal profile, but square and triangular shapes can also be obtained. The low-energy states are localized at the corners of the cross section, i.e., along the prism edges, and are separated by a gap from higher energy states localized on the sides. The corner localization depends on the details of the shell geometry, i.e., thickness, diameter, and sharpness of the corners. We study systematically the low-energy spectrum of prismatic shells using numerical methods and derive the topological phase diagram as a function of magnetic field and chemical potential for triangular, square, and hexagonal geometries. A strong corner localization enhances the stability of Majorana modes to various perturbations, including the orbital effect of the magnetic field, whereas a weaker localization favorizes orbital effects and reduces the critical magnetic field. The prismatic geometry allows the Majorana zero-energy modes to be accompanied by low-energy states, which we call pseudo Majorana, and which converge to real Majoranas in the limit of small shell thickness. We include the Rashba spin-orbit coupling in a phenomenological manner, assuming a radial electric field across the shell.

  14. Synthesis, Characterization, and Microwave-Absorbing Properties of Polypyrrole/MnFe2O4 Nanocomposite

    Directory of Open Access Journals (Sweden)

    Seyed Hossein Hosseini

    2012-01-01

    Full Text Available Conductive polypyrrole (PPy-manganese ferrite (MnFe2O4 nanocomposites with core-shell structure were synthesized by in situ polymerization in the presence of dodecyl benzene sulfonic acid (DBSA as the surfactant and dopant and iron chloride (FeCl3 as the oxidant. The structure and magnetic properties of manganese ferrite nanoparticles were measured by using powder X-ray diffraction (XRD and vibrating sample magnetometer (VSM, respectively. Its morphology, microstructure, and DC conductivity of the nanocomposite were characterized by scanning electron microscopy (SEM, Fourier transform infrared spectroscopy (FTIR, and four-wire technique, respectively. The microwave-absorbing properties of the nanocomposite powders dispersing in resin acrylic coating with the coating thickness of 1.5 mm were investigated by using vector network analyzers in the frequency range of 8–12 GHz. A minimum reflection loss of −12 dB was observed at 11.3 GHz.

  15. Enhanced rate capability and cycling stability of core/shell structured CoFe{sub 2}O{sub 4}/onion-like C nanocapsules for lithium-ion battery anodes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xianguo, E-mail: liuxianguohugh@gmail.com [School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002 (China); Wu, Niandu; Cui, Caiyun; Zhou, Pingping [School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002 (China); Sun, Yuping [Center for Engineering Practice and Innovation Education, Anhui University of Technology, Maanshan 243032 (China)

    2015-09-25

    Highlights: • Core/shell-structured CoFe{sub 2}O{sub 4}/onion-like carbon nanocapsules have been prepared. • CoFe{sub 2}O{sub 4}/C nanocapsules possess good reversibility even when the current density is up to 4C. • CoFe{sub 2}O{sub 4}/C nanocapsules obtain a discharge capacity of 914.2 mA h g{sup −1} after 500 cycles at 0.1C. - Abstract: In this work, core/shell structured CoFe{sub 2}O{sub 4}/onion-like C nanocapsules have been successfully fabricated by the arc discharge method and air-annealing process and confirmed by X-ray diffraction and high-resolution transmission electron microscopy. The core/shell structure effectively withstands the volume change of CoFe{sub 2}O{sub 4} nanoparticles during the cycling process. Moreover, the onion-like C shells reduce the charge transfer resistance and facilitate electron and ion transport throughout the electrode. As a result, CoFe{sub 2}O{sub 4}/onion-like C nanocapsules exhibit excellent performance as a potential anode material for lithium ion batteries and deliver a reversible capacity of 914.2 mA h g{sup −1} at 0.1C, even after 500 cycles and recover its original capacity when the rate returns from 4C to the initial 0.1C after 120 cycles.

  16. Electron energy spectrum in core-shell elliptic quantum wire

    Directory of Open Access Journals (Sweden)

    V.Holovatsky

    2007-01-01

    Full Text Available The electron energy spectrum in core-shell elliptic quantum wire and elliptic semiconductor nanotubes are investigated within the effective mass approximation. The solution of Schrodinger equation based on the Mathieu functions is obtained in elliptic coordinates. The dependencies of the electron size quantization spectrum on the size and shape of the core-shell nanowire and nanotube are calculated. It is shown that the ellipticity of a quantum wire leads to break of degeneration of quasiparticle energy spectrum. The dependences of the energy of odd and even electron states on the ratio between semiaxes are of a nonmonotonous character. The anticrosing effects are observed at the dependencies of electron energy spectrum on the transversal size of the core-shell nanowire.

  17. Emission Characteristics of InGaN/GaN Core-Shell Nanorods Embedded in a 3D Light-Emitting Diode.

    Science.gov (United States)

    Jung, Byung Oh; Bae, Si-Young; Lee, Seunga; Kim, Sang Yun; Lee, Jeong Yong; Honda, Yoshio; Amano, Hiroshi

    2016-12-01

    We report the selective-area growth of a gallium nitride (GaN)-nanorod-based InGaN/GaN multiple-quantum-well (MQW) core-shell structure embedded in a three-dimensional (3D) light-emitting diode (LED) grown by metalorganic chemical vapor deposition (MOCVD) and its optical analysis. High-resolution transmission electron microscopy (HR-TEM) observation revealed the high quality of the GaN nanorods and the position dependence of the structural properties of the InGaN/GaN MQWs on multiple facets. The excitation and temperature dependences of photoluminescence (PL) revealed the m-plane emission behaviors of the InGaN/GaN core-shell nanorods. The electroluminescence (EL) of the InGaN/GaN core-shell-nanorod-embedded 3D LED changed color from green to blue with increasing injection current. This phenomenon was mainly due to the energy gradient and deep localization of the indium in the selectively grown InGaN/GaN core-shell MQWs on the 3D architecture.

  18. Characterization of the core-shell interaction of differently stabilized transition-metal nanoparticles by means of X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Bucher, S.

    2002-05-01

    Transition metal nanoparticles with different surfactants were investigated using X-ray absorption spectroscopy (XAS) to obtain information about the interaction between metal core and protecting shell. For tetraalkylammoniumchloride stabilized Pd- and Co-colloids, a detailed model of the interaction between the metal core and the stabilizing shell could be established, in which chlorine is the connecting element between the metal core and the organic protection cover. Different lengths of the alkyl-chains can cause different equilibrium positions for the chlorine atoms. At aluminum-organic stabilized Pt-colloids, Al K-XANES and Pt L III -XAS were carried out. In this case, it turned out that aluminum is the connecting element between metal core and protection shell. After modification of the shell by connecting different molecules to the outside of the shell, rearrangements of the shell could be observed. In contrast to the surfactant stabilized systems discussed above, metallic covers, especially gold coatings, of Co-particles did not lead to a complete protection shell. In all cases, the cobalt in the nanoparticles was oxidized. A core shell structure could not be verified for any of the metallic stabilized colloids. (orig.)

  19. Largely improved the low temperature toughness of acrylonitrile-styrene-acrylate (ASA) resin: Fabricated a core-shell structure of two elastomers through the differences of interfacial tensions

    Science.gov (United States)

    Mao, Zepeng; Zhang, Jun

    2018-06-01

    The phase morphology of two elastomers (i.e., chlorinated polyethylene (CPE) and polybutadiene rubber (BR)) were devised to be a core-shell structure in acrylonitrile-styrene-acrylate (ASA) resin matrix, via the interfacial tension differences of polymer pairs. Selective extraction test and scanning electron microscopy (SEM) were utilized to verify this special phase morphology. The results demonstrated that the core-shell structure, BR core and CPE shell, significantly contributed to improve the low temperature toughness of ASA/CPE/BR ternary blends, which may be because the nonpolar BR core was segregated from polar ASA by the CPE shell. The CPE shell served dual functions: Not only did it play compatibilizing effect in the interface between BR and ASA matrix, but it also toughened the blends at 25 and 0 °C. The blends of ASA/CPE/BR (100/27/3, w/w/w) and ASA/CPE/BR (100/22/8, w/w/w) showed the peak impact strengths at about 28 and 9 kJ/m2 at 0 and -30 °C, respectively, which were higher than both that of ASA/CPE/BR (100/30/0, w/w/w) and ASA/CPE/BR (100/0/30, w/w/w). Moreover, the impact strength of ternary blends at room temperature kept at 40 kJ/m2 when BR content was lower than 10 phr. Other characterizations including contact angle measurement, dynamic mechanical thermal analysis (DMTA), morphology of impact-fractured surfaces, tensile properties, flexural properties, and Fourier transform infrared spectroscopy (FTIR) were measured as well.

  20. Core-satellite Ag@BaTiO3 nanoassemblies for fabrication of polymer nanocomposites with high discharged energy density, high breakdown strength and low dielectric loss.

    Science.gov (United States)

    Xie, Liyuan; Huang, Xingyi; Li, Bao-Wen; Zhi, Chunyi; Tanaka, Toshikatsu; Jiang, Pingkai

    2013-10-28

    Dielectric polymer nanocomposites with high dielectric constant have wide applications in high energy density electronic devices. The introduction of high dielectric constant ceramic nanoparticles into a polymer represents an important route to fabricate nanocomposites with high dielectric constant. However, the nanocomposites prepared by this method generally suffer from relatively low breakdown strength and high dielectric loss, which limit the further increase of energy density and energy efficiency of the nanocomposites. In this contribution, by using core-satellite structured ultra-small silver (Ag) decorated barium titanate (BT) nanoassemblies, we successfully fabricated high dielectric constant polymer nanocomposites with enhanced breakdown strength and lower dielectric loss in comparison with conventional polymer-ceramic particulate nanocomposites. The discharged energy density and energy efficiency are derived from the dielectric displacement-electric field loops of the polymer nanocomposites. It is found that, by using the core-satellite structured Ag@BT nanoassemblies as fillers, the polymer nanocomposites can not only have higher discharged energy density but also have high energy efficiency. The mechanism behind the improved electrical properties was attributed to the Coulomb blockade effect and the quantum confinement effect of the introduced ultra-small Ag nanoparticles. This study could serve as an inspiration to enhance the energy storage densities of dielectric polymer nanocomposites.

  1. Silica-modified luminescent LaPO4 :Eu@LaPO4 @SiO2 core/shell nanorods: Synthesis, structural and luminescent properties.

    Science.gov (United States)

    Ansari, Anees A

    2018-02-01

    Monoclinic-type tetragonal LaPO 4 :Eu (core) and LaPO 4 :Eu@LaPO 4 (core/shell) nanorods (NRs) were successfully prepared using a urea-based co-precipitation process under ambient conditions. An amorphous silica layer was coated around the luminescent core/shell NRs via the sol-gel process to improve their solubility and colloidal stability in aqueous and non-aqueous media. The prepared nano-products were systematically characterized by X-ray diffraction pattern, transmission electron microscopy, energy dispersive X-ray analysis, and FTIR, UV/Vis, and photoluminescence spectroscopy to examine their phase purity, crystal phase, surface chemistry, solubility and luminescence characteristics. The length and diameter of the nano-products were in the range 80-120 nm and 10-15 nm, respectively. High solubility of the silica-modified core/shell/Si NRs was found for the aqueous medium. The luminescent core NRs exhibited characteristic excitation and emission transitions in the visible region that were greatly affected by surface growth of insulating LaPO 4 and silica layers due to the multiphonon relaxation rate. Our luminescence spectral results clearly show a distinct difference in intensities for core, core/shell, and core/shell/Si NRs. Highly luminescent NRs with good solubility could be useful candidates for a variety of photonic-based biomedical applications. Copyright © 2017 John Wiley & Sons, Ltd.

  2. On the possibility of room temperature ferromagnetism on chunk-shape BaSnO3/ZnO core/shell nanostructures

    Science.gov (United States)

    Rajamanickam, N.; Jayakumar, K.; Ramachandran, K.

    2018-04-01

    Core/shell BaSnO3/ZnO (BS-ZO) nanostructures were prepared by oxalate precipitation method and wet-chemical method. BaSnO3 (BSO) cubic perovskite structure and ZnO hexagonal wurtzite structure were confirmed by X-ray diffraction (XRD). The crystallite sizes is 23 nm, 29 nm and 27 nm for BSO, ZnO and BS-ZO, respectively. Chunk-shape and cuboids morphology observed from scanning electron microscopy (SEM) analysis. The magnetic properties were studied by VSM for bare and core-shell nano systems and the room temperature ferromagnetism observed for core-shell nanostructures. The BSO/ZnO shows enhanced coercivity and saturated magnetization as compared with BSO and ZnO nanostructures.

  3. Engineered magnetic core shell nanoprobes: Synthesis and applications to cancer imaging and therapeutics.

    Science.gov (United States)

    Mandal, Samir; Chaudhuri, Keya

    2016-02-26

    Magnetic core shell nanoparticles are composed of a highly magnetic core material surrounded by a thin shell of desired drug, polymer or metal oxide. These magnetic core shell nanoparticles have a wide range of applications in biomedical research, more specifically in tissue imaging, drug delivery and therapeutics. The present review discusses the up-to-date knowledge on the various procedures for synthesis of magnetic core shell nanoparticles along with their applications in cancer imaging, drug delivery and hyperthermia or cancer therapeutics. Literature in this area shows that magnetic core shell nanoparticle-based imaging, drug targeting and therapy through hyperthermia can potentially be a powerful tool for the advanced diagnosis and treatment of various cancers.

  4. Preparation, characterization and infrared emissivity study of helical polyurethane-SiO2 core-shell composite

    International Nuclear Information System (INIS)

    Wang Zhiqiang; Zhou Yuming; Yao Qingzhao; Sun Yanqing

    2009-01-01

    Helical polyurethane-SiO 2 (HPU-SiO 2 ) core-shell composite was prepared after surface modification of SiO 2 nanoparticles. HPU-SiO 2 was characterized by Fourier-transform infrared (FT-IR) spectroscopy, X-ray photoelectron spectroscopy (XPS), ultraviolet (UV) spectroscopy, X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results indicate that the helical polyurethane has been successfully grafted onto the surfaces of the modified SiO 2 . HPU-SiO 2 composite exhibits clearly core-shell structure. The ultraviolet absorption and crystallizability of HPU-SiO 2 are changed due to the shell of helical polyurethane, which possesses regular single-handed conformation and inter-chain hydrogen bonds. The infrared emissivity of HPU-SiO 2 was also investigated. The result indicates that the interfacial interactions between organic shell and inorganic core induce the infrared emissivity value being reduced from 0.781 for SiO 2 to 0.503 for HPU-SiO 2 .

  5. High performance of PbSe/PbS core/shell quantum dot heterojunction solar cells: short circuit current enhancement without the loss of open circuit voltage by shell thickness control.

    Science.gov (United States)

    Choi, Hyekyoung; Song, Jung Hoon; Jang, Jihoon; Mai, Xuan Dung; Kim, Sungwoo; Jeong, Sohee

    2015-11-07

    We fabricated heterojunction solar cells with PbSe/PbS core shell quantum dots and studied the precisely controlled PbS shell thickness dependency in terms of optical properties, electronic structure, and solar cell performances. When the PbS shell thickness increases, the short circuit current density (JSC) increases from 6.4 to 11.8 mA cm(-2) and the fill factor (FF) enhances from 30 to 49% while the open circuit voltage (VOC) remains unchanged at 0.46 V even with the decreased effective band gap. We found that the Fermi level and the valence band maximum level remain unchanged in both the PbSe core and PbSe/PbS core/shell with a less than 1 nm thick PbS shell as probed via ultraviolet photoelectron spectroscopy (UPS). The PbS shell reduces their surface trap density as confirmed by relative quantum yield measurements. Consequently, PbS shell formation on the PbSe core mitigates the trade-off relationship between the open circuit voltage and the short circuit current density. Finally, under the optimized conditions, the PbSe core with a 0.9 nm thick shell yielded a power conversion efficiency of 6.5% under AM 1.5.

  6. Photoresponse and Field Effect Transport Studies in InAsP-InP Core-Shell Nanowires

    Science.gov (United States)

    Lee, Rochelle; Jo, Min Hyeok; Kim, TaeWan; Kim, Hyo Jin; Kim, Doo Gun; Shin, Jae Cheol

    2018-05-01

    A ternary InAsyP1-y alloy is suitable for an application to near-infrared (NIR) optical devices as their direct bandgap energy covers the entire NIR band. A nanowire (NW) system allows an epitaxial integration of InAsyP1-y alloy on any type of substrate since the lattice mismatch strain can be relieved through the NW sidewall. Nevertheless, the very large surface to volume ratio feature of the NWs leads to enormous surface states which are susceptible to surface recombination of free carriers. Here, ternary InAs0.75P0.25 NWs are grown with InP passivation layer (i.e., core-shell structure) to minimize the influence of the surface states, thus increasing their optical and electrical properties. A photoresponse study was achieved through the modeled band structure of the grown NWs. The model and experimental results suggest that 5-nm-thick InP shell efficiently passivates the surface states of the InAs0.75P0.25 NWs. The fabricated core-shell photodetectors and field-effect transistors exhibit improved photoresponse and transport properties compared to its counterpart core-only structure.

  7. Photoresponse and Field Effect Transport Studies in InAsP-InP Core-Shell Nanowires

    Science.gov (United States)

    Lee, Rochelle; Jo, Min Hyeok; Kim, TaeWan; Kim, Hyo Jin; Kim, Doo Gun; Shin, Jae Cheol

    2018-03-01

    A ternary InAsyP1-y alloy is suitable for an application to near-infrared (NIR) optical devices as their direct bandgap energy covers the entire NIR band. A nanowire (NW) system allows an epitaxial integration of InAsyP1-y alloy on any type of substrate since the lattice mismatch strain can be relieved through the NW sidewall. Nevertheless, the very large surface to volume ratio feature of the NWs leads to enormous surface states which are susceptible to surface recombination of free carriers. Here, ternary InAs0.75P0.25 NWs are grown with InP passivation layer (i.e., core-shell structure) to minimize the influence of the surface states, thus increasing their optical and electrical properties. A photoresponse study was achieved through the modeled band structure of the grown NWs. The model and experimental results suggest that 5-nm-thick InP shell efficiently passivates the surface states of the InAs0.75P0.25 NWs. The fabricated core-shell photodetectors and field-effect transistors exhibit improved photoresponse and transport properties compared to its counterpart core-only structure.

  8. Micro-Raman investigations of InN-GaN core-shell nanowires on Si (111) substrate

    Energy Technology Data Exchange (ETDEWEB)

    Sangeetha, P.; Ramakrishnan, V. [Department of Laser Studies, School of Physics, Madurai Kamaraj University, Madurai-625 021 (India); Jeganathan, K. [Centre for Nanoscience and Nanotechnology, School of Physics, Bharathidasan University, Tiruchirappalli-620 024 (India)

    2013-06-15

    The electron-phonon interactions in InN-GaN core-shell nanowires grown by plasma assisted- molecular beam epitaxy (MBE) on Si (111) substrate have been analysed using micro-Raman spectroscopic technique with the excitation wavelength of 633, 488 and 325 nm. The Raman scattering at 633 nm reveals the characteristic E{sub 2} (high) and A{sub 1} (LO) phonon mode of InN core at 490 and 590 cm{sup -1} respectively and E{sub 2} (high) phonon mode of GaN shell at 573 cm{sup -1}. The free carrier concentration of InN core is found to be low in the order {approx} 10{sup 16} cm{sup -3} due to the screening of charge carriers by thin GaN shell. Diameter of InN core evaluated using the spatial correlation model is consistent with the transmission electron microscopic measurement of {approx}15 nm. The phonon-life time of core-shell nanowire structure is estimated to be {approx}0.4 ps. The micro-Raman mapping and its corresponding localised spectra for 325 nm excitation exhibit intense E{sub 2} (high) phonon mode of GaN shell at 573 cm{sup -1} as the decrease of laser interaction length and the signal intensity is quenched at the voids due to high spacing of NWs.

  9. Core/shell Fe{sub 3}O{sub 4}/BiOI nanoparticles with high photocatalytic activity and stability

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Liyun, E-mail: zhengliyun@126.com [Hebei University of Engineering, College of Materials Science and Engineering (China); Wang, Shuling; Zhao, Lixin [Hebei University of Engineering, College of Mechanical and Equipment Engineering (China); Zhao, Shuguo [Handan Polytechnic College, Mechanical and Electrical Department (China)

    2016-11-15

    Core/shell Fe{sub 3}O{sub 4}/BiOI nanoparticles with BiOI sheath have been synthesized by a solvothermal reaction method and were characterized by transmission electron microscopy (TEM) with an energy dispersive spectrum (EDS), high-resolution TEM and X-ray diffraction (XRD). Their photocatalytic activities were evaluated by methylene blue (MB) under the simulated solar light. The results indicate that the spherical Fe{sub 3}O{sub 4} particles were coated with BiOI sheath when the sample were synthesized at 160 °C with ethylene glycol and deionized water, forming a core/shell structure. The degradation rate of MB assisted with the core/shell Fe{sub 3}O{sub 4}/BiOI catalysts reached 98 % after 40-min irradiation. The catalytic performance enhancement of the core/shell Fe{sub 3}O{sub 4}/BiOI catalysts mainly attributes to the band structure that can improve the generation efficiency, separation and transfer process of the photo-induced electron–hole pairs and decrease their recombination. The magnetic Fe{sub 3}O{sub 4} core not only contributes to the efficient separation of electron and holes, but also helps catalysts be collected conveniently using a magnet for reuse. After five repeated trials, the degradation rate of MB still maintains over 90 % and the saturated magnetization of the catalysts remains 51.5 emu/g, which indicate that the core/shell Fe{sub 3}O{sub 4}/BiOI nanoparticles have excellent photocatalytic stability and are recyclable for decomposing organic pollutants under visible light irradiation.

  10. Understanding the Thermal Stability of Palladium-Platinum Core-Shell Nanocrystals by In Situ Transmission Electron Microscopy and Density Functional Theory.

    Science.gov (United States)

    Vara, Madeline; Roling, Luke T; Wang, Xue; Elnabawy, Ahmed O; Hood, Zachary D; Chi, Miaofang; Mavrikakis, Manos; Xia, Younan

    2017-05-23

    Core-shell nanocrystals offer many advantages for heterogeneous catalysis, including precise control over both the surface structure and composition, as well as reduction in loading for rare and costly metals. Although many catalytic processes are operated at elevated temperatures, the adverse impacts of heating on the shape and structure of core-shell nanocrystals are yet to be understood. In this work, we used ex situ heating experiments to demonstrate that Pd@Pt 4L core-shell nanoscale cubes and octahedra are promising for catalytic applications at temperatures up to 400 °C. We also used in situ transmission electron microscopy to monitor the thermal stability of the core-shell nanocrystals in real time. Our results demonstrate a facet dependence for the thermal stability in terms of shape and composition. Specifically, the cubes enclosed by {100} facets readily deform shape at a temperature 300 °C lower than that of the octahedral counterparts enclosed by {111} facets. A reversed trend is observed for composition, as alloying between the Pd core and the Pt shell of an octahedron occurs at a temperature 200 °C lower than that for the cubic counterpart. Density functional theory calculations provide atomic-level explanations for the experimentally observed behaviors, demonstrating that the barriers for edge reconstruction determine the relative ease of shape deformation for cubes compared to octahedra. The opposite trend for alloying of the core-shell structure can be attributed to a higher propensity for subsurface Pt vacancy formation in octahedra than in cubes.

  11. Core-shell structural nanodiamond@TiN supported Pt nanoparticles as a highly efficient and stable electrocatalyst for direct methanol fuel cells

    International Nuclear Information System (INIS)

    Zhao, Yuling; Wang, Yanhui; Dong, Liang; Zhang, Yan; Huang, Junjie; Zang, Jianbing; Lu, Jing; Xu, Xipeng

    2014-01-01

    Highlights: • Core-shell structural nanodiamond@TiN was used as a novel support for Pt catalysts. • The ND@TiN support possessed a high electrochemical stability than carbon black. • The Pt/ND@TiN showed a higher catalytic activity for MOR and ORR than the Pt/C. • The Pt/ND@TiN demonstrated a much better durability compared with the Pt/C. - Abstract: A novel core-shell support material was designed with nanodiamond (ND) as core possessed excellent stability and TiN as shell improved the conductivity of support. The nano-TiN shell was decorated on the surface of ND by annealing TiO 2 in nitrogen atmosphere, and the obtained ND@TiN was employed to support Pt nanoparticles (NPs). The ND@TiN support and Pt/ND@TiN electrocatalyst were characterized by X-ray diffraction and transmission electron microscopy. ND particles were coated uniformly by the TiN layer and Pt NPs with a mean size of 4.2 nm were highly dispersed on the surface of ND@TiN. The electrochemical results confirmed that the ND@TiN support possessed a much more stability than the carbon black and exhibited a bigger background current density than the ND. The Pt/ND@TiN catalyst showed higher catalytic activity and better stability in methanol oxidation and oxygen reduction reactions compared with the Pt/C and Pt/ND

  12. Tunable Band Gap and Conductivity Type of ZnSe/Si Core-Shell Nanowire Heterostructures

    Directory of Open Access Journals (Sweden)

    Yijie Zeng

    2014-10-01

    Full Text Available The electronic properties of zincblende ZnSe/Si core-shell nanowires (NWs with a diameter of 1.1–2.8 nm are calculated by means of the first principle calculation. Band gaps of both ZnSe-core/Si-shell and Si-core/ZnSe-shell NWs are much smaller than those of pure ZnSe or Si NWs. Band alignment analysis reveals that the small band gaps of ZnSe/Si core-shell NWs are caused by the interface state. Fixing the ZnSe core size and enlarging the Si shell would turn the NWs from intrinsic to p-type, then to metallic. However, Fixing the Si core and enlarging the ZnSe shell would not change the band gap significantly. The partial charge distribution diagram shows that the conduction band maximum (CBM is confined in Si, while the valence band maximum (VBM is mainly distributed around the interface. Our findings also show that the band gap and conductivity type of ZnSe/Si core-shell NWs can be tuned by the concentration and diameter of the core-shell material, respectively.

  13. The effects of staggered bandgap in the InP/CdSe and CdSe/InP core/shell quantum dots.

    Science.gov (United States)

    Kim, Sunghoon; Park, Jaehyun; Kim, Sungwoo; Jung, Won; Sung, Jaeyoung; Kim, Sang-Wook

    2010-06-15

    New type-II structures of CdSe/InP and InP/CdSe core-shell nanocrystals which have staggered bandgap alignment were fabricated. Using a simple model for the wave function for electrons and holes in InP/CdSe and CdSe/InP core/shell nanocrystals showed the wave function of the electron and hole spread into the shell, respectively. The probability density of the InP/CdSe and CdSe/InP core/shell QDs also showed a similar tendency. As a result, the structure exhibits increased delocalization of electrons and holes, leading to a red-shift in absorption and emission. Quantum yield increased in the InP/CdSe, however decreased in the CdSe/InP. The reason may be due to the surface trap and high activation barrier for de-trapping in the InP shell. 2010 Elsevier Inc. All rights reserved.

  14. Low temperature grown ZnO@TiO{sub 2} core shell nanorod arrays for dye sensitized solar cell application

    Energy Technology Data Exchange (ETDEWEB)

    Goh, Gregory Kia Liang [Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology, and Research), 3 Research Link, 117602 Singapore (Singapore); Le, Hong Quang, E-mail: lehq@imre.a-star.edu.sg [Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology, and Research), 3 Research Link, 117602 Singapore (Singapore); Huang, Tang Jiao; Hui, Benjamin Tan Tiong [Department of Materials Science and Engineering (DMSE), Faculty of Engineering National University of Singapore (NUS) BLK E3A, #04-10, 7 Engineering Drive 1, Singapore 117574 (Singapore)

    2014-06-01

    High aspect ratio ZnO nanorod arrays were synthesized on fluorine-doped tin oxide glasses via a low temperature solution method. By adjusting the growth condition and adding polyethylenimine, ZnO nanorod arrays with tunable length were successfully achieved. The ZnO@TiO{sub 2} core shells structures were realized by a fast growth method of immersion into a (NH{sub 4}){sub 2}·TiF{sub 6} solution. Transmission electron microscopy, X-ray Diffraction and energy dispersive X-ray measurements all confirmed the existence of a titania shell uniformly covering the ZnO nanorod's surface. Results of solar cell testing showed that addition of a TiO{sub 2} shell to the ZnO nanorod significantly increased short circuit current (from 4.2 to 5.2 mA/cm{sup 2}), open circuit voltage (from 0.6 V to 0.8 V) and fill factor (from 42.8% to 73.02%). The overall cell efficiency jumped from 1.1% for bare ZnO nanorod to 3.03% for a ZnO@TiO{sub 2} core shell structured solar cell with a 18–22 nm shell thickness, a nearly threefold increase. - Graphical abstract: The synthesis process of coating TiO{sub 2} shell onto ZnO nanorod core is shown schematically. A thin, uniform, and conformal shell had been grown on the surface of the ZnO core after immersing in the (NH{sub 4}){sub 2}·TiF{sub 6} solution for 5–15 min. - Highlights: • ZnO@TiO{sub 2} core shell nanorod has been grown on FTO substrate using low temperature solution method. • TEM, XRD, EDX results confirmed the existing of titana shell, uniformly covered rod's surface. • TiO{sub 2} shell suppressed recombination, demonstrated significant enhancement in cell's efficiency. • Core shell DSSC's efficiency achieved as high as 3.03%, 3 times higher than that of ZnO nanorods.

  15. Plasma-assisted synthesis and study of structural and magnetic properties of Fe/C core shell

    Science.gov (United States)

    Shinde, K. P.; Ranot, M.; Choi, C. J.; Kim, H. S.; Chung, K. C.

    2017-07-01

    Pure and carbon-encapsulated iron nanoparticles with an average diameter of 25 nm were synthesized by using the DC plasma arc discharge method. Fe core nanoparticles were encapsulated with carbon layer, which is acting as protection layer against both oxidation and chemical reaction. The morphology and the Fe/C core/shell structure of the nanoparticles were studied by using field emission scanning electron microscopy and transmission electron microscopy. The x-ray diffraction study showed that the α-Fe phase exists with γ-Fe as an impurity. The studied samples have been interrelated with the variation of saturation magnetization, remanent magnetization and coercive field with the amount of carbon coating. The pure α-Fe sample shows saturation magnetization = 172 emu/g, and coercive field = 150 Oe, on the other hand few layer carbon coated α-Fe sample shows saturation magnetization =169 emu/g with higher coercive field 398 Oe.

  16. Plasma-assisted synthesis and study of structural and magnetic properties of Fe/C core shell

    Directory of Open Access Journals (Sweden)

    K. P. Shinde

    2017-07-01

    Full Text Available Pure and carbon-encapsulated iron nanoparticles with an average diameter of 25 nm were synthesized by using the DC plasma arc discharge method. Fe core nanoparticles were encapsulated with carbon layer, which is acting as protection layer against both oxidation and chemical reaction. The morphology and the Fe/C core/shell structure of the nanoparticles were studied by using field emission scanning electron microscopy and transmission electron microscopy. The x-ray diffraction study showed that the α-Fe phase exists with γ-Fe as an impurity. The studied samples have been interrelated with the variation of saturation magnetization, remanent magnetization and coercive field with the amount of carbon coating. The pure α-Fe sample shows saturation magnetization = 172 emu/g, and coercive field = 150 Oe, on the other hand few layer carbon coated α-Fe sample shows saturation magnetization =169 emu/g with higher coercive field 398 Oe.

  17. Synthesis of fly ash based core-shell composites for use as functional pigment in paints

    Science.gov (United States)

    Sharma, Richa; Tiwari, Sangeeta

    2016-04-01

    Fly ash is a combustion residue, mainly composed of silica, alumina and iron oxides. It is produced by the power industries in very large amounts and usually disposed in landfills, which have represented an environmental problem in recent years1. The need to generate a market for fly ash consumption is the main reason why alternative applications have been studied. It has been applied as an additive in construction materials like cement and pavements2. The present work describes the synthesis of Flyash-Titania core-shell particles by precipitation technique using Titanium tetra isopropoxide (TTIP) which can be used for variety of applications such as NIR reflecting materials for cool coatings, Photocatalysis etc. In this work, Fly ash is used in core and Nano -TiO2 is coated as shell on it. Surfactants are used to improve the adhesion of Nano Titania shell on fly ash core. Effect on adhesion of TiO2 on Fly ash is studied by using different types of surfactant. The preparation of core shells was carried out in absence of surfactant as well as using anionic and non-ionic surfactants. The percentage of surfactant was varied to study the effect of amount of surfactant on the uniformity and size of particles in the shell using Kubelka-Munk transformed reflectance spectra. The morphology of core shell structures was studied using SEM technique. Use of anionic surfactant results in more uniform coating with reduced particle size of the shell material. The composite particles prepared by using anionic surfactant are having good pigment properties and also shows good reflectance in Near Infrared region and hence can be used as a pigment in cool coatings.

  18. Photogenerated carriers transport behaviors in L-cysteine capped ZnSe core-shell quantum dots

    Science.gov (United States)

    Shan, Qingsong; Li, Kuiying; Xue, Zhenjie; Lin, Yingying; Yin, Hua; Zhu, Ruiping

    2016-02-01

    The photoexcited carrier transport behavior of zinc selenide (ZnSe) quantum dots (QDs) with core-shell structure is studied because of their unique photoelectronic characteristics. The surface photovoltaic (SPV) properties of self-assembled ZnSe/ZnS/L-Cys core-shell QDs were probed via electric field induced surface photovoltage and transient photovoltage (TPV) measurements supplemented by Fourier transform infrared, laser Raman, absorption, and photoluminescence spectroscopies. The ZnSe QDs displayed p-type SPV characteristics with a broader stronger SPV response over the whole ultraviolet-to-near-infrared range compared with those of other core-shell QDs in the same group. The relationship between the SPV phase value of the QDs and external bias was revealed in their SPV phase spectrum. The wide transient photovoltage response region from 3.3 × 10-8 to 2 × 10-3 s was closely related to the long diffusion distance of photoexcited free charge carriers in the interfacial space-charge region of the QDs. The strong SPV response corresponding to the ZnSe core mainly originated from an obvious quantum tunneling effect in the QDs.

  19. High Solid Contents Copoly (Styrene/Butyl Acrylate-Cloisite 30B Nanocomposites

    Directory of Open Access Journals (Sweden)

    M. Mirzataheri

    2013-03-01

    Full Text Available Higher solid contents (20 % and 40 % nanocomposites of poly (styrene-co-butyl acrylate including higher content of Cloisite 30B (7 wt% and 10 wt % were prepared via miniemulsion polymerization. Stability of the final latexes proved outstanding combination of polymerization procedure and surfactants. Morphological studies revealed by TEM, SAX and XRD showed three structures of core-shell, armored and individual dispersion of clay layers within the polymer particles. The effect of Cloisite 30B content on the barrier properties presents excellent and wide use of these films for packaging and nanocoatings industries.

  20. HTGR Metallic Reactor Internals Core Shell Cutting & Machining Antideformation Technique Study

    International Nuclear Information System (INIS)

    Xing Huiping; Xue Song

    2014-01-01

    The reactor shell assembly of HTGR nuclear power station demonstration project metallic reactor internals is key components of reactor, remains with high-precision large component with large-sized thin-walled straight cylinder-shaped structure, and is the first manufacture in China. As compared with other reactor shell, it has a larger ID (Φ5360mm), a longer length (19000mm), a smaller wall thickness (40mm) and a higher precision requirement. During the process of manufacture, the deformation due to cutting & machining will directly affect the final result of manufacture, the control of structural deformation and cutting deformation shall be throughout total manufacture process of such assembly. To realize the control of entire core shell assembly geometry, the key is to innovate and make breakthroughs on anti-deformation technique and then provide reliable technological foundations for the manufacture of HTGR metallic reactor internals. (author)

  1. Synthesis of magnetic CoPt/SiO{sub 2} core-shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Seto, Takafumi [Research Consortium for Synthetic Nano-Function Materials Project (SYNAF), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Koga, Kenji [Research Consortium for Synthetic Nano-Function Materials Project (SYNAF), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Takano, Fumiyoshi [Research Consortium for Synthetic Nano-Function Materials Project (SYNAF), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Akinaga, Hiroyuki [Research Consortium for Synthetic Nano-Function Materials Project (SYNAF), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Orii, Takaaki [Research Consortium for Synthetic Nano-Function Materials Project (SYNAF), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Hirasawa, Makoto [Research Consortium for Synthetic Nano-Function Materials Project (SYNAF), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Murayama, Mitsuhiro [National Institute for Material Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan)

    2007-04-15

    Core-shell nanoparticles composed of ferromagnetic cobalt platinum cores covered by non-magnetic silica shells were synthesized by laser ablating a composite target in a helium background gas. The average diameter of the CoPt core was controlled by adjusting the CoPt/SiO{sub 2} ratio of the ablation target. The particles were also classified in the gas phase using an electrical mobility classifier. The present method successfully synthesized nearly monodispersed nanoparticles with an average core diameter of 2.5nm. This article describes the synthesis of the core-shell nanoparticles and investigates their magnetic properties.

  2. Poly(glycidyl methacrylate)—A soft template for the facile preparation of poly(glycidyl methacrylate) core-copper nanoparticle shell nanocomposite

    International Nuclear Information System (INIS)

    Mohammed Safiullah, S.; Abdul Wasi, K.; Anver Basha, K.

    2015-01-01

    Graphical abstract: - Highlights: • PGMA/Cu nanohybrids have been synthesized by Surface deposition method. • The CuNPs were deposited on the PGMA surface without surface modification. • CuNP deposition on PGMA has a significant effect on morphology and thermal stability. - Abstract: Poly(glycidyl methacrylate) core/copper nanoparticle shell nanocomposite (PGMA/Cu nanohybrid) was prepared by simple two step method (i) The synthesis of poly(glycidyl methacrylate) (PGMA) beads by free radical suspension polymerization followed by (ii) direct deposition of copper nanoparticles (CuNPs) on activated PGMA beads. The PGMA beads were used as a soft template to host the CuNPs without surface modification of it. In this method the CuNPs were formed by chemical reduction of copper salts using sodium borohydride in water medium and deposited directly on the activated PGMA. Two different concentrations of copper salts were employed to know the effect of concentration on the shape and size of nanoparticles. The results showed that, the different sizes and shapes of CuNPs were deposited on the PGMA matrix. The X-ray Diffraction study results showed that the CuNPs were embedded on the surface of the PGMA matrix. The scanning electron microscopic images revealed that the fabrication of CuNPs on the PGMA matrix possess different shapes and changes the morphology and nature of PGMA beads significantly. The fluorescent micrograph also confirmed that the CuNPs were doped on the PGMA surface. The thermal studies have demonstrated that the CuNPs deposition on the surface of PGMA beads had a significant effect.

  3. Poly(glycidyl methacrylate)—A soft template for the facile preparation of poly(glycidyl methacrylate) core-copper nanoparticle shell nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed Safiullah, S., E-mail: safichem@gmail.com [Department of Chemistry, C. Abdul Hakeem College of Engineering & Technology, Melvisharam, Vellore District, Tamil Nadu 632509 (India); P.G. & Research Department of Chemistry, C. Abdul Hakeem College, Melvisharam, Vellore District, Tamil Nadu 632509 (India); Abdul Wasi, K. [P.G. & Research Department of Chemistry, C. Abdul Hakeem College, Melvisharam, Vellore District, Tamil Nadu 632509 (India); Anver Basha, K., E-mail: kanverbasha@gmail.com [P.G. & Research Department of Chemistry, C. Abdul Hakeem College, Melvisharam, Vellore District, Tamil Nadu 632509 (India)

    2015-12-01

    Graphical abstract: - Highlights: • PGMA/Cu nanohybrids have been synthesized by Surface deposition method. • The CuNPs were deposited on the PGMA surface without surface modification. • CuNP deposition on PGMA has a significant effect on morphology and thermal stability. - Abstract: Poly(glycidyl methacrylate) core/copper nanoparticle shell nanocomposite (PGMA/Cu nanohybrid) was prepared by simple two step method (i) The synthesis of poly(glycidyl methacrylate) (PGMA) beads by free radical suspension polymerization followed by (ii) direct deposition of copper nanoparticles (CuNPs) on activated PGMA beads. The PGMA beads were used as a soft template to host the CuNPs without surface modification of it. In this method the CuNPs were formed by chemical reduction of copper salts using sodium borohydride in water medium and deposited directly on the activated PGMA. Two different concentrations of copper salts were employed to know the effect of concentration on the shape and size of nanoparticles. The results showed that, the different sizes and shapes of CuNPs were deposited on the PGMA matrix. The X-ray Diffraction study results showed that the CuNPs were embedded on the surface of the PGMA matrix. The scanning electron microscopic images revealed that the fabrication of CuNPs on the PGMA matrix possess different shapes and changes the morphology and nature of PGMA beads significantly. The fluorescent micrograph also confirmed that the CuNPs were doped on the PGMA surface. The thermal studies have demonstrated that the CuNPs deposition on the surface of PGMA beads had a significant effect.

  4. Anisotropic deformation of metallo-dielectric core-shell colloids under MeV ion irradiation

    International Nuclear Information System (INIS)

    Penninkhof, J.J.; Dillen, T. van; Roorda, S.; Graf, C.; Blaaderen, A. van; Vredenberg, A.M.; Polman, A.

    2006-01-01

    We have studied the deformation of metallo-dielectric core-shell colloids under 4 MeV Xe, 6 and 16 MeV Au, 30 MeV Si and 30 MeV Cu ion irradiation. Colloids of silica surrounded by a gold shell, with a typical diameter of 400 nm, show anisotropic plastic deformation under MeV ion irradiation, with the metal flowing conform the anisotropically deforming silica core. The 20 nm thick metal shell imposes a mechanical constraint on the deforming silica core, reducing the net deformation strain rate compared to that of pure silica. In colloids consisting of a Au core and a silica shell, the silica expands perpendicular to the ion beam, while the metal core shows a large elongation along the ion beam direction, provided the silica shell is thick enough (>40 nm). A minimum electronic energy loss of 3.3 keV/nm is required for shape transformation of the metal core. Silver cores embedded in a silica shell show no elongation, but rather disintegrate. Also in planar SiO 2 films, Au and Ag colloids show entirely different behavior under MeV irradiation. We conclude that the deformation model of core-shell colloids must include ion-induced particle disintegration in combination with thermodynamical effects, possibly in combination with mechanical effects driven by stresses around the ion tracks

  5. Anisotropic deformation of metallo-dielectric core shell colloids under MeV ion irradiation

    Science.gov (United States)

    Penninkhof, J. J.; van Dillen, T.; Roorda, S.; Graf, C.; van Blaaderen, A.; Vredenberg, A. M.; Polman, A.

    2006-01-01

    We have studied the deformation of metallo-dielectric core-shell colloids under 4 MeV Xe, 6 and 16 MeV Au, 30 MeV Si and 30 MeV Cu ion irradiation. Colloids of silica surrounded by a gold shell, with a typical diameter of 400 nm, show anisotropic plastic deformation under MeV ion irradiation, with the metal flowing conform the anisotropically deforming silica core. The 20 nm thick metal shell imposes a mechanical constraint on the deforming silica core, reducing the net deformation strain rate compared to that of pure silica. In colloids consisting of a Au core and a silica shell, the silica expands perpendicular to the ion beam, while the metal core shows a large elongation along the ion beam direction, provided the silica shell is thick enough (>40 nm). A minimum electronic energy loss of 3.3 keV/nm is required for shape transformation of the metal core. Silver cores embedded in a silica shell show no elongation, but rather disintegrate. Also in planar SiO2 films, Au and Ag colloids show entirely different behavior under MeV irradiation. We conclude that the deformation model of core-shell colloids must include ion-induced particle disintegration in combination with thermodynamical effects, possibly in combination with mechanical effects driven by stresses around the ion tracks.

  6. Ultrafast light matter interaction in CdSe/ZnS core-shell quantum dots

    Science.gov (United States)

    Yadav, Rajesh Kumar; Sharma, Rituraj; Mondal, Anirban; Adarsh, K. V.

    2018-04-01

    Core-shell quantum dot are imperative for carrier (electron and holes) confinement in core/shell, which provides a stage to explore the linear and nonlinear optical phenomena at the nanoscalelimit. Here we present a comprehensive study of ultrafast excitation dynamics and nonlinear optical absorption of CdSe/ZnS core shell quantum dot with the help of ultrafast spectroscopy. Pump-probe and time-resolved measurements revealed the drop of trapping at CdSe surface due to the presence of the ZnS shell, which makes more efficient photoluminescence. We have carried out femtosecond transient absorption studies of the CdSe/ZnS core-shell quantum dot by irradiation with 400 nm laser light, monitoring the transients in the visible region. The optical nonlinearity of the core-shell quantum dot studied by using the Z-scan technique with 120 fs pulses at the wavelengths of 800 nm. The value of two photon absorption coefficients (β) of core-shell QDs extracted as80cm/GW, and it shows excellent benchmark for the optical limiting onset of 2.5GW/cm2 with the low limiting differential transmittance of 0.10, that is an order of magnitude better than graphene based materials.

  7. Development of magnetic luminescent core/shell nanocomplex particles with fluorescence using Rhodamine 6G

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hee Uk; Song, Yoon Seok [Department of Chemical and Biological Engineering, Korea University, 5 Ga, Anam-Dong, Sungbuk-Gu, Seoul 136-701 (Korea, Republic of); Park, Chulhwan [Department of Chemical Engineering, Kwangwoon University, 447-1 Wolgye-Dong, Nowon-Gu, Seoul 139-701 (Korea, Republic of); Kim, Seung Wook, E-mail: kimsw@korea.ac.kr [Department of Chemical and Biological Engineering, Korea University, 5 Ga, Anam-Dong, Sungbuk-Gu, Seoul 136-701 (Korea, Republic of)

    2012-12-15

    Graphical abstract: Display Omitted Highlights: ► A simple method was developed to synthesize Co-B/SiO{sub 2}/dye/SiO{sub 2} composite particles. ► The magnetic particle shows that highly luminescent and core/shell particles are formed. ► Such core/shell particles can be easily suspended in water. ► The magnetic particles could detect fluorescence for the application of biosensor. -- Abstract: A simple and reproducible method was developed to synthesize a novel class of Co-B/SiO{sub 2}/dye/SiO{sub 2} composite core/shell particles. Using a single cobalt core, Rhodamine 6G of organic dye molecules was entrapped in a silica shell, resulting in core/shell particles of ∼200 nm diameter. Analyses using a variety of techniques such as transmission electron microscopy, X-ray photoelectron spectroscopy, vibration sample magnetometry, confocal laser scanning microscopy, and fluorescence intensity demonstrated that dye molecules were trapped inside the core/shell particles. A photoluminescence investigation showed that highly luminescent and photostable core/shell particles were formed. Such core/shell particles can be easily suspended in water. The synthesized magnetic particles could be used to detect fluorescence on glass substrate arrays for bioassay and biosensor applications.

  8. Shell-like structures

    CERN Document Server

    Altenbach, Holm

    2011-01-01

    In this volume, scientists and researchers from industry discuss the new trends in simulation and computing shell-like structures. The focus is put on the following problems: new theories (based on two-dimensional field equations but describing non-classical effects), new constitutive equations (for materials like sandwiches, foams, etc. and which can be combined with the two-dimensional shell equations), complex structures (folded, branching and/or self intersecting shell structures, etc.) and shell-like structures on different scales (for example: nano-tubes) or very thin structures (similar

  9. Thermal infrared and microwave absorbing properties of SrTiO3/SrFe12O19/polyaniline nanocomposites

    International Nuclear Information System (INIS)

    Hosseini, Seyed Hossein; Zamani, Parisa; Mousavi, S.Y.

    2015-01-01

    Graphical abstract: We have developed a new perspective of applications and properties of conducting polymers. The combination of absorption ability prepared nanocomposites in the present of PANI display a great potential in organization of shielding structures into thermal IR and microwave. Further investigations using other conducting polymers to demonstrate their capability for advance thermal IR and microwave shielding devices is under way. The application of these samples may improve the IR thermographic detection, catalysis, sensors, magnetic data storage, electromagnetic resonance wave absorption, photonic crystals, and microelectronic devices and military aspects. - Highlights: • The SrTiO 3 /SrFe 12 O 19 /PANI exhibited electric and electromagnetic properties. • The SrTiO 3 /SrFe 12 O 19 /PANI has shielding structures into thermal IR and microwave. • Increasing weight ratios and thicknesses will increase thermal IR ability. • Increasing weight ratios and thicknesses will increase microwave absorption ability. - Abstract: Polyaniline (PANI) as a unique polymer that also has electromagnetic absorption used as the substrate. In this research, SrTiO 3 was synthesized as IR absorbent and core and then SrFe 12 O 19 as microwave absorbent was prepared on SrTiO 3 via co-precipitation method as the first shell. As the next step, PANI was coated on SrTiO 3 /SrFe 12 O 19 nanoparticles via in situ polymerization by multi core–shell structures (SrTiO 3 /SrFe 12 O 19 /PANI). Nanometer size and structures of samples were measured by TEM, XRD and FTIR. Morphology of nanocomposite was showed by SEM images. The magnetic and electric properties were also performed by VSM and four probe techniques. Thermal infrared (IR) absorption and microwave reflection loss of nanocomposites were investigated at 10–40 μm and 8–12 GHz, IR and microwave frequencies, respectively. The results showed that the SrTiO 3 /SrFe 12 O 19 /PANI nanocomposites have good compatible

  10. Application of microwaves for incinerating waste shell moulds and cores

    Directory of Open Access Journals (Sweden)

    K. Granat

    2008-08-01

    Full Text Available In the paper, investigation results of microwave heating application for incinerating waste shell moulds and cores made of moulding sands with thermosetting resins are presented. It was found that waste shell cores or shell moulds left after casting, separated from moulding sand, can be effectively incinerated. It was evidenced that microwave heating allows effective control of this process and its results. Incineration of waste moulds and cores made of commercial grades of resin-coated moulding sand using microwave heating was found to be an effective way of their utilisation. It was determined that the optimum burning time of these wastes (except those insufficiently disintegrated and not mixed with an activating agent is maximum 240 s at the used magnetron power of 650 W. It was noticed that proper disintegration of the wastes and use of suitable additives to intensify the microwave heating process guarantee significant reduction of the process time and its full stabilisation. Application of microwave heating for incinerating waste shell moulds and cores ensure substantial and measurable economic profits due to shorter process time and lower energy consumption.

  11. Fast-dissolving core-shell composite microparticles of quercetin fabricated using a coaxial electrospray process.

    Directory of Open Access Journals (Sweden)

    Chen Li

    Full Text Available This study reports on novel fast-dissolving core-shell composite microparticles of quercetin fabricated using coaxial electrospraying. A PVC-coated concentric spinneret was developed to conduct the electrospray process. A series of analyses were undertaken to characterize the resultant particles in terms of their morphology, the physical form of their components, and their functional performance. Scanning and transmission electron microscopies revealed that the microparticles had spherical morphologies with clear core-shell structure visible. Differential scanning calorimetry and X-ray diffraction verified that the quercetin active ingredient in the core and sucralose and sodium dodecyl sulfate (SDS excipients in the shell existed in the amorphous state. This is believed to be a result of second-order interactions between the components; these could be observed by Fourier transform infrared spectroscopy. In vitro dissolution and permeation studies showed that the microparticles rapidly released the incorporated quercetin within one minute, and had permeation rates across the sublingual mucosa around 10 times faster than raw quercetin.

  12. Radiative Properties of Carriers in Cdse-Cds Core-Shell Heterostructured Nanocrystals of Various Geometries

    Science.gov (United States)

    Zhou, S.; Dong, L.; Popov, S.; Friberg, A. T.

    2013-07-01

    We report a model on core-shell heterostructured nanocrystals with CdSe as the core and CdS as the shell. The model is based on one-band Schrödinger equation. Three different geometries, nanodot, nanorod, and nanobone, are implemented. The carrier localization regimes with these structures are simulated, compared, and analyzed. Based on the electron and hole wave functions, the carrier overlap integral that has a great impact on stimulated emission is further investigated numerically by a novel approach. Furthermore, the relation between the nanocrystal size and electron-hole recombination energy is also examined.

  13. Co-Au core-shell nanocrystals formed by sequential ion implantation into SiO2

    International Nuclear Information System (INIS)

    Kluth, P.; Hoy, B.; Johannessen, B.; Dunn, S. G.; Foran, G. J.; Ridgway, M. C.

    2006-01-01

    Co-Au core-shell nanocrystals (NCs) were formed by sequential ion implantation of Au and Co into thin SiO 2 . The NCs were investigated by means of transmission electron microscopy and extended x-ray absorption fine structure spectroscopy. The latter reveals a bond length expansion in the Co core compared to monatomic Co NCs. Concomitantly, a significant contraction of the bond length and a significant reduction of the effective Au-Au coordination number were observed in the Au shells. Increased Debye-Waller factors indicate significant strain in the NCs. These experimental results verify recent theoretical predictions

  14. Synthesis of bimetallic Pt-Pd core-shell nanocrystals and their high electrocatalytic activity modulated by Pd shell thickness

    Science.gov (United States)

    Li, Yujing; Wang, Zhi Wei; Chiu, Chin-Yi; Ruan, Lingyan; Yang, Wenbing; Yang, Yang; Palmer, Richard E.; Huang, Yu

    2012-01-01

    Bimetallic Pt-Pd core-shell nanocrystals (NCs) are synthesized through a two-step process with controlled Pd thickness from sub-monolayer to multiple atomic layers. The oxygen reduction reaction (ORR) catalytic activity and methanol oxidation reactivity of the core-shell NCs for fuel cell applications in alkaline solution are systematically studied and compared based on different Pd thickness. It is found that the Pd shell helps to reduce the over-potential of ORR by up to 50mV when compared to commercial Pd black, while generating up to 3-fold higher kinetic current density. The carbon monoxide poisoning test shows that the bimetallic NCs are more resistant to the CO poisoning than Pt NCs and Pt black. It is also demonstrated that the bimetallic Pt-Pd core-shell NCs can enhance the current density of the methanol oxidation reaction, lowering the over-potential by 35 mV with respect to the Pt core NCs. Further investigation reveals that the Pd/Pt ratio of 1/3, which corresponds to nearly monolayer Pd deposition on Pt core NCs, gives the highest oxidation current density and lowest over-potential. This study shows for the first time the systematic investigation of effects of Pd atomic shells on Pt-Pd bimetallic nanocatalysts, providing valuable guidelines for designing high-performance catalysts for fuel cell applications.Bimetallic Pt-Pd core-shell nanocrystals (NCs) are synthesized through a two-step process with controlled Pd thickness from sub-monolayer to multiple atomic layers. The oxygen reduction reaction (ORR) catalytic activity and methanol oxidation reactivity of the core-shell NCs for fuel cell applications in alkaline solution are systematically studied and compared based on different Pd thickness. It is found that the Pd shell helps to reduce the over-potential of ORR by up to 50mV when compared to commercial Pd black, while generating up to 3-fold higher kinetic current density. The carbon monoxide poisoning test shows that the bimetallic NCs are more

  15. Bioprinting Using Mechanically Robust Core-Shell Cell-Laden Hydrogel Strands.

    Science.gov (United States)

    Mistry, Pritesh; Aied, Ahmed; Alexander, Morgan; Shakesheff, Kevin; Bennett, Andrew; Yang, Jing

    2017-06-01

    The strand material in extrusion-based bioprinting determines the microenvironments of the embedded cells and the initial mechanical properties of the constructs. One unmet challenge is the combination of optimal biological and mechanical properties in bioprinted constructs. Here, a novel bioprinting method that utilizes core-shell cell-laden strands with a mechanically robust shell and an extracellular matrix-like core has been developed. Cells encapsulated in the strands demonstrate high cell viability and tissue-like functions during cultivation. This process of bioprinting using core-shell strands with optimal biochemical and biomechanical properties represents a new strategy for fabricating functional human tissues and organs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Investigation of Ni@CoO core-shell nanoparticle films synthesized by sequential layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Spadaro, M.C., E-mail: mariachiara.spadaro@unimore.it [CNR-NANO, via G. Campi 213/a, 41125 Modena (Italy); Dipartimento FIM, Università di Modena e Reggio Emilia, via G. Campi 213/a, 41125 Modena (Italy); Luches, P. [Dipartimento FIM, Università di Modena e Reggio Emilia, via G. Campi 213/a, 41125 Modena (Italy); Benedetti, F.; Valeri, S. [CNR-NANO, via G. Campi 213/a, 41125 Modena (Italy); Dipartimento FIM, Università di Modena e Reggio Emilia, via G. Campi 213/a, 41125 Modena (Italy); Turchini, S. [CNR-ISM, Via Fosso del Cavaliere 100, 00133 Roma (Italy); Bertoni, G. [CNR-IMEM, Parco Area delle Scienze 37/a, 43124 Parma (Italy); Ferretti, A.M.; Capetti, E.; Ponti, A. [Laboratorio di Nanotecnologie, Istituto di Scienze e Tecnologie Molecolari, Consiglio Nazionale delle Ricerche, via G. Fantoli 16/15, 20138 Milano (Italy); D’Addato, S. [CNR-NANO, via G. Campi 213/a, 41125 Modena (Italy); Dipartimento FIM, Università di Modena e Reggio Emilia, via G. Campi 213/a, 41125 Modena (Italy)

    2017-02-28

    Highlights: • We studied Ni/CoO core-shell nanoparticles (NP) obtained with a gas aggregation source. • The NP oxide shells were produced bye reactive deposition of Co in Oxygen atmosphere (p{sub O2} ≈ 10{sup −7} mbar). • XPS, SEM, STEM were used to obtain information on Ni chemical state and NP structure and morphology. • XMCD result showed evidence of remanent magnetization at room temperature. • We interpret XMCD results as due to stabilization induced by exchange bias due to AFM/FM coupling at the core/shell interface. - Abstract: Films of Ni@CoO core-shell nanoparticles (NP Ni core size d ≈ 11 nm) have been grown on Si/SiO{sub x} and lacey carbon supports, by a sequential layer deposition method: a first layer of CoO was evaporated on the substrate, followed by the deposition of a layer of pre-formed, mass-selected Ni NPs, and finally an overlayer of CoO was added. The Ni NPs were formed by a magnetron gas aggregation source, and mass selected with a quadrupole mass filter. The morphology of the films was investigated with Scanning Electron Microscopy and Scanning Transmission Electron Microscopy. The Ni NP cores have a shape compatible with McKay icosahedron, caused by multitwinning occurring during their growth in the source, and the Ni NP layer shows the typical random paving growth mode. After the deposition of the CoO overlayer, CoO islands are observed, gradually extending and tending to merge with each other, with the formation of shells that enclose the Ni NP cores. In situ X-ray Photoelectron Spectroscopy showed that a few Ni atomic layers localized at the core-shell interface are oxidized, hinting at the possibility of creating an intermediate NiO shell between Ni and CoO, depending on the deposition conditions. Finally, X-ray Magnetic Circular Dichroism at the Ni L{sub 2,3} absorption edge showed the presence of magnetization at room temperature even at remanence, revealing the possibility of magnetic stabilization of the NP film.

  17. Statistical analysis on hollow and core-shell structured vanadium oxide microspheres as cathode materials for Lithium ion batteries

    Directory of Open Access Journals (Sweden)

    Xing Liang

    2018-06-01

    Full Text Available In this data, the statistical analyses of vanadium oxide microspheres cathode materials are presented for the research article entitled “Statistical analyses on hollow and core-shell structured vanadium oxides microspheres as cathode materials for Lithium ion batteries” (Liang et al., 2017 [1]. This article shows the statistical analyses on N2 adsorption-desorption isotherm and morphology vanadium oxide microspheres as cathode materials for LIBs. Keywords: Adsorption-desorption isotherm, Pore size distribution, SEM images, TEM images

  18. Synthesis, Structural Characterization and Up-Conversion Luminescence Properties of NaYF4:Er3+,Yb3+@MOFs Nanocomposites

    Science.gov (United States)

    Giang, Lam Thi Kieu; Marciniak, Lukasz; Huy, Tran Quang; Vu, Nguyen; Le, Ngo Thi Hong; Binh, Nguyen Thanh; Lam, Tran Dai; Minh, Le Quoc

    2017-10-01

    This paper describes a facile synthesis of NaYF4:Er3+,Yb3+ nanoparticles embraced in metal-organic frameworks (MOFs), known as NaYF4:Er3+, Yb3+@MOFs core/shell nanostructures, by using iron(III) carboxylate (MIL-100) and zeolitic imidazolate frameworks (ZIF-8). Morphological, structural and optical characterization of these nanostructures were investigated by field emission-scanning electron microscopy, Fourier transform infrared spectroscopy, x-ray diffraction, and up-conversion luminescence measurements. Results showed that spherical-shaped NaYF4:Er3+,Yb3+@MIL-100 nanocomposites with diameters of 150-250 nm, and rod-shaped NaYF4:Er3+,Yb3+@ZIF-8 nanocomposites with lengths of 300-550 nm, were successfully synthesized. Under a 980-nm laser excitation at room temperature, the NaYF4:Er3+,Yb3+@MOFs nanocomposites exhibited strong up-conversion luminescence with two emission bands in the green part of spectrum at 520 nm and 540 nm corresponding to the 2H11/2 → 4I15/2 and 4S3/2 → 4I15/2 transitions of Er3+ ions, respectively, and a red emission band at 655 nm corresponding to the 4F9/2 → 4I15/2 transition of Er3+ ions. The above properties of NaYF4:Er3+,Yb3+@MOFs make them promising candidates for applications in biotechnology.

  19. Fabrication of Au_n_a_n_o_p_a_r_t_i_c_l_e@mSiO_2@Y_2O_3:Eu nanocomposites with enhanced fluorescence

    International Nuclear Information System (INIS)

    Li, Huiqin; Kang, Jianmiao; Yang, Jianhui; Wu, Biao

    2016-01-01

    Herein, Au_n_a_n_o_p_a_r_t_i_c_l_e@mSiO_2@Y_2O_3:Eu nanocomposites are synthesized through layer-by-layer assembly technology. Au_n_a_n_o_p_a_r_t_i_c_l_e@mSiO_2 core–shell nanospheres were prepared at first in the presence of CTAB in aqueous solution system by the modified one-pot method. A chemical precipitation method and a succeeding calcination process were adopted to the growth of Y_2O_3:Eu shells on the surfaces of Au_n_a_n_o_p_a_r_t_i_c_l_e@mSiO_2 core–shell nanospheres. The structure, morphology and composition of the nanocomposites were confirmed by XRD, TEM and UV–vis absorption spectrum. The prepared Au_n_a_n_o_p_a_r_t_i_c_l_e@mSiO_2@Y_2O_3:Eu nanocomposites have showed the emission intensity enhances to 6.23 times at 30 nm thickness of the silica spacer between the core of Au nanoparticle and the shell of Y_2O_3:Eu. According to the observations of fluorescent lifetime and the modeling of local electric field, the metal-enhanced and quenched fluorescence is closely related with the enhancement of excitation and radiative decay rate and the quenching by NRET comes as a result of competition between the distance-dependent mechanisms. This kind of multifunctional inorganic material will be widely used in electronics, biology and medical drug loading, etc. - Highlights: • Fabrication of Au_n_a_n_o_p_a_r_t_i_c_l_e@mSiO_2@Y_2O_3:Eu nanocomposites with core-spacer-shell structure. • The controllable fluorescence is achieved by adjusting the spacer thickness of silica. • The fluorescence enhancement is 6.23-fold at an optimal spacer thickness about 30 nm. • The metal-enhanced fluorescence mechanism is proposed.

  20. Porous core-shell carbon fibers derived from lignin and cellulose nanofibrils

    KAUST Repository

    Xu, Xuezhu

    2013-10-01

    This letter reports a method to produce lignin and cellulose nanofibrils (CNFs) based porous core-shell carbon fibers via co-electrospinning followed by controlled carbonization. Lignin formed the shell of the fiber while CNF network formed the porous core. Polyacrylonitrile (PAN) was added to the lignin solution to increase its electrospinability. CNFs were surface acetylated and dispersed in silicon oil to obtain a homogenous dispersion for electrospinning the porous core. Hollow lignin fibers were also electrospun using glycerin as the core material. FT-IR measurements confirmed the CNF acetylation. SEM micrographs showed the core-shell and hollow fiber nanostructures before and after carbonization. The novel carbon fibers synthesized in this study exhibited increased surface area and porosity that are promising for many advanced applications. © 2013 Elsevier B.V.

  1. Porous core-shell carbon fibers derived from lignin and cellulose nanofibrils

    KAUST Repository

    Xu, Xuezhu; Zhou, Jian; Jiang, Long; Lubineau, Gilles; Chen, Ye; Wu, Xiangfa; Piere, Robert

    2013-01-01

    This letter reports a method to produce lignin and cellulose nanofibrils (CNFs) based porous core-shell carbon fibers via co-electrospinning followed by controlled carbonization. Lignin formed the shell of the fiber while CNF network formed the porous core. Polyacrylonitrile (PAN) was added to the lignin solution to increase its electrospinability. CNFs were surface acetylated and dispersed in silicon oil to obtain a homogenous dispersion for electrospinning the porous core. Hollow lignin fibers were also electrospun using glycerin as the core material. FT-IR measurements confirmed the CNF acetylation. SEM micrographs showed the core-shell and hollow fiber nanostructures before and after carbonization. The novel carbon fibers synthesized in this study exhibited increased surface area and porosity that are promising for many advanced applications. © 2013 Elsevier B.V.

  2. Core-Shell Double Gyroid Structure Formed by Linear ABC Terpolymer Thin Films.

    Science.gov (United States)

    Antoine, Ségolène; Aissou, Karim; Mumtaz, Muhammad; Telitel, Siham; Pécastaings, Gilles; Wirotius, Anne-Laure; Brochon, Cyril; Cloutet, Eric; Fleury, Guillaume; Hadziioannou, Georges

    2018-05-01

    The synthesis and self-assembly in thin-film configuration of linear ABC triblock terpolymer chains consisting of polystyrene (PS), poly(2-vinylpyridine) (P2VP), and polyisoprene (PI) are described. For that purpose, a hydroxyl-terminated PS-b-P2VP (45 kg mol -1 ) building block and a carboxyl-terminated PI (9 kg mol -1 ) are first separately prepared by anionic polymerization, and then are coupled via a Steglich esterification reaction. This quantitative and metal-free catalyst synthesis route reveals to be very interesting since functionalization and purification steps are straightforward, and well-defined terpolymers are produced. A solvent vapor annealing (SVA) process is used to promote the self-assembly of frustrated PS-b-P2VP-b-PI chains into a thin-film core-shell double gyroid (Q 230 , space group: Ia3¯d) structure. As terraces are formed within PS-b-P2VP-b-PI thin films during the SVA process under a CHCl 3 vapor, different plane orientations of the Q 230 structure ((211), (110), (111), and (100)) are observed at the polymer-air interface depending on the film thickness. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Synthesis and luminescent properties of CaCO3:Eu3+@SiO2 phosphors with core-shell structure

    Science.gov (United States)

    Liu, Min; Kang, Ming; Chen, Kexu; Mou, Yongren; Sun, Rong

    2018-03-01

    Integrating the processes of preparation of CaCO3:Eu3+ and its surface-coating, core-shell structured CaCO3:Eu3+@SiO2 phosphors with red emission were synthesized by the carbonation method and surface precipitation procedure using sodium silicate as silica source. The phase structure, thermal stability, morphology and luminescent property of the as-synthesized samples were characterized by X-ray diffraction, Fourier transform infrared spectrum, thermal analysis, field-emission scanning electron microscopy, transmission electron microscope and photoluminescence spectra. The experimental results show that Eu3+ ions as the luminescence center are divided into two types: one is at the surface of the CaCO3 and the other inhabits the site of Ca2+. For CaCO3:Eu3+@SiO2 phosphors, the SiO2 layers are continuously coated on the surface of CaCO3:Eu3+ and show a typical core-shell structure. After coated with SiO2 layer, the luminous intensity and the compatibility with the rubber matrix increase greatly. Additionally, the luminous intensity increases with the increasing of Eu3+ ions concentration in CaCO3 core and concentration quenching occurs when Eu3+ ions concentration exceeds 7.0 mol%, while it is 5.0 mol% for CaCO3:Eu3+ phosphors. Therefore, preparation of CaCO3:Eu3+@SiO2 phosphors can not only simplify the experimental process through integrating the preparation of CaCO3:Eu3+ and SiO2 layer, but also effectively increase the luminous intensities of CaCO3:Eu3+ phosphors. The as-obtained phosphors may have potential applications in the fields of optical materials and functional polymer composite materials, such as plastics and rubbers.

  4. Flexible 3D Fe@VO2 core-shell mesh: A highly efficient and easy-recycling catalyst for the removal of organic dyes.

    Science.gov (United States)

    Li, Jing; Wang, Ruoqi; Su, Zhen; Zhang, Dandan; Li, Heping; Yan, Youwei

    2018-10-01

    Nowadays, it is extremely urgent to search for efficient and effective catalysts for water purification due to the severe worldwide water-contamination crises. Here, 3D Fe@VO 2 core-shell mesh, a highly efficient catalyst toward removal of organic dyes with excellent recycling ability in the dark is designed and developed for the first time. This novel core-shell structure is actually 304 stainless steel mesh coated by VO 2 , fabricated by an electrophoretic deposition method. In such a core-shell structure, Fe as the core allows much easier separation from the water, endowing the catalyst with a flexible property for easy recycling, while VO 2 as the shell is highly efficient in degradation of organic dyes with the addition of H 2 O 2 . More intriguingly, the 3D Fe@VO 2 core-shell mesh exhibits favorable performance across a wide pH range. The 3D Fe@VO 2 core-shell mesh can decompose organic dyes both in a light-free condition and under visible irradiation. The possible catalytic oxidation mechanism of Fe@VO 2 /H 2 O 2 system is also proposed in this work. Considering its facile fabrication, remarkable catalytic efficiency across a wide pH range, and easy recycling characteristic, the 3D Fe@VO 2 core-shell mesh is a newly developed high-performance catalyst for addressing the universal water crises. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Shell morphology and Raman spectra of epitaxial Ge-SixGe1-x and Si-SixGe1-x core-shell nanowires

    Science.gov (United States)

    Wen, Feng; Dillen, David C.; Kim, Kyounghwan; Tutuc, Emanuel

    2017-06-01

    We investigate the shell morphology and Raman spectra of epitaxial Ge-SixGe1-x and Si-SixGe1-x core-shell nanowire heterostructures grown using a combination of a vapor-liquid-solid (VLS) growth mechanism for the core, followed by in-situ epitaxial shell growth using ultra-high vacuum chemical vapor deposition. Cross-sectional transmission electron microscopy reveals that the VLS growth yields cylindrical Ge, and Si nanowire cores grown along the ⟨111⟩, and ⟨110⟩ or ⟨112⟩ directions, respectively. A hexagonal cross-sectional morphology is observed for Ge-SixGe1-x core-shell nanowires terminated by six {112} facets. Two distinct morphologies are observed for Si-SixGe1-x core-shell nanowires that are either terminated by four {111} and two {100} planes associated with the ⟨110⟩ growth direction or four {113} and two {111} planes associated with the ⟨112⟩ growth direction. We show that the Raman spectra of Si- SixGe1-x are correlated with the shell morphology thanks to epitaxial growth-induced strain, with the core Si-Si mode showing a larger red shift in ⟨112⟩ core-shell nanowires compared to their ⟨110⟩ counterparts. We compare the Si-Si Raman mode value with calculations based on a continuum elasticity model coupled with the lattice dynamic theory.

  6. Synthesis and characterization of new bifunctional nanocomposites possessing upconversion and oxygen-sensing properties

    International Nuclear Information System (INIS)

    Liu Lina; Li Bin; Qin Ruifei; Zhao Haifeng; Ren Xinguang; Su Zhongmin

    2010-01-01

    A new type of bifunctional nanocomposites for biomedical applications, upconversion NaY F 4 :Y b 3+ , Tm 3+ nanoparticles coated with Ru(II) complex chemically doped SiO 2 , has been developed by combining the useful functions of upconversion and oxygen-sensing properties into one nanoparticle. NaY F 4 :Y b 3+ , Tm 3+ nanoparticles were successfully coated with an Ru(II) complex doped SiO 2 shell with a thickness of ∼ 30 nm, and the surface of the SiO 2 was functionalized with amines. The obtained nanocomposites exhibited bright blue upconversion emission, and the luminescent emission intensity of the Ru(II) complex in the nanocomposites was sensitive to oxygen. Compared with the simple mixture of Ru(II) complex and SiO 2 , the core-shell nanocomposites showed better linearity between emission intensity of Ru(II) complex and oxygen concentrations. These bifunctional nanocomposites may find applications in biochemical and biomedical fields, such as biolabels and optical oxygen sensors, which can measure the oxygen concentrations in biological fluids.

  7. One pot synthesis of Pb S/Cu2S core-shell nanoparticles and their optical properties

    International Nuclear Information System (INIS)

    Serrano, T.; Gomez, I.

    2014-01-01

    The synthesis of Pb S/Cu 2 S core-shell nanoparticles with emission on the visible range and with improved luminescence properties was carried out by the colloidal solution-phase growth method by using simple stabilizers such as trisodium citrate and 3-mercaptopropionic acid. The core shell arrangement for particles with different crystalline structure was achieved, in addition this is the first report related to the synthesis Pb S/C 2 S core-shell system. The data obtained from absorption spectra, Pl spectra, and HRTEM image provided direct proof of the formation of Pb S core with size around 11 nm and Cu 2 S shell of 5 nm thickness. According to the UV-vis absorption and Pl spectrum the optical characteristics observed in the synthesized material correspond to a Pb S/Cu 2 S system that has a higher confinement effect than the pure Pb S nanoparticles. The Q Y was improved in 15% from Pb S/C 2 S nanoparticles. The estimated band (Homo-Lumo) alignment determined by C V measurements corresponds to a type-I core shell arrangement. The synthesized material was studied with different techniques. The size and dispersion of the particles were determined by ultraviolet-visible (UV-Vis), photoluminescence and quantum yield, Dynamic Light Scattering method and X-ray diffraction with copper radiation (λ = 0.15418 nm). (Author)

  8. Palladium nanoparticles encapsulated in core-shell silica: A structured hydrogenation catalyst with enhanced activity for reduction of oxyanion water pollutants

    KAUST Repository

    Wang, Yin; Liu, Jinyong; Wang, Peng; Werth, Charles; Strathmann, Timothy J.

    2014-01-01

    Noble metal nanoparticles have been applied to mediate catalytic removal of toxic oxyanions and halogenated hydrocarbons in contaminated water using H2 as a clean and sustainable reductant. However, activity loss by nanoparticle aggregation and difficulty of nanoparticle recovery are two major challenges to widespread technology adoption. Herein, we report the synthesis of a core-shell-structured catalyst with encapsulated Pd nanoparticles and its enhanced catalytic activity in reduction of bromate (BrO3-), a regulated carcinogenic oxyanion produced during drinking water disinfection process, using 1 atm H2 at room temperature. The catalyst material consists of a nonporous silica core decorated with preformed octahedral Pd nanoparticles that were further encapsulated within an ordered mesoporous silica shell (i.e., SiO2@Pd@mSiO2). Well-defined mesopores (2.3 nm) provide a physical barrier to prevent Pd nanoparticle (6 nm) movement, aggregation, and detachment from the support into water. Compared to freely suspended Pd nanoparticles and SiO2@Pd, encapsulation in the mesoporous silica shell significantly enhanced Pd catalytic activity (by a factor of 10) under circumneutral pH conditions that are most relevant to water purification applications. Mechanistic investigation of material surface properties combined with Langmuir-Hinshelwood modeling of kinetic data suggest that mesoporous silica shell enhances activity by promoting BrO3- adsorption near the Pd active sites. The dual function of the mesoporous shell, enhancing Pd catalyst activity and preventing aggregation of active nanoparticles, suggests a promising general strategy of using metal nanoparticle catalysts for water purification and related aqueous-phase applications.

  9. Palladium nanoparticles encapsulated in core-shell silica: A structured hydrogenation catalyst with enhanced activity for reduction of oxyanion water pollutants

    KAUST Repository

    Wang, Yin

    2014-10-03

    Noble metal nanoparticles have been applied to mediate catalytic removal of toxic oxyanions and halogenated hydrocarbons in contaminated water using H2 as a clean and sustainable reductant. However, activity loss by nanoparticle aggregation and difficulty of nanoparticle recovery are two major challenges to widespread technology adoption. Herein, we report the synthesis of a core-shell-structured catalyst with encapsulated Pd nanoparticles and its enhanced catalytic activity in reduction of bromate (BrO3-), a regulated carcinogenic oxyanion produced during drinking water disinfection process, using 1 atm H2 at room temperature. The catalyst material consists of a nonporous silica core decorated with preformed octahedral Pd nanoparticles that were further encapsulated within an ordered mesoporous silica shell (i.e., SiO2@Pd@mSiO2). Well-defined mesopores (2.3 nm) provide a physical barrier to prevent Pd nanoparticle (6 nm) movement, aggregation, and detachment from the support into water. Compared to freely suspended Pd nanoparticles and SiO2@Pd, encapsulation in the mesoporous silica shell significantly enhanced Pd catalytic activity (by a factor of 10) under circumneutral pH conditions that are most relevant to water purification applications. Mechanistic investigation of material surface properties combined with Langmuir-Hinshelwood modeling of kinetic data suggest that mesoporous silica shell enhances activity by promoting BrO3- adsorption near the Pd active sites. The dual function of the mesoporous shell, enhancing Pd catalyst activity and preventing aggregation of active nanoparticles, suggests a promising general strategy of using metal nanoparticle catalysts for water purification and related aqueous-phase applications.

  10. Synthesis, structure, and luminescence properties of In{sub 2}Ge{sub 2}O{sub 7}/SnO{sub 2} core-shell nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sunghoon; An, Soyeon; Jin, Changhyun; Lee, Chongmu [Inha University, Incheon (Korea, Republic of)

    2012-09-15

    In{sub 2}Ge{sub 2}O{sub 7}/SnO{sub 2} core-shell nanowires were synthesized by using a two-step process: thermal evaporation of a mixture of In and Ge powders and atomic layer deposition of SnO{sub 2}. The core-shell nanowires were characterized using by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and photoluminescence spectroscopy. The In{sub 2}Ge{sub 2}O{sub 7} cores in these core-shell nanowires varied from 50 to 100 nanometers in diameter and up to a few hundreds of micrometers in length, and the SnO{sub 2} shell layer thickness ranged from 5 to 15 nm. Photoluminescence measurements showed that the In{sub 2}Ge{sub 2}O{sub 7} nanowires had a weak broad violet emission band centered at approximately 405 nm. In contrast, the In{sub 2}Ge{sub 2}O{sub 7}/SnO{sub 2} core-shell nanowires had a taller blue-violet emission peak at approximately 440 nm. The optimum shell layer thickness of the In{sub 2}Ge{sub 2}O{sub 7}/SnO{sub 2} core-shell nanowires for the highest PL intensity was found to be 15 nm. Our results also showed that the intensity of the blue-violet emission was increased further by thermal annealing in an Ar atmosphere. The origins of the change on and the enhancement of the luminescence of the In{sub 2}Ge{sub 2}O{sub 7} nanowires by SnO{sub 2} coating and annealing are discussed.

  11. Bistable near field and bistable transmittance in 2D composite slab consisting of nonlocal core-Kerr shell inclusions.

    Science.gov (United States)

    Huang, Yang; Wu, Ya Min; Gao, Lei

    2017-01-23

    We carry out a theoretical study on optical bistability of near field intensity and transmittance in two-dimensional nonlinear composite slab. This kind of 2D composite is composed of nonlocal metal/Kerr-type dielectric core-shell inclusions randomly embedded in the host medium, and we derivate the nonlinear relation between the field intensity in the shell of inclusions and the incident field intensity with self-consistent mean field approximation. Numerical demonstration has been performed to show the viable parameter space for the bistable near field. We show that nonlocality can provide broader region in geometric parameter space for bistable near field as well as bistable transmittance of the nonlocal composite slab compared to local case. Furthermore, we investigate the bistable transmittance in wavelength spectrum, and find that besides the input intensity, the wavelength operation could as well make the transmittance jump from a high value to a low one. This kind of self-tunable nano-composite slab might have potential application in optical switching devices.

  12. Sustainable solid-state strategy to hierarchical core-shell structured Fe 3 O 4 @graphene towards a safer and green sodium ion full battery

    KAUST Repository

    Ding, Xiang; Huang, Xiaobing; Jin, Junling; Ming, Hai; Wang, Limin; Ming, Jun

    2017-01-01

    A sustainable solid-state strategy of SPEX milling is developed to coat metal oxide (e.g., Fe3O4) with tunable layers of graphene, and a new hierarchical core-shell structured Fe3O4@graphene composite is constructed. The presented green process can

  13. Preparation and properties of multifunctional Fe-C-Y2O3:Eu3+ nanocomposites

    International Nuclear Information System (INIS)

    Yang Jingxing; Yang Xuwei; Yang Hua

    2012-01-01

    Highlights: ► Multifunctional Fe/Fe 3 O 4 -Y 2 O 3 : Eu nanocomposites were prepared by a solvothermal method. ► Their structure, magnetic and luminescent properties were characterized by XRD, SEM, TEM, excitation and emission spectra and vibration sample magnetometry (VSM). ► It is shown that the nanocomposites exhibit high saturation magnetization and strong red emission under UV-light. - Abstract: Multifunctional Fe-C-Y 2 O 3 :Eu 3+ nanocomposites were prepared by the solvo thermal method, and their structure, magnetic and luminescent properties were characterized by X-ray diffraction (XRD), vibrating sample magnetometer (VSM) and scanning electron microscope (SEM). Results show that the nanocomposites are spherical with a mean diameter of 700 nm and there are high special saturation magnetization (47.4 emu/g) and strong red emission under UV-light. Even dispersed in water solution, the nanocomposites also exhibit a strong red emission under ultraviolet light radiation, and it could be manipulated using an external magnet. Thus it looks promising for application in biomedicine field, especially in drug targeting and fluorescence label. And we also discussed the effect of the electron transfer process between the Fe magnetic core and Y 2 O 3 :Eu 3+ shell.

  14. Electrochemical reduction of trinitrotoluene on core-shell tin-carbon electrodes

    International Nuclear Information System (INIS)

    Grigoriants, Irena; Markovsky, Boris; Persky, Rachel; Perelshtein, Ilana; Gedanken, Aharon; Aurbach, Doron; Filanovsky, Boris; Bourenko, Tatiana; Felner, Israel

    2008-01-01

    In this work, we studied the electrochemical process of 2,4,6-trinitrotoluene (TNT) reduction on a new type of electrodes based on a core-shell tin-carbon Sn(C) structure. The Sn(C) composite was prepared from the precursor tetramethyl-tin Sn(CH 3 ) 4 , and the product contained a core of submicron-sized tin particles uniformly enveloped with carbon shells. Cyclic voltammograms of Sn(C) electrodes in aqueous sodium chloride solutions containing TNT show three well-pronounced reduction waves in the potential range of -0.50 to -0.80 V (vs. an Ag/AgCl/Cl - reference electrode) that correspond to the multistep process of TNT reduction. Electrodes containing Sn(C) particles annealed at 800 deg. C under argon develop higher voltammetric currents of TNT reduction (comparing to the as-prepared tin-carbon material) due to stabilization of the carbon shell. It is suggested that the reduction of TNT on core-shell tin-carbon electrodes is an electrochemically irreversible process. A partial oxidation of the TNT reduction products occurred at around -0.20 V. The electrochemical response of TNT reduction shows that it is not controlled by the diffusion of the active species to/from the electrodes but rather by interfacial charge transfer and possible adsorption phenomena. The tin-carbon electrodes demonstrate significantly stable behavior for TNT reduction in NaCl solutions and provide sufficient reproducibility with no surface fouling through prolonged voltammetric cycling. It is presumed that tin nanoparticles, which constitute the core, are electrochemically inactive towards TNT reduction, but Sn or SnO 2 formed on the electrodes during TNT reduction may participate in this reaction as catalysts or carbon-modifying agents. The nitro-groups of TNT can be reduced irreversibly (via two possible paths) by three six-electron transfers, to 2,4,6-triaminotoluene, as follows from mass-spectrometric studies. The tin-carbon electrodes described herein may serve as amperometric sensors

  15. Core-shell indium (III) sulfide@metal-organic framework nanocomposite as an adsorbent for the dispersive solid-phase extraction of nitro-polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Jia, Yuqian; Zhao, Yanfang; Zhao, Mei; Wang, Zhenhua; Chen, Xiangfeng; Wang, Minglin

    2018-05-25

    A core-shell discoid shaped indium (III) sulfide@metal-organic framework (MIL-125(Ti)) nanocomposite was synthesized by a solvothermal method and explored as an adsorbent material for dispersive solid-phase extraction (d-SPE). The as-synthesized sorbent was characterized by scanning electron microscopy, energy-dispersive spectroscopy, transmission electron microscopy, powder X-ray diffraction, N 2 adsorption-desorption analysis, and Fourier transform infrared spectroscopy. The extraction performance was evaluated by the d-SPE of 16 nitro-polycyclic aromatic hydrocarbons (NPAHs) from water samples. The analysis was carried out by gas chromatography (GC) coupled with triple quadruple mass spectrometer in negative chemical ionization (NCI) mode. The selected ion monitoring (SIM) was used in the quantification of the target NPAHs. Extraction factors affecting the d-SPE, including the ionic strength, extraction temperature, and extraction time were optimized by the response surface methodology. The developed d-SPE method showed good linear correlations from 10 to 1000 ng L -1 (r > 0.99), low detection limits (2.9-83.0 ng L -1 ), satisfactory repeatability (relative standard deviation of <10%, n = 6), and acceptable recoveries (71.3%-112.2%) for water samples. The developed method was used for the food and environmental sample analysis. The results demonstrated that the method could be used for sample preparation of trace NPAHs in real samples. Copyright © 2018. Published by Elsevier B.V.

  16. Self-Assembly of Fluorescent Hybrid Core-Shell Nanoparticles and Their Application.

    Science.gov (United States)

    Wang, Chun; Tang, Fu; Wang, Xiaoyu; Li, Lidong

    2015-06-24

    In this work, a fluorescent hybrid core-shell nanoparticle was prepared by coating a functional polymer shell onto silver nanoparticles via a facile one-pot method. The biomolecule poly-L-lysine (PLL) was chosen as the polymer shell and assembled onto the silver core via the amine-reactive cross-linker, 3,3'-dithiobis(sulfosuccinimidylpropionate). The fluorescent anticancer drug, doxorubicin, was incorporated into the PLL shell through the same linkage. As the cross-linker possesses a thiol-cleavable disulfide bond, disassembly of the PLL shell was observed in the presence of glutathione, leading to controllable doxorubicin release. The silver core there provided an easily modified surface to facilitate the shell coating and ensures the efficient separation of as-prepared nanoparticles from their reaction mixture through centrifugation. Cell assays show that the prepared hybrid fluorescent nanoparticles can internalize into cells possessing excellent biocompatibility prior to the release of doxorubicin, terminating cancer cells efficiently as the doxorubicin is released at the intracellular glutathione level. Such properties are important for designing smart containers for target drug delivery and cellular imaging.

  17. Synthesis, characterization and enhanced thermoelectric performance of structurally ordered cable-like novel polyaniline–bismuth telluride nanocomposite

    International Nuclear Information System (INIS)

    Chatterjee, Krishanu; Mitra, Mousumi; Banerjee, Dipali; Kargupta, Kajari; Ganguly, Saibal

    2013-01-01

    Bismuth telluride (Bi 2 Te 3 ) nanorods and polyaniline (PANI) nanoparticles have been synthesized by employing solvothermal and chemical oxidative processes, respectively. Nanocomposites, comprising structurally ordered PANI preferentially grown along the surface of a Bi 2 Te 3 nanorods template, are synthesized using in situ polymerization. X-ray powder diffraction, UV–vis and Raman spectral analysis confirm the highly ordered chain structure of PANI on Bi 2 Te 3 nanorods, leading to a higher extent of doping, higher chain mobility and enhancement of the thermoelectric performance. Above 380 K, the PANI–Bi 2 Te 3 nanocomposite with a core–shell/cable-like structure exhibits a higher thermoelectric power factor than either pure PANI or Bi 2 Te 3 . At room temperature the thermal conductivity of the composite is lower than that of its pure constituents, due to selective phonon scattering by the nanointerfaces designed in the PANI–Bi 2 Te 3 nanocable structures. The figure of merit of the nanocomposite at room temperature is comparable to the values reported in the literature for bulk polymer-based composite thermoelectric materials. (paper)

  18. Cadmium-free aqueous synthesis of ZnSe and ZnSe@ZnS core-shell quantum dots and their differential bioanalyte sensing potential

    Science.gov (United States)

    Mir, Irshad Ahmad; Rawat, Kamla; Bohidar, H. B.

    2016-10-01

    Herein we report a facile and cadmium-free approach to prepare water-soluble fluorescent ZnSe@ZnS core-shell quantum dots (QDs), using thioglycolic acid (TGA) ligand as a stabilizer and thiourea as a sulfur source. The optical properties and morphology of the obtained core-shell QDs were characterized by UV-vis and fluorescence spectroscopy, transmission electron microscopy (TEM), energy-dispersive x-ray analysis (EDX), x-ray diffraction (XRD), electrophoresis and dynamic light scattering (DLS) techniques. TEM analysis, and electrophoresis data showed that ZnSe core had an average size of 3.60 ± 0.12 nm and zeta potential of -38 mV; and for ZnSe@ZnS QDs, the mean size was 4.80 ± 0.20 nm and zeta potential was -45 mV. Compared to the core ZnSe QDs, the quantum yield of these core-shell structures was higher (13% versus 32%). These were interacted with five common bioanalytes such as, ascorbic acid, citric acid, oxalic acid, glucose and cholesterol which revealed fluorescence quenching due to concentration dependent binding of analytes to the core only, and core-shell QDs. The binding pattern followed the sequence: cholesterol ascorbic acid acid acid for ZnSe, and cholesterol acid ascorbic acid acid for core-shell QDs. Thus, enhanced binding was noticed for the analyte citric acid which may facilitate development of a fluorescence-based sensor based on the ZnSe core-only quantum dot platform. Further, the hydrophilic core-shell structure may find use in cell imaging applications.

  19. Preparation of paclitaxel/chitosan co-assembled core-shell nanofibers for drug-eluting stent

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jing; Liu, Yongjia [Instrumental Analysis Center, Shanghai Jiao Tong University, 200240 Shanghai (China); State Key Laboratory of Metal Matrix Composites, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 200240 Shanghai (China); Zhu, Bangshang, E-mail: bshzhu@sjtu.edu.cn [Instrumental Analysis Center, Shanghai Jiao Tong University, 200240 Shanghai (China); State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, 201620 Shanghai (China); Su, Yue; Zhu, Xinyuan [State Key Laboratory of Metal Matrix Composites, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 200240 Shanghai (China)

    2017-01-30

    Highlights: • The core-shell nanofibers (NFs) were made by the co-assembly of paclitaxel (PTX) and chitosan(CS). • The PTX/CS NFs have high PTX loading content, slow drug release and low adherence of platelets. • The PTX/CS NFs have low cytotoxicity and good haemocompatibility. • The PTX/CS NFs which could be easily coated on stents could have potential application for drug eluting stents. - Abstract: The paclitaxel/chitosan (PTX/CS) core-shell nanofibers (NFs) are easily prepared by co-assembly of PTX and CS and used in drug-eluting stent. The mixture solution of PTX (dissolved in ethanol) and CS (dissolved in 1% acetic acid water solution) under sonication will make the formation of NFs, in which small molecule PTX co-assembles with biomacromolecular CS through non-covalent interactions. The obtained NFs are tens to hundreds nanometers in diameter and millimeter level in length. Furthermore, the structure of PTX/CS NFs was characterized by confocal laser scanning microscopy (CLSM), zeta potential, X-ray photoelectron spectroscopy (XPS) and nanoscale infra-red (nanoIR), which provided evidences demonstrated that PTX/CS NFs are core-shell structures. The ‘shell’ of CS wrapped outside of the NFs, while PTX is located in the core. Thus it resulted in high drug loading content (>40 wt.%). The well-controlled drug release, low cytotoxicity and good haemocompatibility were also found in drug carrier system of PTX/CS NFs. In addition, the hydrophilic and flexible properties of NFs make them easily coating and filming on stent to prepare drug-eluting stent (DES). Therefore, this study provides a convenient method to prepare high PTX loaded NFs, which is a promising nano-drug carrier used for DES and other biomedical applications. The possible molecular mechanism of PTX and CS co-assembly and core-shell nanofiber formation is also explored. Statement of significance: We develop a convenient and efficient approach to fabricate core-shell nanofibers (NFs) through

  20. Controllable synthesis and enhanced electrochemical properties of multifunctional Au(core)Co(3)O(4shell) nanocubes.

    Science.gov (United States)

    Hu, Jianqiang; Wen, Zhenhai; Wang, Qiang; Yao, Xin; Zhang, Qian; Zhou, Jianhua; Li, Jinghong

    2006-12-07

    Multifunctional Au(core)Co(3)O(4shell) nanocubes were synthesized through the introduction of chloroauric acid (HAuCl(4)) into a typical hydrothermal system after a solvothermal process was completed to form metastable Co(3)O(4) hollow nanospheres in the presence of sodium dodecyl benzenesulfonate (SDBS), which served as the surfactant. The strategy suggested that HAuCl(4) played a vital role in the shape transformation and core/shell structure formation, and the sizes of the nanocubes can be tunable through control of the acid concentration. The core/shell structure of the nanocubes was demonstrated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and element analysis (EA) measurements. Moreover, Li ion battery measurement indicated that trace Au intercalation altered not only the size and shape of the Co(3)O(4) nanoparticles but also greatly increased their electrochemical properties. These multifunctional nanocubes will be not only helpful to study physical chemistry properties of magnetic nanocrystals but also are expected to find use in many fields such as biomolecular detection and analysis, sensor, electrochemistry, and Li ion batteries.