WorldWideScience

Sample records for core-shell nanostructures encapsulating

  1. Antibacterial efficacy of core-shell nanostructures encapsulating gentamicin against an in vivo intracellular  Salmonella model

    Directory of Open Access Journals (Sweden)

    Ashish Ranjan

    2009-12-01

    Full Text Available Ashish Ranjan1, Nikorn Pothayee2,3, Mohammed N Seleem2, Ronald D Tyler Jr4, Bonnie Brenseke4, Nammalwar Sriranganathan2,4, Judy S Riffle2,3, Ramanathan Kasimanickam11Department of Large Animal Clinical Sciences, 2Institute for Critical Technology and Applied Science, 3Macromolecules and Interfaces Institute, 4Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VAAbstract: Pluronic based core-shell nanostructures encapsulating gentamicin were designed in this study. Block copolymers of (PAA–+Na-b-(PEO-b-PPO-b-PEO-b-PAA– +Na were blended with PAA– Na+ and complexed with the polycationic antibiotic gentamicin to form nanostructures. Synthesized nanostructures had a hydrodynamic diameter of 210 nm, zeta potentials of –0.7 (±0.2, and incorporated ~20% by weight of gentamicin. Nanostructures upon co-incubation with J774A.1 macrophage cells showed no adverse toxicity in vitro. Nanostructures administered in vivo either at multiple dosage of 5 µg g–1 or single dosage of 15 µg g–1 in AJ-646 mice infected with Salmonella resulted in significant reduction of viable bacteria in the liver and spleen. Histopathological evaluation for concentration-dependent toxicity at a dosage of 15 µg g–1 revealed mineralized deposits in 50% kidney tissues of free gentamicin-treated mice which in contrast was absent in nanostructure-treated mice. Thus, encapsulation of gentamicin in nanostructures may reduce toxicity and improve in vivo bacterial clearance.Keywords: gentamicin, core-shell nanostructures, Salmonella

  2. Nanostructured core-shell electrode materials for electrochemical capacitors

    Science.gov (United States)

    Jiang, Long-bo; Yuan, Xing-zhong; Liang, Jie; Zhang, Jin; Wang, Hou; Zeng, Guang-ming

    2016-11-01

    Core-shell nanostructure represents a unique system for applications in electrochemical energy storage devices. Owing to the unique characteristics featuring high power delivery and long-term cycling stability, electrochemical capacitors (ECs) have emerged as one of the most attractive electrochemical storage systems since they can complement or even replace batteries in the energy storage field, especially when high power delivery or uptake is needed. This review aims to summarize recent progress on core-shell nanostructures for advanced supercapacitor applications in view of their hierarchical architecture which not only create the desired hierarchical porous channels, but also possess higher electrical conductivity and better structural mechanical stability. The core-shell nanostructures include carbon/carbon, carbon/metal oxide, carbon/conducting polymer, metal oxide/metal oxide, metal oxide/conducting polymer, conducting polymer/conducting polymer, and even more complex ternary core-shell nanoparticles. The preparation strategies, electrochemical performances, and structural stabilities of core-shell materials for ECs are summarized. The relationship between core-shell nanostructure and electrochemical performance is discussed in detail. In addition, the challenges and new trends in core-shell nanomaterials development have also been proposed.

  3. Core-Shell and Segmented Polymer-Metal Composite Nanostructures

    Science.gov (United States)

    Lahav, Michal; Weiss, Emily; Xu, Qiaobing; Whitesides, George M.

    2008-01-01

    Composite nanostructures (~200 nm wide and several μm long) of metal and polyaniline (PANI) in two new variations of core-shell (PANI-Au) and segmented (Au-PANI and Ni-Au-PANI) architectures were fabricated electrochemically within anodized aluminum oxide (AAO) membranes. Control over the structure of these composites (including the length of the gold shells in the core-shell structures) was accomplished by adjusting the time and rate of electrodeposition, and the pH of the solution from which the materials were grown. Exposure of the core-shell structures to oxygen plasma removed the PANI and yielded aligned gold nanotubes. In the segmented structures, a self-assembled monolayer (SAM) of thioaniline nucleated the growth of PANI on top of metal nanorods, and acted as an adhesion layer between the metal and PANI components. PMID:16968046

  4. Au/SiO2/QD core/shell/shell nanostructures with plasmonic-enhanced photoluminescence

    Science.gov (United States)

    Yang, Ping; Kawasaki, Kazunori; Ando, Masanori; Murase, Norio

    2012-09-01

    A sol-gel method has been developed to fabricate Au/SiO2/quantum dot (QD) core-shell-shell nanostructures with plasmonic-enhanced photoluminescence (PL). Au nanoparticle (NP) was homogeneously coated with a SiO2 shell with adjusted thickness through a Stöber synthesis. When the toluene solution of hydrophobic CdSe/ZnS QDs was mixed with partially hydrolyzed 3-aminopropyltrimethoxysilane (APS) sol, the ligands on the QDs were replaced by a thin functional SiO2 layer because the amino group in partially hydrolyzed APS has strong binding interaction with the QDs. Partially hydrolyzed APS plays an important role as a thin functional layer for the transfers of QDs to water phase and the subsequent connection to aqueous SiO2-coated Au NPs. Although Au NPs were demonstrated as efficient PL quenchers when the SiO2 shell on the Au NPs is thin (less than 5 nm), we found that precise control of the spacing between the Au NP core and the QD shell resulted in QDs with an enhancement of 30 % of PL efficiency. The Au/SiO2/QD core/shell/shell nanostructures also reveal strong surface plasmon scattering, which makes the Au/SiO/QD core-shell-shell nanostructures an excellent dual-modality imaging probe. This technology can serve as a general route for encapsulating a variety of discrete nanomaterials because monodispersed nanostructures often have a similar surface chemistry.

  5. Fluorescence-tagged amphiphilic brush copolymer encapsulated Gd2O3 core-shell nanostructures for enhanced T 1 contrast effect and fluorescent imaging

    Science.gov (United States)

    Wang, Fenghe; Peng, Erwin; Liu, Feng; Li, Pingjing; Fong Yau Li, Sam; Xue, Jun Min

    2016-10-01

    To obtain suitable T 1 contrast agents for magnetic resonance imaging (MRI) application, aqueous Gd2O3 nanoparticles (NPs) with high longitudinal relativity (r 1) are demanded. High quality Gd2O3 NPs are usually synthesized through a non-hydrolytic route which requires post-synthetic modification to render the NPs water soluble. The current challenge is to obtain aqueous Gd2O3 NPs with high colloidal stability and enhanced r 1 relaxivity. To overcome this challenge, fluorescence-tagged amphiphilic brush copolymer (AFCP) encapsulated Gd2O3 NPs were proposed as suitable T 1 contrast agents. Such a coating layer provided (i) superior aqueous stability, (ii) biocompatibility, as well as (iii) multi-modality (conjugation with fluorescence dye). The polymeric coating layer thickness was simply adjusted by varying the phase-transfer parameters. By reducing the coating thickness, i.e. the distance between the paramagnetic centre and surrounding water protons, the r 1 relaxivity could be enhanced. In contrast, a thicker polymeric layer coating prevents Gd3+ ions leakage, thus improving its biocompatibility. Therefore, it is important to strike a balance between the biocompatibility and the r 1 relaxivity behaviour. Lastly, by conjugating fluorescence moiety, an additional imaging modality was enabled, as demonstrated from the cell-labelling experiment.

  6. Encapsulation and controlled release from core-shell nanoparticles fabricated by plasma polymerization

    Science.gov (United States)

    Shahravan, Anaram; Matsoukas, Themis

    2012-01-01

    Core-shell nanostructures have been synthesized by plasma deposition in radio-frequency plasma reactor. Silica and KCl nanoparticles were encapsulated by deposition of isopropanol-based films of amorphous hydrogenated carbon. Through control of the deposition time, under constant deposition rate of 1 nm/min, particles are encapsulated in a layer of plasma polymer with thickness between 15 and 100 nm. Films are robust, chemically inert, thermally stable up to 250°C. The permeability of the shells is determined by depositing films of various thickness onto KCl nanoparticles and monitoring the dissolution of the core in aqueous solution. The dissolution profile is characterized by an initial rapid release, followed by a slow release that lasts up to 30 days for the thickest films. The profile is analyzed by Fickian diffusion through a spherical matrix. We find that this model captures very accurately the entire release profile except for the first 12 hours during which, the dissolution rate is higher than that predicted by the model. The overall diffusion coefficient for the dissolution of KCl is 3 × 10-21 m2/s.

  7. Simulating the co-encapsulation of drugs in a "smart" core-shell-shell polymer nanoparticle.

    Science.gov (United States)

    Buxton, Gavin A

    2014-03-01

    A coarse-grained lattice Monte Carlo method is used to simulate co-encapsulation and delivery of both a hydrophilic and hydrophobic drug from polymer nanoparticles. In particular, core-shell-shell polymer nanoparticles with acid-labile bonds are simulated, and the preferential release of the encapsulated drugs near more acidic tumors is captured. While these simple models lack the molecular details of a real system, they can reveal interesting insights concerning the effects of entropy and enthalpy in these systems.

  8. Design, synthesis and applications of core-shell, hollow core, and nanorattle multifunctional nanostructures.

    Science.gov (United States)

    El-Toni, Ahmed Mohamed; Habila, Mohamed A; Labis, Joselito Puzon; ALOthman, Zeid A; Alhoshan, Mansour; Elzatahry, Ahmed A; Zhang, Fan

    2016-02-01

    With the evolution of nanoscience and nanotechnology, studies have been focused on manipulating nanoparticle properties through the control of their size, composition, and morphology. As nanomaterial research has progressed, the foremost focus has gradually shifted from synthesis, morphology control, and characterization of properties to the investigation of function and the utility of integrating these materials and chemical sciences with the physical, biological, and medical fields, which therefore necessitates the development of novel materials that are capable of performing multiple tasks and functions. The construction of multifunctional nanomaterials that integrate two or more functions into a single geometry has been achieved through the surface-coating technique, which created a new class of substances designated as core-shell nanoparticles. Core-shell materials have growing and expanding applications due to the multifunctionality that is achieved through the formation of multiple shells as well as the manipulation of core/shell materials. Moreover, core removal from core-shell-based structures offers excellent opportunities to construct multifunctional hollow core architectures that possess huge storage capacities, low densities, and tunable optical properties. Furthermore, the fabrication of nanomaterials that have the combined properties of a core-shell structure with that of a hollow one has resulted in the creation of a new and important class of substances, known as the rattle core-shell nanoparticles, or nanorattles. The design strategies of these new multifunctional nanostructures (core-shell, hollow core, and nanorattle) are discussed in the first part of this review. In the second part, different synthesis and fabrication approaches for multifunctional core-shell, hollow core-shell and rattle core-shell architectures are highlighted. Finally, in the last part of the article, the versatile and diverse applications of these nanoarchitectures in

  9. Design, synthesis and applications of core-shell, hollow core, and nanorattle multifunctional nanostructures

    Science.gov (United States)

    El-Toni, Ahmed Mohamed; Habila, Mohamed A.; Labis, Joselito Puzon; Alothman, Zeid A.; Alhoshan, Mansour; Elzatahry, Ahmed A.; Zhang, Fan

    2016-01-01

    With the evolution of nanoscience and nanotechnology, studies have been focused on manipulating nanoparticle properties through the control of their size, composition, and morphology. As nanomaterial research has progressed, the foremost focus has gradually shifted from synthesis, morphology control, and characterization of properties to the investigation of function and the utility of integrating these materials and chemical sciences with the physical, biological, and medical fields, which therefore necessitates the development of novel materials that are capable of performing multiple tasks and functions. The construction of multifunctional nanomaterials that integrate two or more functions into a single geometry has been achieved through the surface-coating technique, which created a new class of substances designated as core-shell nanoparticles. Core-shell materials have growing and expanding applications due to the multifunctionality that is achieved through the formation of multiple shells as well as the manipulation of core/shell materials. Moreover, core removal from core-shell-based structures offers excellent opportunities to construct multifunctional hollow core architectures that possess huge storage capacities, low densities, and tunable optical properties. Furthermore, the fabrication of nanomaterials that have the combined properties of a core-shell structure with that of a hollow one has resulted in the creation of a new and important class of substances, known as the rattle core-shell nanoparticles, or nanorattles. The design strategies of these new multifunctional nanostructures (core-shell, hollow core, and nanorattle) are discussed in the first part of this review. In the second part, different synthesis and fabrication approaches for multifunctional core-shell, hollow core-shell and rattle core-shell architectures are highlighted. Finally, in the last part of the article, the versatile and diverse applications of these nanoarchitectures in

  10. Magnetocaloric effect study of ferromagnetic-charge ordered core-shell type manganite nanostructures

    Science.gov (United States)

    Das, Kalipada; Das, I.

    2017-08-01

    In the present study we have presented the magnetic and magnetocaloric properties of ferromagnetic (La0.67Sr0.33MnO3)-charge ordered (Pr0.67Ca0.33MnO3) core-shell nanostructures. We have also compared the magnetocaloric properties of Pr0.67Ca0.33MnO3 (PCMO) nanoparticles. Our study indicates that in case of the core-shell nanostructures, the magnetocaloric properties markedly modifies compared to its parent compound PCMO, additionally the low field magnetocaloric effect enhanced. More specifically, the large value of magnetocaloric entropy change (- Δ S(T)) was observed in wider temperature range in core-shell nanostructure which may be important from application point of view.

  11. Hierarchical magnetic core-shell nanostructures for microwave absorption:Synthesis,microstructure and property studies

    Institute of Scientific and Technical Information of China (English)

    LIU JiWei; XU JunJie; LIU ZhengWang; LIU XiaLin; CHE RenChao

    2014-01-01

    Core-shell nanostructures have attracted considerable attention in the past decades because of their fundamental scientific significance and many technological applications.Recently,it has been reported that the core-shell nanostructures with advanced compositions and complicated morphologies show great potential as high-performance microwave absorbers due to their unique properties,such as large surface areas,multi-functionalities and synergistic effects between the interior core and outer shell.This review article focuses on the recent progress in synthesis and characterization of hierarchical magnetic core-shell nanostructures for microwave absorption applications based on our own work.In addition,several future trends in this field for next-generation microwave absorbers are discussed.

  12. Cytoprotective alginate/polydopamine core/shell microcapsules in microbial encapsulation.

    Science.gov (United States)

    Kim, Beom Jin; Park, Taegyun; Moon, Hee Chul; Park, So-Young; Hong, Daewha; Ko, Eun Hyea; Kim, Ji Yup; Hong, Jong Wook; Han, Sang Woo; Kim, Yang-Gyun; Choi, Insung S

    2014-12-22

    Chemical encapsulation of microbes in threedimensional polymeric microcapsules promises various applications, such as cell therapy and biosensors, and provides a basic platform for studying microbial communications. However, the cytoprotection of microbes in the microcapsules against external aggressors has been a major challenge in the field of microbial microencapsulation, because ionotropic hydrogels widely used for microencapsulation swell uncontrollably, and are physicochemically labile. Herein, we developed a simple polydopamine coating for obtaining cytoprotective capability of the alginate capsule that encapsulated Saccharomyces cerevisiae. The resulting alginate/ polydopamine core/shell capsule was mechanically tough, prevented gel swelling and cell leakage, and increased resistance against enzymatic attack and UV-C irradiation. We believe that this multifunctional core/shell structure will provide a practical tool for manipulating microorganisms inside the microcapsules. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Core-shell hybrid nanostructured delivery platforms for advanced RNAi therapeutics.

    Science.gov (United States)

    Sajeesh, S; Choe, Jeong Yong; Lee, Dong Ki

    2017-09-04

    Study was aimed at combining the advantages of nonclassical RNAi-triggering oligonucleotides with nanoparticle-based advanced delivery platforms for developing efficient therapeutic systems. We utilized a core-shell hybrid nanostructured platform for effectively delivering nonclassical RNAi triggers, namely long double stranded interfering RNA and tripodal interfering RNA. Core-shell structure was prepared by stably anchoring thiol-modified cationic polymer on the surface of growing crystal gold (Au) seeds, and the resulting particles were further complexed with nonclassical RNAi candidates via electrostatic interactions. Our studies clearly demonstrated that the unique combination of nonclassical RNAi structures with an advanced core-shell hybrid nanostructured platform is an effective module for advanced RNAi-based therapeutic development.

  14. Organic phase synthesis of noble metal-zinc chalcogenide core-shell nanostructures.

    Science.gov (United States)

    Kumar, Prashant; Diab, Mahmud; Flomin, Kobi; Rukenstein, Pazit; Mokari, Taleb

    2016-10-15

    Multi-component nanostructures have been attracting tremendous attention due to their ability to form novel materials with unique chemical, optical and physical properties. Development of hybrid nanostructures that are composed of metal-semiconductor components using a simple approach is of interest. Herein, we report a robust and general organic phase synthesis of metal (Au or Ag)-Zinc chalcogenide (ZnS or ZnSe) core-shell nanostructures. This synthetic protocol also enabled the growth of more compositionally complex nanostructures of Au-ZnSxSe1-x alloys and Au-ZnS-ZnSe core-shell-shell. The optical and structural properties of these hybrid nanostructures are also presented.

  15. In vitro hyperthermia with improved colloidal stability and enhanced SAR of magnetic core/shell nanostructures.

    Science.gov (United States)

    Patil, R M; Thorat, N D; Shete, P B; Otari, S V; Tiwale, B M; Pawar, S H

    2016-02-01

    Magnetic core/shell nanostructures of Fe3O4 nanoparticles coated with oleic acid and betaine-HCl were studied for their possible use in magnetic fluid hyperthermia (MFH). Their colloidal stability and heat induction ability were studied in different media viz. phosphate buffer solution (PBS), saline solution and glucose solution with different physiological conditions and in human serum. The results showed enhanced colloidal stability in these media owing to their high zeta potential values. Heat induction studies showed that specific absorption rates (SAR) of core/shells were 82-94W/g at different pH of PBS and concentrations of NaCl and glucose. Interestingly, core/shells showed 78.45±3.90W/g SAR in human serum. The cytotoxicity of core/shells done on L929 and HeLa cell lines using 3-(4,5-dimethylthiazol-2-yl)2,5-diphenyl tetrazolium bromide and trypan blue dye exclusion assays showed >89% and >80% cell viability for 24 and 48h respectively. Core/shell structures were also found to be very efficient for in vitro MFH on cancer cell line. About 95% cell death was occurred in 90min after hyperthermia treatment. The mechanism of cell death was found to be elevated ROS generation in cells after exposure to core/shells in external magnetic field. This study showed that these core/shells have a great potential to be used in in vivo MFH. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Bifunctional luminescent and magnetic core/shell type nanostructures Fe3O4@CeF3 :Tb3+/Si

    Institute of Scientific and Technical Information of China (English)

    M. Runowski; T. Grzyb, S. Lis

    2011-01-01

    A facile co-precipitation and microemulsion methods were applied to obtain core/shell type nanoparticles.Cerium fluoride doped with terbium(Ⅲ) ions supplied intensive green luminescence of the system.Due to the presence of magnetite nanoparticles as cores,the product was highly sensitive to external magnetic field.Both sorts of nanostructures were encapsulated by silica shell.Such external layer of inert oxide can potentially increase the resistance of prepared nanostructures to thermal oxidation,aggressive agents,changing of pH or destructive radiation.Morphology of the product was examined using transmission electron microscopy (TEM).Formations of the core/shell type nanostructures were clearly seen in the TEM pictures.Powder X-ray diffraction (XRD) confirmed the structure of the products,their nanocrystallinity and amorphous nature of silica shell.Optical properties were investigated by measuring excitation and emission spectra.Such multifunctional luminescent and magnetic nanoparticles coated with easily functionalized silica shell could be applied in many field of science.

  17. Controlled Growth of Ordered III-Nitride Core-Shell Nanostructure Arrays for Visible Optoelectronic Devices

    Science.gov (United States)

    Rishinaramangalam, Ashwin K.; Ul Masabih, Saadat Mishkat; Fairchild, Michael N.; Wright, Jeremy B.; Shima, Darryl M.; Balakrishnan, Ganesh; Brener, Igal; Brueck, S. R. J.; Feezell, Daniel F.

    2015-05-01

    We demonstrate the growth of ordered arrays of nonpolar core-shell nanowalls and semipolar core-shell pyramidal nanostripes on c-plane (0001) sapphire substrates using selective-area epitaxy and metal organic chemical vapor deposition. The nanostructure arrays are controllably patterned into LED mesa regions, demonstrating a technique to impart secondary lithography features into the arrays. We study the dependence of the nanostructure cores on the epitaxial growth conditions and show that the geometry and morphology are strongly influenced by growth temperature, V/III ratio, and pulse interruption time. We also demonstrate the growth of InGaN quantum well shells on the nanostructures and characterize the structures by using micro-photoluminescence and cross-section scanning tunneling electron microscopy.

  18. Enhanced photocatalytic activity of C@ZnO core-shell nanostructures and its photoluminescence property

    Science.gov (United States)

    Chen, Tao; Yu, Shanwen; Fang, Xiaoxin; Huang, Honghong; Li, Lun; Wang, Xiuyuan; Wang, Huihu

    2016-12-01

    An ultrathin layer of amorphous carbon coated C@ZnO core-shell nanostructures were synthesized via a facile hydrothermal carbonization process using glucose as precursor in this work. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and diffuse reflectance UV-vis spectroscopy (DRS) were used for the characterization of as-prepared samples. Photoluminescence (PL) properties of C@ZnO samples were investigated using PL spectroscopy. The microstructure analysis results show that the glucose content has a great influence on the size, morphology, crystallinity and surface chemical states of C@ZnO nanostructures. Moreover, the as-prepared C@ZnO core-shell nanostructures exhibit the enhanced photocatalytic activity and good photostability for methyl orange dye degradation due to its high adsorption ability and its improved optical characteristics.

  19. One-dimensional ZnS-based Hetero-, Core/shell and Hierarchical Nanostructures

    Institute of Scientific and Technical Information of China (English)

    Xiaosheng FANG; Ujjal K.Gautam; Yoshio BANDO; Dmitri GOLBERG

    2008-01-01

    A focus of the current nanotechnology has shifted from routine fabrication of nanostructures to designing functional electronic devices and realizing their immense potentials for applications. Due to infusion of multifunctionality into a single system, the utilization of hetero-, core/shell and hierarchical nanostructures has become the key issue for building such devices. ZnS, due to its direct wide bandgap, high index of refraction, high transparency in the visible range and intrinsic polarity, is one of the most useful semiconductors for a wide range of electronics applications. This article provides a dense review of the state-of-the-art research activities in one-dimensional (1D) ZnS-based hetero-, core/shell and hierarchical nanostructures. The particular emphasis is put on their syntheses and applications.

  20. Biodegradable core-shell carriers for simultaneous encapsulation of synergistic actives.

    Science.gov (United States)

    Windbergs, Maike; Zhao, Yuanjin; Heyman, John; Weitz, David A

    2013-05-29

    Simultaneous encapsulation of multiple active substances in a single carrier is essential for therapeutic applications of synergistic combinations of drugs. However, traditional carrier systems often lack efficient encapsulation and release of incorporated substances, particularly when combinations of drugs must be released in concentrations of a prescribed ratio. We present a novel biodegradable core-shell carrier system fabricated in a one-step, solvent-free process on a microfluidic chip; a hydrophilic active (doxorubicin hydrochloride) is encapsulated in the aqueous core, while a hydrophobic active (paclitaxel) is encapsulated in the solid shell. Particle size and composition can be precisely controlled, and core and shell can be individually loaded with very high efficiency. Drug-loaded particles can be dried and stored as a powder. We demonstrate the efficacy of this system through the simultaneous encapsulation and controlled release of two synergistic anticancer drugs using two cancer-derived cell lines. This solvent-free platform technology is also of high potential value for encapsulation of other active ingredients and chemical reagents.

  1. Design and optimization of Ag-dielectric core-shell nanostructures for silicon solar cells

    Directory of Open Access Journals (Sweden)

    Feng-Xiang Chen

    2015-09-01

    Full Text Available Metal-dielectric core-shell nanostructures have been proposed as a light trapping scheme for enhancing the optical absorption of silicon solar cells. As a potential application of such enhanced effects, the scattering efficiencies of three core-shell structures (Ag@SiO2, Ag@TiO2, and Ag@ZrO2 are discussed using the Mie Scattering theory. For compatibility with experiment results, the core diameter and shell thickness are limited to 100 and 30 nm, respectively, and a weighted scattering efficiency is introduced to evaluate the scattering abilities of different nanoparticles under the solar spectrum AM 1.5. The simulated results indicate that the shell material and thickness are two key parameters affecting the weighted scattering efficiency. The SiO2 is found to be an unsuitable shell medium because of its low refractive index. However, using the high refractive index mediumTiO2 in Ag@TiO2 nanoparticles, only the thicker shell (30 nm is more beneficial for light scattering. The ZrO2 is an intermediate refractive index material, so Ag@ZrO2 nanoparticles are the most effective core-shell nanostructures in these silicon solar cells applications.

  2. Synthesis and characterization of core-shell Fe3O4-gold-chitosan nanostructure

    Directory of Open Access Journals (Sweden)

    Salehizadeh Hossein

    2012-01-01

    Full Text Available Abstract Background Fe3O4-gold-chitosan core-shell nanostructure can be used in biotechnological and biomedical applications such as magnetic bioseparation, water and wastewater treatment, biodetection and bioimaging, drug delivery, and cancer treatment. Results Magnetite nanoparticles with an average size of 9.8 nm in diameter were synthesized using the chemical co-precipitation method. A gold-coated Fe3O4 monotonous core-shell nanostructure was produced with an average size of 15 nm in diameter by glucose reduction of Au3+ which is then stabilized with a chitosan cross linked by formaldehyde. The results of analyses with X-ray diffraction (XRD, Fourier Transformed Infrared Spectroscopy (FTIR, Transmission Electron Microscopy (TEM, and Atomic Force Microscopy (AFM indicated that the nanoparticles were regularly shaped, and agglomerate-free, with a narrow size distribution. Conclusions A rapid, mild method for synthesizing Fe3O4-gold nanoparticles using chitosan was investigated. A magnetic core-shell-chitosan nanocomposite, including both the supermagnetic properties of iron oxide and the optical characteristics of colloidal gold nanoparticles, was synthesized.

  3. Protein encapsulated core-shell structured particles prepared by coaxial electrospraying: investigation on material and processing variables.

    Science.gov (United States)

    Zamani, Maedeh; Prabhakaran, Molamma P; Thian, Eng San; Ramakrishna, Seeram

    2014-10-01

    Biodegradable polymeric particles have been extensively investigated for controlled drug delivery of various therapeutic agents. 'Coaxial' electrospraying was successfully employed in this study, to fabricate core-shell PLGA particles containing bovine serum albumin (BSA) as the model protein, and the results were also compared to particles prepared by 'emulsion' electrospraying. Two different molecular weights of PLGA were employed to encapsulate the protein. Solution properties and processing parameters were found to influence the morphology of the core-shell particles. Depending on the type of solvent used to dissolve the polymer as well as the polymer concentration and molecular weight, the mean diameter of the particles varied between 3.0 to 5.5 μm. Fluorescence microscopic analysis of the electrosprayed particles using FITC-conjugated BSA demonstrated the core-shell structure of the developed particles. The encapsulation efficiency and release behavior of BSA was influenced by shell:core feeding ratio, protein concentration, and the electrospraying method. The encapsulation efficiency of BSA within the core-shell particles of high and low molecular weight PLGA was found 15.7% and 25.1% higher than the emulsion electrosprayed particles, respectively. Moreover, the total amount of BSA released from low molecular weight PLGA particles was significantly higher than high molecular weight PLGA particles within 43 days of release studies, with negligible effect on encapsulation efficiency. The technique of coaxial electrospraying has high potential for encapsulation of susceptible protein-based therapeutic agents such as growth factors for multiple drug delivery applications.

  4. Polarization effects on spectra of spherical core/shell nanostructures: Perturbation theory against finite difference approach

    Energy Technology Data Exchange (ETDEWEB)

    Ibral, Asmaa [Equipe d' Optique et Electronique du Solide, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B. P. 20 El Jadida principale, El Jadida, Royaume du Maroc (Morocco); Laboratoire d' Instrumentation, Mesure et Contrôle, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B. P. 20 El Jadida principale, El Jadida, Royaume du Maroc (Morocco); Zouitine, Asmaa [Département de Physique, Ecole Nationale Supérieure d' Enseignement Technique, Université Mohammed V Souissi, B. P. 6207 Rabat-Instituts, Rabat, Royaume du Maroc (Morocco); Assaid, El Mahdi, E-mail: eassaid@yahoo.fr [Equipe d' Optique et Electronique du Solide, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B. P. 20 El Jadida principale, El Jadida, Royaume du Maroc (Morocco); Laboratoire d' Instrumentation, Mesure et Contrôle, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B. P. 20 El Jadida principale, El Jadida, Royaume du Maroc (Morocco); and others

    2015-02-01

    Poisson equation is solved analytically in the case of a point charge placed anywhere in a spherical core/shell nanostructure, immersed in aqueous or organic solution or embedded in semiconducting or insulating matrix. Conduction and valence band-edge alignments between core and shell are described by finite height barriers. Influence of polarization charges induced at the surfaces where two adjacent materials meet is taken into account. Original expressions of electrostatic potential created everywhere in the space by a source point charge are derived. Expressions of self-polarization potential describing the interaction of a point charge with its own image–charge are deduced. Contributions of double dielectric constant mismatch to electron and hole ground state energies as well as nanostructure effective gap are calculated via first order perturbation theory and also by finite difference approach. Dependencies of electron, hole and gap energies against core to shell radii ratio are determined in the case of ZnS/CdSe core/shell nanostructure immersed in water or in toluene. It appears that finite difference approach is more efficient than first order perturbation method and that the effect of polarization charge may in no case be neglected as its contribution can reach a significant proportion of the value of nanostructure gap.

  5. SISGR - Design and Characterization of Novel Photocatalysts With Core-Shell Nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Zaera, Francisco [Univ. of California, Riverside, CA (United States). Dept. of Chemistry; Bardeen, Christopher J. [Univ. of California, Riverside, CA (United States). Dept. of Chemistry; Yin, Yadong [Univ. of California, Riverside, CA (United States). Dept. of Chemistry

    2017-03-15

    The overall goal of this project has been to develop new a new and novel class of well-characterized nanostructured Metal@TiO2 core-shell and yolk-shell photocatalysts to address two fundamental issues presently limiting this field: (1) the fast recombination of electron-hole pairs once generated by light absorption, and (2) the recombination of H2 and O2 on the metal surface once produced. These model samples are also used to study the fundamentals of the photocatalytic processes.

  6. Effect of Ag Templates on the Formation of Au-Ag Hollow/Core-Shell Nanostructures.

    Science.gov (United States)

    Tsai, Chi-Hang; Chen, Shih-Yun; Song, Jenn-Ming; Haruta, Mitsutaka; Kurata, Hiroki

    2015-12-01

    Au-Ag alloy nanostructures with various shapes were synthesized using a successive reduction method in this study. By means of galvanic replacement, twined Ag nanoparticles (NPs) and single-crystalline Ag nanowires (NWs) were adopted as templates, respectively, and alloyed with the same amount of Au(+) ions. High angle annular dark field-scanning TEM (HAADF-STEM) images observed from different rotation angles confirm that Ag NPs turned into AuAg alloy rings with an Au/Ag ratio of 1. The shifts of surface plasmon resonance and chemical composition reveal the evolution of the alloy ring formation. On the other hand, single-crystalline Ag NWs became Ag@AuAg core-shell wires instead of hollow nanostructure through a process of galvanic replacement. It is proposed that in addition to the ratio of Ag templates and Au ion additives, the twin boundaries of the Ag templates were the dominating factor causing hollow alloy nanostructures.

  7. New method to evaluate optical properties of core-shell nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Renteria-Tapia, V. [Universidad de Guadalajara, Ameca, Departamento de Ciencias Naturales y Exactas, Centro Universitario de Los Valles (Mexico); Franco, A., E-mail: alfredofranco@fisica.unam.mx; Garcia-Macedo, J. [Universidad Nacional Autonoma de Mexico, Departamento de Estado Solido, Instituto de Fisica (Mexico)

    2012-06-15

    A new method is presented to calculate, for metallic core-dielectric shell nanostructures, the local refractive index, resonance condition, maximum spectral shift, plasma wavelength, and the sensitivity of the wavelength maximum to variations in the refractive index of the environment. The equations that describe these properties are directly related to the surface plasmon peak position, refractive index of the shell, and to the surrounding medium. The method is based on the approach that a layered core dispersed in a dielectric environment (core-shell model) can be figured out as an uncoated sphere dispersed in a medium with a local refractive index (local refractive index model). Thus, in the Mie theory, the same spectral position of the surface plasmon resonance peak can be obtained by varying the volume fraction of the shell or by varying the local refractive index. The assumed equivalence between plasmon resonance wavelengths enable us to show that the local refractive index depends geometrically on the shell volume fraction. Hence, simple relationships between optical and geometrical properties of these core-shell nanostructures are obtained. Furthermore, good agreement is observed between the new relationships and experimental data corresponding to gold nanoparticles (radius = 7.5 nm) covered with silica shells (with thicknesses up to 29.19 nm), which insured that the equivalence hypothesis is correct.

  8. Metal oxide core shell nanostructures as building blocks for efficient light emission (SISGR)

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Jane P [Univ. of California, Los Angeles, CA (United States); Dorman, James [Univ. of California, Los Angeles, CA (United States); Cheung, Cyrus [Univ. of California, Los Angeles, CA (United States)

    2016-01-12

    The objective of this research is to synthesize core-shell nano-structured metal oxide materials and investigate their structural, electronic and optical properties to understand the microscopic pathways governing the energy conversion process, thereby controlling and improving their efficiency. Specifically, the goal is to use a single metal oxide core-shell nanostructure and a single excitation source to generate photons with long emission lifetime over the entire visible spectrum and when controlled at the right ratio, generating white light. In order to achieve this goal, we need to control the energy transfer between light emitting elements, which dictates the control of their interatomic spacing and spatial distribution. We developed an economical wet chemical process to form the nanostructured core and to control the thickness and composition of the shell layers. With the help from using DOE funded synchrotron radiation facility, we delineated the growth mechanism of the nano-structured core and the shell layers, thereby enhancing our understanding of structure-property relation in these materials. Using the upconversion luminescence and the lifetime measurements as effective feedback to materials sysnthes is and integration, we demonstrated improved luminescence lifetimes of the core-shell nano-structures and quantified the optimal core-multi-shell structure with optimum shell thickness and composition. We developed a rare-earths co-doped LaPO4 core-multishell structure in order to produce a single white light source. It was decided that the mutli-shell method would produce the largest increase in luminescence efficiency while limiting any energy transfer that may occur between the dopant ions. All samples resulted in emission spectra within the accepted range of white light generation based on the converted CIE color coordinates. The white light obtained varied between warm and cool white depending on the layering architecture, allowing for the

  9. Significant Broadband Photocurrent Enhancement by Au-CZTS Core-Shell Nanostructured Photocathodes.

    Science.gov (United States)

    Zhang, Xuemei; Wu, Xu; Centeno, Anthony; Ryan, Mary P; Alford, Neil M; Riley, D Jason; Xie, Fang

    2016-03-21

    Copper zinc tin sulfide (CZTS) is a promising material for harvesting solar energy due to its abundance and non-toxicity. However, its poor performance hinders their wide application. In this paper gold (Au) nanoparticles are successfully incorporated into CZTS to form Au@CZTS core-shell nanostructures. The photocathode of Au@CZTS nanostructures exhibits enhanced optical absorption characteristics and improved incident photon-to-current efficiency (IPCE) performance. It is demonstrated that using this photocathode there is a significant increase of the power conversion efficiency (PCE) of a photoelectrochemical solar cell of 100% compared to using a CZTS without Au core. More importantly, the PCE of Au@CZTS photocathode improved by 15.8% compared to standard platinum (Pt) counter electrode. The increased efficiency is attributed to plasmon resonance energy transfer (PRET) between the Au nanoparticle core and the CZTS shell at wavelengths shorter than the localized surface plasmon resonance (LSPR) peak of the Au and the semiconductor bandgap.

  10. Synthesis and properties of Ag/ZnO core/shell nanostructures prepared by excimer laser ablation in liquid

    Directory of Open Access Journals (Sweden)

    Yan Zhao

    2015-08-01

    Full Text Available Ag/ZnO core/shell nanostructure was synthesised by a 248-nm KrF excimer pulsed laser ablation in a liquid solution for the first time. It was found that the surface plasma resonance absorption of the Ag/ZnO core/shell nanostructures can be tuned by the thickness of the ZnO shell, which is in agreement with the finite difference in the time domain simulation. Furthermore, the ultraviolet emission spectrum of the Ag/ZnO core/shell nanostructures was stronger and blue-shifted compared with that of pure ZnO nanoparticles. This interesting photoluminescent phenomenon is analysed in detail and a possible explanation is proposed.

  11. Rational design of polymeric core shell ratiometric oxygen-sensing nanostructures.

    Science.gov (United States)

    Byrne, Aisling; Jacobs, Jaco; Burke, Christopher S; Martin, Aaron; Heise, Andreas; Keyes, Tia E

    2017-09-08

    A new approach for the fabrication of luminescent ratiometric sensing nanosensors is described using core-shell nanoparticles in which the probe and reference are spatially separated into the shell and core of the nanostructure respectively. The isolation of the reference in the core of the particle ensures a stable emission reference signal unaffected by the external environment. The core shell structure was prepared by engineering structurally well-defined Ru-conjugated block copolymers which acted as emulsifiers in the miniemulsion polymerisation of BODIPY loaded styrene nanoparticles. The resulting particles are highly stable and show excellent size monodispersity. The nanosensors exhibit dual emission under a single excitation wavelength with a reversible and quantitative ratiometric response to the O2 content in aqueous media. In the presence of a low concentration of CTAB, the particles cross the cell membrane and the particles show negligible cytotoxicity. Such an approach to sensor nanoparticles should be of value across a range of applications where a stable ratiometric signal in diverse environments is required.

  12. Nucleation engineered growth/formation of core-shell and hollow metal nanostructures

    Science.gov (United States)

    Nehra, Kamalesh; Verma, Manoj; Kumar, P. Senthil

    2016-05-01

    Herein, we present a simple yet versatile single step aqueous synthesis procedure for precisely controlling the formation of hollow as well as core-shell metal nanostructures. Modern refined Turkevich protocol has been effectively utilized so as to mechanistically understand the step-by-step autocatalytic process in the monodisperse synthesis of such exotic shaped metal nanostructures. Au core with Ag shell nanoparticles were optimized by the careful addition of Ag+ ions to the pristine gold nanoparticles, the negative charge on which efficiently attracts the Ag+-cations towards their surface and simultaneously reducing them, thereby consolidating the thin shell formation with ease. The shell thickness could as well be tuned by either changing the metal seed or cation concentration. Hollow Au nanostructures were obtained by the inverse addition of Au3+-anions to the as-prepared Ag nanoparticles, thus initiating the galvanic replacement process, wherein the concurrent oxidation of Ag0 and reduction of Au3+ takes place in a cohesive manner, resulting in the final etched nanoring / porous like morphology. The structure-property functional relationship of these artificial metal nanostructures were systematically studied utilizing optical absorption and microscopy techniques.

  13. Preparation of core-shell PAN nanofibers encapsulated α-tocopherol acetate and ascorbic acid 2-phosphate for photoprotection.

    Science.gov (United States)

    Wu, Xiao-Mei; Branford-White, Christopher J; Yu, Deng-Guang; Chatterton, Nicholas P; Zhu, Li-Min

    2011-01-01

    Magnesium l-ascorbic acid 2-phosphate (MAAP) and α-tocopherol acetate (α-TAc), as the stable vitamin C and vitamin E derivative, respectively, are often applied to skin care products for reducing UV damage. The encapsulation of MAAP (0.5%, g/mL) and α-TAc (5%, g/mL) together within the polyacrylonitrile (PAN) nanofibers was demonstrated using a coaxial electrospinning technique. The structure and morphology characterizations of the core-shell fibers MAAP/α-TAc-PAN were investigated by SEM, FTIR and XRD. As a negative control, the blend nanofibers MAAP/α-TAc/PAN were prepared from a normal electrospinning method. The results from SEM indicated that the morphology and diameter of the nanofibers were influenced by concentration of spinning solution, the polymer component of the shell, the carrying agent of the core and the fabricating methods, and the core-shell nanofibers obtained at the concentration of 8% had finer and uniform structure with the average diameters of 200 ± 15nm. From in vitro release studies it could be seen that both different fiber specimens showed a gradual increase in the amount of α-TAc or MAAP released from the nanofibers. Furthermore, α-TAc and MAAP released from the blend nanofibers showed the burst release at the maximum release of ∼15% and ∼40% during the first 6h, respectively, but their release amount from the core-shell nanofibers was only 10-12% during the initial part of the process. These results showed that core-shell nanofibers alleviated the initial burst release and gave better sustainability compared to that of the blend nanofibers. The present study would provide a basis for further optimization of processing conditions to obtain desired structured core-shell nanofibers and release kinetics for practical applications in dermal tissue.

  14. Reversible photo-chem-electrotriggered three-state luminescence switching based on core-shell nanostructures

    Science.gov (United States)

    Zhai, Yanling; Zhu, Zhijun; Zhu, Chengzhou; Zhu, Jinbo; Ren, Jiangtao; Wang, Erkang; Dong, Shaojun

    2013-05-01

    Reversible three-state fluorescence switches triggered by light, electricity and chemical inputs based on ``sponges'' of Pyronin Y-doped silica nanoparticles (PYDS) and polyoxometalate K14[Na(H2O)P5W30O110] (Na-POMs) core-shell nanostructures were realized. Under one or two signal inputs, the system exhibited distinct three-state interconvertible automaton, achieving reversible ``on'' and ``off'' luminescence switches via the related luminescence quenching effect. The features of the system correspond to the equivalent circuitry of an IMPLICATION logic gate performing the Boolean operation by using potential and chemical as inputs. Such a multi-chromic device with novel structure possesses several advantages, such as relative low operation voltage, large reproducibility and reversibility, apparent fluorescence contrast, and long-time stability, which make it a suitable candidate for nonvolatile memory devices. In addition, the current protocol for the hybrid film fabrication can be easily extended from the polyoxometalate and organic dyes to other novel nanostructures matched multifunctional stimulus-responsive species and fluorescence materials in the future.Reversible three-state fluorescence switches triggered by light, electricity and chemical inputs based on ``sponges'' of Pyronin Y-doped silica nanoparticles (PYDS) and polyoxometalate K14[Na(H2O)P5W30O110] (Na-POMs) core-shell nanostructures were realized. Under one or two signal inputs, the system exhibited distinct three-state interconvertible automaton, achieving reversible ``on'' and ``off'' luminescence switches via the related luminescence quenching effect. The features of the system correspond to the equivalent circuitry of an IMPLICATION logic gate performing the Boolean operation by using potential and chemical as inputs. Such a multi-chromic device with novel structure possesses several advantages, such as relative low operation voltage, large reproducibility and reversibility, apparent fluorescence

  15. Fabrication and Characterization of Core/shell ZnO/Gold Nanostructures" and study of their Structural and Optical Properties"

    OpenAIRE

    2016-01-01

    ZnO/gold core/shellis a kind of nanostructure which due to having different surface chemistryare formed a new class of gold coated nanoparticles that will be essential for nanoelectronic,biological and catalytic application. The ZnO/gold core/shell nanostructure having novel electrical and optical properties ,and luminescence properties have been exploited for controlling antibacterial system,bio-sensing and bio-detection. In this paper, we report fabrication and characterization of ZnO/g...

  16. Three-Dimensional Self-Assembly of Core/Shell-Like Nanostructures for High-Performance Nanocomposite Permanent Magnets.

    Science.gov (United States)

    Li, Hailing; Li, Xiaohong; Guo, Defeng; Lou, Li; Li, Wei; Zhang, Xiangyi

    2016-09-14

    Core/shell nanostructures are fascinating for many advanced applications including strong permanent magnets, magnetic recording, and biotechnology. They are generally achieved via chemical approaches, but these techniques limit them to nanoparticles. Here, we describe a three-dimensional (3D) self-assembly of core/shell-like nanocomposite magnets, with hard-magnetic Nd2Fe14B core of ∼45 nm and soft-magnetic α-Fe shell of ∼13 nm, through a physical route. The resulting Nd2Fe14B/α-Fe core/shell-like nanostructure allows both large remanent magnetization and high coercivity, leading to a record-high energy product of 25 MGOe which reaches the theoretical limit for isotropic Nd2Fe14B/α-Fe nanocomposite magnets. Our approach is based on a sequential growth of the core and shell nanocrystals in an alloy melt. These results make an important step toward fabricating core/shell-like nanostructure in 3D materials.

  17. Constructing Interfacial Energy Transfer for Photon Up- and Down-Conversion from Lanthanides in a Core-Shell Nanostructure.

    Science.gov (United States)

    Zhou, Bo; Tao, Lili; Chai, Yang; Lau, Shu Ping; Zhang, Qinyuan; Tsang, Yuen Hong

    2016-09-26

    We report a new mechanistic strategy for controlling and modifying the photon emission of lanthanides in a core-shell nanostructure by using interfacial energy transfer. By taking advantage of this mechanism with Gd(3+) as the energy donor, we have realized efficient up- and down-converted emissions from a series of lanthanide emitters (Eu(3+) , Tb(3+) , Dy(3+) , and Sm(3+) ) in these core-shell nanoparticles, which do not need a migratory host sublattice. Moreover, we have demonstrated that the Gd(3+) -mediated interfacial energy transfer, in contrast to energy migration, is the leading process contributing to the photon emission of lanthanide dopants for the NaGdF4 @NaGdF4 core-shell system. Our finding suggests a new direction for research into better control of energy transfer at the nanometer length scale, which would help to stimulate new concepts for designing and improving photon emission of the lanthanide-based luminescent materials.

  18. Characterization of Pt@Cu Core@Shell Dendrimer-Encapsulated Nanoparticles Synthesized by Cu Underpotential Deposition

    Energy Technology Data Exchange (ETDEWEB)

    E Carino; R Crooks

    2011-12-31

    Dendrimer-encapsulated nanoparticles (DENs) containing averages of 55, 147, and 225 Pt atoms immobilized on glassy carbon electrodes served as the electroactive surface for the underpotential deposition (UPD) of a Cu monolayer. This results in formation of core@shell (Pt@Cu) DENs. Evidence for this conclusion comes from cyclic voltammetry, which shows that the Pt core DENs catalyze the hydrogen evolution reaction before Cu UPD, but that after Cu UPD this reaction is inhibited. Results obtained by in situ electrochemical X-ray absorption spectroscopy (XAS) confirm this finding.

  19. Characterization of Pt@Cu core@shell dendrimer-encapsulated nanoparticles synthesized by Cu underpotential deposition.

    Science.gov (United States)

    Carino, Emily V; Crooks, Richard M

    2011-04-05

    Dendrimer-encapsulated nanoparticles (DENs) containing averages of 55, 147, and 225 Pt atoms immobilized on glassy carbon electrodes served as the electroactive surface for the underpotential deposition (UPD) of a Cu monolayer. This results in formation of core@shell (Pt@Cu) DENs. Evidence for this conclusion comes from cyclic voltammetry, which shows that the Pt core DENs catalyze the hydrogen evolution reaction before Cu UPD, but that after Cu UPD this reaction is inhibited. Results obtained by in situ electrochemical X-ray absorption spectroscopy (XAS) confirm this finding.

  20. Synthesis and Plasmonic Understanding of Core/Satellite and Core Shell Nanostructures

    Science.gov (United States)

    Ruan, Qifeng

    Au nanospheres with molecular linkers. The plasmon resonances of the core/satellite nanostructures undergo red shifts in comparison to those of the sole Au cores, which is consistent with Mie theory analysis. As predicted by finite-difference time-domain simulations, the assembled core/satellite nanostructures exhibit large enhancements for Raman scattering. The facile growth of Au nanospheres and assembly of core/satellite nanostructures blaze a new way to the design of nanoarchitectures with desired plasmonic properties and functions. Coating semiconductors onto Au nanocrystals to form core shell configurations can increase the interactions between the two materials, benefiting from their large active interfacial area. The shell can also protect the Au nanocrystal core from aggregation, reshaping, and chemical corrosion. In this thesis, (Au nanocrystal core) (titania shell) nanostructures with tunable shell thicknesses were prepared by a facile wetchemistry method. Au nanocrystals with strong and tunable plasmon resonances in the visible and near-infrared regions can enhance and broaden the light utilization of TiO2 through the scattering/absorption enhancement, sensitization, and hot-electron injection. The integration of Au nanocrystals therefore hold the prospect of breaking the light-harvesting limit of TiO2 arising from its wide band gap. The resultant (Au core) (TiO2 shell) nanostructures were examined to be capable of efficiently generating reactive oxygen species under near-infrared resonant excitation. On the other hand, the transverse plasmon modes of Au nanorods, which are often too weak to be observed on scattering spectra, are enhanced by the TiO2 shell through energy transfer. With the increment of the shell thickness, the intensity of the transverse plasmon mode increases significantly and even becomes comparable with the longitudinal plasmon mode. Interestingly, both the transverse and longitudinal modes of the (Au core) (TiO2 shell) nanostructures

  1. Digestive ripening: a synthetic method par excellence for core-shell, alloy, and composite nanostructured materials

    Indian Academy of Sciences (India)

    Srilakshmi P Bhaskar; Balaji R Jagirdar

    2012-11-01

    The solvated metal atom dispersion (SMAD) method has been used for the synthesis of colloids of metal nanoparticles. It is a top-down approach involving condensation of metal atoms in low temperature solvent matrices in a SMADreactor maintained at 77 K.Warming of the matrix results in a slurry ofmetal atoms that interact with one another to form particles that grow in size. The organic solvent solvates the particles and acts as a weak capping agent to halt/slow down the growth process to a certain extent. This as-prepared colloid consists of metal nanoparticles that are quite polydisperse. In a process termed as digestive ripening, addition of a capping agent to the as-prepared colloid which is polydisperse renders it highly monodisperse either under ambient or thermal conditions. In this, as yet not well-understood process, smaller particles grow and the larger ones diminish in size until the system attains uniformity in size and a dynamic equilibrium is established. Using the SMAD method in combination with digestive ripening process, highly monodisperse metal, core-shell, alloy, and composite nanoparticles have been synthesized. This article is a review of our contributions together with some literature reports on this methodology to realize various nanostructured materials.

  2. Core-shell nanostructured hybrid composites for volatile organic compound detection

    Directory of Open Access Journals (Sweden)

    Tung TT

    2015-08-01

    Full Text Available Tran Thanh Tung,1,2 Dusan Losic,1 Seung Jun Park,3 Jean-Francois Feller,2 TaeYoung Kim3 1School of Chemical Engineering, The University of Adelaide, North Terrace, Adelaide, SA, Australia; 2Smart Plastics Group, European University of Brittany (UEB, LIMATB-UBS, Lorient, France; 3Department of Bionanotechnology, Gachon University, Sujeong-gu, Seongnam-si, Gyeonggi-do South Korea Abstract: We report a high-performance chemiresistive sensor for detection of volatile organic compound (VOC vapors based on core-shell hybridized nanostructures of Fe3O4 magnetic nanoparticles (MNPs and poly(3,4-ethylenedioxythiophene (PEDOT-conducting polymers. The MNPs were prepared using microwave-assisted synthesis in the presence of polymerized ionic liquids (PILs, which were used as a linker to couple the MNP and PEDOT. The resulting PEDOT–PIL-modified Fe3O4 hybrids were then explored as a sensing channel material for a chemiresistive sensor to detect VOC vapors. The PEDOT–PIL-modified Fe3O4 sensor exhibited a tunable response, with high sensitivity (down to a concentration of 1 ppm and low noise level, to VOCs; these VOCs include acetone vapor, which is present in the exhaled breath of potential lung cancer patients. The present sensor, based on the hybrid nanostructured sensing materials, exhibited a 38.8% higher sensitivity and an 11% lower noise level than its PEDOT–PIL-only counterpart. This approach of embedding MNPs in conducting polymers could lead to the development of new electronic noses, which have significant potential for the use in the early diagnosis of lung cancer via the detection of VOC biomarkers. Keywords: hybrid nanomaterials, nanoparticle, conducting polymer, electronic nose, lung cancer detection

  3. Tin-Doped Indium Oxide-Titania Core-Shell Nanostructures for Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Luping Li

    2014-01-01

    Full Text Available Dye-sensitized solar cells (DSSCs hold great promise in the pursuit of reliable and cheap renewable energy. In this work, tin-doped indium oxide (ITO-TiO2 core-shell nanostructures are used as the photoanode for DSSCs. High-density, vertically aligned ITO nanowires are grown via a thermal evaporation method and TiO2 is coated on nanowire surfaces via TiCl4 treatment. It is found that high TiO2 annealing temperatures increase the crystallinity of TiO2 shell and suppress electron recombination in the core-shell nanostructures. High annealing temperatures also decrease dye loading. The highest efficiency of 3.39% is achieved at a TiO2 annealing temperature of 500°C. When HfO2 blocking layers are inserted between the core and shell of the nanowire, device efficiency is further increased to 5.83%, which is attributed to further suppression of electron recombination from ITO to the electrolyte. Open-circuit voltage decay (OCVD measurements show that the electron lifetime increases by more than an order of magnitude upon HfO2 insertion. ITO-TiO2 core-shell nanostructures with HfO2 blocking layers are promising photoanodes for DSSCs.

  4. Enhanced exchange bias and improved ferromagnetic properties in Permalloy-BiFe0.95Co0.05O3 core-shell nanostructures

    Science.gov (United States)

    Javed, K.; Li, W. J.; Ali, S. S.; Shi, D. W.; Khan, U.; Riaz, S.; Han, X. F.

    2015-12-01

    Hybrid core-shell nanostructures consisting of permalloy (Ni80Fe20) and multiferroic(BiFeO3, BFO/BiFe0.95Co0.05O3, BFC) materials were synthesized by a two-step method, based on wet chemical impregnation and subsequent electrodeposition within porous alumina membranes. Structural and magnetic characterizations have been done to investigate doping effect on magnetic properties and exchange bias. The magnetometry analysis revealed significant enhancements of the exchange bias and coercivity in NiFe-BFC core-shell nanostructures as compared with NiFe-BFO core-shell nanostructures. The enhancements can be attributed to the effective reduction of ferromagnet domain sizes between adjacent layers of core-shell structure. It indicates that it is possible to improve properties of multiferroic composites by site-engineering method. Our approach opens a pathway to obtain optimized nanostructured multiferroic composites exhibiting tunable magnetic properties.

  5. Engineering of lead chalcogenide nanostructures for carrier multiplication: Core/shell, 1D, and 2D

    Science.gov (United States)

    Lin, Qianglu

    Near infrared emitting semiconductors have been used widely in industry especially in solar-cell fabrications. The efficiency of single junction solar-cell can reach the Shockley-Queisser limit by using optimum band gap material such as silicon and cadmium telluride. The theoretical efficiency can be further enhanced through carrier multiplication, in which a high energy photon is absorbed and more than one electron-hole pair can be generated, reaching more than 100% quantum efficiency in the high energy region of sunlight. The realization of more than unity external quantum efficiency in lead selenide quantum dots solar cell has motivated vast investigation on lowering the carrier multiplication threshold and further improving the efficiency. This dissertation focuses on synthesis of lead chalcogenide nanostructures for their optical spectroscopy studies. PbSe/CdSe core/shell quantum dots were synthesized by cation exchange to obtain thick shells (up to 14 monolayers) for studies of visible and near infrared dual band emissions and carrier multiplication efficiency. By examining the reaction mechanism, a thermodynamic and a kinetic model are introduced to explain the vacancy driven cation exchange. As indicated by the effective mass model, PbSe/CdSe core/shell quantum dots has quasi-type-II band alignment, possessing electron delocalized through the entire quantum dot and hole localized in the core, which breaks down the symmetry of energy levels in the conduction and valence band, leading to hot-hole-assisted efficient multi-exciton generation and a lower carrier multiplication threshold to the theoretical value. For further investigation of carrier multiplication study, PbTe, possessing the highest efficiency among lead chalcogenides due to slow intraband cooling, is synthesized in one-dimensional and two-dimensional nanostructures. By using dodecanethiol as the surfactant, PbTe NRs can be prepared with high uniformity in width and resulted in fine quantum

  6. Core-shell microspheres with porous nanostructured shells for liquid chromatography.

    Science.gov (United States)

    Ahmed, Adham; Skinley, Kevin; Herodotou, Stephanie; Zhang, Haifei

    2017-10-10

    The development of new stationary phase has been the key aspect for fast and efficient high-performance liquid chromatography separation with relatively low backpressure. Core-shell particles, with a solid core and porous shell, have been extensively investigated and commercially manufactured in the last decade. The excellent performance of core-shell particles columns has been recorded for a wide range of analytes, covering small and large molecules, neutral and ionic (acidic and basic), biomolecules, and metabolites. In this review, we firstly introduce the advance and advantages of core-shell particles (or more widely known as superficially porous particles) against non-porous particles and fully porous particles. This is followed by the detailed description of various methods used to fabricate core-shell particles. We then discuss the applications of common silica core-shell particles (mostly commercially manufactured), spheres-on-sphere particles, and core-shell particles with a non-silica shell. This review concludes with a summary and perspective on the development of stationary phase materials for high-performance liquid chromatography applications. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  7. Ultrafast Transient Absorption Spectroscopy Investigation of Photoinduced Dynamics in Novel Donor-Acceptor Core-Shell Nanostructures for Organic Photovoltaics

    Science.gov (United States)

    Strain, Jacob; Jamhawi, Abdelqader; Abeywickrama, Thulitha M.; Loomis, Wendy; Rathnayake, Hemali; Liu, Jinjun

    2016-06-01

    Novel donor-acceptor nanostructures were synthesized via covalent synthesis and/or UV cross-linking method. Their photoinduced dynamics were investigated with ultrafast transient absorption (TA) spectroscopy. These new nanostructures are made with the strategy in mind to reduce manufacturing steps in the process of fabricating an organic photovoltaic cell. By imitating the heterojunction interface within a fixed particle domain, several fabrication steps can be bypassed reducing cost and giving more applicability to other film deposition methods. Such applications include aerosol deposition and ink-jet printing. The systems that were studied by TA spectroscopy include PDIB core, PDIB-P3HT core-shell, and PDIB-PANT core-shell which range in size from 60 to 130 nm. Within the experimentally accessible spectra range there resides a region of ground state bleaching, stimulated emission, and excited-state absorption of both neutrals and anions. Control experiments have been carried out to assign these features. At high pump fluences the TA spectra of PDIB core alone also indicate an intramolecular charge separation. The TA spectroscopy results thus far suggest that the core-shells resemble the photoinduced dynamics of a standard film although the particles are dispersed in solution, which indicates the desired outcome of the work.

  8. Ag@Aggregation-induced emission dye core/shell nanostructures with enhanced one- and two-photon fluorescence

    Science.gov (United States)

    Wang, Cheng; Li, Yang; Xu, Qiujin; Luo, Liang

    2017-10-01

    Combining plasmonic nanostructures with two-photon fluorescence materials is a promising way to significantly enhance two-photon fluorescence. Ag@1,4-bis(2-cyano-2-phenylethenyl) benzene (BCPEB) core/shell nanostructures were fabricated by simply incubating the isolated Ag nanoparticles with BCPEB microrods in ethanol. BCPEB was chosen as the fluorescent organic molecule owing to the aggregation-induced-emission (AIE) nature which would reduce the emission loss as being practically applied in solid phase. By utilizing the match of the extinction spectrum of Ag nanoparticles and BCPEB's absorption band, the target Ag@BCPEB core/shell nanostructures showed an enhanced one-photon (12×) fluorescence, integrating with SERS signal as well. Moreover, the resultant second harmonic generation of Ag nanoparticles under two-photon excitation also well matched with the absorption band of BCPEB, and significant enhanced two-photon (17×) fluorescence was obtained. The confocal images of NIH-3T3 cells with these nanostructures under one- and two-photon excitation showed good contrast and brightness for bio-imaging.

  9. Preparation and characterization of bio-compatible Fe{sub 3}O{sub 4}-Polydopamine spheres with core/shell nanostructure

    Energy Technology Data Exchange (ETDEWEB)

    Si Jingyu [Department of Chemistry and Materials Engineering, Hefei University, Hefei 230022 (China); Yang Hua, E-mail: yanghua_ah@ahau.edu.cn [Department of Applied Chemistry, School of Science, Anhui Agricultural University, Hefei 230036 (China)

    2011-08-15

    Graphical abstract: Bio-compatible and superparamagnetic Fe{sub 3}O{sub 4}-Polydopamine nanocomposites with well-defined core/shell nanostructures have been successfully synthesized by using an in situ self-polymerization method. These unique core/shell materials could be applied in catalyst supports or drug delivery. -Highlights: {yields} A facile in situ self-polymerization method was successfully developed to synthesize bio-compatible and superparamagnetic Fe{sub 3}O{sub 4}-Polydopamine (PDA) nanocomposites with well-defined core/shell nanostructures. {yields} The size of the core/shell product can be controlled by varying the size of the central Fe{sub 3}O{sub 4} core, and different thicknesses of the PDA shells are obtained by tuning the dopamine monomer concentration. {yields} To the best of our knowledge, this is first report focused on the controllable synthesis of core/shell Fe{sub 3}O{sub 4}-PDA microspheres and the investigation of its cell viability. {yields} These unique core/shell materials would be applied in catalyst supports or drug delivery. - Abstract: Bio-compatible and superparamagnetic Fe{sub 3}O{sub 4}-Polydopamine nanocomposites with well-defined core/shell nanostructures have been successfully synthesized by using an in situ self-polymerization method. The size of the core/shell product can be controlled by varying the size of the central Fe{sub 3}O{sub 4} core, and different thicknesses of the PDA shells are obtained by tuning the dopamine monomer concentration. The morphology, phase composition and crystallinity of the as-prepared nanocomposites have been characterized by transmission electron microscopy (TEM) and powder X-ray diffraction (XRD). The 5-dimethylthiazol-2-yl-2,5-diphenyl-tetrazolium bromide (MTT) cytotoxic analysis shows that the product is biocompatible, with a low toxicity. These unique core/shell materials would be applied in catalyst supports or drug delivery.

  10. WC@meso-Pt core-shell nanostructures for fuel cells.

    Science.gov (United States)

    Chen, Zhao-Yang; Ma, Chun-An; Chu, You-Qun; Jin, Jia-Mei; Lin, Xiao; Hardacre, Christopher; Lin, Wen-Feng

    2013-12-25

    We developed a facile method to synthesize core-shell WC@meso-Pt nanocatalysts by carburizing ammonium tungstate and copper nitrate via gas-solid reactions, followed by a Pt replacement reaction. The mesoporous nanocomposite displays higher activity and stability towards methanol electrooxidation than commercial Pt/C catalysts.

  11. Oil encapsulation in core-shell alginate capsules by inverse gelation. I: dripping methodology.

    Science.gov (United States)

    Martins, Evandro; Renard, Denis; Adiwijaya, Zenia; Karaoglan, Emre; Poncelet, Denis

    2017-02-01

    The production of capsules by inverse gelation consists of adding dropwise oil containing calcium dispersion into an alginate bath. A dripping technique to produce capsules from oil-in-water (O/W) emulsions was proposed by Abang. However, little is known about the oil encapsulation using water-in-oil (W/O) emulsions. This work aims to develop a new method of W/O emulsions encapsulation by inverse gelation. The success of the W/O emulsion encapsulation is due to three factors: 1) use of an emulsion with moderate stability (50 min); 2) production of an emulsion with at least 90 g/L of CaCl2 and 3) addition of ethanol (20% v/v) into the alginate bath. Both wet and dry capsules were obtained with a spherical shape with diameters of 7 and 3.6 mm, respectively. All volume of oil was encapsulated and the oil loading in the wet and dry capsules was of 23 and 68% v/v, respectively.

  12. Shape-Controlled Synthesis of Magnetic Iron Oxide@SiO₂-Au@C Particles with Core-Shell Nanostructures.

    Science.gov (United States)

    Li, Mo; Li, Xiangcun; Qi, Xinhong; Luo, Fan; He, Gaohong

    2015-05-12

    The preparation of nonspherical magnetic core-shell nanostructures with uniform sizes still remains a challenge. In this study, magnetic iron oxide@SiO2-Au@C particles with different shapes, such as pseduocube, ellipsoid, and peanut, were synthesized using hematite as templates and precursors of magnetic iron oxide. The as-obtained magnetic particles demonstrated uniform sizes, shapes, and well-designed core-shell nanostructures. Transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX) analysis showed that the Au nanoparticles (AuNPs) of ∼6 nm were uniformly distributed between the silica and carbon layers. The embedding of the metal nanocrystals into the two different layers prevented the aggregation and reduced the loss of the metal nanocrystals during recycling. Catalytic performance of the peanut-like particles kept almost unchanged without a noticeable decrease in the reduction of 4-nitrophenol (4-NP) in 8 min even after 7 cycles, indicating excellent reusability of the particles. Moreover, the catalyst could be readily recycled magnetically after each reduction by an external magnetic field.

  13. Recent progress on the spectroscopy of rare earth ions in core-shells, nanowires, nanotubes, and other novel nanostructures.

    Science.gov (United States)

    Chen, Xueyuan; Liu, Liqin; Liu, Guokui

    2008-03-01

    Research and development of nanoscale luminescent and laser materials are part of the rapidly advancing nanoscience and nanotechnology. Because of unique spectroscopic properties and luminescent dynamics of f-electron states, doping luminescent rare earth ions into nano-hosts has been demonstrated as an optimistic approach to developing highly efficient and stable nanophosphors for various applications. In this article, we review the most recent progress in spectroscopic measurements of rare earth ion-activated low-dimensional nanostructures including nanolayers, core-shells, nanowires, nanotubes, and nanodisks. Among a large volume of work reported in the literature on many members of the rare earth series including Ce3+, Pr3+, Nd3+, Eu3+, and Er3+, we focus on recent findings in the spectroscopic and luminescence properties of Eu3+ doped nanolayers, core-shells, and nanotubes, because Eu3+ ions have been extensively studied and widely used as an ideal probe for fundamental understanding of nano-phenomena. Specifically, the dependence of the optical properties of rare earth ions on nanostructures is discussed in detail.

  14. Fabrication and Characterization of Core/shell ZnO/Gold Nanostructures" and study of their Structural and Optical Properties"

    Directory of Open Access Journals (Sweden)

    Mina Azimi

    2016-10-01

    Full Text Available ZnO/gold core/shellis a kind of nanostructure which due to having different surface chemistryare formed a new class of gold coated nanoparticles that will be essential for nanoelectronic,biological and catalytic application. The ZnO/gold core/shell nanostructure having novel electrical and optical properties ,and luminescence properties have been exploited for controlling antibacterial system,bio-sensing and bio-detection. In this paper, we report fabrication and characterization of ZnO/gold core/shell nanoparticles by chemical method and Turkevich citrate method.The formation of ZnO/gold nanocomposite can be observed by a change in color from white to gray precipitate.Characterization of the prepared samples was carried out by various techniques such as field emission scanning electron microscopy (FESEM, Elemental analysis (EDS , X-ray diffraction (XRD , photoluminescence measurement (PL ,UV-VIS diffuse reflectance/absorption spectroscopy ,Typical transmission electron microscopy (TEMand Fourier transform infrared (FTIR. The formation of gold layer on the ZnOsurface can be proved using the results obtained from the UV-VIS , EDS and XRD pattern.

  15. Efficient noble-metal-free γ-Fe₂O₃@NiO core-shell nanostructured photocatalysts for water oxidation.

    Science.gov (United States)

    Du, Xiaoqiang; Wei, Jie; Zhao, Jinli; Han, Ruixin; Ding, Yong

    2014-10-01

    Flowerlike noble-metal-free γ-Fe2O3@NiO core-shell hierarchical nanostructures have been fabricated and examined as a catalyst in the photocatalytic oxidation of water with [Ru(bpy)3](ClO4)2 as a photosensitizer and Na2S2O8 as a sacrificial electron acceptor. An apparent TOF of 0.29 μmols(-1) m(-2) and oxygen yield of 51% were obtained with γ-Fe2O3@NiO. The γ-Fe2O3@NiO core-shell hierarchical nanostructures could be easily separated from the reaction solution whilst maintaining excellent water-oxidation activity in the fourth and fifth runs. The surface conditions of γ-Fe2O3@NiO also remained unchanged after the photocatalytic reaction, as confirmed by X-ray photoelectron spectroscopy (XPS). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Synthesis of AlNiCo core/shell nanopowders

    Science.gov (United States)

    Genc, A. M.; Akdeniz, M. V.; Ozturk, T.; Kalay, Y. E.

    2016-11-01

    Magnetic core/shell nanostructures have been recently received much interest owing to their utmost potential in permanent magnetic applications. In the present work, AlNiCo permanent magnet powders were synthesized by ball milling and a core/shell nanostructure was obtained using RF induced plasma. The effects of particle size and nanoshell structure on the magnetic properties were investigated in details. The coercivity of AlNiCo powders was found to increase with decreasing particle size, exclusively nanopowders encapsulated with Fe3O4 shell showed the highest coercivity values. The shell structure produced during plasma reaction was found to form a resistant layer against oxidation of metallic nanoparticles.

  17. Synthesis of Ag-ZnO core-shell hybrid nanostructures: an optical approach to reveal the growth mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Encina, Ezequiel R.; Perez, Manuel A.; Coronado, Eduardo A., E-mail: coronado@fcq.unc.edu.ar [Universidad Nacional de Cordoba, Departamento de Fisicoquimica, Facultad de Ciencias Quimicas, INFIQC (Argentina)

    2013-06-15

    In this study, Ag-ZnO core-shell hybrid nanostructures (HNs) have been prepared by means of a very simple chemical methodology. In addition, their morphology and extinction properties have been characterized. It was found that the HNs consist in almost spherical Ag nanoparticle cores (mean diameter 56 nm) surrounded by a thin shell formed by small ZnO nanoparticles (mean size 6 nm). The changes in the extinction spectra during the formation of the hybrid nanostructures have been rationalized using electrodynamics simulations applying Mie theory for coated spheres along with the effective medium theory to describe the dielectric constant of the shell. By assuming a formation and growth mechanism of the shell, it was found that these simulations describe not only qualitatively but also quantitatively the changes in the extinction spectra.

  18. Engineering of high performance supercapacitor electrode based on Fe-Ni/Fe{sub 2}O{sub 3}-NiO core/shell hybrid nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Ashutosh K., E-mail: ashuvishen@gmail.com, E-mail: aksingh@bose.res.in; Mandal, Kalyan [Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake City, Kolkata 700098 (India)

    2015-03-14

    The present work reports on fabrication and supercapacitor applications of a core/shell Fe-Ni/Fe{sub 2}O{sub 3}-NiO hybrid nanostructures (HNs) electrode. The core/shell Fe-Ni/Fe{sub 2}O{sub 3}-NiO hybrid nanostructures have been fabricated through a two step method (nanowire fabrication and their controlled oxidation). The 1D hybrid nanostructure consists of highly porous shell layer (redox active materials NiO and Fe{sub 2}O{sub 3}) and the conductive core (FeNi nanowire). Thus, the highly porous shell layer allows facile electrolyte diffusion as well as faster redox reaction kinetics; whereas the conductive FeNi nanowire core provides the proficient express way for electrons to travel to the current collector, which helps in the superior electrochemical performance. The core/shell Fe-Ni/Fe{sub 2}O{sub 3}-NiO hybrid nanostructures electrode based supercapacitor shows very good electrochemical performances in terms of high specific capacitance nearly 1415 F g{sup −1} at a current density of 2.5 A g{sup −1}, excellent cycling stability and rate capability. The high quality electrochemical performance of core/shell hybrid nanostructures electrode shows its potential as an alternative electrode for forthcoming supercapacitor devices.

  19. Application of Turkevich Method for Gold Nanoparticles Synthesis to Fabrication of SiO2@Au and TiO2@Au Core-Shell Nanostructures

    Directory of Open Access Journals (Sweden)

    Paulina Dobrowolska

    2015-05-01

    Full Text Available The Turkevich synthesis method of Au nanoparticles (AuNPs was adopted for direct fabrication of SiO2@Au and TiO2@Au core-shell nanostructures. In this method, chloroauric acid was reduced with trisodium citrate in the presence of amine-functionalized silica or titania submicroparticles. Core-shells obtained in this way were compared to structures fabricated by mixing of Turkevich AuNPs with amine-functionalized silica or titania submicroparticles. It was found that by modification of reaction conditions of the first method, such as temperature and concentration of reagents, control over gold coverage on silicon dioxide particles has been achieved. Described method under certain conditions allows fabrication of semicontinuous gold films on the surface of silicon dioxide particles. To the best of our knowledge, this is the first report describing use of Turkevich method to direct fabrication of TiO2@Au core-shell nanostructures.

  20. Novel of core-shell AlOOH/Cu nanostructures: Synthesis, characterization, antimicrobial activity and in vitro toxicity in Neuro-2a cells

    Energy Technology Data Exchange (ETDEWEB)

    Bakina, O. V., E-mail: ovbakina@ispms.tsc.ru; Fomenko, A. N., E-mail: alserova@ispms.tsc.ru; Korovin, M. S., E-mail: msk@ispms.tsc.ru; Glazkova, E. A., E-mail: eagl@ispms.tsc.ru; Svarovskaya, N. V., E-mail: nvsv@ispms.tsc.ru [Institute of Strength Physics and Materials Sciences SB RAS, Akademicheskii Pr. 2/4, Tomsk, 634055 (Russian Federation); National Research Tomsk Polytechnic University, Lenin Avenue 30, Tomsk, 634050 (Russian Federation)

    2016-08-02

    Core-shell micro/nanostructures were fabricated by the reaction of Al/Cu bimetallic nanoparticles with water. Al/Cu nanoparticles have been obtained using the method of simultaneous electrical explosion of a pair of the corresponding metal wires in an argon atmosphere. The nanoparticles are chemically active and interact with water at 60°C to form core-shell micro/nanostructures. The obtained products were characterized by means of X-ray diffraction, scanning electron microscopy, transmission electron microscopy and dynamic light scattering and the nitrogen adsorption method. The antibacterial activity of the synthesized structures was investigated against E. coli and St. aureus. The toxic effect of these nanostructures against the Neuro-2a neuroblastoma cell line was investigated. AlOOH/Cu nanostructures are shown to inhibit cell proliferation. The AlOOH/Cu nanostructures are good candidates for medical applications.

  1. Novel of core-shell AlOOH/Cu nanostructures: Synthesis, characterization, antimicrobial activity and in vitro toxicity in Neuro-2a cells

    Science.gov (United States)

    Bakina, O. V.; Fomenko, A. N.; Korovin, M. S.; Glazkova, E. A.; Svarovskaya, N. V.

    2016-08-01

    Core-shell micro/nanostructures were fabricated by the reaction of Al/Cu bimetallic nanoparticles with water. Al/Cu nanoparticles have been obtained using the method of simultaneous electrical explosion of a pair of the corresponding metal wires in an argon atmosphere. The nanoparticles are chemically active and interact with water at 60°C to form core-shell micro/nanostructures. The obtained products were characterized by means of X-ray diffraction, scanning electron microscopy, transmission electron microscopy and dynamic light scattering and the nitrogen adsorption method. The antibacterial activity of the synthesized structures was investigated against E. coli and St. aureus. The toxic effect of these nanostructures against the Neuro-2a neuroblastoma cell line was investigated. AlOOH/Cu nanostructures are shown to inhibit cell proliferation. The AlOOH/Cu nanostructures are good candidates for medical applications.

  2. Unraveling Surface Plasmon Decay in Core-Shell Nanostructures toward Broadband Light-Driven Catalytic Organic Synthesis.

    Science.gov (United States)

    Huang, Hao; Zhang, Lei; Lv, Zhiheng; Long, Ran; Zhang, Chao; Lin, Yue; Wei, Kecheng; Wang, Chengming; Chen, Lu; Li, Zhi-Yuan; Zhang, Qun; Luo, Yi; Xiong, Yujie

    2016-06-01

    Harnessing surface plasmon of metal nanostructures to promote catalytic organic synthesis holds great promise in solar-to-chemical energy conversion. High conversion efficiency relies not only on broadening the absorption spectrum but on coupling the harvested energy into chemical reactions. Such coupling undergoes hot-electron transfer and photothermal conversion during the decay of surface plasmon; however, the two plasmonic effects are unfortunately entangled, making their individual roles still under debate. Here, we report that in a model system of bimetallic Au-Pd core-shell nanostructures the two effects can be disentangled through tailoring the shell thickness at atomic-level precision. As demonstrated by our ultrafast absorption spectroscopy characterizations, the achieved tunability of the two effects in a model reaction of Pd-catalyzed organic hydrogenation offers a knob for enhancing energy coupling. In addition, the two intrinsic plasmonic modes at 400-700 and 700-1000 nm in the bar-shaped nanostructures allow for utilizing photons to a large extent in full solar spectrum. This work establishes a paradigmatic guidance toward designing plasmonic-catalytic nanomaterials for enhanced solar-to-chemical energy conversion.

  3. Core-Shell Nanostructure of α-Fe2O3/Fe3O4: Synthesis and Photocatalysis for Methyl Orange

    OpenAIRE

    Yang Tian; Di Wu; Xiao Jia; Binbin Yu; Sihui Zhan

    2011-01-01

    Fe3O4 nanoparticle was synthesized in the solution involving water and ethanol. Then, α-Fe2O3 shell was produced in situ on the surface of the Fe3O4 nanoparticle by surface oxidation in molten salts, forming α-Fe2O3/Fe3O4 core-shell nanostructure. It was showed that the magnetic properties transformed from ferromagnetism to superparamagnetism after the primary Fe3O4 nanoparticles were oxidized. Furthermore, the obtained α-Fe2O3/Fe3O4 core-shell nanoparticles were used to photocatalyse solutio...

  4. Facile synthesis, microstructure and photophysical properties of core-shell nanostructured (SiCN)/BN nanocomposites

    Science.gov (United States)

    Zhang, Qian; Jia, Dechang; Yang, Zhihua; Cai, Delong; Laine, Richard M.; Li, Qian; Zhou, Yu

    2017-01-01

    Increasing structural complexity at nanoscale can permit superior control over photophysical properties in the precursor-derived semiconductors. We demonstrate here the synthesis of silicon carbonitride (SiCN)/boron nitride (BN) nanocomposites via a polymer precursor route wherein the cobalt polyamine complexes used as the catalyst, exhibiting novel composite structures and photophysical properties. High Resolution Transmission Electron Microscopy (HRTEM) analysis shows that the diameters of SiCN-BN core-shell nanocomposites and BN shells are 50‒400 nm and 5‒25 nm, respectively. BN nanosheets (BNNSs) are also observed with an average sheet size of 5‒15 nm. The photophysical properties of these nanocomposites are characterized using the UV-Vis and photoluminescence (PL) analyses. The as-produced composites have emission behavior including an emission lifetime of 2.5 ns (±20 ps) longer observed in BN doped SiCN than that seen for SiC nanoparticles. Our results suggest that the SiCN/BN nanocomposites act as semiconductor displaying superior width photoluminescence at wavelengths spanning the visible to near-infrared (NIR) spectral range (400‒700 nm), owing to the heterojunction of the interface between the SiC(N) nanowire core and the BN nanosheet shell.

  5. Self-Assembly of Crystalline Structures of Magnetic Core-Shell Nanoparticles for Fabrication of Nanostructured Materials.

    Science.gov (United States)

    Xue, Xiaozheng; Wang, Jianchao; Furlani, Edward P

    2015-10-14

    A theoretical study is presented of the template-assisted formation of crystalline superstructures of magnetic-dielectric core-shell particles. The templates produce highly localized gradient fields and a corresponding magnetic force that guides the assembly with nanoscale precision in particle placement. The process is studied using two distinct and complementary computational models that predict the dynamics and energy of the particles, respectively. Both mono- and polydisperse colloids are studied, and the analysis demonstrates for the first time that although the particles self-assemble into ordered crystalline superstructures, the particle formation is not unique. There is a Brownian motion-induced degeneracy in the process wherein various distinct, energetically comparable crystalline structures can form for a given template geometry. The models predict the formation of hexagonal close packed (HCP) and face centered cubic (FCC) structures as well as mixed phase structures due to in-plane stacking disorders, which is consistent with experimental observations. The polydisperse particle structures are less uniform than the monodisperse particle structures because of the irregular packing of different-sized particles. A comparison of self-assembly using soft- and hard-magnetic templates is also presented, the former being magnetized in a uniform field. This analysis shows that soft-magnetic templates enable an order-of-magnitude more rapid assembly and much higher spatial resolution in particle placement than their hard-magnetic counterparts. The self-assembly method discussed is versatile and broadly applies to arbitrary template geometries and multilayered and multifunctional mono- and polydisperse core-shell particles that have at least one magnetic component. As such, the method holds potential for the bottom-up fabrication of functional nanostructured materials for a broad range of applications. This work provides unprecedented insight into the assembly

  6. Optimizing the electric field around solid and core-shell alloy nanostructures for near-field applications

    Science.gov (United States)

    Montaño-Priede, Luis; Peña-Rodríguez, Ovidio; Rivera, Antonio; Guerrero-Martínez, Andrés; Pal, Umapada

    2016-08-01

    The near electric field enhancement around plasmonic nanoparticles (NPs) is very important for applications like surface enhanced spectroscopies, plasmonic dye-sensitized solar cells and plasmon-enhanced OLEDs, where the interactions occur close to the surface of the NPs. In this work we have calculated the near-field enhancement around solid and core-shell alloy NPs as a function of their geometrical parameters and composition. We have found that the field enhancement is lower in the AuxAg1-x alloys with respect to pure Ag NPs, but it is still high enough for most near-field applications. The higher order modes have a stronger influence over the near-field due to a sharper spatial decay of the near electric field with the increase of the order of multipolar modes. For the same reason, in AuxAg1-x@SiO2 core-shell structures, the quadrupolar mode is dominant around the core, whereas the dipolar mode is predominant around the shell. The LSPR modes can have different behaviours in the near- and the far-field, particularly for larger particles with high Ag contents, which indicates that caution must be exercised for designing plasmonic nanostructures for near-field applications, as the variations of the LSPR in the near-field cannot be inferred from those observed in the far-field. These results have important implications for the application of gold-silver alloy NPs in surface enhanced spectroscopies and in the fabrication of plasmon-based optoelectronic devices, like dye-sensitized solar cells and plasmon-enhanced organic light-emitting diodes.

  7. Ground state energy and wave function of an off-centre donor in spherical core/shell nanostructures: Dielectric mismatch and impurity position effects

    Energy Technology Data Exchange (ETDEWEB)

    Ibral, Asmaa [Equipe d’Optique et Electronique du Solide, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B.P. 20 El Jadida Principale, El Jadida 24000 (Morocco); Laboratoire d’Instrumentation, Mesure et Contrôle, Département de Physique, Université Chouaïb Doukkali, B.P. 20 El Jadida Principale, El Jadida (Morocco); Zouitine, Asmae [Département de Physique, Ecole Nationale Supérieure d’Enseignement Technique, Université Mohammed V Souissi, B.P. 6207 Rabat-Instituts, Rabat (Morocco); Assaid, El Mahdi, E-mail: eassaid@yahoo.fr [Equipe d’Optique et Electronique du Solide, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B.P. 20 El Jadida Principale, El Jadida 24000 (Morocco); Laboratoire d’Instrumentation, Mesure et Contrôle, Département de Physique, Université Chouaïb Doukkali, B.P. 20 El Jadida Principale, El Jadida (Morocco); Feddi, El Mustapha [Département de Physique, Ecole Nationale Supérieure d’Enseignement Technique, Université Mohammed V Souissi, B.P. 6207 Rabat-Instituts, Rabat (Morocco); and others

    2014-09-15

    Ground state energy and wave function of a hydrogen-like off-centre donor impurity, confined anywhere in a ZnS/CdSe spherical core/shell nanostructure are determined in the framework of the envelope function approximation. Conduction band-edge alignment between core and shell of nanostructure is described by a finite height barrier. Dielectric constant mismatch at the surface where core and shell materials meet is taken into account. Electron effective mass mismatch at the inner surface between core and shell is considered. A trial wave function where coulomb attraction between electron and off-centre ionized donor is used to calculate ground state energy via the Ritz variational principle. The numerical approach developed enables access to the dependence of binding energy, coulomb correlation parameter, spatial extension and radial probability density with respect to core radius, shell radius and impurity position inside ZnS/CdSe core/shell nanostructure.

  8. Poly(ethylene glycol)-poly(lactic-co-glycolic acid) core-shell microspheres with enhanced controllability of drug encapsulation and release rate.

    Science.gov (United States)

    Cha, Chaenyung; Jeong, Jae Hyun; Kong, Hyunjoon

    2015-01-01

    Poly(lactic-co-glycolic acid) (PLGA) microspheres have been widely used as drug carriers for minimally invasive, local, and sustained drug delivery. However, their use is often plagued by limited controllability of encapsulation efficiency, initial burst, and release rate of drug molecules, which cause unsatisfactory outcomes and several side effects including inflammation. This study presents a new strategy of tuning the encapsulation efficiency and the release rate of protein drugs from a PLGA microsphere by filling the hollow core of the microsphere with poly(ethylene glycol) (PEG) hydrogels of varying cross-linking density. The PEG gel cores were prepared by inducing in situ cross-linking reactions of PEG monoacrylate solution within the PLGA microspheres. The resulting PEG-PLGA core-shell microspheres exhibited (1) increased encapsulation efficiency, (2) decreased initial burst, and (3) a more sustained release of protein drugs, as the cross-linking density of the PEG gel core was increased. In addition, implantation of PEG-PLGA core-shell microspheres encapsulated with vascular endothelial growth factor (VEGF) onto a chicken chorioallantoic membrane resulted in a significant increase in the number of new blood vessels at an implantation site, while minimizing inflammation. Overall, this strategy of introducing PEG gel into PLGA microspheres will be highly useful in tuning release rates and ultimately in improving the therapeutic efficacy of a wide array of protein drugs.

  9. Designed Functional Systems for High-Performance Lithium-Ion Batteries Anode: From Solid to Hollow, and to Core-Shell NiCo2O4 Nanoparticles Encapsulated in Ultrathin Carbon Nanosheets.

    Science.gov (United States)

    Peng, Liang; Zhang, Huijuan; Fang, Ling; Bai, Yuanjuan; Wang, Yu

    2016-02-01

    Binary metal oxides have been considered as ideal and promising anode materials, which can ameliorate and enhance the electrochemical performances of the single metal oxides, such as electronic conductivity, reversible capacity, and structural stability. In this research, we report a rational method to synthesize some novel sandwich-like NiCo2O4@C nanosheets arrays for the first time. The nanostructures exhibit the unique features of solid, hollow, and even core-shell NiCo2O4 nanoparticles encapsulated inside and a graphitized carbon layers coating outside. Compared to the previous reports, these composites demonstrate more excellent electrochemical performances, including superior rate capability and excellent cycling capacity. Therefore, the final conclusion would be given that these multifarious sandwich-like NiCo2O4@C composites could be highly qualified candidates for lithium-ion battery anodes in some special field, in which good capability and high capacity are urgently required.

  10. Ordered arrays of bottom-up III-nitride core-shell nanostructures

    Science.gov (United States)

    Rishinaramangalam, Ashwin K.; Nami, Mohsen; Bryant, Benjamin N.; Eller, Rhett F.; Shima, Darryl M.; Fairchild, Michael N.; Balakrishnan, Ganesh; Brueck, S. R. J.; Feezell, Daniel F.

    2015-08-01

    The growth of ordered arrays of group III-nitride nanostructures on c-plane gallium nitride (GaN) on sapphire using selective-area metal organic chemical vapor deposition (MOCVD) is presented. The growth of these nanostructures promotes strain relaxation that allows the combination of high indium content active regions with very low dislocation densities and also gives access to nonpolar and semipolar crystallographic orientations of GaN. The influence of the starting template and the growth conditions on the growth rate and morphology is discussed. The growth of indium gallium nitride (InGaN) active region shells on these nanostructures is discussed and the stability of various crystallographic orientations under typical growth conditions is studied. Finally, the effect of the growth conditions on the morphology of pyramidal stripe LEDs is discussed and preliminary results on electrical injection of these LEDs are presented.

  11. An optimization analysis on electroless deposition of Al{sub 2}O{sub 3}/Cu core-shell nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Beygi, H., E-mail: hossein.beygi@stu-mail.um.ac.ir [Department of Materials Science and Metallurgical Engineering, Engineering Faculty, Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of); Sajjadi, S.A.; Zebarjad, S.M. [Department of Materials Science and Metallurgical Engineering, Engineering Faculty, Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Al{sub 2}O{sub 3}/Cu core-shell nanostructure fabricated by electroless copper plating on Al{sub 2}O{sub 3} particles. Black-Right-Pointing-Pointer Optimization on bath composition and electroless parameters performed by Taguchi method. Black-Right-Pointing-Pointer Using minimum chemicals usage, maximum plating rate of copper obtained. Black-Right-Pointing-Pointer Uniform copper shells with 10 nm thicknesses were fabricated on the Al{sub 2}O{sub 3} nanoparticles. - Abstract: In this study, Al{sub 2}O{sub 3}/Cu core-shell nanostructure was fabricated by electroless plating of copper on Al{sub 2}O{sub 3} particles. In order to reach to the maximum efficiency of electroless deposition, the influence of main effective parameters such as type of pretreatment process, HCHO/CuSO{sub 4}{center_dot}5H{sub 2}O molar ratio, C{sub 4}H{sub 4}O{sub 6}KNa{center_dot}4H{sub 2}O/CuSO{sub 4}{center_dot}5H{sub 2}O molar ratio, pH, pouring rate, concentration of Al{sub 2}O{sub 3} particles, bath temperature, plating time, stirring speed and Al{sub 2}O{sub 3} particle size were investigated. The morphology, uniformity, and chemical composition of the activated and Cu coated Al{sub 2}O{sub 3} particles were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The results show that, by optimization on the electroless bath composition and the process parameters, using minimum chemicals usage maximum copper plating rate of 19.51% on the surface of Al{sub 2}O{sub 3} particles is obtained. As result of copper deposition on the surface of Al{sub 2}O{sub 3} nanoparticles, uniform shells with about 10 nm thicknesses was fabricated on the Al{sub 2}O{sub 3} nanoparticles.

  12. Co@Pt Core@Shell nanoparticles encapsulated in porous carbon derived from zeolitic imidazolate framework 67 for oxygen electroreduction in alkaline media

    Science.gov (United States)

    Wang, Likai; Tang, Zhenghua; Yan, Wei; Wang, Qiannan; Yang, Hongyu; Chen, Shaowei

    2017-03-01

    Nanocomposites based on Co@Pt core@shell nanoparticles encapsulated in nitrogen-doped porous carbons were prepared as a new type of high-performance electrocatalysts for oxygen reduction reaction (ORR). Controlled pyrolysis of zeolitic imidazolate framework 67 (ZIF-67) led to the formation of Co nanoparticles encapsulated in nitrogen-doped porous carbon (Co-NC), which underwent galvanic replacement reactions with K2PtCl4 forming Co@Pt core@shell nanoparticles. The surface microstructure and composition of the resulting Co@Pt-NC nanocomposite were examined by electron microscopic as well as X-ray photoelectron spectroscopic (XPS) measurements. With the Co@Pt particles encapsulated in nitrogen-doped porous carbon, the hybrids exhibited a high specific surface area and abundant catalytically active sites for ORR. Electrochemically, the specific activity and mass activity of the Co@Pt-NC composite at +0.85 V (0.145 mA cm-2 and 71.9 A g-1) were superior to those of commercial Pt/C (0.123 mA cm-2 and 38.4 A g-1). Furthermore, the Co@Pt-NC composite also exhibited remarkably higher durability and more robust tolerance against methanol crossover than commercial Pt/C.

  13. A general and high-yield galvanic displacement approach to Au-M (M = Au, Pd, and Pt) core-shell nanostructures with porous shells and enhanced electrocatalytic performances.

    Science.gov (United States)

    Kuai, Long; Geng, Baoyou; Wang, Shaozhen; Sang, Yan

    2012-07-23

    In this work, we utilize the galvanic displacement synthesis and make it a general and efficient method for the preparation of Au-M (M = Au, Pd, and Pt) core-shell nanostructures with porous shells, which consist of multilayer nanoparticles. The method is generally applicable to the preparation of Au-Au, Au-Pd, and Au-Pt core-shell nanostructures with typical porous shells. Moreover, the Au-Au isomeric core-shell nanostructure is reported for the first time. The lower oxidation states of Au(I), Pd(II), and Pt(II) are supposed to contribute to the formation of porous core-shell nanostructures instead of yolk-shell nanostructures. The electrocatalytic ethanol oxidation and oxygen reduction reaction (ORR) performance of porous Au-Pd core-shell nanostructures are assessed as a typical example for the investigation of the advantages of the obtained core-shell nanostructures. As expected, the Au-Pd core-shell nanostructure indeed exhibits a significantly reduced overpotential (the peak potential is shifted in the positive direction by 44 mV and 32 mV), a much improved CO tolerance (I(f)/I(b) is 3.6 and 1.63 times higher), and an enhanced catalytic stability in comparison with Pd nanoparticles and Pt/C catalysts. Thus, porous Au-M (M = Au, Pd, and Pt) core-shell nanostructures may provide many opportunities in the fields of organic catalysis, direct alcohol fuel cells, surface-enhanced Raman scattering, and so forth.

  14. Designing 3D interconnected continuous nanoporous Co/CoO core-shell nanostructure electrodes for a high-performance pseudocapacitor

    Science.gov (United States)

    Qing, Chen; Zhou, Qin; Qu, Gan; Chen, Xinqi; Wang, Hai; Sun, Daming; Wang, Bixiao; Xu, Lifeng; Tang, Yiwen

    2017-02-01

    A high-performance supercapacitor electrode is designed and fabricated with the 3D interconnected continuous nanoporous Co/CoO core-shell hybrid nanostructure grown on nickel foam. The Co/CoO core-shell hybrid nanostructures are obtained via a hydrothermal method, followed by high-temperature annealing in hydrogen atmosphere, and finally placed in air at 50 °C for 1 h. The Co/CoO core-shell nanostructure assembled by a conductive metal-core and a CoO shell, brings low resistance, high specific capacitance of 5.632 F cm-2 and good capability stability (81.5% capacitance retention after 6000 cycles). An asymmetric supercapacitor device built by the Co/CoO (positive electrode) and activated carbon (negative electrode) can deliver a working voltage of 1.7 V and display a high energy density of 0.002 67 Wh cm-2 at a power density of 0.001 62 W cm-2, which is far superior to that of a supercapacitor at a similar power density.

  15. A novel and greener approach for shape controlled synthesis of gold and gold-silver core shell nanostructure and their application in optical coatings.

    Science.gov (United States)

    Sinha, Tanur; Ahmaruzzaman, M

    2015-06-15

    Green and facile synthetic methods have gained marvellous fame for the production of polyhedral, anisotropic and spherical gold, and gold-silver bimetallic nanostructures. The useful pivotal characteristics of a green procedure are the usage of environment benign solvent medium, reducing and stabilising agents, and shorter reaction time. We describe here a novel, and greener method for the production of gold and gold-silver core shell nanostructures using aqueous fish scales extract of the Labeo rohita. The effect of various reaction parameters, such as temperature and concentration for the synthesis of the nanostructures were studied. Results indicated that triangular and decahedron gold nanostructures were formed at a lower temperature (40°C) and concentration (10%). While, icosahedral and spherical gold nanostructures were produced at a comparatively higher temperature (100°C) and concentration (40%). The study also revealed that the core-shell bimetallic nanostructures with different morphologies (spherical and oval-shape) were formed at different ratios of chloroaurate and silver nitrate solution. Thus, the present study indicated a simple shape controlled synthesis of gold and gold silver core-shell nanostructures. The synthesised gold nanotriangles were coated over the glass substrate and found to be highly efficient in absorbing infra-red radiations for potential architectural applications. Therefore, the study demonstrated the facile usage of gold nanotriangles for optical coatings. The present strategy depicted the dual functional ability of the fish scale extract as reducing and stabilising agents. This strategy also eliminates the usage of hazardous chemicals, toxic solvents and harsh reducing and stabilizing agents.

  16. Synthesis of AlNiCo core/shell nanopowders

    Energy Technology Data Exchange (ETDEWEB)

    Genc, A.M.; Akdeniz, M.V.; Ozturk, T.; Kalay, Y.E., E-mail: ekalay@metu.edu.tr

    2016-11-01

    Magnetic core/shell nanostructures have been recently received much interest owing to their utmost potential in permanent magnetic applications. In the present work, AlNiCo permanent magnet powders were synthesized by ball milling and a core/shell nanostructure was obtained using RF induced plasma. The effects of particle size and nanoshell structure on the magnetic properties were investigated in details. The coercivity of AlNiCo powders was found to increase with decreasing particle size, exclusively nanopowders encapsulated with Fe{sub 3}O{sub 4} shell showed the highest coercivity values. The shell structure produced during plasma reaction was found to form a resistant layer against oxidation of metallic nanoparticles. - Highlights: • FeCo–NiAl (core) and Fe{sub 3}O{sub 4} (shell) nanostructures were synthesized. • Coercivity was increased to 250 Oe. • The oxide coating acts as a protection layer.

  17. Nanocrystalline p-hydroxyacetanilide (paracetamol) and gold core-shell structure as a model drug deliverable organic-inorganic hybrid nanostructure

    Science.gov (United States)

    Das, Subhojit; Paul, Anumita; Chattopadhyay, Arun

    2013-09-01

    We report on the generation of core-shell nanoparticles (NPs) having an organic nanocrystal (NC) core coated with an inorganic metallic shell, being dispersed in aqueous medium. First, NCs of p-hydroxyacetanilide (pHA)--known also as paracetamol--were generated in an aqueous medium. Transmission electron microscopy (TEM) and powder X-ray diffraction (XRD) evidenced the formation of pHA NCs and of their crystalline nature. The NCs were then coated with Au to form pHA@Au core-shell NPs, where the thickness of the Au shell was on the order of nanometers. The formation of Au nanoshell--surrounding pHA NC--was confirmed from its surface plasmon resonance (SPR) band in the UV/Vis spectrum and by TEM measurements. Further, on treatment of the core-shell particles with a solution comprising NaCl and HCl (pH encapsulating drug molecules, in their crystalline forms, for slow as well as targeted release.We report on the generation of core-shell nanoparticles (NPs) having an organic nanocrystal (NC) core coated with an inorganic metallic shell, being dispersed in aqueous medium. First, NCs of p-hydroxyacetanilide (pHA)--known also as paracetamol--were generated in an aqueous medium. Transmission electron microscopy (TEM) and powder X-ray diffraction (XRD) evidenced the formation of pHA NCs and of their crystalline nature. The NCs were then coated with Au to form pHA@Au core-shell NPs, where the thickness of the Au shell was on the order of nanometers. The formation of Au nanoshell--surrounding pHA NC--was confirmed from its surface plasmon resonance (SPR) band in the UV/Vis spectrum and by TEM measurements. Further, on treatment of the core-shell particles with a solution comprising NaCl and HCl (pH encapsulating drug molecules, in their crystalline forms, for slow as well as targeted release. Electronic supplementary information (ESI) available: See DOI: 10.1039/c3nr03566b

  18. Molecular dynamics study on core-shell structure stability of aluminum encapsulated by nano-carbon materials

    Science.gov (United States)

    Yi, Qingwen; Xu, Jingcheng; Liu, Yi; Zhai, Dong; Zhou, Kai; Pan, Deng

    2017-02-01

    A ReaxFF reactive forcefield for aluminum-carbon composite system has been developed to investigate structural stability and thermal decomposition mechanism of nano-carbon materials coating aluminum particles. Research results indicated the Al@C particles were structurally stable in a broad temperature range from room temperature up to 2735 K. In particular, the broken carbon cage self-healed to reconstruct a more stable Al@C core-shell structure after Al atoms sequentially departing from carbon cage during thermal decomposition, proffering an effective protection for aluminum surface-activeness.

  19. Core-Shell Nanostructure of α-Fe2O3/Fe3O4: Synthesis and Photocatalysis for Methyl Orange

    Directory of Open Access Journals (Sweden)

    Yang Tian

    2011-01-01

    Full Text Available Fe3O4 nanoparticle was synthesized in the solution involving water and ethanol. Then, α-Fe2O3 shell was produced in situ on the surface of the Fe3O4 nanoparticle by surface oxidation in molten salts, forming α-Fe2O3/Fe3O4 core-shell nanostructure. It was showed that the magnetic properties transformed from ferromagnetism to superparamagnetism after the primary Fe3O4 nanoparticles were oxidized. Furthermore, the obtained α-Fe2O3/Fe3O4 core-shell nanoparticles were used to photocatalyse solution of methyl orange, and the results revealed that α-Fe2O3/Fe3O4 nanoparticles were more efficient than the self-prepared α-Fe2O3 nanoparticles. At the same time, the photocatalyzer was recyclable by applying an appropriate magnetic field.

  20. Degradation of synthetic pollutants in real wastewater using laccase encapsulated in core-shell magnetic copper alginate beads.

    Science.gov (United States)

    Le, Thao Thanh; Murugesan, Kumarasamy; Lee, Chung-Seop; Vu, Chi Huong; Chang, Yoon-Seok; Jeon, Jong-Rok

    2016-09-01

    Immobilization of laccase has been highlighted to enhance their stability and reusability in bioremediation. In this study, we provide a novel immobilization technique that is very suitable to real wastewater treatment. A perfect core-shell system composing copper alginate for the immobilization of laccase (Lac-beads) was produced. Additionally, nFe2O3 was incorporated for the bead recycling through magnetic force. The beads were proven to immobilize 85.5% of total laccase treated and also to be structurally stable in water, acetate buffer, and real wastewater. To test the Lac-beads reactivity, triclosan (TCS) and Remazol Brilliant Blue R (RBBR) were employed. The Lac-beads showed a high percentage of TCS removal (89.6%) after 8h and RBBR decolonization at a range from 54.2% to 75.8% after 4h. Remarkably, the pollutants removal efficacy of the Lac-beads was significantly maintained in real wastewater with the bead recyclability, whereas that of the corresponding free laccase was severely deteriorated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Core/shell nanostructured Na3V2(PO4)3/C/TiO2 composite nanofibers as a stable anode for sodium-ion batteries

    Science.gov (United States)

    Zhu, Qing; Wang, Man; Nan, Bo; Shi, Haohong; Zhang, Xinmei; Deng, Yonghong; Wang, Liping; Chen, Quanqi; Lu, Zhouguang

    2017-09-01

    Na3V2(PO4)3/C/TiO2 (NVP/C/TiO2) composite nanofibers with core/shell nanostructure are prepared by coaxial electrospinning plus heat treatment method. The physical and electrochemical performances of NVP/C/TiO2 nanofibers are investigated by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and electrochemical tests. The results show that the composite nanofibers are made of TiO2/C nanoparticles shell and Na3V2(PO4)3/C nanofibers core with embedded TiO2/C nanoparticles. NVP/C/TiO2 nanofibers exhibite much better electrochemical performance than both TiO2/C and Na3V2(PO4)3/C nanofibers prepared by coaxial electrospinning method. The core-shelled NVP/C/TiO2 nanofibers delivere a reversible capacity of 196.1 mAh g-1 at 0.2C (35.6 mA g-1) in the voltage of 0.01-3.0 V (vs.Na+/Na), which is higher than the theoretical capacity of 178 mAh g-1 for Na3V2(PO4)3 and that of TiO2/C composite. NVP/C/TiO2 also displays excellent cycle stability and rate capability. Even at a high rate of 20C, it can still release a high reversible charge capacity of 109 mAh g-1 and retain a capacity of more than 70 mAh g-1 after 1500 cycles. The special microstructure and synergetic effects of Na3V2(PO4)3, conductive carbon and ultrafine TiO2 are responsible for the excellent electrochemical performance. This facile strategy exhibits superiority in fabricating core-shell nanostructured composite nanofibers as promising electrode materials for energy storage devices.

  2. Nanostructured polyaniline-decorated Pt/C@PANI core-shell catalyst with enhanced durability and activity.

    Science.gov (United States)

    Chen, Siguo; Wei, Zidong; Qi, XueQiang; Dong, Lichun; Guo, Yu-Guo; Wan, Lijun; Shao, Zhigang; Li, Li

    2012-08-15

    We have designed and synthesized a polyaniline (PANI)-decorated Pt/C@PANI core-shell catalyst that shows enhanced catalyst activity and durability compared with nondecorated Pt/C. The experimental results demonstrate that the activity for the oxygen reduction reaction strongly depends on the thickness of the PANI shell and that the greatest enhancement in catalytic properties occurs at a thickness of 5 nm, followed by 2.5, 0, and 14 nm. Pt/C@PANI also demonstrates significantly improved stability compared with that of the unmodified Pt/C catalyst. The high activity and stability of the Pt/C@PANI catalyst is ascribed to its novel PANI-decorated core-shell structure, which induces both electron delocalization between the Pt d orbitals and the PANI π-conjugated ligand and electron transfer from Pt to PANI. The stable PANI shell also protects the carbon support from direct exposure to the corrosive environment.

  3. Palladium nanoparticles encapsulated in core-shell silica: A structured hydrogenation catalyst with enhanced activity for reduction of oxyanion water pollutants

    KAUST Repository

    Wang, Yin

    2014-10-03

    Noble metal nanoparticles have been applied to mediate catalytic removal of toxic oxyanions and halogenated hydrocarbons in contaminated water using H2 as a clean and sustainable reductant. However, activity loss by nanoparticle aggregation and difficulty of nanoparticle recovery are two major challenges to widespread technology adoption. Herein, we report the synthesis of a core-shell-structured catalyst with encapsulated Pd nanoparticles and its enhanced catalytic activity in reduction of bromate (BrO3-), a regulated carcinogenic oxyanion produced during drinking water disinfection process, using 1 atm H2 at room temperature. The catalyst material consists of a nonporous silica core decorated with preformed octahedral Pd nanoparticles that were further encapsulated within an ordered mesoporous silica shell (i.e., SiO2@Pd@mSiO2). Well-defined mesopores (2.3 nm) provide a physical barrier to prevent Pd nanoparticle (6 nm) movement, aggregation, and detachment from the support into water. Compared to freely suspended Pd nanoparticles and SiO2@Pd, encapsulation in the mesoporous silica shell significantly enhanced Pd catalytic activity (by a factor of 10) under circumneutral pH conditions that are most relevant to water purification applications. Mechanistic investigation of material surface properties combined with Langmuir-Hinshelwood modeling of kinetic data suggest that mesoporous silica shell enhances activity by promoting BrO3- adsorption near the Pd active sites. The dual function of the mesoporous shell, enhancing Pd catalyst activity and preventing aggregation of active nanoparticles, suggests a promising general strategy of using metal nanoparticle catalysts for water purification and related aqueous-phase applications.

  4. Mean-field and linear regime approach to magnetic hyperthermia of core-shell nanoparticles: can tiny nanostructures fight cancer?

    Science.gov (United States)

    Carrião, Marcus S.; Bakuzis, Andris F.

    2016-04-01

    The phenomenon of heat dissipation by magnetic materials interacting with an alternating magnetic field, known as magnetic hyperthermia, is an emergent and promising therapy for many diseases, mainly cancer. Here, a magnetic hyperthermia model for core-shell nanoparticles is developed. The theoretical calculation, different from previous models, highlights the importance of heterogeneity by identifying the role of surface and core spins on nanoparticle heat generation. We found that the most efficient nanoparticles should be obtained by selecting materials to reduce the surface to core damping factor ratio, increasing the interface exchange parameter and tuning the surface to core anisotropy ratio for each material combination. From our results we propose a novel heat-based hyperthermia strategy with the focus on improving the heating efficiency of small sized nanoparticles instead of larger ones. This approach might have important implications for cancer treatment and could help improving clinical efficacy.The phenomenon of heat dissipation by magnetic materials interacting with an alternating magnetic field, known as magnetic hyperthermia, is an emergent and promising therapy for many diseases, mainly cancer. Here, a magnetic hyperthermia model for core-shell nanoparticles is developed. The theoretical calculation, different from previous models, highlights the importance of heterogeneity by identifying the role of surface and core spins on nanoparticle heat generation. We found that the most efficient nanoparticles should be obtained by selecting materials to reduce the surface to core damping factor ratio, increasing the interface exchange parameter and tuning the surface to core anisotropy ratio for each material combination. From our results we propose a novel heat-based hyperthermia strategy with the focus on improving the heating efficiency of small sized nanoparticles instead of larger ones. This approach might have important implications for cancer

  5. Optimized Anti-pathogenic Agents Based on Core/Shell Nanostructures and 2-((4-Ethylphenoxyethyl-N-(substituted-phenylcarbamothioyl-benzamides

    Directory of Open Access Journals (Sweden)

    Mariana Carmen Chifiriuc

    2012-10-01

    Full Text Available The purpose of this study was to design a new nanosystem for catheter surface functionalization with an improved resistance to Staphylococcus aureus ATCC 25923 and Pseudomonas aeruginosa ATCC 27853 colonization and subsequent biofilm development. New 2-((4 ethylphenoxymethyl-N-(substituted-phenylcarbamothioyl-benzamides were synthesized and used for coating a core/shell nanostructure. Their chemical structures were elucidated by NMR, IR and elemental analysis, being in agreement with the proposed ones. Fe3O4/C12 of up to 5 nm size had been synthesized with lauric acid as a coating agent and characterized by XRD, FT-IR, TGA, TEM and biological assays. The catheter pieces were coated with the fabricated nanofluid in magnetic field. The microbial adherence ability was investigated in 6 multiwell plates by using culture based methods and Scanning Electron Microscopy (SEM. The nanoparticles coated with the obtained compounds 1a–c inhibited the adherence and biofilm development ability of the S. aureus and P. aeruginosa tested strains on the catheter functionalized surface, as shown by the reduction of viable cell counts and SEM examination of the biofilm architecture. Using the novel core/shell/adsorption-shell to inhibit the microbial adherence could be of a great interest for the biomedical field, opening new directions for the design of film-coated surfaces with improved anti-biofilm properties.

  6. Construction of Hierarchical α-MnO2 Nanowires@Ultrathin δ-MnO2 Nanosheets Core-Shell Nanostructure with Excellent Cycling Stability for High-Power Asymmetric Supercapacitor Electrodes.

    Science.gov (United States)

    Ma, Zhipeng; Shao, Guangjie; Fan, Yuqian; Wang, Guiling; Song, Jianjun; Shen, Dejiu

    2016-04-13

    Poor electrical conductivity and mechanical instability are two major obstacles to realizing high performance of MnO2 as pseudocapacitor material. The construction of unique hierarchical core-shell nanostructures, therefore, plays an important role in the efficient enhancement of the rate capacity and the stability of this material. We herein report the fabrication of a hierarchical α-MnO2 nanowires@ultrathin δ-MnO2 nanosheets core-shell nanostructure by adopting a facile and practical solution-phase technique. The novel hierarchical nanostructures are composed of ultrathin δ-MnO2 nanosheets with a few atomic layers growing well on the surface of the ultralong α-MnO2 nanowires. The first specific capacitance of hierarchical core-shell nanostructure reached 153.8 F g(-1) at the discharge current density of as high as 20 A g(-1), and the cycling stability is retained at 98.1% after 10,000 charge-discharge cycles, higher than those in the literature. The excellent rate capacity and stability of the hierarchical core-shell nanostructures can be attributed to the structural features of the two MnO2 crystals, in which a 1D α-MnO2 nanowire core provides a stable structural backbone and the ultrathin 2D δ-MnO2 nanosheet shell creates more reactive active sites. The synergistic effects of different dimensions also contribute to the superior rate capability.

  7. Synthesis of tunable core-shell nanostructures based on TiO2-graphene architectures and their application in the photodegradation of rhodamine dyes

    Science.gov (United States)

    Biris, Alexandru R.; Toloman, Dana; Popa, Adriana; Lazar, Mihaela D.; Kannarpady, Ganesh K.; Saini, Viney; Watanabe, Fumiya; Chhetri, Bijay Paudel; Ghosh, Anindya; Biris, Alexandru S.

    2016-07-01

    We present the synthesis of core-shell nanostructural materials with multi-component architectures based on TiO2 and graphitic layers. The composites have been synthesized by chemical vapor deposition with methane as the carbon source, for 5, 10, 30 and 45 min. The final products were characterized by a combination of analytical approaches which include: electron microscopy, Raman, FT-IR and UV-vis spectroscopy as well as thermogravimetric analysis. The amount of graphene shells covering the TiO2 surfaces was found to vary linearly with the reaction time. Furthermore, the compounds were shown to have excellent stability and photocatalytic activity towards the UV degradation of rhodamine (RhB) dye solution at room temperature. These composites could have major applications in the area of environmental cleaning of various pollutants, electrochemistry or nanomedicine.

  8. Optically enhanced SnO{sub 2}/CdSe core/shell nanostructures grown by sol-gel spin coating method

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Vijay, E-mail: vijaynadda83@gmail.com; Goswami, Y. C. [School of Physical Sciences, ITM University, Turari, Gwalior, MP 474001 (India); Rajaram, P. [School of Studies in Physics, Jiwaji University, Gwalior MP 474011 (India)

    2015-08-28

    Synthesis of SnO{sub 2}/CdSe metal oxide/ chalcogenide nanostructures on glass micro slides using ultrasonic sol-gel process followed by spin coating has been reported. Stannous chloride, cadmium chloride and selenium dioxide compounds were used for Sn, Cd and Se precursors respectively. Ethylene glycol was used as complexing agent. The samples were characterized by XRD, SEM, AFM and UV-spectrophotometer. All the peaks shown in diffractograms are identified for SnO{sub 2}. Peak broadening observed in core shell due to stress behavior of CdSe lattice. Scanning electron microscope and AFM exhibits the conversion of cluster in to nanorods structures forms. Atomic force microscope shows the structures in nanorods form and a roughness reduced 1.5194 nm by the deposition of CdSe. Uv Visible spectra shows a new absorption edge in the visible region make them useful for optoelectronic applications.

  9. Optically enhanced SnO2/CdSe core/shell nanostructures grown by sol-gel spin coating method

    Science.gov (United States)

    Kumar, Vijay; Rajaram, P.; Goswami, Y. C.

    2015-08-01

    Synthesis of SnO2/CdSe metal oxide/ chalcogenide nanostructures on glass micro slides using ultrasonic sol-gel process followed by spin coating has been reported. Stannous chloride, cadmium chloride and selenium dioxide compounds were used for Sn, Cd and Se precursors respectively. Ethylene glycol was used as complexing agent. The samples were characterized by XRD, SEM, AFM and UV-spectrophotometer. All the peaks shown in diffractograms are identified for SnO2. Peak broadening observed in core shell due to stress behavior of CdSe lattice. Scanning electron microscope and AFM exhibits the conversion of cluster in to nanorods structures forms. Atomic force microscope shows the structures in nanorods form and a roughness reduced 1.5194 nm by the deposition of CdSe. Uv Visible spectra shows a new absorption edge in the visible region make them useful for optoelectronic applications.

  10. Dynamics study of green AuNP formation and their basis for Au-Pt core-shell nanostructure synthesis

    DEFF Research Database (Denmark)

    Engelbrekt, Christian; Seselj, Nedjeljko; Ulstrup, Jens

    The SAMENS method (saccharide - based approach to metallic nanostructure synthesis) is a synthesis platform for metallic nanostructures. The method has been developed since 2008 and can produce nanostructures of various sizes, shapes and compositions. Recently, a new methodology for studying the ...

  11. Light absorption processes and optimization of ZnO/CdTe core-shell nanowire arrays for nanostructured solar cells

    Science.gov (United States)

    Michallon, Jérôme; Bucci, Davide; Morand, Alain; Zanuccoli, Mauro; Consonni, Vincent; Kaminski-Cachopo, Anne

    2015-02-01

    The absorption processes of extremely thin absorber solar cells based on ZnO/CdTe core-shell nanowire (NW) arrays with square, hexagonal or triangular arrangements are investigated through systematic computations of the ideal short-circuit current density using three-dimensional rigorous coupled wave analysis. The geometrical dimensions are optimized for optically designing these solar cells: the optimal NW diameter, height and array period are of 200 ± 10 nm, 1-3 μm and 350-400 nm for the square arrangement with CdTe shell thickness of 40-60 nm. The effects of the CdTe shell thickness on the absorption of ZnO/CdTe NW arrays are revealed through the study of two optical key modes: the first one is confining the light into individual NWs, the second one is strongly interacting with the NW arrangement. It is also shown that the reflectivity of the substrate can improve Fabry-Perot resonances within the NWs: the ideal short-circuit current density is increased by 10% for the ZnO/fluorine-doped tin oxide (FTO)/ideal reflector as compared to the ZnO/FTO/glass substrate. Furthermore, the optimized square arrangement absorbs light more efficiently than both optimized hexagonal and triangular arrangements. Eventually, the enhancement factor of the ideal short-circuit current density is calculated as high as 1.72 with respect to planar layers, showing the high optical potentiality of ZnO/CdTe core-shell NW arrays.

  12. Light absorption processes and optimization of ZnO/CdTe core-shell nanowire arrays for nanostructured solar cells.

    Science.gov (United States)

    Michallon, Jérôme; Bucci, Davide; Morand, Alain; Zanuccoli, Mauro; Consonni, Vincent; Kaminski-Cachopo, Anne

    2015-02-20

    The absorption processes of extremely thin absorber solar cells based on ZnO/CdTe core-shell nanowire (NW) arrays with square, hexagonal or triangular arrangements are investigated through systematic computations of the ideal short-circuit current density using three-dimensional rigorous coupled wave analysis. The geometrical dimensions are optimized for optically designing these solar cells: the optimal NW diameter, height and array period are of 200 ± 10 nm, 1-3 μm and 350-400 nm for the square arrangement with CdTe shell thickness of 40-60 nm. The effects of the CdTe shell thickness on the absorption of ZnO/CdTe NW arrays are revealed through the study of two optical key modes: the first one is confining the light into individual NWs, the second one is strongly interacting with the NW arrangement. It is also shown that the reflectivity of the substrate can improve Fabry-Perot resonances within the NWs: the ideal short-circuit current density is increased by 10% for the ZnO/fluorine-doped tin oxide (FTO)/ideal reflector as compared to the ZnO/FTO/glass substrate. Furthermore, the optimized square arrangement absorbs light more efficiently than both optimized hexagonal and triangular arrangements. Eventually, the enhancement factor of the ideal short-circuit current density is calculated as high as 1.72 with respect to planar layers, showing the high optical potentiality of ZnO/CdTe core-shell NW arrays.

  13. Dual Functional Core-Shell Fluorescent Ag2S@Carbon Nanostructure for Selective Assay of E. coli O157:H7 and Bactericidal Treatment.

    Science.gov (United States)

    Wang, Ning; Wei, Xing; Zheng, An-Qi; Yang, Ting; Chen, Ming-Li; Wang, Jian-Hua

    2017-03-24

    A dual functional fluorescent core-shell Ag2S@Carbon nanostructure is prepared by a hydrothermally assisted multi-amino synthesis approach with folic acid (FA), polyethylenimine (PEI), and mannoses (Mans) as carbon and nitrogen sources (FA-PEI-Mans-Ag2S nanocomposite shortly as Ag2S@C). The nanostructure exhibits strong fluorescent emission at λex/λem = 340/450 nm with a quantum yield of 12.57 ± 0.52%. Ag2S@C is bound to E. coli O157:H7 via strong interaction with the Mans moiety in Ag2S@C with FimH proteins on the fimbriae tip in E. coli O157:H7. Fluorescence emission from Ag2S@C/E. coli conjugate is closely related to the content of E. coli O157:H7. Thus, a novel procedure for fluorescence assay of E. coli O157:H7 is developed, offering a detection limit of 330 cfu mL(-1). Meanwhile, the Ag2S@C nanostructure exhibits excellent antibacterial performance against E. coli O157:H7. A 99.9% sterilization rate can be readily achieved for E. coli O157:H7 at a concentration of 10(6)-10(7) cfu mL(-1) with 3.3 or 10 μg mL(-1) of Ag2S@C with an interaction time of 5 or 0.5 min, respectively.

  14. Structural evolution of SnO 2 nanostructure from core-shell faceted pyramids to nanorods and its gas-sensing properties

    Science.gov (United States)

    Das, Soumen; Kim, Dae-Young; Choi, Cheol-Min; Hahn, Y. B.

    2011-01-01

    Tin oxide (SnO 2) nanorods were synthesized through an aqueous hexamethylenetetramine (HMTA) assisted synthesis route and their structural evolution from core-shell type faceted pyramidal assembly was investigated. Structural analysis revealed that the as-synthesized faceted SnO 2 structures were made of randomly arranged nanocrystals with diameter of 2-5 nm. The shell thickness (0-80 nm) was dependent on the molar concentration of HMTA (1-10 mM) in aqueous solution. It was revealed that the self-assembly was possible only with tin (II) chloride solution as precursor and not with tin (IV) chloride solution. At longer synthesis hours, the pyramidal nanostructures were gradually disintegrated into single crystalline nanorods with diameter of about 5-10 nm and length of about 100-200 nm. The SnO 2 nanorods showed high sensitivity towards acetone, but they were relatively less sensitive to methane, butane, sulfur dioxide, carbon monoxide and carbon dioxide. Possible mechanisms for the growth and sensing properties of the nanostructures were discussed.

  15. Nanostructured multifunctional core/shell ternary composite of polyaniline-chitosan-cobalt oxide: Preparation, electrical and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Mini, V., E-mail: vminijay@gmail.com; Archana, Kamath, E-mail: archana.kamath91@gmail.com; Raghu, S., E-mail: raghumona@gmail.com; Sharanappa, C.; Devendrappa, H., E-mail: dehu2010@gmail.com

    2016-02-15

    This paper is a report on synthesis and analysis of the structure, morphology, and physicochemical properties of a three-component-Polyaniline/Chitosan/Co{sub 3}O{sub 4} – (CPAESCO)-hierarchical core/shell ternary nanocomposite. This was achieved by Fourier Transform Infrared Spectroscopy (FT-IR), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Thermo Gravimetric Analysis (TGA), Electrical Conductivity and UV–Visible analysis. The chemical bonding established in the composites were confirmed by using FT-IR. XRD patterns helped analysis of intensity variation of Co{sub 3}O{sub 4} peaks, polyaniline (PAES) peaks, Crystallite size (D) and inter-crystallite separation (R) of the composites. Thermal stability increases and electrical property shows a step wise increase with increase in nanoparticle addition. Morphological changes from granular PAES to plate like CPAESCO is visible in SEM. The polaron lattice structures, hypsochromic shift, and crystallite size dependent band gaps in CPAESCO due to energy confinement produced from ligand-metal charge transfer (LMCT) interaction of Co{sub 3}O{sub 4} in PAES matrix, are visible in UV–Vis spectra. The improved properties of the composite are as a result of the formation of core/double shell as shown in TEM. This nanocomposite can be used in optoelectronic and biomedical applications, catalysis, chemical and bio sensors, and energy storage devices because of its enhanced properties. - Highlights: • An advanced ternary Core/shellnano compositewith novel properties prepared. • Small amounts of Nanoparticles to the Polyaniline –Chitosan matrix showed dramatic changes in properties. • Introduced Multifunctionality to emaraldine salt-Structural, Electrical, optical and Biocompatibility. • Step wise change in conductivity and band structure modifications are discussed in detail.

  16. Photo-physical properties enhancement of bare and core-shell quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Mumin, Md Abdul, E-mail: pcharpentier@eng.uwo.ca; Akhter, Kazi Farida, E-mail: pcharpentier@eng.uwo.ca; Charpentier, Paul A., E-mail: pcharpentier@eng.uwo.ca [Chemical and Biochemical Engineering, Western University, London Ontario (Canada)

    2014-03-31

    Semiconductor nanocrystals (NCs) (also known as quantum dots, QDs) have attracted immense attention for their size-tunable optical properties that makes them impressive candidates for solar cells, light emitting devices, lasers, as well as biomedical imaging. However monodispersity, high and consistent photoluminescence, photostability, and biocompatibility are still major challenges. This work focuses on optimizing the photophysical properties and biocompatibility of QDs by forming core-shell nanostructures and their encapsulation by a carrier. Highly luminescent CdS and CdS-ZnS core-shell QDs with 5 nm sizes were synthesized using a facile approach based on pyrolysis of the single molecule precursors. After capping the CdS QDs with a thin layer of ZnS to reduce toxicity, the photoluminescence and photostability of the core-shell QDs was significantly enhanced. To make both the bare and core/shell structure QDs more resistant against photochemical reactions, a mesoporous silica layer was grown on the QDs through a reverse microemulsion technique based on hydrophobic interaction. This encapsulation enhanced the quantum yield and photostability compared to the bare QDs by providing much stronger resistance to oxidation and Oswald ripening of QDs. Encapsulation also improved biocompatibility of QDs that was evaluated with human umbilical vein endothelial cell lines (HUVEC)

  17. Photo-physical properties enhancement of bare and core-shell quantum dots

    Science.gov (United States)

    Mumin, Md Abdul; Akhter, Kazi Farida; Charpentier, Paul A.

    2014-03-01

    Semiconductor nanocrystals (NCs) (also known as quantum dots, QDs) have attracted immense attention for their size-tunable optical properties that makes them impressive candidates for solar cells, light emitting devices, lasers, as well as biomedical imaging. However monodispersity, high and consistent photoluminescence, photostability, and biocompatibility are still major challenges. This work focuses on optimizing the photophysical properties and biocompatibility of QDs by forming core-shell nanostructures and their encapsulation by a carrier. Highly luminescent CdS and CdS-ZnS core-shell QDs with 5 nm sizes were synthesized using a facile approach based on pyrolysis of the single molecule precursors. After capping the CdS QDs with a thin layer of ZnS to reduce toxicity, the photoluminescence and photostability of the core-shell QDs was significantly enhanced. To make both the bare and core/shell structure QDs more resistant against photochemical reactions, a mesoporous silica layer was grown on the QDs through a reverse microemulsion technique based on hydrophobic interaction. This encapsulation enhanced the quantum yield and photostability compared to the bare QDs by providing much stronger resistance to oxidation and Oswald ripening of QDs. Encapsulation also improved biocompatibility of QDs that was evaluated with human umbilical vein endothelial cell lines (HUVEC).

  18. Characterisation of 3D-GaN/InGaN core-shell nanostructures by transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Griffiths, Ian; Cherns, David [School of Physics, H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol, BS8 1TL (United Kingdom); Wang, Xue; Wehman, Hergo-Heinrich; Waag, Andreas [Institute of Semiconductor Technology, Braunschweig University of Technology, Hans-Sommer-Strasse 66, 38106 Braunschweig (Germany); Mandl, Martin; Strassburg, Martin [Osram Opto Semiconductors GmbH, Leibnizstrasse 4, 93055 Regensburg (Germany)

    2014-04-15

    Transmission and scanning electron microscopy have been used to characterise GaN/InGaN 3D nanostructures grown on patterned GaN/sapphire substrates by metal organic vapour phase epitaxy (MOVPE). It has been found that the growth of well ordered arrays of such nanostructures, containing multiple quantum wells on non-polar side-facets, can be achieved with a low density of defects. Growth changes and surface morphology play a major role in the nucleation of any defects present. The nanostructure morphology has been investigated and differing growth rates on adjacent facets studied. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Core/shell formation and surface segregation of multi shell icosahedral silver-palladium bimetallic nanostructures: A dynamic and thermodynamic study

    Energy Technology Data Exchange (ETDEWEB)

    Hewage, Jinasena W., E-mail: jinasena@chem.ruh.ac.lk

    2016-05-01

    Core/shell formation and surface segregation of multi shell icosahedral bimetallic silver-palladium nanostructures with the size of 55 and 147 atoms were studied by using the Molecular Dynamics simulations, and calculating Helmholtz free energy changes in the penetration of palladium atoms from shell to core, core to shell transition of silver and melting temperatures by using statistical mechanical densities of states. In 55 atoms icosahedra, two core–shell motifs, Ag{sub 13}Pd{sub 42} and Pd{sub 13}Ag{sub 42} with their isomers Pd{sub 13}(Pd{sub 29}Ag{sub 13}) and Ag{sub 13}(Ag{sub 29}Pd{sub 13}) were considered. Similarly in 147 atoms icosahedra, all mutations corresponding to the occupations of either silver atoms or palladium atoms in the core, inner shell or outer shell and their isomers generated by interchanging thirteen core atoms with thirteen atoms of the other type in the inner and outer shells were considered. It is found that the palladium-core clusters are more stable than the silver-core clusters and cohesive energy increases with the palladium composition. Phase transition of each cluster was studied by means of constant volume heat capacity. The trend in variation of melting temperature is accordance with the energy trend. Helmholtz free energy changes in palladium penetration, core to shell transition of silver and in surface mixing and segregation revealed the thermodynamic stability of the formation of Pd{sub core}Ag{sub shell} structures especially at silver rich environment and the surface segregation of silver. - Highlights: • Nanostructures of Pd{sub m}Ag{sub n} clusters for m + n = 55 and 147 have been studied. • Structures favor the formation of palladium-core surrounded by silver shell. • Calculated thermodynamic parameters confirm the energetic results. • Core/shell formation is favored at concentration of silver. • Silver segregation on surface while palladium penetration to core is observed.

  20. Orientation-induced enhancement in electromagnetic properties of ZnFe2O4/SiO2/PANI core/shell/shell nanostructured disks

    Science.gov (United States)

    Wang, Jiaheng; Or, Siu Wing

    2016-05-01

    ZnFe2O4/SiO2/PANI (ZSP) core/shell/shell nanostructured disks are prepared and fabricated into paraffin-bonded ZSP composite rings with random, vertical, and horizontal orientations of the easy magnetization planes of the ZSP disks in the paraffin binder in order to study the effect of directional orientation of the easy magnetization planes on their electromagnetic properties. The easy magnetization planes induced by shape anisotropy and oriented by a magnetic field in the vertically oriented ring result in a general enhancement in permeability of 7-60% in the broad UHF-Ku (0.1-18 GHz) bands, while those in the horizontally oriented ring lead to a significant enhancement of 58-1100% in the low-frequency L and S (1-4 GHz) bands, in comparison with the randomly oriented ring. The observed permeability agrees with the theoretical prediction based on the Landau-Lifshitz-Gilbert equation and the Bruggeman's effective medium theory. The horizontal and vertical arrangements of dipolar polarizations in the vertically and horizontally oriented rings give rise to 3-11% enhancement and weakening in permittivity, respectively, compared to the randomly oriented ring. The enhancement in permeability also improves and broadens the electromagnetic wave absorption in both vertically and horizontally oriented rings, especially in the L and S bands for the horizontally oriented ring.

  1. Correlating the excited state relaxation dynamics as measured by photoluminescence and transient absorption with the photocatalytic activity of Au@TiO2 core-shell nanostructures.

    Science.gov (United States)

    Dillon, Robert J; Joo, Ji-Bong; Zaera, Francisco; Yin, Yadong; Bardeen, Christopher J

    2013-02-07

    The spectroscopic and photocatalytic properties of a series of Au@TiO(2) core-shell nanostructures are characterized. The crystallinity of the TiO(2) shells was varied by changing the etching and calcination conditions. Measurements of the photoluminescence, transient absorption, and H(2) production rate permit us to look for correlations between the spectroscopic and catalytic behaviors. We found that there is a strong effect of crystallinity on the H(2) production rate and also the stretched exponential lifetime of the photoluminescence created by short-wavelength (266 and 300 nm) photoexcitation. As the TiO(2) crystallinity is increased, the photoluminescence lifetime increases from 22 to 140 ps in a 1 ns detection window, while the H(2) production rate increases by a factor of ~4. There is no discernible effect of crystallinity on the photoluminescence dynamics excited at 350 or 430 nm, or on the electronic dynamics measured by femtosecond transient absorption after excitation at 300 nm. We hypothesize that high-energy photons create reactive and emissive charge-separated states in parallel, and that both species are subject to similar electron-hole recombination processes that depend on sample crystallinity. Based on our observations, it can be concluded that the photoluminescence dynamics may be used to evaluate the potential performance of this class of photocatalysts.

  2. Fe(III)-based metal-organic framework-derived core-shell nanostructure: Sensitive electrochemical platform for high trace determination of heavy metal ions.

    Science.gov (United States)

    Zhang, Zhihong; Ji, Hongfei; Song, Yingpan; Zhang, Shuai; Wang, Minghua; Jia, Changchang; Tian, Jia-Yue; He, Linghao; Zhang, Xiaojing; Liu, Chun-Sen

    2017-03-07

    A new core-shell nanostructured composite composed of Fe(III)-based metal-organic framework (Fe-MOF) and mesoporous Fe3O4@C nanocapsules (denoted as Fe-MOF@mFe3O4@mC) was synthesized and developed as a platform for determining trace heavy metal ions in aqueous solution. Herein, the mFe3O4@mC nanocapsules were prepared by calcining the hollow Fe3O4@C that was obtained using the SiO2 nanoparticles as the template, followed by composing the Fe-MOF. The Fe-MOF@mFe3O4@mC nanocomposite demonstrated excellent electrochemical activity, water stability and high specific surface area, consequently resulting in the strong biobinding with heavy-metal-ion-targeted aptamer strands. Furthermore, by combining the conformational transition interaction, which is caused by the formation of the G-quadruplex between a single-stranded aptamer and high adsorbed amounts of heavy metal ions, the developed aptasensor exhibited a good linear relationship with the logarithm of heavy metal ion (Pb(2+) and As(3+)) concentration over the broad range from 0.01 to 10.0nM. The detection limits were estimated to be 2.27 and 6.73 pM toward detecting Pb(2+) and As(3+), respectively. The proposed aptasensor showed good regenerability, excellent selectivity, and acceptable reproducibility, suggesting promising applications in environment monitoring and biomedical fields.

  3. Orientation-induced enhancement in electromagnetic properties of ZnFe2O4/SiO2/PANI core/shell/shell nanostructured disks

    Directory of Open Access Journals (Sweden)

    Jiaheng Wang

    2016-05-01

    Full Text Available ZnFe2O4/SiO2/PANI (ZSP core/shell/shell nanostructured disks are prepared and fabricated into paraffin-bonded ZSP composite rings with random, vertical, and horizontal orientations of the easy magnetization planes of the ZSP disks in the paraffin binder in order to study the effect of directional orientation of the easy magnetization planes on their electromagnetic properties. The easy magnetization planes induced by shape anisotropy and oriented by a magnetic field in the vertically oriented ring result in a general enhancement in permeability of 7–60% in the broad UHF–Ku (0.1–18 GHz bands, while those in the horizontally oriented ring lead to a significant enhancement of 58–1100% in the low-frequency L and S (1–4 GHz bands, in comparison with the randomly oriented ring. The observed permeability agrees with the theoretical prediction based on the Landau–Lifshitz–Gilbert equation and the Bruggeman’s effective medium theory. The horizontal and vertical arrangements of dipolar polarizations in the vertically and horizontally oriented rings give rise to 3–11% enhancement and weakening in permittivity, respectively, compared to the randomly oriented ring. The enhancement in permeability also improves and broadens the electromagnetic wave absorption in both vertically and horizontally oriented rings, especially in the L and S bands for the horizontally oriented ring.

  4. The effect of operational parameters on the photocatalytic degradation of Congo red organic dye using ZnO-CdS core-shell nano-structure coated on glass by Doctor Blade method.

    Science.gov (United States)

    Habibi, Mohammad Hossein; Rahmati, Mohammad Hossein

    2015-02-25

    Photocatalytic degradation of Congo red was investigated using ZnO-CdS core-shell nano-structure coated on glass by Doctor Blade method in aqueous solution under irradiation. Field-emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD) techniques were used for the morphological and structural characterization of ZnO-CdS core-shell nanostructures. XRD results showed diffractions of wurtzite zinc oxide core and wurtzite cadmium sulfide shell. FESEM results showed that nanoparticles are nearly hexagonal with an average diameter of about 50 nm. The effect of catalyst loading, UV-light irradiation time and solution pH on photocatalytic degradation of Congo red was studied and optimized values were obtained. Results showed that the employment of efficient photocatalyst and selection of optimal operational parameters may lead to complete decolorization of dye solutions. It was found that ZnO-CdS core-shell nano-structure is more favorable for the degradation of Congo red compare to pure ZnO or pure CdS due to lower electron hole recombination. The results showed that the photocatalytic degradation rate of Congo red is enhanced with increasing the content of ZnO up to ZnO(0.2 M)/CdS(0.075 M) which is reached 88.0% within 100 min irradiation.

  5. Core-shell magnetite nanoparticles surface encapsulated with smart stimuli-responsive polymer: synthesis, characterization, and LCST of viable drug-targeting delivery system.

    Science.gov (United States)

    Zhang, J L; Srivastava, R S; Misra, R D K

    2007-05-22

    We describe here the synthesis of a novel magnetic drug-targeting carrier characterized by a core-shell structure. The core-shell carrier combines the advantages of a magnetic core and the stimuli-responsive property of the thermosensitive biodegradable polymer shell (e.g., an on-off mechanism responsive to external temperature change). The composite nanoparticles are approximately 8 nm in diameter with approximately 3 nm shell. The lower critical solution temperature (LCST) is approximately 38 degrees C as determined by UV-vis absorption spectroscopy. The carrier is composed of cross-linked dextran grafted with a poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide) [dextran-g-poly(NIPAAm-co-DMAAm)] shell and superparamagnetic Fe3O4 core. Fourier transform infrared spectroscopy (FTIR) confirmed the composition of the carrier. The synthesized magnetic carrier system has potential applications in magnetic drug-targeting delivery and magnetic resonance imaging.

  6. Highly catalytic hollow palladium nanoparticles derived from silver@silver-palladium core-shell nanostructures for the oxidation of formic acid

    Science.gov (United States)

    Chen, Dong; Cui, Penglei; He, Hongyan; Liu, Hui; Yang, Jun

    2014-12-01

    Hollow Palladium (hPd) nanoparticles (NPs) are prepared via a simple and mild successive method. Firstly, core-shell NPs with silver (Ag) cores and silver-palladium (Ag-Pd) alloy shells are synthesized in aqueous phase by galvanic replacement reaction (GRR) between Ag NPs and Pd2+ ion precursors. Saturated aqueous sodium chloride (NaCl) solution was then employed to remove the Ag component from the core and shell regions of core-shell Ag@Ag-Pd NPs, resulting in the formation of hPd NPs with shrunk sizes in comparison with their core-shell parents. Specifically, the hPd NPs exhibit superior catalytic activity and durability for catalyzing the oxidation of formic acid, compared with the Pd NPs reduced by NaBH4 in aqueous solution and commercial Pd/C catalyst from Johnson Matthey, mainly due to the large electrochemically active surface areas of the hollow particles. In addition, The Ag component in core-shell Ag@Ag-Pd NPs has an unfavorable influence on catalytic activity of NPs for formic acid oxidation. However, the durability could be improved due to the electron donating effect from Ag to Pd atoms in the core-shell NPs.

  7. Studies on II-VI and III-V semiconductor nanostructures. Introduction of the core/shell/shell structure and development of CdSe nanocrystals in an automatized procedure; Untersuchungen an II-VI und III-V Halbleiternanostrukturen. Einfuehrung der Core/shell/shell-Struktur und Darstellung von CdSe-Nanokristallen in einem automatisierten Verfahren

    Energy Technology Data Exchange (ETDEWEB)

    Mekis, I.

    2005-11-15

    The work in this dissertation is focused on the development and characterization of fluorescent II-VI and III-V-Nanomaterials. Highly luminescent and photostable Nanocrystals with narrow size distributions were prepared. It was shown that nearly monodisperse CdSe-Nanocrystals could be prepared from Cd(Ac){sub 2} and TOPSe in a mixture of TOPO/TOP/HDA/TDPA. Nearly monodisperse CdSe/CdS-Core/shell-Nanocrystals have been prepared in a one-pot-synthesis by injection of H{sub 2}S-Gas into a freshly prepared crude solution of CdSe. The passivation of the CdSe-core with an inorganic shell of CdS resulted in the drastic improvement of the photoluminescence-efficiency of the colloidal solution. Reproducible room-temperature quantum yields reached up to a value of 85%. Photostability investigations have proved the enhanced stability of CdSe/CdS-Nanocrystals compared to CdSe-Nanocrystals under illumination with UV-Light. A novel type of luminescent semiconductor nanocrystal structure has been developed, consisting of a CdSe core and two anorganic shells. Highly fluorescent and nearly monodisperse CdSe/CdS/ZnS- and CdSe/ZnSe/ZnS-Core/shell/shell-nanocrystals have been prepared via organometallic- and acetate-precursors. The Core/she ll/shell particles reached reproducible room-temperature quantum yields up to 85%. Photostability investigations among CdSe-core, CdSe/CdS-Core/shell- and CdSe/CdS/ZnS- Core/shell/-shell-nanocrystals under illumination with UV-light have proved the highest photostability of the Core/shell/shell-particles. The photostabilities of CdSe/ZnSe/ZnS-and CdSe/ZnS-nanocrystals were compared under illumination with intense laser-beam in air. Another part of this work focused on the development of an automated synthesis procedure of CdSe-nanocrystals by constructing and implementing a flow-reactor system. The size and structure of prepared nanocrystals depended considerably on the Cd:Se-precursorratio and the flow-rate. The preparation of CdSe using Cd(Ac)2

  8. Enhanced structural stability of DNA origami nanostructures by graphene encapsulation

    Science.gov (United States)

    Matković, Aleksandar; Vasić, Borislav; Pešić, Jelena; Prinz, Julia; Bald, Ilko; Milosavljević, Aleksandar R.; Gajić, Radoš

    2016-02-01

    We demonstrate that a single-layer graphene replicates the shape of DNA origami nanostructures very well. It can be employed as a protective layer for the enhancement of structural stability of DNA origami nanostructures. Using the AFM based manipulation, we show that the normal force required to damage graphene encapsulated DNA origami nanostructures is over an order of magnitude greater than for the unprotected ones. In addition, we show that graphene encapsulation offers protection to the DNA origami nanostructures against prolonged exposure to deionized water, and multiple immersions. Through these results we demonstrate that graphene encapsulated DNA origami nanostructures are strong enough to sustain various solution phase processing, lithography and transfer steps, thus extending the limits of DNA-mediated bottom-up fabrication.

  9. Facile fabrication of FeN nanoparticles/nitrogen-doped graphene core-shell hybrid and its use as a platform for NADH detection in human blood serum.

    Science.gov (United States)

    Balamurugan, Jayaraman; Thanh, Tran Duy; Kim, Nam Hoon; Lee, Joong Hee

    2016-09-15

    Herein, we present a novel strategy for the synthesis of an iron nitride nanoparticles-encapsulated nitrogen-doped graphene (FeN NPs/NG) core-shell hierarchical nanostructure to boost the electrochemical performance in a highly sensitive, selective, reproducible, and stable sensing platform for nicotinamide adenine dinucleotide (NADH). This core-shell hierarchical nanostructure provides an excellent conductive network for effective charge transfer and avoids the agglomeration and restacking of NG sheets, which provides better access to the electrode material for NADH oxidation. The FeN NPs/NG core-shell hierarchical nanostructure demonstrates direct and mediatorless responses to NADH oxidation at a low potential. This material displays a high sensitivity of 0.028μA/μMcm(2), a wide linear range from 0.4 to 718μM, and a detection limit of 25nM with a fast response time of less than 3s. The interferences from common interferents, such as glucose, uric acid, dopamine, and ascorbic acid, are negligible. The fabricated sensor was further tested for the determination of NADH in human blood serum. The resulting high sensitivity, excellent selectivity, outstanding stability, and good reproducibility make the proposed FeN NPs/NG core-shell hierarchical nanostructure as a promising candidate for biomedical applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Synthesis of core-shell iron nanoparticles via a new (novel) approach

    Science.gov (United States)

    Chaudhary, Rakesh P.; Koymen, Ali R.

    2014-03-01

    Carbon-encapsulated iron (Fe) nanoparticles were synthesized by a newly developed method in toluene. Transmission Electron Microscopy (TEM) and High Resolution Transmission Electron Microscopy (HRTEM) of the as prepared sample reveal that core-shell nanostructures have been formed with Fe as core and graphitic carbon as shell. Fe nanoparticles with diameter 11nm to 102 nm are encapsulated by 6-8 nm thick graphitic carbon layers. There was no iron carbide formation observed between the Fe core and the graphitic shell. The Fe nanoparticles have body centered cubic (bcc) crystal structure. The magnetic hysteresis loop of the as synthesized powder at room temperature showed a saturation magnetization of 9 Am2 kg-1. After thermal treatment crystalline order of the samples improved and hence saturation magnetization increased to 24 Am2kg-1. We foresee that the carbon-encapsulated Fe nanoparticles are biologically friendly and could have potential applications in Magnetic Resonance Imaging (MRI) and Photothermal cancer therapy.

  11. Studies on the photo-catalytic activity of semiconductor nanostructures and their gold core-shell on the photodegradation of malathion

    Science.gov (United States)

    Mamdouh Fouad, Dina; Bakr Mohamed, Mona

    2011-11-01

    This work is devoted to the synthesis of different semiconductor nanoparticles and their metal core-shell nanocomposites such as TiO2, Au/TiO2, ZnO, and Au/ZnO. The morphology and crystal structures of the developed nanomaterials were characterized by transmission electron microscopy (TEM) and x-ray diffraction (XRD). These materials were used as catalysts for the photodegradation of malathion, which is one of the most commonly used pesticides in developing countries. The degradation of 10 ppm malathion under ultraviolet (UV) and visible light in the presence of different synthesized nanocomposites was analyzed using high performance liquid chromatography (HPLC) and UV-visible spectra. A comprehensive study was carried out for the catalytic efficiency of the prepared nanoparticles. Moreover, the effects of different factors that could influence catalytic photodegradation, such as different light sources, surface coverage and the nature of the organic contaminants, were investigated. The results indicate that the core-shell nanocomposite of semiconductor-gold serves as a better catalytic system than the semiconductor nanoparticles themselves.

  12. A combined interfacial and in-situ polymerization strategy to construct well-defined core-shell epoxy-containing SiO2-based microcapsules with high encapsulation loading, super thermal stability and nonpolar solvent tolerance

    Directory of Open Access Journals (Sweden)

    Yin Jia

    2016-10-01

    Full Text Available SiO2-based microcapsules containing hydrophobic molecules exhibited potential applications such as extrinsic self-healing, drug delivery, due to outstanding thermal and chemical stability of SiO2. However, to construct SiO2-based microcapsules with both high encapsulation loading and long-term structural stability is still a troublesome issue, limiting their further utilization. We herein design a single-batch route, a combined interfacial and in-situ polymerization strategy, to fabricate epoxy-containing SiO2-based microcapsules with both high encapsulation loading and long-term structural stability. The final SiO2-based microcapsules preserve high encapsulation loading of 85.7 wt% by controlling exclusively hydrolysis and condensed polymerization at oil/water interface in the initial interfacial polymerization step. In the subsequent in-situ polymerization step, the initial SiO2-based microcapsules as seeds could efficiently harvest SiO2 precursors and primary SiO2 particles to finely tune the SiO2 wall thickness, thereby enhancing long-term structural stability of the final SiO2-based microcapsules including high thermal stability with almost no any weight loss until 250°C, and strong tolerance against nonpolar solvents such as CCl4 with almost unchanged core-shell structure and unchanged core weight after immersing into strong solvents for up to 5 days. These SiO2-based microcapsules are extremely suited for processing them into anticorrosive coating in the presence of nonpolar solvents for self-healing application.

  13. Shape-controlled synthesis and their magnetic properties of hexapod-like, flake-like and chain-like carbon-encapsulated Fe{sub 3}O{sub 4} core/shell composites

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Junhao, E-mail: jhzhang6@mail.ustc.edu.cn [School of Material Science and Engineering, Jiangsu University of Science and Technology, Jiangsu, Zhenjiang 212003 (China); Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026 (China); Du Jin; Qian Yitai [Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026 (China); Yin Qinghuan; Zhang Dongjing [School of Material Science and Engineering, Jiangsu University of Science and Technology, Jiangsu, Zhenjiang 212003 (China)

    2010-06-15

    A shape-controlled synthesis of carbon-encapsulated Fe{sub 3}O{sub 4} core/shell (Fe{sub 3}O{sub 4}-C) composites is reported in this paper. By tuning the reaction temperature from 500 deg. C to 700 deg. C and the amount of ammonium acid carbonate (1.0 g, 0.5 g and 2.0 g) in a sealed reaction system, Fe{sub 3}O{sub 4}-C composites with hexapod-like, flake-like, and chain-like morphologies have been successfully obtained using ferrocene as the precursor. Corresponding hollow carbon structures can be obtained by acid treatments. The three kinds of Fe{sub 3}O{sub 4}-C composites show ferromagnetic properties at room temperature, while their saturation magnetizations and coercivities are obviously different from each other, due to the various shapes and structures. Possible formation processes of these Fe{sub 3}O{sub 4}-C composites and corresponding hollow carbon materials are discussed. The experimental results indicate that the reaction temperature and the amount of ammonium acid carbonate play key roles in the shape-controlled synthesis of hexapod-like, flake-like and chain-like Fe{sub 3}O{sub 4}-C composites.

  14. Rapid and effective sample cleanup based on graphene oxide-encapsulated core-shell magnetic microspheres for determination of fifteen trace environmental phenols in seafood by liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Pan, Sheng-Dong; Chen, Xiao-Hong; Shen, Hao-Yu; Li, Xiao-Ping; Cai, Mei-Qiang; Zhao, Yong-Gang; Jin, Mi-Cong

    2016-05-05

    In this study, graphene oxide-encapsulated core-shell magnetic microspheres (GOE-CS-MM) were fabricated by a self-assemble approach between positive charged poly(diallyldimethylammonium) chloride (PDDA)-modified Fe3O4@SiO2 and negative charged GO sheets via electrostatic interaction. The as-prepared GOE-CS-MM was carefully characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), vibrating sample magnetometer analysis (VSM), and X-ray photoelectron spectroscopy (XPS), and was used as a cleanup adsorbent in magnetic solid-phase extraction (MSPE) for determination of 15 trace-level environmental phenols in seafood coupled to liquid chromatography-tandem mass spectrometry (LC-MS/MS). The obtained results showed that the GOE-CS-MM exhibited excellent cleanup efficiency and could availably reduce the matrix effect. The cleanup mechanisms were investigated and referred to π-π stacking interaction and hydrogen bond between GOE-CS-MM and impurities in the extracts. Moreover, the extraction and cleanup conditions of GOE-CS-MM toward phenols were optimized in detail. Under the optimized conditions, the limits of detection (LODs) were found to be 0.003-0.06 μg kg(-1), and satisfactory recovery values of 84.8-103.1% were obtained for the tested seafood samples. It was confirmed that the developed method is simple, fast, sensitive, and accurate for the determination of 15 trace environmental phenols in seafood samples.

  15. Growth of GaN@InGaN Core-Shell and Au-GaN Hybrid Nanostructures for Energy Applications

    Directory of Open Access Journals (Sweden)

    Tevye Kuykendall

    2009-01-01

    Full Text Available We demonstrated a method to control the bandgap energy of GaN nanowires by forming GaN@InGaN core-shell hybrid structures using metal organic chemical vapor deposition (MOCVD. Furthermore, we show the growth of Au nanoparticles on the surface of GaN nanowires in solution at room temperature. The work shown here is a first step toward engineering properties that are crucial for the rational design and synthesis of a new class of photocatalytic materials. The hybrid structures were characterized by various techniques, including photoluminescence (PL, energy dispersive x-ray spectroscopy (EDS, transmission and scanning electron microscopy (TEM and SEM, and x-ray diffraction (XRD.

  16. Synthesis of h-BN encapsulated spherical core-shell structured SiO{sub 2}-Sr{sub 2}Si{sub 5}N{sub 8}:Eu{sup 2+} red phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Tang Jiaye; Zhan Cheng; Yang Lixun; Hao Luyuan [Chinese Academy of Sciences Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026 (China); Xu Xin, E-mail: xuxin@ustc.edu.cn [Chinese Academy of Sciences Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026 (China); Simeon, Agathopoulos [Materials Science and Engineering Department, University of Ioannina, GR-451 10 Ioannina (Greece)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer A facile method to synthesized high stable spherical Sr{sub 2}Si{sub 5}N{sub 8}:Eu{sup 2+} red phosphors. Black-Right-Pointing-Pointer The synthesis temperature is about 200 Degree-Sign C lower than the traditional method. Black-Right-Pointing-Pointer The h-BN protective film prevents the agglomeration between different spherical particles. Black-Right-Pointing-Pointer This spherical phosphor could be used in white LED and other display techniques. - Abstract: A facile method was designed for the successful synthesis of highly stable spherical (oxo)nitridosilicate phosphors with excellent monodispersity, high coating density and improved luminescent properties. The novel h-BN-encapsulated spherical core-shell SiO{sub 2}-Sr{sub 2}Si{sub 5}N{sub 8}:Eu{sup 2+} red-emitting phosphors were successfully synthesized by an interfacial reaction mechanism followed by a subsequent gas reduction and nitridation process. A thin film of hexagonal boron nitride (h-BN) was formed in situ during the synthesis process, leading to core-shell SiO{sub 2}-Sr{sub 2}Si{sub 5}N{sub 8}:Eu{sup 2+} phosphors with a perfectly spherical shape, narrow size distribution, non-agglomeration and a smooth surface. The particles consist of three layers: the outer h-BN film; the middle Sr{sub 2}Si{sub 5}N{sub 8}:Eu{sup 2+} phosphor shell and the amorphous SiO{sub 2} core. Under UV and blue light excitation, the SiO{sub 2}-Sr{sub 2}Si{sub 5}N{sub 8}:Eu{sup 2+} phosphors show intense red emission due to the 4f{sup 6}5d-4f{sup 7} transition of the Eu{sup 2+} ions. Furthermore, this method is superior to the traditional gas reduction and nitridation method because of the lower temperature at which synthesis occurs.

  17. Biomimetic synthesis of raspberry-like hybrid polymer-silica core-shell nanoparticles by templating colloidal particles with hairy polyamine shell.

    Science.gov (United States)

    Pi, Mengwei; Yang, Tingting; Yuan, Jianjun; Fujii, Syuji; Kakigi, Yuichi; Nakamura, Yoshinobu; Cheng, Shiyuan

    2010-07-01

    The nanoparticles composed of polystyrene core and poly[2-(diethylamino)ethyl methacrylate] (PDEA) hairy shell were used as colloidal templates for in situ silica mineralization, allowing the well-controlled synthesis of hybrid silica core-shell nanoparticles with raspberry-like morphology and hollow silica nanoparticles by subsequent calcination. Silica deposition was performed by simply stirring a mixture of the polymeric core-shell particles in isopropanol, tetramethyl orthosilicate (TMOS) and water at 25 degrees C for 2.5h. No experimental evidence was found for nontemplated silica formation, which indicated that silica deposition occurred exclusively in the PDEA shell and formed PDEA-silica hybrid shell. The resulting hybrid silica core-shell particles were characterized by transmission electron microscopy (TEM), thermogravimetry, aqueous electrophoresis, and X-ray photoelectron spectroscopy. TEM studies indicated that the hybrid particles have well-defined core-shell structure with raspberry morphology after silica deposition. We found that the surface nanostructure of hybrid nanoparticles and the composition distribution of PDEA-silica hybrid shell could be well controlled by adjusting the silicification conditions. These new hybrid core-shell nanoparticles and hollow silica nanoparticles would have potential applications for high-performance coatings, encapsulation and delivery of active organic molecules.

  18. Strong metal-support interaction in novel core-shell Au-CeO2 nanostructures induced by different pretreatment atmospheres and its influence on CO oxidation.

    Science.gov (United States)

    Wang, Zhihua; Fu, Huifen; Tian, Ziwei; Han, Dongmei; Gu, Fubo

    2016-03-21

    Yolk-shell Au/CeO2 (Y-Au/CeO2) and encapsulated Au/CeO2 (E-Au/CeO2) nanocatalysts were prepared by using silica templates. A strong metal-support interaction (SMSI) in the Au/CeO2 nanostructures induced by different pretreatment atmospheres and its influence on CO oxidation were studied. E-Au/CeO2 pretreated in O2 had the best performance, followed by Y-Au/CeO2 pretreated in O2, Y-Au/CeO2 pretreated in H2, and E-Au/CeO2 pretreated in H2. The reasons for the different activities were discussed. There were two kinds of strong metal-support interactions (SMSI) between Au and CeO2 termed as R-SMSI (pretreated in reductive atmosphere) and O-SMSI (pretreated in oxidation atmosphere). Because of the smaller size of the Au and the larger contact area, both the R-SMSI and O-SMSI of E-Au/CeO2 were larger than those of Y-Au/CeO2. The O-SMSI was accompanied by the formation of cationic Au species that were beneficial to the enhancing of activity. As expected, the activity of E-Au/CeO2 pretreated in O2 with a Au size less than 5 nm was higher than that of Y-Au/CeO2 pretreated in O2 with 25 nm Au. However, it is surprisingly found that the activity of Y-Au/CeO2 pretreated in H2 with 25 nm Au was higher than that of E-Au/CeO2 pretreated in H2 with a Au size less than 5 nm. R-SMSI resulted in the formation of a AuCe alloy that had a negative effect on the activity. Compared with E-Au/CeO2 pretreated in H2, Y-Au/CeO2 pretreated in H2 exhibited a smaller relative content of the AuCe alloy, leading to a better activity of Y-Au/CeO2 pretreated in H2.

  19. Synthesis and characterization of novel CoFe{sub 2}O{sub 4}-BaTiO{sub 3} multiferroic core-shell-type nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Corral-Flores, V., E-mail: vcorral@ciqa.mx [Centro de Investigacion en Quimica Aplicada, Enrique Reyna 140, Saltillo, Coah 25253 (Mexico); Bueno-Baques, D.; Ziolo, R.F. [Centro de Investigacion en Quimica Aplicada, Enrique Reyna 140, Saltillo, Coah 25253 (Mexico)

    2010-02-15

    Novel multiferroic nanostructures of cobalt ferrite-barium titanate were synthesized by a two-step wet chemical procedure, combining co-precipitation and sol-gel techniques. The fraction of cobalt ferrite in the nanostructures was varied from 20 to 60 wt.%. X-ray diffraction confirmed the presence of both the spinel and the perovskite phases, with average crystallite sizes in the range of 15-28 nm. Both the degree of tetragonality of barium titanate and the lattice parameter of cobalt ferrite significantly increased with the content of ferrite in the nanostructures, revealing a crystallographic distortion related to the shell thickness. Transmission electron microscopy data showed two-phase composite nanostructures consisting of a cobalt ferrite core surrounded by a barium titanate shell-like coating. Magnetization data showed expected ferromagnetic behavior. The multiferroic nanostructures are proposed as building blocks for higher-order multiferroic inorganic and hybrid inorganic-organic nanocomposites.

  20. Facile synthesis of Zn1-xCoxO/ZnO core/shell nanostructures and their application to dye-sensitized solar cells

    Science.gov (United States)

    Manthina, Venkata; Agrios, Alexander G.

    2017-04-01

    Heterostructures consisting of Co-doped ZnO nanorod cores encased in an undoped ZnO shell were successfully synthesized to serve as photoanodes for dye-sensitized solar cells (DSSCs) by a two-step chemical bath deposition (CBD) technique. This yields a highly favorable structure in which electrons injected from the dye into the ZnO then step down in energy into the Co-doped core, where the electron is transported to the collector while the ZnO shell acts as a barrier to recombination with the electrolyte. Incorporation of the core/shell structures into DSSCs resulted in large improvements in photocurrent and photovoltage in comparison to pure ZnO nanorod-based DSSCs. SEM and XRD characterization indicate incorporation of the Co2+ into the ZnO matrix, without separation of the Co into other phases, providing no energy barriers. In addition, the ability of these heterostructures to reduce recombination rates in redox couples with fast recombination rates was probed by comparing DSSC device performance in both iodide/triiodide-based and ferrocene/ferrocenium-based electrolytes.

  1. Fabrication of core-shell nanostructures via silicon on insulator dewetting and germanium condensation: towards a strain tuning method for SiGe-based heterostructures in a three-dimensional geometry

    Science.gov (United States)

    Naffouti, Meher; David, Thomas; Benkouider, Abdelmalek; Favre, Luc; Cabie, Martiane; Ronda, Antoine; Berbezier, Isabelle; Abbarchi, Marco

    2016-07-01

    We report on a novel method for the implementation of core-shell SiGe-based nanocrystals combining silicon on insulator dewetting in a molecular beam epitaxy reactor with an ex situ Ge condensation process. With an in situ two-step process (annealing and Ge deposition) we produce two families of islands on the same sample: Si-rich, formed during the first step and, all around them, Ge-rich formed after Ge deposition. By increasing the amount of Ge deposited on the annealed samples from 0 to 18 monolayers, the islands’ shape in the Si-rich zones can be tuned from elongated and flat to more symmetric and with a larger vertical aspect ratio. At the same time, the spatial extension of the Ge-rich zones is progressively increased as well as the Ge content in the islands. Further processing by ex situ rapid thermal oxidation results in the formation of a core-shell composition profile in both Si and Ge-rich zones with atomically sharp heterointerfaces. The Ge condensation induces a Ge enrichment of the islands’ shell of up to 50% while keeping a pure Si core in the Si-rich zones and a ˜25% SiGe alloy in the Ge-rich ones. The large lattice mismatch between core and shell, the absence of dislocations and the islands’ monocrystalline nature render this novel class of nanostructures a promising device platform for strain-based band-gap engineering. Finally, this method can be used for the implementation of ultralarge scale meta-surfaces with dielectric Mie resonators for light manipulation at the nanoscale.

  2. Fabrication of Magnetite/Silica/Titania Core-Shell Nanoparticles

    Directory of Open Access Journals (Sweden)

    Suh Cem Pang

    2012-01-01

    Full Text Available Fe3O4/SiO2/TiO2 core-shell nanoparticles were synthesized via a sol-gel method with the aid of sonication. Fe3O4 nanoparticles were being encapsulated within discrete silica nanospheres, and a layer of TiO2 shell was then coated directly onto each silica nanosphere. As-synthesized Fe3O4/SiO2/TiO2 core-shell nanoparticles showed enhanced photocatalytic properties as evidenced by the enhanced photodegradation of methylene blue under UV light irradiation.

  3. Electrostatic-Induced Assembly of Graphene-Encapsulated Carbon@Nickel-Aluminum Layered Double Hydroxide Core-Shell Spheres Hybrid Structure for High-Energy and High-Power-Density Asymmetric Supercapacitor.

    Science.gov (United States)

    Wu, Shuxing; Hui, Kwan San; Hui, Kwun Nam; Kim, Kwang Ho

    2017-01-18

    Achieving high energy density while retaining high power density is difficult in electrical double-layer capacitors and in pseudocapacitors considering the origin of different charge storage mechanisms. Rational structural design became an appealing strategy in circumventing these trade-offs between energy and power densities. A hybrid structure consists of chemically converted graphene-encapsulated carbon@nickel-aluminum layered double hydroxide core-shell spheres as spacers among graphene layers (G-CLS) used as an advanced electrode to achieve high energy density while retaining high power density for high-performance supercapacitors. The merits of the proposed architecture are as follows: (1) CLS act as spacers to avoid the close restacking of graphene; (2) highly conductive carbon sphere and graphene preserve the mechanical integrity and improve the electrical conductivity of LDHs hybrid. Thus, the proposed hybrid structure can simultaneously achieve high electrical double-layer capacitance and pseudocapacitance resulting in the overall highly active electrode. The G-CLS electrode exhibited high specific capacitance (1710.5 F g(-1) at 1 A g(-1)) under three-electrode tests. An ASC fabricated using the G-CLS as positive electrode and reduced graphite oxide as negative electrode demonstrated remarkable electrochemical performance. The ASC device operated at 1.4 V and delivered a high energy density of 35.5 Wh kg(-1) at a 670.7 W kg(-1) power density at 1 A g(-1) with an excellent rate capability as well as a robust long-term cycling stability of up to 10 000 cycles.

  4. Au@Cu2O stellated polytope with core-shelled nanostructure for high-performance adsorption and visible-light-driven photodegradation of cationic and anionic dyes.

    Science.gov (United States)

    Wu, Xueqing; Cai, Jiabai; Li, Shunxing; Zheng, Fengying; Lai, Zhanghua; Zhu, Licong; Chen, Tanju

    2016-05-01

    Au nanoparticles were covered by Cu2O nanoparticles shell and then Au@Cu2O stellated polytope was synthesized by a facile aqueous solution approach. The samples were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction patterns, X-ray photoelectron spectroscopy, Brunner-Emmet-Teller measurements, and Ultraviolet-visible spectroscopy analysis. With good aqueous dispersibility, surface positive charge, and high chemisorption capacity, Au@Cu2O could be used for anionic dyes removal. Compared with Degussa P25-TiO2, the adsorption of anionic dyes (acid violet 43 or methyl blue, 5.0 mg L(-1)) onto Au@Cu2O was increased by 90.12% and 50.8%, respectively. The photodegradation activity of methyl orange and methyl violet were in the declining order: Au@Cu2O>Cu2O-Au nanocomposites>Cu2O>P25-TiO2. The synergistic effect of coupling Au core with Cu2O shell on the dyes photodegradation was observed. The photoexcited electrons from Cu2O conduction band could be captured by Au nanoparticles, resulting in an improved electron-hole separation. Moreover, a Schottky barrier was assumed to form at the Cu2O-Au interface and Au NPs as electron sink could reduce the recombination of photoinduced electrons and holes, facilitating the photocatalytic interface reaction. The geometry of core-shell and stellated polytope is effective in the design of Cu2O-Au nanocomposites for adsorption and photocatalysis.

  5. Highly efficient perovskite solar cells based on a nanostructured WO3-TiO2 core-shell electron transporting material

    KAUST Repository

    Mahmood, Khalid

    2015-01-01

    Until recently, only mesoporous TiO2 and ZnO were successfully demonstrated as electron transport layers (ETL) alongside the reports of ZrO2 and Al2O3 as scaffold materials in organometal halide perovskite solar cells, largely owing to ease of processing and to high power conversion efficiency. In this article, we explore tungsten trioxide (WO3)-based nanostructured and porous ETL materials directly grown hydrothermally with different morphologies such as nanoparticles, nanorods and nanosheet arrays. The nanostructure morphology strongly influences the photocurrent and efficiency in organometal halide perovskite solar cells. We find that the perovskite solar cells based on WO3 nanosheet arrays yield significantly enhanced photovoltaic performance as compared to nanoparticles and nanorod arrays due to good perovskite absorber infiltration in the porous scaffold and more rapid carrier transport. We further demonstrate that treating the WO3 nanostructures with an aqueous solution of TiCl4 reduces charge recombination at the perovskite/WO3 interface, resulting in the highest power conversion efficiency of 11.24% for devices based on WO3 nanosheet arrays. The successful demonstration of alternative ETL materials and nanostructures based on WO3 will open up new opportunities in the development of highly efficient perovskite solar cells. This journal is © The Royal Society of Chemistry 2015.

  6. One-pot synthesis and characterization of rhodamine derivative-loaded magnetic core-shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Jin, E-mail: jzhang@eng.uwo.ca; Li Jiaxin [University of Western Ontario, Department of Chemical and Biochemical Engineering (Canada); Razavi, Fereidoon S. [Brock University, Department of Physics (Canada); Mumin, Abdul Md. [University of Western Ontario, Department of Chemical and Biochemical Engineering (Canada)

    2011-05-15

    A new method to produce elaborate nanostructure with magnetic and fluorescent properties in one entity is reported in this article. Magnetite (Fe{sub 3}O{sub 4}) coated with fluorescent silica (SiO{sub 2}) shell was produced through the one-pot reaction, in which one reactor was utilized to realize the synthesis of superparamagnetic core of Fe{sub 3}O{sub 4}, the formation of SiO{sub 2} coating through the condensation and polymerization of tetraethylorthosilicate (TEOS), and the encapsulation of tetramethyl rhodamine isothiocyanate-dextran (TRITC-dextran) within silica shell. Transmission electron microscopy (TEM), energy dispersive X-ray (EDX) analysis, and X-ray diffraction (XRD) were carried out to investigate the core-shell structure. The magnetic core of the core-shell nanoparticles is 60 {+-} 10 nm in diameter. The thickness of the fluorescent SiO{sub 2} shell is estimated at 15 {+-} 5 nm. In addition, the fluorescent signal of the SiO{sub 2} shell has been detected by the laser confocal scanning microscopy (LCSM) with emission wavelength ({lambda}{sub em}) at 566 nm. In addition, the magnetic properties of TRITC-dextran loaded silica-coating iron oxide nanoparticles (Fe{sub 3}O{sub 4}-SiO{sub 2} NPs) were studied. The hysteresis loop of the core-shell NPs measured at room temperature shows that the saturation magnetization (M{sub s}) is not reached even at the field of 70 kOe (7T). Meanwhile, the very low coercivity (H{sub c}) and remanent magnetization (M{sub r}) are 0.375 kOe and 6.6 emu/g, respectively, at room temperature. It indicates that the core-shell particles have the superparamagnetic properties. The measured blocking temperature (T{sub B}) of the TRITC-dextran loaded Fe{sub 3}O{sub 4}-SiO{sub 2} NPs is about 122.5 K. It is expected that the multifunctional core-shell nanoparticles can be used in bio-imaging.

  7. Core-size-dependent catalytic properties of bimetallic Au/Ag core-shell nanoparticles.

    Science.gov (United States)

    Haldar, Krishna Kanta; Kundu, Simanta; Patra, Amitava

    2014-12-24

    Bimetallic core-shell nanoparticles have recently emerged as a new class of functional materials because of their potential applications in catalysis, surface enhanced Raman scattering (SERS) substrate and photonics etc. Here, we have synthesized Au/Ag bimetallic core-shell nanoparticles with varying the core diameter. The red-shifting of the both plasmonic peaks of Ag and Au confirms the core-shell structure of the nanoparticles. Transmission electron microscopy (TEM) analysis, line scan EDS measurement and UV-vis study confirm the formation of core-shell nanoparticles. We have examined the catalytic activity of these core-shell nanostructures in the reaction between 4-nitrophenol (4-NP) and NaBH4 to form 4-aminophenol (4-AP) and the efficiency of the catalytic reaction is found to be increased with increasing the core size of Au/Ag core-shell nanocrystals. The catalytic efficiency varies from 41.8 to 96.5% with varying core size from 10 to 100 nm of Au/Ag core-shell nanoparticles, and the Au100/Ag bimetallic core-shell nanoparticle is found to be 12-fold more active than that of the pure Au nanoparticles with 100 nm diameter. Thus, the catalytic properties of the metal nanoparticles are significantly enhanced because of the Au/Ag core-shell structure, and the rate is dependent on the size of the core of the nanoparticles.

  8. Hierarchical nanostructured core-shell Sn@C nanoparticles embedded in graphene nanosheets: spectroscopic view and their application in lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dongniu; Li, Xifei; Yang, Jinli; Wang, Jiajun; Geng, Dongsheng; Li, Ruying; Cai, Mei; Sham, Tsun-Kong; Sun, Xueliang [General Motors; (UWO)

    2016-02-04

    Hierarchical carbon encapsulated tin (Sn@C) embedded graphene nanosheet (GN) composites (Sn@C–GNs) have been successfully fabricated via a simple and scalable one-step chemical vapor deposition (CVD) procedure. The GN supported Sn@C core–shell structures consist of a crystalline tin core, which is thoroughly covered by a carbon shell and more interestingly, extra voids are present between the carbon shell and the tin core. Synchrotron spectroscopy confirms that the metallic tin core is free of oxidation and the existence of charge redistribution transfer from tin to the carbonaceous materials of the shell, facilitating their intimate contact by chemical bonding and resultant lattice variation. The hybrid electrodes of this material exhibit a highly stable and reversible capacity together with an excellent rate capability, which benefits from the improved electrochemical properties of tin provided by the protective carbon matrix, voids and the flexible GN matrices.

  9. Rare Earth core/shell nanobarcodes for multiplexed trace biodetection.

    Science.gov (United States)

    Chen, Lei; Li, Xiaomin; Shen, Dengke; Zhou, Lei; Zhu, Dan; Fan, Chunhai; Zhang, Fan

    2015-06-02

    Multiplexed detection technology has been attractive for its simultaneous assay of several analytes, which play significant roles in applications such as screening for combinatorial chemistry, genetic analysis, and clinical diagnostics. This work reports a novel and potentially powerful encoding system based upon dispersible suspension arrays of multilayer rare earth core/shell nanoparticles that are capable of multiplexed, high-sensitivity reporting for biomolecule detection by the Z-contrast imaging. These nanobarcode arrays are encoded by nanostructure design based on different atomic numbers. With the well-resolved high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) decoding technique, many thousands of unique nanobarcodes can be identified by multilayer core/shell nanostructure. Their applications to multiplexed biodetection of DNA demonstrated the highly sensitive (picomole) features of this novel nanobarcode system.

  10. NiSe@NiOOH Core-Shell Hyacinth-like Nanostructures on Nickel Foam Synthesized by in Situ Electrochemical Oxidation as an Efficient Electrocatalyst for the Oxygen Evolution Reaction.

    Science.gov (United States)

    Li, Xiao; Han, Guan-Qun; Liu, Yan-Ru; Dong, Bin; Hu, Wen-Hui; Shang, Xiao; Chai, Yong-Ming; Liu, Chen-Guang

    2016-08-10

    NiSe@NiOOH core-shell hyacinth-like nanostructures supported on nickel foam (NF) have been successfully synthesized by a facile solvothermal selenization and subsequent in situ electrochemical oxidation (ISEO). First, the unique NiSe/NF nanopillar arrays were prepared in N,N-dimethylformamide (DMF) as a precursor template that can provide a large surface area, excellent conductivity, and robust support. Next, amorphous NiOOH covering the surface of NiSe nanopillars was fabricated by ISEO, as confirmed by XPS andEDX spectroscopy. SEM images revealed the hyacinth-like morphology of NiSe@NiOOH/NF with NiOOH as the shell and NiSe as the core. The electrochemical performance of NiSe@NiOOH/NF for the oxygen evolution reaction (OER) was investigated. NiSe@NiOOH/NF demonstrates an obviously enhanced OER activity with much lower overpotential of 332 mV at 50 mA cm(-2) compared to other Ni-based electrocatalysts. The low charge-transfer resistance (Rct), large electrochemical double-layer capacitance (Cdl) of electrochemically active surface areas (ECSAs), and excellent long-term stability of NiSe@NiOOH/NF confirm the enhancement of its electrochemical performance for the OER, which can be ascribed to the large amount of active sites derived from the amorphous NiOOH shell and the good conductivity and stability derived from the NiSe core. In addition, the synergistic effect between the NiSe core and NiOOH shell could serve for a highly efficient OER electrocatalyst.

  11. Establishing the Structural Integrity of Core-Shell Nanoparticles against Elemental Migration using Luminescent Lanthanide Probes.

    Science.gov (United States)

    Chen, Bing; Peng, Dengfeng; Chen, Xian; Qiao, Xvsheng; Fan, Xianping; Wang, Feng

    2015-10-19

    Core-shell structured nanoparticles are increasingly used to host luminescent lanthanide ions but the structural integrity of these nanoparticles still lacks sufficient understanding. Herein, we present a new approach to detect the diffusion of dopant ions in core-shell nanostructures using luminescent lanthanide probes whose emission profile and luminescence lifetime are sensitive to the chemical environment. We show that dopant ions in solution-synthesized core-shell nanoparticles are firmly confined in the designed locations. However, annealing at certain temperatures (greater than circa 350 °C) promotes diffusion of the dopant ions and leads to degradation of the integrity of the nanoparticles. These insights into core-shell nanostructures should enhance our ability to understand and use lanthanide-doped luminescent nanoparticles.

  12. Biocompatible magnetic core-shell nanocomposites for engineered magnetic tissues

    Science.gov (United States)

    Rodriguez-Arco, Laura; Rodriguez, Ismael A.; Carriel, Victor; Bonhome-Espinosa, Ana B.; Campos, Fernando; Kuzhir, Pavel; Duran, Juan D. G.; Lopez-Lopez, Modesto T.

    2016-04-01

    The inclusion of magnetic nanoparticles into biopolymer matrixes enables the preparation of magnetic field-responsive engineered tissues. Here we describe a synthetic route to prepare biocompatible core-shell nanostructures consisting of a polymeric core and a magnetic shell, which are used for this purpose. We show that using a core-shell architecture is doubly advantageous. First, gravitational settling for core-shell nanocomposites is slower because of the reduction of the composite average density connected to the light polymer core. Second, the magnetic response of core-shell nanocomposites can be tuned by changing the thickness of the magnetic layer. The incorporation of the composites into biopolymer hydrogels containing cells results in magnetic field-responsive engineered tissues whose mechanical properties can be controlled by external magnetic forces. Indeed, we obtain a significant increase of the viscoelastic moduli of the engineered tissues when exposed to an external magnetic field. Because the composites are functionalized with polyethylene glycol, the prepared bio-artificial tissue-like constructs also display excellent ex vivo cell viability and proliferation. When implanted in vivo, the engineered tissues show good biocompatibility and outstanding interaction with the host tissue. Actually, they only cause a localized transitory inflammatory reaction at the implantation site, without any effect on other organs. Altogether, our results suggest that the inclusion of magnetic core-shell nanocomposites into biomaterials would enable tissue engineering of artificial substitutes whose mechanical properties could be tuned to match those of the potential target tissue. In a wider perspective, the good biocompatibility and magnetic behavior of the composites could be beneficial for many other applications.The inclusion of magnetic nanoparticles into biopolymer matrixes enables the preparation of magnetic field-responsive engineered tissues. Here we

  13. A comparative study of Pt and Pt-Pd core-shell nanocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Long, Nguyen Viet, E-mail: nguyenviet_long@yahoo.com [Department of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Posts and Telecommunications Institute of Technology, km 10 Nguyen Trai, Thanh Xuan, Ha Dong, Hanoi (Viet Nam); Laboratory for Nanotechnology, Vietnam National University, Ho Chi Minh, Linh Trung, Thu Duc, Ho Chi Minh (Viet Nam); Department of Molecular and Material Sciences, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakouen, Kasuga, Fukuoka 816-8580 (Japan); Ohtaki, Michitaka [Department of Molecular and Material Sciences, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakouen, Kasuga, Fukuoka 816-8580 (Japan); Hien, Tong Duy [Laboratory for Nanotechnology, Vietnam National University, Ho Chi Minh, Linh Trung, Thu Duc, Ho Chi Minh (Viet Nam); Randy, Jalem [Department of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Nogami, Masayuki, E-mail: nogami@nitech.ac.jp [Department of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan)

    2011-10-30

    Highlights: > The syntheses of Pt (4-8 nm) and Pt-Pd core-shell nanoparticles (15-25 nm) are showed. > Pt-Pd core-shell catalysts possess catalytic property much better than Pt catalysts. > Pt-Pd core-shell catalysts exhibit fast and highly stable catalytic activity. > Fascinatingly, size effect is not as really important as nanostructuring effect. > Fast, stable, sensitive hydrogen adsorption is very crucial for fuel cells. - Abstract: This comparative study characterizes two types of metallic and core-shell bimetallic nanoparticles prepared with our modified polyol method. These nanoparticles consist of Pt and Pt-Pd core-shell nanocatalysts exhibiting polyhedral morphologies. The controlled syntheses of Pt metallic nanoparticles in the 10-nm regime (4-8 nm) and Pt-Pd bimetallic core-shell nanoparticles in the 30-nm regime (15-25 nm) are presented. To realize our ultimate research goals for proton exchange membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs), we thoroughly investigate the dependence of the electrocatalytic properties of the nanoparticles on the structure, size and morphology. Significant differences in the electrocatalysis are also explained in experimental evidences of both Pt and Pt-Pd nanocatalysts. We suggested that the core-shell controlled morphologies and nanostructures of the Pd nanoshell as the Pd atomic monolayers will not only play an important role in producing inexpensive, novel Pt- and Pd-based nanocatalysts but also in designing more efficient Pt- and Pd-based nanocatalysts for practical use in DMFC technology. Our comparative results show that Pt-Pd nanocatalysts with Pd nanoshells exhibited much better electrocatalytic activity and stabilization compared to Pt nanocatalysts. Interestingly, we found that the size effect is not as strong as the nanostructuring effect on the catalytic properties of the researched nanoparticles. A nanostructure effect of the core-shell bimetallic nanoparticles was identified.

  14. Engineered Magnetic Core-Shell Structures.

    Science.gov (United States)

    Alavi Nikje, Mir Mohammad; Vakili, Maryam

    2015-01-01

    In recent years, engineered magnetic core-shell structures are playing an important role in the wide range of various applications. These magnetic core-shell structures have attracted considerable attention because of their unique properties and various applications. Also, the synthesis of engineered magnetic core-shell structures has attracted practical interest because of potential applications in areas such as ferrofluids, medical imaging, drug targeting and delivery, cancer therapy, separations, and catalysis. So far a large number of engineered magnetic core-shell structures have been successfully synthesized. This review article focuses on the recent progress in synthesis and characterization of engineered magnetic core-shell structures. Also, this review gives a brief description of the various application of these structures. It is hoped that this review will play some small part in helping future developments in important field.

  15. Fabrication of core-shell micro/nanoparticles for programmable dual drug release by emulsion electrospraying

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yazhou, E-mail: yazhou_wang@cqu.edu.cn; Zhang Yiqiong; Wang Bochu, E-mail: wangbc2000@126.com; Cao Yang [Chongqing University, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering (China); Yu Qingsong [University of Missouri, Department of Mechanical and Aerospace Engineering (United States); Yin Tieying [Chongqing University, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering (China)

    2013-06-15

    The study aimed at constructing a novel drug delivery system for programmable multiple drug release controlled with core-shell structure. The core-shell structure consisted of chitosan nanoparticles as core and polyvinylpyrrolidone micro/nanocoating as shell to form core-shell micro/nanoparticles, which was fabricated by ionic gelation and emulsion electrospray methods. As model drug agents, Naproxen and rhodamine B were encapsulated in the core and shell regions, respectively. The core-shell micro/nanoparticles thus fabricated were characterized and confirmed by scanning electron microscope, transmission electron microscope, and fluorescence optical microscope. The core-shell micro/nanoparticles showed good release controllability through drug release experiment in vitro. It was noted that a programmable release pattern for dual drug agents was also achieved by adjusting their loading regions in the core-shell structures. The results indicate that emulsion electrospraying technology is a promising approach in fabrication of core-shell micro/nanoparticles for programmable dual drug release. Such a novel multi-drug delivery system has a potential application for the clinical treatment of cancer, tuberculosis, and tissue engineering.

  16. Recent Advancement in Functional Core-Shell Nanoparticles of Polymers: Synthesis, Physical Properties, and Applications in Medical Biotechnology

    Directory of Open Access Journals (Sweden)

    K. Santhosh Kumar

    2013-01-01

    Full Text Available This paper covers the core-shell nanomaterials, mainly, polymer-core polymer shell, polymer-core metal shell, and polymer-core nonmetal shells. Herein, various synthesis techniques, properties, and applications of these materials have been discussed. The detailed discussion of the properties with experimental parameters has been carried out. The various characterization techniques for the core-shell nanostructure have also been discussed. Their physical and chemical properties have been addressed. The future aspects of such core-shell nanostructures for biomedical and various other applications have been discussed with a special emphasis on their properties.

  17. Coaxial electrospun polyurethane core-shell nanofibers for shape memory and antibacterial nanomaterials

    Directory of Open Access Journals (Sweden)

    2011-02-01

    Full Text Available A novel kind of shape memory polyurethane (SMPU nanofibers with core-shell nanostructure is fabricated using coaxial electrospinning. Transmission electron microscopy (TEM and scanning electron microscopy (SEM results show that nanofibers with core-shell structure or bead-on-string structure can be electrospun successfully from the core solution of polycaprolactone based SMPU (CLSMPU and shell solution of pyridine containing polyurethane (PySMPU. In addition to the excellent shape memory effect with good shape fixity, excellent antibacterial activity against both gramnegative bacteria and gram-positive bacteria are achieved in the CLSMPU-PySMPU core-shell nanofiber. Finally, it is proposed that the antibacterial mechanism should be resulted from the PySMPU shell materials containing amido group in γ position and the high surface area per unit mass of nanofibers. Thus, the CLSMPU-PySMPU core shell nanofibers can be used as both shape memory nanomaterials and antibacterial nanomaterials.

  18. Prevalence of anisotropic shell growth in rare earth core-shell upconversion nanocrystals.

    Science.gov (United States)

    Zhang, Chao; Lee, Jim Yang

    2013-05-28

    Through a series of carefully executed experiments, we discovered the prevalence of anisotropic shell growth in many upconversion NaREF4 systems caused by a combination of factors: selective adsorption of ligands on the core surface due to the core crystal structure, ligand etching, and the lattice mismatch between core and shell components. This could lead to incomplete shell formation in core-shell nanocrystals under certain conditions. Shell growth is always faster in the a and b crystallographic directions than in the c direction. In the case of a larger lattice mismatch between the core and shell, shell growth only occurs in the a and b directions resulting in an oblong core-shell structure. These findings are useful for rationalizing shell-dependent emission properties, understanding the emission mechanisms in complex core-shell nanostructures, and for creating accurate models of core-shell designs for multifunctionality and optimal performance in applications.

  19. Microfluidic synthesis of Ag@Cu2O core-shell nanoparticles with enhanced photocatalytic activity.

    Science.gov (United States)

    Tao, Sha; Yang, Mei; Chen, Huihui; Ren, Mingyue; Chen, Guangwen

    2017-01-15

    A microfluidic-based method for the continuous synthesis of Ag@Cu2O core-shell nanoparticles (NPs) has been developed. It only took 32s to obtain Ag@Cu2O core-shell NPs, indicating a high efficiency of this microfluidic-based method. Triangular Ag nanoprisms were employed as the cores for the overgrowth of Cu2O through the reduction of Cu(OH)4(2-) with ascorbic acid. The as-synthesized samples were characterized by XRD, TEM, SEM, HAADF-STEM, EDX, HRTEM, UV-vis spectra and N2 adsorption-desorption. The characterization results revealed that the as-synthesized Ag@Cu2O core-shell NPs exhibited a well-defined core-shell nanostructure with a polycrystalline shell, which was composed of numbers of Cu2O domains epitaxially growing on the triangular Ag nanoprism. It was concluded that the synthesis parameters such as the molar ratio of trisodium citrate to AgNO3, H2O2 to AgNO3, NaOH to CuSO4, ascorbic acid to CuSO4 and AgNO3 to CuSO4 had significant effect on the synthesis of Ag@Cu2O core-shell NPs. Moreover, Ag@Cu2O core-shell NPs exhibited superior catalytic activity in comparison with pristine Cu2O NPs towards the visible light-driven degradation of methyl orange. This enhanced photocatalytic activity of Ag@Cu2O core-shell NPs was attributed to the larger BET surface area and improved charge separation efficiency. The trapping experiment indicated that holes and superoxide anion radicals were the major reactive species in the photodegradation of methyl orange over Ag@Cu2O core-shell NPs. In addition, Ag@Cu2O core-shell NPs showed no obvious deactivation in the cyclic test.

  20. Preparation of novel core-shell nanoparticles by electrochemical synthesis

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Nanostructural gold/polyaniline core/shell composite particles on conducting electrode ITO were successfully prepared via electrochemical polymerization of aniline based on 4-aminothiophenol (4-ATP) capped Au nanoparticles. The new approach to the fabrication included three steps: preparation of gold nanoparticles as core by pulse electrodeposition; formation of ATP monolayer on the gold particle surface, which served as a binder and an initiator; polymerization of aniline monomer initiated by ATP molecules under controlled voltage lower than the voltammetric threshold of aniline polymerization, which assured the formation of polyaniline shell film occurred on gold particles selectively. Topographic images were also studied by AFM, which indicated the diameter of gold nanoparticles were around 250 nm. Coulometry characterization confirmed the shell thickness of polyaniline film was about 30 nm.A possible formation mechanism of the Au/polyaniline core-shell nanocomposites was also proposed. The novel as-prepared core-shell nanoparticles have potential application in constructing biosensor when bioactive enzymes are absorbed or embedded in polyaniline shell film.

  1. Core-shell nanoparticle arrays double the strength of steel.

    Science.gov (United States)

    Seol, J-B; Na, S-H; Gault, B; Kim, J-E; Han, J-C; Park, C-G; Raabe, D

    2017-02-22

    Manipulating structure, defects and composition of a material at the atomic scale for enhancing its physical or mechanical properties is referred to as nanostructuring. Here, by combining advanced microscopy techniques, we unveil how formation of highly regular nano-arrays of nanoparticles doubles the strength of an Fe-based alloy, doped with Ti, Mo, and V, from 500 MPa to 1 GPa, upon prolonged heat treatment. The nanoparticles form at moving heterophase interfaces during cooling from the high-temperature face-centered cubic austenite to the body-centered cubic ferrite phase. We observe MoC and TiC nanoparticles at early precipitation stages as well as core-shell nanoparticles with a Ti-C rich core and a Mo-V rich shell at later precipitation stages. The core-shell structure hampers particle coarsening, enhancing the material's strength. Designing such highly organized metallic core-shell nanoparticle arrays provides a new pathway for developing a wide range of stable nano-architectured engineering metallic alloys with drastically enhanced properties.

  2. Core-shell nanoparticle arrays double the strength of steel

    Science.gov (United States)

    Seol, J.-B.; Na, S.-H.; Gault, B.; Kim, J.-E.; Han, J.-C.; Park, C.-G.; Raabe, D.

    2017-01-01

    Manipulating structure, defects and composition of a material at the atomic scale for enhancing its physical or mechanical properties is referred to as nanostructuring. Here, by combining advanced microscopy techniques, we unveil how formation of highly regular nano-arrays of nanoparticles doubles the strength of an Fe-based alloy, doped with Ti, Mo, and V, from 500 MPa to 1 GPa, upon prolonged heat treatment. The nanoparticles form at moving heterophase interfaces during cooling from the high-temperature face-centered cubic austenite to the body-centered cubic ferrite phase. We observe MoC and TiC nanoparticles at early precipitation stages as well as core-shell nanoparticles with a Ti-C rich core and a Mo-V rich shell at later precipitation stages. The core-shell structure hampers particle coarsening, enhancing the material’s strength. Designing such highly organized metallic core-shell nanoparticle arrays provides a new pathway for developing a wide range of stable nano-architectured engineering metallic alloys with drastically enhanced properties. PMID:28225022

  3. Core-shell GaN-ZnO moth-eye nanostructure arrays grown on a-SiO2/Si (1 1 1) as a basis for improved InGaN-based photovoltaics and LEDs

    Science.gov (United States)

    Rogers, D. J.; Sandana, V. E.; Gautier, S.; Moudakir, T.; Abid, M.; Ougazzaden, A.; Teherani, F. Hosseini; Bove, P.; Molinari, M.; Troyon, M.; Peres, M.; Soares, Manuel J.; Neves, A. J.; Monteiro, T.; McGrouther, D.; Chapman, J. N.; Drouhin, H.-J.; McClintock, R.; Razeghi, M.

    2015-06-01

    Self-forming, vertically-aligned, ZnO moth-eye-like nanoarrays were grown by catalyst-free pulsed laser deposition on a-SiO2/Si (1 1 1) substrates. X-Ray Diffraction (XRD) and Cathodoluminescence (CL) studies indicated that nanostructures were highly c-axis oriented wurtzite ZnO with strong near band edge emission. The nanostructures were used as templates for the growth of non-polar GaN by metal organic vapor phase epitaxy. XRD, scanning electron microscopy, energy dispersive X-ray microanalysis and CL revealed ZnO encapsulated with GaN, without evidence of ZnO back-etching. XRD showed compressive epitaxial strain in the GaN, which is conducive to stabilization of the higher indium contents required for more efficient green light emitting diode (LED) and photovoltaic (PV) operation. Angular-dependent specular reflection measurements showed a relative reflectance of less than 1% over the wavelength range of 400-720 nm at all angles up to 60°. The superior black-body performance of this moth-eye-like structure would boost LED light extraction and PV anti-reflection performance compared with existing planar or nanowire LED and PV morphologies. The enhancement in core conductivity, provided by the ZnO, would also improve current distribution and increase the effective junction area compared with nanowire devices based solely on GaN.

  4. Core-shell microparticles for protein sequestration and controlled release of a protein-laden core.

    Science.gov (United States)

    Rinker, Torri E; Philbrick, Brandon D; Temenoff, Johnna S

    2016-12-21

    Development of multifunctional biomaterials that sequester, isolate, and redeliver cell-secreted proteins at a specific timepoint may be required to achieve the level of temporal control needed to more fully regulate tissue regeneration and repair. In response, we fabricated core-shell heparin-poly(ethylene-glycol) (PEG) microparticles (MPs) with a degradable PEG-based shell that can temporally control delivery of protein-laden heparin MPs. Core-shell MPs were fabricated via a re-emulsification technique and the number of heparin MPs per PEG-based shell could be tuned by varying the mass of heparin MPs in the precursor PEG phase. When heparin MPs were loaded with bone morphogenetic protein-2 (BMP-2) and then encapsulated into core-shell MPs, degradable core-shell MPs initiated similar C2C12 cell alkaline phosphatase (ALP) activity as the soluble control, while non-degradable core-shell MPs initiated a significantly lower response (85+19% vs. 9.0+4.8% of the soluble control, respectively). Similarly, when degradable core-shell MPs were formed and then loaded with BMP-2, they induced a ∼7-fold higher C2C12 ALP activity than the soluble control. As C2C12 ALP activity was enhanced by BMP-2, these studies indicated that degradable core-shell MPs were able to deliver a bioactive, BMP-2-laden heparin MP core. Overall, these dynamic core-shell MPs have the potential to sequester, isolate, and then redeliver proteins attached to a heparin core to initiate a cell response, which could be of great benefit to tissue regeneration applications requiring tight temporal control over protein presentation.

  5. Large-area super-resolution optical imaging by using core-shell microfibers

    Science.gov (United States)

    Liu, Cheng-Yang; Lo, Wei-Chieh

    2017-09-01

    We first numerically and experimentally report large-area super-resolution optical imaging achieved by using core-shell microfibers. The particular spatial electromagnetic waves for different core-shell microfibers are studied by using finite-difference time-domain and ray tracing calculations. The focusing properties of photonic nanojets are evaluated in terms of intensity profile and full width at half-maximum along propagation and transversal directions. In experiment, the general optical fiber is chemically etched down to 6 μm diameter and coated with different metallic thin films by using glancing angle deposition. The direct imaging of photonic nanojets for different core-shell microfibers is performed with a scanning optical microscope system. We show that the intensity distribution of a photonic nanojet is highly related to the metallic shell due to the surface plasmon polaritons. Furthermore, large-area super-resolution optical imaging is performed by using different core-shell microfibers placed over the nano-scale grating with 150 nm line width. The core-shell microfiber-assisted imaging is achieved with super-resolution and hundreds of times the field-of-view in contrast to microspheres. The possible applications of these core-shell optical microfibers include real-time large-area micro-fluidics and nano-structure inspections.

  6. Shape-tunable core-shell microparticles.

    Science.gov (United States)

    Klein, Matthias K; Saenger, Nicolai R; Schuetter, Stefan; Pfleiderer, Patrick; Zumbusch, Andreas

    2014-10-28

    Colloidal polymer particles are an important class of materials finding use in both everyday and basic research applications. Tailoring their composition, shape, and functionality is of key importance. In this article, we describe a new class of shape-tunable core-shell microparticles. They are composed of a cross-linked polystyrene (PS) core and a poly(methyl methacrylate) (PMMA) shell of varying thickness. In the first step, we prepared highly cross-linked PS cores, which are subsequently transferred into a nonpolar dispersant. They serve as the seed dispersion for a nonaqueous dispersion polymerization to generate the PMMA shell. The shape of the particles can subsequently be manipulated. After the shell growth stage, the spherical PS/PMMA core-shell colloids exhibit an uneven and wrinkled surface. An additional tempering procedure allows for smoothing the surface of the core-shell colloids. This results in polymer core-shell particles with a perfectly spherical shape. In addition to this thermal smoothing of the PMMA shell, we generated a selection of shape-anisotropic core-shell particles using a thermomechanical stretching procedure. Because of the unique constitution, we can selectively interrogate molecular vibrations in the PS core or the PMMA shell of the colloids using nonlinear optical microscopy techniques. This is of great interest because no photobleaching occurs, such that the particles can be tracked in real space over long times.

  7. Controllable conversion of plasmonic Cu2-xS nanoparticles to Au2S by cation exchange and electron beam induced transformation of Cu2-xS-Au2S core/shell nanostructures.

    Science.gov (United States)

    Wang, Xianliang; Liu, Xin; Zhu, Dewei; Swihart, Mark T

    2014-08-01

    Self-doped Cu2-xS nanocrystals (NCs) were converted into monodisperse Cu2-xS-Au2S NCs of tunable composition, including pure Au2S, by cation exchange. The near-infrared (NIR) localized surface plasmon resonance (LSPR) was dampened and red-shifted with increasing Au content. Cation exchange was accompanied by elimination of cation vacancies and a change in crystal structure. Partially exchanged Cu2-xS-Au2S core/shell structures evolved to dumbbell-like structures under electron irradiation in the transmission electron microscope (TEM).

  8. Semiconducting, Magnetic or Superconducting Nanoparticles encapsulated in Carbon Shells by RAPET method.

    Directory of Open Access Journals (Sweden)

    Aharon Gedanken

    2008-06-01

    Full Text Available An efficient, solvent-free, environmentally friendly, RAPET (Reactions under Autogenic Pressure at Elevated Temperaturesynthetic approach is discussed for the fabrication of core-shell nanostructures. The semiconducting, magnetic orsuperconducting nanoparticles are encapsulated in a carbon shell. RAPET is a one-step, thermal decomposition reaction ofchemical compound (s followed by the formation of core-shell nanoparticles in a closed stainless steel reactor. Therepresentative examples are discussed, where a variety of nanomaterials are trapped in situ in a carbon shell that offersfascinating properties.

  9. Hollow SnO2@Co3O4 core-shell spheres encapsulated in three-dimensional graphene foams for high performance supercapacitors and lithium-ion batteries

    Science.gov (United States)

    Zhao, Bo; Huang, Sheng-Yun; Wang, Tao; Zhang, Kai; Yuen, Matthew M. F.; Xu, Jian-Bin; Fu, Xian-Zhu; Sun, Rong; Wong, Ching-Ping

    2015-12-01

    Hollow SnO2@Co3O4 spheres are fabricated using 300 nm spherical SiO2 particles as template. Then three-dimensional graphene foams encapsulated hollow SnO2@Co3O4 spheres are successfully obtained through self-assembly in hydrothermal process from graphene oxide nanosheets and metal oxide hollow spheres. The three-dimensional graphene foams encapsulated architectures could greatly improve the capacity, cycling stability and rate capability of hollow SnO2@Co3O4 spheres electrodes due to the highly conductive networks and flexible buffering matrix. The three-dimensional graphene foams encapsulated hollow SnO2@Co3O4 spheres are promising electrode materials for supercapacitors and lithium-ion batteries.

  10. Engineered inorganic core/shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Mélinon, Patrice, E-mail: patrice.melinon@univ-lyon1.fr [Institut Lumière matière Université Claude Bernard Lyon 1 et CNRS et OMNT, Domaine Scientifique de la Doua, Bâtiment Léon Brillouin, 43 Boulevard du 11 Novembre 1918, F 69622 Villeurbanne (France); Begin-Colin, Sylvie [IPCMS et OMNT, 23 rue du Loess BP 43, 67034 STRASBOURG Cedex 2 (France); Duvail, Jean Luc [IMN UMR 6502 et OMNT Campus Sciences : 2 rue de la Houssinire, BP32229, 44322 Nantes Cedex3 (France); Gauffre, Fabienne [SPM et OMNT : Institut des sciences chimiques de Rennes - UMR 6226, 263 Avenue du General Leclerc, CS 74205, 35042 RENNES Cedex (France); Boime, Nathalie Herlin [IRAMIS-NIMBE, Laboratoire Francis Perrin (CEA CNRS URA 2453) et OMNT, Bat 522, CEA Saclay, 91191 Gif sur Yvette Cedex (France); Ledoux, Gilles [Institut Lumière Matière Université Claude Bernard Lyon 1 et CNRS et OMNT, Domaine Scientifique de la Doua, Bâtiment Alfred Kastler 43 Boulevard du 11 Novembre 1918 F 69622 Villeurbanne (France); Plain, Jérôme [Universit de technologie de Troyes LNIO-ICD, CNRS et OMNT 12 rue Marie Curie - CS 42060 - 10004 Troyes cedex (France); Reiss, Peter [CEA Grenoble, INAC-SPrAM, UMR 5819 CEA-CNRS-UJF et OMNT, Grenoble cedex 9 (France); Silly, Fabien [CEA, IRAMIS, SPEC, TITANS, CNRS 2464 et OMNT, F-91191 Gif sur Yvette (France); Warot-Fonrose, Bénédicte [CEMES-CNRS, Université de Toulouse et OMNT, 29 rue Jeanne Marvig F 31055 Toulouse (France)

    2014-10-20

    It has been for a long time recognized that nanoparticles are of great scientific interest as they are effectively a bridge between bulk materials and atomic structures. At first, size effects occurring in single elements have been studied. More recently, progress in chemical and physical synthesis routes permitted the preparation of more complex structures. Such structures take advantages of new adjustable parameters including stoichiometry, chemical ordering, shape and segregation opening new fields with tailored materials for biology, mechanics, optics magnetism, chemistry catalysis, solar cells and microelectronics. Among them, core/shell structures are a particular class of nanoparticles made with an inorganic core and one or several inorganic shell layer(s). In earlier work, the shell was merely used as a protective coating for the core. More recently, it has been shown that it is possible to tune the physical properties in a larger range than that of each material taken separately. The goal of the present review is to discuss the basic properties of the different types of core/shell nanoparticles including a large variety of heterostructures. We restrict ourselves on all inorganic (on inorganic/inorganic) core/shell structures. In the light of recent developments, the applications of inorganic core/shell particles are found in many fields including biology, chemistry, physics and engineering. In addition to a representative overview of the properties, general concepts based on solid state physics are considered for material selection and for identifying criteria linking the core/shell structure and its resulting properties. Chemical and physical routes for the synthesis and specific methods for the study of core/shell nanoparticle are briefly discussed.

  11. Investigation of nanostructured Fe{sub 3}O{sub 4} polypyrrole core-shell composites by X-ray absorbtion spectroscopy and X-ray diffraction using synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Aldea, Nicolae, E-mail: naldea@itim-cj.ro; Turcu, Rodica; Nan, Alexandrina; Craciunescu, Izabella; Pana, Ovidiu [National Institute for Research and Development of Isotopic and Molecular Technologies (Romania); Xie Yaning; Wu Zhonghua [National Laboratory, Beijing Synchrotron Radiation Facilities of Beijing, Electron Positron Collider (China); Bica, Doina; Vekas, Ladislau [Magnetic Fluids Laboratory, Romanian Academy, Timisoara Branch (Romania); Matei, Florica [Agriculture Sciences and Medicine Veterinary University (Romania)

    2009-08-15

    In this article, we focus on the structural peculiarities of nanosized Fe{sub 3}O{sub 4} in the core-shell nanocomposites obtained by polymerization of conducting polypyrrole shell around Fe{sub 3}O{sub 4} nanoparticles. The local structure of Fe atoms was determined from the Extended X-ray Absorption Fine Structure analysis using our own package computer programs. An X-ray diffraction method that is capable to determine average particle size, microstrains, as the particle size distribution of Fe{sub 3}O{sub 4} nanoparticles is presented. The method is based on the Fourier analysis of a single X-ray diffraction profile using a new fitting method based on the generalized Fermi function facilities. The crystallites size obtained by X-ray diffraction spectra analysis was estimated between 3.2 and 10.3 nm. Significant changes in the first and the second Fe coordination shell in comparison with standard bulk were observed. The global and local structure of the nanosized Fe{sub 3}O{sub 4} are correlated with the synthesis conditions of the core-shell polypyrrole nanocomposites.

  12. Magnetic core-shell silica particles

    NARCIS (Netherlands)

    Claesson, E.M.

    2007-01-01

    This thesis deals with magnetic silica core-shell colloids and related functionalized silica structures. Synthesis routes have been developed and optimized. The physical properties of these colloids have been investigated, such as the magnetic dipole moment, dipolar structure formation and

  13. Magnetic core-shell silica particles

    NARCIS (Netherlands)

    Claesson, E.M.

    2007-01-01

    This thesis deals with magnetic silica core-shell colloids and related functionalized silica structures. Synthesis routes have been developed and optimized. The physical properties of these colloids have been investigated, such as the magnetic dipole moment, dipolar structure formation and rotationa

  14. Electrosprayed core-shell polymer-lipid nanoparticles for active component delivery

    Science.gov (United States)

    Eltayeb, Megdi; Stride, Eleanor; Edirisinghe, Mohan

    2013-11-01

    A key challenge in the production of multicomponent nanoparticles for healthcare applications is obtaining reproducible monodisperse nanoparticles with the minimum number of preparation steps. This paper focus on the use of electrohydrodynamic (EHD) techniques to produce core-shell polymer-lipid structures with a narrow size distribution in a single step process. These nanoparticles are composed of a hydrophilic core for active component encapsulation and a lipid shell. It was found that core-shell nanoparticles with a tunable size range between 30 and 90 nm and a narrow size distribution could be reproducibly manufactured. The results indicate that the lipid component (stearic acid) stabilizes the nanoparticles against collapse and aggregation and improves entrapment of active components, in this case vanillin, ethylmaltol and maltol. The overall structure of the nanoparticles produced was examined by multiple methods, including transmission electron microscopy and differential scanning calorimetry, to confirm that they were of core-shell form.

  15. Retention Models on Core-Shell Columns.

    Science.gov (United States)

    Jandera, Pavel; Hájek, Tomáš; Růžičková, Marie

    2017-07-13

    A thin, active shell layer on core-shell columns provides high efficiency in HPLC at moderately high pressures. We revisited three models of mobile phase effects on retention for core-shell columns in mixed aqueous-organic mobile phases: linear solvent strength and Snyder-Soczewiński two-parameter models and a three-parameter model. For some compounds, two-parameter models show minor deviations from linearity due to neglect of possible minor retention in pure weak solvent, which is compensated for in the three-parameter model, which does not explicitly assume either the adsorption or the partition retention mechanism in normal- or reversed-phase systems. The model retention equation can be formulated as a function of solute retention factors of nonionic compounds in pure organic solvent and in pure water (or aqueous buffer) and of the volume fraction of an either aqueous or organic solvent component in a two-component mobile phase. With core-shell columns, the impervious solid core does not participate in the retention process. Hence, the thermodynamic retention factors, defined as the ratio of the mass of the analyte mass contained in the stationary phase to its mass in the mobile phase in the column, should not include the particle core volume. The values of the thermodynamic factors are lower than the retention factors determined using a convention including the inert core in the stationary phase. However, both conventions produce correct results if consistently used to predict the effects of changing mobile phase composition on retention. We compared three types of core-shell columns with C18-, phenyl-hexyl-, and biphenyl-bonded phases. The core-shell columns with phenyl-hexyl- and biphenyl-bonded ligands provided lower errors in two-parameter model predictions for alkylbenzenes, phenolic acids, and flavonoid compounds in comparison with C18-bonded ligands.

  16. Synthesis and characterization of highly-ordered ZnO/PbS core/shell heterostructures

    Science.gov (United States)

    Zhu, Y. F.; Zhou, G. H.; Ding, H. Y.; Liu, A. H.; Lin, Y. B.; Dong, Y. W.

    2011-11-01

    The strategy to manipulate nanoscale building blocks into well-organized heterostructures is very important to both material synthesis and nanodevice applications. In this work, highly-ordered ZnO/PbS core/shell nanowire arrays were fabricated by a facile and low temperature chemical route. Large area and well-aligned ZnO nanowire arrays were firstly fabricated on conductive glass substrates, and then the synthesis of ZnO/ZnS and ZnO/PbS core/shell nanowire arrays were realized by a chemical conversion method. The morphology, structure, and composition of the obtained nanostructures were confirmed by field-emission scanning electron microscopy, energy-dispersive X-ray analysis, and X-ray diffraction measurements. The optical properties of the synthesized nanostructures were investigated by micro-Raman and photoluminescence spectroscopy. In the synthesized ZnO/PbS core/shell nanowire arrays, the ZnO cores can provide direct conduction pathways for electron transport and PbS shells possess superior photoelectric performance. Therefore, the obtained ZnO/PbS core/shell nanostructures may have potential application in photovoltaic devices.

  17. Sonochemical synthesis and photoluminescence properties of rare-earth phosphate core/shell nanorods

    Institute of Scientific and Technical Information of China (English)

    余文媛; 李冠涞; 周利

    2010-01-01

    Rare earth phosphate core/shell nanostructures were synthesized via facile ultrasound irradiation method.XRD and TEM were em-ployed to characterize the structure and morphology properties.The photoluminescence(PL) properties of TbPO4/CePO4 and CePO4/TbPO4 core/shell nanorods were studied to explore the energy transfers from Ce3+ to Tb3+.In the Ce0.9Tb0.1PO4/LaPO4 core/shell nanorods,the PL intensity of Ce0.9Tb0.1PO4 nanorods was enhanced when the LaPO4 shells were coated.

  18. Synthesis of core-shell structured magnetic nanoparticles with a carbide shell

    Science.gov (United States)

    Hou, Shushan; Chi, Yue; Zhao, Zhankui

    2017-03-01

    Core-shell structured materials combining the functionalities of the core and shell have great application potential in many fields. In this work, by combining solvothermal, polymerization and the high temperature carbonization, we have successfully developed a facile method to generate core-shell structured nanoparticles which possess an internal magnetic nanoparticle with a carbide shell. The thickness of resorcinol formaldehyde resin as intermediate transition shell could be easily adjusted by changing the concentration of the RF precursor. The resulting nanoparticles possess well-defined structure, uniform size and high magnetization. The unique nanostructure of the magnetic core-shell structured nanoparticles could lead to many promising applications in areas ranging from drug delivery to the purifyication of sewage.

  19. Hexagonal Boron Nitride-Graphene Core-Shell Arrays Formed by Self-Symmetrical Etching Growth.

    Science.gov (United States)

    Wang, Chenxiao; Zuo, Junlai; Tan, Lifang; Zeng, Mengqi; Zhang, Qiqi; Xia, Huinan; Zhang, Wenhao; Fu, Yingshuang; Fu, Lei

    2017-09-20

    The synthesis and integration of core-shell materials have been extensively explored in three-dimensional nanostructures, while they are hardly ever extended into the emerging two-dimensional (2D) research field. Herein, demonstrated by graphene (G) and hexagonal boron nitride (h-BN) and via a sequential chemical vapor deposition method, we succeed for the first time in synthesizing 2D h-BN-G core-shell arrays (CSA), which possess extremely high uniformity in shapes, sizes and distributions. Each of the core-shell unit is composed of G ring-shaped shell internally filled with h-BN circular core. In addition, we perform simulations to further explain the self-symmetrical etching growth mechanism of the h-BN-G CSA, demonstrating its potential to be used as an efficient synthetic method suitable for other 2D CSA systems.

  20. Dielectric core-shell optical antennas for strong solar absorption enhancement.

    Science.gov (United States)

    Yu, Yiling; Ferry, Vivian E; Alivisatos, A Paul; Cao, Linyou

    2012-07-11

    We demonstrate a new light trapping technique that exploits dielectric core-shell optical antennas to strongly enhance solar absorption. This approach can allow the thickness of active materials in solar cells lowered by almost 1 order of magnitude without scarifying solar absorption capability. For example, it can enable a 70 nm thick hydrogenated amorphous silicon (a-Si:H) thin film to absorb 90% of incident solar radiation above the bandgap, which would otherwise require a thickness of 400 nm in typical antireflective coated thin films. This strong enhancement arises from a controlled optical antenna effect in patterned core-shell nanostructures that consist of absorbing semiconductors and nonabsorbing dielectric materials. This core-shell optical antenna benefits from a multiplication of enhancements contributed by leaky mode resonances (LMRs) in the semiconductor part and antireflection effects in the dielectric part. We investigate the fundamental mechanism for this enhancement multiplication and demonstrate that the size ratio of the semiconductor and the dielectric parts in the core-shell structure is key for optimizing the enhancement. By enabling strong solar absorption enhancement, this approach holds promise for cost reduction and efficiency improvement of solar conversion devices, including solar cells and solar-to-fuel systems. It can generally apply to a wide range of inorganic and organic active materials. This dielectric core-shell antenna can also find applications in other photonic devices such as photodetectors, sensors, and solid-state lighting diodes.

  1. Sensitive detection of DNA based on the optical properties of core-shell gold nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Huang Haowen, E-mail: hhwn09@163.com; Li Chunhui; Qu Caiting; Huang Shaowen; Liu Fang; Zeng Yunlong [Hunan University of Science and Technology, Laboratory of Theoretical Chemistry and Molecular Simulation of Ministry of Education, School of Chemistry and Chemical Engineering (China)

    2012-03-15

    In this article, a type of core-shell nanostructure, Au{sub 2}S/AuAgS/Ag{sub 3}AuS{sub 2}-coated gold nanorods (GNRs) with unique optical properties was used as a sensing platform to detect fish sperm DNA (fsDNA). The prepared core-shell nanorods are positively charged due to the adsorption of the positively charged cetyltrimethylammonium bromide (CTAB) cations on their surface. fsDNA can form ternary fsDNA-CTAB-nanorod complexes together with CTAB and nanorod, which provides a useful platform to detect fsDNA through absorption spectra and resonance light scattering (RLS) spectroscopy. In this sensitive core-shell nanorod sensor, CTAB concentration and the nanoparticle dosage play important roles and have been investigated. Moreover, the fsDNA-CTAB-nanorod complexes induce a great enhancement of RLS intensity of the core-shell GNRs and directly proportional to the concentration of fsDNA, reaching a detection limit of about 10{sup -9} mg/mL. This study will be significant for as-prepared core-shell GNRs for future application in biological systems.

  2. Hypersonic vibrations of Ag@SiO2 (cubic core)-shell nanospheres.

    Science.gov (United States)

    Sun, Jing Ya; Wang, Zhi Kui; Lim, Hock Siah; Ng, Ser Choon; Kuok, Meng Hau; Tran, Toan Trong; Lu, Xianmao

    2010-12-28

    The intriguing optical and catalytic properties of metal-silica core-shell nanoparticles, inherited from their plasmonic metallic cores together with the rich surface chemistry and increased stability offered by their silica shells, have enabled a wide variety of applications. In this work, we investigate the confined vibrational modes of a series of monodisperse Ag@SiO(2) (cubic core)-shell nanospheres synthesized using a modified Stöber sol-gel method. The particle-size dependence of their mode frequencies has been mapped by Brillouin light scattering, a powerful tool for probing hypersonic vibrations. Unlike the larger particles, the observed spheroidal-like mode frequencies of the smaller ones do not scale with inverse diameter. Interestingly, the onset of the deviation from this linearity occurs at a smaller particle size for higher-energy modes than for lower-energy ones. Finite element simulations show that the mode displacement profiles of the Ag@SiO(2) core-shells closely resemble those of a homogeneous SiO(2) sphere. Simulations have also been performed to ascertain the effects that the core shape and the relative hardness of the core and shell materials have on the vibrations of the core-shell as a whole. As the vibrational modes of a particle have a bearing on its thermal and mechanical properties, the findings would be of value in designing core-shell nanostructures with customized thermal and mechanical characteristics.

  3. Heterogeneous core/shell fluoride nanocrystals with enhanced upconversion photoluminescence for in vivo bioimaging

    Science.gov (United States)

    Hao, Shuwei; Yang, Liming; Qiu, Hailong; Fan, Rongwei; Yang, Chunhui; Chen, Guanying

    2015-06-01

    We report on heterogeneous core/shell CaF2:Yb3+/Ho3+@NaGdF4 nanocrystals of 17 nm with efficient upconversion (UC) photoluminescence (PL) for in vivo bioimaging. Monodisperse core/shell nanostructures were synthesized using a seed-mediated growth process involving two quite different approaches of liquid-solid-solution and thermal decomposition. They exhibit green emission with a sharp band around 540 nm when excited at ~980 nm, which is about 39 times brighter than the core CaF2:Yb3+/Ho3+ nanoparticles. PL decays at 540 nm revealed that such an enhancement arises from efficient suppression of surface-related deactivation from the core nanocrystals. In vivo bioimaging employing water-dispersed core/shell nanoparticles displayed high contrast against the background.We report on heterogeneous core/shell CaF2:Yb3+/Ho3+@NaGdF4 nanocrystals of 17 nm with efficient upconversion (UC) photoluminescence (PL) for in vivo bioimaging. Monodisperse core/shell nanostructures were synthesized using a seed-mediated growth process involving two quite different approaches of liquid-solid-solution and thermal decomposition. They exhibit green emission with a sharp band around 540 nm when excited at ~980 nm, which is about 39 times brighter than the core CaF2:Yb3+/Ho3+ nanoparticles. PL decays at 540 nm revealed that such an enhancement arises from efficient suppression of surface-related deactivation from the core nanocrystals. In vivo bioimaging employing water-dispersed core/shell nanoparticles displayed high contrast against the background. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02287h

  4. Platinum-coated non-noble metal-noble metal core-shell electrocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Adzic, Radoslav; Zhang, Junliang; Mo, Yibo; Vukmirovic, Miomir

    2015-04-14

    Core-shell particles encapsulated by a thin film of a catalytically active metal are described. The particles are preferably nanoparticles comprising a non-noble core with a noble metal shell which preferably do not include Pt. The non-noble metal-noble metal core-shell nanoparticles are encapsulated by a catalytically active metal which is preferably Pt. The core-shell nanoparticles are preferably formed by prolonged elevated-temperature annealing of nanoparticle alloys in an inert environment. This causes the noble metal component to surface segregate and form an atomically thin shell. The Pt overlayer is formed by a process involving the underpotential deposition of a monolayer of a non-noble metal followed by immersion in a solution comprising a Pt salt. A thin Pt layer forms via the galvanic displacement of non-noble surface atoms by more noble Pt atoms in the salt. The overall process is a robust and cost-efficient method for forming Pt-coated non-noble metal-noble metal core-shell nanoparticles.

  5. One-pot preparation of nanoporous Ag-Cu@Ag core-shell alloy with enhanced oxidative stability and robust antibacterial activity.

    Science.gov (United States)

    Liu, Xue; Du, Jing; Shao, Yang; Zhao, Shao-Fan; Yao, Ke-Fu

    2017-08-31

    Metallic core-shell nanostructures have inspired prominent research interests due to their better performances in catalytic, optical, electric, and magnetic applications as well as the less cost of noble metal than monometallic nanostructures, but limited by the complicated and expensive synthesis approaches. Development of one-pot and inexpensive method for metallic core-shell nanostructures' synthesis is therefore of great significance. A novel Cu network supported nanoporous Ag-Cu alloy with an Ag shell and an Ag-Cu core was successfully synthesized by one-pot chemical dealloying of Zr-Cu-Ag-Al-O amorphous/crystalline composite, which provides a new way to prepare metallic core-shell nanostructures by a simple method. The prepared nanoporous Ag-Cu@Ag core-shell alloy demonstrates excellent air-stability at room temperature and enhanced oxidative stability even compared with other reported Cu@Ag core-shell micro-particles. In addition, the nanoporous Ag-Cu@Ag core-shell alloy also possesses robust antibacterial activity against E. Coli DH5α. The simple and low-cost synthesis method as well as the excellent oxidative stability promises the nanoporous Ag-Cu@Ag core-shell alloy potentially wide applications.

  6. Physisorption-induced electron scattering on the surface of carbon-metal core-shell nanowire arrays for hydrogen sensing

    Science.gov (United States)

    Yick, S.; Yajadda, M. M. A.; Bendavid, A.; Han, Z. J.; Ostrikov, K.

    2013-06-01

    Palladium is sputtered on multi-walled carbon nanotube forests to form carbon-metal core-shell nanowire arrays. These hybrid nanostructures exhibited resistive responses when exposed to hydrogen with an excellent baseline recovery at room temperature. The magnitude of the response is shown to be tuneable by an applied voltage. Unlike the charge-transfer mechanism commonly attributed to Pd nanoparticle-decorated carbon nanotubes, this demonstrates that the hydrogen response mechanism of the multi-walled carbon nanotube-Pd core-shell nanostructure is due to the increase in electron scattering induced by physisorption of hydrogen. These hybrid core-shell nanostructures are promising for gas detection in hydrogen storage applications.

  7. Facile synthesis of highly efficient one-dimensional plasmonic photocatalysts through Ag@Cu₂O core-shell heteronanowires.

    Science.gov (United States)

    Xiong, Jinyan; Li, Zhen; Chen, Jun; Zhang, Shanqing; Wang, Lianzhou; Dou, Shixue

    2014-09-24

    A novel class of one-dimensional (1D) plasmonic Ag@Cu2O core-shell heteronanowires have been synthesized at room temperature for photocatalysis application. The morphology, size, crystal structure and composition of the products were investigated by XRD, SEM, TEM, XPS, and UV-vis instruments. It was found the reaction time and the amount of Ag nanowires play crucial roles in the formation of well-defined 1D Ag@Cu2O core-shell heteronanowires. The resultant 1D Ag@Cu2O NWs exhibit much higher photocatalytic activity toward degradation of organic contaminants than Ag@Cu2O core-shell nanoparticles or pure Cu2O nanospheres under solar light irradiation. The drastic enhancement in photocatalytic activity could be attributed to the surface plasmon resonance and the electron sink effect of the Ag NW cores, and the unique 1D core-shell nanostructure.

  8. Photoluminescence Imaging of SiO{sub 2} Y{sub 2}O{sub 3}:Eu(III) and SiO{sub 2} Y{sub 2}O{sub 3}:Tb(III) Core-Shell Nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Insu; Kang, Jungill; Sohn, Youngku [Yeungnam Univ., Gyeongsan (Korea, Republic of)

    2014-02-15

    We uniformly coated Eu(III)- and Tb(III)-doped yttrium oxide onto the surface of SiO{sub 2} spheres and then characterized them by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction crystallography and UV-Visible absorption. 2D and 3D photoluminescence image map profiles were reported for the core-shell type structure. Red emission peaks of Eu(III) were observed between 580 to 730 nm and assigned to {sup 5}D{sub 0} → {sup 7}F{sub J} (J = 0 - 4) transitions. The green emission peaks of Tb(III) between 450 and 650 nm were attributed to the {sup 5}D{sub 4} → {sup 7}F{sub J} (J = 6, 5, 4, 3) transitions. For annealed samples, Eu(III) ions were embedded at a C{sub 2} symmetry site in Y{sub 2}O{sub 3}, which was accompanied by an increase in luminescence intensity and redness, while Tb(III) was changed to Tb(IV), which resulted in no green emission.

  9. Preparation and characterization of folate-chitosan-gemcitabine core-shell nanoparticles for potential tumor-targeted drug delivery.

    Science.gov (United States)

    Xu, Shi; Xu, Qian; Zhou, Jiahua; Wang, Junying; Zhang, Niping; Zhang, Ling

    2013-01-01

    For the purpose of achieving targeted chemotherapy of pancreatic cancer, we prepared core-shell nanoparticles by coaxial electrospray technology, with folate-chitosan as the polymeric coating material and gemcitabine as the encapsulated drug. The effects of various solution properties and processing parameters on nanoparticles formation were investigated. By optimizing the electrospray parameters, the diameter of the core-shell nanoparticles was in the range of 200-300 nm with drug loading and encapsulation efficiency of 3.91 +/- 0.12% and 85.37 +/- 4.9%. The drug release kinetics revealed a controlled initial burst release followed by a sustained release over a period of 72 h at pH 7.4 and pH 5.0, and at pH 5.0 the drug released more quickly. Moreover, the cellular uptake experiment confirmed that the folate conjugated core-shell nanoparticles had high pancreatic cancer (BXPC3) cells uptake efficiency. And the cell cytotoxicity test displayed that they had remarkable cytotoxicity towards BXPC3 cells. This study indicates that coaxial electrospray is a facile technique in producing core-shell nanoparticles encapsulating hydrophilic small molecule drugs, and clearly infers that the folate conjugated core-shell nanoparticles is very much effective to use as a pancreatic tumor-targeted delivery carrier for anticancer drugs.

  10. A simple method to prepare titania nanomaterials of core-shell structure,hollow nanospheres and mesoporous nanoparticles

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hui; LI DeQian; SHAO GaoSong; YUAN ZhongYong

    2009-01-01

    A simple method to prepare titania nanomaterials of core-shell structure,hollow nanospheres and mesoporous nanoparticlee has been developed.The core-shell nanostructures with NH4CI as core and aggregated NH4Cl crystals,which could be transformed into mesoporous anatase nanoparticles or hollow nanospheres by calcination at 500℃ or extraction with methanol,respectively.The hierarchical mesoporous nanostructures benefited the photocatalytic activities of the resultant titania nanomaterials,demonstrated by the UV light photodegradation of Methyl Orange.

  11. A simple method to prepare titania nanomaterials of core-shell structure, hollow nanospheres and mesoporous nanoparticles

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A simple method to prepare titania nanomaterials of core-shell structure, hollow nanospheres and mesoporous nanoparticles has been developed. The core-shell nanostructures with NH4Cl as core and TiO2·xH2O-NH4Cl as shell were prepared in nonaqueous system by the deposition on the surface of the aggregated NH4Cl crystals, which could be transformed into mesoporous anatase nanoparticles or hollow nanospheres by calcination at 500℃ or extraction with methanol, respectively. The hierarchical mesoporous nanostructures benefited the photocatalytic activities of the resultant titania nanomateri-als, demonstrated by the UV light photodegradation of Methyl Orange.

  12. Controlled Synthesis of Carbon-Encapsulated Copper Nanostructures by Using Smectite Clays as Nanotemplates

    NARCIS (Netherlands)

    Tsoufis, Theodoros; Colomer, Jean-Francois; Maccallini, Enrico; Jankovic, Lubos; Rudolf, Petra; Gournis, Dimitrios; Jankovič, Lubos

    2012-01-01

    Rhomboidal and spherical metallic-copper nanostructures were encapsulated within well-formed graphitic shells by using a simple chemical method that involved the catalytic decomposition of acetylene over a copper catalyst that was supported on different smectite clays surfaces by ion-exchange. These

  13. Controlled Synthesis of Carbon-Encapsulated Copper Nanostructures by Using Smectite Clays as Nanotemplates

    NARCIS (Netherlands)

    Tsoufis, Theodoros; Colomer, Jean-Francois; Maccallini, Enrico; Jankovic, Lubos; Rudolf, Petra; Gournis, Dimitrios; Jankovič, Lubos

    2012-01-01

    Rhomboidal and spherical metallic-copper nanostructures were encapsulated within well-formed graphitic shells by using a simple chemical method that involved the catalytic decomposition of acetylene over a copper catalyst that was supported on different smectite clays surfaces by ion-exchange. These

  14. Core-shell biopolymer nanoparticle delivery systems: synthesis and characterization of curcumin fortified zein-pectin nanoparticles.

    Science.gov (United States)

    Hu, Kun; Huang, Xiaoxia; Gao, Yongqing; Huang, Xulin; Xiao, Hang; McClements, David Julian

    2015-09-01

    Biopolymer core-shell nanoparticles were fabricated using a hydrophobic protein (zein) as the core and a hydrophilic polysaccharide (pectin) as the shell. Particles were prepared by coating cationic zein nanoparticles with anionic pectin molecules using electrostatic deposition (pH 4). The core-shell nanoparticles were fortified with curcumin (a hydrophobic bioactive molecule) at a high loading efficiency (>86%). The resulting nanoparticles were spherical, relatively small (diameter ≈ 250 nm), and had a narrow size distribution (polydispersity index ≈ 0.24). The encapsulated curcumin was in an amorphous (rather than crystalline form) as detected by differential scanning calorimetry (DSC). Fourier transform infrared (FTIR) and Raman spectra indicated that the encapsulated curcumin interacted with zein mainly through hydrophobic interactions. The nanoparticles were converted into a powdered form that had good water-dispersibility. These core-shell biopolymer nanoparticles could be useful for incorporating curcumin into functional foods and beverages, as well as dietary supplements and pharmaceutical products.

  15. Core-shell fibrous stem cell carriers incorporating osteogenic nanoparticulate cues for bone tissue engineering.

    Science.gov (United States)

    Olmos Buitrago, Jennifer; Perez, Roman A; El-Fiqi, Ahmed; Singh, Rajendra K; Kim, Joong-Hyun; Kim, Hae-Won

    2015-12-01

    Moldable hydrogels that incorporate stem cells hold great promise for tissue engineering. They secure the encapsulated cells for required periods while allowing a permeable exchange of nutrients and gas with the surroundings. Core-shell fibrous structured hydrogel system represents these properties relevant to stem cell delivery and defect-adjustable tissue engineering. A designed dual concentric nozzle is used to simultaneously deposit collagen and alginate with a core-shell structured continuous fiber form in the ionic calcium bath. We aimed to impart extrinsic osteogenic cues in the nanoparticulate form, i.e., bioactive glass nanoparticles (BGn), inside the alginate shell, while encapsulating rat mesenchymal stem cells in the collagen core. Ionic measurement in aqueous solution indicated a continuous release of calcium ions from the BGn-added and -free scaffolds, whereas silicon was only released from the BGn-containing scaffolds. The presence of BGn allowed higher number of cells to migrate into the scaffolds when implanted in subcutaneous tissues of rat. Cell viability was preserved in the presence of the BGn, with no significant differences noticed from the control. The presence of BGn enhanced the osteogenic differentiation of the encapsulated rat mesenchymal stem cells, presenting higher levels of alkaline phosphatase activity as well as bone related genes, including collagen type I, bone sialoprotein and osteocalcin. Taken together, the incorporated BGn potentiated the capacity of the core-shell fibrous hydrogel system to deliver stem cells targeting bone tissue engineering. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. Synthesis of TiC/W core-shell nanoparticles by precipitate-coating process

    Energy Technology Data Exchange (ETDEWEB)

    Xia Min [30 Xueyuan Road, Haidian District, Institute of Nuclear Materials, University of Science and Technology Beijing, Beijing (China); 111, 1st Section, Northern 2nd Ring Road, Institute of Powder Metallurgy and Advanced Ceramics, Southwest Jiaotong University, Chengdu (China); Yan Qingzhi, E-mail: qingzhiyan111@163.com [30 Xueyuan Road, Haidian District, Institute of Nuclear Materials, University of Science and Technology Beijing, Beijing (China); Xu Lei [30 Xueyuan Road, Haidian District, Institute of Nuclear Materials, University of Science and Technology Beijing, Beijing (China); Zhu Lingxu; Guo Hongyan; Ge Changchun [30 Xueyuan Road, Haidian District, The Institute of Nuclear Materials, University of Science and Technology Beijing, Beijing (China); 111, 1st Section, Northern 2nd Ring Road, Institute of Powder Metallurgy and Advanced Ceramics, Southwest Jiaotong University, Chengdu (China)

    2012-11-15

    Graphical abstract: Well-dispersed titanium carbide/tungsten (TiC/W) core-shell nanoparticles with high-purity and uniform diameters were firstly synthesized by precipitate-coating process. Such unique process suggests a new method for preparing X/W (X refers the water-insoluble nanoparticles) core-shell nanoparticles with different cores. Abstract: Well-dispersed titanium carbide/tungsten (TiC/W) core-shell nanoparticles with high-purity and uniform diameters were firstly synthesized by precipitate-coating process. The as-synthesized nanoparticles were characterized by X-ray diffraction (XRD), Filed-emission scanning electron microscope (FESEM), Transmission electron microscopy (TEM), energy dispersive spectrum (EDS). Results revealed that the as-synthesized nanoparticles possess uniform diameters about 100 nm, and high purity. TEM and the corresponding FFT images demonstrate that TiC nanoparticles were well-encapsulated by W shells. Such unique process suggests a new method for preparing X/W (X refers the water-insoluble nanoparticles) core-shell nanoparticles with different cores.

  17. Multifunctional CdS/CoFe2O4 fluorescent/magnetic core/shell nanocomposite structure for bio-applications

    Science.gov (United States)

    Singh, Simrjit; Khare, Neeraj; Sivakumar, Balasubramanian; Aravind, Athulya; Nair Sakthikumar, Dasappan

    2016-04-01

    In this work, self-assembled core/shell nanostructures of CdS/CoFe2O4 (CFO) have been synthesized using a chemical solution method to include magnetic and fluorescent properties in a single composite material for bioapplications. Successful synthesis of the core/shell nanostructure has been evidenced from the transmission electron microscopy and x-ray diffraction results. Alternating gradient magnetometer and photoluminescence spectroscopy results confirm good magnetic and luminescent characteristics of the core/shell nanostructure. The in vitro biocompatibility of the CFO and CdS/CFO nanostructures has been studied in the Alamar blue assay in four different cell lines (MIAPaCa-2, MCF-7, KUSA-A1, and L929 cells) at different concentrations of nanostructures. The CdS/CFO nanostructure shows improved biocompatibility in all the cell lines as compared to bare CFO nanostructures at all concentrations. However, the biocompatibility for both the nanostructures is found to decrease in the KUSA-A1 cell line at higher concentrations of the nanostructures, which is due to the higher sensitivity of the KUSA-A1 cell line to the nanostructures at higher concentrations than other cell lines. Biocompatibility studies show the potentiality of these core/shell nanostructures for bio-applications.

  18. Core-shell Au-Pd nanoparticles as cathode catalysts for microbial fuel cell applications

    Science.gov (United States)

    Yang, Gaixiu; Chen, Dong; Lv, Pengmei; Kong, Xiaoying; Sun, Yongming; Wang, Zhongming; Yuan, Zhenhong; Liu, Hui; Yang, Jun

    2016-01-01

    Bimetallic nanoparticles with core-shell structures usually display enhanced catalytic properties due to the lattice strain created between the core and shell regions. In this study, we demonstrate the application of bimetallic Au-Pd nanoparticles with an Au core and a thin Pd shell as cathode catalysts in microbial fuel cells, which represent a promising technology for wastewater treatment, while directly generating electrical energy. In specific, in comparison with the hollow structured Pt nanoparticles, a benchmark for the electrocatalysis, the bimetallic core-shell Au-Pd nanoparticles are found to have superior activity and stability for oxygen reduction reaction in a neutral condition due to the strong electronic interaction and lattice strain effect between the Au core and the Pd shell domains. The maximum power density generated in a membraneless single-chamber microbial fuel cell running on wastewater with core-shell Au-Pd as cathode catalysts is ca. 16.0 W m−3 and remains stable over 150 days, clearly illustrating the potential of core-shell nanostructures in the applications of microbial fuel cells. PMID:27734945

  19. Supercooling Self-Assembly of Magnetic Shelled Core/Shell Supraparticles.

    Science.gov (United States)

    Zheng, Xiaotong; Yan, Bingyun; Wu, Fengluan; Zhang, Jinlong; Qu, Shuxin; Zhou, Shaobing; Weng, Jie

    2016-09-14

    Molecular self-assembly has emerged as a powerful technique for controlling the structure and properties of core/shell structured supraparticles. However, drug-loading capacities and therapeutic effects of self-assembled magnetic core/shell nanocarriers with magnetic nanoparticles in the core are limited by the intervention of the outer organic or inorganic shell, the aggregation of superparamagnetic nanoparticles, the narrowed inner cavity, etc. Here, we present a self-assembly approach based on rebalancing hydrogen bonds between components under a supercooling process to form a new core/shell nanoscale supraparticle with magnetic nanoparticles as the shell and a polysaccharide as a core. Compared with conventional iron oxide nanoparticles, this magnetic shelled core/shell nanoparticle possesses an optimized inner cavity and a loss-free outer magnetic property. Furthermore, we find that the drug-loaded magnetic shelled nanocarriers showed interesting in vitro release behaviors at different pH conditions, including "swelling-broken", "dissociating-broken", and "bursting-broken" modes. Our experiments demonstrate the novel design of the multifunctional hybrid nanostructure and provide a considerable potential for the biomedical applications.

  20. Novel ZnO/Fe₂O₃ Core-Shell Nanowires for Photoelectrochemical Water Splitting.

    Science.gov (United States)

    Hsu, Yu-Kuei; Chen, Ying-Chu; Lin, Yan-Gu

    2015-07-01

    A facile and simple fabrication of Fe2O3 as a shell layer on the surface of ZnO nanowires (NW) as a core-shell nanoelectrode is applied for the photoelectrochemical (PEC) splitting of water. An ZnO NW array of core diameter ∼80 nm was grown on a fluorine-doped tin-oxide (FTO) substrate with a hydrothermal method; subsequent deposition and annealing achieved a shell structure of the Fe2O3 layer of thickness a few nm. Fe2O3 in the α phase and ZnO in the wurtzite phase were identified as the structures of the shell and core, respectively, through analysis with X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The ZnO/Fe2O3 core-shell NW showed an excellent PEC response to the oxidation of water, and also benefited from a negative shift of onset potential because of an n/n heterojunction structure. A detailed energy diagram of the ZnO/Fe2O3 core-shell NW was investigated with a Mott-Schottky analysis. This novel core-shell nanostructure can hence not only exhibit a great potential for the solar generation of hydrogen, but also offer a blueprint for the future design of photocatalysts.

  1. Core-shell Au-Pd nanoparticles as cathode catalysts for microbial fuel cell applications

    Science.gov (United States)

    Yang, Gaixiu; Chen, Dong; Lv, Pengmei; Kong, Xiaoying; Sun, Yongming; Wang, Zhongming; Yuan, Zhenhong; Liu, Hui; Yang, Jun

    2016-10-01

    Bimetallic nanoparticles with core-shell structures usually display enhanced catalytic properties due to the lattice strain created between the core and shell regions. In this study, we demonstrate the application of bimetallic Au-Pd nanoparticles with an Au core and a thin Pd shell as cathode catalysts in microbial fuel cells, which represent a promising technology for wastewater treatment, while directly generating electrical energy. In specific, in comparison with the hollow structured Pt nanoparticles, a benchmark for the electrocatalysis, the bimetallic core-shell Au-Pd nanoparticles are found to have superior activity and stability for oxygen reduction reaction in a neutral condition due to the strong electronic interaction and lattice strain effect between the Au core and the Pd shell domains. The maximum power density generated in a membraneless single-chamber microbial fuel cell running on wastewater with core-shell Au-Pd as cathode catalysts is ca. 16.0 W m‑3 and remains stable over 150 days, clearly illustrating the potential of core-shell nanostructures in the applications of microbial fuel cells.

  2. Unique Properties of Core Shell Ag@Au Nanoparticles for the Aptasensing of Bacterial Cells

    Directory of Open Access Journals (Sweden)

    Ezat Hamidi-Asl

    2016-08-01

    Full Text Available In this article, it is shown that the efficiency of an electrochemical aptasensing device is influenced by the use of different nanoparticles (NPs such as gold nanoparticles (Au, silver nanoparticles (Ag, hollow gold nanospheres (HGN, hollow silver nanospheres (HSN, silver–gold core shell (Ag@Au, gold–silver core shell (Au@Ag, and silver–gold alloy nanoparticles (Ag/Au. Among these nanomaterials, Ag@Au core shell NPs are advantageous for aptasensing applications because the core improves the physical properties and the shell provides chemical stability and biocompatibility for the immobilization of aptamers. Self-assembly of the NPs on a cysteamine film at the surface of a carbon paste electrode is followed by the immobilization of thiolated aptamers at these nanoframes. The nanostructured (Ag@Au aptadevice for Escherichia coli as a target shows four times better performance in comparison to the response obtained at an aptamer modified planar gold electrode. A comparison with other (core shell NPs is performed by cyclic voltammetry and differential pulse voltammetry. Also, the selectivity of the aptasensor is investigated using other kinds of bacteria. The synthesized NPs and the morphology of the modified electrode are characterized by UV-Vis absorption spectroscopy, scanning electron microscopy, energy dispersive X-ray analysis, and electrochemical impedance spectroscopy.

  3. Designing deoxidation inhibiting encapsulation of metal oxide nanostructures for fluidic and biological applications

    Science.gov (United States)

    Ghosh, Moumita; Ghosh, Siddharth; Seibt, Michael; Schaap, Iwan A. T.; Schmidt, Christoph F.; Mohan Rao, G.

    2016-12-01

    Due to their photoluminescence, metal oxide nanostructures such as ZnO nanostructures are promising candidates in biomedical imaging, drug delivery and bio-sensing. To apply them as label for bio-imaging, it is important to study their structural stability in a bio-fluidic environment. We have explored the effect of water, the main constituent of biological solutions, on ZnO nanostructures with scanning electron microscopy (SEM) and photoluminescence (PL) studies which show ZnO nanorod degeneration in water. In addition, we propose and investigate a robust and inexpensive method to encapsulate these nanostructures (without structural degradation) using bio-compatible non-ionic surfactant in non-aqueous medium, which was not reported earlier. This new finding is an immediate interest to the broad audience of researchers working in biophysics, sensing and actuation, drug delivery, food and cosmetics technology, etc.

  4. Virus-encapsulated DNA origami nanostructures for cellular delivery.

    Science.gov (United States)

    Mikkilä, Joona; Eskelinen, Antti-Pekka; Niemelä, Elina H; Linko, Veikko; Frilander, Mikko J; Törmä, Päivi; Kostiainen, Mauri A

    2014-01-01

    DNA origami structures can be programmed into arbitrary shapes with nanometer scale precision, which opens up numerous attractive opportunities to engineer novel functional materials. One intriguing possibility is to use DNA origamis for fully tunable, targeted, and triggered drug delivery. In this work, we demonstrate the coating of DNA origami nanostructures with virus capsid proteins for enhancing cellular delivery. Our approach utilizes purified cowpea chlorotic mottle virus capsid proteins that can bind and self-assemble on the origami surface through electrostatic interactions and further pack the origami nanostructures inside the viral capsid. Confocal microscopy imaging and transfection studies with a human HEK293 cell line indicate that protein coating improves cellular attachment and delivery of origamis into the cells by 13-fold compared to bare DNA origamis. The presented method could readily find applications not only in sophisticated drug delivery applications but also in organizing intracellular reactions by origami-based templates.

  5. Core-shell silicon nanowire solar cells.

    Science.gov (United States)

    Adachi, M M; Anantram, M P; Karim, K S

    2013-01-01

    Silicon nanowires can enhance broadband optical absorption and reduce radial carrier collection distances in solar cell devices. Arrays of disordered nanowires grown by vapor-liquid-solid method are attractive because they can be grown on low-cost substrates such as glass, and are large area compatible. Here, we experimentally demonstrate that an array of disordered silicon nanowires surrounded by a thin transparent conductive oxide has both low diffuse and specular reflection with total values as low as nanowire facilitates enhancement in external quantum efficiency using two different active shell materials: amorphous silicon and nanocrystalline silicon. As a result, the core-shell nanowire device exhibits a short-circuit current enhancement of 15% with an amorphous Si shell and 26% with a nanocrystalline Si shell compared to their corresponding planar devices.

  6. Composite block copolymer stabilized nanoparticles: simultaneous encapsulation of organic actives and inorganic nanostructures.

    Science.gov (United States)

    Gindy, Marian E; Panagiotopoulos, Athanassios Z; Prud'homme, Robert K

    2008-01-01

    We describe the preparation and characterization of hybrid block copolymer nanoparticles (NPs) for use as multimodal carriers for drugs and imaging agents. Stable, water-soluble, biocompatible poly(ethylene glycol)-block-poly(epsilon-caprolactone) NPs simultaneously co-encapsulating hydrophobic organic actives (beta-carotene) and inorganic imaging nanostructures (Au) are prepared using the flash nanoprecipitation process in a multi-inlet vortex mixer. These composite nanoparticles (CNPs) are produced with tunable sizes between 75 nm and 275 nm, narrow particle size distributions, high encapsulation efficiencies, specified component compositions, and long-term stability. The process is tunable and flexible because it relies on the control of mixing and aggregation timescales. It is anticipated that the technique can be applied to a variety of hydrophobic active compounds, fluorescent dyes, and inorganic nanostructures, yielding CNPs for combined therapy and multimodal imaging applications.

  7. Preparation, characterization and photocatalytic activity of TiO2/polyaniline core-shell nanocomposite

    Indian Academy of Sciences (India)

    Ali Olad; Sepideh Behboudi; Ali Akbar Entezami

    2012-10-01

    Polyaniline (PANI) as a promising conducting polymer has been used to prepare polyaniline/TiO2 (PANI/TiO2) nanocomposite with core-shell structure as photocatalyst. Titanium dioxide (TiO2) nanoparticles with an average crystal size of 21 nm were encapsulated by PANI via the in situ polymerization of aniline on the surface of TiO2 nanoparticles. FT–IR, UV-Vis-NIR, XRD, SEM and TEM techniques were used to characterize the PANI/TiO2 core-shell nanocomposite. Photocatalytic activity of PANI/TiO2 nanocomposite was investigated under both UV and visible light irradiations and compared with unmodified TiO2 nanoparticles. Results indicated deposition of PANI on the surface of TiO2 nanoparticles which improved the photocatalytic activity of pristine TiO2 nanoparticles.

  8. Smart micelle@polydopamine core-shell nanoparticles for highly effective chemo-photothermal combination therapy

    Science.gov (United States)

    Zhang, Ruirui; Su, Shishuai; Hu, Kelei; Shao, Leihou; Deng, Xiongwei; Sheng, Wang; Wu, Yan

    2015-11-01

    In this investigation, we have designed and synthesized a novel core-shell polymer nanoparticle system for highly effective chemo-photothermal combination therapy. A nanoscale DSPE-PEG micelle encapsulating doxorubicin (Dox-M) was designed as a core, and then modified by a polydopamine (PDA) shell for photothermal therapy and bortezomib (Btz) administration (Dox-M@PDA-Btz). The facile conjugation of Btz to the catechol-containing PDA shell can form a reversible pH-sensitive boronic acid-catechol conjugate to create a stimuli-responsive drug carrier system. As expected, the micelle@PDA core-shell nanoparticles exhibited satisfactory photothermal efficiency, which has potential for thermal ablation of malignant tissues. In addition, on account of the PDA modification, both Dox and Btz release processes were pH-dependent and NIR-dependent. Both in vitro and in vivo studies illustrated that the Dox-M@PDA-Btz nanoparticles coupled with laser irradiation could enhance the cytotoxicity, and thus combinational therapy efficacy was achieved when integrating Dox, Btz, and PDA into a single nanoplatform. Altogether, our current study indicated that the micelle@polydopamine core-shell nanoparticles could be applied for NIR/pH-responsive sustained-release and synergized chemo-photothermal therapy for breast cancer.In this investigation, we have designed and synthesized a novel core-shell polymer nanoparticle system for highly effective chemo-photothermal combination therapy. A nanoscale DSPE-PEG micelle encapsulating doxorubicin (Dox-M) was designed as a core, and then modified by a polydopamine (PDA) shell for photothermal therapy and bortezomib (Btz) administration (Dox-M@PDA-Btz). The facile conjugation of Btz to the catechol-containing PDA shell can form a reversible pH-sensitive boronic acid-catechol conjugate to create a stimuli-responsive drug carrier system. As expected, the micelle@PDA core-shell nanoparticles exhibited satisfactory photothermal efficiency, which has

  9. Dispersion behavior of core-shell silica-polymer nanoparticles

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Core-shell silica nanoparticles are superior in modifying surface wetting behavior, enhancing nucleation and growth in crystallization, improving dispersion of naked nanoparticles, and thus upgrading the overall properties of organic polymers. The dispersion behavior and morphology of monodisperse core-shell silica particles in several polymers including polyesters are reviewed and their potential applications are discussed.

  10. Synthesis of N-halamine-functionalized silica-polymer core-shell nanoparticles and their enhanced antibacterial activity

    Science.gov (United States)

    Dong, Alideertu; Huang, Jinfeng; Lan, Shi; Wang, Tao; Xiao, Linghan; Wang, Weiwei; Zhao, Tianyi; Zheng, Xin; Liu, Fengqi; Gao, Ge; Chen, Yuxin

    2011-07-01

    N-halamine-functionalized silica-polymer core-shell nanoparticles with enhanced antibacterial activity were synthesized through the encapsulation of silica nanoparticles as support with polymeric N-halamine. The as-synthesized nanoparticles were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive x-ray spectrometry (EDX), dynamic light scattering (DLS), thermogravimetric analysis (TGA), and Fourier transform infrared (FTIR). These N-halamine-functionalized silica-polymer core-shell nanoparticles displayed powerful antibacterial performance against both Gram-positive bacteria and Gram-negative bacteria, and their antibacterial activities have been greatly improved compared with their bulk counterparts. Therefore, these N-halamine-functionalized silica-polymer core-shell nanoparticles have the potential for various significant applications such as in medical devices, healthcare products, water purification systems, hospitals, dental office equipment, food packaging, food storage, household sanitation, etc.

  11. Drug release profile in core-shell nanofibrous structures: a study on Peppas equation and artificial neural network modeling.

    Science.gov (United States)

    Maleki, Mahboubeh; Amani-Tehran, Mohammad; Latifi, Masoud; Mathur, Sanjay

    2014-01-01

    Release profile of drug constituent encapsulated in electrospun core-shell nanofibrous mats was modeled by Peppas equation and artificial neural network. Core-shell fibers were fabricated by co-axial electrospinning process using tetracycline hydrochloride (TCH) as the core and poly(l-lactide-co-glycolide) (PLGA) or polycaprolactone (PCL) as the shell materials. The density and hydrophilicity of the shell polymers, feed rates and concentrations of core and shell phases, the contribution of TCH in core material and electrical field were the parameters fed to the perceptron network to predict Peppas constants in order to derive release pattern. This study demonstrated the viability of the prediction tool in determining drug release profile of electrospun core-shell nanofibrous scaffolds.

  12. Synthesis of N-halamine-functionalized silica-polymer core-shell nanoparticles and their enhanced antibacterial activity

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Alideertu; Wang Tao; Xiao Linghan; Wang Weiwei; Zhao Tianyi; Zheng Xin; Liu Fengqi; Gao Ge [College of Chemistry, Jilin University and MacDiarmid Laboratory, Changchun 130021 (China); Huang Jinfeng; Chen Yuxin [Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130012 (China); Lan Shi, E-mail: gaoge@jlu.edu.cn [College of Chemistry and Chemical Engineering, Inner Mongolia University for the Nationalities, Tongliao 028000 (China)

    2011-07-22

    N-halamine-functionalized silica-polymer core-shell nanoparticles with enhanced antibacterial activity were synthesized through the encapsulation of silica nanoparticles as support with polymeric N-halamine. The as-synthesized nanoparticles were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive x-ray spectrometry (EDX), dynamic light scattering (DLS), thermogravimetric analysis (TGA), and Fourier transform infrared (FTIR). These N-halamine-functionalized silica-polymer core-shell nanoparticles displayed powerful antibacterial performance against both Gram-positive bacteria and Gram-negative bacteria, and their antibacterial activities have been greatly improved compared with their bulk counterparts. Therefore, these N-halamine-functionalized silica-polymer core-shell nanoparticles have the potential for various significant applications such as in medical devices, healthcare products, water purification systems, hospitals, dental office equipment, food packaging, food storage, household sanitation, etc.

  13. Freestanding three-dimensional core-shell nanoarrays for lithium-ion battery anodes

    Science.gov (United States)

    Tan, Guoqiang; Wu, Feng; Yuan, Yifei; Chen, Renjie; Zhao, Teng; Yao, Ying; Qian, Ji; Liu, Jianrui; Ye, Yusheng; Shahbazian-Yassar, Reza; Lu, Jun; Amine, Khalil

    2016-06-01

    Structural degradation and low conductivity of transition-metal oxides lead to severe capacity fading in lithium-ion batteries. Recent efforts to solve this issue have mainly focused on using nanocomposites or hybrids by integrating nanosized metal oxides with conducting additives. Here we design specific hierarchical structures and demonstrate their use in flexible, large-area anode assemblies. Fabrication of these anodes is achieved via oxidative growth of copper oxide nanowires onto copper substrates followed by radio-frequency sputtering of carbon-nitride films, forming freestanding three-dimensional arrays with core-shell nano-architecture. Cable-like copper oxide/carbon-nitride core-shell nanostructures accommodate the volume change during lithiation-delithiation processes, the three-dimensional arrays provide abundant electroactive zones and electron/ion transport paths, and the monolithic sandwich-type configuration without additional binders or conductive agents improves energy/power densities of the whole electrode.

  14. Serrated Au/Pd Core/Shell Nanowires with Jagged Edges for Boosting Liquid Fuel Electrooxidation.

    Science.gov (United States)

    Zhang, Yu-Ling; Shen, Wen-Jin; Kuang, Wen-Tao; Guo, Shaojun; Li, Yong-Jun; Wang, Ze-Hong

    2017-06-09

    Integration of 1D, core/shell, and jagged features into one entity may provide a promising avenue for further enhancing catalyst performance. However, designing such unique nanostructures is extremely challenging. Herein, 1D serrated Au/Pd core/shell nanowires (CSNWs) with jagged edges were produced simply by a one-pot, dual-capping-agent-assisted method involving co-reduction, galvanic replacement, directional coalescence of preformed nanoparticles, and site-selective epitaxial growth of Pd. Au/PdCSNWs, compared with the commercially available Pd/C, exhibited enhanced electrocatalytic performance towards liquid fuel oxidation because of the synergistic effect of the electronic structure and low-coordinated jagged edges. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Polydopamine and MnO2 core-shell composites for high-performance supercapacitors

    Science.gov (United States)

    Hou, Ding; Tao, Haisheng; Zhu, Xuezhen; Li, Maoguo

    2017-10-01

    Polydopamine and MnO2 core-shell composites (PDA@MnO2) for high-performance supercapacitors had been successfully synthesized by a facile and fast method. The morphology, crystalline phase and chemical composition of PDA@MnO2 composites are characterized using SEM, TEM, XRD, EDS and XPS. The performance of PDA@MnO2 composites are further investigated by cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy in 1 M Na2SO4 electrolyte. The PDA@MnO2 core-shell nanostructure composites exhibit a high capacitance of 193 F g-1 at the current density of 1A g-1 and retained over 81.2% of its initial capacitance after 2500 cycles of charge-discharge at 2 A g-1. The results manifest that the PDA@MnO2 composites can be potentially applied in supercapacitors.

  16. Synthesis and characterization of ZnO/ZnS/MoS2 core-shell nanowires

    Science.gov (United States)

    Butanovs, Edgars; Kuzmin, Alexei; Butikova, Jelena; Vlassov, Sergei; Polyakov, Boris

    2017-02-01

    Hybrid nanostructures composed of layered materials have recently attracted a lot of attention due to their promising electronic and catalytic properties. In this study, we describe a novel synthesis strategy of ZnO/ZnS/MoS2 core-shell nanowire growth using a three-step route. First, ZnO nanowire array was grown on a silicon wafer. Second, the sample was immersed in ammonium molybdate solution and dried. At the third step, the sample was annealed in a sulfur atmosphere at 700 °C. Two solid state chemical reactions occur simultaneously during the annealing and result in a formation of ZnS and MoS2 phases. Produced ZnO/ZnS/MoS2 core-shell nanowires were characterized by scanning and transmission electron microscopy, whereas their chemical composition was confirmed by selected area electron diffraction and micro-Raman spectroscopy.

  17. Iron-iron oxide core-shell nanoparticles synthesized by laser pyrolysis followed by superficial oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Dumitrache, F. [National Institute for Lasers, Plasma and Radiation Physics, P.O. Box MG-36, 077125 Bucharest (Romania)]. E-mail: fdumit@inflpr.ro; Morjan, I. [National Institute for Lasers, Plasma and Radiation Physics, P.O. Box MG-36, 077125 Bucharest (Romania); Alexandrescu, R. [National Institute for Lasers, Plasma and Radiation Physics, P.O. Box MG-36, 077125 Bucharest (Romania); Ciupina, V. [' Ovidius' University of Constanta, Bd. Mamaia 124, Constanta (Romania); Prodan, G. [' Ovidius' University of Constanta, Bd. Mamaia 124, Constanta (Romania); Voicu, I. [National Institute for Lasers, Plasma and Radiation Physics, P.O. Box MG-36, 077125 Bucharest (Romania); Fleaca, C. [National Institute for Lasers, Plasma and Radiation Physics, P.O. Box MG-36, 077125 Bucharest (Romania); Albu, L. [National Institute for Lasers, Plasma and Radiation Physics, P.O. Box MG-36, 077125 Bucharest (Romania); Savoiu, M. [National Institute for Lasers, Plasma and Radiation Physics, P.O. Box MG-36, 077125 Bucharest (Romania); Sandu, I. [National Institute for Lasers, Plasma and Radiation Physics, P.O. Box MG-36, 077125 Bucharest (Romania); Popovici, E. [National Institute for Lasers, Plasma and Radiation Physics, P.O. Box MG-36, 077125 Bucharest (Romania); Soare, I. [National Institute for Lasers, Plasma and Radiation Physics, P.O. Box MG-36, 077125 Bucharest (Romania)

    2005-07-15

    Iron-based core-shell nanostructures were synthesized by laser pyrolysis in a two-steps procedure. In a first step, using a cross-flow configuration, the laser radiation was heating a gas phase mixture containing iron pentacarbonyl (vapors) entrained by an ethylene flow, which plays also the role of an energy transfer agent. Secondly, a carefully controlled in situ passivation of the freshly formed pyrophoric iron nanoparticles created a protective iron oxide shell. The produced nanoparticles (22 nm size diameters) with core-shell features were analyzed by TEM, XRD, SAED and Raman spectroscopy. Majoritary iron and gamma iron oxide/magnetite and minoritary carbon phases were identified. In laser pyrolysis experiments in which the reaction temperature was increased, the catalyzed homogeneous nucleation and growth of carbon nanotubes in the gas phase was observed and is presented here for the first time.

  18. Iron iron oxide core shell nanoparticles synthesized by laser pyrolysis followed by superficial oxidation

    Science.gov (United States)

    Dumitrache, F.; Morjan, I.; Alexandrescu, R.; Ciupina, V.; Prodan, G.; Voicu, I.; Fleaca, C.; Albu, L.; Savoiu, M.; Sandu, I.; Popovici, E.; Soare, I.

    2005-07-01

    Iron-based core-shell nanostructures were synthesized by laser pyrolysis in a two-steps procedure. In a first step, using a cross-flow configuration, the laser radiation was heating a gas phase mixture containing iron pentacarbonyl (vapors) entrained by an ethylene flow, which plays also the role of an energy transfer agent. Secondly, a carefully controlled in situ passivation of the freshly formed pyrophoric iron nanoparticles created a protective iron oxide shell. The produced nanoparticles (22 nm size diameters) with core-shell features were analyzed by TEM, XRD, SAED and Raman spectroscopy. Majoritary iron and gamma iron oxide/magnetite and minoritary carbon phases were identified. In laser pyrolysis experiments in which the reaction temperature was increased, the catalyzed homogeneous nucleation and growth of carbon nanotubes in the gas phase was observed and is presented here for the first time.

  19. Porous core-shell carbon fibers derived from lignin and cellulose nanofibrils

    KAUST Repository

    Xu, Xuezhu

    2013-10-01

    This letter reports a method to produce lignin and cellulose nanofibrils (CNFs) based porous core-shell carbon fibers via co-electrospinning followed by controlled carbonization. Lignin formed the shell of the fiber while CNF network formed the porous core. Polyacrylonitrile (PAN) was added to the lignin solution to increase its electrospinability. CNFs were surface acetylated and dispersed in silicon oil to obtain a homogenous dispersion for electrospinning the porous core. Hollow lignin fibers were also electrospun using glycerin as the core material. FT-IR measurements confirmed the CNF acetylation. SEM micrographs showed the core-shell and hollow fiber nanostructures before and after carbonization. The novel carbon fibers synthesized in this study exhibited increased surface area and porosity that are promising for many advanced applications. © 2013 Elsevier B.V.

  20. Manipulated electromagnetic losses by integrating chemically heterogeneous components in Fe-based core/shell architecture

    Science.gov (United States)

    Huang, Hao; Zhang, Xue-Feng; Lv, Bo; Xue, Fang-Hong; Shah, Asif; Su, Lei; Yan, Jing-Guo; Yao, Man; Dong, Xing-Long

    2013-02-01

    Existing techniques for stabilizing and functionalizing metal nanostructures required precise control of complex procedures and probably introduce undesirable impurities. We herein report an arc-discharge chemical vapor deposition strategy for the synthesis of chemically heterogeneous core/shell metal/oxide nanocapsules Fe/TiFe2O4, Fe/MnFe2O4, and Fe/Al2O3. A universal formation mechanism based on the co-effect of oxygen potential and surface energy is further proposed, derived from fundamental thermodynamics. Such core/shell nanocapsules, integrated with tunable components, present an effective manipulability of microwave absorption at expected frequency, originating from the various dielectric behaviors of the heterogeneous oxide shells.

  1. Core-shell hexacyanoferrate for superior Na-ion batteries

    Science.gov (United States)

    Wan, Min; Tang, Yang; Wang, Lili; Xiang, Xinghua; Li, Xiaocheng; Chen, Kongyao; Xue, Lihong; Zhang, Wuxing; Huang, Yunhui

    2016-10-01

    Sodium iron hexacyanoferrate (Fe-HCF) is regarded as a potential cathode material for sodium-ion batteries (SIBs) due to its high specific capacity, low cost, facile synthesis and environmentally friendly. However, Fe-HCF always suffers from poor electronic conductivity, low crystallinity and side reactions with electrolyte, leading to poor rate performance, low coulombic efficiency and deterioration of cycling stability. Herein, we report a green and facile synthesis to encapsulate Fe-HCF microcubes with potassium nickel hexacyanoferrate (Ni-HCF). The core-shell Fe-HCF@Ni-HCF composite delivers a reversible capacity of 79.7 mAh g-1 at 200 mA g-1 after 800 cycles and a high coulombic efficiency of 99.3%. In addition, Fe-HCF@Ni-HCF exhibits excellent rate performance, retaining 60 mAh g-1 at 2000 mA g-1. The results show that Fe-HCF@Ni-HCF integrates the advantages of both Fe-HCF and Ni-HCF, making it electrochemically stable as cathode material for SIBs.

  2. Controlled synthesis of carbon-encapsulated copper nanostructures by using smectite clays as nanotemplates.

    Science.gov (United States)

    Tsoufis, Theodoros; Colomer, Jean-François; Maccallini, Enrico; Jankovič, Lubos; Rudolf, Petra; Gournis, Dimitrios

    2012-07-23

    Rhomboidal and spherical metallic-copper nanostructures were encapsulated within well-formed graphitic shells by using a simple chemical method that involved the catalytic decomposition of acetylene over a copper catalyst that was supported on different smectite clays surfaces by ion-exchange. These metallic-copper nanostructures could be separated from the inorganic support and remained stable for months. The choice of the clay support influenced both the shape and the size of the synthesized Cu nanostructures. The synthesized materials and the supported catalysts from which they were produced were studied in detail by TEM and SEM, powder X-ray diffraction, thermal analysis, as well as by Raman and X-ray photoelectron spectroscopy. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. An electrostatic nanogenerator based on ZnO/ZnS core/shell electrets with stabilized quasi-permanent charge

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chao; Cai, Liang; Feng, Yajuan; Chen, Lin; Yan, Wensheng, E-mail: ywsh2000@ustc.edu.cn, E-mail: zhsun@ustc.edu.cn; Liu, Qinghua; Yao, Tao; Hu, Fengchun; Pan, Zhiyun; Sun, Zhihu, E-mail: ywsh2000@ustc.edu.cn, E-mail: zhsun@ustc.edu.cn; Wei, Shiqiang [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029 (China)

    2014-06-16

    ZnO-based nanogenerators with excellent performance and convenient functionalization are particularly desirable for self-powered technology, which is however difficult to achieve simultaneously in traditional piezoelectric ZnO nanogenerators. Here, we report a design of electrostatic ZnO nanogenerator by virtue of a type-II ZnO/ZnS core/shell nanostructure electrets, which can turn acoustic waves into electric power with an energy conversion efficiency of 2.2%. The ZnO/ZnS core/shell electrets are charged by ultraviolet irradiation with a long-term stability of the electrostatic charges under ambient condition. The electronic and atomic structure evolution in the charged ZnO/ZnS core/shell electrets are also discussed by detailed experimental and theoretical investigations. This design opens up an alternative path for fabricating robust ZnO-based nanogenerator for future nanotechnology application.

  4. Core-shell potassium niobate nanowires for enhanced nonlinear optical effects

    Science.gov (United States)

    Richter, J.; Steinbrück, A.; Zilk, M.; Sergeyev, A.; Pertsch, T.; Tünnermann, A.; Grange, R.

    2014-04-01

    We demonstrate the synthesis as well as the optical characterization of core-shell nanowires. The wires consist of a potassium niobate (KNbO3) core and a gold shell. The nonlinear optical properties of the core are combined with the plasmonic resonance of the shell and offer an enhanced optical signal in the near infrared spectral range. We compare two different functionalization schemes of the core material prior to the shell growth process: silanization and polyelectrolyte. We show that the latter leads to a smoother and complete core-shell nanostructure and an easier-to-use synthesis process. A Mie-theory based theoretical approach is presented to model the enhanced second-harmonic generated (SHG) signal of the core-shell wires, illustrating the influence of the fabrication-induced varying geometrical factors of wire radius and shell thickness. A spectroscopic measurement on a core-shell nanowire shows a strong localized surface plasmon resonance close to 900 nm, which matches with the SHG resonance obtained from nonlinear optical experiments with the same nanowire. According to the simulation, this corresponds to a wire radius of 35 nm and a shell thickness of 7.5 nm. By comparing SHG signals measured from an uncoated nanowire and the coated one, we obtain a 250 times enhancement factor. This is less than the calculated enhancement, which considers a cylindrical nanowire with a perfectly smooth shell. Thus, we explain this discrepancy mainly with the roughness of the synthesized gold shell.We demonstrate the synthesis as well as the optical characterization of core-shell nanowires. The wires consist of a potassium niobate (KNbO3) core and a gold shell. The nonlinear optical properties of the core are combined with the plasmonic resonance of the shell and offer an enhanced optical signal in the near infrared spectral range. We compare two different functionalization schemes of the core material prior to the shell growth process: silanization and polyelectrolyte

  5. Supramolecular core-shell nanoparticles for photoconductive device applications

    Science.gov (United States)

    Cheng, Chih-Chia; Chen, Jem-Kun; Shieh, Yeong-Tarng; Lee, Duu-Jong

    2016-08-01

    We report a breakthrough discovery involving supramolecular-based strategies to construct novel core-shell heterojunction nanoparticles with hydrophilic adenine-functionalized polythiophene (PAT) as the core and hydrophobic phenyl-C61-butyric acid methyl ester (PCBM) as the shell, which enables the conception of new functional supramolecular assemblies for constructing functional nanomaterials for applications in optoelectronic devices. The generated nanoparticles exhibit uniform spherical shape, well-controlled tuning of particle size with narrow size distributions, and excellent electrochemical stability in solution and the solid state owing to highly efficient energy transfer from PAT to PCBM. When the PAT/PCBM nanoparticles were fabricated into a photoconducting layer in an electronic device, the resulting device showed excellent electric conduction characteristics, including an electrically-tunable voltage-controlled switch, and high short-circuit current and open-circuit voltage. These observations demonstrate how the self-assembly of PAT/PCBM into specific nanostructures may help to promote efficient charge generation and transport processes, suggesting potential for a wide variety of applications as a promising candidate material for bulk heterojunction polymer devices.

  6. Core-Shell Nanoparticle-Enhanced Raman Spectroscopy.

    Science.gov (United States)

    Li, Jian-Feng; Zhang, Yue-Jiao; Ding, Song-Yuan; Panneerselvam, Rajapandiyan; Tian, Zhong-Qun

    2017-03-08

    Core-shell nanoparticles are at the leading edge of the hot research topics and offer a wide range of applications in optics, biomedicine, environmental science, materials, catalysis, energy, and so forth, due to their excellent properties such as versatility, tunability, and stability. They have attracted enormous interest attributed to their dramatically tunable physicochemical features. Plasmonic core-shell nanomaterials are extensively used in surface-enhanced vibrational spectroscopies, in particular, surface-enhanced Raman spectroscopy (SERS), due to the unique localized surface plasmon resonance (LSPR) property. This review provides a comprehensive overview of core-shell nanoparticles in the context of fundamental and application aspects of SERS and discusses numerous classes of core-shell nanoparticles with their unique strategies and functions. Further, herein we also introduce the concept of shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) in detail because it overcomes the long-standing limitations of material and morphology generality encountered in traditional SERS. We then explain the SERS-enhancement mechanism with core-shell nanoparticles, as well as three generations of SERS hotspots for surface analysis of materials. To provide a clear view for readers, we summarize various approaches for the synthesis of core-shell nanoparticles and their applications in SERS, such as electrochemistry, bioanalysis, food safety, environmental safety, cultural heritage, materials, catalysis, and energy storage and conversion. Finally, we exemplify about the future developments in new core-shell nanomaterials with different functionalities for SERS and other surface-enhanced spectroscopies.

  7. A solution phase fabrication of magnetic nanoparticles encapsulated in carbon

    Science.gov (United States)

    Wei, Xian-Wen; Zhu, Guo-Xing; Xia, Chuan-Jun; Ye, Yin

    2006-09-01

    To avoid high energy consumption, intensive use of hardware and high cost in the manufacture of nanoparticles encapsulated in carbon, a simple, efficient and economical solution-phase method for the fabrication of FeNi@C nanostructures has been explored. The reaction to the magnetic metal@C structures here is conducted at a relatively low temperature (160 °C) and this strategy can be transferred to prepare other transition metal@C core-shell nanostructures. The saturation magnetization of metal in metal@C nanostructures is similar to those of the corresponding buck metals. Magnetic metal@C nanostructures with magnetic metal nanoparticles inside and a functionalized carbon surface outside may not only provide the opportunity to tailor the magnetic properties for magnetic storage devices and therapeutics but also make possible the loading of other functional molecules (e.g. enzymes, antigens) for clinic diagnostics, molecular biology, bioengineering, and catalysis.

  8. Engineered core-shell nanofibers for electron transport study in dye-sensitized solar cells

    Science.gov (United States)

    Shabdan, Y.; Ronasi, A.; Coulibaly, P.; Moniruddin, M.; Nuraje, N.

    2017-06-01

    In this study, a unique approach was developed to synthesize 1-D core-shell nanofibers of carbon nanotubes (CNTs) and TiO2 using combination of coaxial electrospinning and sol-gel technique. Diameters of the fabricated core-shell single wall carbon nanotube-TiO2 (SWCNT-TiO2) and multi wall carbon nanotube-TiO2 (MWCNT-TiO2) nano-composite fibers were between 50-100nm. Energy dispersive spectroscopy (EDS) and X-ray photon spectroscopy (XPS) were applied to confirm encapsulation of carbon nanotube (CNT) in the core-shell structure. Electron transport properties of both SWCNT-TiO2 and MWCNT-TiO2 in the Dye-sensitized solar cells (DSSCs) were studied for the first time. It was found that SWCNT-TiO2 based DSSC provided higher short circuit current relative to MWCNT-TiO2, which was explained by I-V and bode plots. These findings were further illustrated by semi-conductive properties of SWCNT.

  9. Coercivity enhancement in Ce-Fe-B based magnets by core-shell grain structuring

    Directory of Open Access Journals (Sweden)

    M. Ito

    2016-05-01

    Full Text Available Ce-based R2Fe14B (R= rare-earth nano-structured permanent magnets consisting of (Ce,Nd2Fe14B core-shell grains separated by a non-magnetic grain boundary phase, in which the relative amount of Nd to Ce is higher in the shell of the magnetic grain than in its core, were fabricated by Nd-Cu infiltration into (Ce,Nd2Fe14B hot-deformed magnets. The coercivity values of infiltrated core-shell structured magnets are superior to those of as-hot-deformed magnets with the same overall Nd content. This is attributed to the higher value of magnetocrystalline anisotropy of the shell phase in the core-shell structured infiltrated magnets compared to the homogeneous R2Fe14B grains of the as-hot-deformed magnets, and to magnetic isolation of R2Fe14B grains by the infiltrated grain boundary phase. First order reversal curve (FORC diagrams suggest that the higher anisotropy shell suppresses initial magnetization reversal at the edges and corners of the R2Fe14B grains.

  10. Localized surface plasmon mediated energy transfer in the vicinity of core-shell nanoparticle

    Science.gov (United States)

    Shishodia, Manmohan Singh; Juneja, Soniya

    2016-05-01

    Multipole spectral expansion based theory of energy transfer interactions between a donor and an acceptor molecule in the vicinity of a core-shell (nanoshell or core@shell) based plasmonic nanostructure is developed. In view of the diverse applications and rich plasmonic features such as tuning capability of surface plasmon (SP) frequencies, greater sensitivity to the change of dielectric environment, controllable redirection of electromagnetic radiation, closed form expressions for Energy Transfer Rate Enhancement Factor (ETREF) near core-shell particle are reported. The dependence of ETREF on different parameters is established through fitting equations, perceived to be of key importance for developing appropriate designs. The theoretical approach developed in the present work is capable of treating higher order multipoles, which, in turn, are also shown to play a crucial role in the present context. Moreover, closed form expressions derived in the present work can directly be used as formula, e.g., for designing SP based biosensors and estimating energy exchange between proteins and excitonic interactions in quantum dots.

  11. Controllable synthesis, characterization and optical properties of colloidal PbS/gelatin core-shell nanocrystals.

    Science.gov (United States)

    Mozafari, Masoud; Moztarzadeh, Fathollah

    2010-11-15

    Native quantum dots (QDs) made up of semiconductor nanocrystals (NCs) are toxic in nature but due to their excellent optical properties, they have proven themselves to be an attractive choice in biological labeling and targeting. In order to improve the general biocompatibility of lead sulfide (PbS) NCs, we present a new and simple procedure for preparing PbS/gelatin core-shell nanoparticles cross-linked with glutaraldehyde (GA) molecules. The phase composition, morphology, luminescence and in vitro photostability of the samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR), transmission electron microscope (TEM) and fluorescence spectroscopy, respectively. The XRD analysis showed that the PbS NCs were of the cubic structure, the mean crystallite size was calculated to be 13.5 nm and the calculated lattice constant using Bragg's equation was 0.5950 nm, which was very close to its value in the standard card (JCPDS No. 5-592). In vitro test revealed that compared with bare PbS NCs, the photostability of the core-shell nanostructure remarkably improved. In addition, possible formation mechanisms of the PbS/gelatin nanoparticles were discussed in detail. Consequently, the advantages of high stability as well as high fluorescent intensity and biocompatibility make the core-shell nanoparticles promising candidates for in vivo biological targeting applications.

  12. Localized surface plasmon mediated energy transfer in the vicinity of core-shell nanoparticle

    Energy Technology Data Exchange (ETDEWEB)

    Shishodia, Manmohan Singh, E-mail: manmohan@gbu.ac.in; Juneja, Soniya [Department of Applied Physics, School of Vocational Studies and Applied Sciences, Gautam Buddha University, Greater Noida 201308 (India)

    2016-05-28

    Multipole spectral expansion based theory of energy transfer interactions between a donor and an acceptor molecule in the vicinity of a core-shell (nanoshell or core@shell) based plasmonic nanostructure is developed. In view of the diverse applications and rich plasmonic features such as tuning capability of surface plasmon (SP) frequencies, greater sensitivity to the change of dielectric environment, controllable redirection of electromagnetic radiation, closed form expressions for Energy Transfer Rate Enhancement Factor (ETREF) near core-shell particle are reported. The dependence of ETREF on different parameters is established through fitting equations, perceived to be of key importance for developing appropriate designs. The theoretical approach developed in the present work is capable of treating higher order multipoles, which, in turn, are also shown to play a crucial role in the present context. Moreover, closed form expressions derived in the present work can directly be used as formula, e.g., for designing SP based biosensors and estimating energy exchange between proteins and excitonic interactions in quantum dots.

  13. Graded core/shell semiconductor nanorods and nanorod barcodes

    Science.gov (United States)

    Alivisatos, A. Paul; Scher, Erik C.; Manna, Liberato

    2010-12-14

    Graded core/shell semiconductor nanorods and shaped nanorods are disclosed comprising Group II-VI, Group III-V and Group IV semiconductors and methods of making the same. Also disclosed are nanorod barcodes using core/shell nanorods where the core is a semiconductor or metal material, and with or without a shell. Methods of labeling analytes using the nanorod barcodes are also disclosed.

  14. Core-shell magnetic nanowires fabrication and characterization

    Science.gov (United States)

    Kalska-Szostko, B.; Klekotka, U.; Satuła, D.

    2017-02-01

    In this paper, a new way of the preparation of core-shell magnetic nanowires has been proposed. For the modification Fe nanowires were prepared by electrodeposition in anodic aluminium oxide matrixes, in first step. In second, by wetting chemical deposition, shell layers of Ag, Au or Cu were obtained. Resultant core-shell nanowires structure was characterized by X-ray diffraction, infrared spectroscopy, transmission electron microscopy, and energy dispersive x-ray. Whereas magnetic properties by Mössbauer spectroscopy.

  15. Simulated evolution process of core-shell microstructures

    Institute of Scientific and Technical Information of China (English)

    QIN Tao; WANG HaiPeng; WEI BingBo

    2007-01-01

    The evolution process of core-shell microstructures formed in monotectic alloys under the space environment condition was investigated by the numerical simulation method. In order to account for the effect of surface segregation on phase separation, Model H was modified by introducing a surface free energy term into the total free energy of alloy droplet. Three Fe-Cu alloys were taken as simulated examples, which usually exhibit metastable phase separation in undercooled and microgravity states. It was revealed by the dynamic simulation process that the formation of core-shell microstructures depends mainly on surface segregation and Marangoni convection. The phase separation of Fe65Cu35 alloy starts from a dispersed structure and gradually evolves into a triple-layer core-shell microstructure. Similarly, Fe50Cu50 alloy experiences a structural evolution process of "bicontinuous phase → quadruple-layer core-shell → triple-layer core-shell", while the microstructures of Fe35Cu65 alloy transfer from the dispersed structure into the final double-layer core-shell morphology. The Cu-rich phase always forms the outer layer because of surface segregation, whereas the internal microstructural evolution is controlled mainly by the Marangoni convection resulting from the temperature gradient.

  16. Simulated evolution process of core-shell microstructures

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The evolution process of core-shell microstructures formed in monotectic alloys under the space environment condition was investigated by the numerical simula- tion method. In order to account for the effect of surface segregation on phase separation, Model H was modified by introducing a surface free energy term into the total free energy of alloy droplet. Three Fe-Cu alloys were taken as simulated examples, which usually exhibit metastable phase separation in undercooled and microgravity states. It was revealed by the dynamic simulation process that the formation of core-shell microstructures depends mainly on surface segregation and Marangoni convection. The phase separation of Fe65Cu35 alloy starts from a dispersed structure and gradually evolves into a triple-layer core-shell micro- structure. Similarly, Fe50Cu50 alloy experiences a structural evolution process of "bicontinuous phase → quadruple-layer core-shell → triple-layer core-shell", while the microstructures of Fe35Cu65 alloy transfer from the dispersed structure into the final double-layer core-shell morphology. The Cu-rich phase always forms the outer layer because of surface segregation, whereas the internal microstructural evolu- tion is controlled mainly by the Marangoni convection resulting from the tempera- ture gradient.

  17. Efficient synthetic access to thermo-responsive core/shell nanoparticles

    Science.gov (United States)

    Dine, Enaam Jamal Al; Ferjaoui, Zied; Roques-Carmes, Thibault; Schjen, Aleksandra; Meftah, Abdelaziz; Hamieh, Tayssir; Toufaily, Joumana; Schneider, Raphaël; Gaffet, Eric; Alem, Halima

    2017-03-01

    Core/shell nanostructures based on silica, fluorescent ZnO quantum dots (QDs) and superparamagnetic Fe3O4 nanoparticles (NPs) were prepared and fully characterized by the combination of different techniques and the physical properties of the nanostructures were studied. We demonstrate the efficiency of the atom transfer radical polymerization with activators regenerated by electron transfer process to graft (co-)polymers of different structures and polarity at the surface of metal oxide NPs. The influence of the polymer chain configuration on the optical properties of the ZnO/polymer core/shell QDs was enlightened. Concerning the magnetic properties of the Fe3O4/polymer nanostructures, only the amount of the grafted polymer plays a role on the saturation magnetization of the NPs and no influence of the aggregation was evidenced. The simple and fast process described in this work is efficient for the grafting of copolymers from surfaces and the derived NPs display the combination of the physical properties of the core and the macromolecular behavior of the shell.

  18. Tandem Core-Shell Si-Ta3N5 Photoanodes for Photoelectrochemical Water Splitting.

    Science.gov (United States)

    Narkeviciute, Ieva; Chakthranont, Pongkarn; Mackus, Adriaan J M; Hahn, Christopher; Pinaud, Blaise A; Bent, Stacey F; Jaramillo, Thomas F

    2016-12-14

    Nanostructured core-shell Si-Ta3N5 photoanodes were designed and synthesized to overcome charge transport limitations of Ta3N5 for photoelectrochemical water splitting. The core-shell devices were fabricated by atomic layer deposition of amorphous Ta2O5 onto nanostructured Si and subsequent nitridation to crystalline Ta3N5. Nanostructuring with a thin shell of Ta3N5 results in a 10-fold improvement in photocurrent compared to a planar device of the same thickness. In examining thickness dependence of the Ta3N5 shell from 10 to 70 nm, superior photocurrent and absorbed-photon-to-current efficiencies are obtained from the thinner Ta3N5 shells, indicating minority carrier diffusion lengths on the order of tens of nanometers. The fabrication of a heterostructure based on a semiconducting, n-type Si core produced a tandem photoanode with a photocurrent onset shifted to lower potentials by 200 mV. CoTiOx and NiOx water oxidation cocatalysts were deposited onto the Si-Ta3N5 to yield active photoanodes that with NiOx retained 50-60% of their maximum photocurrent after 24 h chronoamperometry experiments and are thus among the most stable Ta3N5 photoanodes reported to date.

  19. Three-dimensional core-shell ferromagnetic nanowires grown by focused electron beam induced deposition

    Science.gov (United States)

    Pablo-Navarro, Javier; Magén, César; María de Teresa, José

    2016-07-01

    Functional nanostructured materials often rely on the combination of more than one material to confer the desired functionality or an enhanced performance of the device. Here we report the procedure to create nanoscale heterostructured materials in the form of core-shell nanowires by focused electron beam induced deposition (FEBID) technologies. In our case, three-dimensional (3D) nanowires (nanostructures to demonstrate that the morphology of the shell is conserved during Pt coating, the surface oxidation is suppressed or confined to the Pt layer, and the average magnetization of the core is strengthened up to 30%. The proposed approach paves the way to the fabrication of 3D FEBID nanostructures based on the smart alternate deposition of two or more materials combining different physical properties or added functionalities.

  20. Synthesis of core-shell iron nanoparticles from decomposition of Fe-Sn nanocomposite and studies on their microwave absorption properties

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Vatsana; Patra, Manoj K.; Shukla, Anuj; Saini, Lokesh; Songara, Sandhya; Jani, Rajkumar; Vadera, Sampat R.; Kumar, Narendra, E-mail: nkjainjd@yahoo.com [Defence Laboratory (India)

    2012-12-15

    Core-shell iron nanoparticles have been synthesized by pyrolysis of nanocomposite of oxides of iron-tin (Fe-Sn). The core-shell nanoparticles of phase pure iron in carbonaceous shell are formed only at very low concentration of tin (0.0011 mol) in the nanocomposite sample. From different studies viz. X-ray diffraction, high-resolution transmission electron microscopy, atomic force microscopy, and Raman spectroscopy, it has been established that core-shell nanostructures have been formed with Fe as core and amorphous carbon as the shell. The heating of nanocomposite at different temperatures up to 900 Degree-Sign C revealed very interesting dynamics of formation of core-shell structure wherein above 650 Degree-Sign C the iron carbide phase decomposes and carbon atoms move out to form an amorphous shell around iron nanoparticles. This process of formation of core-shell structures is quite different from conventional way wherein synthesis of core material precedes formation of shell in two different steps. The microwave absorption properties of core-shell nanoparticles have been studied by making their composites in nitrile butadiene rubber. Reflection loss simulation studies show high values in the X and Ku bands of microwave region. The frequency of maximum return loss can be tuned through variation of composition and thickness of composite layer.

  1. Glycerol capped PbS/CdS core/shell nanoparticles at different molar ratio and its application in biosensors: An optical properties study

    Science.gov (United States)

    Das, D.; Hussain, A. M. P.

    2016-05-01

    Glycerol capped PbS/CdS core/shell type nanoparticles fabricated with two different molar ratios are characterized for study of structural and optical properties. The X-ray diffraction (XRD) pattern exhibits cubic phased polycrystalline nanocrystals. The calculated grain sizes from Williamson-Hall plot were found to be around 6 nm with increased strain. HRTEM investigation confirms the formation of core/shell nanostructures and the sizes of the particles were found to be around 7 nm which is in good agreement with the results of the W-H plot. An increase of band gap with the decrease in precursor concentration is confirmed from the blue shift in the absorption spectra and also from Tauc plot. A clear blue shifted intense emission is observed in the photoluminescence spectra with decrease in particle size. Intense luminescence from the core/shell nanostructure may be applied in bio labelling and biosensors.

  2. Glycerol capped PbS/CdS core/shell nanoparticles at different molar ratio and its application in biosensors: An optical properties study

    Energy Technology Data Exchange (ETDEWEB)

    Das, D., E-mail: ddasphy014@gmail.com; Hussain, A. M. P. [Department of Physics, Cotton College, Guwahati, Assam, India- 781001 (India)

    2016-05-06

    Glycerol capped PbS/CdS core/shell type nanoparticles fabricated with two different molar ratios are characterized for study of structural and optical properties. The X-ray diffraction (XRD) pattern exhibits cubic phased polycrystalline nanocrystals. The calculated grain sizes from Williamson-Hall plot were found to be around 6 nm with increased strain. HRTEM investigation confirms the formation of core/shell nanostructures and the sizes of the particles were found to be around 7 nm which is in good agreement with the results of the W-H plot. An increase of band gap with the decrease in precursor concentration is confirmed from the blue shift in the absorption spectra and also from Tauc plot. A clear blue shifted intense emission is observed in the photoluminescence spectra with decrease in particle size. Intense luminescence from the core/shell nanostructure may be applied in bio labelling and biosensors.

  3. Atomistic Tight-Binding Theory of Electron-Hole Exchange Interaction in Morphological Evolution of CdSe/ZnS Core/Shell Nanodisk to CdSe/ZnS Core/Shell Nanorod

    Directory of Open Access Journals (Sweden)

    Worasak Sukkabot

    2016-01-01

    Full Text Available Based on the atomistic tight-binding theory (TB and a configuration interaction (CI description, the electron-hole exchange interaction in the morphological transformation of CdSe/ZnS core/shell nanodisk to CdSe/ZnS core/shell nanorod is described with the aim of understanding the impact of the structural shapes on the change of the electron-hole exchange interaction. Normally, the ground hole states confined in typical CdSe/ZnS core/shell nanocrystals are of heavy hole-like character. However, the atomistic tight-binding theory shows that a transition of the ground hole states from heavy hole-like to light hole-like contribution with the increasing aspect ratios of the CdSe/ZnS core/shell nanostructures is recognized. According to the change in the ground-state hole characters, the electron-hole exchange interaction is also significantly altered. To do so, optical band gaps, ground-state electron character, ground-state hole character, oscillation strengths, ground-state coulomb energies, ground-state exchange energies, and dark-bright (DB excitonic splitting (stoke shift are numerically demonstrated. These atomistic computations obviously show the sensitivity with the aspect ratios. Finally, the alteration in the hole character has a prominent effect on dark-bright (DB excitonic splitting.

  4. Generation of nano-sized core-shell particles using a coaxial tri-capillary electrospray-template removal method.

    Science.gov (United States)

    Cao, Lihua; Luo, Jun; Tu, Kehua; Wang, Li-Qun; Jiang, Hongliang

    2014-03-01

    This study proposed a new strategy based on a coaxial tri-capillary electrospray-template removal process for producing nanosized polylactide-b-polyethylene glycol (PLA-PEG) particles with a core-shell structure. Microparticles with core-shell-corona structures were first fabricated by coaxial tri-capillary electrospray, and core-shell nanoparticles less than 200 nm in size were subsequently obtained by removing the PEG template from the core-shell-corona microparticles. The nanoparticle size could be modulated by adjusting the flow rate of corona fluid, and nanoparticles with an average diameter of 106±5 nm were obtained. The nanoparticles displayed excellent dispersion stability in aqueous media and very low cytotoxicity. Paclitaxel was used as a model drug to be incorporated into the core section of the nanoparticles. A drug loading content in the nanoparticles as high as 50.7±1.5 wt% with an encapsulation efficiency of greater than 70% could be achieved by simply increasing the feed rate of the drug solution. Paclitaxel exhibited sustained release from the nanoparticles for more than 40 days. The location of the paclitaxel in the nanoparticles, i.e., in the core or shell layer, did not have a significant effect on its release.

  5. Ag@ZnO core-shell nanoparticles study by first principle: The structural, magnetic and optical properties

    Science.gov (United States)

    Cheng, Hai-Xia; Wang, Xiao-Xu; Hu, Yao-Wen; Song, Hong-Quan; Huo, Jin-Rong; Li, Lu; Qian, Ping; Song, Yu-Jun

    2016-12-01

    Ag@ZnO core-shell nanoparticles of around 72 atoms have been investigated by the density functional theory, revealing proving for the first time that the core-shell structure exhibits a shrinkage phenomenon from outer shell in agreement with the other studies in literatures. Our calculations predict that the Ag@ZnO core-shell structure is a ferromagnetic spin polarized state, and the magnetism mainly stems from the spin splitting of 2p electrons of O atoms. In addition, the total and partial DOS of Ag@ZnO indicate that the nanostructure is a half-metallic nanoparticle and has the characters of the p-type semiconductor. Furthermore, the optical properties calculations show that the absorption edge of Ag@ZnO have a red shift and good photocatalysis compare to that of the bulk ZnO. These results of the Ag@ZnO core-shell structure obtain a well agreement with the experimental measurement.

  6. Complete Au@ZnO core-shell nanoparticles with enhanced plasmonic absorption enabling significantly improved photocatalysis.

    Science.gov (United States)

    Sun, Yiqiang; Sun, Yugang; Zhang, Tao; Chen, Guozhu; Zhang, Fengshou; Liu, Dilong; Cai, Weiping; Li, Yue; Yang, Xianfeng; Li, Cuncheng

    2016-05-19

    Nanostructured ZnO exhibits high chemical stability and unique optical properties, representing a promising candidate among photocatalysts in the field of environmental remediation and solar energy conversion. However, ZnO only absorbs the UV light, which accounts for less than 5% of total solar irradiation, significantly limiting its applications. In this article, we report a facile and efficient approach to overcome the poor wettability between ZnO and Au by carefully modulating the surface charge density on Au nanoparticles (NPs), enabling rapid synthesis of Au@ZnO core-shell NPs at room temperature. The resulting Au@ZnO core-shell NPs exhibit a significantly enhanced plasmonic absorption in the visible range due to the Au NP cores. They also show a significantly improved photocatalytic performance in comparison with their single-component counterparts, i.e., the Au NPs and ZnO NPs. Moreover, the high catalytic activity of the as-synthesized Au@ZnO core-shell NPs can be maintained even after many cycles of photocatalytic reaction. Our results shed light on the fact that the Au@ZnO core-shell NPs represent a promising class of candidates for applications in plasmonics, surface-enhanced spectroscopy, light harvest devices, solar energy conversion, and degradation of organic pollutants.

  7. Pt@Ag and Pd@Ag core/shell nanoparticles for catalytic degradation of Congo red in aqueous solution.

    Science.gov (United States)

    Salem, Mohamed A; Bakr, Eman A; El-Attar, Heba G

    2018-01-05

    Platinum/silver (Pt@Ag) and palladium/silver (Pd@Ag) core/shell NPs have been synthesized in two steps reaction using the citrate method. The progress of nanoparticle formation was followed by the UV/Vis spectroscopy. Transmission electron microscopy revealed spherical shaped core/shell nanoparticles with average particle diameter 32.17nm for Pt@Ag and 8.8nm for Pd@Ag. The core/shell NPs were further characterized by FT-IR and XRD. Reductive degradation of the Congo red dye was chosen to demonstrate the excellent catalytic activity of these core/shell nanostructures. The nanocatalysts act as electron mediators for the transfer of electrons from the reducing agent (NaBH4) to the dye molecules. Effect of reaction parameters such as nanocatalyst dose, dye and NaBH4 concentrations on the dye degradation was investigated. A comparison between the catalytic activities of both nanocatalysts was made to realize which of them the best in catalytic performance. Pd@Ag was the higher in catalytic activity over Pt@Ag. Such greater activity is originated from the smaller particle size and larger surface area. Pd@Ag nanocatalyst was catalytically stable through four subsequent reaction runs under the utilized reaction conditions. These findings can thus be considered as possible economical alternative for environmental safety against water pollution by dyes. Copyright © 2017. Published by Elsevier B.V.

  8. Functionalized core-shell hydrogel microsprings by anisotropic gelation with bevel-tip capillary

    Science.gov (United States)

    Yoshida, Koki; Onoe, Hiroaki

    2017-04-01

    This study describes a novel microfluidic-based method for the synthesis of hydrogel microsprings that are capable of encapsulating various functional materials. A continuous flow of alginate pre-gel solution can spontaneously form a hydrogel microspring by anisotropic gelation around the bevel-tip of the capillary. This technique allows fabrication of hydrogel microsprings using only simple capillaries and syringe pumps, while their complex compartmentalization characterized by a laminar flow inside the capillary can contribute to the optimization of the microspring internal structure and functionality. Encapsulation of several functional materials including magnetic-responsive nanoparticles or cell dispersed collagen for tissue scaffold was demonstrated to functionalize the microsprings. Our core-shell hydrogel microsprings have immense potential for application in a number of fields, including biological/chemical microsensors, biocompatible soft robots/microactuators, drug release, self-assembly of 3D structures and tissue engineering.

  9. Control of Microbial Growth in Alginate/Polydopamine Core/Shell Microbeads.

    Science.gov (United States)

    Kim, Beom Jin; Park, Taegyun; Park, So-Young; Han, Sang Woo; Lee, Hee-Seung; Kim, Yang-Gyun; Choi, Insung S

    2015-10-01

    Microbial microencapsulation not only protects microorganisms from harmful environments by physically isolating them from the outside media but also has the potential to tailor the release profile of the encapsulated cells. However, the microbial release has not yet been controlled tightly, leading to undesired detrimental exposure of microorganisms to the outside. In this work, we suggest a simple method for controlling the cell release by suppressing the microbial growth in the microbeads. Alginate microbeads, encapsulating yeast cells, were coated with ultrathin but robust polydopamine shells, and the resulting core/shell structures effectively reduced the growth rate, while maintaining the cell viability. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. X-ray photoelectron spectroscopy studies on core-shell structured nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, M. [Surface Physics Division, Saha Institute of Nuclear Physics, Kolkata 700064 (India); Basu, S.; Ghosh, B. [Unit on Nano Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India); Chakravorty, D. [Unit on Nano Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India)], E-mail: mlsdc@iacs.res.in

    2007-08-15

    Core-shell nanostructures were grown in silica-based glasses. Copper-copper oxide and iron-iron oxide structures had diameters in the range 3-6 nm, with shell thicknesses {approx}1-2 nm. Silver-lithium niobate core-shell nanostructures had diameters in the range 4.2-46 nm and thicknesses varying from 2.2 to 22 nm. X-ray photoelectron spectroscopy studies were carried out on all these specimens. The analyses of these results show the presence of Cu{sup +}/Cu{sup 2+}, Fe{sup 2+}/Fe{sup 3+} and Nb{sup 4+}/Nb{sup 5+} valence states in the above three systems. Electrical resistivity data were fitted satisfactorily to the small polaron hopping model in the case of copper and iron-containing specimens. The presence of ions in the lithium niobate shell provides direct evidence of the formation of localized states between which variable range hopping conduction can be effected.

  11. Highly stable supercapacitors with conducting polymer core-shell electrodes for energy storage applications

    KAUST Repository

    Xia, Chuan

    2015-01-14

    Conducting polymers such as polyaniline (PAni) show a great potential as pseudocapacitor materials for electrochemical energy storage applications. Yet, the cycling instability of PAni resulting from structural alteration is a major hurdle to its commercial application. Here, the development of nanostructured PAni-RuO2 core-shell arrays as electrodes for highly stable pseudocapacitors with excellent energy storage performance is reported. A thin layer of RuO2 grown by atomic layer deposition (ALD) on PAni nanofibers plays a crucial role in stabilizing the PAni pseudocapacitors and improving their energy density. The pseudocapacitors, which are based on optimized PAni-RuO2 core-shell nanostructured electrodes, exhibit very high specific capacitance (710 F g-1 at 5 mV s-1) and power density (42.2 kW kg-1) at an energy density of 10 Wh kg-1. Furthermore, they exhibit remarkable capacitance retention of ≈88% after 10 000 cycles at very high current density of 20 A g-1, superior to that of pristine PAni-based pseudocapacitors. This prominently enhanced electrochemical stability successfully demonstrates the buffering effect of ALD coating on PAni, which provides a new approach for the preparation of metal-oxide/conducting polymer hybrid electrodes with excellent electrochemical performance.

  12. Electron energy spectrum in core-shell elliptic quantum wire

    Directory of Open Access Journals (Sweden)

    V.Holovatsky

    2007-01-01

    Full Text Available The electron energy spectrum in core-shell elliptic quantum wire and elliptic semiconductor nanotubes are investigated within the effective mass approximation. The solution of Schrodinger equation based on the Mathieu functions is obtained in elliptic coordinates. The dependencies of the electron size quantization spectrum on the size and shape of the core-shell nanowire and nanotube are calculated. It is shown that the ellipticity of a quantum wire leads to break of degeneration of quasiparticle energy spectrum. The dependences of the energy of odd and even electron states on the ratio between semiaxes are of a nonmonotonous character. The anticrosing effects are observed at the dependencies of electron energy spectrum on the transversal size of the core-shell nanowire.

  13. Electrospinning of ultrafine core/shell fibers for biomedical applications

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Because of the inherent appearance similar to the natural extracellular matrix,ultrafine fibrous membranes prepared via electrospinning exhibit widespread applications,especially in the biomedical area.Extensional modifications of coaxial and emulsion electrospinning have drawn much attention in preparation of core/shell fibers for applications as tissue engineering scaffolds and controlled delivery systems for bioactive substances.Due to incorporation of multi-components in the electrospun core/ shell fibers,the process of coaxial and emulsion electrospinning became more susceptible.The theories have not been fully understood.A series of investigations were carried out evaluating the systematic and processing parameters.This paper reviews advantages and potentials of electrospun core/shell fibers as well as factors influencing their formation on the basis of our research and new progress.

  14. Electrochemical synthesis of CORE-shell magnetic nanowires

    KAUST Repository

    Ovejero, Jesús G.

    2015-04-16

    (Fe, Ni, CoFe) @ Au core-shell magnetic nanowires have been synthesized by optimized two-step potentiostatic electrodeposition inside self-assembled nanopores of anodic aluminium templates. The optimal electrochemical parameters (e.g., potential) have been firstly determined for the growth of continuous Au nanotubes at the inner wall of pores. Then, a magnetic core was synthesized inside the Au shells under suitable electrochemical conditions for a wide spectrum of single elements and alloy compositions (e.g., Fe, Ni and CoFe alloys). Novel opportunities offered by such nanowires are discussed particularly the magnetic behavior of (Fe, Ni, CoFe) @ Au core-shell nanowires was tested and compared with that of bare TM nanowires. These core-shell nanowires can be released from the template so, opening novel opportunities for biofunctionalization of individual nanowires.

  15. Core-Shell Composite Nanoparticles: Synthesis, Characterization, and Applications

    Science.gov (United States)

    Sanyal, Sriya

    Nanoparticles are ubiquitous in various fields due to their unique properties not seen in similar bulk materials. Among them, core-shell composite nanoparticles are an important class of materials which are attractive for their applications in catalysis, sensing, electromagnetic shielding, drug delivery, and environmental remediation. This dissertation focuses on the study of core-shell type of nanoparticles where a polymer serves as the core and inorganic nanoparticles are the shell. This is an interesting class of supramolecular building blocks and can "exhibit unusual, possibly unique, properties which cannot be obtained simply by co-mixing polymer and inorganic particles". The one-step Pickering emulsion polymerization method was successfully developed and applied to synthesize polystyrene-silica core-shell composite particles. Possible mechanisms of the Pickering emulsion polymerization were also explored. The silica nanoparticles were thermodynamically favorable to self-assemble at liquid-liquid interfaces at the initial stage of polymerization and remained at the interface to finally form the shells of the composite particles. More importantly, Pickering emulsion polymerization was employed to synthesize polystyrene/poly(N-isopropylacrylamide) (PNIPAAm)-silica core-shell nanoparticles with N-isopropylacrylamide incorporated into the core as a co-monomer. The composite nanoparticles were temperature sensitive and could be up-taken by human prostate cancer cells and demonstrated effectiveness in drug delivery and cancer therapy. Similarly, by incorporating poly-2-(N,N)-dimethylamino)ethyl methacrylate (PDMA) into the core, pH sensitive core-shell composite nanoparticles were synthesized and applied as effective carriers to release a rheological modifier upon a pH change. Finally, the research focuses on facile approaches to engineer the transition of the temperature-sensitive particles and develop composite core-shell nanoparticles with a metallic shell.

  16. Tailored Core Shell Cathode Powders for Solid Oxide Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Swartz, Scott [NexTech Materials, Ltd.,Lewis Center, OH (United States)

    2015-03-23

    In this Phase I SBIR project, a “core-shell” composite cathode approach was evaluated for improving SOFC performance and reducing degradation of lanthanum strontium cobalt ferrite (LSCF) cathode materials, following previous successful demonstrations of infiltration approaches for achieving the same goals. The intent was to establish core-shell cathode powders that enabled high performance to be obtained with “drop-in” process capability for SOFC manufacturing (i.e., rather than adding an infiltration step to the SOFC manufacturing process). Milling, precipitation and hetero-coagulation methods were evaluated for making core-shell composite cathode powders comprised of coarse LSCF “core” particles and nanoscale “shell” particles of lanthanum strontium manganite (LSM) or praseodymium strontium manganite (PSM). Precipitation and hetero-coagulation methods were successful for obtaining the targeted core-shell morphology, although perfect coverage of the LSCF core particles by the LSM and PSM particles was not obtained. Electrochemical characterization of core-shell cathode powders and conventional (baseline) cathode powders was performed via electrochemical impedance spectroscopy (EIS) half-cell measurements and single-cell SOFC testing. Reliable EIS testing methods were established, which enabled comparative area-specific resistance measurements to be obtained. A single-cell SOFC testing approach also was established that enabled cathode resistance to be separated from overall cell resistance, and for cathode degradation to be separated from overall cell degradation. The results of these EIS and SOFC tests conclusively determined that the core-shell cathode powders resulted in significant lowering of performance, compared to the baseline cathodes. Based on the results of this project, it was concluded that the core-shell cathode approach did not warrant further investigation.

  17. Core/Shell Conjugated Polymer/Quantum Dot Composite Nanofibers through Orthogonal Non-Covalent Interactions

    Directory of Open Access Journals (Sweden)

    Brad W. Watson

    2016-11-01

    Full Text Available Nanostructuring organic polymers and organic/inorganic hybrid materials and controlling blend morphologies at the molecular level are the prerequisites for modern electronic devices including biological sensors, light emitting diodes, memory devices and solar cells. To achieve all-around high performance, multiple organic and inorganic entities, each designed for specific functions, are commonly incorporated into a single device. Accurate arrangement of these components is a crucial goal in order to achieve the overall synergistic effects. We describe here a facile methodology of nanostructuring conjugated polymers and inorganic quantum dots into well-ordered core/shell composite nanofibers through cooperation of several orthogonal non-covalent interactions including conjugated polymer crystallization, block copolymer self-assembly and coordination interactions. Our methods provide precise control on the spatial arrangements among the various building blocks that are otherwise incompatible with one another, and should find applications in modern organic electronic devices such as solar cells.

  18. Co-encapsulating nanostructured lipid carriers for transdermal application: from experimental design to the molecular detail.

    Science.gov (United States)

    Vitorino, C; Almeida, J; Gonçalves, L M; Almeida, A J; Sousa, J J; Pais, A A C C

    2013-05-10

    Co-encapsulation of drugs directed at commonly associated diseases provides a convenient means for administration, especially if transdermally delivered. In this work, a comprehensive study for the co-encapsulation of drugs with a differential lipophilicity, olanzapine and simvastatin, and their transdermal delivery in a formulation containing nanostructured lipid carriers (NLC) is presented. Focus is given to the evaluation of a strategy in which NLC and chemical permeation enhancers are combined. It comprises in vitro, in silico and cellular viability approaches. The optimization and rationalization of the systems are carried out using a two-step factorial design. It is shown that the external medium in the NLC dispersion strongly influences permeation. It is also seen that the use of NLC determines a synergistic effect with selected permeation enhancers, thus promoting marked flux enhancement ratios (48 and 21, respectively for olanzapine and simvastatin) relative to the drugs in solution. The developed formulations can be considered non-irritant. A correlation between enhancer positioning in a lipid bilayer, partially governed by a H-bonding phenomenon, and enhancement effect is suggested from molecular dynamics studies and experimental observations.

  19. Shell effect on the electron and hole reorganization energy of core-shell II-VI nanoclusters

    Science.gov (United States)

    Cui, Xianhui; Wang, Xinqin; Yang, Fang; Cui, Yingqi; Yang, Mingli

    2017-09-01

    Density functional theory calculations were performed to study the effect of shell encapsulation on the geometrical and electronic properties of pure and hybrid core-shell CdSe nanoclusters. The CdSe cores are distorted by the shells, and the shells exhibit distinct surface activity from the cores, which leads to remarkable changes in their electron transition behaviors. Although the electron and hole reorganization energies, which are related to the formation and recombination of electron-hole pairs, vary in a complicated way, their itemized contributions, potentials of electron extraction, ionization and affinity, and hole extraction (HEP), are dependent on the cluster size, shell composition and/or solvent. Our calculations suggest that the behaviors of charge carriers, free electrons and holes, in the semiconductor core-shell nanoclusters can be modulated by selecting appropriate cluster size and controlling the chemical composition of the shells.

  20. Green synthesis and characterization of Au@Pt core-shell bimetallic nanoparticles using gallic acid

    Science.gov (United States)

    Zhang, Guojun; Zheng, Hongmei; Shen, Ming; Wang, Lei; Wang, Xiaosan

    2015-06-01

    In this study, we developed a facile and benign green synthesis approach for the successful fabrication of well-dispersed urchin-like Au@Pt core-shell nanoparticles (NPs) using gallic acid (GA) as both a reducing and protecting agent. The proposed one-step synthesis exploits the differences in the reduction potentials of AuCl4- and PtCl62-, where the AuCl4- ions are preferentially reduced to Au cores and the PtCl62- ions are then deposited continuously onto the Au core surface as a Pt shell. The as-prepared Au@Pt NPs were characterized by transmission electron microscope (TEM); high-resolution transmission electron microscope (HR-TEM); scanning electron microscope (SEM); UV-vis absorption spectra (UV-vis); X-ray diffraction (XRD); Fourier transmission infrared spectra (FT-IR). We systematically investigated the effects of some experimental parameters on the formation of the Au@Pt NPs, i.e., the reaction temperature, the molar ratios of HAuCl4/H2PtCl6, and the amount of GA. When polyvinylpyrrolidone K-30 (PVP) was used as a protecting agent, the Au@Pt core-shell NPs obtained using this green synthesis method were better dispersed and smaller in size. The as-prepared Au@Pt NPs exhibited better catalytic activity in the reaction where NaBH4 reduced p-nitrophenol to p-aminophenol. However, the results showed that the Au@Pt bimetallic NPs had a lower catalytic activity than the pure Au NPs obtained by the same method, which confirmed the formation of Au@Pt core-shell nanostructures because the active sites on the surfaces of the Au NPs were covered with a Pt shell.

  1. Core-shell structured titanium-nitrogen alloys with high strength, high thermal stability and good plasticity.

    Science.gov (United States)

    Zhang, Y S; Zhao, Y H; Zhang, W; Lu, J W; Hu, J J; Huo, W T; Zhang, P X

    2017-01-06

    Multifunctional materials with more than two good properties are widely required in modern industries. However, some properties are often trade-off with each other by single microstructural designation. For example, nanostructured materials have high strength, but low ductility and thermal stability. Here by means of spark plasma sintering (SPS) of nitrided Ti particles, we synthesized bulk core-shell structured Ti alloys with isolated soft coarse-grained Ti cores and hard Ti-N solid solution shells. The core-shell Ti alloys exhibit a high yield strength (~1.4 GPa) comparable to that of nanostructured states and high thermal stability (over 1100 °C, 0.71 of melting temperature), contributed by the hard Ti-N shells, as well as a good plasticity (fracture plasticity of 12%) due to the soft Ti cores. Our results demonstrate that this core-shell structure offers a design pathway towards an advanced material with enhancing strength-plasticity-thermal stability synergy.

  2. Core-shell structured titanium-nitrogen alloys with high strength, high thermal stability and good plasticity

    Science.gov (United States)

    Zhang, Y. S.; Zhao, Y. H.; Zhang, W.; Lu, J. W.; Hu, J. J.; Huo, W. T.; Zhang, P. X.

    2017-01-01

    Multifunctional materials with more than two good properties are widely required in modern industries. However, some properties are often trade-off with each other by single microstructural designation. For example, nanostructured materials have high strength, but low ductility and thermal stability. Here by means of spark plasma sintering (SPS) of nitrided Ti particles, we synthesized bulk core-shell structured Ti alloys with isolated soft coarse-grained Ti cores and hard Ti-N solid solution shells. The core-shell Ti alloys exhibit a high yield strength (~1.4 GPa) comparable to that of nanostructured states and high thermal stability (over 1100 °C, 0.71 of melting temperature), contributed by the hard Ti-N shells, as well as a good plasticity (fracture plasticity of 12%) due to the soft Ti cores. Our results demonstrate that this core-shell structure offers a design pathway towards an advanced material with enhancing strength-plasticity-thermal stability synergy.

  3. Multifunctional magnetic and fluorescent core-shell nanoparticles for bioimaging.

    Science.gov (United States)

    Lu, Yanjiao; He, Bicheng; Shen, Jie; Li, Jie; Yang, Wantai; Yin, Meizhen

    2015-02-07

    Novel magnetic and fluorescent core-shell nanoparticles have been fabricated, which exhibit superparamagnetic behavior and emit strong near-infrared fluorescence. The nanoparticles are highly biocompatible and can be internalized into cells with nucleic accumulation via strong interaction with nucleic acids, implying potential applications in the biomedical field.

  4. Core-shell iron-iron oxide nanoparticles

    DEFF Research Database (Denmark)

    Kuhn, Luise Theil; Bojesen, A.; Timmermann, L.

    2004-01-01

    We present studies of the magnetic properties of core-shell iron-iron oxide nanoparticles. By combining Mossbauer and X-ray absorption spectroscopy we have been able to measure the change from a Fe3O4-like to a gamma-Fe2O3-like composition from the interface to the surface. Furthermore, we have...

  5. Self-assembled plasmonic core-shell clusters with an isotropic magnetic dipole response in the visible range.

    Science.gov (United States)

    Mühlig, Stefan; Cunningham, Alastair; Scheeler, Sebastian; Pacholski, Claudia; Bürgi, Thomas; Rockstuhl, Carsten; Lederer, Falk

    2011-08-23

    We theoretically analyze, fabricate, and characterize a three-dimensional plasmonic nanostructure that exhibits a strong and isotropic magnetic response in the visible spectral domain. Using two different bottom-up approaches that rely on self-organization and colloidal nanochemistry, we fabricate clusters consisting of dielectric core spheres, which are smaller than the wavelength of the incident radiation and are decorated by a large number of metallic nanospheres. Hence, despite having a complicated inner geometry, such a core-shell particle is sufficiently small to be perceived as an individual object in the far field. The optical properties of such complex plasmonic core-shell particles are discussed for two different core diameters.

  6. Versatile Core-Shell Nanoparticle@Metal-Organic Framework Nanohybrids: Exploiting Mussel-Inspired Polydopamine for Tailored Structural Integration.

    Science.gov (United States)

    Zhou, Jiajing; Wang, Peng; Wang, Chenxu; Goh, Yi Ting; Fang, Zheng; Messersmith, Phillip B; Duan, Hongwei

    2015-07-28

    We report a versatile strategy based on the use of multifunctional mussel-inspired polydopamine for constructing well-defined single-nanoparticle@metal-organic framework (MOF) core-shell nanohybrids. The capability of polydopamine to form a robust conformal coating on colloidal substrates of any composition and to direct the heterogeneous nucleation and growth of MOFs makes it possible for customized structural integration of a broad range of inorganic/organic nanoparticles and functional MOFs. Furthermore, the unique redox activity of polydopamine adds additional possibilities to tailor the functionalities of the nanohybrids by sandwiching plasmonic/catalytic metal nanostructures between the core and shell via localized reduction. The core-shell nanohybrids, with the molecular sieving effect of the MOF shell complementing the intrinsic properties of nanoparticle cores, represent a unique class of nanomaterials of considerable current interest for catalysis, sensing, and nanomedicine.

  7. Magnetic titania-silica composite-polypyrrole core-shell spheres and their high sensitivity toward hydrogen peroxide as electrochemical sensor.

    Science.gov (United States)

    Li, Xiangcun; He, Gaohong; Han, Yue; Xue, Qian; Wu, Xuemei; Yang, Shaoran

    2012-12-01

    A novel core-shell sphere with controlled shell thickness was synthesized by in situ chemical oxidative polymerization of pyrrole on FTS (Fe(2)O(3)/TiO(2)/SiO(2) composite) surface. The dual porosity of 2-3 nm and 40-50 nm in FTS core particle provides the hybrids with a high surface area to volume ratio, which enormously facilitates the molecule diffusion process. Furthermore, the porous FTS particle encapsulate Fe(2)O(3) and TiO(2) leading to its synergetic interaction with the PPy coating based on FTIR analysis. The unique structure and composition of the hybrid spheres result in new sensing property that is not available from their single counterparts. Cyclic voltammetry results demonstrate that the spheres with appropriate concentration of PPy exhibit enhanced electrocatalytic activity toward the reduction of H(2)O(2) in 0.1 M phosphate buffer solution. The sensing performance tests show that the hybrids possess good linear response in wide H(2)O(2) concentration range (10-4000 μM) and high sensitivity to H(2)O(2) (0.653 AM(-1) cm(-2)) at room temperature. The formation mechanism of the spheres was proposed based on the fact that the FTS core was coated firstly by a smooth PPy layer and then PPy nanoparticles. The work reported here provides an alternative concept for preparation of functional materials with new nanostructures and properties.

  8. Carboxymethyl chitosan-poly(amidoamine) dendrimer core-shell nanoparticles for intracellular lysozyme delivery.

    Science.gov (United States)

    Zhang, Xiaoyang; Zhao, Jun; Wen, Yan; Zhu, Chuanshun; Yang, Jun; Yao, Fanglian

    2013-11-06

    Intracellular delivery of native, active proteins is challenging due to the fragility of most proteins. Herein, a novel polymer/protein polyion complex (PIC) nanoparticle with core-shell structure was prepared. Carboxymethyl chitosan-grafted-terminal carboxyl group-poly(amidoamine) (CM-chitosan-PAMAM) dendrimers were synthesized by amidation and saponification reactions. (1)H NMR was used to characterize CM-chitosan-PAMAM dendrimers. The TEM images and results of lysozyme loading efficiency indicated that CM-chitosan-PAMAM dendrimers could self-assemble into core-shell nanoparticles, and lysozyme was efficiently encapsulated inside the core of CM-chitosan-PAMAM dendrimer nanoparticles. Activity of lysozyme was completely inhibited by CM-chitosan-PAMAM Dendrimers at physiological pH, whereas it was released into the medium and exhibited a significant enzymatic activity in an acidic intracellular environment. Moreover, the CM-chitosan-PAMAM dendrimer nanoparticles did not exhibit significant cytotoxicity in the range of concentrations below 3.16 mg/ml. The results indicated that these CM-chitosan-PAMAM dendrimers have excellent properties as highly potent and non-toxic intracellular protein carriers, which would create opportunities for novel applications in protein delivery.

  9. Core-Shell Soy Protein-Soy Polysaccharide Complex (Nano)particles as Carriers for Improved Stability and Sustained Release of Curcumin.

    Science.gov (United States)

    Chen, Fei-Ping; Ou, Shi-Yi; Tang, Chuan-He

    2016-06-22

    Using soy protein isolate (SPI) and soy-soluble polysaccharides (SSPS) as polymer matrixes, this study reported a novel process to fabricate unique core-shell complex (nano)particles to perform as carriers for curcumin (a typical poorly soluble bioactive). In the process, curcumin-SPI nanocomplexes were first formed at pH 7.0 and then coated by SSPS. At this pH, the core-shell complex was formed in a way the SPI nanoparticles might be incorporated into the interior of SSPS molecules without distinctly affecting the size and morphology of particles. The core-shell structure was distinctly changed by adjusting pH from 7.0 to 4.0. At pH 4.0, SSPS was strongly bound to the surface of highly aggregated SPI nanoparticles, and as a consequence, much larger complexes were formed. The bioaccessibility of curcumin in the SPI-curcumin complexes was unaffected by the SSPS coating. However, the core-shell complex formation greatly improved the thermal stability and controlled release properties of encapsulated curcumin. The improvement was much better at pH 4.0 than that at pH 7.0. All of the freeze-dried core-shell complex preparations exhibited good redispersion behavior. The findings provide a simple approach to fabricate food-grade delivery systems for improved water dispersion, heat stability, and even controlled release of poorly soluble bioactives.

  10. Energy Migration Upconversion in Ce(III)-Doped Heterogeneous Core-Shell-Shell Nanoparticles.

    Science.gov (United States)

    Chen, Xian; Jin, Limin; Sun, Tianying; Kong, Wei; Yu, Siu Fung; Wang, Feng

    2017-07-19

    One major challenge in upconversion research is to develop new materials and structures to expand the emission spectrum. Herein, a heterogeneous core-shell-shell nanostructure of NaYbF4 :Gd/Tm@NaGdF4 @CaF2 :Ce is developed to realize efficient photon upconversion in Ce(3+) ions through a Gd-mediated energy migration process. The design takes advantage of CaF2 host that reduces the 4f-5d excitation frequency of Ce(3+) to match the emission line of Gd(3+) . Meanwhile, CaF2 is isostructural with NaGdF4 and can form a continuous crystalline lattice with the core layer. As a result, effective Yb(3+) → Tm(3+) → Gd(3+) → Ce(3+) energy transfer can be established in a single nanoparticle. This effect enables efficient ultraviolet emission of Ce(3+) following near infrared excitation into the core layer. The Ce(3+) upconversion emission achieved in the core-shell-shell nanoparticles features broad bandwidth and long lifetime, which offers exciting opportunities of realizing tunable lasing emissions in the ultraviolet spectral region. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Simulations of the Light Scattering Properties of Metal/Oxide Core/Shell Nanospheres

    Directory of Open Access Journals (Sweden)

    F. Ruffino

    2014-01-01

    Full Text Available Given the importance of the optical properties of metal/dielectric core/shell nanoparticles, in this work we focus our attention on the light scattering properties, within the Mie framework, of some specific categories of these noteworthy nanostructures. In particular, we report theoretical results of angle-dependent light scattering intensity and scattering efficiency for Ag/Ag2O, Al/Al2O2, Cu/Cu2O, Pd/PdO, and Ti/TiO2 core/shell nanoparticles as a function of the core radius/shell thickness ratio and on a relative comparison. The results highlight the light scattering characteristics of these systems as a function of the radius/shell thickness ratio, helping in the choice of the more suitable materials and sizes for specific applications (i.e., dynamic light scattering for biological and molecular recognition, increasing light trapping in thin-film silicon, organic solar cells for achieving a higher photocurrent.

  12. Core-shell amorphous silicon-carbon nanoparticles for high performance anodes in lithium ion batteries

    Science.gov (United States)

    Sourice, Julien; Bordes, Arnaud; Boulineau, Adrien; Alper, John P.; Franger, Sylvain; Quinsac, Axelle; Habert, Aurélie; Leconte, Yann; De Vito, Eric; Porcher, Willy; Reynaud, Cécile; Herlin-Boime, Nathalie; Haon, Cédric

    2016-10-01

    Core-shell silicon-carbon nanoparticles are attractive candidates as active material to increase the capacity of Li-ion batteries while mitigating the detrimental effects of volume expansion upon lithiation. However crystalline silicon suffers from amorphization upon the first charge/discharge cycle and improved stability is expected in starting with amorphous silicon. Here we report the synthesis, in a single-step process, of amorphous silicon nanoparticles coated with a carbon shell (a-Si@C), via a two-stage laser pyrolysis where decomposition of silane and ethylene are conducted in two successive reaction zones. Control of experimental conditions mitigates silicon core crystallization as well as formation of silicon carbide. Auger electron spectroscopy and scanning transmission electron microscopy show a carbon shell about 1 nm in thickness, which prevents detrimental oxidation of the a-Si cores. Cyclic voltammetry demonstrates that the core-shell composite reaches its maximal lithiation during the first sweep, thanks to its amorphous core. After 500 charge/discharge cycles, it retains a capacity of 1250 mAh.g-1 at a C/5 rate and 800 mAh.g-1 at 2C, with an outstanding coulombic efficiency of 99.95%. Moreover, post-mortem observations show an electrode volume expansion of less than 20% and preservation of the nanostructuration.

  13. Effect of reaction time on formation of silica core/shell particles

    Directory of Open Access Journals (Sweden)

    Milan P. Nikolić

    2015-12-01

    Full Text Available The silica core/shell nanostructures were prepared by a wet-chemical process. Silica core particles were prepared by hydrolysis and condensation of tetraethylorthosilicate. The obtained particles (average size ∼0.4 µm were used as templates for assembling of silica nanoparticles generated from highly basic sodium silicate solution. The silica core particles were functionalized with 3-aminopropyltriethoxysilane (APTES to allow electrostatic assembling of silica nanoparticles on the surface of silica core particles. In order to find the optimal conditions for synthesis of silica core/shell particles with mesoporous shells, the effect of reaction time on formation of silica nanoparticles was investigated. The effect of process parameters on generation and aggregation of silica nanoparticles prepared from highly basic sodium silicate solution was also investigated. It was shown that the size of silica nanoparticles and tendency towards aggregation increase with increasing the reaction time and temperature. These behaviours were reflected on the formation of mesoporous silica shell around silica core particles. Thin and uniform mesoporous silica layers were obtained if reaction times were kept short. When the reaction time was prolonged, the thicker and non-uniform shells were obtained.

  14. Core-shell structured PEO-chitosan nanofibers by coaxial electrospinning.

    Science.gov (United States)

    Pakravan, Mehdi; Heuzey, Marie-Claude; Ajji, Abdellah

    2012-02-13

    Core-shell structured PEO-chitosan nanofibers have been produced using a coaxial electrospinning setup. PEO and chitosan solutions, both in an aqueous acetic acid solvent, were used as the inner (core) and outer (shell) layer, respectively. Uniform-sized defect-free nanofibers of 150-190 nm diameter were produced. In addition, hollow nanofibers could be obtained subsequent to PEO washing of the membranes. The core-shell nanostructure and existence of chitosan on the shell layer were confirmed by TEM images obtained before and after washing the PEO content with water. The presence of chitosan on the surface of the composite nanofibers was further supported by XPS studies. The chitosan and PEO compositions in the nanofibrous mats were determined by TGA analysis, which were similar to their ratio in the feed solutions. The local compositional homogeneity of the membranes and the efficiency of the washing step to remove PEO were also verified by FTIR. In addition, DSC and XRD were used to characterize the crystalline structure and morphology of the co-electrospun nonwoven mats. The prepared coaxial nanofibers (hollow and solid) have several potential applications due to the presence of chitosan on their outer surfaces.

  15. The effects of strain and spacer layer in CdSe/CdS/ZnS and CdSe/ZnS/CdS core/shell quantum dots

    Science.gov (United States)

    Pisheh, Hadi S.; Gheshlaghi, Negar; Ünlü, Hilmi

    2017-01-01

    The effects of lattice mismatch induced interface strain on the structural, optical and dielectric properties of CdSe based Cd(Zn)S shell and Cd(Zn)S/Zn(Cd)S multishell quantum dots (QDs) is studied. Introducing Zn(Cd)S spacer layer to the CdSe/Cd(Zn)S core/shell structure is found to influence induced interfacial strain through changing the lattice parameter, band gap and band offset of core/shell nanostructure. Lattice parameter of spacer layer affected by outer shell, changes the interface strain in the core region. Theoretically obtained strain in the core/shell(multishell) is used in the effective mass approximation (EMA) to determine the capped core diameter. We show that introducing ZnS spacer layer to the CdSe/CdS core/shell QDs rises the amount of strain and cause more decrease in the core size in CdSe/ZnS/CdS. Furthermore, CdS sandwiched between CdSe/ZnS decreases the amount of strain in crystal and suppresses the size decrease of the core in the CdSe/ZnS. Good agreement is found between the strain included EMA core size predictions in core/shell and multishell and observed size image from transmission electron microscopy (TEM) measurements of bare CdSe core nanocrystals.

  16. Nanocomposite plasmonic fluorescence emitters with core/shell configurations

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Xiaoyu; Brener, Igal; Luk, Ting Shan

    2010-07-16

    This paper is focused on the optical properties of nanocomposite plasmonic emitters with core/shell configurations, where a fluorescence emitter is located inside a metal nanoshell. Systematic theoretical investigations are presented for the influence of material type, core radius, shell thickness, and excitation wavelength on the internal optical intensity, radiative quantum yield, and fluorescence enhancement of the nanocomposite emitter. It is our conclusion that: (i) an optimal ratio between the core radius and shell thickness is required to maximize the absorption rate of fluorescence emitters, and (ii) a large core radius is desired to minimize the non-radiative damping and avoid significant quantum yield degradation of light emitters. Several experimental approaches to synthesize these nanocomposite emitters are also discussed. Furthermore, our theoretical results are successfully used to explain several reported experimental observations and should prove useful for designing ultra-bright core/shell nanocomposite emitters.

  17. Nanocomposite plasmonic fluorescence emitters with core/shell configurations.

    Energy Technology Data Exchange (ETDEWEB)

    Brener, Igal; Luk, Ting Shan; Miao, Xiaoyu

    2010-06-01

    This paper is focused on the optical properties of nanocomposite plasmonic emitters with core/shell configurations, where a fluorescence emitter is located inside a metal nanoshell. Systematic theoretical investigations are presented for the influence of material type, core radius, shell thickness, and excitation wavelength on the internal optical intensity, radiative quantum yield, and fluorescence enhancement of the nanocomposite emitter. It is our conclusion that: (i) an optimal ratio between the core radius and shell thickness is required to maximize the absorption rate of fluorescence emitters, and (ii) a large core radius is desired to minimize the non-radiative damping and avoid significant quantum yield degradation of light emitters. Several experimental approaches to synthesize these nanocomposite emitters are also discussed. Furthermore, our theoretical results are successfully used to explain several reported experimental observations and should prove useful for designing ultra-bright core/shell nanocomposite emitters.

  18. Process to make core-shell structured nanoparticles

    Science.gov (United States)

    Luhrs, Claudia; Phillips, Jonathan; Richard, Monique N

    2014-01-07

    Disclosed is a process for making a composite material that contains core-shell structured nanoparticles. The process includes providing a precursor in the form of a powder a liquid and/or a vapor of a liquid that contains a core material and a shell material, and suspending the precursor in an aerosol gas to produce an aerosol containing the precursor. In addition, the process includes providing a plasma that has a hot zone and passing the aerosol through the hot zone of the plasma. As the aerosol passes through the hot zone of the plasma, at least part of the core material and at least part of the shell material in the aerosol is vaporized. Vapor that contains the core material and the shell material that has been vaporized is removed from the hot zone of the plasma and allowed to condense into core-shell structured nanoparticles.

  19. Synthesis of core-shell composites using an inverse surfmer.

    Science.gov (United States)

    Armando Zaragoza-Contreras, E; Stockton-Leal, Margarita; Hernández-Escobar, Claudia A; Hoshina, Yusuke; Guzmán-Lozano, Josué F; Kobayashi, Takaomi

    2012-07-01

    Anilinium dodecylsulfate was prepared from aniline and sodium dodecylsulfate. The critical micellar concentration of the salt was determined using electrical conductimetry, which revealed that the change of countercation, sodium by anilinium, reduced the critical micellar concentration with respect to the conventional counterpart, sodium dodecylsulfate. The anilinium dodecylsulfate was used as the surfmer in the synthesis of polystyrene/polyaniline core-shell composites, first performing as the surfactant to stabilize the emulsion polymerization of styrene, and later as the monomer to synthesize polyaniline via oxidative polymerization. Here, the surfmer function was directed toward the external phase instead of to the internal phase, as with conventional surfmers with carbon-carbon double bonds. Consequently, the term inverse surfmer is proposed. Analyses of its composite microstructure using electron microscopy and thermogravimetric analysis confirmed the core-shell arrangement.

  20. Tuning upconversion through energy migration in core-shell nanoparticles

    KAUST Repository

    Wang, Feng

    2011-10-23

    Photon upconversion is promising for applications such as biological imaging, data storage or solar cells. Here, we have investigated upconversion processes in a broad range of gadolinium-based nanoparticles of varying composition. We show that by rational design of a core-shell structure with a set of lanthanide ions incorporated into separated layers at precisely defined concentrations, efficient upconversion emission can be realized through gadolinium sublattice-mediated energy migration for a wide range of lanthanide activators without long-lived intermediary energy states. Furthermore, the use of the core-shell structure allows the elimination of deleterious cross-relaxation. This effect enables fine-tuning of upconversion emission through trapping of the migrating energy by the activators. Indeed, the findings described here suggest a general approach to constructing a new class of luminescent materials with tunable upconversion emissions by controlled manipulation of energy transfer within a nanoscopic region. © 2011 Macmillan Publishers Limited. All rights reserved.

  1. A Near-Infrared and Temperature-Responsive Pesticide Release Platform through Core-Shell Polydopamine@PNIPAm Nanocomposites.

    Science.gov (United States)

    Xu, Xiaohui; Bai, Bo; Wang, Honglun; Suo, Yourui

    2017-02-22

    Controlled stimuli-responsive release systems are a feasible and effective way to increase the efficiency of pesticides and help improve environmental pollution issues. However, near-infrared (NIR)-responsive systems for encapsulation of pesticides for controlling release have not been reported because of high cost and load ability of conventional NIR absorbers as well as complicated preparation process. Herein, we proposed polydopamine (PDA) microspheres as a photothermal agent owing to their abundant active sites, satisfactory photothermal efficiency, low cost, and easy fabrication, followed by capping with a PNIPAm thermosensitive polymer shell. In this core-shell PDA@PNIPAm hybrid system, the PDA core provided excellent temperature and NIR-light sensitivity as well as high loading capacity, while the PNIPAm applied as both a thermosensitive gatekeeper and a pesticide reservoir. The structure of the PDA@PNIPAm nanocomposites was characterized by transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, ultraviolet-visible spectroscopy, dynamic light scattering, and thermogravimetric analysis; the results showed that the nanocomposites had a well-defined core-shell configuration for efficient loading of small pesticide molecules. Moreover, the core-shell PDA@PNIPAm nanocomposites exhibited high loading capacity and temperature- or NIR-controlled release performance. Overall, this system has significant potential in controlled drug release and agriculture-related fields as a delivery system for pesticides with photothermal responsive behavior.

  2. Open structure ZnO/CdSe core/shell nanoneedle arrays for solar cells.

    Science.gov (United States)

    Chen, Yanxue; Wei, Lin; Zhang, Guanghua; Jiao, Jun

    2012-09-20

    Open structure ZnO/CdSe core/shell nanoneedle arrays were prepared on a conducting glass (SnO2:F) substrate by solution deposition and electrochemical techniques. A uniform CdSe shell layer with a grain size of approximately several tens of nanometers was formed on the surface of ZnO nanoneedle cores after annealing at 400°C for 1.5 h. Fabricated solar cells based on these nanostructures exhibited a high short-circuit current density of about 10.5 mA/cm2 and an overall power conversion efficiency of 1.07% with solar illumination of 100 mW/cm2. Incident photo-to-current conversion efficiencies higher than 75% were also obtained.

  3. Graded core/shell semiconductor nanorods and nanorod barcodes

    Science.gov (United States)

    Alivisatos, A. Paul; Scher, Erik C.; Manna, Liberato

    2009-05-19

    Disclosed herein is a graded core/shell semiconductor nanorod having at least a first segment of a core of a Group II-VI, Group III-V or a Group IV semiconductor, a graded shell overlying the core, wherein the graded shell comprises at least two monolayers, wherein the at least two monolayers each independently comprise a Group II-VI, Group III-V or a Group IV semiconductor.

  4. Sequential reactions directed by core/shell catalytic reactors.

    Science.gov (United States)

    Wei, Yanhu; Soh, Siowling; Apodaca, Mario M; Kim, Jiwon; Grzybowski, Bartosz A

    2010-04-09

    Millimeter-sized reactor particles made of permeable polymer doped with catalysts arranged in a core/shell fashion direct sequences of chemical reactions (e.g., alkyne coupling followed by hydrogenation or hydrosilylation followed by hydrogenation). Spatial compartmentalization of catalysts coupled with the diffusion of substrates controls reaction order and avoids formation of byproducts. The experimentally observed yields of reaction sequences are reproduced by a theoretical model, which accounts for the reaction kinetics and the diffusion of the species involved.

  5. Smart Core-Shell Nanowire Architectures for Multifunctional Nanoscale Devices

    Science.gov (United States)

    2014-02-16

    Nabet, Jonathan E. Spanier. Picosecond response times in GaAs/ AlGaAs core/shell nanowire-based photodetectors, Applied Physics Letters, (06 2011...which two normally contradictory properties coexist, and its publication. In one example, switchable polar character (ferroelectricity) arising from non... properties of a completely new family of non-perovskite complex oxide that exhibits ferroelectric and antiferromagnetic order. We report on publication of a

  6. Core-shell Au@Pd nanoparticles with enhanced catalytic activity for oxygen reduction reaction via core-shell Au@Ag/Pd constructions.

    Science.gov (United States)

    Chen, Dong; Li, Chengyin; Liu, Hui; Ye, Feng; Yang, Jun

    2015-07-06

    Core-shell nanoparticles often exhibit improved catalytic properties due to the lattice strain created in these core-shell particles. Herein, we demonstrate the synthesis of core-shell Au@Pd nanoparticles from their core-shell Au@Ag/Pd parents. This strategy begins with the preparation of core-shell Au@Ag nanoparticles in an organic solvent. Then, the pure Ag shells are converted into the shells made of Ag/Pd alloy by galvanic replacement reaction between the Ag shells and Pd(2+) precursors. Subsequently, the Ag component is removed from the alloy shell using saturated NaCl solution to form core-shell Au@Pd nanoparticles with an Au core and a Pd shell. In comparison with the core-shell Au@Pd nanoparticles upon directly depositing Pd shell on the Au seeds and commercial Pd/C catalysts, the core-shell Au@Pd nanoparticles via their core-shell Au@Ag/Pd templates display superior activity and durability in catalyzing oxygen reduction reaction, mainly due to the larger lattice tensile effect in Pd shell induced by the Au core and Ag removal.

  7. HIPS-GLAD core shell nanorod array photodetectors with enhanced photocurrent and reduced dark current

    Science.gov (United States)

    Keles, Filiz; Cansizoglu, Hilal; Badraddin, Emad O.; Brozak, Matthew P.; Watanabe, Fumiya; Karabacak, Tansel

    2016-10-01

    Vertically aligned core/shell nanorod array photodetectors were fabricated by high pressure sputter (HIPS) deposition of copper indium sulfide (CIS) films on glancing angle deposited (GLAD) indium sulfide (In2S3) nanorods. For comparison, we also studied nanorod photodetectors with conventional low pressure sputtered (LPS) CIS film coatings and counterpart thin film devices incorporating HIPS or LPS-CIS on In2S3 films. HIPS-GLAD core/shell photodetectors have shown a superior photocurrent density response along with lowest dark current density. Photoresponsivity defined with the photocurrent density/dark current density ratio γ = |J ph/J dark| was about ˜1820 for HIPS-GLAD nanorod devices, which is several orders of magnitude higher compared to those of LPS-CIS thin film (γ ˜ 2) and HIPS-CIS thin film (γ ˜ 9) devices, and also about four-fold higher than LPS-CIS nanorod devices (γ ˜ 490). Enhanced photoresponsivity is attributed to the porous microstructure and improved conformality of HIPS-CIS film around the In2S3 nanorods confirmed by SEM and EDS measurements. Due to randomization of the sputtered flux at higher working gas pressures, HIPS can provide a more conformal while at the same time a voidy low-density film around nanostructured surfaces. Reduced interelectrode distance and improved p-n junction interface due to the more uniform conformality of HIPS-CIS result in a higher photocurrent in our HIPS-GLAD devices. In addition, the voids in HIPS-CIS film as a result of its porous nature can behave as highly resistive spots that lower the dark current. Therefore, we have demonstrated that by utilizing a simple and low-temperature HIPS-GLAD method, high-photocurrent and low-dark-current photodetectors can be achieved by controlling the conformality and microstructure of a shell layer around nanorod arrays. HIPS shell coating method can be extended to almost any type of nanostructured substrate.

  8. Colloidally stable selenium@copper selenide core@shell nanoparticles as selenium source for manufacturing of copper-indium-selenide solar cells.

    Science.gov (United States)

    Dong, Hailong; Quintilla, Aina; Cemernjak, Marco; Popescu, Radian; Gerthsen, Dagmar; Ahlswede, Erik; Feldmann, Claus

    2014-02-01

    Selenium nanoparticles with diameters of 100-400nm are prepared via hydrazine-driven reduction of selenious acid. The as-prepared amorphous, red selenium (a-Se) particles were neither a stable phase nor were they colloidally stable. Due to phase transition to crystalline (trigonal), grey selenium (t-Se) at or even below room temperature, the particles merged rapidly and recrystallized as micronsized crystal needles. As a consequence, such Se particles were not suited for layer deposition and as a precursor to manufacture thin-film CIS (copper indium selenide/CuInSe2) solar cells. To overcome this restriction, Se@CuSe core@shell particles are presented here. For these Se@CuSe core@shell nanoparticles, the phase transition a-Se→t-Se is shifted to temperatures higher than 100°C. Moreover, a spherical shape of the particles is retained even after phase transition. Composition and structure of the Se@CuSe core@shell nanostructure are evidenced by electron microscopy (SEM/STEM), DLS, XRD, FT-IR and line-scan EDXS. As a conceptual study, the newly formed Se@CuSe core@shell nanostructures with CuSe acting as a protecting layer to increase the phase-transition temperature and to improve the colloidal stability were used as a selenium precursor for manufacturing of thin-film CIS solar cells and already lead to conversion efficiencies up to 3%.

  9. Hierarchical ZnO@MnO2 Core-Shell Pillar Arrays on Ni Foam for Binder-Free Supercapacitor Electrodes

    KAUST Repository

    Huang, Ming

    2015-01-01

    © 2014 Elsevier Ltd. All rights reserved. Hierarchical ZnO@MnO2 core-shell pillar arrays on Ni foam have been fabricated by a facile two-step hydrothermal approach and further investigated as the binder-free electrode for supercapacitors. The core-shell hybrid nanostructure is achieved by decorating ultrathin self-standing MnO2 nanosheets on ZnO pillar arrays grown radically on Nickel foam. This unique well-designed binder-free electrode exhibits a high specific capacitance (423.5 F g-1 at a current density of 0.5 A g-1), and excellent cycling stability (92% capacitance retention after 3000 cycles). The improved electrochemical results show that the ZnO@MnO2 core-shell nanostructure electrode is promising for high-performance supercapacitors. The facile design of the unique core-shell array architectures provides a new and effective approach to fabricate high-performance binder-free electrode for supercapacitors.

  10. Exploring the structural and magnetic properties of TiO2/SnO2 core/shell nanocomposite: An experimental and density functional study

    Science.gov (United States)

    Chetri, Pawan; Basyach, Priyanka; Choudhury, Amarjyoti

    2014-12-01

    TiO2/SnO2 core/shell nanocomposite is prepared via a simple sol-gel method and the properties are compared with the individual TiO2 (core) and SnO2 (shell). The corresponding characterizations are carried out in terms of structural and magnetic properties of TiO2/SnO2, TiO2 and SnO2 nanosystems. Structural properties are studied via XRD, TEM, Raman spectroscopy, FTIR and XPS. Magnetic characterization is performed by measuring Moment vs. Applied Field for all the samples and Moment vs. Temperature for TiO2/SnO2 core/shell nanocomposite. We also went for a better insight with the help of theoretical measures. First principle calculations have been executed using “Density Functional Theory” (DFT)-based MedeA VASP package to compare the results of TiO2/SnO2 with TiO2 (1 1 0) and SnO2 (1 1 0) surface calculations and its effect on the magnetic nature of the specific nanoparticles. XRD, RAMAN and FTIR gave indirect evidence of formation of core shell nanostructure while TEM micrographs provide the direct evidence of formation of core shell nanostructure. The magnetic study shows a higher saturation magnetization for the core/shell nanostructure compared to pristine TiO2 and SnO2. In this report, we have attempted to relate this experimental observation with the results of the first principle calculations.

  11. Synergistic Effect of Cold Atmospheric Plasma and Drug Loaded Core-shell Nanoparticles on Inhibiting Breast Cancer Cell Growth.

    Science.gov (United States)

    Zhu, Wei; Lee, Se-Jun; Castro, Nathan J; Yan, Dayun; Keidar, Michael; Zhang, Lijie Grace

    2016-01-01

    Nano-based drug delivery devices allowing for effective and sustained targeted delivery of therapeutic agents to solid tumors have revolutionized cancer treatment. As an emerging biomedical technique, cold atmospheric plasma (CAP), an ionized non-thermal gas mixture composed of various reactive oxygen species, reactive nitrogen species, and UV photons, shows great potential for cancer treatment. Here we seek to develop a new dual cancer therapeutic method by integrating promising CAP and novel drug loaded core-shell nanoparticles and evaluate its underlying mechanism for targeted breast cancer treatment. For this purpose, core-shell nanoparticles were synthesized via co-axial electrospraying. Biocompatible poly (lactic-co-glycolic acid) was selected as the polymer shell to encapsulate anti-cancer therapeutics. Results demonstrated uniform size distribution and high drug encapsulation efficacy of the electrosprayed nanoparticles. Cell studies demonstrated the effectiveness of drug loaded nanoparticles and CAP for synergistic inhibition of breast cancer cell growth when compared to each treatment separately. Importantly, we found CAP induced down-regulation of metastasis related gene expression (VEGF, MTDH, MMP9, and MMP2) as well as facilitated drug loaded nanoparticle uptake which may aid in minimizing drug resistance-a major problem in chemotherapy. Thus, the integration of CAP and drug encapsulated nanoparticles provides a promising tool for the development of a new cancer treatment strategy.

  12. Complete Au@ZnO core-shell nanoparticles with enhanced plasmonic absorption enabling significantly improved photocatalysis

    Science.gov (United States)

    Sun, Yiqiang; Sun, Yugang; Zhang, Tao; Chen, Guozhu; Zhang, Fengshou; Liu, Dilong; Cai, Weiping; Li, Yue; Yang, Xianfeng; Li, Cuncheng

    2016-05-01

    Nanostructured ZnO exhibits high chemical stability and unique optical properties, representing a promising candidate among photocatalysts in the field of environmental remediation and solar energy conversion. However, ZnO only absorbs the UV light, which accounts for less than 5% of total solar irradiation, significantly limiting its applications. In this article, we report a facile and efficient approach to overcome the poor wettability between ZnO and Au by carefully modulating the surface charge density on Au nanoparticles (NPs), enabling rapid synthesis of Au@ZnO core-shell NPs at room temperature. The resulting Au@ZnO core-shell NPs exhibit a significantly enhanced plasmonic absorption in the visible range due to the Au NP cores. They also show a significantly improved photocatalytic performance in comparison with their single-component counterparts, i.e., the Au NPs and ZnO NPs. Moreover, the high catalytic activity of the as-synthesized Au@ZnO core-shell NPs can be maintained even after many cycles of photocatalytic reaction. Our results shed light on the fact that the Au@ZnO core-shell NPs represent a promising class of candidates for applications in plasmonics, surface-enhanced spectroscopy, light harvest devices, solar energy conversion, and degradation of organic pollutants.Nanostructured ZnO exhibits high chemical stability and unique optical properties, representing a promising candidate among photocatalysts in the field of environmental remediation and solar energy conversion. However, ZnO only absorbs the UV light, which accounts for less than 5% of total solar irradiation, significantly limiting its applications. In this article, we report a facile and efficient approach to overcome the poor wettability between ZnO and Au by carefully modulating the surface charge density on Au nanoparticles (NPs), enabling rapid synthesis of Au@ZnO core-shell NPs at room temperature. The resulting Au@ZnO core-shell NPs exhibit a significantly enhanced plasmonic

  13. Metal-Organic Framework Derived Iron Sulfide-Carbon Core-Shell Nanorods as a Conversion-Type Battery Material

    DEFF Research Database (Denmark)

    Huang, Wei; Li, Shuo; Cao, Xianyi

    2017-01-01

    to prepare carbon-encapsulated ploy iron sulfide through solid-state chemical sulfurizing. The resulting core-shell nanorods consisting of approximately 13% carbon and 87% Fe7S8 have a hierarchically porous structure and a very high specific surface area of 277 m2g-1. When tested for use in fabrication...... of systematic structural analysis and microscopic mapping, we discuss the charge-discharge mechanisms and the crucial factors associated with the stability and structural changes upon charge-discharge cycling....

  14. Synthesis, magnetic and optical properties of core/shell Co1-x Zn x Fe2O4/SiO2 nanoparticles

    Directory of Open Access Journals (Sweden)

    Wahsh Mohamed

    2011-01-01

    Full Text Available Abstract The optical properties of multi-functionalized cobalt ferrite (CoFe2O4, cobalt zinc ferrite (Co0.5Zn0.5Fe2O4, and zinc ferrite (ZnFe2O4 nanoparticles have been enhanced by coating them with silica shell using a modified Stöber method. The ferrites nanoparticles were prepared by a modified citrate gel technique. These core/shell ferrites nanoparticles have been fired at temperatures: 400°C, 600°C and 800°C, respectively, for 2 h. The composition, phase, and morphology of the prepared core/shell ferrites nanoparticles were determined by X-ray diffraction and transmission electron microscopy, respectively. The diffuse reflectance and magnetic properties of the core/shell ferrites nanoparticles at room temperature were investigated using UV/VIS double-beam spectrophotometer and vibrating sample magnetometer, respectively. It was found that, by increasing the firing temperature from 400°C to 800°C, the average crystallite size of the core/shell ferrites nanoparticles increases. The cobalt ferrite nanoparticles fired at temperature 800°C; show the highest saturation magnetization while the zinc ferrite nanoparticles coated with silica shell shows the highest diffuse reflectance. On the other hand, core/shell zinc ferrite/silica nanoparticles fired at 400°C show a ferromagnetic behavior and high diffuse reflectance when compared with all the uncoated or coated ferrites nanoparticles. These characteristics of core/shell zinc ferrite/silica nanostructures make them promising candidates for magneto-optical nanodevice applications.

  15. Synthesis, magnetic and optical properties of core/shell Co1-xZnxFe2O4/SiO2 nanoparticles

    Science.gov (United States)

    2011-01-01

    The optical properties of multi-functionalized cobalt ferrite (CoFe2O4), cobalt zinc ferrite (Co0.5Zn0.5Fe2O4), and zinc ferrite (ZnFe2O4) nanoparticles have been enhanced by coating them with silica shell using a modified Stöber method. The ferrites nanoparticles were prepared by a modified citrate gel technique. These core/shell ferrites nanoparticles have been fired at temperatures: 400°C, 600°C and 800°C, respectively, for 2 h. The composition, phase, and morphology of the prepared core/shell ferrites nanoparticles were determined by X-ray diffraction and transmission electron microscopy, respectively. The diffuse reflectance and magnetic properties of the core/shell ferrites nanoparticles at room temperature were investigated using UV/VIS double-beam spectrophotometer and vibrating sample magnetometer, respectively. It was found that, by increasing the firing temperature from 400°C to 800°C, the average crystallite size of the core/shell ferrites nanoparticles increases. The cobalt ferrite nanoparticles fired at temperature 800°C; show the highest saturation magnetization while the zinc ferrite nanoparticles coated with silica shell shows the highest diffuse reflectance. On the other hand, core/shell zinc ferrite/silica nanoparticles fired at 400°C show a ferromagnetic behavior and high diffuse reflectance when compared with all the uncoated or coated ferrites nanoparticles. These characteristics of core/shell zinc ferrite/silica nanostructures make them promising candidates for magneto-optical nanodevice applications. PMID:21774807

  16. In situ generation of few-layer graphene coatings on SnO{sub 2}-SiC core-shell nanoparticles for high-performance lithium-ion storage

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhongxue; Zhou, Min; Ai, Xinping; Yang, Hanxi [Hubei Key Laboratory of Electrochemical Power Sources, College of Chemistry and Molecular Science, Wuhan University, Wuhan (China); Cao, Yuliang [Hubei Key Laboratory of Electrochemical Power Sources, College of Chemistry and Molecular Science, Wuhan University, Wuhan (China); Pacific Northwest National Laboratory, Richland, WA (United States); Liu, Jun [Pacific Northwest National Laboratory, Richland, WA (United States)

    2012-01-15

    A simple ball-milling method is used to synthesize a tin oxide-silicon carbide/few-layer graphene core-shell structure in which nanometer-sized SnO{sub 2} particles are uniformly dispersed on a supporting SiC core and encapsulated with few-layer graphene coatings by in situ mechanical peeling. The SnO{sub 2}-SiC/G nanocomposite material delivers a high reversible capacity of 810 mA h g{sup -1} and 83% capacity retention over 150 charge/discharge cycles between 1.5 and 0.01 V at a rate of 0.1 A g{sup -1}. A high reversible capacity of 425 mA h g{sup -1} also can be obtained at a rate of 2 A g{sup -1}. When discharged (Li extraction) to a higher potential at 3.0 V (vs. Li/Li{sup +}), the SnO{sub 2}-SiC/G nanocomposite material delivers a reversible capacity of 1451 mA h g{sup -1} (based on the SnO{sub 2} mass), which corresponds to 97% of the expected theoretical capacity (1494 mA h g{sup -1}, 8.4 equivalent of lithium per SnO{sub 2}), and exhibits good cyclability. This result suggests that the core-shell nanostructure can achieve a completely reversible transformation from Li{sub 4.4}Sn to SnO{sub 2} during discharging (i.e., Li extraction by dealloying and a reversible conversion reaction, generating 8.4 electrons). This suggests that simple mechanical milling can be a powerful approach to improve the stability of high-performance electrode materials involving structural conversion and transformation. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Importance of viscosity parameters in electrospinning: Of monolithic and core-shell fibers

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, Sandeep Kumar, E-mail: sktiwari@ntu.edu.sg; Venkatraman, Subbu S.

    2012-07-01

    Electrospun polymeric fibers are attractive candidates in the development of scaffolds for the tissue engineering and for providing new systems for delivery of bioactive molecules. Co-axial fibers have emerged as an efficient tool to protect the core material from the adverse conditions of electrospinning process, to spin difficult-to-process fluids and to generate fibers with much more control of the delivery of encapsulated bioactive molecules. Currently, there is very little reported work on the optimization of the processing parameters of electrospinning, especially core-shell electrospinning. This study extends the understanding of the role of solution viscosity as a vital material parameter for electrospinning of fibers. The spinning solutions were characterized for viscosity and optical imaging of the compound Taylor cone for spinnability, and the fibers were imaged by Scanning Electron Microscopy (SEM). Our experimental results, using PLGA as the model polymer, confirm that the solution concentration be above the entanglement concentration (C{sub e}) to obtain uniform beadless monolithic fibers; for core-shell fibers, the shell solution must fulfill the above criterion for spinnability and, further, the ratio of the viscosities of core and shell solutions ({eta}{sub core}/{eta}{sub shell}) has to be greater than a threshold value to get a stable compound Taylor cone and therefore to obtain uniform beadless core-shell fibers. Addition of surfactant led to reduction of the threshold {eta}{sub core}/{eta}{sub shell} (from 0.55 to 0.18) for the PVA-PLGA system. - Graphical abstract: A workable range of {eta}{sub core}/{eta}{sub shell} values exists for co-electrospinning in addition to other viscosity requirements for electrospinning of core and shell solutions. Highlights: Black-Right-Pointing-Pointer To produce uniform beadless fibers, the concentration of the polymer solution must be above entanglement concentration (C{sub e}). Black

  18. Controlled-release and preserved bioactivity of proteins from (self-assembled core-shell double-walled microspheres

    Directory of Open Access Journals (Sweden)

    Yuan W

    2012-01-01

    Full Text Available Weien Yuan1,2, Zhenguo Liu11Department of Neurology, Xinhua Hospital, affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 2School of Pharmacy, Shanghai Jiao Tong University, Shanghai, People’s Republic of ChinaAbstract: In order to address preserved protein bioactivities and protein sustained-release problems, a method for preparing double-walled microspheres with a core (protein-loaded nanoparticles with a polymer-suspended granule system-formed core and a second shell (a polymer-formed shell for controlled drug release and preserved protein bioactivities has been developed using (solid-in-oil phase-in-hydrophilic oil-in-water (S/O/Oh/W phases. The method, based on our previous microsphere preparation method (solid-in-oil phase-in-hydrophilic oil-in-water (S/O/Oh/W, employs different concentric poly(D,L-lactide-co-glycolide, poly(D,L-lactide, and protein-loaded nanoparticles to produce a suspended liquid which then self-assembles to form shell-core microspheres in the hydrophilic oil phase, which are then solidified in the water phase. Variations in the preparation parameters allowed complete encapsulation by the shell phase, including the efficient formation of a poly(D,L-lactide shell encapsulating a protein-loaded nanoparticle-based poly(D,L-lactide-co-glycolide core. This method produces core-shell double-walled microspheres that show controlled protein release and preserved protein bioactivities for 60 days. Based upon these results, we concluded that the core-shell double-walled microspheres might be applied for tissue engineering and therapy for chronic diseases, etc.Keywords: protein delivery, protein stability, core-shell microspheres, dextran nanoparticles

  19. Ion Structure Near a Core-Shell Dielectric Nanoparticle

    Science.gov (United States)

    Ma, Manman; Gan, Zecheng; Xu, Zhenli

    2017-02-01

    A generalized image charge formulation is proposed for the Green's function of a core-shell dielectric nanoparticle for which theoretical and simulation investigations are rarely reported due to the difficulty of resolving the dielectric heterogeneity. Based on the formulation, an efficient and accurate algorithm is developed for calculating electrostatic polarization charges of mobile ions, allowing us to study related physical systems using the Monte Carlo algorithm. The computer simulations show that a fine-tuning of the shell thickness or the ion-interface correlation strength can greatly alter electric double-layer structures and capacitances, owing to the complicated interplay between dielectric boundary effects and ion-interface correlations.

  20. Core-shell colloidal particles with dynamically tunable scattering properties.

    Science.gov (United States)

    Meng, Guangnan; Manoharan, Vinothan N; Perro, Adeline

    2017-09-27

    We design polystyrene-poly(N'-isopropylacrylamide-co-acrylic acid) core-shell particles that exhibit dynamically tunable scattering. We show that under normal solvent conditions the shell is nearly index-matched to pure water, and the particle scattering is dominated by Rayleigh scattering from the core. As the temperature or salt concentration increases, both the scattering cross-section and the forward scattering increase, characteristic of Mie scatterers. The magnitude of the change in the scattering cross-section and scattering anisotropy can be controlled through the solvent conditions and the size of the core. Such particles may find use as optical switches or optical filters with tunable opacity.

  1. Effective Field Theory and the No-Core Shell Model

    Directory of Open Access Journals (Sweden)

    Stetcua I.

    2010-04-01

    Full Text Available In finite model space suitable for many-body calculations via the no-core shell model (NCSM, I illustrate the direct application of the effective field theory (EFT principles to solving the many-body Schrödinger equation. Two different avenues for fixing the low-energy constants naturally arising in an EFT approach are discussed. I review results for both nuclear and trapped atomic systems, using effective theories formally similar, albeit describing different underlying physics.

  2. Organized thiol functional groups in mesoporous core shell colloids

    Energy Technology Data Exchange (ETDEWEB)

    Marchena, Martin H. [Gerencia Quimica, Centro Atomico Constituyentes, Comision Nacional de Energia Atomica (CNEA), Avda. Gral. Paz 1499, B1650KNA Buenos Aires (Argentina); Granada, Mara [Centro Atomico Bariloche-CNEA, 8400 San Carlos de Bariloche (Argentina); Instituto Balseiro-Centro Atomico Bariloche-CNEA, San Carlos de Bariloche 8400 (Argentina); Bordoni, Andrea V. [Gerencia Quimica, Centro Atomico Constituyentes, Comision Nacional de Energia Atomica (CNEA), Avda. Gral. Paz 1499, B1650KNA Buenos Aires (Argentina); Joselevich, Maria [Asociacion Civil Expedicion Ciencia, Cabrera 4948, C1414BGP Buenos Aires (Argentina); Troiani, Horacio [Centro Atomico Bariloche-CNEA, 8400 San Carlos de Bariloche (Argentina); Instituto Balseiro-Centro Atomico Bariloche-CNEA, San Carlos de Bariloche 8400 (Argentina); Williams, Federico J. [DQIAQyF-INQUIMAE FCEN, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon II, C1428EHA Buenos Aires (Argentina); Wolosiuk, Alejandro, E-mail: wolosiuk@cnea.gov.ar [Gerencia Quimica, Centro Atomico Constituyentes, Comision Nacional de Energia Atomica (CNEA), Avda. Gral. Paz 1499, B1650KNA Buenos Aires (Argentina)

    2012-03-15

    The co-condensation in situ of tetraethoxysilane (TEOS) and mercaptopropyltrimethoxysilane (MPTMS) using cetyltrimethylammonium bromide (CTAB) as a template results in the synthesis of multilayered mesoporous structured SiO{sub 2} colloids with 'onion-like' chemical environments. Thiol groups were anchored to an inner selected SiO{sub 2} porous layer in a bilayered core shell particle producing different chemical regions inside the colloidal layered structure. X-Ray Photoelectron Spectroscopy (XPS) shows a preferential anchoring of the -SH groups in the double layer shell system, while porosimetry and simple chemical modifications confirm that pores are accessible. We can envision the synthesis of interesting colloidal objects with defined chemical environments with highly controlled properties. - Graphical abstract: Mesoporous core shell SiO{sub 2} colloids with organized thiol groups. Highlights: Black-Right-Pointing-Pointer Double shell mesoporous silica colloids templated with CTAB. Black-Right-Pointing-Pointer Sequential deposition of mesoporous SiO{sub 2} layers with different chemistries. Black-Right-Pointing-Pointer XPS shows the selective functionalization of mesoporous layers with thiol groups.

  3. Designing of luminescent GdPO4:Eu@LaPO4@SiO2 core/shell nanorods: Synthesis, structural and luminescence properties

    Science.gov (United States)

    Ansari, Anees A.; Labis, Joselito P.; Aslam Manthrammel, M.

    2017-09-01

    GdPO4:Eu3+ (core) and GdPO4:Eu@LaPO4 (core/shell) nanorods (NRs) were successfully prepared by urea based co-precipitation process at ambient conditions which was followed by coating with amorphous silica shell via the sol-gel chemical route. The role of surface coating on the crystal structure, crystallinity, morphology, solubility, surface chemistry and luminescence properties were well investigated by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray (EDX) analysis, Fourier Transform Infrared (FTIR), UV-Vis, and photoluminescence spectroscopy. XRD pattern revealed highly purified, well-crystalline, single phase-hexagonal-rhabdophane structure of GdPO4 crystal. The TEM micrographs exhibited highly crystalline and narrow size distributed rod-shaped GdPO4:Eu3+ nanostructures with average width 14-16 nm and typical length 190-220 nm. FTIR spectra revealed characteristic infrared absorption bands of amorphous silica. High absorbance in a visible region of silica modified core/shell/Si NRs in aqueous environment suggests the high solubility along with colloidal stability. The photoluminescence properties were remarkably enhanced after growth of undoped LaPO4 layers due to the reduction of nonradiative transition rate. The advantages of presented high emission intensity and high solubility of core/shell and core/shell/Si NRs indicated the potential applications in monitoring biological events.

  4. Chemical insights into the roles of nanowire cores on the growth and supercapacitor performances of Ni-Co-O/Ni(OH)2 core/shell electrodes

    Science.gov (United States)

    Yin, Xuesong; Tang, Chunhua; Zhang, Liuyang; Yu, Zhi Gen; Gong, Hao

    2016-02-01

    Nanostructured core/shell electrodes have been experimentally demonstrated promising for high-performance electrochemical energy storage devices. However, chemical insights into the significant roles of nanowire cores on the growth of shells and their supercapacitor behaviors still remain as a research shortfall. In this work, by substituting 1/3 cobalt in the Co3O4 nanowire core with nickel, a 61% enhancement of the specific mass-loading of the Ni(OH)2 shell, a tremendous 93% increase of the volumetric capacitance and a superior cyclability were achieved in a novel NiCo2O4/Ni(OH)2 core/shell electrode in contrast to a Co3O4/Ni(OH)2 one. A comparative study suggested that not only the growth of Ni(OH)2 shells but also the contribution of cores were attributed to the overall performances. Importantly, their chemical origins were revealed through a theoretical simulation of the core/shell interfacial energy changes. Besides, asymmetric supercapacitor devices and applications were also explored. The scientific clues and practical potentials obtained in this work are helpful for the design and analysis of alternative core/shell electrode materials.

  5. Core-shell nanoparticles optical sensors - Rational design of zinc ions fluorescent nanoprobes of improved analytical performance

    Science.gov (United States)

    Woźnica, Emilia; Gasik, Joanna; Kłucińska, Katarzyna; Kisiel, Anna; Maksymiuk, Krzysztof; Michalska, Agata

    2017-10-01

    In this work the effect of affinity of an analyte to a receptor on the response of nanostructural fluorimetric probes is discussed. Core-shell nanoparticles sensors are prepared that benefit from the properties of the phases involved leading to improved analytical performance. The optical transduction system chosen is independent of pH, thus the change of sample pH can be used to control the analyte - receptor affinity through the ;conditional; binding constant prevailing within the lipophilic phase. It is shown that by affecting the ;conditional; binding constant the performance of the sensor can be fine-tuned. As expected, increase in ;conditional; affinity of the ligand embedded in the lipophilic phase to the analyte results in higher sensitivity over narrow concentration range - bulk reaction and sigmoidal shape response of emission intensity vs. logarithm of concentration changes. To induce a linear dependence of emission intensity vs. logarithm of analyte concentration covering a broad concentration range, a spatial confinement of the reaction zone is proposed, and application of core-shell nanostructures. The core material, polypyrrole nanospheres, is effectively not permeable for the analyte - ligand complex, thus the reaction is limited to the outer shell layer of the polymer prepared from poly(maleic anhydride-alt-1-octadecene). For herein introduced system a linear dependence of emission intensity vs. logarithm of Zn2+ concentration was obtained within the range from 10-7 to 10-1 M.

  6. Exploring the structural and magnetic properties of TiO{sub 2}/SnO{sub 2} core/shell nanocomposite: An experimental and density functional study

    Energy Technology Data Exchange (ETDEWEB)

    Chetri, Pawan; Basyach, Priyanka; Choudhury, Amarjyoti, E-mail: ajc@tezu.ernet.in

    2014-12-15

    TiO{sub 2}/SnO{sub 2} core/shell nanocomposite is prepared via a simple sol–gel method and the properties are compared with the individual TiO{sub 2} (core) and SnO{sub 2} (shell). The corresponding characterizations are carried out in terms of structural and magnetic properties of TiO{sub 2}/SnO{sub 2}, TiO{sub 2} and SnO{sub 2} nanosystems. Structural properties are studied via XRD, TEM, Raman spectroscopy, FTIR and XPS. Magnetic characterization is performed by measuring Moment vs. Applied Field for all the samples and Moment vs. Temperature for TiO{sub 2}/SnO{sub 2} core/shell nanocomposite. We also went for a better insight with the help of theoretical measures. First principle calculations have been executed using “Density Functional Theory” (DFT)-based MedeA VASP package to compare the results of TiO{sub 2}/SnO{sub 2} with TiO{sub 2} (1 1 0) and SnO{sub 2} (1 1 0) surface calculations and its effect on the magnetic nature of the specific nanoparticles. XRD, RAMAN and FTIR gave indirect evidence of formation of core shell nanostructure while TEM micrographs provide the direct evidence of formation of core shell nanostructure. The magnetic study shows a higher saturation magnetization for the core/shell nanostructure compared to pristine TiO{sub 2} and SnO{sub 2}. In this report, we have attempted to relate this experimental observation with the results of the first principle calculations. - Graphical abstract: Above pictorial presentation (from left) represents the model for TS, TiO{sub 2} and SnO{sub 2} used for DFT calculation and the obtained magnetic results for all the prepared systems. - Highlights: • Synthesis of TiO{sub 2}/SnO{sub 2} core/shell nanocomposites by a simple sol–gel technique. • The nanocomposites show better magnetic property than pristine nanoparticles. • DFT based calculations also support the experimental evidences.

  7. Fabrication of metronidazole loaded poly (ε-caprolactone)/zein core/shell nanofiber membranes via coaxial electrospinning for guided tissue regeneration.

    Science.gov (United States)

    He, Min; Jiang, Huiyi; Wang, Rui; Xie, Yi; Zhao, Changsheng

    2017-03-15

    To develop a biologically mimetic guided tissue regeneration (GTR) membrane with localized sustained drug release function to prevent infection, coaxial electrospinning technique was conducted to fabricate metronidazole (MNA)-loaded poly (ε-caprolactone) (PCL)/zein core/shell nanofibers. The nanofibers displayed a uniform bead-free round morphology as observed by scanning electron microscopy (SEM), and a core/shell structure as confirmed by transmission electron microscopy (TEM). X-ray diffraction (XRD) and differential scanning calorimetry (DSC) characterizations demonstrated that the MNA was well dispersed in the nanofibers matrix. Due to the encapsulation of the hydrophobic zein, the MNA was released in a controlled, sustained manner over 4days, and the released MNA showed high antibacterial activity towards anaerobic bacteria. In addition, the encapsulation of natural zein resulted in enhanced cell adhesion and proliferation, and the loading of MNA did not show any cytotoxicity. Thus, these results demonstrated that the MNA-loaded core/shell nanofibers had the potential to be used as GTR membranes with antibacterial function for extensive biomedical applications.

  8. Design rules for core/shell nanowire resonant emitters

    Science.gov (United States)

    Kim, Da-Som; Kim, Sun-Kyung

    2017-01-01

    We study design principles to boost the extraction of light from core/shell GaN nanowire optical emitters. A full-vectorial electromagnetic simulation reveals that the extraction efficiency of an emitter within a nanowire cavity depends strongly on its position; the efficiency becomes maximized as the emitter's location approaches the center of the structure. The total extraction of light is sinusoidally modulated by the nanowire diameter, which is directly correlated with optical resonances. The introduction of a conformal dielectric coating on a nanowire leads to a dramatic enhancement in the extraction efficiency, which results from an increase in side emission owing to an optical antenna effect. A simple high-refractive-index dielectric coating approximately doubles the total extraction efficiency of a nanowire LED. These numerical findings will be valuable in providing strategies for high-efficiency nanowire-based optical emitters.

  9. Stability of core-shell nanowires in selected model solutions

    Science.gov (United States)

    Kalska-Szostko, B.; Wykowska, U.; Basa, A.; Zambrzycka, E.

    2015-03-01

    This paper presents the studies of stability of magnetic core-shell nanowires prepared by electrochemical deposition from an acidic solution containing iron in the core and modified surface layer. The obtained nanowires were tested according to their durability in distilled water, 0.01 M citric acid, 0.9% NaCl, and commercial white wine (12% alcohol). The proposed solutions were chosen in such a way as to mimic food related environment due to a possible application of nanowires as additives to, for example, packages. After 1, 2 and 3 weeks wetting in the solutions, nanoparticles were tested by Infrared Spectroscopy, Atomic Absorption Spectroscopy, Transmission Electron Microscopy and X-ray diffraction methods.

  10. Vertical Ge/Si Core/Shell Nanowire Junctionless Transistor.

    Science.gov (United States)

    Chen, Lin; Cai, Fuxi; Otuonye, Ugo; Lu, Wei D

    2016-01-13

    Vertical junctionless transistors with a gate-all-around (GAA) structure based on Ge/Si core/shell nanowires epitaxially grown and integrated on a ⟨111⟩ Si substrate were fabricated and analyzed. Because of efficient gate coupling in the nanowire-GAA transistor structure and the high density one-dimensional hole gas formed in the Ge nanowire core, excellent P-type transistor behaviors with Ion of 750 μA/μm were obtained at a moderate gate length of 544 nm with minimal short-channel effects. The experimental data can be quantitatively modeled by a GAA junctionless transistor model with few fitting parameters, suggesting the nanowire transistors can be fabricated reliably without introducing additional factors that can degrade device performance. Devices with different gate lengths were readily obtained by tuning the thickness of an etching mask film. Analysis of the histogram of different devices yielded a single dominate peak in device parameter distribution, indicating excellent uniformity and high confidence of single nanowire operation. Using two vertical nanowire junctionless transistors, a PMOS-logic inverter with near rail-to-rail output voltage was demonstrated, and device matching in the logic can be conveniently obtained by controlling the number of nanowires employed in different devices rather than modifying device geometry. These studies show that junctionless transistors based on vertical Ge/Si core/shell nanowires can be fabricated in a controlled fashion with excellent performance and may be used in future hybrid, high-performance circuits where bottom-up grown nanowire devices with different functionalities can be directly integrated with an existing Si platform.

  11. Design and characterization of core-shell mPEG-PLGA composite microparticles for development of cell-scaffold constructs.

    Science.gov (United States)

    Wen, Yanhong; Gallego, Monica Ramos; Nielsen, Lene Feldskov; Jorgensen, Lene; Møller, Eva Horn; Nielsen, Hanne Mørck

    2013-09-01

    Appropriate scaffolds capable of providing suitable biological and structural guidance are of great importance to generate cell-scaffold constructs for cell-based tissue engineering. The aim of the present study was to develop composite microparticles with a structure to provide functionality as a combined drug delivery/scaffold system. Composite microparticles were produced by incorporating either alginate/dermatan sulfate (Alg/DS) or alginate/chitosan/dermatan sulfate (Alg/CS/DS) particles in mPEG-PLGA microparticles using coaxial ultrasonic atomization. The encapsulation and distribution of Alg/DS or Alg/CS/DS particles in the mPEG-PLGA microparticles were significantly dependent on the operating conditions, including the flow rate ratio (Qout/Qin) and the viscosity of the polymer solutions (Vout, Vin) between the outer and the inner feeding channels. The core-shell composite microparticles containing the Alg/DS particles or the Alg/CS/DS particles displayed 40% and 65% DS release in 10 days, respectively, as compared to the DS directly loaded microparticles showing 90% DS release during the same time interval. The release profiles of DS correlate with the cell proliferation of fibroblasts, i.e. more sustainable cell growth was induced by the DS released from the core-shell composite microparticles comprising Alg/CS/DS particles. After seeding fibroblasts onto the composite microparticles, excellent cell adhesion was observed, and a successful assembly of the cell-scaffold constructs was induced within 7 days. Therefore, the present study demonstrates a novel strategy for fabrication of core-shell composite microparticles comprising additional particulate drug carriers in the core, which provides controlled delivery of DS and favorable cell biocompatibility; an approach to potentially achieve cell-based tissue regeneration.

  12. Magnet-in-the-Semiconductor Nanomaterials: High Electron Mobility in All-Inorganic Arrays of FePt/CdSe and FePt/CdS Core-Shell Heterostructures.

    Science.gov (United States)

    Son, Jae Sung; Lee, Jong-Soo; Shevchenko, Elena V; Talapin, Dmitri V

    2013-06-06

    We report a colloidal synthesis and electrical and magnetotransport properties of multifunctional "magnet-in-the-semiconductor" nanostructures composed of FePt core and CdSe or CdS shell. Thin films of all-inorganic FePt/CdSe and FePt/CdS core-shell nanostructures capped with In2Se4(2-) molecular chalcogenide (MCC) ligands exhibited n-type charge transport with high field-effect electron mobility of 3.4 and 0.02 cm(2)/V·s, respectively. These nanostructures also showed a negative magnetoresistance characteristic for spin-dependent tunneling. We discuss the mechanism of charge transport and gating in the arrays of metal/semiconductor core-shell nanostructures.

  13. Double locked silver-coated silicon nanoparticle/graphene core/shell fiber for high-performance lithium-ion battery anodes

    Science.gov (United States)

    Gu, Minsu; Ko, Seunghee; Yoo, Seungmin; Lee, Eunhee; Min, Sa Hoon; Park, Soojin; Kim, Byeong-Su

    2015-12-01

    We present a fabrication of scalable coaxial core/shell silicon (Si)-graphene fiber prepared by dual-nozzle-induced wet-spinning assembly for high-performance Si anode. Over 50 wt% of Si nanoparticles mixed with graphene oxide suspension can be incorporated in the core with the outstanding dispersibility of unique silver-coated Si nanoparticles in aqueous media. The core fiber is further encapsulated by graphene shell which not only provides conducting pathways, but also alleviates severe volume expansion of Si core. This novel core/shell Si anode with double locked graphene architecture delivers more stable cycle performance and superior rate capability than anodes composed of simple mixture of Si-graphene composites.

  14. Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction.

    Science.gov (United States)

    Li, J Jack; Wang, Y Andrew; Guo, Wenzhuo; Keay, Joel C; Mishima, Tetsuya D; Johnson, Matthew B; Peng, Xiaogang

    2003-10-15

    Successive ion layer adsorption and reaction (SILAR) originally developed for the deposition of thin films on solid substrates from solution baths is introduced as a technique for the growth of high-quality core/shell nanocrystals of compound semiconductors. The growth of the shell was designed to grow one monolayer at a time by alternating injections of air-stable and inexpensive cationic and anionic precursors into the reaction mixture with core nanocrystals. The principles of SILAR were demonstrated by the CdSe/CdS core/shell model system using its shell-thickness-dependent optical spectra as the probes with CdO and elemental S as the precursors. For this reaction system, a relatively high temperature, about 220-240 degrees C, was found to be essential for SILAR to fully occur. The synthesis can be readily performed on a multigram scale. The size distribution of the core/shell nanocrystals was maintained even after five monolayers of CdS shell (equivalent to about 10 times volume increase for a 3.5 nm CdSe nanocrystal) were grown onto the core nanocrystals. The epitaxial growth of the core/shell structures was verified by optical spectroscopy, TEM, XRD, and XPS. The photoluminescence quantum yield (PL QY) of the as-prepared CdSe/CdS core/shell nanocrystals ranged from 20% to 40%, and the PL full-width at half-maximum (fwhm) was maintained between 23 and 26 nm, even for those nanocrystals for which the UV-vis and PL peaks red-shifted by about 50 nm from that of the core nanocrystals. Several types of brightening phenomena were observed, some of which can further boost the PL QY of the core/shell nanocrystals. The CdSe/CdS core/shell nanocrystals were found to be superior in comparison to the highly luminescent CdSe plain core nanocrystals. The SILAR technique reported here can also be used for the growth of complex colloidal semiconductor nanostructures, such as quantum shells and colloidal quantum wells.

  15. Structural and Optical Properties of Core-Shell TiO2/CdS Prepared by Chemical Bath Deposition

    Science.gov (United States)

    Al-Jawad, Selma M. H.

    2017-10-01

    Titanium dioxide (TiO2) nanorod arrays (NRAs) sensitized with cadmium sulfide (CdS) nanoparticles (NPs) were deposited by chemical bath deposition (CBD). TiO2 NRAs were also obtained by using the same method on glass substrates coated with fluorine-doped tin oxide (FTO). The structure of the FTO/TiO2/CdS core-shell was characterized by x-ray diffraction (XRD), atomic force microscopy, scanning electron microscopy, ultraviolet-visible (UV-Vis) absorption spectroscopy, photoluminescence, and photoelectrocatalysis of FTO/TiO2 and FTO/TiO2/CdS. The FTO/TiO2 conformed to anatase and rutile phase structures for different pH values and also with annealing. XRD patterns of the FTO/TiO2/CdS sample exhibited two peaks corresponding to hexagonal (100) and (101) for CdS. Scanning electron micrographs showed nanorod structures for the TiO2 thin films deposited at a pH value equal 0.7. Optical results showed the CdS deposited on nanorod TiO2 exhibited increased absorption ability in the visible light, indicating an increased photocatalytic activity for TiO2/CdS core-shell nanorods in the visible light. When illuminated with a UV-Vis light source, the TiO2/CdS core-shell films displayed high responses. A composite exists between the TiO2 nanostructure and CdS NPs because the film absorbs the incident light located in both the visible and UV-Vis regions. A higher response to UV-Vis light was attained with the use of TiO2 NRAs/CdS NPs films prepared by CBD. This approach offers a technique for fabricating photoelectrodes.

  16. Investigation of physical vapor deposition techniques of conformal shell coating for core/shell structures by Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Cansizoglu, H., E-mail: hxis@ualr.edu; Yurukcu, M.; Cansizoglu, M.F.; Karabacak, T.

    2015-05-29

    Vertically aligned core/shell nanowire (nanorod) arrays are favorable candidates in many nano-scale devices such as solar cells, detectors, and integrated circuits. The quality of the shell coating around nanowire arrays is as crucial as the quality of the nanowires in device applications. For this reason, we worked on different physical vapor deposition (PVD) techniques and conducted Monte Carlo simulations to estimate the best deposition technique for a conformal shell coating. Our results show that a small angle (≤ 45°) between incoming flux of particles and the substrate surface normal is necessary for PVD techniques with a directional incoming flux (e.g. thermal or e-beam evaporation) for a reasonable conformal coating. On the other hand, PVD techniques with an angular flux distribution (e.g. sputtering) can provide a fairly conformal shell coating around nanowire arrays without a need of small angle deposition. We also studied the shape effect of the arrays on the conformality of the coating and discovered that arrays of the tapered-top nanorods and the pyramids can be coated with a more conformal and thicker coating compared to the coating on the arrays of flat-top nanowires due to their larger openings in between structures. Our results indicate that conventional PVD techniques, which offer low cost and large scale thin film fabrication, can be utilized for highly conformal and uniform shell coating formation in core/shell nanowire device applications. - Highlights: • We examined the shell coating growth in core/shell nanostructures. • We investigated the effect of physical vapor deposition method on the conformality of the shell. • We used Monte Carlo simulations to simulate the shell growth on nanowire templates. • Angular atomic flux (i.e., sputtering at high pressure) leads to conformal and uniform coatings. • A small angle (< 45°) to the directional flux needs to be introduced for conformal coatings.

  17. Synthesis of a carbon-coated NiO/MgO core/shell nanocomposite as a Pd electro-catalyst support for ethanol oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Mahendiran, C. [Department of Chemistry and Kanbar Laboratory for Nanomaterials at the Bar-Ilan University Center for Advanced Materials and Nanotechnology, Bar-Ilan University, Ramat-Gan 52900 (Israel); Maiyalagan, T.; Scott, K. [School of Chemical Engineering and Advanced Materials, University of Newcastle Upon Tyne, Newcastle Upon Tyne NE1 7RU (United Kingdom); Gedanken, A., E-mail: gedanken@mail.biu.ac.il [Department of Chemistry and Kanbar Laboratory for Nanomaterials at the Bar-Ilan University Center for Advanced Materials and Nanotechnology, Bar-Ilan University, Ramat-Gan 52900 (Israel)

    2011-08-15

    Highlights: {yields} Carbon coated on NiO/MgO in a core/shell nanostructure is synthesized by RAPET. {yields} The carbon-coated NiO/MgO is supported by Pd. {yields} The electrocatalytic properties of the Pd/(NiO/MgO-C) catalyst for ethanol oxidation studied. - Abstract: Carbon coated on NiO/MgO in a core/shell nanostructure was synthesized by the single-step RAPET (reaction under autogenic pressure at elevated temperatures) technique, and the obtained formation mechanism of the core/shell nanocomposite was presented. The carbon-coated NiO/MgO and its supported Pd catalyst, Pd/(NiO/MgO-C), were characterized by SEM, HR-TEM, XRD and cyclic voltammetry. The X-ray diffraction patterns confirmed the face-centered cubic crystal structure of NiO/MgO. Raman spectroscopy measurements provided structural evidence for the formation of a NiO/MgO composite and the nature of the coated carbon shell. The high-resolution transmission electron microscopy images showed the core and shell morphologies individually. The electrocatalytic properties of the Pd/(NiO/MgO-C) catalyst for ethanol oxidation were investigated in an alkaline solution. The results indicated that the prepared Pd-NiO/MgO-C catalyst has excellent electrocatalytic activity and stability.

  18. Tuning exchange bias in Fe/γ-Fe2O3 core-shell nanoparticles: Impacts of interface and surface spins

    Science.gov (United States)

    Khurshid, Hafsa; Phan, Manh-Huong; Mukherjee, Pritish; Srikanth, Hariharan

    2014-02-01

    A comparative study has been performed of the exchange bias (EB) effect in Fe/γ-Fe2O3 core-shell nanoparticles with the same thickness of the γ-Fe2O3 shell (˜2 nm) and the diameter of the Fe core varying from 4 nm to 11 nm. Transmission electron microscopy (TEM) and high-resolution TEM confirmed the high quality of the core-shell nanostructures. A systematic analysis of magnetization versus magnetic field measurements under zero-field-cooled and field-cooled regimes using the Meiklejohn-Bean model and deconvoluting superparamagnetic and paramagnetic contribution to the total magnetic moment Langevin function shows that there exists a critical particle size (˜10 nm), above which the spins at the interface between Fe and γ-Fe2O3 contribute primarily to the EB, but below which the surface spin effect is dominant. Our finding yields deeper insight into the collective contributions of interface and surface spins to the EB in core-shell nanoparticle systems, knowledge of which is the key to manipulating EB in magnetic nanostructures for spintronics applications.

  19. Tuning exchange bias in Fe/γ-Fe{sub 2}O{sub 3} core-shell nanoparticles: Impacts of interface and surface spins

    Energy Technology Data Exchange (ETDEWEB)

    Khurshid, Hafsa, E-mail: hkhurshi@usf.edu, E-mail: phanm@usf.edu, E-mail: sharihar@usf.edu; Phan, Manh-Huong, E-mail: hkhurshi@usf.edu, E-mail: phanm@usf.edu, E-mail: sharihar@usf.edu; Mukherjee, Pritish; Srikanth, Hariharan, E-mail: hkhurshi@usf.edu, E-mail: phanm@usf.edu, E-mail: sharihar@usf.edu [Department of Physics, University of South Florida, Tampa, Florida 33620 (United States)

    2014-02-17

    A comparative study has been performed of the exchange bias (EB) effect in Fe/γ-Fe{sub 2}O{sub 3} core-shell nanoparticles with the same thickness of the γ-Fe{sub 2}O{sub 3} shell (∼2 nm) and the diameter of the Fe core varying from 4 nm to 11 nm. Transmission electron microscopy (TEM) and high-resolution TEM confirmed the high quality of the core-shell nanostructures. A systematic analysis of magnetization versus magnetic field measurements under zero-field-cooled and field-cooled regimes using the Meiklejohn-Bean model and deconvoluting superparamagnetic and paramagnetic contribution to the total magnetic moment Langevin function shows that there exists a critical particle size (∼10 nm), above which the spins at the interface between Fe and γ-Fe{sub 2}O{sub 3} contribute primarily to the EB, but below which the surface spin effect is dominant. Our finding yields deeper insight into the collective contributions of interface and surface spins to the EB in core-shell nanoparticle systems, knowledge of which is the key to manipulating EB in magnetic nanostructures for spintronics applications.

  20. Sensitized solar cells with colloidal PbS-CdS core-shell quantum dots

    NARCIS (Netherlands)

    Lai, Lai-Hung; Protesescu, Loredana; Kovalenko, Maksym V.; Loi, Maria A.

    2014-01-01

    We report on the fabrication of PbS-CdS (core-shell) quantum dot (QD)-sensitized solar cells by direct adsorption of core-shell QDs on mesoporous TiO2 followed by 3-mercaptopropionic acid ligand exchange. PbS-CdS QD-sensitized solar cells show 4 times higher efficiency with respect to solar cells se

  1. Sensitized solar cells with colloidal PbS-CdS core-shell quantum dots

    NARCIS (Netherlands)

    Lai, Lai-Hung; Protesescu, Loredana; Kovalenko, Maksym V.; Loi, Maria A.

    2014-01-01

    We report on the fabrication of PbS-CdS (core-shell) quantum dot (QD)-sensitized solar cells by direct adsorption of core-shell QDs on mesoporous TiO2 followed by 3-mercaptopropionic acid ligand exchange. PbS-CdS QD-sensitized solar cells show 4 times higher efficiency with respect to solar cells

  2. Design and synthesis of highly luminescent near-infrared-emitting water-soluble CdTe/CdSe/ZnS core/shell/shell quantum dots.

    Science.gov (United States)

    Zhang, Wenjin; Chen, Guanjiao; Wang, Jian; Ye, Bang-Ce; Zhong, Xinhua

    2009-10-19

    Applications of water-dispersible near-infrared (NIR)-emitting quantum dots (QDs) have been hampered by their instability and low photoluminescence (PL) efficiencies. In this paper, water-soluble highly luminescent NIR-emitting QDs were developed through constructing CdTe/CdSe/ZnS core/shell/shell nanostructure. The CdTe/CdSe type-II structure yields the QDs with NIR emission. By varying the size of CdTe cores and the thickness of the CdSe shell, the emission wavelength of the obtained nanostructure can span from 540 to 825 nm. In addition, the passivation of the ZnS shell with a substantially wide bandgap confines the excitons within the CdTe/CdSe interface and isolates them from the solution environment and consequently improves the stability of the nanostructure, especially in aqueous media. An effective shell-coating route was developed for the preparation of CdTe/CdSe core/shell nanostructures by selecting capping reagents with a strong coordinating capacity and adopting a low temperature for shell deposition. An additional ZnS shell was deposited around the outer layer of CdTe/CdSe QDs to form the core/shell/shell nanostructure through the decomposition of single molecular precursor zinc diethyldithiocarbamate in the crude CdTe/CdSe reaction solution. The water solubilization of the initially oil-soluble CdTe/CdSe/ZnS QDs was achieved through ligand replacement by 3-mercaptopropionic acid. The as-prepared water-soluble CdTe/CdSe/ZnS QDs possess PL quantum yields as high as 84% in aqueous media, which is one of the best results for the luminescent semiconductor nanocrystals.

  3. CNTs/mesostructured silica core-shell nanowires via interfacial surfactant templating

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lei; QIAO ShiZhang; YAN ZiFeng; ZHENG HuaJun; LI Li; DING RongGang; LU GaoQing(Max)

    2009-01-01

    Carbon nanotubes (CNTs)/mesostructured silica core-shell nanowires with a carbon nanotube core and controllable highly ordered periodic mesoporous silica shell are syntheiszed via the interfacial surfac-tant template. The core-shell nanowires are characterized by transmission electron microscope (TEM), X-ray diffraction pattern (XRD) and nitrogen sorption/desorption. The results indicate that the core-shell nanowires have highly ordered periodic mesoporous silica shell (space group p6mm), high BET sur-face area and narrow pore size distribution. Moreover, the morphology of core-shell nanowires can be controlled by the pH value. The core-shell nanowires have promising applications in biosensors, nanoprobes and energy storage due to their good dispersibility in polar solvents.

  4. Study on the effect of electrostatic interaction on core-shell nanoparticles preparation with microemulsion technique

    Institute of Scientific and Technical Information of China (English)

    HE Xiaoxiao; WANG Kemin; TAN Weihong; CHEN Jiyun; DUAN Jinghua; YUAN Yin; LIN Xia

    2005-01-01

    The routine method for preparation of silica core-shell nanoparticles (NPs) is to carry out nucleation and shell coating through the hydrolysis of silane in water in oil (W/O) microemulsion to form three-dimensional netted silica shell. We found that electrostatic interaction of the core materials with shell materials would determine whether the stable core-shell silica NPs formed or not. The traditional important factors such as molecular weight of core materials or the thickness of the shell have no obvious relationship with it. And the stability of the core-shell silica NPs can be improved after changing the electric charge polarity by regulating the experiment condition of relevant materials if some core materials cannot be doped inside to form the stable core-shell silica NPs based on the traditional method, which provided experimental and theoretic foundation for preparation and application of the core-shell silica NPs.

  5. Formation of titanium dioxide core-shell microcapsules through a binary-phase spray technique.

    Science.gov (United States)

    Bergek, Jonatan; Elgh, Björn; Palmqvist, Anders E C; Nordstierna, Lars

    2017-09-13

    Core-shell microcapsules consisting of a titanium dioxide shell and a hydrophobic solvent core have been prepared with diameters of a few micrometers and a narrow size distribution using a simple and fast airbrush technique. These microcapsules were prepared at room temperature in a single-step process in which an oil with a dissolved titanium alkoxide precursor was forced together with an aqueous solution, containing a surface-active polymer, through a narrow spray nozzle using a nitrogen gas propellant. Several different parameters of chemical, physical, and processing origin were investigated to find an optimal recipe. Two different alkanes, one ketone, and four alcohols were tested and evaluated as core materials, alone or together with the antifungal biocide 2-n-octyl-4-isothiazolin-3-one (OIT). Long-chain alcohols were found suitable as core oil due to their low solubility in water and surface activity. The addition of the surface-active polymers in the water phase was important in aiding the formation and stabilization of the titanium dioxide shell. An impressive loading of 50 wt% of the semi-hydrophobic OIT was possible to encapsulate using this simple and applicable procedure.

  6. METALLIC AND HYBRID NANOSTRUCTURES: FUNDAMENTALS AND APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Murph, S.

    2012-05-02

    This book chapter presents an overview of research conducted in our laboratory on preparation, optical and physico-chemical properties of metallic and nanohybrid materials. Metallic nanoparticles, particularly gold, silver, platinum or a combination of those are the main focus of this review manuscript. These metallic nanoparticles were further functionalized and used as templates for creation of complex and ordered nanomaterials with tailored and tunable structural, optical, catalytic and surface properties. Controlling the surface chemistry on/off metallic nanoparticles allows production of advanced nanoarchitectures. This includes coupled or encapsulated core-shell geometries, nano-peapods, solid or hollow, monometallic/bimetallic, hybrid nanoparticles. Rational assemblies of these nanostructures into one-, two- and tridimensional nano-architectures is described and analyzed. Their sensing, environmental and energy related applications are reviewed.

  7. Preparation, Properties, and Self-Assembly Behavior of PTFE-Based Core-Shell Nanospheres

    Directory of Open Access Journals (Sweden)

    Katia Sparnacci

    2012-01-01

    Full Text Available Nanosized PTFE-based core-shell particles can be prepared by emulsifier-free seed emulsion polymerization technique starting from spherical or rod-like PTFE seeds of different size. The shell can be constituted by the relatively high Tg polystyrene and polymethylmethacrylate as well as by low Tg polyacrylic copolymers. Peculiar thermal behavior of the PTFE component is observed due to the high degree of PTFE compartmentalization. A very precise control over the particle size can be exerted by properly adjusting the ratio between the monomers and the PTFE seed. In addition, the particle size distribution self-sharpens as the ratio monomer/PTFE increases. Samples with uniformity ratios suited to build 2D and 3D colloidal crystals are easily prepared. In particular, 2D colloidal crystal of spheres leads to very small 2D nanostructuration, useful for the preparation of masks with a combination of nanosphere lithography and reactive ion etching. 3D colloidal crystals were also obtained featuring excellent opal quality, which is a direct consequence of the monodispersity of colloids used for their growth.

  8. High-performance polyimide nanocomposites with core-shell AgNWs@BN for electronic packagings

    Science.gov (United States)

    Zhou, Yongcun; Liu, Feng

    2016-08-01

    The increasing density of electronic devices underscores the need for efficient thermal management. Silver nanowires (AgNWs), as one-dimensional nanostructures, possess a high aspect ratio and intrinsic thermal conductivity. However, high electrical conductivity of AgNWs limits their application for electronic packaging. We synthesized boron nitride-coated silver nanowires (AgNWs@BN) using a flexible and fast method followed by incorporation into synthetic polyimide (PI) for enhanced thermal conductivity and dielectric properties of nanocomposites. The thinner boron nitride intermediate nanolayer on AgNWs not only alleviated the mismatch between AgNWs and PI but also enhanced their interfacial interaction. Hence, the maximum thermal conductivity of an AgNWs@BN/PI composite with a filler loading up to 20% volume was increased to 4.33 W/m K, which is an enhancement by nearly 23.3 times compared with that of the PI matrix. The relative permittivity and dielectric loss were about 9.89 and 0.015 at 1 MHz, respectively. Compared with AgNWs@SiO2/PI and Ag@BN/PI composites, boron nitride-coated core-shell structures effectively increased the thermal conductivity and reduced the permittivity of nanocomposites. The relative mechanism was studied and discussed. This study enables the identification of appropriate modifier fillers for polymer matrix nanocomposites.

  9. Maghemite (hematite) core (shell) nanorods via thermolysis of a molecular solid of Fe-complex.

    Science.gov (United States)

    Chaudhari, N S; Warule, S S; Muduli, S; Kale, B B; Jouen, S; Lefez, B; Hannoyer, B; Ogale, S B

    2011-08-21

    An Fe-metal complex with 2'-hydroxy chalcone (2'-HC) ligands [Fe(III) (2'-hydroxy chalcone)(3)] is synthesized by a chemical route and is subjected to different thermal treatments. Upon thermolysis in air at 450 °C for 3 h the complex yields maghemite (γ-Fe(2)O(3)) nanorods with a thin hematite (α-Fe(2)O(3)) shell. X-Ray diffraction (XRD), Mössbauer spectroscopy, diffuse reflectance spectroscopy (UV-DRS), high resolution transmission electron microscopy (HR-TEM), field emission scanning electron microscopy (FE-SEM) and vibrating sample magnetometry (VSM) are used to characterize the samples. The stability of the ligand and the Fe-complex is further examined by using thermogravimmetric/differential thermal analysis (TGA/DTA). We suggest a residual ligand controlled mechanism for the formation of an anisotropic nanostructure in a crumbling molecular solid undergoing ligand decomposition. Since the band gap of iron oxide is in the visible range, we explored the use of our core shell nano-rod sample for photocatalytic activity for H(2) generation by H(2)S splitting under solar light. We observed high photocatalytic activity for hydrogen generation (75 ml h(-1)). This journal is © The Royal Society of Chemistry 2011

  10. Multifunctional antitumor magnetite/chitosan-l-glutamic acid (core/shell) nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Daniela P. [University of Sao Paulo State, UNESP, Institute of Chemistry (Brazil); Ruiz, M. Adolfina; Gallardo, Visitacion [University of Granada, Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy (Spain); Zanoni, Maria Valnice B. [University of Sao Paulo State, UNESP, Institute of Chemistry (Brazil); Arias, Jose L., E-mail: jlarias@ugr.es [University of Granada, Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy (Spain)

    2011-09-15

    The development of anticancer drug delivery systems based on biodegradable nanoparticles has been intended to maximize the localization of chemotherapy agents within tumor interstitium, along with negligible drug distribution into healthy tissues. Interestingly, passive and active drug targeting strategies to cancer have led to improved nanomedicines with great tumor specificity and efficient chemotherapy effect. One of the most promising areas in the formulation of such nanoplatforms is the engineering of magnetically responsive nanoparticles. In this way, we have followed a chemical modification method for the synthesis of magnetite/chitosan-l-glutamic acid (core/shell) nanostructures. These magnetic nanocomposites (average size Almost-Equal-To 340 nm) exhibited multifunctional properties based on its capability to load the antitumor drug doxorubicin (along with an adequate sustained release) and its potential for hyperthermia applications. Compared to drug surface adsorption, doxorubicin entrapment into the nanocomposites matrix yielded a higher drug loading and a slower drug release profile. Heating characteristics of the magnetic nanocomposites were investigated in a high-frequency alternating magnetic gradient: a stable maximum temperature of 46 Degree-Sign C was successfully achieved within 40 min. To our knowledge, this is the first time that such kind of stimuli-sensitive nanoformulation with very important properties (i.e., magnetic targeting capabilities, hyperthermia, high drug loading, and little burst drug release) has been formulated for combined antitumor therapy against cancer.

  11. High-performance polyimide nanocomposites with core-shell AgNWs@BN for electronic packagings

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yongcun; Liu, Feng, E-mail: liufeng@nwpu.edu.cn [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an Shaanxi 710072 (China)

    2016-08-22

    The increasing density of electronic devices underscores the need for efficient thermal management. Silver nanowires (AgNWs), as one-dimensional nanostructures, possess a high aspect ratio and intrinsic thermal conductivity. However, high electrical conductivity of AgNWs limits their application for electronic packaging. We synthesized boron nitride-coated silver nanowires (AgNWs@BN) using a flexible and fast method followed by incorporation into synthetic polyimide (PI) for enhanced thermal conductivity and dielectric properties of nanocomposites. The thinner boron nitride intermediate nanolayer on AgNWs not only alleviated the mismatch between AgNWs and PI but also enhanced their interfacial interaction. Hence, the maximum thermal conductivity of an AgNWs@BN/PI composite with a filler loading up to 20% volume was increased to 4.33 W/m K, which is an enhancement by nearly 23.3 times compared with that of the PI matrix. The relative permittivity and dielectric loss were about 9.89 and 0.015 at 1 MHz, respectively. Compared with AgNWs@SiO{sub 2}/PI and Ag@BN/PI composites, boron nitride-coated core-shell structures effectively increased the thermal conductivity and reduced the permittivity of nanocomposites. The relative mechanism was studied and discussed. This study enables the identification of appropriate modifier fillers for polymer matrix nanocomposites.

  12. Synthesis and Characterization of ZnO/ZnS Core/Shell Nanowires

    Directory of Open Access Journals (Sweden)

    Taher Ghrib

    2014-01-01

    Full Text Available ZnO nanowires of approximately 3 µm length and 200 nm diameter are prepared and implanted vertically on substrate glass which is coated with thin layer of ITO which is too covered with bulk ZnO thin layer via electrodeposition process by cyclic voltammetry-chronoamperometry and with a chemical process that is described later; we have synthesized a ZnS nanolayer. ZnO/ZnS core/shell nanowires are formed by ZnO nanowires core surrounded by a very thin layer of porous ZnS shell principally constituted with a crystal which is about 15–20 nm in diameter. In the method, ZnS nanoparticles were prepared by reaction of ZnO nanowires with Na2S in aqueous solution at low temperature and also we have discussed the growth mechanism of ZnO/ZnS nanowires. The morphology, structure, and composition of the obtained nanostructures were obtained by using X-ray diffraction (XRD, scanning electron microscopy (SEM, transmission electron microscopy (TEM, and X-ray photoelectron spectroscopy (XPS. For the structure, SEM and XRD measurements indicated that the as-grown ZnO nanowires microscale was of hexagonal wurtzite phase with a high crystalline quality, and TEM shows that the ZnS is uniformly distributed on the surface of the ZnO nanowires.

  13. Self Powered Highly Enhanced Dual Wavelength ZnO@CdS Core-Shell Nanorod Arrays Photodetector: An Intelligent Pair.

    Science.gov (United States)

    Sarkar, Sanjit; Basak, Durga

    2015-08-01

    On the face of the impending energy crisis, developing low-energy or even zero-energy photoelectronic devices is extremely important. A multispectral photosensitivity feature of a self-powered device provides an additional powerful tool. We have developed an unprecedented high performance dual wavelength self-powered ZnO@CdS/PEDOT:PSS core-shell nanorods array photodetector through a simple aqueous chemical method wherein a suitable band alignment between an intelligent material pair, i.e. ZnO and CdS, has been utilized. Besides a noteworthy advantage of the devices being that they show a very sharp and prominent dual wavelength photosensitivity, both the ultraviolet and visible light sensitivity (ratio of current under illumination (Iphoto)/current under dark (Idark)) of the device are two orders of higher magnitude than those of pristine ZnO, attaining values of 2.8 × 10(3) and 1.07 × 10(3), respectively. At the same time, temporal responses faster than 20 ms could be achieved with these solution-processed photodetectors. The present study provides a very important direction to engineer core-shell nanostructured devices for dual wavelength high photosensitivity.

  14. Facile Synthesis of Gold-nanoparticles-decorated Polymer Assemblies and Core-Shell Gold Nanoparticles Using Pluronic Block Copolymers

    Institute of Scientific and Technical Information of China (English)

    SHOU Qing-hui; GUO Chen; GAO Hong-shuai; ZHOU Hua-cong; LIU Chun-zhao; LIU Hui-zhou

    2011-01-01

    Abstract:Synthesis of gold nanoparticles (AuNPs) and Pluronic triblock copolymer composite in aqueous medium was studied.Gold-polymer nanocomposite with different structures was fabricated by tailoring the molar ratio of gold precursors to Pluronic P123 molecules or pH value of the P123 solution.When a lower volume ratio of [AuCl4-]/[P123] (0.05) was employed at pH 11.1,a nanostructure similar to plum pudding was obtained.AuNPs with an average diameter of 13.1 nm were embedded in Pluronic assemblies,and each one held about 21 single gold nanoparticles.When [AuCl4-]/[P123] was increased to 0.1,core-shell structure was obtained if the pH value was in the range of 10.6~11.6,while gold polyhedra were fabricated when pH value was 8.1.Typical core-shell AuNPs had an average diameter of 9.6 nm with a narrow size distribution,while gold polyhedras with a mean diameter of 12.8 nm was obtained.The specific morphologies of the resultant nanocomposite were presumably obtained due to the synergistic interaction among the reactants.

  15. Electrochemical synthesis of 1D core-shell Si/TiO2 nanotubes for lithium ion batteries

    Science.gov (United States)

    Kowalski, Damian; Mallet, Jeremy; Thomas, Shibin; Nemaga, Abirdu Woreka; Michel, Jean; Guery, Claude; Molinari, Michael; Morcrette, Mathieu

    2017-09-01

    Silicon negative electrode for lithium ion battery was designed in the form of self-organized 1D core-shell nanotubes to overcome shortcomings linked to silicon volume expansion upon lithiation/delithiation typically occurring with Si nanoparticles. The negative electrode was formed on TiO2 nanotubes in two step electrochemical synthesis by means of anodizing of titanium and electrodeposition of silicon using ionic liquid electrolytes. Remarkably, it was found that the silicon grows perpendicularly to the z-axis of nanotube and therefore its thickness can be precisely controlled by the charge passed in the electrochemical protocol. Deposited silicon creates a continuous Si network on TiO2 nanotubes without grain boundaries and particle-particle interfaces, defining its electrochemical characteristics under battery testing. In the core-shell system the titania nanotube play a role of volume expansion stabilizer framework holding the nanostructured silicon upon lithiation/delithiation. The nature of Si shell and presence of titania core determine stable performance as negative electrode tested in half cell of CR2032 coin cell battery.

  16. Core-shell interaction and its impact on the optical absorption of pure and doped core-shell CdSe/ZnSe nanoclusters.

    Science.gov (United States)

    Wang, Xinqin; Cui, Yingqi; Yu, Shengping; Zeng, Qun; Yang, Mingli

    2016-04-07

    The structural, electronic, and optical properties of core-shell nanoclusters, (CdSe)(x)@(CdSe)(y) and their Zn-substituted complexes of x = 2-4 and y = 16-28, were studied with density functional theory calculations. The substitution was applied in the cores, the shells, and/or the whole clusters. All these clusters are characterized by their core-shell structures in which the core-shell interaction was found different from those in core or in shell, as reflected by their bondlengths, volumes, and binding energies. Moreover, the core and shell combine together to compose a new cluster with electronic and optical properties different from those of separated individuals, as reflected by their HOMO-LUMO gaps and optical absorptions. With the substitution of Cd by Zn, the structural, electronic, and optical properties of clusters change regularly. The binding energy increases with Zn content, attributed to the strong Zn-Se bonding. For the same core/shell, the structure with a CdSe shell/core has a narrower gap than that with a ZnSe shell/core. The optical absorption spectra also change accordingly with Zn substitution. The peaks blueshift with increasing Zn concentration, accompanying with shape variations in case large number of Cd atoms are substituted. Our calculations reveal the core-shell interaction and its influence on the electronic and optical properties of the core-shell clusters, suggesting a composition-structure-property relationship for the design of core-shell CdSe and ZnSe nanoclusters.

  17. Structural and optical properties of CdO/ZnS core/shell nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Joyce Stella, R.; Thirumala Rao, G.; Pushpa Manjari, V.; Babu, B. [Department of Physics, University College of Sciences, Acharya Nagarjuna University, Nagarjuna Nagar 522510, A.P. (India); Rama Krishna, Ch. [Division of Advanced Materials Science & Engineering, Chonbuk National University, 567, Baekje-daero, Deokjin-gu, Jeonju 561-756 (Korea, Republic of); Ravikumar, R.V.S.S.N., E-mail: rvssn@yahoo.co.in [Department of Physics, University College of Sciences, Acharya Nagarjuna University, Nagarjuna Nagar 522510, A.P. (India)

    2015-04-15

    Graphical abstract: Powder X-ray diffraction pattern of CdO nanopowder and CdO/ZnS nanocomposites. XRD pattern of prepared samples confirm the predominant phase is CdO and small, broad peaks show the ZnS phase in nanocomposites. This XRD data is indexed to cubic crystal system and lattice parameter is calculated as a = 4.6916 Å. After the deposition of ZnS, small blue diffraction peaks are observed for cubic CdO nanostructures. The corresponding lattice cell parameters are evaluated as a = 4.6910 for CdO and a = 5.3735 Å for ZnS. After formation of the CdO–ZnS nanocomposites, the peak intensities of CdO decrease and new peaks due to ZnS are observed. This supports the fact that ZnS particles are deposited on the surface of CdO. These results shows well agreement with standard diffraction data of JCPDS file No. 05-0640 for face centred cubic CdO and file No. 05-0566 for cubic ZnS. From this diffraction data crystallite size, strain and dislocation density are evaluated from Scherrer’s formula and Williamson and Hall. After the deposition of ZnS, increase in particle size and decrease in strain and dislocation density is observed. - Highlights: • CdO/ZnS core/shell nanocomposites were synthesized by a two step wet chemical method. • Powder XRD pattern confirms the cubic phase of the prepared materials. • Red shift is observed in PL spectrum after the deposition of ZnS. - Abstract: CdO/ZnS core/shell nanocomposites have been synthesised at room temperature by a simple wet chemical method. The prepared materials are characterized by XRD, SEM, EDS, FT-IR, UV–Vis and Photoluminescence studies. X-ray diffraction pattern exhibits peaks correspond to cubic phase of CdO and ZnS, the evaluated average crystallite size of prepared materials are in the range of 20–30 nm. The strain and dislocation density are also calculated from XRD studies. Morphology of the samples and their chemical composition are analysed by SEM with EDS. FT-IR spectrum shows the

  18. Synthesis, structural characterization and magnetic properties of Fe/Pt core-shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Pisane, K. L.; Singh, Sobhit; Seehra, M. S., E-mail: mseehra@wvu.edu [Department of Physics and Astronomy, West Virginia University, Morgantown, West Virginia 26506-6315 (United States)

    2015-05-07

    Structural and magnetic properties of Fe/Pt core-shell nanostructure prepared by a sequential reduction process are reported. Transmission electron microscopy shows nearly spherical particles fitting a lognormal size distribution with D{sub o} = 3.0 nm and distribution width λ{sub D} = 0.31. In x-ray diffraction, Bragg lines only from the Pt shell are clearly identified with line-widths yielding crystallite size = 3.1 nm. Measurements of magnetization M vs. T (2 K–350 K) in magnetic fields up to 90 kOe show a blocking temperature T{sub B} = 13 K below which hysteresis loops are observed with coercivity H{sub C} increasing with decreasing T reaching H{sub C} = 750 Oe at 2 K. Temperature dependence of the ac susceptibilities at frequencies f{sub m} = 10 Hz–5 kHz is measured to determine the change in T{sub B} with f{sub m} using the Vogel-Fulcher law. This analysis shows the presence of significant interparticle interaction, the Neel-Brown relaxation frequency f{sub o} = 5.3 × 10{sup 10 }Hz and anisotropy constant K{sub a} = 3.6 × 10{sup 6 }ergs/cm{sup 3}. A fit of the M vs. H data up to H = 90 kOe for T > T{sub B} to the modified Langevin function taking particle size distribution into account yields magnetic moment per particle consistent with the proposed core-shell structure; Fe core of 2.2 nm diameter and Pt shell of 0.4 nm thickness.

  19. Nonlocal dielectric effects in core-shell nanowires.

    Energy Technology Data Exchange (ETDEWEB)

    McMahon, J. M.; Gray, S. K.; Schatz, G. C. (Center for Nanoscale Materials); ( CSE); (Northwestern Univ.)

    2010-01-01

    We study the optical spectra and near fields of core-shell nanowires (nanoshells), using a recently developed finite-difference method that allows for a spatially nonlocal dielectric response. We first analyze the parameters of the nonlocal model by making comparisons with related experimental data and previous theoretical work. We then investigate how nonlocal effects are dependent on nanoshell features, such as shell thickness, overall size, and the ratio of core radius to shell radius. We demonstrate that the shell thickness along the longitudinal direction of the incident light is the primary controlling factor of nonlocal effects, which appear as anomalous absorption resonances and blueshifts in the localized surface plasmon resonance (LSPR) positions, relative to local theory. In addition, we show that the amount of blueshift depends on the order of the LSPR. The optical responses of nanoshells immersed in various refractive index (RI) environments are also studied. We show that the nonlocal anomalous absorption features are relatively insensitive to RI changes, but the blueshift of the dipolar LSPR varies nonlinearly.

  20. Homogeneous protein analysis by magnetic core-shell nanorod probes

    KAUST Repository

    Schrittwieser, Stefan

    2016-03-29

    Studying protein interactions is of vital importance both to fundamental biology research and to medical applications. Here, we report on the experimental proof of a universally applicable label-free homogeneous platform for rapid protein analysis. It is based on optically detecting changes in the rotational dynamics of magnetically agitated core-shell nanorods upon their specific interaction with proteins. By adjusting the excitation frequency, we are able to optimize the measurement signal for each analyte protein size. In addition, due to the locking of the optical signal to the magnetic excitation frequency, background signals are suppressed, thus allowing exclusive studies of processes at the nanoprobe surface only. We study target proteins (soluble domain of the human epidermal growth factor receptor 2 - sHER2) specifically binding to antibodies (trastuzumab) immobilized on the surface of our nanoprobes and demonstrate direct deduction of their respective sizes. Additionally, we examine the dependence of our measurement signal on the concentration of the analyte protein, and deduce a minimally detectable sHER2 concentration of 440 pM. For our homogeneous measurement platform, good dispersion stability of the applied nanoprobes under physiological conditions is of vital importance. To that end, we support our measurement data by theoretical modeling of the total particle-particle interaction energies. The successful implementation of our platform offers scope for applications in biomarker-based diagnostics as well as for answering basic biology questions.

  1. Recent Developments in No-Core Shell-Model Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Navratil, P; Quaglioni, S; Stetcu, I; Barrett, B R

    2009-03-20

    We present an overview of recent results and developments of the no-core shell model (NCSM), an ab initio approach to the nuclear many-body problem for light nuclei. In this aproach, we start from realistic two-nucleon or two- plus three-nucleon interactions. Many-body calculations are performed using a finite harmonic-oscillator (HO) basis. To facilitate convergence for realistic inter-nucleon interactions that generate strong short-range correlations, we derive effective interactions by unitary transformations that are tailored to the HO basis truncation. For soft realistic interactions this might not be necessary. If that is the case, the NCSM calculations are variational. In either case, the ab initio NCSM preserves translational invariance of the nuclear many-body problem. In this review, we, in particular, highlight results obtained with the chiral two- plus three-nucleon interactions. We discuss efforts to extend the applicability of the NCSM to heavier nuclei and larger model spaces using importance-truncation schemes and/or use of effective interactions with a core. We outline an extension of the ab initio NCSM to the description of nuclear reactions by the resonating group method technique. A future direction of the approach, the ab initio NCSM with continuum, which will provide a complete description of nuclei as open systems with coupling of bound and continuum states is given in the concluding part of the review.

  2. Photoelectrochemical performance of NiO-coated ZnO–CdS core-shell photoanode

    Science.gov (United States)

    Iyengar, Pranit; Das, Chandan; Balasubramaniam, K. R.

    2017-03-01

    A nano-structured core-shell ZnO–CdS photoanode device with a mesoporous NiO co-catalyst layer was fabricated using solution-processing methods. The growth of the sparse ZnO nano-rod film with a thickness of ca. 930 nm was achieved by optimizing parameters such as the thickness of the ZnO seed layer, choice of Zn precursor salt and the salt concentration. CdS was then coated by a combination of spin coating and spin SILAR (Successive Ionic Layer Adsorption and Reaction) methods to completely fill the interspace of ZnO nano-rods. The uniform CdS surface facilitated the growth of a continuous mesoporous NiO layer. Upon illumination of 100 mW·cm‑2 AM 1.5 G radiation the device exhibits stable photocurrents of 2.15 mA·cm‑2 at 1.23 V and 0.92 mA·cm‑2 at 0.00 V versus RHE, which are significantly higher as compared to the bare ZnO–CdS device. The excellent performance of the device can be ascribed to the higher visible region absorption by CdS, and effective separation of the photogenerated charge carriers due to the suitable band alignment and nanostructuring. Additionally, the mesoporous NiO overlayer offered a larger contact area with the electrolyte and promoted the kinetics enabling higher and stable photocurrent even till the 35th min. of testing.

  3. Prilling and supercritical drying: A successful duo to produce core-shell polysaccharide aerogel beads for wound healing.

    Science.gov (United States)

    De Cicco, Felicetta; Russo, Paola; Reverchon, Ernesto; García-González, Carlos A; Aquino, Rita Patrizia; Del Gaudio, Pasquale

    2016-08-20

    Bacterial infections often affect the wound, delaying healing and causing areas of necrosis. In this work, an aerogel in form of core-shell particles, able to prolong drug activity on wounds and to be easily removed was developed. Aerogel microcapsules consisted of a core made by amidated pectin hosting doxycycline, an antibiotic drug with a broad spectrum of action, and a shell consisting of high mannuronic content alginate. Particles were obtained by prilling using a coaxial nozzle for drop production and an ethanolic solution of CaCl2 as gelling promoter. The alcogels where dried using supercritical CO2. The influence of polysaccharides and drug concentrations on aerogel properties was evaluated. Spherical particles with high drug encapsulation efficiency (87%) correlated to alginate concentration in the processed liquid feeds were obtained. The release of the drug, mainly concentrated into the pectin core, was prolonged till 48h, and dependent on both drug/pectin ratio and alginate concentration.

  4. Fabrication of Core-Shell PEI/pBMP2-PLGA Electrospun Scaffold for Gene Delivery to Periodontal Ligament Stem Cells

    Directory of Open Access Journals (Sweden)

    Qiao Xie

    2016-01-01

    Full Text Available Bone tissue engineering is the most promising technology for enhancing bone regeneration. Scaffolds loaded with osteogenic factors improve the therapeutic effect. In this study, the bioactive PEI (polyethylenimine/pBMP2- (bone morphogenetic protein-2 plasmid- PLGA (poly(D, L-lactic-co-glycolic acid core-shell scaffolds were prepared using coaxial electrospinning for a controlled gene delivery to hPDLSCs (human periodontal ligament stem cells. The pBMP2 was encapsulated in the PEI phase as a core and PLGA was employed to control pBMP2 release as a shell. First, the scaffold characterization and mechanical properties were evaluated. Then the gene release behavior was analyzed. Our results showed that pBMP2 was released at high levels in the first few days, with a continuous release behavior in the next 28 days. At the same time, PEI/pBMP2 showed high transfection efficiency. Moreover, the core-shell electrospun scaffold showed BMP2 expression for a much longer time (more than 28 days compared with the single axial electrospun scaffold, as evaluated by qRT-PCR and western blot after culturing with hPDLSCs. These results suggested that the core-shell PEI/pBMP2-PLGA scaffold fabricated by coaxial electrospinning had a good gene release behavior and showed a prolonged expression time with a high transfection efficiency.

  5. Axially connected nanowire core-shell p-n junctions: a composite structure for high-efficiency solar cells.

    Science.gov (United States)

    Wang, Sijia; Yan, Xin; Zhang, Xia; Li, Junshuai; Ren, Xiaomin

    2015-01-01

    A composite nanostructure for high-efficiency solar cells that axially connects nanowire core-shell p-n junctions is proposed. By axially connecting the p-n junctions in one nanowire, the solar spectrum is separated and absorbed in the top and bottom cells with respect to the wavelength. The unique structure of nanowire p-n junctions enables substantial light absorption along the nanowire and efficient radial carrier separation and collection. A coupled three-dimensional optoelectronic simulation is used to evaluate the performance of the structure. With an excellent current matching, a promising efficiency of 19.9% can be achieved at a low filling ratio of 0.283 (the density of the nanowire array), which is much higher than the tandem axial p-n junctions.

  6. Emergent ferromagnetism in ZnO/Al2O3 core-shell nanowires: Towards oxide spinterfaces

    KAUST Repository

    Xing, G. Z.

    2013-07-08

    We report that room-temperature ferromagnetism emerges at the interface formed between ZnO nanowire core and Al2O3 shell although both constituents show mainly diamagnetism. The interface-based ferromagnetism can be further enhanced by annealing the ZnO/Al2O3 core-shell nanowires and activating the formation of ZnAl2O4 phase as a result of interfacial solid-state reaction. High-temperature measurements indicate that the magnetic order is thermally stable up to 750 K. Transmission electron microscopy studies reveal the annealing-induced jagged interfaces, and the extensive structural defects appear to be relevant to the emergent magnetism. Our study suggests that tailoring the spinterfaces in nanostructure-harnessed wide-band-gap oxides is an effective route towards engineered nanoscale architecture with enhanced magnetic properties.

  7. Encapsulation of naproxen in nanostructured system: structural characterization and in vitro release studies

    Directory of Open Access Journals (Sweden)

    Vanessa Azevedo de Mello

    2011-01-01

    Full Text Available Nanoparticles were produced by solvent emulsification evaporation method with the following characteristics: nanometric size (238 ± 3 nm, narrow polydispersity index (0.11, negative zeta potential (-15.1 mV, good yield of the process (73 ± 1.5%, excellent encapsulation efficiency (81.3 ± 4.2% and spherical shape. X-rays diffraction demonstrated the loss of drug crystallinity after encapsulation; however, the profile of the diffractograms of the poly-ε-caprolactone (PCL nanoparticles was kept. Differential scanning calorimetry thermograms, correspondingly, exhibited the loss of drug melting peak and the increasing of the melting point of the PCL nanoparticles, evidencing an interaction drug-polymer. Naproxen release was low and sustained obeying the Higuchi´s kinetic. The results show that nanoparticles are promising sustained release system to the naproxen.

  8. Impact of Shell Thickness on Photoluminescence and Optical Activity in Chiral CdSe/CdS Core/Shell Quantum Dots.

    Science.gov (United States)

    Purcell-Milton, Finn; Visheratina, Anastasia K; Kuznetsova, Vera A; Ryan, Aisling; Orlova, Anna O; Gun'ko, Yurii K

    2017-09-26

    Core/shell quantum dots (QDs) are of high scientific and technological importance as these nanomaterials have found a number of valuable applications. In this paper, we have investigated the dependence of optical activity and photoluminescence upon CdS shell thickness in a range of core-shell structured CdSe/CdS QDs capped with chiral ligands. For our study, five samples of CdSe/CdS were synthesized utilizing successive ion layer adsorption and reaction to vary the thickness of the CdS shell from 0.5 to 2 nm, upon a 2.8 nm diameter CdSe core. Following this, a ligand exchange of the original aliphatic ligands with l- and d-cysteine was carried out, inducing a chiroptical response in these nanostructures. The samples were then characterized using circular dichroism, photoluminescent spectroscopy, and fluorescence lifetime spectroscopy. It has been found that the induced chiroptical response was inversely proportional to the CdS shell thickness and showed a distinct evolution in signal, whereas the photoluminescence of our samples showed a direct relationship to shell thickness. In addition, a detailed study of the influence of annealing time on the optical activity and photoluminescence quantum yield was performed. From our work, we have been able to clearly illustrate the approach and strategies that must be used when designing optimal photoluminescent optically active CdSe/CdS core-shell QDs.

  9. Core-shell α-Fe₂O₃@α-MoO₃ nanorods as lithium-ion battery anodes with extremely high capacity and cyclability.

    Science.gov (United States)

    Wang, Qiang; Wang, Qi; Zhang, De-An; Sun, Jing; Xing, Li-Li; Xue, Xin-Yu

    2014-11-01

    α-Fe2O3 nanoparticles are uniformly coated on the surface of α-MoO3 nanorods through a two-step hydrothermal synthesis method. As the anode of a lithium-ion battery, α-Fe2O3@α-MoO3 core-shell nanorods exhibit extremely high lithium-storage performance. At a rate of 0.1 C (10 h per half cycle), the reversible capacity of α-Fe2O3@α-MoO3 core-shell nanorods is 1481 mA h g(-1) and a value of 1281 mA h g(-1) is retained after 50 cycles, which is much higher than that retained by bare α-MoO3 and α-Fe2O3 and higher than traditional theoretical results. Such a good performance can be attributed to the synergistic effect between α-Fe2O3 and α-MoO3 , the small size effect, one-dimensional nanostructures, short paths for lithium diffusion, and interface spaces. Our results reveal that core-shell nanocomposites have potential applications as high-performance lithium-ion batteries. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. One-step synthesis of metal@titania core-shell materials for visible-light photocatalysis and catalytic reduction reaction.

    Science.gov (United States)

    Xiong, Zhigang; Zhang, Luhong; Zhao, Xiu Song

    2014-11-03

    Metal@TiO2 composites with a core-shell structure possess multifunctional properties. The demonstrated protocols for synthesizing such materials involve multiple steps, requiring precise control over the particle uniformity of the core and shell thickness, as well as complex surface modification. A simple approach to synthesizing metal@TiO2 hybrid nanostructures remains a great challenge. Herein, we report on a one-step method for the preparation of metal@TiO2 core-shell nanospheres, which exhibited excellent performance in photocatalytic degradation of recalcitrant organic pollutants under visible light irradiation, and in catalytic reduction of nitrophenol in water. The simple method described here represents a sustainable approach to preparing core-shell materials at low cost, involving fewer chemicals, and requiring less energy, which will make a significant contribution toward large-scale synthesis of high-performance hybrid materials for photocatalytic applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Three-dimensional SiO2@Fe3O4 core/shell nanorod array/graphene architecture: synthesis and electromagnetic absorption properties

    Science.gov (United States)

    Ren, Yulan; Zhu, Chunling; Zhang, Shen; Li, Chunyan; Chen, Yujin; Gao, Peng; Yang, Piaoping; Ouyang, Qiuyun

    2013-11-01

    We developed a new strategy, i.e., a seed-assisted method, to fabricate a three-dimensional (3D) SiO2@Fe3O4 core/shell nanorod array/graphene architecture. The fabrication processes involved deposition of β-FeOOH seeds on the graphene surfaces in the ferric nitrate aqueous solution, subsequent growth of β-FeOOH nanorod arrays on the graphene surfaces in the ferric chloride aqueous solution under hydrothermal conditions, deposition of SiO2 coating on the surfaces of β-FeOOH nanorods, and final formation of the 3D architecture by a thermal treatment process. Scanning electron microscopy and transmission electron microscopy measurements showed that the SiO2@Fe3O4 core/shell nanorods with a length and diameter of about 60 and 25 nm, respectively, were almost grown perpendicularly on both side surfaces of graphene sheets. The measured electromagnetic parameters showed that the 3D architecture exhibited excellent electromagnetic wave absorption properties, i.e., more than 99% of electromagnetic wave energy could be attenuated by the 3D architecture with an addition amount of only 20 wt% in the paraffin matrix. In addition, the growth mechanism of the 3D architecture was proposed, and thus, the strategy presented here could be used as a typical method to synthesize other 3D magnetic graphene nanostructures for extending their application areas.We developed a new strategy, i.e., a seed-assisted method, to fabricate a three-dimensional (3D) SiO2@Fe3O4 core/shell nanorod array/graphene architecture. The fabrication processes involved deposition of β-FeOOH seeds on the graphene surfaces in the ferric nitrate aqueous solution, subsequent growth of β-FeOOH nanorod arrays on the graphene surfaces in the ferric chloride aqueous solution under hydrothermal conditions, deposition of SiO2 coating on the surfaces of β-FeOOH nanorods, and final formation of the 3D architecture by a thermal treatment process. Scanning electron microscopy and transmission electron microscopy

  12. Coordination polymer core/shell structures: Preparation and up/down-conversion luminescence.

    Science.gov (United States)

    Li, Bingmei; Xu, Hualan; Xiao, Chen; Shuai, Min; Chen, Weimin; Zhong, Shengliang

    2016-10-01

    Coordination polymer (CP) core-shell nanoparticles with Gd-based CP (GdCP) as core and Eu-based CP (EuCP) as shell have been successfully prepared. Allantoin was employed as the organic building block without the assistance of any template. The composition, size and structure of the core-shell nanospheres were well characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray (EDX), powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FT-IR), thermo-gravimetric analysis (TG). Results show that the resultant cores are uniform nanospheres with diameter of approximately 45nm, while the diameters of the core-shell nanospheres are increased to approximately 60nm. The core-shell products show enhanced luminescence efficiency than the core under 980nm laser excitation and decreased down-conversion luminescence when excited at 394nm.

  13. Engineered magnetic core shell nanoprobes:Synthesis and applications to cancer imaging and therapeutics

    Institute of Scientific and Technical Information of China (English)

    Samir Mandal; Keya Chaudhuri

    2016-01-01

    Magnetic core shell nanoparticles are composed of a highly magnetic core material surrounded by a thin shell of desired drug, polymer or metal oxide. These magnetic core shell nanoparticles have a wide range of applications in biomedical research, more specifically in tissue imaging, drug delivery and therapeutics. The present review discusses the up-to-date knowledge on the various procedures for synthesis of magnetic core shell nanoparticles along with their applications in cancer imaging, drug delivery and hyperthermia or cancer therapeutics. Literature in this area shows that magnetic core shell nanoparticle-based imaging, drug targeting and therapy through hyperthermia can potentially be a powerful tool for the advanced diagnosis and treatment of various cancers.

  14. Engineered magnetic core shell nanoprobes: Synthesis and applications to cancer imaging and therapeutics.

    Science.gov (United States)

    Mandal, Samir; Chaudhuri, Keya

    2016-02-26

    Magnetic core shell nanoparticles are composed of a highly magnetic core material surrounded by a thin shell of desired drug, polymer or metal oxide. These magnetic core shell nanoparticles have a wide range of applications in biomedical research, more specifically in tissue imaging, drug delivery and therapeutics. The present review discusses the up-to-date knowledge on the various procedures for synthesis of magnetic core shell nanoparticles along with their applications in cancer imaging, drug delivery and hyperthermia or cancer therapeutics. Literature in this area shows that magnetic core shell nanoparticle-based imaging, drug targeting and therapy through hyperthermia can potentially be a powerful tool for the advanced diagnosis and treatment of various cancers.

  15. Synthesis of nickel catalyzed Si/SiC core-shell nanowires by HWCVD

    Science.gov (United States)

    Tong Goh, Boon; Abdul Rahman, Saadah

    2014-12-01

    Si/SiC core-shell nanowires grown on glass substrates by hot-wire chemical vapor deposition were studied. Nickel was used as a catalyst to initiate the growth of these core-shell nanowires and the nanowires were grown at different deposition pressures of 0.5 and 1 mbar. The core of the nanowire was found to be a single crystalline Si. The shell of the nanowire consisted of Si nano-crystallites embedded within an amorphous SiC matrix which was attributed to a radial growth of columnar structures. The Si and SiC nano-crystallites embedded within an amorphous matrix exhibited room-temperature photoluminescence emissions in the range of 400 nm-1 μm. A vapor-solid-solid growth mechanism of these core-shell nanowires is proposed. The effects of the deposition pressure on the properties of the core-shell nanowires are also discussed.

  16. Tuning light concentration inside plasmonic core-shell nanoparticles during laser irradiation

    Science.gov (United States)

    Astafyeva, L. G.; Pustovalov, V. K.; Fritzsche, W.

    2017-09-01

    Computer modeling was carried out of the intensity distributions of optical (laser) radiation with wavelengths in the range of 180-540 nm concentrated inside spherical two-layered core-shell nanoparticles with the core radii in the range 10-30 nm and shell thicknesses range 5-40 nm during irradiation. Different metals and oxides are used for core and shell materials of nanoparticles. Novel effect of light localizing at the nanoscale inside spherical two-layered core-shell NPs has been established on the base of computer calculations in the frame of the theory of diffraction of electromagnetic radiation on multilayer sphere. Light intensity concentrates in shadow hemisphere of core-shell NPs for the selected values of nanoparticle sizes and radiation wavelengths. These results can be applied in nanophotonics for construction of novel plasmonic devices and photonic components, and for different applications of the core-shell nanoparticles.

  17. Synthesis and microwave characterization of Co-SiC core-shell powders by electroless plating

    Institute of Scientific and Technical Information of China (English)

    ZHANG Haijun; WU Xiangwei; JIA Quanli; JIA Xiaolin

    2006-01-01

    Co-SiC core-shell powders were prepared by electroless plating. Scanning electron microscopy (SEM) revealed that Co-SiC core-shell powders were of nearly sphere-like shape and were about 0.3 μm. X-ray powder diffraction (XRD)patterns showed that the cobalt powder was hexagonal crystallite. The complex dielectric constant and the complex permeability of Co-SiC core-shell powders-paraffin wax composite were measured by the rectangle waveguide method. It showed that the dielectric loss was less than 0.1 and the magnetic loss was about 0.2 in 8.2-12.4 GHz for prepared Co-SiC core-shell composite powders.

  18. Cr/alpha-Cr2O3 monodispersed spherical core-shell particles based solar absorbers

    CSIR Research Space (South Africa)

    Khamlich, S

    2011-07-01

    Full Text Available Monodispersed spherical core-shell particles of Cr/alpha-Cr2O3 cermet ACG coatings investigated within this contribution could be successfully employed in thermal converters. Their selectivity depends on their chemical, physical and structural...

  19. Preparation and characterization of antibacterial Au/C core-shell composite

    Energy Technology Data Exchange (ETDEWEB)

    Gao Yanhong [Department of Chemistry and Institute of Nanochemistry, Jinan University, 601 Huangpudadaoxi Road, Guangzhou 510632, Guangdong (China); Centers for Disease Control and Prevention of Guangdong Province, Guangzhou 510300, Guangdong (China); Zhang Nianchun [Department of Chemistry and Institute of Nanochemistry, Jinan University, 601 Huangpudadaoxi Road, Guangzhou 510632, Guangdong (China); Zhong Yuwen [Centers for Disease Control and Prevention of Guangdong Province, Guangzhou 510300, Guangdong (China); Cai Huaihong [Department of Chemistry and Institute of Nanochemistry, Jinan University, 601 Huangpudadaoxi Road, Guangzhou 510632, Guangdong (China); Liu Yingliang, E-mail: tliuyl@jnu.edu.cn [Department of Chemistry and Institute of Nanochemistry, Jinan University, 601 Huangpudadaoxi Road, Guangzhou 510632, Guangdong (China)

    2010-09-01

    An environment-friendly oxidation-reduction method was used to prepare Au/C core-shell composite using carbon as core and gold as shell. The chemical structures and morphologies of Au/C core-shell composite and carbon sphere were characterized by X-ray diffraction, transmission electron microscope, energy dispersion X-ray spectrometry (EDS) and X-ray photoelectron spectroscopy (XPS). The antibacterial properties of the Au/C core-shell composite against Escherichia coli (E. coli), Staphylococcus aureus (S. aureus) and Candida albicans (C. albicans) were examined by the disk diffusion assay and minimal inhibition concentration (MIC) methods. In addition, antibacterial ability of Au/C core-shell composite was observed by atomic force microscope. Results demonstrated that gold homogeneously supported on the surface of carbon spheres without aggregation and showed efficient antibacterial abilities.

  20. Fabrication and spectroscopic studies of folic acid-conjugated Fe3O4@Au core-shell for targeted drug delivery application

    Science.gov (United States)

    Karamipour, Sh.; Sadjadi, M. S.; Farhadyar, N.

    2015-09-01

    Gold coated magnetite core shell is a kind of nanoparticle that include magnetic iron oxide core with a thin layer nanogold. Fe3O4-gold core-shell nanostructure can be used in biomedical applications such as magnetic bioseparation, bioimaging, targeting drug delivery and cancer treatment. In this study, the synthesis and characterization of gold coated magnetite nanoparticles were discussed. Magnetite nanoparticles with an average size of 6 nm in diameter were synthesized by the chemical co-precipitation method and gold-coated Fe3O4 core-shell nanostructures were produced with an average size of 11.5 nm in diameter by reduction of Au3+ with citrate ion in the presence of Fe3O4. Folate-conjugated gold coated magnetite nanoparticles were synthesized to targeting folate receptor that is overexpressed on the surface of cancerous cells. For this purpose, we used L-cysteine, as a bi-functional linker for attachment to gold surface and it was linked to the gold nanoparticles surface through its thiol group. Then, we conjugated amino-terminated nanoparticles to folic acid with an amide-linkage formation. These gold magnetic nanoparticles were characterized by various techniques such as X-ray powder diffraction (XRD) analysis, Fourier transform infrared spectrometer (FT-IR), UV-visible spectroscopy, transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), dispersive analysis of X-ray (EDAX) and vibrating sample magnetometer (VSM) analysis. The magnetic and optical properties of Fe3O4 nanostructure were changed by gold coating and attachment of L-cysteine and folic acid to Fe3O4@Au nanoparticles.

  1. Plateau-Rayleigh Instability Morphology Evolution (PRIME): From Electrospun Core-Shell Polymer Fibers to Polymer Microbowls.

    Science.gov (United States)

    Chiu, Yu-Jing; Tseng, Hsiao-Fan; Lo, Yu-Ching; Wu, Bo-Hao; Chen, Jiun-Tai

    2017-03-01

    Electrospun core-shell fibers have great potentials in many areas, such as tissue engineering, drug delivery, and organic solar cells. Although many core-shell fibers have been prepared and studied, the morphology transformation of core-shell fibers have been rarely studied. In this work, the morphology evolution of electrospun core-shell polymer fibers driven by the Plateau-Rayleigh instability is investigated. Polystyrene/poly(methyl methacrylate) (PS/PMMA) core-shell fibers are first prepared by using blend solutions and a single axial electrospinning setup. After PS/PMMA core-shell fibers are annealed on a PS film, the fibers undulate and sink into the polymer film, forming core-shell hemispheres. The evolution process, which can be observed in situ by optical microscopy, is mainly driven by achieving lower surface and interfacial energies. The morphologies of the transformed structures can be confirmed by a selective removal technique, and polymer microbowls can be obtained.

  2. Introduction of biotin or folic acid into polypyrrole magnetite core-shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Nan, Alexandrina; Turcu, Rodica [National Institute of Research and Development for Isotopic and Molecular Technologies, Donath 65-103, Cluj-Napoca (Romania); Liebscher, Jürgen [National Institute of Research and Development for Isotopic and Molecular Technologies, Donath 65-103, Cluj-Napoca, Romania and Institute of Chemistry, Humboldt-University Berlin, Brook-Taylor 2, D-12489 Berlin (Germany)

    2013-11-13

    In order to contribute to the trend in contemporary research to develop magnetic core shell nanoparticles with better properties (reduced toxicity, high colloidal and chemical stability, wide scope of application) in straightforward and reproducible methods new core shell magnetic nanoparticles were developed based on polypyrrole shells functionalized with biotin and folic acid. Magnetite nanoparticles stabilized by sebacic acid were used as magnetic cores. The morphology of magnetite was determined by transmission electron microscopy TEM, while the chemical structure investigated by FT-IR.

  3. Ultrathin polycrystalline hematite and goethite-hematite core-shell nanorods.

    Science.gov (United States)

    Cavaliere-Jaricot, S; Brioude, A; Miele, P

    2009-03-03

    We have developed a facile synthesis route to 1D structures of ultrathin polycrystalline hematite and goethite-hematite core-shells. One-dimensional structures of pure hematite and the goethite-hematite core-shell with very small diameters were synthesized in aqueous solution at low temperature with a simple, rapid method based on the oxidation of Fe3O4 nanoparticles without using surfactants.

  4. Synthesis and cytotoxicity study of magnesium ferrite-gold core-shell nanoparticles.

    Science.gov (United States)

    Nonkumwong, Jeeranan; Pakawanit, Phakkhananan; Wipatanawin, Angkana; Jantaratana, Pongsakorn; Ananta, Supon; Srisombat, Laongnuan

    2016-04-01

    In this work, the core-magnesium ferrite (MgFe2O4) nanoparticles were prepared by hydrothermal technique. Completed gold (Au) shell coating on the surfaces of MgFe2O4 nanoparticles was obtained by varying core/shell ratios via a reduction method. Phase identification, morphological evolution, optical properties, magnetic properties and cytotoxicity to mammalian cells of these MgFe2O4 core coated with Au nanoparticles were examined by using a combination of X-ray diffraction, scanning electron microscopy, transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy, UV-visible spectroscopy (UV-vis), vibrating sample magnetometry and resazurin microplate assay techniques. In general, TEM images revealed different sizes of the core-shell nanoparticles generated from various core/shell ratios and confirmed the completed Au shell coating on MgFe2O4 core nanoparticles via suitable core/shell ratio with particle size less than 100 nm. The core-shell nanoparticle size and the quality of coating influence the optical properties of the products. The UV-vis spectra of complete coated MgFe2O4-Au core-shell nanoparticles exhibit the absorption bands in the near-Infrared (NIR) region indicating high potential for therapeutic applications. Based on the magnetic property measurement, it was found that the obtained MgFe2O4-Au core-shell nanoparticles still exhibit superparamagnetism with lower saturation magnetization value, compared with MgFe2O4 core. Both of MgFe2O4 and MgFe2O4-Au core-shell also showed in vitro non-cytotoxicity to mouse areola fibroblast (L-929) cell line.

  5. Optical transitions in semiconductor nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Rupasov, Valery I. [ALTAIR Center LLC, Shrewsbury, MA 01545 (United States) and Landau Institute for Theoretical Physics, Moscow (Russian Federation)]. E-mail: rupasov@townisp.com

    2007-03-19

    Employing the Maxwell equations and conventional boundary conditions for the radiation field on the nanostructure interfaces, we compute the radiative spontaneous decay rate of optical transitions in spherical semiconductor nanocrystals, core-shell nanocrystals and nanostructures comprising more than one shell. We also show that the coupling between optical transitions localized in the shell of core-shell nanocrystals and radiation field is determined by both conventional electro-multipole momenta and electro-multipole 'inverse' momenta. The latter are proportional to the core radius even for interband transitions that should result in very strong optical transitions.

  6. Cu-Ag core-shell nanoparticles with enhanced oxidation stability for printed electronics.

    Science.gov (United States)

    Lee, Changsoo; Kim, Na Rae; Koo, Jahyun; Lee, Yung Jong; Lee, Hyuck Mo

    2015-11-13

    In this work, we synthesized uniform Cu-Ag core-shell nanoparticles using a facile two-step process that consists of thermal decomposition and galvanic displacement methods. The core-shell structure of these nanoparticles was confirmed through characterization using transmission electron microscopy, energy-dispersive spectroscopy, and x-ray diffraction. Furthermore, we investigated the oxidation stability of the Cu-Ag core-shell nanoparticles in detail. Both qualitative and quantitative x-ray photoelectron spectroscopy analyses confirm that the Cu-Ag core-shell nanoparticles have considerably higher oxidation stability than Cu nanoparticles. Finally, we formulated a conductive ink using the synthesized nanoparticles and coated it onto glass substrates. Following the sintering process, we compared the resistivity of the Cu-Ag core-shell nanoparticles with that of the Cu nanoparticles. The results of this study clearly show that the Cu-Ag core-shell nanoparticles can potentially be used as an alternative to Ag nanoparticles because of their superior oxidation stability and electrical properties.

  7. Synthesis, structural, optical and photocatalytic properties of CdS/ZnS core/shell nanoparticles

    Science.gov (United States)

    Reddy, Ch. Venkata; Shim, Jaesool; Cho, Migyung

    2017-04-01

    CdS, ZnS and CdS/ZnS core/shell nanoparticles were successfully synthesized via two-step synthesis method. The as-prepared CdS, ZnS and CdS/ZnS core/shell nanoparticles were used to study the structural, morphological, and optical properties by PXRD, TEM, HRTEM, UV-vis spectroscopy, N2 adsorption-desorption, FT-IR, PL and Raman spectroscopy measurements. The XRD pattern confirms the crystal structure of the prepared ZnS, CdS, and CdS/ZnS core/shell nanoparticles. The crystallinity of the as-prepared samples is confirmed by PXRD, TEM and HRTEM analysis. The BET analysis showed that the CdS/ZnS core/shell nanoparticles had larger surface area and pore diameter than CdS and ZnS. The Raman and FT-IR spectra confirm the fundamental vibrational modes of CdS and ZnS respectively. Compared to pure CdS and ZnS, CdS/ZnS core/shell nanoparticles exhibited higher photocatalytic activity for the degradation of methyl orange (MO). The enhancement of photocatalytic activity in the CdS/ZnS core/shell nanoparticles is due to the interface actions between CdS and ZnS, which greatly reduces the recombination of photogenerated electrons-holes pair. The proposed mechanism for degradation of MO dye is discussed in detail.

  8. Fabrication and characteristics of spindle Fe2O3@Au core/shell particles

    Institute of Scientific and Technical Information of China (English)

    SHEN Hong-xia; YAO Jian-lin; GU Ren-ao

    2009-01-01

    The fabrication and characteristics of spindle Fe2O3@Au core/shell particle were investigated, and the effect of the core/shell nanoparticles as the surface enhanced Raman spectroscopy (SERS)-active substrates was studied. By using the seed-catalyzed reduction technique, anisotropic Fe2O3@Au core/shell particles with spindle morphology were successfully prepared. The Fe2O3 particles with spindle morphology were initially prepared as original cores. The Au nanoparticles of 2 nm were attached onto the Fe2O3 particles through organosilane molecules. Uniform Au shell formed onto Fe2O3 core modified by Au nanoparticles through the in-situ reduction of HAuCl4. The shell thickness was controlled through regulating the concentration of HAuCl4 solution. The results of TEM, XRD and UV-vis characterization show that the core/shell particles with the original shape of the Fe2O3 particles are obtained and these surfaces are covered by Au shell completely. The surface enhanced Raman spectrum of the probe molecules adsorbed on these core/shell substrates is strong and the intensity is enhanced with the increase of the thickness of Au shell or the aspect ratio of particles. The spindle Fe2O3@Au core/shell particles exhibit optimum (SERS) activity.

  9. Cu-Ag core-shell nanoparticles with enhanced oxidation stability for printed electronics

    Science.gov (United States)

    Lee, Changsoo; Kim, Na Rae; Koo, Jahyun; Jong Lee, Yung; Lee, Hyuck Mo

    2015-11-01

    In this work, we synthesized uniform Cu-Ag core-shell nanoparticles using a facile two-step process that consists of thermal decomposition and galvanic displacement methods. The core-shell structure of these nanoparticles was confirmed through characterization using transmission electron microscopy, energy-dispersive spectroscopy, and x-ray diffraction. Furthermore, we investigated the oxidation stability of the Cu-Ag core-shell nanoparticles in detail. Both qualitative and quantitative x-ray photoelectron spectroscopy analyses confirm that the Cu-Ag core-shell nanoparticles have considerably higher oxidation stability than Cu nanoparticles. Finally, we formulated a conductive ink using the synthesized nanoparticles and coated it onto glass substrates. Following the sintering process, we compared the resistivity of the Cu-Ag core-shell nanoparticles with that of the Cu nanoparticles. The results of this study clearly show that the Cu-Ag core-shell nanoparticles can potentially be used as an alternative to Ag nanoparticles because of their superior oxidation stability and electrical properties.

  10. Hybridized exciton-polariton resonances in core-shell nanoparticles

    CERN Document Server

    Gentile, Martin J

    2016-01-01

    The goal of nanophotonics is to control and manipulate light at length scales below the diffraction limit. Typically nanostructured metals are used for this purpose, light being confined by exploiting the surface plasmon-polaritons such structures support. Recently excitonic (molecular) materials have been identified as an alternative candidate material for nanophotonics. Here we use theoretical modelling to explore how hybridisation of surface exciton-polaritons can be achieved through appropriate nanostructuring. We focus on the extent to which the frequency of the hybridised modes can be shifted with respect to the underlying material resonances.

  11. Core-shell hybrid nanomaterial based on prussian blue and surface active maghemite nanoparticles as stable electrocatalyst.

    Science.gov (United States)

    Magro, Massimiliano; Baratella, Davide; Salviulo, Gabriella; Polakova, Katerina; Zoppellaro, Giorgio; Tucek, Jiri; Kaslik, Josef; Zboril, Radek; Vianello, Fabio

    2014-02-15

    A novel core-shell nanomaterial based on prussian blue (PB) coating on peculiar surface active maghemite nanoparticles (SAMNs), was developed. The synthetic process involves the direct crystallization of Fe(II)(CN)6(4-) onto the surface of SAMNs by simple incubation in water at controlled pH, demonstrating the presence of under-coordinated Fe(III) on nanoparticle surface. The coating reaction occurs in a narrow pH range and the synthetic procedure was optimized. The resulting SAMN@PB hybrid nanostructures were characterized by transmission and scanning electron microscopy, Mössbauer, UV-vis and FTIR spectroscopy and X-ray powder diffraction. The nanomaterial, characterized by high stability in alkaline media, behave as excellent electro-catalyst for hydrogen peroxide reduction. The stability of SAMN@PB hybrid has been investigated as a function of pH, showing excellent stability up to pH 9.0 and demonstrating the feasibility of SAMNs, superficially derivatized with prussian blue, to produce an efficient and extremely stable nanostructured material. This maghemite supported nanostructured prussian blue was applied to develop a sensor, based on a simple carbon paste electrode, which was able to catalyze the electro-reduction of hydrogen peroxide, in aqueous solutions, buffered at pH 7.0, at low applied potentials (0.0 V vs. SCE). © 2013 Elsevier B.V. All rights reserved.

  12. Magnetic core-shell nanoparticles for drug delivery by nebulization

    Directory of Open Access Journals (Sweden)

    Verma Navin Kumar

    2013-01-01

    Full Text Available Abstract Background Aerosolized therapeutics hold great potential for effective treatment of various diseases including lung cancer. In this context, there is an urgent need to develop novel nanocarriers suitable for drug delivery by nebulization. To address this need, we synthesized and characterized a biocompatible drug delivery vehicle following surface coating of Fe3O4 magnetic nanoparticles (MNPs with a polymer poly(lactic-co-glycolic acid (PLGA. The polymeric shell of these engineered nanoparticles was loaded with a potential anti-cancer drug quercetin and their suitability for targeting lung cancer cells via nebulization was evaluated. Results Average particle size of the developed MNPs and PLGA-MNPs as measured by electron microscopy was 9.6 and 53.2 nm, whereas their hydrodynamic swelling as determined using dynamic light scattering was 54.3 nm and 293.4 nm respectively. Utilizing a series of standardized biological tests incorporating a cell-based automated image acquisition and analysis procedure in combination with real-time impedance sensing, we confirmed that the developed MNP-based nanocarrier system was biocompatible, as no cytotoxicity was observed when up to 100 μg/ml PLGA-MNP was applied to the cultured human lung epithelial cells. Moreover, the PLGA-MNP preparation was well-tolerated in vivo in mice when applied intranasally as measured by glutathione and IL-6 secretion assays after 1, 4, or 7 days post-treatment. To imitate aerosol formation for drug delivery to the lungs, we applied quercitin loaded PLGA-MNPs to the human lung carcinoma cell line A549 following a single round of nebulization. The drug-loaded PLGA-MNPs significantly reduced the number of viable A549 cells, which was comparable when applied either by nebulization or by direct pipetting. Conclusion We have developed a magnetic core-shell nanoparticle-based nanocarrier system and evaluated the feasibility of its drug delivery capability via aerosol

  13. Magnetic core-shell nanoparticles for drug delivery by nebulization

    LENUS (Irish Health Repository)

    Verma, Navin Kumar

    2013-01-23

    AbstractBackgroundAerosolized therapeutics hold great potential for effective treatment of various diseases including lung cancer. In this context, there is an urgent need to develop novel nanocarriers suitable for drug delivery by nebulization. To address this need, we synthesized and characterized a biocompatible drug delivery vehicle following surface coating of Fe3O4 magnetic nanoparticles (MNPs) with a polymer poly(lactic-co-glycolic acid) (PLGA). The polymeric shell of these engineered nanoparticles was loaded with a potential anti-cancer drug quercetin and their suitability for targeting lung cancer cells via nebulization was evaluated.ResultsAverage particle size of the developed MNPs and PLGA-MNPs as measured by electron microscopy was 9.6 and 53.2 nm, whereas their hydrodynamic swelling as determined using dynamic light scattering was 54.3 nm and 293.4 nm respectively. Utilizing a series of standardized biological tests incorporating a cell-based automated image acquisition and analysis procedure in combination with real-time impedance sensing, we confirmed that the developed MNP-based nanocarrier system was biocompatible, as no cytotoxicity was observed when up to 100 mug\\/ml PLGA-MNP was applied to the cultured human lung epithelial cells. Moreover, the PLGA-MNP preparation was well-tolerated in vivo in mice when applied intranasally as measured by glutathione and IL-6 secretion assays after 1, 4, or 7 days post-treatment. To imitate aerosol formation for drug delivery to the lungs, we applied quercitin loaded PLGA-MNPs to the human lung carcinoma cell line A549 following a single round of nebulization. The drug-loaded PLGA-MNPs significantly reduced the number of viable A549 cells, which was comparable when applied either by nebulization or by direct pipetting.ConclusionWe have developed a magnetic core-shell nanoparticle-based nanocarrier system and evaluated the feasibility of its drug delivery capability via aerosol administration. This study has

  14. Biocompatible Fluorescent Core-Shell Nanoconjugates Based on Chitosan/Bi2S3 Quantum Dots.

    Science.gov (United States)

    Ramanery, Fábio P; Mansur, Alexandra A P; Mansur, Herman S; Carvalho, Sandhra M; Fonseca, Matheus C

    2016-12-01

    Bismuth sulfide (Bi2S3) is a narrow-bandgap semiconductor that is an interesting candidate for fluorescent biomarkers, thermoelectrics, photocatalysts, and photovoltaics. This study reports the synthesis and characterization of novel Bi2S3 quantum dots (QDs) functionalized using chitosan (CHI) as the capping ligands via aqueous "green" route at room temperature and ambient pressure. Transmission electron microscopy (TEM), UV-visible (UV-vis) spectroscopy, photoluminescence (PL) spectroscopy, dynamic light scattering (DLS), and zeta potential (ZP) analysis were used to characterize the hybrids made of biopolymer-functionalized Bi2S3 semiconductor nanocrystals. The results demonstrated that the CHI ligand was effective at nucleating and controlling the growth of water-soluble colloidal Bi2S3 nanoparticles. The average sizes of the Bi2S3 nanoparticles were significantly affected by the molar ratio of the precursors but less dependent on the pH of the aqueous media, leading to the formation of nanocrystals with average diameters varying from 4.2 to 6.7 nm. These surface-modified Bi2S3 nanocrystals with CHI exhibited photoluminescence in the visible spectral region. Moreover, the results of in vitro MTT (3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide) assay with human osteosarcoma cells (SAOS) cell line demonstrated no cytotoxic response of the nanoconjugates.Furthermore, the results indicated that the Bi2S3 QD-CHI nanoconjugates showed HEK293T cell uptake; therefore, they can be potentially used as novel fluorescent nanoprobes for the in vitro bioimaging of cells in biomedical applications. Graphical Abstract Schematic representation of the biocompatible core-shell nanostructure of the chitosan/Bi2S3 quantum dot conjugates with photoluminescent properties.

  15. Ag-Sn Bimetallic Catalyst with a Core-Shell Structure for CO2 Reduction.

    Science.gov (United States)

    Luc, Wesley; Collins, Charles; Wang, Siwen; Xin, Hongliang; He, Kai; Kang, Yijin; Jiao, Feng

    2017-02-08

    Converting greenhouse gas carbon dioxide (CO2) to value-added chemicals is an appealing approach to tackle CO2 emission challenges. The chemical transformation of CO2 requires suitable catalysts that can lower the activation energy barrier, thus minimizing the energy penalty associated with the CO2 reduction reaction. First-row transition metals are potential candidates as catalysts for electrochemical CO2 reduction; however, their high oxygen affinity makes them easy to be oxidized, which could, in turn, strongly affect the catalytic properties of metal-based catalysts. In this work, we propose a strategy to synthesize Ag-Sn electrocatalysts with a core-shell nanostructure that contains a bimetallic core responsible for high electronic conductivity and an ultrathin partially oxidized shell for catalytic CO2 conversion. This concept was demonstrated by a series of Ag-Sn bimetallic electrocatalysts. At an optimal SnOx shell thickness of ∼1.7 nm, the catalyst exhibited a high formate Faradaic efficiency of ∼80% and a formate partial current density of ∼16 mA cm(-2) at -0.8 V vs RHE, a remarkable performance in comparison to state-of-the-art formate-selective CO2 reduction catalysts. Density-functional theory calculations showed that oxygen vacancies on the SnO (101) surface are stable at highly negative potentials and crucial for CO2 activation. In addition, the adsorption energy of CO2(-) at these oxygen-vacant sites can be used as the descriptor for catalytic performance because of its linear correlation to OCHO* and COOH*, two critical intermediates for the HCOOH and CO formation pathways, respectively. The volcano-like relationship between catalytic activity toward formate as a function of the bulk Sn concentration arises from the competing effects of favorable stabilization of OCHO* by lattice expansion and the electron conductivity loss due to the increased thickness of the SnOx layer.

  16. Enhanced antibacterial activity of bimetallic gold-silver core-shell nanoparticles at low silver concentration

    Science.gov (United States)

    Banerjee, Madhuchanda; Sharma, Shilpa; Chattopadhyay, Arun; Ghosh, Siddhartha Sankar

    2011-12-01

    Herein we report the development of bimetallic Au@Ag core-shell nanoparticles (NPs) where gold nanoparticles (Au NPs) served as the seeds for continuous deposition of silver atoms on its surface. The core-shell structure and morphology were examined by UV-Vis spectroscopy, transmission electron microscopy (TEM), energy dispersive X-ray (EDX) analysis and X-ray diffraction (XRD). The core-shell NPs showed antibacterial activity against both Gram negative (Escherichia coli and Pseudomonas aeruginosa) and Gram positive (Enterococcus faecalis and Pediococcus acidilactici) bacteria at low concentration of silver present in the shell, with more efficacy against Gram negative bacteria. TEM and flow cytometric studies showed that the core-shell NPs attached to the bacterial surface and caused membrane damage leading to cell death. The enhanced antibacterial properties of Au@Ag core-shell NPs was possibly due to the more active silver atoms in the shell surrounding gold core due to high surface free energy of the surface Ag atoms owing to shell thinness in the bimetallic NP structure.Herein we report the development of bimetallic Au@Ag core-shell nanoparticles (NPs) where gold nanoparticles (Au NPs) served as the seeds for continuous deposition of silver atoms on its surface. The core-shell structure and morphology were examined by UV-Vis spectroscopy, transmission electron microscopy (TEM), energy dispersive X-ray (EDX) analysis and X-ray diffraction (XRD). The core-shell NPs showed antibacterial activity against both Gram negative (Escherichia coli and Pseudomonas aeruginosa) and Gram positive (Enterococcus faecalis and Pediococcus acidilactici) bacteria at low concentration of silver present in the shell, with more efficacy against Gram negative bacteria. TEM and flow cytometric studies showed that the core-shell NPs attached to the bacterial surface and caused membrane damage leading to cell death. The enhanced antibacterial properties of Au@Ag core-shell NPs was

  17. Synthesis and cytotoxicity study of magnesium ferrite-gold core-shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Nonkumwong, Jeeranan [Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Pakawanit, Phakkhananan [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Wipatanawin, Angkana [Division of Biochemistry and Biochemical Technology, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Jantaratana, Pongsakorn [Department of Physics, Faculty of Science, Kasetsart University, Bangkok 11900 (Thailand); Ananta, Supon [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Srisombat, Laongnuan, E-mail: slaongnuan@yahoo.com [Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2016-04-01

    In this work, the core-magnesium ferrite (MgFe{sub 2}O{sub 4}) nanoparticles were prepared by hydrothermal technique. Completed gold (Au) shell coating on the surfaces of MgFe{sub 2}O{sub 4} nanoparticles was obtained by varying core/shell ratios via a reduction method. Phase identification, morphological evolution, optical properties, magnetic properties and cytotoxicity to mammalian cells of these MgFe{sub 2}O{sub 4} core coated with Au nanoparticles were examined by using a combination of X-ray diffraction, scanning electron microscopy, transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy, UV–visible spectroscopy (UV–vis), vibrating sample magnetometry and resazurin microplate assay techniques. In general, TEM images revealed different sizes of the core-shell nanoparticles generated from various core/shell ratios and confirmed the completed Au shell coating on MgFe{sub 2}O{sub 4} core nanoparticles via suitable core/shell ratio with particle size less than 100 nm. The core-shell nanoparticle size and the quality of coating influence the optical properties of the products. The UV–vis spectra of complete coated MgFe{sub 2}O{sub 4}-Au core-shell nanoparticles exhibit the absorption bands in the near-Infrared (NIR) region indicating high potential for therapeutic applications. Based on the magnetic property measurement, it was found that the obtained MgFe{sub 2}O{sub 4}-Au core-shell nanoparticles still exhibit superparamagnetism with lower saturation magnetization value, compared with MgFe{sub 2}O{sub 4} core. Both of MgFe{sub 2}O{sub 4} and MgFe{sub 2}O{sub 4}-Au core-shell also showed in vitro non-cytotoxicity to mouse areola fibroblast (L-929) cell line. - Highlights: • Synthesis of MgFe{sub 2}O{sub 4}-Au core-shell nanoparticles with particle size < 100 nm • Complete Au shell coating on the surfaces of MgFe{sub 2}O{sub 4} nanoparticles • In vitro cytotoxicity study of complete coated MgFe{sub 2}O{sub 4}-Au core-shell

  18. TiO2@C Core-Shell Nanoparticles Formed by Polymeric Nano-Encapsulation

    Directory of Open Access Journals (Sweden)

    Mitra eVasei

    2014-07-01

    Full Text Available TiO2 semiconducting nanoparticles are known to be photocatalysts of moderate activity due to their high band-gap and high rate of electron-hole recombination. The formation of a shell of carbon around the core of TiO2, i.e. the formation of TiO2@C nanoparticles, is believed to partly alleviate these problems. It is usually achieved by a hydrothermal treatment in a presence of a sugar derivative. We present here a novel method for the formation of highly uniform C shell around TiO2 nanoparticles. For this purpose, TiO2 nanoparticles were dispersed in water using an oligomeric dispersant prepared by Reversible Addition-Fragmentation chain Transfer (RAFT polymerization. Then the nanoparticles were engaged into an emulsion polymerization of acrylonitrile, resulting in the formation of a shell of polyacrylonitrile (PAN around each TiO2 nanoparticles. Upon pyrolisis, the PAN was transformed into carbon, resulting in the formation of TiO2@C nanoparticles. The structure of the resulting particles was elucidated by X-Ray diffraction, FTIR, UV-VIS and Raman spectroscopy as well as TEM microscopy. Preliminary results about the use of the TiO2@C particles as photocatalysts for the splitting of water are presented. They indicate that the presence of the C shell is responsible for a significant enhancement of the photocurrent.

  19. TiO2@C core-shell nanoparticles formed by polymeric nano-encapsulation.

    Science.gov (United States)

    Vasei, Mitra; Das, Paramita; Cherfouth, Hayet; Marsan, Benoît; Claverie, Jerome P

    2014-01-01

    TiO2 semiconducting nanoparticles are known to be photocatalysts of moderate activity due to their high band-gap and high rate of electron-hole recombination. The formation of a shell of carbon around the core of TiO2, i.e., the formation of TiO2@C nanoparticles, is believed to partly alleviate these problems. It is usually achieved by a hydrothermal treatment in a presence of a sugar derivative. We present here a novel method for the formation of highly uniform C shell around TiO2 nanoparticles. For this purpose, TiO2 nanoparticles were dispersed in water using an oligomeric dispersant prepared by Reversible Addition-Fragmentation chain Transfer (RAFT) polymerization. Then the nanoparticles were engaged into an emulsion polymerization of acrylonitrile, resulting in the formation of a shell of polyacrylonitrile (PAN) around each TiO2 nanoparticles. Upon pyrolysis, the PAN was transformed into carbon, resulting in the formation of TiO2@C nanoparticles. The structure of the resulting particles was elucidated by X-Ray diffraction, FTIR, UV-VIS and Raman spectroscopy as well as TEM microscopy. Preliminary results about the use of the TiO2@C particles as photocatalysts for the splitting of water are presented. They indicate that the presence of the C shell is responsible for a significant enhancement of the photocurrent.

  20. Synthesis and supercapacitor electrode of VO2(B)/C core-shell composites with a pseudocapacitance in aqueous solution

    Science.gov (United States)

    Zhang, Yifu; Zheng, Jiqi; Hu, Tao; Tian, Fuping; Meng, Changgong

    2016-05-01

    VO2(B)/C core-shell composites were successfully prepared using commercial V2O5, glucose and water as the starting materials by a facile one-pot hydrothermal method. The composition of the products was characterized by the techniques including X-ray powder diffraction, infrared spectroscopy, Raman, energy-dispersive X-ray spectrometer and elemental analysis. The morphology of the products was observed by scanning electron microscopy and transmission electron microscopy tests. The results showed the products consisted of the crystal VO2(B) phase and the amorphous carbon phase. The amorphous carbon contained lots of organic groups, such as sbnd OH, Csbnd H, Cdbnd O and Cdbnd C, etc., which suggested that the carbon here was organic carbon. The morphology of the as-obtained VO2(B)/C composites was well-defined nanobelts, and each VO2(B) core was encapsulated into carbon. Furthermore, the electrochemical properties of VO2(B)/C core-shell composites were investigated by cyclic voltammetry and galvanostatic charge-discharge. The results showed the measured capacitance of VO2(B)/C composites was mainly based on the pseudocapacitance. VO2(B)/C composites displayed the specific capacitance of 203, 190, 182, 173, 164, and 147 F g-1 at the current density of 0.2, 0.5, 1, 5, 10 and 20 A g-1, respectively. They also showed an excellent energy density of 198.9 W h kg-1 at a power density of 504.5 W kg-1 and a rapidly reversible redox Faraday response.

  1. Electrospinning fabrication and characterization of magnetic-upconversion fluorescent bifunctional core-shell nanofibers

    Science.gov (United States)

    Ma, Qianli; Wang, Jinxian; Dong, Xiangting; Yu, Wensheng; Liu, Guixia

    2014-02-01

    Novel magnetic-upconversion fluorescent bifunctional core-shell nanofibers have been successfully fabricated by coaxial electrospinning technology. NaYF4:Yb3+,Er3+ and Fe3O4 nanoparticles (Nps) were incorporated into polyvinylpyrrolidone (PVP) and electrospun into core-shell nanofibers with Fe3O4/PVP as core and NaYF4:Yb3+,Er3+/PVP as the shell. The morphology and properties of the final products were investigated in detail by X-ray diffractometry, scanning electron microscopy, transmission electron microscopy, vibrating sample magnetometer, and fluorescence spectroscopy. The core contained magnetic Nps was ca. 100 nm in diameter, and the shell scattered with NaYF4:Yb3+, Er3+ Nps was ca. 80 nm in thickness. Fluorescence emission peaks of Er3+ in the [Fe3O4/PVP]@[NaYF4:Yb3+,Er3+/PVP] core-shell nanofibers were observed. Compared with Fe3O4/NaYF4:Yb3+,Er3+/PVP composite nanofibers, the luminescent intensity of the [Fe3O4/PVP]@[NaYF4:Yb3+,Er3+/PVP] core-shell nanofibers was much higher, because the Fe3O4 Nps were only distributed in the core of the core-shell nanofibers, thus the manufactured core-shell nanofibers possessed excellent magnetic properties. The new type magnetic-upconversion fluorescent bifunctional [Fe3O4/PVP]@[NaYF4:Yb3+,Er3+/PVP] core-shell nanofibers have many potential applications in display device, nanorobots, protein determination, and target delivery of drug owing to their excellent magnetism and fluorescence.

  2. Synthesis of monodisperse TiO2-paraffin core-shell nanoparticles for improved dielectric properties.

    Science.gov (United States)

    Balasubramanian, Balamurugan; Kraemer, Kristin L; Reding, Nicholas A; Skomski, Ralph; Ducharme, Stephen; Sellmyer, David J

    2010-04-27

    Core-shell structures of oxide nanoparticles having a high dielectric constant, and organic shells with large breakdown field are attractive candidates for large electrical energy storage applications. A high growth temperature, however, is required to obtain the dielectric oxide nanoparticles, which affects the process of core-shell formation and also leads to poor control of size, shape, and size-distribution. In this communication, we report a new synthetic process to grow core-shell nanoparticles by means of an experimental method that can be easily adapted to synthesize core-shell structures from a variety of inorganic-organic or inorganic-inorganic materials. Monodisperse and spherical TiO2 nanoparticles were produced at room temperature as a collimated cluster beam in the gas phase using a cluster-deposition source and subsequently coated with uniform paraffin nanoshells using in situ thermal evaporation, prior to deposition on substrates for further characterization and device processing. The paraffin nanoshells prevent the TiO2 nanoparticles from contacting each other and also act as a matrix in which the volume fraction of TiO2 nanoparticles was varied by controlling the thickness of the nanoshells. Parallel-plate capacitors were fabricated using dielectric core-shell nanoparticles having different shell thicknesses. With respect to the bulk paraffin, the effective dielectric constant of TiO2-paraffin core-shell nanoparticles is greatly enhanced with a decrease in the shell thickness. The capacitors show a minimum dielectric dispersion and low dielectric losses in the frequency range of 100 Hz-1 MHz, which are highly desirable for exploiting these core-shell nanoparticles for potential applications.

  3. Core-shell column Tanaka characterization and additional tests using active pharmaceutical ingredients.

    Science.gov (United States)

    Ludvigsson, Jufang Wu; Karlsson, Anders; Kjellberg, Viktor

    2016-12-01

    In the last decade, core-shell particles have gained more and more attention in fast liquid chromatography separations due to their comparable performance with fully porous sub-2 μm particles and their significantly lower back pressure. Core-shell particles are made of a solid core surrounded by a shell of classic fully porous material. To embrace the developed core-shell column market and use these columns in pharmaceutical analytical applications, 17 core-shell C18 columns purchased from various vendors with various dimensions (50 mm × 2.1 mm to 100 mm × 3 mm) and particle sizes (1.6-2.7 μm) were characterized using Tanaka test protocols. Furthermore, four selected active pharmaceutical ingredients were chosen as test probes to investigate the batch to batch reproducibility for core-shell columns of particle size 2.6-2.7 μm, with dimension of 100 × 3 mm and columns of particle size 1.6 μm, with dimension 100 × 2.1 mm under isocratic elution. Columns of particle size 2.6-2.7 μm were also tested under gradient elution conditions. To confirm the claimed comparable efficiency of 2.6 μm core-shell particles as sub-2 μm fully porous particles, column performances of the selected core-shell columns were compared with BEH C18 , 1.7 μm, a fully porous column material as well.

  4. Synthesis and Characterization of Monodisperse Metallodielectric SiO2@Pt@SiO2 Core-Shell-Shell Particles.

    Science.gov (United States)

    Petrov, Alexey; Lehmann, Hauke; Finsel, Maik; Klinke, Christian; Weller, Horst; Vossmeyer, Tobias

    2016-01-26

    Metallodielectric nanostructured core-shell-shell particles are particularly desirable for enabling novel types of optical components, including narrow-band absorbers, narrow-band photodetectors, and thermal emitters, as well as new types of sensors and catalysts. Here, we present a facile approach for the preparation of submicron SiO2@Pt@SiO2 core-shell-shell particles. As shown by transmission and scanning electron microscopy, the first steps of this approach allow for the deposition of closed and almost perfectly smooth platinum shells onto silica cores via a seeded growth mechanism. By choosing appropriate conditions, the shell thickness could be adjusted precisely, ranging from ∼3 to ∼32 nm. As determined by X-ray diffraction, the crystalline domain sizes of the polycrystalline metal shells were ∼4 nm, regardless of the shell thickness. The platinum content of the particles was determined by atomic absorption spectroscopy and for thin shells consistent with a dense metal layer of the TEM-measured thickness. In addition, we show that the roughness of the platinum shell strongly depends on the storage time of the gold seeds used to initiate reductive platinum deposition. Further, using polyvinylpyrrolidone as adhesion layer, it was possible to coat the metallic shells with very homogeneous and smooth insulating silica shells of well-controlled thicknesses between ∼2 and ∼43 nm. After depositing the particles onto silicon substrates equipped with interdigitated electrode structures, the metallic character of the SiO2@Pt particles and the insulating character of the SiO2 shells of the SiO2@Pt@SiO2 particles were successfully demonstrated by charge transport measurements at variable temperatures.

  5. Amphiphilic core-shell nanoparticles containing dense polyethyleneimine shells for efficient delivery of microRNA to Kupffer cells.

    Science.gov (United States)

    Liu, Zuojin; Niu, Dechao; Zhang, Junyong; Zhang, Wenfeng; Yao, Yuan; Li, Pei; Gong, Jianping

    2016-01-01

    Efficient and targeted delivery approach to transfer exogenous genes into macrophages is still a great challenge. Current gene delivery methods often result in low cellular uptake efficiency in vivo in some types of cells, especially for the Kupffer cells (KCs). In this article, we demonstrate that amphiphilic core-shell nanoparticles (NPs) consisting of well-defined hydrophobic poly(methyl methacrylate) (PMMA) cores and branched polyethyleneimine (PEI) shells (denoted as PEI@PMMA NPs) are efficient nanocarriers to deliver microRNA (miRNA)-loaded plasmid to the KCs. Average hydrodynamic diameter of PEI@ PMMA NPs was 279 nm with a narrow size distribution. The NPs also possessed positive surface charges up to +30 mV in water, thus enabling effective condensation of negatively charged plasmid DNA. Gel electrophoresis assay showed that the resultant PEI@PMMA NPs were able to completely condense miRNA plasmid at a weight ratio of 25:1 (N/P ratio equal to 45:1). The Cell Counting Kit-8 assay and flow cytometry results showed that the PEI@PMMA/miRNA NPs displayed low cytotoxicity and cell apoptosis activity against the KCs. The maximum cell transfection efficiency reached 34.7% after 48 hours, which is much higher than that obtained by using the commercial Lipofectamine™ 2000 (1.7%). Bio-transmission electron microscope observation revealed that the PEI@PMMA NPs were mainly distributed in the cytoplasm of the KCs. Furthermore, when compared to the control groups, the protein expression of target nuclear factor κB P65 was considerably inhibited (P<0.05) both in vitro and in vivo. These results demonstrate that the PEI@PMMA NPs with a unique amphiphilic core-shell nanostructure are promising nanocarriers for delivering miRNA plasmid to KCs.

  6. Epitaxial TiO 2/SnO 2 core-shell heterostructure by atomic layer deposition

    KAUST Repository

    Nie, Anmin

    2012-01-01

    Taking TiO 2/SnO 2 core-shell nanowires (NWs) as a model system, we systematically investigate the structure and the morphological evolution of this heterostructure synthesized by atomic layer deposition/epitaxy (ALD/ALE). All characterizations, by X-ray diffraction, high-resolution transmission electron microscopy, selected area electron diffraction and Raman spectra, reveal that single crystalline rutile TiO 2 shells can be epitaxially grown on SnO 2 NWs with an atomically sharp interface at low temperature (250 °C). The growth behavior of the TiO 2 shells highly depends on the surface orientations and the geometrical shape of the core SnO 2 NW cross-section. Atomically smooth surfaces are found for growth on the {110} surface. Rough surfaces develop on {100} surfaces due to (100) - (1 × 3) reconstruction, by introducing steps in the [010] direction as a continuation of {110} facets. Lattice mismatch induces superlattice structures in the TiO 2 shell and misfit dislocations along the interface. Conformal epitaxial growth has been observed for SnO 2 NW cores with an octagonal cross-section ({100} and {110} surfaces). However, for a rectangular core ({101} and {010} surfaces), the shell also derives an octagonal shape from the epitaxial growth, which was explained by a proposed model based on ALD kinetics. The surface steps and defects induced by the lattice mismatch likely lead to improved photoluminescence (PL) performance for the yellow emission. Compared to the pure SnO 2 NWs, the PL spectrum of the core-shell nanostructures exhibits a stronger emission peak, which suggests potential applications in optoelectronics. © The Royal Society of Chemistry 2012.

  7. Drug release from core-shell PVA/silk fibroin nanoparticles fabricated by one-step electrospraying.

    Science.gov (United States)

    Cao, Yang; Liu, Fengqiu; Chen, Yuli; Yu, Tao; Lou, Deshuai; Guo, Yuan; Li, Pan; Wang, Zhigang; Ran, Haitao

    2017-09-20

    Silk fibroin (SF), a FDA-approved natural protein, is renowned for its great biocompatibility, biodegradability, and mechanical properties. SF-based nanoparticles provide new options for drug delivery with their tunable drug loading and release properties. To take advantage of the features of carrier polymers, we present a one-step electrospraying method that combines SF, polyvinyl alcohol (PVA) and therapeutic drugs without an emulsion process. A distinct core-shell structure was obtained with the PVA core and silk shell after the system was properly set up. The model drug, doxorubicin, was encapsulated in the core with a greater than 90% drug encapsulation efficiency. Controllable drug release profiles were achieved by alternating the PVA/SF ratio. Although the initial burst release of the drug was minimized by the SF coating, a large number of drug molecules remained entrapped by the carrier polymers. To promote and trigger drug release on demand, low intensity focused ultrasound (US) was applied. The US was especially advantageous for accelerating the drug diffusion and release. The apoptotic activity of MDA-MB-231 cells incubated with drug-loaded nanoparticles was found to increase with time. In addition, we also observed PVA/SF nanoparticles that could elicit a drug release in response to pH.

  8. Synthesis of one-dimensional CdS@TiO₂ core-shell nanocomposites photocatalyst for selective redox: the dual role of TiO₂ shell.

    Science.gov (United States)

    Liu, Siqi; Zhang, Nan; Tang, Zi-Rong; Xu, Yi-Jun

    2012-11-01

    One-dimensional (1D) CdS@TiO₂ core-shell nanocomposites (CSNs) have been successfully synthesized via a two-step solvothermal method. The structure and properties of 1D CdS@TiO₂ core-shell nanocomposites (CdS@TiO₂ CSNs) have been characterized by a series of techniques, including X-ray diffraction (XRD), ultraviolet-visible-light (UV-vis) diffuse reflectance spectra (DRS), field-emission scanning electron microscopy (FESEM), photoluminescence spectra (PL), and electron spin resonance (ESR) spectroscopy. The results demonstrate that 1D core-shell structure is formed by coating TiO₂ onto the substrate of CdS nanowires (NWs). The visible-light-driven photocatalytic activities of the as-prepared 1D CdS@TiO₂ CSNs are evaluated by selective oxidation of alcohols to aldehydes under mild conditions. Compared to bare CdS NWs, an obvious enhancement of both conversion and yield is achieved over 1D CdS@TiO₂ CSNs, which is ascribed to the prolonged lifetime of photogenerated charge carriers over 1D CdS@TiO₂ CSNs under visible-light irradiation. Furthermore, it is disclosed that the photogenerated holes from CdS core can be stuck by the TiO₂ shell, as evidenced by controlled radical scavenger experiments and efficiently selective reduction of heavy-metal ions, Cr(VI), over 1D CdS@TiO₂ CSNs, which consequently leads to the fact that the reaction mechanism of photocatalytic oxidation of alcohols over 1D CdS@TiO₂ CSNs is apparently different from that over 1D CdS NWs under visible-light irradiation. It is hoped that our work could not only offer useful information on the fabrication of various specific 1D core-shell nanostructures, but also open a new doorway of such 1D core-shell semiconductors as visible-light photocatalysts in the promising field of selective transformations.

  9. ZnO@Ag2S core-shell nanowire arrays for environmentally friendly solid-state quantum dot-sensitized solar cells with panchromatic light capture and enhanced electron collection.

    Science.gov (United States)

    Zhang, Xiaoliang; Liu, Jianhua; Zhang, Jindan; Vlachopoulos, Nick; Johansson, Erik M J

    2015-05-21

    A solid-state environmentally friendly Ag2S quantum dot-sensitized solar cell (QDSSC) is demonstrated. The photovoltaic device is fabricated by applying ZnO@Ag2S core-shell nanowire arrays (NWAs) as light absorbers and electron conductors, and poly-3-hexylthiophene (P3HT) as a solid-state hole conductor. Ag2S quantum dots (QDs) were directly grown on the ZnO nanowires by the successive ionic layer adsorption and reaction (SILAR) method to obtain the core-shell nanostructure. The number of SILAR cycles for QD formation and the length of the core-shell NWs significantly affect the photocurrent. The device with a core-shell NWAs photoanode shows a power conversion efficiency increase by 32% compared with the device based on a typical nanoparticle-based photoanode with Ag2S QDs. The enhanced performance is attributed to enhanced collection of the photogenerated electrons utilizing the ZnO nanowire as an efficient pathway for transporting the photogenerated electrons from the QD to the contact.

  10. Highly stable multi-wall carbon nanotubes@poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate) core-shell composites with three-dimensional porous nano-network for electrochemical capacitors

    Science.gov (United States)

    Zhou, Haihan; Han, Gaoyi; Chang, Yunzhen; Fu, Dongying; Xiao, Yaoming

    2015-01-01

    A facile and feasible electrochemical polymerization method has been used to construct the multi-wall carbon nanotubes@poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate) (MWCNTs@PEDOT/PSS) core-shell composites with three-dimensional (3D) porous nano-network microstructure. The composites are characterized with Fourier transform infrared spectroscopy, scanning electron microscope, and transmission electron microscopy. This special core-shell nanostructure can significantly reduce the ions diffusion distance and the 3D porous nano-network microstructure effectively enlarges the electrode/electrolyte interface. The electrochemical tests including cyclic voltammetry, galvanostatic charge/discharge measurements, and electrochemical impedance spectroscopy tests are performed, the results manifest the MWCNTs@PEDOT/PSS core-shell composites have superior capacitive behaviors and excellent cyclic stability, and a high areal capacitance of 98.1 mF cm-2 is achieved at 5 mV s-1 cyclic voltammetry scan. Furthermore, the MWCNTs@PEDOT/PSS composites exhibit obviously superior capacitive performance than that of PEDOT/PSS and PEDOT/Cl electrodes, indicating the effective composite of MWCNTs and PEDOT noticeably boosts the capacitive performance of PEDOT-based electrodes for electrochemical energy storage. Such a highly stable core-shell 3D network structural composite is very promising to be used as electrode materials for the high-performance electrochemical capacitors.

  11. Polymer-virus core-shell structures prepared via co-assembly and template synthesis methods

    Institute of Scientific and Technical Information of China (English)

    SUTHIWANGCHAROEN; Nisaraporn; PREVELIGE; Peter; E.Jr

    2010-01-01

    Bionanoparticles(BNPs),consisting of virus and virus-like assemblies,have attracted much attention in the biomedical field for their applications such as imaging and targeted drug delivery,owing to their well-defined structures and well-controlled chemistries.BNPs-based core-shell structures provide a unique system for the investigation of biological interactions such as protein-protein and protein-carbohydrate interactions.However,it is still a challenge to prepare the BNPs-based core-shell structures.Herein,we describe(i) co-assembly method and(ii) template synthesis method in the development of polymer-BNPs core-shell structures.These two methods can be divided into three different systems.In system A,different polymers including poly(2-vinylpyridine)(P2VP),poly(4-vinylpyridine)(P4VP) and poly(ε-caprolactone)-block-poly(2-vinylpyridine)(PCL-b-P2VP) can form a raspberry-like structure with BNPs.In system B,polystyrene(PS) spheres end capped with free amine and BNPs can form a core-shell structure.In System C,layer-by-layer(LBL) method is used to prepare positive charged PS particles,which can be used as a template to form the core-shell structures with BNPs.These two methods may open a new way for preparing novel protein-based functional materials for potential applications in the biomedical field.

  12. Preparation and characterization of core/shell particles with siloxane in the shell

    Energy Technology Data Exchange (ETDEWEB)

    Liu Bailing [Chengdu Institute of Organic Chemistry, Graduate School of CAS, Chinese Academy of Sciences, Chengdu 610041 (China)]. E-mail: blliuchem@hotmail.com; Deng Xiaobo [Chengdu Institute of Organic Chemistry, Graduate School of CAS, Chinese Academy of Sciences, Chengdu 610041 (China); Cao Shunsheng [Chengdu Institute of Organic Chemistry, Graduate School of CAS, Chinese Academy of Sciences, Chengdu 610041 (China); Li Songjun [Chengdu Institute of Organic Chemistry, Graduate School of CAS, Chinese Academy of Sciences, Chengdu 610041 (China); Luo Rong [Chengdu Institute of Organic Chemistry, Graduate School of CAS, Chinese Academy of Sciences, Chengdu 610041 (China)

    2006-01-15

    The core/shell particles consisting of polystyrene core and 3-(methacryloxypropyl)-trimethoxysilane (MPS) shell were prepared in the present study by successive seeding polymerization under kinetically controlled conditions and were characterized by particle size analyser, transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The TEM image indicated that the particles containing organic siloxane presented an evident core/shell structure. Additionally, the study of XPS also revealed that MPS could be grafted onto the surface of polystyrene microspheres and the atomic ratio of C/Si on the surface of the core/shell particles (MPS-40) was very close to the ratio of C/Si in the molecule of MPS. The surface properties of the films produced from the core/shell particles were also investigated by the static contact angle method. Compared with the homopolymer of PS, the core/shell particles were more effective to create hydrophobic surface, so, the introduction of MPS was capable of obvious increase in water repellency.

  13. Mapping the Atomistic Structure of Graded Core/Shell Colloidal Nanocrystals.

    Science.gov (United States)

    Yarema, Maksym; Xing, Yunhua; Lechner, Rainer T; Ludescher, Lukas; Dordevic, Nikola; Lin, Weyde M M; Yarema, Olesya; Wood, Vanessa

    2017-09-15

    Engineering the compositional gradient for core/shell semiconductor nanocrystals improves their optical properties. To date, however, the structure of graded core/shell nanocrystal emitters has only been qualitatively described. In this paper, we demonstrate an approach to quantify nanocrystal structure, selecting graded Ag-In-Se/ZnSe core/shell nanocrystals as a proof-of-concept material. A combination of multi-energy small-angle X-ray scattering and electron microscopy techniques enables us to establish the radial distribution of ZnSe with sub-nanometer resolution. Using ab initio shape-retrieval analysis of X-ray scattering spectra, we further determine the average shape of nanocrystals. These results allow us to generate three-dimensional, atomistic reconstructions of graded core/shell nanocrystals. We use these reconstructions to calculate solid-state Zn diffusion in the Ag-In-Se nanocrystals and the lattice mismatch between nanocrystal monolayers. Finally, we apply these findings to propose design rules for optimal shell structure and record-luminescent core/shell nanocrystals.

  14. Synthesis and Characterization of Cobalt-Carbon Core-Shell Microspheres in Supercritical Carbon Dioxide System

    Institute of Scientific and Technical Information of China (English)

    Jun-song Yang; Qian-wang Chen

    2008-01-01

    The synthesis of cobalt-carbon core-shell microspheres in supercritical carbon dioxide system was investigated. Cobalt-carbon core-shell microspheres with diameter of about 1μm were prepared at 350℃ for 12 h in a closed vessel containing an appropriate amount of bis(cyclopentadienyl)cobalt powder and dry ice.Characterization by a variety of techniques,including X-ray powder diffraction,X-ray photoelectron spectroscopy,Transmission electron microscope,Fourier transform infrared spectrum and Raman spectroscopy analysis reveals that each cobalt-carbon core-shell microsphere is made up of an amorphous cobalt core with diameter less than 1 μm and an amorphous carbon shell with thickness of about 200 nm.The possible growth mechanism of cobalt-carbon core-shell microspheres is discussed,based on the pyrolysis of bis(cyclopentadienyl)cobalt in supercritical carbon dioxide and the deposition of carbon or carbon clusters with odd electrons on the surface of magnetic cobalt cores due to magnetic attraction.Magnetic measurements show 141.41 emu/g of saturation magnetization of a typical sample,which is lower than the 168 emu/g of the corresponding metal cobalt bulk material.This is attributed to the considerable mass of the carbon shell and amorphous nature of the magnetic core.Control of magnetism in the cobalt-carbon core-shell microspheres was achieved by annealing treatments.

  15. Core-shell nanofibers: Integrating the bioactivity of gelatin and the mechanical property of polyvinyl alcohol.

    Science.gov (United States)

    Merkle, Valerie M; Zeng, Like; Slepian, Marvin J; Wu, Xiaoyi

    2014-04-01

    Coaxial electrospinning is used to fabricate nanofibers with gelatin in the shell and polyvinyl alcohol (PVA) in the core in order to derive mechanical strength from PVA and bioactivity from gelatin. At a 1:1 PVA/gelatin mass ratio, the core-shell nanofiber scaffolds display a Young's modulus of 168.6 ± 36.5 MPa and a tensile strength of 5.42 ± 1.95 MPa, which are significantly higher than those of the scaffolds composed solely of gelatin or PVA. The Young's modulus and tensile strength of the core-shell nanofibers are further improved by reducing the PVA/gelatin mass ratio from 1:1 to 1:3. The mechanical analysis of the core-shell nanofibers suggests that the presence of the gelatin shell may improve the molecular alignment of the PVA core, transforming the semi-crystalline, plastic PVA into a more crystallized, elastic PVA, and enhancing the mechanical properties of the core. Lastly, the PVA/gelatin core-shell nanofibers possess cellular viability, proliferation, and adhesion similar to these of the gelatin nanofibers, and show significantly higher proliferation and adhesion than the PVA nanofibers. Taken together, the coaxial electrospinning of nanofibers with a core-shell structure permits integration of the bioactivity of gelatin and the mechanical strength of PVA in single fibers.

  16. Controllable core-shell-type resin for solid-phase peptide synthesis.

    Science.gov (United States)

    Cho, Hong-Jun; Lee, Tae-Kyung; Kim, Jung Won; Lee, Sang-Myung; Lee, Yoon-Sik

    2012-10-19

    A simple, mild, and inexpensive biphasic functionalization approach is attempted for preparing an ideal core-shell-type resin. The core-shell-type architecture was constructed by coupling Fmoc-OSu to the amino groups on the shell layer of an aminomethyl polystyrene (AM PS) resin. The shell layer thickness of the resin could be easily controlled under mild conditions, which was characterized by confocal laser scanning microscopy (CLSM). The efficiency of core-shell-type resin for solid-phase peptide synthesis (SPPS) was demonstrated by the synthesis of various peptides and compared with commercially available noncore-shell-type resins such as AM PS and poly(ethylene glycol)-based resins. The core-shell-type resin provided effective performance during the synthesis of hydrophobic peptide sequences, a disulfide-bridged cyclic peptide, and a difficult PNA sequence. Furthermore, a highly aggregative peptide fragment, MoPrP 105-125, was synthesized more efficiently on the core-shell-type resin under microwave conditions than AM PS and ChemMatrix resins.

  17. Doxorubicin/gold-loaded core/shell nanoparticles for combination therapy to treat cancer through the enhanced tumor targeting.

    Science.gov (United States)

    Kim, Kyungim; Oh, Keun Sang; Park, Dal Yong; Lee, Jae Young; Lee, Beom Suk; Kim, In San; Kim, Kwangmeyung; Kwon, Ick Chan; Sang, Yoon Kim; Yuk, Soon Hong

    2016-04-28

    A combination therapy consisting of radiotherapy and chemotherapy is performed using the core/shell nanoparticles (NPs) containing gold NPs and doxorubicin (DOX). Gold NPs in the core/shell NPs were utilized as a radiosensitizer. To examine the morphology and size distribution of the core/shell NPs, transmittance electron microscopy and dynamic light scattering were used. The in vitro release behavior, cellular uptake and toxicity were also observed to verify the functionality of the core/shell NPs as a nanocarrier. To demonstrate the advantage of the core/shell NPs over traditional gold NPs reported in the combination therapy, we evaluated the accumulation behavior of the core/shell NPs at the tumor site using the biodistribution. Antitumor efficacy was observed with and without radiation to evaluate the role of gold NPs as a radiosensitizer.

  18. Nanostructured SnO2 encapsulated guar-gum hybrid nanocomposites for electrocatalytic determination of hydrazine.

    Science.gov (United States)

    Malik, Priya; Srivastava, Manish; Verma, Ranjana; Kumar, Manish; Kumar, D; Singh, Jay

    2016-01-01

    The present article deals with synthesis of sol-gel derived tin dioxide (SnO2) nanoparticles encapsulated in to guar gum (GG) biopolymer as the organic-inorganic hybrid materials for the determination of hydrazine. The organic-inorganic hybrid combines the perfunctory strength offered by the inorganic SnO2 nanoparticles with flexible binding sites provided by the organic biopolymer (GG) solution by the ultrasonication. The phase identification, crystalline size, surface morphology and optical properties of prepared SnO2 and SnO2-GG nanocomposites has been investigated through FT-IR, XRD, SEM, AFM, TEM, UV-Vis, and PL techniques. The colloidal solution of SnO2 and GG is electrophoretically deposited (EPD) onto the indium tin-oxide (ITO) glass substrate and studied for the electrooxidation of hydrazine. Under the optimized experimental conditions, the linearity between the current response and the hydrazine concentration has been obtained in the range of 2-22 mM, with a low detection limit of 2.76 mM and a high sensitivity of 5.72 μA cm(-2). Based on the linear increase in amperometric current, a sensitive hydrazine electrochemical sensor is constructed. The proposed SnO2-GG/ITO electrode shows a good response time (35s), reproducibility, and long-term stability. The obtained results suggest that SnO2-GG nanocomposites electrode provides a favorable sensing platform for the electrochemical studies. In addition, the cyclic voltammetry (CV) studies are used to evaluate the kinetic parameters.

  19. Core-decomposition-facilitated fabrication of hollow rare-earth silicate nanowalnuts from core-shell structures via the Kirkendall effect.

    Science.gov (United States)

    Zhou, Wenli; Zou, Rui; Yang, Xianfeng; Huang, Ningyu; Huang, Junjian; Liang, Hongbin; Wang, Jing

    2015-08-28

    Hollow micro-/nanostructures have been widely applied in the fields of lithium ion batteries, catalysis, biosensing, biomedicine, and so forth. The Kirkendall effect, which involves a non-equilibrium mutual diffusion process, is one of many important fabrication strategies for the formation of hollow nanomaterials. Accordingly, full understanding of the interdiffusion process at the nanoscale is very important for the development of novel multifunctional hollow materials. In this work, hollow Y2SiO5 nanowalnuts have been fabricated from the conversion of YOHCO3@SiO2 core-shell nanospheres via the Kirkendall effect. More importantly, it was found that in the conversion process, the decomposition of YOHCO3 core imposes on the formation of the Y2SiO5 interlayer by facilitating the initial nucleation of the Kirkendall nanovoids and accelerating the interfacial diffusion of Y2O3@SiO2 core@shell. The simple concept developed herein can be employed as a general Kirkendall effect strategy without the assistance of any catalytically active Pt nanocrystals or gold motion for future fabrication of novel hollow nanostructures. Moreover, the photoluminescence properties of rare-earth ion doped hollow Y2SiO5 nanoparticles are researched.

  20. High performance carbon nanotube-Si core-shell wires with a rationally structured core for lithium ion battery anodes.

    Science.gov (United States)

    Fan, Yu; Zhang, Qing; Lu, Congxiang; Xiao, Qizhen; Wang, Xinghui; Tay, Beng Kang

    2013-02-21

    Core-shell Si nanowires are very promising anode materials. Here, we synthesize vertically aligned carbon nanotubes (CNTs) with relatively large diameters and large inter-wire spacing as core wires and demonstrate a CNT-Si core-shell wire composite as a lithium ion battery (LIB) anode. Owing to the rationally engineered core structure, the composite shows good capacity retention and rate performance. The excellent performance is superior to most core-shell nanowires previously reported.

  1. Suppression of auger recombination in ""giant"" core/shell nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Santamaria, Florencio [Los Alamos National Laboratory; Vela, Javier [Los Alamos National Laboratory; Schaller, Richard D [Los Alamos National Laboratory; Hollingsworth, Jennifer A [Los Alamos National Laboratory; Klimov, Victor I [Los Alamos National Laboratory; Chen, Yongfen [NON LANL

    2009-01-01

    Many potential applications of semiconductor nanocrystals are hindered by nonradiative Auger recombination wherein the electron-hole (exciton) recombination energy is transferred to a third charge carrier. This process severely limits the lifetime and bandwidth of optical gain, leads to large nonradiative losses in light emitting diodes and photovoltaic cells, and is believed to be responsible for intermittency ('blinking') of emission from single nanocrystals. The development of nanostructures in which Auger recombination is suppressed has been a longstanding goal in colloidal nanocrystal research. Here, we demonstrate that such suppression is possible using so-called 'giant' nanocrystals that consist of a small CdSe core and a thick CdS shell. These nanostructures exhibit a very long biexciton lifetime ({approx}10 ns) that is likely dominated by radiative decay instead of non-radiative Auger recombination. As a result of suppressed Auger recombination, even high-order multiexcitons exhibit high emission efficiencies, which allows us to demonstrate optical amplification with an extraordinarily large bandwidth (>500 me V) and record low excitation thresholds.

  2. Preparation and mechanism of Fe3O4/Au core/shell super-paramagnetic microspheres

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In the presence of Fe3O4 nano-particles, a new type of super-paramagnetic Fe3O4/Au microspheres with core/shell structures was prepared by reduction of Au3+ with hydroxylamine. The formation mechanism of the core/shell microspheres was studied in some detail. It was shown that the formation of the complex microspheres can be divided into two periods, that is, surface reaction-controlled process and diffusion-controlled process. The relative time lasted by either process depends upon the amount of Fe3O4 added and the initial concentration of Au3+. XPS analysis revealed that along with increasing in coating amount, the strength of the characteristic peaks of Au increased, and the Auger peaks of Fe weakened and even disappeared. Size distribution analysis showed that the core/shell microspheres are of an average diameter of 180 nm, a little bit larger than those before coating.

  3. Electronic Properties of Strained Si/Ge Core-Shell Nanowires

    CERN Document Server

    Peng, Xihong

    2010-01-01

    We investigated the electronic properties of strained Si/Ge core-shell nanowires along the [110] direction using first principles calculations based on density-functional theory. The diameter of the studied core-shell wire is up to 5 nm. We found the band gap of the core-shell wire is smaller than that of both pure Si and Ge wires with the same diameter. This reduced band gap is ascribed to the intrinsic strain between Ge and Si layers, which partially counters the quantum confinement effect. The external strain is further applied to the nanowires for tuning the band structure and band gap. By applying sufficient tensile strain, we found the band gap of Si-core/Ge-shell nanowire with diameter larger than ~3 nm experiences a transition from direct to indirect gap.

  4. Thermosensitive Cu2O-PNIPAM core-shell nanoreactors with tunable photocatalytic activity

    CERN Document Server

    Jia, He; Angioletti-Uberti, Stefano; Henzler, Katja; Ott, Andreas; Lin, Xianzhong; Möser, Jannik; Kochovski, Zdravko; Schnegg, Alexander; Dzubiella, Joachim; Ballauff, Matthias; Lu, Yan

    2016-01-01

    We report a facile and novel method for the fabrication of Cu2O@PNIPAM core-shell nanoreactors using Cu2O nanocubes as the core. The PNIPAM shell not only effectively protects the Cu2O nanocubes from oxidation, but also improves the colloidal stability of the system. The Cu2O@PNIPAM core-shell microgels can work efficiently as photocatalyst for the decomposition of methyl orange under visible light. A significant enhancement in the catalytic activity has been observed for the core-shell microgels compared with the pure Cu2O nanocubes. Most importantly, the photocatalytic activity of the Cu2O nanocubes can be further tuned by the thermosensitive PNIPAM shell, as rationalized by our recent theory.

  5. Core-Shell Structure of a Silicon Nanorod/Carbon Nanotube Field Emission Cathode

    Directory of Open Access Journals (Sweden)

    Bohr-Ran Huang

    2012-01-01

    Full Text Available A novel core-shell structure of silicon nanorods/carbon nanotubes (SiNRs/CNTs is developed for use in field emission cathodes. The CNTs were synthesized on SiNRs, using the Ag-assisted electroless etching technique to form the SiNRs/CNT core-shell structure. This resulting SiNRs/CNT field emission cathode demonstrated improved field emission properties including a lower turn-on electric field on (1.3 V/μm, 1 μA/cm2, a lower threshold electric field th (1.8 V/μm, 1 mA/cm2, and a higher enhancement factor (2347. These superior properties indicate that this core-shell structure of SiNRs/CNTs has good potential in field emission cathode applications.

  6. Boosting hole mobility in coherently strained [110]-oriented Ge-Si core-shell nanowires.

    Science.gov (United States)

    Conesa-Boj, Sonia; Li, Ang; Koelling, Sebastian; Brauns, Matthias; Ridderbos, Joost; Nguyen, Ton T; Verheijen, Marcel A; Koenraad, Paul M; Zwanenburg, Floris Arnoud; Bakkers, Erik P A M

    2017-02-23

    The ability of core-shell nanowires to overcome existing limitations of heterostructures is one of the key ingredients for the design of next generation devices. This requires a detailed understanding of the mechanism for strain relaxation in these systems, in order to eliminate strain-induced defect formation and thus to boost important electronic properties such as carrier mobility. Here we demonstrate how the hole mobility of [110]-oriented Ge-Si core-shell nanowires can be substantially enhanced thanks to the realization of large band offset and coherent strain in the system, reaching values as high as 4200 cm(2)/(Vs) at 4K and 1600 cm(2)/(Vs) at room temperature for high hole densities of 1019 cm(-3). Our results imply [110]-oriented Ge-Si core-shell nanowires as a promising candidate for future electronic and quantum transport devices.

  7. Fabrication of polyacrylate core-shell nanoparticles via spray drying method

    Science.gov (United States)

    Chen, Pengpeng; Cheng, Zenghui; Chu, Fuxiang; Xu, Yuzhi; Wang, Chunpeng

    2016-05-01

    Fine polyacrylate particles are thought to be environmental plastisols for car industry. However, these particles are mainly dried through demulsification of the latexes, which is not reproducible and hard to be scaled up. In this work, a spray drying method had been applied to the plastisols-used acrylate latex. By adjusting the core/shell ratio, spray drying process of the latex was fully studied. Scanning electronic microscopy observation of the nanoparticles before and after spray drying indicated that the core-shell structures could be well preserved and particles were well separated by spray drying if the shell was thick enough. Otherwise, the particles fused into each other and core-shell structures were destroyed. Polyacrylate plastisols were developed using diisononylphthalate as a plasticizer, and plastigels were obtained after heat treatment of the sols. Results showed that the shell thickness also had a great influence on the storage stability of the plastisols and mechanical properties of the plastigels.

  8. Polymer-inorganic core-shell nanofibers by electrospinning and atomic layer deposition: flexible nylon-ZnO core-shell nanofiber mats and their photocatalytic activity.

    Science.gov (United States)

    Kayaci, Fatma; Ozgit-Akgun, Cagla; Donmez, Inci; Biyikli, Necmi; Uyar, Tamer

    2012-11-01

    Polymer-inorganic core-shell nanofibers were produced by two-step approach; electrospinning and atomic layer deposition (ALD). First, nylon 6,6 (polymeric core) nanofibers were obtained by electrospinning, and then zinc oxide (ZnO) (inorganic shell) with precise thickness control was deposited onto electrospun nylon 6,6 nanofibers using ALD technique. The bead-free and uniform nylon 6,6 nanofibers having different average fiber diameters (∼80, ∼240 and ∼650 nm) were achieved by using two different solvent systems and polymer concentrations. ZnO layer about 90 nm, having uniform thickness around the fiber structure, was successfully deposited onto the nylon 6,6 nanofibers. Because of the low deposition temperature utilized (200 °C), ALD process did not deform the polymeric fiber structure, and highly conformal ZnO layer with precise thickness and composition over a large scale were accomplished regardless of the differences in fiber diameters. ZnO shell layer was found to have a polycrystalline nature with hexagonal wurtzite structure. The core-shell nylon 6,6-ZnO nanofiber mats were flexible because of the polymeric core component. Photocatalytic activity of the core-shell nylon 6,6-ZnO nanofiber mats were tested by following the photocatalytic decomposition of rhodamine-B dye. The nylon 6,6-ZnO nanofiber mat, having thinner fiber diameter, has shown better photocatalytic efficiency due to higher surface area of this sample. These nylon 6,6-ZnO nanofiber mats have also shown structural stability and kept their photocatalytic activity for the second cycle test. Our findings suggest that core-shell nylon 6,6-ZnO nanofiber mat can be a very good candidate as a filter material for water purification and organic waste treatment because of their photocatalytic properties along with structural flexibility and stability.

  9. Sub-nanometer dimensions control of core/shell nanoparticles prepared by atomic layer deposition.

    Science.gov (United States)

    Weber, M J; Verheijen, M A; Bol, A A; Kessels, W M M

    2015-03-06

    Bimetallic core/shell nanoparticles (NPs) are the subject of intense research due to their unique electronic, optical and catalytic properties. Accurate and independent control over the dimensions of both core and shell would allow for unprecedented catalytic performance. Here, we demonstrate that both core and shell dimensions of Pd/Pt core/shell nanoparticles (NPs) supported on Al2O3 substrates can be controlled at the sub-nanometer level by using a novel strategy based on atomic layer deposition (ALD). From the results it is derived that the main conditions for accurate dimension control of these core/shell NPs are: (i) a difference in surface energy between the deposited core metal and the substrate to obtain island growth; (ii) a process yielding linear growth of the NP cores with ALD cycles to obtain monodispersed NPs with a narrow size distribution; (iii) a selective ALD process for the shell metal yielding a linearly increasing thickness to obtain controllable shell growth exclusively on the cores. For Pd/Pt core/shell NPs it is found that a minimum core diameter of 1 nm exists above which the NP cores are able to catalytically dissociate the precursor molecules for shell growth. In addition, initial studies on the stability of these core/shell NPs have been carried out, and it has been demonstrated that core/shell NPs can be deposited by ALD on high aspect ratio substrates such as nanowire arrays. These achievements show therefore that ALD has significant potential for the preparation of tuneable heterogeneous catalyst systems.

  10. Core-shell silk hydrogels with spatially tuned conformations as drug-delivery system.

    Science.gov (United States)

    Yan, Le-Ping; Oliveira, Joaquim M; Oliveira, Ana L; Reis, Rui L

    2016-12-05

    Hydrogels of spatially controlled physicochemical properties are appealing platforms for tissue engineering and drug delivery. In this study, core-shell silk fibroin (SF) hydrogels of spatially controlled conformation were developed. The core-shell structure in the hydrogels was formed by means of soaking the preformed (enzymatically crosslinked) random coil SF hydrogels in methanol. When increasing the methanol treatment time from 1 to 10 min, the thickness of the shell layer can be tuned from about 200 to about 850 μm as measured in wet status. After lyophilization of the rehydrated core-shell hydrogels, the shell layer displayed compact morphology and the core layer presented porous structure, when observed by scanning electron microscopy. The conformation of the hydrogels was evaluated by Fourier transform infrared spectroscopy in wet status. The results revealed that the shell layer possessed dominant β-sheet conformation and the core layer maintained mainly random coil conformation. Enzymatic degradation data showed that the shell layers presented superior stability to the core layer. The mechanical analysis displayed that the compressive modulus of the core-shell hydrogels ranged from about 25 kPa to about 1.1 MPa by increasing the immersion time in methanol. When incorporated with albumin, the core-shell SF hydrogels demonstrated slower and more controllable release profiles compared with the non-treated hydrogel. These core-shell SF hydrogels of highly tuned properties are useful systems as drug-delivery system and may be applied as cartilage substitute. Copyright © 2016 John Wiley & Sons, Ltd.

  11. Symplectic Symmetry and the Ab Initio No-Core Shell Model

    Energy Technology Data Exchange (ETDEWEB)

    Draayer, Jerry P.; Dytrych, Tomas; Sviratcheva, Kristina D.; Bahri, Chairul; /Louisiana State U.; Vary, James P.; /Iowa State U. /LLNL, Livermore /SLAC

    2007-03-14

    The symplectic symmetry of eigenstates for the 0{sub gs}{sup +} in {sup 16}O and the 0{sub gs}{sup +} and lowest 2{sup +} and 4{sup +} configurations of {sup 12}C that are well-converged within the framework of the no-core shell model with the JISP16 realistic interaction is examined. These states are found to project at the 85-90% level onto very few symplectic representations including the most deformed configuration, which confirms the importance of a symplectic no-core shell model and reaffirms the relevance of the Elliott SU(3) model upon which the symplectic scheme is built.

  12. Synthesis of SnS/In2S3 core-shell nanoparticles

    Science.gov (United States)

    Prastani, C.; Nanu, M.; Nanu, D.; Schropp, R. E. I.; Rath, J. K.

    2014-09-01

    In this letter a new type of core-shell structure is presented. The core is made of tin-sulfide by colloidal route. The shell, made of indium-sulfide, by chemical bath deposition. These core-shell nanoparticles have been characterized by transmission electron microscope to study the size and the shape. High resolution TEM has allowed to determine the structure of the core and the shell. The chemical composition has been analyzed by energy-dispersive X-ray spectroscopy. In the end the optical absorption investigated by UV-vis changing the deposition time and temperature. Finally, the influence of these parameters on the band gap has been investigated.

  13. Structural and magnetic properties of core-shell iron-iron oxide nanoparticles

    DEFF Research Database (Denmark)

    Kuhn, Luise Theil; Bojesen, A.; Timmermann, L.

    2002-01-01

    We present studies of the structural and magnetic properties of core-shell iron-iron oxide nanoparticles. alpha-Fe nanoparticles were fabricated by sputtering and subsequently covered with a protective nanocrystalline oxide shell consisting of either maghaemite (gamma-Fe2O3) or partially oxidized...... magnetite (Fe3O4). We observed that the nanoparticles were stable against further oxidation, and Mossbauer spectroscopy at high applied magnetic fields and low temperatures revealed a stable form of partly oxidized magnetite. The nanocrystalline structure of the oxide shell results in strong canting...... of the spin structure in the oxide shell, which thereby modifies the magnetic properties of the core-shell nanoparticles....

  14. Preparation of Hollow Spherical and Core/shell Structured Powders by Plasma Processing

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Xiaofeng; ZHOU; Kesong; DENG; Changguang; SONG; Jinbing; ZHANG; Jifu; DONG; Shujuan

    2015-01-01

    Four types of hollow spherical micro- and nano-szied powders of ZrO2-7wt.%Y2O3(7YSZ), ZrO2-7wt.%Y2O3, Al2O3-13 wt.% TiO2(AT) and WC as well as one type of core/shell structured powder of ZrB2-30 wt.%Mo Si2 were prepared via plasma processing. In addition, the formation mechanisms of hollow spherical and core/shell structured powders prepared via plasma processing were also proposed.

  15. Quantum confinement effect in Si/Ge core-shell nanowires: First-principles calculations

    Science.gov (United States)

    Yang, Li; Musin, Ryza N.; Wang, Xiao-Qian; Chou, M. Y.

    2008-05-01

    The electronic structure of Si/Ge core-shell nanowires along the [110] and [111] directions are studied with first-principles calculations. We identify the near-gap electronic states that are spatially separated within the core or the shell region, making it possible for a dopant to generate carriers in a different region. The confinement energies of these core and shell states provide an operational definition of the “band offset,” which is not only size dependent but also component dependent. The optimal doping strategy in Si/Ge core-shell nanowires is proposed based on these energy results.

  16. Nonlinear photonic diode behavior in energy-graded core-shell quantum well semiconductor rod.

    Science.gov (United States)

    Ko, Suk-Min; Gong, Su-Hyun; Cho, Yong-Hoon

    2014-09-10

    Future technologies require faster data transfer and processing with lower loss. A photonic diode could be an attractive alternative to the present Si-based electronic diode for rapid optical signal processing and communication. Here, we report highly asymmetric photonic diode behavior with low scattering loss, from tapered core-shell quantum well semiconductor rods that were fabricated to have a large gradient in their bandgap energy along their growth direction. Local laser illumination of the core-shell quantum well rods yielded a huge contrast in light output intensities from opposite ends of the rod.

  17. Recent advances in the synthesis of Fe3O4@AU core/shell nanoparticles

    Science.gov (United States)

    Salihov, Sergei V.; Ivanenkov, Yan A.; Krechetov, Sergei P.; Veselov, Mark S.; Sviridenkova, Natalia V.; Savchenko, Alexander G.; Klyachko, Natalya L.; Golovin, Yury I.; Chufarova, Nina V.; Beloglazkina, Elena K.; Majouga, Alexander G.

    2015-11-01

    Fe3O4@Au core/shell nanoparticles have unique magnetic and optical properties. These nanoparticles are used for biomedical applications, such as magnetic resonance imaging, photothermal therapy, controlled drug delivery, protein separation, biosensors, DNA detection, and immunosensors. In this review, recent methods for the synthesis of core/shell nanoparticles are discussed. We divided all of the synthetic methods in two groups: methods of synthesis of bi-layer structures and methods of synthesis of multilayer composite structures. The latter methods have a layer of "glue" material between the core and the shell.

  18. Magnetic properties of Ni/Au core/shell studied by Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Masrour, R., E-mail: rachidmasrour@hotmail.com [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, Sidi Bouzid, Safi, 63 4600 (Morocco); LMPHE (URAC 12), Faculté des Sciences, Université Mohammed V-Agdal, Av. Ibn Batouta, B.P. 1014, Rabat (Morocco); Bahmad, L. [LMPHE (URAC 12), Faculté des Sciences, Université Mohammed V-Agdal, Av. Ibn Batouta, B.P. 1014, Rabat (Morocco); Hamedoun, M. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Benyoussef, A. [LMPHE (URAC 12), Faculté des Sciences, Université Mohammed V-Agdal, Av. Ibn Batouta, B.P. 1014, Rabat (Morocco); Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Hassan II Academy of Science and Technology, Rabat (Morocco); Hlil, E.K. [Institut Néel, CNRS et Université Joseph Fourier, BP 166, F-38042 Grenoble cedex 9 (France)

    2014-01-10

    The magnetic properties of ferromagnetic Ni/Au core/shell have been studied using Monte Carlo simulations within the Ising model framework. The considered Hamiltonian includes the exchange interactions between Ni–Ni, Au–Au and Ni–Au and the external magnetic field. The thermal total magnetizations and total magnetic susceptibilities of core/shell Ni/Au are computed. The critical temperature is deduced. The exchange interaction between Ni and Au atoms is obtained. In addition, the total magnetizations versus the external magnetic field and crystal filed for different temperature are also established.

  19. Graded index and randomly oriented core-shell silicon nanowires for broadband and wide angle antireflection

    Directory of Open Access Journals (Sweden)

    P. Pignalosa

    2011-09-01

    Full Text Available Antireflection with broadband and wide angle properties is important for a wide range of applications on photovoltaic cells and display. The SiOx shell layer provides a natural antireflection from air to the Si core absorption layer. In this work, we have demonstrated the random core-shell silicon nanowires with both broadband (from 400nm to 900nm and wide angle (from normal incidence to 60º antireflection characteristics within AM1.5 solar spectrum. The graded index structure from the randomly oriented core-shell (Air/SiOx/Si nanowires may provide a potential avenue to realize a broadband and wide angle antireflection layer.

  20. Si/PEDOT:PSS core/shell nanowire arrays for efficient hybrid solar cells.

    Science.gov (United States)

    Lu, Wenhui; Wang, Chengwei; Yue, Wei; Chen, Liwei

    2011-09-01

    A solution filling and drying method has been demonstrated to fabricate Si/PEDOT:PSS core/shell nanowire arrays for hybrid solar cells. The hybrid core/shell nanowire arrays show excellent broadband anti-reflection, and resulting hybrid solar cells absorb about 88% of AM 1.5G photons in the 300-1100 nm range. The power conversion efficiency (PCE) of the hybrid solar cell reaches 6.35%, and is primarily limited by direct and indirect interfacial recombination of charge carriers.

  1. Characterization Methods of Encapsulates

    Science.gov (United States)

    Zhang, Zhibing; Law, Daniel; Lian, Guoping

    Food active ingredients can be encapsulated by different processes, including spray drying, spray cooling, spray chilling, spinning disc and centrifugal co-extrusion, extrusion, fluidized bed coating and coacervation (see Chap. 2 of this book). The purpose of encapsulation is often to stabilize an active ingredient, control its release rate and/or convert a liquid formulation into a solid which is easier to handle. A range of edible materials can be used as shell materials of encapsulates, including polysaccharides, fats, waxes and proteins (see Chap. 3 of this book). Encapsulates for typical industrial applications can vary from several microns to several millimetres in diameter although there is an increasing interest in preparing nano-encapsulates. Encapsulates are basically particles with a core-shell structure, but some of them can have a more complex structure, e.g. in a form of multiple cores embedded in a matrix. Particles have physical, mechanical and structural properties, including particle size, size distribution, morphology, surface charge, wall thickness, mechanical strength, glass transition temperature, degree of crystallinity, flowability and permeability. Information about the properties of encapsulates is very important to understanding their behaviours in different environments, including their manufacturing processes and end-user applications. E.g. encapsulates for most industrial applications should have desirable mechanical strength, which should be strong enough to withstand various mechanical forces generated in manufacturing processes, such as mixing, pumping, extrusion, etc., and may be required to be weak enough in order to release the encapsulated active ingredients by mechanical forces at their end-user applications, such as release rate of flavour by chewing. The mechanical strength of encapsulates and release rate of their food actives are related to their size, morphology, wall thickness, chemical composition, structure etc. Hence

  2. Preparation of Porous Core-Shell Poly L-Lactic Acid/Polyethylene Glycol Superfine Fibres Containing Drug.

    Science.gov (United States)

    Yang, Wenjing; He, Nongyue; Fu, Juan; Li, Zhiyang; Ji, Xuyuan

    2015-12-01

    In this paper, poly L-lactic acid (PLLA) blended with polyethylene glycol (PEG) was dissolved in methylene dichloride solution as the shell solution, and rapamycin (RAPA), was encapsulated inside the core of PLLA micro/nano fibres as a model drug. The effects of the blending ratio of PLLA to PEG, the concentration of the electrospinning solution, the voltage, the flow rate, and the encapsulation efficiency were studied. Uniform and porous RAPA-Loading PLLA fibres were obtained when the ratio of PLLA to PEG was 7/3, the concentration of PLLA was 3%, the applied voltage was 7.5 kV, and the pump speed was V(core) = 0.1 mL/h, V(shell) = 1 mL/h, repectively. The average diameter of PLLA fibres increased with the gradual increase in PLLA concentration. FTIR results showed that RAPA was successfully encapsulated into the core-co-shell PLLA fibres. Meanwhile, the RAPA-loading of coaxial electrospun PLLA fibres was significantly higher than that of the blending electrospun fibres. It was also found that the porous core-shell PLLA/PEG blending superfine fibres could regulate the appearance of pore on the surface of superfine fibres by adjusting the electrospinning parameters. The porous PLLA/PEG blending fibres can be used as drug carriers and, to improve the single way of drug release depending on the degradation of shell material to meet different need. It will be a remarkable breakthrough in the area for sustained and controlled release drug delivery system.

  3. Low temperature in situ synthesis and the formation mechanism of various carbon-encapsulated nanocrystals by the electrophilic oxidation of metallocene complexes.

    Science.gov (United States)

    Liu, Boyang; Fan, Chunhua; Chen, Jianwei; Wang, Junhua; Lu, Zepeng; Ren, Jiayuan; Yu, Shuaiqin; Dong, Lihua; Li, Wenge

    2016-02-19

    The core-shell nanostructures have the advantages of combining distinctive properties of varied materials and improved properties over their single-component counterparts. Synthesis approaches for this class of nanostructures have been intensively explored, generally involving multiple steps. Here, a general and convenient strategy is developed for one-step in situ synthesis of various carbon-encapsulated nanocrystals with a core-shell structure via a solid-state reaction of metallocene complexes with (NH4)2S2O8 in an autoclave at 200 °C. A variety of near-spherical and equiaxed nanocrystals with a small median size ranging from 6.5 to 50.6 nm are prepared as inner cores, including Fe7S8, Ni3S4 and NiS, CoS, TiO2, TiO2 and S8, ZrO2, (NH4)3V(SO4)3 and VO2, Fe7S8 and Fe3O4, MoS2 and MoO2. The worm-like carbon shell provides exclusive room for hundreds of nanocrystals separated from each other, preventing nanocrystal aggregation. The synergistic effect of ammonium and a strong oxidizing anion on the electrophilic oxidation of metallocene complexes containing a metal-ligand π bond contributes to the carbon formation at low temperature. It is considered that the cyclopentadienyl ligand in a metallocene complex will decompose into highly reactive straight chain olefinic pieces and the metal-olefin π interaction enables an ordered self-assembly of olefinic pieces on nanocrystals to partially form graphitizable carbon and a core-shell structure. The high capacity, good cycling behavior and rate capability of Fe7S8@C and Ni3S4 and NiS@C electrodes are attributed to the good protection and electrical conductivity of the carbon shell.

  4. Application of core-shell-structured CdTe-SiO{sub 2} quantum dots synthesized via a facile solution method for improving latent fingerprint detection

    Energy Technology Data Exchange (ETDEWEB)

    Gao Feng; Han Jiaxing; Lv Caifeng; Wang Qin; Zhang Jun, E-mail: cejzhang@imu.edu.cn [Inner Mongolia University, College of Chemistry and Chemical Engineering (China); Li Qun; Bao Liru; Li Xin [Division of Science and Technology, Public Security Department of Inner Mongolia (China)

    2012-10-15

    Fingerprint detection is important in criminal investigation. This paper reports a facile powder brushing technique for improving latent fingerprint detection using core-shell-structured CdTe-SiO{sub 2} quantum dots (QDs) as fluorescent labeling marks. Core-shell-structured CdTe-SiO{sub 2} QDs are prepared via a simple solution-based approach using NH{sub 2}NH{sub 2}{center_dot}H{sub 2}O as pH adjustor and stabilizer, and their application for improving latent fingerprint detection is explored. The obtained CdTe-SiO{sub 2} QDs show spherical shapes with well-defined core-shell structures encapsulating different amounts of QDs depending on the type of the pH adjustor and stabilizer. Moreover, the fluorescence of CdTe-SiO{sub 2} QDs is largely enhanced by surface modification of the SiO{sub 2} shell. The CdTe-SiO{sub 2} QDs overcome the oxidation problem of pure CdTe QDs in air, thus affording better variability with strong adhesive ability, better resolution, and bright emission colors for practical application in latent fingerprint detection. In comparison with the conventional fluorescence powders, silver powders, and others, the effectiveness of CdTe-SiO{sub 2} QD powders for detection of latent fingerprints present on a large variety of object surfaces is greatly improved. The synthesis method for CdTe-SiO{sub 2} QDs is simple, cheap, and easy for large-scale production, and thus offers many advantages in the practical application of fingerprint detection.

  5. A nanocomposite of Au-AgI core/shell dimer as a dual-modality contrast agent for x-ray computed tomography and photoacoustic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Orza, Anamaria; Wu, Hui; Li, Yuancheng; Mao, Hui, E-mail: hmao@emory.edu, E-mail: Xiangyang.Tang@emory.edu [Department of Radiology and Imaging Sciences and Center for Systems Imaging, Emory University School of Medicine, Atlanta, Georgia 30322 (United States); Yang, Yi; Tang, Xiangyang, E-mail: hmao@emory.edu, E-mail: Xiangyang.Tang@emory.edu [Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia 30322 (United States); Feng, Ting; Wang, Xueding [Department of Biomedical Engineering, University of Michigan School of Medicine, Ann Arbor, Michigan 48109 (United States); Yang, Lily [Department of Surgery, Emory University School of Medicine, Atlanta, Georgia 30322 (United States)

    2016-01-15

    Purpose: To develop a core/shell nanodimer of gold (core) and silver iodine (shell) as a dual-modal contrast-enhancing agent for biomarker targeted x-ray computed tomography (CT) and photoacoustic imaging (PAI) applications. Methods: The gold and silver iodine core/shell nanodimer (Au/AgICSD) was prepared by fusing together components of gold, silver, and iodine. The physicochemical properties of Au/AgICSD were then characterized using different optical and imaging techniques (e.g., HR- transmission electron microscope, scanning transmission electron microscope, x-ray photoelectron spectroscopy, energy-dispersive x-ray spectroscopy, Z-potential, and UV-vis). The CT and PAI contrast-enhancing effects were tested and then compared with a clinically used CT contrast agent and Au nanoparticles. To confer biocompatibility and the capability for efficient biomarker targeting, the surface of the Au/AgICSD nanodimer was modified with the amphiphilic diblock polymer and then functionalized with transferrin for targeting transferrin receptor that is overexpressed in various cancer cells. Cytotoxicity of the prepared Au/AgICSD nanodimer was also tested with both normal and cancer cell lines. Results: The characterizations of prepared Au/AgI core/shell nanostructure confirmed the formation of Au/AgICSD nanodimers. Au/AgICSD nanodimer is stable in physiological conditions for in vivo applications. Au/AgICSD nanodimer exhibited higher contrast enhancement in both CT and PAI for dual-modality imaging. Moreover, transferrin functionalized Au/AgICSD nanodimer showed specific binding to the tumor cells that have a high level of expression of the transferrin receptor. Conclusions: The developed Au/AgICSD nanodimer can be used as a potential biomarker targeted dual-modal contrast agent for both or combined CT and PAI molecular imaging.

  6. Aqueous-Based Coaxial Electrospinning of Genetically Engineered Silk Elastin Core-Shell Nanofibers

    Directory of Open Access Journals (Sweden)

    Jingxin Zhu

    2016-03-01

    Full Text Available A nanofabrication method for the production of flexible core-shell structured silk elastin nanofibers is presented, based on an all-aqueous coaxial electrospinning process. In this process, silk fibroin (SF and silk-elastin-like protein polymer (SELP, both in aqueous solution, with high and low viscosity, respectively, were used as the inner (core and outer (shell layers of the nanofibers. The electrospinnable SF core solution served as a spinning aid for the nonelectrospinnable SELP shell solution. Uniform nanofibers with average diameter from 301 ± 108 nm to 408 ± 150 nm were obtained through adjusting the processing parameters. The core-shell structures of the nanofibers were confirmed by fluorescence and electron microscopy. In order to modulate the mechanical properties and provide stability in water, the as-spun SF-SELP nanofiber mats were treated with methanol vapor to induce β-sheet physical crosslinks. FTIR confirmed the conversion of the secondary structure from a random coil to β-sheets after the methanol treatment. Tensile tests of SF-SELP core-shell structured nanofibers showed good flexibility with elongation at break of 5.20% ± 0.57%, compared with SF nanofibers with an elongation at break of 1.38% ± 0.22%. The SF-SELP core-shell structured nanofibers should provide useful options to explore in the field of biomaterials due to the improved flexibility of the fibrous mats and the presence of a dynamic SELP layer on the outer surface.

  7. Rh(0)/Rh(iii) core-shell nanoparticles as heterogeneous catalysts for cyclic carbonate synthesis.

    Science.gov (United States)

    Jung, Younjae; Shin, Taeil; Kim, Kiseong; Byun, Hyeeun; Cho, Sung June; Kim, Hyunwoo; Song, Hyunjoon

    2016-12-22

    Rh(0)/Rh(iii) core-shell nanoparticles were prepared by surface oxidation of Rh nanoparticles with N-bromosuccinimide. They were employed as heterogeneous catalysts for cyclic carbonate synthesis from propylene oxide and CO2, and exhibited high activity and excellent recyclability due to Lewis acidic Rh(iii) species on the shells.

  8. First Principles Study of Si/Ge Core-Shell nanowires under external uniaxial strain

    CERN Document Server

    Peng, Xihong; Logan, Paul

    2010-01-01

    Density-functional theory based first principles calculations are performed to study the effects of external uniaxial strain on the electronic states of Si/Ge core-shell nanowires along the [110] direction with the diameter of the wire up to 5 nm. As shown in the calculations, the [110] Si/Ge core-shell nanowires without external strain possess a direct band gap, in contrast to the nature of an indirect band gap in bulk Si and Ge. The band structure of the core-shell nanowires can be significantly modulated by an external strain. With a sufficient amount of tensile uniaxial strain, the band gap of the Si/Ge core-shell nanowires experiences a transition from direct to indirect. In addition, our studies showed that the effective masses of charge carriers can be also tuned by the external uniaxial strain. The effective mass of the hole increases dramatically with a tensile strain, while strain shows a minimal effect on tuning the effective mass of the electron. Finally, the relationship between the strain effect...

  9. Microfluidic production of perfluorocarbon-alginate core-shell microparticles for ultrasound therapeutic applications.

    Science.gov (United States)

    Duarte, Ana Rita C; Ünal, Barış; Mano, João F; Reis, Rui L; Jensen, Klavs F

    2014-10-21

    The fabrication of micrometer-sized core-shell particles for ultrasound-triggered delivery offers a variety of applications in medical research. In this work, we report the design and development of a glass capillary microfluidic system containing three concentric glass capillary tubes for the development of core-shell particles. The setup enables the preparation of perfluorocarbon-alginate core-shell microspheres in a single process, avoiding the requirement for further extensive purification steps. Core-shell microspheres in the range of 110-130 μm are prepared and are demonstrated to be stable up to 21 days upon immersion in calcium chloride solution or water. The mechanical stability of the particles is tested by injecting them through a 23 gauge needle into a polyacrylamide gel to mimic the tissue matrix. The integrity of the particles is maintained after the injection process and is disrupted after ultrasound exposure for 15 min. The results suggest that the perfluorcarbon-alginate microparticles could be a promising system for the delivery of compounds, such as proteins, peptides, and small-molecule drugs in ultrasound-based therapies.

  10. Radiological decontamination strippable coatings using PVA and PVP based core-shell polymeric scintillation materials

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Ho Sang; Seo, Bum Kyoung; Lee, Kune Woo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-05-15

    Strippable coatings are innovative technologies for decontamination that effectively reduce loose contamination. These coatings are polymer mixtures, such as water-based organic polymers that are applied to a surface by paintbrush, roller or spray applicator. In this study, the core-shell composite polymer for decontamination from the surface contamination was synthesized by the method of emulsion polymerization and blends of polymers. The strippable polymer emulsion is composed of the poly(styrene-ethyl acrylate) [poly(St-EA)] composite polymer, poly(vinyl alcohol) (PVA) and polyvinylpyrrolidone (PVP). The morphology of the composite emulsion particle was core-shell structure, with polystyrene (PS) as the core and poly(ethyl acrylate) (PEA) as the shell. Core-shell polymers of styrene (St)/ethyl acrylate (EA) pair were prepared by sequential emulsion polymerization in the presence of sodium dodecyl sulfate (SDS) as an emulsifier using ammonium persulfate (APS) as an initiator. Related tests and analysis confirmed the success in synthesis of composite polymer. The products are characterized by FT-IR spectroscopy, TGA that were used, respectively, to show the structure, the thermal stability of the prepared polymer. Two-phase particles with a core-shell structure were obtained in experiments where the estimated glass transition temperature and the morphologies of emulsion particles. Decontamination factors (DF) of the strippable polymeric emulsion were evaluated with the polymer blend contents

  11. Gold-Pluronic core-shell nanoparticles: synthesis, characterization and biological evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Timea; Boca, Sanda [Babes-Bolyai University, Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute on Bio-Nano-Sciences and Faculty of Physics (Romania); Biro, Dominic [Sapientia University, Department of Mechanical Engineering, Faculty of Technical and Human Sciences (Romania); Baldeck, Patrice [Universite Joseph Fourier and CNRS, Laboratoire Interdisciplinaire de Physique, UMR 5588, CNRS (France); Astilean, Simion, E-mail: simion.astilean@phys.ubbcluj.ro [Babes-Bolyai University, Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute on Bio-Nano-Sciences and Faculty of Physics (Romania)

    2013-04-15

    This study presents the synthesis of gold-Pluronic core-shell nanoparticles by a two-step method and investigates their biological impact on cancer cells, specifically nanoparticle internalization and cytotoxicity. Uniform, 9-10-nm-sized, hydrophobic gold nanoparticles were synthesized in organic phase by reducing gold salt with oleylamine, after which oleylamine-protected gold nanoparticles were phase-transferred into aqueous medium using Pluronic F127 block copolymer, resulting in gold-Pluronic core-shell nanoparticles with a mean hydrodynamic diameter of {approx}35 nm. The formation and phase-transfer of gold nanoparticles were analyzed by UV-Vis absorption spectroscopy, transmission electron microscopy, and dynamic light scattering. The obtained gold-Pluronic core-shell nanoparticles proved to be highly stable in salted solution. Cytotoxicity tests showed no modification of cellular viability in the presence of properly purified particles. Furthermore, dark-field cellular imaging demonstrated that gold-Pluronic nanoparticles were able to be efficiently uptaken by cells, being internalized through nonspecific endocytosis. The high stability, proven biocompatibility, and imaging properties of gold-Pluronic core-shell nanoparticles hold promise for relevant intracellular applications, with such a design providing the feasibility to combine all multiple functionalities in one nanoparticle for simultaneous detection and imaging.

  12. Facile preparation of hybrid core-shell nanorods for photothermal and radiation combined therapy

    Science.gov (United States)

    Deng, Yaoyao; Li, Erdong; Cheng, Xiaju; Zhu, Jing; Lu, Shuanglong; Ge, Cuicui; Gu, Hongwei; Pan, Yue

    2016-02-01

    The hybrid platinum@iron oxide core-shell nanorods with high biocompatibility were synthesized and applied for combined therapy. These hybrid nanorods exhibit a good photothermal effect on cancer cells upon irradiation with a NIR laser. Furthermore, due to the presence of a high atomic number element (platinum core), the hybrid nanorods show a synergistic effect between photothermal and radiation therapy. Therefore, the as-prepared core-shell nanorods could play an important role in facilitating synergistic therapy between photothermal and radiation therapy to achieve better therapeutic efficacy.The hybrid platinum@iron oxide core-shell nanorods with high biocompatibility were synthesized and applied for combined therapy. These hybrid nanorods exhibit a good photothermal effect on cancer cells upon irradiation with a NIR laser. Furthermore, due to the presence of a high atomic number element (platinum core), the hybrid nanorods show a synergistic effect between photothermal and radiation therapy. Therefore, the as-prepared core-shell nanorods could play an important role in facilitating synergistic therapy between photothermal and radiation therapy to achieve better therapeutic efficacy. Electronic supplementary information (ESI) available: Details of general experimental procedures. See DOI: 10.1039/c5nr09102k

  13. Origin of Spontaneous Core-Shell AIGaAs Nanowires Grown by Molecular Beam Epitaxy

    DEFF Research Database (Denmark)

    Dubrovskii, V. G.; Shtrom, I. V.; Reznik, R. R.;

    2016-01-01

    Based on the high-angle annular dark-field scanning transmission electron microscopy and energy dispersive X-ray spectroscopy studies, we unravel the origin of spontaneous core shell AlGaAs nanowires grown by gold-assisted molecular beam epitaxy. Our AlGaAs nanowires have a cylindrical core...

  14. Tunable Band Gap and Conductivity Type of ZnSe/Si Core-Shell Nanowire Heterostructures

    Directory of Open Access Journals (Sweden)

    Yijie Zeng

    2014-10-01

    Full Text Available The electronic properties of zincblende ZnSe/Si core-shell nanowires (NWs with a diameter of 1.1–2.8 nm are calculated by means of the first principle calculation. Band gaps of both ZnSe-core/Si-shell and Si-core/ZnSe-shell NWs are much smaller than those of pure ZnSe or Si NWs. Band alignment analysis reveals that the small band gaps of ZnSe/Si core-shell NWs are caused by the interface state. Fixing the ZnSe core size and enlarging the Si shell would turn the NWs from intrinsic to p-type, then to metallic. However, Fixing the Si core and enlarging the ZnSe shell would not change the band gap significantly. The partial charge distribution diagram shows that the conduction band maximum (CBM is confined in Si, while the valence band maximum (VBM is mainly distributed around the interface. Our findings also show that the band gap and conductivity type of ZnSe/Si core-shell NWs can be tuned by the concentration and diameter of the core-shell material, respectively.

  15. Tunable Band Gap and Conductivity Type of ZnSe/Si Core-Shell Nanowire Heterostructures.

    Science.gov (United States)

    Zeng, Yijie; Xing, Huaizhong; Fang, Yanbian; Huang, Yan; Lu, Aijiang; Chen, Xiaoshuang

    2014-10-31

    The electronic properties of zincblende ZnSe/Si core-shell nanowires (NWs) with a diameter of 1.1-2.8 nm are calculated by means of the first principle calculation. Band gaps of both ZnSe-core/Si-shell and Si-core/ZnSe-shell NWs are much smaller than those of pure ZnSe or Si NWs. Band alignment analysis reveals that the small band gaps of ZnSe/Si core-shell NWs are caused by the interface state. Fixing the ZnSe core size and enlarging the Si shell would turn the NWs from intrinsic to p-type, then to metallic. However, Fixing the Si core and enlarging the ZnSe shell would not change the band gap significantly. The partial charge distribution diagram shows that the conduction band maximum (CBM) is confined in Si, while the valence band maximum (VBM) is mainly distributed around the interface. Our findings also show that the band gap and conductivity type of ZnSe/Si core-shell NWs can be tuned by the concentration and diameter of the core-shell material, respectively.

  16. Highly tuneable hole quantum dots in Ge-Si core-shell nanowires

    NARCIS (Netherlands)

    Brauns, M.; Ridderbos, Joost; Ridderbos, Joost; Li, Ang; van der Wiel, Wilfred Gerard; Bakkers, Erik P.A.M.; Zwanenburg, Floris Arnoud

    2016-01-01

    We define single quantum dots of lengths varying from 60 nm up to nearly half a micron in Ge-Si core-shell nanowires. The charging energies scale inversely with the quantum dot length between 18 and 4 meV. Subsequently, we split up a long dot into a double quantum dot with a separate control over

  17. Interaction of CdSe/ZnS core-shell semiconductor nanocrystals in solid thin films

    NARCIS (Netherlands)

    Chistyakov, A. A.; Martynov, I. L.; Mochalov, K. E.; Oleinikov, V. A.; Sizova, S. V.; Ustinovich, E. A.; Zakharchenko, K. V.

    2006-01-01

    The optical properties of CdSe/ZnS semiconductor nanocrystals with the core-shell structure are studied upon visible-laser excitation in a wide range of flux densities. It is demonstrated that the dimensional quantization effect is preserved in the films with a limiting high concentration of nanocry

  18. Preparation and Characterization of Low Dispersity Anionic Multiresponsive Core-Shell Polymer Nanoparticles

    NARCIS (Netherlands)

    Pinheiro, J.P.; Moura, L.; Fokkink, R.G.; Farinha, J.P.S.

    2012-01-01

    We prepared anionic multistimuli responsive core-shell polymer nanoparticles with very low size dispersity. By using either acrylic acid (AA) or methacrylic acid (MA) as a comonomer in the poly(N-isopropyl acrylamide) (PNIPAM) shell, we are able to change the distribution of negative charges in the

  19. A new class of PANI-Ag core-shell nanorods with sensing dimensions.

    Science.gov (United States)

    Shukla, Vineet K; Yadav, Poonam; Yadav, Raghvendra S; Mishra, Priya; Pandey, Avinash C

    2012-07-07

    A single-step, cost-effective and eco-safe synthesis of a new class of homogeneous silver-polyaniline (PANI-Ag) core-shell nanorods is carried out via mild photolysis by ultraviolet radiation from sunlight (SUN UV-radiation). X-ray diffraction (XRD) of these core-shell nanorods gives two additional peaks from PANI centered at 2θ = 20.5° and 24. 9°. A validation of the core-shell structural information is given by transmission electron spectroscopy (TEM) whereas the tubular shape morphology is determined by scanning electron microscopy (SEM). UV-Vis. absorption shows a strong blue-shift along with photoluminescence emission. Fourier transform-infrared spectroscopy (FT-IR) and energy dispersive X-ray spectroscopy (EDX) also support the core-shell formation. Thermogravimetric analysis (TGA) shows good thermal stability and allows excellent detection of hydrogen peroxide and hydrazine. The cyclic voltammetry (CV) results show excellent electro-activation, indicating its promising potential in sensing of clinical and environmental analytes.

  20. Shell morphology of core-shell latexes based on conductive polymers

    NARCIS (Netherlands)

    Huijs, F.M; Vercauteren, F.F.; de Ruiter, B.; Kalicharan, D; Hadziioannou, G

    Core-shell latexes with a conductive shell can be used to prepare transparent conducting layers. We have focussed on the relation between the conducting polymer content and the shell morphology and on its influence on conductivity. At low polypyrrole (PPy) concentrations the shell has a smooth

  1. Peptide Microencapsulation by Core-Shell Printing Technology for Edible Film Application

    NARCIS (Netherlands)

    Blanco-Pascual, N.; Koldeweij, R.B.J.; Stevens, R.S.A.; Montero, M.P.; Gómez-Guillén, M.C.; Cate, A.T.T.

    2014-01-01

    This paper presents a new microencapsulation methodology for incorporation of functional ingredients in edible films. Core-shell microcapsules filled with demineralized water (C) or 1 % (w/v) peptide solution (Cp) were prepared using the microencapsulation printer technology. Shell material, compose

  2. Electrospun core-shell fibers for robust silicon nanoparticle-based lithium ion battery anodes.

    Science.gov (United States)

    Hwang, Tae Hoon; Lee, Yong Min; Kong, Byung-Seon; Seo, Jin-Seok; Choi, Jang Wook

    2012-02-01

    Because of its unprecedented theoretical capacity near 4000 mAh/g, which is approximately 10-fold larger compared to those of the current commercial graphite anodes, silicon has been the most promising anode for lithium ion batteries, particularly targeting large-scale energy storage applications including electrical vehicles and utility grids. Nevertheless, Si suffers from its short cycle life as well as the limitation for scalable electrode fabrication. Herein, we develop an electrospinning process to produce core-shell fiber electrodes using a dual nozzle in a scalable manner. In the core-shell fibers, commercially available nanoparticles in the core are wrapped by the carbon shell. The unique core-shell structure resolves various issues of Si anode operations, such as pulverization, vulnerable contacts between Si and carbon conductors, and an unstable sold-electrolyte interphase, thereby exhibiting outstanding cell performance: a gravimetric capacity as high as 1384 mAh/g, a 5 min discharging rate capability while retaining 721 mAh/g, and cycle life of 300 cycles with almost no capacity loss. The electrospun core-shell one-dimensional fibers suggest a new design principle for robust and scalable lithium battery electrodes suffering from volume expansion.

  3. Core-Shell-structured Dendritic Mesoporous Silica Nanoparticles for Combined Photodynamic Therapy and Antibody Delivery.

    Science.gov (United States)

    Abbaraju, Prasanna Lakshmi; Yang, Yannan; Yu, Meihua; Fu, Jianye; Xu, Chun; Yu, Chengzhong

    2017-07-04

    Multifunctional core-shell-structured dendritic mesoporous silica nanoparticles with a fullerene-doped silica core, a dendritic silica shell and large pores have been prepared. The combination of photodynamic therapy and antibody therapeutics significantly inhibits the cancer cell growth by effectively reducing the level of anti-apoptotic proteins. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Nonthermal Plasma Synthesis of Core/Shell Quantum Dots: Strained Ge/Si Nanocrystals.

    Science.gov (United States)

    Hunter, Katharine I; Held, Jacob T; Mkhoyan, K Andre; Kortshagen, Uwe R

    2017-03-08

    In this work, we present an all-gas-phase approach for the synthesis of quantum-confined core/shell nanocrystals (NCs) as a promising alternative to traditional solution-based methods. Spherical quantum dots (QDs) are grown using a single-stage flow-through nonthermal plasma, yielding monodisperse NCs, with a concentric core/shell structure confirmed by electron microscopy. The in-flight negative charging of the NCs by plasma electrons keeps the NC cores separated during shell growth. The success of this gas-phase approach is demonstrated here through the study of Ge/Si core/shell QDs. We find that the epitaxial growth of a Si shell on the Ge QD core compressively strains the Ge lattice and affords the ability to manipulate the Ge band structure by modulation of the core and shell dimensions. This all-gas-phase approach to core/shell QD synthesis offers an effective method to produce high-quality heterostructured NCs with control over the core and shell dimensions.

  5. High thermal stability of core-shell structures dominated by negative interface energy.

    Science.gov (United States)

    Zhu, Yong-Fu; Zhao, Ning; Jin, Bo; Zhao, Ming; Jiang, Qing

    2017-03-29

    Nanoscale core/shell structures are of interest in catalysis due to their superior catalytic properties. Here we investigated the thermal stability of the coherent core-shell structures in a thermodynamic way by considering the impact from the core with the bulk melting point Tm(∞) lower or higher than the shell. When a low-Tm(∞) core is adopted, core-shell melting induced by the melting depression of the core does not occur upon heating because of the superheating, although the melting depression of the core can be triggered ultimately by the preferential melting of the high-Tm(∞) shell for small cores. The superheating of the core is contributed by the negative solid-solid interface energy, while the depression is originated from the positive solid-liquid interface energy. Owing to the presence of the negative interface energy, moreover, the low-Tm(∞)-core structure possesses a low difference in thermal expansion between the core and the shell, high activation energy of outward atomic diffusion from the core to shell, and low heat capacity. This result is beneficial for the core-shell structure design for its application in catalysis.

  6. Controlled Release of Ciprofloxacin from Core-Shell Nanofibers with Monolithic or Blended Core.

    Science.gov (United States)

    Zupančič, Špela; Sinha-Ray, Sumit; Sinha-Ray, Suman; Kristl, Julijana; Yarin, Alexander L

    2016-04-04

    Sustained controlled drug release is one of the prominent contributions for more successful treatment outcomes in the case of several diseases. However, the incorporation of hydrophilic drugs into nanofibers, a promising novel delivery system, and achieving a long-term sustained release still pose a challenging task. In this work we demonstrated a robust method of avoiding burst release of drugs and achieving a sustained drug release from 2 to 4 weeks using core-shell nanofibers with poly(methyl methacrylate) (PMMA) shell and monolithic poly(vinyl alcohol) (PVA) core or a novel type of core-shell nanofibers with blended (PVA and PMMA) core loaded with ciprofloxacin hydrochloride (CIP). It is also shown that, for core-shell nanofibers with monolithic core, drug release can be manipulated by varying flow rate of the core PVA solution, whereas for core-shell nanofibers with blended core, drug release can be manipulated by varying the ratios between PMMA and PVA in the core. During coaxial electrospinning, when the solvent from the core evaporates in concert with the solvent from the shell, the interconnected pores spanning the core and the shell are formed. The release process is found to be desorption-limited and agrees with the two-stage desorption model. Ciprofloxacin-loaded nanofiber mats developed in the present work could be potentially used as local drug delivery systems for treatment of several medical conditions, including periodontal disease and skin, bone, and joint infections.

  7. Hydrothermal synthesis of core-shell TiO2 to enhance the photocatalytic hydrogen evolution

    Science.gov (United States)

    Jiang, Jinghui; Zhou, Han; Zhang, Fan; Fan, Tongxiang; Zhang, Di

    2016-04-01

    A hydrothermal approach was designed to synthesize core-shell TiO2 with interior cavity by making sodium dodecyl sulfonate (SDS) as the surfactant and the mixture of water and ethanol as the solvent. The control experiment of solvent reveals ethanol and water are responsible for the formation of sphere and interior cavity, respectively. Besides, SDS can assist the growth of core-shell structure, and the sizes of sphere and interior cavity can be tuned by regulating the reaction time or temperature. UV-vis absorption proves core-shell structure with interior cavity can increase the absorption of incident light to enhance the optical activity of final product. The calculated bandgap and photoluminescence (PL) analyses reveal the coexistence of rutile in final product can optimize the bandgap to 3.03 eV and delay the charge recombination. As a result, an effective photocatalytic hydrogen evolution under full spectrum irradiation can be harvested by the as-synthesized core-shell spheres to reach a quantum yield, approximately 9.57% at 340 nm wavelength.

  8. Doping GaP core-shell nanowire pn-junctions

    DEFF Research Database (Denmark)

    Yazdi, Sadegh; Berg, Alexander; Borgström, Magnus T.

    2015-01-01

    The doping process in GaP core-shell nanowire pn-junctions using different precursors is evaluated by mapping the nanowires' electrostatic potential distribution by means of off-axis electron holography. Three precursors, triethyltin (TESn), ditertiarybutylselenide, and silane are investigated fo...

  9. Morphology and film formation of poly(butyl methacrylate)-polypyrrole core-shell latex particles

    NARCIS (Netherlands)

    Huijs, F; Lang, J

    2000-01-01

    Core-shell latex particles made of a poly(butyl methacrylate) (PBMA) core and a thin polypyrrole (PPy) shell were synthesized by two-stage polymerization. In the first stage, PBMA latex particles were synthesized in a semicontinuous process by free-radical polymerization. PBMA latex particles were l

  10. Near-infrared photocatalysis based on YF3 : Yb3+,Tm3+/TiO2 core/shell nanoparticles.

    Science.gov (United States)

    Qin, Weiping; Zhang, Daisheng; Zhao, Dan; Wang, Lili; Zheng, Kezhi

    2010-04-07

    We report the novel near-infrared (NIR) photocatalysis of YF(3) : Yb(3+),Tm(3+)/TiO(2) core/shell nanoparticles. The core/shell nanoparticles show photocatalytic activity under the NIR irradiation. This study demonstrates that the NIR energy can be used as the driving source for photocatalysis besides the UV and visible energy.

  11. Shape-controlled synthesis of Au@Pd core-shell nanoparticles and their corresponding electrochemical properties

    KAUST Repository

    Song, Hyon Min

    2012-01-01

    The shape-controlled synthesis of Au@Pd core-shell nanoparticles (NPs) was successfully achieved through the emulsion phase generated during the phase transfer from organic to aqueous medium. Contrary to conventional epitaxial growth for obtaining core-shell structures, this method does not require high temperatures and does not have shape restrictions. © 2012 The Royal Society of Chemistry.

  12. Dynamically controlled one-pot synthesis of heterogeneous core-shell MOF single crystals using guest molecules.

    Science.gov (United States)

    Wang, Lei; Yang, Weiting; Li, Yangxue; Xie, Zhigang; Zhu, Wei; Sun, Zhong-Ming

    2014-10-11

    A new mixed guest approach for the synthesis of heterogeneous core-shell MOF crystals was exemplified by one-pot assembly of photoactive guests into an anionic host framework. The formation mechanism, photophysical properties and oxygen gas sensing properties of as-synthesized core-shell MOF crystals were also investigated.

  13. In situ fabrication of a perfect Pd/ZnO@ZIF-8 core-shell microsphere as an efficient catalyst by a ZnO support-induced ZIF-8 growth strategy

    Science.gov (United States)

    Lin, Lu; Zhang, Tong; Liu, Haiou; Qiu, Jieshan; Zhang, Xiongfu

    2015-04-01

    Controllable encapsulation of nanoparticles with metal organic frameworks (MOFs) has been an efficient way to impart the unique chemical and physical properties of the nanoparticles to metal organic frameworks and create new types of multifunctional MOF core-shell materials with enhanced properties. Here, a novel ZnO support-induced encapsulation strategy is reported to efficiently fabricate a Pd/ZnO@ZIF-8 core-shell catalyst, with Pd/ZnO as the core and ZIF-8 as the shell. The novel synthesis procedure involves first loading Pd nanoparticles onto the surface of the ZnO microsphere to form a Pd/ZnO core and then coating the core with a layer of defect-free ZIF-8 shell via ZnO-induced in situ ZIF-8 growth to obtain the Pd/ZnO@ZIF-8 core-shell catalyst. It was crucial that the ZIF-8 was in situ formed from the ZnO core in an ethanol solution only containing 2-methylimidazole under mild conditions. This strategy allowed for the growth of ZIF-8 right on the surface of Pd/ZnO via the reaction between ZnO and the 2-methylimidazole ligands, and thus avoided the random deposition of ZIF-8 crystals on the Pd/ZnO core as in the case of the conventional ZIF-8 synthesis solution. Furthermore, use of ethanol as the solvent also favored achievement of the well-defined Pd/ZnO@ZIF-8 structure, since the ethanol solution of 2-methylimidazole was able to keep the balance between ZnO dissolution and ZIF-8 formation. The as-prepared Pd/ZnO@ZIF-8 core-shell microsphere as an efficient catalyst displayed excellent performance in terms of size-selectivity, stability and anti-poisoning in the liquid hydrogenations of alkenes.

  14. Glucose Sensors Based on Core@Shell Magnetic Nanomaterials and Their Application in Diabetes Management: A Review.

    Science.gov (United States)

    Liu, Lin; Lv, Hongying; Teng, Zhenyuan; Wang, Chengyin; Wang, Guoxiu

    2015-01-01

    This review presents a comprehensive attempt to conclude and discuss various glucose biosensors based on core@shell magnetic nanomaterials. Owing to good biocompatibility and stability, the core@shell magnetic nanomaterials have found widespread applications in many fields and draw extensive attention. Most magnetic nanoparticles possess an intrinsic enzyme mimetic activity like natural peroxidases, which invests magnetic nanomaterials with great potential in the construction of glucose sensors. We summarize the synthesis of core@shell magnetic nanomaterials, fundamental theory of glucose sensor and the advances in glucose sensors based on core@shell magnetic nanomaterials. The aim of the review is to provide an overview of the exploitation of the core@shell magnetic nanomaterials for glucose sensors construction.

  15. Synthesis and properties MFe2O4 (M = Fe, Co) nanoparticles and core-shell structures

    Science.gov (United States)

    Yelenich, O. V.; Solopan, S. O.; Greneche, J. M.; Belous, A. G.

    2015-08-01

    Individual Fe3-xO4 and CoFe2O4 nanoparticles, as well as Fe3-xO4/CoFe2O4 core/shell structures were synthesized by the method of co-precipitation from diethylene glycol solutions. Core/shell structure were synthesized with CoFe2O4-shell thickness of 1.0, 2.5 and 3.5 nm. X-ray diffraction patterns of individual nanoparticles and core/shell are similar and indicate that all synthesized samples have a cubic spinel structure. Compares Mössbauer studies of CoFe2O4, Fe3-xO4 nanoparticles indicate superparamagnetic properties at 300 K. It was shown that individual magnetite nanoparticles are transformed into maghemite through oxidation during the synthesis procedure, wherein the smallest nanoparticles are completely oxidized while a magnetite core does occur in the case of the largest nanoparticles. The Mössbauer spectra of core/shell nanoparticles with increasing CoFe2O4-shell thickness show a gradual decrease in the relative intensity of the quadrupole doublet and significant decrease of the mean isomer shift value at both RT and 77 K indicating a decrease of the superparamagnetic relaxation phenomena. Specific loss power for the prepared ferrofluids was experimentally calculated and it was determined that under influence of ac-magnetic field magnetic fluid based on individual CoFe2O4 and Fe3-xO4 particles are characterized by very low heating temperature, when magnetic fluids based on core/shell nanoparticles demonstrate higher heating effect.

  16. Development of core-shell coaxially electrospun composite PCL/chitosan scaffolds.

    Science.gov (United States)

    Surucu, Seda; Turkoglu Sasmazel, Hilal

    2016-11-01

    This study was related to combining of synthetic Poly (ε-caprolactone) (PCL) and natural chitosan polymers to develop three dimensional (3D) PCL/chitosan core-shell scaffolds for tissue engineering applications. The scaffolds were fabricated with coaxial electrospinning technique and the characterizations of the samples were done by thickness and contact angle (CA) measurements, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-Ray Photoelectron Spectroscopy (XPS) analyses, mechanical and PBS absorption and shrinkage tests. The average inter-fiber diameter values were calculated for PCL (0.717±0.001μm), chitosan (0.660±0.007μm) and PCL/chitosan core-shell scaffolds (0.412±0.003μm), also the average inter-fiber pore size values exhibited decreases of 66.91% and 61.90% for the PCL and chitosan scaffolds respectively, compared to PCL/chitosan core-shell ones. XPS analysis of the PCL/chitosan core-shell structures exhibited the characteristic peaks of PCL and chitosan polymers. The cell culture studies (MTT assay, Confocal Laser Scanning Microscope (CLSM) and SEM analyses) carried out with L929 ATCC CCL-1 mouse fibroblast cell line proved that the biocompatibility performance of the scaffolds. The obtained results showed that the created micro/nano fibrous structure of the PCL/chitosan core-shell scaffolds in this study increased the cell viability and proliferation on/within scaffolds. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. 2D analysis of polydisperse core-shell nanoparticles using analytical ultracentrifugation.

    Science.gov (United States)

    Walter, Johannes; Gorbet, Gary; Akdas, Tugce; Segets, Doris; Demeler, Borries; Peukert, Wolfgang

    2016-12-19

    Accurate knowledge of the size, density and composition of nanoparticles (NPs) is of major importance for their applications. In this work the hydrodynamic characterization of polydisperse core-shell NPs by means of analytical ultracentrifugation (AUC) is addressed. AUC is one of the most accurate techniques for the characterization of NPs in the liquid phase because it can resolve particle size distributions (PSDs) with unrivaled resolution and detail. Small NPs have to be considered as core-shell systems when dispersed in a liquid since a solvation layer and a stabilizer shell will significantly contribute to the particle's hydrodynamic diameter and effective density. AUC measures the sedimentation and diffusion transport of the analytes, which are affected by the core-shell compositional properties. This work demonstrates that polydisperse and thus widely distributed NPs pose significant challenges for current state-of-the-art data evaluation methods. The existing methods either have insufficient resolution or do not correctly reproduce the core-shell properties. First, we investigate the performance of different data evaluation models by means of simulated data. Then, we propose a new methodology to address the core-shell properties of NPs. This method is based on the parametrically constrained spectrum analysis and offers complete access to the size and effective density of polydisperse NPs. Our study is complemented using experimental data derived for ZnO and CuInS2 NPs, which do not have a monodisperse PSD. For the first time, the size and effective density of such structures could be resolved with high resolution by means of a two-dimensional AUC analysis approach.

  18. Lithography-free shell-substrate isolation for core-shell GaAs nanowires.

    Science.gov (United States)

    Haggren, Tuomas; Perros, Alexander Pyymaki; Jiang, Hua; Huhtio, Teppo; Kakko, Joona-Pekko; Dhaka, Veer; Kauppinen, Esko; Lipsanen, Harri

    2016-07-08

    A facile and scalable lithography-free technique(5) for the rapid construction of GaAs core-shell nanowires incorporating shell isolation from the substrate is reported. The process is based on interrupting NW growth and applying a thin spin-on-glass (SOG) layer to the base of the NWs and resuming core-shell NW growth. NW growth occurred in an atmospheric pressure metalorganic vapour phase epitaxy (MOVPE) system with gold nanoparticles used as catalysts for the vapour-liquid-solid growth. It is shown that NW axial core growth and radial shell growth can be resumed after interruption and even exposure to air. The SOG residues and native oxide layer that forms on the NW surface are shown to prevent or perturb resumption of epitaxial NW growth if not removed. Both HF etching and in situ annealing of the air-exposed NWs in the MOVPE were shown to remove the SOG residues and native oxide layer. While both procedures are shown capable of removing the native oxide and enabling resumption of epitaxial NW growth, in situ annealing produced the best results and allowed construction of pristine core-shell NWs. No growth occurred on SOG and it was observed that axial NW growth was more rapid when a SOG layer covered the substrate. The fabricated p-core/n-shell NWs exhibited diode behaviour upon electrical testing. The isolation of the NW shells from the substrate was confirmed by scanning electron microscopy and electrical measurements. The crystal quality of the regrown core-shell NWs was verified with a high resolution transmission electron microscope. The reported technique potentially provides a pathway using MOVPE for scalable and high-throughput production of shell-substrate isolated core-shell NWs on an industrial scale.

  19. Chitosan-functionalised poly(2-hydroxyethyl methacrylate) core-shell microgels as drug delivery carriers: salicylic acid loading and release.

    Science.gov (United States)

    Mahattanadul, Natshisa; Sunintaboon, Panya; Sirithip, Piyawan; Tuchinda, Patoomratana

    2016-09-01

    This work presents the evaluation of chitosan-functionalised poly(2-hydroxyethyl methacrylate) (CS/PHEMA) core-shell microgels as drug delivery carriers. CS/PHEMA microgels were prepared by emulsifier-free emulsion polymerisation with N,N '-methylenebisacrylamide (MBA) as a crosslinker. The study on drug loading, using salicylic acid (SA) as a model drug, was performed. The results showed that the encapsulation efficiency (EE) increased as drug-to-microgel ratio was increased. Higher EE can be achieved with the increase in degree of crosslinking, by increasing the amount of MBA from 0.01 g to 0.03 g. In addition, the highest EE (61.1%) was observed at pH 3. The highest release of SA (60%) was noticed at pH 2.4, while the lowest one (49.4%) was obtained at pH 7.4. Moreover, the highest release of SA was enhanced by the presence of 0.2 M NaCl. The pH- and ionic-sensitivity of CS/PHEMA could be useful as a sustained release delivery device, especially for oral delivery.

  20. Synthesis and magnetic properties of carbon-coated Ni/SiO2 core/shell nanocomposites

    Institute of Scientific and Technical Information of China (English)

    AU; ChakTong

    2009-01-01

    A simple method for the synthesis of carbon-coated Ni/SiO2 core/shell nanocomposites is reported. The Ni nanoparticles were coated with silica layers via a combined procedure of sol-gel fabrication and hydrogen reduction prior to carbon coating via acetylene decomposition at an appropriate temperature. It was found that the anti-acid ability of the Ni/SiO2 composites was greatly enhanced after carbon coating. The results of magnetization measurement show that the real part (μ′) of complex permeability of the as-obtained sample is almost independent of frequency, and the imaginary part (μ″) stays small up to a frequency of 1 GHz. The encapsulation of Ni particles with SiO2 results in the rise of Ni nanoparticles resistivity. The outcome is the reduction in effect of eddy current at high frequency, making the real part μ′ almost constant and the imaginary part μ″ very small. Thus, this simple method may be effective for preparing composites of soft magnetic properties, especially in the high-frequency range.

  1. Synthesis and magnetic properties of carbon-coated Ni/SiO2 core/shell nanocomposites

    Institute of Scientific and Technical Information of China (English)

    TANG NuJiang; L(U) LiYa; ZHONG Wei; AU ChakTong; DU YouWei

    2009-01-01

    A simple method for the synthesis of carbon-coated Ni/Si02 core/shell nanocomposites is reported. The Ni nanoparticles were coated with silica layers via a combined procedure of sol-gel fabrication and hydrogen reduction prior to carbon coating via acetylene decomposition at an appropriate temperature. It was found that the anti-acid ability of the Ni/SiO2 composites was greatly enhanced after carbon coating. The results of magnetization measurement show that the real part (μ') of complex permeability of the as-obtained sample is almost independent of frequency, and the imaginary part (μ") stays small up to a frequency of 1 GHz. The encapsulation of Ni particles with SiO2 results in the rise of Ni nanoparticles resistivity. The outcome is the reduction in effect of eddy current at high frequency, making the real part μ' almost constant and the imaginary part μ" very small. Thus, this simple method may be effective for preparing composites of soft magnetic properties, especially in the high-frequency range.

  2. Fabrication of Core-Shell Structural SiO2@H3[PM12O40] Material and Its Catalytic Activity

    Directory of Open Access Journals (Sweden)

    Xin Yang

    2014-01-01

    Full Text Available Through a natural tree grain template and sol-gel technology, the heterogeneous catalytic materials based on polyoxometalate compounds H3[PM12O40] encapsulating SiO2: SiO2@H3[PM12O40] (SiO2@PM12, M = W, Mo with core-shell structure had been prepared. The structure and morphology of the core-shell microspheres were characterized by the XRD, IR spectroscopy, UV-Vis absorbance, and SEM. These microsphere materials can be used as heterogeneous catalysts with high activity and stability for catalytic wet air oxidation of pollutant dyes safranine T (ST at room condition. The results show that the catalysts have excellent catalytic activity in treatment of wastewater containing 10 mg/L ST, and 94% of color can be removed within 60 min. Under different cycling runs, it is shown that the catalysts are stable under such operating conditions and the leaching tests show negligible leaching effect owing to the lesser dissolution.

  3. DESIGN AND CONTROL OF SOAP-FREE HYDROPHILIC-HYDROPHOBIC CORE-SHELL LATEX PARTICLES WITH HIGH CARBOXYL CONTENT IN THE CORE OF THE PARTICLES

    Institute of Scientific and Technical Information of China (English)

    Wen-jiao Ji; Yi-ming Jiang; Bo-tian Li; Wei Deng; Cheng-you Kan

    2012-01-01

    Soap-free hydrophilic-hydrophobic core-shell latex particles with high carboxyl content in the core of the particles were synthesized via the seeded emulsion polymerization using methyl methacrylate (MMA),butyl acrylate (BA),methacrylic acid (MAA),styrene (St) and ethylene glycol dimethacrylate (EGDMA) as monomers,and the influences of MMA content used in the core preparation on polymerization,particle size and morphology were investigated by transmission electron microscopy,dynamic light scattering and conductometric titration.The results showed that the seeded emulsion polymerization could be carried out smoothly using "starved monomer feeding process" when MAA content in the core preparation was equal to or less than 24 wt%,and the encapsulating efficiency of the hydrophilic P(MMA-BA-MAA-EGDMA) core with the hydrophobic PSt shell decreased with the increase in MAA content.When an interlayer of P(MMA-MAA-St) with moderate polarity was inserted between the P(MMA-BA-MAA-EGDMA) core and the PSt shell,well designed soap-free hydrophilic-hydrophobic core-shell latex particles with 24 wt% MAA content in the core preparation were obtained.

  4. Core-shell-structured silica/polyacrylate particles prepared by Pickering emulsion: influence of the nucleation model on particle interfacial organization and emulsion stability.

    Science.gov (United States)

    Ji, Jing; Shu, Shi; Wang, Feng; Li, Zhilin; Liu, Jingjun; Song, Ye; Jia, Yi

    2014-01-01

    This work reports a new evidence of the versatility of silica sol as a stabilizer for Pickering emulsions. The organization of silica particles at the oil-water interface is a function of the nucleation model. The present results show that nucleation model, together with monomer hydrophobicity, can be used as a trigger to modify the packing density of silica particles at the oil-water interface: Less hydrophobic methylmethacrylate, more wettable with silica particles, favors the formation of core-shell-structured composite when the composite particles are prepared by miniemulsion polymerization in which monomers are fed in batch (droplet nucleation). By contrast, hydrophobic butylacrylate promotes the encapsulating efficiency of silica when monomers are fed dropwise (homogeneous nucleation). The morphologies of polyacrylate-nano-SiO2 composites prepared from different feed ratio of methylmethacrylate/butylacrylate (with different hydrophobicity) and by different feed processes are characterized by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) techniques. The results from SEM and TEM show that the morphologies of the as-prepared polyacrylate/nano-SiO2 composite can be a core-shell structure or a bare acrylic sphere. The stability of resulting emulsions composed of these composite particles is strongly dependent on the surface coverage of silica particles. The emulsion stability is improved by densely silica-packed composite particles.

  5. Aligned ZnO/CdTe core-shell nanocable arrays on indium tin oxide: synthesis and photoelectrochemical properties.

    Science.gov (United States)

    Wang, Xina; Zhu, Haojun; Xu, Yeming; Wang, Hao; Tao, Yin; Hark, Suikong; Xiao, Xudong; Li, Quan

    2010-06-22

    Vertically aligned ZnO/CdTe core-shell nanocable arrays-on-indium tin oxide (ITO) are fabricated by electrochemical deposition of CdTe on ZnO nanorod arrays in an electrolyte close to neutral pH. By adjusting the total charge quantity applied during deposition, the CdTe shell thickness can be tuned from several tens to hundreds of nanometers. The CdTe shell, which has a zinc-blende structure, is very dense and uniform both radially and along the axial direction of the nanocables, and forms an intact interface with the wurtzite ZnO nanorod core. The absorption of the CdTe shell above its band gap ( approximately 1.5 eV) and the type II band alignment between the CdTe shell and the ZnO core, respectively, demonstrated by absorption and photoluminescence measurements, make a nanocable array-on-ITO architecture a promising photoelectrode with excellent photovoltaic properties for solar energy applications. A photocurrent density of approximately 5.9 mA/cm(2) has been obtained under visible light illumination of 100 mW cm(-2) with zero bias potential (vs saturated calomel electrode). The neutral electrodeposition method can be generally used for plating CdTe on nanostructures made of different materials, which would be of interest in various applications.

  6. Structural changes in quantum dots core-shell CdSe/ZnS by thermal treatment and proton irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, L.G.; Sortica, M.A.; Grande, P.L.; Debastiani, R.; Dias, J.F.; Hentz, A. [Universidade Federal do Rio Grande do Sul (IF/UFRGS), Porto Alegre, RS (Brazil). Instituto de Fisica; Radtke, C. [Universidade Federal do Rio Grande do Sul (IQ/UFRGS), Porto Alegre, RS (Brazil). Instituto de Quimica

    2013-07-01

    Full text: Compound quantum-dots (QDs) are promising materials used in many fields of technological development. In spite of that, the accurate knowledge of their compositional depth-profiling is still a technological challenge. Recently, we used the MEIS (medium energy ion-scattering) technique, combined with PIXE and RBS (Rutherford backscattering spectrometry) to characterize core-shell nanostructures of CdSe/ZnS [1]. In this work, we use the same characterization methods to survey the changes of elemental distribution in the the core and shell regions of these QDs, when submitted to a range of thermal treatments and proton irradiation conditions. Our preliminary results show that for temperatures below the melting point of the bulk CdSe compound, there is already a decrease in the amount of cadmium, accompanied by an overall decrease in the diameter of the CdSe QD nuclei. [1] M. A. Sortica, P. L. Grande, C. Radtke, L. Almeida, R. Debastiani, J. F. Dias, A. Hentz, Applied Physics Letters, 101 (2012)023110. (author)

  7. Influence of photo-luminescent CdSe/CdS core shell quantum dots in solar cell efficiency

    Science.gov (United States)

    Lopez-Delgado, R.; Zhou, Y.; Zazueta-Raynaud, A.; Zhao, H.; Pelayo, J. E.; Vomiero, A.; Álvarez-Ramos, M. E.; Rosei, F.; Ayon, A.

    2016-11-01

    We report the synthesis and characterization of CdSe/CdS core-shell quantum dots (CdSe/CdS-QDs) that exhibit absorption in the UV range of the solar spectrum and emit photons with wavelengths centered around 625 nm, a wavelength that is well suited for silicon absorption and electron-hole pair generation. We also report the fabrication and characterization of single crystal silicon (c-Si) solar cells with and without the aforementioned photo luminescent, down-shifting CdSe/CdS- QDs. The incorporation of these nanostructures triggered improvements in the performance of the devices, particularly in the open circuit voltage (Voc) and short circuit current density (Jsc) for which the measured values showed an increase from 543 to 546 mV and from 32.5 to 37.0 mA/cm2, respectively. The combined effect of the improved values led to an increment in the power conversion efficiency (PCE) from 12.01 to 13.54%. This increase represents a 12.7% improvement in the PCE of the fabricated devices. The effort described herein is considered a good fit to the generalized trend to improve the efficiency of solar cells with mass-compatible techniques that could serve to promote their widespread utilization.

  8. Diverse Melting Modes and Structural Collapse of Hollow Bimetallic Core-Shell Nanoparticles: A Perspective from Molecular Dynamics Simulations

    Science.gov (United States)

    Huang, Rao; Shao, Gui-Fang; Zeng, Xiang-Ming; Wen, Yu-Hua

    2014-11-01

    Introducing hollow structures into metallic nanoparticles has become a promising route to improve their catalytic performances. A fundamental understanding of thermal stability of these novel nanostructures is of significance for their syntheses and applications. In this article, molecular dynamics simulations have been employed to offer insights into the thermodynamic evolution of hollow bimetallic core-shell nanoparticles. Our investigation reveals that for hollow Pt-core/Au-shell nanoparticle, premelting originates at the exterior surface, and a typical two-stage melting behavior is exhibited, similar to the solid ones. However, since the interior surface provides facilitation for the premelting initiating at the core, the two-stage melting is also observed in hollow Au-core/Pt-shell nanoparticle, remarkably different from the solid one. Furthermore, the collapse of hollow structure is accompanied with the overall melting of the hollow Pt-core/Au-shell nanoparticle while it occurs prior to that of the hollow Au-core/Pt-shell nanoparticle and leads to the formation of a liquid-core/solid-shell structure, although both of them finally transform into a mixing alloy with Au-dominated surface. Additionally, the existence of stacking faults in the hollow Pt-core/Au-shell nanoparticle distinctly lowers its melting point. This study could be of great importance to the design and development of novel nanocatalysts with both high activity and excellent stability.

  9. SiC@Si core-shell nanowires on carbon paper as a hybrid anode for lithium-ion batteries

    Science.gov (United States)

    Wang, Wei; Wang, Yewu; Gu, Lin; Lu, Ren; Qian, Haolei; Peng, Xinsheng; Sha, Jian

    2015-10-01

    Silicon has been considered as one of the most promising anode materials for the next generation lithium-ion battery due to its high theoretical capacity, but large volume changes during the electrochemical cycling limit its commercial application. In this study, we report the synthesis of silicon carbide @ silicon core-shell nanowires on carbon paper and their application in lithium-ion batteries. The hybrid nano-structures are fabricated via a two-step chemical vapor deposition method and directly used as the working electrode without any additional binder, exhibiting high specific capacity, high coulombic efficiency and good cycling stability. After 50 cycles, the discharge capacities still remain 2837 and 1809 mAh g-1 at the rates of 0.1C and 0.5C, respectively. Furthermore, we also study the influence of the growth time of SiC NWs and the thickness of Si film on the lithium-ion batteries' performance, and propose the possible method to further improve the battery performance.

  10. Diverse Melting Modes and Structural Collapse of Hollow Bimetallic Core-Shell Nanoparticles: A Perspective from Molecular Dynamics Simulations

    Science.gov (United States)

    Huang, Rao; Shao, Gui-Fang; Zeng, Xiang-Ming; Wen, Yu-Hua

    2014-01-01

    Introducing hollow structures into metallic nanoparticles has become a promising route to improve their catalytic performances. A fundamental understanding of thermal stability of these novel nanostructures is of significance for their syntheses and applications. In this article, molecular dynamics simulations have been employed to offer insights into the thermodynamic evolution of hollow bimetallic core-shell nanoparticles. Our investigation reveals that for hollow Pt-core/Au-shell nanoparticle, premelting originates at the exterior surface, and a typical two-stage melting behavior is exhibited, similar to the solid ones. However, since the interior surface provides facilitation for the premelting initiating at the core, the two-stage melting is also observed in hollow Au-core/Pt-shell nanoparticle, remarkably different from the solid one. Furthermore, the collapse of hollow structure is accompanied with the overall melting of the hollow Pt-core/Au-shell nanoparticle while it occurs prior to that of the hollow Au-core/Pt-shell nanoparticle and leads to the formation of a liquid-core/solid-shell structure, although both of them finally transform into a mixing alloy with Au-dominated surface. Additionally, the existence of stacking faults in the hollow Pt-core/Au-shell nanoparticle distinctly lowers its melting point. This study could be of great importance to the design and development of novel nanocatalysts with both high activity and excellent stability. PMID:25394424

  11. Core/shell CdS/ZnS nanoparticles: Molecular modelling and characterization by photocatalytic decomposition of Methylene Blue

    Science.gov (United States)

    Praus, Petr; Svoboda, Ladislav; Tokarský, Jonáš; Hospodková, Alice; Klemm, Volker

    2014-02-01

    Core/shell CdS/ZnS nanoparticles were modelled in the Material Studio environment and synthesized by one-pot procedure. The core CdS radius size and thickness of the ZnS shell composed of 1-3 ZnS monolayers were predicted from the molecular models. From UV-vis absorption spectra of the CdS/ZnS colloid dispersions transition energies of CdS and ZnS nanostructures were calculated. They indicated penetration of electrons and holes from the CdS core into the ZnS shell and relaxation strain in the ZnS shell structure. The transitions energies were used for calculation of the CdS core radius by the Schrödinger equation. Both the relaxation strain in ZnS shells and the size of the CdS core radius were predicted by the molecular modelling. The ZnS shell thickness and a degree of the CdS core coverage were characterized by the photocatalytic decomposition of Methylene Blue (MB) using CdS/ZnS nanoparticles as photocatalysts. The observed kinetic constants of the MB photodecomposition (kobs) were evaluated and a relationship between kobs and the ZnS shell thickness was derived. Regression results revealed that 86% of the CdS core surface was covered with ZnS and the average thickness of ZnS shell was about 12% higher than that predicted by molecular modelling.

  12. New insights into micro/nanoscale combined probes (nanoAuger, μXPS) to characterize Ag/Au@SiO2 core-shell assemblies.

    Science.gov (United States)

    Ledeuil, J B; Uhart, A; Soulé, S; Allouche, J; Dupin, J C; Martinez, H

    2014-10-01

    This work has examined the elemental distribution and local morphology at the nanoscale of core@shell Ag/Au@SiO2 particles. The characterization of such complex metal/insulator materials becomes more efficient when using an initial cross-section method of preparation of the core@shell nanoparticles (ion milling cross polisher). The originality of this route of preparation allows one to obtain undamaged, well-defined and planar layers of cross-cut nano-objects. Once combined with high-resolution techniques of characterization (XPS, Auger and SEM), the process appears as a powerful way to minimize charging effects and enhance the outcoming electron signal (potentially affected by the topography of the material) during analysis. SEM experiments have unambiguously revealed the hollow-morphology of the metal core, while Auger spectroscopy observations showed chemical heterogeneity within the particles (as silver and gold are randomly found in the core ring). To our knowledge, this is the first time that Auger nano probe spectroscopy has been used and successfully optimized for the study of some complex metal/inorganic interfaces at such a high degree of resolution (≈12 nm). Complementarily, XPS Au 4f and Ag 3d peaks were finally detected attesting the possibility of access to the whole chemistry of such nanostructured assemblies.

  13. Bio-Inspired/-Functional Colloidal Core-Shell Polymeric-Based NanoSystems: Technology Promise in Tissue Engineering, Bioimaging and NanoMedicine

    Directory of Open Access Journals (Sweden)

    Ziyad S. Haidar

    2010-09-01

    Full Text Available Modern breakthroughs in the fields of proteomics and DNA micro-arrays have widened the horizons of nanotechnology for applications with peptides and nucleic acids. Hence, biomimetic interest in the study and formulation of nanoscaled bio-structures, -materials, -devices and -therapeutic agent delivery vehicles has been recently increasing. Many of the currently–investigated functionalized bio-nanosystems draw their inspiration from naturally-occurring phenomenon, prompting the integration of molecular signals and mimicking natural processes, at the cell, tissue and organ levels. Technologically, the ability to obtain spherical nanostructures exhibiting combinations of several properties that neither individual material possesses on its own renders colloidal core-shell architectured nanosystems particularly attractive. The three main developments presently foreseen in the nanomedicine sub-arena of nanobiotechnology are: sensorization (biosensors/ biodetection, diagnosis (biomarkers/bioimaging and drug, protein or gene delivery (systemic vs. localized/targeted controlled–release systems. Advances in bio-applications such as cell-labelling/cell membrane modelling, agent delivery and targeting, tissue engineering, organ regeneration, nanoncology and immunoassay strategies, along the major limitations and potential future and advances are highlighted in this review. Herein, is an attempt to address some of the most recent works focusing on bio-inspired and -functional polymeric-based core-shell nanoparticulate systems aimed for agent delivery. It is founded, mostly, on specialized research and review articles that have emerged during the last ten years.

  14. Facile Synthesis of Core/Shell-like NiCo2O4-Decorated MWCNTs and its Excellent Electrocatalytic Activity for Methanol Oxidation

    Science.gov (United States)

    Ko, Tae-Hoon; Devarayan, Kesavan; Seo, Min-Kang; Kim, Hak-Yong; Kim, Byoung-Suhk

    2016-02-01

    The design and development of an economic and highly active non-precious electrocatalyst for methanol electrooxidation is challenging due to expensiveness of the precursors as well as processes and non-ecofriendliness. In this study, a facile preparation of core-shell-like NiCo2O4 decorated MWCNTs based on a dry synthesis technique was proposed. The synthesized NiCo2O4/MWCNTs were characterized by infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and selected area energy dispersive spectrum. The bimetal oxide nanoparticles with an average size of 6 ± 2 nm were homogeneously distributed onto the surface of the MWCNTs to form a core-shell-like nanostructure. The NiCo2O4/MWCNTs exhibited excellent electrocatalytic activity for the oxidation of methanol in an alkaline solution. The NiCo2O4/MWCNTs exhibited remarkably higher current density of 327 mA/cm2 and a lower onset potential of 0.128 V in 1.0 M KOH with as high as 5.0 M methanol. The impressive electrocatalytic activity of the NiCo2O4/MWCNTs is promising for development of direct methanol fuel cell based on non-Pt catalysts.

  15. Core-shell yolk-shell Si@C@Void@C nanohybrids as advanced lithium ion battery anodes with good electronic conductivity and corrosion resistance

    Science.gov (United States)

    Xie, Jian; Tong, Liang; Su, Liwei; Xu, Yawei; Wang, Lianbang; Wang, Yuanhao

    2017-02-01

    Yolk-shell Si@void@C nanostructure has greatly improved the low Li+/electron conductivity and buffered the huge volume variation of Si, whereas the surface corrosion and passivation of the Si yolks in electrolytes still limit the lithium storage capability. Herein, core-shell yolk-shell Si@C@void@C nanohybrids were proposed and successfully prepared for the first time. Compared with Si@void@C, the newly-proposed structure introduced core-shell Si@C nanoparticles as the yolks instead. Such extra carbon shell can not only decrease the electrical resistance between Si yolks and hollow carbon shells but also effectively protect Si yolks from electrolyte corrosion, i.e., the formation of Li2SiF6 layers on Si surface confirmed by X-ray diffraction and transmission electron microscopy. As a result, the Si@C@void@C electrodes exhibited remarkably enhanced reversible capacity, cycling stability (∼1366 mA h g-1 after 50 cycles at 500 mA g-1, with a capacity retention of ∼71% with respect to the initial reversible capacity of 1910 mAh g-1 at 100 mA g-1), and rate performance (with a capacity retention of ∼60% at 4000 mA g-1). This work shows the paramount role of the inner carbon shell of Si@C@void@C in limiting the electrolyte corrosion and probably improving the electronic conductivity.

  16. Pulsed laser deposited porous nano-carpets of indium tin oxide and their use as charge collectors in core-shell structures for dye sensitized solar cells.

    Science.gov (United States)

    Garvey, Timothy R; Farnum, Byron H; Lopez, Rene

    2015-02-14

    Porous In2O3:Sn (ITO) films resembling from brush carpets to open moss-like discrete nanostructures were grown by pulsed laser deposition under low to high background gas pressures, respectively. The charge transport properties of these mesoporous substrates were probed by pulsed laser photo-current and -voltage transient measurements in N719 dye sensitized devices. Although the cyclic voltammetry and dye adsorption measurements suggest a lower proportion of electro-active dye molecules for films deposited at the high-end background gas pressures, the transient measurements indicate similar electron transport rates within the films. Solar cell operation was achieved by the deposition of a conformal TiO2 shell layer by atomic layer deposition (ALD). Much of the device improvement was shown to be due to the TiO2 shell blocking the recombination of photoelectrons with the electrolyte as recombination lifetimes increased drastically from a few seconds in uncoated ITO to over 50 minutes in the ITO with a TiO2 shell layer. Additionally, an order of magnitude increase in the electron transport rate in ITO/TiO2 (core/shell) films was observed, giving the core-shell structure a superior ratio of recombination/transport times.

  17. A Core-Shell Fe/Fe2 O3 Nanowire as a High-Performance Anode Material for Lithium-Ion Batteries.

    Science.gov (United States)

    Na, Zhaolin; Huang, Gang; Liang, Fei; Yin, Dongming; Wang, Limin

    2016-08-16

    The preparation of novel one-dimensional core-shell Fe/Fe2 O3 nanowires as anodes for high-performance lithium-ion batteries (LIBs) is reported. The nanowires are prepared in a facile synthetic process in aqueous solution under ambient conditions with subsequent annealing treatment that could tune the capacity for lithium storage. When this hybrid is used as an anode material for LIBs, the outer Fe2 O3 shell can act as an electrochemically active material to store and release lithium ions, whereas the highly conductive and inactive Fe core functions as nothing more than an efficient electrical conducting pathway and a remarkable buffer to tolerate volume changes of the electrode materials during the insertion and extraction of lithium ions. The core-shell Fe/Fe2 O3 nanowire maintains an excellent reversible capacity of over 767 mA h g(-1) at 500 mA g(-1) after 200 cycles with a high average Coulombic efficiency of 98.6 %. Even at 2000 mA g(-1) , a stable capacity as high as 538 mA h g(-1) could be obtained. The unique composition and nanostructure of this electrode material contribute to this enhanced electrochemical performance. Due to the ease of large-scale fabrication and superior electrochemical performance, these hybrid nanowires are promising anode materials for the next generation of high-performance LIBs.

  18. High quality interconnected core/shell ZnO nanorod architectures grown by pulsed laser deposition on ZnO-seeded Si substrates

    Science.gov (United States)

    Inguva, Saikumar; Vijayaraghavan, Rajani K.; McGlynn, Enda; Mosnier, Jean-Paul

    2017-01-01

    We report the production of vertically aligned and interconnected ZnO core/shell nanorods using pulsed laser deposition (PLD) in a continuous two-step growth process. X-ray diffraction studies showed wurtzite structure and c-axis orientation with a high degree of verticality. Scanning electron microscopy showed a characteristic interconnection morphology between the nanorod tips uniformly present over the entire sample surface area, while transmission electron microscopy revealed crystalline core/amorphous shell architecture. Strong bands at 98.7 cm-1 and 437.2 cm-1 (wurtzite ZnO low and high non-polar E2 modes) were the main features of the nanorod Raman spectra, again showing the high sample quality. Low-temperature PL data exhibited strong I6 emission and structured green band showing high optical quality. Electrical studies indicated n-type material with ohmic behaviour. The results are discussed in the context of the advantages offered by interconnected architectures of core/shell ZnO nanostructures for various applications.

  19. Three-dimensional SiO2@Fe3O4 core/shell nanorod array/graphene architecture: synthesis and electromagnetic absorption properties.

    Science.gov (United States)

    Ren, Yulan; Zhu, Chunling; Zhang, Shen; Li, Chunyan; Chen, Yujin; Gao, Peng; Yang, Piaoping; Ouyang, Qiuyun

    2013-12-21

    We developed a new strategy, i.e., a seed-assisted method, to fabricate a three-dimensional (3D) SiO2@Fe3O4 core/shell nanorod array/graphene architecture. The fabrication processes involved deposition of β-FeOOH seeds on the graphene surfaces in the ferric nitrate aqueous solution, subsequent growth of β-FeOOH nanorod arrays on the graphene surfaces in the ferric chloride aqueous solution under hydrothermal conditions, deposition of SiO2 coating on the surfaces of β-FeOOH nanorods, and final formation of the 3D architecture by a thermal treatment process. Scanning electron microscopy and transmission electron microscopy measurements showed that the SiO2@Fe3O4 core/shell nanorods with a length and diameter of about 60 and 25 nm, respectively, were almost grown perpendicularly on both side surfaces of graphene sheets. The measured electromagnetic parameters showed that the 3D architecture exhibited excellent electromagnetic wave absorption properties, i.e., more than 99% of electromagnetic wave energy could be attenuated by the 3D architecture with an addition amount of only 20 wt% in the paraffin matrix. In addition, the growth mechanism of the 3D architecture was proposed, and thus, the strategy presented here could be used as a typical method to synthesize other 3D magnetic graphene nanostructures for extending their application areas.

  20. Quantum effects in the optical response of extended plasmonic gaps: validation of the quantum corrected model in core-shell nanomatryushkas.

    Science.gov (United States)

    Zapata, Mario; Camacho Beltrán, Ángela S; Borisov, Andrei G; Aizpurua, Javier

    2015-03-23

    Electron tunneling through narrow gaps between metal nanoparticles can strongly affect the plasmonic response of the hybrid nanostructure. Although quantum mechanical in nature, this effect can be properly taken into account within a classical framework of Maxwell equations using the so-called Quantum Corrected Model (QCM). We extend previous studies on spherical cluster and cylindrical nanowire dimers where the tunneling current occurs in the extremely localized gap regions, and perform quantum mechanical time dependent density functional theory (TDDFT) calculations of the plasmonic response of cylindrical core-shell nanoparticles (nanomatryushkas). In this axially symmetric situation, the tunneling region extends over the entire gap between the metal core and the metallic shell. For core-shell separations below 0.5 nm, the standard classical calculations fail to describe the plasmonic response of the cylindrical nanomatryushka, while the QCM can reproduce the quantum results. Using the QCM we also retrieve the quantum results for the absorption cross section of the spherical nanomatryushka calculated by V. Kulkarni et al. [Nano Lett. 13, 5873 (2013)]. The comparison between the model and the full quantum calculations establishes the applicability of the QCM for a wider range of geometries that hold tunneling gaps.

  1. Piezo-phototronic effect enhanced visible and ultraviolet photodetection using a ZnO-CdS core-shell micro/nanowire.

    Science.gov (United States)

    Zhang, Fang; Ding, Yong; Zhang, Yan; Zhang, Xiaoling; Wang, Zhong Lin

    2012-10-23

    The piezo-phototronic effect is about the use of the piezoelectric potential created inside some materials for enhancing the charge carrier generation or separation at the metal-semiconductor contact or pn junction. In this paper, we demonstrate the impact of the piezo-phototronic effect on the photon sensitivity for a ZnO-CdS core-shell micro/nanowire based visible and UV sensor. CdS nanowire arrays were grown on the surface of a ZnO micro/nanowire to form a ZnO-CdS core-shell nanostructure by a facile hydrothermal method. With the two ends of a ZnO-CdS wire bonded on a polymer substrate, a flexible photodetector was fabricated, which is sensitive simultaneously to both green light (548 nm) and UV light (372 nm). Furthermore, the performance of the photon sensor is much enhanced by the strain-induced piezopotential in the ZnO core through modulation of the Schottky barrier heights at the source and drain contacts. This work demonstrates a new application of the piezotronic effect in photon detectors.

  2. Multiple Fano resonances in single-layer nonconcentric core-shell nanostructures

    DEFF Research Database (Denmark)

    Zhang, Jingjing; Zayats, Anatoly

    2013-01-01

    where the multiple dark modes appear due to the geometrical symmetry breaking induced by axial offset of the core. Both dielectric-core-metal-shell (DCMS) and metal-core-dielectric-shell (MCDS) configurations have been studied. Compared to the MCDS structure, the DCMS configuration provides higher...

  3. Dynamics of Green AuNP Formation and Their Application in Core-Shell Nanostructures

    DEFF Research Database (Denmark)

    Engelbrekt, Christian; Zhang, Jingdong; Jensen, Palle Skovhus

    The formation of gold nanoparticles in our optimized synthesis is achieved through reduction of tetrachloroauric acid in 2 - (N - morpholino)ethanesulphonic acid (MES) buffered glucose and stabilization by starch at room temperature. The formation has been followed by measuring the electrochemical...

  4. Hierarchical manganese cobalt sulfide core-shell nanostructures for high-performance asymmetric supercapacitors

    Science.gov (United States)

    Liu, Shude; Jun, Seong Chan

    2017-02-01

    High electrical conductivity and rational design of structures are two crucial routes to improving the electrochemical performance of electrode materials. However, highly conductive electrode materials with short ion-transport paths remain a challenge in energy storage. Here, we propose manganese cobalt sulfide (MnCo2S4) nanowire wrapping by a flocculent shell layer using a facile hydrothermal method with post-sulfurization treatment. The resultant MnCo2S4 electrode employed for supercapacitor delivered a remarkable specific capacitance of 2067 F g-1 at the current density of 1 A g-1, good rate capability, and excellent cycling stability. Moreover, an asymmetric supercapacitor device was successfully assembled using MnCo2S4 and reduced graphene oxide (rGO) as electrodes, achieving a high energy density of 31.3 W kg-1 at a power density of 800 W kg-1. With such outstanding electrochemical performance, this asymmetric supercapacitor device holds great potential in developing high-energy-storage applications.

  5. Modeling of absorption and scattering properties of core -shell nanoparticles for application as nanoantenna in optical domain

    Science.gov (United States)

    Devi, Jutika; Saikia, Rashmi; Datta, Pranayee

    2016-10-01

    The present paper describes the study of core-shell nanoparticles for application as nanoantenna in the optical domain. To obtain the absorption and extinction efficiencies as well as the angular distribution of the far field radiation pattern and the resonance wavelengths for these metal-dielectric, dielectric-metal and metal-metal core-shell nanoparticles in optical domain, we have used Finite Element Method based COMSOL Multiphysics Software and Mie Theory. From the comparative study of the extinction efficiencies of core-shell nanoparticles of different materials, it is found that for silica - gold core - shell nanoparticles, the resonant wavelength is greater than that of the gold - silver, silver-gold and gold-silica core - shell nanoparticles and also the radiation pattern of the silica-gold core-shell nanoparticle is the most suitable one from the point of view of directivity. The dielectric functions of the core and shell material as well as of the embedded matrix are extremely important and plays a very major role to tune the directivity and resonance wavelength. Such highly controllable parameters of the dielectric - metal core - shell nanoparticles make them suitable for efficient coupling of optical radiation into nanoscale structures for a broad range of applications in the field of communications.

  6. Investigation of linear optical absorption coefficients in core-shell quantum dot (QD) luminescent solar concentrators (LSCs)

    Science.gov (United States)

    Ebrahimipour, Bahareh Alsadat; Askari, Hassan Ranjbar; Ramezani, Ali Behjat

    2016-09-01

    The interlevel absorption coefficient of CdSe/ZnS and ZnS/CdSe core-shell Quantum Dot (QD) in luminescent solar concentrators (LSCs) is reported. By considering the quantum confinement effects, the wave functions and eigenenergies of electrons in the nonperturebative system consists of a core-shell QD have been numerically calculated under the frame work of effective-mass approximation by solving a three-dimensional Schrӧdinger equation. And then the absorption coefficient is obtained under density matrix approximation considering in the polymer sheets of the concentrator including the core-shell QDs. The effect of the hetero-structure geometry upon the energy spectrum and absorption coefficient associated to interlevel transitions was also considered. The results show that the core-shell QDs can absorb the photons with higher energy in solar spectrum as compared to the inverted core-shell. And with a small shell layer diameter, the core-shell QDs produce larger linear absorption coefficients and consequently higher efficiency values, however it is inversed for inverted core-shell QDs. The work described here gives a detailed insight into the promise of QD-based LSCs and the optoelectronic devices applications.

  7. Fluorescent core-shell silica nanoparticles: towards "Lab on a Particle" architectures for nanobiotechnology.

    Science.gov (United States)

    Burns, Andrew; Ow, Hooisweng; Wiesner, Ulrich

    2006-11-01

    Novel nanoscale fluorescent materials are integral to the progress of emergent fields such as nanobiotechnology and facilitate new research in a variety of contexts. Sol-gel derived silica is an excellent host material for creating fluorescent nanoparticles by the inclusion of covalently-bound organic dyes. Significant enhancements in the brightness and stability of organic dye emission can be achieved for silica-based core-shell nanoparticle architectures at length scales down to tens of nanometers with narrow size distributions. This tutorial review will highlight these findings and describe the evolution of the fluorescent core-shell silica nanoparticle concept towards integration of multiple functionalities including mesoporosity, metal nanoshells and quantitative chemical sensing. These developments point towards the development of "lab on a particle" architectures with promising prospects for nanobiotechnology, drug development and beyond.

  8. Preparation and characterization of PS/pAPBA core-shell microspheres

    Institute of Scientific and Technical Information of China (English)

    Changling YAN; Yan LU; Shuyan GAO

    2009-01-01

    Polystyrene microspheres with an average diameter of 55 μm were prepared by suspension polymerization via oxidation of the monomer by ammonium persulfate. Poly-3-aminophenylboronic acid was grafted onto the surfaces of the polystyrene microspheres to form polystyrene/poly-3-aminophenylboronic acid core- shell micospheres. The samples were characterized by scanning electron microscopy, Raman spectroscopy, X-ray photo-electron spectroscopy and nitrogen adsorption/desorption method. The results show that poly-3-aminophenylboronic acid was successfully grafted to the surfaces of the polystyrene microspheres by aromatic ring electron-pairing interaction. The surfaces of the core-shell micro-spheres possessed a porous structure, with the average pore diameter of 30.2 nm and the BET surface area of 193.26 m2/g.

  9. Epoxy-acrylic core-shell particles by seeded emulsion polymerization.

    Science.gov (United States)

    Chen, Liang; Hong, Liang; Lin, Jui-Ching; Meyers, Greg; Harris, Joseph; Radler, Michael

    2016-07-01

    We developed a novel method for synthesizing epoxy-acrylic hybrid latexes. We first prepared an aqueous dispersion of high molecular weight solid epoxy prepolymers using a mechanical dispersion process at elevated temperatures, and we subsequently used the epoxy dispersion as a seed in the emulsion polymerization of acrylic monomers comprising methyl methacrylate (MMA) and methacrylic acid (MAA). Advanced analytical techniques, such as scanning transmission X-ray microscopy (STXM) and peak force tapping atomic force microscopy (PFT-AFM), have elucidated a unique core-shell morphology of the epoxy-acrylic hybrid particles. Moreover, the formation of the core-shell morphology in the seeded emulsion polymerization process is primarily attributed to kinetic trapping of the acrylic phase at the exterior of the epoxy particles. By this new method, we are able to design the epoxy and acrylic polymers in two separate steps, and we can potentially synthesize epoxy-acrylic hybrid latexes with a broad range of compositions.

  10. Preparation of CdSe/ZnSe Core-shell Nanocrystal in One-step Reaction

    Institute of Scientific and Technical Information of China (English)

    FEI Xiao-fang; SHAN Gui-ye; KONG Xiang-gui; WANG Xin; ZENG Qing-hui; ZHANG You-lin

    2005-01-01

    High-quality Zn-doped CdSe core-shell nanocrystals were successfully prepared by incorporating a stoichiometric amount of Zn precursor into the CdSe reaction system, in which the Se precursor was excess and an Se-rich surface was formed. By injecting different amounts of Zn precursor, the core-shell nanocrystals demonstrated by the emission spectra were formed. The obtained Zn-doped CdSe nanocrystals exhibit a photoluminescence efficiency from 30% to 85%, which is comparable to those for the reported CdSe/ZnS, CdSe/CdS in the literature. In particular, a shell ZnSe layer with different thicknesses of ZnSe can be formed in this experiment by only changing the amount of Zn precursor added, which is simple and effective.

  11. Prediction of the Bandgap of a Core-Shell Microsphere via Light Intensity Fluctuations

    Directory of Open Access Journals (Sweden)

    Moon Kyu Choi

    2011-01-01

    Full Text Available It has been experimentally observed that in the case of microspheres irradiated by light, the absorption wavelength shift occurs, known as the blueshift, with changing shell materials (i.e., by decreasing the refractive index of the shell. In the present investigation, we want to demonstrate it numerically by using the boundary element method. The material used for the simulation is a core-shell (SiO2 and another material of a larger refractive index microsphere and it is irradiated by unpolarized monochromatic light wave. This paper intends to demonstrate that it is possible to predict the bandgap of a core-shell microsphere resulting from two different bandgap materials and that the numerical simulation employed produces the blueshift.

  12. Electrocaloric effect in core-shell ferroelectric ceramics: Theoretical approach and practical conclusions

    Science.gov (United States)

    Anoufa, M.; Kiat, J. M.; Bogicevic, C.

    2015-10-01

    Most of the theoretical and experimental studies on the electrocaloric effect (ECE) are devoted to thin films, but they can be hardly envisaged for cooling macroscopic systems; moreover, the results obtained cannot be easily transposed for larger systems like multilayered ceramics. Therefore, efforts should also be focused on predicting, synthesizing, and characterizing interesting bulk single crystal or ceramics. In ferroelectric nanoparticles and ceramics, the core-shell structure of grains is of uttermost importance to explain the experimental results at small sizes. Moreover, it can be used to tailor physical properties, such as energy storage, by experimenting with the composition, thickness, and permittivity of the shell. Here, we report the effect of such structures on the electrocaloric effects in a variety of ferroelectric materials. The magnitude of ECE as well as its field and temperature-dependence are obtained for different types of core-shells. The optimal configuration for a maximal ECE is deduced.

  13. Improved performances of polymer-based dielectric by using inorganic/organic core-shell nanoparticles

    Science.gov (United States)

    Benhadjala, W.; Bord-Majek, I.; Béchou, L.; Suhir, E.; Buet, M.; Rougé, F.; Gaud, V.; Plano, B.; Ousten, Y.

    2012-10-01

    BaTiO3/hyperbranched polyester/methacrylate core-shell nanoparticles were studied by varying the shell thickness and the methacrylate ratio. We demonstrated that coalescence typically observed in traditional composites employing polymer matrices is significantly reduced. By modifying the shell thickness, the equivalent filler fraction was tuned from 7 wt. % to 41 wt. %. Obtained permittivities were compared with reported models for two-phase mixtures. The nonlinear behavior of the dielectric constant as a function of the equivalent filler fraction has been fitted with the Bruggeman equation. Methacrylate groups reduce by a decade the loss factor by improving nanoparticles adhesion. The permittivity reaching 85 at 1 kHz makes core-shell nanoparticles a promising material for embedded capacitors.

  14. Evidence for Symplectic Symmetry in Ab Initio No-Core Shell Model Results for Light Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Dytrych, Tomas; Sviratcheva, Kristina D.; Bahri, Chairul; Draayer, Jerry P.; /Louisiana State U.; Vary, James P.; /Iowa State U. /LLNL, Livermore /SLAC

    2007-04-24

    Clear evidence for symplectic symmetry in low-lying states of {sup 12}C and {sup 16}O is reported. Eigenstates of {sup 12}C and {sup 16}O, determined within the framework of the no-core shell model using the JISP16 NN realistic interaction, typically project at the 85-90% level onto a few of the most deformed symplectic basis states that span only a small fraction of the full model space. The results are nearly independent of whether the bare or renormalized effective interactions are used in the analysis. The outcome confirms Elliott's SU(3) model which underpins the symplectic scheme, and above all, points to the relevance of a symplectic no-core shell model that can reproduce experimental B(E2) values without effective charges as well as deformed spatial modes associated with clustering phenomena in nuclei.

  15. Ultrathin Interface Regime of Core-Shell Magnetic Nanoparticles for Effective Magnetism Tailoring.

    Science.gov (United States)

    Moon, Seung Ho; Noh, Seung-Hyun; Lee, Jae-Hyun; Shin, Tae-Hyun; Lim, Yongjun; Cheon, Jinwoo

    2017-02-08

    The magnetic exchange coupling interaction between hard and soft magnetic phases has been important for tailoring nanoscale magnetism, but spin interactions at the core-shell interface have not been well studied. Here, we systematically investigated a new interface phenomenon termed enhanced spin canting (ESC), which is operative when the shell thickness becomes ultrathin, a few atomic layers, and exhibits a large enhancement of magnetic coercivity (HC). We found that ESC arises not from the typical hard-soft exchange coupling but rather from the large magnetic surface anisotropy (KS) of the ultrathin interface. Due to this large increase in magnetism, ultrathin core-shell nanoparticles overreach the theoretical limit of magnetic energy product ((BH)max) and exhibit one of the largest values of specific loss power (SLP), which testifies to their potential capability as an effective mediator of magnetic energy conversion.

  16. III-nitride core-shell nanorod array on quartz substrates.

    Science.gov (United States)

    Bae, Si-Young; Min, Jung-Wook; Hwang, Hyeong-Yong; Lekhal, Kaddour; Lee, Ho-Jun; Jho, Young-Dahl; Lee, Dong-Seon; Lee, Yong-Tak; Ikarashi, Nobuyuki; Honda, Yoshio; Amano, Hiroshi

    2017-03-27

    We report the fabrication of near-vertically elongated GaN nanorods on quartz substrates. To control the preferred orientation and length of individual GaN nanorods, we combined molecular beam epitaxy (MBE) with pulsed-mode metal-organic chemical vapor deposition (MOCVD). The MBE-grown buffer layer was composed of GaN nanograins exhibiting an ordered surface and preferred orientation along the surface normal direction. Position-controlled growth of the GaN nanorods was achieved by selective-area growth using MOCVD. Simultaneously, the GaN nanorods were elongated by the pulsed-mode growth. The microstructural and optical properties of both GaN nanorods and InGaN/GaN core-shell nanorods were then investigated. The nanorods were highly crystalline and the core-shell structures exhibited optical emission properties, indicating the feasibility of fabricating III-nitride nano-optoelectronic devices on amorphous substrates.

  17. Core-shell fibrous vascular grafts with the nitric oxide releasing property

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Small-diameter vascular grafts with the nitric oxide(NO) releasing property were designed and prepared.Diazeniumdiolated N,N’-dibutyl-1,6-hexanediamine(DBHD/N2O2) was first synthesized as the NO donor and doped into the biocompatible polymer poly(ε-caprolactone)(PCL).The fibrous vascular grafts were fabricated by electrospinning.Despite the reduced platelet adhesion observed on the NO releasing grafts,the cytotoxicity and burst release were apparent,especially at a higher loading level of the NO donor.In order to solve this problem,core-shell structured nanofibers,in which PCL or gelatin is the shell and PCL doped with the NO donor is the core,were fabricated via coaxial electrospinning.The core-shell structure made the NO release more steady and controllable,and the cell compatibility was improved.

  18. Nonlinear optical properties of Au-Ag core-shell nanorods for all-optical switching

    Science.gov (United States)

    Zhang, Luman; Dai, Hongwei; Wang, Xia; Yao, Linhua; Ma, Zongwei; Han, Jun-Bo

    2017-09-01

    Au-Ag core-shell nanorods with surface plasmon resonance wavelengths of 760-840 nm were prepared. Wavelength-dependent nonlinear absorption coefficients (β) and nonlinear refractive indices (γ) of the nanorods were measured by using Z-scan techniques. The corresponding one-photon and two-photon figures of merit (W and T) were calculated from β and γ. The results show that the requirements of W  >  1 and T  <  1 for the application of all-optical switching could be achieved for all the samples over a broad wavelength range. These observations make the Au-Ag core-shell nanorods a good candidate for all-optical switching devices.

  19. Synthesis of 4H/fcc-Au@Metal Sulfide Core-Shell Nanoribbons.

    Science.gov (United States)

    Fan, Zhanxi; Zhang, Xiao; Yang, Jian; Wu, Xue-Jun; Liu, Zhengdong; Huang, Wei; Zhang, Hua

    2015-09-02

    Although great advances on the synthesis of Au-semiconductor heteronanostructures have been achieved, the crystal structure of Au components is limited to the common face-centered cubic (fcc) phase. Herein, we report the synthesis of 4H/fcc-Au@Ag2S core-shell nanoribbon (NRB) heterostructures from the 4H/fcc Au@Ag NRBs via the sulfurization of Ag. Remarkably, the obtained 4H/fcc-Au@Ag2S NRBs can be further converted to a novel class of 4H/fcc-Au@metal sulfide core-shell NRB heterostructures, referred to as 4H/fcc-Au@MS (M = Cd, Pb or Zn), through the cation exchange. We believe that these novel 4H/fcc-Au@metal sulfide NRB heteronanostructures may show some promising applications in catalysis, surface enhanced Raman scattering, solar cells, photothermal therapy, etc.

  20. Core-shell magnetic nanoparticles for on-chip RF inductors

    KAUST Repository

    Koh, Kisik

    2013-01-01

    FeNi3 based core-shell magnetic nanoparticles are demonstrated as the magnetic core material for on-chip, radio frequency (RF) inductors. FeNi3 nanoparticles with 50-150 nm in diameter with 15-20 nm-thick SiO2 coating are chemically synthesized and deposited on a planar inductor as the magnetic core to enhance both inductance (L) and quality factor (Q) of the inductor. Experimentally, the ferromagnetic resonant frequency of the on-chip inductors based on FeNi3 core-shell nanoparticles has been shown to be over several GHz. A post-CMOS process has been developed to integrate the magnetic nanoparticles to a planar inductor and inductance enhancements up to 50% of the original magnitude with slightly enhanced Q-factor up to 1 GHz have been achieved. © 2013 IEEE.

  1. Magnetic core-shell chitosan nanoparticles: rheological characterization and hyperthermia application.

    Science.gov (United States)

    Zamora-Mora, Vanessa; Fernández-Gutiérrez, Mar; San Román, Julio; Goya, Gerardo; Hernández, Rebeca; Mijangos, Carmen

    2014-02-15

    Stabilized magnetic nanoparticles are the subject of intense research for targeting applications and this work deals with the design, preparation and application of specific core-shell nanoparticles based on ionic crosslinked chitosan. The nanometric size of the materials was demonstrated by dynamic light scattering (DLS) and field emission scanning electron microscopy (FESEM) that also proved an increase of the size of chitosan nanoparticles (NPs) with the magnetite content. Steady oscillatory rheology measurements revealed a gel-like behavior of aqueous dispersions of chitosan NPs with concentrations ranging from 0.5% to 2.0% (w/v). The cytotoxicity of all the materials synthesized was analyzed in human fibroblasts cultures using the Alamar Blue and lactate dehydrogenase (LDH) assays. The measured specific power absorption under alternating magnetic fields (f = 580 kHz, H = 24 kA/m) indicated that magnetic core-shell chitosan NPs can be useful as remotely driven heaters for magnetic hyperthermia.

  2. The microwave properties of composites including lightweight core-shell ellipsoids

    Science.gov (United States)

    Yuan, Liming; Xu, Yonggang; Dai, Fei; Liao, Yi; Zhang, Deyuan

    2016-12-01

    In order to study the microwave properties of suspensions including lightweight core-shell ellipsoids, the calculation formula was obtained by substituting an equivalent ellipsoid for the original core-shell ellipsoid. Simulations for Fe-coated diatomite/paraffin suspensions were performed. Results reveal that the calculated results fitted the measured results very well when the inclusion concentration was no more than 15 vol%, but there was an obvious deviation when the inclusion concentration reached 24 vol%. By comparisons, the formula for less diluted suspensions was more suitable for calculating the electromagnetic parameter of suspensions especially when the ratio was smaller between the electromagnetic parameter of the inclusion and that of the host medium.

  3. Magnetic properties of mixed spin (1, 3/2) Ising nanoparticles with core-shell structure

    Science.gov (United States)

    Deviren, Bayram; Şener, Yunus

    2015-07-01

    The magnetic properties of mixed spin-1 and spin-3/2 Ising nanoparticles with core/shell structure are studied by using the effective-field theory with correlations. We investigate the thermal variations of the core, shell and total magnetizations and the Q-, R-, P-, S-, N- and L-types of compensation behavior in Néel classification nomenclature exists in the system. The effects of the crystal-field, core and shell interactions and interface coupling, on the phase diagrams are investigated in detail and the obtained phase diagrams are presented in three different planes. The system exhibits both second- and first-order phase transitions besides tricritical point, double critical end point, triple point and critical end point depending on the appropriate values of the interaction parameters. The system strongly affected by the surface situations and some characteristic phenomena are found depending on the ratio of the physical parameters in the surface shell and the core.

  4. Ab Initio Study of 40Ca with an Importance Truncated No-Core Shell Model

    Energy Technology Data Exchange (ETDEWEB)

    Roth, R; Navratil, P

    2007-05-22

    We propose an importance truncation scheme for the no-core shell model, which enables converged calculations for nuclei well beyond the p-shell. It is based on an a priori measure for the importance of individual basis states constructed by means of many-body perturbation theory. Only the physically relevant states of the no-core model space are considered, which leads to a dramatic reduction of the basis dimension. We analyze the validity and efficiency of this truncation scheme using different realistic nucleon-nucleon interactions and compare to conventional no-core shell model calculations for {sup 4}He and {sup 16}O. Then, we present the first converged calculations for the ground state of {sup 40}Ca within no-core model spaces including up to 16{h_bar}{Omega}-excitations using realistic low-momentum interactions. The scheme is universal and can be easily applied to other quantum many-body problems.

  5. Synthesis and Surface Properties of Silica Spheres with Core Shell Structure by One Convenient Method

    Directory of Open Access Journals (Sweden)

    D. P. Das

    2009-01-01

    Full Text Available Earlier, we have published a paper on the preparation of silica sphere using propanol as cosurfactant. We report here a highly cost-effective method of preparation of mesoporous silica spheres with core shell structure using sodium silicate as silica precursor, cetyltrimethyl ammonium bromide (CTAB as surfactant, and methanol as cosurfactant. Thus after removal of the template by dissolutions or/and activation at higher temperature, mesoporous silica spheres with core shell structure were obtained. The products prepared with methanol to CTAB molar ratio 8.5 : 1 were confirmed to give best results. All the spherical products have very large surface area (∼589–1044 m2/g, pore volume (∼0.98–1.41 cm3/g, and ordered pore structure.

  6. Determining the size of nanoparticles in the example of magnetic iron oxide core-shell systems

    Science.gov (United States)

    Jarzębski, Maciej; Kościński, Mikołaj; Białopiotrowicz, Tomasz

    2017-08-01

    The size of nanoparticles is one of the most important factors for their possible applications. Various techniques for the nanoparticle size characterization are available. In this paper selected techniques will be considered base on the prepared core-shell magnetite nanoparticles. Magnetite is one of the most investigated and developed magnetic material. It shows interesting magnetic properties which can be used for biomedical applications, such as drug delivery, hypothermia and also as a contrast agent. To reduce the toxic effects of Fe3O4, magnetic core was covered by dextran and gelatin. Moreover, the shell was doped by fluorescent dye for confocal microscopy investigation. The main investigation focused on the methods for particles size determination of modified magnetite nanoparticles prepared with different techniques. The size distribution were obtained by nanoparticle tracking analysis, dynamic light scattering and transmission electron microscopy. Furthermore, fluorescent correlation spectroscopy (FCS) and confocal microscopy were used to compare the results for particle size determination of core-shell systems.

  7. Microwave-assisted synthesis of water-dispersed CdTe/CdSe core/shell type II quantum dots

    OpenAIRE

    Sai Li-Man; Kong Xiang Yang

    2011-01-01

    Abstract A facile synthesis of mercaptanacid-capped CdTe/CdSe (core/shell) type II quantum dots in aqueous solution by means of a microwave-assisted approach is reported. The results of X-ray diffraction and high-resolution transmission electron microscopy revealed that the as-prepared CdTe/CdSe quantum dots had a core/shell structure with high crystallinity. The core/shell quantum dots exhibit tunable fluorescence emissions by controlling the thickness of the CdSe shell. The photoluminescent...

  8. Core-decomposition-facilitated fabrication of hollow rare-earth silicate nanowalnuts from core-shell structures via the Kirkendall effect

    Science.gov (United States)

    Zhou, Wenli; Zou, Rui; Yang, Xianfeng; Huang, Ningyu; Huang, Junjian; Liang, Hongbin; Wang, Jing

    2015-08-01

    Hollow micro-/nanostructures have been widely applied in the fields of lithium ion batteries, catalysis, biosensing, biomedicine, and so forth. The Kirkendall effect, which involves a non-equilibrium mutual diffusion process, is one of many important fabrication strategies for the formation of hollow nanomaterials. Accordingly, full understanding of the interdiffusion process at the nanoscale is very important for the development of novel multifunctional hollow materials. In this work, hollow Y2SiO5 nanowalnuts have been fabricated from the conversion of YOHCO3@SiO2 core-shell nanospheres via the Kirkendall effect. More importantly, it was found that in the conversion process, the decomposition of YOHCO3 core imposes on the formation of the Y2SiO5 interlayer by facilitating the initial nucleation of the Kirkendall nanovoids and accelerating the interfacial diffusion of Y2O3@SiO2 core@shell. The simple concept developed herein can be employed as a general Kirkendall effect strategy without the assistance of any catalytically active Pt nanocrystals or gold motion for future fabrication of novel hollow nanostructures. Moreover, the photoluminescence properties of rare-earth ion doped hollow Y2SiO5 nanoparticles are researched.Hollow micro-/nanostructures have been widely applied in the fields of lithium ion batteries, catalysis, biosensing, biomedicine, and so forth. The Kirkendall effect, which involves a non-equilibrium mutual diffusion process, is one of many important fabrication strategies for the formation of hollow nanomaterials. Accordingly, full understanding of the interdiffusion process at the nanoscale is very important for the development of novel multifunctional hollow materials. In this work, hollow Y2SiO5 nanowalnuts have been fabricated from the conversion of YOHCO3@SiO2 core-shell nanospheres via the Kirkendall effect. More importantly, it was found that in the conversion process, the decomposition of YOHCO3 core imposes on the formation of the Y2Si

  9. Multifunctional Fe₃O₄@polydopamine core-shell nanocomposites for intracellular mRNA detection and imaging-guided photothermal therapy.

    Science.gov (United States)

    Lin, Li-Sen; Cong, Zhong-Xiao; Cao, Jian-Bo; Ke, Kai-Mei; Peng, Qiao-Li; Gao, Jinhao; Yang, Huang-Hao; Liu, Gang; Chen, Xiaoyuan

    2014-04-22

    Multifunctional nanocomposites have the potential to integrate sensing, diagnostic, and therapeutic functions into a single nanostructure. Herein, we synthesize Fe3O4@polydopamine core-shell nanocomposites (Fe3O4@PDA NCs) through an in situ self-polymerization method. Dopamine, a melanin-like mimic of mussel adhesive proteins, can self-polymerize to form surface-adherent polydopamine (PDA) films onto a wide range of materials including Fe3O4 nanoparticles used here. In such nanocomposites, PDA provides a number of advantages, such as near-infrared absorption, high fluorescence quenching efficiency, and a surface for further functionalization with biomolecules. We demonstrate the ability of the Fe3O4@PDA NCs to act as theranostic agents for intracellular mRNA detection and multimodal imaging-guided photothermal therapy. This work would stimulate interest in the use of PDA as a useful material to construct multifunctional nanocomposites for biomedical applications.

  10. Multifunctional Core-Shell and Nano-channel Design for Nano-sized Thermo-sensor

    Science.gov (United States)

    2015-04-01

    L R E P O R T DTRA-TR-14-32 Multifunctional Core-Shell and Nano- channel Design for Nano-sized Thermo - sensor Distribution Statement A... Thermo -sensor PI: Jie Lian, Associate Professor, Department of Mechanical, Aerospace & Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY...within s time frame. (2) Scope This project is under the scope of Basic and Applied Sciences Directorate and the JSTO and Nano-sized Thermo -sensor

  11. Black GE based on crystalline/amorphous core/shell nanoneedle arrays

    Science.gov (United States)

    Javey, Ali; Chueh, Yu-Lun; Fan, Zhiyong

    2014-03-04

    Direct growth of black Ge on low-temperature substrates, including plastics and rubber is reported. The material is based on highly dense, crystalline/amorphous core/shell Ge nanoneedle arrays with ultrasharp tips (.about.4 nm) enabled by the Ni catalyzed vapor-solid-solid growth process. Ge nanoneedle arrays exhibit remarkable optical properties. Specifically, minimal optical reflectance (black Ge can have important practical implications for efficient photovoltaic and photodetector applications on nonconventional substrates.

  12. MAGNETIC CORE SHELL STRUCTURES: from 0D to 1D assembling.

    Science.gov (United States)

    Ficai, Denisa; Ficai, Anton; Dinu, Elena; Oprea, Ovidiu; Sonmez, Maria; Keler, Memduh Kagan; Sahin, Yesim Muge; Ekren, Nazmi; Inan, Ahmet Talat; Daglilar, Sibel; Gunduz, Oguzhan

    2015-01-01

    Material research and development studies are focused on different techniques of bringing out nanomaterials with desired characteristics and properties. From the point of view of materials development, nowadays scientists are strongly focused on obtaining materials with predefined characteristics and properties. The morphology control seems to be a determinant factor and increasing attention is devoted to this aspect. At this moment it is possible to engineer the material's features by using different methods and materials combination for both medical and industrial applications. In the applications of chemistry and synthesis, biology, mechanics, optics solar cells and microelectronics tailoring the adjustable parameters of stoichiometry, chemical structure, shape and segregation are evaluated and opens new fields. Because of the magnetic features of nanoparticles and durable particle size, less than 100 nm, this study is aiming to describe their uses in practical applications. That's why the whole hydrodynamic magnetic core shell topic will be reviewed on this paper. Additionally, the properties acting in general sight in solid-state physics are utilized for material selection and for defining issue connecting the core, shell structure and their producing properties. Here, in the study of core/shell nanoparticle various physical and chemical synthesis routes and the effect of electrospun method are briefly discussed. Starting from a real void of the scientific literature, the existent data related to the 1D magnetic electrospun materials are reviewed. The perspectives in the medical, environmental or energetic sector is great and bring some real advantages related to the 0D core@shell structures because both mechanical and biological properties are dependent on the morphology of the materials.

  13. Core-shell Au@(TiO(2), SiO(2)) nanoparticles with tunable morphology.

    Science.gov (United States)

    Lekeufack, D Djoumessi; Brioude, A; Mouti, A; Alauzun, J G; Stadelmann, P; Coleman, A W; Miele, P

    2010-07-07

    A novel approach based on the Stöber method allows breaking of the symmetry of core-shell systems based on metallic core and metal oxide shell. By adjusting the proportion of the TiO(2) precursor with regard to the silica precursor, different morphologies of the particles have been obtained displacing the gold particle from center to eccentric positions leading to acorn-like and raspberry-like structure.

  14. Fabrication of monodisperse FePt rate at Au core-shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Wei, D.H. [Institute of Physics, Academia Sinica, Taipei 115 (China); Hung, D.S. [Department of Information and Telecommunications Engineering, Ming Chuan University, Taipei 111 (China); Ho, C.S.; Wang, J.W. [Department of Chemical Engineering, Tunghai University, Taichung 407 (China); Yao, Y.D. [Department of Materials Engineering, Tatung University, Taipei 104 (China)

    2007-12-15

    Hydrophobic FePt rate at Au core-shell nanoparticles were chemically synthesized and with controllable surface-function properties. The enhanced optical property is due to the contribution of Au shell. The surface modification of FePt rate at Au nanoiparticles by using 11-mercaptoundecanoic acid (MUA) was hydrophilic through ligand exchange and with good biocompatibility for future multi-functional applications. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Core-Shell Structure and Photoluminescence of CdS Quantum Dots

    Institute of Scientific and Technical Information of China (English)

    邹炳锁; 武振羽; 曹立; 戴建华; 张泽勃; 聂玉昕; 解思深

    2001-01-01

    A double-potential-well model is proposed to describe the core-shell thickness-dependent photoluminescence peaks and energy relaxations in semiconductor quantum dots (QDs). The surface effect plays an important role in the formation of new states-polaronic states around the surface of QDs. The polaronic states formed emit light due to the strong interaction between the core state (confined state) and the surface state with an enhanced participation of the size effect.

  16. Gap state related blue light emitting boron-carbon core shell structures

    Science.gov (United States)

    Singh, Paviter; Kaur, Manpreet; Singh, Bikramjeet; Kaur, Gurpreet; Singh, Kulwinder; Kumar, Manjeet; Bala, Rajni; Thakur, Anup; Kumar, Akshay

    2016-05-01

    Boron- carbon core shell structures have been synthesized by solvo-thermal synthesis route. The synthesized material is highly pure. X-ray diffraction analysis confirms the reduction of reactants in to boron and carbon. Scanning Electron Microscopy (SEM) analysis showed that the shell is uniform with average thickness of 340 nm. Photo luminescence studies showed that the material is blue light emitting with CIE color coordinates: x=0.16085, y=0.07554.

  17. How to Determine the Core-Shell Nature in Bimetallic Catalyst Particles?

    Directory of Open Access Journals (Sweden)

    Emma Westsson

    2014-11-01

    Full Text Available Nanometer-sized materials have significantly different chemical and physical properties compared to bulk material. However, these properties do not only depend on the elemental composition but also on the structure, shape, size and arrangement. Hence, it is not only of great importance to develop synthesis routes that enable control over the final structure but also characterization strategies that verify the exact nature of the nanoparticles obtained. Here, we consider the verification of contemporary synthesis strategies for the preparation of bimetallic core-shell particles in particular in relation to potential particle structures, such as partial absence of core, alloying and raspberry-like surface. It is discussed what properties must be investigated in order to fully confirm a covering, pin-hole free shell and which characterization techniques can provide such information. Not uncommonly, characterization strategies of core-shell particles rely heavily on visual imaging like transmission electron microscopy. The strengths and weaknesses of various techniques based on scattering, diffraction, transmission and absorption for investigating core-shell particles are discussed and, in particular, cases where structural ambiguities still remain will be highlighted. Our main conclusion is that for particles with extremely thin or mono-layered shells—i.e., structures outside the limitation of most imaging techniques—other strategies, not involving spectroscopy or imaging, are to be employed. We will provide a specific example of Fe-Pt core-shell particles prepared in bicontinuous microemulsion and point out the difficulties that arise in the characterization process of such particles.

  18. Theoretical studies of preparation of core-shell nanoparticles by electrochemical metal deposition

    Energy Technology Data Exchange (ETDEWEB)

    Oviedo, O.A.; Mariscal, M.M. [INFIQC, Departamento de Matematica y Fisica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Cordoba (Argentina); Leiva, E.P.M., E-mail: eleiva@fcq.unc.edu.a [INFIQC, Departamento de Matematica y Fisica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Cordoba (Argentina)

    2010-11-30

    In the present work we discuss the statistical mechanical framework for predicting the decoration of metallic nanoparticles using electrochemical methods, in thermodynamic equilibrium. It is found that depending on the interactions between the two metals, controlled decoration may be achieved for core-shell nanoparticles in undersaturation and oversaturation conditions. The concept of underpotential deposition is discussed for the case of nanoparticles, with the finding that this phenomenon may be size dependent.

  19. Lanthanide modification of CdSe/ZnS core/shell quantum dots

    DEFF Research Database (Denmark)

    Dethlefsen, Johannes Rytter; Mikhailovsky, Alexander A.; Burks, Peter T.

    2012-01-01

    Lanthanide-modified CdSe quantum dots (CdSe(Ln) QDs) have been prepared by heating a solution of Cd(oleate)(2), SeO2, and Ln(bipy)(S2CNEt2)(3) (bipy = 2,2'-bipyridine) to 180-190 degrees C for 10-15 min. The elemental compositions of the resulting CdSe(Ln) cores and CdSe(Ln)/ZnS core/shell QDs show...

  20. Electronic structure and intersubband magnetoabsorption spectra of CdSe/CdS core-shell nanowires

    Science.gov (United States)

    Xiong, Wen

    2016-10-01

    The electronic structures of CdSe/CdS core-shell nanowires are calculated based on the effective-mass theory, and it is found that the hole states in CdSe/CdS core-shell nanowires are strongly mixed, which are very different from the hole states in CdSe or CdS nanowires. In addition, we find the three highest hole states at the Γ point are almost localized in the CdSe core and the energies of the hole states in CdSe/CdS core-shell nanowires can be enhanced greatly when the core radius Rc increases and the total radius R is fixed. The degenerate hole states are split by the magnetic field, and the split energies will increase when |Jh | increases from 1/2 to 7/2, while they are almost not influenced by the change of the core radius Rc. The absorption spectra of CdSe/CdS core-shell nanowires at the Γ point are also studied in the magnetic field when the temperature T is considered, and we find there are only two peaks will arise if the core radius Rc and the temperature T increase. The intensity of each optical absorption can be considerably enhanced by increasing the core radius Rc when the temperature T is fixed, it is due to the increase of their optical transition matrix element. Meanwhile, the intensity of each optical absorption can be decreased when the temperature T increases and the core radius Rc is fixed, and this is because the Fermi-Dirac distribution function of the corresponding hole states will increase as the increase of the temperature T.