WorldWideScience

Sample records for core-shell hydrogel particles

  1. Tuning the Mechanical Properties of Hydrogel Core-Shell Particles by Inwards Interweaving Self-Assembly.

    Science.gov (United States)

    Pan, Houwen Matthew; Seuss, Maximilian; Neubauer, Martin P; Trau, Dieter W; Fery, Andreas

    2016-01-20

    Mechanical properties of hydrogel particles are of importance for their interactions with cells or tissue, apart from their relevance to other applications. While so far the majority of works aiming at tuning particle mechanics relied on chemical cross-linking, we report a novel approach using inwards interweaving self-assembly of poly(allylamine) (PA) and poly(styrenesulfonic acid) (PSSA) on agarose gel beads. Using this technique, shell thicknesses up to tens of micrometers can be achieved from single-polymer incubations and accurately controlled by varying the polymer concentration or incubation period. We quantified the changes in mechanical properties of hydrogel core-shell particles. The effective elastic modulus of core-shell particles was determined from force spectroscopy measurements using the colloidal probe-AFM (CP-AFM) technique. By varying the shell thickness between 10 and 24 μm, the elastic modulus of particles can be tuned in the range of 10-190 kPa and further increased by increasing the layer number. Through fluorescence quantitative measurements, the polymeric shell density was found to increase together with shell thickness and layer number, hence establishing a positive correlation between elastic modulus and shell density of core-shell particles. This is a valuable method for constructing multidensity or single-density shells of tunable thickness and is particularly important in mechanobiology as studies have reported enhanced cellular uptake of particles in the low-kilopascal range (shell particles for the separation of biomolecules or systemic study of stiffness-dependent cellular uptake.

  2. Magnetic core-shell silica particles

    NARCIS (Netherlands)

    Claesson, E.M.

    2007-01-01

    This thesis deals with magnetic silica core-shell colloids and related functionalized silica structures. Synthesis routes have been developed and optimized. The physical properties of these colloids have been investigated, such as the magnetic dipole moment, dipolar structure formation and

  3. Magnetic core-shell silica particles

    NARCIS (Netherlands)

    Claesson, E.M.

    2007-01-01

    This thesis deals with magnetic silica core-shell colloids and related functionalized silica structures. Synthesis routes have been developed and optimized. The physical properties of these colloids have been investigated, such as the magnetic dipole moment, dipolar structure formation and rotationa

  4. Core-shell silk hydrogels with spatially tuned conformations as drug-delivery system.

    Science.gov (United States)

    Yan, Le-Ping; Oliveira, Joaquim M; Oliveira, Ana L; Reis, Rui L

    2016-12-05

    Hydrogels of spatially controlled physicochemical properties are appealing platforms for tissue engineering and drug delivery. In this study, core-shell silk fibroin (SF) hydrogels of spatially controlled conformation were developed. The core-shell structure in the hydrogels was formed by means of soaking the preformed (enzymatically crosslinked) random coil SF hydrogels in methanol. When increasing the methanol treatment time from 1 to 10 min, the thickness of the shell layer can be tuned from about 200 to about 850 μm as measured in wet status. After lyophilization of the rehydrated core-shell hydrogels, the shell layer displayed compact morphology and the core layer presented porous structure, when observed by scanning electron microscopy. The conformation of the hydrogels was evaluated by Fourier transform infrared spectroscopy in wet status. The results revealed that the shell layer possessed dominant β-sheet conformation and the core layer maintained mainly random coil conformation. Enzymatic degradation data showed that the shell layers presented superior stability to the core layer. The mechanical analysis displayed that the compressive modulus of the core-shell hydrogels ranged from about 25 kPa to about 1.1 MPa by increasing the immersion time in methanol. When incorporated with albumin, the core-shell SF hydrogels demonstrated slower and more controllable release profiles compared with the non-treated hydrogel. These core-shell SF hydrogels of highly tuned properties are useful systems as drug-delivery system and may be applied as cartilage substitute. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Core-shell particles at fluid interfaces

    NARCIS (Netherlands)

    Buchcic, C.

    2016-01-01

    There is a growing interest in the use of particles as stabilizers for foams and emulsions. Applying hard particles for stabilization of fluid interface is referred to as Pickering stabilization. By using hard particles instead of surfactants and polymers, fluid interfaces can be effectively stabili

  6. Core-shell particles at fluid interfaces

    NARCIS (Netherlands)

    Buchcic, C.

    2016-01-01

    There is a growing interest in the use of particles as stabilizers for foams and emulsions. Applying hard particles for stabilization of fluid interface is referred to as Pickering stabilization. By using hard particles instead of surfactants and polymers, fluid interfaces can be effectively

  7. Core-shell colloidal particles with dynamically tunable scattering properties.

    Science.gov (United States)

    Meng, Guangnan; Manoharan, Vinothan N; Perro, Adeline

    2017-09-27

    We design polystyrene-poly(N'-isopropylacrylamide-co-acrylic acid) core-shell particles that exhibit dynamically tunable scattering. We show that under normal solvent conditions the shell is nearly index-matched to pure water, and the particle scattering is dominated by Rayleigh scattering from the core. As the temperature or salt concentration increases, both the scattering cross-section and the forward scattering increase, characteristic of Mie scatterers. The magnitude of the change in the scattering cross-section and scattering anisotropy can be controlled through the solvent conditions and the size of the core. Such particles may find use as optical switches or optical filters with tunable opacity.

  8. Functionalized core-shell hydrogel microsprings by anisotropic gelation with bevel-tip capillary

    Science.gov (United States)

    Yoshida, Koki; Onoe, Hiroaki

    2017-04-01

    This study describes a novel microfluidic-based method for the synthesis of hydrogel microsprings that are capable of encapsulating various functional materials. A continuous flow of alginate pre-gel solution can spontaneously form a hydrogel microspring by anisotropic gelation around the bevel-tip of the capillary. This technique allows fabrication of hydrogel microsprings using only simple capillaries and syringe pumps, while their complex compartmentalization characterized by a laminar flow inside the capillary can contribute to the optimization of the microspring internal structure and functionality. Encapsulation of several functional materials including magnetic-responsive nanoparticles or cell dispersed collagen for tissue scaffold was demonstrated to functionalize the microsprings. Our core-shell hydrogel microsprings have immense potential for application in a number of fields, including biological/chemical microsensors, biocompatible soft robots/microactuators, drug release, self-assembly of 3D structures and tissue engineering.

  9. Fabrication and characteristics of spindle Fe2O3@Au core/shell particles

    Institute of Scientific and Technical Information of China (English)

    SHEN Hong-xia; YAO Jian-lin; GU Ren-ao

    2009-01-01

    The fabrication and characteristics of spindle Fe2O3@Au core/shell particle were investigated, and the effect of the core/shell nanoparticles as the surface enhanced Raman spectroscopy (SERS)-active substrates was studied. By using the seed-catalyzed reduction technique, anisotropic Fe2O3@Au core/shell particles with spindle morphology were successfully prepared. The Fe2O3 particles with spindle morphology were initially prepared as original cores. The Au nanoparticles of 2 nm were attached onto the Fe2O3 particles through organosilane molecules. Uniform Au shell formed onto Fe2O3 core modified by Au nanoparticles through the in-situ reduction of HAuCl4. The shell thickness was controlled through regulating the concentration of HAuCl4 solution. The results of TEM, XRD and UV-vis characterization show that the core/shell particles with the original shape of the Fe2O3 particles are obtained and these surfaces are covered by Au shell completely. The surface enhanced Raman spectrum of the probe molecules adsorbed on these core/shell substrates is strong and the intensity is enhanced with the increase of the thickness of Au shell or the aspect ratio of particles. The spindle Fe2O3@Au core/shell particles exhibit optimum (SERS) activity.

  10. Cr/alpha-Cr2O3 monodispersed spherical core-shell particles based solar absorbers

    CSIR Research Space (South Africa)

    Khamlich, S

    2011-07-01

    Full Text Available Monodispersed spherical core-shell particles of Cr/alpha-Cr2O3 cermet ACG coatings investigated within this contribution could be successfully employed in thermal converters. Their selectivity depends on their chemical, physical and structural...

  11. Development of a particle nanoimprinting technique by core-shell particles.

    Science.gov (United States)

    Watanabe, H; Nishimura, M; Fukui, Y; Fujimoto, K

    2014-02-18

    We developed a particle nanoimprinting technique assisted by the array of core-shell particles. Core-shell particles composed of a solid core of polystyrene and a soft shell were prepared by soap-free emulsion polymerization and subsequently seeded polymerization. By the Langmuir-Blodgett method, particles were arranged into a closely packed 2D array over the water surface and transferred onto a polystyrene (PS) substrate at a regular interval. The PS substrate was heated up above its glass transition temperature (Tg) by either UV irradiation using a high-pressure Hg lamp or heat treatment in a temperature-controlled incubator. It could be observed that a nanopatterned indented surface was formed through the denting of particles into the PS substrate (particle nanoindenting). By the detachment of particles from the substrate by ultrasonication in ethanol, nanoholes were produced over the surface (particle nanoimprinting). The depth and the wall of nanoholes and their interval were tunable by the shell thickness and the 2D packing ratio of core-shell particle monolayers. The contact angle decreased from 70 degrees of the pristine particle monolayer to 13 degrees by the particle nanoindenting, and again increased to 50 degrees by detaching the particles from the substrate to create the nanoholes. The use of nanoholes as zepto-litter volume vessels enabled us to produce and arrange nanocrystals, such as NaCl and CaCO3 (zepto-reactor).

  12. Preparation and characterization of core/shell particles with siloxane in the shell

    Energy Technology Data Exchange (ETDEWEB)

    Liu Bailing [Chengdu Institute of Organic Chemistry, Graduate School of CAS, Chinese Academy of Sciences, Chengdu 610041 (China)]. E-mail: blliuchem@hotmail.com; Deng Xiaobo [Chengdu Institute of Organic Chemistry, Graduate School of CAS, Chinese Academy of Sciences, Chengdu 610041 (China); Cao Shunsheng [Chengdu Institute of Organic Chemistry, Graduate School of CAS, Chinese Academy of Sciences, Chengdu 610041 (China); Li Songjun [Chengdu Institute of Organic Chemistry, Graduate School of CAS, Chinese Academy of Sciences, Chengdu 610041 (China); Luo Rong [Chengdu Institute of Organic Chemistry, Graduate School of CAS, Chinese Academy of Sciences, Chengdu 610041 (China)

    2006-01-15

    The core/shell particles consisting of polystyrene core and 3-(methacryloxypropyl)-trimethoxysilane (MPS) shell were prepared in the present study by successive seeding polymerization under kinetically controlled conditions and were characterized by particle size analyser, transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The TEM image indicated that the particles containing organic siloxane presented an evident core/shell structure. Additionally, the study of XPS also revealed that MPS could be grafted onto the surface of polystyrene microspheres and the atomic ratio of C/Si on the surface of the core/shell particles (MPS-40) was very close to the ratio of C/Si in the molecule of MPS. The surface properties of the films produced from the core/shell particles were also investigated by the static contact angle method. Compared with the homopolymer of PS, the core/shell particles were more effective to create hydrophobic surface, so, the introduction of MPS was capable of obvious increase in water repellency.

  13. Formation and cleaning function of physically cross-linked dual strengthened water-soluble chitosan-based core-shell particles.

    Science.gov (United States)

    Dong, Yanrui; Xiao, Congming

    2017-09-01

    Facile and mild ionic cross-linking and freezing/thawing technologies were applied to prepare double strengthened core-shell particles by using water-soluble chitosan (WSC), sodium alginate (SA) and poly(vinyl alcohol) (PVA) as starting materials. The aqueous solution contained WSC and PVA was dropped in ethanol to form beads. The beads were converted into WSC/PVA hydrogel particles by being subjected to three freeze/thaw cycles. Subsequently, ionic cross-linked hydrogel layer was formed around each WSC/PVA particle to generate core-shell particulates. Fourier transform infrared spectra confirmed the combination among various components. Dynamic mechanical thermal analysis indicated that the storage modulus of the core-shell hydrogel was improved obviously. Thermogravimetric analysis exhibited the thermal stability of the particles was also enhanced by incorporation of PVA. It was found that the particles were able to adsorb carbon dioxide, lead ion and copper ion. The adsorption capacities of dry particles toward carbon dioxide, Pb(II) and Cu(II) could reach 199.62, 39.28 and 26.03mg/g, respectively. The rates of the particles for binding Pb(II) and Cu(II) at initial stage were 26.57 and 4.30%/min, respectively. These experimental results suggested that the particles were an efficient sorbent for removing hazardous substances such as carbon dioxide and heavy-metal ions. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Morphology and film formation of poly(butyl methacrylate)-polypyrrole core-shell latex particles

    NARCIS (Netherlands)

    Huijs, F; Lang, J

    2000-01-01

    Core-shell latex particles made of a poly(butyl methacrylate) (PBMA) core and a thin polypyrrole (PPy) shell were synthesized by two-stage polymerization. In the first stage, PBMA latex particles were synthesized in a semicontinuous process by free-radical polymerization. PBMA latex particles were l

  15. Core-shell particles as model compound for studying fouling

    DEFF Research Database (Denmark)

    Christensen, Morten Lykkegaard; Nielsen, Troels Bach; Andersen, Morten Boel Overgaard;

    2008-01-01

    Synthetic colloidal particles with hard cores and soft, water-swollen shells were used to study cake formation during ultrafiltration. The total cake resistance was lowest for particles with thick shells, which indicates that interparticular forces between particles (steric hindrance...... and electrostatic repulsion) influenced cake formation. At low pressure the specific cake resistance could be predicted from the Kozeny-Carman equation. At higher pressures, the resistance increased due to cake compression. Both cake formation and compression were reversible. For particles with thick shells...... the permeate flux could be enhanced by lowering the pressure. Hence, the amount of water-swollen material influences both cake thickness and resistance....

  16. Core-shell particles as model compound for studying fouling

    DEFF Research Database (Denmark)

    Christensen, Morten Lykkegaard; Nielsen, Troels Bach; Andersen, Morten Boel Overgaard

    2008-01-01

    and electrostatic repulsion) influenced cake formation. At low pressure the specific cake resistance could be predicted from the Kozeny-Carman equation. At higher pressures, the resistance increased due to cake compression. Both cake formation and compression were reversible. For particles with thick shells...

  17. PMMA/PMMA core-shell particles with ellipsoidal, fluorescent cores: accessing rotational dynamics.

    Science.gov (United States)

    Klein, Matthias K; Klinkenberg, Nele; Schuetter, Stefan; Saenger, Nicolai; Pfleiderer, Patrick; Zumbusch, Andreas

    2015-03-10

    For several decades, nonaqueous dispersions of PMMA particles have played an important role in colloid research. They have found application as colloidal model systems, which are used to probe glassy dynamics or to explore crystal nucleation. To date, most research has focused on spherical particles, in which only translational motion can be investigated. Recently, however, there has been a surge of interest in analyzing also rotational dynamics. In this contribution, we introduce a new class of core-shell particles, which can be used as rotational probes. The colloids described herein are composed of shape anisotropic, fluorescent cores covered with nonfluorescent PMMA shells. The core-shell particles are built up in four steps. In a first step, we produce fluorescent and photo-cross-linkable PMMA colloids. In the second step, these particles are thermomechanically elongated and fixed in defined ellipsoidal shapes by photo-cross-linking. Subsequently, we cover the cross-linked, fluorescent core with a nonfluorescent PMMA shell. The shape of the resulting core-shell colloids is tunable between the initial anisotropic and perfect spherical shape. For shaping, we apply a simple solvent swelling procedure. As one option, this method yields perfect PMMA spheres with ellipsoidal, fluorescent centers. We also report morphological particle characterization using various fluorescence microscopy techniques. Finally, we demonstrate that the rotational dynamics of individual colloids can be tracked and analyzed.

  18. How to Determine the Core-Shell Nature in Bimetallic Catalyst Particles?

    Directory of Open Access Journals (Sweden)

    Emma Westsson

    2014-11-01

    Full Text Available Nanometer-sized materials have significantly different chemical and physical properties compared to bulk material. However, these properties do not only depend on the elemental composition but also on the structure, shape, size and arrangement. Hence, it is not only of great importance to develop synthesis routes that enable control over the final structure but also characterization strategies that verify the exact nature of the nanoparticles obtained. Here, we consider the verification of contemporary synthesis strategies for the preparation of bimetallic core-shell particles in particular in relation to potential particle structures, such as partial absence of core, alloying and raspberry-like surface. It is discussed what properties must be investigated in order to fully confirm a covering, pin-hole free shell and which characterization techniques can provide such information. Not uncommonly, characterization strategies of core-shell particles rely heavily on visual imaging like transmission electron microscopy. The strengths and weaknesses of various techniques based on scattering, diffraction, transmission and absorption for investigating core-shell particles are discussed and, in particular, cases where structural ambiguities still remain will be highlighted. Our main conclusion is that for particles with extremely thin or mono-layered shells—i.e., structures outside the limitation of most imaging techniques—other strategies, not involving spectroscopy or imaging, are to be employed. We will provide a specific example of Fe-Pt core-shell particles prepared in bicontinuous microemulsion and point out the difficulties that arise in the characterization process of such particles.

  19. Epoxy-acrylic core-shell particles by seeded emulsion polymerization.

    Science.gov (United States)

    Chen, Liang; Hong, Liang; Lin, Jui-Ching; Meyers, Greg; Harris, Joseph; Radler, Michael

    2016-07-01

    We developed a novel method for synthesizing epoxy-acrylic hybrid latexes. We first prepared an aqueous dispersion of high molecular weight solid epoxy prepolymers using a mechanical dispersion process at elevated temperatures, and we subsequently used the epoxy dispersion as a seed in the emulsion polymerization of acrylic monomers comprising methyl methacrylate (MMA) and methacrylic acid (MAA). Advanced analytical techniques, such as scanning transmission X-ray microscopy (STXM) and peak force tapping atomic force microscopy (PFT-AFM), have elucidated a unique core-shell morphology of the epoxy-acrylic hybrid particles. Moreover, the formation of the core-shell morphology in the seeded emulsion polymerization process is primarily attributed to kinetic trapping of the acrylic phase at the exterior of the epoxy particles. By this new method, we are able to design the epoxy and acrylic polymers in two separate steps, and we can potentially synthesize epoxy-acrylic hybrid latexes with a broad range of compositions.

  20. Fluorescent core-shell silica nanoparticles: towards "Lab on a Particle" architectures for nanobiotechnology.

    Science.gov (United States)

    Burns, Andrew; Ow, Hooisweng; Wiesner, Ulrich

    2006-11-01

    Novel nanoscale fluorescent materials are integral to the progress of emergent fields such as nanobiotechnology and facilitate new research in a variety of contexts. Sol-gel derived silica is an excellent host material for creating fluorescent nanoparticles by the inclusion of covalently-bound organic dyes. Significant enhancements in the brightness and stability of organic dye emission can be achieved for silica-based core-shell nanoparticle architectures at length scales down to tens of nanometers with narrow size distributions. This tutorial review will highlight these findings and describe the evolution of the fluorescent core-shell silica nanoparticle concept towards integration of multiple functionalities including mesoporosity, metal nanoshells and quantitative chemical sensing. These developments point towards the development of "lab on a particle" architectures with promising prospects for nanobiotechnology, drug development and beyond.

  1. Grafting Modification of the Reactive Core-Shell Particles to Enhance the Toughening Ability of Polylactide.

    Science.gov (United States)

    Li, Zhaokun; Song, Shixin; Zhao, Xuanchen; Lv, Xue; Sun, Shulin

    2017-08-16

    In order to overcome the brittleness of polylactide (PLA), reactive core-shell particles (RCS) with polybutadiene as core and methyl methacrylate-co-styrene-co-glycidyl methacrylate as shell were prepared to toughen PLA. Tert-dodecyl mercaptan (TDDM) was used as chain transfer agent to modify the grafting properties (such as grafting degree, shell thickness, internal and external grafting) of the core-shell particles. The introduction of TDDM decreased the grafting degree, shell thickness and the Tg of the core phase. When the content of TDDM was lower than 1.15%, the RCS particles dispersed in the PLA matrix uniformly-otherwise, agglomeration took place. The addition of RCS particles induced a higher cold crystallization temperature and a lower melting temperature of PLA which indicated the decreased crystallization ability of PLA. Dynamic mechanical analysis (DMA) results proved the good miscibility between PLA and the RCS particles and the increase of TDDM in RCS induced higher storage modulus of PLA/RCS blends. Suitable TDDM addition improved the toughening ability of RCS particles for PLA. In the present research, PLA/RCS-T4 (RCS-T4: the reactive core-shell particles with 0.76 wt % TDDM addition) blends displayed much better impact strength than other blends due to the easier cavitation/debonding ability and good dispersion morphology of the RCS-T4 particles. When the RCS-T4 content was 25 wt %, the impact strength of PLA/RCS-T4 blend reached 768 J/m, which was more than 25 times that of the pure PLA.

  2. Investigation of trapped metallo-dielectric core-shell colloidal particles using soft X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Graf, Christina [Physikalische Chemie, Freie Universitaet Berlin, Takustr. 3, D-14195 Berlin (Germany)], E-mail: cmgraf@chemie.fu-berlin.de; Langer, Burkhard [Physikalische Chemie, Freie Universitaet Berlin, Takustr. 3, D-14195 Berlin (Germany); Grimm, Michael [Institut fuer Physikalische Chemie, Universitaet Wuerzburg, Am Hubland, D-97074 Wuerzburg (Germany); Lewinski, Rene [Physikalische Chemie, Freie Universitaet Berlin, Takustr. 3, D-14195 Berlin (Germany); Grom, Melanie [Institut fuer Physikalische Chemie, Universitaet Wuerzburg, Am Hubland, D-97074 Wuerzburg (Germany); Ruehl, Eckart [Physikalische Chemie, Freie Universitaet Berlin, Takustr. 3, D-14195 Berlin (Germany)], E-mail: ruehl@chemie.fu-berlin.de

    2008-11-15

    The charging mechanisms of free silica nanoparticles coated with a thin (40 nm) gold shell are investigated. These are excited in the soft X-ray regime at different photon energies. The results are compared to the charging behavior of neat silica particles. The absolute charge state of the particles is measured and the electron emission probability is derived. Significant differences in the charging behavior are observed due to the metal layer, especially an increased number of emitted electrons per absorbed photon. The mechanisms of particle charging in these core-shell systems are discussed at different excitation energies, reaching up to 500 eV. They are due to secondary electron emission, the emission of photoelectrons, and the emission of electrons from rough metal surfaces. There are also significant changes in the charging current. Neat silica particles show a distinct near-edge feature in the O 1s-regime (520-580 eV). In contrast, gold-coated particles do not show any evidence for changes in particle charge due to resonant O 1s-absorption. This implies that properties of thin films in core-shell particles can be sensitively probed by single, trapped nanoparticles.

  3. Effect of reaction time on formation of silica core/shell particles

    Directory of Open Access Journals (Sweden)

    Milan P. Nikolić

    2015-12-01

    Full Text Available The silica core/shell nanostructures were prepared by a wet-chemical process. Silica core particles were prepared by hydrolysis and condensation of tetraethylorthosilicate. The obtained particles (average size ∼0.4 µm were used as templates for assembling of silica nanoparticles generated from highly basic sodium silicate solution. The silica core particles were functionalized with 3-aminopropyltriethoxysilane (APTES to allow electrostatic assembling of silica nanoparticles on the surface of silica core particles. In order to find the optimal conditions for synthesis of silica core/shell particles with mesoporous shells, the effect of reaction time on formation of silica nanoparticles was investigated. The effect of process parameters on generation and aggregation of silica nanoparticles prepared from highly basic sodium silicate solution was also investigated. It was shown that the size of silica nanoparticles and tendency towards aggregation increase with increasing the reaction time and temperature. These behaviours were reflected on the formation of mesoporous silica shell around silica core particles. Thin and uniform mesoporous silica layers were obtained if reaction times were kept short. When the reaction time was prolonged, the thicker and non-uniform shells were obtained.

  4. Preparation of sulphonate-containing core/shell latex particles via seeded emulsion copolymerization

    Institute of Scientific and Technical Information of China (English)

    Ji Shuai Wang; Wei Deng; Yun Shen Chen; Cheng You Kan

    2010-01-01

    In this study,P(St-MAA)seed latex particles were first prepared via soap-free emulsion polymerization of styrene(St)and methacrylic acid(MAA),then the seed particles were allowed to swell with St at room temperature,and the P(St-MAA)/P(St-NaSS)core/shell latex particles were then synthesized via seeded emulsion copolymerization of St and sodium styrene sulphonate(NaSS)using AIBN as initiator in the presence of N,N'-methylenebisacrylamide(BAA,water-soluble crosslinker).Results showed that the polymerization could be carried out smoothly when the ratio of BAA to total monomers was less than 3 mol%,the narrow dispersed P(St-MAA)seed particles with the diameter of 150 nm and the P(St-MAA)/P(St-NaSS)core/shell latexes with the particle size of about 200 nm were synthesized.When the 25/75 mole ratio of NaSS/(St+MAA)and 2 mol% of BAA were used in the seeded emulsion polymerization,the resulted P(St-MAA)/P(St-NaSS)latex product showed a low weight loss after water extraction,and the NaSS unit content in the whole particle and in the shell reached 11.7 mol% and 34.6 mol%,respectively.

  5. Biodegradable and magnetic core-shell composite particle prepared by emulsion solvent diffusion method

    Science.gov (United States)

    Oka, Chiemi; Ushimaru, Kazunori; Horiishi, Nanao; Tsuge, Takeharu; Kitamoto, Yoshitaka

    2016-02-01

    The present paper describes optimization of preparation conditions of a core-shell composite particle, and its heat generation by alternating magnetic fields. The composite particles are prepared with a modified emulsion solvent diffusion method, which is combined with Pickering emulsion stabilized by magnetic nanoparticles. In this method, the magnetic nanoparticles act as an emulsifier, and its amount and size are crucial to morphology of the composite particles. The magnetic nanoparticles of 8-9 nm would be strongly adsorbed at a liquid-liquid interface rather than the larger nanoparticles. At the optimized concentration of the magnetic nanoparticle’s suspension for the preparation, small and uniform composite particles are obtained since the amount of the nanoparticles is enough to prevent coalescence of droplets during the formation of the composites. The heat generation by alternating magnetic fields emerged certainly. This result suggests the composite particles have a property as a heat-generating carrier for hyperthermia treatment.

  6. Entrapment of carbon dioxide with chitosan-based core-shell particles containing changeable cores.

    Science.gov (United States)

    Dong, Yanrui; Fu, Yinghao; Lin, Xia; Xiao, Congming

    2016-08-01

    Water-soluble chitosan-based core-shell particles that contained changeable cores were successfully applied to anchor carbon dioxide. The entrapment capacity of the particles for carbon dioxide (EC) depended on the cores. It was found that EC of the particles contained aqueous cores was higher than that of the beads with water-soluble chitosan gel cores, which was confirmed with thermogravimetric analysis. In addition, calcium ions and sodium hydroxide were introduced within the particles to examine their effect on the entrapment. EC of the particles was enhanced with sodium hydroxide when the cores were WSC gel. The incorporation of calcium ions was helpful for stabilizing carbon dioxide through the formation of calcium carbonate, which was verified with Fourier transform infrared spectra and scanning electron microscopy/energy-dispersive spectrometry. This phenomenon meant the role of calcium ions for fixating carbon dioxide was significant.

  7. Core-shell composite particles composed of biodegradable polymer particles and magnetic iron oxide nanoparticles for targeted drug delivery

    Science.gov (United States)

    Oka, Chiemi; Ushimaru, Kazunori; Horiishi, Nanao; Tsuge, Takeharu; Kitamoto, Yoshitaka

    2015-05-01

    Core-shell composite particles with biodegradability and superparamagnetic behavior were prepared using a Pickering emulsion for targeted drug delivery based on magnetic guidance. The composite particles were composed of a core of biodegradable polymer and a shell of assembled magnetic iron oxide nanoparticles. It was found that the dispersibility of the nanoparticles is crucial for controlling the core-shell structure. The addition of a small amount of dispersant into the nanoparticle's suspension could improve the dispersibility and led to the formation of composite particles with a thin magnetic shell covering a polymeric core. The composite particles were also fabricated with a model drug loaded into the core, which was released via hydrolysis of the core under strong alkaline conditions. Because the core can also be biodegraded by lipase, this result suggests that the slow release of the drug from the composite particles should occur inside the body.

  8. Design of Gas-phase Synthesis of Core-Shell Particles by Computational Fluid - Aerosol Dynamics.

    Science.gov (United States)

    Buesser, B; Pratsinis, S E

    2011-11-01

    Core-shell particles preserve the bulk properties (e.g. magnetic, optical) of the core while its surface is modified by a shell material. Continuous aerosol coating of core TiO2 nanoparticles with nanothin silicon dioxide shells by jet injection of hexamethyldisiloxane precursor vapor downstream of titania particle formation is elucidated by combining computational fluid and aerosol dynamics. The effect of inlet coating vapor concentration and mixing intensity on product shell thickness distribution is presented. Rapid mixing of the core aerosol with the shell precursor vapor facilitates efficient synthesis of hermetically coated core-shell nanoparticles. The predicted extent of hermetic coating shells is compared to the measured photocatalytic oxidation of isopropanol by such particles as hermetic SiO2 shells prevent the photocatalytic activity of titania. Finally the performance of a simpler, plug-flow coating model is assessed by comparisons to the present detailed CFD model in terms of coating efficiency and silica average shell thickness and texture.

  9. Monodisperse core-shell particles composed of magnetite and dye-functionalized mesoporous silica

    Science.gov (United States)

    Eurov, D. A.; Kurdyukov, D. A.; Medvedev, A. V.; Kirilenko, D. A.; Yakovlev, D. R.; Golubev, V. G.

    2017-08-01

    Hybrid particles with a core-shell structure have been obtained in the form of monodisperse spherical mesoporous silica particles filled with magnetite and covered with a mesoporous silica shell functionalized with a luminescent dye. The particles have a small root-mean-square size deviation (at most 10%), possess a specific surface area and specific pore volume of up to 250 m2/g and 0.15 cm3/g, respectively, and exhibit visible luminescence peaked at a wavelength of 530 nm. The particles can be used in diagnostics of cancerous diseases, serving simultaneously for therapeutic (magnetic hyperthermia and targeted drug delivery) and diagnostic (contrast agent for magnetic-resonance tomography and luminescent marker) purposes.

  10. Polybutylacrylate/poly(methyl methacrylate) Core-Shell Elastic Particles as Epoxy Resin Toughener:Part Ⅰ Design and Preparation

    Institute of Scientific and Technical Information of China (English)

    Jianli WANG; Myonghoon LEE; Xiaomei YU; Jianbin JI; Kejian YAO

    2004-01-01

    Polybutylacrylate (PBA)/poly(methyl methacrylate) (PM MA) core-shell elastic particles (CSEP), whose rubbery core diameterranged from 0.08 μm to 1.38 μm, were synthesized by using conventional emulsion polymerization, multi-step emulsion polymerization, and soapless polymerization. Allyl methacylate (ALMA) and ethylene glycol dimethacrylate (EGDMA) were selected as crosslinking reagents for core polymerization. Methacrylic acid (MAA) was used as functional co-monomer with methyl methacrylate as shell component. The content of vinyl groups in PBA rubbery core increased with the amount of crosslinking reagents. The core-shell ratio affected great on the morphology of the complex particles. Furthermore, the amounts of carboxyl on the surface of core-shell particles, copolymerized with acrylic acid, were determined by potentiometric titration. Results showed that methylacrylic acid was distributed mostly on the surface of particles.

  11. Formation of Core-Shell Particles by Interfacial Radical Polymerization Initiated by a Glucose Oxidase-Mediated Redox System.

    Science.gov (United States)

    Shenoy, Raveesh; Tibbitt, Mark W; Anseth, Kristi S; Bowman, Christopher N

    2013-03-12

    A unique design paradigm to form core-shell particles based on interfacial radical polymerization is described. The interfacial initiation system is comprised of an enzymatic reaction between glucose and glucose oxidase (GOx) to generate hydrogen peroxide, which, in the presence of iron (Fe(2+)), generates hydroxyl radicals that initiate polymerization. Shell formation on prefabricated polymeric cores is achieved by localizing the initiation reaction to the interface of the core and a surrounding aqueous monomer formulation into which it is immersed. The interfacially confined initiation reaction is accomplished by incorporating one or more of the initiating species in the particle core and the remainder of the complementary initiating components in the surrounding media such that interactions and the resulting initiation reaction occur at the interface. This work is focused on engineering the reaction behavior and mass transport processes to promote interfacially confined polymerization, controlling the rate of shell formation, and manipulating the structure of the core-shell particle. Specifically, incorporating GOx in the precursor solution used to fabricate cores ranging from 100 to 200 μm, and the remainder of the complementary initiating components and monomer in the bulk solution prior to interfacial polymerization yielded shells whose average thickness was 20 μm after 4 min of immersion and at a bulk iron concentration of 12.5 mM. When the locations of glucose and GOx are interchanged, the average thickness of the shell was 15 or 100 μm for bulk iron concentrations of 45 and 12.5 mM, respectively. The initial locations of glucose and GOx also determine the degree of interpenetration of the core and the shell. Specifically, for a bulk iron concentration of 45 mM, the thickness of the interpenetrating layer averaged 12 μm when GOx was initially within the core, whereas no interpenetrating layer was observed when glucose was incorporated in the core. The

  12. Protein encapsulated core-shell structured particles prepared by coaxial electrospraying: investigation on material and processing variables.

    Science.gov (United States)

    Zamani, Maedeh; Prabhakaran, Molamma P; Thian, Eng San; Ramakrishna, Seeram

    2014-10-01

    Biodegradable polymeric particles have been extensively investigated for controlled drug delivery of various therapeutic agents. 'Coaxial' electrospraying was successfully employed in this study, to fabricate core-shell PLGA particles containing bovine serum albumin (BSA) as the model protein, and the results were also compared to particles prepared by 'emulsion' electrospraying. Two different molecular weights of PLGA were employed to encapsulate the protein. Solution properties and processing parameters were found to influence the morphology of the core-shell particles. Depending on the type of solvent used to dissolve the polymer as well as the polymer concentration and molecular weight, the mean diameter of the particles varied between 3.0 to 5.5 μm. Fluorescence microscopic analysis of the electrosprayed particles using FITC-conjugated BSA demonstrated the core-shell structure of the developed particles. The encapsulation efficiency and release behavior of BSA was influenced by shell:core feeding ratio, protein concentration, and the electrospraying method. The encapsulation efficiency of BSA within the core-shell particles of high and low molecular weight PLGA was found 15.7% and 25.1% higher than the emulsion electrosprayed particles, respectively. Moreover, the total amount of BSA released from low molecular weight PLGA particles was significantly higher than high molecular weight PLGA particles within 43 days of release studies, with negligible effect on encapsulation efficiency. The technique of coaxial electrospraying has high potential for encapsulation of susceptible protein-based therapeutic agents such as growth factors for multiple drug delivery applications.

  13. Magnetically self-assembled SrFe12O19/Fe-Co core/shell particles

    Energy Technology Data Exchange (ETDEWEB)

    Xu, X; Park, J; Hong, YK; Lane, AM

    2015-02-15

    Epitaxial growth to synthesize core/shell-structured materials is limited because large lattice mismatches are common between materials. Magnetically hard/soft, core/shell-structured materials can be potentially used for rare-earth free permanent magnets, but their synthesis presents a challenge. We report a wet chemistry method to synthesize core/shell structured particles consisting of a magnetically hard SrFe12O19 core and a soft Fe-Co shell, with a lattice mismatch of similar to 100%, which cannot be achieved by conventional epitaxial growth or other alternative methods. When decreasing the size of the magnetically soft Fe-Co nanoclusters to below 5 nm, we show that they can be magnetically attracted by the hard SrFe12O19 to form core/shell structured particles. An AC demagnetization experiment demonstrates the formation mechanism of the core/shell particles, and their magnetic hysteresis loop shows potential for use as rare-earth free permanent magnets. Published by Elsevier B.V.

  14. Influence of particle size and shell thickness of core-shell packing materials on optimum experimental conditions in preparative chromatography.

    Science.gov (United States)

    Horváth, Krisztián; Felinger, Attila

    2015-08-14

    The applicability of core-shell phases in preparative separations was studied by a modeling approach. The preparative separations were optimized for two compounds having bi-Langmuir isotherms. The differential mass balance equation of chromatography was solved by the Rouchon algorithm. The results show that as the size of the core increases, larger particles can be used in separations, resulting in higher applicable flow rates, shorter cycle times. Due to the decreasing volume of porous layer, the loadability of the column dropped significantly. As a result, the productivity and economy of the separation decreases. It is shown that if it is possible to optimize the size of stationary phase particles for the given separation task, the use of core-shell phases are not beneficial. The use of core-shell phases proved to be advantageous when the goal is to build preparative column for general purposes (e.g. for purification of different products) in small scale separations.

  15. Synthesis and Characterization of Polyvinylpyrrolidone Silica Core-Shell Nanocomposite Particles.

    Science.gov (United States)

    Chen, Lian-Xi; Li, Jie; Li, Xi; Zhang, Zhong-Min; Jiao, Cai-Bin

    2015-03-01

    In this work, a novel and facile strategy for making a new type of polymer/silica nanocomposte particle was proposed. Colloidally stable polyvinypyrrolidone (PVP)/silica core-shell nanocomposite particles have been successfully synthesized using an azo initiator via seed polymerization of N-vinyl-2-pyrrolidone (NVP) and VFSs (VFSs) that were derived from vinyl triethoxysilane (VTES). It was suggested from the FTIR and TGA analysis that the copolymerization reaction of NVP with VFSs has been thoroughly carried out. In addition, SEM images showed that PVP/silica nanocomposite particles have relatively rough surface due to surface polymerization in comparison with VFSs. Furthermore, TEM results proved that the size of VFSs had considerable effects on the appearance of PVP/silica nanocomposite particles. Generally, it presented that several silica nanoparticle cores with an average size of 78 nm mainly pack together within each nanocomposite particle after seed polymerization. Interestingly, the average shell thickness was 59 nm for most PVP/silica nanocomposite particles with cores about 242 nm. However, when the core size was large enough to about 504 nm, a series of PVP/silica nanocomposite particles with a relative thin shell were observed.

  16. Microfluidic conceived pH sensitive core-shell particles for dual drug delivery.

    Science.gov (United States)

    Khan, Ikram Ullah; Stolch, Lukas; Serra, Christophe A; Anton, Nicolas; Akasov, Roman; Vandamme, Thierry F

    2015-01-15

    In current study, we report on the synthesis of core-shell microparticles for dual drug delivery by means of a two co-axial microfluidic device and online UV assisted free radical polymerization. Before developing pH-sensitive particles, ketoprofen loaded poly(methyl acrylate) core-ranitidine HCl loaded poly(acrylamide) shell particles were produced. Influence of inner and outer phases flow rates on particle size, shape, core diameter, shell thickness, and drug release properties was studied. All the particles were monodispersed with coefficient of variation below 5%. Furthermore, their diameter ranged from 100 to 151 μm by increasing continuous (Qc) to middle (Qm) phase flow rate ratio (Qc/Qm). Core diameter varied from 58 to 115 μm by decreasing middle (Qm) to inner (Qi) phase flow rate ratio (Qm/Qi) at constant continuous phase flow rate as confirmed by SEM images. It was observed that an optimum concentration of acrylamide (30 wt%) and an appropriate combination of surfactants were necessary to get core-shell particles otherwise Janus structure was obtained. FTIR confirmed the complete polymerization of core and shell phases. MTT assay showed variation in viability of cells under non-contact and contact conditions with less cytotoxicity for the former. Under non-contact conditions LD50 was 3.1mg/mL. Release studies in USP phosphate buffer solution showed simultaneously release of ketoprofen and ranitidine HCl for non pH-sensitive particles. However, release rates of ranitidine HCl and ketoprofen were higher at low and high pH respectively. To develop pH-sensitive particles for colon targeting, the previous shell phase was admixed with few weight percentage of pH sensitive carboxyethyl acrylate monomer. Core and shell contained the same hydrophobic and hydrophilic model drugs as in previous case. The pH-sensitive shell prevented the release of the two entrapped molecules at low pH while increasing significantly their release rate at higher pH with a maximum

  17. A novel approach for the preparation of PMMA-PDMS core-shell particles with PDMS in the shell

    Energy Technology Data Exchange (ETDEWEB)

    Deng Xiaobo [Chengdu Institute of Organic Chemistry, Graduate School of CAS, Chinese Academy of Sciences, Chengdu 610041 (China); Liu Bailing [Chengdu Institute of Organic Chemistry, Graduate School of CAS, Chinese Academy of Sciences, Chengdu 610041 (China)]. E-mail: blliuchem@hotmail.com; Cao Shunsheng [Chengdu Institute of Organic Chemistry, Graduate School of CAS, Chinese Academy of Sciences, Chengdu 610041 (China); Luo Rong [Chengdu Institute of Organic Chemistry, Graduate School of CAS, Chinese Academy of Sciences, Chengdu 610041 (China); Chen Hualin [Chengdu Institute of Organic Chemistry, Graduate School of CAS, Chinese Academy of Sciences, Chengdu 610041 (China)

    2007-03-30

    The core/shell particles consisting of polymethyl methacrylate (PMMA) core and polydimethylsiloxane (PDMS) shell via 3-(methacryloxypropyl)-trimethoxysilane (MPS) as the medium to link the core and shell were prepared in our present study by successive seeding polymerization under kinetically controlled conditions and were characterized by FT-IR, particle size analyzer, transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The picture of optical microscope showed the clear form of PDMS-0 and PDMS-40 (the content of PDMS in the particles), which approached to monodispersed distribution. Compared with the PMMA microspheres, PDMS-40 presented an evident core/shell structure through the observation of TEM. Additionally, the study of XPS revealed that PDMS could be grafted onto the surface of PMMA particles and the atomic ratio of C/Si on the surface of PDMS-40 was very close to the ratio of C/Si in the molecule of PDMS. The surface properties of the films produced from the core/shell microspheres also were investigated by contact angle method, contrast with the homopolymer of PMMA, the core/shell particles were more effective to form hydrophobic surface and the water repellency on the surface would be better than that of PMMA.

  18. Core/shell silicon/polyaniline particles via in-flight plasma-induced polymerization

    Science.gov (United States)

    Yasar-Inceoglu, Ozgul; Zhong, Lanlan; Mangolini, Lorenzo

    2015-08-01

    Although silicon nanoparticles have potential applications in many relevant fields, there is often the need for post-processing steps to tune the property of the nanomaterial and to optimize it for targeted applications. In particular surface modification is generally necessary to both tune dispersibility of the particles in desired solvents to achieve optimal coating conditions, and to interface the particles with other materials to realize functional heterostructures. In this contribution we discuss the realization of core/shell silicon/polymer nanoparticles realized using a plasma-initiated in-flight polymerization process. Silicon particles are produced in a non-thermal plasma reactor using silane as a precursor. After synthesis they are aerodynamically injected into a second plasma reactor into which aniline vapor is introduced. The second plasma initiates the polymerization reactor leading to the formation of a 3-4 nm thick polymer shell surrounding the silicon core. The role of processing conditions on the properties of the polymeric shell is discussed. Preliminary results on the testing of this material as an anode for lithium ion batteries are presented.

  19. Construction of PS/PNIPAM core-shell particles and hollow spheres by using hydrophobic interaction and thermosensitive phase separation

    Institute of Scientific and Technical Information of China (English)

    Dongmei ZHU; Fei WANG; Cuiling GAO; Zheng XU

    2008-01-01

    This paper reports an easy and effective way tofabricate polystyrene/poly (N-isopropylacrylamide) (PS/PNIPAM) core-shell particles and PNIPAM hollow spheres.The main point of the method is to take advantage of the hydrophobic interaction between initiator and PS particles.The hydrophobic azodiisobutyronitriles automat-ically concentrate around the PS particles and initiate poly-merization of N-isopropylacrylamide (NIPAM) and thecrosslinker methylene bisacrylamide (MBA),which dissolve in the aqueous phase,at the surface of the PS nanoparticles.Then,PNIPAM adheres to the PS particles to form a core-shell structure as a result of their hydrophobic interaction.This interaction is due to the unique property of PNIPAM,namely,its ability to transition from hydrophilic to hydro-phobic when the temperature rises to 32℃.Furthermore,the hollow PNIPAM spheres were obtained by etching the PS core with chloroform.

  20. Generation of nano-sized core-shell particles using a coaxial tri-capillary electrospray-template removal method.

    Science.gov (United States)

    Cao, Lihua; Luo, Jun; Tu, Kehua; Wang, Li-Qun; Jiang, Hongliang

    2014-03-01

    This study proposed a new strategy based on a coaxial tri-capillary electrospray-template removal process for producing nanosized polylactide-b-polyethylene glycol (PLA-PEG) particles with a core-shell structure. Microparticles with core-shell-corona structures were first fabricated by coaxial tri-capillary electrospray, and core-shell nanoparticles less than 200 nm in size were subsequently obtained by removing the PEG template from the core-shell-corona microparticles. The nanoparticle size could be modulated by adjusting the flow rate of corona fluid, and nanoparticles with an average diameter of 106±5 nm were obtained. The nanoparticles displayed excellent dispersion stability in aqueous media and very low cytotoxicity. Paclitaxel was used as a model drug to be incorporated into the core section of the nanoparticles. A drug loading content in the nanoparticles as high as 50.7±1.5 wt% with an encapsulation efficiency of greater than 70% could be achieved by simply increasing the feed rate of the drug solution. Paclitaxel exhibited sustained release from the nanoparticles for more than 40 days. The location of the paclitaxel in the nanoparticles, i.e., in the core or shell layer, did not have a significant effect on its release.

  1. Core-shell diode array for high performance particle detectors and imaging sensors: status of the development

    Science.gov (United States)

    Jia, G.; Hübner, U.; Dellith, J.; Dellith, A.; Stolz, R.; Plentz, J.; Andrä, G.

    2017-02-01

    We propose a novel high performance radiation detector and imaging sensor by a ground-breaking core-shell diode array design. This novel core-shell diode array are expected to have superior performance respect to ultrahigh radiation hardness, high sensitivity, low power consumption, fast signal response and high spatial resolution simultaneously. These properties are highly desired in fundamental research such as high energy physics (HEP) at CERN, astronomy and future x-ray based protein crystallography at x-ray free electron laser (XFEL) etc.. This kind of detectors will provide solutions for these fundamental research fields currently limited by instrumentations. In this work, we report our progress on the development of core-shell diode array for the applications as high performance imaging sensors and particle detectors. We mainly present our results in the preparation of high aspect ratio regular silicon rods by metal assisted wet chemical etching technique. Nearly 200 μm deep and 2 μm width channels with high aspect ratio have been etched into silicon. This result will open many applications not only for the core-shell diode array, but also for a high density integration of 3D microelectronics devices.

  2. Geodesic motions of test particles in a relativistic core-shell spacetime

    Science.gov (United States)

    Liu, Lei; Wu, Xin; Huang, Guoqing

    2017-02-01

    In this paper, we discuss the geodesic motions of test particles in the intermediate vacuum between a monopolar core and an exterior shell of dipoles, quadrupoles and octopoles. The radii of the innermost stable circular orbits at the equatorial plane depend only on the quadrupoles. A given oblate quadrupolar leads to the existence of two innermost stable circular orbits, and their radii are larger than in the Schwarzschild spacetime. However, a given prolate quadrupolar corresponds to only one innermost stable circular orbit, and its radius is smaller than in the Schwarzschild spacetime. As to the general geodesic orbits, one of the recently developed extended phase space fourth order explicit symplectic-like methods is efficiently applicable to them although the Hamiltonian of the relativistic core-shell system is not separable. With the aid of both this fast integrator without secular growth in the energy errors and gauge invariant chaotic indicators, the effect of these shell multipoles on the geodesic dynamics of order and chaos is estimated numerically.

  3. Fabrication and characterization of flaky core-shell particles by magnetron sputtering silver onto diatomite

    Science.gov (United States)

    Wang, Yuanyuan; Zhang, Deyuan; Cai, Jun

    2016-02-01

    Diatomite has delicate porous structures and various shapes, making them ideal templates for microscopic core-shell particles fabrication. In this study, a new process of magnetron sputtering assisted with photoresist positioning was proposed to fabricate lightweight silver coated porous diatomite with superior coating quality and performance. The diatomite has been treated with different sputtering time to investigate the silver film growing process on the surface. The morphologies, constituents, phase structures and surface roughness of the silver coated diatomite were analyzed with SEM, EDS, XRD and AFM respectively. The results showed that the optimized magnetron sputtering time was 8-16 min, under which the diatomite templates were successfully coated with uniform silver film, which exhibits face centered cubic (fcc) structure, and the initial porous structures were kept. Moreover, this silver coating has lower surface roughness (RMS 4.513 ± 0.2 nm) than that obtained by electroless plating (RMS 15.692 ± 0.5 nm). And the infrared emissivity of coatings made with magnetron sputtering and electroless plating silver coated diatomite can reach to the lowest value of 0.528 and 0.716 respectively.

  4. Structure of the Particle-Hole Amplitudes in No-core Shell Model Wave Functions

    CERN Document Server

    Hayes, A C

    2009-01-01

    We study the structure of the no-core shell model wave functions for $^6$Li and $^{12}$C by investigating the ground state and first excited state electron scattering charge form factors. In both nuclei, large particle-hole ($ph$) amplitudes in the wave functions appear with the opposite sign to that needed to reproduce the shape of the $(e,e')$ form factors, the charge radii, and the B(E2) values for the lowest two states. The difference in sign appears to arise mainly from the monopole $\\Delta\\hbar\\omega=2$ matrix elements of the kinetic and potential energy (T+V) that transform under the harmonic oscillator SU(3) symmetries as $(\\lambda,\\mu)=(2,0)$. These are difficult to determine self-consistently, but they have a strong effect on the structure of the low-lying states and on the giant monopole and quadrupole resonances. The Lee-Suzuki transformation, used to account for the restricted nature of the space in terms of an effective interaction, introduces large higher-order $\\Delta\\hbar\\omega=n, n>$2, $ph$ ...

  5. Effects of layer eccentricity on the super-resonant states of active cylindrical core-shell nano-particles

    Directory of Open Access Journals (Sweden)

    Thorsen Rasmus Ø.

    2015-01-01

    Full Text Available This work reports on the effects of layer eccentricity on the resonant properties of active cylindrical core-shell nano-particles excited by a near-by exterior magnetic line source. The core-shell particles consist of a silver core layered with a silica shell. For a fixed over-all radius of the nano-particle equal to 30 nm, we investigate designs with relatively small (radius equal to 6 nm and large (radius equal to 24 nm silver cores and we quantify their performance characteristics in terms of the near- and far-field properties. Our results show that the super-resonances, known to exist in the concentric version of these nano-particles, are significantly influenced by introducing eccentricity (through displacements of the silver core relative to the silica shell. In particular, their amplitude responses are found to diminish significantly for silver core displacements ≥ 3 nm for the small core case, and even for displacements ≥ 1 nm for the large core case. The present results are useful from the experimental point of view since slight displacements of the centers of the core and shell parts of the investigated nano-particles are likely to occur in standard fabrication processes.

  6. Preparation and characterization of inorganic-organic trilayer core-shell polysilsesquioxane/polyacrylate/polydimethylsiloxane hybrid latex particles

    Science.gov (United States)

    Bai, Ruiqin; Qiu, Teng; Han, Feng; He, Lifan; Li, Xiaoyu

    2012-07-01

    The inorganic-organic trilayer core-shell polysilsesquioxane/polyacrylate/polydimethylsiloxane hybrid latex particles have been successfully prepared via seeded emulsion polymerization of acrylate monomers and octamethylcyclotetrasiloxane (D4) gradually, using functional polymethacryloxypropylsilsesquioxane (PSQ) latex particles with reactive methacryloxypropyl groups synthesized by the hydrolysis and polycondensation of (3-methacryloxypropyl)trimethoxysilane in the presence of mixed emulsifiers as seeds. The FTIR spectra show that acrylate monomers and D4 are effectively involved in the emulsion copolymerization and formed the polydimethylsiloxane-containing hybrid latex particles. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) confirm that the resultant hybrid latex particles have evident trilayer core-shell structure and a narrow size distribution. XPS analysis also indicates that polysilsesquioxane/polyacrylate/polydimethylsiloxane hybrid latex particles have been successfully prepared and PDMS is rich in the surface of the hybrid latex film. Additionally, compared with the hybrid latex film without PDMS, the hybrid latex film containing PDMS shows higher hydrophobicity (water contact angle) and lower water absorption.

  7. Preparation and characterization of inorganic-organic trilayer core-shell polysilsesquioxane/polyacrylate/polydimethylsiloxane hybrid latex particles

    Energy Technology Data Exchange (ETDEWEB)

    Bai Ruiqin [College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composite, Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029 (China); Qiu Teng, E-mail: qiuteng@mail.buct.edu.cn [College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composite, Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029 (China); Han Feng; He Lifan [College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composite, Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029 (China); Li Xiaoyu, E-mail: lixy@mail.buct.edu.cn [College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composite, Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029 (China)

    2012-07-15

    The inorganic-organic trilayer core-shell polysilsesquioxane/polyacrylate/polydimethylsiloxane hybrid latex particles have been successfully prepared via seeded emulsion polymerization of acrylate monomers and octamethylcyclotetrasiloxane (D{sub 4}) gradually, using functional polymethacryloxypropylsilsesquioxane (PSQ) latex particles with reactive methacryloxypropyl groups synthesized by the hydrolysis and polycondensation of (3-methacryloxypropyl)trimethoxysilane in the presence of mixed emulsifiers as seeds. The FTIR spectra show that acrylate monomers and D{sub 4} are effectively involved in the emulsion copolymerization and formed the polydimethylsiloxane-containing hybrid latex particles. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) confirm that the resultant hybrid latex particles have evident trilayer core-shell structure and a narrow size distribution. XPS analysis also indicates that polysilsesquioxane/polyacrylate/polydimethylsiloxane hybrid latex particles have been successfully prepared and PDMS is rich in the surface of the hybrid latex film. Additionally, compared with the hybrid latex film without PDMS, the hybrid latex film containing PDMS shows higher hydrophobicity (water contact angle) and lower water absorption.

  8. The influence of some factors on the electrical conductivity and particle size of core/shell polystyrene/polyaniline composites

    Directory of Open Access Journals (Sweden)

    GORDANA D. NESTOROVIC

    2005-11-01

    Full Text Available The electrically conductive, micron-sized, core/shell polystyrene (PS/polyaniline (PANI composite particles were synthesized by chemical oxidative polymerization of aniline in the presence of micron-sized PS particles in 1 M HCl. The conditions of the dispersion polymerization of styrene were optimized. The influence of the initiator type employed for the chemical oxidative polymerization of aniline and the aniline (ANI concentration on the PS/PANI particle size and size distribution and their conductivity was investigated. The obtained results show that the conductivity of the samples increased with increasing ANI concentration. The conductivity of the PS/PANI composite particles obtained with the highest ANI concentration was of the same order of magnitude as that for PANI powder. The particle size did not depend on the concentration of ANI, while the particle size distribution was narrower at higher concentrations of ANI.

  9. Shape-Controlled Synthesis of Magnetic Iron Oxide@SiO₂-Au@C Particles with Core-Shell Nanostructures.

    Science.gov (United States)

    Li, Mo; Li, Xiangcun; Qi, Xinhong; Luo, Fan; He, Gaohong

    2015-05-12

    The preparation of nonspherical magnetic core-shell nanostructures with uniform sizes still remains a challenge. In this study, magnetic iron oxide@SiO2-Au@C particles with different shapes, such as pseduocube, ellipsoid, and peanut, were synthesized using hematite as templates and precursors of magnetic iron oxide. The as-obtained magnetic particles demonstrated uniform sizes, shapes, and well-designed core-shell nanostructures. Transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX) analysis showed that the Au nanoparticles (AuNPs) of ∼6 nm were uniformly distributed between the silica and carbon layers. The embedding of the metal nanocrystals into the two different layers prevented the aggregation and reduced the loss of the metal nanocrystals during recycling. Catalytic performance of the peanut-like particles kept almost unchanged without a noticeable decrease in the reduction of 4-nitrophenol (4-NP) in 8 min even after 7 cycles, indicating excellent reusability of the particles. Moreover, the catalyst could be readily recycled magnetically after each reduction by an external magnetic field.

  10. Isostructural solid-solid phase transition in monolayers of soft core-shell particles at fluid interfaces: structure and mechanics.

    Science.gov (United States)

    Rey, Marcel; Fernández-Rodríguez, Miguel Ángel; Steinacher, Mathias; Scheidegger, Laura; Geisel, Karen; Richtering, Walter; Squires, Todd M; Isa, Lucio

    2016-04-21

    We have studied the complete two-dimensional phase diagram of a core-shell microgel-laden fluid interface by synchronizing its compression with the deposition of the interfacial monolayer. Applying a new protocol, different positions on the substrate correspond to different values of the monolayer surface pressure and specific area. Analyzing the microstructure of the deposited monolayers, we discovered an isostructural solid-solid phase transition between two crystalline phases with the same hexagonal symmetry, but with two different lattice constants. The two phases corresponded to shell-shell and core-core inter-particle contacts, respectively; with increasing surface pressure the former mechanically failed enabling the particle cores to come into contact. In the phase-transition region, clusters of particles in core-core contacts nucleate, melting the surrounding shell-shell crystal, until the whole monolayer moves into the second phase. We furthermore measured the interfacial rheology of the monolayers as a function of the surface pressure using an interfacial microdisk rheometer. The interfaces always showed a strong elastic response, with a dip in the shear elastic modulus in correspondence with the melting of the shell-shell phase, followed by a steep increase upon the formation of a percolating network of the core-core contacts. These results demonstrate that the core-shell nature of the particles leads to a rich mechanical and structural behavior that can be externally tuned by compressing the interface, indicating new routes for applications, e.g. in surface patterning or emulsion stabilization.

  11. Fabrication of quantum dot/silica core-shell particles immobilizing Au nanoparticles and their dual imaging functions

    Science.gov (United States)

    Kobayashi, Yoshio; Matsudo, Hiromu; Li, Ting-ting; Shibuya, Kyosuke; Kubota, Yohsuke; Oikawa, Takahiro; Nakagawa, Tomohiko; Gonda, Kohsuke

    2016-03-01

    The present work proposes preparation methods for quantum dot/silica (QD/SiO2) core-shell particles that immobilize Au nanoparticles (QD/SiO2/Au). A colloid solution of QD/SiO2 core-shell particles with an average size of 47.0 ± 6.1 nm was prepared by a sol-gel reaction of tetraethyl orthosilicate in the presence of the QDs with an average size of 10.3 ± 2.1 nm. A colloid solution of Au nanoparticles with an average size of 17.9 ± 1.3 nm was prepared by reducing Au3+ ions with sodium citrate in water at 80 °C. Introduction of amino groups to QD/SiO2 particle surfaces was performed using (3-aminopropyl)-triethoxysilane (QD/SiO2-NH2). The QD/SiO2/Au particles were fabricated by mixing the Au particle colloid solution and the QD/SiO2-NH2 particle colloid solution. Values of radiant efficiency and computed tomography for the QD/SiO2/Au particle colloid solution were 2.23 × 107 (p/s/cm2/sr)/(μW/cm2) at a QD concentration of 8 × 10-7 M and 1180 ± 314 Hounsfield units and an Au concentration of 5.4 × 10-2 M. The QD/SiO2/Au particle colloid solution was injected into a mouse chest wall. Fluorescence emitted from the colloid solution could be detected on the skin covering the chest wall. The colloid solution could also be X-ray-imaged in the chest wall. Consequently, the QD/SiO2/Au particle colloid solution was found to have dual functions, i.e., fluorescence emission and X-ray absorption in vivo, which makes the colloid solution suitable to function as a contrast agent for dual imaging processes.

  12. Synthesis of Co/MFe(2)O(4) (M = Fe, Mn) Core/Shell Nanocomposite Particles.

    Science.gov (United States)

    Peng, Sheng; Xie, Jin; Sun, Shouheng

    2008-01-01

    Monodispersed cobalt nanoparticles (NPs) with controllable size (8-14 nm) have been synthesized using thermal decomposition of dicobaltoctacarbonyl in organic solvent. The as-synthesized high magnetic moment (125 emu/g) Co NPs are dispersible in various organic solvents, and can be easily transferred into aqueous phase by surface modification using phospholipids. However, the modified hydrophilic Co NPs are not stable as they are quickly oxidized, agglomerated in buffer. Co NPs are stabilized by coating the MFe(2)O(4) (M = Fe, Mn) ferrite shell. Core/shell structured bimagnetic Co/MFe(2)O(4) nanocomposites are prepared with tunable shell thickness (1-5 nm). The Co/MFe(2)O(4) nanocomposites retain the high magnetic moment density from the Co core, while gaining chemical and magnetic stability from the ferrite shell. Comparing to Co NPs, the nanocomposites show much enhanced stability in buffer solution at elevated temperatures, making them promising for biomedical applications.

  13. Tunable multiple Fano resonances in magnetic single-layered core-shell particles

    CERN Document Server

    Arruda, Tiago Jose; Pinheiro, Felipe Arruda

    2015-01-01

    We investigate multiple Fano, comblike scattering resonances in single-layered, concentric core-shell nanoparticles composed of magnetic materials. Using the Lorenz-Mie theory, we derive, in the long-wavelength limit, an analytical condition for the occurrence of comblike resonances in the single scattering by coated spheres. This condition establishes that comblike scattering response uniquely depends on material parameters and thickness of the shell, provided that it is magnetic and thin compared to the scatterer radius. We also demonstrate that comblike scattering response shows up beyond the long-wavelength limit and it is robust against absorption. Since multiple Fano resonances are shown to depend explicitly on the magnetic permeability of the shell, we argue that both the position and profile of the comblike, morphology-dependent resonances could be externally tuned by exploiting the properties of engineered magnetic materials.

  14. Synthesis and Characterization of Monodisperse Metallodielectric SiO2@Pt@SiO2 Core-Shell-Shell Particles.

    Science.gov (United States)

    Petrov, Alexey; Lehmann, Hauke; Finsel, Maik; Klinke, Christian; Weller, Horst; Vossmeyer, Tobias

    2016-01-26

    Metallodielectric nanostructured core-shell-shell particles are particularly desirable for enabling novel types of optical components, including narrow-band absorbers, narrow-band photodetectors, and thermal emitters, as well as new types of sensors and catalysts. Here, we present a facile approach for the preparation of submicron SiO2@Pt@SiO2 core-shell-shell particles. As shown by transmission and scanning electron microscopy, the first steps of this approach allow for the deposition of closed and almost perfectly smooth platinum shells onto silica cores via a seeded growth mechanism. By choosing appropriate conditions, the shell thickness could be adjusted precisely, ranging from ∼3 to ∼32 nm. As determined by X-ray diffraction, the crystalline domain sizes of the polycrystalline metal shells were ∼4 nm, regardless of the shell thickness. The platinum content of the particles was determined by atomic absorption spectroscopy and for thin shells consistent with a dense metal layer of the TEM-measured thickness. In addition, we show that the roughness of the platinum shell strongly depends on the storage time of the gold seeds used to initiate reductive platinum deposition. Further, using polyvinylpyrrolidone as adhesion layer, it was possible to coat the metallic shells with very homogeneous and smooth insulating silica shells of well-controlled thicknesses between ∼2 and ∼43 nm. After depositing the particles onto silicon substrates equipped with interdigitated electrode structures, the metallic character of the SiO2@Pt particles and the insulating character of the SiO2 shells of the SiO2@Pt@SiO2 particles were successfully demonstrated by charge transport measurements at variable temperatures.

  15. Graphene supported Sn-Sb rate at carbon core-shell particles as a superior anode for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shuangqiang; Chen, Peng; Wang, Yong [Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University (China); Wu, Minghong; Pan, Dengyu [Institute of Nanochemistry and Nanobiology, Shanghai Univ. (China)

    2010-10-15

    This paper reports the preparation and Li-storage properties of graphene nanosheets(GNS), GNS supported Sn-Sb rate at carbon (50-150 nm) and Sn-Sb nanoparticles (5-10 nm). The best cycling performance and excellent high rate capabilities were observed for GNS-supported Sn-Sb rate at carbon core-shell particles, which exhibited initial capacities of 978, 850 and 668 mAh/g respectively at 0.1C, 2C and 5C (1C = 800 mA/g) with good cyclability. Besides the GNS support, the carbon skin around Sn-Sb particles is believed to be a key factor to improve electrochemical properties of Sn-Sb. (author)

  16. Metal-based magnetic fluids with core-shell structure FeB@SiO2 amorphous particles.

    Science.gov (United States)

    Yu, Mengchun; Bian, Xiufang; Wang, Tianqi; Wang, Junzhang

    2017-09-27

    FeB@SiO2 amorphous particles were firstly introduced into Ga85.8In14.2 alloys to prepare metal-based magnetic fluids. The morphology of the FeB amorphous particles is spherical with an average particle size of about 190 nm. The shape of the particles is regular and the particle size is homogeneous. Stable core-shell structure SiO2 modified FeB amorphous particles are obtained and the thickness of the SiO2 coatings is observed to be about 40 nm. The results of VSM confirm that the saturation magnetization of the FeB amorphous particles is 131.5 emu g(-1), which is almost two times higher than that of the Fe3O4 particles. The saturation magnetization of the FeB@SiO2 amorphous particles is 106.9 emu g(-1), an approximate decrease of 18.7% due to the non-magnetic SiO2 coatings. The results from the torsional oscillation viscometer show that the metal-based magnetic fluids with FeB amorphous particles exhibit a desirable high temperature performance and are ideal candidates for high temperature use.

  17. Biomimetic synthesis of raspberry-like hybrid polymer-silica core-shell nanoparticles by templating colloidal particles with hairy polyamine shell.

    Science.gov (United States)

    Pi, Mengwei; Yang, Tingting; Yuan, Jianjun; Fujii, Syuji; Kakigi, Yuichi; Nakamura, Yoshinobu; Cheng, Shiyuan

    2010-07-01

    The nanoparticles composed of polystyrene core and poly[2-(diethylamino)ethyl methacrylate] (PDEA) hairy shell were used as colloidal templates for in situ silica mineralization, allowing the well-controlled synthesis of hybrid silica core-shell nanoparticles with raspberry-like morphology and hollow silica nanoparticles by subsequent calcination. Silica deposition was performed by simply stirring a mixture of the polymeric core-shell particles in isopropanol, tetramethyl orthosilicate (TMOS) and water at 25 degrees C for 2.5h. No experimental evidence was found for nontemplated silica formation, which indicated that silica deposition occurred exclusively in the PDEA shell and formed PDEA-silica hybrid shell. The resulting hybrid silica core-shell particles were characterized by transmission electron microscopy (TEM), thermogravimetry, aqueous electrophoresis, and X-ray photoelectron spectroscopy. TEM studies indicated that the hybrid particles have well-defined core-shell structure with raspberry morphology after silica deposition. We found that the surface nanostructure of hybrid nanoparticles and the composition distribution of PDEA-silica hybrid shell could be well controlled by adjusting the silicification conditions. These new hybrid core-shell nanoparticles and hollow silica nanoparticles would have potential applications for high-performance coatings, encapsulation and delivery of active organic molecules.

  18. Core-Shell Soy Protein-Soy Polysaccharide Complex (Nano)particles as Carriers for Improved Stability and Sustained Release of Curcumin.

    Science.gov (United States)

    Chen, Fei-Ping; Ou, Shi-Yi; Tang, Chuan-He

    2016-06-22

    Using soy protein isolate (SPI) and soy-soluble polysaccharides (SSPS) as polymer matrixes, this study reported a novel process to fabricate unique core-shell complex (nano)particles to perform as carriers for curcumin (a typical poorly soluble bioactive). In the process, curcumin-SPI nanocomplexes were first formed at pH 7.0 and then coated by SSPS. At this pH, the core-shell complex was formed in a way the SPI nanoparticles might be incorporated into the interior of SSPS molecules without distinctly affecting the size and morphology of particles. The core-shell structure was distinctly changed by adjusting pH from 7.0 to 4.0. At pH 4.0, SSPS was strongly bound to the surface of highly aggregated SPI nanoparticles, and as a consequence, much larger complexes were formed. The bioaccessibility of curcumin in the SPI-curcumin complexes was unaffected by the SSPS coating. However, the core-shell complex formation greatly improved the thermal stability and controlled release properties of encapsulated curcumin. The improvement was much better at pH 4.0 than that at pH 7.0. All of the freeze-dried core-shell complex preparations exhibited good redispersion behavior. The findings provide a simple approach to fabricate food-grade delivery systems for improved water dispersion, heat stability, and even controlled release of poorly soluble bioactives.

  19. Isocratic and gradient impedance plot analysis and comparison of some recently introduced large size core-shell and fully porous particles.

    Science.gov (United States)

    Vanderheyden, Yoachim; Cabooter, Deirdre; Desmet, Gert; Broeckhoven, Ken

    2013-10-18

    The intrinsic kinetic performance of three recently commercialized large size (≥4μm) core-shell particles packed in columns with different lengths has been measured and compared with that of standard fully porous particles of similar and smaller size (5 and 3.5μm, respectively). The kinetic performance is compared in both absolute (plot of t0 versus the plate count N or the peak capacity np for isocratic and gradient elution, respectively) and dimensionless units. The latter is realized by switching to so-called impedance plots, a format which has been previously introduced (as a plot of t0/N(2) or E0 versus Nopt/N) and has in the present study been extended from isocratic to gradient elution (where the impedance plot corresponds to a plot of t0/np(4) versus np,opt(2)/np(2)). Both the isocratic and gradient impedance plot yielded a very similar picture: the clustered impedance plot curves divide into two distinct groups, one for the core-shell particles (lowest values, i.e. best performance) and one for the fully porous particles (highest values), confirming the clear intrinsic kinetic advantage of core-shell particles. If used around their optimal flow rate, the core-shell particles displayed a minimal separation impedance that is about 40% lower than the fully porous particles. Even larger gains in separation speed can be achieved in the C-term regime.

  20. Synthesis of Cu/SiO2 Core-Shell Particles Using Hyperbranched Polyester as Template and Dispersant

    Science.gov (United States)

    Han, Wensong

    2017-07-01

    Third-generation hyperbranched polyester (HBPE3) was synthesized by stepwise polymerization with N, N-diethylol-3-amine methylpropionate as AB2 monomer and pentaerythritol as core molecule. Then, Cu particles were prepared by reduction of copper nitrate with ascorbic acid in aqueous solution using HBPE3 as template. Finally, Cu/SiO2 particles were prepared by coating silica on the surface of Cu particles. The structure and morphology of the samples were characterized by Fourier-transform infrared (FT-IR) spectrometry, x-ray diffraction (XRD) analysis, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). The results confirmed the formation of the silica coating on the surface of Cu and that the Cu/SiO2 particles had spherical shape with particle size in the range of 0.8 μm to 2 μm. Compared with pure Cu, the synthesized Cu/SiO2 core-shell particles exhibited better oxidation resistance at high temperature. Moreover, the oxidation resistance of the Cu/SiO2 particles increased significantly with increasing tetraethyl orthosilicate (TEOS) concentration.

  1. Investigation of a new core-shell particle column for ion-pair reversed-phase liquid chromatography analysis of oligonucleotides.

    Science.gov (United States)

    Biba, Mirlinda; Welch, Christopher J; Foley, Joe P

    2014-08-01

    A new core-shell particle column showed excellent performance and durability for separation of short (∼21-mer) ribonucleic acid (RNA) oligonucleotides by ion-pair reversed-phase liquid chromatography (IP-RPLC). Previously investigated core-shell C18 columns showed excellent peak shapes and separations of closely eluting impurities by IP-RPLC. However, these columns showed only modest long-term stability at the neutral pH and elevated column temperatures of ≥60°C, typically used for IP-RPLC analysis of oligonucleotides. The newly introduced SunShell C18 column provided separations comparable to the previously evaluated core-shell columns, but with significantly improved long-term column stability when operated at neutral pH and elevated column temperature.

  2. Magnetic Fe2O3-polystyrene/PPy core/shell particles: bioreactivity and self-assembly.

    Science.gov (United States)

    Mangeney, Claire; Fertani, Meriem; Bousalem, Smain; Zhicai, Ma; Ammar, Souad; Herbst, Fréderic; Beaunier, Patricia; Elaissari, Abdelhamid; Chehimi, Mohamed M

    2007-10-23

    This paper describes the synthesis of new magnetic, reactive polystyrene/polypyrrole core/shell latex particles. The core consists of a polystyrene microsphere containing gamma-Fe2O3 superparamagnetic nanoparticles (PSmag), and the shell is made of reactive N-carboxylic acid-functionalized polypyrrole (PPyCOOH). These PSmag-PPyCOOH latex particles, average diameter 220 nm, were prepared by copolymerization of pyrrole (Py) and the active carboxyl-functionalized pyrrole (PyCOOH) in the presence of PSmag particles. PNVP was used as a steric stabilizer. The functionalized polypyrrole-coated PSmag particles were characterized in terms of their particle size, surface morphology, chemical composition, and electrochemical and magnetic properties using transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry, and SQUID magnetometry. Activation of the particle surface carboxyl groups was achieved using 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) and N-hydroxysuccinimide (NHS), which helps transform the carboxyl groups into activated ester groups (NSE). The activated particles, PSmag-PPyNSE, were further evaluated as bioadsorbents of biotin used as a model biomolecule. It was shown that biotin was immobilized at the surface of the PSmag-PPyNSE particles by forming interfacial amide groups. The assemblies of PSmag-PPyCOOH particles on glass plates were further investigated. When no magnetic field is applied, the particles assemble into 3D colloidal crystals. In contrast, under a magnetic field, one-particle-thick chains gathered in hedgehog-like architectures are obtained. Furthermore, PSmag-PPyCOOH coated ITO electrodes were shown to be electroactive and electrochemically stable, thus offering potentialities for creating novel high-specific-area materials for biosensing devices where the conducting polymer component would act as the transducer through its conductive properties.

  3. MICRON CORE-SHELL PARTICLES PREPARED BY GRAFTING POLYMERIZATION OF METHYL METHACRYLATE FROM NARROW DISPERSE SURFACE OF CHLOROMETHYLATED POLYDIVINYLBENZENE VIA ATRP

    Institute of Scientific and Technical Information of China (English)

    Yu-zeng Zhao; Xin-lin Yang; Wen-qiang Huang

    2005-01-01

    Grafting of poly(methyl methacrylate) from narrow disperse polymer particles by surface-initiated atom transfer radical polymerization (ATRP) was investigated. Polydivinylbenzene (PDVB) particles were prepared by dispersion polymerization with poly(N-vinyl pyrrolidone) (PVP) as the stabilizer. Chloromethylated PDVB was used as initiating core sites for subsequent ATRP of methyl methacrylate with CuBr/bpy as catalyst system. It was found that poly(methyl methacrylate) was grafted not only from the particle surfaces but also from within a thin shell layer, leading to particles size increases from 2.38-3.00 μm with a core-shell structure particles. The grafted core-shell particles were characterized with FTIR, SEM, DSC.

  4. Core-shell-structured silica/polyacrylate particles prepared by Pickering emulsion: influence of the nucleation model on particle interfacial organization and emulsion stability.

    Science.gov (United States)

    Ji, Jing; Shu, Shi; Wang, Feng; Li, Zhilin; Liu, Jingjun; Song, Ye; Jia, Yi

    2014-01-01

    This work reports a new evidence of the versatility of silica sol as a stabilizer for Pickering emulsions. The organization of silica particles at the oil-water interface is a function of the nucleation model. The present results show that nucleation model, together with monomer hydrophobicity, can be used as a trigger to modify the packing density of silica particles at the oil-water interface: Less hydrophobic methylmethacrylate, more wettable with silica particles, favors the formation of core-shell-structured composite when the composite particles are prepared by miniemulsion polymerization in which monomers are fed in batch (droplet nucleation). By contrast, hydrophobic butylacrylate promotes the encapsulating efficiency of silica when monomers are fed dropwise (homogeneous nucleation). The morphologies of polyacrylate-nano-SiO2 composites prepared from different feed ratio of methylmethacrylate/butylacrylate (with different hydrophobicity) and by different feed processes are characterized by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) techniques. The results from SEM and TEM show that the morphologies of the as-prepared polyacrylate/nano-SiO2 composite can be a core-shell structure or a bare acrylic sphere. The stability of resulting emulsions composed of these composite particles is strongly dependent on the surface coverage of silica particles. The emulsion stability is improved by densely silica-packed composite particles.

  5. Antiviral Activity of Gold/Copper Sulfide Core/Shell Nanoparticles against Human Norovirus Virus-Like Particles.

    Directory of Open Access Journals (Sweden)

    Jessica Jenkins Broglie

    Full Text Available Human norovirus is a leading cause of acute gastroenteritis worldwide in a plethora of residential and commercial settings, including restaurants, schools, and hospitals. Methods for easily detecting the virus and for treating and preventing infection are critical to stopping norovirus outbreaks, and inactivation via nanoparticles (NPs is a more universal and attractive alternative to other physical and chemical approaches. Using norovirus GI.1 (Norwalk virus-like particles (VLPs as a model viral system, this study characterized the antiviral activity of Au/CuS core/shell nanoparticles (NPs against GI.1 VLPs for the rapid inactivation of HuNoV. Inactivation of VLPs (GI.1 by Au/CuS NPs evaluated using an absorbance-based ELISA indicated that treatment with 0.083 μM NPs for 10 min inactivated ~50% VLPs in a 0.37 μg/ml VLP solution and 0.83 μM NPs for 10 min completely inactivated the VLPs. Increasing nanoparticle concentration and/or VLP-NP contact time significantly increased the virucidal efficacy of Au/CuS NPs. Changes to the VLP particle morphology, size, and capsid protein were characterized using dynamic light scattering, transmission electron microscopy, and Western blot analysis. The strategy reported here provides the first reported proof-of-concept Au/CuS NPs-based virucide for rapidly inactivating human norovirus.

  6. Antiviral Activity of Gold/Copper Sulfide Core/Shell Nanoparticles against Human Norovirus Virus-Like Particles.

    Science.gov (United States)

    Broglie, Jessica Jenkins; Alston, Brittny; Yang, Chang; Ma, Lun; Adcock, Audrey F; Chen, Wei; Yang, Liju

    2015-01-01

    Human norovirus is a leading cause of acute gastroenteritis worldwide in a plethora of residential and commercial settings, including restaurants, schools, and hospitals. Methods for easily detecting the virus and for treating and preventing infection are critical to stopping norovirus outbreaks, and inactivation via nanoparticles (NPs) is a more universal and attractive alternative to other physical and chemical approaches. Using norovirus GI.1 (Norwalk) virus-like particles (VLPs) as a model viral system, this study characterized the antiviral activity of Au/CuS core/shell nanoparticles (NPs) against GI.1 VLPs for the rapid inactivation of HuNoV. Inactivation of VLPs (GI.1) by Au/CuS NPs evaluated using an absorbance-based ELISA indicated that treatment with 0.083 μM NPs for 10 min inactivated ~50% VLPs in a 0.37 μg/ml VLP solution and 0.83 μM NPs for 10 min completely inactivated the VLPs. Increasing nanoparticle concentration and/or VLP-NP contact time significantly increased the virucidal efficacy of Au/CuS NPs. Changes to the VLP particle morphology, size, and capsid protein were characterized using dynamic light scattering, transmission electron microscopy, and Western blot analysis. The strategy reported here provides the first reported proof-of-concept Au/CuS NPs-based virucide for rapidly inactivating human norovirus.

  7. Quantitative cellular uptake of double fluorescent core-shelled model submicronic particles

    Energy Technology Data Exchange (ETDEWEB)

    Leclerc, Lara, E-mail: leclerc@emse.fr [Ecole Nationale Superieure des Mines, CIS-EMSE, LINA (France); Boudard, Delphine [LINA (France); Pourchez, Jeremie; Forest, Valerie [Ecole Nationale Superieure des Mines, CIS-EMSE, LINA (France); Marmuse, Laurence; Louis, Cedric [NANO-H S.A.S (France); Bin, Valerie [LINA (France); Palle, Sabine [Universite Jean Monnet, Centre de Microscopie Confocale Multiphotonique (France); Grosseau, Philippe; Bernache-Assollant, Didier [Ecole Nationale Superieure des Mines, CIS-EMSE, LINA (France); Cottier, Michele [LINA (France)

    2012-11-15

    The relationship between particles' physicochemical parameters, their uptake by cells and their degree of biological toxicity represent a crucial issue, especially for the development of new technologies such as fabrication of micro- and nanoparticles in the promising field of drug delivery systems. This work was aimed at developing a proof-of-concept for a novel model of double fluorescence submicronic particles that could be spotted inside phagolysosomes. Fluorescein isothiocyanate (FITC) particles were synthesized and then conjugated with a fluorescent pHrodo Trade-Mark-Sign probe, red fluorescence of which increases in acidic conditions such as within lysosomes. After validation in acellular conditions by spectral analysis with confocal microscopy and dynamic light scattering, quantification of phagocytosis was conducted on a macrophage cell line in vitro. The biological impact of pHrodo functionalization (cytotoxicity, inflammatory response, and oxidative stress) was also investigated. Results validate the proof-of-concept of double fluorescent particles (FITC + pHrodo), allowing detection of entirely engulfed pHrodo particles (green and red labeling). Moreover incorporation of pHrodo had no major effects on cytotoxicity compared to particles without pHrodo, making them a powerful tool for micro- and nanotechnologies.

  8. DESIGN AND CONTROL OF SOAP-FREE HYDROPHILIC-HYDROPHOBIC CORE-SHELL LATEX PARTICLES WITH HIGH CARBOXYL CONTENT IN THE CORE OF THE PARTICLES

    Institute of Scientific and Technical Information of China (English)

    Wen-jiao Ji; Yi-ming Jiang; Bo-tian Li; Wei Deng; Cheng-you Kan

    2012-01-01

    Soap-free hydrophilic-hydrophobic core-shell latex particles with high carboxyl content in the core of the particles were synthesized via the seeded emulsion polymerization using methyl methacrylate (MMA),butyl acrylate (BA),methacrylic acid (MAA),styrene (St) and ethylene glycol dimethacrylate (EGDMA) as monomers,and the influences of MMA content used in the core preparation on polymerization,particle size and morphology were investigated by transmission electron microscopy,dynamic light scattering and conductometric titration.The results showed that the seeded emulsion polymerization could be carried out smoothly using "starved monomer feeding process" when MAA content in the core preparation was equal to or less than 24 wt%,and the encapsulating efficiency of the hydrophilic P(MMA-BA-MAA-EGDMA) core with the hydrophobic PSt shell decreased with the increase in MAA content.When an interlayer of P(MMA-MAA-St) with moderate polarity was inserted between the P(MMA-BA-MAA-EGDMA) core and the PSt shell,well designed soap-free hydrophilic-hydrophobic core-shell latex particles with 24 wt% MAA content in the core preparation were obtained.

  9. [Adsorption of Cu on Core-shell Structured Magnetic Particles: Relationship Between Adsorption Performance and Surface Properties].

    Science.gov (United States)

    Li, Qiu-mei; Chen, Jing; Li, Hai-ning; Zhang, Xiao-lei; Zhang, Gao-sheng

    2015-12-01

    In order to reveal the relationship between the adsorption performance of adsorbents and their compositions, structure, and surface properties, the core-shell structured Fe₃O₄/MnO2 and Fe-Mn/Mn₂2 magnetic particles were systematically characterized using multiple techniques and their Cu adsorption behaviors as well as mechanism were also investigated in details. It was found that both Fe₃O4 and Fe-Mn had spinel structure and no obvious crystalline phase change was observed after coating with MnO₂. The introduction of Mn might improve the affinity between the core and the shell, and therefore enhanced the amount and distribution uniformity of the MnO₂ coated. Consequently, Fe-Mn/MnO₂ exhibited a higher BET specific surface area and a lower isoelectric point. The results of sorption experiments showed that Fe-Mn had a higher maximal Cu adsorption capacity of 33.7 mg · g⁻¹ at pH 5.5, compared with 17.5 mg · g⁻¹ of Fe₃O4. After coating, the maximal adsorption capacity of Fe-Mn/MnO₂ was increased to 58.2 mg · g⁻¹, which was 2.6 times as high as that of Fe₃O₄/MnO₂ and outperformed the majority of magnetic adsorbents reported in literature. In addition, a specific adsorption of Cu occurred at the surface of Fe₃O₄/MnO₂ or Fe-Mn/MnO₂ through the formation of inner-sphere complexes. In conclusion, the adsorption performance of the magnetic particles was positively related to their compositions, structure, and surface properties.

  10. Polybutylacrylate/poly (methyl methacrylate) Core-Shell Elastic Particles as Epoxy Resin Toughener:Part II Toughness on DGEBA/DDM system

    Institute of Scientific and Technical Information of China (English)

    Jianli WANG; Myonghoon LEE; Kejian YAO; Jianbin JI; Xiaomei YU

    2004-01-01

    Mechanical properties of epoxy resin were investigated by adding core-shell elastic particles (CSEP). The results indicated that optimized core-shell ratio was 60/40 and the loading volume of CSEP was 10 phr (per hundred parts of epoxy resin by weight). The impact strength of modified systems increased apparently with the decrease of core sizes. However, the shearing strength changed gently with the particle sizes. CSEP with lightly crosslinked rubbery core showed more effectiveness on toughness than others. With solution blending, CSEP could be dispersed in epoxy matrix well, and the morphologies of dispersed rubber domains were controlled perfectly by CSEP whose structure was predesigned. A cavitation-shearing band toughness mechanism was observed from the SEM micrographs of fracture surface. It also was found that the deforming temperature (DT) of modified epoxy did not decline apparently.

  11. Preparation of Surfactant-free Core-Shell Poly(lactic acid) / Calcium Phosphate Hybrid Particles and Their Drug Release Characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Kuno, T; Hirao, K [Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, 466-8555 (Japan); Nagata, F; Ohji, T; Kato, K, E-mail: katsuya-kato@aist.go.jp [Advanced Manufacturing Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2266-98, Anagahora, Shimoshidami, Moriyama-ku, Nagoya, 463-8510 (Japan)

    2011-04-15

    We propose surfactant-free core-shell poly(lactic acid) (PLA) / calcium phosphate (CaP) hybrid particles as drug delivery carriers. These particles were prepared by biomineralization process using ultrasonic irradiation, and their drug release profiles were investigated. Drug release rate was earlier when particles were prepared by PLA with a low molecular weight, and/or by Ca(CH{sub 3}COO){sub 2} and (NH{sub 4}){sub 2}HPO{sub 4}. Also, these were shown good protein adsorption. This work indicates that these particles have sustained-release ability without initial burst and can do targeting capability by biomolecule conjugation.

  12. Application of the isopycnic kinetic plot method for elucidating the potential of sub-2 µm and core-shell particles in SFC.

    Science.gov (United States)

    Delahaye, Sander; Broeckhoven, Ken; Desmet, Gert; Lynen, Frédéric

    2013-11-15

    In this work the isopycnic method to construct kinetic plots for SFC was used to investigate the performance limits of an SFC system when using sub-2 µm fully porous particles and sub-3 µm superficially porous (core-shell) particles. This isopycnic kinetic plot method for SFC was developed and tested earlier for SFC separations on native silica with pure CO2 as mobile phase. In the current work, octadecyl based reversed phase columns were used in combination with a mobile phase that contains 10% methanol as modifier in order to study the applicability of the described methodology to assess the kinetic performance limits of experimental setups in which SFC is used and will, according to all probability, be evolving. SFC and HPLC van Deemter and kinetic plots are constructed for columns packed with fully porous particles with various diameters and for a column packed with core-shell particles. The influence of the experimental kinetic performance limits of the particle diameter and morphology in SFC is shown to be the same as in HPLC. Additionally, kinetic plot predictions were constructed for separations on 1 µm and 0.5 µm particles using the data measured on the 5 µm, 3.5 µm and 1.8 µm fully porous particles. By doing this the potential applicability of 1 µm particles on the contemporary SFC and HPLC systems was demonstrated together with the irrelevance of the use of 0.5 µm particles in SFC.

  13. Thoughening of SAN with acryliv core-shell rubber particles: particle size effect or cross-link density

    NARCIS (Netherlands)

    Steenbrink, A.C.; Steenbrink, A.C.; Litvinov, V.M.; Gaymans, R.J.

    1998-01-01

    The effect of rubber particle size on fracture toughness and tensile properties have been investigated using styrene-acrylonitrile as a matrix. Pre-formed particles with poly(butyl-acrylate) core and a poly(methylmethacrylate) shell, ranging from 0.1 to 0.6 μm in diameter, were used as a toughening

  14. Computational investigation of longitudinal diffusion, eddy dispersion, and trans-particle mass transfer in bulk, random packings of core-shell particles with varied shell thickness and shell diffusion coefficient.

    Science.gov (United States)

    Daneyko, Anton; Hlushkou, Dzmitry; Baranau, Vasili; Khirevich, Siarhei; Seidel-Morgenstern, Andreas; Tallarek, Ulrich

    2015-08-14

    In recent years, chromatographic columns packed with core-shell particles have been widely used for efficient and fast separations at comparatively low operating pressure. However, the influence of the porous shell properties on the mass transfer kinetics in core-shell packings is still not fully understood. We report on results obtained with a modeling approach to simulate three-dimensional advective-diffusive transport in bulk random packings of monosized core-shell particles, covering a range of reduced mobile phase flow velocities from 0.5 up to 1000. The impact of the effective diffusivity of analyte molecules in the porous shell and the shell thickness on the resulting plate height was investigated. An extension of Giddings' theory of coupled eddy dispersion to account for retention of analyte molecules due to stagnant regions in porous shells with zero mobile phase flow velocity is presented. The plate height equation involving a modified eddy dispersion term excellently describes simulated data obtained for particle-packings with varied shell thickness and shell diffusion coefficient. It is confirmed that the model of trans-particle mass transfer resistance of core-shell particles by Kaczmarski and Guiochon [42] is applicable up to a constant factor. We analyze individual contributions to the plate height from different mass transfer mechanisms in dependence of the shell parameters. The simulations demonstrate that a reduction of plate height in packings of core-shell relative to fully porous particles arises mainly due to reduced trans-particle mass transfer resistance and transchannel eddy dispersion. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Luminescence study on Eu{sup 3+} doped Y{sub 2}O{sub 3} nanoparticles: particle size, concentration and core-shell formation effects

    Energy Technology Data Exchange (ETDEWEB)

    Singh, L Robindro [Department of Physics, Manipur University, Canchipur-795003 (India); Ningthoujam, R S [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Sudarsan, V [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Srivastava, Iti [Metallurgical Engineering Department, Institute of Technology, Banaras Hindu University, Varansi (India); Singh, S Dorendrajit [Department of Physics, Manipur University, Canchipur-795003 (India); Dey, G K [Material Science Division, Bhabha Atomic Research Centre, Mumbai-40085 (India); Kulshreshtha, S K [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2008-02-06

    Nanoparticles of Eu{sup 3+} doped Y{sub 2}O{sub 3} (core) and Eu{sup 3+} doped Y{sub 2}O{sub 3} covered with Y{sub 2}O{sub 3} shell (core-shell) are prepared by urea hydrolysis for 3 h in ethylene glycol medium at a relatively low temperature of 140 deg. C, followed by heating at 500 and 900 deg. C. Particle sizes determined from x-ray diffraction and transmission electron microscopic studies are 11 and 18 nm for 500 and 900 deg. C heated samples respectively. Based on the luminescence studies of 500 and 900 deg. C heated samples, it is confirmed that there is no particle size effect on the peak positions of Eu{sup 3+} emission, and optimum luminescence intensity is observed from the nanoparticles with a Eu{sup 3+} concentration of 4-5 at.%. A luminescence study establishes that the Eu{sup 3+} environment in amorphous Y (OH){sub 3} is different from that in crystalline Y{sub 2}O{sub 3}. For a fixed concentration of Eu{sup 3+} doping, there is a reduction in Eu{sup 3+} emission intensity for core-shell nanoparticles compared to that of core nanoparticles, and this has been attributed to the concentration dilution effect. Energy transfer from the host to Eu{sup 3+} increases with increase of crystallinity.

  16. Fluoride adsorption from aqueous solution by magnetic core-shell Fe3O4@alginate-La particles fabricated via electro-coextrusion

    Science.gov (United States)

    Zhang, Yahui; Lin, Xiaoyan; Zhou, Quisheng; Luo, Xuegang

    2016-12-01

    The magnetic core-shell Fe3O4@Alg-La particles were fabricated successfully by a simple method of electro-coextrusion, and employed as an adsorbent for separation of fluoride from aqueous solution. Main factors affecting the removal of fluoride, including pH, adsorbent dosage, initial concentration, temperature and contact time were investigated. The adsorption isotherm and adsorption kinetics were studied to understand the adsorption process in detail. The experimental data were fitted well by the non-linear Freundlich isotherm and linear pseudo-second-order model, the maximum fluoride adsorption capacity was 45.230 mg/g at pH 4, 298.15 K. Thermodynamic parameters indicated that the fluoride adsorption process was feasible and spontaneous. The presence of other anions like Cl-, SO42-, HCO3- and PO43- had almost no effect on the fluoride adsorption. The adsorbent can be easily separated from the solution by a magnet. The magnetic core-shell Fe3O4@Alg-La particles before and after fluoride adsorption were studied by SEM, FTIR, EDX and XPS, which indicated that the adsorption mechanism may be related to electrostatic attraction and Lewis acid-base interaction.

  17. Shape-tunable core-shell microparticles.

    Science.gov (United States)

    Klein, Matthias K; Saenger, Nicolai R; Schuetter, Stefan; Pfleiderer, Patrick; Zumbusch, Andreas

    2014-10-28

    Colloidal polymer particles are an important class of materials finding use in both everyday and basic research applications. Tailoring their composition, shape, and functionality is of key importance. In this article, we describe a new class of shape-tunable core-shell microparticles. They are composed of a cross-linked polystyrene (PS) core and a poly(methyl methacrylate) (PMMA) shell of varying thickness. In the first step, we prepared highly cross-linked PS cores, which are subsequently transferred into a nonpolar dispersant. They serve as the seed dispersion for a nonaqueous dispersion polymerization to generate the PMMA shell. The shape of the particles can subsequently be manipulated. After the shell growth stage, the spherical PS/PMMA core-shell colloids exhibit an uneven and wrinkled surface. An additional tempering procedure allows for smoothing the surface of the core-shell colloids. This results in polymer core-shell particles with a perfectly spherical shape. In addition to this thermal smoothing of the PMMA shell, we generated a selection of shape-anisotropic core-shell particles using a thermomechanical stretching procedure. Because of the unique constitution, we can selectively interrogate molecular vibrations in the PS core or the PMMA shell of the colloids using nonlinear optical microscopy techniques. This is of great interest because no photobleaching occurs, such that the particles can be tracked in real space over long times.

  18. Rapid determination of parabens in seafood sauces by high-performance liquid chromatography: A practical comparison of core-shell particles and sub-2 μm fully porous particles.

    Science.gov (United States)

    Ye, Jing; Cao, Xiaoji; Cheng, Zhuo; Qin, Ye; Lu, Yanbin

    2015-12-01

    In this work, the chromatographic performance of superficially porous particles (Halo core-shell C18 column, 50 mm × 2.1 mm, 2.7 μm) was compared with that of sub-2 μm fully porous particles (Acquity BEH C18 , 50 mm × 2.1 mm, 1.7 μm). Four parabens, methylparaben, ethylparaben, propylparaben, and butylparaben, were used as representative compounds for calculating the plate heights in a wide flow rate range and analyzed on the basis of the Van Deemter and Knox equations. Theoretical Poppe plots were constructed for each column to compare their kinetic performance. Both phases gave similar minimum plate heights when using nonreduced coordinates. Meanwhile, the flat C-term of the core-shell column provided the possibilities for applying high flow rates without significant loss in efficiency. The low backpressure of core-shell particles allowed this kind of column, especially compatible with conventional high-performance liquid chromatography systems. Based on these factors, a simple high-performance liquid chromatography method was established and validated for the determination of parabens in various seafood sauces using the Halo core-shell C18 column for separation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Environmentally friendly electroless plating for Ag/TiO2-coated core-shell magnetic particles using ultrasonic treatment.

    Science.gov (United States)

    Kim, Soo-Dong; Choe, Won-Gyun; Jeong, Jong-Ryul

    2013-11-01

    In this work, high-reflectance brilliant white color magnetic microspheres comprising a Fe/TiO2/Ag core-shell structure with a continuous, uniform compact silver layer were successfully fabricated by TiO2-assisted electroless plating in a simple and eco-friendly method. The coating procedure for TiO2 and Ag involved a sol-gel reaction and electroless plating with ultrasound treatment. The electroless plating step was carried out in an eco-friendly manner in a single process without environmentally toxic additives. The TiO2 layer was used as a modification layer between the Fe microspheres and the silver layer to improve adhesion. A continuous and compact silver layer could be formed with a high degree of morphological control by introducing ultrasonication and adjusting the ammonium hydroxide concentration.

  20. The sustained-release behavior and in vitro and in vivo transfection of pEGFP-loaded core-shell-structured chitosan-based composite particles

    Directory of Open Access Journals (Sweden)

    Wang Y

    2014-10-01

    Full Text Available Yun Wang,1 Fu-xing Lin,2 Yu Zhao,1 Mo-zhen Wang,2 Xue-wu Ge,2 Zheng-xing Gong,1 Dan-dan Bao,1 Yu-fang Gu1 1Department of Plastic Surgery, First Affiliated Hospital of Anhui Medical University, 2CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, People’s Republic of China Abstract: Novel submicron core-shell-structured chitosan-based composite particles ­encapsulated with enhanced green fluorescent protein plasmids (pEGFP were prepared by complex coacervation method. The core was pEGFP-loaded thiolated N-alkylated chitosan (TACS and the shell was pH- and temperature-responsive hydroxybutyl chitosan (HBC. pEGFP-loaded TACS-HBC composite particles were spherical, and had a mean diameter of approximately 120 nm, as measured by transmission electron microscopy and particle size analyzer. pEGFP showed sustained release in vitro for >15 days. Furthermore, in vitro transfection in human embryonic kidney 293T and human cervix epithelial cells, and in vivo transfection in mice skeletal muscle of loaded pEGFP, were investigated. Results showed that the expression of loaded pEGFP, both in vitro and in vivo, was slow but could be sustained over a long period. pEGFP expression in mice skeletal muscle was sustained for >60 days. This work indicates that these submicron core-shell-structured chitosan-based composite particles could potentially be used as a gene vector for in vivo controlled gene transfection. Keywords: gene therapy, gene transfection, hydroxybutyl chitosan, thiolated N-alkylated chitosan, pEGFP, complex coacervation

  1. Fabrication of anode-supported zirconia thin film electrolyte based core-shell particle structure for intermediate temperature solid oxide fuel cells

    Institute of Scientific and Technical Information of China (English)

    Peng Li; John T.S.Irvinen

    2013-01-01

    With a view to produce intermediate temperature SOFCs, yttria and scandia doped zirconia with a core-shell structure was prepared, then an anode supported fuel cell was fabricated by a spray method. The influences of the scandia content in the electrolyte and atmosphere conditions used in the testing experiments on phase composition, microstructure and fuel cell performance were investigated. The electrolyte was composed of cubic and tetragonal phases and SEM pictures revealed very fine grain sizes and a smooth surface of the electrolyte film, though some defects were observed in samples with high Scandia content. Coating scandia on partially stabilized zirconium particles improves both ionic conductivity of the electrolyte and power density of the fuel cell distinctly below 750 1C. Anodes were pre-sintered at 1200 1C before co-sintering with the electrolyte film to ensure that the shrinkage percentage was close to that of the electrolyte during co-sintering, avoiding warping of cell.

  2. Biomagnetic of Apatite-Coated Cobalt Ferrite: A Core-Shell Particle for Protein Adsorption and pH-Controlled Release.

    Science.gov (United States)

    Tang, I-Ming; Krishnamra, Nateetip; Charoenphandhu, Narattaphol; Hoonsawat, Rassmidara; Pon-On, Weeraphat

    2011-12-01

    Magnetic nanoparticle composite with a cobalt ferrite (CoFe2O4, (CF)) core and an apatite (Ap) coating was synthesized using a biomineralization process in which a modified simulated body fluid (1.5SBF) solution is the source of the calcium phosphate for the apatite formation. The core-shell structure formed after the citric acid-stabilized cobalt ferrite (CFCA) particles were incubated in the 1.5 SBF solution for 1 week. The mean particle size of CFCA-Ap is about 750 nm. A saturation magnetization of 15.56 emug(-1) and a coercivity of 1808.5 Oe were observed for the CFCA-Ap obtained. Bovine serum albumin (BSA) was used as the model protein to study the adsorption and release of the proteins by the CFCA-Ap particles. The protein adsorption by the CFCA-Ap particles followed a more typical Freundlich than Langmuir adsorption isotherm. The BSA release as a function of time became less rapid as the CFCA-Ap particles were immersed in higher pH solution, thus indicating that the BSA release is dependent on the local pH.

  3. Dispersion behavior of core-shell silica-polymer nanoparticles

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Core-shell silica nanoparticles are superior in modifying surface wetting behavior, enhancing nucleation and growth in crystallization, improving dispersion of naked nanoparticles, and thus upgrading the overall properties of organic polymers. The dispersion behavior and morphology of monodisperse core-shell silica particles in several polymers including polyesters are reviewed and their potential applications are discussed.

  4. Magnetic C-C@Fe3O4 double-shelled hollow microspheres via aerosol-based Fe3O4@C-SiO2 core-shell particles.

    Science.gov (United States)

    Zhu, Yangzhi; Li, Xiangcun; He, Gaohong; Qi, Xinhong

    2015-02-18

    Magnetic C-C@Fe3O4 hollow microspheres were prepared by using aerosol-based Fe3O4@C-SiO2 core-shell particles as templates. The magnetic double-shelled microspheres efficiently worked as carriers to load Pt nanoparticles, thus making the catalyst recyclable and reusable.

  5. High Photocatalytic Activity of Fe3O4-SiO2-TiO2 Functional Particles with Core-Shell Structure

    Directory of Open Access Journals (Sweden)

    Chenyang Xue

    2013-01-01

    Full Text Available This paper describes a novel method of synthesizing Fe3O4-SiO2-TiO2 functional nanoparticles with the core-shell structure. The Fe3O4 cores which were mainly superparamagnetic were synthesized through a novel carbon reduction method. The Fe3O4 cores were then modified with SiO2 and finally encapsulated with TiO2 by the sol-gel method. The results of characterizations showed that the encapsulated 700 nm Fe3O4-SiO2-TiO2 particles have a relatively uniform size distribution, an anatase TiO2 shell, and suitable magnetic properties for allowing collection in a magnetic field. These magnetic properties, large area, relative high saturation intensity, and low retentive magnetism make the particles have high dispersibility in suspension and yet enable them to be recovered well using magnetic fields. The functionality of these particles was tested by measuring the photocatalytic activity of the decolouring of methyl orange (MO and methylene blue (MB under ultraviolet light and sunlight. The results showed that the introduction of the Fe3O4-SiO2-TiO2 functional nanoparticles significantly increased the decoloration rate so that an MO solution at a concentration of 10 mg/L could be decoloured completely within 180 minutes. The particles were recovered after utilization, washing, and drying and the primary recovery ratio was 87.5%.

  6. Harnessing the advantages of hard and soft colloids by the use of core-shell particles as interfacial stabilizers

    NARCIS (Netherlands)

    Buchcic, C.; Tromp, R.H.; Meinders, M.B.J.; Cohen Stuart, M.A.

    2017-01-01

    The ability of colloidal particles to penetrate fluid interfaces is a crucial factor in the preparation of particle stabilized disperse systems such as foams and emulsions. For hard micron-sized particles the insertion into fluid interfaces requires substantial energy input, but soft particles

  7. Engineered inorganic core/shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Mélinon, Patrice, E-mail: patrice.melinon@univ-lyon1.fr [Institut Lumière matière Université Claude Bernard Lyon 1 et CNRS et OMNT, Domaine Scientifique de la Doua, Bâtiment Léon Brillouin, 43 Boulevard du 11 Novembre 1918, F 69622 Villeurbanne (France); Begin-Colin, Sylvie [IPCMS et OMNT, 23 rue du Loess BP 43, 67034 STRASBOURG Cedex 2 (France); Duvail, Jean Luc [IMN UMR 6502 et OMNT Campus Sciences : 2 rue de la Houssinire, BP32229, 44322 Nantes Cedex3 (France); Gauffre, Fabienne [SPM et OMNT : Institut des sciences chimiques de Rennes - UMR 6226, 263 Avenue du General Leclerc, CS 74205, 35042 RENNES Cedex (France); Boime, Nathalie Herlin [IRAMIS-NIMBE, Laboratoire Francis Perrin (CEA CNRS URA 2453) et OMNT, Bat 522, CEA Saclay, 91191 Gif sur Yvette Cedex (France); Ledoux, Gilles [Institut Lumière Matière Université Claude Bernard Lyon 1 et CNRS et OMNT, Domaine Scientifique de la Doua, Bâtiment Alfred Kastler 43 Boulevard du 11 Novembre 1918 F 69622 Villeurbanne (France); Plain, Jérôme [Universit de technologie de Troyes LNIO-ICD, CNRS et OMNT 12 rue Marie Curie - CS 42060 - 10004 Troyes cedex (France); Reiss, Peter [CEA Grenoble, INAC-SPrAM, UMR 5819 CEA-CNRS-UJF et OMNT, Grenoble cedex 9 (France); Silly, Fabien [CEA, IRAMIS, SPEC, TITANS, CNRS 2464 et OMNT, F-91191 Gif sur Yvette (France); Warot-Fonrose, Bénédicte [CEMES-CNRS, Université de Toulouse et OMNT, 29 rue Jeanne Marvig F 31055 Toulouse (France)

    2014-10-20

    It has been for a long time recognized that nanoparticles are of great scientific interest as they are effectively a bridge between bulk materials and atomic structures. At first, size effects occurring in single elements have been studied. More recently, progress in chemical and physical synthesis routes permitted the preparation of more complex structures. Such structures take advantages of new adjustable parameters including stoichiometry, chemical ordering, shape and segregation opening new fields with tailored materials for biology, mechanics, optics magnetism, chemistry catalysis, solar cells and microelectronics. Among them, core/shell structures are a particular class of nanoparticles made with an inorganic core and one or several inorganic shell layer(s). In earlier work, the shell was merely used as a protective coating for the core. More recently, it has been shown that it is possible to tune the physical properties in a larger range than that of each material taken separately. The goal of the present review is to discuss the basic properties of the different types of core/shell nanoparticles including a large variety of heterostructures. We restrict ourselves on all inorganic (on inorganic/inorganic) core/shell structures. In the light of recent developments, the applications of inorganic core/shell particles are found in many fields including biology, chemistry, physics and engineering. In addition to a representative overview of the properties, general concepts based on solid state physics are considered for material selection and for identifying criteria linking the core/shell structure and its resulting properties. Chemical and physical routes for the synthesis and specific methods for the study of core/shell nanoparticle are briefly discussed.

  8. Rayleigh like scattering from silica–titania core-shell particles and their application in protection against harmful ultraviolet rays

    Indian Academy of Sciences (India)

    Sudipta G Dastidar; P Bharath; Arindam Roy

    2011-04-01

    In this article we report experimental and theoretical results of angle-dependent laser light scattering of nano titanium dioxide nucleated on silica particles. It was observed that the experimental scattering profile from nano-titania coated silica (TCS) particle resembles that of a Rayleigh scattering. It can be inferred from the light scattering profile that nucleating fine particles onto a surface of a bigger particle (core), the resulting scattering profile is dominated by the smaller particles. Thin film transmittance measurement of TCS particles also supports this claim. The theoretical scattering predictions do not match with the experimental findings and the reasons for the discrepancies are addressed. This Rayleigh-like scattering property of TCS particles can be used in cosmetic formulations as a replacement for nanoparticles to provide protection from harmful ultraviolet rays. This study helps to provide insights into these systems for their potential usage in cosmetics.

  9. Study of Molecular Conformation and Activity-Related Properties of Lipase Immobilized onto Core-Shell Structured Polyacrylic Acid-Coated Magnetic Silica Nanocomposite Particles.

    Science.gov (United States)

    Esmaeilnejad-Ahranjani, Parvaneh; Kazemeini, Mohammad; Singh, Gurvinder; Arpanaei, Ayyoob

    2016-04-01

    A facile approach for the preparation of core-shell structured poly(acrylic acid) (PAA)-coated Fe3O4 cluster@SiO2 nanocomposite particles as the support materials for the lipase immobilization is reported. Low- or high-molecular-weight (1800 and 100,000, respectively) PAA molecules were covalently attached onto the surface of amine-functionalized magnetic silica nanoacomposite particles. The successful preparation of particles were verified by scanning transmission electron microscopy (STEM), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), thermogravimetric analysis (TGA), zeta potential measurement, and Fourier-transform infrared (FTIR) techniques. Once lipase is covalently immobilized onto the particles with an average diameter of 210 ± 50 nm, resulting from high binding sites concentrations on the low- and high-molecular-weight PAA-coated particles, high lipase immobilization efficiencies (86.2% and 89.9%, respectively), and loading capacities (786 and 816 mg g(-1), respectively) are obtained. Results from circular dichroism (CD) analysis and catalytic activity tests reveal an increase in the β-sheet content of lipase molecules upon immobilization, along with an enhancement in their activities and stabilities. The lipases immobilized onto the low- and high-molecular-weight PAA-coated particles show maximum activities at 55 and 50 °C, respectively, which are ∼28% and ∼15% higher than that of the free lipase at its own optimum temperature (40 °C), respectively. The immobilized lipases exhibit excellent performance at broader temperature and pH ranges and high thermal and storage stabilities, as well as superior reusability. These prepared magnetic nanocomposite particles can be offered as suitable support materials for efficient immobilization of enzymes and improvement of the immobilized enzymes properties.

  10. Single-particle inductively coupled plasma mass spectroscopy analysis of size and number concentration in mixtures of monometallic and bimetallic (core-shell) nanoparticles.

    Science.gov (United States)

    Merrifield, Ruth C; Stephan, Chady; Lead, Jamie R

    2017-01-01

    It is challenging to separate and measure the physical and chemical properties of monometallic and bimetallic engineered nanoparticles (NPs), especially when mixtures are similar in size and at low concentration. We report that single particle inductively coupled mass spectroscopy (SP-ICP-MS), alongside field flow fractionation (FFF), has allowed for the accurate measurement of size and particle number concentrations of mixed metallic nanoparticles (NPs) containing monometallic NPs of gold (Au) and silver (Ag) and a bimetallic core-shell structured NP (Au@Ag) of equivalent size. Two sets of these NPs were measured. The first contained only 60nm particles, where the Au@Ag NP had a 30nm core and 15nm shell to make a total diameter of 60nm. The second contained only 80nm particles (Au@Ag NP core particle of 50nm with a 15nm shell). FFF separation was used here as a sizing technique rather than a separation technique. It was used to confirm that suspensions containing either individual or mixtures of the Au 60nm, Ag 60nm and AuAg 60nm suspensions eluted together and were of the same size. Similarly, FFF was used to show that suspensions containing individual or mixtures of the equivalent 80nm, eluted together and were of the same size. Although the 60nm and 80nm suspensions did not elute at the same time they were not run together. SP-ICP-MS is then used to identify the size and concentration of the particles within the suspension. Successful separation of the NPs was effected and the limits of the instrument were obtained. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Probing the “Dark” Fraction of Core-Shell Quantum Dots by Ensemble and Single Particle pH-Dependent Spectroscopy

    Science.gov (United States)

    Durisic, Nela; Godin, Antoine G.; Walters, Derrel; Grütter, Peter; Wiseman, Paul W.; Heyes, Colin D.

    2011-01-01

    The optical properties of core-shell CdSe-ZnS quantum dots (QDs) are characterized by complex photophysics leading to difficulties in interpreting quantitative measurements based on QD emission. By comparing the pH dependence of fluorescence of single QDs to that of an ensemble, we have been able to propose a molecular scale model of how QD surface chemical and physical processes are affected by protons and oxygen. We show that the connection between the ensemble fluorescence intensity and the single QD fluorescence properties such as dark fraction, blinking, particle brightness and a multi-exponential fluorescence lifetime decay is not trivial. The ensemble fluorescence intensity is more weakly dependent on pH than the single particle fluorescence which, together with fluorescence lifetime analysis, provided evidence that the dark fraction of QDs emits photons with low quantum efficiency and long lifetime. We uncovered two surface-dependent mechanisms that affected the fluorescence emission: an immediate physical effect of charges surrounding the QD and an irreversible chemical effect from reaction of the H+ and O2 with the QD shell surface. These results will have important implications for those using QD-based fluorescence lifetime imaging as well as for proper implementation of these probes for quantitative cellular imaging applications. PMID:22023370

  12. High-Throughput Single-Particle Analysis of Metal-Enhanced Fluorescence in Free Solution Using Ag@SiO2 Core-Shell Nanoparticles.

    Science.gov (United States)

    Yan, Ya; Meng, Lingyan; Zhang, Wenqiang; Zheng, Yan; Wang, Shuo; Ren, Bin; Yang, Zhilin; Yan, Xiaomei

    2017-09-22

    Metal-enhanced fluorescence (MEF) based on localized surface plasmon resonance (LSPR) is an effective strategy to increase the detection sensitivity in biotechnology and biomedicine. Because plasmonic nanoparticles are intrinsically heterogeneous, high-throughput single-particle analysis of MEF in free solution are highly demanded for the mechanistic understanding and control of this nanoscale process. Here, we report the application of a laboratory-built high-sensitivity flow cytometer (HSFCM) to investigate the fluorescence-enhancing effect of individual plasmonic nanoparticles on nearby fluorophore molecules. Ag@SiO2 core-shell nanoparticles were used as the model system which comprised a silver core, a silica shell, and an FITC-doped thin layer of silica shell. FITC-doped silica nanoparticles of the same particle size but without silver core were used as the counterparts. Both the side scattering and fluorescence signals of single nanoparticles in suspension were measured simultaneously by the HSFCM at a speed of thousands of particles per minute. The roles of silver core size (40-100 nm) and fluorophore-metal distance (5-30 nm) were systematically examined. Fluorescence enhancement factor exceeding 30 was observed at silver core size of 70 nm and silica shell thickness of 5 nm. Compared with ensemble-averaged spectrofluorometric measurements, our experimental observation at the single-particle level was well supported by the finite difference time domain (FDTD) calculation. It allows us to achieve a fundamental understanding of MEF, which is important to the design and control of plasmonic nanostructures for efficient fluorescence enhancement.

  13. Rapid determination of polycyclic aromatic hydrocarbons in rainwater by liquid-liquid microextraction and LC with core-shell particles column and fluorescence detection.

    Science.gov (United States)

    Vinci, Giuliana; Antonelli, Marta L; Preti, Raffaella

    2013-02-01

    Liquid-liquid microextraction coupled to LC with fluorescence detection for the determination of Environmental Protection Agency's 16 priority pollutant polycyclic aromatic hydrocarbons in rainwater has been developed. The optimization of the extraction method has involved several parameters, including the comparison between an ultrasonic bath and a magnetic stirrer as extractant apparatus, the choice of the extractant solvent, and the optimization of the extraction time. Liquid-liquid microextraction gave good results in terms of recoveries (from 73.6 to 102.8% in rainwater) and repeatability, with a very simple procedure and low solvent consumption. The reported chromatographic method uses a Core-Shell technology column, with particle size system rather than the more expensive ultrahigh performance LC (UHPLC). An average decrease of 59% in run time and 75% in eluent consumption has been obtained, compared to classical HPLC methods, keeping good separation, sensitivity, and repeatability. The proposed conditions were successfully applied to the determinations of polycyclic aromatic hydrocarbons in genuine rainwater samples.

  14. Nanoscale indentation of polymer and composite polymer-silica core-shell submicrometer particles by atomic force microscopy.

    Science.gov (United States)

    Armini, Silvia; Vakarelski, Ivan U; Whelan, Caroline M; Maex, Karen; Higashitani, Ko

    2007-02-13

    Atomic force microscopy was employed to probe the mechanical properties of surface-charged polymethylmethacrylate (PMMA)-based terpolymer and composite terpolymer core-silica shell particles in air and water media. The composite particles were achieved with two different approaches: using a silane coupling agent (composite A) or attractive electrostatic interactions (composite B) between the core and the shell. Young's moduli (E) of 4.3+/-0.7, 11.1+/-1.7, and 8.4+/-1.7 GPa were measured in air for the PMMA-based terpolymer, composite A, and composite B, respectively. In water, E decreases to 1.6+/-0.2 GPa for the terpolymer; it shows a slight decrease to 8.0+/-1.2 GPa for composite A, while it decreases to 2.9+/-0.6 GPa for composite B. This trend is explained by considering a 50% swelling of the polymer in water confirmed by dynamic light scattering. Close agreement is found between the absolute values of elastic moduli determined by nanoindentation and known values for the corresponding bulk materials. The thickness of the silica coating affects the mechanical properties of composite A. In the case of composite B, because the silica shell consists of separate particles free to move in the longitudinal direction that do not individually deform when the entire composite deforms, the elastic properties of the composites are determined exclusively by the properties of the polymer core. These results provide a basis for tailoring the mechanical properties of polymer and composite particles in air and in solution, essential in the design of next-generation abrasive schemes for several technological applications.

  15. Retention Models on Core-Shell Columns.

    Science.gov (United States)

    Jandera, Pavel; Hájek, Tomáš; Růžičková, Marie

    2017-07-13

    A thin, active shell layer on core-shell columns provides high efficiency in HPLC at moderately high pressures. We revisited three models of mobile phase effects on retention for core-shell columns in mixed aqueous-organic mobile phases: linear solvent strength and Snyder-Soczewiński two-parameter models and a three-parameter model. For some compounds, two-parameter models show minor deviations from linearity due to neglect of possible minor retention in pure weak solvent, which is compensated for in the three-parameter model, which does not explicitly assume either the adsorption or the partition retention mechanism in normal- or reversed-phase systems. The model retention equation can be formulated as a function of solute retention factors of nonionic compounds in pure organic solvent and in pure water (or aqueous buffer) and of the volume fraction of an either aqueous or organic solvent component in a two-component mobile phase. With core-shell columns, the impervious solid core does not participate in the retention process. Hence, the thermodynamic retention factors, defined as the ratio of the mass of the analyte mass contained in the stationary phase to its mass in the mobile phase in the column, should not include the particle core volume. The values of the thermodynamic factors are lower than the retention factors determined using a convention including the inert core in the stationary phase. However, both conventions produce correct results if consistently used to predict the effects of changing mobile phase composition on retention. We compared three types of core-shell columns with C18-, phenyl-hexyl-, and biphenyl-bonded phases. The core-shell columns with phenyl-hexyl- and biphenyl-bonded ligands provided lower errors in two-parameter model predictions for alkylbenzenes, phenolic acids, and flavonoid compounds in comparison with C18-bonded ligands.

  16. The optical Tamm states at the interface between a photonic crystal and a nanocomposite containing core-shell particles

    Science.gov (United States)

    Vetrov, S. Ya; Pankin, P. S.; Timofeev, I. V.

    2016-06-01

    We investigate the optical Tamm states (OTSs) localized at the interface between a photonic crystal (PC) and a nanocomposite consisting of spherical nanoparticles with a dielectric core and a metallic shell, which are dispersed in a transparent matrix, and is characterized by the resonance permittivity. Spectra of transmission, reflection, and absorption of normally incident light waves by the investigated structure are calculated. The spectral manifestation of the Tamm states caused by negative values of the real part of the effective permittivity in the visible spectral range is studied. It is demonstrated that, along with the significantly extended band gap of the PC, the transmission spectrum contains an additional stopband caused by nanocomposite absorption near the resonance frequency. It is shown that the OTSs can be implemented in two band gaps of the PCs, each corresponding to a certain plasmon resonance frequency of the nanocomposite. It is established that the characteristics of the Tamm state localized at the edge of the PCs significantly depend on the ratio between the particle core volume and the total particle volume.

  17. Optimized high performance liquid chromatography-ultraviolet detection method using core-shell particles for the therapeutic monitoring of methotrexate$

    Institute of Scientific and Technical Information of China (English)

    Milagros Montemurro; María M. De Zan n; Juan C. Robles

    2016-01-01

    Methotrexate (MTX) is an antineoplastic drug, and due to its high toxicity, the therapeutic drug mon-itoring is strictly conducted in the clinical practice. The chemometric optimization and validation of a high performance liquid chromatography (HPLC) method using core–shell particles is presented for the determination of MTX in plasma during therapeutic monitoring. Experimental design and response surface methodology (RSM) were applied for the optimization of the chromatographic system and the analyte extraction step. A Poroshell 120 EC-C18 (3.0 mm ? 75 mm, 2.7μm) column was used to obtain a fast and efficient separation in a complete run time of 4 min. The optimum conditions for the chroma-tographic system resulted in a mobile phase consisting of acetic acid/sodium acetate buffer solution (85.0 mM, pH¼4.00) and 11.2%of acetonitrile at a flow rate of 0.4 mL/min. Selectivity, linearity, accuracy and precision were demonstrated in a range of 0.10–6.0 mM of MTX. The application of the optimized method required only 150 mL of patient plasma and a low consumption of solvent to provide rapid re-sults.

  18. 改性环氧PBA/PMMA核壳乳胶粒子的制备与应用%Preparation and application of PBA/PMMA core-shell atex particles modified with epoxy resin

    Institute of Scientific and Technical Information of China (English)

    马立群; 李艳东; 王雅珍; 刘洪成; 汪建新

    2012-01-01

    The PBA/P (MMA-ITA-DGEBA) latex particles were prepared by semi-continuous seed emulsion polymerization process. FI-IR was used to characterize latex with core-shell structure. Epoxy resin was toughened by latex particles with an epoxy-based core-shell. Cross section of cured resin was observed by SEM micrograph. A significant effect was significant effect in toughening of modified core-shell latex particles. Compatibility between modified core-shell latex and epoxy resin were improved.%采用半连续种子乳液聚合工艺制备核壳结构的聚丙烯酸丁酯,(聚甲基丙烯酸甲酯-衣康酸-双酚A环氧树脂)(PBA/P(MMA—ITA—DGEBA))乳胶粒子。并通过红外光谱仪(IR)对乳胶粒子进行了表征,证明乳胶粒子具有壮粒子结构。将壳层带有环氧基的核壳乳胶粒子对环氧树脂进行增韧,通过扫描电子显微镜(SEM)对固化物冲击断面进行观测,改性核壳乳胶粒子对环氧树脂起到明显增韧效果,并提升了与环氧树脂的相容性。

  19. Assessment of the sensitivity of core/shell parameters derived using the single-particle soot photometer to density and refractive index

    Directory of Open Access Journals (Sweden)

    J. W. Taylor

    2014-06-01

    Full Text Available Black carbon (BC is the dominant absorbing aerosol in the atmosphere, and plays an important role in climate and human health. The optical properties and cloud condensation nuclei (CCN activity of soot depend on the amounts (both relative and absolute of BC and nonrefractory material in the particles. Mixing between these two components is often considered using a core/shell coated sphere morphology. The Single Particle Soot Photometer (SP2 is the premier instrument for reporting distributions of both core size and coating thickness. Most studies combine the SP2's incandescence and scattering data to report coating properties, but there is variation in the assumed density and refractive index of the core that are used in these calculations. In this study we explore the sensitivity of the reported coatings to these parameters. An assessment of the coating properties of freshly-emitted, thermodenuded ambient particles demonstrated that a core density of 1.8 g cm−3 and refractive index n = (2.26-1.26i were the most appropriate to use with ambient soot in the Los Angeles area. Using these parameters generated a distribution of shell/core ratio of 1.04 ± 0.21, corresponding to an absolute coating thickness distribution of 1.7 ± 17.5 nm. This demonstrates that using this technique the SP2 can accurately determine the mixing state (externally or internally mixed of ambient soot, but with limited precision. Using other core parameters resulted in an offset in the coating distribution, but similar precision. For comparison, using the core parameters that resulted in the thickest coatings (on the same particles as before generated a distribution of shell/core ratio of 1.40 ± 0.19, corresponding to an absolute coating thickness distribution of 30.3 ± 14.9 nm. Relative changes in coatings associated with secondary aerosol condensation were captured regardless of the assumed core parameters. These results must be taken into account when comparing BC

  20. Structural variation of solid core and thickness of porous shell of 1.7 μm core-shell silica particles on chromatographic performance: narrow bore columns.

    Science.gov (United States)

    Omamogho, Jesse O; Hanrahan, John P; Tobin, Joe; Glennon, Jeremy D

    2011-04-15

    Chromatographic and mass transfer kinetic properties of three narrow bore columns (2.1×50 mm) packed with new core-shell 1.7 μm EIROSHELL™-C(18) (EiS-C(18)) particles have been studied. The particles in each column varied in the solid-core to shell particle size ratio (ρ), of 0.59, 0.71 and 0.82, with a porous silica shell thickness of 350, 250 and 150 nm respectively. Scanning and transmission electron microscopy (SEM and TEM), Coulter counter analysis, gas pycnometry, nitrogen sorption analysis and inverse size exclusion chromatography (ISEC) elucidated the physical properties of these materials. The porosity measurement of the packed HILIC and C(18) modified phases provided the means to estimate the phase ratios of the three different shell columns (EiS-150-C(18), EiS-250-C(18) and EiS-350-C(18)). The dependence of the chromatographic performance to the volume fraction of the porous shell was observed for all three columns. The naphtho[2,3-a]pyrene retention factor of k'∼10 on the three EiS-C(18s) employed to obtain the height equivalents to theoretical plates (HETPs) data were achieved by varying the mobile phase compositions and applying the Wilke and Chang relationship to obtain a parallel reduced linear velocity. The Knox fit model gave the coefficient of the reduce HETPs for the three EiS-C(18s). The reduced plate height minimum h(min)=1.9 was achieved for the EiS-150-C(18) column, and generated an efficiency of over 350,000 N/m and h(min)=2.5 equivalent to an efficiency of 200,000 N/m for the EiS-350-C(18) column. The efficiency loss of the EiS-C18 column emanating from the system extra-column volume was discussed with respect to the porous shell thickness.

  1. Toughening Modification of Epoxy Resin with Different Core-Shell Particles%不同结构聚合物核壳粒子对环氧树脂的增韧改性

    Institute of Scientific and Technical Information of China (English)

    汪源; 王源升

    2012-01-01

    The traditional toughening modification of epoxy resin often can't attain ideal effect.After blended with epoxy resin,the core-shell particles can reduce the internal stress and attain significant toughening effect.Meantime,they don't change the thermal deformation temperature.In this paper,lots of core-shell particles were prepared by the soap-free core-shell emulsion polymerization method.The properties of epoxy resin modified by these core-shell particles were analyzed.The mechanical strength and dynamic mechanical analysis were used to analyze the structure of core-shell particles and the toughening mechanism of modified epoxy resin.The results showed that improving the compatibility would make the core part dissipate the energy of external force better.So the impact strength increases further.%传统环氧树脂的增韧改性方法往往达不到理想的效果。核壳粒子与环氧树脂混合,能减小内应力,获得显著的增韧效果,且不改变热变形温度。文中采用微皂核壳乳液的聚合方法合成了不同的核壳粒子,并对这些核壳粒子增韧环氧树脂体系的力学性能进行试验研究、理论分析和数值计算。用力学强度、动态力学分析等表征手段对核壳粒子的结构和改性环氧树脂体系的增韧机理进行了探讨。结果发现,改善核、壳之间或者核壳粒子壳层同环氧树脂之间的相容性和界面粘合力,核层能更好地将能量充分耗散,改性体系的冲击强度得以进一步提高。

  2. Polymer-assisted sol–gel process for the preparation of photostimulable core/shell structured SiO{sub 2}/Zn{sub 2}SiO{sub 4}:Mn{sup 2+} particles

    Energy Technology Data Exchange (ETDEWEB)

    Milde, Moritz, E-mail: moritz.milde@isc.fraunhofer.de [Fraunhofer Institute for Silicate Research, Neunerplatz 2, 97082 Wuerzburg (Germany); Department of Chemical Technology of Materials Synthesis, University of Wuerzburg, Roentgenring 11, 97070 Wuerzburg (Germany); Dembski, Sofia, E-mail: sofia.dembski@isc.fraunhofer.de [Fraunhofer Institute for Silicate Research, Neunerplatz 2, 97082 Wuerzburg (Germany); Osvet, Andres, E-mail: andres.osvet@ww.uni-erlangen.de [Chair WW6 Materials for Electronics and Energy Technology (i-MEET), University of Erlangen-Nuremberg, Martensstraße 7, 91058 Erlangen (Germany); Batentschuk, Miroslaw, E-mail: mirobat@ww.uni-erlangen.de [Chair WW6 Materials for Electronics and Energy Technology (i-MEET), University of Erlangen-Nuremberg, Martensstraße 7, 91058 Erlangen (Germany); Winnacker, Albrecht, E-mail: albrecht.winnacker@ww.uni-erlangen.de [Chair WW6 Materials for Electronics and Energy Technology (i-MEET), University of Erlangen-Nuremberg, Martensstraße 7, 91058 Erlangen (Germany); Sextl, Gerhard, E-mail: gerhard.sextl@isc.fraunhofer.de [Department of Chemical Technology of Materials Synthesis, University of Wuerzburg, Roentgenring 11, 97070 Wuerzburg (Germany)

    2014-12-15

    In this study the SiO{sub 2}/Zn{sub 2}SiO{sub 4}:Mn{sup 2+} core/shell particles with diameters of about 200 nm were prepared by a modified Pechini sol–gel method. The focus of the study was on the investigation of the shell formation mechanism and on the determination of key synthesis parameters. A precise adjustment of the particle structure is crucial for optical properties. The influence of the organic additives, the pH value of the coating solution and the annealing temperature on the properties of the resulting particles was evaluated. The roles of the influential factors were studied in detail using transmission electron microscopy, X-ray diffraction, Fourier transform infrared and nuclear magnetic resonance spectroscopy. The most homogeneous coating was achieved by employing polyethylene glycol (PEG) at a pH value of 1. The application of citric acid in combination with PEG caused the formation of inhomogeneous shells. The particles showed photoluminescence and photostimulable luminescence of increasing intensities with rising annealing temperatures (1100 °C). These core/shell structured particles have the potential to serve as luminescent labeling agents for biomedical applications. - Highlights: • Core/shell structured SiO{sub 2}/Zn{sub 2}SiO{sub 4}:Mn{sup 2+} particles were prepared via a sol–gel process. • Utilizing PEG at pH 1 resulted in the most homogeneous coating. • Interactions involved in the coating process were identified and analyzed. • Particles showed phosphorescence and photostimulated luminescence. • Luminescence intensities were strongly dependent on the annealing temperature.

  3. Dynamic Hydrogen Production from Methanol/Water Photo-Splitting Using Core@Shell-Structured CuS@TiO2 Catalyst Wrapped by High Concentrated TiO2 Particles

    Directory of Open Access Journals (Sweden)

    Younghwan Im

    2013-01-01

    Full Text Available This study focused on the dynamic hydrogen production ability of a core@shell-structured CuS@TiO2 photocatalyst coated with a high concentration of TiO2 particles. The rectangular-shaped CuS particles, 100 nm in length and 60 nm in width, were surrounded by a high concentration of anatase TiO2 particles (>4~5 mol. The synthesized core@shell-structured CuS@TiO2 particles absorbed a long wavelength (a short band gap above 700 nm compared to that pure TiO2, which at approximately 300 nm, leading to easier electronic transitions, even at low energy. Hydrogen evolution from methanol/water photo-splitting over the core@shell-structured CuS@TiO2 photocatalyst increased approximately 10-fold compared to that over pure CuS. In particular, 1.9 mmol of hydrogen gas was produced after 10 hours when 0.5 g of 1CuS@4TiO2 was used at pH = 7. This level of production was increased to more than 4-fold at higher pH. Cyclic voltammetry and UV-visible absorption spectroscopy confirmed that the CuS in CuS@TiO2 strongly withdraws the excited electrons from the valence band in TiO2 because of the higher reduction potential than TiO2, resulting in a slower recombination rate between the electrons and holes and higher photoactivity.

  4. Core-Shell Microgels with Switchable Elasticity at Constant Interfacial Interaction.

    Science.gov (United States)

    Seuss, Maximilian; Schmolke, Willi; Drechsler, Astrid; Fery, Andreas; Seiffert, Sebastian

    2016-06-29

    Hydrogels based on poly(N-isopropylacrylamide) (pNIPAAm) exhibit a thermo-reversible volume phase transition from swollen to deswollen states. This change of the hydrogel volume is accompanied by changes of the hydrogel elastic and Young's moduli and of the hydrogel interfacial interactions. To decouple these parameters from one another, we present a class of submillimeter sized hydrogel particles that consist of a thermosensitive pNIPAAm core wrapped by a nonthermosensitive polyacrylamide (pAAm) shell, each templated by droplet-based microfluidics. When the microgel core deswells upon increase of the temperature to above 34 °C, the shell is stretched and dragged to follow this deswelling into the microgel interior, resulting in an increase of the microgel surficial Young's modulus. However, as the surface interactions of the pAAm shell are independent of temperature at around 34 °C, they do not considerably change during the pNIPAAm-core volume phase transition. This feature makes these core-shell microgels a promising platform to be used as building blocks to assemble soft materials with rationally and independently tunable mechanics.

  5. Core-shell Au@Pd nanoparticles with enhanced catalytic activity for oxygen reduction reaction via core-shell Au@Ag/Pd constructions.

    Science.gov (United States)

    Chen, Dong; Li, Chengyin; Liu, Hui; Ye, Feng; Yang, Jun

    2015-07-06

    Core-shell nanoparticles often exhibit improved catalytic properties due to the lattice strain created in these core-shell particles. Herein, we demonstrate the synthesis of core-shell Au@Pd nanoparticles from their core-shell Au@Ag/Pd parents. This strategy begins with the preparation of core-shell Au@Ag nanoparticles in an organic solvent. Then, the pure Ag shells are converted into the shells made of Ag/Pd alloy by galvanic replacement reaction between the Ag shells and Pd(2+) precursors. Subsequently, the Ag component is removed from the alloy shell using saturated NaCl solution to form core-shell Au@Pd nanoparticles with an Au core and a Pd shell. In comparison with the core-shell Au@Pd nanoparticles upon directly depositing Pd shell on the Au seeds and commercial Pd/C catalysts, the core-shell Au@Pd nanoparticles via their core-shell Au@Ag/Pd templates display superior activity and durability in catalyzing oxygen reduction reaction, mainly due to the larger lattice tensile effect in Pd shell induced by the Au core and Ag removal.

  6. 填料形状对Fe@Ag核壳复合粒子的电磁特性的影响%INFLUENCE OF THE SHAPE OF SHIELDING FILLERS ON ELECTROMAGNETIC PROPERTIES OF Fe@Ag CORE-SHELL COMPOSITE PARTICLES

    Institute of Scientific and Technical Information of China (English)

    赵素玲; 陈晶; 王一龙

    2012-01-01

    运用液相化学还原Ag技术,制备了球形和片形2种Fe@Ag核壳复合粒子.表征了这2种屏蔽填料的物相、表面形貌和化学组成,研究了其静磁性能,分析了填料的形状对复合材料的复磁导率、电导率和屏蔽效能等电磁特性的影响.结果表明:2种复合粒子均为核壳结构完整的Fe@Ag核壳复合粒子,其Ag壳层均匀且致密;球形和片形Fe @Ag核壳复合粒子均具有良好的软磁性能;与形状各向同性的屏蔽填料相比,以片形Fe@Ag核壳复合粒子为填料的电磁屏蔽复合材料的复磁导率更高,体积电阻率更低,该复合材料在电磁波频率范围为30-1500 MHz内的屏蔽效能(SE)为-51-55 dB,优于以球形Fe@Ag核壳复合粒子为填料的电磁屏蔽复合材料.并且从理论上分析了片形Fe@Ag核壳复合粒子的电磁屏蔽复合材料对电磁波的吸收损耗更强和屏蔽效能更高的物理本质.%Due to the rapid growth of radio frequency radiation sources, electromagnetic shielding composite materials have become a research hotspot in civil control of electromagnetic radiation technology and military equipment shielding technology. The shielding effectiveness (SE) of these electromagnetic shielding composite materials has much to do with the structures, volume resistivity and magnetic properties of the fillers. Spherical and flaky Fe@Ag core-shell composite particles were synthesized by a liquid electroless plating method in this work. The phase, morphology and chemical composition of spherical and flaky particles were characterized. The magnetic property of fillers was analyzed. The effects of the shape of these shielding fillers on complex permeability, conductivity, magnetic properties and shielding effectiveness of their composition material were investigated. The results showed that spherical and flaky carbonyl iron powders/silver core-shell composite particles both had intact core-shell microstructure. Silver coating of these

  7. 功能化PDMS/PMMA核壳乳胶粒子的制备与表征%Preparation and characterization of functional PDMS / PMMA core-shell latex particles

    Institute of Scientific and Technical Information of China (English)

    王权; 刘喜军; 伊海楠

    2012-01-01

    A novel latex particles of polysiloxane/polymethylmethacrylate (PDMS/PMMA) having core-shell structure was successfully synthesized by the pre-emulsion semi-continuous seeded emulsion polymerization. Through the introduction of functional monomer ITA, MAH or GMA to realize the function of core-shell latex particles.Which were characterized by the laser particle size analyzer. Fourier transform infrared spectroscopy (FTIR) and transmission electron microscope (TEM).%采用预乳化-半连续种子乳液聚合工艺合成了聚硅氧烷,聚甲基丙烯酸甲酯(PDMS/PMMA)核壳乳胶粒子,通过引入功能单体ITA、MAH或GMA实现核壳乳胶粒子的功能化。采用激光粒度分析仪、傅立叶变换红外光谱仪(FTIR)和透射电子显微镜(TEM)等手段对核壳乳胶粒子进行了表征。

  8. Crossover from disordered to core-shell structures of nano-oxide Y{sub 2}O{sub 3} dispersed particles in Fe

    Energy Technology Data Exchange (ETDEWEB)

    Higgins, M. P.; Wang, L. M.; Gao, F., E-mail: gaofeium@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States); Lu, C. Y. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States); Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang, Liaoning 110819 (China); Lu, Z. [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang, Liaoning 110819 (China); Shao, L. [Department of Nuclear Engineering, Texas A& M University, College Station, Texas 77843 (United States)

    2016-07-18

    Molecular dynamic simulations of Y{sub 2}O{sub 3} in bcc Fe and transmission electron microscopy (TEM) observations were used to understand the structure of Y{sub 2}O{sub 3} nano-clusters in an oxide dispersion strengthened steel matrix. The study showed that Y{sub 2}O{sub 3} nano-clusters below 2 nm were completely disordered. Y{sub 2}O{sub 3} nano-clusters above 2 nm, however, form a core-shell structure, with a shell thickness of 0.5–0.7 nm that is independent of nano-cluster size. Y{sub 2}O{sub 3} nano-clusters were surrounded by off-lattice Fe atoms, further increasing the stability of these nano-clusters. TEM was used to corroborate our simulation results and showed a crossover from a disordered nano-cluster to a core-shell structure.

  9. Synthesis of AlNiCo core/shell nanopowders

    Science.gov (United States)

    Genc, A. M.; Akdeniz, M. V.; Ozturk, T.; Kalay, Y. E.

    2016-11-01

    Magnetic core/shell nanostructures have been recently received much interest owing to their utmost potential in permanent magnetic applications. In the present work, AlNiCo permanent magnet powders were synthesized by ball milling and a core/shell nanostructure was obtained using RF induced plasma. The effects of particle size and nanoshell structure on the magnetic properties were investigated in details. The coercivity of AlNiCo powders was found to increase with decreasing particle size, exclusively nanopowders encapsulated with Fe3O4 shell showed the highest coercivity values. The shell structure produced during plasma reaction was found to form a resistant layer against oxidation of metallic nanoparticles.

  10. Core-Shell Composite Nanoparticles: Synthesis, Characterization, and Applications

    Science.gov (United States)

    Sanyal, Sriya

    Nanoparticles are ubiquitous in various fields due to their unique properties not seen in similar bulk materials. Among them, core-shell composite nanoparticles are an important class of materials which are attractive for their applications in catalysis, sensing, electromagnetic shielding, drug delivery, and environmental remediation. This dissertation focuses on the study of core-shell type of nanoparticles where a polymer serves as the core and inorganic nanoparticles are the shell. This is an interesting class of supramolecular building blocks and can "exhibit unusual, possibly unique, properties which cannot be obtained simply by co-mixing polymer and inorganic particles". The one-step Pickering emulsion polymerization method was successfully developed and applied to synthesize polystyrene-silica core-shell composite particles. Possible mechanisms of the Pickering emulsion polymerization were also explored. The silica nanoparticles were thermodynamically favorable to self-assemble at liquid-liquid interfaces at the initial stage of polymerization and remained at the interface to finally form the shells of the composite particles. More importantly, Pickering emulsion polymerization was employed to synthesize polystyrene/poly(N-isopropylacrylamide) (PNIPAAm)-silica core-shell nanoparticles with N-isopropylacrylamide incorporated into the core as a co-monomer. The composite nanoparticles were temperature sensitive and could be up-taken by human prostate cancer cells and demonstrated effectiveness in drug delivery and cancer therapy. Similarly, by incorporating poly-2-(N,N)-dimethylamino)ethyl methacrylate (PDMA) into the core, pH sensitive core-shell composite nanoparticles were synthesized and applied as effective carriers to release a rheological modifier upon a pH change. Finally, the research focuses on facile approaches to engineer the transition of the temperature-sensitive particles and develop composite core-shell nanoparticles with a metallic shell.

  11. Tailored Core Shell Cathode Powders for Solid Oxide Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Swartz, Scott [NexTech Materials, Ltd.,Lewis Center, OH (United States)

    2015-03-23

    In this Phase I SBIR project, a “core-shell” composite cathode approach was evaluated for improving SOFC performance and reducing degradation of lanthanum strontium cobalt ferrite (LSCF) cathode materials, following previous successful demonstrations of infiltration approaches for achieving the same goals. The intent was to establish core-shell cathode powders that enabled high performance to be obtained with “drop-in” process capability for SOFC manufacturing (i.e., rather than adding an infiltration step to the SOFC manufacturing process). Milling, precipitation and hetero-coagulation methods were evaluated for making core-shell composite cathode powders comprised of coarse LSCF “core” particles and nanoscale “shell” particles of lanthanum strontium manganite (LSM) or praseodymium strontium manganite (PSM). Precipitation and hetero-coagulation methods were successful for obtaining the targeted core-shell morphology, although perfect coverage of the LSCF core particles by the LSM and PSM particles was not obtained. Electrochemical characterization of core-shell cathode powders and conventional (baseline) cathode powders was performed via electrochemical impedance spectroscopy (EIS) half-cell measurements and single-cell SOFC testing. Reliable EIS testing methods were established, which enabled comparative area-specific resistance measurements to be obtained. A single-cell SOFC testing approach also was established that enabled cathode resistance to be separated from overall cell resistance, and for cathode degradation to be separated from overall cell degradation. The results of these EIS and SOFC tests conclusively determined that the core-shell cathode powders resulted in significant lowering of performance, compared to the baseline cathodes. Based on the results of this project, it was concluded that the core-shell cathode approach did not warrant further investigation.

  12. Biocompatible magnetic core-shell nanocomposites for engineered magnetic tissues

    Science.gov (United States)

    Rodriguez-Arco, Laura; Rodriguez, Ismael A.; Carriel, Victor; Bonhome-Espinosa, Ana B.; Campos, Fernando; Kuzhir, Pavel; Duran, Juan D. G.; Lopez-Lopez, Modesto T.

    2016-04-01

    The inclusion of magnetic nanoparticles into biopolymer matrixes enables the preparation of magnetic field-responsive engineered tissues. Here we describe a synthetic route to prepare biocompatible core-shell nanostructures consisting of a polymeric core and a magnetic shell, which are used for this purpose. We show that using a core-shell architecture is doubly advantageous. First, gravitational settling for core-shell nanocomposites is slower because of the reduction of the composite average density connected to the light polymer core. Second, the magnetic response of core-shell nanocomposites can be tuned by changing the thickness of the magnetic layer. The incorporation of the composites into biopolymer hydrogels containing cells results in magnetic field-responsive engineered tissues whose mechanical properties can be controlled by external magnetic forces. Indeed, we obtain a significant increase of the viscoelastic moduli of the engineered tissues when exposed to an external magnetic field. Because the composites are functionalized with polyethylene glycol, the prepared bio-artificial tissue-like constructs also display excellent ex vivo cell viability and proliferation. When implanted in vivo, the engineered tissues show good biocompatibility and outstanding interaction with the host tissue. Actually, they only cause a localized transitory inflammatory reaction at the implantation site, without any effect on other organs. Altogether, our results suggest that the inclusion of magnetic core-shell nanocomposites into biomaterials would enable tissue engineering of artificial substitutes whose mechanical properties could be tuned to match those of the potential target tissue. In a wider perspective, the good biocompatibility and magnetic behavior of the composites could be beneficial for many other applications.The inclusion of magnetic nanoparticles into biopolymer matrixes enables the preparation of magnetic field-responsive engineered tissues. Here we

  13. Effect of core-shell polymer particles on the coefficient of thermal expansion of epoxy resin%核壳聚合物粒子对环氧树脂热膨胀系数的影响

    Institute of Scientific and Technical Information of China (English)

    赫玉欣; 张丽; 朱伸兵; 姚大虎; 张志强; 张玉清

    2012-01-01

    The epoxy resins were modified by core-shell polymer(CSP) particles.The effect of CSP on the coefficient of thermal expansion(CTE) of modified epoxy resins was investigated by infrared spectroscopy,thermal mechanical analysis and scanning electron microscopy.The results showed that hydrogen bond was formed between C= =O of CSP particle shell and — OH of DGEBA epoxy resin side chain during the curing pocess,thereby strengthening the interface role of core-shell polymer particles and epoxy matrix.The glass transition temperatures of CSP particles modified epoxy resin were decreased and CTE values of modified resin below the Tg range were decreased,then increased compared with that of neat epoxy resins with the increasing of CSP content.The CTE of the resins with 0.5% CSP was decreased by 12.88%.But the CTE values of modified resins were all higher than that of neat epoxy resins above the Tg range.%采用核壳聚合物(Core-Shell Polymer,CSP)粒子改性环氧树脂,通过红外光谱、热力学分析和扫描电镜研究了CSP粒子对环氧树脂基体热膨胀系数(CTE)的影响。结果表明:CSP粒子壳材料分子链中的羰基在环氧树脂固化过程中可与环氧分子侧链上的羟基形成氢键作用,从而加强了核壳聚合物粒子与环氧树脂的界面作用。随着CSP粒子质量分数的增加,改性环氧树脂基体的玻璃化转变温度呈下降趋势;相对于纯环氧树脂,改性环氧树脂在玻璃化转变温度下的CTE呈现先下降后上升的趋势,添加质量分数为0.5%的CSP后,其CTE值降低了12.88%。但在玻璃化转变温度上的热膨胀系数均高于纯环氧树脂。

  14. Pirkle-type chiral stationary phase on core-shell and fully porous particles: Are superficially porous particles always the better choice toward ultrafast high-performance enantioseparations?

    Science.gov (United States)

    Ismail, Omar H; Pasti, Luisa; Ciogli, Alessia; Villani, Claudio; Kocergin, Jelena; Anderson, Scott; Gasparrini, Francesco; Cavazzini, Alberto; Catani, Martina

    2016-09-30

    Pirkle-type Whelk-O1 chiral stationary phase (CSP) was prepared on 2.6μm superficially porous particles (SPPs). The chromatographic behavior of columns packed with this new CSP was compared with that of columns packed respectively with 1.8 and 2.5μm Whelk-O1 fully porous particles (FPPs). In the comparison, both thermodynamic and kinetic aspects were considered. Contrary to initial expectations, chiral columns packed with 2.6μm SPPs were quasi-comparable to those packed with 2.5μm FPPs, apparently due to larger contributions to band broadening from both eddy dispersion and, especially for the second eluted enantiomer, adsorption-desorption kinetics. These findings raise the question if SPPs, in spite of the undeniable advantages of their morphology to speed up mass transfer, are always the best choice for high-efficient ultrafast chiral separations. The last part of the work focuses on the use of short columns (10mm long) and very high flow rates to realize the separation of the enantiomers of trans-stilbene oxide (TSO) in normal phase mode in less than 1s.

  15. Engineered Magnetic Core-Shell Structures.

    Science.gov (United States)

    Alavi Nikje, Mir Mohammad; Vakili, Maryam

    2015-01-01

    In recent years, engineered magnetic core-shell structures are playing an important role in the wide range of various applications. These magnetic core-shell structures have attracted considerable attention because of their unique properties and various applications. Also, the synthesis of engineered magnetic core-shell structures has attracted practical interest because of potential applications in areas such as ferrofluids, medical imaging, drug targeting and delivery, cancer therapy, separations, and catalysis. So far a large number of engineered magnetic core-shell structures have been successfully synthesized. This review article focuses on the recent progress in synthesis and characterization of engineered magnetic core-shell structures. Also, this review gives a brief description of the various application of these structures. It is hoped that this review will play some small part in helping future developments in important field.

  16. Core-shell microspheres with porous nanostructured shells for liquid chromatography.

    Science.gov (United States)

    Ahmed, Adham; Skinley, Kevin; Herodotou, Stephanie; Zhang, Haifei

    2017-10-10

    The development of new stationary phase has been the key aspect for fast and efficient high-performance liquid chromatography separation with relatively low backpressure. Core-shell particles, with a solid core and porous shell, have been extensively investigated and commercially manufactured in the last decade. The excellent performance of core-shell particles columns has been recorded for a wide range of analytes, covering small and large molecules, neutral and ionic (acidic and basic), biomolecules, and metabolites. In this review, we firstly introduce the advance and advantages of core-shell particles (or more widely known as superficially porous particles) against non-porous particles and fully porous particles. This is followed by the detailed description of various methods used to fabricate core-shell particles. We then discuss the applications of common silica core-shell particles (mostly commercially manufactured), spheres-on-sphere particles, and core-shell particles with a non-silica shell. This review concludes with a summary and perspective on the development of stationary phase materials for high-performance liquid chromatography applications. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  17. Preparation of organic/inorganic hybrid and hollow particles by catalytic deposition of silica onto core/shell heterocoagulates modified with poly[2-(N,N-dimethylamino)ethyl methacrylate].

    Science.gov (United States)

    Taniguchi, Tatsuo; Obi, Shun; Kamata, Yoshitada; Kashiwakura, Takuya; Kasuya, Masakatsu; Ogawa, Tatsuya; Kohri, Michinari; Nakahira, Takayuki

    2012-02-15

    The organic/inorganic hybrid particles PSt/P(St-CPEM)(θ)-g-PDMAEMA/SiO(2) were prepared by catalytic hydrolysis and subsequent polycondensation of tetraethoxysilane in the poly[2-(N,N-dimethylamino)ethyl methacrylate] (PDMAEMA) layers grafted on the PSt/P(St-CPEM)(θ) core/shell heterocoagulates. The micron-sized PSt core and the submicron-sized P(St-CPEM) shell particles bearing ATRP initiating groups were synthesized by dispersion polymerization of styrene (St) and emulsifier-free emulsion polymerization of St with 2-chloropropionyloxyethyl methacrylate (CPEM), respectively. The raspberry-shaped PSt/P(St-CPEM)(θ) heterocoagulates with a controlled surface coverage (θ=0.51, 0.81) were prepared by hydrophobic coagulation between the core and the shell particles in an aqueous NaCl solution near the T(g) of P(St-CPEM). Surface modification of heterocoagulates was carried out by ATRP of DMAEMA from the shell particles adsorbed on the core particles. Silica deposition was performed by simply adding tetraethoxysilane to a water/methanol dispersion of PSt/P(St-CPEM)(θ)-g-PDMAEMA. The SEM and TGA revealed that the resulting PSt/P(St-CPEM)(θ)-g-PDMAEMA/SiO(2) composites maintain a raspberry-like morphology after deposition of silica onto the PDMAEMA layer grafted on heterocoagulates. The micron-sized, raspberry-shaped or the submicron-sized, hole-structured silica hollow particles were obtained selectively by thermal decomposition of the PSt/P(St-CPEM)(θ)-g-PDMAEMA/SiO(2). The oriented particle array was fabricated by dropping anisotropically perforated silica particles onto a glass substrate settled at the bottom of a bottle filled with chloroform.

  18. Synthesis of AlNiCo core/shell nanopowders

    Energy Technology Data Exchange (ETDEWEB)

    Genc, A.M.; Akdeniz, M.V.; Ozturk, T.; Kalay, Y.E., E-mail: ekalay@metu.edu.tr

    2016-11-01

    Magnetic core/shell nanostructures have been recently received much interest owing to their utmost potential in permanent magnetic applications. In the present work, AlNiCo permanent magnet powders were synthesized by ball milling and a core/shell nanostructure was obtained using RF induced plasma. The effects of particle size and nanoshell structure on the magnetic properties were investigated in details. The coercivity of AlNiCo powders was found to increase with decreasing particle size, exclusively nanopowders encapsulated with Fe{sub 3}O{sub 4} shell showed the highest coercivity values. The shell structure produced during plasma reaction was found to form a resistant layer against oxidation of metallic nanoparticles. - Highlights: • FeCo–NiAl (core) and Fe{sub 3}O{sub 4} (shell) nanostructures were synthesized. • Coercivity was increased to 250 Oe. • The oxide coating acts as a protection layer.

  19. Sequential reactions directed by core/shell catalytic reactors.

    Science.gov (United States)

    Wei, Yanhu; Soh, Siowling; Apodaca, Mario M; Kim, Jiwon; Grzybowski, Bartosz A

    2010-04-09

    Millimeter-sized reactor particles made of permeable polymer doped with catalysts arranged in a core/shell fashion direct sequences of chemical reactions (e.g., alkyne coupling followed by hydrogenation or hydrosilylation followed by hydrogenation). Spatial compartmentalization of catalysts coupled with the diffusion of substrates controls reaction order and avoids formation of byproducts. The experimentally observed yields of reaction sequences are reproduced by a theoretical model, which accounts for the reaction kinetics and the diffusion of the species involved.

  20. Particle-wall tribology of slippery hydrogel particle suspensions.

    Science.gov (United States)

    Shewan, Heather M; Stokes, Jason R; Cloitre, Michel

    2017-02-22

    Slip is an important phenomenon that occurs during the flow of yield stress fluids like soft materials and pastes. Densely packed suspensions of hydrogel microparticles are used to show that slip is governed by the tribological interactions occurring between the samples and shearing surfaces. Both attractive/repulsive interactions between the dispersed particles and surface, as well as the viscoelasticity of the suspension, are found to play key roles in slip occurring within rheometric flows. We specifically discover that for two completely different sets of microgels, the sliding stress at which slip occurs scales with both the modulus of the particles and the bulk suspension modulus. This suggests that hysteresis losses within the viscoelastic particles contribute to friction forces and thus slip at the particle-surface tribo-contact. It is also found that slip during large amplitude oscillatory shear and steady shear flows share the same generic features.

  1. Preparation of novel core-shell nanoparticles by electrochemical synthesis

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Nanostructural gold/polyaniline core/shell composite particles on conducting electrode ITO were successfully prepared via electrochemical polymerization of aniline based on 4-aminothiophenol (4-ATP) capped Au nanoparticles. The new approach to the fabrication included three steps: preparation of gold nanoparticles as core by pulse electrodeposition; formation of ATP monolayer on the gold particle surface, which served as a binder and an initiator; polymerization of aniline monomer initiated by ATP molecules under controlled voltage lower than the voltammetric threshold of aniline polymerization, which assured the formation of polyaniline shell film occurred on gold particles selectively. Topographic images were also studied by AFM, which indicated the diameter of gold nanoparticles were around 250 nm. Coulometry characterization confirmed the shell thickness of polyaniline film was about 30 nm.A possible formation mechanism of the Au/polyaniline core-shell nanocomposites was also proposed. The novel as-prepared core-shell nanoparticles have potential application in constructing biosensor when bioactive enzymes are absorbed or embedded in polyaniline shell film.

  2. Tandem assays of protein and glucose with functionalized core/shell particles based on magnetic separation and surface-enhanced Raman scattering.

    Science.gov (United States)

    Kong, Xianming; Yu, Qian; Lv, Zhongpeng; Du, Xuezhong

    2013-10-11

    Tandem assays of protein and glucose in combination with mannose-functionalized Fe3 O4 @SiO2 and Ag@SiO2 tag particles have promising potential in effective magnetic separation and highly sensitive and selective SERS assays of biomaterials. It is for the first time that tandem assay of glucose is developed using SERS based on the Con A-sandwiched microstructures between the functionalized magnetic and tag particles.

  3. Ethylene glycol-based Ag plating for the wet chemical fabrication of one micrometer Cu/Ag core/shell particles

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Eun Byul; Lee, Jong-Hyun, E-mail: pljh@snut.ac.kr

    2015-09-15

    Highlights: • Cu@Ag particles less than one micrometer were fabricated through Ag polyol-plating. • Ag polyol-plating was tried without using additional reagents on Cu core particles. • Continuity, uniformity, and thickness of the Ag shell depended on plating conditions. • The sample showed an excellent oxidation initiation temperature of 280 °C. • Anti-oxidation properties of Cu@Ag powders strongly depend on the Ag shell thickness. - Abstract: With the aim of preparing an inexpensive metal filler that can be added to conductive adhesives used in fine-pitch electronic applications, a polyol solution was used to fabricate Ag-coated Cu (Cu@Ag) particles with a size on the order of one micron without the need for additional reagents. The continuity, uniformity, and thickness of the Ag shell were found to be strongly dependent on the plating conditions, particularly the reaction temperature. The Ag shell prepared at a peak temperature of 180 °C from a precursor with an initial Ag concentration of 15 wt.% was judged to be an optimum one. This same sample also showed an excellent oxidation initiation temperature of approximately 280 °C. It was inferred that the oxidation resistance of the Cu@Ag powder is largely determined by the continuity, uniformity and thickness of the Ag shell.

  4. Preparation of Micrometer Core-shell Composite Particles via Dispersion Polymerization%分散聚合法制备微米级核壳复合粒子

    Institute of Scientific and Technical Information of China (English)

    张星; 郑玉婴; 陈德贤

    2012-01-01

    在硬脂酸改性纳米CaCO3存在下进行了苯乙烯(St)和丙烯酸正丁酯(nBA)的分散共聚合,制备了平均粒径为1.76 μm、单分散性较好的CaCO3/P(St-co-nBA)核壳复合粒子.包覆层聚合物P(St-co-nBA)与CaCO3粒子之间存在物理吸附和化学键合作用,使其热分解温度比共聚物P(St-co-nBA)高.经热二甲苯抽提后复合物中仍有共聚物存在,这部分共聚物与CaCO3通过化学键牢固的结合.热失重结果表明,CaCO3的稳定包覆率为6.6%.%Narrow dispersed CaCO3/poly ( styrene-co-n-butylacrylate ) ( CaCO3/P ( St-co-nBA ) ) composite particles with average diameter of 1. 76 μm were obtained via a dispersion copolymerization of St and nBA in the presence of stearic acid modified nano-CaCO3 particles. The products were characterized by transmission electron microscopy ( TEM ) , optical microscope ( OM ) , Courier transfer infrared spectroscopy ( FT-IR ) , thermogravimetric analysis ( TGA ) , and X-ray diffraction ( XRD ). The TEM images indicated the composite particles had nano-CaCO3 core and P ( St-co-nBA ) shell structure. The TGA analysis results of composite particles before and after being extracted with dimethylbenzene showed the thermal decomposition temperature of the cladding polymer was higher than that of pure copolymer P( St-co-nBA) , and some copolymer couldn't be extracted. The FT-IR spectra also confirmed the existence of copolymer on the composite particles after extracting. It suggested that the copolymer had chemical bonding with nano-CaCO3. The mass proportion of P( St-co-nBA) which couldn't be extracted with accounted for 6. 6% based on the mass of nano-CaCO3.

  5. Core-shell column Tanaka characterization and additional tests using active pharmaceutical ingredients.

    Science.gov (United States)

    Ludvigsson, Jufang Wu; Karlsson, Anders; Kjellberg, Viktor

    2016-12-01

    In the last decade, core-shell particles have gained more and more attention in fast liquid chromatography separations due to their comparable performance with fully porous sub-2 μm particles and their significantly lower back pressure. Core-shell particles are made of a solid core surrounded by a shell of classic fully porous material. To embrace the developed core-shell column market and use these columns in pharmaceutical analytical applications, 17 core-shell C18 columns purchased from various vendors with various dimensions (50 mm × 2.1 mm to 100 mm × 3 mm) and particle sizes (1.6-2.7 μm) were characterized using Tanaka test protocols. Furthermore, four selected active pharmaceutical ingredients were chosen as test probes to investigate the batch to batch reproducibility for core-shell columns of particle size 2.6-2.7 μm, with dimension of 100 × 3 mm and columns of particle size 1.6 μm, with dimension 100 × 2.1 mm under isocratic elution. Columns of particle size 2.6-2.7 μm were also tested under gradient elution conditions. To confirm the claimed comparable efficiency of 2.6 μm core-shell particles as sub-2 μm fully porous particles, column performances of the selected core-shell columns were compared with BEH C18 , 1.7 μm, a fully porous column material as well.

  6. Core-shell nanoparticle arrays double the strength of steel.

    Science.gov (United States)

    Seol, J-B; Na, S-H; Gault, B; Kim, J-E; Han, J-C; Park, C-G; Raabe, D

    2017-02-22

    Manipulating structure, defects and composition of a material at the atomic scale for enhancing its physical or mechanical properties is referred to as nanostructuring. Here, by combining advanced microscopy techniques, we unveil how formation of highly regular nano-arrays of nanoparticles doubles the strength of an Fe-based alloy, doped with Ti, Mo, and V, from 500 MPa to 1 GPa, upon prolonged heat treatment. The nanoparticles form at moving heterophase interfaces during cooling from the high-temperature face-centered cubic austenite to the body-centered cubic ferrite phase. We observe MoC and TiC nanoparticles at early precipitation stages as well as core-shell nanoparticles with a Ti-C rich core and a Mo-V rich shell at later precipitation stages. The core-shell structure hampers particle coarsening, enhancing the material's strength. Designing such highly organized metallic core-shell nanoparticle arrays provides a new pathway for developing a wide range of stable nano-architectured engineering metallic alloys with drastically enhanced properties.

  7. Core-shell nanoparticle arrays double the strength of steel

    Science.gov (United States)

    Seol, J.-B.; Na, S.-H.; Gault, B.; Kim, J.-E.; Han, J.-C.; Park, C.-G.; Raabe, D.

    2017-01-01

    Manipulating structure, defects and composition of a material at the atomic scale for enhancing its physical or mechanical properties is referred to as nanostructuring. Here, by combining advanced microscopy techniques, we unveil how formation of highly regular nano-arrays of nanoparticles doubles the strength of an Fe-based alloy, doped with Ti, Mo, and V, from 500 MPa to 1 GPa, upon prolonged heat treatment. The nanoparticles form at moving heterophase interfaces during cooling from the high-temperature face-centered cubic austenite to the body-centered cubic ferrite phase. We observe MoC and TiC nanoparticles at early precipitation stages as well as core-shell nanoparticles with a Ti-C rich core and a Mo-V rich shell at later precipitation stages. The core-shell structure hampers particle coarsening, enhancing the material’s strength. Designing such highly organized metallic core-shell nanoparticle arrays provides a new pathway for developing a wide range of stable nano-architectured engineering metallic alloys with drastically enhanced properties. PMID:28225022

  8. A Novel Aerosol Method for the Production of Hydrogel Particles

    Directory of Open Access Journals (Sweden)

    Diana Guzman-Villanueva

    2011-01-01

    Full Text Available A novel method of generating hydrogel particles for various applications including drug delivery purposes was developed. This method is based on the production of hydrogel particles from sprayed polymeric nano/microdroplets obtained by a nebulization process that is immediately followed by gelation in a crosslinking fluid. In this study, particle synthesis parameters such as type of nebulizer, type of crosslinker, air pressure, and polymer concentration were investigated for their impact on the mean particle size, swelling behavior, and morphology of the developed particles. Spherical alginate-based hydrogel particles with a mean particle size in the range from 842 to 886 nm were obtained. Using statistical analysis of the factorial design of experiment it was found that the main factors influencing the size and swelling values of the particles are the alginate concentration and the air pressure. Thus, it was demonstrated that the method described in the current study is promising for the generation of hydrogel particles and it constitutes a relatively simple and low-cost system.

  9. Synthesis and cytotoxicity study of magnesium ferrite-gold core-shell nanoparticles.

    Science.gov (United States)

    Nonkumwong, Jeeranan; Pakawanit, Phakkhananan; Wipatanawin, Angkana; Jantaratana, Pongsakorn; Ananta, Supon; Srisombat, Laongnuan

    2016-04-01

    In this work, the core-magnesium ferrite (MgFe2O4) nanoparticles were prepared by hydrothermal technique. Completed gold (Au) shell coating on the surfaces of MgFe2O4 nanoparticles was obtained by varying core/shell ratios via a reduction method. Phase identification, morphological evolution, optical properties, magnetic properties and cytotoxicity to mammalian cells of these MgFe2O4 core coated with Au nanoparticles were examined by using a combination of X-ray diffraction, scanning electron microscopy, transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy, UV-visible spectroscopy (UV-vis), vibrating sample magnetometry and resazurin microplate assay techniques. In general, TEM images revealed different sizes of the core-shell nanoparticles generated from various core/shell ratios and confirmed the completed Au shell coating on MgFe2O4 core nanoparticles via suitable core/shell ratio with particle size less than 100 nm. The core-shell nanoparticle size and the quality of coating influence the optical properties of the products. The UV-vis spectra of complete coated MgFe2O4-Au core-shell nanoparticles exhibit the absorption bands in the near-Infrared (NIR) region indicating high potential for therapeutic applications. Based on the magnetic property measurement, it was found that the obtained MgFe2O4-Au core-shell nanoparticles still exhibit superparamagnetism with lower saturation magnetization value, compared with MgFe2O4 core. Both of MgFe2O4 and MgFe2O4-Au core-shell also showed in vitro non-cytotoxicity to mouse areola fibroblast (L-929) cell line.

  10. Homogeneous deposition of particles on hydrogels by absorption

    Science.gov (United States)

    Boulogne, François; Ingremeau, François; Dervaux, Julien; Limat, Laurent; Stone, Howard

    2016-11-01

    A drying drop containing solid particles, such as coffee, leaves a ring stain resulting from the accumulation of the particles near a contact line. In many industrial applications such as printing, coating or biological microtechnologies, these inhomogeneities must be avoided. To suppress the coffee stain effect, different strategies have been developed.In the present work, we propose to substitute the drying by absorption in hydrogels to extract the solvent of a colloidal drop. We study the deposition mechanisms of micrometer-sized particles on the surface of swelling hydrogels. To the best of our knowledge, we show for the first time that the particle deposition on these gels is homogeneous. Using fluorescence microscopy coupled with particle tracking techniques, we record the flow field inside the droplet and analyze the particle deposition mechanism. We rationalize our findings with a theoretical model for the absorption and the particle deposition dynamics that enables the measurement of the diffusion coefficient in the gels.

  11. Core-shell fibrous stem cell carriers incorporating osteogenic nanoparticulate cues for bone tissue engineering.

    Science.gov (United States)

    Olmos Buitrago, Jennifer; Perez, Roman A; El-Fiqi, Ahmed; Singh, Rajendra K; Kim, Joong-Hyun; Kim, Hae-Won

    2015-12-01

    Moldable hydrogels that incorporate stem cells hold great promise for tissue engineering. They secure the encapsulated cells for required periods while allowing a permeable exchange of nutrients and gas with the surroundings. Core-shell fibrous structured hydrogel system represents these properties relevant to stem cell delivery and defect-adjustable tissue engineering. A designed dual concentric nozzle is used to simultaneously deposit collagen and alginate with a core-shell structured continuous fiber form in the ionic calcium bath. We aimed to impart extrinsic osteogenic cues in the nanoparticulate form, i.e., bioactive glass nanoparticles (BGn), inside the alginate shell, while encapsulating rat mesenchymal stem cells in the collagen core. Ionic measurement in aqueous solution indicated a continuous release of calcium ions from the BGn-added and -free scaffolds, whereas silicon was only released from the BGn-containing scaffolds. The presence of BGn allowed higher number of cells to migrate into the scaffolds when implanted in subcutaneous tissues of rat. Cell viability was preserved in the presence of the BGn, with no significant differences noticed from the control. The presence of BGn enhanced the osteogenic differentiation of the encapsulated rat mesenchymal stem cells, presenting higher levels of alkaline phosphatase activity as well as bone related genes, including collagen type I, bone sialoprotein and osteocalcin. Taken together, the incorporated BGn potentiated the capacity of the core-shell fibrous hydrogel system to deliver stem cells targeting bone tissue engineering. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Fabrication of polyacrylate core-shell nanoparticles via spray drying method

    Science.gov (United States)

    Chen, Pengpeng; Cheng, Zenghui; Chu, Fuxiang; Xu, Yuzhi; Wang, Chunpeng

    2016-05-01

    Fine polyacrylate particles are thought to be environmental plastisols for car industry. However, these particles are mainly dried through demulsification of the latexes, which is not reproducible and hard to be scaled up. In this work, a spray drying method had been applied to the plastisols-used acrylate latex. By adjusting the core/shell ratio, spray drying process of the latex was fully studied. Scanning electronic microscopy observation of the nanoparticles before and after spray drying indicated that the core-shell structures could be well preserved and particles were well separated by spray drying if the shell was thick enough. Otherwise, the particles fused into each other and core-shell structures were destroyed. Polyacrylate plastisols were developed using diisononylphthalate as a plasticizer, and plastigels were obtained after heat treatment of the sols. Results showed that the shell thickness also had a great influence on the storage stability of the plastisols and mechanical properties of the plastigels.

  13. Hypersonic vibrations of Ag@SiO2 (cubic core)-shell nanospheres.

    Science.gov (United States)

    Sun, Jing Ya; Wang, Zhi Kui; Lim, Hock Siah; Ng, Ser Choon; Kuok, Meng Hau; Tran, Toan Trong; Lu, Xianmao

    2010-12-28

    The intriguing optical and catalytic properties of metal-silica core-shell nanoparticles, inherited from their plasmonic metallic cores together with the rich surface chemistry and increased stability offered by their silica shells, have enabled a wide variety of applications. In this work, we investigate the confined vibrational modes of a series of monodisperse Ag@SiO(2) (cubic core)-shell nanospheres synthesized using a modified Stöber sol-gel method. The particle-size dependence of their mode frequencies has been mapped by Brillouin light scattering, a powerful tool for probing hypersonic vibrations. Unlike the larger particles, the observed spheroidal-like mode frequencies of the smaller ones do not scale with inverse diameter. Interestingly, the onset of the deviation from this linearity occurs at a smaller particle size for higher-energy modes than for lower-energy ones. Finite element simulations show that the mode displacement profiles of the Ag@SiO(2) core-shells closely resemble those of a homogeneous SiO(2) sphere. Simulations have also been performed to ascertain the effects that the core shape and the relative hardness of the core and shell materials have on the vibrations of the core-shell as a whole. As the vibrational modes of a particle have a bearing on its thermal and mechanical properties, the findings would be of value in designing core-shell nanostructures with customized thermal and mechanical characteristics.

  14. Synthesis and cytotoxicity study of magnesium ferrite-gold core-shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Nonkumwong, Jeeranan [Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Pakawanit, Phakkhananan [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Wipatanawin, Angkana [Division of Biochemistry and Biochemical Technology, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Jantaratana, Pongsakorn [Department of Physics, Faculty of Science, Kasetsart University, Bangkok 11900 (Thailand); Ananta, Supon [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Srisombat, Laongnuan, E-mail: slaongnuan@yahoo.com [Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2016-04-01

    In this work, the core-magnesium ferrite (MgFe{sub 2}O{sub 4}) nanoparticles were prepared by hydrothermal technique. Completed gold (Au) shell coating on the surfaces of MgFe{sub 2}O{sub 4} nanoparticles was obtained by varying core/shell ratios via a reduction method. Phase identification, morphological evolution, optical properties, magnetic properties and cytotoxicity to mammalian cells of these MgFe{sub 2}O{sub 4} core coated with Au nanoparticles were examined by using a combination of X-ray diffraction, scanning electron microscopy, transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy, UV–visible spectroscopy (UV–vis), vibrating sample magnetometry and resazurin microplate assay techniques. In general, TEM images revealed different sizes of the core-shell nanoparticles generated from various core/shell ratios and confirmed the completed Au shell coating on MgFe{sub 2}O{sub 4} core nanoparticles via suitable core/shell ratio with particle size less than 100 nm. The core-shell nanoparticle size and the quality of coating influence the optical properties of the products. The UV–vis spectra of complete coated MgFe{sub 2}O{sub 4}-Au core-shell nanoparticles exhibit the absorption bands in the near-Infrared (NIR) region indicating high potential for therapeutic applications. Based on the magnetic property measurement, it was found that the obtained MgFe{sub 2}O{sub 4}-Au core-shell nanoparticles still exhibit superparamagnetism with lower saturation magnetization value, compared with MgFe{sub 2}O{sub 4} core. Both of MgFe{sub 2}O{sub 4} and MgFe{sub 2}O{sub 4}-Au core-shell also showed in vitro non-cytotoxicity to mouse areola fibroblast (L-929) cell line. - Highlights: • Synthesis of MgFe{sub 2}O{sub 4}-Au core-shell nanoparticles with particle size < 100 nm • Complete Au shell coating on the surfaces of MgFe{sub 2}O{sub 4} nanoparticles • In vitro cytotoxicity study of complete coated MgFe{sub 2}O{sub 4}-Au core-shell

  15. Preparation and characterization of PDMS/PMMA core-shell latex particles having functional group in surface layer%表层功能化PDMS/PMMA核壳乳胶粒子的制备与表征

    Institute of Scientific and Technical Information of China (English)

    张国青; 刘喜军

    2014-01-01

    In this paper, the polydimethyl siloxane/polymethyl methacrylate(PDMS/PMMA)core-shell latex particles (-320 nm)respectively with itaconic acid(ITA),maleic anhydride(MAH)and glycidyl methacrylate(GMA) as functional monomer in surface layer were successfully synthesized employing pre-emulsification semi-continuous process by seeded emulsion polymerization method. Octamethyl cyclotetrasiloxane(D 4 )and Tetravinyl tetramethyl cyelotetrasiloxane as the main monomer were compounded to form PDMS core latex particles with methyl triethoxysilane(MTES)as cross-linking agent. The effects of the reaction time, surfactant and catalyst concentration, and the ratio of D 4 and VD 4 on the polymerization system were studied, and the optimal synthesizing process of PDMS core latex particles was defined.By laser particle size analyzer, Fourier transform infrared spectrometer and transmission electron microscopy analysis showed that the core monomer conversion was nearly 85%and PDMS latex particle size was at about 290 nm when the reaction time was 10 h,surfactant concentration was 5.3%, catalyst concentration was 5.3%,and D4∶VD4=4∶1.%分别以衣康酸(ITA)、马来酸酐(MAH)和甲基丙烯酸缩水甘油酯(GMA)为功能单体,采用预乳化半连续工艺通过种子乳液聚合方法成功合成了表层功能化的聚二甲基硅氧烷/聚甲基丙烯酸甲酯(PDMS/PMMA)核壳乳胶粒子(~320 nm)。PDMS核乳胶粒子以八甲基环四硅氧烷(D 4)和四甲基四乙烯基环四硅氧烷(VD 4)为单体、甲基三乙氧基硅烷(MTES)为交联剂构建而成,实验研究了反应时间、乳化剂和催化剂用量、单体D 4与VD 4比例对聚合体系的影响,并确定了PDMS核乳胶粒子合成最佳工艺。通过激光粒度分析仪、傅里叶变换红外光谱仪、透射电子显微镜等分析表明:当反应时间为10 h、乳化剂用量为核单体总量的5.3%、催化剂用量为核单体总量的5.3%

  16. A study of saltation process using hydrogel particles

    Science.gov (United States)

    Wang, Stella; Zhao, Yuchen; Behringer, Robert

    2016-11-01

    Saltation is a natural process for sediments transported by flow, and occurs in situations such as wind-driven sand dunes in the dessert, and rivers or streams where fluid motion drives gravel. The onset of grain motions is set by the strength of the shear, and grains exhibit rolling, successive jumping where they are lifted by the turbulence. It is an open issue as to how the grain size affects saltation transport, particle velocities and mass fluxes, etc [1]., and also how the inelastic collision between grains affects saltation. Here, we describe a new saltation experiment using hydrogel particles immersed in uniform flow of water. Because the refraction indexes of particles and the fluid are nearly matched, the hydrogel particles can be imaged by a parallel light source, resulting in overlapping dark rings that not only reflect lateral positions, but also depths in one 2D image at one time. Mono-disperse particles are used and their size is adjusted by changing salt concentrations in the fluid. Preliminary results show that the softness of hydrogel particles leads to relatively large collisional losses. This property allows us to explore the phase diagram of saltation transport in the in-elastic collision regime. NSF-DMR-1206351 and the William M. Keck Foundation.

  17. Organized thiol functional groups in mesoporous core shell colloids

    Energy Technology Data Exchange (ETDEWEB)

    Marchena, Martin H. [Gerencia Quimica, Centro Atomico Constituyentes, Comision Nacional de Energia Atomica (CNEA), Avda. Gral. Paz 1499, B1650KNA Buenos Aires (Argentina); Granada, Mara [Centro Atomico Bariloche-CNEA, 8400 San Carlos de Bariloche (Argentina); Instituto Balseiro-Centro Atomico Bariloche-CNEA, San Carlos de Bariloche 8400 (Argentina); Bordoni, Andrea V. [Gerencia Quimica, Centro Atomico Constituyentes, Comision Nacional de Energia Atomica (CNEA), Avda. Gral. Paz 1499, B1650KNA Buenos Aires (Argentina); Joselevich, Maria [Asociacion Civil Expedicion Ciencia, Cabrera 4948, C1414BGP Buenos Aires (Argentina); Troiani, Horacio [Centro Atomico Bariloche-CNEA, 8400 San Carlos de Bariloche (Argentina); Instituto Balseiro-Centro Atomico Bariloche-CNEA, San Carlos de Bariloche 8400 (Argentina); Williams, Federico J. [DQIAQyF-INQUIMAE FCEN, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon II, C1428EHA Buenos Aires (Argentina); Wolosiuk, Alejandro, E-mail: wolosiuk@cnea.gov.ar [Gerencia Quimica, Centro Atomico Constituyentes, Comision Nacional de Energia Atomica (CNEA), Avda. Gral. Paz 1499, B1650KNA Buenos Aires (Argentina)

    2012-03-15

    The co-condensation in situ of tetraethoxysilane (TEOS) and mercaptopropyltrimethoxysilane (MPTMS) using cetyltrimethylammonium bromide (CTAB) as a template results in the synthesis of multilayered mesoporous structured SiO{sub 2} colloids with 'onion-like' chemical environments. Thiol groups were anchored to an inner selected SiO{sub 2} porous layer in a bilayered core shell particle producing different chemical regions inside the colloidal layered structure. X-Ray Photoelectron Spectroscopy (XPS) shows a preferential anchoring of the -SH groups in the double layer shell system, while porosimetry and simple chemical modifications confirm that pores are accessible. We can envision the synthesis of interesting colloidal objects with defined chemical environments with highly controlled properties. - Graphical abstract: Mesoporous core shell SiO{sub 2} colloids with organized thiol groups. Highlights: Black-Right-Pointing-Pointer Double shell mesoporous silica colloids templated with CTAB. Black-Right-Pointing-Pointer Sequential deposition of mesoporous SiO{sub 2} layers with different chemistries. Black-Right-Pointing-Pointer XPS shows the selective functionalization of mesoporous layers with thiol groups.

  18. Polymer-virus core-shell structures prepared via co-assembly and template synthesis methods

    Institute of Scientific and Technical Information of China (English)

    SUTHIWANGCHAROEN; Nisaraporn; PREVELIGE; Peter; E.Jr

    2010-01-01

    Bionanoparticles(BNPs),consisting of virus and virus-like assemblies,have attracted much attention in the biomedical field for their applications such as imaging and targeted drug delivery,owing to their well-defined structures and well-controlled chemistries.BNPs-based core-shell structures provide a unique system for the investigation of biological interactions such as protein-protein and protein-carbohydrate interactions.However,it is still a challenge to prepare the BNPs-based core-shell structures.Herein,we describe(i) co-assembly method and(ii) template synthesis method in the development of polymer-BNPs core-shell structures.These two methods can be divided into three different systems.In system A,different polymers including poly(2-vinylpyridine)(P2VP),poly(4-vinylpyridine)(P4VP) and poly(ε-caprolactone)-block-poly(2-vinylpyridine)(PCL-b-P2VP) can form a raspberry-like structure with BNPs.In system B,polystyrene(PS) spheres end capped with free amine and BNPs can form a core-shell structure.In System C,layer-by-layer(LBL) method is used to prepare positive charged PS particles,which can be used as a template to form the core-shell structures with BNPs.These two methods may open a new way for preparing novel protein-based functional materials for potential applications in the biomedical field.

  19. Cytoprotective alginate/polydopamine core/shell microcapsules in microbial encapsulation.

    Science.gov (United States)

    Kim, Beom Jin; Park, Taegyun; Moon, Hee Chul; Park, So-Young; Hong, Daewha; Ko, Eun Hyea; Kim, Ji Yup; Hong, Jong Wook; Han, Sang Woo; Kim, Yang-Gyun; Choi, Insung S

    2014-12-22

    Chemical encapsulation of microbes in threedimensional polymeric microcapsules promises various applications, such as cell therapy and biosensors, and provides a basic platform for studying microbial communications. However, the cytoprotection of microbes in the microcapsules against external aggressors has been a major challenge in the field of microbial microencapsulation, because ionotropic hydrogels widely used for microencapsulation swell uncontrollably, and are physicochemically labile. Herein, we developed a simple polydopamine coating for obtaining cytoprotective capability of the alginate capsule that encapsulated Saccharomyces cerevisiae. The resulting alginate/ polydopamine core/shell capsule was mechanically tough, prevented gel swelling and cell leakage, and increased resistance against enzymatic attack and UV-C irradiation. We believe that this multifunctional core/shell structure will provide a practical tool for manipulating microorganisms inside the microcapsules. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Preparation and mechanism of Fe3O4/Au core/shell super-paramagnetic microspheres

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In the presence of Fe3O4 nano-particles, a new type of super-paramagnetic Fe3O4/Au microspheres with core/shell structures was prepared by reduction of Au3+ with hydroxylamine. The formation mechanism of the core/shell microspheres was studied in some detail. It was shown that the formation of the complex microspheres can be divided into two periods, that is, surface reaction-controlled process and diffusion-controlled process. The relative time lasted by either process depends upon the amount of Fe3O4 added and the initial concentration of Au3+. XPS analysis revealed that along with increasing in coating amount, the strength of the characteristic peaks of Au increased, and the Auger peaks of Fe weakened and even disappeared. Size distribution analysis showed that the core/shell microspheres are of an average diameter of 180 nm, a little bit larger than those before coating.

  1. Core-shell hybrid nanostructured delivery platforms for advanced RNAi therapeutics.

    Science.gov (United States)

    Sajeesh, S; Choe, Jeong Yong; Lee, Dong Ki

    2017-09-04

    Study was aimed at combining the advantages of nonclassical RNAi-triggering oligonucleotides with nanoparticle-based advanced delivery platforms for developing efficient therapeutic systems. We utilized a core-shell hybrid nanostructured platform for effectively delivering nonclassical RNAi triggers, namely long double stranded interfering RNA and tripodal interfering RNA. Core-shell structure was prepared by stably anchoring thiol-modified cationic polymer on the surface of growing crystal gold (Au) seeds, and the resulting particles were further complexed with nonclassical RNAi candidates via electrostatic interactions. Our studies clearly demonstrated that the unique combination of nonclassical RNAi structures with an advanced core-shell hybrid nanostructured platform is an effective module for advanced RNAi-based therapeutic development.

  2. Microfluidic production of perfluorocarbon-alginate core-shell microparticles for ultrasound therapeutic applications.

    Science.gov (United States)

    Duarte, Ana Rita C; Ünal, Barış; Mano, João F; Reis, Rui L; Jensen, Klavs F

    2014-10-21

    The fabrication of micrometer-sized core-shell particles for ultrasound-triggered delivery offers a variety of applications in medical research. In this work, we report the design and development of a glass capillary microfluidic system containing three concentric glass capillary tubes for the development of core-shell particles. The setup enables the preparation of perfluorocarbon-alginate core-shell microspheres in a single process, avoiding the requirement for further extensive purification steps. Core-shell microspheres in the range of 110-130 μm are prepared and are demonstrated to be stable up to 21 days upon immersion in calcium chloride solution or water. The mechanical stability of the particles is tested by injecting them through a 23 gauge needle into a polyacrylamide gel to mimic the tissue matrix. The integrity of the particles is maintained after the injection process and is disrupted after ultrasound exposure for 15 min. The results suggest that the perfluorcarbon-alginate microparticles could be a promising system for the delivery of compounds, such as proteins, peptides, and small-molecule drugs in ultrasound-based therapies.

  3. Radiological decontamination strippable coatings using PVA and PVP based core-shell polymeric scintillation materials

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Ho Sang; Seo, Bum Kyoung; Lee, Kune Woo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-05-15

    Strippable coatings are innovative technologies for decontamination that effectively reduce loose contamination. These coatings are polymer mixtures, such as water-based organic polymers that are applied to a surface by paintbrush, roller or spray applicator. In this study, the core-shell composite polymer for decontamination from the surface contamination was synthesized by the method of emulsion polymerization and blends of polymers. The strippable polymer emulsion is composed of the poly(styrene-ethyl acrylate) [poly(St-EA)] composite polymer, poly(vinyl alcohol) (PVA) and polyvinylpyrrolidone (PVP). The morphology of the composite emulsion particle was core-shell structure, with polystyrene (PS) as the core and poly(ethyl acrylate) (PEA) as the shell. Core-shell polymers of styrene (St)/ethyl acrylate (EA) pair were prepared by sequential emulsion polymerization in the presence of sodium dodecyl sulfate (SDS) as an emulsifier using ammonium persulfate (APS) as an initiator. Related tests and analysis confirmed the success in synthesis of composite polymer. The products are characterized by FT-IR spectroscopy, TGA that were used, respectively, to show the structure, the thermal stability of the prepared polymer. Two-phase particles with a core-shell structure were obtained in experiments where the estimated glass transition temperature and the morphologies of emulsion particles. Decontamination factors (DF) of the strippable polymeric emulsion were evaluated with the polymer blend contents

  4. Core-shell silicon nanowire solar cells.

    Science.gov (United States)

    Adachi, M M; Anantram, M P; Karim, K S

    2013-01-01

    Silicon nanowires can enhance broadband optical absorption and reduce radial carrier collection distances in solar cell devices. Arrays of disordered nanowires grown by vapor-liquid-solid method are attractive because they can be grown on low-cost substrates such as glass, and are large area compatible. Here, we experimentally demonstrate that an array of disordered silicon nanowires surrounded by a thin transparent conductive oxide has both low diffuse and specular reflection with total values as low as nanowire facilitates enhancement in external quantum efficiency using two different active shell materials: amorphous silicon and nanocrystalline silicon. As a result, the core-shell nanowire device exhibits a short-circuit current enhancement of 15% with an amorphous Si shell and 26% with a nanocrystalline Si shell compared to their corresponding planar devices.

  5. Single domain SmCo5@Co exchange-coupled magnets prepared from core/shell Sm[Co(CN)6]·4H2O@GO particles: a novel chemical approach.

    Science.gov (United States)

    Yang, Ce; Jia, Lihui; Wang, Shouguo; Gao, Chen; Shi, Dawei; Hou, Yanglong; Gao, Song

    2013-12-20

    SmCo5 based magnets with smaller size and larger maximum energy product have been long desired in various fields such as renewable energy technology, electronic industry and aerospace science. However, conventional relatively rough synthetic strategies will lead to either diminished magnetic properties or irregular morphology, which hindered their wide applications. In this article, we present a facile chemical approach to prepare 200 nm single domain SmCo5@Co core/shell magnets with coercivity of 20.7 kOe and saturation magnetization of 82 emu/g. We found that the incorporation of GO sheets is responsible for the generation of the unique structure. The single domain SmCo5 core contributes to the large coercivity of the magnets and the exchange-coupled Co shell enhances the magnetization. This method can be further utilized in the synthesis other Sm-Co based exchange-coupled magnets.

  6. Platinum-coated non-noble metal-noble metal core-shell electrocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Adzic, Radoslav; Zhang, Junliang; Mo, Yibo; Vukmirovic, Miomir

    2015-04-14

    Core-shell particles encapsulated by a thin film of a catalytically active metal are described. The particles are preferably nanoparticles comprising a non-noble core with a noble metal shell which preferably do not include Pt. The non-noble metal-noble metal core-shell nanoparticles are encapsulated by a catalytically active metal which is preferably Pt. The core-shell nanoparticles are preferably formed by prolonged elevated-temperature annealing of nanoparticle alloys in an inert environment. This causes the noble metal component to surface segregate and form an atomically thin shell. The Pt overlayer is formed by a process involving the underpotential deposition of a monolayer of a non-noble metal followed by immersion in a solution comprising a Pt salt. A thin Pt layer forms via the galvanic displacement of non-noble surface atoms by more noble Pt atoms in the salt. The overall process is a robust and cost-efficient method for forming Pt-coated non-noble metal-noble metal core-shell nanoparticles.

  7. Core-shell Au@(TiO(2), SiO(2)) nanoparticles with tunable morphology.

    Science.gov (United States)

    Lekeufack, D Djoumessi; Brioude, A; Mouti, A; Alauzun, J G; Stadelmann, P; Coleman, A W; Miele, P

    2010-07-07

    A novel approach based on the Stöber method allows breaking of the symmetry of core-shell systems based on metallic core and metal oxide shell. By adjusting the proportion of the TiO(2) precursor with regard to the silica precursor, different morphologies of the particles have been obtained displacing the gold particle from center to eccentric positions leading to acorn-like and raspberry-like structure.

  8. Gold-Pluronic core-shell nanoparticles: synthesis, characterization and biological evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Timea; Boca, Sanda [Babes-Bolyai University, Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute on Bio-Nano-Sciences and Faculty of Physics (Romania); Biro, Dominic [Sapientia University, Department of Mechanical Engineering, Faculty of Technical and Human Sciences (Romania); Baldeck, Patrice [Universite Joseph Fourier and CNRS, Laboratoire Interdisciplinaire de Physique, UMR 5588, CNRS (France); Astilean, Simion, E-mail: simion.astilean@phys.ubbcluj.ro [Babes-Bolyai University, Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute on Bio-Nano-Sciences and Faculty of Physics (Romania)

    2013-04-15

    This study presents the synthesis of gold-Pluronic core-shell nanoparticles by a two-step method and investigates their biological impact on cancer cells, specifically nanoparticle internalization and cytotoxicity. Uniform, 9-10-nm-sized, hydrophobic gold nanoparticles were synthesized in organic phase by reducing gold salt with oleylamine, after which oleylamine-protected gold nanoparticles were phase-transferred into aqueous medium using Pluronic F127 block copolymer, resulting in gold-Pluronic core-shell nanoparticles with a mean hydrodynamic diameter of {approx}35 nm. The formation and phase-transfer of gold nanoparticles were analyzed by UV-Vis absorption spectroscopy, transmission electron microscopy, and dynamic light scattering. The obtained gold-Pluronic core-shell nanoparticles proved to be highly stable in salted solution. Cytotoxicity tests showed no modification of cellular viability in the presence of properly purified particles. Furthermore, dark-field cellular imaging demonstrated that gold-Pluronic nanoparticles were able to be efficiently uptaken by cells, being internalized through nonspecific endocytosis. The high stability, proven biocompatibility, and imaging properties of gold-Pluronic core-shell nanoparticles hold promise for relevant intracellular applications, with such a design providing the feasibility to combine all multiple functionalities in one nanoparticle for simultaneous detection and imaging.

  9. 2D analysis of polydisperse core-shell nanoparticles using analytical ultracentrifugation.

    Science.gov (United States)

    Walter, Johannes; Gorbet, Gary; Akdas, Tugce; Segets, Doris; Demeler, Borries; Peukert, Wolfgang

    2016-12-19

    Accurate knowledge of the size, density and composition of nanoparticles (NPs) is of major importance for their applications. In this work the hydrodynamic characterization of polydisperse core-shell NPs by means of analytical ultracentrifugation (AUC) is addressed. AUC is one of the most accurate techniques for the characterization of NPs in the liquid phase because it can resolve particle size distributions (PSDs) with unrivaled resolution and detail. Small NPs have to be considered as core-shell systems when dispersed in a liquid since a solvation layer and a stabilizer shell will significantly contribute to the particle's hydrodynamic diameter and effective density. AUC measures the sedimentation and diffusion transport of the analytes, which are affected by the core-shell compositional properties. This work demonstrates that polydisperse and thus widely distributed NPs pose significant challenges for current state-of-the-art data evaluation methods. The existing methods either have insufficient resolution or do not correctly reproduce the core-shell properties. First, we investigate the performance of different data evaluation models by means of simulated data. Then, we propose a new methodology to address the core-shell properties of NPs. This method is based on the parametrically constrained spectrum analysis and offers complete access to the size and effective density of polydisperse NPs. Our study is complemented using experimental data derived for ZnO and CuInS2 NPs, which do not have a monodisperse PSD. For the first time, the size and effective density of such structures could be resolved with high resolution by means of a two-dimensional AUC analysis approach.

  10. Gate field induced switching of electronic current in Si-Ge Core-Shell nanowire quantum dots: A first principles study

    Science.gov (United States)

    Dhungana, Kamal B.; Jaishi, Meghnath; Pati, Ranjit

    Core-shell nanowires are formed by varying the radial composition of the nanowires. One of the most widely studied core-shell nanowire groups in recent years is the Si-Ge and Ge-Si core-shell nanowires. Compared to their pristine counterparts, they are reported to have superior electronic properties. For example, the scaled ON state current value in a Ge-Si core-shell nanowire field effect transistor (FET) is reported to be three to four times higher than that observed in state-of-the-art-metal oxide semiconductor FET (MOSFET) (Nature, 441, 489 (2006)). Here, we study the transport properties of the pristine Si and Si-Ge core-shell nanowire quantum dots of similar dimension to understand the superior performance of Si-Ge core-shell nanowire field effect transistor. Our calculations yield excellent gate field induced switching behavior in current for both pristine Si and Si-Ge core-shell hetero-structure nanowire quantum dots. The threshold gate bias for ON/OFF switching in the Si-Ge core-shell nanowire is found to be much smaller than that found in the pristine Si nanowire. A single particle many-body Green's function approach in conjunction with density functional theory is employed to calculate the electronic current.

  11. Depletion of abundant plasma proteins by poly(N-isopropylacrylamide-acrylic acid) hydrogel particles

    DEFF Research Database (Denmark)

    Such-Sanmartín, Gerard; Ventura-Espejo, Estela; Jensen, Ole N

    2014-01-01

    at higher efficiency than low abundance proteins, which are enriched in the supernatants, whereas (2) hydrogel particles incubated with high concentrations of plasma capture and irreversibly trap abundant proteins. During the elution step, irreversibly trapped proteins remain captured while low abundance...... (SRM) liquid chromatography (LC)-MS/MS. This novel use of hydrogel particles opens new perspectives for biomarker analysis based on mass spectrometry....

  12. Nanostructured core-shell electrode materials for electrochemical capacitors

    Science.gov (United States)

    Jiang, Long-bo; Yuan, Xing-zhong; Liang, Jie; Zhang, Jin; Wang, Hou; Zeng, Guang-ming

    2016-11-01

    Core-shell nanostructure represents a unique system for applications in electrochemical energy storage devices. Owing to the unique characteristics featuring high power delivery and long-term cycling stability, electrochemical capacitors (ECs) have emerged as one of the most attractive electrochemical storage systems since they can complement or even replace batteries in the energy storage field, especially when high power delivery or uptake is needed. This review aims to summarize recent progress on core-shell nanostructures for advanced supercapacitor applications in view of their hierarchical architecture which not only create the desired hierarchical porous channels, but also possess higher electrical conductivity and better structural mechanical stability. The core-shell nanostructures include carbon/carbon, carbon/metal oxide, carbon/conducting polymer, metal oxide/metal oxide, metal oxide/conducting polymer, conducting polymer/conducting polymer, and even more complex ternary core-shell nanoparticles. The preparation strategies, electrochemical performances, and structural stabilities of core-shell materials for ECs are summarized. The relationship between core-shell nanostructure and electrochemical performance is discussed in detail. In addition, the challenges and new trends in core-shell nanomaterials development have also been proposed.

  13. Core-Shell Nanoparticle-Enhanced Raman Spectroscopy.

    Science.gov (United States)

    Li, Jian-Feng; Zhang, Yue-Jiao; Ding, Song-Yuan; Panneerselvam, Rajapandiyan; Tian, Zhong-Qun

    2017-03-08

    Core-shell nanoparticles are at the leading edge of the hot research topics and offer a wide range of applications in optics, biomedicine, environmental science, materials, catalysis, energy, and so forth, due to their excellent properties such as versatility, tunability, and stability. They have attracted enormous interest attributed to their dramatically tunable physicochemical features. Plasmonic core-shell nanomaterials are extensively used in surface-enhanced vibrational spectroscopies, in particular, surface-enhanced Raman spectroscopy (SERS), due to the unique localized surface plasmon resonance (LSPR) property. This review provides a comprehensive overview of core-shell nanoparticles in the context of fundamental and application aspects of SERS and discusses numerous classes of core-shell nanoparticles with their unique strategies and functions. Further, herein we also introduce the concept of shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) in detail because it overcomes the long-standing limitations of material and morphology generality encountered in traditional SERS. We then explain the SERS-enhancement mechanism with core-shell nanoparticles, as well as three generations of SERS hotspots for surface analysis of materials. To provide a clear view for readers, we summarize various approaches for the synthesis of core-shell nanoparticles and their applications in SERS, such as electrochemistry, bioanalysis, food safety, environmental safety, cultural heritage, materials, catalysis, and energy storage and conversion. Finally, we exemplify about the future developments in new core-shell nanomaterials with different functionalities for SERS and other surface-enhanced spectroscopies.

  14. Synthesis of Ni-SiO2/silicalite-1 core-shell micromembrane reactors and their reaction/diffusion performance

    KAUST Repository

    Khan, Easir A.

    2010-12-15

    Core-shell micromembrane reactors are a novel class of materials where a catalyst and a shape-selective membrane are synergistically housed in a single particle. In this work, we report the synthesis of micrometer -sized core-shell particles containing a catalyst core and a thin permselective zeolite shell and their application as a micromembrane reactor for the selective hydrogenation of the 1-hexene and 3,3-dimethyl-1-butene isomers. The bare catalyst, which is made from porous silica loaded with catalytically active nickel, showed no reactant selectivity between hexene isomers, but the core-shell particles showed high selectivities up to 300 for a 1-hexene conversion of 90%. © 2010 American Chemical Society.

  15. Magnetite/poly(alkylcyanoacrylate) (core/shell) nanoparticles as 5-Fluorouracil delivery systems for active targeting.

    Science.gov (United States)

    Arias, José L; Gallardo, Visitación; Ruiz, M A Adolfina; Delgado, Angel V

    2008-05-01

    In this article, a reproducible emulsion polymerization process is described to prepare core/shell colloidal nanospheres, loaded with 5-Fluorouracil, and consisting of a magnetic core (magnetite) and a biodegradable polymeric shell [poly(ethyl-2-cyanoacrylate), poly(butylcyanoacrylate), poly(hexylcyanoacrylate), or poly(octylcyanoacrylate)]. The heterogeneous structure of these carriers can confer them both the possibility of being used as drug delivery systems and the responsiveness to external magnetic fields, allowing an active drug targeting without a concurrent systemic distribution. Zeta potential determinations as a function of ionic strength showed that the surface behaviour of the core/shell particles is similar to that of pure cyanoacrylate particles. The first magnetization curve of both magnetite and magnetite/polymer particles demonstrated that the polymer shell reduces the magnetic responsiveness of the particles, but keeps unchanged their ferrimagnetic character. Two drug loading mechanisms were studied: absorption or entrapment in the polymeric network, and surface adsorption. We found that the acidity of the medium had significant effects on the drug absorption per unit mass of polymer, and needs to be controlled to avoid formation of macroaggregates and to reach significant 5-Fluorouracil absorption. The type of polymer and the drug concentration are also main factors determining the drug incorporation to the core/shell particles. 5-Fluorouracil release evaluations showed a biphasic profile affected by the type of polymeric shell, the type of drug incorporation and the amount of drug loaded.

  16. Synthesis and properties MFe2O4 (M = Fe, Co) nanoparticles and core-shell structures

    Science.gov (United States)

    Yelenich, O. V.; Solopan, S. O.; Greneche, J. M.; Belous, A. G.

    2015-08-01

    Individual Fe3-xO4 and CoFe2O4 nanoparticles, as well as Fe3-xO4/CoFe2O4 core/shell structures were synthesized by the method of co-precipitation from diethylene glycol solutions. Core/shell structure were synthesized with CoFe2O4-shell thickness of 1.0, 2.5 and 3.5 nm. X-ray diffraction patterns of individual nanoparticles and core/shell are similar and indicate that all synthesized samples have a cubic spinel structure. Compares Mössbauer studies of CoFe2O4, Fe3-xO4 nanoparticles indicate superparamagnetic properties at 300 K. It was shown that individual magnetite nanoparticles are transformed into maghemite through oxidation during the synthesis procedure, wherein the smallest nanoparticles are completely oxidized while a magnetite core does occur in the case of the largest nanoparticles. The Mössbauer spectra of core/shell nanoparticles with increasing CoFe2O4-shell thickness show a gradual decrease in the relative intensity of the quadrupole doublet and significant decrease of the mean isomer shift value at both RT and 77 K indicating a decrease of the superparamagnetic relaxation phenomena. Specific loss power for the prepared ferrofluids was experimentally calculated and it was determined that under influence of ac-magnetic field magnetic fluid based on individual CoFe2O4 and Fe3-xO4 particles are characterized by very low heating temperature, when magnetic fluids based on core/shell nanoparticles demonstrate higher heating effect.

  17. Core-shell polymer nanoparticles for prevention of GSH drug detoxification and cisplatin delivery to breast cancer cells

    Science.gov (United States)

    Surnar, Bapurao; Sharma, Kavita; Jayakannan, Manickam

    2015-10-01

    Platinum drug delivery against the detoxification of cytoplasmic thiols is urgently required for achieving efficacy in breast cancer treatment that is over expressed by glutathione (GSH, thiol-oligopeptide). GSH-resistant polymer-cisplatin core-shell nanoparticles were custom designed based on biodegradable carboxylic functional polycaprolactone (PCL)-block-poly(ethylene glycol) diblock copolymers. The core of the nanoparticle was fixed as 100 carboxylic units and the shell part was varied using various molecular weight poly(ethylene glycol) monomethyl ethers (MW of PEGs = 100-5000 g mol-1) as initiator in the ring-opening polymerization. The complexation of cisplatin aquo species with the diblocks produced core-shell nanoparticles of 75 nm core with precise size control the particles up to 190 nm. The core-shell nanoparticles were found to be stable in saline solution and PBS and they exhibited enhanced stability with increase in the PEG shell thickness at the periphery. The hydrophobic PCL layer on the periphery of the cisplatin core behaved as a protecting layer against the cytoplasmic thiol residues (GSH and cysteine) and exhibited cisplatin and polymer drug core-shell nanoparticles showed similar cytotoxicity effects in the HeLa cells. In MCF-7 cells, the free cisplatin drug exhibited 50% cell death whereas complete cell death (100%) was accomplished by the polymer-cisplatin core-shell nanoparticles. Confocal microscopic images confirmed that the core-shell nanoparticles were taken up by the MCF-7 and HeLa cells and they were accumulated both at the cytoplasm as well at peri-nuclear environments. The present investigation lays a new foundation for the polymer-based core-shell nanoparticles approach for overcoming detoxification in platinum drugs for the treatment of GSH over-expressed breast cancer cells.Platinum drug delivery against the detoxification of cytoplasmic thiols is urgently required for achieving efficacy in breast cancer treatment that is over

  18. Homogeneous protein analysis by magnetic core-shell nanorod probes

    KAUST Repository

    Schrittwieser, Stefan

    2016-03-29

    Studying protein interactions is of vital importance both to fundamental biology research and to medical applications. Here, we report on the experimental proof of a universally applicable label-free homogeneous platform for rapid protein analysis. It is based on optically detecting changes in the rotational dynamics of magnetically agitated core-shell nanorods upon their specific interaction with proteins. By adjusting the excitation frequency, we are able to optimize the measurement signal for each analyte protein size. In addition, due to the locking of the optical signal to the magnetic excitation frequency, background signals are suppressed, thus allowing exclusive studies of processes at the nanoprobe surface only. We study target proteins (soluble domain of the human epidermal growth factor receptor 2 - sHER2) specifically binding to antibodies (trastuzumab) immobilized on the surface of our nanoprobes and demonstrate direct deduction of their respective sizes. Additionally, we examine the dependence of our measurement signal on the concentration of the analyte protein, and deduce a minimally detectable sHER2 concentration of 440 pM. For our homogeneous measurement platform, good dispersion stability of the applied nanoprobes under physiological conditions is of vital importance. To that end, we support our measurement data by theoretical modeling of the total particle-particle interaction energies. The successful implementation of our platform offers scope for applications in biomarker-based diagnostics as well as for answering basic biology questions.

  19. Determining the size of nanoparticles in the example of magnetic iron oxide core-shell systems

    Science.gov (United States)

    Jarzębski, Maciej; Kościński, Mikołaj; Białopiotrowicz, Tomasz

    2017-08-01

    The size of nanoparticles is one of the most important factors for their possible applications. Various techniques for the nanoparticle size characterization are available. In this paper selected techniques will be considered base on the prepared core-shell magnetite nanoparticles. Magnetite is one of the most investigated and developed magnetic material. It shows interesting magnetic properties which can be used for biomedical applications, such as drug delivery, hypothermia and also as a contrast agent. To reduce the toxic effects of Fe3O4, magnetic core was covered by dextran and gelatin. Moreover, the shell was doped by fluorescent dye for confocal microscopy investigation. The main investigation focused on the methods for particles size determination of modified magnetite nanoparticles prepared with different techniques. The size distribution were obtained by nanoparticle tracking analysis, dynamic light scattering and transmission electron microscopy. Furthermore, fluorescent correlation spectroscopy (FCS) and confocal microscopy were used to compare the results for particle size determination of core-shell systems.

  20. Graded core/shell semiconductor nanorods and nanorod barcodes

    Science.gov (United States)

    Alivisatos, A. Paul; Scher, Erik C.; Manna, Liberato

    2010-12-14

    Graded core/shell semiconductor nanorods and shaped nanorods are disclosed comprising Group II-VI, Group III-V and Group IV semiconductors and methods of making the same. Also disclosed are nanorod barcodes using core/shell nanorods where the core is a semiconductor or metal material, and with or without a shell. Methods of labeling analytes using the nanorod barcodes are also disclosed.

  1. Core-shell magnetic nanowires fabrication and characterization

    Science.gov (United States)

    Kalska-Szostko, B.; Klekotka, U.; Satuła, D.

    2017-02-01

    In this paper, a new way of the preparation of core-shell magnetic nanowires has been proposed. For the modification Fe nanowires were prepared by electrodeposition in anodic aluminium oxide matrixes, in first step. In second, by wetting chemical deposition, shell layers of Ag, Au or Cu were obtained. Resultant core-shell nanowires structure was characterized by X-ray diffraction, infrared spectroscopy, transmission electron microscopy, and energy dispersive x-ray. Whereas magnetic properties by Mössbauer spectroscopy.

  2. Simulated evolution process of core-shell microstructures

    Institute of Scientific and Technical Information of China (English)

    QIN Tao; WANG HaiPeng; WEI BingBo

    2007-01-01

    The evolution process of core-shell microstructures formed in monotectic alloys under the space environment condition was investigated by the numerical simulation method. In order to account for the effect of surface segregation on phase separation, Model H was modified by introducing a surface free energy term into the total free energy of alloy droplet. Three Fe-Cu alloys were taken as simulated examples, which usually exhibit metastable phase separation in undercooled and microgravity states. It was revealed by the dynamic simulation process that the formation of core-shell microstructures depends mainly on surface segregation and Marangoni convection. The phase separation of Fe65Cu35 alloy starts from a dispersed structure and gradually evolves into a triple-layer core-shell microstructure. Similarly, Fe50Cu50 alloy experiences a structural evolution process of "bicontinuous phase → quadruple-layer core-shell → triple-layer core-shell", while the microstructures of Fe35Cu65 alloy transfer from the dispersed structure into the final double-layer core-shell morphology. The Cu-rich phase always forms the outer layer because of surface segregation, whereas the internal microstructural evolution is controlled mainly by the Marangoni convection resulting from the temperature gradient.

  3. Simulated evolution process of core-shell microstructures

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The evolution process of core-shell microstructures formed in monotectic alloys under the space environment condition was investigated by the numerical simula- tion method. In order to account for the effect of surface segregation on phase separation, Model H was modified by introducing a surface free energy term into the total free energy of alloy droplet. Three Fe-Cu alloys were taken as simulated examples, which usually exhibit metastable phase separation in undercooled and microgravity states. It was revealed by the dynamic simulation process that the formation of core-shell microstructures depends mainly on surface segregation and Marangoni convection. The phase separation of Fe65Cu35 alloy starts from a dispersed structure and gradually evolves into a triple-layer core-shell micro- structure. Similarly, Fe50Cu50 alloy experiences a structural evolution process of "bicontinuous phase → quadruple-layer core-shell → triple-layer core-shell", while the microstructures of Fe35Cu65 alloy transfer from the dispersed structure into the final double-layer core-shell morphology. The Cu-rich phase always forms the outer layer because of surface segregation, whereas the internal microstructural evolu- tion is controlled mainly by the Marangoni convection resulting from the tempera- ture gradient.

  4. Application of magnetic and core-shell nanoparticles to determine enrofloxacin and its metabolite using laser induced fluorescence microscope.

    Science.gov (United States)

    Kim, Suji; Ko, Junga; Lim, H B

    2013-04-10

    A unique analytical method using nanoparticles and laser-induced fluorescence microscopy (LIFM) was developed to determine enrofloxacin in this work. For sample pretreatment, two different kinds of particles, i.e., synthesized dye-doped core-shell silica nanoparticles and magnetic micro-particles (MPs), were used for fluorescent tagging and concentrating the enrofloxacin, respectively. The antibody of enrofloxacin was immobilized on the synthesized FITC-doped core-shell nanoparticles, and the enrofloxacin target was extracted by the MPs. At this moment, the average number of antibodies on each core-shell silica nanoparticle was ~0.9, which was determined by the fluorescence ratiometric method. The described method was demonstrated for a meat sample to determine enrofloxacin using LIFM, and the result was compared with enzyme-linked immunosorbent assay (ELISA). The developed technique allowed the simplified analytical procedure, improved the detection limit about 54-fold compared to ELISA.

  5. Soft matter strategies for controlling food texture: formation of hydrogel particles by biopolymer complex coacervation.

    Science.gov (United States)

    Wu, Bi-cheng; Degner, Brian; McClements, David Julian

    2014-11-19

    Soft matter physics principles can be used to address important problems in the food industry. Starch granules are widely used in foods to create desirable textural attributes, but high levels of digestible starch may pose a risk of diabetes. Consequently, there is a need to find healthier replacements for starch granules. The objective of this research was to create hydrogel particles from protein and dietary fiber with similar dimensions and functional attributes as starch granules. Hydrogel particles were formed by mixing gelatin (0.5 wt%) with pectin (0 to 0.2 wt%) at pH values above the isoelectric point of the gelatin (pH 9, 30 °C). When the pH was adjusted to pH 5, the biopolymer mixture spontaneously formed micron-sized particles due to electrostatic attraction of cationic gelatin with anionic pectin through complex coacervation. Differential interference contrast (DIC) microscopy showed that the hydrogel particles were translucent and spheroid, and that their dimensions were determined by pectin concentration. At 0.01 wt% pectin, hydrogel particles with similar dimensions to swollen starch granules (D3,2 ≈ 23 µm) were formed. The resulting hydrogel suspensions had similar appearances to starch pastes and could be made to have similar textural attributes (yield stress and shear viscosity) by adjusting the effective hydrogel particle concentration. These hydrogel particles may therefore be used to improve the texture of reduced-calorie foods and thereby help tackle obesity and diabetes.

  6. 炭化聚苯乙烯/聚苯胺核-壳聚合物颗粒制备中空炭球%Preparation of hollow carbon spheres by carbonization of polystyrene/polyaniline core-shell polymer particles

    Institute of Scientific and Technical Information of China (English)

    代晓瑛; 张歆; 孟艺飞; 沈培康

    2011-01-01

    Hollow carbon spheres were synthesized using sulfonated polystyrene(PS)spheres as a core template and aniline monomer as carbon source.The spheres prepared were characterized by scanning electron microscopy,transmission electron microscopy,X-ray diffraction,Fourier infrared spectrometry,and thermogravimetry.The results showed that the as-prepared hollow carbon spheres were uniform in diameter with a shell thickness of 35 nm.The morphology,diameter,and wall thickness of the hollow carbon spheres can be tuned by varying the sulfonation rate of the PS core template.Sulfonation modification of PS spheres for 8 h was appropriate to prepare hollow carbon spheres.Owing to the presence of enough sulfonic acid groups on PS surface,the difference in the decomposition temperature between the PANI shells and the PS core was increased,resulting in the formation of the hollow carbon spheres with good sphericity and thick carbon shells by carbonizing sulfonated PS/PANI core-shell polymer spheres.%以磺化聚苯乙烯球为模板,苯胺为碳源,利用模板法制备了中空炭球结构.采用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)、傅立叶-红外光谱(FT-IR)和热重分析(TGA)对所制的样品进行了表征.结果表明:所制中空炭球的壁厚为35nm且粒径均匀,中空炭球的形貌和壳层厚度受聚苯乙烯模板磺化度的影响.磺酸化8h的聚苯乙烯球是制备中空炭球的最佳模板,由于聚苯乙烯球表面足够磺酸基团的存在,增大了聚苯乙烯核模板和聚苯胺壳层之间的热分解温度差,使得聚苯乙烯核模板具有较低的分解温度,而聚苯胺壳层则具有较高分解温度,从而利用炭化法制得球壳完整和球形良好的中空炭球结构.

  7. Development of CMC hydrogels loaded with silver nano-particles for medical applications.

    Science.gov (United States)

    Hebeish, Ali; Hashem, M; El-Hady, M M Abd; Sharaf, S

    2013-01-30

    Innovative CMC-based hydrogels with great potentials for usage in medical area were principally synthesized as per two strategies .The first involved reaction of epichlorohydrin in alkaline medium containing silver nitrate to yield silver nano-particles (AgNPs)-loaded CMC hydrogel. While CMC acted as stabilizing for AgNPs, trisodium citrate was added to the reaction medium to assist CMC in establishing reduction of Ag(+) to AgNPs. The second strategy entailed preparation of CMC hydrogel which assists the in situ preparation of AgNPs under the same conditions. In both strategies, factors affecting the characterization of AgNPs-loaded CMC hydrogels were studied. Analysis and characterization of the so obtained hydrogels were performed through monitoring swelling behavior, FTIR spectroscopy, SEM, EDX, UV-vis spectrophotometer and TEM. Antimicrobial activity of the hydrogels was examined and mechanisms involved in their synthesis were reported.

  8. Supramolecular core-shell nanoparticles for photoconductive device applications

    Science.gov (United States)

    Cheng, Chih-Chia; Chen, Jem-Kun; Shieh, Yeong-Tarng; Lee, Duu-Jong

    2016-08-01

    We report a breakthrough discovery involving supramolecular-based strategies to construct novel core-shell heterojunction nanoparticles with hydrophilic adenine-functionalized polythiophene (PAT) as the core and hydrophobic phenyl-C61-butyric acid methyl ester (PCBM) as the shell, which enables the conception of new functional supramolecular assemblies for constructing functional nanomaterials for applications in optoelectronic devices. The generated nanoparticles exhibit uniform spherical shape, well-controlled tuning of particle size with narrow size distributions, and excellent electrochemical stability in solution and the solid state owing to highly efficient energy transfer from PAT to PCBM. When the PAT/PCBM nanoparticles were fabricated into a photoconducting layer in an electronic device, the resulting device showed excellent electric conduction characteristics, including an electrically-tunable voltage-controlled switch, and high short-circuit current and open-circuit voltage. These observations demonstrate how the self-assembly of PAT/PCBM into specific nanostructures may help to promote efficient charge generation and transport processes, suggesting potential for a wide variety of applications as a promising candidate material for bulk heterojunction polymer devices.

  9. Using dissipative particle dynamics to model micromechanics of responsive hydrogels

    Science.gov (United States)

    Alexeev, Alexander; Nikolov, Svetoslav; Fernandez de Las Nieves, Alberto

    2015-03-01

    The ability of responsive hydrogels to undergo complex and reversible shape transformations in response to external stimuli such as temperature, magnetic/electric fields, pH levels, and light intensity has made them the material of choice for tissue scaffolding, drug delivery, bio-adhesive, bio-sensing, and micro-sorting applications. The complex micromechanics and kinetics of these responsive networks however, currently hinders developments in the aforementioned areas. In order to better understand the mechanical properties of these systems and how they change during the volume transition we have developed a dissipative particle dynamics (DPD) model for responsive polymer networks. We use this model to examine the impact of the Flory-Huggins parameter on the bulk and shear moduli. In this fashion we evaluate how environmental factors can affect the micromechanical properties of these networks. Support from NSF CAREER Award (DMR-1255288) is gratefully acknowledged.

  10. 核壳结构γ-Fe2O3/SiO2纳米复合材料的合成与分析%Synthesis and study of core-shell γ-Fe2O3/SiO2 nano composite particles

    Institute of Scientific and Technical Information of China (English)

    陈磊; 景宜

    2013-01-01

    采用溶胶-凝胶法,以正硅酸乙酯(TEOS)为硅源,通过TEOS的水解和缩合制备核壳结构γ-Fe2O3/SiO2的纳米复合材料.利用正交试验与单因素实验,研究了γ-Fe2O3、TEOS、氨水的用量、醇水比、反应时间、反应温度和搅拌速率对纳米复合材料合成的影响,并且对合成产品进行TEM、XRD、DSC、FTIR、粒径分析仪等表征分析.结果发现,对纳米复合材料合成效果影响最大的因素是TEOS的用量,最佳工艺方案为γ-Fe2O3用量为0.06 g、TEOS 0.5 mL、氨水2 mL、醇水体积比为5∶1、反应时间为8h、反应温度为30 ℃、搅拌速率为150r/min;以最佳合成方案合成的核壳结构γ-Fe2O3/SiO2与y-Fe2O3相比,平均粒径减少34.1%,颗粒尺寸分布较为均匀,具有较好的分散性.%Core-shell structural γ-Fe2O3/SiO2 nano composite particles were prepared via hydrolysis and condensation by sol-gel method using TEOS as silica precursor.Orthogonal design and single factor experiment were utilized to study effect of seven factors on the synthesis of nano composite particles,such as the dosage of γ-Fe2O3,Ammonia water,TEOS,the ratio of alcohol to water,reaction time,reaction temperature and stirring speed.The synthesized products were characterized by transmission electron microscope (TEM),X-ray diffraction (XRD),infrared spectrometer (FTIR),differential scanning calorimetry (DSC) and particle size analyzer.The results showed that the dosage of TEOS had the most influence on the synthesis of core-shell structural γ-Fe2O3/SiO2 nanocomposite particles.The optimum conditions were as follows:γ-Fe2O30.06 g,TEOS 0.5 mL,ammonia 2 mL,the ratio of alcohol to water 5 ∶ 1,reaction time 8 h,reaction temperature 30 ℃ and stirring speed 150 r/min.Compared core-shell structural γ-Fe2O3/SiO2 with γ-Fe2O3,the average particle size was reduced by 34.1% and particle size distribution was more uniform,with good dispersion.

  11. One-pot preparation of nanoporous Ag-Cu@Ag core-shell alloy with enhanced oxidative stability and robust antibacterial activity.

    Science.gov (United States)

    Liu, Xue; Du, Jing; Shao, Yang; Zhao, Shao-Fan; Yao, Ke-Fu

    2017-08-31

    Metallic core-shell nanostructures have inspired prominent research interests due to their better performances in catalytic, optical, electric, and magnetic applications as well as the less cost of noble metal than monometallic nanostructures, but limited by the complicated and expensive synthesis approaches. Development of one-pot and inexpensive method for metallic core-shell nanostructures' synthesis is therefore of great significance. A novel Cu network supported nanoporous Ag-Cu alloy with an Ag shell and an Ag-Cu core was successfully synthesized by one-pot chemical dealloying of Zr-Cu-Ag-Al-O amorphous/crystalline composite, which provides a new way to prepare metallic core-shell nanostructures by a simple method. The prepared nanoporous Ag-Cu@Ag core-shell alloy demonstrates excellent air-stability at room temperature and enhanced oxidative stability even compared with other reported Cu@Ag core-shell micro-particles. In addition, the nanoporous Ag-Cu@Ag core-shell alloy also possesses robust antibacterial activity against E. Coli DH5α. The simple and low-cost synthesis method as well as the excellent oxidative stability promises the nanoporous Ag-Cu@Ag core-shell alloy potentially wide applications.

  12. Synthesis and characterization of ZnSe:Fe/ZnSe core/shell nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Lin; Zhu, Jianguo, E-mail: yanglin_1028@163.com; Xiao, Dingquan

    2014-04-15

    High-quality ZnSe:Fe/ZnSe core/shell nanocrystals were prepared via a hydrothermal microemulsion technique. Effective surface passivation of monodisperse ZnSe:Fe nanocrystals is achieved by overcoating them with a ZnSe shell. The samples were characterized by means of XRD, EDX, TEM, PSD, XPS, photoluminescence, and Raman spectrum. The results show that the as-synthesized nanocrystals are cubic zinc blende ZnSe structure with high purity and the average particle size of ZnSe:Fe/ZnSe core/shell nanocrystal is larger than that of ZnSe:Fe core. The growth of ZnSe shell causes a small red shift in PL spectra, and then the PL quantum yield (QY) increases from 16% before shell growth to the maximum of 37% after increasing shell thickness up to 1.2 monolayers (ML). Moreover, both transverse optic (TO) and longitudinal optic (LO) phonon modes of ZnSe are shifted toward lower frequency as compared with the reported ones. -- Highlights: • ZnSe:Fe/ZnSe core/shell QDs were prepared by a hydrothermal microemulsion method. • ZnSe shell efficiently passivates surface defects by serving as a physical barrier. • The particle size and PL properties can be turned with the growth of ZnSe shell. • The luminescence efficiency and stability of QDs could be improved in this manner.

  13. Core/shell structured iron/iron-oxide nanoparticles as excellent MRI contrast enhancement agents

    Energy Technology Data Exchange (ETDEWEB)

    Khurshid, Hafsa, E-mail: hkhurshi@udel.edu [Department of Physics and Astronomy, University of Delaware, 217 sharp lab, Newark, DE 19716 (United States); Hadjipanayis, Costas G. [Department of Neurological Surgery, Emory University School of Medicine Atlanta, GA 30322 (United States); Chen, Hongwei [Department of Radiology, Emory University School of Medicine Atlanta, GA 30322 (United States); Li, Wanfeng [Department of Physics and Astronomy, University of Delaware, 217 sharp lab, Newark, DE 19716 (United States); Mao, Hui [Department of Radiology, Emory University School of Medicine Atlanta, GA 30322 (United States); Machaidze, Revaz [Department of Neurological Surgery, Emory University School of Medicine Atlanta, GA 30322 (United States); Tzitzios, Vasilis [Institute of Materials Science, “Demokritos” 15310 Athens (Greece); Hadjipanayis, George C. [Department of Physics and Astronomy, University of Delaware, 217 sharp lab, Newark, DE 19716 (United States)

    2013-04-15

    We report the use of metallic iron-based nanoparticles for magnetic resonance imaging (MRI) applications. Core/shell structured iron-based nanoparticles prepared by thermally decomposing organo-metallic compounds of iron at high temperature in the presence of hydrophobic surfactants were coated and stabilized in the aqueous solvent using the newly developed polysiloxane PEO–b–PγMPS (poly(ethylene oxide)–block–poly (γ methacryloxypropyl trimethyl oxysilane)) diblock copolymers. Particles are well suspended in water and retain their core–shell morphology after coating with the copolymer. In comparison to the conventionally used iron-oxide nanoparticles, core/shell structured iron/iron-oxide nanoparticles offer a much stronger T{sub 2} shortening effect than that of iron-oxide with the same core size due to their better magnetic properties. -- Highlights: ► Core/shell Fe/Fe-oxide nanoparticles were synthesized by organo-metallic synthesis. ► Water dispersibility was obtained by coating particles with a polysiloxane diblock copolymer. ► In comparison to Fe-oxide, Fe/Fe-oxide nanoparticles offer a much stronger T{sub 2} shortening effect.

  14. Microfluidic-Based Synthesis of Hydrogel Particles for Cell Microencapsulation and Cell-Based Drug Delivery

    Directory of Open Access Journals (Sweden)

    Jiandi Wan

    2012-04-01

    Full Text Available Encapsulation of cells in hydrogel particles has been demonstrated as an effective approach to deliver therapeutic agents. The properties of hydrogel particles, such as the chemical composition, size, porosity, and number of cells per particle, affect cellular functions and consequently play important roles for the cell-based drug delivery. Microfluidics has shown unparalleled advantages for the synthesis of polymer particles and been utilized to produce hydrogel particles with a well-defined size, shape and morphology. Most importantly, during the encapsulation process, microfluidics can control the number of cells per particle and the overall encapsulation efficiency. Therefore, microfluidics is becoming the powerful approach for cell microencapsulation and construction of cell-based drug delivery systems. In this article, I summarize and discuss microfluidic approaches that have been developed recently for the synthesis of hydrogel particles and encapsulation of cells. I will start by classifying different types of hydrogel material, including natural biopolymers and synthetic polymers that are used for cell encapsulation, and then focus on the current status and challenges of microfluidic-based approaches. Finally, applications of cell-containing hydrogel particles for cell-based drug delivery, particularly for cancer therapy, are discussed.

  15. Core-shell biopolymer nanoparticle delivery systems: synthesis and characterization of curcumin fortified zein-pectin nanoparticles.

    Science.gov (United States)

    Hu, Kun; Huang, Xiaoxia; Gao, Yongqing; Huang, Xulin; Xiao, Hang; McClements, David Julian

    2015-09-01

    Biopolymer core-shell nanoparticles were fabricated using a hydrophobic protein (zein) as the core and a hydrophilic polysaccharide (pectin) as the shell. Particles were prepared by coating cationic zein nanoparticles with anionic pectin molecules using electrostatic deposition (pH 4). The core-shell nanoparticles were fortified with curcumin (a hydrophobic bioactive molecule) at a high loading efficiency (>86%). The resulting nanoparticles were spherical, relatively small (diameter ≈ 250 nm), and had a narrow size distribution (polydispersity index ≈ 0.24). The encapsulated curcumin was in an amorphous (rather than crystalline form) as detected by differential scanning calorimetry (DSC). Fourier transform infrared (FTIR) and Raman spectra indicated that the encapsulated curcumin interacted with zein mainly through hydrophobic interactions. The nanoparticles were converted into a powdered form that had good water-dispersibility. These core-shell biopolymer nanoparticles could be useful for incorporating curcumin into functional foods and beverages, as well as dietary supplements and pharmaceutical products.

  16. Ultrasonic-assisted environmentally-friendly synergetic synthesis of nitroaromatic compounds in core/shell nanoreactor: A green protocol.

    Science.gov (United States)

    Maleki, Ali; Aghaie, Morteza

    2017-11-01

    An efficient sonochemical protocol for the nitration of aromatic compounds was described in the presence of a catalytic amount of sulfuric acid-functionalized silica-based core/shell magnetic nanocomposite at room temperature in an eco-friendly and recyclable media, deep eutectic solvent (DES), based on choline chloride and urea. The particle size, morphology and elemental analysis of the core/shell nanocatalyst were carried out by TEM, SEM, EDX and XRD analyses. The nanocatalyst and DES were easily recovered from the reaction mixture quantitatively and reused several times. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Investigation of plasmonic gold-silica core-shell nanoparticle stability in dye-sensitized solar cell applications.

    Science.gov (United States)

    Törngren, Björn; Akitsu, Kenta; Ylinen, Anne; Sandén, Simon; Jiang, Hua; Ruokolainen, Janne; Komatsu, Makoto; Hamamura, Tomofumi; Nakazaki, Jotaro; Kubo, Takaya; Segawa, Hiroshi; Österbacka, Ronald; Smått, Jan-Henrik

    2014-08-01

    Plasmonic core-shell Au@SiO2 nanoparticles have previously been shown to enhance the performance of dye-sensitized solar cells (DSSCs). A thin silica coating can provide a better stability during thermal processing and chemical stability to survive the corrosive electrolyte used in DSSCs. However, the thickness and completeness of the silica shell has proven crucial for the performance of the plasmonic particles and is largely controlled by the linking chemistry between the gold core and silica shell. We have evaluated four different silica coating procedures of ∼15 nm gold nanoparticles for usage in DSSCs. The chemical stability of these core-shell nanoparticles was assessed by dispersing the particles in iodide/triiodide electrolyte solution and the thermal stability by heating the particles up to 500°C. In order to maintain stable gold cores a complete silica coating was required, which was best obtained by using a mercaptosilane as a linker. In situ TEM characterization indicated that the heating process only had minor effects on the core-shell particles. The final step was to evaluate how the stable Au@SiO2 nanoparticles were influencing a real DSSC device when mixed into the TiO2 photoanode. The plasmon-incorporated DSSCs showed a ∼10% increase in efficiency compared to devices without core-shell nanoparticles. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Monte Carlo simulation of dynamic phase transitions and frequency dispersions of hysteresis curves in core/shell ferrimagnetic cubic nanoparticle

    Energy Technology Data Exchange (ETDEWEB)

    Vatansever, Erol, E-mail: erol.vatansever@deu.edu.tr

    2017-05-10

    By means of Monte Carlo simulation method with Metropolis algorithm, we elucidate the thermal and magnetic phase transition behaviors of a ferrimagnetic core/shell nanocubic system driven by a time dependent magnetic field. The particle core is composed of ferromagnetic spins, and it is surrounded by an antiferromagnetic shell. At the interface of the core/shell particle, we use antiferromagnetic spin–spin coupling. We simulate the nanoparticle using classical Heisenberg spins. After a detailed analysis, our Monte Carlo simulation results suggest that present system exhibits unusual and interesting magnetic behaviors. For example, at the relatively lower temperature regions, an increment in the amplitude of the external field destroys the antiferromagnetism in the shell part of the nanoparticle, leading to a ground state with ferromagnetic character. Moreover, particular attention has been dedicated to the hysteresis behaviors of the system. For the first time, we show that frequency dispersions can be categorized into three groups for a fixed temperature for finite core/shell systems, as in the case of the conventional bulk systems under the influence of an oscillating magnetic field. - Highlights: • Cubic core/shell nanoparticle is considered. • Monte-Carlo simulation with Metropolis algorithm is used. • The particle is subjected to time dependent oscillating magnetic field. • External field destroys the antiferromagnetism in the shell part of particle. • Frequency dispersions of hysteresis loop areas can be categorized into three groups.

  19. Electron energy spectrum in core-shell elliptic quantum wire

    Directory of Open Access Journals (Sweden)

    V.Holovatsky

    2007-01-01

    Full Text Available The electron energy spectrum in core-shell elliptic quantum wire and elliptic semiconductor nanotubes are investigated within the effective mass approximation. The solution of Schrodinger equation based on the Mathieu functions is obtained in elliptic coordinates. The dependencies of the electron size quantization spectrum on the size and shape of the core-shell nanowire and nanotube are calculated. It is shown that the ellipticity of a quantum wire leads to break of degeneration of quasiparticle energy spectrum. The dependences of the energy of odd and even electron states on the ratio between semiaxes are of a nonmonotonous character. The anticrosing effects are observed at the dependencies of electron energy spectrum on the transversal size of the core-shell nanowire.

  20. Electrospinning of ultrafine core/shell fibers for biomedical applications

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Because of the inherent appearance similar to the natural extracellular matrix,ultrafine fibrous membranes prepared via electrospinning exhibit widespread applications,especially in the biomedical area.Extensional modifications of coaxial and emulsion electrospinning have drawn much attention in preparation of core/shell fibers for applications as tissue engineering scaffolds and controlled delivery systems for bioactive substances.Due to incorporation of multi-components in the electrospun core/ shell fibers,the process of coaxial and emulsion electrospinning became more susceptible.The theories have not been fully understood.A series of investigations were carried out evaluating the systematic and processing parameters.This paper reviews advantages and potentials of electrospun core/shell fibers as well as factors influencing their formation on the basis of our research and new progress.

  1. Core-Shell and Segmented Polymer-Metal Composite Nanostructures

    Science.gov (United States)

    Lahav, Michal; Weiss, Emily; Xu, Qiaobing; Whitesides, George M.

    2008-01-01

    Composite nanostructures (~200 nm wide and several μm long) of metal and polyaniline (PANI) in two new variations of core-shell (PANI-Au) and segmented (Au-PANI and Ni-Au-PANI) architectures were fabricated electrochemically within anodized aluminum oxide (AAO) membranes. Control over the structure of these composites (including the length of the gold shells in the core-shell structures) was accomplished by adjusting the time and rate of electrodeposition, and the pH of the solution from which the materials were grown. Exposure of the core-shell structures to oxygen plasma removed the PANI and yielded aligned gold nanotubes. In the segmented structures, a self-assembled monolayer (SAM) of thioaniline nucleated the growth of PANI on top of metal nanorods, and acted as an adhesion layer between the metal and PANI components. PMID:16968046

  2. Electrochemical synthesis of CORE-shell magnetic nanowires

    KAUST Repository

    Ovejero, Jesús G.

    2015-04-16

    (Fe, Ni, CoFe) @ Au core-shell magnetic nanowires have been synthesized by optimized two-step potentiostatic electrodeposition inside self-assembled nanopores of anodic aluminium templates. The optimal electrochemical parameters (e.g., potential) have been firstly determined for the growth of continuous Au nanotubes at the inner wall of pores. Then, a magnetic core was synthesized inside the Au shells under suitable electrochemical conditions for a wide spectrum of single elements and alloy compositions (e.g., Fe, Ni and CoFe alloys). Novel opportunities offered by such nanowires are discussed particularly the magnetic behavior of (Fe, Ni, CoFe) @ Au core-shell nanowires was tested and compared with that of bare TM nanowires. These core-shell nanowires can be released from the template so, opening novel opportunities for biofunctionalization of individual nanowires.

  3. Core-Shell Diamond as a Support for Solid-Phase Extraction and High-Performance Liquid Chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Saini, Gaurav; Jensen, David S.; Wiest, Landon A.; Vail, Michael A.; Dadson, Andrew; Lee, Milton L.; Shutthanandan, V.; Linford, Matthew R.

    2010-06-01

    We report the formation of core-shell diamond particles for solid phase extraction (SPE) and high performance liquid chromatography (HPLC) made by layer-by-layer (LbL) deposition. Their synthesis begins with the amine functionalization of microdiamond by its immersion in an aqueous solution of a primary amine-containing polymer (polyallylamine (PAAm)). The amine-terminated microdiamond is then immersed in an aqueous suspension of nanodiamond, which leads to adsorption of the nanodiamond. Alternating (self-limiting) immersions in the solutions of the amine-containing polymer and the suspension of nanodiamond are continued until the desired number of nanodiamond layers is formed around the microdiamond. Finally, the core-shell particles are cross-linked with 1,2,5,6-diepoxycyclooctane or reacted with 1,2-epoxyoctadecane. Layer-by-layer deposition of PAAm and nanodiamond is also studied on planar Si/SiO2 surfaces, which were characterized by SEM, Rutherford backscattering spectrometry (RBS) and nuclear reaction analysis (NRA). Core-shell particles are characterized by diffuse reflectance infrared Fourier transform spectroscopy (DRIFT), environmental scanning electron microscopy (ESEM), and Brunauer Emmett Teller (BET) surface area and pore size measurements. Larger (ca. 50 μm) core-shell diamond particles have much higher surface areas, and analyte loading capacities in SPE than nonporous solid diamond particles. Smaller (ca. 3 μm), normal and reversed phase, core-shell diamond particles have been used for HPLC, with 36,300 plates per meter for mesitylene in a separation of benzene and alkyl benzenes on a C18 adsorbent, and 54,800 plates per meter for diazinon in a similar separation of two pesticides.

  4. Localized surface plasmon mediated energy transfer in the vicinity of core-shell nanoparticle

    Science.gov (United States)

    Shishodia, Manmohan Singh; Juneja, Soniya

    2016-05-01

    Multipole spectral expansion based theory of energy transfer interactions between a donor and an acceptor molecule in the vicinity of a core-shell (nanoshell or core@shell) based plasmonic nanostructure is developed. In view of the diverse applications and rich plasmonic features such as tuning capability of surface plasmon (SP) frequencies, greater sensitivity to the change of dielectric environment, controllable redirection of electromagnetic radiation, closed form expressions for Energy Transfer Rate Enhancement Factor (ETREF) near core-shell particle are reported. The dependence of ETREF on different parameters is established through fitting equations, perceived to be of key importance for developing appropriate designs. The theoretical approach developed in the present work is capable of treating higher order multipoles, which, in turn, are also shown to play a crucial role in the present context. Moreover, closed form expressions derived in the present work can directly be used as formula, e.g., for designing SP based biosensors and estimating energy exchange between proteins and excitonic interactions in quantum dots.

  5. Localized surface plasmon mediated energy transfer in the vicinity of core-shell nanoparticle

    Energy Technology Data Exchange (ETDEWEB)

    Shishodia, Manmohan Singh, E-mail: manmohan@gbu.ac.in; Juneja, Soniya [Department of Applied Physics, School of Vocational Studies and Applied Sciences, Gautam Buddha University, Greater Noida 201308 (India)

    2016-05-28

    Multipole spectral expansion based theory of energy transfer interactions between a donor and an acceptor molecule in the vicinity of a core-shell (nanoshell or core@shell) based plasmonic nanostructure is developed. In view of the diverse applications and rich plasmonic features such as tuning capability of surface plasmon (SP) frequencies, greater sensitivity to the change of dielectric environment, controllable redirection of electromagnetic radiation, closed form expressions for Energy Transfer Rate Enhancement Factor (ETREF) near core-shell particle are reported. The dependence of ETREF on different parameters is established through fitting equations, perceived to be of key importance for developing appropriate designs. The theoretical approach developed in the present work is capable of treating higher order multipoles, which, in turn, are also shown to play a crucial role in the present context. Moreover, closed form expressions derived in the present work can directly be used as formula, e.g., for designing SP based biosensors and estimating energy exchange between proteins and excitonic interactions in quantum dots.

  6. Synthesis and Microwave Absorption Properties of Core-Shell Structured Co3O4-PANI Nanocomposites

    Directory of Open Access Journals (Sweden)

    Hongyan Xu

    2015-01-01

    Full Text Available The core-shell structured Co3O4-PANI nanocomposites have been successfully prepared using an in situ polymerization method, while the core Co3O4 nanoparticles were synthesized by carbon-assisted method using degreasing cotton as a template. The obtained samples were characterized by XRD, TEM, FTIR, and XPS. The results indicated that the amorphous PANI was well covered on the surface of the spinel Co3O4 and the Co3O4-PANI with core-shell structure was formed with particle size of about 100 nm. The interfacial interaction of the core-shell nanocomposite greatly enhances the microwave absorption properties. The maximum reflection loss of Co3O4-PANI is up to −45.8 dB at 11.7 GHz with a thickness of 2.5 mm and the adsorption bandwidth with the reflection loss below −10 dB reaches 14.1 GHz ranging from 3.9 to 18 GHz when the thickness is between 2 and 5.5 mm. Therefore, the facilely synthesized and low-cost Co3O4-PANI nanocomposite with superior microwave absorption properties can be a promising nanomaterial for high efficient microwave absorption.

  7. MAGNETIC CORE SHELL STRUCTURES: from 0D to 1D assembling.

    Science.gov (United States)

    Ficai, Denisa; Ficai, Anton; Dinu, Elena; Oprea, Ovidiu; Sonmez, Maria; Keler, Memduh Kagan; Sahin, Yesim Muge; Ekren, Nazmi; Inan, Ahmet Talat; Daglilar, Sibel; Gunduz, Oguzhan

    2015-01-01

    Material research and development studies are focused on different techniques of bringing out nanomaterials with desired characteristics and properties. From the point of view of materials development, nowadays scientists are strongly focused on obtaining materials with predefined characteristics and properties. The morphology control seems to be a determinant factor and increasing attention is devoted to this aspect. At this moment it is possible to engineer the material's features by using different methods and materials combination for both medical and industrial applications. In the applications of chemistry and synthesis, biology, mechanics, optics solar cells and microelectronics tailoring the adjustable parameters of stoichiometry, chemical structure, shape and segregation are evaluated and opens new fields. Because of the magnetic features of nanoparticles and durable particle size, less than 100 nm, this study is aiming to describe their uses in practical applications. That's why the whole hydrodynamic magnetic core shell topic will be reviewed on this paper. Additionally, the properties acting in general sight in solid-state physics are utilized for material selection and for defining issue connecting the core, shell structure and their producing properties. Here, in the study of core/shell nanoparticle various physical and chemical synthesis routes and the effect of electrospun method are briefly discussed. Starting from a real void of the scientific literature, the existent data related to the 1D magnetic electrospun materials are reviewed. The perspectives in the medical, environmental or energetic sector is great and bring some real advantages related to the 0D core@shell structures because both mechanical and biological properties are dependent on the morphology of the materials.

  8. Fabrication of Magnetite/Silica/Titania Core-Shell Nanoparticles

    Directory of Open Access Journals (Sweden)

    Suh Cem Pang

    2012-01-01

    Full Text Available Fe3O4/SiO2/TiO2 core-shell nanoparticles were synthesized via a sol-gel method with the aid of sonication. Fe3O4 nanoparticles were being encapsulated within discrete silica nanospheres, and a layer of TiO2 shell was then coated directly onto each silica nanosphere. As-synthesized Fe3O4/SiO2/TiO2 core-shell nanoparticles showed enhanced photocatalytic properties as evidenced by the enhanced photodegradation of methylene blue under UV light irradiation.

  9. Transfer of pharmacopoeial liquid chromatography reversedphase methods for determination of related compounds in diclofenac sodium and metamizole sodium from conventional to core-shell column

    Directory of Open Access Journals (Sweden)

    Katerina Brezovska

    2015-04-01

    Full Text Available Core-shell silica particles were developed as a new material for chromatographic stationary phases in order to provide fast and high efficiency separations of small and large molecules and complex samples, at pressures compatible with conventional HPLC equipment. The aim of our work was to show the applicability of the HPLC columns based on a core-shell technology for determination of related substances in diclofenac sodium and in metamizole sodium using the methods described in the corresponding monographs of the European pharmacopoeia. The obtained results have shown that the proposed methods can be successfully transferred on core shell column, with suitable adjustment of injection volume and flow rate. The advantage of using core-shell column is fast and highly efficient separation on conventional HPLC equipment with increased sensitivity of the method and high throughput of the analysis, providing enhanced lab productivity and reduced costs.

  10. Metal enhanced fluorescence in rare earth doped plasmonic core-shell nanoparticles.

    Science.gov (United States)

    Derom, S; Berthelot, A; Pillonnet, A; Benamara, O; Jurdyc, A M; Girard, C; Colas des Francs, G

    2013-12-13

    We theoretically and numerically investigate metal enhanced fluorescence of plasmonic core-shell nanoparticles doped with rare earth (RE) ions. Particle shape and size are engineered to maximize the average enhancement factor (AEF) of the overall doped shell. We show that the highest enhancement (11 in the visible and 7 in the near-infrared) is achieved by tuning either the dipolar or the quadrupolar particle resonance to the rare earth ion's excitation wavelength. Additionally, the calculated AEFs are compared to experimental data reported in the literature, obtained in similar conditions (plasmon mediated enhancement) or when a metal-RE energy transfer mechanism is involved.

  11. Core-shell fuel cell electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Adzic, Radoslav; Bliznakov, Stoyan; Vukmirovic, Miomir

    2017-07-25

    Embodiments of the disclosure relate to electrocatalysts. The electrocatalyst may include at least one gas-diffusion layer having a first side and a second side, and particle cores adhered to at least one of the first and second sides of the at least one gas-diffusion layer. The particle cores includes surfaces adhered to the at least one of the first and second sides of the at least one gas-diffusion layer and surfaces not in contact with the at least one gas-diffusion layer. Furthermore, a thin layer of catalytically atoms may be adhered to the surfaces of the particle cores not in contact with the at least one gas-diffusion layer.

  12. Material with core-shell structure

    Science.gov (United States)

    Luhrs, Claudia; Richard, Monique N.; Dehne, Aaron; Phillips, Jonathan; Stamm, Kimber L.; Fanson, Paul T.

    2011-11-15

    Disclosed is a material having a composite particle, the composite particle including an outer shell and a core. The core is made from a lithium alloying material and the outer shell has an inner volume that is greater in size than the core of the lithium alloying material. In some instances, the outer mean diameter of the outer shell is less than 500 nanometers and the core occupies between 5 and 99% of the inner volume. In addition, the outer shell can have an average wall thickness of less than 100 nanometers.

  13. Preparation and Properties of PTFE-PMMA Core-Shell Nanoparticles and Nanocomposites

    Directory of Open Access Journals (Sweden)

    Diego Antonioli

    2012-01-01

    Full Text Available The preparation of polytetrafluoroethylene-poly(methyl methacrylate (PTFE-PMMA core-shell particles was described, featuring controlled size and narrow size distribution over a wide compositional range, through a seeded emulsion polymerization starting from a PTFE seed of 26 nanometers. Over the entire MMA/PTFE range, the particle size increases as the MMA/PTFE ratio increases. A very precise control over the particle size can be exerted by properly adjusting the ratio between the monomer and the PTFE seed. Particles in the 80–240 nm range can be prepared with uniformity indexes suited to build 2D and 3D colloidal crystals. These core-shell particles were employed to prepare nanocomposites with different compositions, through an annealing procedure at a temperature higher than the glass transition temperature of the shell forming polymer. A perfect dispersion of the PTFE particles within the PMMA matrix was obtained and optically transparent nanocomposites were prepared containing a very high PTFE amount.

  14. Core-shell polymer nanoparticles for prevention of GSH drug detoxification and cisplatin delivery to breast cancer cells.

    Science.gov (United States)

    Surnar, Bapurao; Sharma, Kavita; Jayakannan, Manickam

    2015-11-14

    Platinum drug delivery against the detoxification of cytoplasmic thiols is urgently required for achieving efficacy in breast cancer treatment that is over expressed by glutathione (GSH, thiol-oligopeptide). GSH-resistant polymer-cisplatin core-shell nanoparticles were custom designed based on biodegradable carboxylic functional polycaprolactone (PCL)-block-poly(ethylene glycol) diblock copolymers. The core of the nanoparticle was fixed as 100 carboxylic units and the shell part was varied using various molecular weight poly(ethylene glycol) monomethyl ethers (MW of PEGs = 100-5000 g mol(-1)) as initiator in the ring-opening polymerization. The complexation of cisplatin aquo species with the diblocks produced core-shell nanoparticles of 75 nm core with precise size control the particles up to 190 nm. The core-shell nanoparticles were found to be stable in saline solution and PBS and they exhibited enhanced stability with increase in the PEG shell thickness at the periphery. The hydrophobic PCL layer on the periphery of the cisplatin core behaved as a protecting layer against the cytoplasmic thiol residues (GSH and cysteine) and exhibited drug detoxification. In vitro drug-release studies revealed that the core-shell nanoparticles were ruptured upon exposure to lysosomal enzymes like esterase at the intracellular compartments. Cytotoxicity studies were performed both in normal wild-type mouse embryonic fibroblast cells (Wt-MEFs), and breast cancer (MCF-7) and cervical cancer (HeLa) cell lines. Free cisplatin and polymer drug core-shell nanoparticles showed similar cytotoxicity effects in the HeLa cells. In MCF-7 cells, the free cisplatin drug exhibited 50% cell death whereas complete cell death (100%) was accomplished by the polymer-cisplatin core-shell nanoparticles. Confocal microscopic images confirmed that the core-shell nanoparticles were taken up by the MCF-7 and HeLa cells and they were accumulated both at the cytoplasm as well at peri-nuclear environments

  15. Multifunctional magnetic and fluorescent core-shell nanoparticles for bioimaging.

    Science.gov (United States)

    Lu, Yanjiao; He, Bicheng; Shen, Jie; Li, Jie; Yang, Wantai; Yin, Meizhen

    2015-02-07

    Novel magnetic and fluorescent core-shell nanoparticles have been fabricated, which exhibit superparamagnetic behavior and emit strong near-infrared fluorescence. The nanoparticles are highly biocompatible and can be internalized into cells with nucleic accumulation via strong interaction with nucleic acids, implying potential applications in the biomedical field.

  16. Core-shell iron-iron oxide nanoparticles

    DEFF Research Database (Denmark)

    Kuhn, Luise Theil; Bojesen, A.; Timmermann, L.

    2004-01-01

    We present studies of the magnetic properties of core-shell iron-iron oxide nanoparticles. By combining Mossbauer and X-ray absorption spectroscopy we have been able to measure the change from a Fe3O4-like to a gamma-Fe2O3-like composition from the interface to the surface. Furthermore, we have...

  17. One pot synthesis of Pb S/Cu{sub 2}S core-shell nanoparticles and their optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Serrano, T.; Gomez, I., E-mail: maria.gomez@uanl.edu.mx [Universidad Autonoma de Nuevo Leon, Facultad de Ciencias Quimicas, Laboratorio de Materiales, Pedro de Alba, Ciudad Universitaria, San Nicolas de los Garza, Nuevo Leon (Mexico)

    2014-07-01

    The synthesis of Pb S/Cu{sub 2}S core-shell nanoparticles with emission on the visible range and with improved luminescence properties was carried out by the colloidal solution-phase growth method by using simple stabilizers such as trisodium citrate and 3-mercaptopropionic acid. The core shell arrangement for particles with different crystalline structure was achieved, in addition this is the first report related to the synthesis Pb S/C{sub 2}S core-shell system. The data obtained from absorption spectra, Pl spectra, and HRTEM image provided direct proof of the formation of Pb S core with size around 11 nm and Cu{sub 2}S shell of 5 nm thickness. According to the UV-vis absorption and Pl spectrum the optical characteristics observed in the synthesized material correspond to a Pb S/Cu{sub 2}S system that has a higher confinement effect than the pure Pb S nanoparticles. The Q Y was improved in 15% from Pb S/C{sub 2}S nanoparticles. The estimated band (Homo-Lumo) alignment determined by C V measurements corresponds to a type-I core shell arrangement. The synthesized material was studied with different techniques. The size and dispersion of the particles were determined by ultraviolet-visible (UV-Vis), photoluminescence and quantum yield, Dynamic Light Scattering method and X-ray diffraction with copper radiation (λ = 0.15418 nm). (Author)

  18. Pt@Ag and Pd@Ag core/shell nanoparticles for catalytic degradation of Congo red in aqueous solution.

    Science.gov (United States)

    Salem, Mohamed A; Bakr, Eman A; El-Attar, Heba G

    2018-01-05

    Platinum/silver (Pt@Ag) and palladium/silver (Pd@Ag) core/shell NPs have been synthesized in two steps reaction using the citrate method. The progress of nanoparticle formation was followed by the UV/Vis spectroscopy. Transmission electron microscopy revealed spherical shaped core/shell nanoparticles with average particle diameter 32.17nm for Pt@Ag and 8.8nm for Pd@Ag. The core/shell NPs were further characterized by FT-IR and XRD. Reductive degradation of the Congo red dye was chosen to demonstrate the excellent catalytic activity of these core/shell nanostructures. The nanocatalysts act as electron mediators for the transfer of electrons from the reducing agent (NaBH4) to the dye molecules. Effect of reaction parameters such as nanocatalyst dose, dye and NaBH4 concentrations on the dye degradation was investigated. A comparison between the catalytic activities of both nanocatalysts was made to realize which of them the best in catalytic performance. Pd@Ag was the higher in catalytic activity over Pt@Ag. Such greater activity is originated from the smaller particle size and larger surface area. Pd@Ag nanocatalyst was catalytically stable through four subsequent reaction runs under the utilized reaction conditions. These findings can thus be considered as possible economical alternative for environmental safety against water pollution by dyes. Copyright © 2017. Published by Elsevier B.V.

  19. Synthesis of fly ash based core-shell composites for use as functional pigment in paints

    Science.gov (United States)

    Sharma, Richa; Tiwari, Sangeeta

    2016-04-01

    Fly ash is a combustion residue, mainly composed of silica, alumina and iron oxides. It is produced by the power industries in very large amounts and usually disposed in landfills, which have represented an environmental problem in recent years1. The need to generate a market for fly ash consumption is the main reason why alternative applications have been studied. It has been applied as an additive in construction materials like cement and pavements2. The present work describes the synthesis of Flyash-Titania core-shell particles by precipitation technique using Titanium tetra isopropoxide (TTIP) which can be used for variety of applications such as NIR reflecting materials for cool coatings, Photocatalysis etc. In this work, Fly ash is used in core and Nano -TiO2 is coated as shell on it. Surfactants are used to improve the adhesion of Nano Titania shell on fly ash core. Effect on adhesion of TiO2 on Fly ash is studied by using different types of surfactant. The preparation of core shells was carried out in absence of surfactant as well as using anionic and non-ionic surfactants. The percentage of surfactant was varied to study the effect of amount of surfactant on the uniformity and size of particles in the shell using Kubelka-Munk transformed reflectance spectra. The morphology of core shell structures was studied using SEM technique. Use of anionic surfactant results in more uniform coating with reduced particle size of the shell material. The composite particles prepared by using anionic surfactant are having good pigment properties and also shows good reflectance in Near Infrared region and hence can be used as a pigment in cool coatings.

  20. Formation of hybrid films from perylenediimide-labeled core-shell silica-polymer nanoparticles.

    Science.gov (United States)

    Ribeiro, Tânia; Fedorov, Aleksander; Baleizão, Carlos; Farinha, José Paulo S

    2013-07-01

    We prepared water-dispersible core-shell nanoparticles with a perylenediimide-labeled silica core and a poly(butyl methacrylate) shell, for application in photoactive high performance coatings. Films cast from water dispersions of the core-shell nanoparticles are flexible and transparent, featuring homogeneously dispersed silica nanoparticles, and exhibiting fluorescence under appropriate excitation. We characterized the film formation process using nanoparticles where the polymer shell has been labeled with either a non-fluorescent N-benzophenone derivative (NBen) or a fluorescent phenanthrene derivative (PheBMA). We used Förster resonance energy transfer (FRET) from PheBMA to NBen to follow the interparticle interdiffusion of the polymer anchored to the silica surface that occurs after the dried dispersions are annealing above the glass transition temperature of the polymer. By calculating the evolution of the FRET quantum efficiency with annealing time, we could estimate the approximate fraction of mixing (fm) between polymer from neighbor particles, and from this, the apparent diffusion coefficients (Dapp) for this process. For long annealing times, the limiting values of fm are slightly lower than for films of pure PBMA particles at similar temperatures (go up to 80% of total possible mixing). The corresponding diffusion coefficients are also very similar to those reported for films of pure PBMA, indicating that the fact that the polymer chains are anchored to the silica particles does not significantly hinder the diffusion process during the initial part of the mixing process. From the temperature dependence of the diffusion coefficients, we found an effective activation energy for diffusion of Ea=38 kcal/mol, very similar to the value obtained for particles of the same polymer without the silica core. With these results, we show that, although the polymer is grafted to the silica surface, polymer interdiffusion during film formation is not significantly

  1. Water oxidation catalysis by birnessite@iron oxide core-shell nanocomposites.

    Science.gov (United States)

    Elmaci, Gökhan; Frey, Carolin E; Kurz, Philipp; Zümreoğlu-Karan, Birgül

    2015-03-16

    In this work, magnetic nanocomposite particles were prepared for water oxidation reactions. The studied catalysts consist of maghemite (γ-Fe2O3), magnetite (Fe3O4), and manganese ferrite (MnFe2O4) nanoparticles as cores coated in situ with birnessite-type manganese oxide shells and were characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy, thermal, chemical, and surface analyses, and magnetic measurements. The particles were found to be of nearly spherical core-shell architectures with average diameter of 150 nm. Water oxidation catalysis was examined using Ce(4+) as the sacrificial oxidant. All core-shell particles were found to be active water oxidation catalysts. However, the activity was found to depend on a variety of factors like the type of iron oxide core, the structure and composition of the shell, the coating characteristics, and the surface properties. Catalysts containing magnetite and manganese ferrite as core materials displayed higher catalytic activities per manganese ion (2650 or 3150 mmolO2 molMn(-1) h(-1)) or per mass than nanoiron oxides (no activity) or birnessite alone (1850 mmolO2 molMn(-1) h(-1)). This indicates synergistic effects between the MnOx shell and the FeOx core of the composites and proves the potential of the presented core-shell approach for further catalyst optimization. Additionally, the FeOx cores of the particles allow magnetic recovery of the catalyst and might also be beneficial for applications in water-oxidizing anodes because the incorporation of iron might enhance the overall conductivity of the material.

  2. Soft matter strategies for controlling food texture: formation of hydrogel particles by biopolymer complex coacervation

    Science.gov (United States)

    Wu, Bi-cheng; Degner, Brian; McClements, David Julian

    2014-11-01

    Soft matter physics principles can be used to address important problems in the food industry. Starch granules are widely used in foods to create desirable textural attributes, but high levels of digestible starch may pose a risk of diabetes. Consequently, there is a need to find healthier replacements for starch granules. The objective of this research was to create hydrogel particles from protein and dietary fiber with similar dimensions and functional attributes as starch granules. Hydrogel particles were formed by mixing gelatin (0.5 wt%) with pectin (0 to 0.2 wt%) at pH values above the isoelectric point of the gelatin (pH 9, 30 °C). When the pH was adjusted to pH 5, the biopolymer mixture spontaneously formed micron-sized particles due to electrostatic attraction of cationic gelatin with anionic pectin through complex coacervation. Differential interference contrast (DIC) microscopy showed that the hydrogel particles were translucent and spheroid, and that their dimensions were determined by pectin concentration. At 0.01 wt% pectin, hydrogel particles with similar dimensions to swollen starch granules (D3,2 ≈ 23 µm) were formed. The resulting hydrogel suspensions had similar appearances to starch pastes and could be made to have similar textural attributes (yield stress and shear viscosity) by adjusting the effective hydrogel particle concentration. These hydrogel particles may therefore be used to improve the texture of reduced-calorie foods and thereby help tackle obesity and diabetes.

  3. One-pot synthesis and characterization of rhodamine derivative-loaded magnetic core-shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Jin, E-mail: jzhang@eng.uwo.ca; Li Jiaxin [University of Western Ontario, Department of Chemical and Biochemical Engineering (Canada); Razavi, Fereidoon S. [Brock University, Department of Physics (Canada); Mumin, Abdul Md. [University of Western Ontario, Department of Chemical and Biochemical Engineering (Canada)

    2011-05-15

    A new method to produce elaborate nanostructure with magnetic and fluorescent properties in one entity is reported in this article. Magnetite (Fe{sub 3}O{sub 4}) coated with fluorescent silica (SiO{sub 2}) shell was produced through the one-pot reaction, in which one reactor was utilized to realize the synthesis of superparamagnetic core of Fe{sub 3}O{sub 4}, the formation of SiO{sub 2} coating through the condensation and polymerization of tetraethylorthosilicate (TEOS), and the encapsulation of tetramethyl rhodamine isothiocyanate-dextran (TRITC-dextran) within silica shell. Transmission electron microscopy (TEM), energy dispersive X-ray (EDX) analysis, and X-ray diffraction (XRD) were carried out to investigate the core-shell structure. The magnetic core of the core-shell nanoparticles is 60 {+-} 10 nm in diameter. The thickness of the fluorescent SiO{sub 2} shell is estimated at 15 {+-} 5 nm. In addition, the fluorescent signal of the SiO{sub 2} shell has been detected by the laser confocal scanning microscopy (LCSM) with emission wavelength ({lambda}{sub em}) at 566 nm. In addition, the magnetic properties of TRITC-dextran loaded silica-coating iron oxide nanoparticles (Fe{sub 3}O{sub 4}-SiO{sub 2} NPs) were studied. The hysteresis loop of the core-shell NPs measured at room temperature shows that the saturation magnetization (M{sub s}) is not reached even at the field of 70 kOe (7T). Meanwhile, the very low coercivity (H{sub c}) and remanent magnetization (M{sub r}) are 0.375 kOe and 6.6 emu/g, respectively, at room temperature. It indicates that the core-shell particles have the superparamagnetic properties. The measured blocking temperature (T{sub B}) of the TRITC-dextran loaded Fe{sub 3}O{sub 4}-SiO{sub 2} NPs is about 122.5 K. It is expected that the multifunctional core-shell nanoparticles can be used in bio-imaging.

  4. Rain water transport and storage in a model sandy soil with hydrogel particle additives.

    Science.gov (United States)

    Wei, Y; Durian, D J

    2014-10-01

    We study rain water infiltration and drainage in a dry model sandy soil with superabsorbent hydrogel particle additives by measuring the mass of retained water for non-ponding rainfall using a self-built 3D laboratory set-up. In the pure model sandy soil, the retained water curve measurements indicate that instead of a stable horizontal wetting front that grows downward uniformly, a narrow fingered flow forms under the top layer of water-saturated soil. This rain water channelization phenomenon not only further reduces the available rain water in the plant root zone, but also affects the efficiency of soil additives, such as superabsorbent hydrogel particles. Our studies show that the shape of the retained water curve for a soil packing with hydrogel particle additives strongly depends on the location and the concentration of the hydrogel particles in the model sandy soil. By carefully choosing the particle size and distribution methods, we may use the swollen hydrogel particles to modify the soil pore structure, to clog or extend the water channels in sandy soils, or to build water reservoirs in the plant root zone.

  5. Tegafur loading and release properties of magnetite/poly(alkylcyanoacrylate) (core/shell) nanoparticles.

    Science.gov (United States)

    Arias, José L; Ruiz, M Adolfina; Gallardo, Visitación; Delgado, Angel V

    2008-01-01

    In this work, we describe a reproducible method to prepare polymeric colloidal nanospheres of poly(ethyl-2-cyanoacrylate), poly(butylcyanoacrylate), poly(hexylcyanoacrylate) and poly(octylcyanoacrylate) with a magnetite core, and loaded with the anticancer drug Tegafur. The method is based on the emulsion polymerization procedure, often used in the synthesis of poly(alkylcyanoacrylate) nanospheres for drug delivery. The heterogeneous structure of the particles confer them both magnetic-field responsiveness and potential applicability as drug carriers. In order to investigate to what extent is this target achieved, we compare the surface electrical properties of the core/shell particles with those of both the nucleus and the coating material. The hysteresis cycles of both magnetite and composite particles demonstrate that the polymer shell reduces the magnetic responsiveness of the particles, but keeps their soft ferrimagnetic character unchanged. A detailed investigation of the capabilities of the core/shell particles to load this drug is shown. We found, by means of spectrophotometric and electrophoretic measurements, the existence of two drug loading mechanisms: absorption or entrapment in the polymeric network, and surface adsorption. The type of polymer, the pH and the drug concentration are the main factors determining the drug incorporation to the nanoparticles. The release studies showed a biphasic profile affected by the type of polymeric shell, the type of drug incorporation and the amount of drug loaded.

  6. Rational design of polymeric core shell ratiometric oxygen-sensing nanostructures.

    Science.gov (United States)

    Byrne, Aisling; Jacobs, Jaco; Burke, Christopher S; Martin, Aaron; Heise, Andreas; Keyes, Tia E

    2017-09-08

    A new approach for the fabrication of luminescent ratiometric sensing nanosensors is described using core-shell nanoparticles in which the probe and reference are spatially separated into the shell and core of the nanostructure respectively. The isolation of the reference in the core of the particle ensures a stable emission reference signal unaffected by the external environment. The core shell structure was prepared by engineering structurally well-defined Ru-conjugated block copolymers which acted as emulsifiers in the miniemulsion polymerisation of BODIPY loaded styrene nanoparticles. The resulting particles are highly stable and show excellent size monodispersity. The nanosensors exhibit dual emission under a single excitation wavelength with a reversible and quantitative ratiometric response to the O2 content in aqueous media. In the presence of a low concentration of CTAB, the particles cross the cell membrane and the particles show negligible cytotoxicity. Such an approach to sensor nanoparticles should be of value across a range of applications where a stable ratiometric signal in diverse environments is required.

  7. Surface-state-mediated charge-transfer dynamics in CdTe/CdSe core-shell quantum dots.

    Science.gov (United States)

    Rawalekar, Sachin; Kaniyankandy, Sreejith; Verma, Sandeep; Ghosh, Hirendra N

    2011-06-20

    Herein, we report the synthesis of aqueous CdTe/CdSe type-II core-shell quantum dots (QDs) in which 3-mercaptopropionic acid is used as the capping agent. The CdTe QDs and CdTe/CdSe core-shell QDs are characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM), steady-state absorption, and emission spectroscopy. A red shift in the steady-state absorption and emission bands is observed with increasing CdSe shell thickness over CdTe QDs. The XRD pattern indicates that the peaks are shifted to higher angles after growth of the CdSe shell on the CdTe QDs. HR-TEM images of both CdTe and CdTe/CdSe QDs indicate that the particles are spherical, with a good shape homogeneity, and that the particle size increases by about 2 nm after shell formation. In the time-resolved emission studies, we observe that the average emission lifetime (τ(av)) increases to 23.5 ns for CdTe/CdSe (for the thickest shell) as compared to CdTe QDs (τ(av) =12 ns). The twofold increment in the average emission lifetime indicates an efficient charge separation in type-II CdTe/CdSe core-shell QDs. Transient absorption studies suggest that both the carrier cooling and the charge-transfer dynamics are affected by the presence of traps in the CdTe QDs and CdTe/CdSe core-shell QDs. Carrier quenching experiments indicate that hole traps strongly affect the carrier cooling dynamics in CdTe/CdSe core-shell QDs.

  8. Improved microbial growth inhibition activity of bio-surfactant induced Ag–TiO{sub 2} core shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Nithyadevi, D. [Department of Nanoscience and Technology, Bharathiar University, Coimbatore 641 046 (India); Kumar, P. Suresh [Thin Film and Nanomaterials Laboratory, Department of Physics, Bharathiar University, Coimbatore 641 046 (India); Mangalaraj, D., E-mail: dmraj800@yahoo.com [Department of Nanoscience and Technology, Bharathiar University, Coimbatore 641 046 (India); Ponpandian, N.; Viswanathan, C. [Department of Nanoscience and Technology, Bharathiar University, Coimbatore 641 046 (India); Meena, P. [Department of Physics, PSGR Krishnammal college for women, Coimbatore 641 004 (India)

    2015-02-01

    Graphical abstract: - Highlights: • TiO{sub 2} nanoparticles were synthesized by hydrolysis process and Ag nanoparticles were prepared by using hydrazine reduction method. • Ag–TiO{sub 2} core shell nanoparticles were synthesized by reverse micelle method. • Coatings of TiO{sub 2} shell leads to decrease the usage of silver particles and also it reduces the release of silver ions from the matrix. • Optimum ratio of TiO{sub 2} particles: Ag atoms are needed for better antibacterial activity. • Sodium alginate (Bio-copolymer) induced core shell nanoparticles results 100% cell growth inhibition toward Staphylococcus aureus. - Abstract: Surfactant induced silver–titanium dioxide core shell nanoparticles within the size range of 10–50 nm were applied in the antibacterial agent to inhibit the growth of bacterial cells. The single crystalline silver was located in the core part of the composite powder and the titanium dioxide components were uniformly distributed in the shell part. HRTEM and XRD results indicated that silver was completely covered by titanium dioxide and its crystal structure was not affected after being coated by titanium dioxide. The effect of silver–titanium dioxide nanoparticles in the inhibition of bacterial cell growth was studied by means of disk diffusion method. The inhibition zone results reveal that sodium alginate induced silver–titanium dioxide nanoparticles exhibit 100% more antibacterial activity than that with cetyltrimethylbromide or without surfactant. UV–vis spectroscopic analysis showed a large concentration of silver was rapidly released into phosphate buffer solution (PBS) within a period of 1 day, with a much smaller concentration being released after this 1-day period. It was concluded that sodium alginate induced silver–titanium dioxide core shell nanoparticles could enhance long term cell growth inhibition in comparison with cetyltrimethylbromide or without surfactant. The surfactant mediated core shell

  9. Fabrication of ammonium perchlorate/copper-chromium oxides core-shell nanocomposites for catalytic thermal decomposition of ammonium perchlorate

    Energy Technology Data Exchange (ETDEWEB)

    Eslami, Abbas, E-mail: eslami@umz.ac.ir [Department of Inorganic Chemistry, Faculty of Chemistry, University of Mazandaran, P.O.Box 47416-95447, Babolsar (Iran, Islamic Republic of); Juibari, Nafise Modanlou [Department of Inorganic Chemistry, Faculty of Chemistry, University of Mazandaran, P.O.Box 47416-95447, Babolsar (Iran, Islamic Republic of); Hosseini, Seyed Ghorban [Department of Chemistry, Malek Ashtar University of Technology, P.O. Box 16765-3454, Tehran (Iran, Islamic Republic of)

    2016-09-15

    The ammonium perchlorate/Cu(II)-Cr(III)-oxides(AP/Cu-Cr-O) core-shell nanocomposites were in-situ prepared by deposition of copper and chromium oxides on suspended ammonium perchlorate particles in ethyl acetate as solvent. The results of differential scanning calorimetery (DSC) and thermal gravimetric analysis (TGA) experiments showed that the nanocomposites have excellent catalytic effect on the thermal decomposition of AP, so that the released heat increases up to about 3-fold over initial values, changing from 450 J/g for pure AP to 1510 J/g for most appropriate mixture. For better comparison, single metal oxide/AP core-shell nanocomposite have also been prepared and the results showed that they have less catalytic effect respect to mixed metal oxides system. Scanning electron microscopy (SEM) results revealed homogenous deposition of nanoparticles on the surface of AP and fabrication of core-shell structures. The kinetic parameters of thermal decomposition of both pure AP and AP/Cu-Cr-O samples have been calculated by Kissinger method and the results showed that the values of pre-exponential factor and activation energy are higher for AP/Cu-Cr-O nanocomposite. The better catalytic effect of Cu-Cr-O nanocomposites is probably attributed to the synergistic effect between Cu{sup 2+} and Cr{sup 3+} in the nanocomposites, smaller particle size and more crystal defect. - Highlights: • The Cu-Cr-O nanoparticles were synthesized by chemical liquid deposition method. • Then, the AP/Cu-Cr-O core-shell nanocomposites were prepared. • The core-shell samples showed high catalytic activity for AP decomposition. • Thermal decomposition of samples occurs at lower temperature range.

  10. Comparison of electrorheological performance between urea-coated and graphene oxide-wrapped core-shell structured amorphous TiO2 nanoparticles

    Science.gov (United States)

    Dong, Xufeng; Huo, Shuang; Qi, Min

    2016-01-01

    Polar molecules and graphene oxide (GO) have been used as the shell materials to prepare core-shell structured particles with enhanced electrorheological (ER) properties. Nevertheless, few studies compared the ER performance and stability of the suspensions with the two kinds of shell. In this study, urea and GO are used as the shell materials to prepare TiO2/urea and TiO2/GO core-shell particles-based ER fluids, respectively. Particle characterization results indicate the two kinds of core-shell structured particles present little change in size, morphology and crystal structure compared with the bare amorphous TiO2. Some polar groups are distributed on the surface of the two kinds of core-shell structured particles, which is responsible for their improved ER performance with respect to the bare TiO2 particles. The TiO2/GO particles-based ER fluid presents higher yield stress, lower leakage current density, better sedimentation stability but lower ER efficiency than the TiO2/urea particles-based sample. The larger surface area, stronger connection with the bare TiO2 particles, and larger number of polar groups of the GO-coating is the possible reason for the different properties of TiO2/GO particles-based ER fluid compared with the TiO2/urea particles-based sample.

  11. Nanocomposite plasmonic fluorescence emitters with core/shell configurations

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Xiaoyu; Brener, Igal; Luk, Ting Shan

    2010-07-16

    This paper is focused on the optical properties of nanocomposite plasmonic emitters with core/shell configurations, where a fluorescence emitter is located inside a metal nanoshell. Systematic theoretical investigations are presented for the influence of material type, core radius, shell thickness, and excitation wavelength on the internal optical intensity, radiative quantum yield, and fluorescence enhancement of the nanocomposite emitter. It is our conclusion that: (i) an optimal ratio between the core radius and shell thickness is required to maximize the absorption rate of fluorescence emitters, and (ii) a large core radius is desired to minimize the non-radiative damping and avoid significant quantum yield degradation of light emitters. Several experimental approaches to synthesize these nanocomposite emitters are also discussed. Furthermore, our theoretical results are successfully used to explain several reported experimental observations and should prove useful for designing ultra-bright core/shell nanocomposite emitters.

  12. Nanocomposite plasmonic fluorescence emitters with core/shell configurations.

    Energy Technology Data Exchange (ETDEWEB)

    Brener, Igal; Luk, Ting Shan; Miao, Xiaoyu

    2010-06-01

    This paper is focused on the optical properties of nanocomposite plasmonic emitters with core/shell configurations, where a fluorescence emitter is located inside a metal nanoshell. Systematic theoretical investigations are presented for the influence of material type, core radius, shell thickness, and excitation wavelength on the internal optical intensity, radiative quantum yield, and fluorescence enhancement of the nanocomposite emitter. It is our conclusion that: (i) an optimal ratio between the core radius and shell thickness is required to maximize the absorption rate of fluorescence emitters, and (ii) a large core radius is desired to minimize the non-radiative damping and avoid significant quantum yield degradation of light emitters. Several experimental approaches to synthesize these nanocomposite emitters are also discussed. Furthermore, our theoretical results are successfully used to explain several reported experimental observations and should prove useful for designing ultra-bright core/shell nanocomposite emitters.

  13. Process to make core-shell structured nanoparticles

    Science.gov (United States)

    Luhrs, Claudia; Phillips, Jonathan; Richard, Monique N

    2014-01-07

    Disclosed is a process for making a composite material that contains core-shell structured nanoparticles. The process includes providing a precursor in the form of a powder a liquid and/or a vapor of a liquid that contains a core material and a shell material, and suspending the precursor in an aerosol gas to produce an aerosol containing the precursor. In addition, the process includes providing a plasma that has a hot zone and passing the aerosol through the hot zone of the plasma. As the aerosol passes through the hot zone of the plasma, at least part of the core material and at least part of the shell material in the aerosol is vaporized. Vapor that contains the core material and the shell material that has been vaporized is removed from the hot zone of the plasma and allowed to condense into core-shell structured nanoparticles.

  14. Rare Earth core/shell nanobarcodes for multiplexed trace biodetection.

    Science.gov (United States)

    Chen, Lei; Li, Xiaomin; Shen, Dengke; Zhou, Lei; Zhu, Dan; Fan, Chunhai; Zhang, Fan

    2015-06-02

    Multiplexed detection technology has been attractive for its simultaneous assay of several analytes, which play significant roles in applications such as screening for combinatorial chemistry, genetic analysis, and clinical diagnostics. This work reports a novel and potentially powerful encoding system based upon dispersible suspension arrays of multilayer rare earth core/shell nanoparticles that are capable of multiplexed, high-sensitivity reporting for biomolecule detection by the Z-contrast imaging. These nanobarcode arrays are encoded by nanostructure design based on different atomic numbers. With the well-resolved high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) decoding technique, many thousands of unique nanobarcodes can be identified by multilayer core/shell nanostructure. Their applications to multiplexed biodetection of DNA demonstrated the highly sensitive (picomole) features of this novel nanobarcode system.

  15. Synthesis of core-shell composites using an inverse surfmer.

    Science.gov (United States)

    Armando Zaragoza-Contreras, E; Stockton-Leal, Margarita; Hernández-Escobar, Claudia A; Hoshina, Yusuke; Guzmán-Lozano, Josué F; Kobayashi, Takaomi

    2012-07-01

    Anilinium dodecylsulfate was prepared from aniline and sodium dodecylsulfate. The critical micellar concentration of the salt was determined using electrical conductimetry, which revealed that the change of countercation, sodium by anilinium, reduced the critical micellar concentration with respect to the conventional counterpart, sodium dodecylsulfate. The anilinium dodecylsulfate was used as the surfmer in the synthesis of polystyrene/polyaniline core-shell composites, first performing as the surfactant to stabilize the emulsion polymerization of styrene, and later as the monomer to synthesize polyaniline via oxidative polymerization. Here, the surfmer function was directed toward the external phase instead of to the internal phase, as with conventional surfmers with carbon-carbon double bonds. Consequently, the term inverse surfmer is proposed. Analyses of its composite microstructure using electron microscopy and thermogravimetric analysis confirmed the core-shell arrangement.

  16. Tuning upconversion through energy migration in core-shell nanoparticles

    KAUST Repository

    Wang, Feng

    2011-10-23

    Photon upconversion is promising for applications such as biological imaging, data storage or solar cells. Here, we have investigated upconversion processes in a broad range of gadolinium-based nanoparticles of varying composition. We show that by rational design of a core-shell structure with a set of lanthanide ions incorporated into separated layers at precisely defined concentrations, efficient upconversion emission can be realized through gadolinium sublattice-mediated energy migration for a wide range of lanthanide activators without long-lived intermediary energy states. Furthermore, the use of the core-shell structure allows the elimination of deleterious cross-relaxation. This effect enables fine-tuning of upconversion emission through trapping of the migrating energy by the activators. Indeed, the findings described here suggest a general approach to constructing a new class of luminescent materials with tunable upconversion emissions by controlled manipulation of energy transfer within a nanoscopic region. © 2011 Macmillan Publishers Limited. All rights reserved.

  17. Gold/silver core-shell 20 nm nanoparticles extracted from citrate solution examined by XPS

    Energy Technology Data Exchange (ETDEWEB)

    Engelhard, Mark H.; Smith, Jordan N.; Baer, Donald R.

    2016-06-01

    Silver nanoparticles of many types are widely used in consumer and medical products. The surface chemistry of particles and the coatings that form during synthesis or use in many types of media can significantly impact the behaviors of particles including dissolution, transformation and biological or environmental impact. Consequently it is useful to be able to extract information about the thickness of surface coatings and other attributes of nanoparticles produced in a variety of ways. It has been demonstrated that X-ray Photoelectron Spectroscopy (XPS) can be reliably used to determine the thickness of organic and other nanoparticles coatings and shells. However, care is required to produce reliable and consistent information. Here we report the XPS spectra from gold/silver core-shell nanoparticles of nominal size 20 nm removed from a citrate saturated solution after one and two washing cycles. The Simulation of Electron Spectra for Surface Analysis (SESSA) program had been used to model peak amplitudes to obtain information on citrate coatings that remain after washing and demonstrate the presence of the gold core. This data is provided so that others can compare use of SESSA or other modeling approaches to quantify the nature of coatings to those already published and to explore the impacts particle non-uniformities on XPS signals from core-shell nanoparticles.

  18. Magnetic core-shell nanoparticles for drug delivery by nebulization

    Directory of Open Access Journals (Sweden)

    Verma Navin Kumar

    2013-01-01

    Full Text Available Abstract Background Aerosolized therapeutics hold great potential for effective treatment of various diseases including lung cancer. In this context, there is an urgent need to develop novel nanocarriers suitable for drug delivery by nebulization. To address this need, we synthesized and characterized a biocompatible drug delivery vehicle following surface coating of Fe3O4 magnetic nanoparticles (MNPs with a polymer poly(lactic-co-glycolic acid (PLGA. The polymeric shell of these engineered nanoparticles was loaded with a potential anti-cancer drug quercetin and their suitability for targeting lung cancer cells via nebulization was evaluated. Results Average particle size of the developed MNPs and PLGA-MNPs as measured by electron microscopy was 9.6 and 53.2 nm, whereas their hydrodynamic swelling as determined using dynamic light scattering was 54.3 nm and 293.4 nm respectively. Utilizing a series of standardized biological tests incorporating a cell-based automated image acquisition and analysis procedure in combination with real-time impedance sensing, we confirmed that the developed MNP-based nanocarrier system was biocompatible, as no cytotoxicity was observed when up to 100 μg/ml PLGA-MNP was applied to the cultured human lung epithelial cells. Moreover, the PLGA-MNP preparation was well-tolerated in vivo in mice when applied intranasally as measured by glutathione and IL-6 secretion assays after 1, 4, or 7 days post-treatment. To imitate aerosol formation for drug delivery to the lungs, we applied quercitin loaded PLGA-MNPs to the human lung carcinoma cell line A549 following a single round of nebulization. The drug-loaded PLGA-MNPs significantly reduced the number of viable A549 cells, which was comparable when applied either by nebulization or by direct pipetting. Conclusion We have developed a magnetic core-shell nanoparticle-based nanocarrier system and evaluated the feasibility of its drug delivery capability via aerosol

  19. Magnetic core-shell nanoparticles for drug delivery by nebulization

    LENUS (Irish Health Repository)

    Verma, Navin Kumar

    2013-01-23

    AbstractBackgroundAerosolized therapeutics hold great potential for effective treatment of various diseases including lung cancer. In this context, there is an urgent need to develop novel nanocarriers suitable for drug delivery by nebulization. To address this need, we synthesized and characterized a biocompatible drug delivery vehicle following surface coating of Fe3O4 magnetic nanoparticles (MNPs) with a polymer poly(lactic-co-glycolic acid) (PLGA). The polymeric shell of these engineered nanoparticles was loaded with a potential anti-cancer drug quercetin and their suitability for targeting lung cancer cells via nebulization was evaluated.ResultsAverage particle size of the developed MNPs and PLGA-MNPs as measured by electron microscopy was 9.6 and 53.2 nm, whereas their hydrodynamic swelling as determined using dynamic light scattering was 54.3 nm and 293.4 nm respectively. Utilizing a series of standardized biological tests incorporating a cell-based automated image acquisition and analysis procedure in combination with real-time impedance sensing, we confirmed that the developed MNP-based nanocarrier system was biocompatible, as no cytotoxicity was observed when up to 100 mug\\/ml PLGA-MNP was applied to the cultured human lung epithelial cells. Moreover, the PLGA-MNP preparation was well-tolerated in vivo in mice when applied intranasally as measured by glutathione and IL-6 secretion assays after 1, 4, or 7 days post-treatment. To imitate aerosol formation for drug delivery to the lungs, we applied quercitin loaded PLGA-MNPs to the human lung carcinoma cell line A549 following a single round of nebulization. The drug-loaded PLGA-MNPs significantly reduced the number of viable A549 cells, which was comparable when applied either by nebulization or by direct pipetting.ConclusionWe have developed a magnetic core-shell nanoparticle-based nanocarrier system and evaluated the feasibility of its drug delivery capability via aerosol administration. This study has

  20. Synthesis and Structure Control of A New Kind of Inelastomer Impact Modifier with Core-shell Structure and Impact Modification to PVC/CPE

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A new kind of inelastomer impact modifier with a core-shell structure was synthesized by employing a multi-step composite emulsion polymerization technique, the size and morphology structure of the core-shell particles could be controlled by the multi-step composite emulsion polymerization technique. The study of the impact strength and the elongation at break of the PVC/CPE blend with different contents of core-shell particles(C-S) indicated that the mechanical properties of PVC/CPE/C-S composite were the best when the concentration of the particle was 2.5%(mass fraction) which showed the different regularities and characteristics of elastomer toughening plastic.

  1. Graded core/shell semiconductor nanorods and nanorod barcodes

    Science.gov (United States)

    Alivisatos, A. Paul; Scher, Erik C.; Manna, Liberato

    2009-05-19

    Disclosed herein is a graded core/shell semiconductor nanorod having at least a first segment of a core of a Group II-VI, Group III-V or a Group IV semiconductor, a graded shell overlying the core, wherein the graded shell comprises at least two monolayers, wherein the at least two monolayers each independently comprise a Group II-VI, Group III-V or a Group IV semiconductor.

  2. Smart Core-Shell Nanowire Architectures for Multifunctional Nanoscale Devices

    Science.gov (United States)

    2014-02-16

    Nabet, Jonathan E. Spanier. Picosecond response times in GaAs/ AlGaAs core/shell nanowire-based photodetectors, Applied Physics Letters, (06 2011...which two normally contradictory properties coexist, and its publication. In one example, switchable polar character (ferroelectricity) arising from non... properties of a completely new family of non-perovskite complex oxide that exhibits ferroelectric and antiferromagnetic order. We report on publication of a

  3. Modulating the morphology of hydrogel particles by thermal annealing: mixed biopolymer electrostatic complexes

    Science.gov (United States)

    Wu, Bi-cheng; McClements, David Julian

    2015-11-01

    Biopolymer hydrogel particles formed by electrostatic complexation of proteins and polysaccharides have various applications within the food and other industries, including as delivery systems for bioactive compounds, as texture modifiers, and as fat replacers. The functional attributes of these electrostatic complexes are strongly influenced by their morphology, which is determined by the molecular interactions between the biopolymer molecules. In this study, electrostatic complexes were formed using an amphoteric protein (gelatin) and an anionic polysaccharide (pectin). Gelatin undergoes a helix-to-coil transition when heated above a critical temperature, which impacts its molecular interactions and hydrogel formation. The aim of this research was to study the influence of thermal annealing on the properties of hydrogel particles formed by electrostatic complexation of gelatin and pectin. Hydrogel particles were fabricated by mixing 0.5 wt% gelatin and 0.01 wt% pectin at pH 10 (where both were negatively charged) at various temperatures, followed by acidification to pH 5 (where they have opposite charges) with controlled acidification and stirring. The gelation ({{T}\\text{g}} ) and melting temperature ({{T}\\text{m}} ) of the electrostatic complexes were measuring using a small amplitude oscillation test: {{T}\\text{g}}=26.3 °C and {{T}\\text{m}}=32.3 °C. Three annealing temperatures (5, 30 and 50 °C) corresponding to different regimes (T{{T}\\text{m}} ) were selected to control the configuration of the gelatin chain. The effects of formation temperature, annealing temperature, and incubation time on the morphology of the hydrogel particles were characterized by turbidity, static light scattering, and microscopy. The results of this study will facilitate the rational design of hydrogel particles with specific particle dimensions and morphologies, which has important implications for tailoring their functionality for various applications.

  4. Core/shell Fe3O4/BiOI nanoparticles with high photocatalytic activity and stability

    Science.gov (United States)

    Zheng, Liyun; Wang, Shuling; Zhao, Lixin; Zhao, Shuguo

    2016-11-01

    Core/shell Fe3O4/BiOI nanoparticles with BiOI sheath have been synthesized by a solvothermal reaction method and were characterized by transmission electron microscopy (TEM) with an energy dispersive spectrum (EDS), high-resolution TEM and X-ray diffraction (XRD). Their photocatalytic activities were evaluated by methylene blue (MB) under the simulated solar light. The results indicate that the spherical Fe3O4 particles were coated with BiOI sheath when the sample were synthesized at 160 °C with ethylene glycol and deionized water, forming a core/shell structure. The degradation rate of MB assisted with the core/shell Fe3O4/BiOI catalysts reached 98 % after 40-min irradiation. The catalytic performance enhancement of the core/shell Fe3O4/BiOI catalysts mainly attributes to the band structure that can improve the generation efficiency, separation and transfer process of the photo-induced electron-hole pairs and decrease their recombination. The magnetic Fe3O4 core not only contributes to the efficient separation of electron and holes, but also helps catalysts be collected conveniently using a magnet for reuse. After five repeated trials, the degradation rate of MB still maintains over 90 % and the saturated magnetization of the catalysts remains 51.5 emu/g, which indicate that the core/shell Fe3O4/BiOI nanoparticles have excellent photocatalytic stability and are recyclable for decomposing organic pollutants under visible light irradiation.

  5. Preparation and property of graphene oxide core-shell hybrid particles/silicone rubber dielectric elastomer composites%氧化石墨烯核-壳杂化粒子/硅橡胶介电弹性体复合材料的制备与性能

    Institute of Scientific and Technical Information of China (English)

    王明路; 宁南英; 张静; 张立群; 田明

    2016-01-01

    采用阳离子聚电解质聚二烯丙基二甲基氯化铵(PDDA)改性 SiO2,再通过静电自组装制备了 SiO2-PD-DA-氧化石墨烯(GO)核-壳杂化粒子。采用溶液共混法将 SiO2-PDDA-GO引入到高温硫化硅橡胶(SR)中,制备了SiO2-PDDA-GO/SR介电弹性体复合材料。结果表明:该方法能实现 GO 在 SiO2表面大面积的包覆,解决了 GO容易自聚集的问题,且PDDA具有还原 GO的作用,无需再对 GO核-壳杂化粒子/SR复合材料进行原位热还原,简化了实验方案,节能环保。SiO2-PDDA-GO填充量为60wt%时,在100 Hz 频率下,SiO2-PDDA-GO/SR 介电弹性体复合材料的介电常数为21.53,是 SR的11.6倍,介电损耗保持较低值,同时,复合材料的模量保持在较低水平。在电场强度为2.48 kV/mm时,60wt%的SiO2-PDDA-GO/SR介电弹性体复合材料横向电致形变在同一电场强度下与 SR相比增加了15倍。%Cationic polyelectrolyte poly(diallyldimethylammonium chloride)(PDDA)was used to modify SiO2 ,and SiO2-PDDA-graphite oxide (GO)core-shell hybrid particles were prepared by electrostatic self-assembly.By intro-ducing SiO2-PDDA-GO into high-temperature vulcanization silicone rubber (SR)with solution blending method, SiO2-PDDA-GO/SR dielectric elastomer composites were prepared.Results show that this method can realize GO large surface coating on surface of SiO2 to prevent GO from self-agglomerating.GO core-shell hybrid particles/SR composites were obtained without in-situ thermal reduction because PDDA can reduce GO,made experimental scheme simple and environmental protection.The dielectric constant of SiO2-PDDA-GO/SR dielectric composite at 100 Hz increases to 21.53 with 60wt% SiO2-PDDA-GO which is 11.6 times than SR,and dielectric loss remains at low level.Meanwhile,modulus of composites remains low level.The lateral actuation strain of SiO2-PDDA-GO/SR dielectric elastomer composites with 60wt% SiO2-PDDA-GO at 2.48 kV/mm compared with pure SR increases 15 fold under same

  6. Diffraction data of core-shell nanoparticles from an X-ray free electron laser.

    Science.gov (United States)

    Li, Xuanxuan; Chiu, Chun-Ya; Wang, Hsiang-Ju; Kassemeyer, Stephan; Botha, Sabine; Shoeman, Robert L; Lawrence, Robert M; Kupitz, Christopher; Kirian, Richard; James, Daniel; Wang, Dingjie; Nelson, Garrett; Messerschmidt, Marc; Boutet, Sébastien; Williams, Garth J; Hartmann, Elisabeth; Jafarpour, Aliakbar; Foucar, Lutz M; Barty, Anton; Chapman, Henry; Liang, Mengning; Menzel, Andreas; Wang, Fenglin; Basu, Shibom; Fromme, Raimund; Doak, R Bruce; Fromme, Petra; Weierstall, Uwe; Huang, Michael H; Spence, John C H; Schlichting, Ilme; Hogue, Brenda G; Liu, Haiguang

    2017-04-11

    X-ray free-electron lasers provide novel opportunities to conduct single particle analysis on nanoscale particles. Coherent diffractive imaging experiments were performed at the Linac Coherent Light Source (LCLS), SLAC National Laboratory, exposing single inorganic core-shell nanoparticles to femtosecond hard-X-ray pulses. Each facetted nanoparticle consisted of a crystalline gold core and a differently shaped palladium shell. Scattered intensities were observed up to about 7 nm resolution. Analysis of the scattering patterns revealed the size distribution of the samples, which is consistent with that obtained from direct real-space imaging by electron microscopy. Scattering patterns resulting from single particles were selected and compiled into a dataset which can be valuable for algorithm developments in single particle scattering research.

  7. Electrically-responsive core-shell hybrid microfibers for controlled drug release and cell culture.

    Science.gov (United States)

    Chen, Chuntao; Chen, Xiao; Zhang, Heng; Zhang, Qi; Wang, Li; Li, Chenxi; Dai, Beibei; Yang, Jiazhi; Liu, Jian; Sun, Dongping

    2017-06-01

    It is an active research field to develop fiber-shaped smart materials for biomedical applications. Here we report the development of the multifunctional core-shell hybrid microfibers with excellent mechanical and electrical performance as a new smart biomaterial. The microfibers were synthesized using a combination of co-axial spinning with a microfluidic device and subsequent dip-coating, containing a hydrogel core of bacterial cellulose (BC) and a conductive polymer shell layer of poly(3,4-ethylenedioxythiophene) (PEDOT). The hybrid microfibers were featured with a well-controlled microscopic morphology, exhibiting enhanced mechanic properties. A model drug, diclofenac sodium, can be loaded in the core layer of the microfibers in situ during the process of synthesis. Our experiments suggested that the releasing behaviors of the drug molecules from the microfibers were enhanced by external electrical stimulation. Interestingly, we demonstrated an excellent biocompatibility and electroactivity of the hybrid microfibers for PC12 cell culture, thus promising a flexible template for the reconstruction of electrically-responsive tissues mimicking muscle fibers or nerve networks. Fiber-shaped biomaterials are useful in creating various functional objects from one dimensional to three-dimensional. The fabrication of microfibers with integrated physicochemical properties and bio-performance has drawn an increasing attention on researchers from chemical to biomedical. This study combined biocompatible bacterial cellulose with electroconductive poly(3,4-ethylenedioxythiophene) and further reduced them to a highly electroactive BC/PEDOT core-shell microfiber electrode for electrochemical actuator design. The result showed that the microfibers were well fabricated and the release of drugs from the microfibers was enhanced and could be controlled under electrical stimulation externally. Considering the excellent biocompatibility and electroactive toward PC12 cells, these

  8. Probing photoluminescence dynamics of colloidal CdSe/ZnS core/shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Gurvir; Tripathi, S.K., E-mail: surya@pu.ac.in

    2014-11-15

    The paper presents the synthesis of thiol capped CdSe/ZnS core/shell nanoparticles with CdSe core and ZnS shell. The thickness of the ZnS shell has been controlled by the regulating the amount of Zn/S precursors for reaction. The steady and transient photoluminescence properties substantiate the growth of ZnS shell over the CdSe cores. High resolution transmission electron microscope and the X-ray diffraction patterns reveal nanocrystalline particles of an average size 3.4 nm packed in wurtzite lattice. Photoluminescence excitation spectra as well as the excitation–emission matrix of CdSe and CdSe/ZnS evidence the growth of ZnS for Type I hetero-junction without interfering the energy states of core. By this method, ZnS layer of 8.84 Å is optimum for fluorescence enhancement of the core/shell quantum dots. The multiexponential fluorescence decay of the quantum dots represents independent radiative recombinations with overlapped energies. It is revealed that the average fluorescence lifetimes of quantum dots decreased with increase in ZnS shell, which is due to the enhanced contribution from initially populated excitonic recombination and the reduction in the surface trap states with shell growth. - Highlights: • Synthesis of MAA capped CdSe/ZnS core/shell QDs with different shell thicknesses. • Shell thickness has been controlled by the amount of shell precursors added. • ZnS shell significantly enhanced the fluorescence quantum yield of QDs. • Superposition of quantum confinement energy model employed for shell thickness. • Probed the fluorescence dynamics of QDs by time resolved fluorescence spectroscopy.

  9. ASAXS study on the formation of core-shell Ag/Au nanoparticles in glass

    Energy Technology Data Exchange (ETDEWEB)

    Haug, J; Kruth, H; Dubiel, M [Martin-Luther-University Halle-Wittenberg, Institute of Physics, Von-Danckelmann-Platz 3, D-06120 Halle (Germany); Hofmeister, H [Max Planck Institute of Microstructure Physics, Weinberg 2, D-06120 Halle (Germany); Haas, S; Tatchev, D; Hoell, A, E-mail: joerg.haug@physik.uni-halle.de [Helmholtz-Zentrum Berlin fuer Materialien und Energie, Institute of Applied Materials, Glienicker Strasse 100, D-14109 Berlin (Germany)

    2009-12-16

    Nanosized metal particles of various configurations embedded in surface regions of glass have great potential as nonlinear optical materials for photonic devices. We have prepared Ag/Au nanoparticles in core-shell configuration in soda-lime silicate glass by double-ion implantation and investigated their structural characteristics by anomalous small-angle x-ray scattering (ASAXS) and transmission electron microscopy. Measurements at x-ray energies slightly below the Au L{sub 3} edge indicate the formation of bimetallic Ag/Au shells in some of the nanoparticles for high-dose ion implantation. An element-specific analysis of the ASAXS results allowed us not only to validate and quantify the core-shell structure, but simultaneously also the composition of the shells. Hollow nanoparticles were found for an Au-Ag implantation sequence, whereas an Ag-Au sequence generates a diluted core composition. The shift of the maximum position of optical absorption of the samples due to surface plasmon resonance of bimetallic nanoparticles, as monitored by optical spectroscopy, revealed the considerable influence of the respective particle configuration.

  10. Synthesis of Pt-Sn core-shell nanoparticles deposited on SBA-15 modified

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez-Contreras, L.; Alonso-Lemus, I. [Centro de Investigacion en Materiales Avanzados S.C., Laboratorio Nacional de Nanotecnologia (Mexico); Botte, G. G. [Ohio University, Center for Electrochemical Engineering Research, Department of Chemical and Biomolecular Engineering (United States); Verde-Gomez, Y., E-mail: ysmaelverde@yahoo.com [Instituto Tecnologico de Cancun (Mexico)

    2013-07-15

    A novel one-step synthesis method to prepare Pt-Sn bimetallic nanoparticles supported on mesoporous silica with high surface area (SBA-15, 700 m{sup 2}/g) and narrow pore size distribution (around 9.5 nm) was developed. Tin incorporation plays an important dual role, to create active sites into the silica walls that serve as particles anchors center, and to grow Pt-Sn core-shell nanoparticles. High-resolution transmission and scanning electron microscopy, and X-ray diffraction pattern confirm the formation of the Pt-Sn core-shell type nanoparticles ( Almost-Equal-To 1-10 nm). The metal loading was 2.2 and 2.3 wt% for Pt and Sn, respectively. Electron microscopy results show that the metal nanoparticles were deposited not only on the matrix, but also inside of it. Structural, textural, and morphological features of the SBA-15 were slightly affected after the nanoparticles deposition, maintaining its high surface area. The results obtained suggest that Pt-Sn on SBA-15 could be attractive material for several catalytic applications, due to the narrow particle size distribution achieved (from 1 to 10 nm) the high dispersion on the support, as well as the Pt-Sn alloy developed.Graphical Abstract.

  11. Core-Shell Coating Silicon Anode Interfaces with Coordination Complex for Stable Lithium-Ion Batteries.

    Science.gov (United States)

    Zhou, Jinqiu; Qian, Tao; Wang, Mengfan; Xu, Na; Zhang, Qi; Li, Qun; Yan, Chenglin

    2016-03-02

    In situ core-shell coating was used to improve the electrochemical performance of Si-based anodes with polypyrrole-Fe coordination complex. The vast functional groups in the organometallic coordination complex easily formed hydrogen bonds when in situ modifying commercial Si nanoparticles. The incorporation of polypyrrole-Fe resulted in the conformal conductive coating surrounding each Si nanoparticle, not only providing good electrical connection to the particles but also promoting the formation of a stable solid-electrolyte-interface layer on the Si electrode surface, enhancing the cycling properties. As an anode material for Li-ion batteries, modified silicon powders exhibited high reversible capacity (3567 mAh/g at 0.3 A/g), good rate property (549.12 mAh/g at 12 A/g), and excellent cycling performance (reversible capacity of 1500 mAh/g after 800 cycles at 1.2 A/g). The constructed novel concept of core-shell coating Si particles presented a promising route for facile and large-scale production of Si-based anodes for extremely durable Li-ion batteries, which provided a wide range of applications in the field of energy storage of the renewable energy derived from the solar energy, hydropower, tidal energy, and geothermal heat.

  12. Self-assembled plasmonic core-shell clusters with an isotropic magnetic dipole response in the visible range.

    Science.gov (United States)

    Mühlig, Stefan; Cunningham, Alastair; Scheeler, Sebastian; Pacholski, Claudia; Bürgi, Thomas; Rockstuhl, Carsten; Lederer, Falk

    2011-08-23

    We theoretically analyze, fabricate, and characterize a three-dimensional plasmonic nanostructure that exhibits a strong and isotropic magnetic response in the visible spectral domain. Using two different bottom-up approaches that rely on self-organization and colloidal nanochemistry, we fabricate clusters consisting of dielectric core spheres, which are smaller than the wavelength of the incident radiation and are decorated by a large number of metallic nanospheres. Hence, despite having a complicated inner geometry, such a core-shell particle is sufficiently small to be perceived as an individual object in the far field. The optical properties of such complex plasmonic core-shell particles are discussed for two different core diameters.

  13. Hydrothermal Preparation of TiO2-ZnO Nano Core-Shell Structure with Quantum Size Effect

    Science.gov (United States)

    Asl, Shahab Khameneh; Rad, M. Kianpour; Sadrnezhaad, S. K.

    2011-12-01

    Nano sized ZnO on TiO2 spherical core shells were prepared by using hydrothermal method. The particle size of initial TiO2 was around 20 nm, and the specific surface area was 50 m2/gr. Different ratios of TiO2 and ZnO applied to synthesize core shell particle. X-ray diffraction (XRD) used to phase characterization and crystalline size, scanning electron microscopy (SEM) to morphology and microstructure investigations. S. Brunauer, P. H. Emmett and E. Teller method (BET) to find specific surface area, Diffusive UV-visible-NIR spectrometry to bang gap calculations. The results indicate that powders with a shell of zinc oxide in specific range have the quantum size effect. Titanium oxide and zinc oxide have similar band gap, but TiO2 could act as a template to produced 2D structure of ZnO with modified physical properties.

  14. Glycerol capped PbS/CdS core/shell nanoparticles at different molar ratio and its application in biosensors: An optical properties study

    Science.gov (United States)

    Das, D.; Hussain, A. M. P.

    2016-05-01

    Glycerol capped PbS/CdS core/shell type nanoparticles fabricated with two different molar ratios are characterized for study of structural and optical properties. The X-ray diffraction (XRD) pattern exhibits cubic phased polycrystalline nanocrystals. The calculated grain sizes from Williamson-Hall plot were found to be around 6 nm with increased strain. HRTEM investigation confirms the formation of core/shell nanostructures and the sizes of the particles were found to be around 7 nm which is in good agreement with the results of the W-H plot. An increase of band gap with the decrease in precursor concentration is confirmed from the blue shift in the absorption spectra and also from Tauc plot. A clear blue shifted intense emission is observed in the photoluminescence spectra with decrease in particle size. Intense luminescence from the core/shell nanostructure may be applied in bio labelling and biosensors.

  15. Application of Turkevich Method for Gold Nanoparticles Synthesis to Fabrication of SiO2@Au and TiO2@Au Core-Shell Nanostructures

    Directory of Open Access Journals (Sweden)

    Paulina Dobrowolska

    2015-05-01

    Full Text Available The Turkevich synthesis method of Au nanoparticles (AuNPs was adopted for direct fabrication of SiO2@Au and TiO2@Au core-shell nanostructures. In this method, chloroauric acid was reduced with trisodium citrate in the presence of amine-functionalized silica or titania submicroparticles. Core-shells obtained in this way were compared to structures fabricated by mixing of Turkevich AuNPs with amine-functionalized silica or titania submicroparticles. It was found that by modification of reaction conditions of the first method, such as temperature and concentration of reagents, control over gold coverage on silicon dioxide particles has been achieved. Described method under certain conditions allows fabrication of semicontinuous gold films on the surface of silicon dioxide particles. To the best of our knowledge, this is the first report describing use of Turkevich method to direct fabrication of TiO2@Au core-shell nanostructures.

  16. Glycerol capped PbS/CdS core/shell nanoparticles at different molar ratio and its application in biosensors: An optical properties study

    Energy Technology Data Exchange (ETDEWEB)

    Das, D., E-mail: ddasphy014@gmail.com; Hussain, A. M. P. [Department of Physics, Cotton College, Guwahati, Assam, India- 781001 (India)

    2016-05-06

    Glycerol capped PbS/CdS core/shell type nanoparticles fabricated with two different molar ratios are characterized for study of structural and optical properties. The X-ray diffraction (XRD) pattern exhibits cubic phased polycrystalline nanocrystals. The calculated grain sizes from Williamson-Hall plot were found to be around 6 nm with increased strain. HRTEM investigation confirms the formation of core/shell nanostructures and the sizes of the particles were found to be around 7 nm which is in good agreement with the results of the W-H plot. An increase of band gap with the decrease in precursor concentration is confirmed from the blue shift in the absorption spectra and also from Tauc plot. A clear blue shifted intense emission is observed in the photoluminescence spectra with decrease in particle size. Intense luminescence from the core/shell nanostructure may be applied in bio labelling and biosensors.

  17. The ``Music" of Silica-Poly(methyl methacrylate) Core-Shell Spheres: Eigenvibrations and Mechanical Properties at the Nanoscale

    Science.gov (United States)

    Still, Tim; Sainidou, Rebecca; Hellmann, Goetz; Fytas, George

    2009-03-01

    We report on the measurement of elastic vibrational modes (eigenvibrations) in silica--poly(methyl meth-acrylate) (SiO2--PMMA) core-shell spheres and corresponding spherical hollow capsules (PMMA) with different particle size (dia-meter: 232 nm--405 nm) and shell thickness (25 nm--112 nm) using Brillouin light scattering, supported by numerical calculations. [T. Still et al., Nano Lett. 8, 3194 (2008)] These localized modes allow to access the mechanical moduli of core and shell material. We observe reduced mechanical strength of the porous silica core and for the core-shell spheres a striking increase of the moduli in both the SiO2 core and the PMMA shell. The peculiar behavior of the vibrational modes in the hollow capsules is attributed to antagonistic dependence on overall size and layer thickness. The present investigation of the acoustical properties of the individual core-shell particles can lead to the use of such nanoscale engineered particles in more eloborate systems to control hypersonic phonons.

  18. Synthesis and Characterization of Core-shell ZrO2/PAAEM/PS Nanoparticles

    Directory of Open Access Journals (Sweden)

    Jiang XC

    2008-01-01

    Full Text Available Abstract This work demonstrates the synthesis of core-shell ZrO2/PAAEM/PS nanoparticles through a combination of sol–gel method and emulsifier-free emulsion polymerizaiton. By this method, the modified nanometer ZrO2cores were prepared by chemical modification at a molecular level of zirconium propoxide with monomer of acetoacetoxyethylmethacrylate (AAEM, and then copolymerized with vinyl monomer to form uniform-size hybrid nanoparticles with diameter of around 250 nm. The morphology, composition, and thermal stability of the core-shell particles were characterized by various techniques including transmission electron microscopy (TEM, X-ray diffractometer (XRD, Fourier transform infrared spectroscopy (FTIR, X-ray photoelectron spectroscopy (XPS, and thermal-gravimetry analyzer (TGA. The results indicate that the inorganic–organic nanocomposites exhibit good thermal stability with the maximum decomposition temperature of ~447 °C. This approach would be useful for the synthesis of other inorganic–organic nanocomposites with desired functionalities.

  19. No-Core Shell Model for 48-Ca, 48-Sc and 48-Ti

    Energy Technology Data Exchange (ETDEWEB)

    Popescu, S; Stoica, S; Vary, J P; Navratil, P

    2004-10-26

    The authors report the first no-core shell model results for {sup 48}Ca, {sup 48}Sc and {sup 48}Ti with derived and modified two-body Hamiltonians. We use an oscillator basis with a limited {bar h}{Omega} range around 40/A{sup 1/3} = 11 MeV and a limited model space up to 1 {bar h}{Omega}. No single-particle energies are used. They find that the charge dependence of the bulk binding energy of eight A = 48 nuclei is reasonably described with an effective Hamiltonian derived from the CD-Bonn interaction while there is an overall underbinding by about 0.4 MeV/nucleon. However, resulting spectra exhibit deficiencies that are anticipated due to: (1) basis space limitations and/or the absence of effective many-body interactions; and, (2) the absence of genuine three-nucleon interactions. They introduce phenomenological modifications to obtain fits to total binding and low-lying spectra. The resulting no-core shell model opens a path for applications to experiments such as the double-beta ({beta}{beta}) decay process.

  20. Fast-dissolving core-shell composite microparticles of quercetin fabricated using a coaxial electrospray process.

    Directory of Open Access Journals (Sweden)

    Chen Li

    Full Text Available This study reports on novel fast-dissolving core-shell composite microparticles of quercetin fabricated using coaxial electrospraying. A PVC-coated concentric spinneret was developed to conduct the electrospray process. A series of analyses were undertaken to characterize the resultant particles in terms of their morphology, the physical form of their components, and their functional performance. Scanning and transmission electron microscopies revealed that the microparticles had spherical morphologies with clear core-shell structure visible. Differential scanning calorimetry and X-ray diffraction verified that the quercetin active ingredient in the core and sucralose and sodium dodecyl sulfate (SDS excipients in the shell existed in the amorphous state. This is believed to be a result of second-order interactions between the components; these could be observed by Fourier transform infrared spectroscopy. In vitro dissolution and permeation studies showed that the microparticles rapidly released the incorporated quercetin within one minute, and had permeation rates across the sublingual mucosa around 10 times faster than raw quercetin.

  1. The preparation of core-shell magnetic silica nanospheres for enhancing magnetism and fluorescence intensity.

    Science.gov (United States)

    Yoo, Jeong Ha; Kim, Jong Sung

    2013-11-01

    Recently, magnetic and luminescent composite silica with structure of micro- and nanospheres containing both magnetic (Fe3O4) nanoparticles (MPs) and quantum dots (QDs) has attracted great interests. In this study, we have prepared core-shell structure of silica spheres in which magnets are incorporated into silica core and QDs into a mesoporous silica shell by using C18-TMS (octade-cyltrimethoxysilane). MPs were synthesized by a co-precipitation method from ferrous and ferric solutions with a molecular ratio of 2:3. Monodisperse magnetic silica cores have been prepared via sol-gel reaction of TEOS (tetraethoxysilane) and water using base catalyst. The size of magnetic silica nanospheres was confirmed by dynamic laser light scattering system (DLS) and scanning electoron microscope (SEM). The pore volume and surface area were calculated by using BET after calcination. The core-shell structure plays an important role in providing more domains for MPs in silica Core and QDs in silica shell. QDs were incorporated into the mesoporous shell by hydrophobic interactions. Magnetic characterization was performed using a superconducting quantum interference device (SQUID). The optical properties of the particles were characterized with UV/Vis spectrometer, PL spectrometer, and fluorescence microscope.

  2. Ion Structure Near a Core-Shell Dielectric Nanoparticle

    Science.gov (United States)

    Ma, Manman; Gan, Zecheng; Xu, Zhenli

    2017-02-01

    A generalized image charge formulation is proposed for the Green's function of a core-shell dielectric nanoparticle for which theoretical and simulation investigations are rarely reported due to the difficulty of resolving the dielectric heterogeneity. Based on the formulation, an efficient and accurate algorithm is developed for calculating electrostatic polarization charges of mobile ions, allowing us to study related physical systems using the Monte Carlo algorithm. The computer simulations show that a fine-tuning of the shell thickness or the ion-interface correlation strength can greatly alter electric double-layer structures and capacitances, owing to the complicated interplay between dielectric boundary effects and ion-interface correlations.

  3. Effective Field Theory and the No-Core Shell Model

    Directory of Open Access Journals (Sweden)

    Stetcua I.

    2010-04-01

    Full Text Available In finite model space suitable for many-body calculations via the no-core shell model (NCSM, I illustrate the direct application of the effective field theory (EFT principles to solving the many-body Schrödinger equation. Two different avenues for fixing the low-energy constants naturally arising in an EFT approach are discussed. I review results for both nuclear and trapped atomic systems, using effective theories formally similar, albeit describing different underlying physics.

  4. Highly catalytic hollow palladium nanoparticles derived from silver@silver-palladium core-shell nanostructures for the oxidation of formic acid

    Science.gov (United States)

    Chen, Dong; Cui, Penglei; He, Hongyan; Liu, Hui; Yang, Jun

    2014-12-01

    Hollow Palladium (hPd) nanoparticles (NPs) are prepared via a simple and mild successive method. Firstly, core-shell NPs with silver (Ag) cores and silver-palladium (Ag-Pd) alloy shells are synthesized in aqueous phase by galvanic replacement reaction (GRR) between Ag NPs and Pd2+ ion precursors. Saturated aqueous sodium chloride (NaCl) solution was then employed to remove the Ag component from the core and shell regions of core-shell Ag@Ag-Pd NPs, resulting in the formation of hPd NPs with shrunk sizes in comparison with their core-shell parents. Specifically, the hPd NPs exhibit superior catalytic activity and durability for catalyzing the oxidation of formic acid, compared with the Pd NPs reduced by NaBH4 in aqueous solution and commercial Pd/C catalyst from Johnson Matthey, mainly due to the large electrochemically active surface areas of the hollow particles. In addition, The Ag component in core-shell Ag@Ag-Pd NPs has an unfavorable influence on catalytic activity of NPs for formic acid oxidation. However, the durability could be improved due to the electron donating effect from Ag to Pd atoms in the core-shell NPs.

  5. Effect of Core-Shell Ag@TiO2 Volume Ratio on Characteristics of TiO2-Based DSSCs

    Directory of Open Access Journals (Sweden)

    Ho Chang

    2014-01-01

    Full Text Available This paper aims to develop photoanode material required by dye-sensitized solar cells. The material prepared is in the form of Ag@TiO2 core-shell-type nanocomposites. This material is used to replace the titanium oxide powder commonly used in general DSSCs. The prepared Ag@TiO2 core-shell-type nanocomposites are mixed with Degussa P25 TiO2 in different proportions. Triton X-100 is added and polyethylene glycol (PEG at 20 wt% is used as a polymer additive. This study tests the particle size and material properties of Ag@TiO2 core-shell-type nanocomposites and measures the photoelectric conversion efficiency and IPCE of DSSCs. Experimental results show that the DSSC prepared by Ag@TiO2 core-shell-type nanocomposites can achieve a photoelectric conversion efficiency of 3.67%. When Ag@TiO2 core-shell-type nanocomposites are mixed with P25 nanoparticles in specific proportions, and when the thickness of the photoelectrode thin film is 28 μm, the photoelectric conversion efficiency can reach 6.06%, with a fill factor of 0.52, open-circuit voltage of 0.64V, and short-circuit density of 18.22 mAcm−2. Compared to the DSSC prepared by P25 TiO2 only, the photoelectric conversion efficiency can be raised by 38% under the proposed approach.

  6. Synthesis and characterization of silver-copper core-shell nanoparticles using polyol method for antimicrobial agent

    Science.gov (United States)

    Hikmah, N.; Idrus, N. F.; Jai, J.; Hadi, A.

    2016-06-01

    Silver and copper nanoparticles are well-known as the good antimicrobial agent. The nano-size of particles influences in enhancing the antimicrobial activity. This paper discusses the effect of molarity on the microstructure and morphology of silver-copper core-shell nanoparticles prepared by a polyol method. In this study, silver-copper nanoparticles are synthesized through the green approach of polyol method using ethylene glycol (EG) as green solvent and reductant, and polyoxyethylene-(80)-sorbitan monooleate (Tween 80) as a nontoxic stabilizer. The phase and morphology of silver-copper nanoparticles are characterized by X-ray diffraction (XRD) and Field emission scanning electron microscope (FESEM) and Transmission electron microscope (TEM). The results XRD confirm the pure crystalline of silver and copper nanoparticles with face-centered cubic (FCC) structure. FESEM and TEM analysis confirm the existence of Ag and Cu nanoparticles in core-shell shape.

  7. Ultrafast Transient Absorption Spectroscopy Investigation of Photoinduced Dynamics in Novel Donor-Acceptor Core-Shell Nanostructures for Organic Photovoltaics

    Science.gov (United States)

    Strain, Jacob; Jamhawi, Abdelqader; Abeywickrama, Thulitha M.; Loomis, Wendy; Rathnayake, Hemali; Liu, Jinjun

    2016-06-01

    Novel donor-acceptor nanostructures were synthesized via covalent synthesis and/or UV cross-linking method. Their photoinduced dynamics were investigated with ultrafast transient absorption (TA) spectroscopy. These new nanostructures are made with the strategy in mind to reduce manufacturing steps in the process of fabricating an organic photovoltaic cell. By imitating the heterojunction interface within a fixed particle domain, several fabrication steps can be bypassed reducing cost and giving more applicability to other film deposition methods. Such applications include aerosol deposition and ink-jet printing. The systems that were studied by TA spectroscopy include PDIB core, PDIB-P3HT core-shell, and PDIB-PANT core-shell which range in size from 60 to 130 nm. Within the experimentally accessible spectra range there resides a region of ground state bleaching, stimulated emission, and excited-state absorption of both neutrals and anions. Control experiments have been carried out to assign these features. At high pump fluences the TA spectra of PDIB core alone also indicate an intramolecular charge separation. The TA spectroscopy results thus far suggest that the core-shells resemble the photoinduced dynamics of a standard film although the particles are dispersed in solution, which indicates the desired outcome of the work.

  8. Additively manufactured MEMS multiplexed coaxial electrospray sources for high-throughput, uniform generation of core-shell microparticles.

    Science.gov (United States)

    Olvera-Trejo, D; Velásquez-García, L F

    2016-10-18

    This study reports the first MEMS multiplexed coaxial electrospray sources in the literature. Coaxial electrospraying is a microencapsulation technology based on electrohydrodynamic jetting of two immiscible liquids, which allows precise control with low size variation of the geometry of the core-shell particles it generates, which is of great importance in numerous biomedical and engineering applications, e.g., drug delivery and self-healing composites. By implementing monolithic planar arrays of miniaturized coaxial electrospray emitters that work uniformly in parallel, the throughput of the compound microdroplet source is greatly increased, making the microencapsulation technology compatible with low-cost commercial applications. Miniaturized core-shell particle generators with up to 25 coaxial electrospray emitters (25 emitters cm(-2)) were fabricated via stereolithography, which is an additive manufacturing process that can create complex microfluidic devices at a small fraction of the cost per device and fabrication time associated with silicon-based counterparts. The characterization of devices with the same emitter structure but different array sizes demonstrates uniform array operation. Moreover, the data demonstrate that the per-emitter current is approximately proportional to the square root of the flow rate of the driving liquid, and it is independent of the flow rate of the driven liquid, as predicted by the theory. The core/shell diameters and the size distribution of the generated compound microparticles can be modulated by controlling the flow rates fed to the emitters.

  9. Preparation and characterization of nanosized P(NIPAM-MBA) hydrogel particles and adsorption of bovine serum albumin on their surface

    Science.gov (United States)

    Zhu, Xiaoli; Gu, Xiangling; Zhang, Lina; Kong, Xiang-Zheng

    2012-09-01

    Thermosensitive polymer hydrogel particles with size varying from 480 to 620 nm were prepared through precipitation copolymerization of N-isopropylacrylamide with N,N'-methylenebisacrylamide (MBA) in water with ammonium persulfate as the initiator. Only polymer hydrogels without any coagula were obtained when MBA concentration in the monomer mixture was kept between 2.5 and 10.0 wt%; with increased MBA concentration, the monomer conversion was enhanced, the size of the hydrogels was increased, and their shrinking was lessened when heated from 25°C to 40°C. Bovine serum albumin adsorption on the surface of the hydrogels of different MBA content was measured at different pH levels and under different temperatures. The results demonstrated that the adsorption of the protein on the hydrogels could be controlled by adjusting the pH, the temperature of adsorption, and the crosslinking in the hydrogels. The results were interpreted, and the mechanisms of the polymerization were proposed.

  10. Influence of Elastic and Surface Strains on the Optical Properties of Semiconducting Core-Shell Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Mangeri, John; Heinonen, Olle; Karpeyev, Dmitry; Nakhmanson, Serge

    2015-07-01

    Core-shell nanoparticle systems of Zn-ZnO and ZnO-TiO2 are studied computationally using finite-element methods. The inclusion of a surface free energy and the elastic mismatch of the core and shell create an imprinting effect within the shell structure that produces a wide variation of strains. Due to this diversity of strains, the sharp, direct, band-gap edges of the bulk semiconductor are observed to be broadened. We show that a variety of factors, such as particle size, core-to-shell volume ratio, applied hydrostatic pressure, shell microstructure, as well as the effect of elastic anisotropy, can influence the distribution of optical band-gap values throughout the particle.

  11. Colloidally stable selenium@copper selenide core@shell nanoparticles as selenium source for manufacturing of copper-indium-selenide solar cells.

    Science.gov (United States)

    Dong, Hailong; Quintilla, Aina; Cemernjak, Marco; Popescu, Radian; Gerthsen, Dagmar; Ahlswede, Erik; Feldmann, Claus

    2014-02-01

    Selenium nanoparticles with diameters of 100-400nm are prepared via hydrazine-driven reduction of selenious acid. The as-prepared amorphous, red selenium (a-Se) particles were neither a stable phase nor were they colloidally stable. Due to phase transition to crystalline (trigonal), grey selenium (t-Se) at or even below room temperature, the particles merged rapidly and recrystallized as micronsized crystal needles. As a consequence, such Se particles were not suited for layer deposition and as a precursor to manufacture thin-film CIS (copper indium selenide/CuInSe2) solar cells. To overcome this restriction, Se@CuSe core@shell particles are presented here. For these Se@CuSe core@shell nanoparticles, the phase transition a-Se→t-Se is shifted to temperatures higher than 100°C. Moreover, a spherical shape of the particles is retained even after phase transition. Composition and structure of the Se@CuSe core@shell nanostructure are evidenced by electron microscopy (SEM/STEM), DLS, XRD, FT-IR and line-scan EDXS. As a conceptual study, the newly formed Se@CuSe core@shell nanostructures with CuSe acting as a protecting layer to increase the phase-transition temperature and to improve the colloidal stability were used as a selenium precursor for manufacturing of thin-film CIS solar cells and already lead to conversion efficiencies up to 3%.

  12. Free Reducing Agent, One Pot, and Two Steps Synthesis of Ag@SiO2 Core-shells using Microwave Irradiation

    Directory of Open Access Journals (Sweden)

    M. Karimipour

    2016-10-01

    Full Text Available In this work a new method for the fabrication of Ag@SiO2 nanoparticles have been proposed that is completely different from Stober method. Ag nanoparticles were synthesized using microwave irradiation. polyvinylpyrrolidone was used as stabilizer and capping agent, 3-Aminopropyltriethoxysilane as functionalizer of silver particles in fully ethanol solution. The Ag nanoparticles were used subsequently without any subtraction and treatment in the preparation of Ag@SiO2 core-shell nanoparticles. UV-Vis spectroscopy shows a characteristic plasmon peak at 400 nm and 430 nm for Ag nanoparticles and Ag@SiO2 core-shells. Transmission electron microscope images show that Ag nanoparticles have the average size of 10 nm. It is also depicted that SiO2 shell structure was formed uniformly with the average size of 10 nm. The application of 3-Aminopropyltriethoxysilane in the preparation of core-shells yields single Ag core structure.

  13. Sol-gel synthesis and photoluminescence properties of BaSO_4/Y_2O_3:Eu~(3+) core-shell submicrospheres

    Institute of Scientific and Technical Information of China (English)

    张明; 李新海; 王志兴; 胡启阳; 李金辉; 刘婉蓉

    2009-01-01

    Europium-doped nanocrystalline Y2O3 phosphor layers were coated on the surface of preformed submicron BaSO4 spheres via the sol-gel process.The obtained BaSO4/Y2O3:Eu3+ core-shell phosphors were characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),energy dispersive spectroscopy(EDS) and photoluminescence spectra.The results showed that the obtained BaSO4/Y2O3:Eu3+ core-shell phosphors consisted of well-dispersed submicron spherical particles with na...

  14. Effect of Core-Shell Ag@TiO2 Volume Ratio on Characteristics of TiO2-Based DSSCs

    OpenAIRE

    Ho Chang; Chih-Hao Chen; Mu-Jung Kao; Hsin-Han Hsiao

    2014-01-01

    This paper aims to develop photoanode material required by dye-sensitized solar cells. The material prepared is in the form of Ag@TiO2 core-shell-type nanocomposites. This material is used to replace the titanium oxide powder commonly used in general DSSCs. The prepared Ag@TiO2 core-shell-type nanocomposites are mixed with Degussa P25 TiO2 in different proportions. Triton X-100 is added and polyethylene glycol (PEG) at 20 wt% is used as a polymer additive. This study tests the particle size a...

  15. Three-dimensional fabrication and characterisation of core-shell nano-columns using electron beam patterning of Ge-doped SiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Gontard, Lionel C. [Instituto de Ciencia de Materiales de Sevilla (CSIC), 41092 Sevilla (Spain); Jinschek, Joerg R. [FEI Europe, Achtseweg Noord 5, 5600 KA Eindhoven (Netherlands); Ou Haiyan [Department of Photonics, Technical University of Denmark, DK-2800 Kongens Lyngby (Denmark); Verbeeck, Jo [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Dunin-Borkowski, Rafal E. [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Gruenberg Institute, Forschungszentrum Juelich, D-52425 Juelich (Germany)

    2012-06-25

    A focused electron beam in a scanning transmission electron microscope (STEM) is used to create arrays of core-shell structures in a specimen of amorphous SiO{sub 2} doped with Ge. The same electron microscope is then used to measure the changes that occurred in the specimen in three dimensions using electron tomography. The results show that transformations in insulators that have been subjected to intense irradiation using charged particles can be studied directly in three dimensions. The fabricated structures include core-shell nano-columns, sputtered regions, voids, and clusters.

  16. Process-Dependent Properties in Colloidally Synthesized “Giant” Core/Shell Nanocrystal Quantum Dots

    Energy Technology Data Exchange (ETDEWEB)

    Hollingsworth, Jennifer A. [Los Alamos National Laboratory; Ghosh, Yagnaseni [Los Alamos National Laboratory; Dennis, Allison M. [Los Alamos National Laboratory; Mangum, Benjamin D. [Los Alamos National Laboratory; Park, Young-Shin [Los Alamos National Laboratory; Kundu, Janardan [Los Alamos National Laboratory; Htoon, Han [Los Alamos National Laboratory

    2012-06-07

    Due to their characteristic bright and stable photoluminescence, semiconductor nanocrystal quantum dots (NQDs) have attracted much interest as efficient light emitters for applications from single-particle tracking to solid-state lighting. Despite their numerous enabling traits, however, NQD optical properties are frustratingly sensitive to their chemical environment, exhibit fluorescence intermittency ('blinking'), and are susceptible to Auger recombination, an efficient nonradiative decay process. Previously, we showed for the first time that colloidal CdSe/CdS core/shell nanocrystal quantum dots (NQDs) comprising ultrathick shells (number of shell monolayers, n, > 10) grown by protracted successive ionic layer adsorption and reaction (SILAR) leads to remarkable photostability and significantly suppressed blinking behavior as a function of increasing shell thickness. We have also shown that these so-called 'giant' NQDs (g-NQDs) afford nearly complete suppression of non-radiative Auger recombination, revealed in our studies as long biexciton lifetimes and efficient multiexciton emission. The unique behavior of this core/shell system prompted us to assess correlations between specific physicochemical properties - beyond shell thickness - and functionality. Here, we demonstrate the ability of particle shape/faceting, crystalline phase, and core size to determine ensemble and single-particle optical properties (quantum yield/brightness, blinking, radiative lifetimes). Significantly, we show how reaction process parameters (surface-stabilizing ligands, ligand:NQD ratio, choice of 'inert' solvent, and modifications to the SILAR method itself) can be tuned to modify these function-dictating NQD physical properties, ultimately leading to an optimized synthetic approach that results in the complete suppression of blinking. We find that the resulting 'guiding principles' can be applied to other NQD compositions, allowing us to

  17. Core-size-dependent catalytic properties of bimetallic Au/Ag core-shell nanoparticles.

    Science.gov (United States)

    Haldar, Krishna Kanta; Kundu, Simanta; Patra, Amitava

    2014-12-24

    Bimetallic core-shell nanoparticles have recently emerged as a new class of functional materials because of their potential applications in catalysis, surface enhanced Raman scattering (SERS) substrate and photonics etc. Here, we have synthesized Au/Ag bimetallic core-shell nanoparticles with varying the core diameter. The red-shifting of the both plasmonic peaks of Ag and Au confirms the core-shell structure of the nanoparticles. Transmission electron microscopy (TEM) analysis, line scan EDS measurement and UV-vis study confirm the formation of core-shell nanoparticles. We have examined the catalytic activity of these core-shell nanostructures in the reaction between 4-nitrophenol (4-NP) and NaBH4 to form 4-aminophenol (4-AP) and the efficiency of the catalytic reaction is found to be increased with increasing the core size of Au/Ag core-shell nanocrystals. The catalytic efficiency varies from 41.8 to 96.5% with varying core size from 10 to 100 nm of Au/Ag core-shell nanoparticles, and the Au100/Ag bimetallic core-shell nanoparticle is found to be 12-fold more active than that of the pure Au nanoparticles with 100 nm diameter. Thus, the catalytic properties of the metal nanoparticles are significantly enhanced because of the Au/Ag core-shell structure, and the rate is dependent on the size of the core of the nanoparticles.

  18. Hybrid carbon nanoparticles modified core-shell silica: a high efficiency carbon-based phase for hydrophilic interaction liquid chromatography.

    Science.gov (United States)

    Ibrahim, Mohammed E A; Wahab, M Farooq; Lucy, Charles A

    2014-04-11

    Hydrophilic interaction liquid chromatography (HILIC) is a fast growing separation technique for hydrophilic and polar analytes. In this work, we combine the unique selectivity of carbon surfaces with the high efficiency of core-shell silica. First, 5 μm core-shell silica is electrostatically coated with 105 nm cationic latex bearing quaternary ammonium groups. Then 50 nm anionic carbon nanoparticles are anchored onto the surface of the latex coated core-shell silica particles to produce a hybrid carbon-silica phase. The hybrid phase shows different selectivity than ten previously classified HILIC column chemistries and 36 stationary phases. The hybrid HILIC phase has shape selectivity for positional isomeric pairs (phthalic/isophthalic and 1-naphthoic/2-naphthoic acids). Fast and high efficiency HILIC separations of biologically important carboxylates, phenols and pharmaceuticals are reported with efficiencies up to 85,000 plates m(-1). Reduced plate height of 1.9 (95,000 plates m(-1)) can be achieved. The hybrid phase is stable for at least 3 months of usage and storage under typical HILIC eluents.

  19. Core-shell structured titanium-nitrogen alloys with high strength, high thermal stability and good plasticity.

    Science.gov (United States)

    Zhang, Y S; Zhao, Y H; Zhang, W; Lu, J W; Hu, J J; Huo, W T; Zhang, P X

    2017-01-06

    Multifunctional materials with more than two good properties are widely required in modern industries. However, some properties are often trade-off with each other by single microstructural designation. For example, nanostructured materials have high strength, but low ductility and thermal stability. Here by means of spark plasma sintering (SPS) of nitrided Ti particles, we synthesized bulk core-shell structured Ti alloys with isolated soft coarse-grained Ti cores and hard Ti-N solid solution shells. The core-shell Ti alloys exhibit a high yield strength (~1.4 GPa) comparable to that of nanostructured states and high thermal stability (over 1100 °C, 0.71 of melting temperature), contributed by the hard Ti-N shells, as well as a good plasticity (fracture plasticity of 12%) due to the soft Ti cores. Our results demonstrate that this core-shell structure offers a design pathway towards an advanced material with enhancing strength-plasticity-thermal stability synergy.

  20. Core-shell structured titanium-nitrogen alloys with high strength, high thermal stability and good plasticity

    Science.gov (United States)

    Zhang, Y. S.; Zhao, Y. H.; Zhang, W.; Lu, J. W.; Hu, J. J.; Huo, W. T.; Zhang, P. X.

    2017-01-01

    Multifunctional materials with more than two good properties are widely required in modern industries. However, some properties are often trade-off with each other by single microstructural designation. For example, nanostructured materials have high strength, but low ductility and thermal stability. Here by means of spark plasma sintering (SPS) of nitrided Ti particles, we synthesized bulk core-shell structured Ti alloys with isolated soft coarse-grained Ti cores and hard Ti-N solid solution shells. The core-shell Ti alloys exhibit a high yield strength (~1.4 GPa) comparable to that of nanostructured states and high thermal stability (over 1100 °C, 0.71 of melting temperature), contributed by the hard Ti-N shells, as well as a good plasticity (fracture plasticity of 12%) due to the soft Ti cores. Our results demonstrate that this core-shell structure offers a design pathway towards an advanced material with enhancing strength-plasticity-thermal stability synergy.

  1. Periodic mesoporous organosilica (PMO) materials with uniform spherical core-shell structure.

    Science.gov (United States)

    Haffer, Stefanie; Tiemann, Michael; Fröba, Michael

    2010-09-10

    We report the synthesis of monodisperse, spherical periodic mesoporous organosilica (PMO) materials. The particles have diameters between about 350 and 550 nm. They exhibit a regular core-shell structure with a solid, non-porous silica core and a mesoporous PMO shell with a thickness of approximately 75 nm and uniform pores of about 1.7 nm. The synthesis of the core and the shell is carried out in a one-pot, two-stage synthesis and can be accomplished at temperatures between 25 and 100 °C. Higher synthesis temperatures lead to substantial shrinking of the solid core, generating an empty void between core and shell. This leads to interesting cavitation phenomena in the nitrogen physisorption analysis at 77.4 K.

  2. Core-shell gold J-aggregate nanoparticles for highly efficient strong coupling applications

    Science.gov (United States)

    Djoumessi Lekeufack, Diane; Brioude, Arnaud; Coleman, Anthony W.; Miele, Philippe; Bellessa, Joel; De Zeng, Li; Stadelmann, Pierre

    2010-06-01

    We have developed a straightforward synthetic route to prepare core-shell systems based on gold nanoparticles (NPs) surrounded with J-aggregates molecules. This synthesis allows the direct and efficient coating, at room temperature, of pretreated citrate-stabilized gold NPs with 5, 5', 6, 6'-tetrachloro-1-1'-diethyl-3, 3'-di (4-sulfobutyl)-benzimidazolocarbocyanine (TDBC), without supplementary adding of salts and bases during the synthesis. As the size of gold particle is tunable, the precise optimization of the strong coupling between the electronic transitions of organic components (TDBC) and the plasmon modes of the gold NPs is achieved corresponding to a Rabi energy of 220 meV, a value not yet obtained in such a system.

  3. Transition from core-shell to Janus chemical configuration for bimetallic nanoparticles

    Science.gov (United States)

    Langlois, Cyril; Li, Z. L.; Yuan, Jun; Alloyeau, Damien; Nelayah, Jaysen; Bochicchio, Davide; Ferrando, Riccardo; Ricolleau, Christian

    2012-05-01

    In order to determine the possibilities to control the chemical configuration of bimetallic nanoparticles, we have considered CuAg nanoparticles synthesized by a physical route as a model in this study. The synthesis was made by pulsed laser deposition under ultra-high vacuum conditions, via a sequential deposition procedure. We show that the temperature of the substrate and the absolute quantity of Ag in a particle are the main parameters that drive the chemical configuration. To explain the transition from a core-shell configuration to a Janus configuration as a function of Ag quantity, we have conducted density-functional theory calculations and atomistic molecular dynamics simulations to investigate the stability of this system. The results are presented together with the experimental observations.

  4. Core/shell quantum dot based luminescent solar concentrators with reduced reabsorption and enhanced efficiency.

    Science.gov (United States)

    Coropceanu, Igor; Bawendi, Moungi G

    2014-07-09

    CdSe/CdS core/shell quantum dots (QDs) have been optimized toward luminescent solar concentration (LSC) applications. Systematically increasing the shell thickness continuously reduced reabsorption up to a factor of 45 for the thickest QDs studied (with ca. 14 monolayers of CdS) compared to the initial CdSe cores. Moreover, an improved synthetic method was developed that retains a high-fluorescence quantum yield, even for particles with the thickest shell volume, for which a quantum yield of 86% was measured in solution. These high quantum yield thick shell quantum dots were embedded in a polymer matrix, yielding highly transparent composites to serve as prototype LSCs, which exhibited an optical efficiency as high as 48%. A Monte Carlo simulation was developed to model LSC performance and to identify the major loss channels for LSCs incorporating the materials developed. The results of the simulation are in excellent agreement with the experimental data.

  5. Platinum-tin oxide core-shell catalysts for efficient electro-oxidation of ethanol.

    Science.gov (United States)

    Du, Wenxin; Yang, Guangxing; Wong, Emily; Deskins, N Aaron; Frenkel, Anatoly I; Su, Dong; Teng, Xiaowei

    2014-08-06

    Platinum-tin (Pt/Sn) binary nanoparticles are active electrocatalysts for the ethanol oxidation reaction (EOR), but inactive for splitting the C-C bond of ethanol to CO2. Here we studied detailed structure properties of Pt/Sn catalysts for the EOR, especially CO2 generation in situ using a CO2 microelectrode. We found that composition and crystalline structure of the tin element played important roles in the CO2 generation: non-alloyed Pt46-(SnO2)54 core-shell particles demonstrated a strong capability for C-C bond breaking of ethanol than pure Pt and intermetallic Pt/Sn, showing 4.1 times higher CO2 peak partial pressure generated from EOR than commercial Pt/C.

  6. INTERACTION OF ANTIGEN AND ANTIBODY ON CORE-SHELL POLYMERIC MICROSPHERES

    Institute of Scientific and Technical Information of China (English)

    Gang Li; Qing-bin Meng; Zhan-yong Li; Ying-li An; Xiao-xia Zhu

    2011-01-01

    Monodispersed microspheres with polystyrene as the core and poly(acrylamide-co-N-acryloxysuccinimide) as the shell were synthesized by a two-step surfactant-free emulsion copolymerization. The core-shell morphology of the microspheres was shown by scanning electron microscopy and transmission electron microscopy. Rabbit immunoglobulin G (as antigen) was covalently coupled onto the microspheres by the reaction between succinimide-activated ester groups on the shell of the microspheres and amino groups of the antigen molecules. The size of particles was characterized by dynamic light scattering technique and was found to vary upon bioconjugation and interaction with proteins. The binding process was shown to be specific to goat anti-rabbit immunoglobulin G (as antibody) and reversible upon the addition of free antigen into the system.

  7. Design rules for core/shell nanowire resonant emitters

    Science.gov (United States)

    Kim, Da-Som; Kim, Sun-Kyung

    2017-01-01

    We study design principles to boost the extraction of light from core/shell GaN nanowire optical emitters. A full-vectorial electromagnetic simulation reveals that the extraction efficiency of an emitter within a nanowire cavity depends strongly on its position; the efficiency becomes maximized as the emitter's location approaches the center of the structure. The total extraction of light is sinusoidally modulated by the nanowire diameter, which is directly correlated with optical resonances. The introduction of a conformal dielectric coating on a nanowire leads to a dramatic enhancement in the extraction efficiency, which results from an increase in side emission owing to an optical antenna effect. A simple high-refractive-index dielectric coating approximately doubles the total extraction efficiency of a nanowire LED. These numerical findings will be valuable in providing strategies for high-efficiency nanowire-based optical emitters.

  8. Stability of core-shell nanowires in selected model solutions

    Science.gov (United States)

    Kalska-Szostko, B.; Wykowska, U.; Basa, A.; Zambrzycka, E.

    2015-03-01

    This paper presents the studies of stability of magnetic core-shell nanowires prepared by electrochemical deposition from an acidic solution containing iron in the core and modified surface layer. The obtained nanowires were tested according to their durability in distilled water, 0.01 M citric acid, 0.9% NaCl, and commercial white wine (12% alcohol). The proposed solutions were chosen in such a way as to mimic food related environment due to a possible application of nanowires as additives to, for example, packages. After 1, 2 and 3 weeks wetting in the solutions, nanoparticles were tested by Infrared Spectroscopy, Atomic Absorption Spectroscopy, Transmission Electron Microscopy and X-ray diffraction methods.

  9. Germanium-silicon alloy and core-shell nanocrystals by gas phase synthesis.

    Science.gov (United States)

    Mehringer, Christian; Kloner, Christian; Butz, Benjamin; Winter, Benjamin; Spiecker, Erdmann; Peukert, Wolfgang

    2015-03-12

    In this work we present a novel route to synthesize well defined germanium-silicon alloy (GexSi1-x) and core-shell nanocrystals (NCs) employing monosilane (SiH4) and monogermane (GeH4) as precursors in a continuously operated two-stage hot-wall aerosol reactor setup. The first hot-wall reactor stage (HWR I) is used to produce silicon (Si) seed particles from SiH4 pyrolysis in Argon (Ar). The resulting seeding aerosol is fed into the second reactor stage (HWR II) and a mixture of SiH4 and GeH4 is added. The ratio of the precursors in the feed, their partial pressures, the synthesis temperature in HWR II and the overall pressure are varied depending on the desired morphology and composition. Alloy particle production is achieved in the heterogeneous surface reaction regime, meaning that germanium (Ge) and Si are deposited on the seed surface simultaneously. The NCs can be synthesized with any desired composition, whilst maintaining a mean diameter around 30 nm with a geometric standard deviation (GSD) around 1.25. The absorption behavior and the related fundamental optical band gap energy in dependence on the alloy composition are exemplarily presented. They prove the possibility to tailor NC properties for electronical and opto-electronical applications. In the homogeneous gas phase reaction regime facetted Ge-Si core-shell structures are accessible. The Ge deposition on the seeds precedes the Si deposition due to different gas phase reaction kinetics of the precursors. The Si layer grows epitaxially on the Ge core and is around 5 nm thick.

  10. Vertical Ge/Si Core/Shell Nanowire Junctionless Transistor.

    Science.gov (United States)

    Chen, Lin; Cai, Fuxi; Otuonye, Ugo; Lu, Wei D

    2016-01-13

    Vertical junctionless transistors with a gate-all-around (GAA) structure based on Ge/Si core/shell nanowires epitaxially grown and integrated on a ⟨111⟩ Si substrate were fabricated and analyzed. Because of efficient gate coupling in the nanowire-GAA transistor structure and the high density one-dimensional hole gas formed in the Ge nanowire core, excellent P-type transistor behaviors with Ion of 750 μA/μm were obtained at a moderate gate length of 544 nm with minimal short-channel effects. The experimental data can be quantitatively modeled by a GAA junctionless transistor model with few fitting parameters, suggesting the nanowire transistors can be fabricated reliably without introducing additional factors that can degrade device performance. Devices with different gate lengths were readily obtained by tuning the thickness of an etching mask film. Analysis of the histogram of different devices yielded a single dominate peak in device parameter distribution, indicating excellent uniformity and high confidence of single nanowire operation. Using two vertical nanowire junctionless transistors, a PMOS-logic inverter with near rail-to-rail output voltage was demonstrated, and device matching in the logic can be conveniently obtained by controlling the number of nanowires employed in different devices rather than modifying device geometry. These studies show that junctionless transistors based on vertical Ge/Si core/shell nanowires can be fabricated in a controlled fashion with excellent performance and may be used in future hybrid, high-performance circuits where bottom-up grown nanowire devices with different functionalities can be directly integrated with an existing Si platform.

  11. Molecular dynamics study on core-shell structure stability of aluminum encapsulated by nano-carbon materials

    Science.gov (United States)

    Yi, Qingwen; Xu, Jingcheng; Liu, Yi; Zhai, Dong; Zhou, Kai; Pan, Deng

    2017-02-01

    A ReaxFF reactive forcefield for aluminum-carbon composite system has been developed to investigate structural stability and thermal decomposition mechanism of nano-carbon materials coating aluminum particles. Research results indicated the Al@C particles were structurally stable in a broad temperature range from room temperature up to 2735 K. In particular, the broken carbon cage self-healed to reconstruct a more stable Al@C core-shell structure after Al atoms sequentially departing from carbon cage during thermal decomposition, proffering an effective protection for aluminum surface-activeness.

  12. Design and characterization of core-shell mPEG-PLGA composite microparticles for development of cell-scaffold constructs.

    Science.gov (United States)

    Wen, Yanhong; Gallego, Monica Ramos; Nielsen, Lene Feldskov; Jorgensen, Lene; Møller, Eva Horn; Nielsen, Hanne Mørck

    2013-09-01

    Appropriate scaffolds capable of providing suitable biological and structural guidance are of great importance to generate cell-scaffold constructs for cell-based tissue engineering. The aim of the present study was to develop composite microparticles with a structure to provide functionality as a combined drug delivery/scaffold system. Composite microparticles were produced by incorporating either alginate/dermatan sulfate (Alg/DS) or alginate/chitosan/dermatan sulfate (Alg/CS/DS) particles in mPEG-PLGA microparticles using coaxial ultrasonic atomization. The encapsulation and distribution of Alg/DS or Alg/CS/DS particles in the mPEG-PLGA microparticles were significantly dependent on the operating conditions, including the flow rate ratio (Qout/Qin) and the viscosity of the polymer solutions (Vout, Vin) between the outer and the inner feeding channels. The core-shell composite microparticles containing the Alg/DS particles or the Alg/CS/DS particles displayed 40% and 65% DS release in 10 days, respectively, as compared to the DS directly loaded microparticles showing 90% DS release during the same time interval. The release profiles of DS correlate with the cell proliferation of fibroblasts, i.e. more sustainable cell growth was induced by the DS released from the core-shell composite microparticles comprising Alg/CS/DS particles. After seeding fibroblasts onto the composite microparticles, excellent cell adhesion was observed, and a successful assembly of the cell-scaffold constructs was induced within 7 days. Therefore, the present study demonstrates a novel strategy for fabrication of core-shell composite microparticles comprising additional particulate drug carriers in the core, which provides controlled delivery of DS and favorable cell biocompatibility; an approach to potentially achieve cell-based tissue regeneration.

  13. Sensitized solar cells with colloidal PbS-CdS core-shell quantum dots

    NARCIS (Netherlands)

    Lai, Lai-Hung; Protesescu, Loredana; Kovalenko, Maksym V.; Loi, Maria A.

    2014-01-01

    We report on the fabrication of PbS-CdS (core-shell) quantum dot (QD)-sensitized solar cells by direct adsorption of core-shell QDs on mesoporous TiO2 followed by 3-mercaptopropionic acid ligand exchange. PbS-CdS QD-sensitized solar cells show 4 times higher efficiency with respect to solar cells se

  14. Sensitized solar cells with colloidal PbS-CdS core-shell quantum dots

    NARCIS (Netherlands)

    Lai, Lai-Hung; Protesescu, Loredana; Kovalenko, Maksym V.; Loi, Maria A.

    2014-01-01

    We report on the fabrication of PbS-CdS (core-shell) quantum dot (QD)-sensitized solar cells by direct adsorption of core-shell QDs on mesoporous TiO2 followed by 3-mercaptopropionic acid ligand exchange. PbS-CdS QD-sensitized solar cells show 4 times higher efficiency with respect to solar cells

  15. CNTs/mesostructured silica core-shell nanowires via interfacial surfactant templating

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lei; QIAO ShiZhang; YAN ZiFeng; ZHENG HuaJun; LI Li; DING RongGang; LU GaoQing(Max)

    2009-01-01

    Carbon nanotubes (CNTs)/mesostructured silica core-shell nanowires with a carbon nanotube core and controllable highly ordered periodic mesoporous silica shell are syntheiszed via the interfacial surfac-tant template. The core-shell nanowires are characterized by transmission electron microscope (TEM), X-ray diffraction pattern (XRD) and nitrogen sorption/desorption. The results indicate that the core-shell nanowires have highly ordered periodic mesoporous silica shell (space group p6mm), high BET sur-face area and narrow pore size distribution. Moreover, the morphology of core-shell nanowires can be controlled by the pH value. The core-shell nanowires have promising applications in biosensors, nanoprobes and energy storage due to their good dispersibility in polar solvents.

  16. Study on the effect of electrostatic interaction on core-shell nanoparticles preparation with microemulsion technique

    Institute of Scientific and Technical Information of China (English)

    HE Xiaoxiao; WANG Kemin; TAN Weihong; CHEN Jiyun; DUAN Jinghua; YUAN Yin; LIN Xia

    2005-01-01

    The routine method for preparation of silica core-shell nanoparticles (NPs) is to carry out nucleation and shell coating through the hydrolysis of silane in water in oil (W/O) microemulsion to form three-dimensional netted silica shell. We found that electrostatic interaction of the core materials with shell materials would determine whether the stable core-shell silica NPs formed or not. The traditional important factors such as molecular weight of core materials or the thickness of the shell have no obvious relationship with it. And the stability of the core-shell silica NPs can be improved after changing the electric charge polarity by regulating the experiment condition of relevant materials if some core materials cannot be doped inside to form the stable core-shell silica NPs based on the traditional method, which provided experimental and theoretic foundation for preparation and application of the core-shell silica NPs.

  17. Influence of clay particles on microfluidic-based preparation of hydrogel composite microsphere

    Science.gov (United States)

    Hong, Joung Sook

    2016-05-01

    For the successful fabrication of a hydrogel composite microsphere, this study aimed to investigate the influence of clay particles on microsphere formation in a microfluidic device which has flow focusing and a 4.5:1 contraction channel. A poly alginic acid solution (2.0 wt.%) with clay particles was used as the dispersed phase to generate drops in an oil medium, which then merged with drops of a CaCl2 solution for gelation. Drop generations were observed with different flow rates and particles types. When the flow rate increased, drop generation was enhanced and drop size decreased by the build-up of more favorable hydrodynamic flow conditions to detach the droplets. The addition of a small amount of particles insignificantly changed the drop generation behavior even though it reduced interfacial tension and increased the viscosity of the solution. Instead, clays particles significantly affected hydro-gelation depending on the hydrophobicity of particles, which produced further heterogeneity in the shape and size of microsphere.

  18. Emergence of cluster structures and collectivity within a no-core shell-model framework

    Science.gov (United States)

    Launey, K. D.; Dreyfuss, A. C.; Draayer, J. P.; Dytrych, T.; Baker, R.

    2014-12-01

    An innovative symmetry-guided concept, which capitalizes on partial as well as exact symmetries that underpin the structure of nuclei, is discussed. Within this framework, ab initio applications of the theory to light nuclei reveal the origin of collective modes and the emergence a simple orderly pattern from first principles. This provides a strategy for determining the nature of bound states of nuclei in terms of a relatively small fraction of the complete shell-model space, which, in turn, can be used to explore ultra-large model spaces for a description of alpha-cluster and highly deformed structures together with the associated rotations. We find that by using only a fraction of the model space extended far beyond current no-core shell-model limits and a long-range interaction that respects the symmetries in play, the outcome reproduces characteristic features of the low-lying 0+ states in 12 C (including the elusive Hoyle state and its 2+ excitation) and agrees with ab initio results in smaller spaces. This is achieved by selecting those particle configurations and components of the interaction found to be foremost responsible for the primary physics governing clustering phenomena and large spatial deformation in the ground-state and Hoyle-state rotational bands of 12 C. For these states, we offer a novel perspective emerging out of no-core shell-model considerations, including a discussion of associated nuclear deformation, matter radii, and density distribution. The framework we find is also extensible to negative-parity states (e.g., the 3-1 state in 12C) and beyond, namely, to the low-lying 0+ states of 8Be as well as the ground-state rotational band of Ne, Mg, and Si isotopes. The findings inform key features of the nuclear interaction and point to a new insight into the formation of highly-organized simple patterns in nuclear dynamics.

  19. Preparation and application of cross-linked core-shell PBA/PS and PBA/PMMA nanoparticles

    Institute of Scientific and Technical Information of China (English)

    Zeng Zhong; Yu Jian; Guo Zhaoxia; Li Ying

    2006-01-01

    This paper reports the preparation of crosslinked core-shell poly(butyl acrylate )/polystyrene (PBA/PS)and poly(butyl acrylate)/poly(methyl methacrylate) (PBA/PMMA) nanoparticles via seeded emulsion polymerization and their application in nylon-based composites.A highly cross-linked structure was formed in both the cores and the shells by using a cross-linking agent,which could prevent the migration of hydrophobic PS shells tO the inside of particles.There were covalent bonds on the interfaces between the cores and the shells of both particles.The average particle sizes were 40-50 nm,and the size distributions were narrow.The kinetics of polymerization was investigated.Well-defined core-shell structure and narrow particle size distribution could be achieved under starved conditions of monomer feeding.Furthermore,PBA/PMMA particles were used to fill nylon 6,good dispersion was obtained because of the strong interfacial interaction between the nanoparticles and the nylon 6 matrix and the good deformation ability of nanoparticles,and the toughness and rigidity of the composites were improved evidently.

  20. Design, synthesis and applications of core-shell, hollow core, and nanorattle multifunctional nanostructures.

    Science.gov (United States)

    El-Toni, Ahmed Mohamed; Habila, Mohamed A; Labis, Joselito Puzon; ALOthman, Zeid A; Alhoshan, Mansour; Elzatahry, Ahmed A; Zhang, Fan

    2016-02-01

    With the evolution of nanoscience and nanotechnology, studies have been focused on manipulating nanoparticle properties through the control of their size, composition, and morphology. As nanomaterial research has progressed, the foremost focus has gradually shifted from synthesis, morphology control, and characterization of properties to the investigation of function and the utility of integrating these materials and chemical sciences with the physical, biological, and medical fields, which therefore necessitates the development of novel materials that are capable of performing multiple tasks and functions. The construction of multifunctional nanomaterials that integrate two or more functions into a single geometry has been achieved through the surface-coating technique, which created a new class of substances designated as core-shell nanoparticles. Core-shell materials have growing and expanding applications due to the multifunctionality that is achieved through the formation of multiple shells as well as the manipulation of core/shell materials. Moreover, core removal from core-shell-based structures offers excellent opportunities to construct multifunctional hollow core architectures that possess huge storage capacities, low densities, and tunable optical properties. Furthermore, the fabrication of nanomaterials that have the combined properties of a core-shell structure with that of a hollow one has resulted in the creation of a new and important class of substances, known as the rattle core-shell nanoparticles, or nanorattles. The design strategies of these new multifunctional nanostructures (core-shell, hollow core, and nanorattle) are discussed in the first part of this review. In the second part, different synthesis and fabrication approaches for multifunctional core-shell, hollow core-shell and rattle core-shell architectures are highlighted. Finally, in the last part of the article, the versatile and diverse applications of these nanoarchitectures in

  1. Design, synthesis and applications of core-shell, hollow core, and nanorattle multifunctional nanostructures

    Science.gov (United States)

    El-Toni, Ahmed Mohamed; Habila, Mohamed A.; Labis, Joselito Puzon; Alothman, Zeid A.; Alhoshan, Mansour; Elzatahry, Ahmed A.; Zhang, Fan

    2016-01-01

    With the evolution of nanoscience and nanotechnology, studies have been focused on manipulating nanoparticle properties through the control of their size, composition, and morphology. As nanomaterial research has progressed, the foremost focus has gradually shifted from synthesis, morphology control, and characterization of properties to the investigation of function and the utility of integrating these materials and chemical sciences with the physical, biological, and medical fields, which therefore necessitates the development of novel materials that are capable of performing multiple tasks and functions. The construction of multifunctional nanomaterials that integrate two or more functions into a single geometry has been achieved through the surface-coating technique, which created a new class of substances designated as core-shell nanoparticles. Core-shell materials have growing and expanding applications due to the multifunctionality that is achieved through the formation of multiple shells as well as the manipulation of core/shell materials. Moreover, core removal from core-shell-based structures offers excellent opportunities to construct multifunctional hollow core architectures that possess huge storage capacities, low densities, and tunable optical properties. Furthermore, the fabrication of nanomaterials that have the combined properties of a core-shell structure with that of a hollow one has resulted in the creation of a new and important class of substances, known as the rattle core-shell nanoparticles, or nanorattles. The design strategies of these new multifunctional nanostructures (core-shell, hollow core, and nanorattle) are discussed in the first part of this review. In the second part, different synthesis and fabrication approaches for multifunctional core-shell, hollow core-shell and rattle core-shell architectures are highlighted. Finally, in the last part of the article, the versatile and diverse applications of these nanoarchitectures in

  2. Fabrication of triple-layered magnetite/hydrogel/quantum dots via the molecular linkage of bi-functional diamines.

    Science.gov (United States)

    Lim, Sera; Lee, Sangwha

    2012-07-01

    A multifunctional biomedical agent with magnetism, pH-sensitive, fluorescent properties was fabricated as a triple-layered magnetite/hydrogel/quantum dots. First, core-shell magnetic silica nanospheres (Fe3O4@SiO2) were synthesized via the sol-gel reaction of magnetite clusters with tetraethyl orthosilicate (TEOS), and the resuting magnetic particles were encapsulated with poly(N-isopropylacrylamide-co-acrylic acid) hydrogels through a free radical polymerization. The hydrogel-encapsulated magnetic particles were subsequently anchored by quantum dots (QDs) via the molecular linkage of bi-functional diamines. Diamine molecules effecrively induced the crosslinking between magnetic hydrogels and quantum dots. Among diamine linkers with different chain lengths (C-4, C-8, and C-12), C-8 diamine (1,8-diaminooctane) produced the maximal PL intensity for QD-bound hydrogels, indicating that C-8 diamine was an optimal cross-linker between hydrogels and QDs with surface carboxylic acid groups. The characteristic properties of the multifunctional nanocomposites were analyzed by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), zeta-potential meter, and photoluminescence (PL) spectroscopy.

  3. Core-shell interaction and its impact on the optical absorption of pure and doped core-shell CdSe/ZnSe nanoclusters.

    Science.gov (United States)

    Wang, Xinqin; Cui, Yingqi; Yu, Shengping; Zeng, Qun; Yang, Mingli

    2016-04-07

    The structural, electronic, and optical properties of core-shell nanoclusters, (CdSe)(x)@(CdSe)(y) and their Zn-substituted complexes of x = 2-4 and y = 16-28, were studied with density functional theory calculations. The substitution was applied in the cores, the shells, and/or the whole clusters. All these clusters are characterized by their core-shell structures in which the core-shell interaction was found different from those in core or in shell, as reflected by their bondlengths, volumes, and binding energies. Moreover, the core and shell combine together to compose a new cluster with electronic and optical properties different from those of separated individuals, as reflected by their HOMO-LUMO gaps and optical absorptions. With the substitution of Cd by Zn, the structural, electronic, and optical properties of clusters change regularly. The binding energy increases with Zn content, attributed to the strong Zn-Se bonding. For the same core/shell, the structure with a CdSe shell/core has a narrower gap than that with a ZnSe shell/core. The optical absorption spectra also change accordingly with Zn substitution. The peaks blueshift with increasing Zn concentration, accompanying with shape variations in case large number of Cd atoms are substituted. Our calculations reveal the core-shell interaction and its influence on the electronic and optical properties of the core-shell clusters, suggesting a composition-structure-property relationship for the design of core-shell CdSe and ZnSe nanoclusters.

  4. Chemical reduction synthesis and ac field effect of iron based core-shell magnetic nanoparticles

    Science.gov (United States)

    Balakrishnan, Srinivasan; Bonder, Michael J.; Hadjipanayis, George C.

    2009-12-01

    High magnetization nanoparticles coated with a biocompatible polymer have attracted considerable interest in recent times as potential materials for biomedical applications associated with targeted drug delivery, detection and the treatment of cancer. This paper considers the use of sodium borohydride reduction of metal salts to form Fe based nanoparticles coated with carboxyl terminated polyethylene glycol (cPEG). By mixing the reactants in a Y-junction, the synthesis produces uniform nanoparticles in the size range 10-20 nm with a core-shell structure. The particles are subsequently coated with a 1-3 nm thick layer of cPEG. These nanoparticles are soft ferromagnets with Hc = 400 Oe. Exciting these nanoparticles with a 4 Oe, 500 kHz alternating magnetic field leads to particle heating with a maximal increase in the saturation temperature as the particle size is decreased. For the largest particles considered here, the temperature reaches 35 °C with a 10 mg sample mass whilst for the smallest nanoparticles considered the temperature exceeds 40 °C.

  5. Anisotropic SmCo5/FeCo core/shell nanocomposite chips prepared via electroless coating

    Directory of Open Access Journals (Sweden)

    Narayan Poudyal

    2015-08-01

    Full Text Available We report the preparation of anisotropic SmCo5/FeCo core/shell nanocomposite chip-like particles via an electroless coating process. The anisotropic SmCo5 nanoscale chips were first prepared by surfactant-assisted ball milling then coated with soft magnetic FeCo using cobalt sulfate (CoSO4.7H2O and iron sulfate (FeSO4.7H2O as metal precursors in presence of complexing agents. The influence of the soft-phase coating on the magnetic properties of the nanocomposite particles has been studied. The saturation magnetization of the composite particles increases with increasing coating while the coercivity decreases. The FeCo coated chips have an enhanced remanence (Mr = 44.5 emu/g with 16 wt % of FeCo compared to the uncoated chips (Mr = 36.7 emu/g, indicating exchange coupling between the hard and soft phases for the optimal soft-phase coating. Results of magnetic field alignment show the strong anisotropy of SmCo5/FeCo core/shell nanocomposite particles which can be used as building blocks of high-strength anisotropic magnets.

  6. Enhanced oxidation stability of quasi core-shell alloyed CdSeS quantum dots prepared through aqueous microwave synthesis technique.

    Science.gov (United States)

    Zhan, Hong-Ju; Zhou, Pei-Jiang; Ma, Rong; Liu, Xi-Jing; He, Yu-Ning; Zhou, Chuan-Yun

    2014-01-01

    Quasi core shell alloyed CdSeS quantum dots (QDs) have been prepared through a facile aqueous-phase route employing microwave irradiation technique. The optical spectroscopy and structure characterization evidenced the quasi core shell alloyed structures of CdSeS QDs. The X-ray diffraction patterns of the obtained CdSeS QDs displayed peak positions very close to those of bulk cubic CdS crystal structures and the result of X-ray photoelectron spectroscopy data re-confirmed the thick CdS shell on the CdSe core. The TEM images and HRTEM images of the CdSeS QDs ascertained the well-defined spherical particles and a relatively narrow size distribution. On the basis, the stability of the obtained QDs in an oxidative environment was also discussed using etching reaction by H2O2. The experiments result showed the as-prepared QDs present high tolerance towards H2O2, obviously superior to the commonly used CdTe QDs and core-shell CdTe/CdS QDs, which was attributed to the unique quasi core-shell CdSeS crystal structure and the small lattice mismatch between CdSe and CdS semiconductor materials. This assay provided insight to obtain high stable crystal structured semiconductor nanocrystals in the design and synthesis process.

  7. Atomistic tight-binding theory of excitonic splitting energies in CdX(X = Se, S and Te)/ZnS core/shell nanocrystals

    Science.gov (United States)

    Sukkabot, Worasak; Pinsook, Udomsilp

    2017-01-01

    Using the atomistic tight-binding theory (TB) and a configuration interaction description (CI), we numerically compute the excitonic splitting of CdX(X = Se, S and Te)/ZnS core/shell nanocrystals with the objective to explain how types of the core materials and growth shell thickness can provide the detailed manipulation of the dark-dark (DD), dark-bright (DB) and bright-bright (BB) excitonic splitting, beneficial for the active application of quantum information. To analyze the splitting of the excitonic states, the optical band gaps, ground-state wave function overlaps and atomistic electron-hole interactions tend to be numerically demonstrated. Based on the atomistic computations, the single-particle and excitonic gaps are mainly reduced with the increasing ZnS shell thickness owing to the quantum confinement. In the range of the higher to lower energies, the order of the single-particle gaps is CdSe/ZnS, CdS/ZnS and CdTe/ZnS core/shell nanocrystals, while one of the excitonic gaps is CdS/ZnS, CdSe/ZnS and CdTe/ZnS core/shell nanocrystals because of the atomistic electron-hole interaction. The strongest electron-hole interactions are mainly observed in CdSe/ZnS core/shell nanocrystals. In addition, the computational results underline that the energies of the dark-dark (DD), dark-bright (DB) and bright-bright (BB) excitonic splitting are generally reduced with the increasing ZnS growth shell thickness as described by the trend of the electron-hole exchange interaction. The high-to-low splitting of the excitonic states is demonstrated in CdSe/ZnS, CdTe/ZnS and CdS/ZnS core/shell nanocrystals because of the fashion in the electron-hole exchange interaction and overlaps of the electron-hole wave functions. As the resulting calculations, it is expected that CdS/ZnS core/shell nanocrystals are the best candidates to be the source of entangled photons. Finally, the comprehensive information on the excitonic splitting can enable the use of suitable core/shell

  8. Core-shell hexacyanoferrate for superior Na-ion batteries

    Science.gov (United States)

    Wan, Min; Tang, Yang; Wang, Lili; Xiang, Xinghua; Li, Xiaocheng; Chen, Kongyao; Xue, Lihong; Zhang, Wuxing; Huang, Yunhui

    2016-10-01

    Sodium iron hexacyanoferrate (Fe-HCF) is regarded as a potential cathode material for sodium-ion batteries (SIBs) due to its high specific capacity, low cost, facile synthesis and environmentally friendly. However, Fe-HCF always suffers from poor electronic conductivity, low crystallinity and side reactions with electrolyte, leading to poor rate performance, low coulombic efficiency and deterioration of cycling stability. Herein, we report a green and facile synthesis to encapsulate Fe-HCF microcubes with potassium nickel hexacyanoferrate (Ni-HCF). The core-shell Fe-HCF@Ni-HCF composite delivers a reversible capacity of 79.7 mAh g-1 at 200 mA g-1 after 800 cycles and a high coulombic efficiency of 99.3%. In addition, Fe-HCF@Ni-HCF exhibits excellent rate performance, retaining 60 mAh g-1 at 2000 mA g-1. The results show that Fe-HCF@Ni-HCF integrates the advantages of both Fe-HCF and Ni-HCF, making it electrochemically stable as cathode material for SIBs.

  9. Nonlocal dielectric effects in core-shell nanowires.

    Energy Technology Data Exchange (ETDEWEB)

    McMahon, J. M.; Gray, S. K.; Schatz, G. C. (Center for Nanoscale Materials); ( CSE); (Northwestern Univ.)

    2010-01-01

    We study the optical spectra and near fields of core-shell nanowires (nanoshells), using a recently developed finite-difference method that allows for a spatially nonlocal dielectric response. We first analyze the parameters of the nonlocal model by making comparisons with related experimental data and previous theoretical work. We then investigate how nonlocal effects are dependent on nanoshell features, such as shell thickness, overall size, and the ratio of core radius to shell radius. We demonstrate that the shell thickness along the longitudinal direction of the incident light is the primary controlling factor of nonlocal effects, which appear as anomalous absorption resonances and blueshifts in the localized surface plasmon resonance (LSPR) positions, relative to local theory. In addition, we show that the amount of blueshift depends on the order of the LSPR. The optical responses of nanoshells immersed in various refractive index (RI) environments are also studied. We show that the nonlocal anomalous absorption features are relatively insensitive to RI changes, but the blueshift of the dipolar LSPR varies nonlinearly.

  10. Recent Developments in No-Core Shell-Model Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Navratil, P; Quaglioni, S; Stetcu, I; Barrett, B R

    2009-03-20

    We present an overview of recent results and developments of the no-core shell model (NCSM), an ab initio approach to the nuclear many-body problem for light nuclei. In this aproach, we start from realistic two-nucleon or two- plus three-nucleon interactions. Many-body calculations are performed using a finite harmonic-oscillator (HO) basis. To facilitate convergence for realistic inter-nucleon interactions that generate strong short-range correlations, we derive effective interactions by unitary transformations that are tailored to the HO basis truncation. For soft realistic interactions this might not be necessary. If that is the case, the NCSM calculations are variational. In either case, the ab initio NCSM preserves translational invariance of the nuclear many-body problem. In this review, we, in particular, highlight results obtained with the chiral two- plus three-nucleon interactions. We discuss efforts to extend the applicability of the NCSM to heavier nuclei and larger model spaces using importance-truncation schemes and/or use of effective interactions with a core. We outline an extension of the ab initio NCSM to the description of nuclear reactions by the resonating group method technique. A future direction of the approach, the ab initio NCSM with continuum, which will provide a complete description of nuclei as open systems with coupling of bound and continuum states is given in the concluding part of the review.

  11. Fabrication of core-shell micro/nanoparticles for programmable dual drug release by emulsion electrospraying

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yazhou, E-mail: yazhou_wang@cqu.edu.cn; Zhang Yiqiong; Wang Bochu, E-mail: wangbc2000@126.com; Cao Yang [Chongqing University, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering (China); Yu Qingsong [University of Missouri, Department of Mechanical and Aerospace Engineering (United States); Yin Tieying [Chongqing University, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering (China)

    2013-06-15

    The study aimed at constructing a novel drug delivery system for programmable multiple drug release controlled with core-shell structure. The core-shell structure consisted of chitosan nanoparticles as core and polyvinylpyrrolidone micro/nanocoating as shell to form core-shell micro/nanoparticles, which was fabricated by ionic gelation and emulsion electrospray methods. As model drug agents, Naproxen and rhodamine B were encapsulated in the core and shell regions, respectively. The core-shell micro/nanoparticles thus fabricated were characterized and confirmed by scanning electron microscope, transmission electron microscope, and fluorescence optical microscope. The core-shell micro/nanoparticles showed good release controllability through drug release experiment in vitro. It was noted that a programmable release pattern for dual drug agents was also achieved by adjusting their loading regions in the core-shell structures. The results indicate that emulsion electrospraying technology is a promising approach in fabrication of core-shell micro/nanoparticles for programmable dual drug release. Such a novel multi-drug delivery system has a potential application for the clinical treatment of cancer, tuberculosis, and tissue engineering.

  12. A facile approach for cupric ion detection in aqueous media using polyethyleneimine/PMMA core-shell fluorescent nanoparticles

    Science.gov (United States)

    Chen, Jian; Zeng, Fang; Wu, Shuizhu; Su, Junhua; Zhao, Jianqing; Tong, Zhen

    2009-09-01

    A facile approach was developed to produce a dye-doped core-shell nanoparticle chemosensor for detecting Cu2+ in aqueous media. The core-shell nanoparticle sensor was prepared by a one-step emulsifier-free polymerization, followed by the doping of the fluorescent dye Nile red (9-diethylamino- 5H-benzo[alpha] phenoxazine-5-one, NR) into the particles. For the nanoparticles, the hydrophilic polyethyleneimine (PEI) chain segments serve as the shell and the hydrophobic polymethyl methacrylate (PMMA) constitutes the core of the nanoparticles. The non-toxic and biocompatible PEI chain segments on the nanoparticle surface exhibit a high affinity for Cu2+ ions in aqueous media, and the quenching of the NR fluorescence is observed upon binding of Cu2+ ions. This makes the core-shell nanoparticle system a water-dispersible chemosensor for Cu2+ ion detection. The quenching of fluorescence arises through intraparticle energy transfer (FRET) from the dye in the hydrophobic PMMA core to the Cu2+/PEI complexes on the nanoparticle surface. The energy transfer efficiency for PEI/PMMA particles with different diameters was determined, and it is found that the smaller nanoparticle sample exhibits higher quenching efficiency, and the limit for Cu2+ detection is 1 µM for a nanoparticle sample with a diameter of ~30 nm. The response of the fluorescent nanoparticle towards different metal ions was investigated and the nanoparticle chemosensor displays high selectivity and antidisturbance for the Cu2+ ion among the metal ions examined (Na+, K+, Mg2+, Ca2+, Zn2+, Hg2+, Mn2+, Fe2+, Ni2+, Co2+ and Pb2+). This emulsifier-free, biocompatible and sensitive fluorescent nanoparticle sensor may find applications in cupric ion detection in the biological and environmental areas.

  13. Microfluidic synthesis of Ag@Cu2O core-shell nanoparticles with enhanced photocatalytic activity.

    Science.gov (United States)

    Tao, Sha; Yang, Mei; Chen, Huihui; Ren, Mingyue; Chen, Guangwen

    2017-01-15

    A microfluidic-based method for the continuous synthesis of Ag@Cu2O core-shell nanoparticles (NPs) has been developed. It only took 32s to obtain Ag@Cu2O core-shell NPs, indicating a high efficiency of this microfluidic-based method. Triangular Ag nanoprisms were employed as the cores for the overgrowth of Cu2O through the reduction of Cu(OH)4(2-) with ascorbic acid. The as-synthesized samples were characterized by XRD, TEM, SEM, HAADF-STEM, EDX, HRTEM, UV-vis spectra and N2 adsorption-desorption. The characterization results revealed that the as-synthesized Ag@Cu2O core-shell NPs exhibited a well-defined core-shell nanostructure with a polycrystalline shell, which was composed of numbers of Cu2O domains epitaxially growing on the triangular Ag nanoprism. It was concluded that the synthesis parameters such as the molar ratio of trisodium citrate to AgNO3, H2O2 to AgNO3, NaOH to CuSO4, ascorbic acid to CuSO4 and AgNO3 to CuSO4 had significant effect on the synthesis of Ag@Cu2O core-shell NPs. Moreover, Ag@Cu2O core-shell NPs exhibited superior catalytic activity in comparison with pristine Cu2O NPs towards the visible light-driven degradation of methyl orange. This enhanced photocatalytic activity of Ag@Cu2O core-shell NPs was attributed to the larger BET surface area and improved charge separation efficiency. The trapping experiment indicated that holes and superoxide anion radicals were the major reactive species in the photodegradation of methyl orange over Ag@Cu2O core-shell NPs. In addition, Ag@Cu2O core-shell NPs showed no obvious deactivation in the cyclic test.

  14. Technology, science, and environtmental impact of a novel Cu-Ag core-shell solderless interconnect system

    Science.gov (United States)

    Kammer, Milea Joy

    Tin-based solder is ubiquitous in microelectronics manufacturing and plays a critical role in electronic packaging and attachment. While manufacturers of consumer electronics have made the transition to the use of lead-free solder, there are still a variety of reliability issues associated with these lead-free alternatives, particularly for high performance, high reliability applications. Because of these performance short-comings, researchers are still searching for a material, an alloy, or a unique alternative that can meet the thermal, mechanical, and electrical requirements for conventional reflow solder applications. In an effort to produce a more reliable alternative, Kim et al. proposed the low-temperature (200°C) sintering of copper-silver core-shell particles as a viable solderless interconnect technology. This technology is based on the silver atoms from the shell diffusing by surface diffusion to form sintered necks between copper particles, and therefore dewetting most of the copper surfaces. This study presents a 3-fold, in-depth evaluation of this Cu-Ag core-shell lead-free solderless interconnect technology focusing on solder paste development and prototyping, silver thin film stress relaxation and dewetting kinetics, and the environmental impacts associated with this new technology. First, an evaluation of the starting particle consistency and sintered compact mechanical properties determined that a specific core-shell particle geometry (1microm average core diameter and 10nm shell thickness) outperformed other combinations, exhibiting the highest modulus and yield strengths in sintered compacts, of 620 MPa and 40-60 MPa respectively. In particular, yield strengths for sintered compacts are similar to those reported for Sn-3.5Ag-0.75Cu (a commonly used lead-free solder) for the same strain rate. Following particle evaluations, the development of a functioning flux formulation was a key factor in the creation of a viable drop-in replacement. The

  15. Self-Assembly of Crystalline Structures of Magnetic Core-Shell Nanoparticles for Fabrication of Nanostructured Materials.

    Science.gov (United States)

    Xue, Xiaozheng; Wang, Jianchao; Furlani, Edward P

    2015-10-14

    A theoretical study is presented of the template-assisted formation of crystalline superstructures of magnetic-dielectric core-shell particles. The templates produce highly localized gradient fields and a corresponding magnetic force that guides the assembly with nanoscale precision in particle placement. The process is studied using two distinct and complementary computational models that predict the dynamics and energy of the particles, respectively. Both mono- and polydisperse colloids are studied, and the analysis demonstrates for the first time that although the particles self-assemble into ordered crystalline superstructures, the particle formation is not unique. There is a Brownian motion-induced degeneracy in the process wherein various distinct, energetically comparable crystalline structures can form for a given template geometry. The models predict the formation of hexagonal close packed (HCP) and face centered cubic (FCC) structures as well as mixed phase structures due to in-plane stacking disorders, which is consistent with experimental observations. The polydisperse particle structures are less uniform than the monodisperse particle structures because of the irregular packing of different-sized particles. A comparison of self-assembly using soft- and hard-magnetic templates is also presented, the former being magnetized in a uniform field. This analysis shows that soft-magnetic templates enable an order-of-magnitude more rapid assembly and much higher spatial resolution in particle placement than their hard-magnetic counterparts. The self-assembly method discussed is versatile and broadly applies to arbitrary template geometries and multilayered and multifunctional mono- and polydisperse core-shell particles that have at least one magnetic component. As such, the method holds potential for the bottom-up fabrication of functional nanostructured materials for a broad range of applications. This work provides unprecedented insight into the assembly

  16. Shape-dependent exchange bias effect in magnetic nanoparticles with core-shell morphology

    Science.gov (United States)

    Dimitriadis, V.; Kechrakos, D.; Chubykalo-Fesenko, O.; Tsiantos, V.

    2015-08-01

    We study the low-temperature isothermal magnetic hysteresis of cubical and spherical nanoparticles with ferromagnetic-core/antiferromagnetic-shell morphology, in order to elucidate the sensitivity of the exchange bias effect to the shape of the particles and the structural imperfections at the core-shell interface. We model the magnetic structure using a classical Heisenberg Hamiltonian with uniaxial anisotropy and simulate the hysteresis loop using the metropolis Monte Carlo algorithm. For nanoparticles with geometrically sharp interfaces, we find that cubes exhibit a higher coercivity and lower exchange bias field than spheres of the same size. With increasing interface roughness, the shape dependence of the characteristic fields gradually decays, and eventually, the distinction between cubical and spherical particles is lost for moderately rough interfaces. The sensitivity of the exchange bias field to the microstructural details of the interface is quantified by a scaling factor (b ) relating the bias field to the net moment of the antiferromagnetic shell (Heb=b MAF+Ho) . Cubical particles exhibit a lower sensitivity to the dispersed values of the net interfacial moment.

  17. Preparation, Properties, and Self-Assembly Behavior of PTFE-Based Core-Shell Nanospheres

    Directory of Open Access Journals (Sweden)

    Katia Sparnacci

    2012-01-01

    Full Text Available Nanosized PTFE-based core-shell particles can be prepared by emulsifier-free seed emulsion polymerization technique starting from spherical or rod-like PTFE seeds of different size. The shell can be constituted by the relatively high Tg polystyrene and polymethylmethacrylate as well as by low Tg polyacrylic copolymers. Peculiar thermal behavior of the PTFE component is observed due to the high degree of PTFE compartmentalization. A very precise control over the particle size can be exerted by properly adjusting the ratio between the monomers and the PTFE seed. In addition, the particle size distribution self-sharpens as the ratio monomer/PTFE increases. Samples with uniformity ratios suited to build 2D and 3D colloidal crystals are easily prepared. In particular, 2D colloidal crystal of spheres leads to very small 2D nanostructuration, useful for the preparation of masks with a combination of nanosphere lithography and reactive ion etching. 3D colloidal crystals were also obtained featuring excellent opal quality, which is a direct consequence of the monodispersity of colloids used for their growth.

  18. Facile synthesis of superhydrophobic TiO2/polystyrene core-shell microspheres

    Directory of Open Access Journals (Sweden)

    2011-01-01

    Full Text Available In this paper, core-shell TiO2/polystyrene (TiO2/PS microspheres with superhydrophobic properties were prepared via a facile method. Our method needs neither special apparatus nor complicated chemical treatment. The whole process includes two steps: firstly, coupling agent was used to modify TiO2 by sol-gel method; secondly, fabrication of TiO2/PS dispersions was carried out via in-situ free-radical polymerization strategy. The component and structure of the TiO2/PS particles were characterized by Fourier transform infrared (FTIR spectroscopy, thermogravimetric analysis (TGA, field emission scanning electron microscope (FE-SEM and transmission electron microscopy (TEM. The TiO2 gel particles with average diameter of 1 μm exhibited irregular spherical shape and obvious aggregation. Compared with the TiO2 particles, the resulting TiO2/PS particulates showed regular spherical shape, better dispersion and bigger size. By directly depositing the resulted TiO2/PS dispersion on a Cu foil, the coating showed superhydrophobic property which was reflected by the contact angle (CA of water on the surface with high water adhesion. The apparent CA of water is 153.5±1.5°, suggesting that this composite possesses well superhydrophobicity.

  19. Digestive ripening: a synthetic method par excellence for core-shell, alloy, and composite nanostructured materials

    Indian Academy of Sciences (India)

    Srilakshmi P Bhaskar; Balaji R Jagirdar

    2012-11-01

    The solvated metal atom dispersion (SMAD) method has been used for the synthesis of colloids of metal nanoparticles. It is a top-down approach involving condensation of metal atoms in low temperature solvent matrices in a SMADreactor maintained at 77 K.Warming of the matrix results in a slurry ofmetal atoms that interact with one another to form particles that grow in size. The organic solvent solvates the particles and acts as a weak capping agent to halt/slow down the growth process to a certain extent. This as-prepared colloid consists of metal nanoparticles that are quite polydisperse. In a process termed as digestive ripening, addition of a capping agent to the as-prepared colloid which is polydisperse renders it highly monodisperse either under ambient or thermal conditions. In this, as yet not well-understood process, smaller particles grow and the larger ones diminish in size until the system attains uniformity in size and a dynamic equilibrium is established. Using the SMAD method in combination with digestive ripening process, highly monodisperse metal, core-shell, alloy, and composite nanoparticles have been synthesized. This article is a review of our contributions together with some literature reports on this methodology to realize various nanostructured materials.

  20. Role of superporous hydrogel particles as a superdisintegrant in fast disintegrating tablet of Glipizide

    Directory of Open Access Journals (Sweden)

    Hitesh V Chavda

    2014-01-01

    Full Text Available Background: Superporous hydrogel (SPH swells very rapidly in a shorter period of time to an equilibrium size and contains highly porous structure. The literature survey reflects the preparation of SPHs and its composite, but its application as an excipient in a drug delivery system is not well focused. Aim: Efforts were made to develop fast disintegrating tablets of Glipizide using superporous hydrogel particles (SPHPs as a wicking agent, which act as a superdisintegrant to decrease disintegration time. Materials and Methods: The SPH of poly (acrylamide-co-acrylic acid was prepared by solution polymerization and characterized. Prepared tablets were evaluated for concerned parameters. Formulation optimization was carried out using 3 2 full factorial design and analysis of variance. Results: Scanning electron microscopy pictures clearly confirmed the superporous structure of hydrogel. Batch F 4 containing 4% w/w of SPH of poly (acrylamide-co-acrylic acid as a superdisintegrant showed extremely fast wicking effect and lesser disintegration time compared with other potential superdisintegrants. Drug release was good compared with conventional immediate release marketed product. Conclusion: It can be concluded that SPHPs can be used as a potential superdisintegrant in tablet formulation.

  1. Pulse electrodeposition to prepare core-shell structured AuPt@Pd/C catalyst for formic acid fuel cell application

    Science.gov (United States)

    Lu, Xueyi; Luo, Fan; Song, Huiyu; Liao, Shijun; Li, Hualing

    2014-01-01

    A novel core-shell structured AuPt@Pd/C catalyst for the electrooxidation of formic acid is synthesized by a pulse electrodeposition process, and the AuPt core nanoparticles are obtained by a NaBH4 reduction method. The catalyst is characterized with X-ray powder diffraction and transmission electron microscopy, thermogravimetric analysis, cyclic voltammetry, CO stripping and X-ray photoelectron spectroscopy. The core-shell structure of the catalyst is revealed by the increase in particle size resulting from a Pd layer covering the AuPt core, and by a negative shift in the CO stripping peaks. The addition of a small amount of Pt improves the dispersion of Au and results in smaller core particles. The catalyst's activity is evaluated by cyclic voltammetry in formic acid solution. The catalyst shows excellent activity towards the anodic oxidation of formic acid, the mass activity reaches 4.4 A mg-1Pd and 0.83 A mg-1metal, which are 8.5 and 1.6 times that of commercial Pd/C. This enhanced electrocatalytic activity could be ascribed to the good dispersion of Au core particles resulting from the addition of Pt, as well as to the interaction between the Pd shell layer and the Au and Pt in the core nanoparticles.

  2. Synthesis, structural characterization and magnetic properties of Fe/Pt core-shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Pisane, K. L.; Singh, Sobhit; Seehra, M. S., E-mail: mseehra@wvu.edu [Department of Physics and Astronomy, West Virginia University, Morgantown, West Virginia 26506-6315 (United States)

    2015-05-07

    Structural and magnetic properties of Fe/Pt core-shell nanostructure prepared by a sequential reduction process are reported. Transmission electron microscopy shows nearly spherical particles fitting a lognormal size distribution with D{sub o} = 3.0 nm and distribution width λ{sub D} = 0.31. In x-ray diffraction, Bragg lines only from the Pt shell are clearly identified with line-widths yielding crystallite size = 3.1 nm. Measurements of magnetization M vs. T (2 K–350 K) in magnetic fields up to 90 kOe show a blocking temperature T{sub B} = 13 K below which hysteresis loops are observed with coercivity H{sub C} increasing with decreasing T reaching H{sub C} = 750 Oe at 2 K. Temperature dependence of the ac susceptibilities at frequencies f{sub m} = 10 Hz–5 kHz is measured to determine the change in T{sub B} with f{sub m} using the Vogel-Fulcher law. This analysis shows the presence of significant interparticle interaction, the Neel-Brown relaxation frequency f{sub o} = 5.3 × 10{sup 10 }Hz and anisotropy constant K{sub a} = 3.6 × 10{sup 6 }ergs/cm{sup 3}. A fit of the M vs. H data up to H = 90 kOe for T > T{sub B} to the modified Langevin function taking particle size distribution into account yields magnetic moment per particle consistent with the proposed core-shell structure; Fe core of 2.2 nm diameter and Pt shell of 0.4 nm thickness.

  3. Electrostatically assisted fabrication of silver-dielectric core/shell nanoparticles thin film capacitor with uniform metal nanoparticle distribution and controlled spacing.

    Science.gov (United States)

    Li, Xue; Niitsoo, Olivia; Couzis, Alexander

    2016-03-01

    An electrostatically-assisted strategy for fabrication of thin film composite capacitors with controllable dielectric constant (k) has been developed. The capacitor is composed of metal-dielectric core/shell nanoparticle (silver/silica, Ag@SiO2) multilayer films, and a backfilling polymer. Compared with the simple metal particle-polymer mixtures where the metal nanoparticles (NP) are randomly dispersed in the polymer matrix, the metal volume fraction in our capacitor was significantly increased, owing to the densely packed NP multilayers formed by the electrostatically assisted assembly process. Moreover, the insulating layer of silica shell provides a potential barrier that reduces the tunneling current between neighboring Ag cores, endowing the core/shell nanocomposites with a stable and relatively high dielectric constant (k) and low dielectric loss (D). Our work also shows that the thickness of the SiO2 shell plays a dominant role in controlling the dielectric properties of the nanocomposites. Control over metal NP separation distance was realized not only by variation the shell thickness of the core/shell NPs but also by introducing a high k nanoparticle, barium strontium titanate (BST) of relatively smaller size (∼8nm) compared to 80-160nm of the core/shell Ag@SiO2 NPs. The BST assemble between the Ag@SiO2 and fill the void space between the closely packed core/shell NPs leading to significant enhancement of the dielectric constant. This electrostatically assisted assembly method is promising for generating multilayer films of a large variety of NPs over large areas at low cost.

  4. Synthesis and photocatalytic properties of Fe3O4@TiO2 core-shell for degradation of Rhodamine B

    Science.gov (United States)

    Mufti, Nandang; Munfarriha, Ulfatien; Fuad, Abdulloh; Diantoro, Markus

    2016-02-01

    The aim of this research is to synthesis Fe3O4@TiO2 core-shell and used it as photocatalytic for degradation of Rhodamine B. The Fe3O4 nanoparticle core was synthesized by coprecipitation method from the iron sand. The TiO2 shell synthesized using coprecipitation method to capsulated Fe3O4 nanoparticle with vary of Fe3O4 mass. The Fe3O4@TiO2 core-shells were characterized using SEM-EDX, XRD. Photocatalytic activity of Rhodamine B degradation was performed under UV irradiation with variation of time exposure. The efficiency of photodegradation is measured by UV-Vis spectrophotometer. The XRD result showed that Fe3O4 nanoparticle is single phase with crystal size of 15.5 nm. The existence of Fe3O4 and anatase of TiO2 phases in the XRD pattern shows that The Fe3O4@TiO2 core-shells are successfully synthesized. While, the TiO2 shell is confirmed by thermal test up to 550 OC for two hours to the samples. Based on SEM characterization, The Fe3O4@TiO2 core-shells are agglomerated with averages diameter sizes of particles between 38.5 nm to 72.8 nm. The concentration of TiO2 decrease with increasing Fe3O4 mass with atomic composition of Fe/Ti elements in Fe3O4@TiO2 core-shells are 0.083, 1.12, and 1.48. Based on photo degradation test of Rhodamine B under UV irradiation, we conclude that the degradation of Rhodamin B is caused by absorbsion and photocatalytic mechanism. For photocatalytic mechanism the efficiency of photodegradation of Rhodamin B increases by increasing TiO2 concentration.

  5. Alginate coated chitosan core shell nanoparticles for oral delivery of enoxaparin: in vitro and in vivo assessment.

    Science.gov (United States)

    Bagre, Archana Pataskar; Jain, Keerti; Jain, Narendra K

    2013-11-01

    The objective of present research work was to develop alginate coated chitosan core shell nanoparticles (Alg-CS-NPs) for oral delivery of low molecular weight heparin, enoxaparin. Chitosan nanoparticles (CS-NPs) were synthesized by ionic gelation of chitosan using sodium tripolyphosphate. Core shell nanoparticles were prepared by coating CS-NPs with alginate solution under mild agitation. The Alg-CS-NPs were characterized for surface morphology, surface coating, particle size, polydispersity index, zeta potential, drug loading and entrapment efficiency using SEM, Zeta-sizer, FTIR and DSC techniques. Alginate coating increased the size of optimized chitosan nanoparticles from around 213 nm to about 335 nm as measured by dynamic light scattering in zeta sizer and further confirmed by SEM analysis. The performance of optimized enoxaparin loaded Alg-CS-NPs was evaluated by in vitro drug release studies, in vitro permeation study across intestinal epithelium, in vivo venous thrombosis model, particulate uptake by intestinal epithelium using fluorescence microscopy and pharmacokinetic studies in rats. Coating of alginate over the CS-NPs improved the release profile of enoxaparin from the nanoparticles for successful oral delivery. In vitro permeation studies elucidated that more than 75% enoxaparin permeated across the intestinal epithelium with Alg-CS-NPs. The Alg-CS-NPs significantly increased (p<0.05) the oral bioavailability of enoxaparin in comparison to plain enoxaparin solution as revealed by threefold increase in AUC of plasma drug concentration time curve and around 60% reduction in thrombus formation in rat venous thrombosis model. The core shell Alg-CS-NPs showed promising potential for oral delivery and significantly enhanced the in vivo oral absorption of enoxaparin.

  6. Investigation of physical vapor deposition techniques of conformal shell coating for core/shell structures by Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Cansizoglu, H., E-mail: hxis@ualr.edu; Yurukcu, M.; Cansizoglu, M.F.; Karabacak, T.

    2015-05-29

    Vertically aligned core/shell nanowire (nanorod) arrays are favorable candidates in many nano-scale devices such as solar cells, detectors, and integrated circuits. The quality of the shell coating around nanowire arrays is as crucial as the quality of the nanowires in device applications. For this reason, we worked on different physical vapor deposition (PVD) techniques and conducted Monte Carlo simulations to estimate the best deposition technique for a conformal shell coating. Our results show that a small angle (≤ 45°) between incoming flux of particles and the substrate surface normal is necessary for PVD techniques with a directional incoming flux (e.g. thermal or e-beam evaporation) for a reasonable conformal coating. On the other hand, PVD techniques with an angular flux distribution (e.g. sputtering) can provide a fairly conformal shell coating around nanowire arrays without a need of small angle deposition. We also studied the shape effect of the arrays on the conformality of the coating and discovered that arrays of the tapered-top nanorods and the pyramids can be coated with a more conformal and thicker coating compared to the coating on the arrays of flat-top nanowires due to their larger openings in between structures. Our results indicate that conventional PVD techniques, which offer low cost and large scale thin film fabrication, can be utilized for highly conformal and uniform shell coating formation in core/shell nanowire device applications. - Highlights: • We examined the shell coating growth in core/shell nanostructures. • We investigated the effect of physical vapor deposition method on the conformality of the shell. • We used Monte Carlo simulations to simulate the shell growth on nanowire templates. • Angular atomic flux (i.e., sputtering at high pressure) leads to conformal and uniform coatings. • A small angle (< 45°) to the directional flux needs to be introduced for conformal coatings.

  7. Coordination polymer core/shell structures: Preparation and up/down-conversion luminescence.

    Science.gov (United States)

    Li, Bingmei; Xu, Hualan; Xiao, Chen; Shuai, Min; Chen, Weimin; Zhong, Shengliang

    2016-10-01

    Coordination polymer (CP) core-shell nanoparticles with Gd-based CP (GdCP) as core and Eu-based CP (EuCP) as shell have been successfully prepared. Allantoin was employed as the organic building block without the assistance of any template. The composition, size and structure of the core-shell nanospheres were well characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray (EDX), powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FT-IR), thermo-gravimetric analysis (TG). Results show that the resultant cores are uniform nanospheres with diameter of approximately 45nm, while the diameters of the core-shell nanospheres are increased to approximately 60nm. The core-shell products show enhanced luminescence efficiency than the core under 980nm laser excitation and decreased down-conversion luminescence when excited at 394nm.

  8. Coaxial electrospun polyurethane core-shell nanofibers for shape memory and antibacterial nanomaterials

    Directory of Open Access Journals (Sweden)

    2011-02-01

    Full Text Available A novel kind of shape memory polyurethane (SMPU nanofibers with core-shell nanostructure is fabricated using coaxial electrospinning. Transmission electron microscopy (TEM and scanning electron microscopy (SEM results show that nanofibers with core-shell structure or bead-on-string structure can be electrospun successfully from the core solution of polycaprolactone based SMPU (CLSMPU and shell solution of pyridine containing polyurethane (PySMPU. In addition to the excellent shape memory effect with good shape fixity, excellent antibacterial activity against both gramnegative bacteria and gram-positive bacteria are achieved in the CLSMPU-PySMPU core-shell nanofiber. Finally, it is proposed that the antibacterial mechanism should be resulted from the PySMPU shell materials containing amido group in γ position and the high surface area per unit mass of nanofibers. Thus, the CLSMPU-PySMPU core shell nanofibers can be used as both shape memory nanomaterials and antibacterial nanomaterials.

  9. Engineered magnetic core shell nanoprobes:Synthesis and applications to cancer imaging and therapeutics

    Institute of Scientific and Technical Information of China (English)

    Samir Mandal; Keya Chaudhuri

    2016-01-01

    Magnetic core shell nanoparticles are composed of a highly magnetic core material surrounded by a thin shell of desired drug, polymer or metal oxide. These magnetic core shell nanoparticles have a wide range of applications in biomedical research, more specifically in tissue imaging, drug delivery and therapeutics. The present review discusses the up-to-date knowledge on the various procedures for synthesis of magnetic core shell nanoparticles along with their applications in cancer imaging, drug delivery and hyperthermia or cancer therapeutics. Literature in this area shows that magnetic core shell nanoparticle-based imaging, drug targeting and therapy through hyperthermia can potentially be a powerful tool for the advanced diagnosis and treatment of various cancers.

  10. Prevalence of anisotropic shell growth in rare earth core-shell upconversion nanocrystals.

    Science.gov (United States)

    Zhang, Chao; Lee, Jim Yang

    2013-05-28

    Through a series of carefully executed experiments, we discovered the prevalence of anisotropic shell growth in many upconversion NaREF4 systems caused by a combination of factors: selective adsorption of ligands on the core surface due to the core crystal structure, ligand etching, and the lattice mismatch between core and shell components. This could lead to incomplete shell formation in core-shell nanocrystals under certain conditions. Shell growth is always faster in the a and b crystallographic directions than in the c direction. In the case of a larger lattice mismatch between the core and shell, shell growth only occurs in the a and b directions resulting in an oblong core-shell structure. These findings are useful for rationalizing shell-dependent emission properties, understanding the emission mechanisms in complex core-shell nanostructures, and for creating accurate models of core-shell designs for multifunctionality and optimal performance in applications.

  11. Engineered magnetic core shell nanoprobes: Synthesis and applications to cancer imaging and therapeutics.

    Science.gov (United States)

    Mandal, Samir; Chaudhuri, Keya

    2016-02-26

    Magnetic core shell nanoparticles are composed of a highly magnetic core material surrounded by a thin shell of desired drug, polymer or metal oxide. These magnetic core shell nanoparticles have a wide range of applications in biomedical research, more specifically in tissue imaging, drug delivery and therapeutics. The present review discusses the up-to-date knowledge on the various procedures for synthesis of magnetic core shell nanoparticles along with their applications in cancer imaging, drug delivery and hyperthermia or cancer therapeutics. Literature in this area shows that magnetic core shell nanoparticle-based imaging, drug targeting and therapy through hyperthermia can potentially be a powerful tool for the advanced diagnosis and treatment of various cancers.

  12. Synthesis of nickel catalyzed Si/SiC core-shell nanowires by HWCVD

    Science.gov (United States)

    Tong Goh, Boon; Abdul Rahman, Saadah

    2014-12-01

    Si/SiC core-shell nanowires grown on glass substrates by hot-wire chemical vapor deposition were studied. Nickel was used as a catalyst to initiate the growth of these core-shell nanowires and the nanowires were grown at different deposition pressures of 0.5 and 1 mbar. The core of the nanowire was found to be a single crystalline Si. The shell of the nanowire consisted of Si nano-crystallites embedded within an amorphous SiC matrix which was attributed to a radial growth of columnar structures. The Si and SiC nano-crystallites embedded within an amorphous matrix exhibited room-temperature photoluminescence emissions in the range of 400 nm-1 μm. A vapor-solid-solid growth mechanism of these core-shell nanowires is proposed. The effects of the deposition pressure on the properties of the core-shell nanowires are also discussed.

  13. Tuning light concentration inside plasmonic core-shell nanoparticles during laser irradiation

    Science.gov (United States)

    Astafyeva, L. G.; Pustovalov, V. K.; Fritzsche, W.

    2017-09-01

    Computer modeling was carried out of the intensity distributions of optical (laser) radiation with wavelengths in the range of 180-540 nm concentrated inside spherical two-layered core-shell nanoparticles with the core radii in the range 10-30 nm and shell thicknesses range 5-40 nm during irradiation. Different metals and oxides are used for core and shell materials of nanoparticles. Novel effect of light localizing at the nanoscale inside spherical two-layered core-shell NPs has been established on the base of computer calculations in the frame of the theory of diffraction of electromagnetic radiation on multilayer sphere. Light intensity concentrates in shadow hemisphere of core-shell NPs for the selected values of nanoparticle sizes and radiation wavelengths. These results can be applied in nanophotonics for construction of novel plasmonic devices and photonic components, and for different applications of the core-shell nanoparticles.

  14. Synthesis and microwave characterization of Co-SiC core-shell powders by electroless plating

    Institute of Scientific and Technical Information of China (English)

    ZHANG Haijun; WU Xiangwei; JIA Quanli; JIA Xiaolin

    2006-01-01

    Co-SiC core-shell powders were prepared by electroless plating. Scanning electron microscopy (SEM) revealed that Co-SiC core-shell powders were of nearly sphere-like shape and were about 0.3 μm. X-ray powder diffraction (XRD)patterns showed that the cobalt powder was hexagonal crystallite. The complex dielectric constant and the complex permeability of Co-SiC core-shell powders-paraffin wax composite were measured by the rectangle waveguide method. It showed that the dielectric loss was less than 0.1 and the magnetic loss was about 0.2 in 8.2-12.4 GHz for prepared Co-SiC core-shell composite powders.

  15. Establishing the Structural Integrity of Core-Shell Nanoparticles against Elemental Migration using Luminescent Lanthanide Probes.

    Science.gov (United States)

    Chen, Bing; Peng, Dengfeng; Chen, Xian; Qiao, Xvsheng; Fan, Xianping; Wang, Feng

    2015-10-19

    Core-shell structured nanoparticles are increasingly used to host luminescent lanthanide ions but the structural integrity of these nanoparticles still lacks sufficient understanding. Herein, we present a new approach to detect the diffusion of dopant ions in core-shell nanostructures using luminescent lanthanide probes whose emission profile and luminescence lifetime are sensitive to the chemical environment. We show that dopant ions in solution-synthesized core-shell nanoparticles are firmly confined in the designed locations. However, annealing at certain temperatures (greater than circa 350 °C) promotes diffusion of the dopant ions and leads to degradation of the integrity of the nanoparticles. These insights into core-shell nanostructures should enhance our ability to understand and use lanthanide-doped luminescent nanoparticles.

  16. Preparation and characterization of antibacterial Au/C core-shell composite

    Energy Technology Data Exchange (ETDEWEB)

    Gao Yanhong [Department of Chemistry and Institute of Nanochemistry, Jinan University, 601 Huangpudadaoxi Road, Guangzhou 510632, Guangdong (China); Centers for Disease Control and Prevention of Guangdong Province, Guangzhou 510300, Guangdong (China); Zhang Nianchun [Department of Chemistry and Institute of Nanochemistry, Jinan University, 601 Huangpudadaoxi Road, Guangzhou 510632, Guangdong (China); Zhong Yuwen [Centers for Disease Control and Prevention of Guangdong Province, Guangzhou 510300, Guangdong (China); Cai Huaihong [Department of Chemistry and Institute of Nanochemistry, Jinan University, 601 Huangpudadaoxi Road, Guangzhou 510632, Guangdong (China); Liu Yingliang, E-mail: tliuyl@jnu.edu.cn [Department of Chemistry and Institute of Nanochemistry, Jinan University, 601 Huangpudadaoxi Road, Guangzhou 510632, Guangdong (China)

    2010-09-01

    An environment-friendly oxidation-reduction method was used to prepare Au/C core-shell composite using carbon as core and gold as shell. The chemical structures and morphologies of Au/C core-shell composite and carbon sphere were characterized by X-ray diffraction, transmission electron microscope, energy dispersion X-ray spectrometry (EDS) and X-ray photoelectron spectroscopy (XPS). The antibacterial properties of the Au/C core-shell composite against Escherichia coli (E. coli), Staphylococcus aureus (S. aureus) and Candida albicans (C. albicans) were examined by the disk diffusion assay and minimal inhibition concentration (MIC) methods. In addition, antibacterial ability of Au/C core-shell composite was observed by atomic force microscope. Results demonstrated that gold homogeneously supported on the surface of carbon spheres without aggregation and showed efficient antibacterial abilities.

  17. Polymer composite electrolytes having core-shell silica fillers with anion-trapping boron moiety in the shell layer for all-solid-state lithium-ion batteries.

    Science.gov (United States)

    Shim, Jimin; Kim, Dong-Gyun; Kim, Hee Joong; Lee, Jin Hong; Lee, Jong-Chan

    2015-04-15

    Core-shell silica particles with ion-conducting poly(ethylene glycol) and anion-trapping boron moiety in the shell layer were prepared to be used as fillers for polymer composite electrolytes based on organic/inorganic hybrid branched copolymer as polymer matrix for all-solid-state lithium-ion battery applications. The core-shell silica particles were found to improve mechanical strength and thermal stability of the polymer matrix and poly(ethylene glycol) and boron moiety in the shell layer increase compatibility between filler and polymer matrix. Furthermore, boron moiety in the shell layer increases both ionic conductivity and lithium transference number of the polymer matrix because lithium salt can be more easily dissociated by the anion-trapping boron. Interfacial compatibility with lithium metal anode is also improved because well-dispersed silica particles serve as protective layer against interfacial side reactions. As a result, all-solid-state battery performance was found to be enhanced when the copolymer having core-shell silica particles with the boron moiety was used as solid polymer electrolyte.

  18. No-Core Shell Model for A = 47 and A = 49

    Energy Technology Data Exchange (ETDEWEB)

    Vary, J P; Negoita, A G; Stoica, S

    2006-11-13

    We apply the no-core shell model to the nuclear structure of odd-mass nuclei straddling {sup 48}Ca. Starting with the NN interaction, that fits two-body scattering and bound state data, we evaluate the nuclear properties of A = 47 and A = 49 nuclei while preserving all the underlying symmetries. Due to model space limitations and the absence of three-body interactions, we incorporate phenomenological interaction terms determined by fits to A = 48 nuclei in a previous effort. Our modified Hamiltonian produces reasonable spectra for these odd-mass nuclei. In addition to the differences in single-particle basis states, the absence of a single-particle Hamiltonian in our no-core approach complicates comparisons with valence effective NN interactions. We focus on purely off-diagonal two-body matrix elements since they are not affected by ambiguities in the different roles for one-body potentials and we compare selected sets of fp-shell matrix elements of our initial and modified Hamiltonians in the harmonic oscillator basis with those of a recent model fp-shell interaction, the GXPF1 interaction of Honma et al. While some significant differences emerge from these comparisons, there is an overall reasonably good correlation between our off-diagonal matrix elements and those of GXPF1.

  19. No-core shell model for A = 47 and A = 49

    CERN Document Server

    Negoita, A G; Stoica, S

    2010-01-01

    We apply the no-core shell model to the nuclear structure of odd-mass nuclei straddling $^{48}$Ca. Starting with the NN interaction, that fits two-body scattering and bound state data we evaluate the nuclear properties of $A = 47$ and $A = 49$ nuclei while preserving all the underlying symmetries. Due to model space limitations and the absence of 3-body interactions, we incorporate phenomenological interaction terms determined by fits to $A = 48$ nuclei in a previous effort. Our modified Hamiltonian produces reasonable spectra for these odd mass nuclei. In addition to the differences in single-particle basis states, the absence of a single-particle Hamiltonian in our no-core approach complicates comparisons with valence effective NN interactions. We focus on purely off-diagonal two-body matrix elements since they are not affected by ambiguities in the different roles for one-body potentials and we compare selected sets of $fp$-shell matrix elements of our initial and modified Hamiltonians in the harmonic osci...

  20. Biodegradable core-shell carriers for simultaneous encapsulation of synergistic actives.

    Science.gov (United States)

    Windbergs, Maike; Zhao, Yuanjin; Heyman, John; Weitz, David A

    2013-05-29

    Simultaneous encapsulation of multiple active substances in a single carrier is essential for therapeutic applications of synergistic combinations of drugs. However, traditional carrier systems often lack efficient encapsulation and release of incorporated substances, particularly when combinations of drugs must be released in concentrations of a prescribed ratio. We present a novel biodegradable core-shell carrier system fabricated in a one-step, solvent-free process on a microfluidic chip; a hydrophilic active (doxorubicin hydrochloride) is encapsulated in the aqueous core, while a hydrophobic active (paclitaxel) is encapsulated in the solid shell. Particle size and composition can be precisely controlled, and core and shell can be individually loaded with very high efficiency. Drug-loaded particles can be dried and stored as a powder. We demonstrate the efficacy of this system through the simultaneous encapsulation and controlled release of two synergistic anticancer drugs using two cancer-derived cell lines. This solvent-free platform technology is also of high potential value for encapsulation of other active ingredients and chemical reagents.

  1. Magnetic properties of core-shell catalyst nanoparticles for carbon nanotube growth

    Science.gov (United States)

    Fleaca, C. T.; Morjan, I.; Alexandrescu, R.; Dumitrache, F.; Soare, I.; Gavrila-Florescu, L.; Le Normand, F.; Derory, A.

    2009-03-01

    Two types of core-shell nanoparticles have been prepared by laser pyrolysis using Fe(CO) 5 and C 2H 2 or [(CH 3) 3Si] 2O as precursors and C 2H 4 as sensitizer. The first type (about 4 nm diameter) - produced by the decomposition of Fe(CO) 5 in the presence of C 2H 4 and C 2H 2 - consists of Fe cores protected by graphenic layers. The second type (mean particle size of about 14 nm) consists also of Fe cores, yet covered by few nm thick γ-Fe 2O 3/porous polycarbosiloxane shells resulted from the [(CH 3) 3Si] 2O decomposition and superficial oxidation after air exposure. The hysteresis loops suggest a room temperature superparamagnetic behavior of the Fe-C nanopowder and a weak ferromagnetic one for larger particles in the Fe-Fe 2O 3-polymer sample. Both types of nanoparticles were finally used as a catalyst for the carbon nanotube growth by seeding Si(100) substrates via drop-casting method. CNTs were grown by Hot-Filament Direct. Current PE CVD technique from C 2H 2 and H 2 at 980 K. It is suggested that the increased density and orientation degree observed for the multiwall nanotubes grown from Fe-Fe 2O 3-polymer nanoparticles could be due to their magnetic behavior and surface composition.

  2. Reinforcement of Natural Rubber with Core-Shell Structure Silica-Poly(Methyl Methacrylate Nanoparticles

    Directory of Open Access Journals (Sweden)

    Qinghuang Wang

    2012-01-01

    Full Text Available A highly performing natural rubber/silica (NR/SiO2 nanocomposite with a SiO2 loading of 2 wt% was prepared by combining similar dissolve mutually theory with latex compounding techniques. Before polymerization, double bonds were introduced onto the surface of the SiO2 particles with the silane-coupling agent. The core-shell structure silica-poly(methyl methacrylate, SiO2-PMMA, nanoparticles were formed by grafting polymerization of MMA on the surface of the modified SiO2 particles via in situ emulsion, and then NR/SiO2 nanocomposite was prepared by blending SiO2-PMMA and PMMA-modified NR (NR-PMMA. The Fourier transform infrared spectroscopy results show that PMMA has been successfully introduced onto the surface of SiO2, which can be well dispersed in NR matrix and present good interfacial adhesion with NR phase. Compared with those of pure NR, the thermal resistance and tensile properties of NR/SiO2 nanocomposite are significantly improved.

  3. Structural and optical properties of CdO/ZnS core/shell nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Joyce Stella, R.; Thirumala Rao, G.; Pushpa Manjari, V.; Babu, B. [Department of Physics, University College of Sciences, Acharya Nagarjuna University, Nagarjuna Nagar 522510, A.P. (India); Rama Krishna, Ch. [Division of Advanced Materials Science & Engineering, Chonbuk National University, 567, Baekje-daero, Deokjin-gu, Jeonju 561-756 (Korea, Republic of); Ravikumar, R.V.S.S.N., E-mail: rvssn@yahoo.co.in [Department of Physics, University College of Sciences, Acharya Nagarjuna University, Nagarjuna Nagar 522510, A.P. (India)

    2015-04-15

    Graphical abstract: Powder X-ray diffraction pattern of CdO nanopowder and CdO/ZnS nanocomposites. XRD pattern of prepared samples confirm the predominant phase is CdO and small, broad peaks show the ZnS phase in nanocomposites. This XRD data is indexed to cubic crystal system and lattice parameter is calculated as a = 4.6916 Å. After the deposition of ZnS, small blue diffraction peaks are observed for cubic CdO nanostructures. The corresponding lattice cell parameters are evaluated as a = 4.6910 for CdO and a = 5.3735 Å for ZnS. After formation of the CdO–ZnS nanocomposites, the peak intensities of CdO decrease and new peaks due to ZnS are observed. This supports the fact that ZnS particles are deposited on the surface of CdO. These results shows well agreement with standard diffraction data of JCPDS file No. 05-0640 for face centred cubic CdO and file No. 05-0566 for cubic ZnS. From this diffraction data crystallite size, strain and dislocation density are evaluated from Scherrer’s formula and Williamson and Hall. After the deposition of ZnS, increase in particle size and decrease in strain and dislocation density is observed. - Highlights: • CdO/ZnS core/shell nanocomposites were synthesized by a two step wet chemical method. • Powder XRD pattern confirms the cubic phase of the prepared materials. • Red shift is observed in PL spectrum after the deposition of ZnS. - Abstract: CdO/ZnS core/shell nanocomposites have been synthesised at room temperature by a simple wet chemical method. The prepared materials are characterized by XRD, SEM, EDS, FT-IR, UV–Vis and Photoluminescence studies. X-ray diffraction pattern exhibits peaks correspond to cubic phase of CdO and ZnS, the evaluated average crystallite size of prepared materials are in the range of 20–30 nm. The strain and dislocation density are also calculated from XRD studies. Morphology of the samples and their chemical composition are analysed by SEM with EDS. FT-IR spectrum shows the

  4. Synthesis and morphology of iron-iron oxide core-shell nanoparticles produced by high pressure gas condensation

    Science.gov (United States)

    Xing, Lijuan; ten Brink, Gert H.; Chen, Bin; Schmidt, Franz P.; Haberfehlner, Georg; Hofer, Ferdinand; Kooi, Bart J.; Palasantzas, George

    2016-05-01

    Core-shell structured Fe nanoparticles (NPs) produced by high pressure magnetron sputtering gas condensation were studied using transmission electron microscopy (TEM) techniques, electron diffraction, electron energy-loss spectroscopy (EELS), tomographic reconstruction, and Wulff shape construction analysis. The core-shell structure, which is composed of an Fe core surrounded by a maghemite (γ-Fe2O3) and/or magnetite (Fe3O4) shell, was confirmed by fast Fourier transform (FFT) analysis combined with EELS. It was found that the particle size and shape strongly depend on the gas environment. Moreover, extensive analysis showed that NPs with a size between 10-20 nm possess a truncated cubic morphology, which is confined by the 6 {100} planes that are truncated by the 12 {110} planes at different degrees. For NPs larger than 20 nm, the rhombic dodecahedron defined by the 12 {110} planes is the predominant crystal shape, while truncated rhombic dodecahedrons, as well as non-truncated and truncated cubic NPs, were also observed. The NPs without truncation showed a characteristic inward relaxation indicating that besides thermodynamics kinetics also plays a crucial role during particle growth.

  5. Anti-cancer drug loaded iron-gold core-shell nanoparticles (Fe@Au) for magnetic drug targeting.

    Science.gov (United States)

    Kayal, Sibnath; Ramanujan, Raju Vijayaraghavan

    2010-09-01

    Magnetic drug targeting, using core-shell magnetic carrier particles loaded with anti-cancer drugs, is an emerging and significant method of cancer treatment. Gold shell-iron core nanoparticles (Fe@Au) were synthesized by the reverse micelle method with aqueous reactants, surfactant, co-surfactant and oil phase. XRD, XPS, TEM and magnetic property measurements were utilized to characterize these core-shell nanoparticles. Magnetic measurements showed that the particles were superparamagnetic at room temperature and that the saturation magnetization decreased with increasing gold concentration. The anti-cancer drug doxorubicin (DOX) was loaded onto these Fe@Au nanoparticle carriers and the drug release profiles showed that upto 25% of adsorbed drug was released in 80 h. It was found that the amine (-NH2) group of DOX binds to the gold shell. An in vitro apparatus simulating the human circulatory system was used to determine the retention of these nanoparticle carriers when exposed to an external magnetic field. A high percentage of magnetic carriers could be retained for physiologically relevant flow speeds of fluid. The present findings show that DOX loaded gold coated iron nanoparticles are promising for magnetically targeted drug delivery.

  6. Electrochemical synthesis of 1D core-shell Si/TiO2 nanotubes for lithium ion batteries

    Science.gov (United States)

    Kowalski, Damian; Mallet, Jeremy; Thomas, Shibin; Nemaga, Abirdu Woreka; Michel, Jean; Guery, Claude; Molinari, Michael; Morcrette, Mathieu

    2017-09-01

    Silicon negative electrode for lithium ion battery was designed in the form of self-organized 1D core-shell nanotubes to overcome shortcomings linked to silicon volume expansion upon lithiation/delithiation typically occurring with Si nanoparticles. The negative electrode was formed on TiO2 nanotubes in two step electrochemical synthesis by means of anodizing of titanium and electrodeposition of silicon using ionic liquid electrolytes. Remarkably, it was found that the silicon grows perpendicularly to the z-axis of nanotube and therefore its thickness can be precisely controlled by the charge passed in the electrochemical protocol. Deposited silicon creates a continuous Si network on TiO2 nanotubes without grain boundaries and particle-particle interfaces, defining its electrochemical characteristics under battery testing. In the core-shell system the titania nanotube play a role of volume expansion stabilizer framework holding the nanostructured silicon upon lithiation/delithiation. The nature of Si shell and presence of titania core determine stable performance as negative electrode tested in half cell of CR2032 coin cell battery.

  7. Synthesis and morphology of iron-iron oxide core-shell nanoparticles produced by high pressure gas condensation.

    Science.gov (United States)

    Xing, Lijuan; Ten Brink, Gert H; Chen, Bin; Schmidt, Franz P; Haberfehlner, Georg; Hofer, Ferdinand; Kooi, Bart J; Palasantzas, George

    2016-05-27

    Core-shell structured Fe nanoparticles (NPs) produced by high pressure magnetron sputtering gas condensation were studied using transmission electron microscopy (TEM) techniques, electron diffraction, electron energy-loss spectroscopy (EELS), tomographic reconstruction, and Wulff shape construction analysis. The core-shell structure, which is composed of an Fe core surrounded by a maghemite (γ-Fe2O3) and/or magnetite (Fe3O4) shell, was confirmed by fast Fourier transform (FFT) analysis combined with EELS. It was found that the particle size and shape strongly depend on the gas environment. Moreover, extensive analysis showed that NPs with a size between 10-20 nm possess a truncated cubic morphology, which is confined by the 6 {100} planes that are truncated by the 12 {110} planes at different degrees. For NPs larger than 20 nm, the rhombic dodecahedron defined by the 12 {110} planes is the predominant crystal shape, while truncated rhombic dodecahedrons, as well as non-truncated and truncated cubic NPs, were also observed. The NPs without truncation showed a characteristic inward relaxation indicating that besides thermodynamics kinetics also plays a crucial role during particle growth.

  8. Solvent-surface interactions control the phase structure in laser-generated iron-gold core-shell nanoparticles

    Science.gov (United States)

    Wagener, Philipp; Jakobi, Jurij; Rehbock, Christoph; Chakravadhanula, Venkata Sai Kiran; Thede, Claas; Wiedwald, Ulf; Bartsch, Mathias; Kienle, Lorenz; Barcikowski, Stephan

    2016-03-01

    This work highlights a strategy for the one-step synthesis of FeAu nanoparticles by the pulsed laser ablation of alloy targets in the presence of different solvents. This method allows particle generation without the use of additional chemicals; hence, solvent-metal interactions could be studied without cross effects from organic surface ligands. A detailed analysis of generated particles via transmission electron microscopy in combination with EDX elemental mapping could conclusively verify that the nature of the used solvent governs the internal phase structure of the formed nanoparticles. In the presence of acetone or methyl methacrylate, a gold shell covering a non-oxidized iron core was formed, whereas in aqueous media, an Au core with an Fe3O4 shell was generated. This core-shell morphology was the predominant species found in >90% of the examined nanoparticles. These findings indicate that fundamental chemical interactions between the nanoparticle surface and the solvent significantly contribute to phase segregation and elemental distribution in FeAu nanoparticles. A consecutive analysis of resulting Fe@Au core-shell nanoparticles revealed outstanding oxidation resistance and fair magnetic and optical properties. In particular, the combination of these features with high stability magnetism and plasmonics may create new opportunities for this hybrid material in imaging applications.

  9. Synthesis and characterization of self-crosslinking fluorinated polyacrylate soap-free latices with core-shell structure

    Science.gov (United States)

    Xu, Wei; An, Qiufeng; Hao, Lifen; Zhang, Dan; Zhang, Min

    2013-03-01

    Novel self-crosslinking fluorinated polyacrylate soap-free latices (FMBN) with core-shell structure were synthesized by semicontinuous seeded emulsion polymerization method from dodecafluoroheptyl methacrylate (DFMA), methyl methacrylate (MMA), butyl acrylate (BA), and N-methylolamide (NMA) in the presence of a polymerizable emulsifier-ammonium allyloxtmethylate nonylphenol ethoxylates sulfate (DNS-86). Effects of the DNS-86 and DFMA amounts on stability and properties of the FMBN emulsions were studied. Besides, the latices and their film were characterized by Fourier transform infrared (FTIR) spectroscopy, nuclear magnetic resonance (1H NMR) spectrum, scanning electron microscopy (SEM), transmission electron microscopy (TEM), laser particle size analyzer, differential scanning calorimetry (DSC), thermogravimetry analysis (TGA), contact angle goniometer, X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM), respectively. FT-IR spectra and 1H NMR spectrum showed that DFMA successfully participated in soap-free emulsion polymerization and monomers formed the fluorinated acrylate copolymer. The resulted latex particles had the core-shell structure. The films formed from the FMBN latices thus had two Tg. Their thermal stability and Tg of the shell phase increased gradually with augment of DFMA amount in polymer. XPS, AFM and hydrophobicity analyses indicated the fluoroalkyl groups had the tendency to enrich at the film-air interface. This enrichment of fluorine at the film-air interface was more evident after the annealing process. Water contact angles of the FMBN film before and after the annealing process could attain 115.5° and 117.5°, individually.

  10. Plateau-Rayleigh Instability Morphology Evolution (PRIME): From Electrospun Core-Shell Polymer Fibers to Polymer Microbowls.

    Science.gov (United States)

    Chiu, Yu-Jing; Tseng, Hsiao-Fan; Lo, Yu-Ching; Wu, Bo-Hao; Chen, Jiun-Tai

    2017-03-01

    Electrospun core-shell fibers have great potentials in many areas, such as tissue engineering, drug delivery, and organic solar cells. Although many core-shell fibers have been prepared and studied, the morphology transformation of core-shell fibers have been rarely studied. In this work, the morphology evolution of electrospun core-shell polymer fibers driven by the Plateau-Rayleigh instability is investigated. Polystyrene/poly(methyl methacrylate) (PS/PMMA) core-shell fibers are first prepared by using blend solutions and a single axial electrospinning setup. After PS/PMMA core-shell fibers are annealed on a PS film, the fibers undulate and sink into the polymer film, forming core-shell hemispheres. The evolution process, which can be observed in situ by optical microscopy, is mainly driven by achieving lower surface and interfacial energies. The morphologies of the transformed structures can be confirmed by a selective removal technique, and polymer microbowls can be obtained.

  11. A comparative study of Pt and Pt-Pd core-shell nanocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Long, Nguyen Viet, E-mail: nguyenviet_long@yahoo.com [Department of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Posts and Telecommunications Institute of Technology, km 10 Nguyen Trai, Thanh Xuan, Ha Dong, Hanoi (Viet Nam); Laboratory for Nanotechnology, Vietnam National University, Ho Chi Minh, Linh Trung, Thu Duc, Ho Chi Minh (Viet Nam); Department of Molecular and Material Sciences, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakouen, Kasuga, Fukuoka 816-8580 (Japan); Ohtaki, Michitaka [Department of Molecular and Material Sciences, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakouen, Kasuga, Fukuoka 816-8580 (Japan); Hien, Tong Duy [Laboratory for Nanotechnology, Vietnam National University, Ho Chi Minh, Linh Trung, Thu Duc, Ho Chi Minh (Viet Nam); Randy, Jalem [Department of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Nogami, Masayuki, E-mail: nogami@nitech.ac.jp [Department of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan)

    2011-10-30

    Highlights: > The syntheses of Pt (4-8 nm) and Pt-Pd core-shell nanoparticles (15-25 nm) are showed. > Pt-Pd core-shell catalysts possess catalytic property much better than Pt catalysts. > Pt-Pd core-shell catalysts exhibit fast and highly stable catalytic activity. > Fascinatingly, size effect is not as really important as nanostructuring effect. > Fast, stable, sensitive hydrogen adsorption is very crucial for fuel cells. - Abstract: This comparative study characterizes two types of metallic and core-shell bimetallic nanoparticles prepared with our modified polyol method. These nanoparticles consist of Pt and Pt-Pd core-shell nanocatalysts exhibiting polyhedral morphologies. The controlled syntheses of Pt metallic nanoparticles in the 10-nm regime (4-8 nm) and Pt-Pd bimetallic core-shell nanoparticles in the 30-nm regime (15-25 nm) are presented. To realize our ultimate research goals for proton exchange membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs), we thoroughly investigate the dependence of the electrocatalytic properties of the nanoparticles on the structure, size and morphology. Significant differences in the electrocatalysis are also explained in experimental evidences of both Pt and Pt-Pd nanocatalysts. We suggested that the core-shell controlled morphologies and nanostructures of the Pd nanoshell as the Pd atomic monolayers will not only play an important role in producing inexpensive, novel Pt- and Pd-based nanocatalysts but also in designing more efficient Pt- and Pd-based nanocatalysts for practical use in DMFC technology. Our comparative results show that Pt-Pd nanocatalysts with Pd nanoshells exhibited much better electrocatalytic activity and stabilization compared to Pt nanocatalysts. Interestingly, we found that the size effect is not as strong as the nanostructuring effect on the catalytic properties of the researched nanoparticles. A nanostructure effect of the core-shell bimetallic nanoparticles was identified.

  12. Introduction of biotin or folic acid into polypyrrole magnetite core-shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Nan, Alexandrina; Turcu, Rodica [National Institute of Research and Development for Isotopic and Molecular Technologies, Donath 65-103, Cluj-Napoca (Romania); Liebscher, Jürgen [National Institute of Research and Development for Isotopic and Molecular Technologies, Donath 65-103, Cluj-Napoca, Romania and Institute of Chemistry, Humboldt-University Berlin, Brook-Taylor 2, D-12489 Berlin (Germany)

    2013-11-13

    In order to contribute to the trend in contemporary research to develop magnetic core shell nanoparticles with better properties (reduced toxicity, high colloidal and chemical stability, wide scope of application) in straightforward and reproducible methods new core shell magnetic nanoparticles were developed based on polypyrrole shells functionalized with biotin and folic acid. Magnetite nanoparticles stabilized by sebacic acid were used as magnetic cores. The morphology of magnetite was determined by transmission electron microscopy TEM, while the chemical structure investigated by FT-IR.

  13. Ultrathin polycrystalline hematite and goethite-hematite core-shell nanorods.

    Science.gov (United States)

    Cavaliere-Jaricot, S; Brioude, A; Miele, P

    2009-03-03

    We have developed a facile synthesis route to 1D structures of ultrathin polycrystalline hematite and goethite-hematite core-shells. One-dimensional structures of pure hematite and the goethite-hematite core-shell with very small diameters were synthesized in aqueous solution at low temperature with a simple, rapid method based on the oxidation of Fe3O4 nanoparticles without using surfactants.

  14. Core-shell microparticles for protein sequestration and controlled release of a protein-laden core.

    Science.gov (United States)

    Rinker, Torri E; Philbrick, Brandon D; Temenoff, Johnna S

    2016-12-21

    Development of multifunctional biomaterials that sequester, isolate, and redeliver cell-secreted proteins at a specific timepoint may be required to achieve the level of temporal control needed to more fully regulate tissue regeneration and repair. In response, we fabricated core-shell heparin-poly(ethylene-glycol) (PEG) microparticles (MPs) with a degradable PEG-based shell that can temporally control delivery of protein-laden heparin MPs. Core-shell MPs were fabricated via a re-emulsification technique and the number of heparin MPs per PEG-based shell could be tuned by varying the mass of heparin MPs in the precursor PEG phase. When heparin MPs were loaded with bone morphogenetic protein-2 (BMP-2) and then encapsulated into core-shell MPs, degradable core-shell MPs initiated similar C2C12 cell alkaline phosphatase (ALP) activity as the soluble control, while non-degradable core-shell MPs initiated a significantly lower response (85+19% vs. 9.0+4.8% of the soluble control, respectively). Similarly, when degradable core-shell MPs were formed and then loaded with BMP-2, they induced a ∼7-fold higher C2C12 ALP activity than the soluble control. As C2C12 ALP activity was enhanced by BMP-2, these studies indicated that degradable core-shell MPs were able to deliver a bioactive, BMP-2-laden heparin MP core. Overall, these dynamic core-shell MPs have the potential to sequester, isolate, and then redeliver proteins attached to a heparin core to initiate a cell response, which could be of great benefit to tissue regeneration applications requiring tight temporal control over protein presentation.

  15. Magnetic field directed assembly of superstructures of ferrite-ferroelectric core-shell nanoparticles and studies on magneto-electric interactions

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, G., E-mail: srinivas@oakland.edu; Sreenivasulu, G.; Benoit, Crystal [Physics Department, Oakland University, Rochester, Michigan 48309 (United States); Petrov, V. M. [Physics Department, Oakland University, Rochester, Michigan 48309 (United States); Institute of Electronic and Information Systems, Novgorod State University, Veliky Novgorod 173003 (Russian Federation); Chavez, F. [Chemistry Department, Oakland University, Rochester, Michigan 48309 (United States)

    2015-05-07

    Composites of ferromagnetic and ferroelectric are of interest for studies on mechanical strain mediated magneto-electric (ME) interactions and for useful technologies. Here, we report on magnetic-field-assisted-assembly of barium titanate (BTO)-nickel ferrite (NFO) core-shell particles into linear chains and 2D/3D arrays and measurements of ME effects in such assemblies. First, we synthesized the core-shell nano-particles with 50–600 nm BTO and 10–200 nm NFO by chemical self-assembly by coating the ferroic particles with complementary coupling groups and allowing them to self-assemble in the presence of a catalyst via the “click” reaction. The core-shell structure was confirmed with electron microscopy and scanning probe microscopy. We obtained superstructure of the core-shell particles by subjecting them to a magnetic field gradient that exerts an attractive force on the particles and align them toward the regions of high field strengths. At low particle concentration, linear chains were formed and they evolved into 2D and 3D arrays at high particle concentrations. Magnetoelectric characterization on unassembled films and assembled arrays has been performed through measurements of low-frequency ME voltage coefficient (MEVC) by subjecting the sample to a bias magnetic field and an ac magnetic field. The MEVC is higher for field-assembled samples than for unassembled films and is found to be sensitive to field orientation with a higher MEVC for magnetic fields parallel to the array direction than for magnetic fields perpendicular to the array. A maximum MEVC of 20 mV/cm Oe, one of the highest reported for any bulk nanocomposite, is measured across the array thickness. A model is provided for ME coupling in the superstructures of BTO-NFO particulate composites. First, we estimated the MEVC for a free-standing BTO-NFO core-shell particle and then extended the model to include an array of linear chains of the particles. The theoretical estimates are in

  16. Cu-Ag core-shell nanoparticles with enhanced oxidation stability for printed electronics.

    Science.gov (United States)

    Lee, Changsoo; Kim, Na Rae; Koo, Jahyun; Lee, Yung Jong; Lee, Hyuck Mo

    2015-11-13

    In this work, we synthesized uniform Cu-Ag core-shell nanoparticles using a facile two-step process that consists of thermal decomposition and galvanic displacement methods. The core-shell structure of these nanoparticles was confirmed through characterization using transmission electron microscopy, energy-dispersive spectroscopy, and x-ray diffraction. Furthermore, we investigated the oxidation stability of the Cu-Ag core-shell nanoparticles in detail. Both qualitative and quantitative x-ray photoelectron spectroscopy analyses confirm that the Cu-Ag core-shell nanoparticles have considerably higher oxidation stability than Cu nanoparticles. Finally, we formulated a conductive ink using the synthesized nanoparticles and coated it onto glass substrates. Following the sintering process, we compared the resistivity of the Cu-Ag core-shell nanoparticles with that of the Cu nanoparticles. The results of this study clearly show that the Cu-Ag core-shell nanoparticles can potentially be used as an alternative to Ag nanoparticles because of their superior oxidation stability and electrical properties.

  17. Synthesis, structural, optical and photocatalytic properties of CdS/ZnS core/shell nanoparticles

    Science.gov (United States)

    Reddy, Ch. Venkata; Shim, Jaesool; Cho, Migyung

    2017-04-01

    CdS, ZnS and CdS/ZnS core/shell nanoparticles were successfully synthesized via two-step synthesis method. The as-prepared CdS, ZnS and CdS/ZnS core/shell nanoparticles were used to study the structural, morphological, and optical properties by PXRD, TEM, HRTEM, UV-vis spectroscopy, N2 adsorption-desorption, FT-IR, PL and Raman spectroscopy measurements. The XRD pattern confirms the crystal structure of the prepared ZnS, CdS, and CdS/ZnS core/shell nanoparticles. The crystallinity of the as-prepared samples is confirmed by PXRD, TEM and HRTEM analysis. The BET analysis showed that the CdS/ZnS core/shell nanoparticles had larger surface area and pore diameter than CdS and ZnS. The Raman and FT-IR spectra confirm the fundamental vibrational modes of CdS and ZnS respectively. Compared to pure CdS and ZnS, CdS/ZnS core/shell nanoparticles exhibited higher photocatalytic activity for the degradation of methyl orange (MO). The enhancement of photocatalytic activity in the CdS/ZnS core/shell nanoparticles is due to the interface actions between CdS and ZnS, which greatly reduces the recombination of photogenerated electrons-holes pair. The proposed mechanism for degradation of MO dye is discussed in detail.

  18. Large-area super-resolution optical imaging by using core-shell microfibers

    Science.gov (United States)

    Liu, Cheng-Yang; Lo, Wei-Chieh

    2017-09-01

    We first numerically and experimentally report large-area super-resolution optical imaging achieved by using core-shell microfibers. The particular spatial electromagnetic waves for different core-shell microfibers are studied by using finite-difference time-domain and ray tracing calculations. The focusing properties of photonic nanojets are evaluated in terms of intensity profile and full width at half-maximum along propagation and transversal directions. In experiment, the general optical fiber is chemically etched down to 6 μm diameter and coated with different metallic thin films by using glancing angle deposition. The direct imaging of photonic nanojets for different core-shell microfibers is performed with a scanning optical microscope system. We show that the intensity distribution of a photonic nanojet is highly related to the metallic shell due to the surface plasmon polaritons. Furthermore, large-area super-resolution optical imaging is performed by using different core-shell microfibers placed over the nano-scale grating with 150 nm line width. The core-shell microfiber-assisted imaging is achieved with super-resolution and hundreds of times the field-of-view in contrast to microspheres. The possible applications of these core-shell optical microfibers include real-time large-area micro-fluidics and nano-structure inspections.

  19. Cu-Ag core-shell nanoparticles with enhanced oxidation stability for printed electronics

    Science.gov (United States)

    Lee, Changsoo; Kim, Na Rae; Koo, Jahyun; Jong Lee, Yung; Lee, Hyuck Mo

    2015-11-01

    In this work, we synthesized uniform Cu-Ag core-shell nanoparticles using a facile two-step process that consists of thermal decomposition and galvanic displacement methods. The core-shell structure of these nanoparticles was confirmed through characterization using transmission electron microscopy, energy-dispersive spectroscopy, and x-ray diffraction. Furthermore, we investigated the oxidation stability of the Cu-Ag core-shell nanoparticles in detail. Both qualitative and quantitative x-ray photoelectron spectroscopy analyses confirm that the Cu-Ag core-shell nanoparticles have considerably higher oxidation stability than Cu nanoparticles. Finally, we formulated a conductive ink using the synthesized nanoparticles and coated it onto glass substrates. Following the sintering process, we compared the resistivity of the Cu-Ag core-shell nanoparticles with that of the Cu nanoparticles. The results of this study clearly show that the Cu-Ag core-shell nanoparticles can potentially be used as an alternative to Ag nanoparticles because of their superior oxidation stability and electrical properties.

  20. Preparation of hydrogel hollow particles for cell encapsulation by a method of polyester core degradation.

    Science.gov (United States)

    Rabanel, J-M; Hildgen, P

    2004-06-01

    Implantation of encapsulated cells in particles of less than 1 mm (micro-encapsulation) has been proposed as a cell synthesized bio-molecule delivery system. Encapsulation provides immuno-isolation, protecting foreign cells from host immune system while nutrients, oxygen and therapeutic products can diffuse freely across capsule walls. A new method is described for the synthesis of a new family of hollow microparticles for cell encapsulation. Unlike other micro-encapsulation methods, encapsulation in those devices will take place after capsule synthesis, by micro-injection. The microcapsules were prepared by a three-steps original procedure: first, synthesis of a core particle, followed by coating with a layer of epichlorohydrin cross-linked amylo-pectin gel and, finally, selective degradation of the core particle to create the cavity. Initial experiments make use of amylo-pectin cross-linked with trimetaphosphate as core particle material. However, selective degradation was difficult to achieve. In further essays, polyesters were used successfully for the preparation of core particles. Optimizations were carried out and the permeability and morphology of the hollow particles were investigated. The preliminary results show that the new method has the potential to become a standard procedure to obtain hydrogel hollow particles. Moreover, the permeability study seems to be in accordance with specifications for immuno-isolation.

  1. Core/shell composites with polystyrene cores and meso-silica shells as abrasives for improved chemical mechanical polishing behavior

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yang, E-mail: cy.jpu@126.com; Qin, Jiawei; Wang, Yayun; Li, Zefeng [Changzhou University, School of Material Science and Engineering (China)

    2015-09-15

    The core/shell-structured organic/inorganic composite abrasive has an important potential application in damage-free chemical mechanical polishing (CMP) due to its non-rigid mechanical property. In this work, the PS/{sub M}SiO{sub 2} composites, containing polystyrene (PS) sphere (211 ± 4 nm) cores and mesoporous silica shells (31 ± 3 nm in thickness) were synthesized through directed surface sol–gel process of tetraethylorthosilicate on the polymer cores in the presence of the cetyltrimethylammonium bromide surfactant. For comparison, the conventional core/shell PS/{sub N}SiO{sub 2} composites with non-porous silica shells were also prepared via a modified Stöber procedure that involved the hydrolysis of TEOS under acidic condition. The physical properties of the samples were examined by small-angle X-ray diffraction, fourier transform infrared spectroscopy, thermogravimetric analysis, transmission electron microscopy, field emission scanning electron microscopy, and nitrogen adsorption–desorption. As novel abrasives, the core/shell-structured PS/{sub M}SiO{sub 2} composites were introduced into the CMP process for silicon oxide films. The oxide-CMP performance among conventional solid silica particles, PS/{sub N}SiO{sub 2} composites, and novel PS/{sub M}SiO{sub 2} composites was explored by atomic force microscopy. Polishing results indicated that the substrate revealed a comparable root-mean-square surface roughness (0.25 ± 0.03 and 0.22 ± 0.02 nm, respectively) after CMP with PS/{sub N}SiO{sub 2} and PS/{sub M}SiO{sub 2} abrasives under the same polishing conditions. However, the material removal rate of the PS/{sub M}SiO{sub 2} composites (123 ± 15 nm/min) was about three times larger than that of the PS/{sub N}SiO{sub 2} composites (47 ± 13 nm/min). The reduced surface roughness and improved removal rate might be due to the optimization of the physical and/or chemical environments in the local contacting region between abrasives

  2. Free Electrons to Molecular Bonds and Back: Closing the Energetic Oxygen Reduction (ORR)-Oxygen Evolution (OER) Cycle Using Core-Shell Nanoelectrocatalysts.

    Science.gov (United States)

    Strasser, Peter

    2016-11-15

    Nanomaterial science and electrocatalytic science have entered a successful "nanoelectrochemical" symbiosis, in which novel nanomaterials offer new frontiers for studies on electrocatalytic charge transfer, while electrocatalytic processes give meaning and often practical importance to novel nanomaterial concepts. Examples of this fruitful symbiosis are dealloyed core-shell nanoparticle electrocatalysts, which often exhibit enhanced kinetic charge transfer rates at greatly improved atom-efficiency. As such, they represent ideal electrocatalyst architectures for the acidic oxygen reduction reaction to water (ORR) and the acidic oxygen evolution reaction from water (OER) that require scarce Pt- and Ir-based catalysts. Together, these two reactions constitute the "O-cycle", a key elemental process loop in the field of electrochemical energy interconversion between electricity (free electrons) and molecular bonds (H2O/O2), realized in the combination of water electrolyzers and hydrogen/oxygen fuel cells. In this Account, we describe our recent efforts to design, synthesize, understand, and test noble metal-poor dealloyed Pt and Ir core-shell nanoparticles for deployment in acidic polymer electrolyte membrane (PEM) electrolyzers and PEM fuel cells. Spherical dealloyed Pt core-shell particles, derived from PtNi3 precursor alloys, showed favorable ORR activity. More detailed size-activity correlation studies further revealed that the 6-8 nm diameter range is a most desirable initial particle size range in order to maximize the particle Ni content after ORR testing and to preserve performance stability. Similarly, dealloyed and oxidized IrOx core-shell particles derived from Ni-rich Ir-Ni precursor particles proved highly efficient oxygen evolution reaction (OER) catalysts in acidic conditions. In addition to the noble metal savings in the particle cores, the Pt core-shell particles are believed to benefit in terms of their mass-based electrochemical kinetics from surface

  3. Prilling and supercritical drying: A successful duo to produce core-shell polysaccharide aerogel beads for wound healing.

    Science.gov (United States)

    De Cicco, Felicetta; Russo, Paola; Reverchon, Ernesto; García-González, Carlos A; Aquino, Rita Patrizia; Del Gaudio, Pasquale

    2016-08-20

    Bacterial infections often affect the wound, delaying healing and causing areas of necrosis. In this work, an aerogel in form of core-shell particles, able to prolong drug activity on wounds and to be easily removed was developed. Aerogel microcapsules consisted of a core made by amidated pectin hosting doxycycline, an antibiotic drug with a broad spectrum of action, and a shell consisting of high mannuronic content alginate. Particles were obtained by prilling using a coaxial nozzle for drop production and an ethanolic solution of CaCl2 as gelling promoter. The alcogels where dried using supercritical CO2. The influence of polysaccharides and drug concentrations on aerogel properties was evaluated. Spherical particles with high drug encapsulation efficiency (87%) correlated to alginate concentration in the processed liquid feeds were obtained. The release of the drug, mainly concentrated into the pectin core, was prolonged till 48h, and dependent on both drug/pectin ratio and alginate concentration.

  4. XNBR-grafted halloysite nanotube core-shell as a potential compatibilizer for immiscible polymer systems

    Energy Technology Data Exchange (ETDEWEB)

    Paran, S.M.R.; Naderi, G., E-mail: g.naderi@ippi.ac.ir; Ghoreishy, M.H.R.

    2016-09-30

    Highlights: • Attached an utilitarian silane coupling agent to the HNT via a sol-gel method. • Developed and analyzed the HNT/XNBR core-shell particles via sol-gel technique. • Enhanced the reactivity of the surface of HNT through XNBR grafting. • The act of HNT/XNBR as a compatibilizer in PA6/NBR TPEs. • Immiscible Polymer System with a good balanced physical and mechanical properties. - Abstract: Halloysite nanotubes (HNTs) grafted with carboxylated nitrile byutadiene rubber (XNBR) were synthesized via a sol-gel method. The HNTs as an inorganic cores were pre-treated with 3-Glycidoxypropyl trimethoxysilane, then successfully coated with the XNBR as an organic shell. The properties of XNBR-grafted HNTs were characterized by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The results suggested that the XNBR grafted to the surfaces of HNTs successfully. Then the TPE nanocomposites based on polyamide-6 (PA6) and nitrile butadiene rubber (NBR) containing various XNBR-grafted and pristine HNTs were prepared via a direct melt mixing method. The morphology, mechanical, dynamic mechanical and rheological properties of the prepared TPE nanocomposites were investigated. The results show that the XNBR-grafted HNTs can effectively improve the morphology and mechanical properties of the PA6/NBR TPEs. The morphology study of the prepared nanocomposites show that the effect of XNBR-grafted HNTs on the size reduction of NBR phase is markedly more effective than the pristine HNTs and rose by 50% in the same concentrations. Mechanical measurements show that the Young’s modulus of the TPE nanocomposites rose by 60% in just 7 wt% of XNBR-grafted HNT loading. The results indicate that the introduction of HNT/XNBR core-shells into the PA6/NBR TPEs can enhances the interfacial interactions

  5. Nanocrystalline p-hydroxyacetanilide (paracetamol) and gold core-shell structure as a model drug deliverable organic-inorganic hybrid nanostructure

    Science.gov (United States)

    Das, Subhojit; Paul, Anumita; Chattopadhyay, Arun

    2013-09-01

    We report on the generation of core-shell nanoparticles (NPs) having an organic nanocrystal (NC) core coated with an inorganic metallic shell, being dispersed in aqueous medium. First, NCs of p-hydroxyacetanilide (pHA)--known also as paracetamol--were generated in an aqueous medium. Transmission electron microscopy (TEM) and powder X-ray diffraction (XRD) evidenced the formation of pHA NCs and of their crystalline nature. The NCs were then coated with Au to form pHA@Au core-shell NPs, where the thickness of the Au shell was on the order of nanometers. The formation of Au nanoshell--surrounding pHA NC--was confirmed from its surface plasmon resonance (SPR) band in the UV/Vis spectrum and by TEM measurements. Further, on treatment of the core-shell particles with a solution comprising NaCl and HCl (pH encapsulating drug molecules, in their crystalline forms, for slow as well as targeted release.We report on the generation of core-shell nanoparticles (NPs) having an organic nanocrystal (NC) core coated with an inorganic metallic shell, being dispersed in aqueous medium. First, NCs of p-hydroxyacetanilide (pHA)--known also as paracetamol--were generated in an aqueous medium. Transmission electron microscopy (TEM) and powder X-ray diffraction (XRD) evidenced the formation of pHA NCs and of their crystalline nature. The NCs were then coated with Au to form pHA@Au core-shell NPs, where the thickness of the Au shell was on the order of nanometers. The formation of Au nanoshell--surrounding pHA NC--was confirmed from its surface plasmon resonance (SPR) band in the UV/Vis spectrum and by TEM measurements. Further, on treatment of the core-shell particles with a solution comprising NaCl and HCl (pH encapsulating drug molecules, in their crystalline forms, for slow as well as targeted release. Electronic supplementary information (ESI) available: See DOI: 10.1039/c3nr03566b

  6. Importance-truncated no-core shell model for fermionic many-body systems

    Energy Technology Data Exchange (ETDEWEB)

    Spies, Helena

    2017-03-15

    The exact solution of quantum mechanical many-body problems is only possible for few particles. Therefore, numerical methods were developed in the fields of quantum physics and quantum chemistry for larger particle numbers. Configuration Interaction (CI) methods or the No-Core Shell Model (NCSM) allow ab initio calculations for light and intermediate-mass nuclei, without resorting to phenomenology. An extension of the NCSM is the Importance-Truncated No-Core Shell Model, which uses an a priori selection of the most important basis states. The importance truncation was first developed and applied in quantum chemistry in the 1970s and latter successfully applied to models of light and intermediate mass nuclei. Other numerical methods for calculations for ultra-cold fermionic many-body systems are the Fixed-Node Diffusion Monte Carlo method (FN-DMC) and the stochastic variational approach with Correlated Gaussian basis functions (CG). There are also such method as the Coupled-Cluster method, Green's Function Monte Carlo (GFMC) method, et cetera, used for calculation of many-body systems. In this thesis, we adopt the IT-NCSM for the calculation of ultra-cold Fermi gases at unitarity. Ultracold gases are dilute, strongly correlated systems, in which the average interparticle distance is much larger than the range of the interaction. Therefore, the detailed radial dependence of the potential is not resolved, and the potential can be replaced by an effective contact interaction. At low energy, s-wave scattering dominates and the interaction can be described by the s-wave scattering length. If the scattering length is small and negative, Cooper-pairs are formed in the Bardeen-Cooper-Schrieffer (BCS) regime. If the scattering length is small and positive, these Cooper-pairs become strongly bound molecules in a Bose-Einstein-Condensate (BEC). In between (for large scattering lengths) is the unitary limit with universal properties. Calculations of the energy spectra

  7. Enhanced antibacterial activity of bimetallic gold-silver core-shell nanoparticles at low silver concentration

    Science.gov (United States)

    Banerjee, Madhuchanda; Sharma, Shilpa; Chattopadhyay, Arun; Ghosh, Siddhartha Sankar

    2011-12-01

    Herein we report the development of bimetallic Au@Ag core-shell nanoparticles (NPs) where gold nanoparticles (Au NPs) served as the seeds for continuous deposition of silver atoms on its surface. The core-shell structure and morphology were examined by UV-Vis spectroscopy, transmission electron microscopy (TEM), energy dispersive X-ray (EDX) analysis and X-ray diffraction (XRD). The core-shell NPs showed antibacterial activity against both Gram negative (Escherichia coli and Pseudomonas aeruginosa) and Gram positive (Enterococcus faecalis and Pediococcus acidilactici) bacteria at low concentration of silver present in the shell, with more efficacy against Gram negative bacteria. TEM and flow cytometric studies showed that the core-shell NPs attached to the bacterial surface and caused membrane damage leading to cell death. The enhanced antibacterial properties of Au@Ag core-shell NPs was possibly due to the more active silver atoms in the shell surrounding gold core due to high surface free energy of the surface Ag atoms owing to shell thinness in the bimetallic NP structure.Herein we report the development of bimetallic Au@Ag core-shell nanoparticles (NPs) where gold nanoparticles (Au NPs) served as the seeds for continuous deposition of silver atoms on its surface. The core-shell structure and morphology were examined by UV-Vis spectroscopy, transmission electron microscopy (TEM), energy dispersive X-ray (EDX) analysis and X-ray diffraction (XRD). The core-shell NPs showed antibacterial activity against both Gram negative (Escherichia coli and Pseudomonas aeruginosa) and Gram positive (Enterococcus faecalis and Pediococcus acidilactici) bacteria at low concentration of silver present in the shell, with more efficacy against Gram negative bacteria. TEM and flow cytometric studies showed that the core-shell NPs attached to the bacterial surface and caused membrane damage leading to cell death. The enhanced antibacterial properties of Au@Ag core-shell NPs was

  8. Microbial synthesis of core/shell gold/palladium nanoparticles for applications in green chemistry.

    Science.gov (United States)

    Deplanche, Kevin; Merroun, Mohamed L; Casadesus, Merixtell; Tran, Dung T; Mikheenko, Iryna P; Bennett, James A; Zhu, Ju; Jones, Ian P; Attard, Gary A; Wood, J; Selenska-Pobell, Sonja; Macaskie, Lynne E

    2012-07-07

    We report a novel biochemical method based on the sacrificial hydrogen strategy to synthesize bimetallic gold (Au)-palladium (Pd) nanoparticles (NPs) with a core/shell configuration. The ability of Escherichia coli cells supplied with H(2) as electron donor to rapidly precipitate Pd(II) ions from solution is used to promote the reduction of soluble Au(III). Pre-coating cells with Pd(0) (bioPd) dramatically accelerated Au(III) reduction, with the Au(III) reduction rate being dependent upon the initial Pd loading by mass on the cells. Following Au(III) addition, the bioPd-Au(III) mixture rapidly turned purple, indicating the formation of colloidal gold. Mapping of bio-NPs by energy dispersive X-ray microanalysis suggested Au-dense core regions and peripheral Pd but only Au was detected by X-ray diffraction (XRD) analysis. However, surface analysis of cleaned NPs by cyclic voltammetry revealed large Pd surface sites, suggesting, since XRD shows no crystalline Pd component, that layers of Pd atoms surround Au NPs. Characterization of the bimetallic particles using X-ray absorption spectroscopy confirmed the existence of Au-rich core and Pd-rich shell type bimetallic biogenic NPs. These showed comparable catalytic activity to chemical counterparts with respect to the oxidation of benzyl alcohol, in air, and at a low temperature (90°C).

  9. Organic-Inorganic Hydrophobic Nanocomposite Film with a Core-Shell Structure

    Directory of Open Access Journals (Sweden)

    Peng Liu

    2016-12-01

    Full Text Available A method to prepare novel organic-inorganic hydrophobic nanocomposite films was proposed by a site-specific polymerization process. The inorganic part, the core of the nanocomposite, is a ternary SiO2–Al2O3–TiO2 nanoparticles, which is grafted with methacryloxy propyl trimethoxyl silane (KH570, and wrapped by fluoride and siloxane polymers. The synthesized samples are characterized by transmission electron microscopy (TEM, Fourier transform infrared (FTIR spectrscopy, X-ray diffractometry (XRD, contact angle meter (CA, and scanning electron microscope (SEM. The results indicate that the novel organic-inorganic hydrophobic nanocomposite with a core-shell structure was synthesized successfully. XRD analysis reveals the nanocomposite film has an amorphous structure, and FTIR analysis indicates the nanoparticles react with a silane coupling agent (methacryloxy propyl trimethoxyl silane KH570. Interestingly, the morphology of the nanoparticle film is influenced by the composition of the core. Further, comparing with the film synthesized by silica nanoparticles, the film formed from SiO2–Al2O3–TiO2 nanoparticles has higher hydrophobic performance, i.e., the contact angle is greater than 101.7°. In addition, the TEM analysis reveals that the crystal structure of the particles can be changed at high temperatures.

  10. Intestinal mucosa permeability following oral insulin delivery using core shell corona nanolipoparticles.

    Science.gov (United States)

    Li, Xiuying; Guo, Shiyan; Zhu, Chunliu; Zhu, Quanlei; Gan, Yong; Rantanen, Jukka; Rahbek, Ulrik Lytt; Hovgaard, Lars; Yang, Mingshi

    2013-12-01

    Chitosan nanoparticles (NC) have excellent capacity for protein entrapment, favorable epithelial permeability, and are regarded as promising nanocarriers for oral protein delivery. Herein, we designed and evaluated a class of core shell corona nanolipoparticles (CSC) to further improve the absorption through enhanced intestinal mucus penetration. CSC contains chitosan nanoparticles as a core component and pluronic F127-lipid vesicles as a shell with hydrophilic chain and polyethylene oxide PEO as a corona. These particles were developed by hydration of a dry pluronic F127-lipid film with NC suspensions followed by extrusion. Insulin nested inside CSC was well protected from enzymatic degradation. Compared with NC, CSC exhibited significantly higher efficiency of mucosal penetration and, consequently, higher cellular internalization of insulin in mucus secreting E12 cells. The cellular level of insulin after CSC treatment was 36-fold higher compared to treatment with free insulin, and 10-fold higher compared to NC. CSC significantly facilitated the permeation of insulin across the ileum epithelia, as demonstrated in an ex vivo study and an in vivo absorption study. CSC pharmacological studies in diabetic rats showed that the hypoglycemic effects of orally administrated CSC were 2.5-fold higher compared to NC. In conclusion, CSC is a promising oral protein delivery system to enhance the stability, intestinal mucosal permeability, and oral absorption of insulin.

  11. Microbial synthesis of core/shell gold/palladium nanoparticles for applications in green chemistry

    Science.gov (United States)

    Deplanche, Kevin; Merroun, Mohamed L.; Casadesus, Merixtell; Tran, Dung T.; Mikheenko, Iryna P.; Bennett, James A.; Zhu, Ju; Jones, Ian P.; Attard, Gary A.; Wood, J.; Selenska-Pobell, Sonja; Macaskie, Lynne E.

    2012-01-01

    We report a novel biochemical method based on the sacrificial hydrogen strategy to synthesize bimetallic gold (Au)–palladium (Pd) nanoparticles (NPs) with a core/shell configuration. The ability of Escherichia coli cells supplied with H2 as electron donor to rapidly precipitate Pd(II) ions from solution is used to promote the reduction of soluble Au(III). Pre-coating cells with Pd(0) (bioPd) dramatically accelerated Au(III) reduction, with the Au(III) reduction rate being dependent upon the initial Pd loading by mass on the cells. Following Au(III) addition, the bioPd–Au(III) mixture rapidly turned purple, indicating the formation of colloidal gold. Mapping of bio-NPs by energy dispersive X-ray microanalysis suggested Au-dense core regions and peripheral Pd but only Au was detected by X-ray diffraction (XRD) analysis. However, surface analysis of cleaned NPs by cyclic voltammetry revealed large Pd surface sites, suggesting, since XRD shows no crystalline Pd component, that layers of Pd atoms surround Au NPs. Characterization of the bimetallic particles using X-ray absorption spectroscopy confirmed the existence of Au-rich core and Pd-rich shell type bimetallic biogenic NPs. These showed comparable catalytic activity to chemical counterparts with respect to the oxidation of benzyl alcohol, in air, and at a low temperature (90°C). PMID:22399790

  12. Fabrication of monodispersive nanoscale alginate-chitosan core-shell particulate systems for controlled release studies

    Science.gov (United States)

    Körpe, Didem Aksoy; Malekghasemi, Soheil; Aydın, Uğur; Duman, Memed

    2014-12-01

    Biopolymers such as chitosan and alginate are widely used for controlled drug delivery systems. The present work aimed to develop a new protocol for preparation of monodisperse alginate-coated chitosan nanoparticles at nanoscale. Modifications of preparation protocol contain changing the pH of polymer solutions and adding extra centrifugation steps into the procedure. While chitosan nanoparticles were synthesized by ionic gelation method, they were coated with alginate by electrostatic interaction. The size, morphology, charge, and structural characterization of prepared core-shell nanoparticulated system were performed by AFM, Zeta sizer, and FTIR. BSA and DOX were loaded as test biomolecules to core and shell part of the nanoparticle, respectively. Release profiles of BSA and DOX were determined by spectrophotometry. The sizes of both chitosan and alginate-coated chitosan nanoparticles which were prepared by modified protocol were measured to be 50 ± 10 and 60 ± 3 nm, respectively. After loading BSA and DOX, the average size of the particles increased to 80 ± 7 nm. Moreover, while the zeta potential of chitosan nanoparticles was positive value, the value was inverted to negative after alginate coating. Release profile measurements of BSA and DOX were determined during 57 and 2 days, respectively. Our results demonstrated that monodisperse alginate-coated nanoparticles were synthesized and loaded successfully using our modified protocol.

  13. Structural stability of alloyed and core-shell Cu-Pt bimetallic nanoparticles

    Science.gov (United States)

    Peng, Hongcheng; Qi, Weihong; Ji, Wenhai; Li, Siqi; He, Jieting

    2017-03-01

    Combining the bond-energy model and Debye theory, we generalized the Gibbs free energy model for Cu-Pt nanoparticles (NPs) by introducing a shape factor considering the shape effect. We studied the structural stability of the Cu-Pt NPs and plotted the corresponding composition-, shape- and size-dependent phase diagrams. It is shown that the Cu-Pt NPs can form alloyed structure in a large size range. But when the particle size continues to decrease, the NPs will form the core-shell structure due to surface segregation. Meanwhile, the composition segregation could make the atoms of less-content element to gather in the surface. The predictions from the present calculated phase diagrams are consistent with a series of experimental results in literatures. To further prove the efficiency of the phase diagrams, we synthesized the alloyed Cu-Pt NPs of 4-15 nm by a co-reduction method, which is in agreement with the predictions from the phase diagrams.

  14. Encapsulation and controlled release from core-shell nanoparticles fabricated by plasma polymerization

    Science.gov (United States)

    Shahravan, Anaram; Matsoukas, Themis

    2012-01-01

    Core-shell nanostructures have been synthesized by plasma deposition in radio-frequency plasma reactor. Silica and KCl nanoparticles were encapsulated by deposition of isopropanol-based films of amorphous hydrogenated carbon. Through control of the deposition time, under constant deposition rate of 1 nm/min, particles are encapsulated in a layer of plasma polymer with thickness between 15 and 100 nm. Films are robust, chemically inert, thermally stable up to 250°C. The permeability of the shells is determined by depositing films of various thickness onto KCl nanoparticles and monitoring the dissolution of the core in aqueous solution. The dissolution profile is characterized by an initial rapid release, followed by a slow release that lasts up to 30 days for the thickest films. The profile is analyzed by Fickian diffusion through a spherical matrix. We find that this model captures very accurately the entire release profile except for the first 12 hours during which, the dissolution rate is higher than that predicted by the model. The overall diffusion coefficient for the dissolution of KCl is 3 × 10-21 m2/s.

  15. Novel highly dispersible, thermally stable core/shell proppants for geothermal applications

    Energy Technology Data Exchange (ETDEWEB)

    Childers, Ian M.; Endres, Mackenzie; Burns, Carolyne; Garcia, Benjamin J.; Liu, Jian; Wietsma, Thomas W.; Bonneville, Alain; Moore, Joseph; Leavy, Ian I.; Zhong, Lirong; Schaef, Herbert T.; Fu, Li; Wang, Hong-Fei; Fernandez, Carlos A.

    2017-11-01

    The use of proppants during reservoir stimulation in tight oil and gas plays requires the introduction of highly viscous fluids to transport the proppants (µm–mm) with the fracturing fluid. The highly viscous fluids required result in increased pump loads and energy costs. Furthermore, although proppant deployment with fracturing fluids is a standard practice for unconventional oil and gas stimulation operations, there are only a few examples in the US of the applying proppant technology to geothermal energy production. This is due to proppant dissolution, proppant flowback and loss of permeability associated with the extreme temperatures found in enhanced geothermal systems (EGS). This work demonstrates proof-of-concept of a novel, CO2-responsive, lightweight sintered-bauxite/polymer core/shell proppant. The polymer shell has two main roles; 1) increase the stability of the proppant dispersion in water without the addition of rheology modifiers, and 2) once at the fracture network react with CO2 to promote particle aggregation and prop fractures open. In this work, both of these roles are demonstrated together with the thermal and chemical stability of the materials showing the potential of these CO2-responsive proppants as an alternative proppant technology for geothermal and unconventional oil/gas applications.

  16. An ac susceptibility study in capped Ni/Ni(OH)2 core-shell nanoassemblies: dual peak observations

    Science.gov (United States)

    Godsell, Jeffrey F.; Bala, Tanushree; Ryan, Kevin M.; Roy, Saibal

    2011-08-01

    In this study, the ac susceptibility (χ' and χ'') variation with temperature (10-100 K) for oleic acid (OA) capped Ni/Ni(OH)2 core-shell nanoparticle assemblies are reported at frequencies varying from 0.1 to 1000 Hz. Nanoparticle assemblies, with two average particle diameters of ~34 nm and ~14 nm, were synthesized using a wet chemical synthesis approach. Two peaks in the ac susceptibility versus temperature curves are clearly discernable for each of the samples. The first, occurring at ~22 K was attributed to the paramagnetic/antiferromagnetic transition of the Ni(OH)2 present in the shell. The second higher temperature peak was attributed to the superparamagnetic blocking of the pure Ni situated at the core of the nanoparticles. The higher temperature peaks in both the χ' and χ'' curves were observed to increase with increasing frequency. Thus the Néel and the blocking temperatures for such core-shell nanoassemblies were clearly identified from the ac analysis, whereas they were not discernible (superimposed) even from very low dc (FC/ZFC) field measurements. Interparticle interactions within the assemblies were studied through the fitting of phenomenological laws to the experimental datasets. It is observed that even with an OA capping layer, larger Ni/Ni(OH)2 nanoparticles experience a greater degree of sub-capping layer oxidation thus producing lower magnetic interaction strengths.

  17. An ac susceptibility study in capped Ni/Ni(OH){sub 2} core-shell nanoassemblies: dual peak observations

    Energy Technology Data Exchange (ETDEWEB)

    Godsell, Jeffrey F; Roy, Saibal [Microsystems Centre, Tyndall National Institute, Lee Maltings, Dyke Parade, Cork (Ireland); Bala, Tanushree; Ryan, Kevin M., E-mail: saibal.roy@tyndall.ie [Materials and Surface Science Institute and the Department of Chemical and Environmental Sciences, University of Limerick, Limerick, Ireland. (Ireland)

    2011-08-17

    In this study, the ac susceptibility ({chi}' and {chi}'') variation with temperature (10-100 K) for oleic acid (OA) capped Ni/Ni(OH){sub 2} core-shell nanoparticle assemblies are reported at frequencies varying from 0.1 to 1000 Hz. Nanoparticle assemblies, with two average particle diameters of {approx}34 nm and {approx}14 nm, were synthesized using a wet chemical synthesis approach. Two peaks in the ac susceptibility versus temperature curves are clearly discernable for each of the samples. The first, occurring at {approx}22 K was attributed to the paramagnetic/antiferromagnetic transition of the Ni(OH){sub 2} present in the shell. The second higher temperature peak was attributed to the superparamagnetic blocking of the pure Ni situated at the core of the nanoparticles. The higher temperature peaks in both the {chi}' and {chi}'' curves were observed to increase with increasing frequency. Thus the Neel and the blocking temperatures for such core-shell nanoassemblies were clearly identified from the ac analysis, whereas they were not discernible (superimposed) even from very low dc (FC/ZFC) field measurements. Interparticle interactions within the assemblies were studied through the fitting of phenomenological laws to the experimental datasets. It is observed that even with an OA capping layer, larger Ni/Ni(OH){sub 2} nanoparticles experience a greater degree of sub-capping layer oxidation thus producing lower magnetic interaction strengths.

  18. Preparation of Al Fe{sub 2}O{sub 3} Core-Shell Composites Using Amphiphilic Graft Copolymer Template

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Rajkumar; Kim, Sang Jin; Kim, Jin Kyu; Kim, Jong Hak [Yonsei University, Seoul (Korea, Republic of); Park, Jung Su [Agency for Defense and Development (ADD), Daejeon (Korea, Republic of)

    2014-04-15

    A graft copolymer of poly(vinyl chloride)-g-poly(oxyethylene methacrylate) (PVC-g-POEM) was synthesized via atom transfer radical polymerization (ATRP) and used as a structure-directing agent to prepare Al Fe{sub 2}O{sub 3} core-shell nanocomposites through a sol-gel process. The amphiphilic property of PVC-g-POEM allows for good dispersion of Al particles and leads to specific interaction with iron ethoxide, a precursor of Fe{sub 2}O{sub 3}. Secondary bonding interaction in the sol-gel composites was characterized by Fourier transform-infrared (FT-IR) spectroscopy. The well-organized morphology of Al Fe{sub 2}O{sub 3} core-shell nanocomposites was observed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Energy dispersive X-ray (EDX) and X-ray diffraction (XRD) were used to analyze the elemental composition and crystallization structure of the composites.

  19. Determination of Common Adulterants in Herbal Medicine and Food Samples using Core-shell Column Coupled to Tandem Mass Spectrometry.

    Science.gov (United States)

    Al Lawati, Haider A J; Al Busaidi, Idris; Kadavilpparampu, Afsal M; Suliman, FakhrEldin O

    2017-03-01

    High-performance liquid chromatography coupled to tandem mass spectrometry was used to develop and validate a rapid method to qualitatively and quantitatively analyse 18 common adulterants in herbal medicine and food samples. Initially, the mobile phase composition was optimized in three different columns: core-shell, monolithic and standard 3.5-µm-particle-size columns. The results show that the core-shell column provides the best separation. Moreover, the tandem mass spectrometry was optimized. The linear range for all adulterants was 0.5-500 μg mL-1. Finally, the samples that were supplied by the Public Authority of Customer Protection, Ministry of Health, and those collected from the local market were analysed. The results indicate that 7 of 33 analysed samples contained adulterants. The adulterated samples mainly contain sildenafil, tadalafil or vardenafil. The concentrations of these three adulterants in the samples were 0.18-39 wt%. This study is the first report in the Sultanate of Oman about adulteration in herbal medicine and food samples. The results clearly raise some concern and require proper plan of action to increase public awareness about this serious issue.

  20. Enhanced removal performance by the core-shell zeolites/MgFe-layered double hydroxides (LDHs) for municipal wastewater treatment.

    Science.gov (United States)

    Guo, Lu; Zhang, Xiangling; Chen, Qiaozhen; Ruan, Congying; Leng, Yujie

    2016-04-01

    The application of powdered layer double hydroxides (LDHs) in constructed rapid infiltration system (CRIS) appears to be an appreciable problem still unsolved due to the small particle size and the low density. Therefore, the core-shell zeolites/MgFe-LDHs composites were prepared via using co-precipitation method in present study. To investigate the practical applicability, a detailed organics, ammonia, and total phosphorus removal study were carried out in columns to treat the municipal wastewater. The scanning electron microscope (SEM) and energy dispersive spectrometer (EDS) results confirmed the successful synthesis of core-shell zeolites/MgFe-LDHs through coating on the surface of zeolites. Accordingly, the zeolites/MgFe-LDHs largely reduced the COD by 81.14 %, NH4 (+)-N by 81.50%, and TP by 83.29%. Phosphate adsorption study revealed that the equilibrium adsorption data were better fitted by Langmuir isothermal model, with the maximum adsorption capacity of 79.3651 mg/kg for zeolites/MgFe-LDHs and 38.4615 mg/kg for the natural zeolites. In addition, economic analysis indicated that the reagent cost of synthesis of zeolites/MgFe-LDHs was economical. Herein, the zeolites/MgFe-LDHs solved the natural zeolites problem for poor P removal and the application of powdered LDHs in the solid/liquid separation process, suggesting that it was applicable as potential substrates for the removal of organics, ammonia, and total phosphorus in CRIS.

  1. Preparation and characterization of core-shell battery materials for Li-ion batteries manufactured by substrate induced coagulation

    Science.gov (United States)

    Basch, Angelika; Albering, Jörg H.

    2011-03-01

    In this work Substrate Induced Coagulation (SIC) was used to coat the cathode material LiCoO2, commonly used in Li-ion batteries, with fine nano-sized particulate titania. Substrate Induced Coagulation is a self-assembled dip-coating process capable of coating different surfaces with fine particulate materials from liquid media. A SIC coating consists of thin and rinse-prove layers of solid particles. An advantage of this dip-coating method is that the method is easy and cheap and that the materials can be handled by standard lab equipment. Here, the SIC coating of titania on LiCoO2 is followed by a solid-state reaction forming new inorganic layers and a core-shell material, while keeping the content of active battery material high. This titania based coating was designed to confine the reaction of extensively delithiated (charged) LiCoO2 and the electrolyte. The core-shell materials were characterized by SEM, XPS, XRD and Rietveld analysis.

  2. Film Growth Rates and Activation Energies for Core-Shell Nanoparticles Derived from a CVD Based Aerosol Process

    Directory of Open Access Journals (Sweden)

    Frederik Weis

    2015-03-01

    Full Text Available Silica core-shell nanoparticles of about 60–120 nm with a closed outer layer of bismuth or molybdenum oxide of 1–10 nm were synthesized by an integrated chemical vapor synthesis/chemical vapor deposition process at atmospheric pressure. Film growth rates and activation energies were derived from transmission electron microscopy (TEM images for a deposition process based on molybdenum hexacarbonyl and triphenyl bismuth as respective coating precursors. Respective activation energies of 123 ± 10 and 155 ± 10 kJ/mol are in good agreement with the literature and support a deposition mechanism based on surface-induced removal of the precursor ligands. Clean substrate surfaces are thus prerequisite for conformal coatings. Integrated aerosol processes are solvent-free and intrinsically clean. In contrast, commercial silica substrate particles were found to suffer from organic residues which hinder shell formation, and require an additional calcination step to clean the surface prior to coating. Dual layer core-shell structures with molybdenum oxide on bismuth oxide were synthesized with two coating reactors in series and showed similar film growth rates.

  3. A versatile method for combining different biopolymers in a core/shell fashion by 3D plotting to achieve mechanically robust constructs.

    Science.gov (United States)

    Akkineni, Ashwini Rahul; Ahlfeld, Tilman; Lode, Anja; Gelinsky, Michael

    2016-10-07

    Three-dimensional extrusion of two different biomaterials in a core/shell (c/s) fashion has gained much interest in the last couple of years as it allows for fabricating constructs with novel and interesting properties. We now demonstrate that combining high concentrated (16.7 wt%) alginate hydrogels as shell material with low concentrated, soft biopolymer hydrogels as core leads to mechanically stable and robust 3D scaffolds. Alginate, chitosan, gellan gum, gelatin and collagen hydrogels were utilized successfully as core materials-hydrogels which are too soft for 3D plotting of open-porous structures without an additional mechanical support. The respective c/s scaffolds were characterized concerning their morphology, mechanical properties and swelling behavior. It could be shown that core as well as shell part can be loaded with growth factors and that the release depends on core composition and shell thickness. Neither the plotting process nor the crosslinking with 1M CaCl2 denatured the proteins. When core and shell were loaded with different growth factors (VEGF and BMP-2, respectively) a dual release was achieved. Finally, live human endothelial cells were integrated in the core material, demonstrating that this new strategy can be used for bioprinting purposes as well.

  4. Electrospinning fabrication and characterization of magnetic-upconversion fluorescent bifunctional core-shell nanofibers

    Science.gov (United States)

    Ma, Qianli; Wang, Jinxian; Dong, Xiangting; Yu, Wensheng; Liu, Guixia

    2014-02-01

    Novel magnetic-upconversion fluorescent bifunctional core-shell nanofibers have been successfully fabricated by coaxial electrospinning technology. NaYF4:Yb3+,Er3+ and Fe3O4 nanoparticles (Nps) were incorporated into polyvinylpyrrolidone (PVP) and electrospun into core-shell nanofibers with Fe3O4/PVP as core and NaYF4:Yb3+,Er3+/PVP as the shell. The morphology and properties of the final products were investigated in detail by X-ray diffractometry, scanning electron microscopy, transmission electron microscopy, vibrating sample magnetometer, and fluorescence spectroscopy. The core contained magnetic Nps was ca. 100 nm in diameter, and the shell scattered with NaYF4:Yb3+, Er3+ Nps was ca. 80 nm in thickness. Fluorescence emission peaks of Er3+ in the [Fe3O4/PVP]@[NaYF4:Yb3+,Er3+/PVP] core-shell nanofibers were observed. Compared with Fe3O4/NaYF4:Yb3+,Er3+/PVP composite nanofibers, the luminescent intensity of the [Fe3O4/PVP]@[NaYF4:Yb3+,Er3+/PVP] core-shell nanofibers was much higher, because the Fe3O4 Nps were only distributed in the core of the core-shell nanofibers, thus the manufactured core-shell nanofibers possessed excellent magnetic properties. The new type magnetic-upconversion fluorescent bifunctional [Fe3O4/PVP]@[NaYF4:Yb3+,Er3+/PVP] core-shell nanofibers have many potential applications in display device, nanorobots, protein determination, and target delivery of drug owing to their excellent magnetism and fluorescence.

  5. Synthesis of monodisperse TiO2-paraffin core-shell nanoparticles for improved dielectric properties.

    Science.gov (United States)

    Balasubramanian, Balamurugan; Kraemer, Kristin L; Reding, Nicholas A; Skomski, Ralph; Ducharme, Stephen; Sellmyer, David J

    2010-04-27

    Core-shell structures of oxide nanoparticles having a high dielectric constant, and organic shells with large breakdown field are attractive candidates for large electrical energy storage applications. A high growth temperature, however, is required to obtain the dielectric oxide nanoparticles, which affects the process of core-shell formation and also leads to poor control of size, shape, and size-distribution. In this communication, we report a new synthetic process to grow core-shell nanoparticles by means of an experimental method that can be easily adapted to synthesize core-shell structures from a variety of inorganic-organic or inorganic-inorganic materials. Monodisperse and spherical TiO2 nanoparticles were produced at room temperature as a collimated cluster beam in the gas phase using a cluster-deposition source and subsequently coated with uniform paraffin nanoshells using in situ thermal evaporation, prior to deposition on substrates for further characterization and device processing. The paraffin nanoshells prevent the TiO2 nanoparticles from contacting each other and also act as a matrix in which the volume fraction of TiO2 nanoparticles was varied by controlling the thickness of the nanoshells. Parallel-plate capacitors were fabricated using dielectric core-shell nanoparticles having different shell thicknesses. With respect to the bulk paraffin, the effective dielectric constant of TiO2-paraffin core-shell nanoparticles is greatly enhanced with a decrease in the shell thickness. The capacitors show a minimum dielectric dispersion and low dielectric losses in the frequency range of 100 Hz-1 MHz, which are highly desirable for exploiting these core-shell nanoparticles for potential applications.

  6. In vitro hyperthermia with improved colloidal stability and enhanced SAR of magnetic core/shell nanostructures.

    Science.gov (United States)

    Patil, R M; Thorat, N D; Shete, P B; Otari, S V; Tiwale, B M; Pawar, S H

    2016-02-01

    Magnetic core/shell nanostructures of Fe3O4 nanoparticles coated with oleic acid and betaine-HCl were studied for their possible use in magnetic fluid hyperthermia (MFH). Their colloidal stability and heat induction ability were studied in different media viz. phosphate buffer solution (PBS), saline solution and glucose solution with different physiological conditions and in human serum. The results showed enhanced colloidal stability in these media owing to their high zeta potential values. Heat induction studies showed that specific absorption rates (SAR) of core/shells were 82-94W/g at different pH of PBS and concentrations of NaCl and glucose. Interestingly, core/shells showed 78.45±3.90W/g SAR in human serum. The cytotoxicity of core/shells done on L929 and HeLa cell lines using 3-(4,5-dimethylthiazol-2-yl)2,5-diphenyl tetrazolium bromide and trypan blue dye exclusion assays showed >89% and >80% cell viability for 24 and 48h respectively. Core/shell structures were also found to be very efficient for in vitro MFH on cancer cell line. About 95% cell death was occurred in 90min after hyperthermia treatment. The mechanism of cell death was found to be elevated ROS generation in cells after exposure to core/shells in external magnetic field. This study showed that these core/shells have a great potential to be used in in vivo MFH. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Manipulation of subwavelength optical fields and resonant field enhancements of a silver-shell nanocylinder pair and chain waveguides with different core-shell patterns

    Energy Technology Data Exchange (ETDEWEB)

    Chau, Yuan-Fong, E-mail: yfc01@cyu.edu.tw; Li, Huang-Yi; Jiang, Zheng-Hong; Chen, Yi-Fan; Lin, Chih-Sheng; Liu, Min-Shun; Wu, Fong-Lin [Ching Yun University, Department of Electronic Engineering, Taiwan (China); Tsai, Din Ping [National Taiwan University, Department of Physics, Taiwan (China)

    2011-09-15

    Near field optical properties and surface plasmon resonances on a pair of silver-shell nanocylinder and nanochain waveguides with different core-shell patterns which interact with incident plane wave along chain axis are numerically investigated by using the finite element method. Simulation results show that the peak wavelengths and resonant field enhancements are highly tunable by using the nanoshell particles instead of solid ones, revealing a critical relationship among the wavelengths and illuminated direction of incident light, interparticle spacing, radii, and medium of dielectric holes and the patterns of chain waveguides. Besides, nanochain waveguides with different patterns of core-shell that are operated on resonant multipolar modes can provide higher propagation intensities and the transmission ability can be increased by decreasing the size of nanocylinders along the chain axis.

  8. Enhanced high thermal conductivity and low permittivity of polyimide based composites by core-shell Ag@SiO2 nanoparticle fillers

    Science.gov (United States)

    Zhou, Yongcun; Wang, Lu; Zhang, Hu; Bai, Yuanyuan; Niu, Yujuan; Wang, Hong

    2012-07-01

    A kind of polymer based composites was prepared by embedding the fillers of core-shell Ag@SiO2 nanoparticles into the polyimide (PI) matrix. The obtained Ag@SiO2/PI (50% vf of fillers) composites show remarkably improved high thermal conductivity and low relative permittivity. The maximum value of the thermal conductivity of composites is 7.88 W/(mK) and the relative permittivity and dielectric loss are about 11.7 and 0.015 at 1 MHz, respectively. Compared with self-passivated nanometer Al* particles composites, core-shell Ag@SiO2 nano-composite is beneficial to increase the thermal conductivity and reduce the permittivity of the composites. The relative mechanism was studied and discussed.

  9. Carbon nanotubes grown by catalytic CO 2 laser-induced chemical vapor deposition on core-shell Fe/C composite nanoparticles

    Science.gov (United States)

    Morjan, I.; Soare, I.; Alexandrescu, R.; Gavrila-Florescu, L.; Morjan, R.-E.; Prodan, G.; Fleaca, C.; Sandu, I.; Voicu, I.; Dumitrache, F.; Popovici, E.

    2008-01-01

    The synthesis of carbon nanotubes (CNTs) by catalytic laser-induced chemical vapor deposition (C-LCVD) was investigated. C-LCVD uses both ex situ synthesized catalyst nanoparticles and the controlled decomposition of gas-phase hydrocarbon mixtures. As catalysts, Fe/C composites of the core-shell type were used. A continuous-wave CO 2 laser was employed to irradiate the ethylene/acetylene hydrocarbon precursors and to simultaneously heat a silicon substrate on which the carbon nanotubes were grown. The effects on carbon nanotube growth of both the iron-based nanocomposite particles and of the ethylene concentration were studied. The analysis suggests the feasibility of the C-LCVD process, in which the core-shell Fe/C catalysts comply with the prerequisite conditions of the CNT growth namely dispersion and supersaturation.

  10. Hydrothermal synthesis of high-quality type-II CdTe/CdSe core/shell quantum dots with dark red emission.

    Science.gov (United States)

    Liu, Ning; Yang, Ping

    2014-08-01

    A hydrothermal method was used to synthesize type-II CdTe/CdSe core/shell quantum dots (QDs) using the thilglycolic acid (TGA) capped CdTe QDs as cores, which show a number of advantages. Because of the spatial separation of carriers the low excited states of CdTe/CdSe QDs, they exhibit many novel properties that are fundamentally different from the type-I QDs. On the other hand, our experiment results show that the wave function of the hole of the exciton in the CdTe core extends well into the CdSe shell. The results also reveal that a thick shell can confine the electrons inside the particles and thereby improve the PL efficiency and prolong the lifetime of the core/shell QDs. We use the UV-vis absorption and fluorescence spectrum measurements on growing particles in detail. We found that the fluorescence of the CdTe/CdSe QDs was strongly dependent on the thick of the shell and size of the core as well as the unique type-II heterostructure, which make the type-II core/shell QDs more suitable in photovoltaic or photoconduction applications.

  11. Trace the polymerization induced by gamma-ray irradiated silica particles

    Science.gov (United States)

    Lee, Hoik; Ryu, Jungju; Kim, Myungwoong; Im, Seung Soon; Kim, Ick Soo; Sohn, Daewon

    2016-08-01

    A γ-ray irradiation to inorganic particles is a promising technique for preparation of organic/inorganic composites as it offers a number of advantages such as an additive-free polymerizations conducted under mild conditions, avoiding undesired damage to organic components in the composites. Herein, we demonstrated a step-wise formation mechanism of organic/inorganic nanocomposite hydrogel in detail. The γ-ray irradiation to silica particles dispersed in water generates peroxide groups on their surface, enabling surface-initiated polymerization of acrylic acid from the inorganic material. As a result, poly(acrylic acid) (PAA) covers the silica particles in the form of a core-shell at the initial stage. Then, PAA-coated silica particles associate with each other by combination of radicals at the end of chains on different particles, leading to micro-gel domains. Finally, the micro-gels are further associated with each other to form a 3D network structure. We investigated this mechanism using dynamic light scattering (DLS) and transmission electron microscopy (TEM). Our result strongly suggests that controlling reaction time is critical to achieve specific and desirable organic/inorganic nanocomposite structure among core-shell particles, micro-gels and 3D network bulk hydrogel.

  12. Direct ethanol fuel cell, CO and ethanol oxidation on core-shell C/Ni-Au-[Pt and (Pt- Ir)] catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, C.A.D.; Tremiliosi-Filho, G. [Universidade de Sao Paulo (IQSC/USP), Sao Carlos, SP (Brazil). Inst. de Quimica], Email: cesaraug@sc.usp.br; Kokoh, K.B.; Coutanceau, C.; Baranton, S. [Universite de Poitiers (France). Lab. de Catalyse en Chimie Organique (LACCO). Equipe Electrocatalyse

    2010-07-01

    In this paper presents to study of the Pt and Pt-Ir monolayer that were deposited on core-shell Ni-Au nanoparticles supported on carbon. Catalysts with the following molar ratios were prepared: Pt and Pt{sub 65}Ir{sub 35}, Pt{sub 75}Ir{sub 2}5, Pt{sub 80}Ir{sub 20} and Pt{sub 85}Ir{sub 15}. The means particle sizes were in the range of 2 - 6 nm for all catalysts. The electrochemical properties examined in the ethanol and CO oxidation by cyclic voltammetry, and In situ IR spectroscopy measurements (SPAIRS) enabled to determine intermediates and reaction products as a function of the metallic compositions of catalysts. All of the catalysts were tested as anodes of a single direct ethanol fuel cell (DEFC) tests in 1.0 M ethanol solution. As a result, higher power densities were obtained with the core-shell particles in comparison to those issued from the commercial catalyst (Pt-ETEK). Thus, the maximum power densities at 90 deg C for the different systems are: (i) commercial C/Pt catalyst (E-TEK): ca. 0.010 W cm{sup -2}, C/Ni-Au-(Pt{sub 85}Ir{sub 15}): ca. 0.013 W cm{sup -2} and C/Ni-Au-Pt: ca. 0.018 W cm{sup -2} (all core-shell systems were normalization by Pt load). As a result, the performance of the core-shell nanoparticles is much better than that produced for the commercial catalyst and the C/Ni-Au-Pt system showed the best performance. (author)

  13. Dielectric core-shell optical antennas for strong solar absorption enhancement.

    Science.gov (United States)

    Yu, Yiling; Ferry, Vivian E; Alivisatos, A Paul; Cao, Linyou

    2012-07-11

    We demonstrate a new light trapping technique that exploits dielectric core-shell optical antennas to strongly enhance solar absorption. This approach can allow the thickness of active materials in solar cells lowered by almost 1 order of magnitude without scarifying solar absorption capability. For example, it can enable a 70 nm thick hydrogenated amorphous silicon (a-Si:H) thin film to absorb 90% of incident solar radiation above the bandgap, which would otherwise require a thickness of 400 nm in typical antireflective coated thin films. This strong enhancement arises from a controlled optical antenna effect in patterned core-shell nanostructures that consist of absorbing semiconductors and nonabsorbing dielectric materials. This core-shell optical antenna benefits from a multiplication of enhancements contributed by leaky mode resonances (LMRs) in the semiconductor part and antireflection effects in the dielectric part. We investigate the fundamental mechanism for this enhancement multiplication and demonstrate that the size ratio of the semiconductor and the dielectric parts in the core-shell structure is key for optimizing the enhancement. By enabling strong solar absorption enhancement, this approach holds promise for cost reduction and efficiency improvement of solar conversion devices, including solar cells and solar-to-fuel systems. It can generally apply to a wide range of inorganic and organic active materials. This dielectric core-shell antenna can also find applications in other photonic devices such as photodetectors, sensors, and solid-state lighting diodes.

  14. Sensitive detection of DNA based on the optical properties of core-shell gold nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Huang Haowen, E-mail: hhwn09@163.com; Li Chunhui; Qu Caiting; Huang Shaowen; Liu Fang; Zeng Yunlong [Hunan University of Science and Technology, Laboratory of Theoretical Chemistry and Molecular Simulation of Ministry of Education, School of Chemistry and Chemical Engineering (China)

    2012-03-15

    In this article, a type of core-shell nanostructure, Au{sub 2}S/AuAgS/Ag{sub 3}AuS{sub 2}-coated gold nanorods (GNRs) with unique optical properties was used as a sensing platform to detect fish sperm DNA (fsDNA). The prepared core-shell nanorods are positively charged due to the adsorption of the positively charged cetyltrimethylammonium bromide (CTAB) cations on their surface. fsDNA can form ternary fsDNA-CTAB-nanorod complexes together with CTAB and nanorod, which provides a useful platform to detect fsDNA through absorption spectra and resonance light scattering (RLS) spectroscopy. In this sensitive core-shell nanorod sensor, CTAB concentration and the nanoparticle dosage play important roles and have been investigated. Moreover, the fsDNA-CTAB-nanorod complexes induce a great enhancement of RLS intensity of the core-shell GNRs and directly proportional to the concentration of fsDNA, reaching a detection limit of about 10{sup -9} mg/mL. This study will be significant for as-prepared core-shell GNRs for future application in biological systems.

  15. Mapping the Atomistic Structure of Graded Core/Shell Colloidal Nanocrystals.

    Science.gov (United States)

    Yarema, Maksym; Xing, Yunhua; Lechner, Rainer T; Ludescher, Lukas; Dordevic, Nikola; Lin, Weyde M M; Yarema, Olesya; Wood, Vanessa

    2017-09-15

    Engineering the compositional gradient for core/shell semiconductor nanocrystals improves their optical properties. To date, however, the structure of graded core/shell nanocrystal emitters has only been qualitatively described. In this paper, we demonstrate an approach to quantify nanocrystal structure, selecting graded Ag-In-Se/ZnSe core/shell nanocrystals as a proof-of-concept material. A combination of multi-energy small-angle X-ray scattering and electron microscopy techniques enables us to establish the radial distribution of ZnSe with sub-nanometer resolution. Using ab initio shape-retrieval analysis of X-ray scattering spectra, we further determine the average shape of nanocrystals. These results allow us to generate three-dimensional, atomistic reconstructions of graded core/shell nanocrystals. We use these reconstructions to calculate solid-state Zn diffusion in the Ag-In-Se nanocrystals and the lattice mismatch between nanocrystal monolayers. Finally, we apply these findings to propose design rules for optimal shell structure and record-luminescent core/shell nanocrystals.

  16. Synthesis and Characterization of Cobalt-Carbon Core-Shell Microspheres in Supercritical Carbon Dioxide System

    Institute of Scientific and Technical Information of China (English)

    Jun-song Yang; Qian-wang Chen

    2008-01-01

    The synthesis of cobalt-carbon core-shell microspheres in supercritical carbon dioxide system was investigated. Cobalt-carbon core-shell microspheres with diameter of about 1μm were prepared at 350℃ for 12 h in a closed vessel containing an appropriate amount of bis(cyclopentadienyl)cobalt powder and dry ice.Characterization by a variety of techniques,including X-ray powder diffraction,X-ray photoelectron spectroscopy,Transmission electron microscope,Fourier transform infrared spectrum and Raman spectroscopy analysis reveals that each cobalt-carbon core-shell microsphere is made up of an amorphous cobalt core with diameter less than 1 μm and an amorphous carbon shell with thickness of about 200 nm.The possible growth mechanism of cobalt-carbon core-shell microspheres is discussed,based on the pyrolysis of bis(cyclopentadienyl)cobalt in supercritical carbon dioxide and the deposition of carbon or carbon clusters with odd electrons on the surface of magnetic cobalt cores due to magnetic attraction.Magnetic measurements show 141.41 emu/g of saturation magnetization of a typical sample,which is lower than the 168 emu/g of the corresponding metal cobalt bulk material.This is attributed to the considerable mass of the carbon shell and amorphous nature of the magnetic core.Control of magnetism in the cobalt-carbon core-shell microspheres was achieved by annealing treatments.

  17. Core-shell nanofibers: Integrating the bioactivity of gelatin and the mechanical property of polyvinyl alcohol.

    Science.gov (United States)

    Merkle, Valerie M; Zeng, Like; Slepian, Marvin J; Wu, Xiaoyi

    2014-04-01

    Coaxial electrospinning is used to fabricate nanofibers with gelatin in the shell and polyvinyl alcohol (PVA) in the core in order to derive mechanical strength from PVA and bioactivity from gelatin. At a 1:1 PVA/gelatin mass ratio, the core-shell nanofiber scaffolds display a Young's modulus of 168.6 ± 36.5 MPa and a tensile strength of 5.42 ± 1.95 MPa, which are significantly higher than those of the scaffolds composed solely of gelatin or PVA. The Young's modulus and tensile strength of the core-shell nanofibers are further improved by reducing the PVA/gelatin mass ratio from 1:1 to 1:3. The mechanical analysis of the core-shell nanofibers suggests that the presence of the gelatin shell may improve the molecular alignment of the PVA core, transforming the semi-crystalline, plastic PVA into a more crystallized, elastic PVA, and enhancing the mechanical properties of the core. Lastly, the PVA/gelatin core-shell nanofibers possess cellular viability, proliferation, and adhesion similar to these of the gelatin nanofibers, and show significantly higher proliferation and adhesion than the PVA nanofibers. Taken together, the coaxial electrospinning of nanofibers with a core-shell structure permits integration of the bioactivity of gelatin and the mechanical strength of PVA in single fibers.

  18. Controllable core-shell-type resin for solid-phase peptide synthesis.

    Science.gov (United States)

    Cho, Hong-Jun; Lee, Tae-Kyung; Kim, Jung Won; Lee, Sang-Myung; Lee, Yoon-Sik

    2012-10-19

    A simple, mild, and inexpensive biphasic functionalization approach is attempted for preparing an ideal core-shell-type resin. The core-shell-type architecture was constructed by coupling Fmoc-OSu to the amino groups on the shell layer of an aminomethyl polystyrene (AM PS) resin. The shell layer thickness of the resin could be easily controlled under mild conditions, which was characterized by confocal laser scanning microscopy (CLSM). The efficiency of core-shell-type resin for solid-phase peptide synthesis (SPPS) was demonstrated by the synthesis of various peptides and compared with commercially available noncore-shell-type resins such as AM PS and poly(ethylene glycol)-based resins. The core-shell-type resin provided effective performance during the synthesis of hydrophobic peptide sequences, a disulfide-bridged cyclic peptide, and a difficult PNA sequence. Furthermore, a highly aggregative peptide fragment, MoPrP 105-125, was synthesized more efficiently on the core-shell-type resin under microwave conditions than AM PS and ChemMatrix resins.

  19. Structure and mechanism of the formation of core-shell nanoparticles obtained through a one-step gas-phase synthesis by electron beam evaporation.

    Science.gov (United States)

    Nomoev, Andrey V; Bardakhanov, Sergey P; Schreiber, Makoto; Bazarova, Dashima G; Romanov, Nikolai A; Baldanov, Boris B; Radnaev, Bair R; Syzrantsev, Viacheslav V

    2015-01-01

    The structure of core-shell Cu@silica and Ag@Si nanoparticles obtained in one-step through evaporation of elemental precursors by a high-powered electron beam are investigated. The structure of the core and shell of the particles are investigated in order to elucidate their mechanisms of formation and factors affecting the synthesis. It is proposed that the formation of Cu@silica particles is mainly driven by surface tension differences between Cu and Si while the formation of Ag@Si particles is mainly driven by differences in the vapour concentration of the two components.

  20. Doxorubicin/gold-loaded core/shell nanoparticles for combination therapy to treat cancer through the enhanced tumor targeting.

    Science.gov (United States)

    Kim, Kyungim; Oh, Keun Sang; Park, Dal Yong; Lee, Jae Young; Lee, Beom Suk; Kim, In San; Kim, Kwangmeyung; Kwon, Ick Chan; Sang, Yoon Kim; Yuk, Soon Hong

    2016-04-28

    A combination therapy consisting of radiotherapy and chemotherapy is performed using the core/shell nanoparticles (NPs) containing gold NPs and doxorubicin (DOX). Gold NPs in the core/shell NPs were utilized as a radiosensitizer. To examine the morphology and size distribution of the core/shell NPs, transmittance electron microscopy and dynamic light scattering were used. The in vitro release behavior, cellular uptake and toxicity were also observed to verify the functionality of the core/shell NPs as a nanocarrier. To demonstrate the advantage of the core/shell NPs over traditional gold NPs reported in the combination therapy, we evaluated the accumulation behavior of the core/shell NPs at the tumor site using the biodistribution. Antitumor efficacy was observed with and without radiation to evaluate the role of gold NPs as a radiosensitizer.

  1. High performance carbon nanotube-Si core-shell wires with a rationally structured core for lithium ion battery anodes.

    Science.gov (United States)

    Fan, Yu; Zhang, Qing; Lu, Congxiang; Xiao, Qizhen; Wang, Xinghui; Tay, Beng Kang

    2013-02-21

    Core-shell Si nanowires are very promising anode materials. Here, we synthesize vertically aligned carbon nanotubes (CNTs) with relatively large diameters and large inter-wire spacing as core wires and demonstrate a CNT-Si core-shell wire composite as a lithium ion battery (LIB) anode. Owing to the rationally engineered core structure, the composite shows good capacity retention and rate performance. The excellent performance is superior to most core-shell nanowires previously reported.

  2. Surfactant-stabilized small hydrogel particles in oil: hosts for remarkable activation of enzymes in organic solvents.

    Science.gov (United States)

    Das, Dibyendu; Roy, Sangita; Debnath, Sisir; Das, Prasanta Kumar

    2010-04-26

    Hydrogels of amino acid based cationic surfactant having C(16) tails were used to immobilize heme proteins and enzyme. These hydrogel-entrapped proteins/enzyme showed remarkable activation when dispersed in organic solvent. The activation effect (ratio of the activity of the hydrogel-entrapped enzyme in organic solvent to the activity of the native enzyme in water) of cytochrome c increased up to 350-fold with varying protein and gelator concentration. Hydrogel-entrapped hemoglobin and horseradish peroxidase (HRP) also showed markedly improved activity in organic solvent. Alteration in the structure of the gelator and its supramolecular arrangement showed that the protein immobilized within amphiphilic networks with larger interstitial space exhibited higher activation. This striking activation of hydrogel-entrapped proteins stems from the following effects: 1) the hydrophilic domain of the amphiphilic networks facilitates accessibility of the enzyme to the water-soluble substrate. 2) the surfactant, as an integral part of the amphiphilic network, assists in the formation of a distinct interface through which reactants and products are easily transferred between hydrophilic and hydrophobic domains. 3) Surfactant gelators help in the dispersion and stabilization of gel matrix into small particles in organic solvent, which enhances the overall surface area and results in improved mass transfer. The activation was dramatically improved up to 675-fold in the presence of nongelating anionic surfactants that helped in disintegration of the gel into further smaller-sized particles. Interestingly, hydrogel-immobilized HRP exhibited about 2000-fold higher activity in comparison to the activity of the suspended enzyme in toluene. Structural changes of the entrapped enzyme and the morphology of the matrix were investigated to understand the mechanism of this activation.

  3. Eco-friendly microwave-assisted green and rapid synthesis of well-stabilized gold and core-shell silver-gold nanoparticles.

    Science.gov (United States)

    El-Naggar, Mehrez E; Shaheen, Tharwat I; Fouda, Moustafa M G; Hebeish, Ali A

    2016-01-20

    Herein, we present a new approach for the synthesis of gold nanoparticles (AuNPs) individually and as bimetallic core-shell nanoparticles (AgNPs-AuNPs). The novelty of the approach is further maximized by using curdlan (CRD) biopolymer to perform the dual role of reducing and capping agents and microwave-aided technology for affecting the said nanoparticles with varying concentrations in addition to those affected by precursor concentrations. Thus, for preparation of AuNPs, curdlan was solubilized in alkali solution followed by an addition of tetrachloroauric acid (HAuCl4). The curdlan solution containing HAuCl4 was then subjected to microwave radiation for up to 10 min. The optimum conditions obtained with the synthesis of AuNPs were employed for preparation of core-shell silver-gold nanoparticles by replacing definite portion of HAuCl4 with an equivalent portion of silver nitrate (AgNO3). The portion of AgNO3 was added initially and allowed to be reduced by virtue of the dual role of curdlan under microwave radiation. The corresponding portion of HAuCl4 was then added and allowed to complete the reaction. Characterization of AuNPs and AgNPs-AuNPs core-shell were made using UV-vis spectra, TEM, FTIR, XRD, zeta potential, and AFM analysis. Accordingly, strong peaks of the colloidal particles show surface plasmon resonance (SPR) at maximum wavelength of 540 nm, proving the formation of well-stabilized gold nanoparticles. TEM investigations reveal that the major size of AuNPs formed at different Au(+3)concentration lie below 20 nm with narrow size distribution. Whilst, the SPR bands of AgNPs-AuNPs core-shell differ than those obtained from original AgNPs (420 nm) and AuNPs (540 nm). Such shifting due to SPR of Au nanoshell deposited onto AgNPs core was significantly affected by the variation of bimetallic ratios applied. TEM micrographs show variation in contrast between dark silver core and the lighter gold shell. Increasing the ratio of silver ions leads to

  4. Investigation of the deformation mechanisms of core-shell rubber-modified epoxy at cryogenic temperatures

    Science.gov (United States)

    Brown, Hayley Rebecca

    The industrial demand for high strength-to-weight ratio materials is increasing due to the need for high performance components. Epoxy polymers, although often used in fiber-reinforced polymeric composites, have an inherent low toughness that further decreases with decreasing temperatures. Second-phase additives have been effective in increasing the toughness of epoxies at room temperature; however, the mechanisms at low temperatures are still not understood. In this study, the deformation mechanisms of a DGEBA epoxy modified with MX960 core-shell rubber (CSR) particles were investigated under quasi-static tensile and impact loads at room temperature (RT) and liquid nitrogen (LN 2) temperature. Overall, the CSR had little effect on the tensile properties at RT and LN2 temperature. The impact strength decreased from neat to 3 wt% but increased from neat to 5 wt% at RT and LN2 temperature, with a higher impact strength at RT at all CSR loadings. The CSR particles debonded in front of the crack tip, inducing voids into the matrix. It was found that an increase in shear deformation and void growth likely accounted for the higher impact strength at 5 wt% CSR loading at RT while the thermal stress fields due to the coefficient of thermal expansion mismatch between rubber and epoxy and an increase in secondary cracking is likely responsible for the higher impact strength at 5 wt% tested at LN2 temperature. While a large toughening effect was not seen in this study, the mechanisms analyzed herein will likely be of use for further material investigations at cryogenic temperatures.

  5. Photocatalytic hydrogen generation from water under visible light using core/shell nano-catalysts.

    Science.gov (United States)

    Wang, X; Shih, K; Li, X Y

    2010-01-01

    A microemulsion technique was employed to synthesize nano-sized photocatalysts with a core (CdS)/shell (ZnS) structure. The primary particles of the photocatalysts were around 10 nm, and the mean size of the catalyst clusters in water was about 100 nm. The band gaps of the catalysts ranged from 2.25 to 2.46 eV. The experiments of photocatalytic H(2) generation showed that the catalysts (CdS)(x)/(ZnS)(1-x) with x ranging from 0.1 to 1 were able to produce hydrogen from water photolysis under visible light. The catalyst with x=0.9 had the highest rate of hydrogen production. The catalyst loading density also influenced the photo-hydrogen production rate, and the best catalyst concentration in water was 1 g L(-1). The stability of the nano-catalysts in terms of size, morphology and activity was satisfactory during an extended test period for a specific hydrogen production rate of 2.38 mmol g(-1) L(-1) h(-1) and a quantum yield of 16.1% under visible light (165 W Xe lamp, lambda>420 nm). The results demonstrate that the (CdS)/(ZnS) core/shell nano-particles are a novel photo-catalyst for renewable hydrogen generation from water under visible light. This is attributable to the large band-gap ZnS shell that separates the electron/hole pairs generated by the CdS core and hence reduces their recombinations.

  6. Flow injection chemiluminescence sensor based on core-shell magnetic molecularly imprinted nanoparticles for determination of sulfadiazine.

    Science.gov (United States)

    Lu, Fuguang; Li, Huaijiang; Sun, Min; Fan, Lulu; Qiu, Huamin; Li, Xiangjun; Luo, Chuannan

    2012-03-09

    A novel flow injection chemiluminescence (FI-CL) sensor for determination of sulfadiazine (SDZ) using core-shell magnetic molecularly imprinted polymers (MMIPs) as recognition element is developed. Briefly, a hydrophilic MMIPs layer was produced at the surface of Fe(3)O(4)@SiO(2) magnetic nanoparticles (MNPs) via combination of molecular imprinting and reversible stimuli responsive hydrogel. And it provided the MMIPs with excellent adsorption capacity and rapid adsorption rate due to the imprinted sites mostly situated on the surface of MMIPs. Then the prepared SDZ-MMIPs were packed into flow cell to establish a novel FI-CL sensor. The sensor provided a wide linear range for SDZ of 4.0×10(-7) to 1.0×10(-4) mol L(-1) with a detection limit of 1.54×10(-7) mol L(-1). And the relative standard deviation (RSD) for the determination of 1.0×10(-6) mol L(-1) SDZ was 2.56% (n=11). The proposed method was applied to determine SDZ in urine samples and satisfactory results were obtained.

  7. Poly(ethylene glycol)-poly(lactic-co-glycolic acid) core-shell microspheres with enhanced controllability of drug encapsulation and release rate.

    Science.gov (United States)

    Cha, Chaenyung; Jeong, Jae Hyun; Kong, Hyunjoon

    2015-01-01

    Poly(lactic-co-glycolic acid) (PLGA) microspheres have been widely used as drug carriers for minimally invasive, local, and sustained drug delivery. However, their use is often plagued by limited controllability of encapsulation efficiency, initial burst, and release rate of drug molecules, which cause unsatisfactory outcomes and several side effects including inflammation. This study presents a new strategy of tuning the encapsulation efficiency and the release rate of protein drugs from a PLGA microsphere by filling the hollow core of the microsphere with poly(ethylene glycol) (PEG) hydrogels of varying cross-linking density. The PEG gel cores were prepared by inducing in situ cross-linking reactions of PEG monoacrylate solution within the PLGA microspheres. The resulting PEG-PLGA core-shell microspheres exhibited (1) increased encapsulation efficiency, (2) decreased initial burst, and (3) a more sustained release of protein drugs, as the cross-linking density of the PEG gel core was increased. In addition, implantation of PEG-PLGA core-shell microspheres encapsulated with vascular endothelial growth factor (VEGF) onto a chicken chorioallantoic membrane resulted in a significant increase in the number of new blood vessels at an implantation site, while minimizing inflammation. Overall, this strategy of introducing PEG gel into PLGA microspheres will be highly useful in tuning release rates and ultimately in improving the therapeutic efficacy of a wide array of protein drugs.

  8. Electronic Properties of Strained Si/Ge Core-Shell Nanowires

    CERN Document Server

    Peng, Xihong

    2010-01-01

    We investigated the electronic properties of strained Si/Ge core-shell nanowires along the [110] direction using first principles calculations based on density-functional theory. The diameter of the studied core-shell wire is up to 5 nm. We found the band gap of the core-shell wire is smaller than that of both pure Si and Ge wires with the same diameter. This reduced band gap is ascribed to the intrinsic strain between Ge and Si layers, which partially counters the quantum confinement effect. The external strain is further applied to the nanowires for tuning the band structure and band gap. By applying sufficient tensile strain, we found the band gap of Si-core/Ge-shell nanowire with diameter larger than ~3 nm experiences a transition from direct to indirect gap.

  9. Electrosprayed core-shell polymer-lipid nanoparticles for active component delivery

    Science.gov (United States)

    Eltayeb, Megdi; Stride, Eleanor; Edirisinghe, Mohan

    2013-11-01

    A key challenge in the production of multicomponent nanoparticles for healthcare applications is obtaining reproducible monodisperse nanoparticles with the minimum number of preparation steps. This paper focus on the use of electrohydrodynamic (EHD) techniques to produce core-shell polymer-lipid structures with a narrow size distribution in a single step process. These nanoparticles are composed of a hydrophilic core for active component encapsulation and a lipid shell. It was found that core-shell nanoparticles with a tunable size range between 30 and 90 nm and a narrow size distribution could be reproducibly manufactured. The results indicate that the lipid component (stearic acid) stabilizes the nanoparticles against collapse and aggregation and improves entrapment of active components, in this case vanillin, ethylmaltol and maltol. The overall structure of the nanoparticles produced was examined by multiple methods, including transmission electron microscopy and differential scanning calorimetry, to confirm that they were of core-shell form.

  10. Sonochemical synthesis and photoluminescence properties of rare-earth phosphate core/shell nanorods

    Institute of Scientific and Technical Information of China (English)

    余文媛; 李冠涞; 周利

    2010-01-01

    Rare earth phosphate core/shell nanostructures were synthesized via facile ultrasound irradiation method.XRD and TEM were em-ployed to characterize the structure and morphology properties.The photoluminescence(PL) properties of TbPO4/CePO4 and CePO4/TbPO4 core/shell nanorods were studied to explore the energy transfers from Ce3+ to Tb3+.In the Ce0.9Tb0.1PO4/LaPO4 core/shell nanorods,the PL intensity of Ce0.9Tb0.1PO4 nanorods was enhanced when the LaPO4 shells were coated.

  11. Thermosensitive Cu2O-PNIPAM core-shell nanoreactors with tunable photocatalytic activity

    CERN Document Server

    Jia, He; Angioletti-Uberti, Stefano; Henzler, Katja; Ott, Andreas; Lin, Xianzhong; Möser, Jannik; Kochovski, Zdravko; Schnegg, Alexander; Dzubiella, Joachim; Ballauff, Matthias; Lu, Yan

    2016-01-01

    We report a facile and novel method for the fabrication of Cu2O@PNIPAM core-shell nanoreactors using Cu2O nanocubes as the core. The PNIPAM shell not only effectively protects the Cu2O nanocubes from oxidation, but also improves the colloidal stability of the system. The Cu2O@PNIPAM core-shell microgels can work efficiently as photocatalyst for the decomposition of methyl orange under visible light. A significant enhancement in the catalytic activity has been observed for the core-shell microgels compared with the pure Cu2O nanocubes. Most importantly, the photocatalytic activity of the Cu2O nanocubes can be further tuned by the thermosensitive PNIPAM shell, as rationalized by our recent theory.

  12. Core-Shell Structure of a Silicon Nanorod/Carbon Nanotube Field Emission Cathode

    Directory of Open Access Journals (Sweden)

    Bohr-Ran Huang

    2012-01-01

    Full Text Available A novel core-shell structure of silicon nanorods/carbon nanotubes (SiNRs/CNTs is developed for use in field emission cathodes. The CNTs were synthesized on SiNRs, using the Ag-assisted electroless etching technique to form the SiNRs/CNT core-shell structure. This resulting SiNRs/CNT field emission cathode demonstrated improved field emission properties including a lower turn-on electric field on (1.3 V/μm, 1 μA/cm2, a lower threshold electric field th (1.8 V/μm, 1 mA/cm2, and a higher enhancement factor (2347. These superior properties indicate that this core-shell structure of SiNRs/CNTs has good potential in field emission cathode applications.

  13. Boosting hole mobility in coherently strained [110]-oriented Ge-Si core-shell nanowires.

    Science.gov (United States)

    Conesa-Boj, Sonia; Li, Ang; Koelling, Sebastian; Brauns, Matthias; Ridderbos, Joost; Nguyen, Ton T; Verheijen, Marcel A; Koenraad, Paul M; Zwanenburg, Floris Arnoud; Bakkers, Erik P A M

    2017-02-23

    The ability of core-shell nanowires to overcome existing limitations of heterostructures is one of the key ingredients for the design of next generation devices. This requires a detailed understanding of the mechanism for strain relaxation in these systems, in order to eliminate strain-induced defect formation and thus to boost important electronic properties such as carrier mobility. Here we demonstrate how the hole mobility of [110]-oriented Ge-Si core-shell nanowires can be substantially enhanced thanks to the realization of large band offset and coherent strain in the system, reaching values as high as 4200 cm(2)/(Vs) at 4K and 1600 cm(2)/(Vs) at room temperature for high hole densities of 1019 cm(-3). Our results imply [110]-oriented Ge-Si core-shell nanowires as a promising candidate for future electronic and quantum transport devices.

  14. Synthesis of core-shell structured magnetic nanoparticles with a carbide shell

    Science.gov (United States)

    Hou, Shushan; Chi, Yue; Zhao, Zhankui

    2017-03-01

    Core-shell structured materials combining the functionalities of the core and shell have great application potential in many fields. In this work, by combining solvothermal, polymerization and the high temperature carbonization, we have successfully developed a facile method to generate core-shell structured nanoparticles which possess an internal magnetic nanoparticle with a carbide shell. The thickness of resorcinol formaldehyde resin as intermediate transition shell could be easily adjusted by changing the concentration of the RF precursor. The resulting nanoparticles possess well-defined structure, uniform size and high magnetization. The unique nanostructure of the magnetic core-shell structured nanoparticles could lead to many promising applications in areas ranging from drug delivery to the purifyication of sewage.

  15. Hexagonal Boron Nitride-Graphene Core-Shell Arrays Formed by Self-Symmetrical Etching Growth.

    Science.gov (United States)

    Wang, Chenxiao; Zuo, Junlai; Tan, Lifang; Zeng, Mengqi; Zhang, Qiqi; Xia, Huinan; Zhang, Wenhao; Fu, Yingshuang; Fu, Lei

    2017-09-20

    The synthesis and integration of core-shell materials have been extensively explored in three-dimensional nanostructures, while they are hardly ever extended into the emerging two-dimensional (2D) research field. Herein, demonstrated by graphene (G) and hexagonal boron nitride (h-BN) and via a sequential chemical vapor deposition method, we succeed for the first time in synthesizing 2D h-BN-G core-shell arrays (CSA), which possess extremely high uniformity in shapes, sizes and distributions. Each of the core-shell unit is composed of G ring-shaped shell internally filled with h-BN circular core. In addition, we perform simulations to further explain the self-symmetrical etching growth mechanism of the h-BN-G CSA, demonstrating its potential to be used as an efficient synthetic method suitable for other 2D CSA systems.

  16. Magnetocaloric effect study of ferromagnetic-charge ordered core-shell type manganite nanostructures

    Science.gov (United States)

    Das, Kalipada; Das, I.

    2017-08-01

    In the present study we have presented the magnetic and magnetocaloric properties of ferromagnetic (La0.67Sr0.33MnO3)-charge ordered (Pr0.67Ca0.33MnO3) core-shell nanostructures. We have also compared the magnetocaloric properties of Pr0.67Ca0.33MnO3 (PCMO) nanoparticles. Our study indicates that in case of the core-shell nanostructures, the magnetocaloric properties markedly modifies compared to its parent compound PCMO, additionally the low field magnetocaloric effect enhanced. More specifically, the large value of magnetocaloric entropy change (- Δ S(T)) was observed in wider temperature range in core-shell nanostructure which may be important from application point of view.

  17. Hierarchical magnetic core-shell nanostructures for microwave absorption:Synthesis,microstructure and property studies

    Institute of Scientific and Technical Information of China (English)

    LIU JiWei; XU JunJie; LIU ZhengWang; LIU XiaLin; CHE RenChao

    2014-01-01

    Core-shell nanostructures have attracted considerable attention in the past decades because of their fundamental scientific significance and many technological applications.Recently,it has been reported that the core-shell nanostructures with advanced compositions and complicated morphologies show great potential as high-performance microwave absorbers due to their unique properties,such as large surface areas,multi-functionalities and synergistic effects between the interior core and outer shell.This review article focuses on the recent progress in synthesis and characterization of hierarchical magnetic core-shell nanostructures for microwave absorption applications based on our own work.In addition,several future trends in this field for next-generation microwave absorbers are discussed.

  18. Polymer-inorganic core-shell nanofibers by electrospinning and atomic layer deposition: flexible nylon-ZnO core-shell nanofiber mats and their photocatalytic activity.

    Science.gov (United States)

    Kayaci, Fatma; Ozgit-Akgun, Cagla; Donmez, Inci; Biyikli, Necmi; Uyar, Tamer

    2012-11-01

    Polymer-inorganic core-shell nanofibers were produced by two-step approach; electrospinning and atomic layer deposition (ALD). First, nylon 6,6 (polymeric core) nanofibers were obtained by electrospinning, and then zinc oxide (ZnO) (inorganic shell) with precise thickness control was deposited onto electrospun nylon 6,6 nanofibers using ALD technique. The bead-free and uniform nylon 6,6 nanofibers having different average fiber diameters (∼80, ∼240 and ∼650 nm) were achieved by using two different solvent systems and polymer concentrations. ZnO layer about 90 nm, having uniform thickness around the fiber structure, was successfully deposited onto the nylon 6,6 nanofibers. Because of the low deposition temperature utilized (200 °C), ALD process did not deform the polymeric fiber structure, and highly conformal ZnO layer with precise thickness and composition over a large scale were accomplished regardless of the differences in fiber diameters. ZnO shell layer was found to have a polycrystalline nature with hexagonal wurtzite structure. The core-shell nylon 6,6-ZnO nanofiber mats were flexible because of the polymeric core component. Photocatalytic activity of the core-shell nylon 6,6-ZnO nanofiber mats were tested by following the photocatalytic decomposition of rhodamine-B dye. The nylon 6,6-ZnO nanofiber mat, having thinner fiber diameter, has shown better photocatalytic efficiency due to higher surface area of this sample. These nylon 6,6-ZnO nanofiber mats have also shown structural stability and kept their photocatalytic activity for the second cycle test. Our findings suggest that core-shell nylon 6,6-ZnO nanofiber mat can be a very good candidate as a filter material for water purification and organic waste treatment because of their photocatalytic properties along with structural flexibility and stability.

  19. Fabrication of Hierarchical Layer-by-Layer Assembled Diamond-based Core-Shell Nanocomposites as Highly Efficient Dye Absorbents for Wastewater Treatment

    Science.gov (United States)

    Zhao, Xinna; Ma, Kai; Jiao, Tifeng; Xing, Ruirui; Ma, Xilong; Hu, Jie; Huang, Hao; Zhang, Lexin; Yan, Xuehai

    2017-03-01

    The effective chemical modification and self-assembly of diamond-based hierarchical composite materials are of key importance for a broad range of diamond applications. Herein, we report the preparation of novel core-shell diamond-based nanocomposites for dye adsorption toward wastewater treatment through a layer-by-layer (LbL) assembled strategy. The synthesis of the reported composites began with the carboxyl functionalization of microdiamond by the chemical modification of diamond@graphene oxide composite through the oxidation of diamond@graphite. The carboxyl-terminated microdiamond was then alternatively immersed in the aqueous solution of amine-containing polyethylenimine and carboxyl-containing poly acrylic acid, which led to the formation of adsorption layer on diamond surface. Alternating (self-limiting) immersions in the solutions of the amine-containing and carboxyl-containing polymers were continued until the desired number of shell layers were formed around the microdiamond. The obtained core-shell nanocomposites were successfully synthesized and characterized by morphological and spectral techniques, demonstrating higher surface areas and mesoporous structures for good dye adsorption capacities than nonporous solid diamond particles. The LbL-assembled core-shell nanocomposites thus obtained demonstrated great adsorption capacity by using two model dyes as pollutants for wastewater treatment. Therefore, the present work on LbL-assembled diamond-based composites provides new alternatives for developing diamond hybrids as well as nanomaterials towards wastewater treatment applications.

  20. Synthesis and characterization of Fe3O4/TiO2 magnetic and photocatalyst bifunctional core-shell with superparamagnetic performance

    Science.gov (United States)

    Behrad, F.; Helmi Rashid Farimani, M.; Shahtahmasebi, N.; Rezaee Roknabadi, M.; Karimipour, M.

    2015-07-01

    In this research a simple method has been presented to coat magnetic nanoparticles with TiO2. Firstly, Fe3O4 nanoparticles have been prepared using a co-precipitation method. Thereafter, in order to achieve particles with better dispersibility, the surface of Fe3O4 nanoparticles has been modified with the help of trisodium citrate as stabilizer. Afterward, Fe3O4 / TiO2 core-shell nanocomposites were synthesized by the Stöber method. The prepared samples were characterized by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, energy dispersive X-ray spectroscopy (EDS) analysis and vibrating sample magnetometer (VSM). XRD results show the formation of two compounds of crystalline magnetite and brookite-type TiO2 . TEM images confirmed the formation of their core-shell structure. The surface modification of magnetite nanoparticles using trisodium citrate was confirmed by FTIR analysis. Magnetic studies also indicated that prepared core-shells exhibit superparamagnetic behavior at room temperature. Combining this property with the photocatalytic ability of TiO2 could result in a synthesized nanocomposite with different medical and environmental applications.

  1. Preparation of CdS@CeO2 core/shell composite for photocatalytic reduction of CO2 under visible-light irradiation

    Science.gov (United States)

    Ijaz, Sana; Ehsan, Muhammad Fahad; Ashiq, Muhammad Naeem; Karamat, Nazia; He, Tao

    2016-12-01

    Present work demonstrates fabrication of CdS@CeO2 core/shell composite and its application in the photocatalytic reduction of CO2 under visible-light irradiation (λ ≥ 420 nm). CdS@CeO2 composite has been successfully prepared by two-step chemical method, while CeO2 and CdS have been synthesized by one-step hydrothermal method. X-ray diffraction analysis confirms the formation of fluorite cubic structure of CeO2 and cubic phase of CdS. High resolution transmission electron microscopy and scanning electron microscopy reveal the microsphere morphology of CdS, while CeO2 (shell) is in the form of spherical particles that surround the CdS (core) in case of the composite. X-ray photoelectron spectroscopy has been used to confirm the composition, oxidation state of the elements and valance band of the obtained materials. The CdS@CeO2 core/shell composite and CdS can convert CO2 into methane and methanol under visible-light irradiation. The CdS@CeO2 composite shows higher yield for both methane and methanol than CdS due to low recombination rate of photogenerated electron/hole pairs, as well as a larger BET specific surface area. Moreover, the CdS@CeO2 core/shell composite also shows improved stability upon photocatalysis.

  2. Enhanced green emission from La0.4F3:Ce0.45,Tb0.15/TiO2 core/shell structure

    Institute of Scientific and Technical Information of China (English)

    T.K. Srinivasan; B.S. Panigrahi; N. Suriyamurthy; P.K. Parida; B. Venkatraman

    2015-01-01

    Nano sized La0.4F3:Ce0.45,Tb0.15 (core), La0.4F3:Ce0.45,Tb0.15 (TiO2) (core) shell, La0.55F:Ce0.45, and La0.85F3:Tb0.15 particles were synthesized by adopting co-precipitation technique in acidic environment and coated with TiO2 to form a core-shell structure by adopting a mechanical dispersion method at room temperature. The synthesized materials were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible spectroscopy (UV-Vis) absorption, photoluminescence and lifetime spectroscopy. The crystal structure of La0.4F3:Ce0.45,Tb0.15 remained the same as LaF3 after being doped with Ce and Tb ions but with a slight decrease in the lattice parameter. TEM image confirmed the for-mation of a core-shell structure. The La0.4F3:Ce0.45,Tb0.15/TiO2 exhibited Tb3+fluorescence enhancement by a factor of 1.76. Scin-tillation from the synthesized materials was also observed under X-ray excitation.

  3. One-step synthesis of metal@titania core-shell materials for visible-light photocatalysis and catalytic reduction reaction.

    Science.gov (United States)

    Xiong, Zhigang; Zhang, Luhong; Zhao, Xiu Song

    2014-11-03

    Metal@TiO2 composites with a core-shell structure possess multifunctional properties. The demonstrated protocols for synthesizing such materials involve multiple steps, requiring precise control over the particle uniformity of the core and shell thickness, as well as complex surface modification. A simple approach to synthesizing metal@TiO2 hybrid nanostructures remains a great challenge. Herein, we report on a one-step method for the preparation of metal@TiO2 core-shell nanospheres, which exhibited excellent performance in photocatalytic degradation of recalcitrant organic pollutants under visible light irradiation, and in catalytic reduction of nitrophenol in water. The simple method described here represents a sustainable approach to preparing core-shell materials at low cost, involving fewer chemicals, and requiring less energy, which will make a significant contribution toward large-scale synthesis of high-performance hybrid materials for photocatalytic applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Gram-scale synthesis, thermal stability, magnetic properties, and microwave absorption application of extremely small Co-C core-shell nanoparticles

    Science.gov (United States)

    Kuang, Daitao; Hou, Lizhen; Yu, Bowen; Liang, Bingbing; Deng, Lianwen; Huang, Han; Ma, Songshan; He, Jun; Wang, Shiliang

    2017-07-01

    Co-C core-shell nanoparticles have been synthesized in large quantity (in grams) by metal-organic chemical vapor deposition with analytical cobalt (III) acetylacetonate as precursor. Extremely small nanoparticles with an average core diameter of 3 nm and a shell thickness of 1-2 nm, and relatively large nanoparticles with an average core diameter of 23 nm and a shell thickness of 5-20 nm were obtained, depending on the deposition regions. The 3 nm Co nanocores are thermally stable up to 200 °C in air atmosphere, and do not exhibit visible structural and morphological changes after exposure to air at room temperature for 180 d. The extremely small core-shell nanoparticles exhibit typical superparamagnetic behaviors with a small coercivity of 5 Oe, while the relative large nanoparticles are a typical ferromagnetic material with a high coercivity of 584 Oe. In the microwave absorption tests, a low reflection loss (RL) of  -80.3 dB and large effective bandwidth (frequency range for \\text{RL}≤slant -10~ dB) of 10.1 GHz are obtained in the nanoparticle-paraffin composites with appropriate layer thicknesses and particle contents. This suggests that the as-synthesized Co-C core-shell nanoparticles have a high potential as the microwave-absorbing materials.

  5. Tuning exchange bias in Fe/γ-Fe2O3 core-shell nanoparticles: Impacts of interface and surface spins

    Science.gov (United States)

    Khurshid, Hafsa; Phan, Manh-Huong; Mukherjee, Pritish; Srikanth, Hariharan

    2014-02-01

    A comparative study has been performed of the exchange bias (EB) effect in Fe/γ-Fe2O3 core-shell nanoparticles with the same thickness of the γ-Fe2O3 shell (˜2 nm) and the diameter of the Fe core varying from 4 nm to 11 nm. Transmission electron microscopy (TEM) and high-resolution TEM confirmed the high quality of the core-shell nanostructures. A systematic analysis of magnetization versus magnetic field measurements under zero-field-cooled and field-cooled regimes using the Meiklejohn-Bean model and deconvoluting superparamagnetic and paramagnetic contribution to the total magnetic moment Langevin function shows that there exists a critical particle size (˜10 nm), above which the spins at the interface between Fe and γ-Fe2O3 contribute primarily to the EB, but below which the surface spin effect is dominant. Our finding yields deeper insight into the collective contributions of interface and surface spins to the EB in core-shell nanoparticle systems, knowledge of which is the key to manipulating EB in magnetic nanostructures for spintronics applications.

  6. Tuning exchange bias in Fe/γ-Fe{sub 2}O{sub 3} core-shell nanoparticles: Impacts of interface and surface spins

    Energy Technology Data Exchange (ETDEWEB)

    Khurshid, Hafsa, E-mail: hkhurshi@usf.edu, E-mail: phanm@usf.edu, E-mail: sharihar@usf.edu; Phan, Manh-Huong, E-mail: hkhurshi@usf.edu, E-mail: phanm@usf.edu, E-mail: sharihar@usf.edu; Mukherjee, Pritish; Srikanth, Hariharan, E-mail: hkhurshi@usf.edu, E-mail: phanm@usf.edu, E-mail: sharihar@usf.edu [Department of Physics, University of South Florida, Tampa, Florida 33620 (United States)

    2014-02-17

    A comparative study has been performed of the exchange bias (EB) effect in Fe/γ-Fe{sub 2}O{sub 3} core-shell nanoparticles with the same thickness of the γ-Fe{sub 2}O{sub 3} shell (∼2 nm) and the diameter of the Fe core varying from 4 nm to 11 nm. Transmission electron microscopy (TEM) and high-resolution TEM confirmed the high quality of the core-shell nanostructures. A systematic analysis of magnetization versus magnetic field measurements under zero-field-cooled and field-cooled regimes using the Meiklejohn-Bean model and deconvoluting superparamagnetic and paramagnetic contribution to the total magnetic moment Langevin function shows that there exists a critical particle size (∼10 nm), above which the spins at the interface between Fe and γ-Fe{sub 2}O{sub 3} contribute primarily to the EB, but below which the surface spin effect is dominant. Our finding yields deeper insight into the collective contributions of interface and surface spins to the EB in core-shell nanoparticle systems, knowledge of which is the key to manipulating EB in magnetic nanostructures for spintronics applications.

  7. Sub-nanometer dimensions control of core/shell nanoparticles prepared by atomic layer deposition.

    Science.gov (United States)

    Weber, M J; Verheijen, M A; Bol, A A; Kessels, W M M

    2015-03-06

    Bimetallic core/shell nanoparticles (NPs) are the subject of intense research due to their unique electronic, optical and catalytic properties. Accurate and independent control over the dimensions of both core and shell would allow for unprecedented catalytic performance. Here, we demonstrate that both core and shell dimensions of Pd/Pt core/shell nanoparticles (NPs) supported on Al2O3 substrates can be controlled at the sub-nanometer level by using a novel strategy based on atomic layer deposition (ALD). From the results it is derived that the main conditions for accurate dimension control of these core/shell NPs are: (i) a difference in surface energy between the deposited core metal and the substrate to obtain island growth; (ii) a process yielding linear growth of the NP cores with ALD cycles to obtain monodispersed NPs with a narrow size distribution; (iii) a selective ALD process for the shell metal yielding a linearly increasing thickness to obtain controllable shell growth exclusively on the cores. For Pd/Pt core/shell NPs it is found that a minimum core diameter of 1 nm exists above which the NP cores are able to catalytically dissociate the precursor molecules for shell growth. In addition, initial studies on the stability of these core/shell NPs have been carried out, and it has been demonstrated that core/shell NPs can be deposited by ALD on high aspect ratio substrates such as nanowire arrays. These achievements show therefore that ALD has significant potential for the preparation of tuneable heterogeneous catalyst systems.

  8. Heterogeneous core/shell fluoride nanocrystals with enhanced upconversion photoluminescence for in vivo bioimaging

    Science.gov (United States)

    Hao, Shuwei; Yang, Liming; Qiu, Hailong; Fan, Rongwei; Yang, Chunhui; Chen, Guanying

    2015-06-01

    We report on heterogeneous core/shell CaF2:Yb3+/Ho3+@NaGdF4 nanocrystals of 17 nm with efficient upconversion (UC) photoluminescence (PL) for in vivo bioimaging. Monodisperse core/shell nanostructures were synthesized using a seed-mediated growth process involving two quite different approaches of liquid-solid-solution and thermal decomposition. They exhibit green emission with a sharp band around 540 nm when excited at ~980 nm, which is about 39 times brighter than the core CaF2:Yb3+/Ho3+ nanoparticles. PL decays at 540 nm revealed that such an enhancement arises from efficient suppression of surface-related deactivation from the core nanocrystals. In vivo bioimaging employing water-dispersed core/shell nanoparticles displayed high contrast against the background.We report on heterogeneous core/shell CaF2:Yb3+/Ho3+@NaGdF4 nanocrystals of 17 nm with efficient upconversion (UC) photoluminescence (PL) for in vivo bioimaging. Monodisperse core/shell nanostructures were synthesized using a seed-mediated growth process involving two quite different approaches of liquid-solid-solution and thermal decomposition. They exhibit green emission with a sharp band around 540 nm when excited at ~980 nm, which is about 39 times brighter than the core CaF2:Yb3+/Ho3+ nanoparticles. PL decays at 540 nm revealed that such an enhancement arises from efficient suppression of surface-related deactivation from the core nanocrystals. In vivo bioimaging employing water-dispersed core/shell nanoparticles displayed high contrast against the background. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02287h

  9. Symplectic Symmetry and the Ab Initio No-Core Shell Model

    Energy Technology Data Exchange (ETDEWEB)

    Draayer, Jerry P.; Dytrych, Tomas; Sviratcheva, Kristina D.; Bahri, Chairul; /Louisiana State U.; Vary, James P.; /Iowa State U. /LLNL, Livermore /SLAC

    2007-03-14

    The symplectic symmetry of eigenstates for the 0{sub gs}{sup +} in {sup 16}O and the 0{sub gs}{sup +} and lowest 2{sup +} and 4{sup +} configurations of {sup 12}C that are well-converged within the framework of the no-core shell model with the JISP16 realistic interaction is examined. These states are found to project at the 85-90% level onto very few symplectic representations including the most deformed configuration, which confirms the importance of a symplectic no-core shell model and reaffirms the relevance of the Elliott SU(3) model upon which the symplectic scheme is built.

  10. Synthesis of SnS/In2S3 core-shell nanoparticles

    Science.gov (United States)

    Prastani, C.; Nanu, M.; Nanu, D.; Schropp, R. E. I.; Rath, J. K.

    2014-09-01

    In this letter a new type of core-shell structure is presented. The core is made of tin-sulfide by colloidal route. The shell, made of indium-sulfide, by chemical bath deposition. These core-shell nanoparticles have been characterized by transmission electron microscope to study the size and the shape. High resolution TEM has allowed to determine the structure of the core and the shell. The chemical composition has been analyzed by energy-dispersive X-ray spectroscopy. In the end the optical absorption investigated by UV-vis changing the deposition time and temperature. Finally, the influence of these parameters on the band gap has been investigated.

  11. Structural and magnetic properties of core-shell iron-iron oxide nanoparticles

    DEFF Research Database (Denmark)

    Kuhn, Luise Theil; Bojesen, A.; Timmermann, L.

    2002-01-01

    We present studies of the structural and magnetic properties of core-shell iron-iron oxide nanoparticles. alpha-Fe nanoparticles were fabricated by sputtering and subsequently covered with a protective nanocrystalline oxide shell consisting of either maghaemite (gamma-Fe2O3) or partially oxidized...... magnetite (Fe3O4). We observed that the nanoparticles were stable against further oxidation, and Mossbauer spectroscopy at high applied magnetic fields and low temperatures revealed a stable form of partly oxidized magnetite. The nanocrystalline structure of the oxide shell results in strong canting...... of the spin structure in the oxide shell, which thereby modifies the magnetic properties of the core-shell nanoparticles....

  12. Preparation of Hollow Spherical and Core/shell Structured Powders by Plasma Processing

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Xiaofeng; ZHOU; Kesong; DENG; Changguang; SONG; Jinbing; ZHANG; Jifu; DONG; Shujuan

    2015-01-01

    Four types of hollow spherical micro- and nano-szied powders of ZrO2-7wt.%Y2O3(7YSZ), ZrO2-7wt.%Y2O3, Al2O3-13 wt.% TiO2(AT) and WC as well as one type of core/shell structured powder of ZrB2-30 wt.%Mo Si2 were prepared via plasma processing. In addition, the formation mechanisms of hollow spherical and core/shell structured powders prepared via plasma processing were also proposed.

  13. Quantum confinement effect in Si/Ge core-shell nanowires: First-principles calculations

    Science.gov (United States)

    Yang, Li; Musin, Ryza N.; Wang, Xiao-Qian; Chou, M. Y.

    2008-05-01

    The electronic structure of Si/Ge core-shell nanowires along the [110] and [111] directions are studied with first-principles calculations. We identify the near-gap electronic states that are spatially separated within the core or the shell region, making it possible for a dopant to generate carriers in a different region. The confinement energies of these core and shell states provide an operational definition of the “band offset,” which is not only size dependent but also component dependent. The optimal doping strategy in Si/Ge core-shell nanowires is proposed based on these energy results.

  14. Nonlinear photonic diode behavior in energy-graded core-shell quantum well semiconductor rod.

    Science.gov (United States)

    Ko, Suk-Min; Gong, Su-Hyun; Cho, Yong-Hoon

    2014-09-10

    Future technologies require faster data transfer and processing with lower loss. A photonic diode could be an attractive alternative to the present Si-based electronic diode for rapid optical signal processing and communication. Here, we report highly asymmetric photonic diode behavior with low scattering loss, from tapered core-shell quantum well semiconductor rods that were fabricated to have a large gradient in their bandgap energy along their growth direction. Local laser illumination of the core-shell quantum well rods yielded a huge contrast in light output intensities from opposite ends of the rod.

  15. Recent advances in the synthesis of Fe3O4@AU core/shell nanoparticles

    Science.gov (United States)

    Salihov, Sergei V.; Ivanenkov, Yan A.; Krechetov, Sergei P.; Veselov, Mark S.; Sviridenkova, Natalia V.; Savchenko, Alexander G.; Klyachko, Natalya L.; Golovin, Yury I.; Chufarova, Nina V.; Beloglazkina, Elena K.; Majouga, Alexander G.

    2015-11-01

    Fe3O4@Au core/shell nanoparticles have unique magnetic and optical properties. These nanoparticles are used for biomedical applications, such as magnetic resonance imaging, photothermal therapy, controlled drug delivery, protein separation, biosensors, DNA detection, and immunosensors. In this review, recent methods for the synthesis of core/shell nanoparticles are discussed. We divided all of the synthetic methods in two groups: methods of synthesis of bi-layer structures and methods of synthesis of multilayer composite structures. The latter methods have a layer of "glue" material between the core and the shell.

  16. Magnetic properties of Ni/Au core/shell studied by Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Masrour, R., E-mail: rachidmasrour@hotmail.com [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, Sidi Bouzid, Safi, 63 4600 (Morocco); LMPHE (URAC 12), Faculté des Sciences, Université Mohammed V-Agdal, Av. Ibn Batouta, B.P. 1014, Rabat (Morocco); Bahmad, L. [LMPHE (URAC 12), Faculté des Sciences, Université Mohammed V-Agdal, Av. Ibn Batouta, B.P. 1014, Rabat (Morocco); Hamedoun, M. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Benyoussef, A. [LMPHE (URAC 12), Faculté des Sciences, Université Mohammed V-Agdal, Av. Ibn Batouta, B.P. 1014, Rabat (Morocco); Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Hassan II Academy of Science and Technology, Rabat (Morocco); Hlil, E.K. [Institut Néel, CNRS et Université Joseph Fourier, BP 166, F-38042 Grenoble cedex 9 (France)

    2014-01-10

    The magnetic properties of ferromagnetic Ni/Au core/shell have been studied using Monte Carlo simulations within the Ising model framework. The considered Hamiltonian includes the exchange interactions between Ni–Ni, Au–Au and Ni–Au and the external magnetic field. The thermal total magnetizations and total magnetic susceptibilities of core/shell Ni/Au are computed. The critical temperature is deduced. The exchange interaction between Ni and Au atoms is obtained. In addition, the total magnetizations versus the external magnetic field and crystal filed for different temperature are also established.

  17. Graded index and randomly oriented core-shell silicon nanowires for broadband and wide angle antireflection

    Directory of Open Access Journals (Sweden)

    P. Pignalosa

    2011-09-01

    Full Text Available Antireflection with broadband and wide angle properties is important for a wide range of applications on photovoltaic cells and display. The SiOx shell layer provides a natural antireflection from air to the Si core absorption layer. In this work, we have demonstrated the random core-shell silicon nanowires with both broadband (from 400nm to 900nm and wide angle (from normal incidence to 60º antireflection characteristics within AM1.5 solar spectrum. The graded index structure from the randomly oriented core-shell (Air/SiOx/Si nanowires may provide a potential avenue to realize a broadband and wide angle antireflection layer.

  18. Si/PEDOT:PSS core/shell nanowire arrays for efficient hybrid solar cells.

    Science.gov (United States)

    Lu, Wenhui; Wang, Chengwei; Yue, Wei; Chen, Liwei

    2011-09-01

    A solution filling and drying method has been demonstrated to fabricate Si/PEDOT:PSS core/shell nanowire arrays for hybrid solar cells. The hybrid core/shell nanowire arrays show excellent broadband anti-reflection, and resulting hybrid solar cells absorb about 88% of AM 1.5G photons in the 300-1100 nm range. The power conversion efficiency (PCE) of the hybrid solar cell reaches 6.35%, and is primarily limited by direct and indirect interfacial recombination of charge carriers.

  19. Transfer of energy between a pair of molecules near a plasmonic core-shell nanoparticle: Tunability and sensing

    Science.gov (United States)

    Daneshfar, Nader; Yavari, Asghar

    2016-05-01

    Our model is applied to the calculation of interaction energy between a pair of dipolar molecules (point dipoles) in the vicinity of a nanoshell monomer with core-shell structure, based on the dipole quasi-electrostatic theory of classical electrodynamics and using the Drude and Maxwell-Garnett model. In other words, this work discusses the intermolecular energy transfer from a donor molecule to an acceptor molecule near a spherical nanoparticle that is important for practical applications like sensing. It is shown that the proximity of plasmonic nanoparticles can have a strong effect on the energy transfer between molecules. In addition to the influence of the size, composition, embedding medium, and the filling fraction of doped particles on the interaction energy, the contribution of the dipolar, quadrupolar, octupolar, hexadecapolar, triakontadipolar, and higher order multipole interactions is presented and analyzed. Briefly, we will show that it is possible to achieve enhanced energy transfer by manipulation of different parameters as mentioned above.

  20. Compact Ag@Fe3O4 Core-shell Nanoparticles by Means of Single-step Thermal Decomposition Reaction

    Science.gov (United States)

    Brollo, Maria Eugênia F.; López-Ruiz, Román; Muraca, Diego; Figueroa, Santiago J. A.; Pirota, Kleber R.; Knobel, Marcelo

    2014-10-01

    A temperature pause introduced in a simple single-step thermal decomposition of iron, with the presence of silver seeds formed in the same reaction mixture, gives rise to novel compact heterostructures: brick-like Ag@Fe3O4 core-shell nanoparticles. This novel method is relatively easy to implement, and could contribute to overcome the challenge of obtaining a multifunctional heteroparticle in which a noble metal is surrounded by magnetite. Structural analyses of the samples show 4 nm silver nanoparticles wrapped within compact cubic external structures of Fe oxide, with curious rectangular shape. The magnetic properties indicate a near superparamagnetic like behavior with a weak hysteresis at room temperature. The value of the anisotropy involved makes these particles candidates to potential applications in nanomedicine.

  1. Core@shell Poly(n-butylacrylate)@polystyrene Nanoparticles: Baroplastic Force-Responsiveness in Presence of Strong Phase Separation.

    Science.gov (United States)

    Bonetti, Simone; Farina, Matteo; Mauri, Michele; Koynov, Kaloian; Butt, Hans-Jürgen; Kappl, Michael; Simonutti, Roberto

    2016-04-01

    Poly(n-butylacrylate)@polystyrene nanoparticles behaving as a capsule-based sealing nanoadditive are synthesized through an optimized semicontinuous emulsion polymerization protocol. Solid state time-domain (1)H-NMR and (13)C magic angle spinning (MAS) NMR analysis suggest strong phase separation. Line width of (13)C resonances in cross polarization and single pulse experiment MAS-NMR spectra indicates that the peculiar mobility of each phase is preserved at the nanoscale. Atomic force spectroscopy (AFM) shows the permanence of spherical shape in absence of solvent (i.e., subsequent to strong capillary and surface forces) up to moderate external load, as well as the possibility of plastically deforming the polystyrene shell and ultimately triggering the nanoparticle flow at higher force loads. The breakdown characteristic of the nanoparticle shows for the first time baroplastic behavior on a single particle with precise biphasic core@shell morphology.

  2. Polystyrene-graphene oxide (GO) nanocomposite synthesized by interfacial interactions between RAFT modified GO and core-shell polymeric nanoparticles.

    Science.gov (United States)

    Yeole, Niranjan; Kutcherlapati, S N Raju; Jana, Tushar

    2015-04-01

    Here we report simple and robust one-pot method for the preparation of polystyrene (PS)/graphene oxide (GO) nanocomposite using reversible addition fragmentation chain transfer (RAFT) modified GO in surfactant free emulsion polymerization (SFEP). The results suggested that ionic comonomer, styrene sulfonate sodium salt (SS-Na), concentration plays vital role in forming PS/GO nanocomposite. X-ray and electron diffraction studies suggest that there is no recombination of GO sheets when moderate SS-Na concentration is used, resulting complete exfoliation of GO sheets in the PS/GO nanocomposite. The formation of core-shell particles in which PS is the core and polystyrene sulfonate sodium salt (PSS-Na) is the shell, and the specific interactions between functional groups of GO and PSS-Na are attributed as the driving forces for the PS/GO nanocomposite formation.

  3. Colloidal properties of surface functionalized nanocube-TiO2/poly(3-octylthiophene) core/shell conducting nanocomposite

    Science.gov (United States)

    Sever, Evrim; Unal, Halil Ibrahim

    2015-11-01

    The aim of this study was to prepare a conducting nanocomposite from poly(3-octylthiophene, P3OT) and nanocube-TiO2 particles. For this purpose, firstly nanocube-TiO2 particles were synthesized by hydrothermal method and then surface functionalized by the self assembly of 3-aminopropyltriethoxysilane and 3-thiophene acetic acid, respectively, to obtain covalently bonded nanocube-TiO2/P3OT core/shell nanocomposite. The samples were characterized by ATR-FTIR spectroscopy, elemental analysis, TGA, XRD, XPS, SEM, TEM, contact angle, and conductivity measurements. Electrokinetic properties of nanocube-TiO2 and nanocube-TiO2/P3OT core/shell nanocomposite dispersions were determined by zeta(ζ)-potential measurements in aqueous medium by taking the effects of time, pH, various electrolytes, surfactants, and temperature into account. It was observed that pH was effective on the ζ-potentials of TiO2 in water; but showed slight changes with the presence of cationic (NaCl, BaCl2, AlCl3) and anionic (NaCl, Na2SO4) electrolytes. Increased pH values were observed to shift the ζ-potentials of TiO2/P3OT nanocomposite dispersions to more negative values. Further, effects of surfactants (sodium dodecyl sulfate, SDS, cetyltrimethylbromide, CTAB, TritonX-100) on the ζ-potentials of nanocube-TiO2 and nanocube-TiO2/P3OT nanocomposite dispersions were examined.

  4. 5-Fluorouracil intercalated iron oxide@layered double hydroxide core-shell nano-composites with isotropic and anisotropic architectures for shape-selective drug delivery applications.

    Science.gov (United States)

    Tuncelli, Gülsevde; Ay, Ahmet Nedim; Zümreoglu-Karan, Birgül

    2015-10-01

    We report the synthesis, characterization and in vitro release behavior of anti-cancer drug carrying iron oxide@layered double hydroxide core-shell nanocomposites with sizes ranging from 40 to 300 nm, good drug loading capacities and soft ferromagnetic properties. HRTEM analyses verified that nearly spherical isotropic carriers were obtained by coating spherical magnetite particles while anisotropic carriers were obtained by coating spindle-shaped hematite particles. They both displayed a fluctuating in vitro release profile with a higher release percentage for the anisotropic carrier.

  5. Hyaluronic acid embedded cellulose acetate phthlate core/shell nanoparticulate carrier of 5-fluorouracil.

    Science.gov (United States)

    Garg, Ashish; Rai, Gopal; Lodhi, Santram; Jain, Alok Pal; Yadav, Awesh K

    2016-06-01

    Aim of this research was to prepare hyaluronic acid-modified-cellulose acetate phthalate (HAC) core shell nanoparticles (NPs) of 5-fluorouracil (5-FU). HAC copolymer was synthesized and confirmed by fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopy. HAC NPs with 5-FU were prepared using HAC copolymer and compared with 5-FU loaded cellulose acetate phthalate (CAP) NPs. NPs were characterized by atomic force microscopy (AFM), particle size, zeta potential, polydispersity index, entrapment efficiency, in-vitro release, differential scanning calorimetry (DSC) and X-ray diffraction (XRD). HAC NPs were found slower release (97.30% in 48h) than (99.25% in 8h) CAP NPs. In cytotoxicity studies, showed great cytotoxic potential of 5-FU loaded HAC NPs in A549, MDA-MD-435 and SK-OV-3 cancer cellline. HAC NPs showing least hemolytic than CAP NPs and 5-FU. Area under curve (AUC), maximum plasma concentration (Cmax), mean residence time (MRT) and time to reach maximum plasma concentration Tmax), were observed 4398.1±7.90μgh/mL, 145.45±2.25μg/L, 45.74±0.25h, 72±0.50h, respectively of HAC NPs and 119.92±1.78μgh/mL, 46.38±3.42μg/L, 1.2±0.25h, 0.5±0.02h were observed in plain 5-FU solution. In conclusion, HAC NPs is effective deliver carrier of 5-FU for lung cancer.

  6. Achieving magneto-elasto-electroporation and cell transport using core-shell magnetoelectric nanoparticles (Conference Presentation)

    Science.gov (United States)

    Betal, Soutik; Dutta, Moumita; Shrestha, Binita; Saha, Amit; Tang, Liang; Ramasubramanian, Ananad K.; Bhalla, Amar S.; Guo, Ruyan

    2016-09-01

    Magneto-Elasto-Electroporation (MEEP) is a magnetically controlled acoustic-electroporation observed while core-shell Magneto-electric nanoparticles interact with Biological Cells. The surface polarity change of the piezoelectric coating (BaTiO3) due to absorption of pressure created due magneto-striction of core (CoFe2O4) in AC magnetic field results in electric field (Uext) change at the external vicinity of the cell membrane when nanoparticles are nearby. This results in transmembrane Voltage (Um) change which is basically the difference in Cell's internal potential (Uint) and external potential. The nonlinear permeability change of cell membrane due to change in Um opens the nano-pores on the membrane. The magnetic moment of the nanoparticles further helps in penetration of the Magneto-electric nanoparticles inside the cell through these magneto-electrically controlled newly opened nano-pores on cell's membrane. MEEP is analyzed through in-vitro analysis and Mathematical equations are formulated for numerically expressing its fundamental effect. TEM imaging, XRD analysis, Zeta-potentiometer measurement and AFM imaging are confirming the coating of the piezoelectric layer on Magneto-stricitve nanoparticles, Acoustic measurements confirms the photo-acoustic and magneto-acoustic property of CoFe2O4 nanoparticles and Fluorescence microscopy as well as Confocal microscopy are confirming the penetration of particle inside the Human Epithelial cells (HEP2). Further on application of repulsive magnetic field, nanoparticles are observed to transport a group of cells in controlled boundary conditions in microfluidic chamber. Hence these nanoparticles can be used for accurate and efficient drug delivery as well as cell transport applications

  7. Micro-hydrogel Particles Consisting of Hyperbranched Polyamidoamine for the Removal of Heavy Metal Ions from Water.

    Science.gov (United States)

    Lee, Sanghwa; Eom, Youngsik; Park, Jeyoung; Lee, Jinhee; Kim, Sang Youl

    2017-08-30

    A series of micro-hydrogel particles consisting of hyperbranched polyamidoamine (HPAMAM) without any supporting core materials was synthesized via the inverse suspension condensation polymerization of A2 and B4 monomers, N,N'-methylenebisacrylamide (MBA) and ethylenediamine (EDA). The particles were found to be highly effective when used to remove heavy metal ions, such as cadmium, copper, lead, nickel, zinc, and cobalt, from water, and they could be separated from the water by a simple filtration process. The results of this study demonstrate that crosslinked HPAMAM particles, which can be prepared by a simple and environmentally friendly process, are an attractive absorbent for water purification.

  8. Synthesis of monodisperse spherical core-shell SiO2-SrAl2Si2 O8:Eu2+ phosphors by hydrothermal homogeneous precipitation method

    Directory of Open Access Journals (Sweden)

    Yidong Li, Liyuan Xiao, Yingliang Liu, Pengfei Ai and Xiaobo Chen

    2010-01-01

    Full Text Available Nanocrystalline SrAl2Si2 O8 :Eu2+ phosphor layers were coated on nonaggregated, monodisperse and spherical SiO2 particles using a hydrothermal homogeneous precipitation. After annealing at 1100 °C, core-shell SiO2@SrAl2 Si2 O8 :Eu2+ particles were obtained. They were characterized with x-ray diffraction (XRD, scanning electron microscopy, transmission electron microscopy and photoluminescence techniques. XRD analysis confirmed the formation of SiO2 @SrAl2 Si2 O8 :Eu2+ particles; it indicated that the SrAl2 Si2 O8 :Eu2+ shells on SiO2 particles consisted of hexagonal crystallites. The core-shell phosphors obtained are well-dispersed submicron spherical particles with a narrow size distribution. The thickness of the coated layer is approximately 20–40 nm. Under ultraviolet excitation (361 nm, the particles emit blue light at about 440 nm due to the Eu2+ ions in their shells.

  9. Aqueous-Based Coaxial Electrospinning of Genetically Engineered Silk Elastin Core-Shell Nanofibers

    Directory of Open Access Journals (Sweden)

    Jingxin Zhu

    2016-03-01

    Full Text Available A nanofabrication method for the production of flexible core-shell structured silk elastin nanofibers is presented, based on an all-aqueous coaxial electrospinning process. In this process, silk fibroin (SF and silk-elastin-like protein polymer (SELP, both in aqueous solution, with high and low viscosity, respectively, were used as the inner (core and outer (shell layers of the nanofibers. The electrospinnable SF core solution served as a spinning aid for the nonelectrospinnable SELP shell solution. Uniform nanofibers with average diameter from 301 ± 108 nm to 408 ± 150 nm were obtained through adjusting the processing parameters. The core-shell structures of the nanofibers were confirmed by fluorescence and electron microscopy. In order to modulate the mechanical properties and provide stability in water, the as-spun SF-SELP nanofiber mats were treated with methanol vapor to induce β-sheet physical crosslinks. FTIR confirmed the conversion of the secondary structure from a random coil to β-sheets after the methanol treatment. Tensile tests of SF-SELP core-shell structured nanofibers showed good flexibility with elongation at break of 5.20% ± 0.57%, compared with SF nanofibers with an elongation at break of 1.38% ± 0.22%. The SF-SELP core-shell structured nanofibers should provide useful options to explore in the field of biomaterials due to the improved flexibility of the fibrous mats and the presence of a dynamic SELP layer on the outer surface.

  10. Core-shell Au-Pd nanoparticles as cathode catalysts for microbial fuel cell applications

    Science.gov (United States)

    Yang, Gaixiu; Chen, Dong; Lv, Pengmei; Kong, Xiaoying; Sun, Yongming; Wang, Zhongming; Yuan, Zhenhong; Liu, Hui; Yang, Jun

    2016-01-01

    Bimetallic nanoparticles with core-shell structures usually display enhanced catalytic properties due to the lattice strain created between the core and shell regions. In this study, we demonstrate the application of bimetallic Au-Pd nanoparticles with an Au core and a thin Pd shell as cathode catalysts in microbial fuel cells, which represent a promising technology for wastewater treatment, while directly generating electrical energy. In specific, in comparison with the hollow structured Pt nanoparticles, a benchmark for the electrocatalysis, the bimetallic core-shell Au-Pd nanoparticles are found to have superior activity and stability for oxygen reduction reaction in a neutral condition due to the strong electronic interaction and lattice strain effect between the Au core and the Pd shell domains. The maximum power density generated in a membraneless single-chamber microbial fuel cell running on wastewater with core-shell Au-Pd as cathode catalysts is ca. 16.0 W m−3 and remains stable over 150 days, clearly illustrating the potential of core-shell nanostructures in the applications of microbial fuel cells. PMID:27734945

  11. Rh(0)/Rh(iii) core-shell nanoparticles as heterogeneous catalysts for cyclic carbonate synthesis.

    Science.gov (United States)

    Jung, Younjae; Shin, Taeil; Kim, Kiseong; Byun, Hyeeun; Cho, Sung June; Kim, Hyunwoo; Song, Hyunjoon

    2016-12-22

    Rh(0)/Rh(iii) core-shell nanoparticles were prepared by surface oxidation of Rh nanoparticles with N-bromosuccinimide. They were employed as heterogeneous catalysts for cyclic carbonate synthesis from propylene oxide and CO2, and exhibited high activity and excellent recyclability due to Lewis acidic Rh(iii) species on the shells.

  12. Supercooling Self-Assembly of Magnetic Shelled Core/Shell Supraparticles.

    Science.gov (United States)

    Zheng, Xiaotong; Yan, Bingyun; Wu, Fengluan; Zhang, Jinlong; Qu, Shuxin; Zhou, Shaobing; Weng, Jie

    2016-09-14

    Molecular self-assembly has emerged as a powerful technique for controlling the structure and properties of core/shell structured supraparticles. However, drug-loading capacities and therapeutic effects of self-assembled magnetic core/shell nanocarriers with magnetic nanoparticles in the core are limited by the intervention of the outer organic or inorganic shell, the aggregation of superparamagnetic nanoparticles, the narrowed inner cavity, etc. Here, we present a self-assembly approach based on rebalancing hydrogen bonds between components under a supercooling process to form a new core/shell nanoscale supraparticle with magnetic nanoparticles as the shell and a polysaccharide as a core. Compared with conventional iron oxide nanoparticles, this magnetic shelled core/shell nanoparticle possesses an optimized inner cavity and a loss-free outer magnetic property. Furthermore, we find that the drug-loaded magnetic shelled nanocarriers showed interesting in vitro release behaviors at different pH conditions, including "swelling-broken", "dissociating-broken", and "bursting-broken" modes. Our experiments demonstrate the novel design of the multifunctional hybrid nanostructure and provide a considerable potential for the biomedical applications.

  13. First Principles Study of Si/Ge Core-Shell nanowires under external uniaxial strain

    CERN Document Server

    Peng, Xihong; Logan, Paul

    2010-01-01

    Density-functional theory based first principles calculations are performed to study the effects of external uniaxial strain on the electronic states of Si/Ge core-shell nanowires along the [110] direction with the diameter of the wire up to 5 nm. As shown in the calculations, the [110] Si/Ge core-shell nanowires without external strain possess a direct band gap, in contrast to the nature of an indirect band gap in bulk Si and Ge. The band structure of the core-shell nanowires can be significantly modulated by an external strain. With a sufficient amount of tensile uniaxial strain, the band gap of the Si/Ge core-shell nanowires experiences a transition from direct to indirect. In addition, our studies showed that the effective masses of charge carriers can be also tuned by the external uniaxial strain. The effective mass of the hole increases dramatically with a tensile strain, while strain shows a minimal effect on tuning the effective mass of the electron. Finally, the relationship between the strain effect...

  14. Photo-physical properties enhancement of bare and core-shell quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Mumin, Md Abdul, E-mail: pcharpentier@eng.uwo.ca; Akhter, Kazi Farida, E-mail: pcharpentier@eng.uwo.ca; Charpentier, Paul A., E-mail: pcharpentier@eng.uwo.ca [Chemical and Biochemical Engineering, Western University, London Ontario (Canada)

    2014-03-31

    Semiconductor nanocrystals (NCs) (also known as quantum dots, QDs) have attracted immense attention for their size-tunable optical properties that makes them impressive candidates for solar cells, light emitting devices, lasers, as well as biomedical imaging. However monodispersity, high and consistent photoluminescence, photostability, and biocompatibility are still major challenges. This work focuses on optimizing the photophysical properties and biocompatibility of QDs by forming core-shell nanostructures and their encapsulation by a carrier. Highly luminescent CdS and CdS-ZnS core-shell QDs with 5 nm sizes were synthesized using a facile approach based on pyrolysis of the single molecule precursors. After capping the CdS QDs with a thin layer of ZnS to reduce toxicity, the photoluminescence and photostability of the core-shell QDs was significantly enhanced. To make both the bare and core/shell structure QDs more resistant against photochemical reactions, a mesoporous silica layer was grown on the QDs through a reverse microemulsion technique based on hydrophobic interaction. This encapsulation enhanced the quantum yield and photostability compared to the bare QDs by providing much stronger resistance to oxidation and Oswald ripening of QDs. Encapsulation also improved biocompatibility of QDs that was evaluated with human umbilical vein endothelial cell lines (HUVEC)

  15. Novel ZnO/Fe₂O₃ Core-Shell Nanowires for Photoelectrochemical Water Splitting.

    Science.gov (United States)

    Hsu, Yu-Kuei; Chen, Ying-Chu; Lin, Yan-Gu

    2015-07-01

    A facile and simple fabrication of Fe2O3 as a shell layer on the surface of ZnO nanowires (NW) as a core-shell nanoelectrode is applied for the photoelectrochemical (PEC) splitting of water. An ZnO NW array of core diameter ∼80 nm was grown on a fluorine-doped tin-oxide (FTO) substrate with a hydrothermal method; subsequent deposition and annealing achieved a shell structure of the Fe2O3 layer of thickness a few nm. Fe2O3 in the α phase and ZnO in the wurtzite phase were identified as the structures of the shell and core, respectively, through analysis with X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The ZnO/Fe2O3 core-shell NW showed an excellent PEC response to the oxidation of water, and also benefited from a negative shift of onset potential because of an n/n heterojunction structure. A detailed energy diagram of the ZnO/Fe2O3 core-shell NW was investigated with a Mott-Schottky analysis. This novel core-shell nanostructure can hence not only exhibit a great potential for the solar generation of hydrogen, but also offer a blueprint for the future design of photocatalysts.

  16. Facile preparation of hybrid core-shell nanorods for photothermal and radiation combined therapy

    Science.gov (United States)

    Deng, Yaoyao; Li, Erdong; Cheng, Xiaju; Zhu, Jing; Lu, Shuanglong; Ge, Cuicui; Gu, Hongwei; Pan, Yue

    2016-02-01

    The hybrid platinum@iron oxide core-shell nanorods with high biocompatibility were synthesized and applied for combined therapy. These hybrid nanorods exhibit a good photothermal effect on cancer cells upon irradiation with a NIR laser. Furthermore, due to the presence of a high atomic number element (platinum core), the hybrid nanorods show a synergistic effect between photothermal and radiation therapy. Therefore, the as-prepared core-shell nanorods could play an important role in facilitating synergistic therapy between photothermal and radiation therapy to achieve better therapeutic efficacy.The hybrid platinum@iron oxide core-shell nanorods with high biocompatibility were synthesized and applied for combined therapy. These hybrid nanorods exhibit a good photothermal effect on cancer cells upon irradiation with a NIR laser. Furthermore, due to the presence of a high atomic number element (platinum core), the hybrid nanorods show a synergistic effect between photothermal and radiation therapy. Therefore, the as-prepared core-shell nanorods could play an important role in facilitating synergistic therapy between photothermal and radiation therapy to achieve better therapeutic efficacy. Electronic supplementary information (ESI) available: Details of general experimental procedures. See DOI: 10.1039/c5nr09102k

  17. Photo-physical properties enhancement of bare and core-shell quantum dots

    Science.gov (United States)

    Mumin, Md Abdul; Akhter, Kazi Farida; Charpentier, Paul A.

    2014-03-01

    Semiconductor nanocrystals (NCs) (also known as quantum dots, QDs) have attracted immense attention for their size-tunable optical properties that makes them impressive candidates for solar cells, light emitting devices, lasers, as well as biomedical imaging. However monodispersity, high and consistent photoluminescence, photostability, and biocompatibility are still major challenges. This work focuses on optimizing the photophysical properties and biocompatibility of QDs by forming core-shell nanostructures and their encapsulation by a carrier. Highly luminescent CdS and CdS-ZnS core-shell QDs with 5 nm sizes were synthesized using a facile approach based on pyrolysis of the single molecule precursors. After capping the CdS QDs with a thin layer of ZnS to reduce toxicity, the photoluminescence and photostability of the core-shell QDs was significantly enhanced. To make both the bare and core/shell structure QDs more resistant against photochemical reactions, a mesoporous silica layer was grown on the QDs through a reverse microemulsion technique based on hydrophobic interaction. This encapsulation enhanced the quantum yield and photostability compared to the bare QDs by providing much stronger resistance to oxidation and Oswald ripening of QDs. Encapsulation also improved biocompatibility of QDs that was evaluated with human umbilical vein endothelial cell lines (HUVEC).

  18. Core-shell Au-Pd nanoparticles as cathode catalysts for microbial fuel cell applications

    Science.gov (United States)

    Yang, Gaixiu; Chen, Dong; Lv, Pengmei; Kong, Xiaoying; Sun, Yongming; Wang, Zhongming; Yuan, Zhenhong; Liu, Hui; Yang, Jun

    2016-10-01

    Bimetallic nanoparticles with core-shell structures usually display enhanced catalytic properties due to the lattice strain created between the core and shell regions. In this study, we demonstrate the application of bimetallic Au-Pd nanoparticles with an Au core and a thin Pd shell as cathode catalysts in microbial fuel cells, which represent a promising technology for wastewater treatment, while directly generating electrical energy. In specific, in comparison with the hollow structured Pt nanoparticles, a benchmark for the electrocatalysis, the bimetallic core-shell Au-Pd nanoparticles are found to have superior activity and stability for oxygen reduction reaction in a neutral condition due to the strong electronic interaction and lattice strain effect between the Au core and the Pd shell domains. The maximum power density generated in a membraneless single-chamber microbial fuel cell running on wastewater with core-shell Au-Pd as cathode catalysts is ca. 16.0 W m‑3 and remains stable over 150 days, clearly illustrating the potential of core-shell nanostructures in the applications of microbial fuel cells.

  19. Origin of Spontaneous Core-Shell AIGaAs Nanowires Grown by Molecular Beam Epitaxy

    DEFF Research Database (Denmark)

    Dubrovskii, V. G.; Shtrom, I. V.; Reznik, R. R.;

    2016-01-01

    Based on the high-angle annular dark-field scanning transmission electron microscopy and energy dispersive X-ray spectroscopy studies, we unravel the origin of spontaneous core shell AlGaAs nanowires grown by gold-assisted molecular beam epitaxy. Our AlGaAs nanowires have a cylindrical core...

  20. Tunable Band Gap and Conductivity Type of ZnSe/Si Core-Shell Nanowire Heterostructures

    Directory of Open Access Journals (Sweden)

    Yijie Zeng

    2014-10-01

    Full Text Available The electronic properties of zincblende ZnSe/Si core-shell nanowires (NWs with a diameter of 1.1–2.8 nm are calculated by means of the first principle calculation. Band gaps of both ZnSe-core/Si-shell and Si-core/ZnSe-shell NWs are much smaller than those of pure ZnSe or Si NWs. Band alignment analysis reveals that the small band gaps of ZnSe/Si core-shell NWs are caused by the interface state. Fixing the ZnSe core size and enlarging the Si shell would turn the NWs from intrinsic to p-type, then to metallic. However, Fixing the Si core and enlarging the ZnSe shell would not change the band gap significantly. The partial charge distribution diagram shows that the conduction band maximum (CBM is confined in Si, while the valence band maximum (VBM is mainly distributed around the interface. Our findings also show that the band gap and conductivity type of ZnSe/Si core-shell NWs can be tuned by the concentration and diameter of the core-shell material, respectively.

  1. Tunable Band Gap and Conductivity Type of ZnSe/Si Core-Shell Nanowire Heterostructures.

    Science.gov (United States)

    Zeng, Yijie; Xing, Huaizhong; Fang, Yanbian; Huang, Yan; Lu, Aijiang; Chen, Xiaoshuang

    2014-10-31

    The electronic properties of zincblende ZnSe/Si core-shell nanowires (NWs) with a diameter of 1.1-2.8 nm are calculated by means of the first principle calculation. Band gaps of both ZnSe-core/Si-shell and Si-core/ZnSe-shell NWs are much smaller than those of pure ZnSe or Si NWs. Band alignment analysis reveals that the small band gaps of ZnSe/Si core-shell NWs are caused by the interface state. Fixing the ZnSe core size and enlarging the Si shell would turn the NWs from intrinsic to p-type, then to metallic. However, Fixing the Si core and enlarging the ZnSe shell would not change the band gap significantly. The partial charge distribution diagram shows that the conduction band maximum (CBM) is confined in Si, while the valence band maximum (VBM) is mainly distributed around the interface. Our findings also show that the band gap and conductivity type of ZnSe/Si core-shell NWs can be tuned by the concentration and diameter of the core-shell material, respectively.

  2. Highly tuneable hole quantum dots in Ge-Si core-shell nanowires

    NARCIS (Netherlands)

    Brauns, M.; Ridderbos, Joost; Ridderbos, Joost; Li, Ang; van der Wiel, Wilfred Gerard; Bakkers, Erik P.A.M.; Zwanenburg, Floris Arnoud

    2016-01-01

    We define single quantum dots of lengths varying from 60 nm up to nearly half a micron in Ge-Si core-shell nanowires. The charging energies scale inversely with the quantum dot length between 18 and 4 meV. Subsequently, we split up a long dot into a double quantum dot with a separate control over

  3. Synthesis and characterization of highly-ordered ZnO/PbS core/shell heterostructures

    Science.gov (United States)

    Zhu, Y. F.; Zhou, G. H.; Ding, H. Y.; Liu, A. H.; Lin, Y. B.; Dong, Y. W.

    2011-11-01

    The strategy to manipulate nanoscale building blocks into well-organized heterostructures is very important to both material synthesis and nanodevice applications. In this work, highly-ordered ZnO/PbS core/shell nanowire arrays were fabricated by a facile and low temperature chemical route. Large area and well-aligned ZnO nanowire arrays were firstly fabricated on conductive glass substrates, and then the synthesis of ZnO/ZnS and ZnO/PbS core/shell nanowire arrays were realized by a chemical conversion method. The morphology, structure, and composition of the obtained nanostructures were confirmed by field-emission scanning electron microscopy, energy-dispersive X-ray analysis, and X-ray diffraction measurements. The optical properties of the synthesized nanostructures were investigated by micro-Raman and photoluminescence spectroscopy. In the synthesized ZnO/PbS core/shell nanowire arrays, the ZnO cores can provide direct conduction pathways for electron transport and PbS shells possess superior photoelectric performance. Therefore, the obtained ZnO/PbS core/shell nanostructures may have potential application in photovoltaic devices.

  4. Interaction of CdSe/ZnS core-shell semiconductor nanocrystals in solid thin films

    NARCIS (Netherlands)

    Chistyakov, A. A.; Martynov, I. L.; Mochalov, K. E.; Oleinikov, V. A.; Sizova, S. V.; Ustinovich, E. A.; Zakharchenko, K. V.

    2006-01-01

    The optical properties of CdSe/ZnS semiconductor nanocrystals with the core-shell structure are studied upon visible-laser excitation in a wide range of flux densities. It is demonstrated that the dimensional quantization effect is preserved in the films with a limiting high concentration of nanocry

  5. WC@meso-Pt core-shell nanostructures for fuel cells.

    Science.gov (United States)

    Chen, Zhao-Yang; Ma, Chun-An; Chu, You-Qun; Jin, Jia-Mei; Lin, Xiao; Hardacre, Christopher; Lin, Wen-Feng

    2013-12-25

    We developed a facile method to synthesize core-shell WC@meso-Pt nanocatalysts by carburizing ammonium tungstate and copper nitrate via gas-solid reactions, followed by a Pt replacement reaction. The mesoporous nanocomposite displays higher activity and stability towards methanol electrooxidation than commercial Pt/C catalysts.

  6. Preparation and Characterization of Low Dispersity Anionic Multiresponsive Core-Shell Polymer Nanoparticles

    NARCIS (Netherlands)

    Pinheiro, J.P.; Moura, L.; Fokkink, R.G.; Farinha, J.P.S.

    2012-01-01

    We prepared anionic multistimuli responsive core-shell polymer nanoparticles with very low size dispersity. By using either acrylic acid (AA) or methacrylic acid (MA) as a comonomer in the poly(N-isopropyl acrylamide) (PNIPAM) shell, we are able to change the distribution of negative charges in the

  7. Unique Properties of Core Shell Ag@Au Nanoparticles for the Aptasensing of Bacterial Cells

    Directory of Open Access Journals (Sweden)

    Ezat Hamidi-Asl

    2016-08-01

    Full Text Available In this article, it is shown that the efficiency of an electrochemical aptasensing device is influenced by the use of different nanoparticles (NPs such as gold nanoparticles (Au, silver nanoparticles (Ag, hollow gold nanospheres (HGN, hollow silver nanospheres (HSN, silver–gold core shell (Ag@Au, gold–silver core shell (Au@Ag, and silver–gold alloy nanoparticles (Ag/Au. Among these nanomaterials, Ag@Au core shell NPs are advantageous for aptasensing applications because the core improves the physical properties and the shell provides chemical stability and biocompatibility for the immobilization of aptamers. Self-assembly of the NPs on a cysteamine film at the surface of a carbon paste electrode is followed by the immobilization of thiolated aptamers at these nanoframes. The nanostructured (Ag@Au aptadevice for Escherichia coli as a target shows four times better performance in comparison to the response obtained at an aptamer modified planar gold electrode. A comparison with other (core shell NPs is performed by cyclic voltammetry and differential pulse voltammetry. Also, the selectivity of the aptasensor is investigated using other kinds of bacteria. The synthesized NPs and the morphology of the modified electrode are characterized by UV-Vis absorption spectroscopy, scanning electron microscopy, energy dispersive X-ray analysis, and electrochemical impedance spectroscopy.

  8. A new class of PANI-Ag core-shell nanorods with sensing dimensions.

    Science.gov (United States)

    Shukla, Vineet K; Yadav, Poonam; Yadav, Raghvendra S; Mishra, Priya; Pandey, Avinash C

    2012-07-07

    A single-step, cost-effective and eco-safe synthesis of a new class of homogeneous silver-polyaniline (PANI-Ag) core-shell nanorods is carried out via mild photolysis by ultraviolet radiation from sunlight (SUN UV-radiation). X-ray diffraction (XRD) of these core-shell nanorods gives two additional peaks from PANI centered at 2θ = 20.5° and 24. 9°. A validation of the core-shell structural information is given by transmission electron spectroscopy (TEM) whereas the tubular shape morphology is determined by scanning electron microscopy (SEM). UV-Vis. absorption shows a strong blue-shift along with photoluminescence emission. Fourier transform-infrared spectroscopy (FT-IR) and energy dispersive X-ray spectroscopy (EDX) also support the core-shell formation. Thermogravimetric analysis (TGA) shows good thermal stability and allows excellent detection of hydrogen peroxide and hydrazine. The cyclic voltammetry (CV) results show excellent electro-activation, indicating its promising potential in sensing of clinical and environmental analytes.

  9. Shell morphology of core-shell latexes based on conductive polymers

    NARCIS (Netherlands)

    Huijs, F.M; Vercauteren, F.F.; de Ruiter, B.; Kalicharan, D; Hadziioannou, G

    Core-shell latexes with a conductive shell can be used to prepare transparent conducting layers. We have focussed on the relation between the conducting polymer content and the shell morphology and on its influence on conductivity. At low polypyrrole (PPy) concentrations the shell has a smooth

  10. Peptide Microencapsulation by Core-Shell Printing Technology for Edible Film Application

    NARCIS (Netherlands)

    Blanco-Pascual, N.; Koldeweij, R.B.J.; Stevens, R.S.A.; Montero, M.P.; Gómez-Guillén, M.C.; Cate, A.T.T.

    2014-01-01

    This paper presents a new microencapsulation methodology for incorporation of functional ingredients in edible films. Core-shell microcapsules filled with demineralized water (C) or 1 % (w/v) peptide solution (Cp) were prepared using the microencapsulation printer technology. Shell material, compose

  11. Synthesis of TiC/W core-shell nanoparticles by precipitate-coating process

    Energy Technology Data Exchange (ETDEWEB)

    Xia Min [30 Xueyuan Road, Haidian District, Institute of Nuclear Materials, University of Science and Technology Beijing, Beijing (China); 111, 1st Section, Northern 2nd Ring Road, Institute of Powder Metallurgy and Advanced Ceramics, Southwest Jiaotong University, Chengdu (China); Yan Qingzhi, E-mail: qingzhiyan111@163.com [30 Xueyuan Road, Haidian District, Institute of Nuclear Materials, University of Science and Technology Beijing, Beijing (China); Xu Lei [30 Xueyuan Road, Haidian District, Institute of Nuclear Materials, University of Science and Technology Beijing, Beijing (China); Zhu Lingxu; Guo Hongyan; Ge Changchun [30 Xueyuan Road, Haidian District, The Institute of Nuclear Materials, University of Science and Technology Beijing, Beijing (China); 111, 1st Section, Northern 2nd Ring Road, Institute of Powder Metallurgy and Advanced Ceramics, Southwest Jiaotong University, Chengdu (China)

    2012-11-15

    Graphical abstract: Well-dispersed titanium carbide/tungsten (TiC/W) core-shell nanoparticles with high-purity and uniform diameters were firstly synthesized by precipitate-coating process. Such unique process suggests a new method for preparing X/W (X refers the water-insoluble nanoparticles) core-shell nanoparticles with different cores. Abstract: Well-dispersed titanium carbide/tungsten (TiC/W) core-shell nanoparticles with high-purity and uniform diameters were firstly synthesized by precipitate-coating process. The as-synthesized nanoparticles were characterized by X-ray diffraction (XRD), Filed-emission scanning electron microscope (FESEM), Transmission electron microscopy (TEM), energy dispersive spectrum (EDS). Results revealed that the as-synthesized nanoparticles possess uniform diameters about 100 nm, and high purity. TEM and the corresponding FFT images demonstrate that TiC nanoparticles were well-encapsulated by W shells. Such unique process suggests a new method for preparing X/W (X refers the water-insoluble nanoparticles) core-shell nanoparticles with different cores.

  12. Electrospun core-shell fibers for robust silicon nanoparticle-based lithium ion battery anodes.

    Science.gov (United States)

    Hwang, Tae Hoon; Lee, Yong Min; Kong, Byung-Seon; Seo, Jin-Seok; Choi, Jang Wook

    2012-02-01

    Because of its unprecedented theoretical capacity near 4000 mAh/g, which is approximately 10-fold larger compared to those of the current commercial graphite anodes, silicon has been the most promising anode for lithium ion batteries, particularly targeting large-scale energy storage applications including electrical vehicles and utility grids. Nevertheless, Si suffers from its short cycle life as well as the limitation for scalable electrode fabrication. Herein, we develop an electrospinning process to produce core-shell fiber electrodes using a dual nozzle in a scalable manner. In the core-shell fibers, commercially available nanoparticles in the core are wrapped by the carbon shell. The unique core-shell structure resolves various issues of Si anode operations, such as pulverization, vulnerable contacts between Si and carbon conductors, and an unstable sold-electrolyte interphase, thereby exhibiting outstanding cell performance: a gravimetric capacity as high as 1384 mAh/g, a 5 min discharging rate capability while retaining 721 mAh/g, and cycle life of 300 cycles with almost no capacity loss. The electrospun core-shell one-dimensional fibers suggest a new design principle for robust and scalable lithium battery electrodes suffering from volume expansion.

  13. Core-Shell-structured Dendritic Mesoporous Silica Nanoparticles for Combined Photodynamic Therapy and Antibody Delivery.

    Science.gov (United States)

    Abbaraju, Prasanna Lakshmi; Yang, Yannan; Yu, Meihua; Fu, Jianye; Xu, Chun; Yu, Chengzhong

    2017-07-04

    Multifunctional core-shell-structured dendritic mesoporous silica nanoparticles with a fullerene-doped silica core, a dendritic silica shell and large pores have been prepared. The combination of photodynamic therapy and antibody therapeutics significantly inhibits the cancer cell growth by effectively reducing the level of anti-apoptotic proteins. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Nonthermal Plasma Synthesis of Core/Shell Quantum Dots: Strained Ge/Si Nanocrystals.

    Science.gov (United States)

    Hunter, Katharine I; Held, Jacob T; Mkhoyan, K Andre; Kortshagen, Uwe R

    2017-03-08

    In this work, we present an all-gas-phase approach for the synthesis of quantum-confined core/shell nanocrystals (NCs) as a promising alternative to traditional solution-based methods. Spherical quantum dots (QDs) are grown using a single-stage flow-through nonthermal plasma, yielding monodisperse NCs, with a concentric core/shell structure confirmed by electron microscopy. The in-flight negative charging of the NCs by plasma electrons keeps the NC cores separated during shell growth. The success of this gas-phase approach is demonstrated here through the study of Ge/Si core/shell QDs. We find that the epitaxial growth of a Si shell on the Ge QD core compressively strains the Ge lattice and affords the ability to manipulate the Ge band structure by modulation of the core and shell dimensions. This all-gas-phase approach to core/shell QD synthesis offers an effective method to produce high-quality heterostructured NCs with control over the core and shell dimensions.

  15. High thermal stability of core-shell structures dominated by negative interface energy.

    Science.gov (United States)

    Zhu, Yong-Fu; Zhao, Ning; Jin, Bo; Zhao, Ming; Jiang, Qing

    2017-03-29

    Nanoscale core/shell structures are of interest in catalysis due to their superior catalytic properties. Here we investigated the thermal stability of the coherent core-shell structures in a thermodynamic way by considering the impact from the core with the bulk melting point Tm(∞) lower or higher than the shell. When a low-Tm(∞) core is adopted, core-shell melting induced by the melting depression of the core does not occur upon heating because of the superheating, although the melting depression of the core can be triggered ultimately by the preferential melting of the high-Tm(∞) shell for small cores. The superheating of the core is contributed by the negative solid-solid interface energy, while the depression is originated from the positive solid-liquid interface energy. Owing to the presence of the negative interface energy, moreover, the low-Tm(∞)-core structure possesses a low difference in thermal expansion between the core and the shell, high activation energy of outward atomic diffusion from the core to shell, and low heat capacity. This result is beneficial for the core-shell structure design for its application in catalysis.

  16. Controlled Release of Ciprofloxacin from Core-Shell Nanofibers with Monolithic or Blended Core.

    Science.gov (United States)

    Zupančič, Špela; Sinha-Ray, Sumit; Sinha-Ray, Suman; Kristl, Julijana; Yarin, Alexander L

    2016-04-04

    Sustained controlled drug release is one of the prominent contributions for more successful treatment outcomes in the case of several diseases. However, the incorporation of hydrophilic drugs into nanofibers, a promising novel delivery system, and achieving a long-term sustained release still pose a challenging task. In this work we demonstrated a robust method of avoiding burst release of drugs and achieving a sustained drug release from 2 to 4 weeks using core-shell nanofibers with poly(methyl methacrylate) (PMMA) shell and monolithic poly(vinyl alcohol) (PVA) core or a novel type of core-shell nanofibers with blended (PVA and PMMA) core loaded with ciprofloxacin hydrochloride (CIP). It is also shown that, for core-shell nanofibers with monolithic core, drug release can be manipulated by varying flow rate of the core PVA solution, whereas for core-shell nanofibers with blended core, drug release can be manipulated by varying the ratios between PMMA and PVA in the core. During coaxial electrospinning, when the solvent from the core evaporates in concert with the solvent from the shell, the interconnected pores spanning the core and the shell are formed. The release process is found to be desorption-limited and agrees with the two-stage desorption model. Ciprofloxacin-loaded nanofiber mats developed in the present work could be potentially used as local drug delivery systems for treatment of several medical conditions, including periodontal disease and skin, bone, and joint infections.

  17. Hydrothermal synthesis of core-shell TiO2 to enhance the photocatalytic hydrogen evolution

    Science.gov (United States)

    Jiang, Jinghui; Zhou, Han; Zhang, Fan; Fan, Tongxiang; Zhang, Di

    2016-04-01

    A hydrothermal approach was designed to synthesize core-shell TiO2 with interior cavity by making sodium dodecyl sulfonate (SDS) as the surfactant and the mixture of water and ethanol as the solvent. The control experiment of solvent reveals ethanol and water are responsible for the formation of sphere and interior cavity, respectively. Besides, SDS can assist the growth of core-shell structure, and the sizes of sphere and interior cavity can be tuned by regulating the reaction time or temperature. UV-vis absorption proves core-shell structure with interior cavity can increase the absorption of incident light to enhance the optical activity of final product. The calculated bandgap and photoluminescence (PL) analyses reveal the coexistence of rutile in final product can optimize the bandgap to 3.03 eV and delay the charge recombination. As a result, an effective photocatalytic hydrogen evolution under full spectrum irradiation can be harvested by the as-synthesized core-shell spheres to reach a quantum yield, approximately 9.57% at 340 nm wavelength.

  18. Doping GaP core-shell nanowire pn-junctions

    DEFF Research Database (Denmark)

    Yazdi, Sadegh; Berg, Alexander; Borgström, Magnus T.

    2015-01-01

    The doping process in GaP core-shell nanowire pn-junctions using different precursors is evaluated by mapping the nanowires' electrostatic potential distribution by means of off-axis electron holography. Three precursors, triethyltin (TESn), ditertiarybutylselenide, and silane are investigated fo...

  19. Near-infrared photocatalysis based on YF3 : Yb3+,Tm3+/TiO2 core/shell nanoparticles.

    Science.gov (United States)

    Qin, Weiping; Zhang, Daisheng; Zhao, Dan; Wang, Lili; Zheng, Kezhi

    2010-04-07

    We report the novel near-infrared (NIR) photocatalysis of YF(3) : Yb(3+),Tm(3+)/TiO(2) core/shell nanoparticles. The core/shell nanoparticles show photocatalytic activity under the NIR irradiation. This study demonstrates that the NIR energy can be used as the driving source for photocatalysis besides the UV and visible energy.

  20. Shape-controlled synthesis of Au@Pd core-shell nanoparticles and their corresponding electrochemical properties

    KAUST Repository

    Song, Hyon Min

    2012-01-01

    The shape-controlled synthesis of Au@Pd core-shell nanoparticles (NPs) was successfully achieved through the emulsion phase generated during the phase transfer from organic to aqueous medium. Contrary to conventional epitaxial growth for obtaining core-shell structures, this method does not require high temperatures and does not have shape restrictions. © 2012 The Royal Society of Chemistry.

  1. Dynamically controlled one-pot synthesis of heterogeneous core-shell MOF single crystals using guest molecules.

    Science.gov (United States)

    Wang, Lei; Yang, Weiting; Li, Yangxue; Xie, Zhigang; Zhu, Wei; Sun, Zhong-Ming

    2014-10-11

    A new mixed guest approach for the synthesis of heterogeneous core-shell MOF crystals was exemplified by one-pot assembly of photoactive guests into an anionic host framework. The formation mechanism, photophysical properties and oxygen gas sensing properties of as-synthesized core-shell MOF crystals were also investigated.

  2. Synthesis and Raman scattering of multiferroic Fe-Pb(Zr{sub 0.2}Ti{sub 0.8})O{sub 3} core-shell wire arrays

    Energy Technology Data Exchange (ETDEWEB)

    Baibarac, Mihaela; Sima, Marian; Matei, Elena; Pasuk, Iuliana; Mihut, Lucian [National Institute of Materials Physics, Magurele (Romania)

    2014-01-15

    A new method to fabricate an Fe-PZT core-shell wire arrays developed in three steps is reported in this paper. This involves the electrochemical growth of an iron wire array by template method, deposition by spin coating of the PZT precursor prepared by sol-gel technique on the iron wires surface and annealing treatment to obtain Fe-PZT core-shell structures. The structure of the Fe-PZT core-shell wire array was characterized by scanning electron microscopy (SEM) and Raman scattering. Raman lines situated at 372 and 575 cm{sup -1} indicate the formation of the FeO particles on the Fe wires surface as a result of the use of an aqueous solution for electrochemical synthesis. An upshift of Raman lines of Fe decorated with FeO wires was observed after formation of Fe-PZT core-shell structure. The annealing treatment of this structure involves a partial transformation of the FeO into Fe{sub 2}O{sub 3} particles both with structure rhombohedral and cubic that were evidenced by Raman lines peaked at 243 and 497 cm{sup -1}, respectively. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Luminescent properties and characterization of Gd2O3:Eu(3+)@SiO2 and Gd2Ti2O7:Eu(3+)@SiO2 core-shell phosphors prepared by a sol-gel process.

    Science.gov (United States)

    Lin, Kuo-Min; Lin, Chih-Cheng; Li, Yuan-Yao

    2006-03-28

    Gd2O3:Eu(3+) and Gd2Ti2O7:Eu(3+) films 10 nm in thickness were individually coated onto silica spheres (particle size of 150-170 nm) using the sol-gel method. The synthesized materials were addressed as Gd2O3:Eu(3+)@SiO2 and Gd2Ti2O7:Eu(3+)@SiO2 phosphors. An x-ray powder diffractometer (XRD), field emission scanning electron microscope (FE-SEM), high-resolution transmission electron microscope (HR-TEM), and photoluminescence spectrophotometer (PL) were employed to characterize the core-shell phosphors. Uniform core-shell phosphor particles were observed using FE-SEM. The XRD and HR-TEM results indicated that the coated-shell layer was well crystallized after sintering at 1000 °C. The Gd2O3:Eu(3+)@SiO2 PL measurement showed a red emission at the main 615 nm wavelength. The Gd2Ti2O7:Eu(3+)@SiO2 phosphor showed an orange-red emission at the 588 and 615 nm wavelengths. In comparison with the Gd2O3:Eu(3+) and Gd2Ti2O7:Eu(3+) bulk material results, the core-shell phosphors maintained the same emission ability as the bulk materials and the novel core-shell phosphors possessed great potential in quantum phosphor applications.

  4. Luminescent properties and characterization of Gd2O3:Eu3+@SiO2 and Gd2Ti2O7:Eu3+@SiO2 core shell phosphors prepared by a sol gel process

    Science.gov (United States)

    Lin, Kuo-Min; Lin, Chih-Cheng; Li, Yuan-Yao

    2006-03-01

    Gd2O3:Eu3+ and Gd2Ti2O7:Eu3+ films 10 nm in thickness were individually coated onto silica spheres (particle size of 150-170 nm) using the sol-gel method. The synthesized materials were addressed as Gd2O3:Eu3+@SiO2 and Gd2Ti2O7:Eu3+@SiO2 phosphors. An x-ray powder diffractometer (XRD), field emission scanning electron microscope (FE-SEM), high-resolution transmission electron microscope (HR-TEM), and photoluminescence spectrophotometer (PL) were employed to characterize the core-shell phosphors. Uniform core-shell phosphor particles were observed using FE-SEM. The XRD and HR-TEM results indicated that the coated-shell layer was well crystallized after sintering at 1000 °C. The Gd2O3:Eu3+@SiO2 PL measurement showed a red emission at the main 615 nm wavelength. The Gd2Ti2O7:Eu3+@SiO2 phosphor showed an orange-red emission at the 588 and 615 nm wavelengths. In comparison with the Gd2O3:Eu3+ and Gd2Ti2O7:Eu3+ bulk material results, the core-shell phosphors maintained the same emission ability as the bulk materials and the novel core-shell phosphors possessed great potential in quantum phosphor applications.

  5. Engineering of lead chalcogenide nanostructures for carrier multiplication: Core/shell, 1D, and 2D

    Science.gov (United States)

    Lin, Qianglu

    Near infrared emitting semiconductors have been used widely in industry especially in solar-cell fabrications. The efficiency of single junction solar-cell can reach the Shockley-Queisser limit by using optimum band gap material such as silicon and cadmium telluride. The theoretical efficiency can be further enhanced through carrier multiplication, in which a high energy photon is absorbed and more than one electron-hole pair can be generated, reaching more than 100% quantum efficiency in the high energy region of sunlight. The realization of more than unity external quantum efficiency in lead selenide quantum dots solar cell has motivated vast investigation on lowering the carrier multiplication threshold and further improving the efficiency. This dissertation focuses on synthesis of lead chalcogenide nanostructures for their optical spectroscopy studies. PbSe/CdSe core/shell quantum dots were synthesized by cation exchange to obtain thick shells (up to 14 monolayers) for studies of visible and near infrared dual band emissions and carrier multiplication efficiency. By examining the reaction mechanism, a thermodynamic and a kinetic model are introduced to explain the vacancy driven cation exchange. As indicated by the effective mass model, PbSe/CdSe core/shell quantum dots has quasi-type-II band alignment, possessing electron delocalized through the entire quantum dot and hole localized in the core, which breaks down the symmetry of energy levels in the conduction and valence band, leading to hot-hole-assisted efficient multi-exciton generation and a lower carrier multiplication threshold to the theoretical value. For further investigation of carrier multiplication study, PbTe, possessing the highest efficiency among lead chalcogenides due to slow intraband cooling, is synthesized in one-dimensional and two-dimensional nanostructures. By using dodecanethiol as the surfactant, PbTe NRs can be prepared with high uniformity in width and resulted in fine quantum

  6. Glucose Sensors Based on Core@Shell Magnetic Nanomaterials and Their Application in Diabetes Management: A Review.

    Science.gov (United States)

    Liu, Lin; Lv, Hongying; Teng, Zhenyuan; Wang, Chengyin; Wang, Guoxiu

    2015-01-01

    This review presents a comprehensive attempt to conclude and discuss various glucose biosensors based on core@shell magnetic nanomaterials. Owing to good biocompatibility and stability, the core@shell magnetic nanomaterials have found widespread applications in many fields and draw extensive attention. Most magnetic nanoparticles possess an intrinsic enzyme mimetic activity like natural peroxidases, which invests magnetic nanomaterials with great potential in the construction of glucose sensors. We summarize the synthesis of core@shell magnetic nanomaterials, fundamental theory of glucose sensor and the advances in glucose sensors based on core@shell magnetic nanomaterials. The aim of the review is to provide an overview of the exploitation of the core@shell magnetic nanomaterials for glucose sensors construction.

  7. Development of core-shell coaxially electrospun composite PCL/chitosan scaffolds.

    Science.gov (United States)

    Surucu, Seda; Turkoglu Sasmazel, Hilal

    2016-11-01

    This study was related to combining of synthetic Poly (ε-caprolactone) (PCL) and natural chitosan polymers to develop three dimensional (3D) PCL/chitosan core-shell scaffolds for tissue engineering applications. The scaffolds were fabricated with coaxial electrospinning technique and the characterizations of the samples were done by thickness and contact angle (CA) measurements, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-Ray Photoelectron Spectroscopy (XPS) analyses, mechanical and PBS absorption and shrinkage tests. The average inter-fiber diameter values were calculated for PCL (0.717±0.001μm), chitosan (0.660±0.007μm) and PCL/chitosan core-shell scaffolds (0.412±0.003μm), also the average inter-fiber pore size values exhibited decreases of 66.91% and 61.90% for the PCL and chitosan scaffolds respectively, compared to PCL/chitosan core-shell ones. XPS analysis of the PCL/chitosan core-shell structures exhibited the characteristic peaks of PCL and chitosan polymers. The cell culture studies (MTT assay, Confocal Laser Scanning Microscope (CLSM) and SEM analyses) carried out with L929 ATCC CCL-1 mouse fibroblast cell line proved that the biocompatibility performance of the scaffolds. The obtained results showed that the created micro/nano fibrous structure of the PCL/chitosan core-shell scaffolds in this study increased the cell viability and proliferation on/within scaffolds. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Lithography-free shell-substrate isolation for core-shell GaAs nanowires.

    Science.gov (United States)

    Haggren, Tuomas; Perros, Alexander Pyymaki; Jiang, Hua; Huhtio, Teppo; Kakko, Joona-Pekko; Dhaka, Veer; Kauppinen, Esko; Lipsanen, Harri

    2016-07-08

    A facile and scalable lithography-free technique(5) for the rapid construction of GaAs core-shell nanowires incorporating shell isolation from the substrate is reported. The process is based on interrupting NW growth and applying a thin spin-on-glass (SOG) layer to the base of the NWs and resuming core-shell NW growth. NW growth occurred in an atmospheric pressure metalorganic vapour phase epitaxy (MOVPE) system with gold nanoparticles used as catalysts for the vapour-liquid-solid growth. It is shown that NW axial core growth and radial shell growth can be resumed after interruption and even exposure to air. The SOG residues and native oxide layer that forms on the NW surface are shown to prevent or perturb resumption of epitaxial NW growth if not removed. Both HF etching and in situ annealing of the air-exposed NWs in the MOVPE were shown to remove the SOG residues and native oxide layer. While both procedures are shown capable of removing the native oxide and enabling resumption of epitaxial NW growth, in situ annealing produced the best results and allowed construction of pristine core-shell NWs. No growth occurred on SOG and it was observed that axial NW growth was more rapid when a SOG layer covered the substrate. The fabricated p-core/n-shell NWs exhibited diode behaviour upon electrical testing. The isolation of the NW shells from the substrate was confirmed by scanning electron microscopy and electrical measurements. The crystal quality of the regrown core-shell NWs was verified with a high resolution transmission electron microscope. The reported technique potentially provides a pathway using MOVPE for scalable and high-throughput production of shell-substrate isolated core-shell NWs on an industrial scale.

  9. Optimizing the electric field around solid and core-shell alloy nanostructures for near-field applications

    Science.gov (United States)

    Montaño-Priede, Luis; Peña-Rodríguez, Ovidio; Rivera, Antonio; Guerrero-Martínez, Andrés; Pal, Umapada

    2016-08-01

    The near electric field enhancement around plasmonic nanoparticles (NPs) is very important for applications like surface enhanced spectroscopies, plasmonic dye-sensitized solar cells and plasmon-enhanced OLEDs, where the interactions occur close to the surface of the NPs. In this work we have calculated the near-field enhancement around solid and core-shell alloy NPs as a function of their geometrical parameters and composition. We have found that the field enhancement is lower in the AuxAg1-x alloys with respect to pure Ag NPs, but it is still high enough for most near-field applications. The higher order modes have a stronger influence over the near-field due to a sharper spatial decay of the near electric field with the increase of the order of multipolar modes. For the same reason, in AuxAg1-x@SiO2 core-shell structures, the quadrupolar mode is dominant around the core, whereas the dipolar mode is predominant around the shell. The LSPR modes can have different behaviours in the near- and the far-field, particularly for larger particles with high Ag contents, which indicates that caution must be exercised for designing plasmonic nanostructures for near-field applications, as the variations of the LSPR in the near-field cannot be inferred from those observed in the far-field. These results have important implications for the application of gold-silver alloy NPs in surface enhanced spectroscopies and in the fabrication of plasmon-based optoelectronic devices, like dye-sensitized solar cells and plasmon-enhanced organic light-emitting diodes.

  10. Novel core-shell cerium(IV)-immobilized magnetic polymeric microspheres for selective enrichment and rapid separation of phosphopeptides.

    Science.gov (United States)

    Wang, Zhi-Gang; Cheng, Gong; Liu, Yan-Lin; Zhang, Ji-Lin; Sun, De-Hui; Ni, Jia-Zuan

    2014-03-01

    In this work, novel magnetic polymeric core-shell structured microspheres with immobilized Ce(IV), Fe3O4@SiO2@PVPA-Ce(IV), were designed rationally and synthesized successfully via a facile route for the first time. Magnetic Fe3O4@SiO2 microspheres were first prepared by directly coating a thin layer of silica onto Fe3O4 magnetic particles using a sol-gel method, a poly(vinylphosphonic acid) (PVPA) shell was then coated on the Fe3O4@SiO2 microspheres to form Fe3O4@SiO2@PVPA microspheres through a radical polymerization reaction, and finally Ce(IV) ions were robustly immobilized onto the Fe3O4@SiO2@PVPA microspheres through strong chelation between Ce(IV) ions and phosphate moieties in the PVPA. The applicability of the Fe3O4@SiO2@PVPA-Ce(IV) microspheres for selective enrichment and rapid separation of phosphopeptides from proteolytic digests of standard and real protein samples was investigated. The results demonstrated that the core-shell structured Fe3O4@SiO2@PVPA-Ce(IV) microspheres with abundant Ce(IV) affinity sites and excellent magnetic responsiveness can effectively purify phosphopeptides from complex biosamples for MS detection taking advantage of the rapid magnetic separation and the selective affinity between Ce(IV) ions and phosphate moieties of the phosphopeptides. Furthermore, they can be effectively recycled and show good reusability, and have better performance than commercial TiO2 beads and homemade Fe3O4@PMAA-Ce(IV) microspheres. Thus the Fe3O4@SiO2@PVPA-Ce(IV) microspheres can benefit greatly the mass spectrometric qualitative analysis of phosphopeptides in phosphoproteome research.

  11. An optimization analysis on electroless deposition of Al{sub 2}O{sub 3}/Cu core-shell nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Beygi, H., E-mail: hossein.beygi@stu-mail.um.ac.ir [Department of Materials Science and Metallurgical Engineering, Engineering Faculty, Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of); Sajjadi, S.A.; Zebarjad, S.M. [Department of Materials Science and Metallurgical Engineering, Engineering Faculty, Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Al{sub 2}O{sub 3}/Cu core-shell nanostructure fabricated by electroless copper plating on Al{sub 2}O{sub 3} particles. Black-Right-Pointing-Pointer Optimization on bath composition and electroless parameters performed by Taguchi method. Black-Right-Pointing-Pointer Using minimum chemicals usage, maximum plating rate of copper obtained. Black-Right-Pointing-Pointer Uniform copper shells with 10 nm thicknesses were fabricated on the Al{sub 2}O{sub 3} nanoparticles. - Abstract: In this study, Al{sub 2}O{sub 3}/Cu core-shell nanostructure was fabricated by electroless plating of copper on Al{sub 2}O{sub 3} particles. In order to reach to the maximum efficiency of electroless deposition, the influence of main effective parameters such as type of pretreatment process, HCHO/CuSO{sub 4}{center_dot}5H{sub 2}O molar ratio, C{sub 4}H{sub 4}O{sub 6}KNa{center_dot}4H{sub 2}O/CuSO{sub 4}{center_dot}5H{sub 2}O molar ratio, pH, pouring rate, concentration of Al{sub 2}O{sub 3} particles, bath temperature, plating time, stirring speed and Al{sub 2}O{sub 3} particle size were investigated. The morphology, uniformity, and chemical composition of the activated and Cu coated Al{sub 2}O{sub 3} particles were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The results show that, by optimization on the electroless bath composition and the process parameters, using minimum chemicals usage maximum copper plating rate of 19.51% on the surface of Al{sub 2}O{sub 3} particles is obtained. As result of copper deposition on the surface of Al{sub 2}O{sub 3} nanoparticles, uniform shells with about 10 nm thicknesses was fabricated on the Al{sub 2}O{sub 3} nanoparticles.

  12. Chloride salt of conducting polyaniline synthesized in the presence of CeO2: Structural analysis of the core-shell nanocomposite

    Science.gov (United States)

    da Silva, J. S. M.; de Souza, S. M.; Trovati, G.; Sanches, E. A.

    2017-01-01

    Chloride salt of conducting Polyaniline (ES-PANI) was synthesized in the presence of cerium dioxide (CeO2) for structural and morphological evaluation of the resulting core-shell nanocomposite. X-ray Diffraction (XRD), estimative of crystallinity percentage, Le Bail Method, Scanning Electron Microscopy (SEM) and DC electrical conductivity were used for materials characterization. The resulting nanocomposite was constituted of three phases as identified by X-Ray Diffraction: ES-PANI, CeO2 and CeCl3(H2O)7, chloride hepta-hydrate cerium. Crystallinity of ES-PANI and nanocomposite were estimated around 40 and 85%, respectively. XRD patterns were also used to perform the Le Bail Method. This refinement allowed structural characterization of each phase, obtainment of cell parameters and crystallite size and shape. For ES-PANI and CeCl3(H2O)7, crystallites showed a prolate-like shape with an average size of 21 Å and 104 Å, respectively. CeO2 crystallites presented much larger size, as expected, with isotropic average size of 490 Å. SEM images showed that the nanocomposite has a core-shell morphology with both ES-PANI nanofibers and CeCl3(H2O)7 particles coating the CeO2 particles. The polymerization of ES-PANI over the CeO2 particles in order to form the nanocomposite affected the natural chain alignment of the polymer, resulting in better molecular rearrangement and larger crystallites. Finally, measurements of DC electrical conductivity of ES-PANI and nanocomposite have showed values of 1.11 × 10-4 and 2.22 × 10-4 S/cm, respectively. Nanocomposite has showed electrical conductivity 50 times greater than the pure ES-PANI. Thus, in this work we have reported a systematic structural and morphological investigation of PANI/CeO2/CeCl3(H2O)7 core-shell nanocomposite.

  13. Synthesis and Characterization of ZnO/Bi2O3 Core/Shell Nanoparticles by the Sol-Gel Method

    Science.gov (United States)

    Liu, Ting-Ting; Wang, Mao-hua; Zhang, Han-Ping

    2016-08-01

    In this work, a novel two-step synthesis of ZnO/Bi2O3 core/shell nanoparticles is presented. Spherical core particles of ZnO were first synthesized by a 95°C direct precipitation method with the assistance of polyethylene glycol (PEG-6000) surfactants, and then used as precursors to prepare ZnO/Bi2O3 core/shell particles via a 70°C low-temperature sol-gel method. Techniques including x-ray diffraction, Fourier-transform infrared spectroscopy, transmission electron microscopy, energy-dispersive x-ray spectroscopy and scanning electron microscopy were employed to characterize the as-synthesized samples. The ZnO nanoparticles were almost spherical in shape, with particle size ranging from 15 nm to 28 nm, and belonged to a hexagonal wurtzite crystal structure. Furthermore, the experimental result showed that ZnO nanoparticles were fully covered with Bi2O3. In addition, using ZnO/Bi2O3 core/shell nanoparticles (1 mol.% Bi2O3) via this sol-gel method, after sintering in air at 1100°C for 2 h, the varistors showed maximum relative density of 96.6%, with high breakdown voltage (2191 ± 0.72 V/cm), low leakage current (0.12 ± 0.07 μA) and nonlinear coefficient (6 ± 0.14), suggesting that nano-coating is a promising route for the preparation of ZnO varistors.

  14. Magnetic adsorbent of Fe3O4@SiO2 core-shell nanoparticles modified with thiol group for chloroauric ion adsorption

    Science.gov (United States)

    Roto, Roto; Yusran, Yusran; Kuncaka, Agus

    2016-07-01

    The magnetic adsorbent of Fe3O4@SiO2 core-shell nanoparticles modified with thiol group was synthesized for chloroauric ([AuCl4]-) adsorption. The Fe3O4 nanoparticles were prepared by co-precipitation method under mechanical stirring and coated with SiO2 by acid hydrolysis of Na2SiO3 under N2 purging. The coating of Fe3O4 nanoparticles with SiO2 prevents particles' agglomeration by forming Fe3O4 Fe3O4 Fe3O4@SiO2 core-shell and avoids dissolution of the Fe3O4 core in the acidic medium. The coated Fe3O4 particle was modified with a thiol group using 3-mercaptopropyltrimethoxysilane via silanization reaction. The results suggest that SiO2-coated Fe3O4 particles have a size of 10-20 nm. The FTIR and EDX data indicate that the thiol groups are successfully attached to the surface of the nanoparticles. The [AuCl4]- ion adsorption by the Fe3O4@SiO2 core-shell nanoparticles followed Langmuir isotherm model with a maximum adsorption capacity of 115 mg/g and free energy (ΔG°) of 24.8 kJ/mol. The thiourea solution can be used to desorb most of the adsorbed [AuCl4]- ion. The adsorption using magnetic compounds provides easy access to the separation for both preparation and recovery.

  15. Self-assembly and graft polymerization route to Monodispersed Fe3O4@SiO2--polyaniline core-shell composite nanoparticles: physical properties.

    Science.gov (United States)

    Reddy, Kakarla Raghava; Lee, Kwang-Pill; Kim, Ju Young; Lee, Youngil

    2008-11-01

    This study describes the synthesis of monodispersed core-shell composites of silica-modified magnetic nanoparticles and conducting polyaniline by self-assembly and graft polymerization. Magnetic ferrite nanoparticles (Fe3O4) were prepared by coprecipitation of Fe+2 and Fe+3 ions in alkaline solution, and then silananized. The silanation of magnetic particles (Fe3O4@SiO2) was carried out using 3-bromopropyltrichlorosilane (BPTS) as the coupling agent. FT-IR spectra indicated the presence of Fe--O--Si chemical bonds in Fe3O4@SiO2. Core-shell type nanocomposites (Fe3O4@SiO2/PANI) were prepared by grafting polyaniline (PANI) on the surface of silanized magnetic particles through surface initiated in-situ chemical oxidative graft polymerization. The nanocomposites were characterized by high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), Fourier transform infrared (FTIR) spectra, UV-visible spectroscopy, photoluminescence (PL) spectra, electrical conductivity and magnetic characteristics. HRTEM images of the nanocomposites revealed that the silica-modified magnetic particles made up the core while PANI made up the shell. The XPS spectrum revealed the presence of silica in the composites, and the XRD results showed that the composites were more crystalline than pure PANI. PL spectra show that composites exhibit photoluminescent property. Conductivity of the composites (6.2 to 9.4 x 10(-2) S/cm) was higher than that of pristine PANI (3.7 x 10(-3) S/cm). The nanocomposites exhibited superparamagnetism. Formation mechanism of the core-shell structured nanocomposites and the effect of modified magnetic nanoparticles on the electro-magnetic properties of the Fe3O4@SiO2/PANI nanocomposites are also investigated. This method provides a new strategy for the generation of multi-functional nanocomposites that composed of other conducting polymers and metal nanoparticles.

  16. Core-shell potassium niobate nanowires for enhanced nonlinear optical effects

    Science.gov (United States)

    Richter, J.; Steinbrück, A.; Zilk, M.; Sergeyev, A.; Pertsch, T.; Tünnermann, A.; Grange, R.

    2014-04-01

    We demonstrate the synthesis as well as the optical characterization of core-shell nanowires. The wires consist of a potassium niobate (KNbO3) core and a gold shell. The nonlinear optical properties of the core are combined with the plasmonic resonance of the shell and offer an enhanced optical signal in the near infrared spectral range. We compare two different functionalization schemes of the core material prior to the shell growth process: silanization and polyelectrolyte. We show that the latter leads to a smoother and complete core-shell nanostructure and an easier-to-use synthesis process. A Mie-theory based theoretical approach is presented to model the enhanced second-harmonic generated (SHG) signal of the core-shell wires, illustrating the influence of the fabrication-induced varying geometrical factors of wire radius and shell thickness. A spectroscopic measurement on a core-shell nanowire shows a strong localized surface plasmon resonance close to 900 nm, which matches with the SHG resonance obtained from nonlinear optical experiments with the same nanowire. According to the simulation, this corresponds to a wire radius of 35 nm and a shell thickness of 7.5 nm. By comparing SHG signals measured from an uncoated nanowire and the coated one, we obtain a 250 times enhancement factor. This is less than the calculated enhancement, which considers a cylindrical nanowire with a perfectly smooth shell. Thus, we explain this discrepancy mainly with the roughness of the synthesized gold shell.We demonstrate the synthesis as well as the optical characterization of core-shell nanowires. The wires consist of a potassium niobate (KNbO3) core and a gold shell. The nonlinear optical properties of the core are combined with the plasmonic resonance of the shell and offer an enhanced optical signal in the near infrared spectral range. We compare two different functionalization schemes of the core material prior to the shell growth process: silanization and polyelectrolyte

  17. Synthesis and characterization of Fe3O4@Ag core-shell: structural, morphological, and magnetic properties

    Directory of Open Access Journals (Sweden)

    Mahdi Ghazanfari

    2014-12-01

    Full Text Available This paper is a report on the synthesis of the Fe3O4@Ag core-shell with high saturation magnetization of magnetite nanoparticles as the core, by using polyol route and silver shell by chemical reduction. X-ray diffraction (XRD and Fourier transform infrared spectroscopy analyses confirmed that the particles so produced were monophase. The magnetic properties of the product were investigated by using a vibrating sample magnetometer. Magnetic saturation of magnetite was 91 emu/g that around about bulk magnetization. This high saturation magnetization can be attributed to the thin dead layer. By using polyethylene glycol as a surfactant to separate and restrict the growth of the particles, magnetostatic interactions are in good agreement with the remanence ratio analysis. Morphology and the average size of the particles were determined with field emission scanning electron microscope (FESEM. Spherical aggregates of Fe3O4 (size around 73 nm are composed of a small primary particle size of about 16 nm. Silver deposition was done using butylamine as the reductant of AgNO3 in ethanol with different ratio. The silver layers were estimated using statistical histogram images of FESEM. Silver-coated iron oxide nanohybrids have been used in a broad range of applications, including chemical and biological sensing, due to the broad absorption in the optical region associated with localized surface plasmon resonance.

  18. Cold Spray Coating of Submicronic Ceramic Particles on Poly(vinyl alcohol) in Dry and Hydrogel States

    Science.gov (United States)

    Moreau, David; Borit, François; Corté, Laurent; Guipont, Vincent

    2017-06-01

    We report an approach using cold spray technology to coat poly(vinyl alcohol) (PVA) in polymer and hydrogel states with hydroxyapatite (HA). Using porous aggregated HA powder, we hypothesized that fragmentation of the powder upon cold spray could lead to formation of a ceramic coating on the surface of the PVA substrate. However, direct spraying of this powder led to complete destruction of the swollen PVA hydrogel substrate. As an alternative, HA coatings were successfully produced by spraying onto dry PVA substrates prior to swelling in water. Dense homogeneous HA coatings composed of submicron particles were obtained using rather low-energy spraying parameters (temperature 200-250 °C, pressure 1-3 MPa). Coated PVA substrates could swell in water without removal of the ceramic layer to form HA-coated hydrogels. Microscopic observations and in situ measurements were used to explain how local heating and impact of sprayed aggregates induced surface roughening and strong binding of HA particles to the molten PVA substrate. Such an approach could lead to design of ceramic coatings whose roughness and crystallinity can be finely adjusted to improve interfacing with biological tissues.

  19. In-situ photo-assisted deposition of silver particles on hydrogel fibers for antibacterial applications

    Energy Technology Data Exchange (ETDEWEB)

    Raho, Riccardo [Department of Engineering for Innovation, University of Salento, Via per Monteroni, 73100 Lecce (Italy); CBN, Center for Biomolecular Nanotechnologies, Fondazione Istituto Italiano di Tecnologia, Via Barsanti, 73010 Arnesano, Lecce (Italy); Paladini, Federica; Lombardi, Fiorella Anna [Department of Engineering for Innovation, University of Salento, Via per Monteroni, 73100 Lecce (Italy); Boccarella, Sandro [Megatex S.p.A., Via Cima D' Aosta, 73040 Melissano, Lecce (Italy); Zunino, Benedetta [Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00198 Roma (Italy); Pollini, Mauro, E-mail: mauro.pollini@unisalento.it [Department of Engineering for Innovation, University of Salento, Via per Monteroni, 73100 Lecce (Italy); Silvertech Ltd., Via per Monteroni, 73100 Lecce (Italy)

    2015-10-01

    Silver nanoparticles (AgNPs) have attracted intensive research interest and have been recently incorporated in polymers, medical devices, hydrogels and burn dressings to control the proliferation of microorganisms. In this study a novel silver antibacterial coating was deposited for the first time on hydrogel fibers through an in-situ photo-chemical reaction. Hydrogel blends obtained by mixing different percentages of silver-treated and untreated fibers were characterized by thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). Four different fluids, such as phosphate buffered saline (PBS), simulated body fluid (SBF), chemical simulated wound fluid (cSWF), and deionized water (DI water), were used for evaluating the swelling properties. The results obtained confirmed that the presence of silver did not affect the properties of the hydrogel. Moreover, the results obtained through inductively coupled plasma mass spectrometry (ICP-MS) demonstrated very low silver release values, thus indicating the perfect adhesion of the silver coating to the substrate. Good antibacterial capabilities were demonstrated by any hydrogel blend on Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) through agar diffusion tests and optical density readings. - Highlights: • An innovative nano-silver deposition technique was adopted on hydrogel fibers. • Antibacterial effects was verified by agar diffusion and optical density tests. • The swelling properties were investigated using 4 different fluids. • Hydrogel blends with different percentages of silver-treated fibers were compared.

  20. Smart micelle@polydopamine core-shell nanoparticles for highly effective chemo-photothermal combination therapy

    Science.gov (United States)

    Zhang, Ruirui; Su, Shishuai; Hu, Kelei; Shao, Leihou; Deng, Xiongwei; Sheng, Wang; Wu, Yan

    2015-11-01

    In this investigation, we have designed and synthesized a novel core-shell polymer nanoparticle system for highly effective chemo-photothermal combination therapy. A nanoscale DSPE-PEG micelle encapsulating doxorubicin (Dox-M) was designed as a core, and then modified by a polydopamine (PDA) shell for photothermal therapy and bortezomib (Btz) administration (Dox-M@PDA-Btz). The facile conjugation of Btz to the catechol-containing PDA shell can form a reversible pH-sensitive boronic acid-catechol conjugate to create a stimuli-responsive drug carrier system. As expected, the micelle@PDA core-shell nanoparticles exhibited satisfactory photothermal efficiency, which has potential for thermal ablation of malignant tissues. In addition, on account of the PDA modification, both Dox and Btz release processes were pH-dependent and NIR-dependent. Both in vitro and in vivo studies illustrated that the Dox-M@PDA-Btz nanoparticles coupled with laser irradiation could enhance the cytotoxicity, and thus combinational therapy efficacy was achieved when integrating Dox, Btz, and PDA into a single nanoplatform. Altogether, our current study indicated that the micelle@polydopamine core-shell nanoparticles could be applied for NIR/pH-responsive sustained-release and synergized chemo-photothermal therapy for breast cancer.In this investigation, we have designed and synthesized a novel core-shell polymer nanoparticle system for highly effective chemo-photothermal combination therapy. A nanoscale DSPE-PEG micelle encapsulating doxorubicin (Dox-M) was designed as a core, and then modified by a polydopamine (PDA) shell for photothermal therapy and bortezomib (Btz) administration (Dox-M@PDA-Btz). The facile conjugation of Btz to the catechol-containing PDA shell can form a reversible pH-sensitive boronic acid-catechol conjugate to create a stimuli-responsive drug carrier system. As expected, the micelle@PDA core-shell nanoparticles exhibited satisfactory photothermal efficiency, which has

  1. Microencapsulation of probiotics in hydrogel particles: enhancing Lactococcus lactis subsp. cremoris LM0230 viability using calcium alginate beads.

    Science.gov (United States)

    Yeung, Timothy W; Arroyo-Maya, Izlia J; McClements, David J; Sela, David A

    2016-04-01

    Probiotics are beneficial microbes often added to food products to enhance the health and wellness of consumers. A major limitation to producing efficacious functional foods containing probiotic cells is their tendency to lose viability during storage and gastrointestinal transit. In this study, the impact of encapsulating probiotics within food-grade hydrogel particles to mitigate sensitivity to environmental stresses was examined. Confocal fluorescence microscopy confirmed that Lactococcus lactis were trapped within calcium alginate beads formed by dripping a probiotic-alginate mixture into a calcium solution. Encapsulation improved the viability of the probiotics during aerobic storage: after seven days, less than a two-log reduction was observed in encapsulated cells stored at room temperature, demonstrating that a high concentration of cells survived relative to non-encapsulated bacteria. These hydrogel beads may have applications for improving the stability and efficacy of probiotics in functional foods.

  2. Modeling of absorption and scattering properties of core -shell nanoparticles for application as nanoantenna in optical domain

    Science.gov (United States)

    Devi, Jutika; Saikia, Rashmi; Datta, Pranayee

    2016-10-01

    The present paper describes the study of core-shell nanoparticles for application as nanoantenna in the optical domain. To obtain the absorption and extinction efficiencies as well as the angular distribution of the far field radiation pattern and the resonance wavelengths for these metal-dielectric, dielectric-metal and metal-metal core-shell nanoparticles in optical domain, we have used Finite Element Method based COMSOL Multiphysics Software and Mie Theory. From the comparative study of the extinction efficiencies of core-shell nanoparticles of different materials, it is found that for silica - gold core - shell nanoparticles, the resonant wavelength is greater than that of the gold - silver, silver-gold and gold-silica core - shell nanoparticles and also the radiation pattern of the silica-gold core-shell nanoparticle is the most suitable one from the point of view of directivity. The dielectric functions of the core and shell material as well as of the embedded matrix are extremely important and plays a very major role to tune the directivity and resonance wavelength. Such highly controllable parameters of the dielectric - metal core - shell nanoparticles make them suitable for efficient coupling of optical radiation into nanoscale structures for a broad range of applications in the field of communications.

  3. Investigation of linear optical absorption coefficients in core-shell quantum dot (QD) luminescent solar concentrators (LSCs)

    Science.gov (United States)

    Ebrahimipour, Bahareh Alsadat; Askari, Hassan Ranjbar; Ramezani, Ali Behjat

    2016-09-01

    The interlevel absorption coefficient of CdSe/ZnS and ZnS/CdSe core-shell Quantum Dot (QD) in luminescent solar concentrators (LSCs) is reported. By considering the quantum confinement effects, the wave functions and eigenenergies of electrons in the nonperturebative system consists of a core-shell QD have been numerically calculated under the frame work of effective-mass approximation by solving a three-dimensional Schrӧdinger equation. And then the absorption coefficient is obtained under density matrix approximation considering in the polymer sheets of the concentrator including the core-shell QDs. The effect of the hetero-structure geometry upon the energy spectrum and absorption coefficient associated to interlevel transitions was also considered. The results show that the core-shell QDs can absorb the photons with higher energy in solar spectrum as compared to the inverted core-shell. And with a small shell layer diameter, the core-shell QDs produce larger linear absorption coefficients and consequently higher efficiency values, however it is inversed for inverted core-shell QDs. The work described here gives a detailed insight into the promise of QD-based LSCs and the optoelectronic devices applications.

  4. Formation of Star-Like and Core-Shell AuAg Nanoparticles during Two- and Three-Step Preparation in Batch and in Microfluidic Systems

    Directory of Open Access Journals (Sweden)

    J. Michael Köhler

    2007-01-01

    Full Text Available Regular dendrit-like metal nanoparticles and core-shell nanoparticles were formed by the reduction of mixtures of tetrachloroaurate and silver nitrate solutions with ascorbic acid at room temperature in two- and three-step procedures. The formation of these particles was found in batch experiments as well as in micro flow-through processes using static micromixers. The characteristic diameters of 4-branched star particles were in the range between 60 and 100 nm. The typical particles consist of four metal cores which are embedded in a common shell. Additionally, particles with five and more metallic cores were formed, to some extent, and aggregates of the 4-branched particles also were formed. Larger aggregates and network-like structures of connected star particles were formed after sedimentation. The properties of the formed particles are dependent on the educt concentrations as well as on the order of mixing steps and on the time interval between them. Obviously, the relation of nucleation and particle growth in relation to the concentrations of metal ions determines the composition and the properties of formed nanoparticles. So, star-like particles are observed in case of nucleation of Au in absence of silver ions but with silver deposition after short nucleation time. Spherical core shell particles are formed in case of silver salt addition after complete reduction of tetrachloroaurate in flow-through experiments with sufficient residence time between both mixing steps. Polymer layers are always found in the form of a second outer shell even if the polymer solutions are added in an early stage of particle formation.

  5. Preparation and characterization of PS/pAPBA core-shell microspheres

    Institute of Scientific and Technical Information of China (English)

    Changling YAN; Yan LU; Shuyan GAO

    2009-01-01

    Polystyrene microspheres with an average diameter of 55 μm were prepared by suspension polymerization via oxidation of the monomer by ammonium persulfate. Poly-3-aminophenylboronic acid was grafted onto the surfaces of the polystyrene microspheres to form polystyrene/poly-3-aminophenylboronic acid core- shell micospheres. The samples were characterized by scanning electron microscopy, Raman spectroscopy, X-ray photo-electron spectroscopy and nitrogen adsorption/desorption method. The results show that poly-3-aminophenylboronic acid was successfully grafted to the surfaces of the polystyrene microspheres by aromatic ring electron-pairing interaction. The surfaces of the core-shell micro-spheres possessed a porous structure, with the average pore diameter of 30.2 nm and the BET surface area of 193.26 m2/g.

  6. Freestanding three-dimensional core-shell nanoarrays for lithium-ion battery anodes

    Science.gov (United States)

    Tan, Guoqiang; Wu, Feng; Yuan, Yifei; Chen, Renjie; Zhao, Teng; Yao, Ying; Qian, Ji; Liu, Jianrui; Ye, Yusheng; Shahbazian-Yassar, Reza; Lu, Jun; Amine, Khalil

    2016-06-01

    Structural degradation and low conductivity of transition-metal oxides lead to severe capacity fading in lithium-ion batteries. Recent efforts to solve this issue have mainly focused on using nanocomposites or hybrids by integrating nanosized metal oxides with conducting additives. Here we design specific hierarchical structures and demonstrate their use in flexible, large-area anode assemblies. Fabrication of these anodes is achieved via oxidative growth of copper oxide nanowires onto copper substrates followed by radio-frequency sputtering of carbon-nitride films, forming freestanding three-dimensional arrays with core-shell nano-architecture. Cable-like copper oxide/carbon-nitride core-shell nanostructures accommodate the volume change during lithiation-delithiation processes, the three-dimensional arrays provide abundant electroactive zones and electron/ion transport paths, and the monolithic sandwich-type configuration without additional binders or conductive agents improves energy/power densities of the whole electrode.

  7. Preparation of CdSe/ZnSe Core-shell Nanocrystal in One-step Reaction

    Institute of Scientific and Technical Information of China (English)

    FEI Xiao-fang; SHAN Gui-ye; KONG Xiang-gui; WANG Xin; ZENG Qing-hui; ZHANG You-lin

    2005-01-01

    High-quality Zn-doped CdSe core-shell nanocrystals were successfully prepared by incorporating a stoichiometric amount of Zn precursor into the CdSe reaction system, in which the Se precursor was excess and an Se-rich surface was formed. By injecting different amounts of Zn precursor, the core-shell nanocrystals demonstrated by the emission spectra were formed. The obtained Zn-doped CdSe nanocrystals exhibit a photoluminescence efficiency from 30% to 85%, which is comparable to those for the reported CdSe/ZnS, CdSe/CdS in the literature. In particular, a shell ZnSe layer with different thicknesses of ZnSe can be formed in this experiment by only changing the amount of Zn precursor added, which is simple and effective.

  8. Prediction of the Bandgap of a Core-Shell Microsphere via Light Intensity Fluctuations

    Directory of Open Access Journals (Sweden)

    Moon Kyu Choi

    2011-01-01

    Full Text Available It has been experimentally observed that in the case of microspheres irradiated by light, the absorption wavelength s