Three dimensions transport calculations for PWR core
International Nuclear Information System (INIS)
Richebois, E.
2000-01-01
The objective of this work is to define improved 3-D core calculation methods based on the transport theory. These methods can be particularly useful and lead to more precise computations in areas of the core where anisotropy and steep flux gradients occur, especially near interface and boundary conditions and in regions of high heterogeneity (bundle with absorbent rods). In order to apply the transport theory a new method for calculating reflector constants has been developed, since traditional methods were only suited for 2-group diffusion core calculations and could not be extrapolated to transport calculations. In this thesis work, the new method for obtaining reflector constants is derived regardless of the number of energy groups and of the operator used. The core calculations results using the reflector constants thereof obtained have been validated on the EDF's power reactor Saint Laurent B1 with MOX loading. The advantages of a 3-D core transport calculation scheme have been highlighted as opposed to diffusion methods; there are a considerable number of significant effects and potential advantages to be gained in rod worth calculations for instance. These preliminary results obtained with on particular cycle will have to be confirmed by more systematic analysis. Accidents like MSLB (main steam line break) and LOCA (loss of coolant accident) should also be investigated and constitute challenging situations where anisotropy is high and/or flux gradients are steep. This method is now being validated for others EDF's PWRs' reactors, as well as for experimental reactors and other types of commercial reactors. (author)
Feasibility study on embedded transport core calculations
International Nuclear Information System (INIS)
Ivanov, B.; Zikatanov, L.; Ivanov, K.
2007-01-01
The main objective of this study is to develop an advanced core calculation methodology based on embedded diffusion and transport calculations. The scheme proposed in this work is based on embedded diffusion or SP 3 pin-by-pin local fuel assembly calculation within the framework of the Nodal Expansion Method (NEM) diffusion core calculation. The SP 3 method has gained popularity in the last 10 years as an advanced method for neutronics calculation. NEM is a multi-group nodal diffusion code developed, maintained and continuously improved at the Pennsylvania State University. The developed calculation scheme is a non-linear iteration process, which involves cross-section homogenization, on-line discontinuity factors generation, and boundary conditions evaluation by the global solution passed to the local calculation. In order to accomplish the local calculation, a new code has been developed based on the Finite Elements Method (FEM), which is capable of performing both diffusion and SP 3 calculations. The new code will be used in the framework of the NEM code in order to perform embedded pin-by-pin diffusion and SP 3 calculations on fuel assembly basis. The development of the diffusion and SP 3 FEM code is presented first following by its application to several problems. Description of the proposed embedded scheme is provided next as well as the obtained preliminary results of the C3 MOX benchmark. The results from the embedded calculations are compared with direct pin-by-pin whole core calculations in terms of accuracy and efficiency followed by conclusions made about the feasibility of the proposed embedded approach. (authors)
Whole core transport calculation for the VHTR hexagonal core
International Nuclear Information System (INIS)
Cho, J. Y.; Kim, K. S.; Lee, C. C.; Joo, H. G.
2007-01-01
Recently, the DeCART code which performs the whole core calculation by coupling the radial MOC transport kernel with the axial nodal kernel has equipped a kernel to deal with the hexagonal geometry and applied to the VHTR hexagonal core to examine the accuracy and the computational efficiency of the implemented kernel. The implementation includes a modular ray tracing module based on the hexagonal assembly and a multi-group CMFD module to perform an efficient transport calculation. The requirements for the modular ray are: (1) the assembly based path linking and (2) the complete reflection capabilities. The first requirement is met by adjusting the azimuthal angle and the ray spacing for the modular ray to construct a core ray by the path linking. The second requirement is met by expanding the constructed azimuthal angle in the range of [0,30 degree] to the remained range to reflect completely at the core boundaries. The considered reflecting surface angles for the complete reflection are 30n's (n=1,2,1,12). The CMFD module performs the equivalent diffusion calculation to the radial MOC transport calculation based on the homogenized structure units. The structure units include the hexagonal pin cells and gap cells appearing at the assembly boundary. Therefore, the CMFD module is programmed to deal with the unstructured cells such as the gap cells. The CMFD equation consists of the two parts of (1) the conventional FDM and (2) the current corrective parts. Since the second part of the CMFD equation guarantees the reproducibility of the radial MOC transport solutions for the cell averaged reaction rate and the net current at the cell surfaces, how to build the first part of the CMFD equation is not important. Therefore, the first part of the CMFD equation is roughly built by using the normal distance from the gravity center to the surface. The VHTR core uses helium as a coolant which is realized as a void hole in a neutronics calculation. This void hole which
Minaret, a deterministic neutron transport solver for nuclear core calculations
International Nuclear Information System (INIS)
Moller, J-Y.; Lautard, J-J.
2011-01-01
We present here MINARET a deterministic transport solver for nuclear core calculations to solve the steady state Boltzmann equation. The code follows the multi-group formalism to discretize the energy variable. It uses discrete ordinate method to deal with the angular variable and a DGFEM to solve spatially the Boltzmann equation. The mesh is unstructured in 2D and semi-unstructured in 3D (cylindrical). Curved triangles can be used to fit the exact geometry. For the curved elements, two different sets of basis functions can be used. Transport solver is accelerated with a DSA method. Diffusion and SPN calculations are made possible by skipping the transport sweep in the source iteration. The transport calculations are parallelized with respect to the angular directions. Numerical results are presented for simple geometries and for the C5G7 Benchmark, JHR reactor and the ESFR (in 2D and 3D). Straight and curved finite element results are compared. (author)
Minaret, a deterministic neutron transport solver for nuclear core calculations
Energy Technology Data Exchange (ETDEWEB)
Moller, J-Y.; Lautard, J-J., E-mail: jean-yves.moller@cea.fr, E-mail: jean-jacques.lautard@cea.fr [CEA - Centre de Saclay , Gif sur Yvette (France)
2011-07-01
We present here MINARET a deterministic transport solver for nuclear core calculations to solve the steady state Boltzmann equation. The code follows the multi-group formalism to discretize the energy variable. It uses discrete ordinate method to deal with the angular variable and a DGFEM to solve spatially the Boltzmann equation. The mesh is unstructured in 2D and semi-unstructured in 3D (cylindrical). Curved triangles can be used to fit the exact geometry. For the curved elements, two different sets of basis functions can be used. Transport solver is accelerated with a DSA method. Diffusion and SPN calculations are made possible by skipping the transport sweep in the source iteration. The transport calculations are parallelized with respect to the angular directions. Numerical results are presented for simple geometries and for the C5G7 Benchmark, JHR reactor and the ESFR (in 2D and 3D). Straight and curved finite element results are compared. (author)
Prospects in deterministic three dimensional whole-core transport calculations
International Nuclear Information System (INIS)
Sanchez, Richard
2012-01-01
The point we made in this paper is that, although detailed and precise three-dimensional (3D) whole-core transport calculations may be obtained in the future with massively parallel computers, they would have an application to only some of the problems of the nuclear industry, more precisely those regarding multiphysics or for methodology validation or nuclear safety calculations. On the other hand, typical design reactor cycle calculations comprising many one-point core calculations can have very strict constraints in computing time and will not directly benefit from the advances in computations in large scale computers. Consequently, in this paper we review some of the deterministic 3D transport methods which in the very near future may have potential for industrial applications and, even with low-order approximations such as a low resolution in energy, might represent an advantage as compared with present industrial methodology, for which one of the main approximations is due to power reconstruction. These methods comprise the response-matrix method and methods based on the two-dimensional (2D) method of characteristics, such as the fusion method.
Axial SPN and radial MOC coupled whole core transport calculation
International Nuclear Information System (INIS)
Cho, Jin-Young; Kim, Kang-Seog; Lee, Chung-Chan; Zee, Sung-Quun; Joo, Han-Gyu
2007-01-01
The Simplified P N (SP N ) method is applied to the axial solution of the two-dimensional (2-D) method of characteristics (MOC) solution based whole core transport calculation. A sub-plane scheme and the nodal expansion method (NEM) are employed for the solution of the one-dimensional (1-D) SP N equations involving a radial transverse leakage. The SP N solver replaces the axial diffusion solver of the DeCART direct whole core transport code to provide more accurate, transport theory based axial solutions. In the sub-plane scheme, the radial equivalent homogenization parameters generated by the local MOC for a thick plane are assigned to the multiple finer planes in the subsequent global three-dimensional (3-D) coarse mesh finite difference (CMFD) calculation in which the NEM is employed for the axial solution. The sub-plane scheme induces a much less nodal error while having little impact on the axial leakage representation of the radial MOC calculation. The performance of the sub-plane scheme and SP N nodal transport solver is examined by solving a set of demonstrative problems and the C5G7MOX 3-D extension benchmark problems. It is shown in the demonstrative problems that the nodal error reaching upto 1,400 pcm in a rodded case is reduced to 10 pcm by introducing 10 sub-planes per MOC plane and the transport error is reduced from about 150 pcm to 10 pcm by using SP 3 . Also it is observed, in the C5G7MOX rodded configuration B problem, that the eigenvalues and pin power errors of 180 pcm and 2.2% of the 10 sub-planes diffusion case are reduced to 40 pcm and 1.4%, respectively, for SP 3 with only about a 15% increase in the computing time. It is shown that the SP 5 case gives very similar results to the SP 3 case. (author)
International Nuclear Information System (INIS)
Hursin, Mathieu; Downar, Thomas J.; Yoon, Joo Il; Joo, Han Gyu
2016-01-01
Highlights: • Reactivity initiated accident analysis with direct whole core transient transport code. • Comparison with usual “two steps” procedure. • Effect of effective delayed neutron fraction definition on energy deposition in the fuel. • Effect of homogenized few-group cross sections generation at the assembly level on energy deposition in the fuel. • Effect of effective fuel temperature definition on energy deposition in the fuel. - Abstract: The impact of the approximations in the “two-steps” procedure used in the current generation of nodal simulators for core transient calculations is assessed by using a higher order solution obtained from a direct, whole core, transient transport calculation. A control rod ejection accident in an idealized minicore is analyzed with PARCS, which uses the two-steps procedure and DeCART which provides the higher order solution. DeCART is used as lattice code to provide the homogenized cross sections and kinetics parameters to PARCS. The approximations made by using (1) the homogenized few-group cross sections and kinetic parameters generated at the assembly level, (2) an effective delayed neutrons fraction, (3) an effective fuel temperature and (4) the few-group formulation are investigated in terms of global and local core power behavior. The results presented in the paper show that the current two-steps procedure produces sufficiently accurate transient results with respect to the direct whole core calculation solution, provided that its parameters are carefully generated using the prescriptions described in the present article.
Three dimensions transport calculations for PWR core; Calcul de coeur R.E.P. en transport 3D
Energy Technology Data Exchange (ETDEWEB)
Richebois, E
2000-07-01
The objective of this work is to define improved 3-D core calculation methods based on the transport theory. These methods can be particularly useful and lead to more precise computations in areas of the core where anisotropy and steep flux gradients occur, especially near interface and boundary conditions and in regions of high heterogeneity (bundle with absorbent rods). In order to apply the transport theory a new method for calculating reflector constants has been developed, since traditional methods were only suited for 2-group diffusion core calculations and could not be extrapolated to transport calculations. In this thesis work, the new method for obtaining reflector constants is derived regardless of the number of energy groups and of the operator used. The core calculations results using the reflector constants thereof obtained have been validated on the EDF's power reactor Saint Laurent B1 with MOX loading. The advantages of a 3-D core transport calculation scheme have been highlighted as opposed to diffusion methods; there are a considerable number of significant effects and potential advantages to be gained in rod worth calculations for instance. These preliminary results obtained with on particular cycle will have to be confirmed by more systematic analysis. Accidents like MSLB (main steam line break) and LOCA (loss of coolant accident) should also be investigated and constitute challenging situations where anisotropy is high and/or flux gradients are steep. This method is now being validated for others EDF's PWRs' reactors, as well as for experimental reactors and other types of commercial reactors. (author)
Three dimensions transport calculations for PWR core; Calcul de coeur R.E.P. en transport 3D
Energy Technology Data Exchange (ETDEWEB)
Richebois, E
2000-07-01
The objective of this work is to define improved 3-D core calculation methods based on the transport theory. These methods can be particularly useful and lead to more precise computations in areas of the core where anisotropy and steep flux gradients occur, especially near interface and boundary conditions and in regions of high heterogeneity (bundle with absorbent rods). In order to apply the transport theory a new method for calculating reflector constants has been developed, since traditional methods were only suited for 2-group diffusion core calculations and could not be extrapolated to transport calculations. In this thesis work, the new method for obtaining reflector constants is derived regardless of the number of energy groups and of the operator used. The core calculations results using the reflector constants thereof obtained have been validated on the EDF's power reactor Saint Laurent B1 with MOX loading. The advantages of a 3-D core transport calculation scheme have been highlighted as opposed to diffusion methods; there are a considerable number of significant effects and potential advantages to be gained in rod worth calculations for instance. These preliminary results obtained with on particular cycle will have to be confirmed by more systematic analysis. Accidents like MSLB (main steam line break) and LOCA (loss of coolant accident) should also be investigated and constitute challenging situations where anisotropy is high and/or flux gradients are steep. This method is now being validated for others EDF's PWRs' reactors, as well as for experimental reactors and other types of commercial reactors. (author)
International Nuclear Information System (INIS)
Sugimura, Naoki; Mori, Masaaki; Hijiya, Masayuki; Ushio, Tadashi; Arakawa, Yasushi
2004-01-01
This paper presents the Hybrid Core Calculation System which is a very rigorous but a practical calculation system applicable to best estimate core design calculations taking advantage of the recent remarkable progress of computers. The basic idea of this system is to generate the correction factors for assembly homogenized cross sections, discontinuity factors, etc. by comparing the CASMO-4 and SIMULATE-3 2-D core calculation results under the consistent calculation condition and then apply them for SIMULATE-3 3-D calculation. The CASMO-4 2-D heterogeneous core calculation is performed for each depletion step with the core conditions previously determined by ordinary SIMULATE-3 core calculation to avoid time consuming iterative calculations searching for the critical boron concentrations while treating the thermal hydraulic feedback. The final SIMULATE-3 3-D calculation using the correction factors is performed with iterative calculations searching for the critical boron concentrations while treating the thermal hydraulic feedback. (author)
3-D Whole-Core Transport Calculation with 3D/2D Rotational Plane Slicing Method
Energy Technology Data Exchange (ETDEWEB)
Yoo, Han Jong; Cho, Nam Zin [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)
2014-10-15
Use of the method of characteristics (MOC) is very popular due to its capability of heterogeneous geometry treatment and widely used for 2-D core calculation, but direct extension of MOC to 3-D core is not so attractive due to huge calculational cost. 2-D/1-D fusion method was very successful for 3-D calculation of current generation reactor types (highly heterogeneous in radial direction but piece-wise homogeneous in axial direction). In this paper, 2-D MOC concept is extended to 3-D core calculation with little modification of an existing 2-D MOC code. The key idea is to suppose 3-D geometry as a set of many 2-D planes like a phone-directory book. Dividing 3-D structure into a large number of 2-D planes and solving each plane with a simple 2-D SN transport method would give the solution of a 3-D structure. This method was developed independently at KAIST but it is found that this concept is similar with that of 'plane tracing' in the MCCG-3D code. The method developed was tested on the 3-D C5G7 OECD/NEA benchmark problem and compared with the 2-D/1-D fusion method. Results show that the proposed method is worth investigating further. A new approach to 3-D whole-core transport calculation is described and tested. By slicing 3-D structure along characteristic planes and solving each 2-D plane problem, we can get 3-D solution. The numerical test results indicate that the new method is comparable with the 2D/1D fusion method and outperforms other existing methods. But more fair comparison should be done in similar discretization level.
International Nuclear Information System (INIS)
Lee, Gil Soo
2006-02-01
To describe power distribution and multiplication factor of a reactor core accurately, it is necessary to perform calculations based on neutron transport equation considering heterogeneous geometry and scattering angles. These calculations require very heavy calculations and were nearly impossible with computers of old days. From the limitation of computing power, traditional approach of reactor core design consists of heterogeneous transport calculation in fuel assembly level and whole core diffusion nodal calculation with assembly homogenized properties, resulting from fuel assembly transport calculation. This approach may be effective in computation time, but it gives less accurate results for highly heterogeneous problems. As potential for whole core heterogeneous transport calculation became more feasible owing to rapid development of computing power during last several years, the interests in two and three dimensional whole core heterogeneous transport calculations by deterministic method are increased. For two dimensional calculation, there were several successful approaches using even parity transport equation with triangular meshes, S N method with refined rectangular meshes, the method of characteristics (MOC) with unstructured meshes, and so on. The work in this thesis originally started from the two dimensional whole core heterogeneous transport calculation by using MOC. After successful achievement in two dimensional calculation, there were efforts in three-dimensional whole-core heterogeneous transport calculation using MOC. Since direct extension to three dimensional calculation of MOC requires too much computing power, indirect approach to three dimensional calculation was considered.Thus, 2D/1D fusion method for three dimensional heterogeneous transport calculation was developed and successfully implemented in a computer code. The 2D/1D fusion method is synergistic combination of the MOC for radial 2-D calculation and S N -like methods for axial 1
International Nuclear Information System (INIS)
Girardi, E.; Ruggieri, J.M.
2003-01-01
The aim of this paper is to present the last developments made on a domain decomposition method applied to reactor core calculations. In this method, two kind of balance equation with two different numerical methods dealing with two different unknowns are coupled. In the first part the two balance transport equations (first order and second order one) are presented with the corresponding following numerical methods: Variational Nodal Method and Discrete Ordinate Nodal Method. In the second part, the Multi-Method/Multi-Domain algorithm is introduced by applying the Schwarz domain decomposition to the multigroup eigenvalue problem of the transport equation. The resulting algorithm is then provided. The projection operators used to coupled the two methods are detailed in the last part of the paper. Finally some preliminary numerical applications on benchmarks are given showing encouraging results. (authors)
International Nuclear Information System (INIS)
Trkov, A.; Ravnik, M.; Zeleznik, N.
1992-01-01
Functional description of the programme package Cord-2 for PWR core design calculations is presented. Programme package is briefly described. Use of the package and calculational procedures for typical core design problems are treated. Comparison of main results with experimental values is presented as part of the verification process. (author) [sl
Energy Technology Data Exchange (ETDEWEB)
Nagao, Yoshiharu [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment
1998-03-01
In material testing reactors like the JMTR (Japan Material Testing Reactor) of 50 MW in Japan Atomic Energy Research Institute, the neutron flux and neutron energy spectra of irradiated samples show complex distributions. It is necessary to assess the neutron flux and neutron energy spectra of an irradiation field by carrying out the nuclear calculation of the core for every operation cycle. In order to advance core calculation, in the JMTR, the application of MCNP to the assessment of core reactivity and neutron flux and spectra has been investigated. In this study, in order to reduce the time for calculation and variance, the comparison of the results of the calculations by the use of K code and fixed source and the use of Weight Window were investigated. As to the calculation method, the modeling of the total JMTR core, the conditions for calculation and the adopted variance reduction technique are explained. The results of calculation are shown. Significant difference was not observed in the results of neutron flux calculations according to the difference of the modeling of fuel region in the calculations by K code and fixed source. The method of assessing the results of neutron flux calculation is described. (K.I.)
Energy Technology Data Exchange (ETDEWEB)
Palau, J M [CEA Cadarache, Service de Physique des Reacteurs et du Cycle, Lab. de Projets Nucleaires, 13 - Saint-Paul-lez-Durance (France)
2005-07-01
This paper presents how Monte-Carlo calculations (French TRIPOLI4 poly-kinetic code with an appropriate pre-processing and post-processing software called OVNI) are used in the case of 3-dimensional heterogeneous benchmarks (slab reactor cores) to reduce model biases and enable a thorough and detailed analysis of the performances of deterministic methods and their associated data libraries with respect to key neutron parameters (reactivity, local power). Outstanding examples of application of these tools are presented regarding the new numerical methods implemented in the French lattice code APOLLO2 (advanced self-shielding models, new IDT characteristics method implemented within the discrete-ordinates flux solver model) and the JEFF3.1 nuclear data library (checked against JEF2.2 previous file). In particular we have pointed out, by performing multigroup/point-wise TRIPOLI4 (assembly and core) calculations, the efficiency (in terms of accuracy and computation time) of the new IDT method developed in APOLLO2. In addition, by performing 3-dimensional TRIPOLI4 calculations of the whole slab core (few millions of elementary volumes), the high quality of the new JEFF3.1 nuclear data files and revised evaluations (U{sup 235}, U{sup 238}, Hf) for reactivity prediction of slab cores critical experiments has been stressed. As a feedback of the whole validation process, improvements in terms of nuclear data (mainly Hf capture cross-sections) and numerical methods (advanced quadrature formulas accounting validation results, validation of new self-shielding models, parallelization) are suggested to improve even more the APOLLO2-CRONOS2 standard calculation route. (author)
International Nuclear Information System (INIS)
Palau, J.M.
2005-01-01
This paper presents how Monte-Carlo calculations (French TRIPOLI4 poly-kinetic code with an appropriate pre-processing and post-processing software called OVNI) are used in the case of 3-dimensional heterogeneous benchmarks (slab reactor cores) to reduce model biases and enable a thorough and detailed analysis of the performances of deterministic methods and their associated data libraries with respect to key neutron parameters (reactivity, local power). Outstanding examples of application of these tools are presented regarding the new numerical methods implemented in the French lattice code APOLLO2 (advanced self-shielding models, new IDT characteristics method implemented within the discrete-ordinates flux solver model) and the JEFF3.1 nuclear data library (checked against JEF2.2 previous file). In particular we have pointed out, by performing multigroup/point-wise TRIPOLI4 (assembly and core) calculations, the efficiency (in terms of accuracy and computation time) of the new IDT method developed in APOLLO2. In addition, by performing 3-dimensional TRIPOLI4 calculations of the whole slab core (few millions of elementary volumes), the high quality of the new JEFF3.1 nuclear data files and revised evaluations (U 235 , U 238 , Hf) for reactivity prediction of slab cores critical experiments has been stressed. As a feedback of the whole validation process, improvements in terms of nuclear data (mainly Hf capture cross-sections) and numerical methods (advanced quadrature formulas accounting validation results, validation of new self-shielding models, parallelization) are suggested to improve even more the APOLLO2-CRONOS2 standard calculation route. (author)
International Nuclear Information System (INIS)
Kim, H. Y.; Joo, H. G.; Kim, K. S.; Kim, G. Y.; Jang, M. H.
2003-01-01
The reactivity and power distribution errors of the HELIOS/MASTER core calculation under power generating conditions are assessed using a whole core transport code DeCART. For this work, the cross section tablesets were generated for a medium sized PWR following the standard procedure and two group nodal core calculations were performed. The test cases include the HELIOS calculations for 2-D assemblies at constant thermal conditions, MASTER 3D assembly calculations at power generating conditions, and the core calculations at HZP, HFP, and an abnormal power conditions. In all these cases, the results of the DeCART code in which pinwise thermal feedback effects are incorporated are used as the reference. The core reactivity, assemblywise power distribution, axial power distribution, peaking factor, and thermal feedback effects are then compared. The comparison shows that the error of the HELIOS/MASTER system in the core reactivity, assembly wise power distribution, pin peaking factor are only 100∼300 pcm, 3%, and 2%, respectively. As far as the detailed pinwise power distribution is concerned, however, errors greater than 15% are observed
Energy Technology Data Exchange (ETDEWEB)
Trkov, A; Ravnik, M; Zeleznik, N [Inst. Jozef Stefan, Ljubljana (Slovenia)
1992-07-01
Functional description of the programme package Cord-2 for PWR core design calculations is presented. Programme package is briefly described. Use of the package and calculational procedures for typical core design problems are treated. Comparison of main results with experimental values is presented as part of the verification process. (author) [Slovenian] Opisali smo programski paket CORD-2, ki se uporablja pri projektnih izracunih sredice pri upravljanju tlacnovodnega reaktorja. Prikazana je uporaba paketa in racunskih postopkov za tipicne probleme, ki nastopajo pri projektiranju sredice. Primerjava glavnih rezultatov z eksperimentalnimi vrednostmi je predstavljena kot del preveritvenega procesa. (author)
Simplified P{sub n} transport core calculations in the Apollo3 system
Energy Technology Data Exchange (ETDEWEB)
Baudron, Anne-Marie; Lautard, Jean-Jacques, E-mail: anne-marie.baudron@cea.fr, E-mail: jean-jacques.lautard@cea.fr [Commissariat a l' Energie Atomique et aux Energies Alternatives, CEA Saclay, Gif-sur-Yvette (France)
2011-07-01
This paper describes the development of two different neutronics core solvers based on the Simplified P{sub N} transport (SP{sub N}) approximation developed in the context of a new generation nuclear reactor computational system, APOLLO3. Two different approaches have been used. The first one solves the standard SPN system. In the second approach, the SP{sub N} equations are solved as diffusion equations by treating the SP{sub N} flux harmonics like pseudo energy groups, obtained by a change of variable. These two methods have been implemented for Cartesian and hexagonal geometries in the kinetics solver MINOS. The numerical approximation is based on the mixed dual finite formulation and the discretization uses the Raviart-Thomas-Nedelec finite elements. For the unstructured geometries, the SP{sub N} equations are treated by the SN transport solver MINARET by considering the second SP{sub N} approach. The MINARET solver is based on discontinuous Galerkin finite element approximation on cylindrical unstructured meshes composed of a set of conforming triangles for the radial direction. Numerical applications are presented for both solvers in different core configurations (the Jules Horowitz research reactor (JHR) and the Generation IV fast reactor project ESFR). (author)
Simplified P_n transport core calculations in the Apollo3 system
International Nuclear Information System (INIS)
Baudron, Anne-Marie; Lautard, Jean-Jacques
2011-01-01
This paper describes the development of two different neutronics core solvers based on the Simplified P_N transport (SP_N) approximation developed in the context of a new generation nuclear reactor computational system, APOLLO3. Two different approaches have been used. The first one solves the standard SPN system. In the second approach, the SP_N equations are solved as diffusion equations by treating the SP_N flux harmonics like pseudo energy groups, obtained by a change of variable. These two methods have been implemented for Cartesian and hexagonal geometries in the kinetics solver MINOS. The numerical approximation is based on the mixed dual finite formulation and the discretization uses the Raviart-Thomas-Nedelec finite elements. For the unstructured geometries, the SP_N equations are treated by the SN transport solver MINARET by considering the second SP_N approach. The MINARET solver is based on discontinuous Galerkin finite element approximation on cylindrical unstructured meshes composed of a set of conforming triangles for the radial direction. Numerical applications are presented for both solvers in different core configurations (the Jules Horowitz research reactor (JHR) and the Generation IV fast reactor project ESFR). (author)
IRIS core criticality calculations
International Nuclear Information System (INIS)
Jecmenica, R.; Trontl, K.; Pevec, D.; Grgic, D.
2003-01-01
Three-dimensional Monte Carlo computer code KENO-VI of CSAS26 sequence of SCALE-4.4 code system was applied for pin-by-pin calculations of the effective multiplication factor for the first cycle IRIS reactor core. The effective multiplication factors obtained by the above mentioned Monte Carlo calculations using 27-group ENDF/B-IV library and 238-group ENDF/B-V library have been compared with the effective multiplication factors achieved by HELIOS/NESTLE, CASMO/SIMULATE, and modified CORD-2 nodal calculations. The results of Monte Carlo calculations are found to be in good agreement with the results obtained by the nodal codes. The discrepancies in effective multiplication factor are typically within 1%. (author)
International Nuclear Information System (INIS)
Yuk, Seung Su; Cho, Bumhee; Cho, Nam Zin
2013-01-01
In the case of deterministic transport model, fixed-k problem formulation is necessary and the overlapping local domain is chosen. However, as mentioned in, the partial current-based Coarse Mesh Finite Difference (p-CMFD) procedure enables also non-overlapping local/global (NLG) iteration. In this paper, NLG iteration is combined with p-CMFD and with CMFD (augmented with a concept of p-CMFD), respectively, and compared to OLG iteration on a 2-D test problem. Non-overlapping local/global iteration with p-CMFD and CMFD global calculation is introduced and tested on a 2-D deterministic transport problem. The modified C5G7 problem is analyzed with both NLG and OLG methods and the solutions converge to the reference solution except for some cases of NLG with CMFD. NLG with CMFD gives the best performance if the solution converges. But if fission-source iteration in local calculation is not enough, it is prone to diverge. The p-CMFD global solver gives unconditional convergence (for both OLG and NLG). A study of switching scheme is in progress, where NLG/p-CMFD is used as 'starter' and then switched to NLG/CMFD to render the whole-core transport calculation more efficient and robust. Parallel computation is another obvious future work
Neutronics calculation of RTP core
Rabir, Mohamad Hairie B.; Zin, Muhammad Rawi B. Mohamed; Karim, Julia Bt. Abdul; Bayar, Abi Muttaqin B. Jalal; Usang, Mark Dennis Anak; Mustafa, Muhammad Khairul Ariff B.; Hamzah, Na'im Syauqi B.; Said, Norfarizan Bt. Mohd; Jalil, Muhammad Husamuddin B.
2017-01-01
Reactor calculation and simulation are significantly important to ensure safety and better utilization of a research reactor. The Malaysian's PUSPATI TRIGA Reactor (RTP) achieved initial criticality on June 28, 1982. The reactor is designed to effectively implement the various fields of basic nuclear research, manpower training, and production of radioisotopes. Since early 90s, neutronics modelling were used as part of its routine in-core fuel management activities. The are several computer codes have been used in RTP since then, based on 1D neutron diffusion, 2D neutron diffusion and 3D Monte Carlo neutron transport method. This paper describes current progress and overview on neutronics modelling development in RTP. Several important parameters were analysed such as keff, reactivity, neutron flux, power distribution and fission product build-up for the latest core configuration. The developed core neutronics model was validated by means of comparison with experimental and measurement data. Along with the RTP core model, the calculation procedure also developed to establish better prediction capability of RTP's behaviour.
Energy Technology Data Exchange (ETDEWEB)
Zwermann, W.; Aures, A.; Bernnat, W.; and others
2013-06-15
This report documents the status of the research and development goals reached within the reactor safety research project RS1503 ''Development and Application of Neutron Transport Methods and Uncertainty Analyses for Reactor Core Calculations'' as of the 1{sup st} quarter of 2013. The superordinate goal of the project is the development, validation, and application of neutron transport methods and uncertainty analyses for reactor core calculations. These calculation methods will mainly be applied to problems related to the core behaviour of light water reactors and innovative reactor concepts. The contributions of this project towards achieving this goal are the further development, validation, and application of deterministic and stochastic calculation programmes and of methods for uncertainty and sensitivity analyses, as well as the assessment of artificial neutral networks, for providing a complete nuclear calculation chain. This comprises processing nuclear basis data, creating multi-group data for diffusion and transport codes, obtaining reference solutions for stationary states with Monte Carlo codes, performing coupled 3D full core analyses in diffusion approximation and with other deterministic and also Monte Carlo transport codes, and implementing uncertainty and sensitivity analyses with the aim of propagating uncertainties through the whole calculation chain from fuel assembly, spectral and depletion calculations to coupled transient analyses. This calculation chain shall be applicable to light water reactors and also to innovative reactor concepts, and therefore has to be extensively validated with the help of benchmarks and critical experiments.
Core barrel motion calibration factor calculation
International Nuclear Information System (INIS)
Shahrokhi, F.; Robinson, J.C.
1976-01-01
Neutron transport theory calculations were performed to obtain a calibration factor for inferring core-barrel motion from spectral density data using excore ionization chambers in PWRs. The analysis of core-barrel movement was based on the postulate that the movement is a cantilevered type, with the preferred direction x-x'
Energy Technology Data Exchange (ETDEWEB)
Zwermann, Winfried; Aures, Alexander; Bostelmann, Friederike; Pasichnyk, Ihor; Perin, Yann; Velkov, Kiril; Zilly, Matias
2016-12-15
This report documents the status of the research and development goals reached within the reactor safety research project RS1536 ''Development of modern methods with respect to neutron transport and uncertainty analyses for reactor core calculations'' as of the 3{sup rd} quarter of 2016. The superordinate goal of the project is the development, validation, and application of neutron transport methods and uncertainty analyses for reactor core calculations. These calculation methods will mainly be applied to problems related to the core behaviour of light water reactors and innovative reactor concepts, in particular fast reactors cooled by liquid metal. The contributing individual goals are the further optimization and validation of deterministic calculation methods with high spatial and energy resolution, the development of a coupled calculation system using the Monte Carlo method for the neutron transport to describe time-dependent reactor core states, the processing and validation of nuclear data, particularly with regard to covariance data, the development, validation, and application of sampling-based methods for uncertainty and sensitivity analyses, the creation of a platform for performing systematic uncertainty analyses for fast reactor systems, as well as the description of states of severe core damage with the Monte Carlo method. Moreover, work regarding the European NURESAFE project, started in the preceding project RS1503, are being continued and completed.
Reactor core performance calculating device
International Nuclear Information System (INIS)
Tominaga, Kenji; Bando, Masaru; Sano, Hiroki; Maruyama, Hiromi.
1995-01-01
The device of the present invention can calculate a power distribution efficiently at high speed by a plurality of calculation means while taking an amount of the reactor state into consideration. Namely, an input device takes data from a measuring device for the amount of the reactor core state such as a large number of neutron detectors disposed in the reactor core for monitoring the reactor state during operation. An input data distribution device comprises a state recognition section and a data distribution section. The state recognition section recognizes the kind and amount of the inputted data and information of the calculation means. The data distribution section analyzes the characteristic of the inputted data, divides them into a several groups, allocates them to each of the calculation means for the purpose of calculating the reactor core performance efficiently at high speed based on the information from the state recognition section. A plurality of the calculation means calculate power distribution of each of regions based on the allocated inputted data, to determine the power distribution of the entire reactor core. As a result, the reactor core can be evaluated at high accuracy and at high speed irrespective of the whole reactor core or partial region. (I.S.)
Whole core burnup calculations using 'MCNP'
International Nuclear Information System (INIS)
Haran, O.; Shaham, Y.
1996-01-01
Core parameters such as the reactivity, the power distribution and different reactivity coefficients calculated in simulations play an important role in the nuclear reactor handling. Operational safety margins are decided upon, based on the calculated parameters. Thus, the ability to accurately calculate those parameters is of uppermost importance. Such ability exists for fresh cores, using the Monte-Carlo method. The change in the core parameters that results from the core burnup is nowadays calculated within transport codes that simplifies the transport process by using approximations such as the diffusion approximation. The inaccuracy in the burned core parameters arising from the use of such approximations is hard to quantify, leading to an increased gap between the operational routines and the safety limits. A Monte Carlo transport code that caries out accurate static calculations in three dimensional geometries using continuous-energy neutron cross-section data such as the MCNP can be used to generate accurate reaction rates for burnup purposes. Monte Carlo method is statistical by nature, so that the reaction rates calculated will be accurate only to a certain known extent. The purpose of this work was to create a burnup routine that uses the capabilities of the Monte Carlo based MCNP code. It should be noted that burnup using Monte Carlo has been reported in the literatures, but this work is the result of an independent effort (authors)
Whole core burnup calculations using `MCNP`
Energy Technology Data Exchange (ETDEWEB)
Haran, O; Shaham, Y [Israel Atomic Energy Commission, Beersheba (Israel). Nuclear Research Center-Negev
1996-12-01
Core parameters such as the reactivity, the power distribution and different reactivity coefficients calculated in simulations play an important role in the nuclear reactor handling. Operational safety margins are decided upon, based on the calculated parameters. Thus, the ability to accurately calculate those parameters is of uppermost importance. Such ability exists for fresh cores, using the Monte-Carlo method. The change in the core parameters that results from the core burnup is nowadays calculated within transport codes that simplifies the transport process by using approximations such as the diffusion approximation. The inaccuracy in the burned core parameters arising from the use of such approximations is hard to quantify, leading to an increased gap between the operational routines and the safety limits. A Monte Carlo transport code that caries out accurate static calculations in three dimensional geometries using continuous-energy neutron cross-section data such as the MCNP can be used to generate accurate reaction rates for burnup purposes. Monte Carlo method is statistical by nature, so that the reaction rates calculated will be accurate only to a certain known extent. The purpose of this work was to create a burnup routine that uses the capabilities of the Monte Carlo based MCNP code. It should be noted that burnup using Monte Carlo has been reported in the literatures, but this work is the result of an independent effort (authors).
Core calculational techniques and procedures
International Nuclear Information System (INIS)
Romano, J.J.
1977-10-01
Described are the procedures and techniques employed by B and W in core design analyses of power peaking, control rod worths, and reactivity coefficients. Major emphasis has been placed on current calculational tools and the most frequently performed calculations over the operating power range
Cylindrization of a PWR core for neutronic calculations
International Nuclear Information System (INIS)
Santos, Rubens Souza dos
2005-01-01
In this work we propose a core cylindrization, starting from a PWR core configuration, through the use of an algorithm that becomes the process automated in the program, independent of the discretization. This approach overcomes the problem stemmed from the use of the neutron transport theory on the core boundary, in addition with the singularities associated with the presence of corners on the outer fuel element core of, existents in the light water reactors (LWR). The algorithm was implemented in a computational program used to identification of the control rod drop accident in a typical PWR core. The results showed that the algorithm presented consistent results comparing with an production code, for a problem with uniform properties. In our conclusions, we suggest, for future works, for analyzing the effect on mesh sizes for the Cylindrical geometry, and to compare the transport theory calculations versus diffusion theory, for the boundary conditions with corners, for typical PWR cores. (author)
International Nuclear Information System (INIS)
Xhonneux, Andre; Allelein, Hans-Josef
2014-01-01
The computer codes FRESCO-I, FRESCO-II, PANAMA and SPATRA developed at Forschungszentrum Jülich in Germany in the early 1980s are essential tools to predict the fission product release from spherical fuel elements and the TRISO fuel performance, respectively, under given normal or accidental conditions. These codes are able to calculate a conservative estimation of the source term, i.e. quantity and duration of radionuclide release. Recently, these codes have been reversed engineered, modernized (FORTRAN 95/2003) and combined to form a consistent code named STACY (Source Term Analysis Code System). STACY will later become a module of the V/HTR Code Package (HCP). In addition, further improvements have been implemented to enable more detailed calculations. For example the distinct temperature profile along the pebble radius is now taken into account and coated particle failure rates can be calculated under normal operating conditions. In addition, the absolute fission product release of an V/HTR pebble bed core can be calculated by using the newly developed burnup code Topological Nuclide Transformation (TNT) replacing the former rudimentary approach. As a new functionality, spatially resolved fission product release calculations for normal operating conditions as well as accident conditions can be performed. In case of a full-core calculation, a large number of individual pebbles which follow a random path through the reactor core can be simulated. The history of the individual pebble is recorded, too. Main input data such as spatially resolved neutron fluxes and fluid dynamics data are provided by the VSOP code. Capabilities of the FRESCO-I and SPATRA code which allow for the simulation of the redistribution of fission products within the primary circuit and the deposition of fission products on graphitic and metallic surfaces are also available in STACY. In this paper, details of the STACY model and first results for its application to the 200 MW(th) HTR
Calculation of ex-core detector responses
Energy Technology Data Exchange (ETDEWEB)
Wouters, R. de; Haedens, M. [Tractebel Engineering, Brussels (Belgium); Baenst, H. de [Electrabel, Brussels (Belgium)
2005-07-01
The purpose of this work carried out by Tractebel Engineering, is to develop and validate a method for predicting the ex-core detector responses in the NPPs operated by Electrabel. Practical applications are: prediction of ex-core calibration coefficients for startup power ascension, replacement of xenon transients by theoretical predictions, and analysis of a Rod Drop Accident. The neutron diffusion program PANTHER calculates node-integrated fission sources which are combined with nodal importance representing the contribution of a neutron born in that node to the ex-core response. These importance are computed with the Monte Carlo program MCBEND in adjoint mode, with a model of the whole core at full power. Other core conditions are treated using sensitivities of the ex-core responses to water densities, computed with forward Monte Carlo. The Scaling Factors (SF), or ratios of the measured currents to the calculated response, have been established on a total of 550 in-core flux maps taken in four NPPs. The method has been applied to 15 startup transients, using the average SF obtained from previous cycles, and to 28 xenon transients, using the SF obtained from the in-core map immediately preceding the transient. The values of power (P) and axial offset (AOi) reconstructed with the theoretical calibration agree well with the measured values. The ex-core responses calculated during a rod drop transient have been successfully compared with available measurements, and with theoretical data obtained by alternative methods. In conclusion, the method is adequate for the practical applications previously listed. (authors)
Improved core protection calculator system algorithm
International Nuclear Information System (INIS)
Yoon, Tae Young; Park, Young Ho; In, Wang Kee; Bae, Jong Sik; Baeg, Seung Yeob
2009-01-01
Core Protection Calculator System (CPCS) is a digitized core protection system which provides core protection functions based on two reactor core operation parameters, Departure from Nucleate Boiling Ratio (DNBR) and Local Power Density (LPD). It generates a reactor trip signal when the core condition exceeds the DNBR or LPD design limit. It consists of four independent channels which adapted a two out of four trip logic. CPCS algorithm improvement for the newly designed core protection calculator system, RCOPS (Reactor COre Protection System), is described in this paper. New features include the improvement of DNBR algorithm for thermal margin, the addition of pre trip alarm generation for auxiliary trip function, VOPT (Variable Over Power Trip) prevention during RPCS (Reactor Power Cutback System) actuation and the improvement of CEA (Control Element Assembly) signal checking algorithm. To verify the improved CPCS algorithm, CPCS algorithm verification tests, 'Module Test' and 'Unit Test', would be performed on RCOPS single channel facility. It is expected that the improved CPCS algorithm will increase DNBR margin and enhance the plant availability by reducing unnecessary reactor trips
Preliminary core design calculations for the ACPR Upgrade
International Nuclear Information System (INIS)
Pickard, P.S.
1976-01-01
The goal of the Annular Core Pulse Reactor (ACPR) Upgrade design studies is to define a core configuration that provides a significant increase in pulse fluence and fission energy deposition. The reactor modification should provide as flat an energy deposition profile for experiments as feasible. The fuels examined in this study were UO 2 -BeO (5-15 w/o UO 2 ), UC-ZrC-C (200-500 mg U/cc) and U-ZrH 1.5 . The basic core concept examined was a two region core, - a high heat capacity inner core region surrounded by an outer U-ZrH 1.5 region. Survey core calculations utilizing 1D transport calculations and cross sections libraries derived from the ORNL-AMPX code examined relative fuel loadings, fuel temperatures, reactivity requirements and pulse performance improvement. Reference designs for all candidate fuels were defined utilizing 2D transport and Monte Carlo calculations. The performance implications of alternative core designs were also examined for the UO 2 -BeO and UC-ZrC-C fuel candidates. (author)
Two dimensional burn-up calculation of TRIGA core
International Nuclear Information System (INIS)
Persic, A.; Ravnik, M.; Slavic, S.
1996-01-01
TRIGLAV is a new computer program for burn-up calculation of mixed core of research reactors. The code is based on diffusion model in two dimensions and iterative procedure is applied for its solution. The material data used in the model are calculated with the transport program WIMS. In regard to fission density distribution and energy produced by the reactor the burn-up increment of fuel elements is determined. In this paper the calculation model of diffusion constants and burn-up calculation are described and some results of calculations for TRIGA MARK II reactor are presented. (author)
Core physics calculation and analysis for SNRE
International Nuclear Information System (INIS)
Xie Jiachun; Zhao Shouzhi; Jia Baoshan
2010-01-01
Five different precise calculation models have been set up for Small Nuclear Rocket Engine (SNRE) core based on MCNP code, and then the effective multiplication constant, drum control worth and power distribution were calculated. The results from different models indicate that the model in which elements are homogeneous could be used in the reactivity calculation, but a detailed description of elements have to be used in the element internal power distribution calculation. The results of physics parameters show that the basic characteristics of SNRE are reasonable. The drum control worth is sufficient. The power distribution is symmetrical and reasonable. All of the parameters can satisfy the design requirement. (authors)
Energy Technology Data Exchange (ETDEWEB)
Maeng, Young Jae; Kim, Byoung Chul; Lim, Mi Joung; Kim, Kyung Sik; Jeon, Young Kyou [Korea Reactor Integrity Surveillance Technology, Daejeon (Korea, Republic of); Yoo, Chun Sung [Korea Atomic Energy Research Institutes, Daejeon (Korea, Republic of)
2013-10-15
The DORT code for 2D/1D synthesis has been actively applied to calculate the fast neutron (E>1.0MeV) fluence exposure of RPV. RAPTOR-M3G code is also applied for the comparison of 2D/1D synthesis, and it was found that 2D/1D synthesis method generally provided more conservative results than RAPTOR-M3G at both RPV and surveillance capsule locations. As a result, definitely RAPTOR-M3G for 3D calculation must apply for accurate evaluation of the integrity and ageing of RPV and internal structures. Therefore, the purpose of this paper is to compare the differences in terms of geometric aspect of KSNP model between 2D/1D synthesis and RAPTOR-M3G at core barrel area. 2D/1D synthesis method shows still higher results at the shortest distance of bypass water region. The reason is that 2D/1D synthesis method has excessive conservatism because of having just one model of R-θ and R-Z separately. Angles (5, 25, 45, 65 and 90 degrees) that RAPTOR-M3G results are higher than 2D/1D synthesis results seem to have almost regular interval. The reason can be that neutron flux to reach to barrel is affected by the nearest core definitely and all of near core areas including bypass water. RAPTOR-M3G performing 3D calculation can be applied to various reactor structures, because the code can simulate the model realistically and reasonably in geometric view points. Understanding the phenomenon that 45 degree shows downward peak, in spite of baffle corner location, remains.
International Nuclear Information System (INIS)
Maeng, Young Jae; Kim, Byoung Chul; Lim, Mi Joung; Kim, Kyung Sik; Jeon, Young Kyou; Yoo, Chun Sung
2013-01-01
The DORT code for 2D/1D synthesis has been actively applied to calculate the fast neutron (E>1.0MeV) fluence exposure of RPV. RAPTOR-M3G code is also applied for the comparison of 2D/1D synthesis, and it was found that 2D/1D synthesis method generally provided more conservative results than RAPTOR-M3G at both RPV and surveillance capsule locations. As a result, definitely RAPTOR-M3G for 3D calculation must apply for accurate evaluation of the integrity and ageing of RPV and internal structures. Therefore, the purpose of this paper is to compare the differences in terms of geometric aspect of KSNP model between 2D/1D synthesis and RAPTOR-M3G at core barrel area. 2D/1D synthesis method shows still higher results at the shortest distance of bypass water region. The reason is that 2D/1D synthesis method has excessive conservatism because of having just one model of R-θ and R-Z separately. Angles (5, 25, 45, 65 and 90 degrees) that RAPTOR-M3G results are higher than 2D/1D synthesis results seem to have almost regular interval. The reason can be that neutron flux to reach to barrel is affected by the nearest core definitely and all of near core areas including bypass water. RAPTOR-M3G performing 3D calculation can be applied to various reactor structures, because the code can simulate the model realistically and reasonably in geometric view points. Understanding the phenomenon that 45 degree shows downward peak, in spite of baffle corner location, remains
Void coefficient of reactivity calculation for AP-600 core
International Nuclear Information System (INIS)
Suparlina, L.; Budiono, T.A.; Mardha, A.; Tukiran
1998-01-01
Void coefficient of reactivity as one of reactor kinetics parameters has been carried out. The calculation was done into two steps which is cell calculation using WIMSD/4 and core calculation using Batan-2DIFF code programs with the condition of beginning of cycle with all fresh fuels elements and all control rods withdrawn. The one dimension transport program in four neutron energy groups is used to calculate the cell generation of various core materials cell has been calculated in 1/4 fuel element with cluster model and square pitch arrange. Moderator density have been reduced until 20% for the void coefficient of reactivity calculation. Macroscopic cross-section as the out put of WIMSD/4 is being used as the input at the diffusion neutron program for core calculation. The void coefficient of reactivity of the AP-600 core can be determined with regular neutron flux and adjoint in four energy groups and X-Y geometry. The results is shown that the K eff calculation value is different 5.2% from the design data
Improvements in EBR-2 core depletion calculations
International Nuclear Information System (INIS)
Finck, P.J.; Hill, R.N.; Sakamoto, S.
1991-01-01
The need for accurate core depletion calculations in Experimental Breeder Reactor No. 2 (EBR-2) is discussed. Because of the unique physics characteristics of EBR-2, it is difficult to obtain accurate and computationally efficient multigroup flux predictions. This paper describes the effect of various conventional and higher order schemes for group constant generation and for flux computations; results indicate that higher-order methods are required, particularly in the outer regions (i.e. the radial blanket). A methodology based on Nodal Equivalence Theory (N.E.T.) is developed which allows retention of the accuracy of a higher order solution with the computational efficiency of a few group nodal diffusion solution. The application of this methodology to three-dimensional EBR-2 flux predictions is demonstrated; this improved methodology allows accurate core depletion calculations at reasonable cost. 13 refs., 4 figs., 3 tabs
International Nuclear Information System (INIS)
Shin, Chang Hwan; Seo, Kyong Won; Chun, Tae Hyun; Kim, Kang Seog
2005-03-01
Code coupling activities have so far focused on coupling the neutronics modules with the CFD module. An interface module for the CFD-ACE/DeCART coupling was established as an alternative to the original STAR-CD/DeCART interface. The interface module for DeCART/CFD-ACE was validated by single-pin model. The optimized CFD mesh was decided through the calculation of multi-pin model. It was important to consider turbulent mixing of subchannels for calculation of fuel temperature. For the parallel calculation, the optimized decompose process was necessary to reduce the calculation costs and setting of the iteration and convergence criterion for each code was important, too
Energy Technology Data Exchange (ETDEWEB)
Shin, Chang Hwan; Seo, Kyong Won; Chun, Tae Hyun; Kim, Kang Seog
2005-03-15
Code coupling activities have so far focused on coupling the neutronics modules with the CFD module. An interface module for the CFD-ACE/DeCART coupling was established as an alternative to the original STAR-CD/DeCART interface. The interface module for DeCART/CFD-ACE was validated by single-pin model. The optimized CFD mesh was decided through the calculation of multi-pin model. It was important to consider turbulent mixing of subchannels for calculation of fuel temperature. For the parallel calculation, the optimized decompose process was necessary to reduce the calculation costs and setting of the iteration and convergence criterion for each code was important, too.
Core burn-up calculation method of JRR-3
International Nuclear Information System (INIS)
Kato, Tomoaki; Yamashita, Kiyonobu
2007-01-01
SRAC code system is utilized for core burn-up calculation of JRR-3. SRAC code system includes calculation modules such as PIJ, PIJBURN, ANISN and CITATION for making effective cross section and calculation modules such as COREBN and HIST for core burn-up calculation. As for calculation method for JRR-3, PIJBURN (Cell burn-up calculation module) is used for making effective cross section of fuel region at each burn-up step. PIJ, ANISN and CITATION are used for making effective cross section of non-fuel region. COREBN and HIST is used for core burn-up calculation and fuel management. This paper presents details of NRR-3 core burn-up calculation. FNCA Participating countries are expected to carry out core burn-up calculation of domestic research reactor by SRAC code system by utilizing the information of this paper. (author)
Development of 3-D FBR heterogeneous core calculation method based on characteristics method
International Nuclear Information System (INIS)
Takeda, Toshikazu; Maruyama, Manabu; Hamada, Yuzuru; Nishi, Hiroshi; Ishibashi, Junichi; Kitano, Akihiro
2002-01-01
A new 3-D transport calculation method taking into account the heterogeneity of fuel assemblies has been developed by combining the characteristics method and the nodal transport method. In the axial direction the nodal transport method is applied, and the characteristics method is applied to take into account the radial heterogeneity of fuel assemblies. The numerical calculations have been performed to verify 2-D radial calculations of FBR assemblies and partial core calculations. Results are compared with the reference Monte-Carlo calculations. A good agreement has been achieved. It is shown that the present method has an advantage in calculating reaction rates in a small region
Analysis of core calculation schemes for advanced water reactors
International Nuclear Information System (INIS)
Nicolas, Anne
1989-01-01
This research thesis addresses the analysis of the core control of sub-moderated water reactors with plutonium fuel and varying spectrum. Firstly, a calculation scheme is defined, based on transport theory for the three existing assembly configurations. It is based on the efficiency analysis of the control cluster and of the flow sheet shape in the assembly. Secondly, studies of the assembly with control cluster and within a theory of diffusion with homogenization or detailed assembly representation are performed by taking the environment into account in order to assess errors. Thirdly, due to the presence of a very efficient absorbent in control clusters, a deeper physical analysis requires the study of the flow gradient existing at the interface between assemblies. A parameter is defined to assess this gradient, and theoretically calculated by using finite elements. Developed software is validated [fr
Some factors affecting radiative heat transport in PWR cores
International Nuclear Information System (INIS)
Hall, A.N.
1989-04-01
This report discusses radiative heat transport in Pressurized Water Reactor cores, using simple models to illustrate basic features of the transport process. Heat transport by conduction and convection is ignored in order to focus attention on the restrictions on radiative heat transport imposed by the geometry of the heat emitting and absorbing structures. The importance of the spacing of the emitting and absorbing structures is emphasised. Steady state temperature distributions are found for models of cores which are uniformly heated by fission product decay. In all of the models, a steady state temperature distribution can only be obtained if the central core temperature is in excess of the melting point of UO 2 . It has recently been reported that the MIMAS computer code, which takes into account radiative heat transport, has been used to model the heat-up of the Three Mile Island-2 reactor core, and the computations indicate that the core could not have reached the melting point of UO 2 at any time or any place. We discuss this result in the light of the calculations presented in this paper. It appears that the predicted stabilisation of the core temperatures at ∼ 2200 0 C may be a consequence of the artificially large spacing between the radial rings employed in the MIMAS code, rather than a result of physical significance. (author)
Feasibility study for core protection calculator development
International Nuclear Information System (INIS)
In, W. K.; Han, J. B.
2003-06-01
This project confirmed the development feasibility of new digital core protection system and established development plan for ITOPS that can replace the CPC system. The development plan and implementation strategy for ITOPS proposed in this project will be useful to successfully develop advanced digital core protection system for the CPC replacement in KSNP plants. YGN units 3 and 4 are expected to replace the CPC system within next ten years and the other KSNP plants are followed. The localization model for advanced digital core protection system, ITOPS, is judged to upgrade the Common Q CPC system in both system configuration and algorithm performance and can reduce the cost for supply and maintenance. Hence, ITOPS is expected to be installed in new Korea nuclear power plants and also useful to export the associated technology in the future
Application of a numerical transport correction in diffusion calculations
International Nuclear Information System (INIS)
Tomatis, Daniele; Dall'Osso, Aldo
2011-01-01
Full core calculations by ordinary transport methods can demand considerable computational time, hardly acceptable in the industrial work frame. However, the trend of next generation nuclear cores goes toward more heterogeneous systems, where transport phenomena of neutrons become very important. On the other hand, using diffusion solvers is more practical allowing faster calculations, but a specific formulation of the diffusion coefficient is requested to reproduce the scalar flux with reliable physical accuracy. In this paper, the Ronen method is used to evaluate numerically the diffusion coefficient in the slab reactor. The new diffusion solution is driven toward the solution of the integral neutron transport equation by non linear iterations. Better estimates of currents are computed and diffusion coefficients are corrected at node interfaces, still assuming Fick's law. This method enables obtaining closer results to the transport solution by a common solver in multigroup diffusion. (author)
Range calculations using multigroup transport methods
International Nuclear Information System (INIS)
Hoffman, T.J.; Robinson, M.T.; Dodds, H.L. Jr.
1979-01-01
Several aspects of radiation damage effects in fusion reactor neutron and ion irradiation environments are amenable to treatment by transport theory methods. In this paper, multigroup transport techniques are developed for the calculation of particle range distributions. These techniques are illustrated by analysis of Au-196 atoms recoiling from (n,2n) reactions with gold. The results of these calculations agree very well with range calculations performed with the atomistic code MARLOWE. Although some detail of the atomistic model is lost in the multigroup transport calculations, the improved computational speed should prove useful in the solution of fusion material design problems
Domain decomposition methods for core calculations using the MINOS solver
International Nuclear Information System (INIS)
Guerin, P.; Baudron, A. M.; Lautard, J. J.
2007-01-01
Cell by cell homogenized transport calculations of an entire nuclear reactor core are currently too expensive for industrial applications, even if a simplified transport (SPn) approximation is used. In order to take advantage of parallel computers, we propose here two domain decomposition methods using the mixed dual finite element solver MINOS. The first one is a modal synthesis method on overlapping sub-domains: several Eigenmodes solutions of a local problem on each sub-domain are taken as basis functions used for the resolution of the global problem on the whole domain. The second one is an iterative method based on non-overlapping domain decomposition with Robin interface conditions. At each iteration, we solve the problem on each sub-domain with the interface conditions given by the solutions on the close sub-domains estimated at the previous iteration. For these two methods, we give numerical results which demonstrate their accuracy and their efficiency for the diffusion model on realistic 2D and 3D cores. (authors)
CONSUL code package application for LMFR core calculations
Energy Technology Data Exchange (ETDEWEB)
Chibinyaev, A.V.; Teplov, P.S.; Frolova, M.V. [RNC ' Kurchatovskiy institute' , Kurchatov sq.1, Moscow (Russian Federation)
2008-07-01
CONSUL code package designed for the calculation of reactor core characteristics has been developed at the beginning of 90's. The calculation of nuclear reactor core characteristics is carried out on the basis of correlated neutron, isotope and temperature distributions. The code package has been generally used for LWR core characteristics calculations. At present CONSUL code package was adapted to calculate liquid metal fast reactors (LMFR). The comparisons with IAEA computational test 'Evaluation of benchmark calculations on a fast power reactor core with near zero sodium void effect' and BN-1800 testing calculations are presented in the paper. The IAEA benchmark core is based on the innovative core concept with sodium plenum above the core BN-800. BN-1800 core is the next development step which is foreseen for the Russian fast reactor concept. The comparison of the operational parameters has shown good agreement and confirms the possibility of CONSUL code package application for LMFR core calculation. (authors)
Neutronic calculations of PARR-1 cores using LEU silicide fuel
International Nuclear Information System (INIS)
Arshad, M.; Bakhtyar, S.; Hayat, T.; Salahuddin, A.
1991-08-01
Detailed neutronic calculations have been carried out for different PARR-1 cores utilizing low enriched uranium (LEU) silicide fuel and operating at an upgraded power of 9 MW. The calculations include the search for critical loadings in open and stall ends of the pool, neutronic analysis of the first full equilibrium core and calculations cores. The burnup study of inventory have also been carried out. Further, the reactivity coefficients of the first full power operation core are evaluated for use in the accident analysis. 14 figs. (author)
SR 97 - Radionuclide transport calculations
Energy Technology Data Exchange (ETDEWEB)
Lindgren, Maria [Kemakta Konsult AB, Stockholm (Sweden); Lindstroem, Fredrik [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)
1999-12-01
An essential component of a safety assessment is to calculate radionuclide release and dose consequences for different scenarios and cases. The SKB tools for such a quantitative assessment are used to calculate the maximum releases and doses for the hypothetical repository sites Aberg, Beberg and Ceberg for the initial canister defect scenario and also for the glacial melting case for Aberg. The reasonable cases, i.e. all parameters take reasonable values, results in maximum biosphere doses of 5x10{sup -8} Sv/yr for Aberg, 3x10{sup -8} Sv/yr for Beberg and 1x10{sup -8} Sv/yr for Ceberg for peat area. These doses lie significantly below 0.15 mSv/yr. (A dose of 0.15 mSv/yr for unit probability corresponds to the risk limit of 10{sup -5} per year for the most exposed individuals recommended in regulations.) The conclusion that the maximum risk would lie well below 10{sup -5} per year is also demonstrated by results from the probabilistic calculations, which directly assess the resulting risk by combining dose and probability estimates. The analyses indicate that the risk is 2x10{sup -5} Sv/yr for Aberg, 8x10{sup -7} Sv/yr for Beberg and 3x10{sup -8} Sv/yr for Ceberg. The analysis shows that the most important parameters in the near field are the number of defective canisters and the instant release fraction. The influence from varying one parameter never changes the doses as much as an order of magnitude. In the far field the most important uncertainties affecting release and retention are associated with permeability and connectivity of the fractures in the rock. These properties affect several parameters. Highly permeable and well connected fractures imply high groundwater fluxes and short groundwater travel times. Sparsely connected or highly variable fracture properties implies low flow wetted surface along migration paths. It should, however, be remembered that the far-field parameters have little importance if the near-field parameters take their reasonable
SR 97 - Radionuclide transport calculations
International Nuclear Information System (INIS)
Lindgren, Maria; Lindstroem, Fredrik
1999-12-01
An essential component of a safety assessment is to calculate radionuclide release and dose consequences for different scenarios and cases. The SKB tools for such a quantitative assessment are used to calculate the maximum releases and doses for the hypothetical repository sites Aberg, Beberg and Ceberg for the initial canister defect scenario and also for the glacial melting case for Aberg. The reasonable cases, i.e. all parameters take reasonable values, results in maximum biosphere doses of 5x10 -8 Sv/yr for Aberg, 3x10 -8 Sv/yr for Beberg and 1x10 -8 Sv/yr for Ceberg for peat area. These doses lie significantly below 0.15 mSv/yr. (A dose of 0.15 mSv/yr for unit probability corresponds to the risk limit of 10 -5 per year for the most exposed individuals recommended in regulations.) The conclusion that the maximum risk would lie well below 10 -5 per year is also demonstrated by results from the probabilistic calculations, which directly assess the resulting risk by combining dose and probability estimates. The analyses indicate that the risk is 2x10 -5 Sv/yr for Aberg, 8x10 -7 Sv/yr for Beberg and 3x10 -8 Sv/yr for Ceberg. The analysis shows that the most important parameters in the near field are the number of defective canisters and the instant release fraction. The influence from varying one parameter never changes the doses as much as an order of magnitude. In the far field the most important uncertainties affecting release and retention are associated with permeability and connectivity of the fractures in the rock. These properties affect several parameters. Highly permeable and well connected fractures imply high groundwater fluxes and short groundwater travel times. Sparsely connected or highly variable fracture properties implies low flow wetted surface along migration paths. It should, however, be remembered that the far-field parameters have little importance if the near-field parameters take their reasonable values. In that case almost all
International Nuclear Information System (INIS)
Lenain, Roland
2015-01-01
This thesis is devoted to the implementation of a domain decomposition method applied to the neutron transport equation. The objective of this work is to access high-fidelity deterministic solutions to properly handle heterogeneities located in nuclear reactor cores, for problems' size ranging from color-sets of assemblies to large reactor cores configurations in 2D and 3D. The innovative algorithm developed during the thesis intends to optimize the use of parallelism and memory. The approach also aims to minimize the influence of the parallel implementation on the performances. These goals match the needs of APOLLO3 project, developed at CEA and supported by EDF and AREVA, which must be a portable code (no optimization on a specific architecture) in order to achieve best estimate modeling with resources ranging from personal computer to compute cluster available for engineers analyses. The proposed algorithm is a Parallel Multigroup-Block Jacobi one. Each sub-domain is considered as a multi-group fixed-source problem with volume-sources (fission) and surface-sources (interface flux between the sub-domains). The multi-group problem is solved in each sub-domain and a single communication of the interface flux is required at each power iteration. The spectral radius of the resolution algorithm is made similar to the one of a classical resolution algorithm with a nonlinear diffusion acceleration method: the well-known Coarse Mesh Finite Difference. In this way an ideal scalability is achievable when the calculation is parallelized. The memory organization, taking advantage of shared memory parallelism, optimizes the resources by avoiding redundant copies of the data shared between the sub-domains. Distributed memory architectures are made available by a hybrid parallel method that combines both paradigms of shared memory parallelism and distributed memory parallelism. For large problems, these architectures provide a greater number of processors and the amount of
Combined core/boundary layer plasma transport simulations in tokamaks
International Nuclear Information System (INIS)
Prinja, A.K.; Schafer, R.F. Jr.; Conn, R.W.; Howe, H.C.
1987-01-01
Significant new numerical results are presented from self-consistent core and boundary or scrape-off layer plasma simulations with 3-D neutral transport calculations. For a symmetric belt limiter it is shown that, for plasma conditions considered here, the pump limiter collection efficiency increases from 11% to 18% of the core efflux as a result of local reionization of blade deflected neutrals. This hitherto unobserved effect causes a significant amplification of upstream ion flux entering the pump limiter. Results from coupling of an earlier developed two-zone edge plasma model ODESSA to the PROCTR core plasma simulation code indicates that intense recycling divertor operation may not be possible because of stagnation of upstream flow velocity. This results in a self-consistent reduction of density gradient in an intermediate region between the central plasma and separatrix, and a concomitant reduction of core-efflux. There is also evidence of increased recycling at the first wall. (orig.)
Static analysis of material testing reactor cores:critical core calculations
International Nuclear Information System (INIS)
Nawaz, A. A.; Khan, R. F. H.; Ahmad, N.
1999-01-01
A methodology has been described to study the effect of number of fuel plates per fuel element on critical cores of Material Testing Reactors (MTR). When the number of fuel plates are varied in a fuel element by keeping the fuel loading per fuel element constant, the fuel density in the fuel plates varies. Due to this variation, the water channel width needs to be recalculated. For a given number of fuel plates, water channel width was determined by optimizing k i nfinity using a transport theory lattice code WIMS-D/4. The dimensions of fuel element and control fuel element were determined using this optimized water channel width. For the calculated dimensions, the critical cores were determined for the given number of fuel plates per fuel element by using three dimensional diffusion theory code CITATION. The optimization of water channel width gives rise to a channel width of 2.1 mm when the number of fuel plates is 23 with 290 g ''2''3''5U fuel loading which is the same as in the case of Pakistan Reactor-1 (PARR-1). Although the decrease in number of fuel element results in an increase in optimal water channel width but the thickness of standard fuel element (SFE) and control fuel element (CFE) decreases and it gives rise to compact critical and equilibrium cores. The criticality studies of PARR-1 are in good agreement with the predictions
Dose Rate Calculations for Rotary Mode Core Sampling Exhauster
Foust, D J
2000-01-01
This document provides the calculated estimated dose rates for three external locations on the Rotary Mode Core Sampling (RMCS) exhauster HEPA filter housing, per the request of Characterization Field Engineering.
Dose Rate Calculations for Rotary Mode Core Sampling Exhauster
International Nuclear Information System (INIS)
FOUST, D.J.
2000-01-01
This document provides the calculated estimated dose rates for three external locations on the Rotary Mode Core Sampling (RMCS) exhauster HEPA filter housing, per the request of Characterization Field Engineering
Reference Monte Carlo calculations of Maria reactor core
International Nuclear Information System (INIS)
Andrzejewski, K.; Kulikowska, T.
2002-01-01
The reference Monte Carlo calculations of MARIA reactor core have been carried to evaluate accuracy of the calculations at each stage of its neutron-physics analysis using deterministic codes. The elementary cell has been calculated with two main goals; evaluation of effects of simplifications introduced in deterministic lattice spectrum calculations by the WIMS code and evaluation of library data in recently developed WIMS libraries. In particular the beryllium data of those libraries needed evaluation. The whole core calculations mainly the first MARIA critical experiment and the first critical core after the 8-year break in operation. Both cores contained only fresh fuel elements but only in the first critical core the beryllium blocks were not poisoned by Li-6 and He-3. Thus the MCNP k-eff results could be compared with the experiment. The MCNP calculations for the cores with beryllium poisoned suffered the deficiency of uncertainty in the poison concentration, but a comparison of power distribution shows that realistic poison levels have been carried out for the operating reactor MARIA configurations. (author)
Environment-based pin-power reconstruction method for homogeneous core calculations
International Nuclear Information System (INIS)
Leroyer, H.; Brosselard, C.; Girardi, E.
2012-01-01
Core calculation schemes are usually based on a classical two-step approach associated with assembly and core calculations. During the first step, infinite lattice assemblies calculations relying on a fundamental mode approach are used to generate cross-sections libraries for PWRs core calculations. This fundamental mode hypothesis may be questioned when dealing with loading patterns involving several types of assemblies (UOX, MOX), burnable poisons, control rods and burn-up gradients. This paper proposes a calculation method able to take into account the heterogeneous environment of the assemblies when using homogeneous core calculations and an appropriate pin-power reconstruction. This methodology is applied to MOX assemblies, computed within an environment of UOX assemblies. The new environment-based pin-power reconstruction is then used on various clusters of 3x3 assemblies showing burn-up gradients and UOX/MOX interfaces, and compared to reference calculations performed with APOLLO-2. The results show that UOX/MOX interfaces are much better calculated with the environment-based calculation scheme when compared to the usual pin-power reconstruction method. The power peak is always better located and calculated with the environment-based pin-power reconstruction method on every cluster configuration studied. This study shows that taking into account the environment in transport calculations can significantly improve the pin-power reconstruction so far as it is consistent with the core loading pattern. (authors)
Aspects of cell calculations in deterministic reactor core analysis
International Nuclear Information System (INIS)
Varvayanni, M.; Savva, P.; Catsaros, N.
2011-01-01
Τhe capability of achieving optimum utilization of the deterministic neutronic codes is very important, since, although elaborate tools, they are still widely used for nuclear reactor core analyses, due to specific advantages that they present compared to Monte Carlo codes. The user of a deterministic neutronic code system has to make some significant physical assumptions if correct results are to be obtained. A decisive first step at which such assumptions are required is the one-dimensional cell calculations, which provide the neutronic properties of the homogenized core cells and collapse the cross sections into user-defined energy groups. One of the most crucial determinations required at the above stage and significantly influencing the subsequent three-dimensional calculations of reactivity, concerns the transverse leakages, associated to each one-dimensional, user-defined core cell. For the appropriate definition of the transverse leakages several parameters concerning the core configuration must be taken into account. Moreover, the suitability of the assumptions made for the transverse cell leakages, depends on earlier user decisions, such as those made for the core partition into homogeneous cells. In the present work, the sensitivity of the calculated core reactivity to the determined leakages of the individual cells constituting the core, is studied. Moreover, appropriate assumptions concerning the transverse leakages in the one-dimensional cell calculations are searched out. The study is performed examining also the influence of the core size and the reflector existence, while the effect of the decisions made for the core partition into homogenous cells is investigated. In addition, the effect of broadened moderator channels formed within the core (e.g. by removing fuel plates to create space for control rod hosting) is also examined. Since the study required a large number of conceptual core configurations, experimental data could not be available for
NPP Krsko core calculations to improve operational safety
International Nuclear Information System (INIS)
Ivekovic, I.; Grgic, D.; Nemec, T.
2007-01-01
Calculation tools and methodology used to perform independent calculations of cumulative influence of different changes related to fuel and core operation of NPP Krsko were described. Some examples of steady state and transient results are used to illustrate potential improvements to understanding and reviewing plant safety. (author)
Molecular transport calculations with Wannier Functions
DEFF Research Database (Denmark)
Thygesen, Kristian Sommer; Jacobsen, Karsten Wedel
2005-01-01
We present a scheme for calculating coherent electron transport in atomic-scale contacts. The method combines a formally exact Green's function formalism with a mean-field description of the electronic structure based on the Kohn-Sham scheme of density functional theory. We use an accurate plane...
Electron stopping powers for transport calculations
International Nuclear Information System (INIS)
Berger, M.J.
1988-01-01
The reliability of radiation transport calculations depends on the accuracy of the input cross sections. Therefore, it is essential to review and update the cross sections from time to time. Even though the main interest of the author's group at NBS is in transport calculations and their applications, the group spends almost as much time on the analysis and preparation of cross sections as on the development of transport codes. Stopping powers, photon attenuation coefficients, bremsstrahlung cross sections, and elastic-scattering cross sections in recent years have claimed attention. This chapter deals with electron stopping powers (with emphasis on collision stopping powers), and reviews the state of the art as reflected by Report 37 of the International Commission on Radiation Units and Measurements
Fast reactor calculational route for Pu burning core design
Energy Technology Data Exchange (ETDEWEB)
Hunter, S. [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center
1998-01-01
This document provides a description of a calculational route, used in the Reactor Physics Research Section for sensitivity studies and initial design optimization calculations for fast reactor cores. The main purpose in producing this document was to provide a description of and user guides to the calculational methods, in English, as an aid to any future user of the calculational route who is (like the author) handicapped by a lack of literacy in Japanese. The document also provides for all users a compilation of information on the various parts of the calculational route, all in a single reference. In using the calculational route (to model Pu burning reactors) the author identified a number of areas where an improvement in the modelling of the standard calculational route was warranted. The document includes comments on and explanations of the modelling assumptions in the various calculations. Practical information on the use of the calculational route and the computer systems is also given. (J.P.N.)
Toward whole-core neutron transport without spatial homogenization
International Nuclear Information System (INIS)
Lewis, E. E.
2009-01-01
Full text of publication follows: A long-term goal of computational reactor physics is the deterministic analysis of power reactor core neutronics without incurring significant discretization errors in the energy, spatial or angular variables. In principle, given large enough parallel configurations with unlimited CPU time and memory, this goal could be achieved using existing three-dimensional neutron transport codes. In practice, however, solving the Boltzmann equation for neutrons over the six-dimensional phase space is made intractable by the nature of neutron cross-sections and the complexity and size of power reactor cores. Tens of thousands of energy groups would be required for faithful cross section representation. Likewise, the numerous material interfaces present in power reactor lattices require exceedingly fine spatial mesh structures; these ubiquitous interfaces preclude effective implementation of adaptive grid, mesh-less methods and related techniques that have been applied so successfully in other areas of engineering science. These challenges notwithstanding, substantial progress continues in the pursuit for more robust deterministic methods for whole-core neutronics analysis. This paper examines the progress over roughly the last decade, emphasizing the space-angle variables and the quest to eliminate errors attributable to spatial homogenization. As prolog we briefly assess 1990's methods used in light water reactor analysis and review the lessons learned from the C5G7 benchmark exercises which were originated in 1999 to appraise the ability of transport codes to perform core calculations without homogenization. We proceed by examining progress over the last decade much of which falls into three areas. These may be broadly characterized as reduced homogenization, dynamic homogenization and planar-axial synthesis. In the first, homogenization in three-dimensional calculations is reduced from the fuel assembly to the pin-cell level. In the second
MINOS: A simplified Pn solver for core calculation
International Nuclear Information System (INIS)
Baudron, A.M.; Lautard, J.J.
2007-01-01
This paper describes a new generation of the neutronic core solver MINOS resulting from developments done in the DESCARTES project. For performance reasons, the numerical method of the existing MINOS solver in the SAPHYR system has been reused in the new system. It is based on the mixed-dual finite element approximation of the simplified transport equation. We have extended the previous method to the treatment of unstructured geometries composed by quadrilaterals, allowing us to treat geometries where fuel pins are exactly represented. For Cartesian geometries, the solver takes into account assembly discontinuity coefficients in the simplified P n context. The solver has been rewritten in C + + programming language using an object-oriented design. Its general architecture was reconsidered in order to improve its capability of evolution and its maintainability. Moreover, the performance of the previous version has been improved mainly regarding the matrix construction time; this result improves significantly the performance of the solver in the context of industrial application requiring thermal-hydraulic feedback and depletion calculations. (authors)
Analysis on First Criticality Benchmark Calculation of HTR-10 Core
International Nuclear Information System (INIS)
Zuhair; Ferhat-Aziz; As-Natio-Lasman
2000-01-01
HTR-10 is a graphite-moderated and helium-gas cooled pebble bed reactor with an average helium outlet temperature of 700 o C and thermal power of 10 MW. The first criticality benchmark problem of HTR-10 in this paper includes the loading number calculation of nuclear fuel in the form of UO 2 ball with U-235 enrichment of 17% for the first criticality under the helium atmosphere and core temperature of 20 o C, and the effective multiplication factor (k eff ) calculation of full core (5 m 3 ) under the helium atmosphere and various core temperatures. The group constants of fuel mixture, moderator and reflector materials were generated with WlMS/D4 using spherical model and 4 neutron energy group. The critical core height of 150.1 cm obtained from CITATION in 2-D R-Z reactor geometry exists in the calculation range of INET China, JAERI Japan and BATAN Indonesia, and OKBM Russia. The k eff calculation result of full core at various temperatures shows that the HTR-10 has negative temperature coefficient of reactivity. (author)
Radiation transport calculation methods in BNCT
International Nuclear Information System (INIS)
Koivunoro, H.; Seppaelae, T.; Savolainen, S.
2000-01-01
Boron neutron capture therapy (BNCT) is used as a radiotherapy for malignant brain tumours. Radiation dose distribution is necessary to determine individually for each patient. Radiation transport and dose distribution calculations in BNCT are more complicated than in conventional radiotherapy. Total dose in BNCT consists of several different dose components. The most important dose component for tumour control is therapeutic boron dose D B . The other dose components are gamma dose D g , incident fast neutron dose D f ast n and nitrogen dose D N . Total dose is a weighted sum of the dose components. Calculation of neutron and photon flux is a complex problem and requires numerical methods, i.e. deterministic or stochastic simulation methods. Deterministic methods are based on the numerical solution of Boltzmann transport equation. Such are discrete ordinates (SN) and spherical harmonics (PN) methods. The stochastic simulation method for calculation of radiation transport is known as Monte Carlo method. In the deterministic methods the spatial geometry is partitioned into mesh elements. In SN method angular integrals of the transport equation are replaced with weighted sums over a set of discrete angular directions. Flux is calculated iteratively for all these mesh elements and for each discrete direction. Discrete ordinates transport codes used in the dosimetric calculations are ANISN, DORT and TORT. In PN method a Legendre expansion for angular flux is used instead of discrete direction fluxes, land the angular dependency comes a property of vector function space itself. Thus, only spatial iterations are required for resulting equations. A novel radiation transport code based on PN method and tree-multigrid technique (TMG) has been developed at VTT (Technical Research Centre of Finland). Monte Carlo method solves the radiation transport by randomly selecting neutrons and photons from a prespecified boundary source and following the histories of selected particles
Thermal Margin Calculation of the CAREM-25 Core
International Nuclear Information System (INIS)
Mazufri, C.M
2000-01-01
During the operation in steady state and anticipated operational transient of a nuclear reactor it is necessary to avoid the damage in the fuel elements induced by thermal or hydraulic effects.To satisfy that design bases safety limits are established and calculation methodologies are defined to verify them.In the particular case of the reactor CAREM-25 reactor where the core is cooled by natural circulation, it is not adequate to use directly the same calculation methodologies from typical PWR and BWR.The low cooling flow rate and not having channels in the fuel elements (open-channel fuels) produce that most of the models and computer programs typically used must be carefully validated.As result of that process, an adequate calculation procedure for this reactor type was developed.In the present work, the thermal-hydraulic design criteria of the core and the design bases, the uncertainties factors, and the thermal margin results of the core are described.Despite that the methodology of DNBR calculation is under a validation process and considering the available calculation tools, it is possible to assure that the core fulfills the safety regulations in steady state conditions
Whole core calculations of power reactors by Monte Carlo method
International Nuclear Information System (INIS)
Nakagawa, Masayuki; Mori, Takamasa
1993-01-01
Whole core calculations have been performed for a commercial size PWR and a prototype LMFBR by using vectorized Monte Carlo codes. Geometries of cores were precisely represented in a pin by pin model. The calculated parameters were k eff , control rod worth, power distribution and so on. Both multigroup and continuous energy models were used and the accuracy of multigroup approximation was evaluated through the comparison of both results. One million neutron histories were tracked to considerably reduce variances. It was demonstrated that the high speed vectorized codes could calculate k eff , assembly power and some reactivity worths within practical computation time. For pin power and small reactivity worth calculations, the order of 10 million histories would be necessary. Required number of histories to achieve target design accuracy were estimated for those neutronic parameters. (orig.)
Core Calculation of 1 MWatt PUSPATI TRIGA Reactor (RTP) using Monte Carlo MVP Code System
Karim, Julia Abdul
2008-05-01
The Monte Carlo MVP code system was adopted for the Reaktor TRIGA PUSAPTI (RTP) core calculation. The code was developed by a group of researcher of Japan Atomic Energy Agency (JAEA) first in 1994. MVP is a general multi-purpose Monte Carlo code for neutron and photon transport calculation and able to estimate an accurate simulation problems. The code calculation is based on the continuous energy method. This code is capable of adopting an accurate physics model, geometry description and variance reduction technique faster than conventional method as compared to the conventional scalar method. This code could achieve higher computational speed by several factors on the vector super-computer. In this calculation, RTP core was modeled as close as possible to the real core and results of keff flux, fission densities and others were obtained.
Core Calculation of 1 MWatt PUSPATI TRIGA Reactor (RTP) using Monte Carlo MVP Code System
International Nuclear Information System (INIS)
Karim, Julia Abdul
2008-01-01
The Monte Carlo MVP code system was adopted for the Reaktor TRIGA PUSAPTI (RTP) core calculation. The code was developed by a group of researcher of Japan Atomic Energy Agency (JAEA) first in 1994. MVP is a general multi-purpose Monte Carlo code for neutron and photon transport calculation and able to estimate an accurate simulation problems. The code calculation is based on the continuous energy method. This code is capable of adopting an accurate physics model, geometry description and variance reduction technique faster than conventional method as compared to the conventional scalar method. This code could achieve higher computational speed by several factors on the vector super-computer. In this calculation, RTP core was modeled as close as possible to the real core and results of keff flux, fission densities and others were obtained
Proposal of a benchmark for core burnup calculations for a VVER-1000 reactor core
International Nuclear Information System (INIS)
Loetsch, T.; Khalimonchuk, V.; Kuchin, A.
2009-01-01
In the framework of a project supported by the German BMU the code DYN3D should be further validated and verified. During the work a lack of a benchmark on core burnup calculations for VVER-1000 reactors was noticed. Such a benchmark is useful for validating and verifying the whole package of codes and data libraries for reactor physics calculations including fuel assembly modelling, fuel assembly data preparation, few group data parametrisation and reactor core modelling. The benchmark proposed specifies the core loading patterns of burnup cycles for a VVER-1000 reactor core as well as a set of operational data such as load follow, boron concentration in the coolant, cycle length, measured reactivity coefficients and power density distributions. The reactor core characteristics chosen for comparison and the first results obtained during the work with the reactor physics code DYN3D are presented. This work presents the continuation of efforts of the projects mentioned to estimate the accuracy of calculated characteristics of VVER-1000 reactor cores. In addition, the codes used for reactor physics calculations of safety related reactor core characteristics should be validated and verified for the cases in which they are to be used. This is significant for safety related evaluations and assessments carried out in the framework of licensing and supervision procedures in the field of reactor physics. (authors)
Coupled MCNP - SAS-SFR calculations for sodium fast reactor core at steady-state - 15460
International Nuclear Information System (INIS)
Ponomarev, A.; Travleev, A.; Pfrang, W.; Sanchez, V.
2015-01-01
The prediction of core parameters at steady state is the first step when studying core accident transient behaviour. At this step thermal hydraulics (TH) and core geometry parameters are calculated corresponding to initial operating conditions. In this study we present the coupling of the SAS-SFR code to the Monte-Carlo neutron transport code MCNP at steady state together with application to the European Sodium Fast Reactor (ESFR). The SAS-SFR code employs a multi-channel core representation where each channel represents subassemblies with similar power, thermal-hydraulics and pin mechanics conditions. For every axial node of every channel the individual geometry and material compositions parameters are calculated in accord with power and cooling conditions. This requires supplying the SAS-SFR-code with nodal power values which should be calculated by neutron physics code with given realistic core parameters. In the conventional approach the neutron physics model employs some core averaged TH and geometry data (fuel temperature, coolant density, core axial and radial expansion). In this study we organize a new approach coupling the MCNP neutron physics models and the SAS-SFR models, so that calculations of power can be improved by using distributed core parameters (TH and geometry) taken from SAS-SFR. The MCNP code is capable to describe cores with distributed TH parameters and even to model non-uniform axial expansion of fuel subassemblies. In this way, core TH and geometrical data calculated by SAS-SFR are taken into account accurately in the neutronics model. The coupling implementation is done by data exchange between two codes with help of processing routines managed by driver routine. Currently it is model-specific and realized for the ESFR 'Reference Oxide' core. The Beginning-Of-Life core state is considered with 10 channel representation for fuel subassemblies. For this model several sets of coupled calculations are performed, in which different
A meshless approach to radionuclide transport calculations
International Nuclear Information System (INIS)
Perko, J.; Sarler, B.
2005-01-01
Over the past thirty years numerical modelling has emerged as an interdisciplinary scientific discipline which has a significant impact in engineering and design. In the field of numerical modelling of transport phenomena in porous media, many commercial codes exist, based on different numerical methods. Some of them are widely used for performance assessment and safety analysis of radioactive waste repositories and groundwater modelling. Although they proved to be an accurate and reliable tool, they have certain limitations and drawbacks. Realistic problems often involve complex geometry which is difficult and time consuming to discretize. In recent years, meshless methods have attracted much attention due to their flexibility in solving engineering and scientific problems. In meshless methods the cumbersome polygonization of calculation domain is not necessary. By this the discretization time is reduced. In addition, the simulation is not as discretization density dependent as in traditional methods because of the lack of polygon interfaces. In this work fully meshless Diffuse Approximate Method (DAM) is used for calculation of radionuclide transport. Two cases are considered; First 1D comparison of 226 Ra transport and decay solved by the commercial Finite Volume Method (FVM) and Finite Element Method (FEM) based packages and DAM. This case shows the level of discretization density dependence. And second realistic 2D case of near-field modelling of radionuclide transport from the radioactive waste repository. Comparison is made again between FVM based code and DAM simulation for two radionuclides: Long-lived 14 C and short-lived 3 H. Comparisons indicate great capability of meshless methods to simulate complex transport problems and show that they should be seriously considered in future commercial simulation tools. (author)
Reconstruction calculation of pin power for ship reactor core
International Nuclear Information System (INIS)
Li Haofeng; Shang Xueli; Chen Wenzhen; Wang Qiao
2010-01-01
Aiming at the limitation of the software that pin power distribution for ship reactor core was unavailable, the calculation model and method of the axial and radial pin power distribution were proposed. Reconstruction calculations of pin power along axis and radius was carried out by bicubic and bilinear interpolation and cubic spline interpolation, respectively. The results were compared with those obtained by professional reactor physical soft with fine mesh difference. It is shown that our reconstruction calculation of pin power is simple and reliable as well as accurate, which provides an important theoretic base for the safety analysis and operating administration of the ship nuclear reactor. (authors)
Calculation of transportation energy for biomass collection
Energy Technology Data Exchange (ETDEWEB)
Kanai, G.; Takekura, K.; Kato, H.; Kobayashi, Y.; Yakushido, K. [National Agricultural Research Center, Tsukuba, Ibaraki (Japan)
2010-07-01
This paper reported on a study at a rice straw facility in Japan that produces bioethanol. Simulation modeling and calculations methods were used to examine the characteristics of field-to-facility transportation. Fuel consumption was found to be influenced by the conversion rate from straw to ethanol, the quantity of straw collected, and the ratio of the field area to that around the facility. Standard conditions were assumed based on reported data and actual observations for 15 ML/yr ethanol production, 0.3 kL output of ethanol from 1 t dry straw, 53.6 day/yr working days, 2.7 t truck load capacity, and 0.128 as the ratio of field to the area around the facility. According to calculations, a quantity of 50 kt dry straw requires 2.78 L of fuel to transport 1 t of dry straw, 109.5 trucks, and a 19.1 km collection area radius. The fuel consumption for transportation was found to be proportional to the quantity of straw to the 0.5 power, but inversely proportional to the ratio of field to the 0.5 power. The rate of increase in the number of trucks needed to collect straw increases with the decrease in the ratio of the field to area surface around the facility.
Thermodynamic cycle calculations for a pumped gaseous core fission reactor
International Nuclear Information System (INIS)
Kuijper, J.C.; Van Dam, H.
1991-01-01
Finite and 'infinitesimal' thermodynamic cycle calculations have been performed for a 'solid piston' model of a pumped Gaseous Core Fission Reactor with dissociating reactor gas, consisting of Uranium, Carbon and Fluorine ('UCF'). In the finite cycle calculations the influence has been investigated of several parameters on the thermodynamics of the system, especially on the attainable direct (nuclear to electrical) energy conversion efficiency. In order to facilitate the investigation of the influence of dissociation, a model gas, 'Modelium', was developed, which approximates, in a simplified, analytical way, the dissociation behaviour of the 'real' reactor gas. Comparison of the finite cycle calculation results with those of a so-called infinitesimal Otto cycle calculation leads to the conclusion that the conversion efficiency of a finite cycle can be predicted, without actually performing the finite cycle calculation, with reasonable accuracy, from the so-called 'infinitesimal efficiency factor', which is determined only by the thermodynamic properties of the reactor gas used. (author)
Effect of Core Configurations on Burn-Up Calculations For MTR Type Reactors
International Nuclear Information System (INIS)
Hussein, H.M.; Sakr, A.M.; Amin, E.H.
2011-01-01
Three-dimensional burn-up calculations of MTR-type research reactor were performed using different patterns of control rods , to examine their effect on power density and neutron flux distributions throughout the entire core and on the local burn-up distribution. Calculations were performed using the computer codes' package M TR P C system , using the cell calculation transport code WIMS-D4 and the core calculation diffusion code CITVAP. A depletion study was done and the effects on the reactor fuel were studied, then an empirical formula was generated for every fuel element type, to correlate irradiation to burn-up percentage. Keywords: Neutronic Calculations, Burn-Up, MTR-Type Research Reactors, MTR P C Package, Empirical Formula For Fuel Burn-Up.
Energy Technology Data Exchange (ETDEWEB)
Jammes, Ch
1997-11-28
The aim of this work is to create, validate theoretically and experimentally a calculation route for a thermal irradiation reactor. This is the research reactor of the University of Strasbourg, which presents all of characteristics of this reactor-type: compact and heterogeneous core, slab-type fuel with a high 235-uranium enrichment. This calculation route is based on the first use of the following two modern transport methods: the TDT method and the Monte Carlo method. The former, programmed within the APOLLO2 code, is a two dimensional collision probabilities method. The later, used by the TRIPOLI4 code, is a stochastic method. Both can be applied to complex geometries. After a few theoretical reminders about transport codes, a set of integral experiments is described which have been realized within the research reactor of the University of Strasbourg. One of them has been performed for this study. At the beginning of the theoretical part, significant errors are apparent due to the use of calculation route based on homogenization, condensation and the diffusion approximation. An extensive comparison between the discrete ordinates method and the TDT method carries out that the use of the TDT method is relevant for the studied reactor. The treatment of axial leakage with this method is the only disadvantage. Therefore, the use of the code TRIPOLI4 is recommended for a more accurate study of leakage within a reflector. By means of the experimental data, the ability of our calculation route is confirmed for essential neutronics questions such as the critical mass determination, the power distribution and the fuel management. (author)
Calculations in support of the MNR core conversion
International Nuclear Information System (INIS)
Day, S.E.; Butler, M.P.; Garland, Wm. J.
2002-01-01
Calculations and results in support of the HEU to LEU fuel conversion for the McMaster Nuclear Reactor are described. Static reactor physics studies were used to determine local and global power distributions; facilitating the definition of a Reference Core configuration for mixed HEU-LEU and complete LEU loadings. Fission product inventory calculations were used to compare the two fuel enrichments from a radiological hazard point of view. Thermalhydraulic models were created and analyzed to determine steady-state temperature distributions and safety margins, and used as a scoping tool the in development of a full core thermalhydraulic model. The behaviour of the two enrichment fuels was investigated in the context of a protected startup transient. The simulation results support the conclusion that the LEU fuel behaves in much the same way as the HEU fuel, which it is replacing. The conversion results in no new safety issues or significant changes in safety parameters. (author)
Memory bottlenecks and memory contention in multi-core Monte Carlo transport codes
International Nuclear Information System (INIS)
Tramm, J.R.; Siegel, A.R.
2013-01-01
The simulation of whole nuclear cores through the use of Monte Carlo codes requires an impracticably long time-to-solution. We have extracted a kernel that executes only the most computationally expensive steps of the Monte Carlo particle transport algorithm - the calculation of macroscopic cross sections - in an effort to expose bottlenecks within multi-core, shared memory architectures. (authors)
Validation experience with the core calculation program karate
International Nuclear Information System (INIS)
Hegyi, Gy.; Hordosy, G.; Kereszturi, A.; Makai, M.; Maraczy, Cs.
1995-01-01
A relatively fast and easy-to-handle modular code system named KARATE-440 has been elaborated for steady-state operational calculations of VVER-440 type reactors. It is built up from cell, assembly and global calculations. In the frame of the program neutron physical and thermohydraulic process of the core at normal startup, steady and slow transient can be simulated. The verification and validation of the global code have been prepared recently. The test cases include mathematical benchmark and measurements on operating VVER-440 units. Summary of the results, such as startup parameters, boron letdown curves, radial and axial power distributions of some cycles of Paks NPP is presented. (author)
Uncertainty analysis of neutron transport calculation
International Nuclear Information System (INIS)
Oka, Y.; Furuta, K.; Kondo, S.
1987-01-01
A cross section sensitivity-uncertainty analysis code, SUSD was developed. The code calculates sensitivity coefficients for one and two-dimensional transport problems based on the first order perturbation theory. Variance and standard deviation of detector responses or design parameters can be obtained using cross section covariance matrix. The code is able to perform sensitivity-uncertainty analysis for secondary neutron angular distribution(SAD) and secondary neutron energy distribution(SED). Covariances of 6 Li and 7 Li neutron cross sections in JENDL-3PR1 were evaluated including SAD and SED. Covariances of Fe and Be were also evaluated. The uncertainty of tritium breeding ratio, fast neutron leakage flux and neutron heating was analysed on four types of blanket concepts for a commercial tokamak fusion reactor. The uncertainty of tritium breeding ratio was less than 6 percent. Contribution from SAD/SED uncertainties are significant for some parameters. Formulas to estimate the errors of numerical solution of the transport equation were derived based on the perturbation theory. This method enables us to deterministically estimate the numerical errors due to iterative solution, spacial discretization and Legendre polynomial expansion of transfer cross-sections. The calculational errors of the tritium breeding ratio and the fast neutron leakage flux of the fusion blankets were analysed. (author)
Influence of spectral history on PWR full core calculation results
International Nuclear Information System (INIS)
Bilodid, Y.; Mittag, S.
2011-01-01
The few-group cross section libraries, used by reactor dynamics codes, are affected by the spectral history effect-a dependence of fuel cross sections not only on burnup, but also on local spectral conditions during burnup. A cross section correction method based on Pu-239 concentration was implemented in the reactor dynamic code DYN3D. This paper describes the influence of a cross section correction on full-core calculation results. Steady-state and burnup characteristics of a PWR equilibrium cycle, calculated by DYN3D with and without cross section corrections, are compared. A study has shown a significant influence of spectral history on axial power and burnup distributions as well as on calculated cycle length. An impact of the correction on transient calculations is studied for a control rod ejection example. (Authors)
Transportation channels calculation method in MATLAB
International Nuclear Information System (INIS)
Averyanov, G.P.; Budkin, V.A.; Dmitrieva, V.V.; Osadchuk, I.O.; Bashmakov, Yu.A.
2014-01-01
Output devices and charged particles transport channels are necessary components of any modern particle accelerator. They differ both in sizes and in terms of focusing elements depending on particle accelerator type and its destination. A package of transport line designing codes for magnet optical channels in MATLAB environment is presented in this report. Charged particles dynamics in a focusing channel can be studied easily by means of the matrix technique. MATLAB usage is convenient because its information objects are matrixes. MATLAB allows the use the modular principle to build the software package. Program blocks are small in size and easy to use. They can be executed separately or commonly. A set of codes has a user-friendly interface. Transport channel construction consists of focusing lenses (doublets and triplets). The main of the magneto-optical channel parameters are total length and lens position and parameters of the output beam in the phase space (channel acceptance, beam emittance - beam transverse dimensions, particles divergence and image stigmaticity). Choice of the channel operation parameters is based on the conditions for satisfying mutually competing demands. And therefore the channel parameters calculation is carried out by using the search engine optimization techniques.
Framework Application for Core Edge Transport Simulation (FACETS)
Energy Technology Data Exchange (ETDEWEB)
Krasheninnikov, Sergei; Pigarov, Alexander
2011-10-15
The FACETS (Framework Application for Core-Edge Transport Simulations) project of Scientific Discovery through Advanced Computing (SciDAC) Program was aimed at providing a high-fidelity whole-tokamak modeling for the U.S. magnetic fusion energy program and ITER through coupling separate components for each of the core region, edge region, and wall, with realistic plasma particles and power sources and turbulent transport simulation. The project also aimed at developing advanced numerical algorithms, efficient implicit coupling methods, and software tools utilizing the leadership class computing facilities under Advanced Scientific Computing Research (ASCR). The FACETS project was conducted by a multi-discipline, multi-institutional teams, the Lead PI was J.R. Cary (Tech-X Corp.). In the FACETS project, the Applied Plasma Theory Group at the MAE Department of UCSD developed the Wall and Plasma-Surface Interaction (WALLPSI) module, performed its validation against experimental data, and integrated it into the developed framework. WALLPSI is a one-dimensional, coarse grained, reaction/advection/diffusion code applied to each material boundary cell in the common modeling domain for a tokamak. It incorporates an advanced model for plasma particle transport and retention in the solid matter of plasma facing components, simulation of plasma heat power load handling, calculation of erosion/deposition, and simulation of synergistic effects in strong plasma-wall coupling.
Transport-diffusion comparisons for small core LMFBR disruptive accidents
International Nuclear Information System (INIS)
Tomlinson, E.T.
1977-11-01
A number of numerical experiments were performed to assess the validity of diffusion theory for calculating the reactivity state of various small core LMFBR disrupted geometries. The disrupted configurations correspond, in general, to various configurations predicted by SAS3A for transient undercooling (TUC) and transient overpower (TOP) accidents for homogeneous cores and to the ZPPR-7 configurations for heterogeneous core. In all TUC cases diffusion theory was shown to be inadequate for the calculation of reactivity changes during core disassembly
Hydrocarbon formation core protection and and transportation apparatus
2013-01-01
An apparatus for transporting core samples includes an outer tube having an open end and a cover removably mounted to the open end; a core tube slidable into and out ofthe outer tube when the cover is removed from the outer tube; and a stabilizing structure between the core tube and the outer tube,
Calculations with ANSYS/FLOTRAN to a core catcher benchmark
International Nuclear Information System (INIS)
Willschuetz, H.G.
1999-01-01
There are numerous experiments for the exploration of the corium spreading behaviour, but comparable data have not been available up to now in the field of the long-term behaviour of a corium expanded in a core catcher. For the calculations a pure liquid oxidic melt with a homogeneous internal heat source was assumed. The melt was distributed uniformly over the spreading area of the EPR core catcher. All codes applied the well known k-ε-turbulence-model to simulate the turbulent flow regime of this melt configuration. While the FVM-code calculations were performed with three dimensional models using a simple symmetry, the problem was modelled two-dimensionally with ANSYS due to limited CPU performance. In addition, the 2D results of ANSYS should allow a comparison for the planned second stage of the calculations. In this second stage, the behaviour of a segregated metal oxide melt should be examined. However, first estimates and pre-calculations showed that a 3D simulation of the problem is not possible with any of the codes due to lacking computer performance. (orig.)
Improving the calculated core stability by the core nuclear design optimization
International Nuclear Information System (INIS)
Partanen, P.
1995-01-01
Three different equilibrium core loadings for TVO II reactor have been generated in order to improve the core stability properties at uprated power level. The reactor thermal power is assumed to be uprated from 2160 MW th to 2500 MW th , which moves the operating point after a rapid pump rundown where the core stability has been calculated from 1340 MW th and 3200 kg/s to 1675 MW th and 4000 kg/s. The core has been refuelled with ABB Atom Svea-100 -fuel, which has 3,64% w/o U-235 average enrichment in the highly enriched zone. PHOENIX lattice code has been used to provide the homogenized nuclear constants. POLCA4 static core simulator has been used for core loadings and cycle simulations and RAMONA-3B program for simulating the dynamic response to the disturbance for which the stability behaviour has been evaluated. The core decay ratio has been successfully reduced from 0,83 to 0,55 mainly by reducing the power peaking factors. (orig.) (7 figs., 1 tab.)
Cronos 2: a neutronic simulation software for reactor core calculations
International Nuclear Information System (INIS)
Lautard, J.J.; Magnaud, C.; Moreau, F.; Baudron, A.M.
1999-01-01
The CRONOS2 software is that part of the SAPHYR code system dedicated to neutronic core calculations. CRONOS2 is a powerful tool for reactor design, fuel management and safety studies. Its modular structure and great flexibility make CRONOS2 an unique simulation tool for research and development for a wide variety of reactor systems. CRONOS2 is a versatile tool that covers a large range of applications from very fast calculations used in training simulators to time and memory consuming reference calculations needed to understand complex physical phenomena. CRONOS2 has a procedure library named CPROC that allows the user to create its own application environment fitted to a specific industrial use. (authors)
Monte Carlo benchmark calculations for 400MWTH PBMR core
International Nuclear Information System (INIS)
Kim, H. C.; Kim, J. K.; Kim, S. Y.; Noh, J. M.
2007-01-01
A large interest in high-temperature gas-cooled reactors (HTGR) has been initiated in connection with hydrogen production in recent years. In this study, as a part of work for establishing Monte Carlo computation system for HTGR core analysis, some benchmark calculations for pebble-type HTGR were carried out using MCNP5 code. The core of the 400MW t h Pebble-bed Modular Reactor (PBMR) was selected as a benchmark model. Recently, the IAEA CRP5 neutronics and thermal-hydraulics benchmark problem was proposed for the testing of existing methods for HTGRs to analyze the neutronics and thermal-hydraulic behavior for the design and safety evaluations of the PBMR. This study deals with the neutronic benchmark problems, for fresh fuel and cold conditions (Case F-1), and first core loading with given number densities (Case F-2), proposed for PBMR. After the detailed MCNP modeling of the whole facility, benchmark calculations were performed. Spherical fuel region of a fuel pebble is divided into cubic lattice element in order to model a fuel pebble which contains, on average, 15000 CFPs (Coated Fuel Particles). Each element contains one CFP at its center. In this study, the side length of each cubic lattice element to have the same amount of fuel was calculated to be 0.1635 cm. The remaining volume of each lattice element was filled with graphite. All of different 5 concentric shells of CFP were modeled. The PBMR annular core consists of approximately 452000 pebbles in the benchmark problems. In Case F-1 where the core was filled with only fresh fuel pebble, a BCC(body-centered-cubic) lattice model was employed in order to achieve the random packing core with the packing fraction of 0.61. The BCC lattice was also employed with the size of the moderator pebble increased in a manner that reproduces the specified F/M ratio of 1:2 while preserving the packing fraction of 0.61 in Case F-2. The calculations were pursued with ENDF/B-VI cross-section library and used sab2002 S(α,
New nonlinear methods for linear transport calculations
International Nuclear Information System (INIS)
Adams, M.L.
1993-01-01
We present a new family of methods for the numerical solution of the linear transport equation. With these methods an iteration consists of an 'S N sweep' followed by an 'S 2 -like' calculation. We show, by analysis as well as numerical results, that iterative convergence is always rapid. We show that this rapid convergence does not depend on a consistent discretization of the S 2 -like equations - they can be discretized independently from the S N equations. We show further that independent discretizations can offer significant advantages over consistent ones. In particular, we find that in a wide range of problems, an accurate discretization of the S 2 -like equation can be combined with a crude discretization of the S N equations to produce an accurate S N answer. We demonstrate this by analysis as well as numerical results. (orig.)
About the application of MCNP4 code in nuclear reactor core design calculations
International Nuclear Information System (INIS)
Svarny, J.
2000-01-01
This paper provides short review about application of MCNP code for reactor physics calculations performed in SKODA JS. Problems of criticality safety analysis of spent fuel systems for storage and transport of spent fuel are discussed and relevant applications are presented. Application of standard Monte Carlo code for accelerator driven system for LWR waste destruction is shown and conclusions are reviewed. Specific heterogeneous effects in neutron balance of WWER nuclear cores are solved for adjusting standard design codes. (Authors)
PULSTRI-1 computer program for mixed core pulse calculation
International Nuclear Information System (INIS)
Ravnik, M.; Mele, I.; Dimic, V.
1990-01-01
PUISTRI-1 is a computer code designed for calculations of the pulse parameters of TRIGA Mark II reactor with mixed core. The code is provided with data for four types of fuel elements: standard 8.5 and 12 w/o, LEU and FLIP. The pulse parameters, such as maximum power, prompt pulse energy and average fuel temperatures are calculated in adiabatic point kinetics, approximation, modified by taking into account temperature dependence of fuel temperature reactivity coefficient and thermal capacity factor averaged over all elements in the core. Maximal fuel temperature at power peaking location is calculated from total released energy using total power peaking factor and heat capacity of the element at the location of the power peaking. Results of the code were compared to data found in references (mainly General Atomics safety analysis reports) showing good agreement for all main pulse parameters. The most important parameters, average and maximal fuel temperature, are found to be systematically slightly overpredicted (20 C and 50 C, respectively). Other parameters (energy, peak power, width) agree within ± 10 % to the reference values. The code is written in FORTRAN for IBM PC computer. The input is user friendly. running time of IBM PC AT is a few seconds. It is designed for practical applications in pulse experiments as an analytical tool for predicting pulse parameters. (orig.)
Calculations of core-excited states in Li
International Nuclear Information System (INIS)
Verbockhaven, G.; Hansen, J.E.
1999-01-01
We report on progress in the calculation of three-electron states making use of B-spline basis sets. In particular we discuss the advantages and disadvantages of using a Hartree-Fock basis (expanded in B-splines) compared to the use of hydrogenic basis states. Preliminary results are presented for the 2 S terms in Li below the 1s2s 3 S limit at 64.4 eV. The 2 S terms have been studied less extensively than other core-excited states in Li. In this particular case the choice of basis has a large influence on the quality of the results. (orig.)
Macroscopic multigroup constants for accelerator driven system core calculation
International Nuclear Information System (INIS)
Heimlich, Adino; Santos, Rubens Souza dos
2011-01-01
The high-level wastes stored in facilities above ground or shallow repositories, in close connection with its nuclear power plant, can take almost 106 years before the radiotoxicity became of the order of the background. While the disposal issue is not urgent from a technical viewpoint, it is recognized that extended storage in the facilities is not acceptable since these ones cannot provide sufficient isolation in the long term and neither is it ethical to leave the waste problem to future generations. A technique to diminish this time is to transmute these long-lived elements into short-lived elements. The approach is to use an Accelerator Driven System (ADS), a sub-critical arrangement which uses a Spallation Neutron Source (SNS), after separation the minor actinides and the long-lived fission products (LLFP), to convert them to short-lived isotopes. As an advanced reactor fuel, still today, there is a few data around these type of core systems. In this paper we generate macroscopic multigroup constants for use in calculations of a typical ADS fuel, take into consideration, the ENDF/BVI data file. Four energy groups are chosen to collapse the data from ENDF/B-VI data file by PREPRO code. A typical MOX fuel cell is used to validate the methodology. The results are used to calculate one typical subcritical ADS core. (author)
Recent Developments in No-Core Shell-Model Calculations
International Nuclear Information System (INIS)
Navratil, P.; Quaglioni, S.; Stetcu, I.; Barrett, B.R.
2009-01-01
We present an overview of recent results and developments of the no-core shell model (NCSM), an ab initio approach to the nuclear many-body problem for light nuclei. In this aproach, we start from realistic two-nucleon or two- plus three-nucleon interactions. Many-body calculations are performed using a finite harmonic-oscillator (HO) basis. To facilitate convergence for realistic inter-nucleon interactions that generate strong short-range correlations, we derive effective interactions by unitary transformations that are tailored to the HO basis truncation. For soft realistic interactions this might not be necessary. If that is the case, the NCSM calculations are variational. In either case, the ab initio NCSM preserves translational invariance of the nuclear many-body problem. In this review, we, in particular, highlight results obtained with the chiral two- plus three-nucleon interactions. We discuss efforts to extend the applicability of the NCSM to heavier nuclei and larger model spaces using importance-truncation schemes and/or use of effective interactions with a core. We outline an extension of the ab initio NCSM to the description of nuclear reactions by the resonating group method technique. A future direction of the approach, the ab initio NCSM with continuum, which will provide a complete description of nuclei as open systems with coupling of bound and continuum states is given in the concluding part of the review.
Recent Developments in No-Core Shell-Model Calculations
Energy Technology Data Exchange (ETDEWEB)
Navratil, P; Quaglioni, S; Stetcu, I; Barrett, B R
2009-03-20
We present an overview of recent results and developments of the no-core shell model (NCSM), an ab initio approach to the nuclear many-body problem for light nuclei. In this aproach, we start from realistic two-nucleon or two- plus three-nucleon interactions. Many-body calculations are performed using a finite harmonic-oscillator (HO) basis. To facilitate convergence for realistic inter-nucleon interactions that generate strong short-range correlations, we derive effective interactions by unitary transformations that are tailored to the HO basis truncation. For soft realistic interactions this might not be necessary. If that is the case, the NCSM calculations are variational. In either case, the ab initio NCSM preserves translational invariance of the nuclear many-body problem. In this review, we, in particular, highlight results obtained with the chiral two- plus three-nucleon interactions. We discuss efforts to extend the applicability of the NCSM to heavier nuclei and larger model spaces using importance-truncation schemes and/or use of effective interactions with a core. We outline an extension of the ab initio NCSM to the description of nuclear reactions by the resonating group method technique. A future direction of the approach, the ab initio NCSM with continuum, which will provide a complete description of nuclei as open systems with coupling of bound and continuum states is given in the concluding part of the review.
Energy Technology Data Exchange (ETDEWEB)
Magat, Ph
1997-04-01
The aim of this study is to compare two calculation methods implemented in the neutronic code CRONOS 2: the diffusion approximation and the SP{sub n} method. The APOLLO 2 code is used to build the multiparameter cross section libraries.The comparison is based on the first core of N4 type Chooz reactor. The rod worth and the power map have been calculated. Some recommendations about the SP{sub n} development order of flux are made and the results show that the diffusion calculations over-estimate the black rod efficiency up to 10%. (A.C.) 12 refs.
Coupled Tort-TD/CTF Capability for high-fidelity LWR core calculations - 321
International Nuclear Information System (INIS)
Christienne, M.; Avramova, M.; Perin, Y.; Seubert, A.
2010-01-01
This paper describes the developed coupling scheme between TORT-TD and CTF. TORT-TD is a time-dependent 3D discrete ordinates neutron transport code. TORT-TD is utilized for high-fidelity reactor core neutronics calculations while CTF is providing the thermal-hydraulics feedback information. CTF is an improved version of the advanced thermal-hydraulic sub-channel code COBRA-TF, which is widely used for best-estimate evaluations of LWR safety margins. CTF is a transient code based on a separated flow representation of the two-phase flow. The coupled code TORT-TD/CTF allows 3D pin-by-pin analyses of transients in few energy groups and anisotropic scattering by solving the time-dependent transport equation using the unconditionally stable implicit method. Steady-state and transient test cases, based on the OECD/NRC PWR MOX/UO 2 Core Transient Benchmark, have been calculated. The steady state cases are based on a quarter core model while the transient test case models a control rod ejection transient in a small PWR mini-core fuel assembly arrangement. The obtained results with TORT-TD/CTF are verified by a code-to-code comparison with the previously developed NEM/CTF and TORT-TD/ATHLET coupled code systems. The performed comparative analysis indicates the applicability and high-fidelity potential of the TORT-TD/CTF coupling. (authors)
CFD-calculations to a core catcher benchmark
International Nuclear Information System (INIS)
Willschuetz, H.G.
1999-04-01
There are numerous experiments for the exploration of the corium spreading behaviour, but comparable data have not been available up to now in the field of the long term behaviour of a corium expanded in a core catcher. The difficulty consists in the experimental simulation of the decay heat that can be neglected for the short-run course of events like relocation and spreading, which must, however, be considered during investigation of the long time behaviour. Therefore the German GRS, defined together with Battelle Ingenieurtechnik a benchmark problem in order to determine particular problems and differences of CFD codes simulating an expanded corium and from this, requirements for a reasonable measurement of experiments, that will be performed later. First the finite-volume-codes Comet 1.023, CFX 4.2 and CFX-TASCflow were used. To be able to make comparisons to a finite-element-code, now calculations are performed at the Institute of Safety Research at the Forschungszentrum Rossendorf with the code ANSYS/FLOTRAN. For the benchmark calculations of stage 1 a pure and liquid melt with internal heat sources was assumed uniformly distributed over the area of the planned core catcher of a EPR plant. Using the Standard-k-ε-turbulence model and assuming an initial state of a motionless superheated melt several large convection rolls will establish within the melt pool. The temperatures at the surface do not sink to a solidification level due to the enhanced convection heat transfer. The temperature gradients at the surface are relatively flat while there are steep gradients at the ground where the no slip condition is applied. But even at the ground no solidification temperatures are observed. Although the problem in the ANSYS-calculations is handled two-dimensional and not three-dimensional like in the finite-volume-codes, there are no fundamental deviations to the results of the other codes. (orig.)
Neutron and photon transport calculations in fusion system. 2
Energy Technology Data Exchange (ETDEWEB)
Sato, Satoshi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment
1998-03-01
On the application of MCNP to the neutron and {gamma}-ray transport calculations for fusion reactor system, the wide range design calculation has been carried out in the engineering design activities for the international thermonuclear fusion experimental reactor (ITER) being developed jointly by Japan, USA, EU and Russia. As the objects of shielding calculation for fusion reactors, there are the assessment of dose equivalent rate for living body shielding and the assessment of the nuclear response for the soundness of in-core structures. In the case that the detailed analysis of complicated three-dimensional shapes is required, the assessment using MCNP has been carried out. Also when the nuclear response of peripheral equipment due to the gap streaming between blanket modules is evaluated with good accuracy, the calculation with MCNP has been carried out. The analyses of the shieldings for blanket modules and NBI port are explained, and the examples of the results of analyses are shown. In the blanket modules, there are penetrating holes and continuous gap. In the case of the NBI port, shielding plug cannot be installed. These facts necessitate the MCNP analysis with high accuracy. (K.I.)
International Nuclear Information System (INIS)
Palau, J.M.; Cathalau, S.; Hudelot, J.P.; Barran, F.; Bellanger, V.; Magnaud, C.; Moreau, F.
2011-01-01
Burnable poisons are extensively used by Light Water Reactor designers in order to preserve the fuel reactivity potential and increase the cycle length (without increasing the uranium enrichment). In the industrial two-steps (assembly 2D transport-core 3D diffusion) calculation schemes these heterogeneities yield to strong flux and cross-sections perturbations that have to be taken into account in the final 3D burn-up calculations. This paper presents the application of an enhanced cross-section interpolation model (implemented in the French CRONOS2 code) to LWR (highly poisoned) depleted core calculations. The principle is to use the absorbers (or actinide) concentrations as the new interpolation parameters instead of the standard local burnup/fluence parameters. It is shown by comparing the standard (burnup/fluence) and new (concentration) interpolation models and using the lattice transport code APOLLO2 as a numerical reference that reactivity and local reaction rate prediction of a 2x2 LWR assembly configuration (slab geometry) is significantly improved with the concentration interpolation model. Gains on reactivity and local power predictions (resp. more than 1000 pcm and 20 % discrepancy reduction compared to the reference APOLLO2 scheme) are obtained by using this model. In particular, when epithermal absorbers are inserted close to thermal poison the 'shadowing' ('screening') spectral effects occurring during control operations are much more correctly modeled by concentration parameters. Through this outstanding example it is highlighted that attention has to be paid to the choice of cross-section interpolation parameters (burnup 'indicator') in core calculations with few energy groups and variable geometries all along the irradiation cycle. Actually, this new model could be advantageously applied to steady-state and transient LWR heterogeneous core computational analysis dealing with strong spectral-history variations under
Calculation of transport coefficients in an axisymmetric plasma
International Nuclear Information System (INIS)
Shumaker, D.E.
1977-01-01
A method of calculating the transport coefficient in an axisymmetric toroidal plasma is presented. This method is useful in calculating the transport coefficients in a Tokamak plasma confinement device. The particle density and temperature are shown to be a constant on a magnetic flux surface. Transport equations are given for the total particle flux and total energy flux crossing a closed toroidal surface. Also transport equations are given for the toroidal magnetic flux. A computer code was written to calculate the transport coefficients for a three species plasma, electrons and two species of ions. This is useful for calculating the transport coefficients of a plasma which contains impurities. It was found that the particle and energy transport coefficients are increased by a large amount, and the transport coefficients for the toroidal magnetic field are reduced by a small amount
Uncertainty calculation in transport models and forecasts
DEFF Research Database (Denmark)
Manzo, Stefano; Prato, Carlo Giacomo
Transport projects and policy evaluations are often based on transport model output, i.e. traffic flows and derived effects. However, literature has shown that there is often a considerable difference between forecasted and observed traffic flows. This difference causes misallocation of (public...... implemented by using an approach based on stochastic techniques (Monte Carlo simulation and Bootstrap re-sampling) or scenario analysis combined with model sensitivity tests. Two transport models are used as case studies: the Næstved model and the Danish National Transport Model. 3 The first paper...... in a four-stage transport model related to different variable distributions (to be used in a Monte Carlo simulation procedure), assignment procedures and levels of congestion, at both the link and the network level. The analysis used as case study the Næstved model, referring to the Danish town of Næstved2...
Fast change in core transport after L-H transition
International Nuclear Information System (INIS)
Kadomtsev, B.B.; Itoh, K.; Itoh, S.
1995-03-01
The transport in the core tokamak plasma is known to change very rapidly after the L-H transition in the edge plasma. A qualitative discussion is given for this fast transmission of the transport change. A picture based on the successive bifurcations is presented. (author)
Effect of core configuration on the burnup calculations of MTR research reactors
International Nuclear Information System (INIS)
Hussein, H.M.; Amin, E.H.; Sakr, A.M.
2014-01-01
Highlights: • 3D burn-up calculations of MTR-type research reactor were performed. Examination of the effect of control rod pattern on power density and neutron flux distributions is presented. • The calculations are performed using the MTR P C package and the programs (WIMS and CITVAP). • An empirical formula was generated for every fuel element type, to correlate irradiation to burn-up. - Abstract: In the present paper, three-dimensional burn-up calculations were performed using different patterns of control rods, in order to examine their effect on power density and neutron flux distributions through out the entire core and hence on the local burn-up distribution. These different cores burn-up calculations are carried out for an operating cycle equivalent to 15 Full Power Days (FPDs), with a power rating of 22 MW. Calculations were performed using an example of a typical research reactor of MTR-type using the internationally known computer codes’ package “MTR P C system”, using the cell calculation transport code WIMS-D4 with 12 energy groups and the core calculation diffusion code CITVAP with 5 energy groups. A depletion study was done and the effects on the research reactor fuel (U-235) were performed. The burn-up percentage (B.U.%) curves for every fuel element type were drawn versus irradiation (MWD/TE). Then an empirical formula was generated for every fuel element type, to correlate irradiation to burn-up percentage. Charts of power density and neutron flux distribution for each core were plotted at different sections of each fuel element of the reactor core. Then a complete discussion and analysis of these curves are performed with comparison between the different core configurations, illustrating the effect of insertion or extraction of either of the four control rods directly on the neutron flux and consequently on the power distribution and burn-up. A detailed study of fuel burn-up gives detailed insight on the different B.U.% calculations
Guide to calculating transportation demand management benefits
Energy Technology Data Exchange (ETDEWEB)
Litman, T. [Victoria Transport Policy Institute, Victoria, BC (Canada)
1997-02-14
The full benefits of transportation demand management (TDM) programs were discussed. TDM includes several policies, programs and measures designed to change travel patterns. TDM programs include commute trip reductions, pricing policies, land use management strategies, and programs to support alternative modes of transportation such as public transit, carpooling, bicycling, walking and telecommuting. In addition to reduction in traffic congestion and reduction in air pollution, other impacts of TDM programs were also evaluated. The value of these impacts based on external cost savings was estimated. A list of documents, software and organizations which could be helpful for TDM planning and evaluation was provided. 34 refs., 14 tabs., 1 fig.
Directory of Open Access Journals (Sweden)
Xiaojing Liu
2016-05-01
Full Text Available Amorphous and nanocrystalline alloys are now widely used for the cores of high-frequency transformers, and Litz-wire is commonly used as the windings, while it is difficult to calculate the resistance accurately. In order to design a high-frequency transformer, it is important to accurately calculate the core loss and copper loss. To calculate the core loss accurately, the additional core loss by the effect of end stripe should be considered. It is difficult to simulate the whole stripes in the core due to the limit of computation, so a scale down model with 5 stripes of amorphous alloy is simulated by the 2D finite element method (FEM. An analytical model is presented to calculate the copper loss in the Litz-wire, and the results are compared with the calculations by FEM.
Calculation of transport coefficients in an axisymmetric plasma
International Nuclear Information System (INIS)
Shumaker, D.E.
1976-01-01
A method of calculating the transport coefficient in an axisymmetric toroidal plasma is presented. This method is useful in calculating the transport coefficients in a Tokamak plasma confinement device. The particle density and temperature are shown to be a constant on a magnetic flux surface. Transport equations are given for the total particle flux and total energy flux crossing a closed toroidal surface. Also transport equations are given for the toroidal magnetic flux. A computer code was written to calculate the transport coefficients for a three species plasma, electrons and two species of ions. This is useful for calculating the transport coefficients of a plasma which contains impurities. It was found that the particle and energy transport coefficients are increased by a large amount, and the transport coefficients for the toroidal magnetic field are reduced by a small amount. For example, a deuterium plasma with 1.3 percent oxygen, one of the particle transport coefficients is increased by a factor of about four. The transport coefficients for the toroidal magnetic flux are reduced by about 20 percent. The increase in the particle transport coefficient is due to the collisional scattering of the deuterons by the heavy oxygen ions which is larger than the deuteron electron scattering, the normal process for particle transport in a two species plasma. The reduction in the toroidal magnetic flux transport coefficients are left unexplained
Guideline of Monte Carlo calculation. Neutron/gamma ray transport simulation by Monte Carlo method
2002-01-01
This report condenses basic theories and advanced applications of neutron/gamma ray transport calculations in many fields of nuclear energy research. Chapters 1 through 5 treat historical progress of Monte Carlo methods, general issues of variance reduction technique, cross section libraries used in continuous energy Monte Carlo codes. In chapter 6, the following issues are discussed: fusion benchmark experiments, design of ITER, experiment analyses of fast critical assembly, core analyses of JMTR, simulation of pulsed neutron experiment, core analyses of HTTR, duct streaming calculations, bulk shielding calculations, neutron/gamma ray transport calculations of the Hiroshima atomic bomb. Chapters 8 and 9 treat function enhancements of MCNP and MVP codes, and a parallel processing of Monte Carlo calculation, respectively. An important references are attached at the end of this report.
3-D full core calculations for the long-term behaviour of PWR's
International Nuclear Information System (INIS)
Winter, H.J.; Koebke, K.; Wagner, M.R.
1987-01-01
Presently, the most realistic simulation of a PWR core is by means of three-dimensional (3-D) full core calculations. Only by such 3-D representations can the large scope of axial effects be treated in an accurate and direct way, without the need to perform various auxiliary calculations. Although the computationally efficient burnup-corrected nodal expansion method (NEM-BC) is used, the computing effort for 3-D reactor calculations becomes rather high, e.g. a storage of about 320000 words is required to describe a 1300 MWe PWR. NEM-BC was introduced (1979) into KWU's package of PWR design codes because of its high accuracy and the great reduction of computing time and storage requirements in comparison to other methods. The application of NEM-BC to 3-dimensional PWR design is strongly correlated with the progress achieved in the solution of the homogenization and dehomogenization problem. By means of suitable methods (equivalence theory) the transport-theoretical information of the pinwise power and burnup distribution for the heterogeneous fuel assemblies is transferred in a consistent manner to the full core reactor solution. The new methods and the corresponding code system are explained in some detail. (orig.)
Whole core neutronics modeling of a TRIGA reactor using integral transport theory
International Nuclear Information System (INIS)
Schwinkendorf, K.N.; Toffer, H.
1990-01-01
An innovative analysis approach for performing whole core reactor physics calculations for TRIGA reactors has been employed recently at the Westinghouse Hanford Company. A deterministic transport theory model with sufficient geometric complexity to evaluate asymmetric loading patterns was used. Calculations of this complexity have been performed in the past using Monte Carlo simulation, such as the MCNP code. However, the Monte Carlo calculations are more difficult to prepare and require more computer time. On the Hanford Site CRAY XMP-18 computer, the new methods required less than one-third of the central processing unit time per calculation as compared to an MCNP calculation using 100,000 neutron histories
LDRD Final Review: Radiation Transport Calculations
Energy Technology Data Exchange (ETDEWEB)
Goorley, John Timothy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Morgan, George Lake [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lestone, John Paul [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-06-22
Both high-fidelity & toy simulations are being used to understand measured signals and improve the Area 11 NDSE diagnostic. We continue to gain more and more confidence in the ability for MCNP to simulate neutron and photon transport from source to radiation detector.
Core-shell architectures as nano-size transporters
International Nuclear Information System (INIS)
Adeli, M.; Zarnegar, Z.; Kabiri, R.; Salimi, F.; Dadkah, A.
2006-01-01
Core-shell architectures containing poly (ethylene imine) (PEI) as a core and poly (lactide) (PLA) as arms were prepared. PEI was used as macro initiator for ring opening polymerization of lactide. PEI-PLA core-shell architectures were able to encapsulate guest molecules. Size of the core-shell architectures was between 10- 100 nm, hence they can be considered as nano carriers to transport the guest molecules. Transport capacity of nano carriers depends on their nano-environments and type of self-assembly in solvent. In solid state nano carriers self-assemble as long structures with nano-size diameter or they form network structures. Aggregations type depends on the concentration of nano carriers in solution. Effect of the shell thickness and aggregation type on the release rate are also investigated
Acceleration methods for assembly-level transport calculations
International Nuclear Information System (INIS)
Adams, Marvin L.; Ramone, Gilles
1995-01-01
A family acceleration methods for the iterations that arise in assembly-level transport calculations is presented. A single iteration in these schemes consists of a transport sweep followed by a low-order calculation which is itself a simplified transport problem. It is shown that a previously-proposed method fitting this description is unstable in two and three dimensions. It is presented a family of methods and shown that some members are unconditionally stable. (author). 8 refs, 4 figs, 4 tabs
International Nuclear Information System (INIS)
Han, S.; Park, S.J.; Seong, P.H.
1997-01-01
A Core Protection Calculator System (CPCS) is a digital computer based safety system generating trip signals based on the calculation of Departure from Nucleate Boiling Ratio (DNBR) and Local Power Density (LPD). Currently, CPCS uses ex-core detector signals for core power calculation and it has some uncertainties. In this study, in-core detector signals which directly measure inside flux of core are applied to CPCS to get more accurate power distribution profile, DNBR and LPD. In order to improve axial power distribution calculation, piece-wise cubic Spline method is applied; from the 40 nodes of expanded signals, more accurate and detailed core information can be provided. Simulation is carried out to verify its applicability to power distribution calculation. Simulation result shows that the improved method reduces the calculational uncertainties significantly and it allows larger operational margin. It is also expected that no power reduction is required while Core Operating Limit Supervisory System (COLSS) is out-of-service due to reduced uncertainties when the improved method is applied. In this study, a quantitative economic benefit assessment of using in-core neutron detector signals is also carried out. (authors)
International Nuclear Information System (INIS)
Han, Seung
1996-02-01
A Core Protection Calculator System(CPCS) is a digital computer based safety system generating trip signals based on the calculation of Departure from Nucleate Boiling Ratio(DNBR) and Local Power Density(LPD). Currently, CPCS uses ex-core detector signals for core power calculation and it has some uncertainties. In this study, In-core detector signals which directly measure inside flux of core are applied to CPCS to get more accurate power distribution profile, DNBR and LPD. In order to improve axial power distribution calculation, piecewise cubic spline method is applied: From the 40 nodes of expanded signals, more accurate and detailed core information can be provided. Simulation is carried out to verify its applicability to power distribution calculation. Simulation result shows that the improved method reduces the calculational uncertainties significantly and it allows larger operational margin. It is also expected that no power reduction is required while Core Operating Limit Supervisory System(COLSS) is out-of-service due to reduced uncertainties when the improved method is applied. In this study, a quantitative economic benefit assessment of using in-core neutron detector signals is also carried out
Minos: a SPN solver for core calculation in the DESCARTES system
International Nuclear Information System (INIS)
Baudron, A.M.; Lautard, J.J.
2005-01-01
This paper describes a new development of a neutronic core solver done in the context of a new generation neutronic reactor computational system, named DESCARTES. For performance reasons, the numerical method of the existing MINOS solver in the SAPHYR system has been reused in the new system. It is based on the mixed dual finite element approximation of the simplified transport equation. The solver takes into account assembly discontinuity coefficients (ADF) in the simplified transport equation (SPN) context. The solver has been rewritten in C++ programming language using an object oriented design. Its general architecture was reconsidered in order to improve its capability of evolution and its maintainability. Moreover, the performances of the old version have been improved mainly regarding the matrix construction time; this result improves significantly the performance of the solver in the context of industrial application requiring thermal hydraulic feedback and depletion calculations. (authors)
International Nuclear Information System (INIS)
Ohtaka, Masahiko; Ohshima, Hiroyuki
1998-10-01
A whole core thermal-hydraulic analysis program ACT is being developed for the purpose of evaluating detailed in-core thermal hydraulic phenomena of fast reactors including inter-wrapper flow under various reactor operation conditions. In this work, the core module as a main part of the ACT developed last year, which simulates thermal-hydraulics in the subassemblies and the inter-subassembly gaps, was coupled with an one dimensional plant system thermal-hydraulic analysis code LEDHER to simulate transients in the primary heat transport system and to give appropriate boundary conditions to the core model. The effective algorithm to couple these two calculation modules was developed, which required minimum modification of them. In order to couple these two calculation modules on the computing system, parallel computing technique using PVM (Parallel Virtual Machine) programming environment was applied. The code system was applied to analyze an out-of-pile sodium experiment simulating core with 7 subassemblies under transient condition for code verification. It was confirmed that the analytical results show a similar tendency of experimental results. (author)
Statistics of Monte Carlo methods used in radiation transport calculation
International Nuclear Information System (INIS)
Datta, D.
2009-01-01
Radiation transport calculation can be carried out by using either deterministic or statistical methods. Radiation transport calculation based on statistical methods is basic theme of the Monte Carlo methods. The aim of this lecture is to describe the fundamental statistics required to build the foundations of Monte Carlo technique for radiation transport calculation. Lecture note is organized in the following way. Section (1) will describe the introduction of Basic Monte Carlo and its classification towards the respective field. Section (2) will describe the random sampling methods, a key component of Monte Carlo radiation transport calculation, Section (3) will provide the statistical uncertainty of Monte Carlo estimates, Section (4) will describe in brief the importance of variance reduction techniques while sampling particles such as photon, or neutron in the process of radiation transport
Exciton Transport Simulations in Phenyl Cored Thiophene Dendrimers
Kim, Kwiseon; Erkan Kose, Muhammet; Graf, Peter; Kopidakis, Nikos; Rumbles, Garry; Shaheen, Sean E.
2009-03-01
Phenyl cored 3-arm and 4-arm thiophene dendrimers are promising materials for use in photovoltaic devices. It is important to understand the energy transfer mechanisms in these molecules to guide the synthesis of novel dendrimers with improved efficiency. A method is developed to estimate the exciton diffusion lengths for the dendrimers and similar chromophores in amorphous films. The approach exploits Fermi's Golden Rule to estimate the energy transfer rates for an ensemble of bimolecular complexes in random orientations. Using Poisson's equation to evaluate Coulomb integrals led to efficient calculation of excitonic couplings between the transition densities. Monte-Carlo simulations revealed the dynamics of energy transport in the dendrimers. Experimental exciton diffusion lengths of the dendrimers range 10 ˜ 20 nm, increasing with the size of the dendrimer. Simulated diffusion lengths correlate well with experiments. The chemical structure of the chromophore, the shape of the transition densities and the exciton lifetime are found to be the most important factors that determine the exciton diffusion length in amorphous films.
Nonlinear acceleration of SN transport calculations
Energy Technology Data Exchange (ETDEWEB)
Fichtl, Erin D [Los Alamos National Laboratory; Warsa, James S [Los Alamos National Laboratory; Calef, Matthew T [Los Alamos National Laboratory
2010-12-20
The use of nonlinear iterative methods, Jacobian-Free Newton-Krylov (JFNK) in particular, for solving eigenvalue problems in transport applications has recently become an active subject of research. While JFNK has been shown to be effective for k-eigenvalue problems, there are a number of input parameters that impact computational efficiency, making it difficult to implement efficiently in a production code using a single set of default parameters. We show that different selections for the forcing parameter in particular can lead to large variations in the amount of computational work for a given problem. In contrast, we present a nonlinear subspace method that sits outside and effectively accelerates nonlinear iterations of a given form and requires only a single input parameter, the subspace size. It is shown to consistently and significantly reduce the amount of computational work when applied to fixed-point iteration, and this combination of methods is shown to be more efficient than JFNK for our application.
Mesh requirements for neutron transport calculations
International Nuclear Information System (INIS)
Askew, J.R.
1967-07-01
Fine-structure calculations are reported for a cylindrical natural uranium-graphite cell using different solution methods (discrete ordinate and collision probability codes) and varying the spatial mesh. It is suggested that of formulations assuming the source constant in a mesh interval the differential approach is generally to be preferred. Due to cancellation between approximations made in the derivation of the finite difference equations and the errors in neglecting source variation, the discrete ordinate code gave a more accurate estimate of fine structure for a given mesh even for unusually coarse representations. (author)
Effect of core polarizability on photoionization cross-section calculations.
Kirkpatrick, R. C.
1972-01-01
Demonstration of the importance of core polarizability in a case where cancellation is only moderate, with suggestion of an improvement to the scaled Thomas-Fermi (STF) wave functions of Stewart and Rotenberg (1965). The inclusion of dipole polarizability of the core for argon is shown to substantially improve the agreement between the theoretical and experimental photoionization cross sections for the ground-state configuration.
BEAVRS full core burnup calculation in hot full power condition by RMC code
International Nuclear Information System (INIS)
Liu, Shichang; Liang, Jingang; Wu, Qu; Guo, JuanJuan; Huang, Shanfang; Tang, Xiao; Li, Zeguang; Wang, Kan
2017-01-01
Highlights: • TMS and thermal scattering interpolation were developed to treat cross sections OTF. • Hybrid coupling system was developed for HFP burnup calculation of BEAVRS benchmark. • Domain decomposition was applied to handle memory problem of full core burnup. • Critical boron concentration with burnup by RMC agrees with the benchmark results. • RMC is capable of multi-physics coupling for simulations of nuclear reactors in HFP. - Abstract: Monte Carlo method can provide high fidelity neutronics analysis of different types of nuclear reactors, owing to its advantages of the flexible geometry modeling and the use of continuous-energy nuclear cross sections. However, nuclear reactors are complex systems with multi-physics interacting and coupling. MC codes can couple with depletion solver and thermal-hydraulics (T/H) codes simultaneously for the “transport-burnup-thermal-hydraulics” coupling calculations. MIT BEAVRS is a typical “transport-burnup-thermal-hydraulics” coupling benchmark. In this paper, RMC was coupled with sub-channel code COBRA, equipped with on-the-fly temperature-dependent cross section treatment and large-scale detailed burnup calculation based on domain decomposition. Then RMC was applied to the full core burnup calculations of BEAVRS benchmark in hot full power (HFP) condition. The numerical tests show that domain decomposition method can achieve the consistent results compared with original version of RMC while enlarging the computational burnup regions. The results of HFP by RMC agree well with the reference values of BEAVRS benchmark and also agree well with those of MC21. This work proves the feasibility and accuracy of RMC in multi-physics coupling and lifecycle simulations of nuclear reactors.
International Nuclear Information System (INIS)
Lee, Ki Bog; Kim, Yeong Il; Kim, Kang Seok; Kim, Sang Ji; Kim, Young Gyun; Song, Hoon; Lee, Dong Uk; Lee, Byoung Oon; Jang, Jin Wook; Lim, Hyun Jin; Kim, Hak Sung
2004-05-01
In this report, the results of KALIMER (Korea Advanced LIquid MEtal Reactor) core design calculated by the K-CORE computing system are compared and analyzed with those of MCDEP calculation. The effective multiplication factor, flux distribution, fission power distribution and the number densities of the important nuclides effected from the depletion calculation for the R-Z model and Hex-Z model of KALIMER core are compared. It is confirmed that the results of K-CORE system compared with those of MCDEP based on the Monte Carlo transport theory method agree well within 700 pcm for the effective multiplication factor estimation and also within 2% in the driver fuel region, within 10% in the radial blanket region for the reaction rate and the fission power density. Thus, the K-CORE system for the core design of KALIMER by treating the lumped fission product and mainly important nuclides can be used as a core design tool keeping the necessary accuracy
Energy and particle core transport in tokamaks and stellarators compared
Energy Technology Data Exchange (ETDEWEB)
Beurskens, Marc; Angioni, Clemente; Beidler, Craig; Dinklage, Andreas; Fuchert, Golo; Hirsch, Matthias; Puetterich, Thomas; Wolf, Robert [Max-Planck-Institut fuer Plasmaphysik, Greifswald/Garching (Germany)
2016-07-01
The paper discusses expectations for core transport in the Wendelstein 7-X stellarator (W7-X) and presents a comparison to tokamaks. In tokamaks, the neoclassical trapped-particle-driven losses are small and turbulence dominates the energy and particle transport. At reactor relevant low collisionality, the heat transport is limited by ion temperature gradient limited turbulence, clamping the temperature gradient. The particle transport is set by an anomalous inward pinch, yielding peaked profiles. A strong edge pedestal adds to the good confinement properties. In traditional stellarators the 3D geometry cause increased trapped orbit losses. At reactor relevant low collisionality and high temperatures, these neoclassical losses would be well above the turbulent transport losses. The W7-X design minimizes neoclassical losses and turbulent transport can become dominant. Moreover, the separation of regions of bad curvature and that of trapped particle orbits in W7-X may have favourable implications on the turbulent electron heat transport. The neoclassical particle thermodiffusion is outward. Without core particle sources the density profile is flat or even hollow. The presence of a turbulence driven inward anomalous particle pinch in W7-X (like in tokamaks) is an open topic of research.
Refuelling design and core calculations at NPP Paks: codes and methods
International Nuclear Information System (INIS)
Pos, I.; Nemes, I.; Javor, E.; Korpas, L.; Szecsenyi, Z.; Patai-Szabo, S.
2001-01-01
This article gives a brief review of the computer codes used in the fuel management practice at NPP Paks. The code package consist of the HELIOS neutron and gamma transport code for preparation of few-group cross section library, the CERBER code to determine the optimal core loading patterns and the C-PORCA code for detailed reactor physical analysis of different reactor states. The last two programs have been developed at the NPP Paks. HELIOS gives sturdy basis for our neutron physical calculation, CERBER and C-PORCA programs have been enhanced in great extent for last years. Methods and models have become more detailed and accurate as regards the calculated parameters and space resolution. Introduction of a more advanced data handling algorithm arbitrary move of fuel assemblies can be followed either in the reactor core or storage pool. The new interactive WINDOWS applications allow easier and more reliable use of codes. All these computer code developments made possible to handle and calculate new kind of fuels as profiled Russian and BNFL fuel with burnable poison or to support the reliable reuse of fuel assemblies stored in the storage pool. To extend thermo-hydraulic capability, with KFKI contribution the COBRA code will also be coupled to the system (Authors)
A calculation model for a HTR core seismic response
International Nuclear Information System (INIS)
Buland, P.; Berriaud, C.; Cebe, E.; Livolant, M.
1975-01-01
The paper presents the experimental results obtained at Saclay on a HTGR core model and comparisons with analytical results. Two series of horizontal tests have been performed on the shaking table VESUVE: sinusoidal test and time history response. Acceleration of graphite blocks, forces on the boundaries, relative displacement of the core and PCRB model, impact velocity of the blocks on the boundaries were recorded. These tests have shown the strongly non-linear dynamic behaviour of the core. The resonant frequency of the core is dependent on the level of the excitation. These phenomena have been explained by a computer code, which is a lumped mass non-linear model. Good correlation between experimental and analytical results was obtained for impact velocities and forces on the boundaries. This comparison has shown that the damping of the core is a critical parameter for the estimation of forces and velocities. Time history displacement at the level of PCRV was reproduced on the shaking table. The analytical model was applied to this excitation and good agreement was obtained for forces and velocities. (orig./HP) [de
Development of a core follow calculational system for research reactors
International Nuclear Information System (INIS)
Muller, E.Z.; Ball, G.; Joubert, W.R.; Schutte, H.C.; Stoker, C.C.; Reitsma, F.
1994-01-01
Over the last few years a comprehensive Pressurized Water Reactor and Materials Testing Reactor core analysis code system based on modern reactor physics methods has been under development by the Atomic Energy Corporation of South Africa. This system, known as OSCAR-3, will incorporate a customized graphical user interface and data management system to ensure user-friendliness and good quality control. The system has now reached the stage of development where it can be used for practical MTR core analyses. This paper describes the current capabilities of the components of the OSCAR-3 package, their integration within the package, and outlines future developments. 10 refs., 1 tab., 1 fig
Optimal calculational schemes for solving multigroup photon transport problem
International Nuclear Information System (INIS)
Dubinin, A.A.; Kurachenko, Yu.A.
1987-01-01
A scheme of complex algorithm for solving multigroup equation of radiation transport is suggested. The algorithm is based on using the method of successive collisions, the method of forward scattering and the spherical harmonics method, and is realized in the FORAP program (FORTRAN, BESM-6 computer). As an example the results of calculating reactor photon transport in water are presented. The considered algorithm being modified may be used for solving neutron transport problems
Generalized diffusion theory for calculating the neutron transport scalar flux
International Nuclear Information System (INIS)
Alcouffe, R.E.
1975-01-01
A generalization of the neutron diffusion equation is introduced, the solution of which is an accurate approximation to the transport scalar flux. In this generalization the auxiliary transport calculations of the system of interest are utilized to compute an accurate, pointwise diffusion coefficient. A procedure is specified to generate and improve this auxiliary information in a systematic way, leading to improvement in the calculated diffusion scalar flux. This improvement is shown to be contingent upon satisfying the condition of positive calculated-diffusion coefficients, and an algorithm that ensures this positivity is presented. The generalized diffusion theory is also shown to be compatible with conventional diffusion theory in the sense that the same methods and codes can be used to calculate a solution for both. The accuracy of the method compared to reference S/sub N/ transport calculations is demonstrated for a wide variety of examples. (U.S.)
Improvement of neutronic calculations on a Masurca core using adaptive mesh refinement capabilities
International Nuclear Information System (INIS)
Fournier, D.; Archier, P.; Le Tellier, R.; Suteau, C.
2011-01-01
The simulation of 3D cores with homogenized assemblies in transport theory remains time and memory consuming for production calculations. With a multigroup discretization for the energy variable and a discrete ordinate method for the angle, a system of about 10"4 coupled hyperbolic transport equations has to be solved. For these equations, we intend to optimize the spatial discretization. In the framework of the SNATCH solver used in this study, the spatial problem is dealt with by using a structured hexahedral mesh and applying a Discontinuous Galerkin Finite Element Method (DGFEM). This paper shows the improvements due to the development of Adaptive Mesh Refinement (AMR) methods. As the SNATCH solver uses a hierarchical polynomial basis, p−refinement is possible but also h−refinement thanks to non conforming capabilities. Besides, as the flux spatial behavior is highly dependent on the energy, we propose to adapt differently the spatial discretization according to the energy group. To avoid dealing with too many meshes, some energy groups are joined and share the same mesh. The different energy-dependent AMR strategies are compared to each other but also with the classical approach of a conforming and highly refined spatial mesh. This comparison is carried out on different quantities such as the multiplication factor, the flux or the current. The gain in time and memory is shown for 2D and 3D benchmarks coming from the ZONA2B experimental core configuration of the MASURCA mock-up at CEA Cadarache. (author)
Parallel SN transport calculations on a transputer network
International Nuclear Information System (INIS)
Kim, Yong Hee; Cho, Nam Zin
1994-01-01
A parallel computing algorithm for the neutron transport problems has been implemented on a transputer network and two reactor benchmark problems (a fixed-source problem and an eigenvalue problem) are solved. We have shown that the parallel calculations provided significant reduction in execution time over the sequential calculations
Neutron transport calculations of some fast critical assemblies
Energy Technology Data Exchange (ETDEWEB)
Martinez-Val Penalosa, J A
1976-07-01
To analyse the influence of the input variables of the transport codes upon the neutronic results (eigenvalues, generation times, . . . ) four Benchmark calculations have been performed. Sensitivity analysis have been applied to express these dependences in a useful way, and also to get an unavoidable experience to carry out calculations achieving the required accuracy and doing them in practical computing times. (Author) 29 refs.
Calculations of the transport properties within the PAW formalism
Energy Technology Data Exchange (ETDEWEB)
Mazevet, S.; Torrent, M.; Recoules, V.; Jollet, F. [CEA Bruyeres-le-Chatel, DIF, 91 (France)
2010-07-01
We implemented the calculation of the transport properties within the PAW formalism in the ABINIT code. This feature allows the calculation of the electrical and optical properties, including the XANES spectrum, as well as the electronic contribution to the thermal conductivity. We present here the details of the implementation and results obtained for warm dense aluminum plasma. (authors)
Neutron transport calculations of some fast critical assemblies
International Nuclear Information System (INIS)
Martinez-Val Penalosa, J. A.
1976-01-01
To analyse the influence of the input variables of the transport codes upon the neutronic results (eigenvalues, generation times, . . . ) four Benchmark calculations have been performed. Sensitivity analysis have been applied to express these dependences in a useful way, and also to get an unavoidable experience to carry out calculations achieving the required accuracy and doing them in practical computing times. (Author) 29 refs
Sn transport calculations on vector and parallel processors
International Nuclear Information System (INIS)
Rhoades, W.A.; Childs, R.L.
1987-01-01
The transport of radiation from the source to the location of people or equipment gives rise to some of the most challenging of calculations. A problem may involve as many as a billion unknowns, each evaluated several times to resolve interdependence. Such calculations run many hours on a Cray computer, and a typical study involves many such calculations. This paper will discuss the steps taken to vectorize the DOT code, which solves transport problems in two space dimensions (2-D); the extension of this code to 3-D; and the plans for extension to parallel processors
Development and validation of a nodal code for core calculation
International Nuclear Information System (INIS)
Nowakowski, Pedro Mariano
2004-01-01
The code RHENO solves the multigroup three-dimensional diffusion equation using a nodal method of polynomial expansion.A comparative study has been made between this code and present internationals nodal diffusion codes, resulting that the RHENO is up to date.The RHENO has been integrated to a calculation line and has been extend to make burnup calculations.Two methods for pin power reconstruction were developed: modulation and imbedded. The modulation method has been implemented in a program, while the implementation of the imbedded method will be concluded shortly.The validation carried out (that includes experimental data of a MPR) show very good results and calculation efficiency
PWR core follow calculations using the ELCOS code system
International Nuclear Information System (INIS)
Grimm, P.; Paratte, J.M.
1990-01-01
The ELCOS code system developed at PSI is used to simulate a cycle of a PWR in which one fifth of the assemblies are MOX fuel. The reactor and the calculational methods are briefly described. The calculated critical boron concentrations and power distributions are compared with the measurements at the plant. Although the critical boron concentration is somewhat overpredicted and the computed power distributions are slightly flatter than the measured ones the results of the calculations agree generally well with the measured data. (author) 1 tab., 8 figs., 6 refs
Energy Technology Data Exchange (ETDEWEB)
Christoforou, Stavros, E-mail: stavros.christoforou@gmail.com [Kirinthou 17, 34100, Chalkida (Greece); Hoogenboom, J. Eduard, E-mail: j.e.hoogenboom@tudelft.nl [Department of Applied Sciences, Delft University of Technology (Netherlands)
2011-07-01
A zero-variance based scheme is implemented and tested in the MCNP5 Monte Carlo code. The scheme is applied to a mini-core reactor using the adjoint function obtained from a deterministic calculation for biasing the transport kernels. It is demonstrated that the variance of the k{sub eff} estimate is halved compared to a standard criticality calculation. In addition, the biasing does not affect source distribution convergence of the system. However, since the code lacked optimisations for speed, we were not able to demonstrate an appropriate increase in the efficiency of the calculation, because of the higher CPU time cost. (author)
International Nuclear Information System (INIS)
Christoforou, Stavros; Hoogenboom, J. Eduard
2011-01-01
A zero-variance based scheme is implemented and tested in the MCNP5 Monte Carlo code. The scheme is applied to a mini-core reactor using the adjoint function obtained from a deterministic calculation for biasing the transport kernels. It is demonstrated that the variance of the k_e_f_f estimate is halved compared to a standard criticality calculation. In addition, the biasing does not affect source distribution convergence of the system. However, since the code lacked optimisations for speed, we were not able to demonstrate an appropriate increase in the efficiency of the calculation, because of the higher CPU time cost. (author)
Impact of nuclear 'pasta' on neutrino transport in collapsing stellar cores
International Nuclear Information System (INIS)
Sonoda, Hidetaka; Watanabe, Gentaro; Sato, Katsuhiko; Takiwaki, Tomoya; Yasuoka, Kenji; Ebisuzaki, Toshikazu
2007-01-01
Nuclear 'pasta', nonspherical nuclei in dense matter, is predicted to occur in collapsing supernova cores. We show how pasta phases affect the neutrino transport cross section via weak neutral current using several nuclear models. This is the first calculation of the neutrino opacity of the phases with rod-like and slab-like nuclei taking account of finite temperature effects, which are well described by the quantum molecular dynamics. We also show that pasta phases can occupy 10-20% of the mass of supernova cores in the later stage of the collapse
Core integrity calculations for Heysham II/Torness AGR
International Nuclear Information System (INIS)
Prince, N.; Briody, R.F.; Rossiter, F.
1982-01-01
Graphite core components experience applied loads which cause tensile stresses at the fuel brick keyway root. Finite element stress analyses over a range of corrosion profiles have identified a simple ''effective weight loss'' criterion which is directly related to brick failure load. Differential shrinkage rates cause self-stresses to arise which are expected to be tensile at the keyway root at end of life, thus reducing the residual strength of the brick. Finite element methods have been developed for obtaining instantaneous values of self-stress allowing for irradiation creep. These techniques provide the designer with rapid and inexpensive methods for assessing brick stresses with a high degree of confidence. (author)
International Nuclear Information System (INIS)
Corcuera, Roberto.
1975-12-01
The present work is a contribution to the neutronics calculational methods of fast neutron reactors. The first step is devoted to the analysis of the validity of the few-groups (of the order of 25) multigroup scheme, and of the transport-correction approximation for the treatment of the scattering anisotropy. This analysis includes both the reactor core, where the usual approximations are found to be satisfactory, and the reflector, where it turns out that the rapid variations of the neutron flux and of it's spectrum necessitate the improvement of the multigroup cross-sections' generation. Therefore, a zero-dimensional simple and accurate model for the average spectrum in the reflector is developed by the space-energy synthesis method. Finally using the Rayleigh-Ritz method, a model is developed in which the flux is spatially represented by an analytical function. This model is applied to the analysis of the sensitivity of reflector neutronics parameters to the variations of the cross sections [fr
Exposure calculation code module for reactor core analysis: BURNER
Energy Technology Data Exchange (ETDEWEB)
Vondy, D.R.; Cunningham, G.W.
1979-02-01
The code module BURNER for nuclear reactor exposure calculations is presented. The computer requirements are shown, as are the reference data and interface data file requirements, and the programmed equations and procedure of calculation are described. The operating history of a reactor is followed over the period between solutions of the space, energy neutronics problem. The end-of-period nuclide concentrations are determined given the necessary information. A steady state, continuous fueling model is treated in addition to the usual fixed fuel model. The control options provide flexibility to select among an unusually wide variety of programmed procedures. The code also provides user option to make a number of auxiliary calculations and print such information as the local gamma source, cumulative exposure, and a fine scale power density distribution in a selected zone. The code is used locally in a system for computation which contains the VENTURE diffusion theory neutronics code and other modules.
Exposure calculation code module for reactor core analysis: BURNER
International Nuclear Information System (INIS)
Vondy, D.R.; Cunningham, G.W.
1979-02-01
The code module BURNER for nuclear reactor exposure calculations is presented. The computer requirements are shown, as are the reference data and interface data file requirements, and the programmed equations and procedure of calculation are described. The operating history of a reactor is followed over the period between solutions of the space, energy neutronics problem. The end-of-period nuclide concentrations are determined given the necessary information. A steady state, continuous fueling model is treated in addition to the usual fixed fuel model. The control options provide flexibility to select among an unusually wide variety of programmed procedures. The code also provides user option to make a number of auxiliary calculations and print such information as the local gamma source, cumulative exposure, and a fine scale power density distribution in a selected zone. The code is used locally in a system for computation which contains the VENTURE diffusion theory neutronics code and other modules
Parallel processing of neutron transport in fuel assembly calculation
International Nuclear Information System (INIS)
Song, Jae Seung
1992-02-01
Group constants, which are used for reactor analyses by nodal method, are generated by fuel assembly calculations based on the neutron transport theory, since one or a quarter of the fuel assembly corresponds to a unit mesh in the current nodal calculation. The group constant calculation for a fuel assembly is performed through spectrum calculations, a two-dimensional fuel assembly calculation, and depletion calculations. The purpose of this study is to develop a parallel algorithm to be used in a parallel processor for the fuel assembly calculation and the depletion calculations of the group constant generation. A serial program, which solves the neutron integral transport equation using the transmission probability method and the linear depletion equation, was prepared and verified by a benchmark calculation. Small changes from the serial program was enough to parallelize the depletion calculation which has inherent parallel characteristics. In the fuel assembly calculation, however, efficient parallelization is not simple and easy because of the many coupling parameters in the calculation and data communications among CPU's. In this study, the group distribution method is introduced for the parallel processing of the fuel assembly calculation to minimize the data communications. The parallel processing was performed on Quadputer with 4 CPU's operating in NURAD Lab. at KAIST. Efficiencies of 54.3 % and 78.0 % were obtained in the fuel assembly calculation and depletion calculation, respectively, which lead to the overall speedup of about 2.5. As a result, it is concluded that the computing time consumed for the group constant generation can be easily reduced by parallel processing on the parallel computer with small size CPU's
A 3D transport-based core analysis code for research reactors with unstructured geometry
International Nuclear Information System (INIS)
Zhang, Tengfei; Wu, Hongchun; Zheng, Youqi; Cao, Liangzhi; Li, Yunzhao
2013-01-01
Highlights: • A core analysis code package based on 3D neutron transport calculation in complex geometry is developed. • The fine considerations on flux mapping, control rod effects and isotope depletion are modeled. • The code is proved to be with high accuracy and capable of handling flexible operational cases for research reactors. - Abstract: As an effort to enhance the accuracy in simulating the operations of research reactors, a 3D transport core analysis code system named REFT was developed. HELIOS is employed due to the flexibility of describing complex geometry. A 3D triangular nodal S N method transport solver, DNTR, endows the package the capability of modeling cores with unstructured geometry assemblies. A series of dedicated methods were introduced to meet the requirements of research reactor simulations. Afterwards, to make it more user friendly, a graphical user interface was also developed for REFT. In order to validate the developed code system, the calculated results were compared with the experimental results. Both the numerical and experimental results are in close agreement with each other, with the relative errors of k eff being less than 0.5%. Results for depletion calculations were also verified by comparing them with the experimental data and acceptable consistency was observed in results
International Nuclear Information System (INIS)
Relloso, J.M.
1990-01-01
This work describes a methodology to define the equilibrium core and a MTR (Materials Testing Reactors) type reactor's fuel management upon multiple boundary conditions, such as: end cycle and permitted maximum reactivities, burn-up extraction and maximun number of movements by rechange. The methodology proposed allows to determine the best options through conceptual relations, prior to a detailed calculation with the core code, reducing the test number with these codes and minimizing in this way CPU cost. The way to better systematized search of transient cores from the first one to the equilibrium one is presented. (Author) [es
Energy Technology Data Exchange (ETDEWEB)
Liang, Jingang; Wang, Kan; Qiu, Yishu [Dept. of Engineering Physics, LiuQing Building, Tsinghua University, Beijing (China); Chai, Xiao Ming; Qiang, Sheng Long [Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institute of China, Chengdu (China)
2016-06-15
Because of prohibitive data storage requirements in large-scale simulations, the memory problem is an obstacle for Monte Carlo (MC) codes in accomplishing pin-wise three-dimensional (3D) full-core calculations, particularly for whole-core depletion analyses. Various kinds of data are evaluated and quantificational total memory requirements are analyzed based on the Reactor Monte Carlo (RMC) code, showing that tally data, material data, and isotope densities in depletion are three major parts of memory storage. The domain decomposition method is investigated as a means of saving memory, by dividing spatial geometry into domains that are simulated separately by parallel processors. For the validity of particle tracking during transport simulations, particles need to be communicated between domains. In consideration of efficiency, an asynchronous particle communication algorithm is designed and implemented. Furthermore, we couple the domain decomposition method with MC burnup process, under a strategy of utilizing consistent domain partition in both transport and depletion modules. A numerical test of 3D full-core burnup calculations is carried out, indicating that the RMC code, with the domain decomposition method, is capable of pin-wise full-core burnup calculations with millions of depletion regions.
Coupled core criticality calculations with control rods located in the central reflector region
Energy Technology Data Exchange (ETDEWEB)
Sobhy, M [Reactor depatrment, nuclear research center, Inshaas (Egypt)
1995-10-01
The reactivity of a coupled core is controlled by a set of control rods distributed in the central reflector region. The reactor contains two compact cores cooled and moderated by light water. Control rods are designed to have reactivity worths sufficient to start, control and shutdown the coupled system. Each core in a coupled system is in subcritical conditions without any absorber then each core needs to the other core to fulfill nuclear chain reaction and to approach the criticality. In this case, each core is considered clean which is suitable for research reactor with low flux disturbance and better neutron economy, in addition to the advantage of disappearing the cut corner fuel baskets. This facilitate the in core fuel management with identical fuel baskets. Hot spots will disappear. This leads to a good heat transfer process. the excess reactivity and the shutdown margin are calculated for some of reflector as coupling region gives sufficient area for coupled core are calculated cost. The fluctuations of reactivity for coupled core are calculated by noise analysis technique and compared with that for rode core. The results show low reactivity perturbation associated with coupled core.
Adjusted neutron spectra of STEK cores for reactivity calculations
International Nuclear Information System (INIS)
Dekker, J.W.M.; Dragt, J.B.; Janssen, A.J.; Heijboer, R.J.; Klippel, H.Th.
1978-02-01
Neutron flux and adjoint flux spectra form a pre-requisite in the analysis of reactivity worth data measured in the STEK facility. First, a survey of all available information about these spectra is given. Next a special application of a general adjustment method is described. This method has been used to obtain adjusted STEK group flux and adjoint flux spectra, starting from calculated spectra. These theoretical spectra were adjusted to reactivity worths of natural boron (nat. B) and 235 U as well as a number of fission reaction rates. As a by-product in this adjustment calculation adjusted fission group cross sections of 235 U were obtained. The results, viz. group fluxes and adjoint fluxes and adjusted fission cross sections of 235 U are given. They have been used for the interpretation of fission product reactivity worth measurements made in STEK
Development of concept and neutronic calculation method for large LMFBR core
International Nuclear Information System (INIS)
Shirakata, K.; Ishikawa, M.; Ikegami, T.; Sanda, T.; Kaneto, K.; Kawashima, M.; Kaise, Y.; Shirakawa, M.; Hibi, K.
1991-01-01
Presented in this paper is the state of the art of reactor physics R and Ds for the development of concept and neutronic calculation method for large Liquid Metal Fast Breeder Reactor (LMFBR) core. Physics characteristics of concepts for mixed oxide (MOX) fueled large FBR core were investigated by a series of benchmark critical experiments. Next, an adequacy and accuracy of the current neutronic calculation method was assessed by the experiments analyses, and then neutronic prediction accuracies by the method were evaluated for physics characteristics of the large core. Concerns on core development were discussed in terms of neutronics. (author)
Energy Technology Data Exchange (ETDEWEB)
Mispagel, T.; Phlippen, P.W.; Rose, J. [Wissenschaftlich-Technische Ingenieurberatung GmbH (WTI), Juelich (Germany)
2013-07-01
During nuclear power plant operation components and materials are exposed to the neutron flux from the reactor core and radionuclides are produced. After removal of the fuel elements the radioactivity of these radionuclides in the reactor pressure vessel and the core internals provide more than 99% of the activity of the power plant. For the transport, the interim storage and the final disposal of these radioactive components the radioactive inventories have to be decoded with respect to radiation and nuclides. The declaration of the nuclide and activity inventories requires a reliable calculation of neutron induced activation of reactor components. These activation calculations describe the pile-up of nuclides due to irradiation and due to the decay of nuclides. For an optimum usage of the activity capacities of the repository Konrad it is necessary to have a qualified calculation procedure that keeps the conservatism as low as possible.
Discussion of electron cross sections for transport calculations
International Nuclear Information System (INIS)
Berger, M.J.
1983-01-01
This paper deals with selected aspects of the cross sections needed as input for transport calculations and for the modeling of radiation effects in biological materials. Attention is centered mainly on the cross sections for inelastic interactions between electrons and water molecules and the use of these cross sections for the calculation of energy degradation spectra and of ionization and excitation yields. 40 references, 3 figures, 1 table
An Advanced Diagnostic Display for Core Protection Calculator System
Energy Technology Data Exchange (ETDEWEB)
Kim, Ji-Hyeon; Jeong, See-Chae; Sohn, Se-Do [Korea Power Engineering Company, Daejeon (Korea, Republic of)
2008-10-15
The main purpose of a Nuclear Power Plant Instrumentation and Control (I and C) Display System is to provide operator's interface for I and C systems. The CPCS display(Shin-Kori 1 and 2) provides operators with 1) plant monitoring values of field input and algorithm variables that reflect the reactor core conditions, 2) operation values that operators can change and 3) CPCS status. It will be an optimal case if operators can understand the plant (including CPCS itself) condition intuitively with the displayed values but it is not easy in CPCS. For example, if the CPCS Channel Trouble light is lit, operators need some amount of time to investigate what caused the trouble light because there are more than hundred causes that can generate the channel trouble. If a Display supports diagnostic information that shows what cause the displayed alarms, it will greatly help operators in easy understanding the CPCS status. To provide these diagnostic information, this paper suggests an active self-explanatory display mechanism. This self-explanatory diagnostic display mechanism utilizes an ontology in XML that describes parent child, sibling relationships of display variables, through which in-depth, in-breadth diagnostic tracking is possible. This paper consists of two parts. First, the key features of CPCS Flat Panel Display System (FPDS) are described. Second, the features of active self explanatory diagnostic display are discussed.
An Advanced Diagnostic Display for Core Protection Calculator System
International Nuclear Information System (INIS)
Kim, Ji-Hyeon; Jeong, See-Chae; Sohn, Se-Do
2008-01-01
The main purpose of a Nuclear Power Plant Instrumentation and Control (I and C) Display System is to provide operator's interface for I and C systems. The CPCS display(Shin-Kori 1 and 2) provides operators with 1) plant monitoring values of field input and algorithm variables that reflect the reactor core conditions, 2) operation values that operators can change and 3) CPCS status. It will be an optimal case if operators can understand the plant (including CPCS itself) condition intuitively with the displayed values but it is not easy in CPCS. For example, if the CPCS Channel Trouble light is lit, operators need some amount of time to investigate what caused the trouble light because there are more than hundred causes that can generate the channel trouble. If a Display supports diagnostic information that shows what cause the displayed alarms, it will greatly help operators in easy understanding the CPCS status. To provide these diagnostic information, this paper suggests an active self-explanatory display mechanism. This self-explanatory diagnostic display mechanism utilizes an ontology in XML that describes parent child, sibling relationships of display variables, through which in-depth, in-breadth diagnostic tracking is possible. This paper consists of two parts. First, the key features of CPCS Flat Panel Display System (FPDS) are described. Second, the features of active self explanatory diagnostic display are discussed
Heavy ion transport in the core of ASDEX upgrade
Energy Technology Data Exchange (ETDEWEB)
Odstrcil, Tomas [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstrasse 2, D-85748 Garching (Germany); Physik-Department E28, Technische Universitaet Muenchen, 85747 Garching (Germany); Puetterich, Thomas; Angioni, Clemente; Bilato, Roberto; Gude, Anja; Vezinet, Didier [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstrasse 2, D-85748 Garching (Germany); Mazon, Didier [CEA, IRFM F-13108 Saint Paul-lez-Durance (France); Collaboration: ASDEX Upgrade Team
2016-07-01
High impurity concentration in the core of the future fusion reactors can lead to the serious degradation of the achievable fusion gain. Therefore, a better understanding of the underlying impurity transport processes is necessary for higher performance, more efficient power exhaust and avoidance of impurity accumulation. Radial impurity transport is mainly driven by neoclassical and turbulent particle fluxes. Both these components show substantial variation depending on the poloidal angle. Consequently, an asymmetry in the poloidal distribution of impurities leads to significant changes in the radial impurity flow and the total content of the plasma core. The aim of this contribution is to experimentally verify a model describing the poloidal asymmetry of heavy impurities using measurements from ASDEX Upgrade. The observed asymmetries are caused mainly by the centrifugal force and poloidal electric force created by the fast particles produced by intensive ion-cyclotron heating. Finally, a change in the radial transport of the tungsten ions will be presented in the case of large inboard and outboard impurity accumulation.
International Nuclear Information System (INIS)
Sugino, Kazuteru
1998-07-01
As a tool to perform a fast reactor core calculations with high accuracy, NSHEX the nodal transport calculation code for three-dimensional hexagonal-Z geometry is under development. To improve the practical applicability of NSHEX, for instance, in its application to safety analysis and commercial reactor core design studies, we investigated the basic theory used in it, improved the program performance, and evaluated its applicability to the analysis of commercial reactor cores. The current studies show the following: (1) An improvement in the treatment of radial leakage in the radial nodal coupling equation bettered calculational convergence for safety analysis calculation, so the applicability of NSHEX to safety analysis was improved. (2) As a result of comparison of results from NSHEX and the standard core calculation code, it was confirmed that there was consistency between them. (3) According to the evaluation of the effect due to the difference of calculational condition, it was found that the calculation under appropriate nodal expansion orders and Sn orders correspond to the one under most detailed condition. However further investigation is required to reduce the uncertainty in calculational results due to the treatment of high order flux moments. (4) A whole core version of NSHEX enabling calculation for any FBR core geometry has been developed, this improved general applicability of NSHEX. (5) An investigation of the applicability of the rebalance method to acceleration clarified that this improved calculational convergence and it was effective. (J.P.N.)
Fuel management and core design code systems for pressurized water reactor neutronic calculations
International Nuclear Information System (INIS)
Ahnert, C.; Arayones, J.M.
1985-01-01
A package of connected code systems for the neutronic calculations relevant in fuel management and core design has been developed and applied for validation to the startup tests and first operating cycle of a 900MW (electric) PWR. The package includes the MARIA code system for the modeling of the different types of PWR fuel assemblies, the CARMEN code system for detailed few group diffusion calculations for PWR cores at operating and burnup conditions, and the LOLA code system for core simulation using onegroup nodal theory parameters explicitly calculated from the detailed solutions
The calculation of the MEU-HEU coupled core in the KUCA
International Nuclear Information System (INIS)
Hayashi, M.; Shiroya, S.; Kanda, K.; Shibata, T.
1984-01-01
The KUCA has a plan for critical experiments of the MEU-HEU coupled core in 1984. The neutronics calculation has been performed for the MEU-HEU coupled core in the KUCA. The GGC-4 and THERMOS were used to generate the four-group constants and the 2D-FEM-KUR, based on the finite-element method, was used for the diffusion calculation. The calculations with four-group constants agreed with experiments within 1.8% for the both single-cores with the MEU and the HEU. (author)
Calculation of Reactivity Build up in KANUPP core in Case of Large Break LOCA
International Nuclear Information System (INIS)
Arshad, M. W.
2012-01-01
Loss of Coolant Accident (LOCA) in a Pressurized Heavy Water Reactor (PHWR) leads to coolant expulsion in a primary heat transport system resulting in depressurization and possible core voiding. This results in deterioration of cooling conditions in reactor channels and increase in power before reactor shutdown, leading to higher fuel temperatures.The objective of this thesis is to couple Thermal Hydraulics Data for finding status of 2288 fuel bundles having unique coolant density along with continuous changing state of coolant. WIMCER and CITCER are used for the core calculation in case of LOCA and Thermal Hydraulic Data is obtained from the Thermal Hydraulic code TUF (two unequal flows). These codes are coupled with each other in C programming. Due to degradation of coolant in case of LOCA, the power and reactivity start increasing. Near to 5 mk of reactivity the moderator dump start and reactor goes shut down. The result obtained from these code is followed the same trend as shown in KFSAR. (author)
Evaluation of RSG-GAS Core Management Based on Burnup Calculation
International Nuclear Information System (INIS)
Lily Suparlina; Jati Susilo
2009-01-01
Evaluation of RSG-GAS Core Management Based on Burnup Calculation. Presently, U 3 Si 2 -Al dispersion fuel is used in RSG-GAS core and had passed the 60 th core. At the beginning of each cycle the 5/1 fuel reshuffling pattern is used. Since 52 nd core, operators did not use the core fuel management computer code provided by vendor for this activity. They use the manually calculation using excel software as the solving. To know the accuracy of the calculation, core calculation was carried out using two kinds of 2 dimension diffusion codes Batan-2DIFF and SRAC. The beginning of cycle burn-up fraction data were calculated start from 51 st to 60 th using Batan-EQUIL and SRAC COREBN. The analysis results showed that there is a disparity in reactivity values of the two calculation method. The 60 th core critical position resulted from Batan-2DIFF calculation provide the reduction of positive reactivity 1.84 % Δk/k, while the manually calculation results give the increase of positive reactivity 2.19 % Δk/k. The minimum shutdown margin for stuck rod condition for manual and Batan-3DIFF calculation are -3.35 % Δk/k dan -1.13 % Δk/k respectively, it means that both values met the safety criteria, i.e <-0.5 % Δk/k. Excel program can be used for burn-up calculation, but it is needed to provide core management code to reach higher accuracy. (author)
Calculation of neutron and gamma transport at the FOA:type of problems and calculation methods
International Nuclear Information System (INIS)
Lefvert, T.
1975-11-01
Protection against the effects of nuclear warfare involves the analysis of the forms of results of a nuclear charge explosion producing neutron and gamma radiation. It brings out problems leading to the calculation of criticality, leakage, and deep transmission. Methods have been developed for various kinds of particle transport problems. Applications to radiation therapy, storage of fissile materials, and fast reactors are discussed. A list (with brief description) of all neutron and gamma transport programmes of the FOA is given. (J.S.)
Calculation of local flow conditions in the lower core of a PWR with code-Saturne
International Nuclear Information System (INIS)
Fournier, Y.
2003-01-01
In order to better understand the stresses to which fuel rods are subjected, we need to improve our knowledge of the fluid flow inside the core. A code specialized for calculations in tube bundles is used to calculate the flow inside the whole of the core, with a resolution at the assembly level. Still, it is necessary to obtain realistic entry conditions, and these depend on the flow in the downcomer and lower plenum. Also, the flow in the first stages of the core features 4 incoming jets per assembly, and requires a resolution much finer than that used for the whole core calculation. A series of calculations are thus run with our incompressible Navier-Stokes solver, Code-Saturne, using a classical Ranse turbulence model. The first calculations involve a detailed geometry, including part of the cold legs, downcomer, lower plenum, and lower core of a pressurized water reactor. The level of detail includes most obstacles below the core. The lower core plate, being pierced with close to 800 holes, cannot be realistically represented within a practical mesh size, so that a head loss model is used. The lower core itself requiring even more detail is also represented with head losses. We make full use of Code-Saturne's non conforming mesh possibilities to represent a complex geometry, being careful to retain a good mesh quality. Starting just under the lower core, the mesh is aligned with fuel rod assemblies, so that different types of assemblies can be represented through different head loss coefficients. These calculations yield steady-state or near steady-state results, which are compared to experimental data, and should be sufficient to yield realistic entry conditions for full core calculations at assembly width resolution, and beyond those mechanical strain calculations. We are also interested in more detailed flow conditions and fluctuations in the lower core area, so as to better quantify vibrational input. This requires a much higher resolution, which we limit
LTRACK: Beam-transport calculation including wakefield effects
International Nuclear Information System (INIS)
Chan, K.C.D.; Cooper, R.K.
1988-01-01
LTRACK is a first-order beam-transport code that includes wakefield effects up to quadrupole modes. This paper will introduce the readers to this computer code by describing the history, the method of calculations, and a brief summary of the input/output information. Future plans for the code will also be described
Lagrangian Transport Calculations Using UARS Data. Part I: Passive Tracers
Manney, G. L.; Lahoz, W. A.; Harwood, R. S.; Zurek, R. W.; Kumer, J. B.; Mergenthaler, J. L.; Roche, A. E.; O'Neill, A; Swinbank, R.; Waters, J. W.
1994-01-01
The transport of passive tracers observed by UARS has been simulated using computed trajectories of thousands of air parcels initialized on a three-dimensional stratospheric grid. These trajectories are calculated in isentropic coordinates using horizontal winds provided by the United Kingdom Meteorological Office data assimilation system and vertical (cross-isentropic) velocities computed using a fast radiation code.
Load Balancing of Parallel Monte Carlo Transport Calculations
International Nuclear Information System (INIS)
Procassini, R J; O'Brien, M J; Taylor, J M
2005-01-01
The performance of parallel Monte Carlo transport calculations which use both spatial and particle parallelism is increased by dynamically assigning processors to the most worked domains. Since he particle work load varies over the course of the simulation, this algorithm determines each cycle if dynamic load balancing would speed up the calculation. If load balancing is required, a small number of particle communications are initiated in order to achieve load balance. This method has decreased the parallel run time by more than a factor of three for certain criticality calculations
Dynamic Load Balancing of Parallel Monte Carlo Transport Calculations
International Nuclear Information System (INIS)
O'Brien, M; Taylor, J; Procassini, R
2004-01-01
The performance of parallel Monte Carlo transport calculations which use both spatial and particle parallelism is increased by dynamically assigning processors to the most worked domains. Since the particle work load varies over the course of the simulation, this algorithm determines each cycle if dynamic load balancing would speed up the calculation. If load balancing is required, a small number of particle communications are initiated in order to achieve load balance. This method has decreased the parallel run time by more than a factor of three for certain criticality calculations
Contribution to gamma ray transport calculation in heterogeneous media
International Nuclear Information System (INIS)
Bourdet, L.
1985-04-01
This thesis presents the development of gamma transport calculation codes in three dimension heterogeneous geometries. These codes allow us to define the protection against gamma-rays or verify their efficiency. The laws that govern the interactions of gamma-rays with matters are briefly revised. A library with the all necessary constants for these codes is created. TRIPOLI-2, a code that treats in exact way the neutron transport in matters using Monte-Carlo method, has been adapted to deal with the transport of gamma-rays in matters as well. TRINISHI, a code which considers only one collision, has been realized to treat heterogeneous geometries containing voids. Elaborating a formula that calculates the albedo for gamma-ray reflection (the code ALBANE) allows us to solve the problem of gamma-ray reflection on plane surfaces. NARCISSE-2 deals with gamma-rays that suffer only one reflection on the inner walls of any closed volume (rooms, halls...) [fr
Charged-particle calculations using Boltzmann transport methods
International Nuclear Information System (INIS)
Hoffman, T.J.; Dodds, H.L. Jr.; Robinson, M.T.; Holmes, D.K.
1981-01-01
Several aspects of radiation damage effects in fusion reactor neutron and ion irradiation environments are amenable to treatment by transport theory methods. In this paper, multigroup transport techniques are developed for the calculation of charged particle range distributions, reflection coefficients, and sputtering yields. The Boltzmann transport approach can be implemented, with minor changes, in standard neutral particle computer codes. With the multigroup discrete ordinates code, ANISN, determination of ion and target atom distributions as functions of position, energy, and direction can be obtained without the stochastic error associated with atomistic computer codes such as MARLOWE and TRIM. With the multigroup Monte Carlo code, MORSE, charged particle effects can be obtained for problems associated with very complex geometries. Results are presented for several charged particle problems. Good agreement is obtained between quantities calculated with the multigroup approach and those obtained experimentally or by atomistic computer codes
Modeling of impurity transport in the core plasma
International Nuclear Information System (INIS)
Hulse, R.A.
1992-01-01
This paper presents a brief overview of computer modeling of impurity transport in the core region of controlled thermonuclear fusion plasmas. The atomic processes of importance in these high temperature plasmas and the numerical formulation of the model are described. Selected modeling examples are then used to highlight some features of the physics of impurity behavior in large tokamak fusion devices, with an emphasis on demonstrating the sensitivity of such modeling to uncertainties in the rate coefficients used for the atomic processes. This leads to a discussion of current requirements and opportunities for generating the improved sets of comprehensive atomic data needed to support present and future fusion impurity modeling studies
Charge transport in highly efficient iridium cored electrophosphorescent dendrimers
Markham, Jonathan P. J.; Samuel, Ifor D. W.; Lo, Shih-Chun; Burn, Paul L.; Weiter, Martin; Bässler, Heinz
2004-01-01
Electrophosphorescent dendrimers are promising materials for highly efficient light-emitting diodes. They consist of a phosphorescent core onto which dendritic groups are attached. Here, we present an investigation into the optical and electronic properties of highly efficient phosphorescent dendrimers. The effect of dendrimer structure on charge transport and optical properties is studied using temperature-dependent charge-generation-layer time-of-flight measurements and current voltage (I-V) analysis. A model is used to explain trends seen in the I-V characteristics. We demonstrate that fine tuning the mobility by chemical structure is possible in these dendrimers and show that this can lead to highly efficient bilayer dendrimer light-emitting diodes with neat emissive layers. Power efficiencies of 20 lm/W were measured for devices containing a second-generation (G2) Ir(ppy)3 dendrimer with a 1,3,5-tris(2-N-phenylbenzimidazolyl)benzene electron transport layer.
Community Relations for the Transport of TMI-2 Core Debris
International Nuclear Information System (INIS)
Smith, T.A.
1988-01-01
This paper describes community relations for the transport of Three Mile Island Unit 2 core debris, before and during the first two years of the campaign. The author defines community relations as interactions with groups or individuals to influence public perception. Members of Congress, state and local officials, news media, special interest groups, and private citizens are included in the definition of community. The paper discusses issues of concern to the community, level of interest generated by the transport campaign, events that kept community interest focused on the campaign, and communication techniques employed to provide the community with factual information and to generate public confidence. Finally, the paper describes lessons learned from the community relations effort. (author)
A polygonal nodal SP3 method for whole core Pin-by-Pin neutronics calculation
Energy Technology Data Exchange (ETDEWEB)
Li, Yunzhao; Wu, Hongchun; Cao, Liangzhi, E-mail: xjtulyz@gmail.com, E-mail: hongchun@mail.xjtu.edu.cn, E-mail: caolz@mail.xjtu.edu.cn [School of Nuclear Science and Technology, Xi' an Jiaotong University, Shaanxi (China)
2011-07-01
In this polygonal nodal-SP3 method, neutron transport equation is transformed by employing an isotropic SP3 method into two coupled equations that are both in the same mathematic form with the diffusion equation, and then a polygonal nodal method is proposed to solve the two coupled equations. In the polygonal nodal method, adjacent nodes are coupled through partial currents, and a nodal response matrix between incoming and outgoing currents is obtained by expanding detailed nodal flux distribution into a sum of exponential functions. This method avoids the transverse integral technique, which is widely used in regular nodal method and can not be used in triangular geometry because of the mathematical singularity. It is demonstrated by the numerical results of the test problems that the k{sub eff} and power distribution agree well with other codes, the triangular nodal-SP3 method appears faster, and that whole core pin-by-pin transport calculation with fine meshes is feasible after parallelization and acceleration. (author)
Analysis of error in Monte Carlo transport calculations
International Nuclear Information System (INIS)
Booth, T.E.
1979-01-01
The Monte Carlo method for neutron transport calculations suffers, in part, because of the inherent statistical errors associated with the method. Without an estimate of these errors in advance of the calculation, it is difficult to decide what estimator and biasing scheme to use. Recently, integral equations have been derived that, when solved, predicted errors in Monte Carlo calculations in nonmultiplying media. The present work allows error prediction in nonanalog Monte Carlo calculations of multiplying systems, even when supercritical. Nonanalog techniques such as biased kernels, particle splitting, and Russian Roulette are incorporated. Equations derived here allow prediction of how much a specific variance reduction technique reduces the number of histories required, to be weighed against the change in time required for calculation of each history. 1 figure, 1 table
Calculations on safe storage and transportation of radioactive materials
Energy Technology Data Exchange (ETDEWEB)
Hathout, A M; El-Messiry, A M; Amin, E [National Center for Nuclear Safety and Radiation Control and AEA, Cairo (Egypt)
1997-12-31
In this work the safe storage and transportation of fresh fuel as a radioactive material studied. Egypt planned ET RR 2 reactor which is of relatively high power and would require adequate handling and transportation. Therefore, the present work is initiated to develop a procedure for safe handling and transportation of radioactive materials. The possibility of reducing the magnitude of radiation transmitted on the exterior of the packages is investigated. Neutron absorbers are used to decrease the neutron flux. Criticality calculations are carried out to ensure the achievement of subcriticality so that the inherent safety can be verified. The discrete ordinate transport code ANISN was used. The results show good agreement with other techniques. 2 figs., 2 tabs.
CAREM 25: actual status of the core neutronic design. Calculation line
International Nuclear Information System (INIS)
Lecot, C.A.
1990-01-01
This work follows the one titled 'Criteria for the CAREM 25 reactor core design. Neutronic aspects' presented at this congress, gives in detail the typical values regarding the core defined at this point. Besides, the neutronic calculation line used for the CAREM 25 reactor design is presented. (Author) [es
Calculation of shear strength of prestressed hollow core slabs by use of plastic theory
DEFF Research Database (Denmark)
Hoang, Linh Cao; Jørgensen, H.G.; Nielsen, Mogens Peter
2014-01-01
Th is paper deals with calculations of the shear capacity of precast, prestressed hollow core slabs. Such slabs are often used as floor systems in building structures. A common way to produce hollow core slabs is to use the extrusion technique where long strips of slabs are extruded and thereafter...
Xclaim: A graphical interface for the calculation of core-hole spectroscopies
Energy Technology Data Exchange (ETDEWEB)
Fernández-Rodríguez, Javier [Department of Physics, Northern Illinois University, DeKalb, IL 60115 (United States); Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Toby, Brian, E-mail: toby@anl.gov [Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Veenendaal, Michel van, E-mail: veenendaal@niu.edu [Department of Physics, Northern Illinois University, DeKalb, IL 60115 (United States); Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)
2015-07-15
Highlights: • The program Xclaim (X-ray core level atomic multiplets) calculates core-hole spectra. • Crystal field under an arbitrary point symmetry and hybridization with ligands. • X-ray absorption spectroscopy (XAS), X-ray photoemission spectroscopy (XPS), photoemission spectroscopy (PES) and inverse photoemission (IPES). - Abstract: Xclaim (X-ray core level atomic multiplets) is a graphical interface for the calculation of core-hole spectroscopy and ground state properties within a charge-transfer multiplet model taking into account a many-body Hamiltonian with Coulomb, spin–orbit, crystal-field, and hybridization interactions. Using Coulomb and spin–orbit parameters calculated in the Hartree–Fock limit and ligand field parameters (crystal-field, hybridization and charge-transfer energy) the program calculates X-ray absorption spectroscopy (XAS), X-ray photoemission spectroscopy (XPS), photoemission spectroscopy (PES) and inverse photoemission (IPES). The program runs on Linux, Windows and MacOS platforms.
Xclaim: A graphical interface for the calculation of core-hole spectroscopies
International Nuclear Information System (INIS)
Fernández-Rodríguez, Javier; Toby, Brian; Veenendaal, Michel van
2015-01-01
Highlights: • The program Xclaim (X-ray core level atomic multiplets) calculates core-hole spectra. • Crystal field under an arbitrary point symmetry and hybridization with ligands. • X-ray absorption spectroscopy (XAS), X-ray photoemission spectroscopy (XPS), photoemission spectroscopy (PES) and inverse photoemission (IPES). - Abstract: Xclaim (X-ray core level atomic multiplets) is a graphical interface for the calculation of core-hole spectroscopy and ground state properties within a charge-transfer multiplet model taking into account a many-body Hamiltonian with Coulomb, spin–orbit, crystal-field, and hybridization interactions. Using Coulomb and spin–orbit parameters calculated in the Hartree–Fock limit and ligand field parameters (crystal-field, hybridization and charge-transfer energy) the program calculates X-ray absorption spectroscopy (XAS), X-ray photoemission spectroscopy (XPS), photoemission spectroscopy (PES) and inverse photoemission (IPES). The program runs on Linux, Windows and MacOS platforms
Efficient calculation of dissipative quantum transport properties in semiconductor nanostructures
Energy Technology Data Exchange (ETDEWEB)
Greck, Peter
2012-11-26
We present a novel quantum transport method that follows the non-equilibrium Green's function (NEGF) framework but side steps any self-consistent calculation of lesser self-energies by replacing them by a quasi-equilibrium expression. We termed this method the multi-scattering Buettiker-Probe (MSB) method. It generalizes the so-called Buettiker-Probe model but takes into account all relevant individual scattering mechanisms. It is orders of magnitude more efficient than a fully selfconsistent non-equilibrium Green's function calculation for realistic devices, yet accurately reproduces the results of the latter method as well as experimental data. This method is fairly easy to implement and opens the path towards realistic three-dimensional quantum transport calculations. In this work, we review the fundamentals of the non-equilibrium Green's function formalism for quantum transport calculations. Then, we introduce our novel MSB method after briefly reviewing the original Buettiker-Probe model. Finally, we compare the results of the MSB method to NEGF calculations as well as to experimental data. In particular, we calculate quantum transport properties of quantum cascade lasers in the terahertz (THz) and the mid-infrared (MIR) spectral domain. With a device optimization algorithm based upon the MSB method, we propose a novel THz quantum cascade laser design. It uses a two-well period with alternating barrier heights and complete carrier thermalization for the majority of the carriers within each period. We predict THz laser operation for temperatures up to 250 K implying a new temperature record.
Lagrangian Transport Calculations Using UARS Data. Part 2; Ozone
Manney, Gloria L.; Zurek, R. W.; Froidevaux, L.; Waters, J. W.; ONeill, A.; Swinbank, R.
1995-01-01
Trajectory calculations are used to examine ozone transport in the polar winter stratosphere during periods of the Upper Atmosphere Research Satellite (UARS) observations. The value of these calculations for determining mass transport was demonstrated previously using UARS observations of long-lived tracers, In the middle stratosphere, the overall ozone behavior observed by the Microwave Limb Sounder in the polar vortex is reproduced by this purely dynamical model. Calculations show the evolution of ozone in the lower stratosphere during early winter to be dominated by dynamics in December 1992 in the Arctic. Calculations for June 1992 in the Antarctic show evidence of chemical ozone destruction and indicate that approx. 50% of the chemical destruction may be masked by dynamical effects, mainly diabatic descent, which bring higher ozone into the lower-stratospheric vortex. Estimating differences between calculated and observed fields suggests that dynamical changes masked approx. 20% - 35% of chemical ozone loss during late February and early March 1993 in the Arctic. In the Antarctic late winter, in late August and early September 1992, below approx. 520 K, the evolution of vortex-averaged ozone is entirely dominated by chemical effects; above this level, however, chemical ozone depletion can be partially or completely masked by dynamical effects. Our calculations for 1992 showed that chemical loss was nearly completely compensated by increases due to diabatic descent at 655 K.
CALCULATING BEDLOAD TRANSPORT IN RIVERS: CONCEPTS, CALCULUS ROUTINES AND APPLICATION
Directory of Open Access Journals (Sweden)
Hudson de Azevedo Macedo
2017-10-01
Full Text Available Rivers are immensely important to human activities such as water supply, navigation, energy generation, and agriculture. They are also an important morphodynamic agent of erosion, transport and deposition. Their capacity to transport sediment depends on their hydraulic characteristics and can be predicted by mathematical models. Several mathematical models can be used to compute bed-load transport. Each one is appropriately better for certain conditions. In this paper, we present an application built in Microsoft Excel to compute the bed-load transport in rivers based on the Van Rijn mathematical model. The Van Rijn model is appropriate for rivers transporting sandy sediments in conditions of subcritical flow. Hydraulic parameters such as channel slope, stream power, and Reynolds and Froude numbers can be calculated using the application proposed here. The application was tested in the Paraná River and results from the calculations are consistent with data obtained from fieldwork surveys. The error of the application was only 20%, which shows good agreement of the model with survey values.
TRING: a computer program for calculating radionuclide transport in groundwater
International Nuclear Information System (INIS)
Maul, P.R.
1984-12-01
The computer program TRING is described which enables the transport of radionuclides in groundwater to be calculated for use in long term radiological assessments using methods described previously. Examples of the areas of application of the program are activity transport in groundwater associated with accidental spillage or leakage of activity, the shutdown of reactors subject to delayed decommissioning, shallow land burial of intermediate level waste and geologic disposal of high level waste. Some examples of the use of the program are given, together with full details to enable users to run the program. (author)
International Nuclear Information System (INIS)
Honeck, H.C.
1984-01-01
1 - Description of problem or function: HAMMER performs infinite lattice, one-dimensional cell multigroup calculations, followed (optionally) by one-dimensional, few-group, multi-region reactor calculations with neutron balance edits. 2 - Method of solution: Infinite lattice parameters are calculated by means of multigroup transport theory, composite reactor parameters by few-group diffusion theory. 3 - Restrictions on the complexity of the problem: - Cell calculations - maxima of: 30 thermal groups; 54 epithermal groups; 20 space points; 20 regions; 18 isotopes; 10 mixtures; 3 thermal up-scattering mixtures; 200 resonances per group; no overlap or interference; single level only. - Reactor calculations - maxima of : 40 regions; 40 mixtures; 250 space points; 4 groups
Design of a transport calculation system for logging sondes simulation
International Nuclear Information System (INIS)
Marquez Damian, Jose Ignacio
2005-01-01
Analysis of available resources in earth crust is performed by different techniques, one of them is neutron logging. Design of sondes that are used to make such logging is supported by laboratory experiments as well as by numerical calculations.This work presents several calculation schemes, designed to simplify the task of whom has to planify such experiments or optimize parameters of this kind of sondes.These schemes use transport calculation codes, especially DaRT, TORT and MCNP, and cross section processing modules from SCALE system.Additionally a system for DaRT and TORT data postprocessing using OpenDX is presented.It allows scalar flux spatial distribution analysis, as wells as cross section condensation and reaction rates calculation
Development of a BWR core burn-up calculation code COREBN-BWR
International Nuclear Information System (INIS)
Morimoto, Yuichi; Okumura, Keisuke
1992-05-01
In order to evaluate core performances of BWR type reactors, the three dimensional core burnup calculation code COREBN-BWR and the fuel management code HIST-BWR have been developed. In analyses of BWR type reactors, thermal hydraulics calculations must be coupled with neutronics calculations to evaluate core performances, because steam void distribution changes according to the change of the power distribution. By installing new functions as follows to the three dimensional core burnup code COREBN2 developed in JAERI for PWR type reactor analyses, the code system becomes to be applicable to burnup analyses of BWR type reactors. (1) Macroscopic cross section calculation function taking into account of coolant void distribution. (2) Thermal hydraulics calculation function to evaluate core flow split, coolant void distribution and thermal margin. (3) Burnup calculation function under the Haling strategy. (4) Fuel management function to incorporate the thermal hydraulics information. This report consists of the general description, calculational models, input data requirements and their explanations, detailed information on usage and sample input. (author)
CALCULATION OF POLLUTION DYNAMICS NEAR RAILWAY TERRITORY DURING COAL TRANSPORTATION
Directory of Open Access Journals (Sweden)
M. M. Biliaiev
2017-02-01
Full Text Available Purpose. The article is aimed to develop 3D numerical model for the prediction of atmospheric pollution during transportation of bulk cargo in the railway car. Methodology.To solve this problem, it was developed three-dimensional numerical model, based on the use of the transport equation of dust pollution in the air by the wind and atmospheric turbulent diffusion. For the numerical integration of the simulating equation of the dust transport the implicit difference scheme was used. When constructing a difference scheme, it was carried out prior splitting of the original transport equation into the sequence of solutions of three equations. The first of them takes into account the transport of dust in paths, the second equation – dust transport under the influence of atmospheric turbulent diffusion, and the third equation –change of the dust concentration in the air due to its emissions from the cars.Unknown value of the pollutant concentration at every step of splitting is determined by the explicit scheme – the method of running account, which provides a simple numerical implementation of splitting equations. The developed numerical model is the basis for specialized computer program. On the basis of the constructed numerical model we carried out a computational experiment to assess the level of air pollution at the railway station during the motion of train with coal. Findings. Authors developed 3D numerical model, which belongs to the class of «screening models». This model takes into account the main physical factors affecting the process of dispersion of dust pollution in the atmosphere during coal transportation. The proposed numerical model requires low cost of computer time in the practical implementation on small and medium-power computers. This model can be used for rapid calculations of the dynamics of air pollution when transporting coal by rail. Calculations to determine the pollutant concentration and formation of the
Calculation of the RSG-GAS core using computer code citation-3D
International Nuclear Information System (INIS)
Taryo, T.; Rokhmadi
1998-01-01
Since core reactivity is one of the reactor safety parameters, this R and D has been carried out. To carry out the R and D, the code called WIMSD4 was used respectively for generating cross section and diffusion parameters. The code CITATION was then applied to estimate core reactivity in the RSG-GAS core. To verify the result of the calculation, data and information of the RSG-GAS Typical Working Core Were used. To Prove the codes reliably used, the case of all control elements down in the reactor core and that of all control rods up in the core were applied. The result taking into account those cases showed respectively that K eff are less and greater than unity (K eff eff >1)
Calculation of the ex-core neutron noise induced by fuel vibrations in PWRs
International Nuclear Information System (INIS)
Tran Hoai Nam; Cao Van Chung; Hoang Thanh Phi Hung; Hoang Van Khanh
2015-01-01
Calculation of the neutron noise induced by fuel assembly vibrations in two pressurized water reactor (PWR) cores has been performed to investigate the effect of cycle burnup on the properties of the ex-core detector noise. Pendular vibrations of individual fuel assemblies were assumed to occur at different locations in the core. The auto power spectra density (APSD) of the ex-core detector noise was evaluated with the assumption of stochastic vibrations along a random two-dimensional trajectory. The results show that no general monotonic variation of APSD was found. The increase of APSD occurs predominantly for peripheral assemblies. Assuming simultaneous vibrations of a number of fuel assemblies uniformly distributed over the core with the more realistic perturbation model, the effect of the peripheral assemblies will dominate and the increase of the amplitude of the ex-core neutron noise with burnup can be confirmed. (author)
Radiation transport calculations for the ANS [Advanced Neutron Source] beam tubes
International Nuclear Information System (INIS)
Engle, W.W. Jr.; Lillie, R.A.; Slater, C.O.
1988-01-01
The Advanced Neutron Source facility (ANS) will incorporate a large number of both radial and no-line-of-sight (NLS) beam tubes to provide very large thermal neutron fluxes to experimental facilities. The purpose of this work was to obtain comparisons for the ANS single- and split-core designs of the thermal and damage neutron and gamma-ray scalar fluxes in these beams tubes. For experimental locations far from the reactor cores, angular flux data are required; however, for close-in experimental locations, the scalar fluxes within each beam tube provide a credible estimate of the various signal to noise ratios. In this paper, the coupled two- and three-dimensional radiation transport calculations employed to estimate the scalar neutron and gamma-ray fluxes will be described and the results from these calculations will be discussed. 6 refs., 2 figs
Comparison of neutron transport calculations with NRC test results
International Nuclear Information System (INIS)
Koban, J.; Hofmann, W.
1981-02-01
For an exactly defined reactor arrangement (PCA = Pool Critical Assembly) neutron fluxes, neutron spectra and reaction rates for several neutron detectors were calculated by means of one and two dimensional transport codes. An international comparison proved the methods applied at KWU to be adequate. There were difficulties, however, in considering the three dimensions of the assembly which result mainly from its small dimension. This fact applies to all participants who didn't use three dimensional codes. (orig.) [de
ASOP, Shield Calculation, 1-D, Discrete Ordinates Transport
International Nuclear Information System (INIS)
1993-01-01
1 - Nature of physical problem solved: ASOP is a shield optimization calculational system based on the one-dimensional discrete ordinates transport program ANISN. It has been used to design optimum shields for space applications of SNAP zirconium-hydride-uranium- fueled reactors and uranium-oxide fueled thermionic reactors and to design beam stops for the ORELA facility. 2 - Method of solution: ASOP generates coefficients of linear equations describing the logarithm of the dose and dose-weight derivatives as functions of position from data obtained in an automated sequence of ANISN calculations. With the dose constrained to a design value and all dose-weight derivatives required to be equal, the linear equations may be solved for a new set of shield dimensions. Since changes in the shield dimensions may cause the linear functions to change, the entire procedure is repeated until convergence is obtained. The detailed calculations of the radiation transport through shield configurations for every step in the procedure distinguish ASOP from other shield optimization computer code systems which rely on multiple component sources and attenuation coefficients to describe the transport. 3 - Restrictions on the complexity of the problem: Problem size is limited only by machine size
Uniform Gauss-Weight Quadratures for Discrete Ordinate Transport Calculations
International Nuclear Information System (INIS)
Carew, John F.; Hu, Kai; Zamonsky, Gabriel
2000-01-01
Recently, a uniform equal-weight quadrature set, UE n , and a uniform Gauss-weight quadrature set, UG n , have been derived. These quadratures have the advantage over the standard level-symmetric LQ n quadrature sets in that the weights are positive for all orders,and the transport solution may be systematically converged by increasing the order of the quadrature set. As the order of the quadrature is increased,the points approach a uniform continuous distribution on the unit sphere,and the quadrature is invariant with respect to spatial rotations. The numerical integrals converge for continuous functions as the order of the quadrature is increased.The numerical characteristics of the UE n quadrature set have been investigated previously. In this paper, numerical calculations are performed to evaluate the application of the UG n quadrature set in typical transport analyses. A series of DORT transport calculations of the >1-MeV neutron flux have been performed for a set of pressure-vessel fluence benchmark problems. These calculations employed the UG n (n = 8, 12, 16, 24, and 32) quadratures and indicate that the UG n solutions have converged to within ∼0.25%. The converged UG n solutions are found to be comparable to the UE n results and are more accurate than the level-symmetric S 16 predictions
Accounting for chemical kinetics in field scale transport calculations
International Nuclear Information System (INIS)
Bryan, N.D.
2005-01-01
The modelling of column experiments has shown that the humic acid mediated transport of metal ions is dominated by the non-exchangeable fraction. Metal ions enter this fraction via the exchangeable fraction, and may transfer back again. However, in both directions these chemical reactions are slow. Whether or not a kinetic description of these processes is required during transport calculations, or an assumption of local equilibrium will suffice, will depend upon the ratio of the reaction half-time to the residence time of species within the groundwater column. If the flow rate is sufficiently slow or the reaction sufficiently fast then the assumption of local equilibrium is acceptable. Alternatively, if the reaction is sufficiently slow (or the flow rate fast), then the reaction may be 'decoupled', i.e. removed from the calculation. These distinctions are important, because calculations involving chemical kinetics are computationally very expensive, and should be avoided wherever possible. In addition, column experiments have shown that the sorption of humic substances and metal-humate complexes may be significant, and that these reactions may also be slow. In this work, a set of rules is presented that dictate when the local equilibrium and decoupled assumptions may be used. In addition, it is shown that in all cases to a first approximation, the behaviour of a kinetically controlled species, and in particular its final distribution against distance at the end of a calculation, depends only upon the ratio of the reaction first order rate to the residence time, and hence, even in the region where the simplifications may not be used, the behaviour is predictable. In this way, it is possible to obtain an estimate of the migration of these species, without the need for a complex transport calculation. (orig.)
International Nuclear Information System (INIS)
Miyoshi, Yoshinori; Yamamoto, Toshihiro; Nakamura, Takemi
2001-01-01
In order to validate the availability of criticality calculation codes and related nuclear data library, a series of fundamental benchmark experiments on low enriched uranyl nitrate solution have been performed with a Static Experiment Criticality Facility, STACY in JAERI. The basic core composed of a single tank with water reflector was used for accumulating the systematic data with well-known experimental uncertainties. This paper presents the outline of the core configurations of STACY, the standard calculation model, and calculation results with a Monte Carlo code and JENDL 3.2 nuclear data library. (author)
DNBR calculation in digital core protection system by a subchannel analysis code
International Nuclear Information System (INIS)
In, W. K.; Yoo, Y. J.; Hwang, T. H.; Ji, S. K.
2001-01-01
The DNBR calculation uncertainty and DNBR margin were evaluated in digital core protection system by a thermal-hydrualic subchannel analysis code MATRA. A simplified thermal-hydraulic code CETOP is used to calculate on-line DNBR in core protection system at a digital PWR. The DNBR tuning process against a best-estimate subchannel analysis code is required for CETOP to ensure accurate and conservative DNBR calculation but not necessary for MATRA. The DNBR calculations by MATRA and CETOP were performed for a large number of operating condition in Yonggwang nulcear units 3-4 where the digitial core protection system is initially implemented in Korea. MATRA resulted in a less negative mean value (i.e., reduce the overconservatism) and a somewhat larger standard deviation of the DNBR error. The uncertainty corrected minimum DNBR by MATRA was shown to be higher by 1.8% -9.9% that the CETOP DNBR
Calculation analysis of TRIGA MARK II reactor core composed of two types of fuel elements
International Nuclear Information System (INIS)
Ravnik, M.
1988-11-01
The most important properties of mixed cores are treated for TRIGA MARK II reactor, composed of standard (20% enriched, 8.5w% U content) and FLIP (70% enriched, 8.5w% U content) fuel elements. Large difference in enrichment and presence of burnable poison in FLIP fuel have strong influence on the main core characteristics, such as: fuel temperature coefficient, power defect, Xe and Sm worth, power and flux distributions, etc. They are significantly different for both types of fuel. Optimal loading of mixed cores therefore strongly depends on the loading pattern of both types of fuel elements. Results of systematic calculational analysis of mixed cores are presented. Calculations on the level of fuel element are performed with WIMSD-4 computer code with extended cross-section library. Core calculations are performed with TRIGAP two-group 1-D diffusion code. Results are compared to measurements and physical explanation is provided. Special concern is devoted to realistic mixed cores, for which optimal in-core fuel management is derived. Refs, figs and tabs
Implementation of refined core thermal-hydraulic calculation feature in the MARS/MASTER code
International Nuclear Information System (INIS)
Joo, H. K.; Jung, J. J.; Cho, B. O.; Ji, S. K.; Lee, W. J.; Jang, M. H.
2000-01-01
As an effort to enhance the fidelity of the core thermal/hydraulic calculation in the MARS/MASTER code, a best-estimate system/core coupled code, the COBRA-III module of MASTER is activated that enables refined core T/H calculations. Since the COBRA-III module is capable of using fuel-assembly sized nodes, the resolution of the T/H solution is high so that accurate incorporation of local T/H feedback effects becomes possible. The COBRA-III module is utilized such that the refined core T/H calculation is performed using the coarse-mesh flow boundary conditions specified by MARS at both ends of the core. The results of application to the OECD MSLB benchmark analysis indicate that the local peaking factor can be reduced by upto 15% with the refined calculation through the accurate representation of the local Doppler effect evaluation, although the prediction of the global transient behaviors such as the total core power change remain essentially unaffected
Improved core-edge tokamak transport simulations with the CORSICA 2 code
International Nuclear Information System (INIS)
Tarditi, A.; Cohen, R.H.; Crotinger, J.A.
1996-01-01
The CORSICA 2 code models the nonlinear transport between the core and the edge of a tokamak plasma. The code couples a 2D axisymmetric edge/SOL model (UEDGE) to a 1D model for the radial core transport in toroidal flux coordinates (the transport module from the CORSICA 1 code). The core density and temperature profiles are joined to the flux-surface average profiles from the 2D code sufficiently inside the magnetic separatrix, at a flux surface on which the edge profiles are approximately constant. In the present version of the code, the deuterium density and electron and ion temperatures are coupled. The electron density is determined by imposing quasi-neutrality, both in the core and in the edge. The model allows the core-edge coupling of multiple ion densities while retaining a single temperature (corresponding to the equilibration value) for the all ion species. Applications of CORSICA 2 to modeling the DIII-D tokamak are discussed. This work will focus on the simulation of the L-H transition, coupling a single ion species (deuterium) and the two (electron and ion) temperatures. These simulations will employ a new self-consistent model for the L-H transition that is being implemented in the UEDGE code. Applications to the modeling of ITER ignition scenarios are also discussed. This will involve coupling a second density species (the thermal alphas), bringing the total number of coupled variables up to four. Finally, the progress in evolving the magnetic geometry is discussed. Currently, this geometry is calculated by CORSICA's MHD equilibrium module (TEQ) at the beginning of the run and fixed thereafter. However, CORSICA 1 can evolve this geometry quasistatically, and this quasistatic treatment is being extended to include the edge/SOL geometry. Recent improvements for code speed-up are also presented
The transport and behaviour of isoproturon in unsaturated chalk cores
Besien, T. J.; Williams, R. J.; Johnson, A. C.
2000-04-01
A batch sorption study, a microcosm degradation study, and two separate column leaching studies were used to investigate the transport and fate of isoproturon in unsaturated chalk. The column leaching studies used undisturbed core material obtained from the field by dry percussion drilling. Each column leaching study used 25 cm long, 10 cm wide unsaturated chalk cores through which a pulse of isoproturon and bromide was eluted. The cores were set-up to simulate conditions in the unsaturated zone of the UK Chalk aquifer by applying a suction of 1 kPa (0.1 m H 2O) to the base of each column, and eluting at a rate corresponding to an average recharge rate through the unsaturated Chalk. A dye tracer indicated that the flow was through the matrix under these conditions. The results from the first column study showed high recovery rates for both isoproturon (73-92%) and bromide (93-96%), and that isoproturon was retarded by a factor of about 1.23 relative to bromide. In the second column study, two of the four columns were eluted with non-sterile groundwater in place of the sterile groundwater used on all other columns, and this study showed high recovery rates for bromide (85-92%) and lower recovery rates for isoproturon (66-79% — sterile groundwater, 48-61% — non-sterile groundwater). The enhanced degradation in the columns eluted with non-sterile groundwater indicated that groundwater microorganisms had increased the degradation rate within these columns. Overall, the reduced isoproturon recovery in the second column study was attributed to increased microbial degradation as a result of the longer study duration (162 vs. 105 days). The breakthrough curves (BTCs) for bromide had a characteristic convection-dispersion shape and were accurately simulated with the minimum of calibration using a simple convection-dispersion model (LEACHP). However, the isoproturon BTCs had an unusual shape and could not be accurately simulated.
Parallelization of a three-dimensional whole core transport code DeCART
Energy Technology Data Exchange (ETDEWEB)
Jin Young, Cho; Han Gyu, Joo; Ha Yong, Kim; Moon-Hee, Chang [Korea Atomic Energy Research Institute, Yuseong-gu, Daejon (Korea, Republic of)
2003-07-01
Parallelization of the DeCART (deterministic core analysis based on ray tracing) code is presented that reduces the computational burden of the tremendous computing time and memory required in three-dimensional whole core transport calculations. The parallelization employs the concept of MPI grouping and the MPI/OpenMP mixed scheme as well. Since most of the computing time and memory are used in MOC (method of characteristics) and the multi-group CMFD (coarse mesh finite difference) calculation in DeCART, variables and subroutines related to these two modules are the primary targets for parallelization. Specifically, the ray tracing module was parallelized using a planar domain decomposition scheme and an angular domain decomposition scheme. The parallel performance of the DeCART code is evaluated by solving a rodded variation of the C5G7MOX three dimensional benchmark problem and a simplified three-dimensional SMART PWR core problem. In C5G7MOX problem with 24 CPUs, a speedup of maximum 21 is obtained on an IBM Regatta machine and 22 on a LINUX Cluster in the MOC kernel, which indicates good parallel performance of the DeCART code. In the simplified SMART problem, the memory requirement of about 11 GBytes in the single processor cases reduces to 940 Mbytes with 24 processors, which means that the DeCART code can now solve large core problems with affordable LINUX clusters. (authors)
Depletion methodology in the 3-D whole core transport code DeCART
Energy Technology Data Exchange (ETDEWEB)
Kim, Kang Seog; Cho, Jin Young; Zee, Sung Quun
2005-02-01
Three dimensional whole-core transport code DeCART has been developed to include a characteristics of the numerical reactor to replace partly the experiment. This code adopts the deterministic method in simulating the neutron behavior with the least assumption and approximation. This neutronic code is also coupled with the thermal hydraulic code CFD and the thermo mechanical code to simulate the combined effects. Depletion module has been implemented in DeCART code to predict the depleted composition in the fuel. The exponential matrix method of ORIGEN-2 has been used for the depletion calculation. The library of including decay constants, yield matrix and others has been used and greatly simplified for the calculation efficiency. This report summarizes the theoretical backgrounds and includes the verification of the depletion module in DeCART by performing the benchmark calculations.
Two-dimensional full-core transport theory Benchmarks for the WWER reactors
International Nuclear Information System (INIS)
Petkov, P.T.
2002-01-01
Several two-dimensional full-core real geometry many-group steady-state problems for the WWER-440 and WWER-1000 reactors have been solved by the MARIKO code, based on the method of characteristics. The reference transport theory solutions include assembly-wise and pin-wise power distributions. Homogenized two-group diffusion parameters and discontinuity factors have been calculated by MARIKO for each assembly type both for the whole assembly and for each cell in the smallest sector of symmetry, using the B1 method for calculation of the critical spectrum. Accurate albedo-type boundary conditions have been calculated by MARIKO for the core-reflector and core-absorber boundaries, both for each outer assembly face and for each outer cell face. Comparison with the reference solutions of the two-group nodal diffusion code SPPS-1.6 and the few-group fine-mesh diffusion codes HEX2DA and HEX2DB are presented (Authors)
International Nuclear Information System (INIS)
Won, Jong Hyuck; Cho, Nam Zin
2011-01-01
In deterministic neutron transport methods, a process called fine-group to few-group condensation is used to reduce the computational burden. However, recent results on the core-reflector problem in fast reactor cores show that use of a small number of energy groups has limitation to describe neutron flux around core reflector interface. Therefore, researches are still ongoing to overcome this limitation. Recently, the authors proposed I) direct application of equivalently condensed angle-dependent total cross section to discrete ordinates method to overcome the limitation of conventional multi-group approximations, and II) local/global iteration framework in which fine-group discrete ordinates calculation is used in local problems while few-group transport calculation is used in the global problem iteratively. In this paper, an analysis of the core-reflector problem is performed in few-group structure using equivalent angle-dependent total cross section with local/global iteration. Numerical results are obtained under S 12 discrete ordinates-like transport method with scattering cross section up to P1 Legendre expansion
Calculational and experimental experience on core management of experimental fast reactor 'JOYO'
International Nuclear Information System (INIS)
Yoshida, A.; Arii, Y.; Shono, A.; Suzuki, S.; Kinjo, K.
1992-01-01
For the core management of JOYO Mark-II, many core characteristics have been calculated with the core management code system 'MAGI', and measurements have also been carried out at each duty operation cycle. From the evaluation of these results, the characteristics of core parameters such as criticality, reactivity coefficients, and control rod worth can be predicted accurately as followings; excess reactivity: ± 0.1% Δk/k, outlet temperature of subassembly: ±10degC, fuel burn-up: ±5%, control rod worth: ±5%. As a result, we can not only get steady operation of JOYO but also perform various irradiation tests with satisfied conditions. This paper presents experience obtained until now through twenty three duty cycle operations of Mark-II core in JOYO. (author)
Benchmark calculations on nuclear characteristics of JRR-4 HEU core by SRAC code system
International Nuclear Information System (INIS)
Arigane, Kenji
1987-04-01
The reduced enrichment program for the JRR-4 has been progressing based on JAERI's RERTR (Reduced Enrichment Research and Test Reactor) program. The SRAC (JAERI Thermal Reactor Standard Code System for Reactor Design and Analysis) is used for the neutronic design of the JRR-4 LEU Core. This report describes the benchmark calculations on the neutronic characteristics of the JRR-4 HEU Core in order to validate the calculation method. The benchmark calculations were performed on the various kind of neutronic characteristics such as excess reactivity, criticality, control rod worth, thermal neutron flux distribution, void coefficient, temperature coefficient, mass coefficient, kinetic parameters and poisoning effect by Xe-135 build up. As the result, it was confirmed that these calculated values are in satisfactory agreement with the measured values. Therefore, the calculational method by the SRAC was validated. (author)
Beam transport calculations for BARC-TIFR 14UD pelletron
International Nuclear Information System (INIS)
Prasad, K.G.
1993-01-01
The 14UD pelletron tandem accelerator installed at Tata Institute of Fundamental Research (TIFR) as a joint BARC-TIFR project, is supplied by National Electrostatic Corporation (NEC), U.S.A. To optimise the parameters of various elements along the beam path, it is essential to work out the beam optics of the entire system. There are various computer codes in use for such calculations. All these codes, except the detailed ray tracing programs, use matrix formulation. Thus each ion optical element is characterised in terms of a transport matrix, whose elements are assumed to be independent of particle trajectory. We have performed only the first order calculations, meaning thereby that no aberrations are included. Further, all calculations are carried out assuming ideal conditions like axial beam injection, perfectly aligned beam line elements, etc. The main code that has been employed in our calculations is based on the one at the Australian National University, Canberra, suitably modified for use with CYBER 170/730 computer at TIFR. However, codes at NEC and Stony Brook were also used for the checking the results. The results of calculations are given and discussed. (author). 2 figs
Modeling Dynamic Objects in Monte Carlo Particle Transport Calculations
International Nuclear Information System (INIS)
Yegin, G.
2008-01-01
In this study, the Multi-Geometry geometry modeling technique was improved in order to handle moving objects in a Monte Carlo particle transport calculation. In the Multi-Geometry technique, the geometry is a superposition of objects not surfaces. By using this feature, we developed a new algorithm which allows a user to make enable or disable geometry elements during particle transport. A disabled object can be ignored at a certain stage of a calculation and switching among identical copies of the same object located adjacent poins during a particle simulation corresponds to the movement of that object in space. We called this powerfull feature as Dynamic Multi-Geometry technique (DMG) which is used for the first time in Brachy Dose Monte Carlo code to simulate HDR brachytherapy treatment systems. Our results showed that having disabled objects in a geometry does not effect calculated dose values. This technique is also suitable to be used in other areas such as IMRT treatment planning systems
Validation of the CORD-2 System for the Nuclear Design Calculations of the NPP Krsko Core
International Nuclear Information System (INIS)
Kromar, M.; Kurincic, B.
2016-01-01
The CORD-2 package intended for core design calculations of PWRs has be recently updated with some improved models. Since the modifications could substantially influence the obtained results, a technical validation process is required. This paper presents comparison of some calculated and measured parameters of the NPP Krsko core needed to qualify the package. Critical boron concentrations at hot full power for selected cycle burnup points and several parameters obtained during the start-up testing at the beginning of each cycle (hot zero power critical concentration, isothermal temperature coefficient and rods worth) for all 27 finished cycles of operation are considered. In addition, assembly-wise power distribution for some selected cycles is checked. Comparison has shown very good agreement of the CORD-2 calculated values with the selected measured parameter of the NPP Krsko core.(author).
Burnup dependent core neutronic calculations for research and training reactors via SCALE4.4
International Nuclear Information System (INIS)
Tombakoglu, M.; Cecen, Y.
2001-01-01
In this work, the full core modelling is performed to improve neutronic analyses capability for nuclear research reactors using SCALE4.4 code system. KENOV.a module of SCALE4.4 code system is utilized for full core neutronic analysis. The ORIGEN-S module is coupled with the KENOV.a module to perform burnup dependent neutronic analyses. Results of neutronic calculations for 1 st cycle of Cekmece TR-2 research reactor are presented. In particular, coupling of KENOV.a and ORIGEN-S modules of SCALE4.4 is discussed. The preliminary results of 2-D burnup dependent neutronic calculations are also given. These results are extended to burnup dependent core calculations of TRIGA Mark-II research reactors. The code system developed here is similar to the code system that couples MCNP and ORIGEN2.(author)
International Nuclear Information System (INIS)
Valentine, T.E.; Mihalczo, J.T.
1996-01-01
One primary concern for design of safety systems for reactors is the time response of external detectors to changes in the core. This paper describes a way to estimate the time delay between the core power production and the external detector response using Monte Carlo calculations and suggests a technique to measure the time delay. The Monte Carlo code KENO-NR was used to determine the time delay between the core power production and the external detector response for a conceptual design of the Advanced Neutron Source (ANS) reactor. The Monte Carlo estimated time delay was determined to be about 10 ms for this conceptual design of the ANS reactor
Ab Initio Calculations of Transport Properties of Vanadium Oxides
Lamsal, Chiranjivi; Ravindra, N. M.
2018-04-01
The temperature-dependent transport properties of vanadium oxides have been studied near the Fermi energy using the Kohn-Sham band structure approach combined with Boltzmann transport equations. V2O5 exhibits significant thermoelectric properties, which can be attributed to its layered structure and stability. Highly anisotropic electrical conduction in V2O5 is clearly manifested in the calculations. Due to specific details of the band structure and anisotropic electron-phonon interactions, maxima and crossovers are also seen in the temperature-dependent Seebeck coefficient of V2O5. During the phase transition of VO2, the Seebeck coefficient changes by 18.9 µV/K, which is close to (within 10% of) the observed discontinuity of 17.3 µV/K.
International Nuclear Information System (INIS)
Tabuchi, M.; Tatsumi, M.; Ohoka, Y.; Nagano, H.; Ishizaki, K.
2017-01-01
This paper describes overview of AEGIS/SCOPE2 system, an advanced in-core fuel management system for pressurized water reactors, and its validation results of actual core follow calculations including irregular operational conditions. AEGIS and SCOPE2 codes adopt more detailed and accurate calculation models compared to the current core design codes while computational cost is minimized with various techniques on numerical and computational algorithms. Verification and validation of AEGIS/SCOPE2 has been intensively performed to confirm validity of the system. As a part of the validation, core follow calculations have been carried out mainly for typical operational conditions. After the Fukushima Daiichi nuclear power plant accident, however, all the nuclear reactors in Japan suffered from long suspension and irregular operational conditions. In such situations, measured data in the restart and operation of the reactors should be good examinations for validation of the codes. Therefore, core follow calculations were carried out with AEGIS/SCOPE2 for various cases including zero power reactor physics tests with irregular operational conditions. Comparisons between measured data and predictions by AEGIS/SCOPE2 revealed the validity and robustness of the system. (author)
International Nuclear Information System (INIS)
Hay, P.J.; Wadt, W.R.
1985-01-01
Ab initio effective core potentials (ECP's) have been generated to replace the innermost core electron for third-row (K--Au), fourth-row (Rb--Ag), and fifth-row (Cs--Au) atoms. The outermost core orbitals: corresponding to the ns 2 np 6 configuration for the three rows here: are not replaced by the ECP but are treated on an equal footing with the nd, (n+1)s and (n+1)p valence orbitals. These ECP's have been derived for use in molecular calculations where these outer core orbitals need to be treated explicitly rather than to be replaced by an ECP. The ECP's for the forth and fifth rows also incorporate the mass--velocity and Darwin relativistic effects into the potentials. Analytic fits to the potentials are presented for use in multicenter integral evaluation. Gaussian orbital valence basis sets are developed for the (3s, 3p, 3d, 4s, 4p), (4s, 4p, 4d, 5s, 5p), and (5s, 5p, 5d, 6s, 6p) ortibals of the three respective rows
Transport and hydrodynamic calculations of direct photons at FAIR
International Nuclear Information System (INIS)
Baeuchle, Bjorn; Bleicher, Marcus
2011-01-01
The microscopic transport model UrQMD and a micro + macro hybrid model are used to calculate direct photon spectra from U+U-collisions at E lab =35 A GeV as will be measured by the CBM Collaboration at FAIR. In the hybrid model, the intermediate high-density part of the nuclear interaction is described with ideal 3+1-dimensional hydrodynamics. Different equations of state of the matter created in the heavy-ion collisions are investigated and the resulting spectra of direct photons are predicted. The emission patterns of direct photons in space and time are discussed.
Two-dimensional core calculation research for fuel management optimization based on CPACT code
International Nuclear Information System (INIS)
Chen Xiaosong; Peng Lianghui; Gang Zhi
2013-01-01
Fuel management optimization process requires rapid assessment for the core layout program, and the commonly used methods include two-dimensional diffusion nodal method, perturbation method, neural network method and etc. A two-dimensional loading patterns evaluation code was developed based on the three-dimensional LWR diffusion calculation program CPACT. Axial buckling introduced to simulate the axial leakage was searched in sub-burnup sections to correct the two-dimensional core diffusion calculation results. Meanwhile, in order to get better accuracy, the weight equivalent volume method of the control rod assembly cross-section was improved. (authors)
International Nuclear Information System (INIS)
Oliveira, A.C.J.G. de; Andrade Lima, F.R. de
1989-01-01
The present work is an application of the perturbation theory (Matricial formalism) to a simplified two channels model, for sensitivity calculations in PWR cores. Expressions for some sensitivity coefficients of thermohydraulic interest were developed from the proposed model. The code CASNUR.FOR was written in FORTRAN to evaluate these sensitivity coefficients. The comparison between results obtained from the matrical formalism of pertubation theory with those obtained directly from the two channels model, makes evident the efficiency and potentiality of this perturbation method for nuclear reactor cores sensitivity calculations. (author) [pt
Zahasky, Christopher; Benson, Sally M.
2018-05-01
Accurate descriptions of heterogeneity in porous media are important for understanding and modeling single phase (e.g. contaminant transport, saltwater intrusion) and multiphase (e.g. geologic carbon storage, enhanced oil recovery) transport problems. Application of medical imaging to experimentally quantify these processes has led to significant progress in material characterization and understanding fluid transport behavior at laboratory scales. While widely utilized in cancer diagnosis and management, cardiology, and neurology, positron emission tomography (PET) has had relatively limited applications in earth science. This study utilizes a small-bore micro-PET scanner to image and quantify the transport behavior of pulses of a conservative aqueous radiotracer injected during single and multiphase flow experiments in two heterogeneous Berea sandstone cores. The cores are discretized into axial-parallel streamtubes, and using the reconstructed micro-PET data, expressions are derived from spatial moment analysis for calculating sub-core tracer flux and pore water velocity. Using the flux and velocity measurements, it is possible to calculate porosity and saturation from volumetric flux balance, and calculate permeability and water relative permeability from Darcy's law. Second spatial moment analysis enables measurement of sub-core solute dispersion during both single phase and multiphase experiments. A numerical simulation model is developed to verify the assumptions of the streamtube dimension reduction technique. A variation of the reactor ratio is presented as a diagnostic metric to efficiently determine the validity of the streamtube approximation in core and column-scale experiments. This study introduces a new method to quantify sub-core permeability, relative permeability, and dispersion. These experimental and analytical methods provide a foundation for future work on experimental measurements of differences in transport behavior across scales.
Criticality coefficient calculation for a small PWR using Monte Carlo Transport Code
Energy Technology Data Exchange (ETDEWEB)
Trombetta, Debora M.; Su, Jian, E-mail: dtrombetta@nuclear.ufrj.br, E-mail: sujian@nuclear.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil); Chirayath, Sunil S., E-mail: sunilsc@tamu.edu [Department of Nuclear Engineering and Nuclear Security Science and Policy Institute, Texas A and M University, TX (United States)
2015-07-01
Computational models of reactors are increasingly used to predict nuclear reactor physics parameters responsible for reactivity changes which could lead to accidents and losses. In this work, preliminary results for criticality coefficient calculation using the Monte Carlo transport code MCNPX were presented for a small PWR. The computational modeling developed consists of the core with fuel elements, radial reflectors, and control rods inside a pressure vessel. Three different geometries were simulated, a single fuel pin, a fuel assembly and the core, with the aim to compare the criticality coefficients among themselves.The criticality coefficients calculated were: Doppler Temperature Coefficient, Coolant Temperature Coefficient, Coolant Void Coefficient, Power Coefficient, and Control Rod Worth. The coefficient values calculated by the MCNP code were compared with literature results, showing good agreement with reference data, which validate the computational model developed and allow it to be used to perform more complex studies. Criticality Coefficient values for the three simulations done had little discrepancy for almost all coefficients investigated, the only exception was the Power Coefficient. Preliminary results presented show that simple modelling as a fuel assembly can describe changes at almost all the criticality coefficients, avoiding the need of a complex core simulation. (author)
Calculation of the flow distribution for the new core of the RA-6 reactor
International Nuclear Information System (INIS)
Garcia, J.C.; Delmastro, Dario F.
2007-01-01
In this work the pressure drop, the flow distribution, effective cooling flow rate and the velocity in the subchannels that cool fuel plates for the new core of RA-6 research reactor were calculated. These calculations were performed for a flow of 340 m 3 /hr and water temperatures of 12 C degrees, of 35 C degrees and 42 C degrees. The flow distribution was calculated without considering either safety factors or geometric changes. All the calculations were performed considering the flow as isothermal. (author) [es
Coupled full core neutron transport/CFD simulations of pressurized water reactors
International Nuclear Information System (INIS)
Kochunas, B.; Stimpson, S.; Collins, B.; Downar, T.; Brewster, R.; Baglietto, E.; Yan, J.
2012-01-01
Recently as part of the CASL project, a capability to perform 3D whole-core coupled neutron transport and computational fluid dynamics (CFD) calculations was demonstrated. This work uses the 2D/1D transport code DeCART and the commercial CFD code STAR-CCM+. It builds on previous CASL work demonstrating coupling for smaller spatial domains. The coupling methodology is described along with the problem simulated and results are presented for fresh hot full power conditions. An additional comparison is made to an equivalent model that uses lower order T/H feedback to assess the importance and cost of high fidelity feedback to the neutronics problem. A simulation of a quarter core Combustion Engineering (CE) PWR core was performed with the coupled codes using a Fixed Point Gauss-Seidel iteration technique. The total approximate calculation requirements are nearly 10,000 CPU hours and 1 TB of memory. The problem took 6 coupled iterations to converge. The CFD coupled model and low order T/H feedback model compared well for global solution parameters, with a difference in the critical boron concentration and average outlet temperature of 14 ppm B and 0.94 deg. C, respectively. Differences in the power distribution were more significant with maximum relative differences in the core-wide pin peaking factor (Fq) of 5.37% and average relative differences in flat flux region power of 11.54%. Future work will focus on analyzing problems more relevant to CASL using models with less approximations. (authors)
Neutron transport assembly calculation with non-zero net current boundary condition
International Nuclear Information System (INIS)
Jo, Chang Keun
1993-02-01
Fuel assembly calculation for the homogenized group constants is one of the most important parts in the reactor core analysis. The homogenized group constants of one a quarter assembly are usually generated for the nodal calculation of the reactor core. In the current nodal calculation, one or a quarter of the fuel assembly corresponds to a unit node. The homogenized group constant calculation for a fuel assembly proceeds through cell spectrum calculations, group condensation and cell homogenization calculations, two dimensional fuel assembly calculation, and then depletion calculations of fuel rods. To obtain the assembly wise homogenized group constants, the two dimensional transport calculation is usually performed. Most codes for the assembly wise homogenized group constants employ a zero net current boundary condition. CASMO-3 is such a code that is in wide use. The zero net current boundary condition is plausible and valid in an infinite reactor composed of the same kind of assemblies. However, the reactor is finite and the core is constructed by different kinds of assemblies. Hence, the assumption of the zero net current boundary condition is not valid in the actual reactor. The objective of this study is to develop a homogenization methodology that can treat any actual boundary condition, i.e. non-zero net current boundary condition. In order to treat the non-zero net current boundary condition, we modify CASMO-3. For the two-dimensional treatment in CASMO-3, a multigroup integral transport routine based on the method of transmission probability is used. The code performs assembly calculation with zero net current boundary condition. CASMO-3 is modified to consider the inhomogeneous source at the assembly boundary surface due to the non-zero net current. The modified version of CASMO-3 is called CASMO-3M. CASMO-3M is applied to several benchmark problems. In order to obtain the inhomogeneous source, the global calculation is performed. The local calculation
Repair for scattering expansion truncation errors in transport calculations
International Nuclear Information System (INIS)
Emmett, M.B.; Childs, R.L.; Rhoades, W.A.
1980-01-01
Legendre expansion of angular scattering distributions is usually limited to P 3 in practical transport calculations. This truncation often results in non-trivial errors, especially alternating negative and positive lateral scattering peaks. The effect is especially prominent in forward-peaked situations such as the within-group component of the Compton Scattering of gammas. Increasing the expansion to P 7 often makes the peaks larger and narrower. Ward demonstrated an accurate repair, but his method requires special cross section sets and codes. The DOT IV code provides fully-compatible, but heuristic, repair of the erroneous scattering. An analytical Klein-Nishina estimator, newly available in the MORSE code, allows a test of this method. In the MORSE calculation, particle scattering histories are calculated in the usual way, with scoring by an estimator routine at each collision site. Results for both the conventional P 3 estimator and the analytical estimator were obtained. In the DOT calculation, the source moments are expanded into the directional representation at each iteration. Optionally a sorting procedure removes all negatives, and removes enough small positive values to restore particle conservation. The effect of this is to replace the alternating positive and negative values with positive values of plausible magnitude. The accuracy of those values is examined herein
Parallel processing of two-dimensional Sn transport calculations
International Nuclear Information System (INIS)
Uematsu, M.
1997-01-01
A parallel processing method for the two-dimensional S n transport code DOT3.5 has been developed to achieve a drastic reduction in computation time. In the proposed method, parallelization is achieved with angular domain decomposition and/or space domain decomposition. The calculational speed of parallel processing by angular domain decomposition is largely influenced by frequent communications between processing elements. To assess parallelization efficiency, sample problems with up to 32 x 32 spatial meshes were solved with a Sun workstation using the PVM message-passing library. As a result, parallel calculation using 16 processing elements, for example, was found to be nine times as fast as that with one processing element. As for parallel processing by geometry segmentation, the influence of processing element communications on computation time is small; however, discontinuity at the segment boundary degrades convergence speed. To accelerate the convergence, an alternate sweep of angular flux in conjunction with space domain decomposition and a two-step rescaling method consisting of segmentwise rescaling and ordinary pointwise rescaling have been developed. By applying the developed method, the number of iterations needed to obtain a converged flux solution was reduced by a factor of 2. As a result, parallel calculation using 16 processing elements was found to be 5.98 times as fast as the original DOT3.5 calculation
Neutron and gamma ray transport calculations in shielding system
Energy Technology Data Exchange (ETDEWEB)
Masukawa, Fumihiro; Sakamoto, Hiroki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
1998-03-01
In the shields for radiation in nuclear facilities, the penetrating holes of various kinds and irregular shapes are made for the reasons of operation, control and others. These penetrating holes and gaps are filled with air or the substances with relatively small shielding performance, and radiation flows out through them, which is called streaming. As the calculation techniques for the shielding design or analysis related to the streaming problem, there are the calculations by simplified evaluation, transport calculation and Monte Carlo method. In this report, the example of calculation by Monte Carlo method which is represented by MCNP code is discussed. A number of variance reduction techniques which seem effective for the analysis of streaming problem were tried. As to the investigation of the applicability of MCNP code to streaming analysis, the object of analysis which are the concrete walls without hole and with horizontal hole, oblique hole and bent oblique hole, the analysis procedure, the composition of concrete, and the conversion coefficient of dose equivalent, and the results of analysis are reported. As for variance reduction technique, cell importance was adopted. (K.I.)
Apparatus for the measurement of radionuclide transport rates in rock cores
International Nuclear Information System (INIS)
Weed, H.C.; Koszykowski, R.F.; Dibley, L.L.; Murray, I.
1981-09-01
An apparatus and procedure for the study of radionuclide transport in intact rock cores are presented in this report. This equipment more closely simulates natural conditions of radionuclide transport than do crushed rock columns. The apparatus and the procedure from rock core preparation through data analysis are described. The retardation factors measured are the ratio of the transport rate of a non-retarded radionuclide, such as 3 H, to the transport rate of a retarded radionuclide. Sample results from a study of the transport of /sup 95m/Tc and 85 Sr in brine through a sandstone core are included
Energy Technology Data Exchange (ETDEWEB)
Millman, D. L. [Dept. of Computer Science, Univ. of North Carolina at Chapel Hill (United States); Griesheimer, D. P.; Nease, B. R. [Bechtel Marine Propulsion Corporation, Bertis Atomic Power Laboratory (United States); Snoeyink, J. [Dept. of Computer Science, Univ. of North Carolina at Chapel Hill (United States)
2012-07-01
In this paper we consider a new generalized algorithm for the efficient calculation of component object volumes given their equivalent constructive solid geometry (CSG) definition. The new method relies on domain decomposition to recursively subdivide the original component into smaller pieces with volumes that can be computed analytically or stochastically, if needed. Unlike simpler brute-force approaches, the proposed decomposition scheme is guaranteed to be robust and accurate to within a user-defined tolerance. The new algorithm is also fully general and can handle any valid CSG component definition, without the need for additional input from the user. The new technique has been specifically optimized to calculate volumes of component definitions commonly found in models used for Monte Carlo particle transport simulations for criticality safety and reactor analysis applications. However, the algorithm can be easily extended to any application which uses CSG representations for component objects. The paper provides a complete description of the novel volume calculation algorithm, along with a discussion of the conjectured error bounds on volumes calculated within the method. In addition, numerical results comparing the new algorithm with a standard stochastic volume calculation algorithm are presented for a series of problems spanning a range of representative component sizes and complexities. (authors)
International Nuclear Information System (INIS)
Millman, D. L.; Griesheimer, D. P.; Nease, B. R.; Snoeyink, J.
2012-01-01
In this paper we consider a new generalized algorithm for the efficient calculation of component object volumes given their equivalent constructive solid geometry (CSG) definition. The new method relies on domain decomposition to recursively subdivide the original component into smaller pieces with volumes that can be computed analytically or stochastically, if needed. Unlike simpler brute-force approaches, the proposed decomposition scheme is guaranteed to be robust and accurate to within a user-defined tolerance. The new algorithm is also fully general and can handle any valid CSG component definition, without the need for additional input from the user. The new technique has been specifically optimized to calculate volumes of component definitions commonly found in models used for Monte Carlo particle transport simulations for criticality safety and reactor analysis applications. However, the algorithm can be easily extended to any application which uses CSG representations for component objects. The paper provides a complete description of the novel volume calculation algorithm, along with a discussion of the conjectured error bounds on volumes calculated within the method. In addition, numerical results comparing the new algorithm with a standard stochastic volume calculation algorithm are presented for a series of problems spanning a range of representative component sizes and complexities. (authors)
CANDU reactor core simulations using fully coupled DRAGON and DONJON calculations
International Nuclear Information System (INIS)
Varin, E.; Marleau, G.
2006-01-01
The operating CANDU-6 reactors are refueled on-power to compensate for the reactivity loss due to fuel burnup. In order to predict the core behavior, fuel bundle burnups and local parameter information need to be tracked. The history-based approach has been developed to follow local parameter as well as history effect in CANDU reactors. The finite reactor diffusion code DONJON and the lattice code DRAGON have been coupled to perform reactor follow-up calculations using a history-based approach. A coupled methodology that manages the transfer of information between standard DONJON and DRAGON data structures has been developed. Push-through refueling can be taken into account directly in cell calculations. Using actual on-site information, an isotopic core content database has been generated with coupled DONJON and DRAGON calculations. Moreover calculations have been performed for different local parameters. Results are compared with those obtained using standard cross section generation approaches
Core design calculations of IRIS reactor using modified CORD-2 code package
International Nuclear Information System (INIS)
Pevec, D.; Grgic, D.; Jecmenica, R.; Petrovic, B.
2002-01-01
Core design calculations, with thermal-hydraulic feedback, for the first cycle of the IRIS reactor were performed using the modified CORD-2 code package. WIMSD-5B code is applied for cell and cluster calculations with two different 69-group data libraries (ENDF/BVI rev. 5 and JEF-2.2), while the nodal code GNOMER is used for diffusion calculations. The objective of the calculation was to address basic core design problems for innovative reactors with long fuel cycle. The results were compared to our results obtained with CORD-2 before the modification and to preliminary results obtained with CASMO code for a similar problem without thermal-hydraulic feedback.(author)
Parallel MCNP Monte Carlo transport calculations with MPI
International Nuclear Information System (INIS)
Wagner, J.C.; Haghighat, A.
1996-01-01
The steady increase in computational performance has made Monte Carlo calculations for large/complex systems possible. However, in order to make these calculations practical, order of magnitude increases in performance are necessary. The Monte Carlo method is inherently parallel (particles are simulated independently) and thus has the potential for near-linear speedup with respect to the number of processors. Further, the ever-increasing accessibility of parallel computers, such as workstation clusters, facilitates the practical use of parallel Monte Carlo. Recognizing the nature of the Monte Carlo method and the trends in available computing, the code developers at Los Alamos National Laboratory implemented the message-passing general-purpose Monte Carlo radiation transport code MCNP (version 4A). The PVM package was chosen by the MCNP code developers because it supports a variety of communication networks, several UNIX platforms, and heterogeneous computer systems. This PVM version of MCNP has been shown to produce speedups that approach the number of processors and thus, is a very useful tool for transport analysis. Due to software incompatibilities on the local IBM SP2, PVM has not been available, and thus it is not possible to take advantage of this useful tool. Hence, it became necessary to implement an alternative message-passing library package into MCNP. Because the message-passing interface (MPI) is supported on the local system, takes advantage of the high-speed communication switches in the SP2, and is considered to be the emerging standard, it was selected
Kinetic parameters evaluation of PWRs using static cell and core calculation codes
International Nuclear Information System (INIS)
Jahanbin, Ali; Malmir, Hessam
2012-01-01
Highlights: ► In this study, we have calculated effective delayed neutron fraction and prompt neutron lifetime in PWRs. ► New software has been developed to link the WIMS, BORGES and CITATION codes in Visual C computer programming language. ► This software is used for calculation of the kinetic parameters in a typical VVER-1000 and NOK Beznau reactor. ► The ratios ((β eff ) i )/((β eff ) core ) , which are the important input data for the reactivity accident analysis, are also calculated. - Abstract: In this paper, evaluation of the kinetic parameters (effective delayed neutron fraction and prompt neutron lifetime) in PWRs, using static cell and core calculation codes, is reported. A new software has been developed to link the WIMS, BORGES and CITATION codes in Visual C computer programming language. Using the WIMS cell calculation code, multigroup microscopic cross-sections and number densities of different materials can be generated in a binary file. By the use of BORGES code, these binary-form cross-sections and number densities are converted to a format readable by the CITATION core calculation code, by which the kinetic parameters can be finally obtained. This software is used for calculation of the kinetic parameters in a typical VVER-1000 and NOK Beznau reactor. The ratios ((β eff ) i )/((β eff ) core ) , which are the important input data for the reactivity accident analysis, are also calculated. Benchmarking of the results against the final safety analysis report (FSAR) of the aforementioned reactors shows very good agreements with these published documents.
Error reduction techniques for Monte Carlo neutron transport calculations
International Nuclear Information System (INIS)
Ju, J.H.W.
1981-01-01
Monte Carlo methods have been widely applied to problems in nuclear physics, mathematical reliability, communication theory, and other areas. The work in this thesis is developed mainly with neutron transport applications in mind. For nuclear reactor and many other applications, random walk processes have been used to estimate multi-dimensional integrals and obtain information about the solution of integral equations. When the analysis is statistically based such calculations are often costly, and the development of efficient estimation techniques plays a critical role in these applications. All of the error reduction techniques developed in this work are applied to model problems. It is found that the nearly optimal parameters selected by the analytic method for use with GWAN estimator are nearly identical to parameters selected by the multistage method. Modified path length estimation (based on the path length importance measure) leads to excellent error reduction in all model problems examined. Finally, it should be pointed out that techniques used for neutron transport problems may be transferred easily to other application areas which are based on random walk processes. The transport problems studied in this dissertation provide exceptionally severe tests of the error reduction potential of any sampling procedure. It is therefore expected that the methods of this dissertation will prove useful in many other application areas
International Nuclear Information System (INIS)
Zhang, Dingkang; Rahnema, Farzad; Ougouag, Abderrfi M.
2011-01-01
A response-based local transport method has been developed in 2-D (r, θ) geometry for coupling to any coarse-mesh (nodal) diffusion method/code. Monte Carlo method is first used to generate a (pre-computed) the response function library for each unique coarse mesh in the transport domain (e.g., the outer reflector region of the Pebble Bed Reactor). The scalar flux and net current at the diffusion/transport interface provided by the diffusion method are used as an incoming surface source to the transport domain. A deterministic iterative sweeping method together with the response function library is utilized to compute the local transport solution within all transport coarse meshes. After the partial angular currents crossing the coarse mesh surfaces are converged, albedo coefficients are computed as boundary conditions for the diffusion methods. The iteration on the albedo boundary condition (for the diffusion method via transport) and the incoming angular flux boundary condition (for the transport via diffusion) is continued until convergence is achieved. The method was tested for in a simplified 2-D (r, θ) pebble bed reactor problem consisting of an inner reflector, an annular fuel region and a controlled outer reflector. The comparisons have shown that the results of the response-function-based transport method agree very well with a direct MCNP whole core solution. The agreement in coarse mesh averaged flux was found to be excellent: relative difference of about 0.18% and a maximum difference of about 0.55%. Note that the MCNP uncertainty was less than 0.1%. (author)
Calculation and analysis of the source term of the reactor core based on different data libraries
International Nuclear Information System (INIS)
Chen Haiying; Zhang Chunming; Wang Shaowei; Lan Bing; Liu Qiaofeng; Han Jingru
2014-01-01
The nuclear fuel in reactor core produces large amount of radioactive nuclides in the fission process. ORIGEN-S can calculate the accumulation and decay of radioactive nuclides in the core by using various forms of data libraries, including card-image library, binary library and ORIGEN-S cross section library generated by ARP through interpolation method. In this paper, the information of each data library was described, and the reactor core inventory was calculated by using Card-image library and ARP library. The radioactivity concentration of typical nuclides with the change of fuel burnup was analyzed. The results showed that the influence of data libraries on the calculation of nuclide radioactivity was various. Compared to Card-image library, the radioactivity of a small part of nuclides calculated by ARP library were larger and the radioactivity of "1"3"4Cs, "1"3"6Cs were calculated smaller by about 15%. For some typical nuclides, with the deepening of fuel burnup, the difference of nuclide radioactivity calculated by the two libraries increased. However, the changes of the ratio of nuclide radioactivity were different. (authors)
International Nuclear Information System (INIS)
Levitan, Iu.L.; Sobol, I.M.; Khlopov, M.Iu.; Chechetkin, V.M.
1982-01-01
The variation of the hard part of the neutrino emission spectra of collapsing degenerate stellar cores with matter having a small optical depth to neutrinos is analyzed. The interaction of neutrinos with the degenerate matter is determined by processes of neutrino scattering on nuclei (without a change in neutrino energy) and neutrino scattering on degenerate electrons, in which the neutrino energy can only decrease. The neutrino emission spectrum of a collapsing stellar core in the initial stage of the onset of opacity is calculated by the Monte Carlo method: using a central density of 10 trillion g/cu cm and, in the stage of deep collapse, for a central density of 60 trillion g/cu cm. In the latter case the calculation of the spectrum without allowance for effects of neutrino degeneration in the central part of the collapsing stellar core corresponds to the maximum possible suppression of the hard part of the neutrino emission spectrum
VENUS-2 MOX Core Benchmark: Results of ORNL Calculations Using HELIOS-1.4 - Revised Report
Energy Technology Data Exchange (ETDEWEB)
Ellis, RJ
2001-06-01
The Task Force on Reactor-Based Plutonium Disposition (TFRPD) was formed by the Organization for Economic Cooperation and Development/Nuclear Energy Agency (OECD/NEA) to study reactor physics, fuel performance, and fuel cycle issues related to the disposition of weapons-grade (WG) plutonium as mixed-oxide (MOX) reactor fuel. To advance the goals of the TFRPD, 10 countries and 12 institutions participated in a major TFRPD activity: a blind benchmark study to compare code calculations to experimental data for the VENUS-2 MOX core at SCK-CEN in Mol, Belgium. At Oak Ridge National Laboratory, the HELIOS-1.4 code system was used to perform the comprehensive study of pin-cell and MOX core calculations for the VENUS-2 MOX core benchmark study.
KALIMER-600-clad Core Fuel Assembly Calculation using MATRA-LMR (V2.0) Code
International Nuclear Information System (INIS)
Kim, Young Gyun; Kim, Young Il
2006-12-01
Since the sodium boiling point is very high, maximum cladding and pin temperatures are used for design limit condition in sodium cooled liquid metal reactor. It is necessary to predict accurately the temperature distribution in the core and in the subassemblies to increase the sodium coolant efficiency. Based on the MATRA code, which is developed for PWR analysis, MATRA-LMR has been developed for SFR. The major modifications are: the sodium properties table is implemented as subprogram in the code, Heat transfer coefficients are changed for SFR, te pressure drop correlations are changed for more accurate calculations, which are Novendstern, Chiu-Rohsenow-Todreas, and Cheng-Todreas correlations. This This report describes briefly code structure and equations of MATRA-LMR (Version 2.0), explains input data preparation and shows some calculation results for the KALIMER-600-clad core fuel assembly for which has been performed the conceptual design of the core in the year 2006
Strain relaxation and ambipolar electrical transport in GaAs/InSb core-shell nanowires.
Rieger, Torsten; Zellekens, Patrick; Demarina, Natalia; Hassan, Ali Al; Hackemüller, Franz Josef; Lüth, Hans; Pietsch, Ullrich; Schäpers, Thomas; Grützmacher, Detlev; Lepsa, Mihail Ion
2017-11-30
The growth, crystal structure, strain relaxation and room temperature transport characteristics of GaAs/InSb core-shell nanowires grown using molecular beam epitaxy are investigated. Due to the large lattice mismatch between GaAs and InSb of 14%, a transition from island-based to layer-like growth occurs during the formation of the shell. High resolution transmission electron microscopy in combination with geometric phase analyses as well as X-ray diffraction with synchrotron radiation are used to investigate the strain relaxation and prove the existence of different dislocations relaxing the strain on zinc blende and wurtzite core-shell nanowire segments. While on the wurtzite phase only Frank partial dislocations are found, the strain on the zinc blende phase is relaxed by dislocations with perfect, Shockley partial and Frank partial dislocations. Even for ultrathin shells of about 2 nm thickness, the strain caused by the high lattice mismatch between GaAs and InSb is relaxed almost completely. Transfer characteristics of the core-shell nanowires show an ambipolar conductance behavior whose strength strongly depends on the dimensions of the nanowires. The interpretation is given based on an electronic band profile which is calculated for completely relaxed core/shell structures. The peculiarities of the band alignment in this situation implies simultaneously occupied electron and hole channels in the InSb shell. The ambipolar behavior is then explained by the change of carrier concentration in both channels by the gate voltage.
Edge and coupled core/edge transport modelling in tokamaks
International Nuclear Information System (INIS)
Lodestro, L.L.; Casper, T.A.; Cohen, R.H.
1999-01-01
Recent advances in the theory and modelling of tokamak edge, scrape-off-layer (SOL) and divertor plasmas are described. The effects of the poloidal E x B drift on inner/outer divertor-plate asymmetries within a 1D analysis are shown to be in good agreement with experimental trends; above a critical v ExB , the model predicts transitions to supersonic flow at the inboard midplane. 2D simulations show the importance of E x B flow in the private-flux region and of ∇ B-drifts. A theory of rough plasma-facing surfaces is given, predicting modifications to the SOL plasma. The parametric dependence of detached-plasma states in slab geometry has been explored; with sufficient pumping, the location of the ionization front can be controlled; otherwise only fronts near the plate or the X-point are stable. Studies with a more accurate Monte-Carlo neutrals model and a detailed non-LTE radiation-transport code indicate various effects are important for quantitative modelling. Detailed simulations of the DIII-D core and edge are presented; impurity and plasma flow are discussed and shown to be well modelled with UEDGE. (author)
Edge and coupled core-edge transport modelling in tokamaks
International Nuclear Information System (INIS)
Lodestro, L.L.; Casper, T.A.; Cohen, R.H.
2001-01-01
Recent advances in the theory and modelling of tokamak edge, scrape-off-layer (SOL) and divertor plasmas are described. The effects of the poloidal ExB drift on inner/outer divertor-plate asymmetries within a 1D analysis are shown to be in good agreement with experimental trends; above a critical v ExB, the model predicts transitions to supersonic SOL flow at the inboard midplane. 2D simulations show the importance of ExB flow in the private-flux region and of ∇ B-drifts. A theory of rough plasma-facing surfaces is given, predicting modifications to the SOL plasma. The parametric dependence of detached-plasma states in slab geometry has been explored; with sufficient pumping, the location of the ionization front can be controlled; otherwise only fronts near the plate or the X-point are stable. Studies with a more accurate Monte-Carlo neutrals model and a detailed non-LTE radiation-transport code indicate various effects are important for quantitative modelling. Detailed simulations of the DIII-D core and edge are presented; impurity and plasma flow are discussed and shown to be well modelled with UEDGE. (author)
Some results of Krsko NPP core calculations and comparison with measurements
International Nuclear Information System (INIS)
Trkov, A.; Zefran, B.; Kromar, M.; Ravnik, M.; Slavic, S.
1996-01-01
Current status of the CORD-2 package is described. Results of the predictions of some important reactor core parameters are presented for the 12 th operation cycle of the Krsko NPP. Comparison with measurements is made to illustrate that the accuracy of the calculations is acceptable. Some comments are made on the enhancements, which are currently being implemented on the package. (author)
NUCORE - A system for nuclear structure calculations with cluster-core models
International Nuclear Information System (INIS)
Heras, C.A.; Abecasis, S.M.
1982-01-01
Calculation of nuclear energy levels and their electromagnetic properties, modelling the nucleus as a cluster of a few particles and/or holes interacting with a core which in turn is modelled as a quadrupole vibrator (cluster-phonon model). The members of the cluster interact via quadrupole-quadrupole and pairing forces. (orig.)
The utilization of Quabox/Cubox computer program for calculating Angra 1 Reactor core
International Nuclear Information System (INIS)
Pina, C.M. de.
1981-01-01
The utilization of Quabox/Cubox computer codes for calculating Angra 1 reactor core is studied. The results shows a dependency between the spent CPU time and the curacy of thermal power distribution in function of the polinomial expansion used. Comparison were mode between Citation code and some results from Westinghouse [pt
Transport of nuclides during a core meltdown accident, with consideration of filtered venting
International Nuclear Information System (INIS)
Haeggblom, H.
1981-01-01
A BWR core meltdown accident has been studied with respect to the transport of radioactive and nonactive gases and aerosols. A system consisting of a containment with an outer stone condenser in three parts was considered. Calculations of the aerosol behaviour have been made with the computer programme NAUA and HAARM-3, assuming one single compartment. Results from these calculations have been used for multicompartment calculations with CORRAL II. The code was modified so that particles of different sizes could be considered in the different compartments, and the time dependence of the particles can be arbitrary. In addition to the aerosol transport and deposition, the corresponding quantities for elemental iodine were calculated. It was concluded, that if the total volume of the condenser system is of the order of 10 5 m 3 , practically all elemental iodine and particles can be retained in the system. The only leakage to the environment will be caused by inefficient sealing during the first five hours. The pressure can never damage the condenser. (author)
Selection method and device for reactor core performance calculation input indication
International Nuclear Information System (INIS)
Yuto, Yoshihiro.
1994-01-01
The position of a reactor core component on a reactor core map, which is previously designated and optionally changeable, is displayed by different colors on a CRT screen by using data of a data file incorporating results of a calculation for reactor core performance, such as incore thermal limit values. That is, an operator specifies the kind of the incore component to be sampled on a menu screen, to display the position of the incore component which satisfies a predetermined condition on the CRT screen by different colors in the form of a reactor core map. The position for the reactor core component displayed on the CRT screen by different colors is selected and designated on the screen by a touch panel, a mouse or a light pen, thereby automatically outputting detailed data of evaluation for the reactor core performance of the reactor core component at the indicated position. Retrieval of coordinates of fuel assemblies to be data sampled and input of the coordinates and demand for data sampling can be conducted at once by one menu screen. (N.H.)
Calculated characteristics of subcritical assembly with anisotropic transport of neutrons
International Nuclear Information System (INIS)
Gorin, N.V.; Lipilina, E.N.; Lyutov, V.D.; Saukov, A.I.
2003-01-01
There was considered possibility of creating enough sub-critical system that multiply neutron fluence from a primary source by many orders. For assemblies with high neutron tie between parts, it is impossible. That is why there was developed a construction consisting of many units (cascades) having weak feedback with preceding cascades. The feedback attenuation was obtained placing layers of slow neutron absorber and moderators between the cascades of fission material. Anisotropy of fast neutron transport through the layers was used. The system consisted of many identical cascades aligning one by another. Each cascade consists of layers of moderator, fissile material and absorber of slow neutrons. The calculations were carried out using the code MCNP.4a with nuclear data library ENDF/B5. In this construction neutrons spread predominantly in one direction multiplying in each next fissile layer, and they attenuate considerably in the opposite direction. In a calculated construction, multiplication factor of one cascade is about 1.5 and multiplication factor of whole construction composed of n cascades is 1.5 n . Calculated keff value is 0.9 for one cascade and does not exceed 0.98 for a system containing any number of cascades. Therefore the assembly is always sub-critical and therefore it is safe in respect of criticality. There was considered using such a sub-critical assembly to create a powerful neutron fluence for neutron boron-capturing therapy. The system merits and demerits were discussed. (authors)
One-speed neutron transport in spheres with totally absorbing cores
International Nuclear Information System (INIS)
Sjoestrand, N.G.
1988-01-01
Stationary and time-dependent transport of neutrons of one speed has been studied in spheres with totally absorbing cores. For stationary, critical reactors the number of secondaries per collision has been calculated numerically for various inner and outer radii. In the time-dependent case, the decay constant has been calculated for spherical shells of different inner radii and thicknesses. For a fixed ratio between shell thickness and inner radius, the curve of the decay constant versus shell thickness crosses the Corngold limit in the same way as the curve for a homogeneous sphere. When the ratio goes to zero the curve approaches that for an infinite slab. The behaviour is discussed in view of a new result from collision theory, viz. that the following condition must be fulfilled for a body at the point where the decay constant curve crosses the Corngold limit: the average exit distance of the neutrons is equal to the mean free path for scattering
International Nuclear Information System (INIS)
Chiu, C.
1981-01-01
Combustion Engineering Inc. designs its modern PWR reactor cores using open-core thermal-hydraulic methods where the mass, momentum and energy equations are solved in three dimensions (one axial and two lateral directions). The resultant fluid properties are used to compute the minimum Departure from Nuclear Boiling Ratio (DNBR) which ultimately sets the power capability of the core. The on-line digital monitoring and protection systems require a small fast-running algorithm of the design code. This paper presents two techniques used in the development of the on-line DNB algorithm. First, a three-dimensional transport coefficient model is introduced to radially group the flow subchannel into channels for the thermal-hydraulic fluid properties calculation. Conservation equations of mass, momentum and energy for this channels are derived using transport coefficients to modify the calculation of the radial transport of enthalpy and momentum. Second, a simplified, non-iterative numerical method, called the prediction-correction method, is applied together with the transport coefficient model to reduce the computer execution time in the determination of fluid properties. Comparison of the algorithm and the design thermal-hydraulic code shows agreement to within 0.65% equivalent power at a 95/95 confidence/probability level for all normal operating conditions of the PWR core. This algorithm accuracy is achieved with 1/800th of the computer processing time of its parent design code. (orig.)
Calculation of Transport Coefficients in Dense Plasma Mixtures
Haxhimali, T.; Cabot, W. H.; Caspersen, K. J.; Greenough, J.; Miller, P. L.; Rudd, R. E.; Schwegler, E. R.
2011-10-01
We use classical molecular dynamics (MD) to estimate species diffusivity and viscosity in mixed dense plasmas. The Yukawa potential is used to describe the screened Coulomb interaction between the ions. This potential has been used widely, providing the basis for models of dense stellar materials, inertial confined plasmas, and colloidal particles in electrolytes. We calculate transport coefficients in equilibrium simulations using the Green- Kubo relation over a range of thermodynamic conditions including the viscosity and the self - diffusivity for each component of the mixture. The interdiffusivity (or mutual diffusivity) can then be related to the self-diffusivities by using a generalization of the Darken equation. We have also employed non-equilibrium MD to estimate interdiffusivity during the broadening of the interface between two regions each with a high concentration of either species. Here we present results for an asymmetric mixture between Ar and H. These can easily be extended to other plasma mixtures. A main motivation for this study is to develop accurate transport models that can be incorporated into the hydrodynamic codes to study hydrodynamic instabilities. We use classical molecular dynamics (MD) to estimate species diffusivity and viscosity in mixed dense plasmas. The Yukawa potential is used to describe the screened Coulomb interaction between the ions. This potential has been used widely, providing the basis for models of dense stellar materials, inertial confined plasmas, and colloidal particles in electrolytes. We calculate transport coefficients in equilibrium simulations using the Green- Kubo relation over a range of thermodynamic conditions including the viscosity and the self - diffusivity for each component of the mixture. The interdiffusivity (or mutual diffusivity) can then be related to the self-diffusivities by using a generalization of the Darken equation. We have also employed non-equilibrium MD to estimate interdiffusivity during
International Nuclear Information System (INIS)
Mueller, R.G.
1987-06-01
Due to the strong influence of vapour bubbles on the nuclear chain reaction, an exact calculation of neutron physics and thermal hydraulics in light water reactors requires consideration of subcooled boiling. To this purpose, in the present study a dynamic model is derived from the time-dependent conservation equations. It contains new methods for the time-dependent determination of evaporation and condensation heat flow and for the heat transfer coefficient in subcooled boiling. Furthermore, it enables the complete two-phase flow region to be treated in a consistent manner. The calculation model was verified using measured data of experiments covering a wide range of thermodynamic boundary conditions. In all cases very good agreement was reached. The results from the coupling of the new calculation model with a neutron kinetics program proved its suitability for the steady-state and transient calculation of reactor cores. (orig.) [de
3D heterogeneous transport calculations of CANDU fuel with EVENT/HELIOS
International Nuclear Information System (INIS)
Rahnema, F.; Mosher, S.; Ilas, D.; De Oliveira, C.; Eaton, M.; Stamm'ler, R.
2002-01-01
The applicability of the EVENT/HELIOS package to CANDU lattice cell analysis is studied in this paper. A 45-group cross section library is generated using the lattice depletion transport code HELIOS. This library is then used with the 3-D transport code EVENT to compute the pin fission densities and the multiplication constants for six configurations typical of a CANDU cell. The results are compared to those from MCNP with the same multigroup library. Differences of 70-150 pcm in multiplication constant and 0.08-0.95% in pin fission density are found for these cases. It is expected that refining the EVENT calculations can reduce these differences. This gives confidence in applying EVENT to transient analyses at the fuel pin level in a selected part of a CANDU core such as the limiting bundle during a loss of coolant accident (LOCA). (author)
Calculation of pressure drop and flow redistribution in the core of LMFBR type reactors
International Nuclear Information System (INIS)
Botelho, D.A.; Morgado, O.J.
1985-01-01
It is studied the flow redistribution through of fuel elements to the pressure drop calculation in the core of sodium cooled reactors. Using the quasi-static formulation of equations of the conservation of mass, energy and momentum, it was developed a computer program to flow redistribution calculations and pressure drop for different power levels and total flow simulating an arbitrary number of channels for sodium flowing . An optimization of the number of sufficient channels for calculations of this nature is done. The method is applied in studies of transients in the same reactor. (M.C.K.) [pt
Heat and fission product transport in molten core material pool with crust
International Nuclear Information System (INIS)
Yun, J.I.; Suh, K.Y.; Kang, C.S.
2005-01-01
Heat transfer and fluid flow in a molten pool are influenced by internal volumetric heat generated from the radioactive decay of fission product species retained in the reactor vessel during a severe accident. The pool superheat is determined based on the overall energy balance that equates the heat production rate to the heat loss rate. Decay heat of fission products in the pool is estimated by product of the mass concentration and energy conversion factor of each fission product. Twenty-nine elements are chosen and classified by their chemical properties to calculate heat generation rate in the pool. The mass concentration of a fission product is obtained from released fraction and the tabular output of the ORIGEN 2 code. The initial core and pool inventories at each time can also be estimated using ORIGEN 2. The released fraction of each fission product is calculated based on the bubble dynamics and mass transport. Numerical analysis is performed for heat and fission product transport in a molten core material pool during the Three Mile Island Unit 2 (TMI-2) accident. The pool is assumed to be a partially filled hemisphere, whose change in geometry is neglected during the numerical calculation. Calculated results indicate that the peak temperature in the molten pool is significantly lowered, since a substantial amount of the volatile fission products is released from the molten pool during progression of the accident. The results may directly be applied to the existing severe accident analysis codes to more mechanistically determine the thermal load to the reactor vessel lower head during the in-vessel retention
International Nuclear Information System (INIS)
Smith, P.D.
1978-02-01
A special purpose computer program, TRAFIC, is presented for calculating the release of metallic fission products from an HTGR core. The program is based upon Fick's law of diffusion for radioactive species. One-dimensional transient diffusion calculations are performed for the coated fuel particles and for the structural graphite web. A quasi steady-state calculation is performed for the fuel rod matrix material. The model accounts for nonlinear adsorption behavior in the fuel rod gap and on the coolant hole boundary. The TRAFIC program is designed to operate in a core survey mode; that is, it performs many repetitive calculations for a large number of spatial locations in the core. This is necessary in order to obtain an accurate volume integrated release. For this reason the program has been designed with calculational efficiency as one of its main objectives. A highly efficient numerical method is used in the solution. The method makes use of the Duhamel superposition principle to eliminate interior spatial solutions from consideration. Linear response functions relating the concentrations and mass fluxes on the boundaries of a homogeneous region are derived. Multiple regions are numerically coupled through interface conditions. Algebraic elimination is used to reduce the equations as far as possible. The problem reduces to two nonlinear equations in two unknowns, which are solved using a Newton Raphson technique
Calculation of pressure drop and flow redistribution in the LMFBR core
International Nuclear Information System (INIS)
Morgado, O.J.
1984-01-01
The flow redistribution through fuel assemblies of LMFBRs: for the correct calculation of mass flow rates and pressure drop, are studied. Using a quasi-static formulation of conservation equations of mass and energy, a computer program was developed to simulate any arbitrary number of flow channels, operating at different linear power levels. Therefore f flow channels, operating at different linear power levels. Therefore, it was possible to perform thermal transient calculations for the Clinch River reactor core. The results of the calculations agree with the data found in the literature and supply accurate information about flow redistribution, average temperature, and pressure drop in the core, when the reactor is operated at conditions from the designed flow conditions, as is always the case in a load changing operation, or during transients. (Autor) [pt
Three-Dimensional Full Core Power Calculations for Pressurized Water Reactors
International Nuclear Information System (INIS)
Evans, Thomas M.; Davidson, Gregory G.; Slaybaugh, Rachel N.
2010-01-01
We have implemented a new multilevel parallel decomposition in the Denovo discrete ordinates radiation transport code. In concert with Krylov subspace iterative solvers, the multilevel decomposition allows concurrency over energy in addition to space-angle. The original space-angle partitioning in Denovo placed an eective limit on the scalability of the transport solver that was highly dependent on the problem size. The added phase-space concurrency combined with the high-performance Krylov solvers has enabled weak scaling to 100K cores on the Jaguar XT5 supercomputer. Furthermore, the multilevel decomposition provides enough concurrency to scale to exascale computing and beyond.
OECD/NEA benchmark for time-dependent neutron transport calculations without spatial homogenization
Energy Technology Data Exchange (ETDEWEB)
Hou, Jason, E-mail: jason.hou@ncsu.edu [Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Ivanov, Kostadin N. [Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Boyarinov, Victor F.; Fomichenko, Peter A. [National Research Centre “Kurchatov Institute”, Kurchatov Sq. 1, Moscow (Russian Federation)
2017-06-15
Highlights: • A time-dependent homogenization-free neutron transport benchmark was created. • The first phase, known as the kinetics phase, was described in this work. • Preliminary results for selected 2-D transient exercises were presented. - Abstract: A Nuclear Energy Agency (NEA), Organization for Economic Co-operation and Development (OECD) benchmark for the time-dependent neutron transport calculations without spatial homogenization has been established in order to facilitate the development and assessment of numerical methods for solving the space-time neutron kinetics equations. The benchmark has been named the OECD/NEA C5G7-TD benchmark, and later extended with three consecutive phases each corresponding to one modelling stage of the multi-physics transient analysis of the nuclear reactor core. This paper provides a detailed introduction of the benchmark specification of Phase I, known as the “kinetics phase”, including the geometry description, supporting neutron transport data, transient scenarios in both two-dimensional (2-D) and three-dimensional (3-D) configurations, as well as the expected output parameters from the participants. Also presented are the preliminary results for the initial state 2-D core and selected transient exercises that have been obtained using the Monte Carlo method and the Surface Harmonic Method (SHM), respectively.
Numerical shoves and countershoves in electron transport calculations
International Nuclear Information System (INIS)
Filippone, W.L.
1986-01-01
The justification for applying the relatively complex (compared to S/sub n/) streaming ray (SR) algorithm to electron transport problems is its potential for doing rapid and accurate calculations. Because of the Lagrangian treatment of the cell-uncollided electrons, the only significant sources of error are the numerical treatment of the scattering kernel and the spatial differencing scheme used for the cell-collided electrons. Considerable progress has been made in reducing the former source of error. If one is willing to pay the price, the latter source of error can be reduced to any desired level by refining the mesh size or by using high-order differencing schemes. Here the method of numerical shoves and countershoves is introduced, which reduces spatial differencing errors using relatively little additional computational effort
Discrete-ordinates electron transport calculations using standard neutron transport codes
International Nuclear Information System (INIS)
Morel, J.E.
1979-01-01
The primary purpose of this work was to develop a method for using standard neutron transport codes to perform electron transport calculations. The method is to develop approximate electron cross sections which are sufficiently well-behaved to be treated with standard S/sub n/ methods, but which nonetheless yield flux solutions which are very similar to the exact solutions. The main advantage of this approach is that, once the approximate cross sections are constructed, their multigroup Legendre expansion coefficients can be calculated and input to any standard S/sub n/ code. Discrete-ordinates calculations were performed to determine the accuracy of the flux solutions for problems corresponding to 1.0-MeV electrons incident upon slabs of aluminum and gold. All S/sub n/ calculations were compared with similar calculations performed with an electron Monte Carlo code, considered to be exact. In all cases, the discrete-ordinates solutions for integral flux quantities (i.e., scalar flux, energy deposition profiles, etc.) are generally in agreement with the Monte Carlo solutions to within approximately 5% or less. The central conclusion is that integral electron flux quantities can be efficiently and accurately calculated using standard S/sub n/ codes in conjunction with approximate cross sections. Furthermore, if group structures and approximate cross section construction are optimized, accurate differential flux energy spectra may also be obtainable without having to use an inordinately large number of energy groups. 1 figure
Uncertainty evaluatins of CASMO-3/MASTER system for PWR core neutronics calculations
International Nuclear Information System (INIS)
Song, Jae Seung; Kim, Kang Seog; Lee, Kibog; Park, Jin Ha; Zee, Sung Quun
1996-01-01
Uncertainties in core neutronic calculations of CASMO-3/MASTER, which is a KAERI developed core nuclear design code system, were evaluated via comparisons with measured data. Comparisons were performed with plant measurement data from one Westinghouse type and one ABB-CE type plant and two Korean standard type plants. The CASMO-3/MASTER capability and levels of accuracy are concluded to be sufficient for the neutronics design including safety related parameters related with reactivity, power distributions, temperature and power coefficients, inverse boron worth and control bank worth
Calculation of spatial weight functions for WWER-440 ex-core neutron detectors
International Nuclear Information System (INIS)
Csom, Gy.; Czifrus, Sz.; Feher, S.; Berki, T.
2001-01-01
The objective of the work presented in this paper was determination of a spatial weight function for WWER-440 ex-core detectors to be used for the interpretation of reload startup rod drop measurements. In view of the complexity of the geometry of the core as well as the detector, furthermore the presence of a cavity between the vessel and the concrete shield, Monte Carlo calculations were applied. In spite of the fact that in the corresponding literature the use of adjoint methods dominates, in the present case the forward method was chosen and implemented using MCNP4C (Authors)
Framework Application for Core Edge Transport Simulation (FACETS)
Energy Technology Data Exchange (ETDEWEB)
Malony, Allen D; Shende, Sameer S; Huck, Kevin A; Mr. Alan Morris, and Mr. Wyatt Spear
2012-03-14
The goal of the FACETS project (Framework Application for Core-Edge Transport Simulations) was to provide a multiphysics, parallel framework application (FACETS) that will enable whole-device modeling for the U.S. fusion program, to provide the modeling infrastructure needed for ITER, the next step fusion confinement device. Through use of modern computational methods, including component technology and object oriented design, FACETS is able to switch from one model to another for a given aspect of the physics in a flexible manner. This enables use of simplified models for rapid turnaround or high-fidelity models that can take advantage of the largest supercomputer hardware. FACETS does so in a heterogeneous parallel context, where different parts of the application execute in parallel by utilizing task farming, domain decomposition, and/or pipelining as needed and applicable. ParaTools, Inc. was tasked with supporting the performance analysis and tuning of the FACETS components and framework in order to achieve the parallel scaling goals of the project. The TAU Performance System® was used for instrumentation, measurement, archiving, and profile / tracing analysis. ParaTools, Inc. also assisted in FACETS performance engineering efforts. Through the use of the TAU Performance System, ParaTools provided instrumentation, measurement, analysis and archival support for the FACETS project. Performance optimization of key components has yielded significant performance speedups. TAU was integrated into the FACETS build for both the full coupled application and the UEDGE component. The performance database provided archival storage of the performance regression testing data generated by the project, and helped to track improvements in the software development.
Depletion Calculations for MTR Core Using MCNPX and Multi-Group Nodal Diffusion Methods
International Nuclear Information System (INIS)
Jaradata, Mustafa K.; Park, Chang Je; Lee, Byungchul
2013-01-01
In order to maintain a self-sustaining steady-state chain reaction, more fuel than is necessary in order to maintain a steady state chain reaction must be loaded. The introduction of this excess fuel increases the net multiplication capability of the system. In this paper MCNPX and multi-group nodal diffusion theory will be used for depletion calculations for MTR core. The eigenvalue and power distribution in the core will be compared for different burnup. Multi-group nodal diffusion theory with combination of NEWT-TRITON system was used to perform depletion calculations for 3Χ3 MTR core. 2G and 6G approximations were used and compared with MCNPX results for 2G approximation the maximum difference from MCNPX was 40 mk and for 6G approximation was 6 mk which is comparable to the MCNPX results. The calculated power using nodal code was almost the same MCNPX results. Finally the results of the multi-group nodal theory were acceptable and comparable to the calculated using MCNPX
Calculational benchmark comparisons for a low sodium void worth actinide burner core design
International Nuclear Information System (INIS)
Hill, R.N.; Kawashima, M.; Arie, K.; Suzuki, M.
1992-01-01
Recently, a number of low void worth core designs with non-conventional core geometries have been proposed. Since these designs lack a good experimental and computational database, benchmark calculations are useful for the identification of possible biases in performance characteristics predictions. In this paper, a simplified benchmark model of a metal fueled, low void worth actinide burner design is detailed; and two independent neutronic performance evaluations are compared. Calculated performance characteristics are evaluated for three spatially uniform compositions (fresh uranium/plutonium, batch-averaged uranium/transuranic, and batch-averaged uranium/transuranic with fission products) and a regional depleted distribution obtained from a benchmark depletion calculation. For each core composition, the flooded and voided multiplication factor, power peaking factor, sodium void worth (and its components), flooded Doppler coefficient and control rod worth predictions are compared. In addition, the burnup swing, average discharge burnup, peak linear power, and fresh fuel enrichment are calculated for the depletion case. In general, remarkably good agreement is observed between the evaluations. The most significant difference is predicted performance characteristics is a 0.3--0.5% Δk/(kk) bias in the sodium void worth. Significant differences in the transmutation rate of higher actinides are also observed; however, these differences do not cause discrepancies in the performing predictions
Core radial electric field and transport in Wendelstein 7-X plasmas
Pablant, N. A.; Langenberg, A.; Alonso, A.; Beidler, C. D.; Bitter, M.; Bozhenkov, S.; Burhenn, R.; Beurskens, M.; Delgado-Aparicio, L.; Dinklage, A.; Fuchert, G.; Gates, D.; Geiger, J.; Hill, K. W.; Höfel, U.; Hirsch, M.; Knauer, J.; Krämer-Flecken, A.; Landreman, M.; Lazerson, S.; Maaßberg, H.; Marchuk, O.; Massidda, S.; Neilson, G. H.; Pasch, E.; Satake, S.; Svennson, J.; Traverso, P.; Turkin, Y.; Valson, P.; Velasco, J. L.; Weir, G.; Windisch, T.; Wolf, R. C.; Yokoyama, M.; Zhang, D.; W7-X Team
2018-02-01
The results from the investigation of neoclassical core transport and the role of the radial electric field profile (Er) in the first operational phase of the Wendelstein 7-X (W7-X) stellarator are presented. In stellarator plasmas, the details of the Er profile are expected to have a strong effect on both the particle and heat fluxes. Investigation of the radial electric field is important in understanding neoclassical transport and in validation of neoclassical calculations. The radial electric field is closely related to the perpendicular plasma flow (u⊥) through the force balance equation. This allows the radial electric field to be inferred from measurements of the perpendicular flow velocity, which can be measured using the x-ray imaging crystal spectrometer and correlation reflectometry diagnostics. Large changes in the perpendicular rotation, on the order of Δu⊥˜ 5 km/s (ΔEr ˜ 12 kV/m), have been observed within a set of experiments where the heating power was stepped down from 2 MW to 0.6 MW. These experiments are examined in detail to explore the relationship between heating power temperature, and density profiles and the radial electric field. Finally, the inferred Er profiles are compared to initial neoclassical calculations based on measured plasma profiles. The results from several neoclassical codes, sfincs, fortec-3d, and dkes, are compared both with each other and the measurements. These comparisons show good agreement, giving confidence in the applicability of the neoclassical calculations to the W7-X configuration.
TORT/MCNP coupling method for the calculation of neutron flux around a core of BWR
International Nuclear Information System (INIS)
Kurosawa, M.
2005-01-01
For the analysis of BWR neutronics performance, accurate data are required for neutron flux distribution over the In-Reactor Pressure Vessel equipments taking into account the detailed geometrical arrangement. The TORT code can calculate neutron flux around a core of BWR in a three-dimensional geometry model, but has difficulties in fine geometrical modelling and lacks huge computer resource. On the other hand, the MCNP code enables the calculation of the neutron flux with a detailed geometry model, but requires very long sampling time to give enough number of particles. Therefore, a TORT/MCNP coupling method has been developed to eliminate the two problems mentioned above in each code. In this method, the TORT code calculates angular flux distribution on the core surface and the MCNP code calculates neutron spectrum at the points of interest using the flux distribution. The coupling method will be used as the DOT-DOMINO-MORSE code system. This TORT/MCNP coupling method was applied to calculate the neutron flux at points where induced radioactivity data were measured for 54 Mn and 60 Co and the radioactivity calculations based on the neutron flux obtained from the above method were compared with the measured data. (authors)
TORT/MCNP coupling method for the calculation of neutron flux around a core of BWR.
Kurosawa, Masahiko
2005-01-01
For the analysis of BWR neutronics performance, accurate data are required for neutron flux distribution over the In-Reactor Pressure Vessel equipments taking into account the detailed geometrical arrangement. The TORT code can calculate neutron flux around a core of BWR in a three-dimensional geometry model, but has difficulties in fine geometrical modelling and lacks huge computer resource. On the other hand, the MCNP code enables the calculation of the neutron flux with a detailed geometry model, but requires very long sampling time to give enough number of particles. Therefore, a TORT/MCNP coupling method has been developed to eliminate the two problems mentioned above in each code. In this method, the TORT code calculates angular flux distribution on the core surface and the MCNP code calculates neutron spectrum at the points of interest using the flux distribution. The coupling method will be used as the DOT-DOMINO-MORSE code system. This TORT/MCNP coupling method was applied to calculate the neutron flux at points where induced radioactivity data were measured for 54Mn and 60Co and the radioactivity calculations based on the neutron flux obtained from the above method were compared with the measured data.
Calculation of Selected Emissions from Transport Services in Road Public Transport
Directory of Open Access Journals (Sweden)
Konečný Vladimír
2017-01-01
Full Text Available The article deals with road public transport and its impact on the environment. According to the methodology given in EN 16258, CO2 emission value has been calculated. The input data for the calculation and the results are shown in the tables. The declaration is created according to STN CEN / TR 14310, which contains recommendations for compiling environmental reports. Finally, the comparison of the environmental impact of a bus and a passenger car, when converted to one passenger, bus has a lower CO2 emission than a passenger car in that section.
Introducing FACETS, the Framework Application for Core-Edge Transport Simulations
International Nuclear Information System (INIS)
Cary, John R.; Candy, Jeff; Cohen, Ronald H.; Krasheninnikov, Sergei I.; McCune, Douglas C.; Estep, Donald J.; Larson, Jay W.; Malony, Allen; Worley, Patrick H.; Carlsson, Johann Anders; Hakim, A.H.; Hamill, P.; Kruger, Scott E.; Muzsala, S.; Pletzer, Alexander; Shasharina, Svetlana; Wade-Stein, D.; Wang, N.; McInnes, Lois C.; Wildey, T.; Casper, T.A.; Diachin, Lori A.; Epperly, Thomas; Rognlien, T.D.; Fahey, Mark R.; Kuehn, Jeffery A.; Morris, A.; Shende, Sameer; Feibush, E.; Hammett, Gregory W.; Indireshkumar, K.; Ludescher, C.; Randerson, L.; Stotler, D.; Pigarov, A.; Bonoli, P.; Chang, C.S.; D'Ippolito, D.A.; Colella, Philip; Keyes, David E.; Bramley, R.
2007-01-01
The FACETS (Framework Application for Core-Edge Transport Simulations) project began in January 2007 with the goal of providing core to wall transport modeling of a tokamak fusion reactor. This involves coupling previously separate computations for the core, edge, and wall regions. Such a coupling is primarily through connection regions of lower dimensionality. The project has started developing a component-based coupling framework to bring together models for each of these regions. In the first year, the core model will be a 1 dimensional model (1D transport across flux surfaces coupled to a 2D equilibrium) with fixed equilibrium. The initial edge model will be the fluid model, UEDGE, but inclusion of kinetic models is planned for the out years. The project also has an embedded Scientific Application Partnership that is examining embedding a full-scale turbulence model for obtaining the crosssurface fluxes into a core transport code.
Piezoelectric constants for ZnO calculated using classical polarizable core-shell potentials
International Nuclear Information System (INIS)
Dai Shuangxing; Dunn, Martin L; Park, Harold S
2010-01-01
We demonstrate the feasibility of using classical atomistic simulations, i.e. molecular dynamics and molecular statics, to study the piezoelectric properties of ZnO using core-shell interatomic potentials. We accomplish this by reporting the piezoelectric constants for ZnO as calculated using two different classical interatomic core-shell potentials: that originally proposed by Binks and Grimes (1994 Solid State Commun. 89 921-4), and that proposed by Nyberg et al (1996 J. Phys. Chem. 100 9054-63). We demonstrate that the classical core-shell potentials are able to qualitatively reproduce the piezoelectric constants as compared to benchmark ab initio calculations. We further demonstrate that while the presence of the shell is required to capture the electron polarization effects that control the clamped ion part of the piezoelectric constant, the major shortcoming of the classical potentials is a significant underprediction of the clamped ion term as compared to previous ab initio results. However, the present results suggest that overall, these classical core-shell potentials are sufficiently accurate to be utilized for large scale atomistic simulations of the piezoelectric response of ZnO nanostructures.
High performance shape annealing matrix (HPSAM) methodology for core protection calculators
International Nuclear Information System (INIS)
Cha, K. H.; Kim, Y. H.; Lee, K. H.
1999-01-01
In CPC(Core Protection Calculator) of CE-type nuclear power plants, the core axial power distribution is calculated to evaluate the safety-related parameters. The accuracy of the CPC axial power distribution highly depends on the quality of the so called shape annealing matrix(SAM). Currently, SAM is determined by using data measured during startup test and used throughout the entire cycle. An issue concerned with SAM is that it is fairly sensitive to measurements and thus the fidelity of SAM is not guaranteed for all cycles. In this paper, a novel method to determine a high-performance SAM (HPSAM) is proposed, where both measured and simulated data are used in determining SAM
VENUS-2 MOX Core Benchmark: Results of ORNL Calculations Using HELIOS-1.4
Energy Technology Data Exchange (ETDEWEB)
Ellis, RJ
2001-02-02
The Task Force on Reactor-Based Plutonium Disposition, now an Expert Group, was set up through the Organization for Economic Cooperation and Development/Nuclear Energy Agency to facilitate technical assessments of burning weapons-grade plutonium mixed-oxide (MOX) fuel in U.S. pressurized-water reactors and Russian VVER nuclear reactors. More than ten countries participated to advance the work of the Task Force in a major initiative, which was a blind benchmark study to compare code benchmark calculations against experimental data for the VENUS-2 MOX core at SCK-CEN in Mol, Belgium. At the Oak Ridge National Laboratory, the HELIOS-1.4 code was used to perform a comprehensive study of pin-cell and core calculations for the VENUS-2 benchmark.
Nuclear structure calculations in $^{20}$Ne with No-Core Configuration-Interaction model
Konieczka, Maciej; Satuła, Wojciech
2016-01-01
Negative parity states in $^{20}$Ne and Gamow-Teller strength distribution for the ground-state beta-decay of $^{20}$Na are calculated for the very first time using recently developed No-Core Configuration-Interaction model. The approach is based on multi-reference density functional theory involving isospin and angular-momentum projections. Advantages and shortcomings of the method are briefly discussed.
Efficient implementation of core-excitation Bethe-Salpeter equation calculations
Gilmore, K.; Vinson, John; Shirley, E. L.; Prendergast, D.; Pemmaraju, C. D.; Kas, J. J.; Vila, F. D.; Rehr, J. J.
2015-12-01
We present an efficient implementation of the Bethe-Salpeter equation (BSE) method for obtaining core-level spectra including X-ray absorption (XAS), X-ray emission (XES), and both resonant and non-resonant inelastic X-ray scattering spectra (N/RIXS). Calculations are based on density functional theory (DFT) electronic structures generated either by ABINIT or QuantumESPRESSO, both plane-wave basis, pseudopotential codes. This electronic structure is improved through the inclusion of a GW self energy. The projector augmented wave technique is used to evaluate transition matrix elements between core-level and band states. Final two-particle scattering states are obtained with the NIST core-level BSE solver (NBSE). We have previously reported this implementation, which we refer to as OCEAN (Obtaining Core Excitations from Ab initio electronic structure and NBSE) (Vinson et al., 2011). Here, we present additional efficiencies that enable us to evaluate spectra for systems ten times larger than previously possible; containing up to a few thousand electrons. These improvements include the implementation of optimal basis functions that reduce the cost of the initial DFT calculations, more complete parallelization of the screening calculation and of the action of the BSE Hamiltonian, and various memory reductions. Scaling is demonstrated on supercells of SrTiO3 and example spectra for the organic light emitting molecule Tris-(8-hydroxyquinoline)aluminum (Alq3) are presented. The ability to perform large-scale spectral calculations is particularly advantageous for investigating dilute or non-periodic systems such as doped materials, amorphous systems, or complex nano-structures.
Czech Academy of Sciences Publication Activity Database
Vackář, Jiří; Šipr, Ondřej; Šimůnek, Antonín
2008-01-01
Roč. 77, č. 4 (2008), 045112/1-045112/6 ISSN 1098-0121 R&D Projects: GA AV ČR IAA100100514; GA AV ČR(CZ) IAA100100637 Institutional research plan: CEZ:AV0Z10100520; CEZ:AV0Z10100521 Keywords : core levels * ab-initio calculations * electronic states * ground state properties Subject RIV: BE - Theoretical Physics Impact factor: 3.322, year: 2008
Energy Technology Data Exchange (ETDEWEB)
Vitruk, S.G.; Korsun, A.S. [Moscow Engineering Physics Institute (Russian Federation); Ushakov, P.A. [Institute of Physics and Power Engineering, Obninsk (R)] [and others
1995-09-01
The multilevel mathematical model of neutron thermal hydrodynamic processes in a passive safety core without assemblies duct walls and appropriate computer code SKETCH, consisted of thermal hydrodynamic module THEHYCO-3DT and neutron one, are described. A new effective discretization technique for energy, momentum and mass conservation equations is applied in hexagonal - z geometry. The model adequacy and applicability are presented. The results of the calculations show that the model and the computer code could be used in conceptual design of advanced reactors.
International Nuclear Information System (INIS)
Vitruk, S.G.; Korsun, A.S.; Ushakov, P.A.
1995-01-01
The multilevel mathematical model of neutron thermal hydrodynamic processes in a passive safety core without assemblies duct walls and appropriate computer code SKETCH, consisted of thermal hydrodynamic module THEHYCO-3DT and neutron one, are described. A new effective discretization technique for energy, momentum and mass conservation equations is applied in hexagonal - z geometry. The model adequacy and applicability are presented. The results of the calculations show that the model and the computer code could be used in conceptual design of advanced reactors
Axial power distribution calculation using a neural network in the nuclear reactor core
Energy Technology Data Exchange (ETDEWEB)
Kim, Y. H.; Cha, K. H.; Lee, S. H. [Korea Electric Power Research Institute, Taejon (Korea, Republic of)
1997-12-31
This paper is concerned with an algorithm based on neural networks to calculate the axial power distribution using excore detector signals in the nuclear reactor core. The fundamental basis of the algorithm is that the detector response can be fairly accurately estimated using computational codes. In other words, the training set, which represents relationship between detector signals and axial power distributions, for the neural network can be obtained through calculations instead of measurements. Application of the new method to the Yonggwang nuclear power plant unit 3 (YGN-3) shows that it is superior to the current algorithm in place. 7 refs., 4 figs. (Author)
International Nuclear Information System (INIS)
Viais J, J.
1994-01-01
Kinetic parameters for dynamic study of two different configurations, 8 and 9, both with standard fuel, 20% enrichment and Flip (Fuel Life Improvement Program with 70% enrichment) fuel, for TRIGA Mark-III reactor from Mexico Nuclear Center, are obtained. A calculation method using both WIMS-D4 and DTF-IV and DAC1 was established, to decide which of those two configurations has the best safety and operational conditions. Validation of this methodology is done by calculate those parameters for a reactor core with new standard fuel. Configuration 9 is recommended to be use. (Author)
Axial power distribution calculation using a neural network in the nuclear reactor core
Energy Technology Data Exchange (ETDEWEB)
Kim, Y H; Cha, K H; Lee, S H [Korea Electric Power Research Institute, Taejon (Korea, Republic of)
1998-12-31
This paper is concerned with an algorithm based on neural networks to calculate the axial power distribution using excore detector signals in the nuclear reactor core. The fundamental basis of the algorithm is that the detector response can be fairly accurately estimated using computational codes. In other words, the training set, which represents relationship between detector signals and axial power distributions, for the neural network can be obtained through calculations instead of measurements. Application of the new method to the Yonggwang nuclear power plant unit 3 (YGN-3) shows that it is superior to the current algorithm in place. 7 refs., 4 figs. (Author)
Core physics design calculation of mini-type fast reactor based on Monte Carlo method
International Nuclear Information System (INIS)
He Keyu; Han Weishi
2007-01-01
An accurate physics calculation model has been set up for the mini-type sodium-cooled fast reactor (MFR) based on MCNP-4C code, then a detailed calculation of its critical physics characteristics, neutron flux distribution, power distribution and reactivity control has been carried out. The results indicate that the basic physics characteristics of MFR can satisfy the requirement and objectives of the core design. The power density and neutron flux distribution are symmetrical and reasonable. The control system is able to make a reliable reactivity balance efficiently and meets the request for long-playing operation. (authors)
An axial calculation method for accurate two-dimensional PWR core simulation
International Nuclear Information System (INIS)
Grimm, P.
1985-02-01
An axial calculation method, which improves the agreement of the multiplication factors determined by two- and three-dimensional PWR neutronic calculations, is presented. The axial buckling is determined at each time point so as to reproduce the increase of the leakage due to the flattening of the axial power distribution and the effect of the axial variation of the group constants of the fuel on the reactivity is taken into account. The results of a test example show that the differences of k-eff and cycle length between two- and three-dimensional calculations, which are unsatisfactorily large if a constant buckling is used, become negligible if the results of the axial calculation are used in the two-dimensional core simulation. (Auth.)
Cell homogenization methods for pin-by-pin core calculations tested in slab geometry
International Nuclear Information System (INIS)
Yamamoto, Akio; Kitamura, Yasunori; Yamane, Yoshihiro
2004-01-01
In this paper, performances of spatial homogenization methods for fuel or non-fuel cells are compared in slab geometry in order to facilitate pin-by-pin core calculations. Since the spatial homogenization methods were mainly developed for fuel assemblies, systematic study of their performance for the cell-level homogenization has not been carried out. Importance of cell-level homogenization is recently increasing since the pin-by-pin mesh core calculation in actual three-dimensional geometry, which is less approximate approach than current advanced nodal method, is getting feasible. Four homogenization methods were investigated in this paper; the flux-volume weighting, the generalized equivalence theory, the superhomogenization (SPH) method and the nonlinear iteration method. The last one, the nonlinear iteration method, was tested as the homogenization method for the first time. The calculations were carried out in simplified colorset assembly configurations of PWR, which are simulated by slab geometries, and homogenization performances were evaluated through comparison with the reference cell-heterogeneous calculations. The calculation results revealed that the generalized equivalence theory showed best performance. Though the nonlinear iteration method can significantly reduce homogenization error, its performance was not as good as that of the generalized equivalence theory. Through comparison of the results obtained by the generalized equivalence theory and the superhomogenization method, important byproduct was obtained; deficiency of the current superhomogenization method, which could be improved by incorporating the 'cell-level discontinuity factor between assemblies', was clarified
Energy Technology Data Exchange (ETDEWEB)
Jikich, S.A.; McLendon, T.R.; Seshadri, K.S.; Irdi, G.A.; Smith, D.H.
2007-11-01
Measurements of sorption isotherms and transport properties of CO2 in coal cores are important for designing enhanced coalbed methane/CO2 sequestration field projects. Sorption isotherms measured in the lab can provide the upper limit on the amount of CO2 that might be sorbed in these projects. Because sequestration sites will most likely be in unmineable coals, many of the coals will be deep and under considerable lithostatic and hydrostatic pressures. These lithostatic pressures may significantly reduce the sorption capacities and/or transport rates. Consequently, we have studied apparent sorption and diffusion in a coal core under confining pressure. A core from the important bituminous coal Pittsburgh #8 was kept under a constant, three-dimensional external stress; the sample was scanned by X-ray computer tomography (CT) before, then while it sorbed, CO2. Increases in sample density due to sorption were calculated from the CT images. Moreover, density distributions for small volume elements inside the core were calculated and analyzed. Qualitatively, the computerized tomography showed that gas sorption advanced at different rates in different regions of the core, and that diffusion and sorption progressed slowly. The amounts of CO2 sorbed were plotted vs. position (at fixed times) and vs. time (for various locations in the sample). The resulting sorption isotherms were compared to isotherms obtained from powdered coal from the same Pittsburgh #8 extended sample. The results showed that for this single coal at specified times, the apparent sorption isotherms were dependent on position of the volume element in the core and the distance from the CO2 source. Also, the calculated isotherms showed that less CO2 was sorbed than by a powdered (and unconfined) sample of the coal. Changes in density distributions during the experiment were also observed. After desorption, the density distribution of calculated volume elements differed from the initial distribution
Development of a simplified calculational model for the transient core bowing effect
International Nuclear Information System (INIS)
Yokoo, Takeshi
1997-01-01
A simplified method to analyze the transient core radial deformation has been developed based on a model that calculates the shape of a single representative fuel assembly on the outermost row. The plant transient code CERES has been revised utilizing this method so that a integrated calculational process for the core neutronics, thermal-hydraulics and deformation can be realized. Using CERES, the responses of a 1000MWe class pool type metal fuel FBR plant during a ULOF event are calculated. According to the results, it is clarified that a passive shutdown without coolant boiling is attainable by selecting appropriate values for major design parameters such as the gap width between load-pad and the pad material properties. The maximum coolant temperature during ULOF is found to be 790C when the above core load-pad gap is set to 0.05 mm, which can be regarded as the most likely valued. The temperature increases to 915C but is still lower than the boiling point when 40% of uncertainty is taken into account. (author)
Tritium transport calculations for the IFMIF Tritium Release Test Module
Energy Technology Data Exchange (ETDEWEB)
Freund, Jana, E-mail: jana.freund@kit.edu; Arbeiter, Frederik; Abou-Sena, Ali; Franza, Fabrizio; Kondo, Keitaro
2014-10-15
Highlights: • Delivery of material data for the tritium balance in the IFMIF Tritium Release Test Module. • Description of the topological models in TMAP and the adapted fusion-devoted Tritium Permeation Code (FUS-TPC). • Computation of release of tritium from the breeder solid material into the purge gas. • Computation of the loss of tritium over the capsule wall, rig hull, container wall and purge gas return line. - Abstract: The IFMIF Tritium Release Test Module (TRTM) is projected to measure online the tritium release from breeder ceramics and beryllium pebble beds under high energy neutron irradiation. Tritium produced in the pebble bed of TRTM is swept out continuously by a purge gas flow, but can also permeate into the module's metal structures, and can be lost by permeation to the environment. According analyses on the tritium inventory are performed to support IFMIF plant safety studies, and to support the experiment planning. This paper describes the necessary elements for calculation of the tritium transport in the Tritium Release Test Module as follows: (i) applied equations for the tritium balance, (ii) material data from literature and (iii) the topological models and the computation of the five different cases; namely release of tritium from the breeder solid material into the purge gas, loss of tritium over the capsule wall, rig hull, container wall and purge gas return line in detail. The problem of tritium transport in the TRTM has been studied and analyzed by the Tritium Migration Analysis Program (TMAP) and the adapted fusion-devoted Tritium Permeation Code (FUS-TPC). TMAP has been developed at INEEL and now exists in Version 7. FUS-TPC Code was written in MATLAB with the original purpose to study the tritium transport in Helium Cooled Lead Lithium (HCLL) blanket and in a later version the Helium Cooled Pebble Bed (HCPB) blanket by [6] (Franza, 2012). This code has been further modified to be applicable to the TRTM. Results from the
Tritium transport calculations for the IFMIF Tritium Release Test Module
International Nuclear Information System (INIS)
Freund, Jana; Arbeiter, Frederik; Abou-Sena, Ali; Franza, Fabrizio; Kondo, Keitaro
2014-01-01
Highlights: • Delivery of material data for the tritium balance in the IFMIF Tritium Release Test Module. • Description of the topological models in TMAP and the adapted fusion-devoted Tritium Permeation Code (FUS-TPC). • Computation of release of tritium from the breeder solid material into the purge gas. • Computation of the loss of tritium over the capsule wall, rig hull, container wall and purge gas return line. - Abstract: The IFMIF Tritium Release Test Module (TRTM) is projected to measure online the tritium release from breeder ceramics and beryllium pebble beds under high energy neutron irradiation. Tritium produced in the pebble bed of TRTM is swept out continuously by a purge gas flow, but can also permeate into the module's metal structures, and can be lost by permeation to the environment. According analyses on the tritium inventory are performed to support IFMIF plant safety studies, and to support the experiment planning. This paper describes the necessary elements for calculation of the tritium transport in the Tritium Release Test Module as follows: (i) applied equations for the tritium balance, (ii) material data from literature and (iii) the topological models and the computation of the five different cases; namely release of tritium from the breeder solid material into the purge gas, loss of tritium over the capsule wall, rig hull, container wall and purge gas return line in detail. The problem of tritium transport in the TRTM has been studied and analyzed by the Tritium Migration Analysis Program (TMAP) and the adapted fusion-devoted Tritium Permeation Code (FUS-TPC). TMAP has been developed at INEEL and now exists in Version 7. FUS-TPC Code was written in MATLAB with the original purpose to study the tritium transport in Helium Cooled Lead Lithium (HCLL) blanket and in a later version the Helium Cooled Pebble Bed (HCPB) blanket by [6] (Franza, 2012). This code has been further modified to be applicable to the TRTM. Results from the
Transport calculations with the BALDUR code. Pt. 1
International Nuclear Information System (INIS)
Lackner, K.; Wunderlich, R.
1979-12-01
1-d transport calculations with the BALDUR-code are described for predicting the performance of ZEPHYR under D-T operation. Results presented in this report refer to the impurity-free case, and ion and electron heat conduction losses described by CHIsub(i) = neoclassical and CHIsub(e) = 6.25 x 10 17 /nsub(e) (cgs-units). A simple refuelling scenario taking account of the density limit for the ohmic heating phase, the contribution of neutral injection to the refuelling rate and the need for an approximately balanced D-T mixture at the instance of ignition is adopted. The heating scenario assumes a neutral injection beam with 160 keV particle energy in the main component, with a duration of 1.1 sec. Major radius compression by a factor of 1.5 starts 1 sec after the onset of neutral injection and lasts 100 msec. For this standard scenario the performance is studied in different density regimes and for different neutral injection powers. Under the above assumption ignition is predicted for total neutral injection powers < approx. 16 MW (9.6 MW in the main energy component) and average total β-values < 2.8%. Results including impurities, alternative scaling laws, and deviations from the standard scenario will be presented in another report. (orig.) 891 GG/orig. 892 HIS
Considerations of beta and electron transport in internal dose calculations
International Nuclear Information System (INIS)
Bolch, W.E.; Poston, J.W. Sr.
1990-12-01
Ionizing radiation has broad uses in modern science and medicine. These uses often require the calculation of energy deposition in the irradiated media and, usually, the medium of interest is the human body. Energy deposition from radioactive sources within the human body and the effects of such deposition are considered in the field of internal dosimetry. In July of 1988, a three-year research project was initiated by the Nuclear Engineering Department at Texas A ampersand M University under the sponsorship of the US Department of Energy. The main thrust of the research was to consider, for the first time, the detailed spatial transport of electron and beta particles in the estimation of average organ doses under the Medical Internal Radiation Dose (MIRD) schema. At the present time (December of 1990), research activities are continuing within five areas. Several are new initiatives begun within the second or third year of the current contract period. They include: (1) development of small-scale dosimetry; (2) development of a differential volume phantom; (3) development of a dosimetric bone model; (4) assessment of the new ICRP lung model; and (5) studies into the mechanisms of DNA damage. A progress report is given for each of these tasks within the Comprehensive Report. In each use, preliminary results are very encouraging and plans for further research are detailed within this document. 22 refs., 13 figs., 1 tab
Considerations of beta and electron transport in internal dose calculations
Energy Technology Data Exchange (ETDEWEB)
Bolch, W.E.; Poston, J.W. Sr.
1990-12-01
Ionizing radiation has broad uses in modern science and medicine. These uses often require the calculation of energy deposition in the irradiated media and, usually, the medium of interest is the human body. Energy deposition from radioactive sources within the human body and the effects of such deposition are considered in the field of internal dosimetry. In July of 1988, a three-year research project was initiated by the Nuclear Engineering Department at Texas A M University under the sponsorship of the US Department of Energy. The main thrust of the research was to consider, for the first time, the detailed spatial transport of electron and beta particles in the estimation of average organ doses under the Medical Internal Radiation Dose (MIRD) schema. At the present time (December of 1990), research activities are continuing within five areas. Several are new initiatives begun within the second or third year of the current contract period. They include: (1) development of small-scale dosimetry; (2) development of a differential volume phantom; (3) development of a dosimetric bone model; (4) assessment of the new ICRP lung model; and (5) studies into the mechanisms of DNA damage. A progress report is given for each of these tasks within the Comprehensive Report. In each case, preliminary results are very encouraging and plans for further research are detailed within this document.
Considerations of beta and electron transport in internal dose calculations
Energy Technology Data Exchange (ETDEWEB)
Bolch, W.E.; Poston, J.W. Sr. (Texas A and M Univ., College Station, TX (USA). Dept. of Nuclear Engineering)
1990-12-01
Ionizing radiation has broad uses in modern science and medicine. These uses often require the calculation of energy deposition in the irradiated media and, usually, the medium of interest is the human body. Energy deposition from radioactive sources within the human body and the effects of such deposition are considered in the field of internal dosimetry. In July of 1988, a three-year research project was initiated by the Nuclear Engineering Department at Texas A M University under the sponsorship of the US Department of Energy. The main thrust of the research was to consider, for the first time, the detailed spatial transport of electron and beta particles in the estimation of average organ doses under the Medical Internal Radiation Dose (MIRD) schema. At the present time (December of 1990), research activities are continuing within five areas. Several are new initiatives begun within the second or third year of the current contract period. They include: (1) development of small-scale dosimetry; (2) development of a differential volume phantom; (3) development of a dosimetric bone model; (4) assessment of the new ICRP lung model; and (5) studies into the mechanisms of DNA damage. A progress report is given for each of these tasks within the Comprehensive Report. In each use, preliminary results are very encouraging and plans for further research are detailed within this document. 22 refs., 13 figs., 1 tab.
Considerations of beta and electron transport in internal dose calculations
International Nuclear Information System (INIS)
Bolch, W.E.; Poston, J.W. Sr.
1990-12-01
Ionizing radiation has broad uses in modern science and medicine. These uses often require the calculation of energy deposition in the irradiated media and, usually, the medium of interest is the human body. Energy deposition from radioactive sources within the human body and the effects of such deposition are considered in the field of internal dosimetry. In July of 1988, a three-year research project was initiated by the Nuclear Engineering Department at Texas A ampersand M University under the sponsorship of the US Department of Energy. The main thrust of the research was to consider, for the first time, the detailed spatial transport of electron and beta particles in the estimation of average organ doses under the Medical Internal Radiation Dose (MIRD) schema. At the present time (December of 1990), research activities are continuing within five areas. Several are new initiatives begun within the second or third year of the current contract period. They include: (1) development of small-scale dosimetry; (2) development of a differential volume phantom; (3) development of a dosimetric bone model; (4) assessment of the new ICRP lung model; and (5) studies into the mechanisms of DNA damage. A progress report is given for each of these tasks within the Comprehensive Report. In each case, preliminary results are very encouraging and plans for further research are detailed within this document
International Nuclear Information System (INIS)
Zylbersztejn, F.; Tran, H.N.; Pazsit, I.; Filliatre, P.; Jammes, C.
2014-01-01
The subject of this paper is the calculation of the neutron noise induced by small-amplitude stationary radial variations of the core size (core expansion/compaction, also called core flowering) of a large sodium-cooled fast reactor. The calculations were performed on a realistic model of the European Sodium Fast Reactor (ESFR) core with a thermal output of 3600 MW(thermal), using a multigroup neutron noise simulator. The multigroup cross sections and their fluctuations that represent the core geometry changes for the neutron noise calculations were generated by the code ERANOS. The space and energy dependences of the noise source represented by the core expansion/compaction and the induced neutron noise are calculated and discussed. (authors)
Historical summary of the Three Mile Island Unit 2 core debris transportation campaign
Energy Technology Data Exchange (ETDEWEB)
Schmitt, R.C.; Tyacke, M.J. [EG and G Idaho, Inc., Idaho Falls, ID (United States); Quinn, G.J. [Wastren, Inc., Germantown, MD (United States)
1993-03-01
Transport of the damaged core materials from the Unit 2 reactor of the Three Mile Island Nuclear Power Station (TMI-2) to the Idaho National Engineering Laboratory (INEL) for examination and storage presented many technical and institutional challenges, including assessing the ability to transport the damaged core; removing and packaging core debris in ways suitable for transport; developing a transport package that could both meet Federal regulations and interface with the facilities at TMI-2 and the INEL; and developing a transport plan, support logistics, and public communications channels suited to the task. This report is a historical summary of how the US Department of Energy addressed those challenges and transported, received, and stored the TMI-2 core debris at the INEL. Subjects discussed include preparations for transport, loading at TMI-2, institutional issues, transport operations, receipt and storage at the INEL, governmental inquiries/investigations, and lessons learned. Because of public attention focused on the TMI-2 Core Debris Transport Program, the exchange of information between the program and public was extensive. This exchange is a focus for parts of this report to explain why various operations were conducted as they were and why certain technical approaches were employed. And, because of that exchange, the program may have contributed to a better public understanding of such actions and may contribute to planning and execution of similar future actions.
Historical summary of the Three Mile Island Unit 2 core debris transportation campaign
International Nuclear Information System (INIS)
Schmitt, R.C.; Tyacke, M.J.; Quinn, G.J.
1993-03-01
Transport of the damaged core materials from the Unit 2 reactor of the Three Mile Island Nuclear Power Station (TMI-2) to the Idaho National Engineering Laboratory (INEL) for examination and storage presented many technical and institutional challenges, including assessing the ability to transport the damaged core; removing and packaging core debris in ways suitable for transport; developing a transport package that could both meet Federal regulations and interface with the facilities at TMI-2 and the INEL; and developing a transport plan, support logistics, and public communications channels suited to the task. This report is a historical summary of how the US Department of Energy addressed those challenges and transported, received, and stored the TMI-2 core debris at the INEL. Subjects discussed include preparations for transport, loading at TMI-2, institutional issues, transport operations, receipt and storage at the INEL, governmental inquiries/investigations, and lessons learned. Because of public attention focused on the TMI-2 Core Debris Transport Program, the exchange of information between the program and public was extensive. This exchange is a focus for parts of this report to explain why various operations were conducted as they were and why certain technical approaches were employed. And, because of that exchange, the program may have contributed to a better public understanding of such actions and may contribute to planning and execution of similar future actions
User's manual for sustainable transportation performance measures calculator
2010-08-01
Sustainable transportation can be viewed as the provision of safe, effective, and efficient : access and mobility into the future while considering economic, social, and environmental : needs. For the Texas Department of Transportation (TxDOT) to ass...
International Nuclear Information System (INIS)
Berki, T.
2003-01-01
The signal of ex-core detectors depends not only on the total power of a reactor but also on the power distribution. The spatial weighting function establishes correspondence between the power distribution and the detector signal. The weighting function is independent of the power distribution. The weighting function is used for detector-response analyses, for example in the case of rod-drop experiments. (1) The paper describes the calculation and analysis of the weighting function of a VVER-440. The three-dimensional Monte Carlo code MCNP is used for the evaluation. Results from forward and adjoint calculations are compared. The effect of the change in the concentration of boric acid is also investigated. The evaluation of the spatial weighting function is a fixed-source neutron transport problem, which can be solved much faster by adjoint calculation, however forward calculations provide more detailed results. It is showed that the effect of boric acid upon the weighting function is negligible. (author)
Full Core Burn-up Calculation at JRR-3 with MVP-BURN
International Nuclear Information System (INIS)
Komeda, Masao; Yamamoto, Kazuyoshi; Kusunoki, Tsuyoshi
2008-01-01
Research reactors use a burnable poison to suppress an excess reactivity in the beginning of reactor lifetime. The JRR-3 (Japan Research Reactor No.3) has used cadmium wires of radius 0.02 cm as a burnable poison. This report describes burn-up calculations of plate fuel models and full core models with MVP-BURN, which is a burn-up calculation code using Monte Carlo method and has been developed in JAEA (Japan Atomic Energy Agency). As the results of calculations of plate models, between a model composed of one burn-up region along the radius direction and a model composed of a few burn-up regions along the radius direction, the effective absorption cross section of 113 Cd has had different tendency on reaching approximate 40. day (10000 MWd/t). And as results of calculations of full core model, it has been indicated that k eff is almost same till approximate 80. day (22000 MWd/t) between a model composed of one burn-up region along the vertical direction and a model composed of a few burn-up regions along the vertical direction. However difference of 113 Cd burn-up becomes pronounced and each k eff makes a difference after 80. day. (authors)
Calculations of core concrete interaction using MELCOR 1.8.5
Energy Technology Data Exchange (ETDEWEB)
Kim, Hwan Yeol; Song, Jin Ho; Kim, Hee Dong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
2005-07-01
OECD/MCCI project is scheduled for 4 years from 2002. 1 to 2005. 12 to perform a series of tests through which the data for cooling the molten core spread out at the reactor cavity and for the long-term CCI (Core Concrete Interaction) are secured. This paper deals with the transient calculations of the 2-D CCI tests performed under the OECD/MCCI project by using a well-known severe accident analysis code, MELCOR 1.8.5. The CCI test was performed at the rectangular geometry with one ablative bottom wall and two ablative and two non-ablative side walls. Since the MELCOR 1.8.5 can only accommodate a cylindrical geometry, an appropriate scaling methodology was applied to adjust the geometrical difference between the CCI test and the MELCOR calculations. The default heat transfer models contained in the CORCON-Mod3 module of MELCOR 1.8.5 were used for the base case calculation. The key parameters of the CCI phenomena such as the melt temperature, concrete ablation, cavity shape, gas generation, heat transfer rate, etc. were calculated and compared with the test results. In addition, sensitivity studies with the change of the inputs and character variables of MELCOR were also included.
Harmonizing carbon footprint calculation for freight transport chains
Lewis, A.; Ehrler, V.; Auvinen, H.; Maurer, H.; Davydenko, I.; Burmeister, A.; Seidel, S.; Lischke, A.; Kiel, J.
2016-01-01
The European Commission has set as a target a reduction of 60% in transport greenhouse gas emissions by 2050 [EC 11]. This includes freight transport emissions, which present a particular challenge due to the forecast increase in goods transport linked to future economic growth, the current trend of
Density-based and transport-based core-periphery structures in networks.
Lee, Sang Hoon; Cucuringu, Mihai; Porter, Mason A
2014-03-01
Networks often possess mesoscale structures, and studying them can yield insights into both structure and function. It is most common to study community structure, but numerous other types of mesoscale structures also exist. In this paper, we examine core-periphery structures based on both density and transport. In such structures, core network components are well-connected both among themselves and to peripheral components, which are not well-connected to anything. We examine core-periphery structures in a wide range of examples of transportation, social, and financial networks-including road networks in large urban areas, a rabbit warren, a dolphin social network, a European interbank network, and a migration network between counties in the United States. We illustrate that a recently developed transport-based notion of node coreness is very useful for characterizing transportation networks. We also generalize this notion to examine core versus peripheral edges, and we show that the resulting diagnostic is also useful for transportation networks. To examine the properties of transportation networks further, we develop a family of generative models of roadlike networks. We illustrate the effect of the dimensionality of the embedding space on transportation networks, and we demonstrate that the correlations between different measures of coreness can be very different for different types of networks.
Safety analysis calculations for a mixed and full FLIP core in a TRIGA Mark II
International Nuclear Information System (INIS)
Ringle, John C.; Hornyik, K.; Robinson, A.H.; Anderson, T.V.; Johnson, A.G.
1976-01-01
The Oregon State TRIGA Reactor will be reloading with FLIP fuel in August 1976. As we are the first Mark II TRIGA with a circular grid pattern and graphite reflector to utilize FLIP fuel, the safety analysis calculations performed at other facilities using FLIP were only of limited use to us. A multigroup, multiregion, one-dimensional diffusion theory code was used to calculate power densities in six different operational cores - mixed to full FLIP. Pulsing characteristics were obtained from a computer code based on point kinetics, with adiabatic heating of the fuel, linear temperature dependence of the specific heat, and prompt fuel temperature feedback coefficient. The results of all pertinent calculations will be presented. (author)
Goal based mesh adaptivity for fixed source radiation transport calculations
International Nuclear Information System (INIS)
Baker, C.M.J.; Buchan, A.G.; Pain, C.C.; Tollit, B.S.; Goffin, M.A.; Merton, S.R.; Warner, P.
2013-01-01
Highlights: ► Derives an anisotropic goal based error measure for shielding problems. ► Reduces the error in the detector response by optimizing the finite element mesh. ► Anisotropic adaptivity captures material interfaces using fewer elements than AMR. ► A new residual based on the numerical scheme chosen forms the error measure. ► The error measure also combines the forward and adjoint metrics in a novel way. - Abstract: In this paper, the application of goal based error measures for anisotropic adaptivity applied to shielding problems in which a detector is present is explored. Goal based adaptivity is important when the response of a detector is required to ensure that dose limits are adhered to. To achieve this, a dual (adjoint) problem is solved which solves the neutron transport equation in terms of the response variables, in this case the detector response. The methods presented can be applied to general finite element solvers, however, the derivation of the residuals are dependent on the underlying finite element scheme which is also discussed in this paper. Once error metrics for the forward and adjoint solutions have been formed they are combined using a novel approach. The two metrics are combined by forming the minimum ellipsoid that covers both the error metrics rather than taking the maximum ellipsoid that is contained within the metrics. Another novel approach used within this paper is the construction of the residual. The residual, used to form the goal based error metrics, is calculated from the subgrid scale correction which is inherent in the underlying spatial discretisation employed
Polyester-Based, Biodegradable Core-Multishell Nanocarriers for the Transport of Hydrophobic Drugs
Directory of Open Access Journals (Sweden)
Karolina A. Walker
2016-05-01
Full Text Available A water-soluble, core-multishell (CMS nanocarrier based on a new hyperbranched polyester core building block was synthesized and characterized towards drug transport and degradation of the nanocarrier. The hydrophobic drug dexamethasone was encapsulated and the enzyme-mediated biodegradability was investigated by NMR spectroscopy. The new CMS nanocarrier can transport one molecule of dexamethasone and degrades within five days at a skin temperature of 32 °C to biocompatible fragments.
Calculation and analysis of burnup and optimum core design in accelerator driven sub-critical system
International Nuclear Information System (INIS)
Wang Yuwei; Yang Yongwei; Cui Pengfei
2011-01-01
The premise of the accelerator driven sub-critical system (ADS) in the accident is still subcritical, the biggest k eff change with burn time is less than 1.5% and the cladding material, HT9 steel, can withstand the maximum radiation damage, core fuel area is divided into fuel transmutation area and fuel multiplication area, and fuel transmutation area maintains the same fuel composition in the whole process. Through the analysis of the composition of the fuel, shape of core layout and the power distribution, etc., supposed outer and inner Pu enrichment ratio range of 1.0-1.5, then the fuel components of fuel multiplication area was adjusted. Time evolution of k eff was calculated by COUPLED2 which coupled with MCNP and ORIGEN. At the same time the power peaking factors, minoractinides transmutation rate desired to maximization and burnup were considered. A sub-critical system fitting for engineering practice was established. (authors)
Unstructured 3D core calculations with the descartes system application to the JHR research reactor
International Nuclear Information System (INIS)
Baudron, A. M.; Doderlein, C.; Guerin, P.; Lautard, J. J.; Moreau, F.
2007-01-01
Recent developments in the DESCARTES system enable neutronics calculations dealing with very complex unstructured geometrical configurations. The discretization can be made either by using a very fine Cartesian mesh and the fast simplified transport (SPN) solver MINOS, or a discretization based on triangles and the SP1 solver MINARET. In order to perform parallel calculations dealing with a very fine mesh in 3D, a domain decomposition with non overlapping domains has been implemented. To illustrate these capabilities, we present an application on the future European research reactor JHR dedicated to technological irradiations. (authors)
Transport of recycled deuterium to the plasma core in TFTR
International Nuclear Information System (INIS)
Skinner, C.H.; Bell, M.G.; Budny, R.V.; Jassby, D.L.; Park, H.; Ramsey, A.T.; Stotler, D.P.; Strachan, J.D.
1997-10-01
The authors report a study of the fueling of the plasma core by recycling in the Tokamak Fusion Test Reactor (TFTR). They have analyzed discharges fueled by deuterium recycled from the limiter and tritium-only neutral beam injection. In these plasmas, the DT neutron rate provides a measure of the deuterium influx into the core plasma. They find a reduced influx with plasmas using lithium pellet conditioning and with plasmas of reduced major (and minor) radius. Modeling with the DEGAS neutrals code shows that the dependence on radius can be related to the penetration of neutrals through the scrape-off layer
International Nuclear Information System (INIS)
Zaritskiy, S.; Kovalishin, A.; Tsvetkov, T.; Rypar, V.; Svadlenkova, M.
2011-01-01
General review of experimental and calculation researches on WWER-440 and WWER-1000 mock-ups on the reactor LR-0 was introduced on the twentieth Symposium AER. The experimental core fission rate distribution was obtained by means of gamma-scanning of the fuel pins - 140La single peak (1596 keV) measurements and wide energy range (approximately 600-900 keV) measurements. Altogether from 260 to 500 fuel pins were scanned in different experiments. The measurements were arranged in the middle of the fuel (the active part of pin). Pin-to-pin calculations of the WWER-1000 mock-up core fission rate distribution were performed with several codes: Monte Carlo codes MCU-REA/2 and MCNPX with different nuclear data libraries, diffusion code RADAR (63 energy groups library) and code SVL based on Surface Harmonics Method (69 energy groups). Calculated data are compared with experimental ones. The obtained results allow developing the benchmark for core calculations methodologies, evaluating and validating source reliability for the out-of-core (inside and outside pressure vessel) neutron transport calculations. (Authors)
Evaluation of DNBR calculation methods for advanced digital core protection system
International Nuclear Information System (INIS)
Ihn, W. K.; Hwang, D. H.; Pak, Y. H.; Yoon, T. Y.
2003-01-01
This study evaluated the on-line DNBR calculation methods for an advanced digital core protection system in PWR, i.e., subchannel analysis and group-channel analysis. The subchannel code MATRA and the four-channel codes CETOP-D and CETOP2 were used here. CETOP2 is most simplified DNBR analysis code which is implemented in core protection calculator in Korea standard nuclear power plants. The detailed subchannel code TORC was used as a reference calculation of DNBR. The DNBR uncertainty and margin were compared using allowable operating conditions at Yonggwang nuclear units 3-4. The MATRA code using a nine lumping-channel model resulted in smaller mean and larger standard deviation of the DNBR error distribution. CETOP-D and CETOP2 showed conservatively biased mean and relatively smaller standard deviation of the DNBR error distribution. MATRA and CETOP-D w.r.t CETOP2 showed significant increase of the DNBR available margin at normal operating condition. Taking account for the DNBR uncertainty, MATRA and CETOP-D over CETOP2 were estimated to increase the DNBR net margin by 2.5%-9.8% and 2.5%-3.3%, respectively
A NEM diffusion code for fuel management and time average core calculation
International Nuclear Information System (INIS)
Mishra, Surendra; Ray, Sherly; Kumar, A.N.
2005-01-01
A computer code based on Nodal expansion method has been developed for solving two groups three dimensional diffusion equation. This code can be used for fuel management and time average core calculation. Explicit Xenon and fuel temperature estimation are also incorporated in this code. TAPP-4 phase-B physics experimental results were analyzed using this code and a code based on FD method. This paper gives the comparison of the observed data and the results obtained with this code and FD code. (author)
Computer program for calculating thermodynamic and transport properties of fluids
Hendricks, R. C.; Braon, A. K.; Peller, I. C.
1975-01-01
Computer code has been developed to provide thermodynamic and transport properties of liquid argon, carbon dioxide, carbon monoxide, fluorine, helium, methane, neon, nitrogen, oxygen, and parahydrogen. Equation of state and transport coefficients are updated and other fluids added as new material becomes available.
Final Report for the "Fusion Application for Core-Edge Transport Simulations (FACETS)"
Energy Technology Data Exchange (ETDEWEB)
Cary, John R; Kruger, Scott
2014-10-02
The FACETS project over its lifetime developed the first self-consistent core-edge coupled capabilities, a new transport solver for modeling core transport in tokamak cores, developed a new code for modeling wall physics over long time scales, and significantly improved the capabilities and performance of legacy components, UEDGE, NUBEAM, GLF23, GYRO, and BOUT++. These improved capabilities leveraged the team’s expertise in applied mathematics (solvers and algorithms) and computer science (performance improvements and language interoperability). The project pioneered new methods for tackling the complexity of simulating the concomitant complexity of tokamak experiments.
International Nuclear Information System (INIS)
Calabrese, C.R.; Grant, C.R.
1990-01-01
This work presents comparisons between measured fluxes obtained by activation of Manganese foils in the light water, enriched uranium research pool reactor RA-2 MTR (Materials Testing Reactors) fuel element) and fluxes calculated by the finite element method FEM using DELFIN code, and describes the heterogeneus finite elements by a set of solutions of the transport equations for several different configurations obtained using the collision probability code HUEMUL. The agreement between calculated and measured fluxes is good, and the advantage of using FEM is showed because to obtain the flux distribution with same detail using an usual diffusion calculation it would be necessary 12000 mesh points against the 2000 points that FEM uses, hence the processing time is reduced in a factor ten. An interesting alternative to use in MTR fuel management is presented. (Author) [es
International Nuclear Information System (INIS)
Lim, Chang Hyun; Jung Yeon Sang; Joo Han Gyu
2012-01-01
It was generally known that the Doppler feedback effect computed by most industrial reactor analysis codes is underestimated than the actual values. Part of the underestimation was attributed to the neglect of the resonance upscattering during the slowing down calculation. On the contrary, the edge peaked power profile noted in burned fuel pins due to more plutonium buildup at the periphery of fuel pellets might lead to smaller power defects than the predicted values obtained with a flat profile. This work is to mitigate these problems with a direct whole core calculation code nTRACER which is capable of handling ringwise depletion as well as incorporating nonuniform power profiles inside a fuel pellet
International Nuclear Information System (INIS)
Wadt, W.R.; Hay, P.J.
1985-01-01
A consistent set of ab initio effective core potentials (ECP) has been generated for the main group elements from Na to Bi using the procedure originally developed by Kahn. The ECP's are derived from all-electron numerical Hartree--Fock atomic wave functions and fit to analytical representations for use in molecular calculations. For Rb to Bi the ECP's are generated from the relativistic Hartree--Fock atomic wave functions of Cowan which incorporate the Darwin and mass--velocity terms. Energy-optimized valence basis sets of (3s3p) primitive Gaussians are presented for use with the ECP's. Comparisons between all-electron and valence-electron ECP calculations are presented for NaF, NaCl, Cl 2 , Cl 2 - , Br 2 , Br 2 - , and Xe 2 + . The results show that the average errors introduced by the ECP's are generally only a few percent
Calculation of the thermal and hydraulic states in rod cluster cores of light-water reactors
International Nuclear Information System (INIS)
Teichel, H.
1977-01-01
For calculating the three-dimensional steady distribution of the thermal and hydraulic states in rod cluster cores of light-water reactors, the subchannel analysis programs COLA 1 and COLA 2 have been developed. Both programs contain a multitude of competing empirical correlations which may be used by choice. The programs COLA 1 and COLA 2 differ in the calculation method and in the treatment of the boundary condition 'equal pressure at the end of all cooling channels' governing the problem. All parts of the programs are identical. By means of recomputed experiments statements on the accuracy of the results to be expected can be made. In addition, the different suitability of both programs for different experimental conditions are shown. (orig.) [de
Evaluation of uncertainties treatment of DNBR calculation for Angra-1 reactor core
International Nuclear Information System (INIS)
Pontedeiro, A.C.; Galetti, M.R.S.
1986-01-01
The results of DNBR sensitivity analysis for NPP Angra 1 are presented in this report. Sensitivity study was carried out using computer code COBRAIIIP and all the sensitivity factors were calculated for the nominal condition as the reference case. These sensitivity factors were used according to the Westinghouse methodology 'Improved Thermal Design Procedure', to calculate a statistical uncertainty factor. In this methodology the best estimate DNBR is penalized by the uncertainty factor and compared with a statistical limit to the minimum DNBR. Westinghouse has been using this statistical uncertainty treatment in the core thermal design to get a better operation flexibility of the plant in order to keep the same design basis established in Angra 1 FSAR methodology. (Author) [pt
In-medium no-core shell model for ab initio nuclear structure calculations
International Nuclear Information System (INIS)
Gebrerufael, Eskendr
2017-01-01
In this work, we merge two successful ab initio nuclear-structure methods, the no-core shell model (NCSM) and the multi-reference in-medium similarity renormalization group (IM-SRG), to define a novel many-body approach for the comprehensive description of ground and excited states of closed- and open-shell medium-mass nuclei. Building on the key advantages of the two methods - the decoupling of excitations at the many-body level in the IM-SRG, and the exact diagonalization in the NCSM applicable up to medium-light nuclei - their combination enables fully converged no-core calculations for an unprecedented range of nuclei and observables at moderate computational cost. The efficiency and rapid model-space convergence of the new approach make it ideally suited for ab initio studies of ground and low-lying excited states of nuclei up to the medium-mass regime. Interactions constructed within the framework of chiral effective field theory provide an excellent opportunity to describe properties of nuclei from first principles, i.e., rooted in quantum chromodynamics, they overcome the lack of predictive power of phenomenological potentials. The hard core of these interactions causes strong short-range correlations, which we soften by using the similarity-renormalization-group transformation that accelerates the model-space convergence of many-body calculations. Three-nucleon effects, which are mandatory for the correct description of bulk properties of nuclei, are included in our calculations by using the normal-ordered two-body approximation, which has been shown to be sufficient to capture the main effects of the three-nucleon interaction. Using these interactions, we analyze energies of ground and excited states in the carbon and oxygen isotopic chains, where conventional NCSM calculations are still feasible and provide an important benchmark. Furthermore, we study the Hoyle state in 12 C - a three-alpha cluster state that cannot be converged in standard NCSM
International Nuclear Information System (INIS)
Young, Ryong Park; Nam, Zin Cho
2005-01-01
As the nuclear reactor core becomes more complex, heterogeneous, and geometrically irregular, the method of characteristics (MOC) is gaining its wide use in the neutron transport calculations. However, the long computing times require good acceleration methods. In this paper, the concept of coarse-mesh angular dependent re-balance (CMADR) acceleration is described and applied to the MOC calculation in x-y-z (z-infinite, uniform) geometry. The method is based on the angular dependent re-balance factors defined only on the coarse-mesh boundaries; a coarse-mesh consists of several fine meshes that may be heterogeneous and of mixed geometries with irregular or unstructured mesh shapes. In addition, the coarse-mesh boundaries may not coincide with the structural interfaces of the problem and can be chosen artificially for convenience. CMADR acceleration is tested on several test problems and the results show that CMADR is very effective in reducing the number of iterations and computing times of MOC calculations. Fourier analysis is also provided to investigate convergence of the CMADR method analytically and the results show that CMADR acceleration is unconditionally stable. (authors)
Calculation and analysis of generator limiting regimes with respect to stator end core heating
Directory of Open Access Journals (Sweden)
Kostić Miloje
2015-01-01
Full Text Available A new simplified procedure for defining the limiting operating regimes on the generator capability curve, with respect to stator end core heating, is proposed and described in this paper. First of all, a simplified analysis of axial flux leakage that penetrates into the end plates of the stator is carried out and the corresponding power losses are calculated. Then the analysis of measured point temperature increases over the stator end core, and a qualitative and quantitative overview of the effects, are presented. A simplified procedure for defining the limiting regime with regard to the heating stator end core, which is illustrated for the case of an operating diagram for a given generator of apparent power of 727 MVA (B2 is also described. The given limiting line constructed using this method is similar to the appropriate line constructed on the basis of complex and lengthy factory and on-site tests performed by the manufacturer and the user. According to the results and the check, the proposed method has been proved and the application of the simplified procedure can be recommended for use along with other procedures, at least when it comes to similar synchronous generators in Serbia's Electric Power Industry.
Automatic whole core depletion and criticality calculations by MCNPX 2.7.0
International Nuclear Information System (INIS)
Kalcheva, S.; Koonen, E.
2012-01-01
Different approaches to perform automatic whole core criticality and depletion calculations in a research reactor using MCNPX 2.7.0 are presented. An approximate method is to use the existing symmetries of the burned fuel material distribution in the core, i.e., the axial, radial and azimuth symmetries around the core center, in order to significantly reduce the computation time. In this case it is not necessary to give a unique material number to each burn up cell. Cells having similar burn up and power, achieved during similar irradiation history at same initial fuel composition, will experience similar composition evolution and can therefore be given the same material number. To study the impact of the number of unique burn up materials on the computation time and utilized RAM memory, several MCNPX models have been developed. The paper discusses the accuracy of the model on comparison with measurements of BR2 operation cycles in function of the number of unique burn up materials and the impact of the used Q-value (MeV/fission) of the recoverable fission energy. (authors)
Quality Assurance in the removal and transport of the TMI-2 core
International Nuclear Information System (INIS)
Hayes, G.R.; Marsden, J.F.
1988-01-01
EG ampersand G Idaho, acting on behalf of the US Department of Energy (DOE), is cooperating with the owner of the TMI-2 plant, General Public Utilities Nuclear (GPUN), in the removal and transport of the damaged TMI-2 core to the Idaho National Engineering Laboratory (INEL) near Idaho Falls, Idaho. Quality Assurance (QA) played an important role in the removal and transport of the damaged TMI-2 core. To illustrate, the authors have chosen to discuss some of the important quality assurance techniques utilized in the design, fabrication, acceptance, and use of the three different types of equipment; the core boring machine, the core debris canisters, and the transport casks. Rather than a thorough discussion of the QA aspects of each task, the authors have purposely chosen to present only the key applications of quality assurance principles and methodology unique to each piece of equipment. The intent of this approach is to effectively communicate the importance of ''task teamwork'' in QA
International Nuclear Information System (INIS)
Kosaka, Shinya; Saji, Etsuro
2000-01-01
A characteristics transport theory code, CHAPLET, has been developed for the purpose of making it practical to perform a whole LWR core calculation with the same level of calculational model and accuracy as that of an ordinary single assembly calculation. The characteristics routine employs the CACTUS algorithm for drawing ray tracing lines, which assists the two key features of the flux solution in the CHAPLET code. One is the direct neutron path linking (DNPL) technique which strictly connects angular fluxes at each assembly interface in the flux solution separated between assemblies. Another is to reduce the required memory storage by sharing the data related to ray tracing among assemblies with the same configuration. For faster computation, the coarse mesh rebalance (CMR) method and the Aitken method were incorporated in the code and the combined use of both methods showed the most promising acceleration performance among the trials. In addition, the parallelization of the flux solution was attempted, resulting in a significant reduction in the wall-clock time of the calculation. By all these efforts, coupled with the results of many verification studies, a whole LWR core heterogeneous transport theory calculation finally became practical. CHAPLET is thought to be a useful tool which can produce the reference solutions for analyses of an LWR (author)
Density functional theory calculations of charge transport properties ...
Indian Academy of Sciences (India)
ZIRAN CHEN
2017-08-04
Aug 4, 2017 ... properties of 'plate-like' coronene topological structures ... Keywords. Organic semiconductors; density functional theory; charge carrier mobility; ambipolar transport; ..... nology Department of Sichuan Province (Grant Number.
Initial Studies of Core and Edge Transport of NSTX Plasmas
International Nuclear Information System (INIS)
Synakowski, E.J.; Bell, M.G.; Bell, R.E.; Bush, C.E.; Bourdelle, C.; Darrow, D.; Dorland, W.; Ejiri, A.; Fredrickson, E.D.; Gates, D.A.; Kaye, S.M.; Kubota, S.; Kugel, H.W.; LeBlanc, B.P.; Maingi, R.; Maqueda, R.J.; Menard, J.E.; Mueller, D.; Rosenberg, A.; Sabbagh, S.A.; Stutman, D.; Taylor, G.; Johnson, D.W.; Kaita, R.; Ono, M.; Paoletti, F.; Peebles, W.; Peng, Y-K.M.; Roquemore, A.L.; Skinner, C.H.; Soukhanovskii, V.A.
2001-01-01
Rapidly developing diagnostic, operational, and analysis capability is enabling the first detailed local physics studies to begin in high-beta plasmas of the National Spherical Torus Experiment (NSTX). These studies are motivated in part by energy confinement times in neutral-beam-heated discharges that are favorable with respect to predictions from the ITER-89P scaling expression. Analysis of heat fluxes based on profile measurements with neutral-beam injection (NBI) suggest that the ion thermal transport may be exceptionally low, and that electron thermal transport is the dominant loss channel. This analysis motivates studies of possible sources of ion heating not presently accounted for by classical collisional processes. Gyrokinetic microstability studies indicate that long wavelength turbulence with k(subscript ''theta'') rho(subscript ''i'') ∼ 0.1-1 may be suppressed in these plasmas, while modes with k(subscript ''theta'') rho(subscript ''i'') ∼ 50 may be robust. High-harmonic fast-wave (HHFW) heating efficiently heats electrons on NSTX, and studies have begun using it to assess transport in the electron channel. Regarding edge transport, H-mode [high-confinement mode] transitions occur with either NBI or HHFW heating. The power required for low-confinement mode (L-mode) to H-mode transitions far exceeds that expected from empirical edge-localized-mode-free H-mode scaling laws derived from moderate aspect ratio devices. Finally, initial fluctuation measurements made with two techniques are permitting the first characterizations of edge turbulence
Artificial neural networks applied to DNBR calculation in digital core protection systems
International Nuclear Information System (INIS)
Lee, H. C.; Chang, S. H.
2003-01-01
The nuclear power plant has to be operated with sufficient margin from the specified DNBR limit for assuring its safety. The digital core protection system calculates on-line real-time DNBR by using a complex subchannel analysis program, and triggers a reliable reactor shutdown if the calculated DNBR approaches the specified limit. However, it takes relatively long calculation time even for a steady state condition, which may have an adverse effect on the operation flexibility. To overcome the drawback, a method using artificial neural networks is studied in this paper. Nonparametric training approach is utilized, which shows dramatic reduction of the training time, no tedious heuristic process for optimizing parameters, and no local minima problem during the training. The test results show that the predicted DNBR is within about ±2% deviation from the target DNBR for the fixed axial flux shape case. For the variable axial flux case including severely skewed shapes appeared during accidents, the deviation is about ±10∼15%. The suggested method could be the alternative that can calculate DNBR very quickly while increasing the plant availability
Radial basis function networks applied to DNBR calculation in digital core protection systems
International Nuclear Information System (INIS)
Lee, Gyu-Cheon; Heung Chang, Soon
2003-01-01
The nuclear power plant has to be operated with sufficient margin from the specified DNBR limit for assuring its safety. The digital core protection system calculates on-line real-time DNBR by using a complex subchannel analysis program, and triggers a reliable reactor shutdown if the calculated DNBR approaches the specified limit. However, it takes a relatively long calculation time even for a steady state condition, which may have an adverse effect on the operation flexibility. To overcome the drawback, a new method using a radial basis function network is presented in this paper. Nonparametric training approach is utilized, which shows dramatic reduction of the training time, no tedious heuristic process for optimizing parameters, and no local minima problem during the training. The test results show that the predicted DNBR is within about ±2% deviation from the target DNBR for the fixed axial flux shape case. For the variable axial flux case including severely skewed shapes that appeared during accidents, the deviation is within about ±10%. The suggested method could be the alternative that can calculate DNBR very quickly while guaranteeing the plant safety
HEDO-2, Magnetic Field Calculation and Plot of Air Core Coils
International Nuclear Information System (INIS)
Preis, H.; Martin, P.
1979-01-01
1 - Nature of physical problem solved: HEDO-2 allows calculation of the magnetic field, magnetic volume forces, and the self and mutual inductance coefficients of arbitrary air-core coil systems. In addition, the program is suitable for the calculation and graphic representation of field and contour lines (lines B = const). 2 - Method of solution: Approximation of the spatially distributed currents by line currents, in which the number of closed line currents per coil can be freely chosen in accordance with the calculating accuracy required. All types of calculations possible with HEDO-2 are based on the field representation of line currents. 3 - Restrictions on the complexity of the problem: (a) The coils must have rectangular winding cross sections. (b) The contour of each coil must be symmetric to at least one coordinate axis. (c) The function describing the contour and the derivative of the function must be continuous. (d) Maximum number of coils n=200; (e) Maximum number of test points p=2000; (f) Test points ought not to be located on a line conductor
Transport survey calculations using the spectral collocation method
International Nuclear Information System (INIS)
Painter, S.L.; Lyon, J.F.
1989-01-01
A novel transport survey code has been developed and is being used to study the sensitivity of stellarator reactor performance to various transport assumptions. Instead of following one of the usual approaches, the steady-state transport equation are solved in integral form using the spectral collocation method. This approach effectively combine the computational efficiency of global models with the general nature of 1-D solutions. A compact torsatron reactor test case was used to study the convergence properties and flexibility of the new method. The heat transport model combined Shaing's model for ripple-induced neoclassical transport, the Chang-Hinton model for axisymmetric neoclassical transport, and neoalcator scaling for anomalous electron heat flux. Alpha particle heating, radiation losses, classical electron-ion heat flow, and external heating were included. For the test problem, the method exhibited some remarkable convergence properties. As the number of basis functions was increased, the maximum, pointwise error in the integrated power balance decayed exponentially until the numerical noise level as reached. Better than 10% accuracy in the globally-averaged quantities was achieved with only 5 basis functions; better than 1% accuracy was achieved with 10 basis functions. The numerical method was also found to be very general. Extreme temperature gradients at the plasma edge which sometimes arise from the neoclassical models and are difficult to resolve with finite-difference methods were easily resolved. 8 refs., 6 figs
Calculation of mixed HEU-LEU cores for the HOR research reactor with the scale code system
International Nuclear Information System (INIS)
Leege, P.F.A. de; Gibcus, H.P.M.; Hoogenboom, J.E.; Vries, J.W. de
1997-01-01
The HOR reactor of Interfaculty Reactor Institute (IRI), Delft, The Netherlands, will be converted to use low enriched fuel (LEU) assemblies. As there are still many usable high enriched (HEU) fuel assemblies present, there will be a considerable reactor operation time with mixed cores with both HEU and LEU fuel assemblies. At IRI a comprehensive reactor physics code system and evaluated nuclear data is implemented for detailed core calculations. One of the backbones of the IRI code system is the well-known SCALE code system package. Full core calculations are performed with the diffusion theory code BOLD VENTURE, the nodal code SILWER, and the Monte Carlo code KENO Va. Results are displayed of a strategy from a HEU core to a mixed HEU-LEU core and eventually a LEU core. (author)
International Nuclear Information System (INIS)
Reno, H.W.; Schmitt, R.C.; Quinn, G.J.; Ayers, A.L. Jr.; Lilburn, B.J. Jr.; Uhl, D.L.
1986-03-01
The March 1979 incident at the Three Mile Island Nuclear Power Station (TMI) which damaged the core of the Unit 2 reactor resulted in numerous scientific and technical challenges. Some of those challenges involve removing, packaging, and transporting the core debris to the Idaho National Engineering Laboratory (INEL) for storage, examination, and preparation for final disposal. This paper highlights preparations for transporting the core debris from TMI to INEL and receiving and storing that material at INEL. Issues discussed include interfacing of equipment and facilities at TMI, loading operations, transportation activities using a newly designed cask, receiving and storing operations at INEL, and criticality control during storage. Key to the transportation effort was designing, testing, fabricating, and licensing two rail casks which individually provide double containment of the damaged fuel. 27 figs
ORIGEN2.1 Cycle Specific Calculation of Krsko Nuclear Power Plant Decay Heat and Core Inventory
International Nuclear Information System (INIS)
Vukovic, J.; Grgic, D.; Konjarek, D.
2010-01-01
This paper presents ORIGEN2.1 computer code calculation of Krsko Nuclear Power Plant core for Cycle 24. The isotopic inventory, core activity and decay heat are calculated in one run for the entire core using explicit depletion and decay of each fuel assembly. Separate pre-ori application which was developed is utilized to prepare corresponding ORIGEN2.1 inputs. This application uses information on core loading pattern to determine fuel assembly specific depletion history using 3D burnup which is obtained from related PARCS computer code calculation. That way both detailed single assembly calculations as well as whole core inventory calculations are possible. Because of the immense output of the ORIGEN2.1, another application called post-ori is used to retrieve and plot any calculated property on the basis of nuclide, element, summary isotope or group of elements for activation products, actinides and fission products segments. As one additional possibility, with the post-ori application it is able to calculate radiotoxicity from calculated ORIGEN2.1 inventory. The results which are obtained using the calculation model of ORIGEN2.1 computer code are successfully compared against corresponding ORIGEN-S computer code results.(author).
Novel fluorescent core-shell nanocontainers for cell membrane transport.
Yin, Meizhen; Kuhlmann, Christoph R W; Sorokina, Ksenia; Li, Chen; Mihov, George; Pietrowski, Eweline; Koynov, Kaloian; Klapper, Markus; Luhmann, Heiko J; Müllen, Klaus; Weil, Tanja
2008-05-01
The synthesis and characterization of novel core-shell macromolecules consisting of a fluorescent perylene-3,4,9,10-tetracarboxdiimide chromophore in the center surrounded by a hydrophobic polyphenylene shell as a first and a flexible hydrophilic polymer shell as a second layer was presented. Following this strategy, several macromolecules bearing varying polymer chain lengths, different polymer shell densities, and increasing numbers of positive and negative charges were achieved. Because all of these macromolecules reveal a good water solubility, their ability to cross cellular membranes was investigated. In this way, a qualitative relationship between the molecular architecture of these macromolecules and the biological response was established.
TWO-DIMENSIONAL CORE-COLLAPSE SUPERNOVA MODELS WITH MULTI-DIMENSIONAL TRANSPORT
International Nuclear Information System (INIS)
Dolence, Joshua C.; Burrows, Adam; Zhang, Weiqun
2015-01-01
We present new two-dimensional (2D) axisymmetric neutrino radiation/hydrodynamic models of core-collapse supernova (CCSN) cores. We use the CASTRO code, which incorporates truly multi-dimensional, multi-group, flux-limited diffusion (MGFLD) neutrino transport, including all relevant O(v/c) terms. Our main motivation for carrying out this study is to compare with recent 2D models produced by other groups who have obtained explosions for some progenitor stars and with recent 2D VULCAN results that did not incorporate O(v/c) terms. We follow the evolution of 12, 15, 20, and 25 solar-mass progenitors to approximately 600 ms after bounce and do not obtain an explosion in any of these models. Though the reason for the qualitative disagreement among the groups engaged in CCSN modeling remains unclear, we speculate that the simplifying ''ray-by-ray'' approach employed by all other groups may be compromising their results. We show that ''ray-by-ray'' calculations greatly exaggerate the angular and temporal variations of the neutrino fluxes, which we argue are better captured by our multi-dimensional MGFLD approach. On the other hand, our 2D models also make approximations, making it difficult to draw definitive conclusions concerning the root of the differences between groups. We discuss some of the diagnostics often employed in the analyses of CCSN simulations and highlight the intimate relationship between the various explosion conditions that have been proposed. Finally, we explore the ingredients that may be missing in current calculations that may be important in reproducing the properties of the average CCSNe, should the delayed neutrino-heating mechanism be the correct mechanism of explosion
Transport in the high temperature core of toroidal confinement systems
International Nuclear Information System (INIS)
Weiland, J.
1994-01-01
Recent theoretical and experimental results on confinement of hot plasmas in toroidal devices, particularly tokamaks, are discussed from general principal points of view and related to predictions from a toroidal drift wave model using a full transport matrix including off diagonal terms. A reactive fluid model corresponding to a two pole approximation of the kinetic response is used. This model has the ability to reproduce both adiabatic and isothermal limits of the perpendicular dynamics. 106 refs, 8 figs, 1 tab
MORSE-C, Neutron Transport, Gamma Transport for Criticality Calculation by Monte-Carlo Method
International Nuclear Information System (INIS)
2002-01-01
1 - Description of program or function: MORSE-C is a Monte-Carlo code to solve the multiple energy group form of the Boltzmann transport equation in order to obtain the eigenvalue (multiplication) when fissionable materials are present. Cross sections for up to 100 energy groups may be employed. The angular scattering is treated by the usual Legendre expansion as used in the discrete ordinates codes. Up-scattering may be specified. The geometry is defined by relationships to general 1. or 2. degree surfaces. Array units may be specified. Output includes, besides the usual values of input quantities, plots of the geometry, calculated volumes and masses, and graphs of results to assist the user in determining the correctness of the problem's solution
International Nuclear Information System (INIS)
Conti, C.F.S.; Watson, F.V.
1991-01-01
A computational code to solve a two energy group neutron diffusion problem has been developed base d on the Response Matrix Method. That method solves the global problem of PWR core, without using the cross sections homogenization process, thus it is equivalent to a pontwise core calculation. The present version of the code calculates the response matrices by the first order perturbative method and considers developments on arbitrary order Fourier series for the boundary fluxes and interior fluxes. (author)
Assessment of uncertainty in full core reactor physics calculations using statistical methods
International Nuclear Information System (INIS)
McEwan, C.
2012-01-01
The best estimate method of safety analysis involves choosing a realistic set of input parameters for a proposed safety case and evaluating the uncertainty in the results. Determining the uncertainty in code outputs remains a challenge and is the subject of a benchmarking exercise proposed by the Organization for Economic Cooperation and Development. The work proposed in this paper will contribute to this benchmark by assessing the uncertainty in a depletion calculation of the final nuclide concentrations for an experiment performed in the Fukushima-2 reactor. This will be done using lattice transport code DRAGON and a tool known as DINOSAUR. (author)
The spectral code Apollo2: from lattice to 2D core calculations
International Nuclear Information System (INIS)
Coste-Delclaux, M.; Santandrea, S.; Damian, F.; Blanc-Tranchant, P.; Zmijarevic, I.; Santamarina, A.
2005-01-01
Apollo2 is a powerful code dedicated to neutron transport, it is a highly qualified tool for a wide range of applications from research and development studies to industrial applications. Today Apollo2 is part of several advanced 3-dimensional nuclear code packages dedicated to reactor physics, fuel cycle, criticality and safety analysis. The presentations have been organized into 7 topics: -) an introduction to Apollo2, -) cross-sections, -) flux calculation, -) advanced applications, -) Apollo2 users, specialized packages, -) qualification program, and -) the future of Apollo2. This document gathers only the slides of the presentations
The spectral code Apollo2: from lattice to 2D core calculations
Energy Technology Data Exchange (ETDEWEB)
Coste-Delclaux, M.; Santandrea, S.; Damian, F.; Blanc-Tranchant, P.; Zmijarevic, I. [CEA Saclay (DEN/DANS/SERMA), 91 - Gif-sur-Yvette (France); Santamarina, A. [CEA Cadarache (CEA/DEN/DER/SPRC), 13 - Saint Paul lez Durance (France)
2005-07-01
Apollo2 is a powerful code dedicated to neutron transport, it is a highly qualified tool for a wide range of applications from research and development studies to industrial applications. Today Apollo2 is part of several advanced 3-dimensional nuclear code packages dedicated to reactor physics, fuel cycle, criticality and safety analysis. The presentations have been organized into 7 topics: -) an introduction to Apollo2, -) cross-sections, -) flux calculation, -) advanced applications, -) Apollo2 users, specialized packages, -) qualification program, and -) the future of Apollo2. This document gathers only the slides of the presentations.
Assessment of uncertainty in full core reactor physics calculations using statistical methods
Energy Technology Data Exchange (ETDEWEB)
McEwan, C., E-mail: mcewac2@mcmaster.ca [McMaster Univ., Hamilton, Ontario (Canada)
2012-07-01
The best estimate method of safety analysis involves choosing a realistic set of input parameters for a proposed safety case and evaluating the uncertainty in the results. Determining the uncertainty in code outputs remains a challenge and is the subject of a benchmarking exercise proposed by the Organization for Economic Cooperation and Development. The work proposed in this paper will contribute to this benchmark by assessing the uncertainty in a depletion calculation of the final nuclide concentrations for an experiment performed in the Fukushima-2 reactor. This will be done using lattice transport code DRAGON and a tool known as DINOSAUR. (author)
Monte Carlo perturbation theory in neutron transport calculations
International Nuclear Information System (INIS)
Hall, M.C.G.
1980-01-01
The need to obtain sensitivities in complicated geometrical configurations has resulted in the development of Monte Carlo sensitivity estimation. A new method has been developed to calculate energy-dependent sensitivities of any number of responses in a single Monte Carlo calculation with a very small time penalty. This estimation typically increases the tracking time per source particle by about 30%. The method of estimation is explained. Sensitivities obtained are compared with those calculated by discrete ordinates methods. Further theoretical developments, such as second-order perturbation theory and application to k/sub eff/ calculations, are discussed. The application of the method to uncertainty analysis and to the analysis of benchmark experiments is illustrated. 5 figures
Lecture note on neutron and photon transport calculation with MCNP
International Nuclear Information System (INIS)
Sakurai, Kiyoshi
2003-01-01
This paper is a lecture note on the continuous energy Monte Carlo method. The contents are as follows; history of the Monte Carlo study, continuous energy Monte Carlo codes, libraries, evaluation method for calculation results, integral emergent particle density equation, pseudorandom number, random walk, variance reduction techniques, MCNP weight window method, MCNP weight window generator, exponential transform, estimators, criticality problem and research subjects. This paper is a textbook for beginners on the Monte Carlo calculation. (author)
Working with the States to Transport TMI-2 Core Debris
International Nuclear Information System (INIS)
Smith, T.A.; Anselmo, A.A.
1989-01-01
Close communications with state officials has been a key factor in success of the Three Mile Island Unit 2 core debris shipments. The U.S. Department of Energy made extensive efforts to provide state officials with schedule information, answer technical questions, and satisfy concerns. Communications started before the campaign and continued during shipments and at intervals between shipments. Those efforts led to good working relationships with the states, kept governors and other state officials informed so they could respond to public concerns, provided the opportunity to recognize and respond to specific state concerns, facilitated state inspections, and provided avenues to avoid conflict and potential litigation. Good communications and working relationships with state officials also greatly benefited the community relations effort for the campaign. (author)
Working with the states to transport TMI-2 core debris
International Nuclear Information System (INIS)
Smith, T.A.; Anselmo, A.A.
1989-01-01
This reports that close communications with state officials has been a key factor in success of the Three Mile Island Unit 2 core debris shipments. The U.S. Department of Energy made extensive efforts to provide state officials with schedule information, answer technical questions, and satisfy concerns. Communications started before the campaign and continued during shipments and at intervals between shipments. Those efforts led to good working relationships with the states, kept governors and other state officials informed so they could respond to public concerns, facilitated state inspections, and provided avenues to avoid conflict and potential litigation. Good communications and working relationships with state officials also greatly benefited the community relations effort for the campaign
International Nuclear Information System (INIS)
Won, Byung Hee; Kim, Kyung O; Kim, Jong Kyung; Kim, Soon Young
2012-01-01
The Core Protection Calculator System (CPCS) is an automated device which is adopted to inspect the safety parameters such as Departure from Nuclear Boiling Ratio (DNBR) and Local Power Density (LPD) during normal operation. One function of the CPCS is to predict the axial power distributions using function sets in cubic spline method. Another function of that is to impose penalty when the estimated distribution by the spline method disagrees with embedded data in CPCS (i.e., over 8%). In conventional CPCS, restricted function sets are used to synthesize axial power shape, whereby it occasionally can draw a disagreement between synthesized data and the embedded data. For this reason, the study on improvement for power distributions synthesis in CPCS has been conducted in many countries. In this study, many function sets (more than 18,000 types) differing from the conventional ones were evaluated in each power shape. Matlab code was used for calculating/arranging the numerous cases of function sets. Their synthesis performance was also evaluated through error between conventional data and consequences calculated by new function sets
Beam transport calculations for the EN tandem installation
International Nuclear Information System (INIS)
Sparks, R.J.
1980-12-01
Transport of a charged particle beam through the new EN tandem accelerator installation of the Institute of Nuclear Sciences has been analysed using simplified mathematical models. The purpose is to identify the factors affecting transmission of the beam, and to arrive at a design for the system to inject the beam into the accelerator
Cyclic machine scheduling with tool transportation - additional calculations
Kuijpers, C.M.H.
2001-01-01
In the PhD Thesis of Kuijpers a cyclic machine scheduling problem with tool transportation is considered. For the problem with two machines, it is shown that there always exists an optimal schedule with a certain structure. This is done by means of an elaborate case study. For a number of cases some
Transport of fresh MOX fuel assemblies for the Monju initial core
International Nuclear Information System (INIS)
Kurakami, J.; Ouchi, Y.; Usami, M.
1997-01-01
Transport of fresh MOX fuel assemblies for the prototype FBR MONJU initial core started in July 1992 and ended in March 1994. As many as 205 fresh MOX fuel assemblies for an inner core, 91 assemblies for an outer core and 5 assemblies for testing) were transported in nine transport missions. The packaging for fuel assemblies, which has shielding and shock absorbing material inside, meets IAEA regulatory requirements for Type B(U) packaging including hypothetical accident conditions such as the 9 m drop test, fire test, etc. Moreover, this package design feature such advanced technologies as high performance neutron shielding material and an automatic hold-down mechanism for the fuel assemblies. Every effort was made to carry out safe transport in conjunction with the cooperation of every competent organisation. This effort includes establishment of the transport control centre, communication training, and accompanying of the radiation monitoring expert. No transport accident occurred during the transport and all the transport missions were successfully completed on schedule. (Author)
Edge-core interaction revealed with dynamic transport experiment in LHD
International Nuclear Information System (INIS)
Tamura, N.; Ida, K.; Inagaki, S.
2010-11-01
Large scale coherent structures in electron heat transport of both core and edge plasmas are clearly found in plasma with a nonlocal transport phenomenon (NTP, a core electron temperature rise in response to an edge cooling) on Large Helical Device (LHD). At the onset of the NTP, a first order transition of the electron heat transport, which is characterized by a discontinuity of electron temperature gradient, is found to take place over a wide region (at least 6 cm wide) in the periphery of the plasma. At about the same time, over a wide region (about 10 cm wide) of the plasma core, a second order transition of the electron heat transport, which is characterized by a discontinuity of the time derivative of the electron temperature gradient, appears. The both large scale coherent structures are of a scale larger than a typical micro-turbulent eddy size (a few mm in this case). In order to assess dynamic characteristics of the electron heat transport state in the core region during the NTP, a transit time distribution analysis is applied to the temporal behaviors of the electron temperature gradient. The analysis results more clearly show the existence of the large coherent structures in electron heat transport. Thus the NTP observed in LHD is considered to be invoked by the interaction of those structures. (author)
H2 gas pressure calculation of FPM capsule failure at RSG-GAS reactor core
International Nuclear Information System (INIS)
Hastuti, Endiah Puji; Sunaryo, Geni Rina
2002-01-01
RSG-GAS has been irradiated FPM capsule for 236 times, one of those i.e. capsule number 228 has failure. The one of root cause of failure possibility is radiolysis reaction can be occurred in FPM capsule when it is filled with water during irradiation in the reactor core. The safety analysis of the radiolysis reaction in the capsule has been done. The oc cumulative hydrogen gas production can cause high pressure in the capsule then a mechanical damage occurred. The analysis was done at 10 MW of reactor power which equivalent with neutron flux of 0,6929 x 10 1 4 n/cm 2 sec and γ dose rate of 0,63x10 9 rad/hour. The assumption is the capsule is filled with water at maximum volume, i.e. 176.67 ml. The results of calculation showed that radiolysis reaction with γ and neutron produce hydrogen gas for nominal flow rate each are 494 atm and 19683 atm for γ and neutron radiolysis, respectively. H 2 gas pressure for 5% flow rate each are 723 atm. and 25772 atm., for γ and neutron radiolysis, respectively. The changing of the operation condition due to radiolysis together with one way valve' phenomena, can be produce hydrogen gas from water during irradiation in the reactor core and can be the one of root cause of capsule failure. This analysis recommended the FPM capsule preparation must be guaranteed no water or/and there is no possibility of water immersion in the capsule during irradiation in the core by more accurate leak test
International Nuclear Information System (INIS)
Höhne, Thomas; Grahn, Alexander; Kliem, Sören; Rohde, Ulrich; Weiss, Frank-Peter
2013-01-01
Highlights: ► Detailed results of a numerical simulation of the insulation material transport to a PWR core are shown. ► The spacer grid is modeled as a strainer which completely retains the insulation material carried by coolant. ► The CFD calculations showed that the fibers at the upper spacer grid plane are not uniformly distributed. ► Furthermore the pressure loss does not exceed a critical limit. ► The PWR core coolablity can be guaranteed all the time during the transient. -- Abstract: In 1992, strainers on the suction side of the ECCS pumps in Barsebäck NPP Unit 2 became partially clogged with mineral wool because after a safety valve opened the steam impinged on thermally insulated equipment and released mineral wool. This event pointed out that strainer clogging is an issue in the course of a loss-of-coolant accident. Modifications of the insulation material, the strainer area and mesh size were carried out in most of the German NPPs. Moreover, back flushing procedures to remove the mineral wool from the strainers and differential pressure measurements were implemented to assure the performance of emergency core cooling during the containment sump recirculation mode. Nevertheless, it cannot be completely ruled out, that a limited amount of small fractions of the insulation material is transported into the RPV. During a postulated cold leg LOCA with hot leg ECC injection, the fibers enter the upper plenum and can accumulate at the fuel element spacer grids, preferably at the uppermost grid level. This effect might affect the ECC flow into the core and could result in degradation of core cooling. It was the aim of the numerical simulations presented to study where and how many mineral wool fibers are deposited at the upper spacer grid. The 3D, time dependent, multi-phase flow problem was modeled applying the CFD code ANSYS CFX. The CFD calculation does not yet include steam production in the core and also does not include re-suspension of the
Radiological impacts of transporting Three Mile Island core debris
International Nuclear Information System (INIS)
Cox, N.D.
1986-01-01
This document presents an assessment of the radiological impacts of one cask shipment. It focuses on potential effects of the shipment on the public along the route. The document begins with a description of the shipping cask, followed by a description of the survivability tests required to confirm the cask design. Some actual accidents that similar casks have survived wholly intact are described. Next considered is the limit of radiation exposure dose rate that is imposed by regulatory agencies under normal conditions. No shipping of radioactive material is allowed unless the container is at or below the normal limit. A comparison is made between the normal radiation exposure limit and the radiation dose received annually by individuals from natural sources. Then, estimates of the radiation dose received by persons along the rail route in urban, suburban, and rural areas during normal transport are presented. Those times when the train stops for whatever reason (called rest stops) are considered also. Next, potential accident events are considered. Recent accident statistics are presented, and chances for an accident at different train velocities are estimated for any mile of track. The alternative of truck transport is considered briefly
New Three-Dimensional Neutron Transport Calculation Capability in STREAM Code
Energy Technology Data Exchange (ETDEWEB)
Zheng, Youqi [Xi' an Jiaotong University, Xi' an (China); Choi, Sooyoung; Lee, Deokjung [UNIST, Ulsan (Korea, Republic of)
2016-10-15
The method of characteristics (MOC) is one of the best choices for its powerful capability in the geometry modeling. To reduce the large computational burden in 3D MOC, the 2D/1D schemes were proposed and have achieved great success in the past 10 years. However, such methods have some instability problems during the iterations when the neutron leakage for axial direction is large. Therefore, full 3D MOC methods were developed. A lot of efforts have been devoted to reduce the computational costs. However, it still requires too much memory storage and computational time for the practical modeling of a commercial size reactor core. Recently, a new approach for the 3D MOC calculation without transverse integration has been implemented in the STREAM code. In this approach, the angular flux is expressed as a basis function expansion form of only axial variable z. A new approach based on the axial expansion and 2D MOC sweeping to solve the 3D neutron transport equation is implemented in the STREAM code. This approach avoids using the transverse integration in the traditional 2D/1D scheme of MOC calculation. By converting the 3D equation into the 2D form of angular flux expansion coefficients, it also avoids the complex 3D ray tracing. Current numerical tests using two benchmarks show good accuracy of the new method.
Energy Technology Data Exchange (ETDEWEB)
Nonboel, E
1985-07-01
A 3-dimensional calculation model of the Danish research reactor DR3 has been developed. Demands of a more effective utilization of the reactor and its facilities has required a more detailed calculation tool than applied so far. A great deal of attention has been devoted to the treatment of the coarse control arms. The model has been tested against measurements with satisfying results. Furthermore the model has been used to analyse a proposal to a new core design called ring-core where 4 central fuel elements are replaced by 4 dummy elements to increase the thermal flux in the center of the reactor. (author)
International Nuclear Information System (INIS)
Margolin, B.Z.; Varovin, A.Y.; Minkin, A.J.; Sorokin, A.A.; Piminov, V.A.; Evdokimenko, V.V.; Fedosovsky, M.E.; Sherstobitov, A.E.; Ovchinnikov, A.G.; Pikulik, S.S.; Erak, D.Y.; Bobkov, A.V.; Timofeev, A.M.; Timokhin, V.I.; Yakushev, S.V.; Vasiliev, V.G.
2015-01-01
The paper gives the basic constitutive equations describing radiation swelling and creep depending on neutron dose, irradiation temperature and triaxial stress state, and justifies these equations experimentally. The WWER-1000 core baffle change in geometry was calculated by different models describing the effect of stresses on radiation swelling. The calculated results are compared with the measured ones for the operating WWER-1000 core baffle at the Balakovo NPP, Unit 1. A method of individual prediction of core baffle geometry change on the basis of the measurement results has been proposed. (authors)
International Nuclear Information System (INIS)
Mineev, Vladimir N; Funtikov, Aleksandr I
2004-01-01
A review is given of experimental and calculated data on the viscosity of iron-based melts on the melting curve. The interest in these data originates in the division of opinion on whether viscosity increases rather moderately or considerably in the high-pressure range. This disagreement is especially pronounced in the interpretation of the values of molten iron and its compounds in the environment of the earth's outer core. The conclusion on a substantial rise in viscosity mostly follows from the universal law, proposed by Brazhkin and Lyapin [1], of viscosity changing along the metal melting curve in the high-pressure range. The review analyzes available experimental and computational data, including the most recent ones. Data on viscosity of metals under shock wave compression in the megabar pressure range are also discussed. It is shown that data on viscosity of metal melts point to a small increase of viscosity on the melting curve. Specifics are discussed of the phase diagram of iron made more complex by the presence of several phase transitions and by the uncertainty in the position of the melting curve in the high-pressure range. Inaccuracies that arise in extrapolating the results of viscosity measurements to the pressure range corresponding to the earth's core environment are pointed out. (reviews of topical problems)
VALIDATION OF NUMERICAL METHODS TO CALCULATE BYPASS FLOW IN A PRISMATIC GAS-COOLED REACTOR CORE
Directory of Open Access Journals (Sweden)
NAM-IL TAK
2013-11-01
Full Text Available For thermo-fluid and safety analyses of a High Temperature Gas-cooled Reactor (HTGR, intensive efforts are in progress in the developments of the GAMMA+ code of Korea Atomic Energy Research Institute (KAERI and the AGREE code of the University of Michigan (U of M. One of the important requirements for GAMMA+ and AGREE is an accurate modeling capability of a bypass flow in a prismatic core. Recently, a series of air experiments were performed at Seoul National University (SNU in order to understand bypass flow behavior and generate an experimental database for the validation of computer codes. The main objective of the present work is to validate the GAMMA+ and AGREE codes using the experimental data published by SNU. The numerical results of the two codes were compared with the measured data. A good agreement was found between the calculations and the measurement. It was concluded that GAMMA+ and AGREE can reliably simulate the bypass flow behavior in a prismatic core.
Extended Fenske-Hall LCAO MO calculations of core-level shifts in solid P compounds
Franke, R.; Chassé, T.; Reinhold, J.; Streubel, P.; Szargan, R.
1997-08-01
Extended Fenske-Hall LCAO-MO ΔSCF calculations on solids modelled as H-pseudoatom saturated clusters are reported. The computational results verify the experimentally obtained initial-state (effective atomic charges, Madelung potential) and relaxation-energy contributions to the XPS phosphorus core-level binding energy shifts measured in Na 3PO 3S, Na 3PO 4, Na 2PO 3F and NH 4PF 6 in reference to red phosphorus. It is shown that the different initial-state contributions observed in the studied phosphates are determined by local and nonlocal terms while the relaxation-energy contributions are mainly dependent on the nature of the nearest neighbors of the phosphorus atom.
Experiment calculated ascertainment of factors affecting the energy release in IGR reactor core
International Nuclear Information System (INIS)
Kurpesheva, A.M.; Zhotabayev, Zh.R.
2006-01-01
Full text: At present energy supply resources problem is important. Nuclear reactors can, of course, solve this problem, but at the same time there is another issue, concerning safety exploitation of nuclear reactors. That is why, for the last seven years, such experiments as 'Investigation of the processes, conducting severe accidents with core melting' are being carried out at our IGR (impulse graphite reactor) reactor. Leaving out other difficulties of such experiments, it is necessary to notice, that such experiments require more accurate IGR core energy release calculations. The final aim of the present research is verification and correction of the existing method or creation of new method of IGR core energy release calculation. IGR reactor is unique and there is no the same reactor in the world. Therefore, application of the other research reactor methods here is quite useful. This work is based on evaluation of factors affecting core energy release (physical weight of experimental device, different configuration of reactor core, i.e. location of absorbers, initial temperature of core, etc), as well as interference of absorbers group. As it is known, energy release is a value of integral reactor power. During experiments with rays, Reactor power depends on currents of ion production chambers (IPC), located round the core. It is worth to notice that each ion production chamber (IPC) in the same start-up has its own ratio coefficient between IPC current and reactor present power. This task is complicated due to 'IPC current - reactor power' ratio coefficients, that change continuously, probably, because of new loading of experimental facility and different position of control rods. That is why, in order to try about reactor power, before every start-up, we have to re-determine the 'IPC current - reactor power' ratio coefficients for each ion production chamber (IPC). Therefore, the present work will investigate the behavior of ratio coefficient within the
Energy Technology Data Exchange (ETDEWEB)
Boyarinov, V.F.; Davidenko, V.D.; Polismakov, A.A.; Tsybulsky, V.F. [RRC Kurchatov Institute, Moscow (Russian Federation)
2005-07-01
At the present time, the new code system SUHAM-U for calculation of the neutron-physical processes in nuclear reactor core with triangular and square lattices based both on the modern micro-group (about 7000 groups) cross-sections library of code system UNK and on solving the multigroup (up to 89 groups) neutron transport equation by Surface Harmonics Method is elaborated. In this paper the procedure for generation of multigroup cross-sections from micro-group ones for calculation of VVER-1000 reactor core with MOX loading is described. The validation has consisted in computing VVER-1000 fuel assemblies with uranium and MOX fuel and has shown enough high accuracy under corresponding selection of the number and boundaries of the energy groups. This work has been fulfilled in the frame of ISTC project 'System Analyses of Nuclear Safety for VVER Reactors with MOX Fuels'.
Global transport calculations with an equivalent barotropic system
Salby, Murry L.; O'Sullivan, Donal; Garcia, Rolando R.; Tribbia, Joseph
1990-01-01
Transport properties of the two-dimensional equations governing equivalent barotropic motion are investigated on the sphere. This system has ingredients such as forcing, equivalent depth, and thermal dissipation explicitly represented, and takes into account compression effects associated with vertical motion along isentropic surfaces. Horizontal transport properties of this system are investigated under adiabatic and diabatic conditions for different forms of dissipation, and over a range of resolutions. It is shown that forcing represetative of time-mean and amplified conditions at 10 mb leads to the behavior typical of observations at this level. The displacement of the polar night vortex and its distortion into a comma shape are evident, as is irreversible mixing under sufficiently strong forcing amplitude. It is shown that thermal dissipation influences the behavior significantly by inhibiting the amplification of unstable eddies and thereby the horizontal stirring of air.
Concise four-vector scheme for neutron transport calculations
International Nuclear Information System (INIS)
Kulacsy, K.; Lukacs, B.; Racz, A.
1995-01-01
An explicit Riemannian geometrical form or the vectorial Neutron Streaming Term is presented. The method applies the full Riemannian technique of general covariance. There are cases when the symmetry of the neutron flux must be smaller than that of the arrangement. However, in coordinate space there are always solutions of the Neutron Transport Equation as symmetric as the arrangement, if the latter's symmetry is at least an affine collineation of the Euclidian 3-space. (author). 7 refs
Recently developed methods in neutral-particle transport calculations: overview
International Nuclear Information System (INIS)
Alcouffe, R.E.
1982-01-01
It has become increasingly apparent that successful, general methods for the solution of the neutral particle transport equation involve a close connection between the spatial-discretization method used and the source-acceleration method chosen. The first form of the transport equation, angular discretization which is discrete ordinates is considered as well as spatial discretization based upon a mesh arrangement. Characteristic methods are considered briefly in the context of future, desirable developments. The ideal spatial-discretization method is described as having the following attributes: (1) positive-positive boundary data yields a positive angular flux within the mesh including its boundaries; (2) satisfies the particle balance equation over the mesh, that is, the method is conservative; (3) possesses the diffusion limit independent of spatial mesh size, that is, for a linearly isotropic flux assumption, the transport differencing reduces to a suitable diffusion equation differencing; (4) the method is unconditionally acceleratable, i.e., for each mesh size, the method is unconditionally convergent with a source iteration acceleration. It is doubtful that a single method possesses all these attributes for a general problem. Some commonly used methods are outlined and their computational performance and usefulness are compared; recommendations for future development are detailed, which include practical computational considerations
Ab Initio Calculations of Transport in Titanium and Aluminum Mixtures
Walker, Nicholas; Novak, Brian; Tam, Ka Ming; Moldovan, Dorel; Jarrell, Mark
In classical molecular dynamics simulations, the self-diffusion and shear viscosity of titanium about the melting point have fallen within the ranges provided by experimental data. However, the experimental data is difficult to collect and has been rather scattered, making it of limited value for the validation of these calculations. By using ab initio molecular dynamics simulations within the density functional theory framework, the classical molecular dynamics data can be validated. The dynamical data from the ab initio molecular dynamics can also be used to calculate new potentials for use in classical molecular dynamics, allowing for more accurate classical dynamics simulations for the liquid phase. For metallic materials such as titanium and aluminum alloys, these calculations are very valuable due to an increasing demand for the knowledge of their thermophysical properties that drive the development of new materials. For example, alongside knowledge of the surface tension, viscosity is an important input for modeling the additive manufacturing process at the continuum level. We are developing calculations of the viscosity along with the self-diffusion for aluminum, titanium, and titanium-aluminum alloys with ab initio molecular dynamics. Supported by the National Science Foundation through cooperative agreement OIA-1541079 and the Louisiana Board of Regents.
Development of Monte Carlo decay gamma-ray transport calculation system
Energy Technology Data Exchange (ETDEWEB)
Sato, Satoshi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Kawasaki, Nobuo [Fujitsu Ltd., Tokyo (Japan); Kume, Etsuo [Japan Atomic Energy Research Inst., Center for Promotion of Computational Science and Engineering, Tokai, Ibaraki (Japan)
2001-06-01
In the DT fusion reactor, it is critical concern to evaluate the decay gamma-ray biological dose rates after the reactor shutdown exactly. In order to evaluate the decay gamma-ray biological dose rates exactly, three dimensional Monte Carlo decay gamma-ray transport calculation system have been developed by connecting the three dimensional Monte Carlo particle transport calculation code and the induced activity calculation code. The developed calculation system consists of the following four functions. (1) The operational neutron flux distribution is calculated by the three dimensional Monte Carlo particle transport calculation code. (2) The induced activities are calculated by the induced activity calculation code. (3) The decay gamma-ray source distribution is obtained from the induced activities. (4) The decay gamma-rays are generated by using the decay gamma-ray source distribution, and the decay gamma-ray transport calculation is conducted by the three dimensional Monte Carlo particle transport calculation code. In order to reduce the calculation time drastically, a biasing system for the decay gamma-ray source distribution has been developed, and the function is also included in the present system. In this paper, the outline and the detail of the system, and the execution example are reported. The evaluation for the effect of the biasing system is also reported. (author)
An improved filtered spherical harmonic method for transport calculations
International Nuclear Information System (INIS)
Ahrens, C.; Merton, S.
2013-01-01
Motivated by the work of R. G. McClarren, C. D. Hauck, and R. B. Lowrie on a filtered spherical harmonic method, we present a new filter for such numerical approximations to the multi-dimensional transport equation. In several test problems, we demonstrate that the new filter produces results with significantly less Gibbs phenomena than the filter used by McClarren, Hauck and Lowrie. This reduction in Gibbs phenomena translates into propagation speeds that more closely match the correct propagation speed and solutions that have fewer regions where the scalar flux is negative. (authors)
Cluster form factor calculation in the ab initio no-core shell model
International Nuclear Information System (INIS)
Navratil, Petr
2004-01-01
We derive expressions for cluster overlap integrals or channel cluster form factors for ab initio no-core shell model (NCSM) wave functions. These are used to obtain the spectroscopic factors and can serve as a starting point for the description of low-energy nuclear reactions. We consider the composite system and the target nucleus to be described in the Slater determinant (SD) harmonic oscillator (HO) basis while the projectile eigenstate to be expanded in the Jacobi coordinate HO basis. This is the most practical case. The spurious center of mass components present in the SD bases are removed exactly. The calculated cluster overlap integrals are translationally invariant. As an illustration, we present results of cluster form factor calculations for 5 He vertical bar 4 He+n>, 5 He vertical bar 3 H+d>, 6 Li vertical bar 4 He+d>, 6 Be vertical bar 3 He+ 3 He>, 7 Li vertical bar 4 He+ 3 H>, 7 Li vertical bar 6 Li+n>, 8 Be vertical bar 6 Li+d>, 8 Be vertical bar 7 Li+p>, 9 Li vertical bar 8 Li+n>, and 13 C vertical bar 12 C+n>, with all the nuclei described by multi-(ℎ/2π)Ω NCSM wave functions
International Nuclear Information System (INIS)
Coddington, P.; Fishlock, T.P.; Jakeman, D.
1976-01-01
The possible consequences of molten fuel sodium interactions are calculated using various modelling assumptions and key parameters. And the significance of the choice of assumptions and parameters are discussed. As for subassembly geometry, the results of one-dimensional code EXPEL are compared with the solutions of the one-dimensional Lagrangian equations of a compressible fluid (TOPAL was used). The adequacy of acoustic approximation used in EXPEL is discussed here. The effects of heat transfer time constant on the behaviour of peak pressure are also analyzed by parametric surveys. Other items investigated are the length and position of the interacting zone, the existence of a non-condensable gas volume, and the vapour condensation on cold clad. As for whole core geometry, a simple dynamical model of arc expanding spherical interacting zone immersed in a semi-infinite sea of cold liquid was used (SHORE code). Within the interacting zone a simple heat transfer model (including a heat transfer time and a fragmentation time) was adopted. Vapour blanketing was considered in a number of ways. Representative results of the calculations are given in a table. Containment studies were also performed for ''ducted'' design and ''open pool'' design. The development of new codes in the U.K. for these analysis are also briefly described. (Aoki, K.)
International Nuclear Information System (INIS)
Mitsuyasu, Takeshi; Aoyama, Motoo; Yamamoto, Akio
2017-01-01
Highlights: • A coupling model of the two-stage core calculation with subchannel analysis. • BWR fuel assembly parameters are assumed and verified. • The model was evaluated for heterogeneous problems. - Abstract: The two-stage core analysis method is widely used for BWR core analysis. The purpose of this study is to develop a core analysis model coupled with subchannel analysis within the two-stage calculation scheme using an assembly-based thermal-hydraulics calculation in the core analysis. The model changes the 2D lattice physics scheme, and couples with 3D subchannel analysis which evaluates the thermal-hydraulics characteristics within the coolant flow area divided as some subchannel regions. In order to couple with these two analyses, some BWR fuel assembly parameters are assumed and verified. The developed model is evaluated for the heterogeneous problem with and without a control rod. The present model is especially effective for the control rod inserted condition. The present model can incorporate the subchannel effect into the current two-stage core calculation method.
International Nuclear Information System (INIS)
Brik, A.
2009-01-01
In the first decade of June 2008, during the power commissioning of the reactor at the Mochovce NPP unit 1, the experiment with reducing the thermal power of core almost to the balance-of-plant (BOP) needs was performed. After the reactor has operated for seven hours at low power (about 200 220 MW (thermal)), its power was increased (at a rate of about 0.25% of N nom /min) to the initial level, close to 107% (1471 MW). During the experiment, core parameters, which were subsequently used for comparing the measured data with the results of experiment simulation calculations, were recorded in the reactor in-core monitoring system database. Calculated and measured levels of critical concentrations of boric acid were compared, along with power density distributions by fuel elements and assemblies obtained both by the KRUIZ in-core monitoring system and on the basis of calculations simulating reactor operation in accordance with the given core power variation schedule. The final stage consisted of assessing the methodical component of power density micro- and macro-fields calculation error in the core of Mochovce-1 reactor operating with varying load. (author)
International Nuclear Information System (INIS)
Brik, A.
2009-01-01
In the first decade of June 2008, during the power commissioning of the reactor at Mochovce NPP unit 1, the experiment with reducing the thermal power of core almost to the balance-of-plant needs was performed. After the reactor has operated for seven hours at low power (about 200 220 MW (thermal)), its power was increased (at a rate of about 0.25% of N nom /min) to the initial level, close to 107% (1471 MW). During the experiment, core parameters, which were subsequently used for comparing the measured data with the results of experiment simulation calculations, were recorded in the reactor in-core monitoring system's database. Calculated and measured levels of critical concentrations of boric acid were compared, along with power density distributions by fuel elements and assemblies obtained both by the KRUIZ in-core monitoring system and on the basis of calculations simulating reactor operation in accordance with the given core power variation schedule. The final stage consisted of assessing the methodical component of power density micro- and macro-fields' calculation error in the core of Mochovce-1 reactor operating with varying load. (Authors)
One-group transport theory calculation for three slabs cells
International Nuclear Information System (INIS)
Maia, C.R.M.
1979-01-01
As an idealized model of plate type fuel assemblies for nuclear reactors, three-slab cells are analysed numerically based on the exact solution of the transport equation in the one-group isotropic scattering model. From the equations describing the interface conditions, a set of regular integral equations for the coefficients of the singular eigenfunctions expansions is derived using the half-range orthogonality relations of the eigenfunctions and the recently developed method of regularization. Numerical solutions are obtained by solving this set of equations iteratively. The thermal utilization factor and thermal disadvantage factors as well as flux and current distributions are reported for the first time for various sets of parameters. The accuracy of the P sub(N) approximations is also analysed compared to the exact results. (Author) [pt
Approximate models for neutral particle transport calculations in ducts
International Nuclear Information System (INIS)
Ono, Shizuca
2000-01-01
The problem of neutral particle transport in evacuated ducts of arbitrary, but axially uniform, cross-sectional geometry and isotropic reflection at the wall is studied. The model makes use of basis functions to represent the transverse and azimuthal dependences of the particle angular flux in the duct. For the approximation in terms of two basis functions, an improvement in the method is implemented by decomposing the problem into uncollided and collided components. A new quadrature set, more suitable to the problem, is developed and generated by one of the techniques of the constructive theory of orthogonal polynomials. The approximation in terms of three basis functions is developed and implemented to improve the precision of the results. For both models of two and three basis functions, the energy dependence of the problem is introduced through the multigroup formalism. The results of sample problems are compared to literature results and to results of the Monte Carlo code, MCNP. (author)
Benchmark calculations in multigroup and multidimensional time-dependent transport
International Nuclear Information System (INIS)
Ganapol, B.D.; Musso, E.; Ravetto, P.; Sumini, M.
1990-01-01
It is widely recognized that reliable benchmarks are essential in many technical fields in order to assess the response of any approximation to the physics of the problem to be treated and to verify the performance of the numerical methods used. The best possible benchmarks are analytical solutions to paradigmatic problems where no approximations are actually introduced and the only error encountered is connected to the limitations of computational algorithms. Another major advantage of analytical solutions is that they allow a deeper understanding of the physical features of the model, which is essential for the intelligent use of complicated codes. In neutron transport theory, the need for benchmarks is particularly great. In this paper, the authors propose to establish accurate numerical solutions to some problems concerning the migration of neutron pulses. Use will be made of the space asymptotic theory, coupled with a Laplace transformation inverted by a numerical technique directly evaluating the inversion integral
The Suppression of Energy Discretization Errors in Multigroup Transport Calculations
International Nuclear Information System (INIS)
Larsen, Edward
2013-01-01
The Objective of this project is to develop, implement, and test new deterministric methods to solve, as efficiently as possible, multigroup neutron transport problems having an extremely large number of groups. Our approach was to (i) use the standard CMFD method to 'coarsen' the space-angle grid, yielding a multigroup diffusion equation, and (ii) use a new multigrid-in-space-and-energy technique to efficiently solve the multigroup diffusion problem. The overall strategy of (i) how to coarsen the spatial an energy grids, and (ii) how to navigate through the various grids, has the goal of minimizing the overall computational effort. This approach yields not only the fine-grid solution, but also coarse-group flux-weighted cross sections that can be used for other related problems.
DANTSYS: a system for deterministic, neutral particle transport calculations
Energy Technology Data Exchange (ETDEWEB)
Alcouffe, R.E.; Baker, R.S.
1996-12-31
The THREEDANT code is the latest addition to our system of codes, DANTSYS, which perform neutral particle transport computations on a given system of interest. The system of codes is distinguished by geometrical or symmetry considerations. For example, ONEDANT and TWODANT are designed for one and two dimensional geometries respectively. We have TWOHEX for hexagonal geometries, TWODANT/GQ for arbitrary quadrilaterals in XY and RZ geometry, and THREEDANT for three-dimensional geometries. The design of this system of codes is such that they share the same input and edit module and hence the input and output is uniform for all the codes (with the obvious additions needed to specify each type of geometry). The codes in this system are also designed to be general purpose solving both eigenvalue and source driven problems. In this paper we concentrate on the THREEDANT module since there are special considerations that need to be taken into account when designing such a module. The main issues that need to be addressed in a three-dimensional transport solver are those of the computational time needed to solve a problem and the amount of storage needed to accomplish that solution. Of course both these issues are directly related to the number of spatial mesh cells required to obtain a solution to a specified accuracy, but is also related to the spatial discretization method chosen and the requirements of the iteration acceleration scheme employed as will be noted below. Another related consideration is the robustness of the resulting algorithms as implemented; because insistence on complete robustness has a significant impact upon the computation time. We address each of these issues in the following through which we give reasons for the choices we have made in our approach to this code. And this is useful in outlining how the code is evolving to better address the shortcomings that presently exist.
Comparison of discharges with core transport barriers on DIII-D and JET
International Nuclear Information System (INIS)
Luce, T.C.; Alper, B.; Challis, C.D.
1997-07-01
The basic phenomenology of discharges with core transport barriers is the same for DIII-D and JET. The limitations on performance in both cases are well described by MHD stability calculations. Since the discharge behavior of the two machines is so similar, it seems reasonable to apply a simple parameterization of fusion performance which describes well the best performance discharges on DIII-D. The highest fusion performance shot on JET has Q DD = 3.1 10 -3 at 3.2 MA. Scaling from the highest Q DD DIII-D single-null discharge would predict Q DD = 4.2 10 -3 for JET. Raising the plasma current to 4.0 MA would increase the projection to 6.6 10 -3 . Realization of such performance would require significant effort to develop lower q plasmas with an H-mode edge. Because the performance is so closely tied to the current profile, this class of discharges also shows significant potential for steady state if current profile control can be demonstrated
Sakamoto, Y
2002-01-01
In the prevention of nuclear disaster, there needs the information on the dose equivalent rate distribution inside and outside the site, and energy spectra. The three dimensional radiation transport calculation code is a useful tool for the site specific detailed analysis with the consideration of facility structures. It is important in the prediction of individual doses in the future countermeasure that the reliability of the evaluation methods of dose equivalent rate distribution and energy spectra by using of Monte Carlo radiation transport calculation code, and the factors which influence the dose equivalent rate distribution outside the site are confirmed. The reliability of radiation transport calculation code and the influence factors of dose equivalent rate distribution were examined through the analyses of critical accident at JCO's uranium processing plant occurred on September 30, 1999. The radiation transport calculations including the burn-up calculations were done by using of the structural info...
Monte Carlo calculations of electron transport on microcomputers
International Nuclear Information System (INIS)
Chung, Manho; Jester, W.A.; Levine, S.H.; Foderaro, A.H.
1990-01-01
In the work described in this paper, the Monte Carlo program ZEBRA, developed by Berber and Buxton, was converted to run on the Macintosh computer using Microsoft BASIC to reduce the cost of Monte Carlo calculations using microcomputers. Then the Eltran2 program was transferred to an IBM-compatible computer. Turbo BASIC and Microsoft Quick BASIC have been used on the IBM-compatible Tandy 4000SX computer. The paper shows the running speed of the Monte Carlo programs on the different computers, normalized to one for Eltran2 on the Macintosh-SE or Macintosh-Plus computer. Higher values refer to faster running times proportionally. Since Eltran2 is a one-dimensional program, it calculates energy deposited in a semi-infinite multilayer slab. Eltran2 has been modified to a two-dimensional program called Eltran3 to computer more accurately the case with a point source, a small detector, and a short source-to-detector distance. The running time of Eltran3 is about twice as long as that of Eltran2 for a similar case
International Nuclear Information System (INIS)
1977-01-01
Individual and population doses within Danish territory are calculated from hypothetical, severe core-melt accidents at the Swedish nuclear plant at Barsebaeck. The fission product inventory of the Barsebaeck reactor is calculated. The release fractions for the accidents are taken from WASH-1400. Based on parametric studies, doses are calculated for very unfavourable, but not incredible weather conditions. The probability of such conditions in combination with wind direction towards Danish territory is estimated. Doses to bone marrow, lungs, GI-tract and thyroid are calculated based on dose models developed at Risoe. These doses are found to be consistent with doses calculated with the models used in WASH-1400. (author)
International Nuclear Information System (INIS)
Magat, Ph.
1997-04-01
The aim of this study is to compare two calculation methods implemented in the neutronic code CRONOS 2: the diffusion approximation and the SP n method. The APOLLO 2 code is used to build the multiparameter cross section libraries.The comparison is based on the first core of N4 type Chooz reactor. The rod worth and the power map have been calculated. Some recommendations about the SP n development order of flux are made and the results show that the diffusion calculations over-estimate the black rod efficiency up to 10%. (A.C.)
Calculation of three-dimensional groundwater transport using second-order moments
International Nuclear Information System (INIS)
Pepper, D.W.; Stephenson, D.E.
1987-01-01
Groundwater transport of contaminants from the F-Area seepage basin at the Savannah River Plant (SRP) was calculated using a three-dimensional, second-order moment technique. The numerical method calculates the zero, first, and second moment distributions of concentration within a cell volume. By summing the moments over the entire solution domain, and using a Lagrangian advection scheme, concentrations are transported without numerical dispersion errors. Velocities obtained from field tests are extrapolated and interpolated to all nodal points; a variational analysis is performed over the three-dimensional velocity field to ensure mass consistency. Transport predictions are calculated out to 12,000 days. 28 refs., 9 figs
A sub-structure method for multidimensional integral transport calculations
International Nuclear Information System (INIS)
Kavenoky, A.; Stankovski, Z.
1983-03-01
A new method has been developed for fine structure burn-up calculations of very heterogeneous large size media. It is a generalization of the well-known surface-source method, allowing coupling actual two-dimensional heterogeneous assemblies, called sub-structures. The method has been applied to a rectangular medium, divided into sub-structures, containing rectangular and/or cylindrical fuel, moderator and structure elements. The sub-structures are divided into homogeneous zones. A zone-wise flux expansion is used to formulate a direct collision probability problem within it (linear or flat flux expansion in the rectangular zones, flat flux in the others). The coupling of the sub-structures is performed by making extra assumptions on the currents entering and leaving the interfaces. The accuracies and computing times achieved are illustrated by numerical results on two benchmark problems
Effects of nitrogen seeding on core ion thermal transport in JET ILW L-mode plasmas
Bonanomi, N.; Mantica, P.; Citrin, J.; Giroud, C.; Lerche, E.; Sozzi, C.; Taylor, D.; Tsalas, M.; Van Eester, D.; JET Contributors,
2018-01-01
A set of experiments was carried out in JET ILW (Joint European Torus with ITER-Like Wall) L-mode plasmas in order to study the effects of light impurities on core ion thermal transport. N was puffed into some discharges and its profile was measured by active Charge Exchange diagnostics, while ICRH
Nonlinear acceleration of S_n transport calculations
International Nuclear Information System (INIS)
Fichtl, Erin D.; Warsa, James S.; Calef, Matthew T.
2011-01-01
The use of nonlinear iterative methods, Jacobian-Free Newton-Krylov (JFNK) in particular, for solving eigenvalue problems in transport applications has recently become an active subject of research. While JFNK has been shown to be effective for k-eigenvalue problems, there are a number of input parameters that impact computational efficiency, making it difficult to implement efficiently in a production code using a single set of default parameters. We show that different selections for the forcing parameter in particular can lead to large variations in the amount of computational work for a given problem. In contrast, we employ a nonlinear subspace method that sits outside and effectively accelerates nonlinear iterations of a given form and requires only a single input parameter, the subspace size. It is shown to consistently and significantly reduce the amount of computational work when applied to fixed-point iteration, and this combination of methods is shown to be more efficient than JFNK for our application. (author)
Discontinuous finite element treatment of duct problems in transport calculations
International Nuclear Information System (INIS)
Mirza, A. M.; Qamar, S.
1998-01-01
A discontinuous finite element approach is presented to solve the even-parity Boltzmann transport equation for duct problems. Presence of ducts in a system results in the streaming of particles and hence requires the employment of higher order angular approximations to model the angular flux. Conventional schemes based on the use of continuous trial functions require the same order of angular approximations to be used everywhere in the system, resulting in wastage of computational resources. Numerical investigations for the test problems presented in this paper indicate that the discontinuous finite elements eliminate the above problems and leads to computationally efficient and economical methods. They are also found to be more suitable for treating the sharp changes in the angular flux at duct-observer interfaces. The new approach provides a single-pass alternate to extrapolation and interactive schemes which need multiple passes of the solution strategy to acquire convergence. The method has been tested with the help of two case studies, namely straight and dog-leg duct problems. All results have been verified against those obtained from Monte Carlo simulations and K/sup +/ continuous finite element method. (author)
International Nuclear Information System (INIS)
Sanchez-Cervera, S.; Hueso, C.; Herrero, J. J.
2011-01-01
This paper contains the work developed to study the dependencies of the nodal parameters with local variables. After entering the parameter space of operation, are obtained constants homogenized through calculations with deterministic code of transport NEWT with SCALE system codes.
International Nuclear Information System (INIS)
Roussos, N.
1982-01-01
The main objective of this work is to create a neutronic calculations system for the SILOE-SILOETTE reactors, adaptable to other types of plate reactors. The author presents the methodology and the development of the APOLLO 1D (99 gr.) calculations for the creation of cross sections libraries. After a recall of the Discrete Ordinate Method (DOT), the method accuracy is studied in order to optimize the spatial discretization of the calculations; calculations of DOT 3.5 and of SILOETTE core are conducted and their convergence and costs are examined. DOT calculations of SILOETTE and experimental tests results are then compared [fr
International Nuclear Information System (INIS)
Sienicki, J.J.; Abramson, P.B.
1978-01-01
The main objective of the development of multifield, multicomponent thermohydrodynamic computer codes is the detailed study of hypothetical core disruptive accidents (HCDAs) in liquid-metal fast breeder reactors. The main contributions such codes are expected to make are the inclusion of detailed modeling of the relative motion of liquid and vapor (slip), the inclusion of modeling of nonequilibrium/nonsaturation thermodynamics, and the use of more detailed neutronics methods. Scoping studies of the importance of including these phenomena performed with the parametric two-field, two-component coupled neutronic/thermodynamic/hydrodynamic code FX2-TWOPOOL indicate for the prompt burst portion of an HCDA that: (1) Vapor-liquid slip plays a relatively insignificant role in establishing energetics, implying that analyses that do not model vapor-liquid slip may be adequate. Furthermore, if conditions of saturation are assumed to be maintained, calculations that do not permit vapor-liquid slip appear to be conservative. (2) The modeling of conduction-limited fuel vaporization and condensation causes the energetics to be highly sensitive to variations in the droplet size (i.e., in the parametric values) for the sizes of interest in HCDA analysis. Care must therefore be exercised in the inclusion of this phenomenon in energetics calculations. (3) Insignificant differences are observed between the use of space-time kinetics (quasi-static diffusion theory) and point kinetics, indicating again that point kinetics is normally adequate for analysis of the prompt burst portion of an HCDA. (4) No significant differences were found to result from assuming that delayed neutron precursors remain stationary where they are created rather than assuming that they move together with fuel. (5) There is no need for implicit coupling between the neutronics and the hydrodynamics/thermodynamics routines, even outside the prompt burst portion
International Nuclear Information System (INIS)
Kang, Dae Il; Han, Sang Hoon
2006-01-01
RG 1.177 requires that the conditional risk (incremental conditional core damage probability and incremental conditional large early release probability: ICCDP and ICLERP), given that a specific component is out of service (OOS), be quantified for a permanent change of the allowed outage time (AOT) of a safety system. An AOT is the length of time that a particular component or system is permitted to be OOS while the plant is operating. The ICCDP is defined as: ICCDP = [(conditional CDF with the subject equipment OOS)- (baseline CDF with nominal expected equipment unavailabilities)] [duration of the single AOT under consideration]. Any event enabling the component OOS can initiate the time clock for the limiting condition of operation for a nuclear power plant. Thus, the largest ICCDP among the ICCDPs estimated from any occurrence of the basic events for the component fault tree should be selected for determining whether the AOT can be extended or not. If the component is under a preventive maintenance, the conditional risk can be straightforwardly calculated without changing the CCF probability. The main concern is the estimations of the CCF probability because there are the possibilities of the failures of other similar components due to the same root causes. The quantifications of the risk, given that a subject equipment is in a failed state, are performed by setting the identified event of subject equipment to TRUE. The CCF probabilities are also changed according to the identified failure cause. In the previous studies, however, the ICCDP was quantified with the consideration of the possibility of a simultaneous occurrence of two CCF events. Based on the above, we derived the formulas of the CCF probabilities for the cases where a specific component is in a failed state and we presented sample calculation results of the ICCDP for the low pressure safety injection system (LPSIS) of Ulchin Unit 3
FUEL BURN-UP CALCULATION FOR WORKING CORE OF THE RSG-GAS RESEARCH REACTOR AT BATAN SERPONG
Directory of Open Access Journals (Sweden)
Tukiran Surbakti
2017-12-01
Full Text Available The neutronic parameters are required in the safety analysis of the RSG-GAS research reactor. The RSG-GAS research reactor, MTR (Material Testing Reactor type is used for research and also in radioisotope production. RSG-GAS has been operating for 30 years without experiencing significant obstacles. It is managed under strict requirements, especially fuel management and fuel burn-up calculations. The reactor is operated under the supervision of the Regulatory Body (BAPETEN and the IAEA (International Atomic Energy Agency. In this paper, the experience of managing RSG-GAS core fuels will be discussed, there are hundred possibilities of fuel placements on the reactor core and the strategy used to operate the reactor will be crucial. However, based on strict calculation and supervision, there is no incorrect placement of the fuels in the core. The calculations were performed on working core by using the WIMSD-5B computer code with ENDFVII.0 data file to generate the macroscopic cross-section of fuel and BATAN-FUEL code were used to obtain the neutronic parameter value such as fuel burn-up fractions. The calculation of the neutronic core parameters of the RSG-GAS research reactor was carried out for U3Si2-Al fuel, 250 grams of mass, with an equilibrium core strategy. The calculations show that on the last three operating cores (T90, T91, T92, all fuels meet the safety criteria and the fuel burn-up does not exceed the maximum discharge burn-up of 59%. Maximum fuel burn-up always exists in the fuel which is close to the position of control rod.
Volume-based geometric modeling for radiation transport calculations
International Nuclear Information System (INIS)
Li, Z.; Williamson, J.F.
1992-01-01
Accurate theoretical characterization of radiation fields is a valuable tool in the design of complex systems, such as linac heads and intracavitary applicators, and for generation of basic dose calculation data that is inaccessible to experimental measurement. Both Monte Carlo and deterministic solutions to such problems require a system for accurately modeling complex 3-D geometries that supports ray tracing, point and segment classification, and 2-D graphical representation. Previous combinatorial approaches to solid modeling, which involve describing complex structures as set-theoretic combinations of simple objects, are limited in their ease of use and place unrealistic constraints on the geometric relations between objects such as excluding common boundaries. A new approach to volume-based solid modeling has been developed which is based upon topologically consistent definitions of boundary, interior, and exterior of a region. From these definitions, FORTRAN union, intersection, and difference routines have been developed that allow involuted and deeply nested structures to be described as set-theoretic combinations of ellipsoids, elliptic cylinders, prisms, cones, and planes that accommodate shared boundaries. Line segments between adjacent intersections on a trajectory are assigned to the appropriate region by a novel sorting algorithm that generalizes upon Siddon's approach. Two 2-D graphic display tools are developed to help the debugging of a given geometric model. In this paper, the mathematical basis of our system is described, it is contrasted to other approaches, and examples are discussed
DEFF Research Database (Denmark)
Olsen, Nils; Whaler, K. A.; Finlay, Chris
2014-01-01
Monthly means of the magnetic field measurements taken by ground observatories are a useful data source for studying temporal changes of the core magnetic field and the underlying core flow. However, the usual way of calculating monthly means as the arithmetic mean of all days (geomagnetic quiet...... as well as disturbed) and all local times (day and night) may result in contributions from external (magnetospheric and ionospheric) origin in the (ordinary, omm) monthly means. Such contamination makes monthly means less favourable for core studies. We calculated revised monthly means (rmm......), and their uncertainties, from observatory hourly means using robust means and after removal of external field predictions, using an improved method for characterising the magnetospheric ring current. The utility of the new method for calculating observatory monthly means is demonstrated by inverting their first...
Energy Technology Data Exchange (ETDEWEB)
Kim, Jangyeol; Son, Kwangseop; Lee, Youngjun; Cheon, Sewoo; Cha, Kyoungho; Lee, Jangsoo; Kwon, Keechoon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2013-05-15
We confirmed that the coverage criteria for a safety-grade optical modem of a Core Protection Calculator is satisfactory using a traceability analysis matrix between high-level requirements and lower-level system test case data set. This paper describes the test environment, test components and items, a traceability analysis, and system tests as a result of system verification and validation based on Software Requirement Specifications (SRS) for a safety-grade optical modem of a Core Protection Calculator (CPC) in a Korea Standard Nuclear Power Plant (KSNP), and Software Design Specifications (SDS) for a safety-grade optical modem of a CPC in a KSNP. All tests were performed according to the test plan and test procedures. Functional testing, performance testing, event testing, and scenario based testing for a safety-grade optical modem of a Core Protection Calculator in a Korea Standard Nuclear Power Plant as a thirty-party verifier were successfully performed.
Standard deviation of local tallies in global Monte Carlo calculation of nuclear reactor core
International Nuclear Information System (INIS)
Ueki, Taro
2010-01-01
Time series methodology has been studied to assess the feasibility of statistical error estimation in the continuous space and energy Monte Carlo calculation of the three-dimensional whole reactor core. The noise propagation was examined and the fluctuation of track length tallies for local fission rate and power has been formally shown to be represented by the autoregressive moving average process of orders p and p-1 [ARMA(p,p-1)], where p is an integer larger than or equal to two. Therefore, ARMA(p,p-1) fitting was applied to the real standard deviation estimation of the power of fuel assemblies at particular heights. Numerical results indicate that straightforward ARMA(3,2) fitting is promising, but a stability issue must be resolved toward the incorporation in the distributed version of production Monte Carlo codes. The same numerical results reveal that the average performance of ARMA(3,2) fitting is equivalent to that of the batch method with a batch size larger than 100 and smaller than 200 cycles for a 1,100 MWe pressurized water reactor. (author)
Reliability Analysis of Core Protection Calculator System by Combining Petri Net and Fault Tree
International Nuclear Information System (INIS)
Kim, Hyejin; Kim, Jonghyun
2013-01-01
This paper proposes an approach to analyzing the reliability of digital systems by combining Petri net (PN) and Fault tree. The Petri net allows modeling event dependencies and interaction, to represent the time sequence, and to model assumptions for dynamic events. The Petri net model can be straightforwardly transformed to fault tree using the gate. Then, the FT can be integrated into the existing PSA. This paper applies the approach to the reliability analysis of Core Protection Calculator System (CPCS). Digital technology is replacing the analog instrumentation and control (I and C) systems in both new and upgraded nuclear power plants. As digital systems are introduced to nuclear power plants, issues related with reliability analyses of these digital systems are being raised. One of these issues is that static fault tree (FT) and event tree (ET) approach cannot properly account for dynamic interactions in the digital systems, such as multiple top events, logic loops and time delay. Many methods have been proposed to solve the problems, but there is no single method that is universally accepted for the application to the current generation probabilistic safety analysis (PSA)
Reliability Analysis of Core Protection Calculator System by Combining Petri Net and Fault Tree
Energy Technology Data Exchange (ETDEWEB)
Kim, Hyejin; Kim, Jonghyun [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)
2013-10-15
This paper proposes an approach to analyzing the reliability of digital systems by combining Petri net (PN) and Fault tree. The Petri net allows modeling event dependencies and interaction, to represent the time sequence, and to model assumptions for dynamic events. The Petri net model can be straightforwardly transformed to fault tree using the gate. Then, the FT can be integrated into the existing PSA. This paper applies the approach to the reliability analysis of Core Protection Calculator System (CPCS). Digital technology is replacing the analog instrumentation and control (I and C) systems in both new and upgraded nuclear power plants. As digital systems are introduced to nuclear power plants, issues related with reliability analyses of these digital systems are being raised. One of these issues is that static fault tree (FT) and event tree (ET) approach cannot properly account for dynamic interactions in the digital systems, such as multiple top events, logic loops and time delay. Many methods have been proposed to solve the problems, but there is no single method that is universally accepted for the application to the current generation probabilistic safety analysis (PSA)
Energy Technology Data Exchange (ETDEWEB)
Casoli, P.; Authier, N.; Baud, J. [Commissariat a l' energie Atomique, Centre de Valduc, 21120 Is-sur-Tille (France)
2009-07-01
Several experimental devices are operated by the Criticality and Neutron Science Research Department of the CEA Valduc Laboratory. One of these is the metallic core reactor Caliban. The knowledge of the fundamental kinetic parameters of the reactor is very useful, indeed necessary, to the operator. The purpose of this study was to develop and perform experiments allowing to determinate some of these parameters. The prompt neutron decay constant and particularly its value at criticality can be measured with reactor noise techniques such as the interval-distribution, the Feynman variance-to-mean, and the Rossi-{alpha} methods. By introducing the Nelson number, the effective delayed neutron fraction and the average neutron lifetime can also be calculated with the Rossi-{alpha} method. Subcritical, critical, and even supercritical experiments were performed. With the Rossi-{alpha} technique, it was found that the prompt neutron decay constant at criticality was (6.02*10{sup 5} {+-} 9%). Experiments also brought out the limitations of the used experimental parameters. (authors)
Logistic Core Operations with SAP Inventory Management, Warehousing, Transportation, and Compliance
Kappauf, Jens; Koch, Matthias
2012-01-01
“Logistic Core Operations with SAP” not only provides an overview of core logistics processes and functionality—it also shows how SAP’s Business Suite covers logistic core operations, what features are supported, and which systems can be used to implement end-to-end processes in the following logistic core disciplines: Procurement, Distribution, Transportation, Warehouse Logistics and Inventory Management, and Compliance and Reporting. In this context the authors not only explain their integration, the organizational set-up, and master data, but also which solution fits best for a particular business need. This book serves as a solid foundation for understanding SAP software. No matter whether you are a student or a manager involved in an SAP implementation, the authors go far beyond traditional function and feature descriptions, helping you ask the right questions, providing answers, and making recommendations. The book assists you in understanding SAP terminology, concepts and technological compo...
Aksenov, A. G.; Chechetkin, V. M.
2018-04-01
Most of the energy released in the gravitational collapse of the cores of massive stars is carried away by neutrinos. Neutrinos play a pivotal role in explaining core-collape supernovae. Currently, mathematical models of the gravitational collapse are based on multi-dimensional gas dynamics and thermonuclear reactions, while neutrino transport is considered in a simplified way. Multidimensional gas dynamics is used with neutrino transport in the flux-limited diffusion approximation to study the role of multi-dimensional effects. The possibility of large-scale convection is discussed, which is interesting both for explaining SN II and for setting up observations to register possible high-energy (≳10MeV) neutrinos from the supernova. A new multi-dimensional, multi-temperature gas dynamics method with neutrino transport is presented.
A retrospective and prospective survey of three-dimensional transport calculations
International Nuclear Information System (INIS)
Nakahara, Yasuaki
1985-01-01
A retrospective survey is made on the three-dimensional radiation transport calculations. Introduction is given to computer codes based on the distinctive numerical methods such as the Monte Carlo, Direct Integration, Ssub(n) and Finite Element Methods to solve the three-dimensional transport equations. Prospective discussions are made on pros and cons of these methods. (author)
Gordon, S.; Mcbride, B.; Zeleznik, F. J.
1984-01-01
An addition to the computer program of NASA SP-273 is given that permits transport property calculations for the gaseous phase. Approximate mixture formulas are used to obtain viscosity and frozen thermal conductivity. Reaction thermal conductivity is obtained by the same method as in NASA TN D-7056. Transport properties for 154 gaseous species were selected for use with the program.
Transport calculation of medium-energy protons and neutrons by Monte Carlo method
International Nuclear Information System (INIS)
Ban, Syuuichi; Hirayama, Hideo; Katoh, Kazuaki.
1978-09-01
A Monte Carlo transport code, ARIES, has been developed for protons and neutrons at medium energy (25 -- 500 MeV). Nuclear data provided by R.G. Alsmiller, Jr. were used for the calculation. To simulate the cascade development in the medium, each generation was represented by a single weighted particle and an average number of emitted particles was used as the weight. Neutron fluxes were stored by the collisions density method. The cutoff energy was set to 25 MeV. Neutrons below the cutoff were stored to be used as the source for the low energy neutron transport calculation upon the discrete ordinates method. Then transport calculations were performed for both low energy neutrons (thermal -- 25 MeV) and secondary gamma-rays. Energy spectra of emitted neutrons were calculated and compared with those of published experimental and calculated results. The agreement was good for the incident particles of energy between 100 and 500 MeV. (author)
Atmospheric Transport and Mixing linked to Rossby Wave Breaking in GFDL Dynamical Core
Liu, C.; Barnes, E. A.
2015-12-01
Atmospheric transport and mixing plays an important role in the global energy balance and the distribution of health-related chemical constituents. Previous studies suggest a close linkage between large-scale transport and Rossby wave breaking (RWB). In this work, we use the GFDL spectral dynamical core to investigate this relationship and study the response of RWB-related transport in different climate scenarios. In a standard control run, we quantify the contribution of RWB to the total transport and mixing of an idealized tracer. In addition, we divide the contribution further into the two types of RWB - anticyclonic wave breaking (AWB) and cyclonic wave breaking (CWB) -- and contrast their efficiency at transport and mixing. Our results are compared to a previous study in which the transport ability of the two types of RWB is studied for individual baroclinic wave life-cycles. In a series of sensitivity runs, we study the response of RWB-related transport and mixing to various states of the jet streams. The responses of the mean strength, frequency, and the efficiency of RWB-related transport are documented and the implications for the transport and mixing in a warmer climate are discussed.
Effects of non-uniform core flow on peak cladding temperature: MOXY/SCORE sensitivity calculations
Energy Technology Data Exchange (ETDEWEB)
Chang, S.C.
1979-08-15
The MOXY/SCORE computer program is used to evaluate the potential effect on peak cladding temperature of selective cooling that may result from a nonuniform mass flux at the core boundaries during the blowdown phase of the LOFT L2-4 test. The results of this study indicate that the effect of the flow nonuniformity at the core boundaries will be neutralized by a strong radial flow redistribution in the neighborhood of core boundaries. The implication is that the flow nonuniformity at the core boundaries has no significant effect on the thermal-hydraulic behavior and cladding temperature at the hot plane.
Effects of non-uniform core flow on peak cladding temperature: MOXY/SCORE sensitivity calculations
International Nuclear Information System (INIS)
Chang, S.C.
1979-01-01
The MOXY/SCORE computer program is used to evaluate the potential effect on peak cladding temperature of selective cooling that may result from a nonuniform mass flux at the core boundaries during the blowdown phase of the LOFT L2-4 test. The results of this study indicate that the effect of the flow nonuniformity at the core boundaries will be neutralized by a strong radial flow redistribution in the neighborhood of core boundaries. The implication is that the flow nonuniformity at the core boundaries has no significant effect on the thermal-hydraulic behavior and cladding temperature at the hot plane
Li, Qinghua; Yuan, Yongbiao; Chen, Zihan; Jin, Xiao; Wei, Tai-huei; Li, Yue; Qin, Yuancheng; Sun, Weifu
2014-08-13
In this work, a core-shell nanostructure of samarium phosphates encapsulated into a Eu(3+)-doped silica shell has been successfully fabricated, which has been confirmed by X-ray diffraction, transmission electron microscopy (TEM), and high-resolution TEM. Moreover, we report the energy transfer process from the Sm(3+) to emitters Eu(3+) that widens the light absorption range of the hybrid solar cells (HSCs) and the strong enhancement of the electron-transport of TiO2/poly(3-hexylthiophene) (P3HT) bulk heterojunction (BHJ) HSCs by introducing the unique core-shell nanoarchitecture. Furthermore, by applying femtosecond transient absorption spectroscopy, we successfully obtain the electron transport lifetimes of BHJ systems with or without incorporating the core-shell nanophosphors (NPs). Concrete evidence has been provided that the doping of core-shell NPs improves the efficiency of electron transfers from donor to acceptor, but the hole transport almost remains unchanged. In particular, the hot electron transfer lifetime was shortened from 30.2 to 16.7 ps, i.e., more than 44% faster than pure TiO2 acceptor. Consequently, a notable power conversion efficiency of 3.30% for SmPO4@Eu(3+):SiO2 blended TiO2/P3HT HSCs is achieved at 5 wt % as compared to 1.98% of pure TiO2/P3HT HSCs. This work indicates that the core-shell NPs can efficiently broaden the absorption region, facilitate electron-transport of BHJ, and enhance photovoltaic performance of inorganic/organic HSCs.
Energy Technology Data Exchange (ETDEWEB)
Marsault, Ph [CEA Cadarache, Dept. d' Etudes des Reacteurs (DER/SERSI), 13 - Saint-Paul-lez-Durance (France); Nicolas, A; Lenain, R; Richebois, E; Royer, E; Caruge, D [CEA Saclay, Dept. de Mecanique et de Technologie (DMT/SERMA), 91 - Gif-sur-Yvette (France); Blaise, P [CEA Cadarache, Dept. d' Etudes des Reacteurs (DER/SPEX), 13 - Saint-Paul-lez-Durance (France); Gastaldi, B; Delpech, M [CEA Cadarache, Dept. d' Etudes des Reacteurs (DER/SPRC), 13 - Saint-Paul-lez-Durance (France)
1999-07-01
Boiling Water Reactors represent one third of the world's reactors. They are presently evolving towards greater simplification, allowing a reduction in the costs of operation, improved safety and a relative flexibility in their capacity to accommodate 100% MOX cores. The CEA, in a combined effort with its partners, the COGEMA and the EDF, would like to assess the interest of this reactor type, especially on this last point. A definition program and subsequent qualification of the calculation scheme have been undertaken. We are presenting here the specific features inherent in the calculation of these reactors, in comparison to PWRs, as well as the first results of the program. (authors)
International Nuclear Information System (INIS)
Birdsell, K.H.; Campbell, K.; Eggert, K.G.; Travis, B.J.
1989-01-01
This paper presents preliminary transport calculations for radionuclide movement at Yucca Mountain using preliminary data for mineral distributions, retardation parameter distributions, and hypothetical recharge scenarios. These calculations are not performance assessments, but are used to study the effectiveness of the geochemical barriers at the site at mechanistic level. The preliminary calculations presented have many shortcomings and should be viewed only as a demonstration of the modeling methodology. The simulations were run with TRACRN, a finite-difference porous flow and radionuclide transport code developed for the Yucca Mountain Project. Approximately 30,000 finite-difference nodes are used to represent the unsaturated and saturated zones underlying the repository in three dimensions. Sorption ratios for the radionuclides modeled are assumed to be functions of mineralogic assemblages of the underlying rock. These transport calculations present a representative radionuclide cation, 135 Cs and anion, 99 Tc. The effects on transport of many of the processes thought to be active at Yucca Mountain may be examined using this approach. The model provides a method for examining the integration of flow scenarios, transport, and retardation processes as currently understood for the site. It will also form the basis for estimates of the sensitivity of transport calculations to retardation processes. 11 refs., 17 figs., 1 tab
International Nuclear Information System (INIS)
Hong, Ser Gi; Kim, Kang-Seog
2011-01-01
This paper describes the iteration methods using resonance integral tables to estimate the effective resonance cross sections in heterogeneous transport lattice calculations. Basically, these methods have been devised to reduce an effort to convert resonance integral table into subgroup data to be used in the physical subgroup method. Since these methods do not use subgroup data but only use resonance integral tables directly, these methods do not include an error in converting resonance integral into subgroup data. The effective resonance cross sections are estimated iteratively for each resonance nuclide through the heterogeneous fixed source calculations for the whole problem domain to obtain the background cross sections. These methods have been implemented in the transport lattice code KARMA which uses the method of characteristics (MOC) to solve the transport equation. The computational results show that these iteration methods are quite promising in the practical transport lattice calculations.
International Nuclear Information System (INIS)
Voloshchenko, A.M.; Russkov, A.A.; Gurevich, M.I.; Olejnik, D.S.
2008-01-01
One analyzes a possibility to make use of the geometry approximations conserving the materials mass local balance in every mesh via adding of mixtures in the meshes containing several feed materials to perform the kinetic calculation of the reactor core neutron fields. To set the 3D-geometry of the reactor core one makes use of the combinatorial geometry methods implemented in the MCI Program to solve the diffusivity equations by the Monte Carlo method, to convert the combinatorial prescribing of the geometry into the mesh representation - the ray tracing method. According to the calculations of the WWER-1000 reactor core and the simulations of the spent fuel storage facility, the described procedure compares favorably with the conventional geometry approximations [ru
DEFF Research Database (Denmark)
Giannouli, Myrsini; Samaras, Zissis; Keller, Mario
2006-01-01
The scope of this paper is to summarise a methodology developed for TRENDS (TRansport and ENvironment Database System-TRENDS). The main objective of TRENDS was the calculation of environmental pressure indicators caused by transport. The environmental pressures considered are associated with air...... emissions from the four main transport modes, i.e. road, rail, ships and air. In order to determine these indicators a system for calculating a range of environmental pressures due to transport was developed within a PC-based MS Access environment. Emphasis is given oil the latest features incorporated...... the production of collective results for all transport modes as well as a comparative assessment of air emissions produced by the various modes. Traffic activity and emission data obtained according to a basic (reference) scenario are displayed for the time period 1970-2020. In addition, a detailed assessment...
Performing three-dimensional neutral particle transport calculations on tera scale computers
International Nuclear Information System (INIS)
Woodward, C.S.; Brown, P.N.; Chang, B.; Dorr, M.R.; Hanebutte, U.R.
1999-01-01
A scalable, parallel code system to perform neutral particle transport calculations in three dimensions is presented. To utilize the hyper-cluster architecture of emerging tera scale computers, the parallel code successfully combines the MPI message passing and paradigms. The code's capabilities are demonstrated by a shielding calculation containing over 14 billion unknowns. This calculation was accomplished on the IBM SP ''ASCI-Blue-Pacific computer located at Lawrence Livermore National Laboratory (LLNL)
Energy Technology Data Exchange (ETDEWEB)
Gurevich, M. I.; Oleynik, D. S. [RRC Kurchatov Inst., Kurchatov Sq., 1, 123182, Moscow (Russian Federation); Russkov, A. A.; Voloschenko, A. M. [Keldysh Inst. of Applied Mathematics, Miusskaya Sq., 4, 125047, Moscow (Russian Federation)
2006-07-01
The tracing algorithm that is implemented in the geometrical module of Monte-Carlo transport code MCU is applied to calculate the volume fractions of original materials by spatial cells of the mesh that overlays problem geometry. In this way the 3D combinatorial geometry presentation of the problem geometry, used by MCU code, is transformed to the user defined 2D or 3D bit-mapped ones. Next, these data are used in the volume fraction (VF) method to approximate problem geometry by introducing additional mixtures for spatial cells, where a few original materials are included. We have found that in solving realistic 2D and 3D core problems a sufficiently fast convergence of the VF method takes place if the spatial mesh is refined. Virtually, the proposed variant of implementation of the VF method seems as a suitable geometry interface between Monte-Carlo and S{sub n} transport codes. (authors)
Electron internal transport barrier in the core of TJ-II ECH plasmas
Energy Technology Data Exchange (ETDEWEB)
Estrada, T.; Hidalgo, C. [Laboratorio Nacional de Fusion por Confinamiento Magnetico. Asociacion EURATOM CIEMAT, Madrid (Spain); Dreval, N. [and others
2003-07-01
The influence of the magnetic topology on the formation of electron internal transport barriers (e-ITB) has been experimentally studied in the stellarator TJ-II. The formation of e-ITBs in electron cyclotron heated plasmas can be triggered by positioning a low order rational surface close to the plasma core region, while in configurations without any low order rational there are no indications of barrier formation within the available heating power. The e-ITB formation is characterized by an increase in the core electron temperature and plasma potential. Positive radial electric field increases in a factor of three in the plasma central region when the e-ITB forms. The results demonstrate that low order rational surfaces modify radial electric fields and electron heat transport. (orig.)
International Nuclear Information System (INIS)
Van Geemert, Rene
2008-01-01
For satisfaction of future global customer needs, dedicated efforts are being coordinated internationally and pursued continuously at AREVA NP. The currently ongoing CONVERGENCE project is committed to the development of the ARCADIA R next generation core simulation software package. ARCADIA R will be put to global use by all AREVA NP business regions, for the entire spectrum of core design processes, licensing computations and safety studies. As part of the currently ongoing trend towards more sophisticated neutronics methodologies, an SP 3 nodal transport concept has been developed for ARTEMIS which is the steady-state and transient core simulation part of ARCADIA R . For enabling a high computational performance, the SP N calculations are accelerated by applying multi-level coarse mesh re-balancing. In the current implementation, SP 3 is about 1.4 times as expensive computationally as SP 1 (diffusion). The developed SP 3 solution concept is foreseen as the future computational workhorse for many-group 3D pin-by-pin full core computations by ARCADIA R . With the entire numerical workload being highly parallelizable through domain decomposition techniques, associated CPU-time requirements that adhere to the efficiency needs in the nuclear industry can be expected to become feasible in the near future. The accuracy enhancement obtainable by using SP 3 instead of SP 1 has been verified by a detailed comparison of ARTEMIS 16-group pin-by-pin SP N results with KAERI's DeCart reference results for the 2D pin-by-pin Purdue UO 2 /MOX benchmark. This article presents the accuracy enhancement verification and quantifies the achieved ARTEMIS-SP 3 computational performance for a number of 2D and 3D multi-group and multi-box (up to pin-by-pin) core computations. (authors)
Observations on the W-transport in the core plasma of JET and ASDEX Upgrade
Czech Academy of Sciences Publication Activity Database
Pütterich, T.; Dux, R.; Neu, R.; Bernert, M.; Beurskens, M.N.A.; Bobkov, V.; Brezinsek, S.; Challis, C.; Coenen, J.W.; Coffey, I.; Czarnecka, A.; Giroud, C.; Jacquet, P.; Joffrin, E.; Kallenbach, A.; Lehnen, M.; Lerche, E.; De La Luna, E.; Marsen, S.; Matthews, G.; Mayoral, M.-L.; McDermott, R.M.; Meigs, A.; Mlynář, Jan; Sertoli, M.; van Rooij, G.
2013-01-01
Roč. 55, č. 12 (2013), s. 124036-124036 ISSN 0741-3335. [European Physical Society Conference on Plasma Physics/40./. Espoo, 01.07.2013-05.07.2013] Institutional support: RVO:61389021 Keywords : tokamak * impurity transport * core plasma * fusion * tungsten * ASDEX Upgrade Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.386, year: 2013 http://iopscience.iop.org/0741-3335/55/12/124036/pdf/0741-3335_55_12_124036.pdf
International Nuclear Information System (INIS)
Masahiro, Tatsumi; Akio, Yamamoto
2003-01-01
A production code SCOPE2 was developed based on the fine-grained parallel algorithm by the red/black iterative method targeting parallel computing environments such as a PC-cluster. It can perform a depletion calculation in a few hours using a PC-cluster with the model based on a 9-group nodal-SP3 transport method in 3-dimensional pin-by-pin geometry for in-core fuel management of commercial PWRs. The present algorithm guarantees the identical convergence process as that in serial execution, which is very important from the viewpoint of quality management. The fine-mesh geometry is constructed by hierarchical decomposition with introduction of intermediate management layer as a block that is a quarter piece of a fuel assembly in radial direction. A combination of a mesh division scheme forcing even meshes on each edge and a latency-hidden communication algorithm provided simplicity and efficiency to message passing to enhance parallel performance. Inter-processor communication and parallel I/O access were realized using the MPI functions. Parallel performance was measured for depletion calculations by the 9-group nodal-SP3 transport method in 3-dimensional pin-by-pin geometry with 340 x 340 x 26 meshes for full core geometry and 170 x 170 x 26 for quarter core geometry. A PC cluster that consists of 24 Pentium-4 processors connected by the Fast Ethernet was used for the performance measurement. Calculations in full core geometry gave better speedups compared to those in quarter core geometry because of larger granularity. Fine-mesh sweep and feedback calculation parts gave almost perfect scalability since granularity is large enough, while 1-group coarse-mesh diffusion acceleration gave only around 80%. The speedup and parallel efficiency for total computation time were 22.6 and 94%, respectively, for the calculation in full core geometry with 24 processors. (authors)
International Nuclear Information System (INIS)
Moiseev, A.V.; Khomyakov, Yu.S.; Surov, S.V.
2013-01-01
This paper presents the results of experimental and theoretical work done in 2003-2010 years on substantiation of neutron-physical characteristics of the BN-600 core. 1. Transition to the new core 01M2 with high burnup 11.2% h.a. (the 4-th upgrade of the BN-600 core). Transfer was made without changing the constructive of the core almost by reducing conservatism of design decisions. 2. The end of BN-600 design life cycle and extending it to 10-15 years. Need for analysis and comprehension of the BN-600 experience. 3. Development and introduction of new methods of analysis (precision method of Monte Carlo). 4. In the experiments was a change of equipment and measurement techniques
Energy Technology Data Exchange (ETDEWEB)
Nasrazadani, Zahra; Salimi, Raana; Askari, Afrooz; Khorsandi, Jamshid; Mirvakili, Mohammad; Mashayekh, Mohammad [Reactor Research School, Nuclear Science and Technology Research Institute, Atomic Energy Organization of Iran, Esfahan (Iran, Islamic Republic of)
2017-02-15
The heavy water zero power reactor (HWZPR), which is a critical assembly with a maximum power of 100 W, can be used in different lattice pitches. The last change of core configuration was from a lattice pitch of 18-20 cm. Based on regulations, prior to the first operation of the reactor, a new core was simulated with MCNP (Monte Carlo N-Particle)-4C and WIMS (Winfrith Improved Multigroup Scheme)-CITATON codes. To investigate the criticality of this core, the effective multiplication factor (Keff) versus heavy water level, and the critical water level were calculated. Then, for safety considerations, the reactivity worth of D2O, the reactivity worth of safety and control rods, and temperature reactivity coefficients for the fuel and the moderator, were calculated. The results show that the relevant criteria in the safety analysis report were satisfied in the new core. Therefore, with the permission of the reactor safety committee, the first criticality operation was conducted, and important physical parameters were measured experimentally. The results were compared with the corresponding values in the original core.
International Nuclear Information System (INIS)
Coddington, P.; Fishlock, T.P.; Jakeman, D.
1976-01-01
of any postulated SFI to be determined. Both subassembly and whole core geometries are considered. Modelling of an SFI has been kept as simple as possible since it does not appear that any more insight into the consequences of SFIs can be obtained by a more complex treatment. The preliminary results indicate that in assessing the importance of various characterisations of SFIs in determining damage following a nuclear excursion it is necessary to have a good representation of the geometry. It is intended in future studies to improve the calculation of heat loss from the expanding bubble and modifications are being made to the containment codes to include this. The effects of SFI on the fuel motion and the reactivity ramp rates associated with them are to be considered
International Nuclear Information System (INIS)
Sarta Fuentes, Jose A.; Castiblanco, L.A.
2003-01-01
With cooperation of the International Atomic Energy Agency (IAEA), neutronic calculations were carried out for conversion of the Ian-R1 Reactor from MTR-HEU fuel to TRIGA-LEU fuel. In order to establish a staff for neutronic calculation at the Instituto de Cancan's Nucleares y Energia s Alternatives (INEA) a program was established. This program included training, acquisition of hardware, software and calculation for the core with MTR-HEU fuel , enriched nominally to 93% and calculation for several arrangements with the TRIGA-LEU fuel, enriched to 19.7%. The results were verified and compared with several groups of calculation at the Instituto Nacional de Investigaciones Nucleares (ININ) in Mexico, and General Atomics (GA) in United States. As a result of this program, several technical reports have been wrote. (author)
Experimental and gyrokinetic investigation of core impurity transport in Alcator C-mod
Howard, N.; Greenwald, M.; Podpaly, Y.; Reinke, M. L.; Rice, J. E.; White, A. E.; Mikkelsen, D. R.; Puetterich, T.
2010-11-01
A new multiple pulse laser blow-off system coupled with an upgraded high resolution x-ray spectrometer with spatial resolution allow for the most detailed studies of impurity transport on Alcator C-mod to date. Trace impurity injections created by the laser blow-off technique were introduced into plasmas with a wide range of parameters and time evolving profiles of He-like calcium were measured. The unique measurement of a single charge state profile and line integrated emission measurements from spectroscopic diagnostics were compared with the simulated emission from the impurity transport code STRAHL. A nonlinear least squares fitting routine was coupled with STRAHL, allowing for core impurity transport coefficients with errors to be determined. With this method, experimental data from trace calcium injections were analyzed and radially dependent, core values (< r/a ˜.6) of the diffusive and convective components of the impurity flux were obtained. The STRAHL results are compared with linear and global, nonlinear simulations from the gyrokinetic code GYRO. Results of this comparison and an investigation of the underlying physics associated with turbulent impurity transport will be presented.
International Nuclear Information System (INIS)
Núñez, M A; Mendoza, R
2015-01-01
Several methods to estimate the velocity field of atmospheric flows, have been proposed to the date for applications such as emergency response systems, transport calculations and for budget studies of all kinds. These applications require a wind field that satisfies the conservation of mass but, in general, estimated wind fields do not satisfy exactly the continuity equation. An approach to reduce the effect of using a divergent wind field as input in the transport-diffusion equations, was proposed in the literature. In this work, a linear local analysis of a wind field, is used to show analytically that the perturbation of a large-scale nondivergent flow can yield a divergent flow with a substantially different structure. The effects of these structural changes in transport calculations are illustrated by means of analytic solutions of the transport equation
Neutron flux calculation and fluence in the encircling of the core and vessel of a reactor BWR
International Nuclear Information System (INIS)
Martinez C, E.
2011-01-01
One of the main objectives related to the safety of any nuclear power plant, including the nuclear power plant of Laguna Verde is to ensure the structural integrity of reactor pressure vessel. To identify and quantify the damage caused by neutron irradiation in the vessel of any nuclear reactor, it is necessary to know both the neutron flux and the neutron fluence that the vessel has been receiving during its operation lifetime, and that the damage observed by mechanical testing are products of microstructural effects induced by neutron irradiation; therefore, it is important the study and prediction of the neutron flux in order to have a better understanding of the damage that these materials are receiving. The calculation here described uses the DORT code, which solves the neutron transport equation in discrete ordinates in two dimensions (x-y, r-θ and r-z), according to a regulatory guide, it should make an approximation of the neutron flux in three dimensions by the so called synthesis method. It is called in that way because it achieves a representation of 3 Dimensional neutron flux combining or summarizing the fluxes calculated by DORT r-θ, r-z and r. This work presents the application of synthesis method, according to Regulatory Guide 1190, to determine the 3 Dimensional fluxes in internal BWR reactor using three different spatial meshes. The results of the neutron flux and fluence, using three different meshes in the directions r, θ and z were compared with results reported in the literature obtaining a difference not larger than 9.61%, neutron flux reached its maximum, 1.58 E + 12 n/cm 2 s, at a height H 4 (239.07 cm) and angle 32.236 o in the core shroud and 4.00 E + 09 n/cm 2 s at a height H 4 and angle 35.27 o in the inner wall of the reactor vessel, positions that are consistent to within ±10% over the ones reported in the literature. (Author)
International Nuclear Information System (INIS)
Johnson, Jeffrey O.; Gallmeier, Franz X.; Popova, Irina
2002-01-01
Determining the bulk shielding requirements for accelerator environments is generally an easy task compared to analyzing the radiation transport through the complex shield configurations and penetrations typically associated with the detailed Title II design efforts of a facility. Shielding calculations for penetrations in the SNS accelerator environment are presented based on hybrid Monte Carlo and discrete ordinates particle transport methods. This methodology relies on coupling tools that map boundary surface leakage information from the Monte Carlo calculations to boundary sources for one-, two-, and three-dimensional discrete ordinates calculations. The paper will briefly introduce the coupling tools for coupling MCNPX to the one-, two-, and three-dimensional discrete ordinates codes in the DOORS code suite. The paper will briefly present typical applications of these tools in the design of complex shield configurations and penetrations in the SNS proton beam transport system
Energy Technology Data Exchange (ETDEWEB)
Moeller, M. P.; Urbanik, II, T.; Desrosiers, A. E.
1982-03-01
This paper describes the methodology and application of the computer model CLEAR (Calculates Logical Evacuation And Response) which estimates the time required for a specific population density and distribution to evacuate an area using a specific transportation network. The CLEAR model simulates vehicle departure and movement on a transportation network according to the conditions and consequences of traffic flow. These include handling vehicles at intersecting road segments, calculating the velocity of travel on a road segment as a function of its vehicle density, and accounting for the delay of vehicles in traffic queues. The program also models the distribution of times required by individuals to prepare for an evacuation. In order to test its accuracy, the CLEAR model was used to estimate evacuatlon tlmes for the emergency planning zone surrounding the Beaver Valley Nuclear Power Plant. The Beaver Valley site was selected because evacuation time estimates had previously been prepared by the licensee, Duquesne Light, as well as by the Federal Emergency Management Agency and the Pennsylvania Emergency Management Agency. A lack of documentation prevented a detailed comparison of the estimates based on the CLEAR model and those obtained by Duquesne Light. However, the CLEAR model results compared favorably with the estimates prepared by the other two agencies.
International Nuclear Information System (INIS)
Moeller, M.P.; Desrosiers, A.E.; Urbanik, T. II
1982-03-01
This paper describes the methodology and application of the computer model CLEAR (Calculates Logical Evacuation And Response) which estimates the time required for a specific population density and distribution to evacuate an area using a specific transportation network. The CLEAR model simulates vehicle departure and movement on a transportation network according to the conditions and consequences of traffic flow. These include handling vehicles at intersecting road segments, calculating the velocity of travel on a road segment as a function of its vehicle density, and accounting for the delay of vehicles in traffic queues. The program also models the distribution of times required by individuals to prepare for an evacuation. In order to test its accuracy, the CLEAR model was used to estimate evacuation times for the emergency planning zone surrounding the Beaver Valley Nuclear Power Plant. The Beaver Valley site was selected because evacuation time estimates had previously been prepared by the licensee, Duquesne Light, as well as by the Federal Emergency Management Agency and the Pennsylvania Emergency Management Agency. A lack of documentation prevented a detailed comparison of the estimates based on the CLEAR model and those obtained by Duquesne Light. However, the CLEAR model results compared favorably with the estimates prepared by the other two agencies. (author)
Verification of RRC Ki code package for neutronic calculations of WWER core with GD
International Nuclear Information System (INIS)
Aleshin, S.S.; Bolshagin, S.N.; Lazarenko, A.P.; Markov, A.V.; Pavlov, V.I.; Pavlovitchev, A.M.; Sidorenko, V.D.; Tsvetkov, V.M.
2001-01-01
The report presented is concerned with verification results of TVS-M/PERMAK-A/BIPR-7A code package for WWERs neutronic calculation as applied to calculation of systems containing U-GD pins. The verification is based on corresponded benchmark calculations, data critical experiments and on operation data obtained WWER units with Gd. The comparison results are discussed (Authors)
International Nuclear Information System (INIS)
Mai, V. T.; Fujii, T.; Wada, K.; Kitada, T.; Takaki, N.; Yamaguchi, A.; Watanabe, H.; Unesaki, H.
2012-01-01
Considering the importance of thorium data and concerning about the accuracy of Th-232 cross section library, a series of experiments of thorium critical core carried out at KUCA facility of Kyoto Univ. Research Reactor Inst. have been analyzed. The core was composed of pure thorium plates and 93% enriched uranium plates, solid polyethylene moderator with hydro to U-235 ratio of 140 and Th-232 to U-235 ratio of 15.2. Calculations of the effective multiplication factor, control rod worth, reactivity worth of Th plates have been conducted by MVP code using JENDL-4.0 library [1]. At the experiment site, after achieving the critical state with 51 fuel rods inserted inside the reactor, the measurements of the reactivity worth of control rod and thorium sample are carried out. By comparing with the experimental data, the calculation overestimates the effective multiplication factor about 0.90%. Reactivity worth of the control rods evaluation using MVP is acceptable with the maximum discrepancy about the statistical error of the measured data. The calculated results agree to the measurement ones within the difference range of 3.1% for the reactivity worth of one Th plate. From this investigation, further experiments and research on Th-232 cross section library need to be conducted to provide more reliable data for thorium based fuel core design and safety calculation. (authors)
International Nuclear Information System (INIS)
Oliveira, A.C.J.G. de.
1988-12-01
Sensitivity calculations are very important in design and safety of nuclear reactor cores. Large codes with a great number of physical considerations have been used to perform sensitivity studies. However, these codes need long computation time involving high costs. The perturbation theory has constituted an efficient and economical method to perform sensitivity analysis. The present work is an application of the perturbation theory (matricial formalism) to a simplified model of DNB (Departure from Nucleate Boiling) analysis to perform sensitivity calculations in PWR cores. Expressions to calculate the sensitivity coefficients of enthalpy and coolant velocity with respect to coolant density and hot channel area were developed from the proposed model. The CASNUR.FOR code to evaluate these sensitivity coefficients was written in Fortran. The comparison between results obtained from the matricial formalism of perturbation theory with those obtained directly from the proposed model makes evident the efficiency and potentiality of this perturbation method for nuclear reactor cores sensitivity calculations (author). 23 refs, 4 figs, 7 tabs
International Nuclear Information System (INIS)
Mueller, Bernhard
2009-01-01
In this thesis, we have presented the first multi-dimensional models of core-collapse supernovae that combine a detailed, up-to-date treatment of neutrino transport, the equation of state, and - in particular - general relativistic gravity. Building on the well-tested neutrino transport code VERTEX and the GR hydrodynamics code CoCoNuT, we developed and implemented a relativistic generalization of a ray-by-ray-plus method for energy-dependent neutrino transport. The result of these effort, the VERTEX-CoCoNuT code, also incorporates a number of improved numerical techniques that have not been used in the code components VERTEX and CoCoNuT before. In order to validate the VERTEX-CoCoNuT code, we conducted several test simulations in spherical symmetry, most notably a comparison with the one-dimensional relativistic supernova code AGILE-BOLTZTRAN and the Newtonian PROMETHEUSVERTEX code. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Mueller, Bernhard
2009-05-07
In this thesis, we have presented the first multi-dimensional models of core-collapse supernovae that combine a detailed, up-to-date treatment of neutrino transport, the equation of state, and - in particular - general relativistic gravity. Building on the well-tested neutrino transport code VERTEX and the GR hydrodynamics code CoCoNuT, we developed and implemented a relativistic generalization of a ray-by-ray-plus method for energy-dependent neutrino transport. The result of these effort, the VERTEX-CoCoNuT code, also incorporates a number of improved numerical techniques that have not been used in the code components VERTEX and CoCoNuT before. In order to validate the VERTEX-CoCoNuT code, we conducted several test simulations in spherical symmetry, most notably a comparison with the one-dimensional relativistic supernova code AGILE-BOLTZTRAN and the Newtonian PROMETHEUSVERTEX code. (orig.)
Transporting TMI-2 core debris to INEL: Public safety and public response
International Nuclear Information System (INIS)
Schmitt, R.C.; Reno, H.W.; Young, W.R.; Hamric, J.P.
1987-01-01
This paper describes the approach taken by the US Department of Energy to ensure that public safety is maintained during transport of core debris from the Unit-2 reactor at the Three Mile Island Nuclear Power Station near Harrisburg, PA, to the Idaho National Engineering Laboratory near Idaho Falls, ID. It provides up-to-date information about public response to the transport action and discusses DOE's position on several institutional issues. The authors advise that planners of future transport operations be prepared for a multitude of comments from all levels of federal, state, and local governments, special interest groups, and private citizens. They also advise planners to keep meticulous records concerning all informational transactions. 3 figs
International Nuclear Information System (INIS)
Odano, N.; Ohnishi, S.; Sawamura, H.; Tanaka, Y.; Nishimura, K.
2004-01-01
A modified code system based on the point kernel method was developed to use in evaluation of shielding performance for maritime transport of radioactive material. For evaluation of shielding performance accurately in the case of accident, it is required to preciously model the structure of transport casks and shipping vessel, and source term. To achieve accurate modelling of the geometry and source term condition, we aimed to develop the code system by using equivalent information regarding structure and source term used in the Monte Carlo calculation code, MCNP. Therefore, adding an option to use point kernel method to the existing Monte Carlo code, MCNP4C, the code system was developed. To verify the developed code system, dose rate distribution in an exclusive shipping vessel to transport the low level radioactive wastes were calculated by the developed code and the calculated results were compared with measurements and Monte Carlo calculations. It was confirmed that the developed simple calculation method can obtain calculation results very quickly with enough accuracy comparing with the Monte Carlo calculation code MCNP4C
International Nuclear Information System (INIS)
Martin, William R.; Brown, Forrest B.
2001-01-01
We present an alternative Monte Carlo method for solving the coupled equations of radiation transport and material energy. This method is based on incorporating the analytical solution to the material energy equation directly into the Monte Carlo simulation for the radiation intensity. This method, which we call the Analytical Monte Carlo (AMC) method, differs from the well known Implicit Monte Carlo (IMC) method of Fleck and Cummings because there is no discretization of the material energy equation since it is solved as a by-product of the Monte Carlo simulation of the transport equation. Our method also differs from the method recently proposed by Ahrens and Larsen since they use Monte Carlo to solve both equations, while we are solving only the radiation transport equation with Monte Carlo, albeit with effective sources and cross sections to represent the emission sources. Our method bears some similarity to a method developed and implemented by Carter and Forest nearly three decades ago, but there are substantive differences. We have implemented our method in a simple zero-dimensional Monte Carlo code to test the feasibility of the method, and the preliminary results are very promising, justifying further extension to more realistic geometries. (authors)
International Nuclear Information System (INIS)
Pop-Jordanov, J.; Bosevski, T.; Kocic, A.; Altiparmakov, D.
1980-01-01
A Space-Point Energy-Group integral transport theory method (SPEG) is developed and applied to the local and global calculations of the Yugoslav RA reactor. Compared to other integral transport theory methods, the SPEG distinguishes by (1) the arbitrary order of the polynomial, (2) the effective determination of integral parameters through point flux values, (3) the use of neutron balance condition. as a posterior measure of the accuracy of the calculation and (4) the elimination of the subdivisions- into zones, in realistic cases. In addition, different direct (collision probability) and indirect (Monte Carlo) approaches to integral transport theory have been investigated and Some effective acceleration procedures introduced. The study was performed on three test problems in plane and cylindrical geometry, as well as on the nine-region cell of the RA reactor. In particular, the limitations of the integral transport theory including its non-applicability to optically large material regions and to global reactor calculations were examined. The proposed strictly multipoint approach, avoiding the subdivision into zones and groups, seems to provide a good starting point to overcome these limitations of the integral transport theory. (author)
Calculations and selection of a TRIGA core for the Nuclear Reactor IAN-R1
International Nuclear Information System (INIS)
Castiblanco, L.A.; Sarta, J.A.
1997-01-01
The Reactor Group used the code WIMS reduced to five groups of energy, together with the code CITATION, and evaluated four configurations for a core, according to the grid actually installed. The four configurations were taken from the two proposals presented to the Instituto de Ciencias Nucleares y Energias Alternativas by General Atomics Company. In this paper, the Authors selected the best configuration according to the performance of flux distribution and excess reactivity, for a TRIGA core to be installed in the Nuclear Reactor IAN-R1
Directory of Open Access Journals (Sweden)
A. A. Sulim
2014-01-01
Full Text Available At present a great attention is paid to increasing of energy efficiency at operated electrified urban transport. Perspective direction for increasing energy efficiency at that type of transport is the application of regenerative braking. For additional increasing of energy efficiency there were suggested the use of capacitive drive on tires of traction substation. One of the main task is the analysis of energy recovery application with drive and without it.These analysis demonstrated that the calculation algorithms don’t allow in the full volume to carry out calculations of amount and cost of energy recovery without drive and with it. That is why we see the current interest to this topic. The purpose of work is to create methods of algorithms calculation for definite amount and cost of consumed, redundant and recovery energy of electrified urban transport due to definite regime of motion on wayside. There is algorithm developed, which allow to calculate amount and cost of consumed, redundant and recovery energy of electrified urban transport on wayside during the installation capacitive drive at traction substation. On the basis of developed algorithm for the definite regime of wagon motion of subway there were fulfilled the example of energy recovery amount and its cost calculation, among them with limited energy intensity drive, when there are 4 trains on wayside simultaneously.
Improved method for calculating neoclassical transport coefficients in the banana regime
Energy Technology Data Exchange (ETDEWEB)
Taguchi, M., E-mail: taguchi.masayoshi@nihon-u.ac.jp [College of Industrial Technology, Nihon University, Narashino 275-8576 (Japan)
2014-05-15
The conventional neoclassical moment method in the banana regime is improved by increasing the accuracy of approximation to the linearized Fokker-Planck collision operator. This improved method is formulated for a multiple ion plasma in general tokamak equilibria. The explicit computation in a model magnetic field shows that the neoclassical transport coefficients can be accurately calculated in the full range of aspect ratio by the improved method. The some neoclassical transport coefficients for the intermediate aspect ratio are found to appreciably deviate from those obtained by the conventional moment method. The differences between the transport coefficients with these two methods are up to about 20%.
Hybrid PN-SN Calculations with SAAF for the Multiscale Transport Capability in Rattlesnake
Energy Technology Data Exchange (ETDEWEB)
Wang, Yaqi; Schunert, Sebastian; DeHart, Mark; Martineau, Richard
2016-05-01
Two interface conditions, the Lagrange multiplier method and the upwinding method, for hybrid \\pn-\\sn calculations is proposed for the self-adjoint angular flux (SAAF) formulation of the transport equation using the continuous finite element method (FEM) for spatial discretization. These interface conditions are implemented in Rattlesnake, the radiation transport application built on MOOSE, for the on-going multiscale transport simulation effort at INL. For smoothing the solution at the interface for the Lagrange multiplier method, a method based on \\sn Lagrange interpolation on the sphere is proposed. Numerical results indicate that the interface conditions give the expected convergence.
Directory of Open Access Journals (Sweden)
Sergey Kharitonov
2015-06-01
Full Text Available Optimum transport infrastructure usage is an important aspect of the development of the national economy of the Russian Federation. Thus, development of instruments for assessing the efficiency of infrastructure is impossible without constant monitoring of a number of significant indicators. This work is devoted to the selection of indicators and the method of their calculation in relation to the transport subsystem as airport infrastructure. The work also reflects aspects of the evaluation of the possibilities of algorithmic computational mechanisms to improve the tools of public administration transport subsystems.
Energy Technology Data Exchange (ETDEWEB)
Giannouli, Myrsini; Samaras, Zissis [Aristotle University of Thessaloniki, Laboratory of Applied Thermodynamics, Mechanical Engineering Department, GR 54124, Thessaloniki, P.O. Box 458 (Greece); Keller, Mario; De Haan, Peter [INFRAS, Muhlemattstrasse 45 CH-3007, Bern (Switzerland); Kallivoda, Manfred [psiA-Consult, Environmental Research and Engineering GmbH, Lastenstrasse 38/1, 1230 Wien (Austria); Sorenson, Spencer; Georgakaki, Aliki [DTU: Technical University of Denmark, Nils Koppels Alle, Building 403, DK 2800 Kgs. Lyngby (Denmark)
2006-03-15
The scope of this paper is to summarise a methodology developed for TRENDS (TRansport and ENvironment Database System-TRENDS). The main objective of TRENDS was the calculation of environmental pressure indicators caused by transport. The environmental pressures considered are associated with air emissions from the four main transport modes, i.e. road, rail, ships and air. In order to determine these indicators a system for calculating a range of environmental pressures due to transport was developed within a PC-based MS Access environment. Emphasis is given on the latest features incorporated in the model and their applications. One of the recently developed features of the software provides an option for simple scenario analysis including vehicle dynamics (such as turnover and evolution) for all EU15 member states. This feature is called the Transport Activity Balance module (TAB) and enables the production of collective results for all transport modes as well as a comparative assessment of air emissions produced by the various modes. Traffic activity and emission data obtained according to a basic (reference) scenario are displayed for the time period 1970-2020. In addition, a detailed assessment of the results produced by TRENDS was conducted by means of comparison with data found in the literature. Finally, vehicle emissions produced by the model for the EU15 member states were spatially disaggregated for the base year, 1995 and GIS maps were generated. Examples of these maps are displayed in this document, for the various modes of transport considered in the study. (author)
Study of finite-orbit-width effect on neoclassical transport in tokamak core region
International Nuclear Information System (INIS)
Satake, Shinsuke; Okamoto, Masao
2004-01-01
Neoclassical transport simulation using the δf Monte-Carlo method is carried out to investigate the finite-orbit-width (FOW) effect on the transport near the magnetic axis. The time evolution of the radial electric field to maintain the ambipolarity of the flux is calculated simultaneously. It is found that, in the near-axis region, the ion heat flux decreases from the value predicted by the standard neoclassical theory both in the banana and plateau regimes. Though the radial transport shows a strong dependence on the FOW effect, the ambipolar electric field profile at the steady state is similar to that calculated in the small-orbit-width limit approximation. (author)
Transport calculations for a 14.8 MeV neutron beam in a water phantom
International Nuclear Information System (INIS)
Goetsch, S.J.
1981-01-01
A coupled neutron/photon Monte Carlo radiation transport code (MORSE-CG) has been used to calculate neutron and photon doses in a water phantom irradiated by 14.8 MeV neutrons from the Gas Target Neutron Source. The source-collimator-phantom geometry was carefully simulated. Results of calculations utilizing two different statistical estimators (next-collision and track-length) are presented
Recriticality calculation with GENFLO code for the BWR core after steam explosion in the lower head
Energy Technology Data Exchange (ETDEWEB)
Miettinen, J. [VTT Processes (Finland)
2002-12-01
Recriticality of the partially degraded BWR core has been studied by assuming a severe accident phase during which the fuel rods are still intact but the control rods have experienced extensive damage. Previous NKS and EU projects have studied the same case assuming reflooding by the ECCS system In the present study it was assumed that coolant enters the core due to melt-coolant interaction in the lower plenum. In the first case specified the relocation and fragmentation of the molten control rod metal causes the level swell in the core but no steam explosion. In the second case a steam explosion in the lower head was assumed. I n the first case a prompt recriticality peak can occur, but after the peak no semistable power generation remains. In the second case the consequence of the slug entrance into the core is so violent that the fuel disintegration and melting during the first power peak may occur. After the large power peak water is rapidly pushed back from the core and no semistable power generation maintains. The fuel disintegration studies have been based on a coarse assumption that the acceptable local energy addition into the fresh fuel may be 170 cal/g, but with increasing burn-up it can be as low as 60-70 cal/g. In the level swell variations the maximum energy addition was between these limits, but in most of the steam explosion variations much above these limits. Additional variation of the assumptions related to the neutronics demonstrated that for the converged analysis result some interactions would be useful with respect to the boundary conditions and neutronic options.
Quality assurance in the removal and transport of the TMI-2 [Three Mile Island Unit 2] core
International Nuclear Information System (INIS)
Hayes, G.R.; Marsden, J.F.
1988-01-01
The March 1979 accident at Three Mile Island Unit 2 (TMI-2) damaged the core of the reactor. One of the major cleanup activities involves removal of the damaged core from the reactor and transporting it from the TMI-2 site near Middletown, Pennsylvania, to the Idaho National Engineering Laboratory (INEL) near Idaho Falls, Idaho. Removal and transport of the damaged core necessitated the development of much specialized equipment. This paper focuses on the role quality assurance (QA) played in the design, fabrication, acceptance, and use of three important pieces of core debris removal and transportation equipment: (1) the core boring machine, (2) the fuel debris canisters, (3) the NuPac 125-B rail cask and handling equipment
International Nuclear Information System (INIS)
Hay, P.J.; Wadt, W.R.
1985-01-01
Ab initio effective core potentials (ECP's) have been generated to replace the Coulomb, exchange, and core-orthogonality effects of the chemically inert core electron in the transition metal atoms Sc to Hg. For the second and third transition series relative ECP's have been generated which also incorporate the mass--velocity and Darwin relativistic effects into the potential. The ab initio ECP's should facilitate valence electron calculations on molecules containing transition-metal atoms with accuracies approaching all-electron calculations at a fraction of the computational cost. Analytic fits to the potentials are presented for use in multicenter integral evaluation. Gaussian orbital valence basis sets are developed for the (3d,4s,4p), (4d,5s,5p), and (5d,6s,6p) orbitals of the first, second, and third transition series atoms, respectively. All-electron and valence-electron atomic excitation energies are also compared for the low-lying states of Sc--Hg, and the valence-electron calculations are found to reproduce the all-electron excitation energies (typically within a few tenths of an eV)
Tungsten Transport in the Core of JET H-mode Plasmas, Experiments and Modelling
Angioni, Clemente
2014-10-01
The physics of heavy impurity transport in tokamak plasmas plays an essential role towards the achievement of practical fusion energy. Reliable predictions of the behavior of these impurities require the development of realistic theoretical models and a complete understanding of present experiments, against which models can be validated. Recent experimental campaigns at JET with the ITER-like wall, with a W divertor, provide an extremely interesting and relevant opportunity to perform this combined experimental and theoretical research. Theoretical models of both neoclassical and turbulent transport must consistently include the impact of any poloidal asymmetry of the W density to enable quantitative predictions of the 2D W density distribution over the poloidal cross section. The agreement between theoretical predictions and experimentally reconstructed 2D W densities allows the identification of the main mechanisms which govern W transport in the core of JET H-mode plasmas. Neoclassical transport is largely enhanced by centrifugal effects and the neoclassical convection dominates, leading to central accumulation in the presence of central peaking of the density profiles and insufficiently peaked ion temperature profiles. The strength of the neoclassical temperature screening is affected by poloidal asymmetries. Only around mid-radius, turbulent diffusion offsets neoclassical transport. Consistently with observations in other devices, ion cyclotron resonance heating in the plasma center can flatten the electron density profile and peak the ion temperature profile and provide a means to reverse the neoclassical convection. MHD activity may hamper or speed up the accumulation process depending on mode number and plasma conditions. Finally, the relationship of JET results to a parallel modelling activity of the W behavior in the core of ASDEX Upgrade plasmas is presented. This project has received funding from the European Union's Horizon 2020 research and innovation
On calculating phase shifts and performing fits to scattering cross sections or transport properties
International Nuclear Information System (INIS)
Hepburn, J.W.; Roy, R.J. Le
1978-01-01
Improved methods of calculating quantum mechanical phase shifts and for performing least-squares fits to scattering cross sections or transport properties, are described. Their use in a five-parameter fit to experimental differential cross sections reduces the computer time by a factor of 4-7. (Auth.)
Transport calculation of neutron flux distribution in reflector of PW reactor
International Nuclear Information System (INIS)
Remec, I.
1982-01-01
Two-dimensional transport calculation of the neutron flux and spectrum in the equatorial plain of PW reactor, using computer program DOT 3, is presented. Results show significant differences between neutron fields in which test samples and reactor vessel are exposed. (author)
International Nuclear Information System (INIS)
Zazula, J.M.
1983-01-01
The general purpose code BALTORO was written for coupling the three-dimensional Monte-Carlo /MC/ with the one-dimensional Discrete Ordinates /DO/ radiation transport calculations. The quantity of a radiation-induced /neutrons or gamma-rays/ nuclear effect or the score from a radiation-yielding nuclear effect can be analysed in this way. (author)
Nobuhara, Fumiyoshi; Kuroyanagi, Makoto; Masumoto, Kazuyoshi; Nakamura, Hajime; Toyoda, Akihiro; Takahashi, Katsuhiko
2017-09-01
In order to evaluate the state of activation in a cyclotron facility used for the radioisotope production of PET diagnostics, we measured the neutron flux by using gold foils and TLDs. Then, the spatial distribution of neutrons and induced activity inside the cyclotron vault were simulated with the Monte Calro calculation code for neutron transport and DCHAIN-SP for activation calculation. The calculated results are in good agreement with measured values within factor 3. Therefore, the adaption of the advanced evaluation procedure for activation level is proved to be important for the planning of decommissioning of these facilities.
EEL Calculations and Measurements of Graphite and Graphitic-CNx Core-Losses
International Nuclear Information System (INIS)
Seepujak, A; Bangert, U; Harvey, A J; Blank, V D; Kulnitskiy, B A; Batov, D V
2006-01-01
Core EEL spectra of MWCNTs (multi-wall carbon nanotubes) grown in a nitrogen atmosphere were acquired utilising a dedicated STEM equipped with a Gatan Enfina system. Splitting of the carbon K-edge π* resonance into two peaks provided evidence of two nondegenerate carbon bonding states. In order to confirm the presence of a CN x bonding state, a full-potential linearised augmented plane-wave method was utilised to simulate core EEL spectra of graphite and graphitic-CN x compounds. The simulations confirmed splitting of the carbon K-edge π* resonance in graphitic-CN x materials, with the pristine graphite π* resonance remaining unsplit. The simulations also confirmed the increasing degree of amorphicity with higher concentrations (25%) of substitutional nitrogen in graphite
Flow velocity calculation to avoid instability in a typical research reactor core
International Nuclear Information System (INIS)
Oliveira, Carlos Alberto de; Mattar Neto, Miguel
2011-01-01
Flow velocity through a research reactor core composed by MTR-type fuel elements is investigated. Core cooling capacity must be available at the same time that fuel-plate collapse must be avoided. Fuel plates do not rupture during plate collapse, but their lateral deflections can close flow channels and lead to plate over-heating. The critical flow velocity is a speed at which the plates collapse by static instability type failure. In this paper, critical velocity and coolant velocity are evaluated for a typical MTR-type flat plate fuel element. Miller's method is used for prediction of critical velocity. The coolant velocity is limited to 2/3 of the critical velocity, that is a currently used criterion. Fuel plate characteristics are based on the open pool Australian light water reactor. (author)
Microwave emulations and tight-binding calculations of transport in polyacetylene
International Nuclear Information System (INIS)
Stegmann, Thomas; Franco-Villafañe, John A.; Ortiz, Yenni P.; Kuhl, Ulrich; Mortessagne, Fabrice; Seligman, Thomas H.
2017-01-01
A novel approach to investigate the electron transport of cis- and trans-polyacetylene chains in the single-electron approximation is presented by using microwave emulation measurements and tight-binding calculations. In the emulation we take into account the different electronic couplings due to the double bonds leading to coupled dimer chains. The relative coupling constants are adjusted by DFT calculations. For sufficiently long chains a transport band gap is observed if the double bonds are present, whereas for identical couplings no band gap opens. The band gap can be observed also in relatively short chains, if additional edge atoms are absent, which cause strong resonance peaks within the band gap. The experimental results are in agreement with our tight-binding calculations using the nonequilibrium Green's function method. The tight-binding calculations show that it is crucial to include third nearest neighbor couplings to obtain the gap in the cis-polyacetylene. - Highlights: • Electronic transport in individual polyacetylene chains is studied. • Microwave emulation experiments and tight-binding calculations agree well. • In long chains a band-gap opens due the dimerization of the chain. • In short chains edge atoms cause strong resonance peaks in the center of the band-gap.
Microwave emulations and tight-binding calculations of transport in polyacetylene
Energy Technology Data Exchange (ETDEWEB)
Stegmann, Thomas, E-mail: stegmann@icf.unam.mx [Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, 62210 Cuernavaca (Mexico); Franco-Villafañe, John A., E-mail: jofravil@fis.unam.mx [Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado Postal J-48, 72570 Puebla (Mexico); Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, 62210 Cuernavaca (Mexico); Ortiz, Yenni P. [Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, 62210 Cuernavaca (Mexico); Kuhl, Ulrich [Université de Nice – Sophia Antipolis, Laboratoire de la Physique de la Matière Condensée, CNRS, Parc Valrose, 06108 Nice (France); Mortessagne, Fabrice, E-mail: fabrice.mortessagne@unice.fr [Université de Nice – Sophia Antipolis, Laboratoire de la Physique de la Matière Condensée, CNRS, Parc Valrose, 06108 Nice (France); Seligman, Thomas H. [Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, 62210 Cuernavaca (Mexico); Centro Internacional de Ciencias, 62210 Cuernavaca (Mexico)
2017-01-05
A novel approach to investigate the electron transport of cis- and trans-polyacetylene chains in the single-electron approximation is presented by using microwave emulation measurements and tight-binding calculations. In the emulation we take into account the different electronic couplings due to the double bonds leading to coupled dimer chains. The relative coupling constants are adjusted by DFT calculations. For sufficiently long chains a transport band gap is observed if the double bonds are present, whereas for identical couplings no band gap opens. The band gap can be observed also in relatively short chains, if additional edge atoms are absent, which cause strong resonance peaks within the band gap. The experimental results are in agreement with our tight-binding calculations using the nonequilibrium Green's function method. The tight-binding calculations show that it is crucial to include third nearest neighbor couplings to obtain the gap in the cis-polyacetylene. - Highlights: • Electronic transport in individual polyacetylene chains is studied. • Microwave emulation experiments and tight-binding calculations agree well. • In long chains a band-gap opens due the dimerization of the chain. • In short chains edge atoms cause strong resonance peaks in the center of the band-gap.
Shternin, P. S.; Baldo, M.; Schulze, H.-J.
2017-12-01
Thermal conductivity and shear viscosity of npeµ matter in non-superfluid neutron star cores are considered in the framework of Brueckner-Hartree-Fock many-body theory. We extend our previous work (Shternin et al 2013 PRC 88 065803) by analysing different nucleon-nucleon potentials and different three-body forces. We find that the use of different potentials leads up to one order of magnitude variations in the values of the nucleon contribution to transport coefficients. The nucleon contribution dominates the thermal conductivity, but for all considered models the shear viscosity is dominated by leptons.
Optimized shielding calculation to the transport of 131I employed in nuclear medicine
International Nuclear Information System (INIS)
Sahyun, A.; Sordi, G.M.; Rodrigues, D.; Sanches, M.P.; Romero F, C.R.
1996-01-01
The objective of this paper is to present the basis for shielding calculation used in different situations that could occur during the transport of 131 I utilized in nuclear medicine for diagnostic and therapeutic purposes. The aim of these calculation is to optimize the shielding in order to satisfy the transport of radioactive material. These calculations were proposed for estimated activities around 1,85 GBq (50mCi), 3,7 GBq(100mCi) and 7,4 GBq(200mCi), considering the driver of the cargo company and his assistant as the critical group and the general people considered as effect of collective dose. The population density considered in the models is the one related to Sao Paulo city, because the transport is done by the highway across the city and the radioactive material is distributed from west to north and south, where the airports are located. This area ranges a perimeter of 40 km. For the collective dose calculation, it was considered a population dose of less than 1/100 of the annual limit dose for the public. Our main concern is related to the large volume of radioactive material that is transported per week, specially because 1/3 of this material has activities around 3,7 GBq (100mCi). During the calculations, we have figured out that the activities at the moment of transport are nearly 40% greater than the one related to the calibration date. As for the discrepancy of official alpha value of US$10000/man-Sv and the real value for our country of US$3000/man-Sv,a comparative study was performed. (authors). 3 refs., 2 figs., 2 tabs
Program for calculating multi-component high-intense ion beam transport
International Nuclear Information System (INIS)
Kazarinov, N.Yu.; Prejzendorf, V.A.
1985-01-01
The CANAL program for calculating transport of high-intense beams containing ions with different charges in a channel consisting of dipole magnets and quadrupole lenses is described. The equations determined by the method of distribution function momenta and describing coordinate variations of the local mass centres and r.m.s. transverse sizes of beams with different charges form the basis of the calculation. The program is adapted for the CDC-6500 and SM-4 computers. The program functioning is organized in the interactive mode permitting to vary the parameters of any channel element and quickly choose the optimum version in the course of calculation. The calculation time for the CDC-6500 computer for the 30-40 m channel at the integration step of 1 cm is about 1 min. The program is used for calculating the channel for the uranium ion beam injection from the collective accelerator into the heavy-ion synchrotron
Energy Technology Data Exchange (ETDEWEB)
Font Vivanco, David, E-mail: font@cml.leidenuniv.nl [Institut de Ciencia i Tecnologia Ambientals (ICTA), Departament d' Enginyeria Quimica, Universitat Autonoma de Barcelona (UAB), 08193 Bellaterra, Barcelona (Spain); Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300 RA Leiden (Netherlands); Puig Ventosa, Ignasi [ENT Environment and Management, Carrer Sant Joan 39, First Floor, 08800 Vilanova i la Geltru, Barcelona (Spain); Gabarrell Durany, Xavier [Institut de Ciencia i Tecnologia Ambientals (ICTA), Departament d' Enginyeria Quimica, Universitat Autonoma de Barcelona (UAB), 08193 Bellaterra, Barcelona (Spain)
2012-12-15
Highlights: Black-Right-Pointing-Pointer Sustainability and proximity principles have a key role in waste management. Black-Right-Pointing-Pointer Core indicators are needed in order to quantify and evaluate them. Black-Right-Pointing-Pointer A systematic, step-by-step approach is developed in this study for their development. Black-Right-Pointing-Pointer Transport may play a significant role in terms of environmental and economic costs. Black-Right-Pointing-Pointer Policy action is required in order to advance in the consecution of these principles. - Abstract: In this paper, the material and spatial characterization of the flows within a municipal solid waste (MSW) management system are combined through a Network-Based Spatial Material Flow Analysis. Using this information, two core indicators are developed for the bio-waste fraction, the Net Recovery Index (NRI) and the Transport Intensity Index (TII), which are aimed at assessing progress towards policy-related sustainable MSW management strategies and objectives. The NRI approaches the capacity of a MSW management system for converting waste into resources through a systematic metabolic approach, whereas the TII addresses efficiency in terms of the transport requirements to manage a specific waste flow throughout the entire MSW management life cycle. Therefore, both indicators could be useful in assessing key MSW management policy strategies, such as the consecution of higher recycling levels (sustainability principle) or the minimization of transport by locating treatment facilities closer to generation sources (proximity principle). To apply this methodological approach, the bio-waste management system of the region of Catalonia (Spain) has been chosen as a case study. Results show the adequacy of both indicators for identifying those points within the system with higher capacity to compromise its environmental, economic and social performance and therefore establishing clear targets for policy
International Nuclear Information System (INIS)
Font Vivanco, David; Puig Ventosa, Ignasi; Gabarrell Durany, Xavier
2012-01-01
Highlights: ► Sustainability and proximity principles have a key role in waste management. ► Core indicators are needed in order to quantify and evaluate them. ► A systematic, step-by-step approach is developed in this study for their development. ► Transport may play a significant role in terms of environmental and economic costs. ► Policy action is required in order to advance in the consecution of these principles. - Abstract: In this paper, the material and spatial characterization of the flows within a municipal solid waste (MSW) management system are combined through a Network-Based Spatial Material Flow Analysis. Using this information, two core indicators are developed for the bio-waste fraction, the Net Recovery Index (NRI) and the Transport Intensity Index (TII), which are aimed at assessing progress towards policy-related sustainable MSW management strategies and objectives. The NRI approaches the capacity of a MSW management system for converting waste into resources through a systematic metabolic approach, whereas the TII addresses efficiency in terms of the transport requirements to manage a specific waste flow throughout the entire MSW management life cycle. Therefore, both indicators could be useful in assessing key MSW management policy strategies, such as the consecution of higher recycling levels (sustainability principle) or the minimization of transport by locating treatment facilities closer to generation sources (proximity principle). To apply this methodological approach, the bio-waste management system of the region of Catalonia (Spain) has been chosen as a case study. Results show the adequacy of both indicators for identifying those points within the system with higher capacity to compromise its environmental, economic and social performance and therefore establishing clear targets for policy prioritization. Moreover, this methodological approach permits scenario building, which could be useful in assessing the outcomes of
Energy Technology Data Exchange (ETDEWEB)
Gauntt, Randall O.; Goldmann, Andrew; Kalinich, Donald A.; Powers, Dana A.
2016-12-01
In this study, risk-significant pressurized-water reactor severe accident sequences are examined using MELCOR 1.8.5 to explore the range of fission product releases to the reactor containment building. Advances in the understanding of fission product release and transport behavior and severe accident progression are used to render best estimate analyses of selected accident sequences. Particular emphasis is placed on estimating the effects of high fuel burnup in contrast with low burnup on fission product releases to the containment. Supporting this emphasis, recent data available on fission product release from high-burnup (HBU) fuel from the French VERCOR project are used in this study. The results of these analyses are treated as samples from a population of accident sequences in order to employ approximate order statistics characterization of the results. These trends and tendencies are then compared to the NUREG-1465 alternative source term prescription used today for regulatory applications. In general, greater differences are observed between the state-of-the-art calculations for either HBU or low-burnup (LBU) fuel and the NUREG-1465 containment release fractions than exist between HBU and LBU release fractions. Current analyses suggest that retention of fission products within the vessel and the reactor coolant system (RCS) are greater than contemplated in the NUREG-1465 prescription, and that, overall, release fractions to the containment are therefore lower across the board in the present analyses than suggested in NUREG-1465. The decreased volatility of Cs 2 MoO 4 compared to CsI or CsOH increases the predicted RCS retention of cesium, and as a result, cesium and iodine do not follow identical behaviors with respect to distribution among vessel, RCS, and containment. With respect to the regulatory alternative source term, greater differences are observed between the NUREG-1465 prescription and both HBU and LBU predictions than exist between HBU and LBU
Energy Technology Data Exchange (ETDEWEB)
Estrada, T [Laboratorio Nacional de Fusion por Confinamiento Magnetico, Asociacion Euratom-CIEMAT, 28040 Madrid (Spain); Krupnik, L [Institute of Plasma Physics, NSC ' KIPT' , Kharkov (Ukraine); Dreval, N [Institute of Plasma Physics, NSC ' KIPT' , Kharkov (Ukraine); Melnikov, A [Institute of Nuclear Fusion, RRC ' Kurchatov Institute' , Moscow, Russia (Russian Federation); Khrebtov, S M [Institute of Plasma Physics, NSC ' KIPT' , Kharkov (Ukraine); Hidalgo, C [Laboratorio Nacional de Fusion por Confinamiento Magnetico, Asociacion Euratom-CIEMAT, 28040 Madrid (Spain); Milligen, B van [Laboratorio Nacional de Fusion por Confinamiento Magnetico, Asociacion Euratom-CIEMAT, 28040 Madrid (Spain); Castejon, F [Laboratorio Nacional de Fusion por Confinamiento Magnetico, Asociacion Euratom-CIEMAT, 28040 Madrid (Spain); AscasIbar, E [Laboratorio Nacional de Fusion por Confinamiento Magnetico, Asociacion Euratom-CIEMAT, 28040 Madrid (Spain); Eliseev, L [Institute of Nuclear Fusion, RRC ' Kurchatov Institute' , Moscow, Russia (Russian Federation); Chmyga, A A [Institute of Plasma Physics, NSC ' KIPT' , Kharkov (Ukraine); Komarov, A D [Institute of Plasma Physics, NSC ' KIPT' , Kharkov (Ukraine); Kozachok, A S [Institute of Plasma Physics, NSC ' KIPT' , Kharkov (Ukraine); Tereshin, V [Institute of Plasma Physics, NSC ' KIPT' , Kharkov (Ukraine)
2004-01-01
The influence of magnetic topology on the formation of electron internal transport barriers (e-ITBs) has been studied experimentally in electron cyclotron heated plasmas in the stellarator TJ-II. e-ITB formation is characterized by an increase in core electron temperature and plasma potential. The positive radial electric field increases by a factor of 3 in the central plasma region when an e-ITB forms. The experiments reported demonstrate that the formation of an e-ITB depends on the magnetic configuration. Calculations of the modification of the rotational transform due to plasma current lead to the interpretation that the formation of an e-ITB can be triggered by positioning a low order rational surface close to the plasma core region. In configurations without any central low order rational, no barrier is formed for any accessible value of heating power. Different mechanisms associated with neoclassical/turbulent bifurcations and kinetic effects are put forward to explain the impact of magnetic topology on radial electric fields and confinement.
Heterogenous treatment of water gaps and control rods in core calculations
International Nuclear Information System (INIS)
Lindahl, S.Oe.
1984-08-01
The conventional fuel assembly homogenization process introduces errors in the gross power distribution of the order of 10%. A method to mitigate the homogenization error is proposed. The gaps in between the fuel pin domains, containing water, control rod blades, fuel channel shroud, etc, are described by their transmission and reflection properties while the fuel pin regions are represented by conventional, homogenized cross sections. A nodal equation, incorporating the gap transmission and reflection functions, is set up in a general form. By numerical testing on 2D core problems it is shown that the explicit gap treatment is capable of reducing the homogenization error by an order of magnitude. (author)
High-performance whole core Pin-by-Pin calculation based on EFEN-SP_3 method
International Nuclear Information System (INIS)
Yang Wen; Zheng Youqi; Wu Hongchun; Cao Liangzhi; Li Yunzhao
2014-01-01
The EFEN code for high-performance PWR whole core pin-by-pin calculation based on the EFEN-SP_3 method can be achieved by employing spatial parallelization based on MPI. To take advantage of the advanced computing and storage power, the entire problem spatial domain can be appropriately decomposed into sub-domains and the assigned to parallel CPUs to balance the computing load and minimize communication cost. Meanwhile, Red-Black Gauss-Seidel nodal sweeping scheme is employed to avoid the within-group iteration deterioration due to spatial parallelization. Numerical results based on whole core pin-by-pin problems designed according to commercial PWRs demonstrate the following conclusions: The EFEN code can provide results with acceptable accuracy; Communication period impacts neither the accuracy nor the parallel efficiency; Domain decomposition methods with smaller surface to volume ratio leads to greater parallel efficiency; A PWR whole core pin-by-pin calculation with a spatial mesh 289 × 289 × 218 and 4 energy groups could be completed about 900 s by using 125 CPUs, and its parallel efficiency is maintained at about 90%. (authors)
Energy Technology Data Exchange (ETDEWEB)
Guerin, P.; Baudron, A. M.; Lautard, J. J. [Commissariat a l' Energie Atomique, DEN/DANS/DM2S/SERMA/LENR, CEA Saclay, 91191 Gif sur Yvette (France)
2006-07-01
This paper describes a new technique for determining the pin power in heterogeneous core calculations. It is based on a domain decomposition with overlapping sub-domains and a component mode synthesis technique for the global flux determination. Local basis functions are used to span a discrete space that allows fundamental global mode approximation through a Galerkin technique. Two approaches are given to obtain these local basis functions: in the first one (Component Mode Synthesis method), the first few spatial eigenfunctions are computed on each sub-domain, using periodic boundary conditions. In the second one (Factorized Component Mode Synthesis method), only the fundamental mode is computed, and we use a factorization principle for the flux in order to replace the higher order Eigenmodes. These different local spatial functions are extended to the global domain by defining them as zero outside the sub-domain. These methods are well-fitted for heterogeneous core calculations because the spatial interface modes are taken into account in the domain decomposition. Although these methods could be applied to higher order angular approximations - particularly easily to a SPN approximation - the numerical results we provide are obtained using a diffusion model. We show the methods' accuracy for reactor cores loaded with UOX and MOX assemblies, for which standard reconstruction techniques are known to perform poorly. Furthermore, we show that our methods are highly and easily parallelizable. (authors)
International Nuclear Information System (INIS)
Guerin, P.; Baudron, A. M.; Lautard, J. J.
2006-01-01
This paper describes a new technique for determining the pin power in heterogeneous core calculations. It is based on a domain decomposition with overlapping sub-domains and a component mode synthesis technique for the global flux determination. Local basis functions are used to span a discrete space that allows fundamental global mode approximation through a Galerkin technique. Two approaches are given to obtain these local basis functions: in the first one (Component Mode Synthesis method), the first few spatial eigenfunctions are computed on each sub-domain, using periodic boundary conditions. In the second one (Factorized Component Mode Synthesis method), only the fundamental mode is computed, and we use a factorization principle for the flux in order to replace the higher order Eigenmodes. These different local spatial functions are extended to the global domain by defining them as zero outside the sub-domain. These methods are well-fitted for heterogeneous core calculations because the spatial interface modes are taken into account in the domain decomposition. Although these methods could be applied to higher order angular approximations - particularly easily to a SPN approximation - the numerical results we provide are obtained using a diffusion model. We show the methods' accuracy for reactor cores loaded with UOX and MOX assemblies, for which standard reconstruction techniques are known to perform poorly. Furthermore, we show that our methods are highly and easily parallelizable. (authors)
International Nuclear Information System (INIS)
1987-04-01
Under the auspices of the IAEA a computercode, named INTERTRAN, has been developed in order to calculate the risks of the transport of radioactive materials. This code has to be tested nearer. For the Dutch situation a number of calculations has been performed of more or less realistic cases in which four transport streams have been investigated. Two transport routes are chosen. The risks thus obtained are compared quantitatively with the risks of LPG-transports. 4 refs.; 9 figs
Search for a transport method for the calculation of the PWR control and safety clusters
International Nuclear Information System (INIS)
Bruna, G.B.; Van Frank, C.; Vergain, M.L.; Chauvin, J.P.; Palmiotti, G.; Nobile, M.
1990-01-01
The project studies of power reactors rely mainly on diffusion calculations, but transport ones are often needed for assessing fine effects, intimately linked to geometry and spectrum heterogeneities. Accurate transport computations are necessary, in particular, for shielded cross section generation, and when homogenization and dishomogenization processes are involved. The transport codes, generally, offer the user a variety of computational options, related to different approximation levels. In every case, it is obviously desirable to be able to choose the reliable degree of approximation to be accepted in any particular computational circumstance of the project. The search for such adapted procedures is to be made on the basis of critical experiments. In our studies, this task was made possible by the availability of suitable results of the CAMELEON critical experiment, carried on in the EOLE facility at CEA's Center of Cadarache. In this paper, we summarize some of the work in progress at FRAMATOME on the definition of an assembly based transport calculation scheme to be used for PWR control and safety cluster computations. Two main items, devoted to the search of the optimum computational procedures, are presented here: - a parametrical study on computational options, made in an infinite medium assembly geometry, - a series of comparisons between calculated and experimental values of pin power distribution
International report to validate criticality safety calculations for fissile material transport
International Nuclear Information System (INIS)
Whitesides, G.E.
1984-01-01
During the past three years a Working Group established by the Organization for Economic Co-operation and Development's Nuclear Energy Agency (OECD-NEA) in Paris, France, has been studying the validity and applicability of a variety of criticality safety computer programs and their associated nuclear data for the computation of the neutron multiplication factor, k/sub eff/, for various transport packages used in the fuel cycle. The principal objective of this work has been to provide an internationally acceptable basis for the licensing authorities in a country to honor licensing approvals granted by other participating countries. Eleven countries participated in the initial study which consisted of examining criticality safety calculations for packages designed for spent light water reactor fuel transport. This paper presents a summary of this study which has been completed and reported in an OECD-NEA Report No. CSNI-71. The basic goal of this study was to outline a satisfactory validation procedure for this particular application. First, a set of actual critical experiments were chosen which contained the various material and geometric properties present in typical LWR transport containers. Secondly, calculations were made by each of the methods in order to determine how accurately each method reproduced the experimental values. This successful effort in developing a benchmark procedure for validating criticality calculations for spent LWR transport packages along with the successful intercomparison of a number of methods should provide increased confidence by licensing authorities in the use of these methods for this area of application. 4 references, 2 figures
Distorted-wave calculation of He(e,2 e) including core-exchange amplitudes
International Nuclear Information System (INIS)
Konovalov, D.A.; McCarthy, I.E.
1992-04-01
Distorted-wave Born approximation (DWBA) calculations are reported for coplanar symmetric ionization of helium at energies of 100 and 200 eV. The best possible one-configuration incident distorted wave functions together with the capture scattering have been used to produce a better agreement with absolute measurements at 100 eV compared with the previous DWBA calculations. However the discrepancy between experiment and theory at 200 eV for large angles has not been resolved by these modifications. Moreover capture scattering has been found negligible at 28.6 to 200 eV. Similar DWBA calculations for hydrogen close to the threshold are also reported. Very good agreement with experiment has been found at 17.6 eV. 20 refs., 4 figs
A Preliminary Study on Calculation of Inter-Pebble Dancoff Factor in a Pebble Type Core
International Nuclear Information System (INIS)
Kim, Song Hyun; Kim, Hong Chul; Kim, Soon Young; Noh, Jae Man; Kim, Jong Kyung
2009-01-01
The Dancoff factor is an entering probability of the neutron escaped from specific fuel kernel to another one without the interaction with moderators. Currently, Dancoff factors are mainly evaluated from stochastic methods, hence a research on analytical method is considerably insufficient in this field. In order to analytically evaluate Dancoff factor considering double-heterogeneous effect, inter-pebble and intra-pebble Dancoff factors should be calculated, respectively. Intra-pebble Dancoff factor related with the fuel kernels in one pebble was analyzed in past study. For the evaluation of inter-pebble Dancoff factor, fuel region to region Dancoff factor (FRDF) was defined and the method to calculate the FRDF is developed in this study. The result is compared with the calculation result of the MCNP5 code
The calculation of phase equilibria of oxide core-concrete systems
International Nuclear Information System (INIS)
Ball, R.G.J.; Mignanelli, M.A.; Barry, T.I.; Gisby, J.A.
1993-01-01
Thermodynamic models have been developed to describe the phase equilibria of oxide solutions appropriate for the understanding of the chemical interactions between nuclear reactor core debris and concrete. For this purpose, the Gibbs energy of the liquid phase is described by the inclusion of associate species and nonideal interactions between the components and associate species. Assessments of the thermodynamic and phase equilibrium data for the subsystems of the CaO-Al 2 O 3 -SiO 2 -UO 2 -ZrO 2 system have been used to obtain a thermodynamic description of the crystalline and liquid phases in good agreement with published data. The data for the subsystems have then been combined, using well established principles, to predict the phase relationships in the ternary and quaternary sytsems and in the overall quinary system. The results show that he overall system cannot properly be treated as a pseudo-ideal liquid and solid solution, as used in some computer codes which attempt to model the physics and chemistry of core-concrete interactions. The limitations of the current model are discussed. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Poludniowski, Gavin G. [Joint Department of Physics, Division of Radiotherapy and Imaging, Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT, United Kingdom and Centre for Vision Speech and Signal Processing (CVSSP), Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); Evans, Philip M. [Centre for Vision Speech and Signal Processing (CVSSP), Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom)
2013-04-15
Purpose: Monte Carlo methods based on the Boltzmann transport equation (BTE) have previously been used to model light transport in powdered-phosphor scintillator screens. Physically motivated guesses or, alternatively, the complexities of Mie theory have been used by some authors to provide the necessary inputs of transport parameters. The purpose of Part II of this work is to: (i) validate predictions of modulation transform function (MTF) using the BTE and calculated values of transport parameters, against experimental data published for two Gd{sub 2}O{sub 2}S:Tb screens; (ii) investigate the impact of size-distribution and emission spectrum on Mie predictions of transport parameters; (iii) suggest simpler and novel geometrical optics-based models for these parameters and compare to the predictions of Mie theory. A computer code package called phsphr is made available that allows the MTF predictions for the screens modeled to be reproduced and novel screens to be simulated. Methods: The transport parameters of interest are the scattering efficiency (Q{sub sct}), absorption efficiency (Q{sub abs}), and the scatter anisotropy (g). Calculations of these parameters are made using the analytic method of Mie theory, for spherical grains of radii 0.1-5.0 {mu}m. The sensitivity of the transport parameters to emission wavelength is investigated using an emission spectrum representative of that of Gd{sub 2}O{sub 2}S:Tb. The impact of a grain-size distribution in the screen on the parameters is investigated using a Gaussian size-distribution ({sigma}= 1%, 5%, or 10% of mean radius). Two simple and novel alternative models to Mie theory are suggested: a geometrical optics and diffraction model (GODM) and an extension of this (GODM+). Comparisons to measured MTF are made for two commercial screens: Lanex Fast Back and Lanex Fast Front (Eastman Kodak Company, Inc.). Results: The Mie theory predictions of transport parameters were shown to be highly sensitive to both grain size
International Nuclear Information System (INIS)
Santos, Rubens Souza dos; Martinez, Aquilino Senra; Alvim, Antonio Carlos Marques
2002-01-01
In this work is presented a methodology which focuses the distribution of neutron absorber rods in nuclear reactor power plants, for utilizing in space kinetic calculations, principally in the cluster ejection transients of control rods. A numerical model for macroscopic constant calculations based on the knowledge of the neutron flux without the control rods is proposed, as alternative to the analytical models, based on the hypothesis of the null current on the cell super boundaries. The proposed model in this work has itself showed adequate to deal with problems with strong space dependence, once that the model showed consistence in the global average built in the analytical model. (author)
Applications of the 3-D Deterministic Transport Attila(regsign) for Core Safety Analysis
International Nuclear Information System (INIS)
Lucas, D.S.; Gougar, D.; Roth, P.A.; Wareing, T.; Failla, G.; McGhee, J.; Barnett, A.
2004-01-01
An LDRD (Laboratory Directed Research and Development) project is ongoing at the Idaho National Engineering and Environmental Laboratory (INEEL) for applying the three-dimensional multi-group deterministic neutron transport code (Attila(reg s ign)) to criticality, flux and depletion calculations of the Advanced Test Reactor (ATR). This paper discusses the model development, capabilities of Attila, generation of the cross-section libraries, and comparisons to an ATR MCNP model and future
The effect of gamma-ray transport on afterheat calculations for accident analysis
International Nuclear Information System (INIS)
Reyes, S.; Latkowski, J.F.; Sanz, J.
2000-01-01
Radioactive afterheat is an important source term for the release of radionuclides in fusion systems under accident conditions. Heat transfer calculations are used to determine time-temperature histories in regions of interest, but the true source term needs to be the effective afterheat, which considers the transport of penetrating gamma rays. Without consideration of photon transport, accident temperatures may be overestimated in others. The importance of this effect is demonstrated for a simple, one-dimensional problem. The significance of this effect depends strongly on the accident scenario being analyzed
International Nuclear Information System (INIS)
Ganapol, B.D.; Sumini, M.
1990-01-01
The time dependent space second order discrete form of the monokinetic transport equation is given an analytical solution, within the Laplace transform domain. Th A n dynamic model is presented and the general resolution procedure is worked out. The solution in the time domain is then obtained through the application of a numerical transform inversion technique. The justification of the research relies in the need to produce reliable and physically meaningful transport benchmarks for dynamic calculations. The paper is concluded by a few results followed by some physical comments
Calculations of 3D full-scale VVER fuel assembly and core models using MCU and BIPR-7A codes
Energy Technology Data Exchange (ETDEWEB)
Aleshin, Sergey S.; Bikeev, Artem S.; Bolshagin, Sergey N.; Kalugin, Mikhail A.; Kosourov, Evgeniy K.; Pavlovichev, Aleksandr M.; Pryanichnikov, Aleksandr V.; Sukhino-Khomenko, Evgenia A.; Shcherenko, Anna I.; Shcherenko, Anastasia I.; Shkarovskiy, Denis A. [Nuclear Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation)
2015-09-15
Two types of calculations were made to compare BIPR-7A and MCU results for 3D full-scale models. First EPS (emergency protection system) efficiency and in-core power distributions were analyzed for an equilibrium fuel load of VVER-1000 assuming its operation within an 18-month cycle. Computations were performed without feedbacks and with fuel burnup distributed over the core. After 3D infinite lattices of full-scale VVER-1000 fuel assemblies (A's) with uranium fuel 4.4% enrichment and uranium-erbium fuel 4.4% enrichment and Er{sub 2}O{sub 3} 1 % wt were considered. Computations were performed with feedbacks and fuel burnup at the constant power level. For different time moments effective multiplication factor and power distribution were obtained. EPS efficiency and reactivity effects at chosen time moments were analyzed.
International Nuclear Information System (INIS)
Zakharko, Yu.A.; Proshkin, A.A.
1986-01-01
Necessity of analytical approaches alongside with existing numerical methods of fuel element calculation is discussed. Analytical solutions of viscoelastic equations describing mechanical fuel-cladding interaction have been obtained. At that universal temperature dependence of creep characteristics is suggested. Dependence of behaviour of the WWER fuel element fuel and cladding on absolute temperature level and gradients is analysed
Monte Carlo method for neutron transport calculations in graphics processing units (GPUs)
International Nuclear Information System (INIS)
Pellegrino, Esteban
2011-01-01
Monte Carlo simulation is well suited for solving the Boltzmann neutron transport equation in an inhomogeneous media for complicated geometries. However, routine applications require the computation time to be reduced to hours and even minutes in a desktop PC. The interest in adopting Graphics Processing Units (GPUs) for Monte Carlo acceleration is rapidly growing. This is due to the massive parallelism provided by the latest GPU technologies which is the most promising solution to the challenge of performing full-size reactor core analysis on a routine basis. In this study, Monte Carlo codes for a fixed-source neutron transport problem were developed for GPU environments in order to evaluate issues associated with computational speedup using GPUs. Results obtained in this work suggest that a speedup of several orders of magnitude is possible using the state-of-the-art GPU technologies. (author) [es
An iterative homogenization technique that preserves assembly core exchanges
International Nuclear Information System (INIS)
Mondot, Ph.; Sanchez, R.
2003-01-01
A new interactive homogenization procedure for reactor core calculations is proposed that requires iterative transport assembly and diffusion core calculations. At each iteration the transport solution of every assembly type is used to produce homogenized cross sections for the core calculation. The converged solution gives assembly fine multigroup transport fluxes that preserve macro-group assembly exchanges in the core. This homogenization avoids the periodic lattice-leakage model approximation and gives detailed assembly transport fluxes without need of an approximated flux reconstruction. Preliminary results are given for a one-dimensional core model. (authors)
Evaluation and comparison of SN and Monte-Carlo charged particle transport calculations
International Nuclear Information System (INIS)
Hadad, K.
2000-01-01
A study was done to evaluate a 3-D S N charged particle transport code called SMARTEPANTS 1 and another 3-D Monte Carlo code called Integrated Tiger Series, ITS 2 . The evaluation study of SMARTEPANTS code was based on angular discretization and reflected boundary sensitivity whilst the evaluation of ITS was based on CPU time and variance reduction. The comparison of the two code was based on energy and charge deposition calculation in block of Gallium Arsenide with embedded gold cylinders. The result of evaluation tests shows that an S 8 calculation maintains both accuracy and speed and calculations with reflected boundaries geometry produces full symmetrical results. As expected for ITS evaluation, the CPU time and variance reduction are opposite to a point beyond which the history augmentation while increasing the CPU time do not result in variance reduction. The comparison test problem showed excellent agreement in total energy deposition calculations
Shielding and activation calculations around the reactor core for the MYRRHA ADS design
Ferrari, Anna; Mueller, Stefan; Konheiser, J.; Castelliti, D.; Sarotto, M.; Stankovskiy, A.
2017-09-01
In the frame of the FP7 European project MAXSIMA, an extensive simulation study has been done to assess the main shielding problems in view of the construction of the MYRRHA accelerator-driven system at SCK·CEN in Mol (Belgium). An innovative method based on the combined use of the two state-of-the-art Monte Carlo codes MCNPX and FLUKA has been used, with the goal to characterize complex, realistic neutron fields around the core barrel, to be used as source terms in detailed analyses of the radiation fields due to the system in operation, and of the coupled residual radiation. The main results of the shielding analysis are presented, as well as the construction of an activation database of all the key structural materials. The results evidenced a powerful way to analyse the shielding and activation problems, with direct and clear implications on the design solutions.
A method of taking control rod history into account in core simulation calculations for BWR'S
International Nuclear Information System (INIS)
Hojerup, C.F.; Nonbol, E.
1990-01-01
The problem of taking control rod history into account in core simulator codes using precalculated cross sections has been examined, and two methods have been devised and tested. The very demanding first method, using the accumulated control rod in burn-up as a parameter, turned out to be even more inaccurate than the much less demanding second method, which only requires two full burn-up histories, one with the control rod in all the time, and another with the control rod out all the time. From the analysis it can be seen that the proper treatment of the control rod history is quite important, both for the cross sections, as several per cent on the reactivity are at stake, as for the pin powers, which for some pins are very much affected
Sadasivam, Sridhar; Ye, Ning; Feser, Joseph P.; Charles, James; Miao, Kai; Kubis, Tillmann; Fisher, Timothy S.
2017-02-01
Heat transfer across metal-semiconductor interfaces involves multiple fundamental transport mechanisms such as elastic and inelastic phonon scattering, and electron-phonon coupling within the metal and across the interface. The relative contributions of these different transport mechanisms to the interface conductance remains unclear in the current literature. In this work, we use a combination of first-principles calculations under the density functional theory framework and heat transport simulations using the atomistic Green's function (AGF) method to quantitatively predict the contribution of the different scattering mechanisms to the thermal interface conductance of epitaxial CoSi2-Si interfaces. An important development in the present work is the direct computation of interfacial bonding from density functional perturbation theory (DFPT) and hence the avoidance of commonly used "mixing rules" to obtain the cross-interface force constants from bulk material force constants. Another important algorithmic development is the integration of the recursive Green's function (RGF) method with Büttiker probe scattering that enables computationally efficient simulations of inelastic phonon scattering and its contribution to the thermal interface conductance. First-principles calculations of electron-phonon coupling reveal that cross-interface energy transfer between metal electrons and atomic vibrations in the semiconductor is mediated by delocalized acoustic phonon modes that extend on both sides of the interface, and phonon modes that are localized inside the semiconductor region of the interface exhibit negligible coupling with electrons in the metal. We also provide a direct comparison between simulation predictions and experimental measurements of thermal interface conductance of epitaxial CoSi2-Si interfaces using the time-domain thermoreflectance technique. Importantly, the experimental results, performed across a wide temperature range, only agree well with