WorldWideScience

Sample records for core spray systems

  1. System Study: High-Pressure Core Spray 1998–2012

    Energy Technology Data Exchange (ETDEWEB)

    T. E. Wierman

    2013-10-01

    This report presents an unreliability evaluation of the high-pressure core spray (HPCS) at 8 U.S. commercial boiling water reactors. Demand, run hours, and failure data from fiscal year 1998 through 2012 for selected components were obtained from the Equipment Performance and Information Exchange (EPIX). The unreliability results are trended for the most recent 10 year period while yearly estimates for system unreliability are provided for the entire active period. No statistically significant increasing or decreasing trends were identified in the HPCS results.

  2. System Study: High-Pressure Core Spray 1998–2013

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, John Alton [Idaho National Lab. (INL), Idaho Falls, ID (United States). Risk Assessment and Management Services Dept.

    2015-01-31

    This report presents an unreliability evaluation of the high-pressure core spray (HPCS) at eight U.S. commercial boiling water reactors. Demand, run hours, and failure data from fiscal year 1998 through 2013 for selected components were obtained from the Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES). The unreliability results are trended for the most recent 10-year period, while yearly estimates for system unreliability are provided for the entire active period. No statistically significant increasing or decreasing trends were identified in the HPCS results.

  3. System Study: High-Pressure Core Spray 1998-2014

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, John Alton [Idaho National Lab. (INL), Idaho Falls, ID (United States). Risk Assessment and Management Services Dept.

    2015-12-01

    This report presents an unreliability evaluation of the high-pressure core spray (HPCS) at eight U.S. commercial boiling water reactors. Demand, run hours, and failure data from fiscal year 1998 through 2014 for selected components were obtained from the Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES). The unreliability results are trended for the most recent 10 year period, while yearly estimates for system unreliability are provided for the entire active period. No statistically significant increasing or decreasing trends were identified in the HPCS results.

  4. Plasma spraying system with distributed controlling

    Institute of Scientific and Technical Information of China (English)

    李春旭; 陈克选; 张成

    2003-01-01

    A distributed control system is designed for plasma spraying equipment and the configurations of system software and hardware is discussed. Through founding an expert database, the spraying process parameters are worked out and the initialization and control of spraying process are realized. The plasma spraying system with this control configuration can simplify the spraying operation, improve automation level of spray process, and approach the experience criterion as soon as possible.

  5. BWR refill-reflood program: core spray distribution experimental task plan

    Energy Technology Data Exchange (ETDEWEB)

    Eckert, T.

    1981-02-01

    An experimental task plan for the BWR/4 core spray task of the Refill-Reflood Test Program is presented. The test program will provide core spray distribution data for a 30 degree sector of the BWR/4 and 5-218 design. This design uses different nozzle types and different sparger elevations than the BWR/6-218 design which was tested previously. Test parameter ranges are specified; individual tests are defined; and measurement and data utilization plans are defined.

  6. Fabrication of polyacrylate core-shell nanoparticles via spray drying method

    Science.gov (United States)

    Chen, Pengpeng; Cheng, Zenghui; Chu, Fuxiang; Xu, Yuzhi; Wang, Chunpeng

    2016-05-01

    Fine polyacrylate particles are thought to be environmental plastisols for car industry. However, these particles are mainly dried through demulsification of the latexes, which is not reproducible and hard to be scaled up. In this work, a spray drying method had been applied to the plastisols-used acrylate latex. By adjusting the core/shell ratio, spray drying process of the latex was fully studied. Scanning electronic microscopy observation of the nanoparticles before and after spray drying indicated that the core-shell structures could be well preserved and particles were well separated by spray drying if the shell was thick enough. Otherwise, the particles fused into each other and core-shell structures were destroyed. Polyacrylate plastisols were developed using diisononylphthalate as a plasticizer, and plastigels were obtained after heat treatment of the sols. Results showed that the shell thickness also had a great influence on the storage stability of the plastisols and mechanical properties of the plastigels.

  7. Review of the MDF-LSA 100 Spray Decontamination System

    Science.gov (United States)

    2011-12-01

    UNCLASSIFIED Review of the MDF -LSA 100 Spray Decontamination System Rodi Sferopoulos Human Protection and Performance Division...and performance of the Modec Decontamination Foam ( MDF )-LSA 100 Spray Decontamination System as well as information regarding the decontamination...RELEASE UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED Review of the MDF -LSA 100 Spray Decontamination System Executive Summary DSTO were

  8. Characteristics of MCrAlY coatings sprayed by high velocity oxygen-fuel spraying system

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Y.; Saitoh, M.; Tamura, M.

    2000-01-01

    High velocity oxygen-fuel (HVOF) spraying system in open air has been established for producing the coatings that are extremely clean and dense. It is thought that the HVOF sprayed MCrAlY (M is Fe, Ni and/or Co) coatings can be applied to provide resistance against oxidation and corrosion to the hot parts of gas turbines. Also, it is well known that the thicker coating can be sprayed in comparison with any other thermal spraying systems due to improved residual stresses. However, thermal and mechanical properties of HVOF coatings have not been clarified. Especially, the characteristics of residual stress, that are the most important property from the view point of production technique, have not been made clear. In this paper, the mechanical properties of HVOF sprayed MCrAlY coatings were measured in both the case of as-sprayed and heat-treated coatings in comparison with a vacuum plasma sprayed MCrAlY coatings. It was confirmed that the mechanical properties of HVOF sprayed MCrAlY coatings could be improved by a diffusion heat treatment to equate the vacuum plasma sprayed MCrAlY coatings. Also, the residual stress characteristics were analyzed using a deflection measurement technique and a X-ray technique. The residual stress of HVOF coating was reduced by the shot-peening effect comparable to that of a plasma spray system in open air. This phenomena could be explained by the reason that the HVOF sprayed MCrAlY coating was built up by poorly melted particles.

  9. STUDY ON FLUX CORED WIRE FOR ELECTRIC ARC SPRAYING AND PROPERTIES OF COATING

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    According to the characteristics of electric arc sp raying technology and abrasion of boiler piping,a fluxcored wire SMD 45 for el ectric arc spraying is developedThe experimental results show that the surface hardness of the coating reaches 60~65 HR and the adhesive strength between the coating and base is 23~28 MPaThe wearability of the coating sprayed by the w ire is 5 times than that of ordinary steel pipeApplying the wire to the heated surface,the life of the economizer pipe is doubly increasedNo local desquamat ion,rust and abrasion can be examined during more than one year's service

  10. Modeling and Experiments of Spray System for Cable Painting Robot

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jia-liang; Lü Tian-sheng; LI Bei-zhi

    2008-01-01

    Many cable-stayed bridges have been built in the world in the past decades,and cable-stayed structures have been adopted in many large constructions.The cable painting robot is safe and economically efficient for stay cable maintenance.In order to satisfy the need for spraying cables in hiigh attitude,an automatic cable spray system for cable painting robots is presented in this paper.Using the βdistribution,paint thickness distribution on a cylinder surface is modeled.The spray gun's number,angle and movement are analyzed to get coat evenness.Then a robotic spray system engineering prototype has been developed,which includes a cable electric running climbing base,a spray cover,four airless spray guns and a pressurized paint container.Experiments indicate that four airless spray guns can guarantee good coat quality for general stay cables.The field tests have been successfully conducted on Nanpu Bridge,Shanghai.

  11. Release mitigation spray safety systems for chemical demilitarization applications.

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, Jonathan; Tezak, Matthew Stephen; Brockmann, John E.; Servantes, Brandon; Sanchez, Andres L.; Tucker, Mark David; Allen, Ashley N.; Wilson, Mollye C.; Lucero, Daniel A.; Betty, Rita G.

    2010-06-01

    Sandia National Laboratories has conducted proof-of-concept experiments demonstrating effective knockdown and neutralization of aerosolized CBW simulants using charged DF-200 decontaminant sprays. DF-200 is an aqueous decontaminant, developed by Sandia National Laboratories, and procured and fielded by the US Military. Of significance is the potential application of this fundamental technology to numerous applications including mitigation and neutralization of releases arising during chemical demilitarization operations. A release mitigation spray safety system will remove airborne contaminants from an accidental release during operations, to protect personnel and limit contamination. Sandia National Laboratories recently (November, 2008) secured funding from the US Army's Program Manager for Non-Stockpile Chemical Materials Agency (PMNSCMA) to investigate use of mitigation spray systems for chemical demilitarization applications. For non-stockpile processes, mitigation spray systems co-located with the current Explosive Destruction System (EDS) will provide security both as an operational protective measure and in the event of an accidental release. Additionally, 'tented' mitigation spray systems for native or foreign remediation and recovery operations will contain accidental releases arising from removal of underground, unstable CBW munitions. A mitigation spray system for highly controlled stockpile operations will provide defense from accidental spills or leaks during routine procedures.

  12. Investigation of Optimal Control System for Arc Spraying

    Institute of Scientific and Technical Information of China (English)

    LIHe-qi; LIChun-xu; CHENKe-xuan; LUGuang

    2004-01-01

    An arc voltage feedback PID controller and arc current feedback PID controller are designed with a controlal gorithm of discrete PID separately to realize optimal control in computer controlling arc-spraying system. In order to realize optimization and adaptation of the arc-spraying process parameters as well as to reduce blindness in selecting process parameters, a serial communication interface between a PC for spraying data acquisition and a MCU of the control system is designed so that on-line modification of the PID control parameters is implemented. At the same time, a genetic algorithm is adopted to optimize the control parameters of PID controller, where the difference between the actually sampled value and the setting value of spraying current is made as the judgment criterion to determine the adaptability. The given range of control parameters varies from 0 to 15 and is to be encoded by a coding of four-bit binary string. The optimal population of control parameters of the PID controller can be obtained through reproduction, crossing and mutation, so that the optimal controlling in arc-spraying process is realized and an excellent coating of arc spraying is obtained.

  13. Investigation of Optimal Control System for Arc Spraying

    Institute of Scientific and Technical Information of China (English)

    LI He-qi; LI Chun-xu; CHEN Ke-xuan; LU Guang

    2004-01-01

    An arc voltage feedback PID controller and arc current feedback PID controller are designed with a control algorithm of discrete PID separately to realize optimal control in computer controlling arc-spraying system. In order to realize optimization and adaptation of the arc-spraying process parameters as well as to reduce blindness in selecting process parameters, a serial communication interface between a PC for spraying data acquisition and a MCU of the control system is designed so that on-line modification of the PID control parameters is implemented. At the same time, a genetic algorithm is adopted to optimize the control parameters of PID controller, where the difference between the actually sampled value and the setting value of spraying current is made as the judgment criterion to determine the adaptability. The given range of control parameters varies from 0 to 15 and is to be encoded by a coding of four-bit binary string. The optimal population of control parameters of the PID controller can be obtained through reproduction, crossing and mutation,so that the optimal controlling in arc-spraying process is realized and an excellent coating of arc spraying is obtained.

  14. Spray-dried powders containing tretinoin-loaded engineered lipid-core nanocapsules: development and photostability study.

    Science.gov (United States)

    Marchiori, M C L; Ourique, A F; da Silva, C de B; Raffin, R P; Pohlmann, A R; Guterres, S S; Beck, R C R

    2012-03-01

    The influence of the spray-drying process on the ability of engineered lipid-core nanocapsules to protect tretinoin against UV degradation was evaluated. This approach represents a technological alternative to improve the microbiological stability, storage and transport properties of such formulations. Tretinoin-loaded lipid-core nanocapsules or tretinoin-loaded nanoemulsion were dispersed in lactose (10% w/v) and fed in the spray-drier to obtain a solid product (spray-dried powder containing tretinoin-loaded nanocapsules or nanoemulsion--SD-TTN-NCL or SD-TTN-NE, respectively). SD-TTN-NE showed a lower (p encapsulation (89 +/- 1%) compared to SD-TTN-NCL (94 +/- 2%). Redispersed SD-TTN-NCL and SD-TTN-NE showed z-average sizes of 204 +/- 2 nm and 251 +/- 9 nm, which were close to those of the original suspensions (220 +/- 3 nm and 239 +/- 14 nm, respectively). Similar percentage of photodegradation were determined for tretinoin loaded in nanocapsules (26.15 +/- 4.34%) or in the respective redispersed spray-dried powder (28.73 +/- 6.19 min) after 60 min of UVA radiation exposure (p > 0.05). Our experimental design showed for the first time that spray-dried lipid-core nanocapsules are able to protect tretinoin against UVA radiation, suggesting that the drying process did not alter the supramolecular structure of the lipid-core nanocapsules. Such powders are potential intermediate products for the development of nanomedicines containing tretinoin.

  15. Investigation on the Tribological Behavior of Arc-Sprayed and Hammer-Peened Coatings Using Tungsten Carbide Cored Wires

    Science.gov (United States)

    Tillmann, W.; Hagen, L.; Schröder, P.

    2016-12-01

    Due to their outstanding properties, WC-W2C iron-based cermet coatings are widely used in the field of wear protection. Regarding commonly used WC-W2C reinforced coating systems, it has been reported that their tribological behavior is mainly determined by the carbide grain size fraction. Although the manufacturing route for arc-sprayed WC-W2C cermet coatings is in an advanced state, there is still a lack of knowledge concerning the performance of cored wires with tungsten carbides as filling material and their related coating properties when post-treatment processes are used such as machine hammer peening (MHP). A major objective was to characterize WC-W2C FeCMnSi coatings, deposited with different carbide grain size fractions as a filling using cored wires, with respect to their tribological behavior. Moreover, deposits derived from cored wires with a different amount of hard phases are investigated. According to this, polished MHP surfaces are compared to as-sprayed and polished samples by means of metallographic investigations. With the use of ball-on-disk and dry rubber wheel tests, dry sliding and rolling wear effects on a microscopic level are scrutinized. It has been shown that the MHP process leads to a densification of the microstructure formation. For dry sliding experiments, the MHP coatings obtain lower wear resistances, but lower coefficients of friction than the conventional coatings. In view of abrasion tests, the MHP coatings possess an improved wear resistance. Strain hardening effects at the subsurface area were revealed by the mechanical response using nanoindentation. However, the MHP process has caused a cracking of embedded carbides, which favor breakouts, leading to advanced third-body wear.

  16. Investigation on the Tribological Behavior of Arc-Sprayed and Hammer-Peened Coatings Using Tungsten Carbide Cored Wires

    Science.gov (United States)

    Tillmann, W.; Hagen, L.; Schröder, P.

    2017-01-01

    Due to their outstanding properties, WC-W2C iron-based cermet coatings are widely used in the field of wear protection. Regarding commonly used WC-W2C reinforced coating systems, it has been reported that their tribological behavior is mainly determined by the carbide grain size fraction. Although the manufacturing route for arc-sprayed WC-W2C cermet coatings is in an advanced state, there is still a lack of knowledge concerning the performance of cored wires with tungsten carbides as filling material and their related coating properties when post-treatment processes are used such as machine hammer peening (MHP). A major objective was to characterize WC-W2C FeCMnSi coatings, deposited with different carbide grain size fractions as a filling using cored wires, with respect to their tribological behavior. Moreover, deposits derived from cored wires with a different amount of hard phases are investigated. According to this, polished MHP surfaces are compared to as-sprayed and polished samples by means of metallographic investigations. With the use of ball-on-disk and dry rubber wheel tests, dry sliding and rolling wear effects on a microscopic level are scrutinized. It has been shown that the MHP process leads to a densification of the microstructure formation. For dry sliding experiments, the MHP coatings obtain lower wear resistances, but lower coefficients of friction than the conventional coatings. In view of abrasion tests, the MHP coatings possess an improved wear resistance. Strain hardening effects at the subsurface area were revealed by the mechanical response using nanoindentation. However, the MHP process has caused a cracking of embedded carbides, which favor breakouts, leading to advanced third-body wear.

  17. Formation of titanium dioxide core-shell microcapsules through a binary-phase spray technique.

    Science.gov (United States)

    Bergek, Jonatan; Elgh, Björn; Palmqvist, Anders E C; Nordstierna, Lars

    2017-09-13

    Core-shell microcapsules consisting of a titanium dioxide shell and a hydrophobic solvent core have been prepared with diameters of a few micrometers and a narrow size distribution using a simple and fast airbrush technique. These microcapsules were prepared at room temperature in a single-step process in which an oil with a dissolved titanium alkoxide precursor was forced together with an aqueous solution, containing a surface-active polymer, through a narrow spray nozzle using a nitrogen gas propellant. Several different parameters of chemical, physical, and processing origin were investigated to find an optimal recipe. Two different alkanes, one ketone, and four alcohols were tested and evaluated as core materials, alone or together with the antifungal biocide 2-n-octyl-4-isothiazolin-3-one (OIT). Long-chain alcohols were found suitable as core oil due to their low solubility in water and surface activity. The addition of the surface-active polymers in the water phase was important in aiding the formation and stabilization of the titanium dioxide shell. An impressive loading of 50 wt% of the semi-hydrophobic OIT was possible to encapsulate using this simple and applicable procedure.

  18. Design and Implementation of Electrostatic Spraying Automatic Controlling System Based on PLC

    Directory of Open Access Journals (Sweden)

    Weidong Jia

    2013-05-01

    Full Text Available The objective of this study was to improve the spraying efficiency and meet the demand of modern agricultural. A new generation of electrostatic sprayer which we designed realized the goals. The automatic controlling system is successfully designed. PLC (Programmable Logic Controller was taken as the control core of the system and LCD touch screen was employed for human-computer interaction interface. The system integrates kinds of techniques including programming, pressure monitoring and sensor technology, etc. The main structure of this equipment, working principle and control system hardware selection will be also introduced in the study. Human-computer interaction software was programmed by the software of Pro Tool/Pro CS. System controlling software was programmed in form of ladder diagram, which realized kinds of functions including ESD protection, accurate quantification, automatic controlling and humanized operation. Test results show that the effective spraying range is between 5 to 6 m, the Volume Median Diameter (VMD is 47.48 µm and the Ultra-Low Volume spray (ULV is realized. The spray deposition rate and effective availability of pesticide is higher than old sprayer. And also this new sprayer runs steadily.

  19. Measurement of Spray Drift with a Specifically Designed Lidar System.

    Science.gov (United States)

    Gregorio, Eduard; Torrent, Xavier; Planas de Martí, Santiago; Solanelles, Francesc; Sanz, Ricardo; Rocadenbosch, Francesc; Masip, Joan; Ribes-Dasi, Manel; Rosell-Polo, Joan R

    2016-04-08

    Field measurements of spray drift are usually carried out by passive collectors and tracers. However, these methods are labour- and time-intensive and only provide point- and time-integrated measurements. Unlike these methods, the light detection and ranging (lidar) technique allows real-time measurements, obtaining information with temporal and spatial resolution. Recently, the authors have developed the first eye-safe lidar system specifically designed for spray drift monitoring. This prototype is based on a 1534 nm erbium-doped glass laser and an 80 mm diameter telescope, has scanning capability, and is easily transportable. This paper presents the results of the first experimental campaign carried out with this instrument. High coefficients of determination (R² > 0.85) were observed by comparing lidar measurements of the spray drift with those obtained by horizontal collectors. Furthermore, the lidar system allowed an assessment of the drift reduction potential (DRP) when comparing low-drift nozzles with standard ones, resulting in a DRP of 57% (preliminary result) for the tested nozzles. The lidar system was also used for monitoring the evolution of the spray flux over the canopy and to generate 2-D images of these plumes. The developed instrument is an advantageous alternative to passive collectors and opens the possibility of new methods for field measurement of spray drift.

  20. Analysis of cracked core spray piping from the Quad Cities Unit 2 boiling water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Diercks, D.R.; Gaitonde, S.M.

    1982-09-01

    The results of a metallurgical analysis of leaking cracks detected in the core spray injection piping of Commonwealth Edison Company's Quad Cities Unit 2 Boiling Water Reactor are described. The cracks were present in a welded 105/sup 0/ elbow assembly in the line, and were found to be caused by intergranular stress corrosion cracking associated with the probable presence of dissolved oxygen in the reactor cooling water and the presence of grain boundary sensitization and local residual stresses induced by welding. The failure is unusual in several respects, including the very large number of cracks (approximately 40) present in the failed component, the axial orientation of the cracks, and the fact that at least one crack completely penetrated a circumferential weld. Virtually all of the cracking occurred in forged material, and the microstructural evidence presented suggests that the orientation of the cracks was influenced by the presence of axially banded delta ferrite in the microstructure of the forged components.

  1. Programmable Ultrasonic Sensing System for Targeted Spraying in Orchards

    Directory of Open Access Journals (Sweden)

    Marko Hočevar

    2012-11-01

    Full Text Available This research demonstrates the basic elements of a prototype automated orchard sprayer which delivers pesticide spray selectively with respect to the characteristics of the targets. The density of an apple tree canopy was detected by PROWAVE 400EP250 ultrasound sensors controlled by a Cypress PSOC CY8C29466 microcontroller. The ultrasound signal was processed with an embedded computer built around a LPC1343 microcontroller and fed in real time to electro-magnetic valves which open/close spraying nozzles in relation to the canopy structure. The analysis focuses on the detection of appropriate thresholds on 15 cm ultrasound bands, which correspond to maximal response to tree density, and this was selected for accurate spraying guidance. Evaluation of the system was performed in an apple orchard by detecting deposits of tartrazine dye (TD on apple leaves. The employment of programmable microcontrollers and electro-magnetic valves decreased the amount of spray delivered by up to 48.15%. In contrast, the reduction of TD was only up to 37.7% at some positions within the tree crown and 65.1% in the gaps between trees. For all these reasons, this concept of precise orchard spraying can contribute to a reduction of costs and environmental pollution, while obtaining similar or even better leaf deposits.

  2. Mobile robot based electrostatic spray system for controlling pests on cotton plants in Iraq

    Science.gov (United States)

    Al-Mamury, M.; Manivannan, N.; Al-Raweshidy, H.; Balachandran, W.

    2015-10-01

    A mobile robot based electrostatic spray system was developed to combat pest infestation on cotton plants in Iraq. The system consists of a charged spray nozzle, a CCD camera, a mobile robot (vehicle and arm) and Arduino microcontroller. Arduino microcontroller is used to control the spray nozzle and the robot. Matlab is used to process the image from the CCD camera and to generate the appropriate control signals to the robot and the spray nozzle. COMSOL multi-physics FEM software was used to design the induction electrodes to achieve maximum charge transfer onto the fan spray liquid film resulting in achieving the desired charge/mass ratio of the spray. The charged spray nozzle was operated on short duration pulsed spray mode. Image analysis was employed to investigate the spray deposition on improvised insect targets on an artificial plant.

  3. Eye-safe lidar system for pesticide spray drift measurement.

    Science.gov (United States)

    Gregorio, Eduard; Rocadenbosch, Francesc; Sanz, Ricardo; Rosell-Polo, Joan R

    2015-02-04

    Spray drift is one of the main sources of pesticide contamination. For this reason, an accurate understanding of this phenomenon is necessary in order to limit its effects. Nowadays, spray drift is usually studied by using in situ collectors which only allow time-integrated sampling of specific points of the pesticide clouds. Previous research has demonstrated that the light detection and ranging (lidar) technique can be an alternative for spray drift monitoring. This technique enables remote measurement of pesticide clouds with high temporal and distance resolution. Despite these advantages, the fact that no lidar instrument suitable for such an application is presently available has appreciably limited its practical use. This work presents the first eye-safe lidar system specifically designed for the monitoring of pesticide clouds. Parameter design of this system is carried out via signal-to-noise ratio simulations. The instrument is based on a 3-mJ pulse-energy erbium-doped glass laser, an 80-mm diameter telescope, an APD optoelectronic receiver and optomechanically adjustable components. In first test measurements, the lidar system has been able to measure a topographic target located over 2 km away. The instrument has also been used in spray drift studies, demonstrating its capability to monitor the temporal and distance evolution of several pesticide clouds emitted by air-assisted sprayers at distances between 50 and 100 m.

  4. Spraying of Super Fine Powders With HVOF and Axial Plasma Thermal Spray Systems

    Institute of Scientific and Technical Information of China (English)

    Alan Burgess; G(o)tz Matth(a)us

    2004-01-01

    The use of fine powders in thermal spray can lead to many advantages. These advantages include denser coatings, coatings with increased wear resistance, coatings with smoother surface finish, coatings that can be applied to internal surfaces, less expensive coatings. The use of fine powders also has an disadvantage that th ey can have poor flow characteristics. The paper will discuss a feeder that is able to feed fine powders to overcome this difficulty and the coating equipment, both axial plasma and HVOF systems, used to deposit these materials to produce smooth dense coatings.

  5. Spray cone angle and air core diameter of hollow cone swirl rocket injector

    Directory of Open Access Journals (Sweden)

    Ahmad Hussein Abdul Hamid

    2011-12-01

    Full Text Available ABSTRACT : Fuel injector for liquid rocket is a very critical component since that small difference in its design can dramatically affect the combustion efficiency. The primary function of the injector is to break the fuel up into very small droplets. The smaller droplets are necessary for fast quiet ignition and to establish a flame front close to the injector head, thus shorter combustion chamber is possible to be utilized. This paper presents an experimetal investigation of a mono-propellant hollow cone swirl injector. Several injectors with different configuration were investigated under cold flow test, where water is used as simulation fluid. This investigation reveals that higher injection pressure leads to higher spray cone angle. The effect of injection pressure on spray cone angle is more prominent for injector with least number of tangential ports. Furthermore, it was found that injector with the most number of tangential ports and with the smallest tangential port diameter produces the widest resulting spray. Experimental data also tells that the diameter of an air core that forms inside the swirl chamber is largest for the injector with smallest tangential port diameter and least number of tangential ports.ABSTRAK : Injektor bahan api bagi roket cecair merupakan satu komponen yang amat kritikal memandangkan perbezaan kecil dalam reka bentuknya akan secara langsung mempengaruhi kecekapan pembakaran. Fungsi utama injektor adalah untuk memecahkan bahan api kepada titisan yang amat kecil. Titisan kecil penting untuk pembakaran pantas secara senyap dan untuk mewujudkan satu nyalaan di hadapan, berhampiran dengan kepala injektor, maka kebuk pembakaran yang lebih pendek berkemungkinan dapat digunakan. Kertas kerja ini mebentangkan satu penyelidikan eksperimental sebuah injektor ekabahan dorong geronggang kon pusar. Beberapa injektor dengan konfigurasi berbeza telah dikaji di bawah ujian aliran sejuk, di mana air digunakan sebagai bendalir

  6. SMART core protection system design

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. K.; Park, H. Y.; Koo, I. S. [KAERI, Taejon (Korea, Republic of); Park, H. S.; Kim, J. S.; Son, C. H. [Samchang Enterprise Co., Ltd., Taejon (Korea, Republic of)

    2003-10-01

    SMART COre Protection System(SCOPS) is designed with real-tims Digital Signal Processor(DSP) board and Network Interface Card(NIC) board. SCOPS has a Control Rod POSition (CRPOS) software module while Core Protection Calculator System(CPCS) consists of Core Protection Calculators(CPCs) and Control Element Assembly(CEA) Calculators(CEACs) in the commercial nuclear plant. It's not necessary to have a independent cabinets for SCOPS because SCOPS is physically very small. Then SCOPS is designed to share the cabinets with Plant Protection System(PPS) of SMART. Therefor it's very easy to maintain the system because CRPOS module is used instead of the computer with operating system.

  7. COSIS: COre State Indication System

    Energy Technology Data Exchange (ETDEWEB)

    Cho, J. Y.; Lee, K. B.; Koo, B. S.; Lee, W. K.; Lee, C. C; Zee, S. Q

    2006-02-15

    COSIS (COre State Indication System) which implemented in the SMART research reactor plays a role to supply the core state parameters or graphs for the operator to recognize the core state effectively. The followings are the main functions of COSIS. (1) Validity Check for the Process Signals and Determination of the COSIS Inputs (SIGVAL) (2) Coolant Flow Rate Calculation (FLOW) (3) Core Thermal Power Calculation (COREPOW) (4) In-core 3-Dimensional Power Distribution Calculation and Peaking Parameters Generation (POWER3D) (5) Azimuthal Tilt Calculation (AZITILT). This report describes the methodology of COSIS which produces the core state parameters using the process and detector signals. In the SIGVAL module, COSIS checks most signals except for the CEA position and determines the input signals. In the FLOW module, the corelation coefficient between the RPM signal and coolant flow is updated from the energy balance at the steam generator, and the coolant flow rate is calculated using the RPM signal. In the COREPOW module, the secondary calorimetric power, the primary {delta}T power and the ex-core power are calculated, and the final core thermal power and biased core power are determined. In the POWER3D module, the 3-dimensional power distribution is calculated using the in-core detector signal, and the 3-D peaking factor, 2-D radial peaking factor, axial offset, maximum linear power density are produced. In the AZITILT module, the arithmetic averaged and vector averaged azimuthal tilts are calculated, and the final tilt is determined. The COSIS performance test of the COSIS is performed for the temperature compensation method, the COREPOW and the POWER3D modules. The test for the temperature compensation method is performed for the temperature variations of the linear, parabolic, exponential, sine function. The test shows that the implemented temperature compensation method works soundly. The COREPOW test is performed by varying the core power from the initial

  8. Passive Wireless Hermetic Environment Monitoring System for Spray Painting Workshop.

    Science.gov (United States)

    Wang, Lifeng; Ma, Jingjing; Huang, Yan; Tang, Dan; Huang, Qing-An

    2016-08-01

    Passive wireless sensors have the advantages of operating without a power supply and remote sensing capability. Hence, they are very suitable for some harsh environments, such as hermetic environments, rotating parts, or very high temperature environments. The spray painting workshop is such a harsh environment, containing a large amount of flammable paint mist and organic gas. Aiming at this special environment of spray painting workshop, a passive wireless hermetic environment monitoring system was designed, fabricated, and demonstrated. The proposed system is composed of a transponder and a reader, and the circuit design of each part is given in detail in this paper. The power and the data transmission between the transponder and the reader are realized by the inductive coupling mechanism. Utilizing the back scatter modulation and channel multiplexing, the frequency signals generated by three different environmental sensors-together with their interfaces in the transponder-are wirelessly read out by the reader. Because of the harsh environment of the spray painting room, the package of the monitoring system is quite important. Three different kinds of filter films for the system package were compared. The experimental results show that the composite filter film aluminum anodic oxide/polytetrafluoroethylene (AAO/PTFE) has the best performance. After fabrication, the measured temperature, humidity, and pressure sensitivities were measured and found to be 180 Hz/°C in the range of 0~60 °C, 100 Hz/%RH in the range of 15~95 %RH, and 42 Hz/hPa in the range of 600~1100 hPa, respectively. Additionally, the remote sensing distance of the monitoring system reaches 4 cm. Finally, the passive wireless hermetic environment monitoring system was installed on the glass wall of the spray painting workshop and was successfully demonstrated.

  9. Gas-Liquid Supersonic Cleaning and Cleaning Verification Spray System

    Science.gov (United States)

    Parrish, Lewis M.

    2009-01-01

    NASA Kennedy Space Center (KSC) recently entered into a nonexclusive license agreement with Applied Cryogenic Solutions (ACS), Inc. (Galveston, TX) to commercialize its Gas-Liquid Supersonic Cleaning and Cleaning Verification Spray System technology. This technology, developed by KSC, is a critical component of processes being developed and commercialized by ACS to replace current mechanical and chemical cleaning and descaling methods used by numerous industries. Pilot trials on heat exchanger tubing components have shown that the ACS technology provides for: Superior cleaning in a much shorter period of time. Lower energy and labor requirements for cleaning and de-scaling uper.ninih. Significant reductions in waste volumes by not using water, acidic or basic solutions, organic solvents, or nonvolatile solid abrasives as components in the cleaning process. Improved energy efficiency in post-cleaning heat exchanger operations. The ACS process consists of a spray head containing supersonic converging/diverging nozzles, a source of liquid gas; a novel, proprietary pumping system that permits pumping liquid nitrogen, liquid air, or supercritical carbon dioxide to pressures in the range of 20,000 to 60,000 psi; and various hoses, fittings, valves, and gauges. The size and number of nozzles can be varied so the system can be built in configurations ranging from small hand-held spray heads to large multinozzle cleaners. The system also can be used to verify if a part has been adequately cleaned.

  10. SPRAYTRAN USER'S GUIDE: A GIS-BASED ATMOSPHERIC SPRAY DROPLET DISPERSION MODELING SYSTEM

    Science.gov (United States)

    The offsite drift of pesticide from spray operations is an ongoing source of concern. The SPRAY TRANsport (SPRAYTRAN) system, documented in this report, incorporates the near-field spray application model, AGDISP, into a meso-scale atmospheric transport model. The AGDISP model ...

  11. Field Application of Automated Power Arc Spraying System on Steel Bridge Deck

    Institute of Scientific and Technical Information of China (English)

    YI Chun-long; SUO Shuang-fu; SUN Zhi; PANG Xu-nan

    2004-01-01

    The effective corrosion protection coating and high productive coating equipment for steel bridge deck has been a challenge for bridge engineers for many years. An automated power arc spraying system was first designed and field applied to coating the deck of Wuhan Junshan Yangtze River Bridge in high efficiency. This steel bridge is a continuous orthotropic deck box girder cable-stayed bridge with 962 m in length and 38.8 m in width, whose width is the No. 1 in China. The whole orthotropic deck with over 35,000 m2surface area was arc-sprayed a protective coating of zinc on site, followed by a sealant and SMA paving material. The side face and bottom of box girders were arc-sprayed with aluminum in factory.Field application indicated that the newly designed automated power arc spraying system with fan nozzle and separate primary & secondary atomizing air had some advantages over the conventional arc spraying system, such as automated operation,big arc spray current, high spraying rate, big breadth of each coat, even and small atomized particles, high density and low porosity of sprayed coating, and high adhesive strength to the substrate.Working procedure of surface preparation and automated arc spraying on bridge deck were introduced, and the quality of sprayed coating is controlled strictly. Field tests proved that the application of this automated power arc spraying system is successful and suitable for coating the steel bridge deck.

  12. Measurement of droplet size distribution in core region of high-speed spray by micro-probe L2F

    Institute of Scientific and Technical Information of China (English)

    Daisaku Sakaguchi; Oluwo le Amida; Hironobu Ueki; Masahiro Ishida

    2008-01-01

    In order to investigate the distribution of droplet sizes in the core region of diesel fuel spray, instantaneous measurement of droplet sizes was conducted by an advanced laser 2-focus velocimeter (L2F). The micro-scale probe of the L2F is made up of two foci and the distance between them is 36 μm. The tested nozzle had a 0.2 mm diameter single-hole. The measurements of injection pressure, needle lift, and crank angle were synchronized with the measurement by the L2F at the position 10 mm downstream from the nozzle exit. It is clearly shown that the droplet near the spray axis is larger than that in the off-axis region under the needle full lift condition and that the spatial distribution of droplet sizes varies temporally. It is found that the probability density distribution of droplet sizes in the spray core region can be fitted to the Nukiyama-Tanasawa distribution in most injection periods.

  13. Development of a new wear resistant coating by arc spraying of a steel-based cored wire

    Institute of Scientific and Technical Information of China (English)

    Lidong ZHAO; Binyou FU; Dingyong HE; Pia KUTSCHMANN

    2009-01-01

    In the present study, a cored wire of 304 L stainless steel as sheath material and NiB and WC-12Co as filler materials was designed and deposited to produce a new wear resistant coating containing amorphous phase by arc spraying. The microstructure of the coating was investigated. The porosity and hardness of the coating were determined. The wear performance of the coating was evaluated. The XRD and TEM analyses showed that there are high volume of amorphous phase and very fine crystalline grains in the coating. DTA measurements revealed that the crystallization of the amorphous phase occurred at 579.2℃. Because metallurgical processes for single droplets were non-homogenous during spraying, the lamellae in the coating have different hardness values, which lie between about 700 and 1250HV10og. The abrasive wear test showed that the new Fe-based coating was very wear resistant.

  14. Experimental and numerical analysis of the cooling performance of water spraying systems during a fire.

    Directory of Open Access Journals (Sweden)

    YaoHan Chen

    Full Text Available The water spray systems are effective protection systems in the confined or unconfined spaces to avoid the damage to building structures since the high temperature when fires occur. NFPA 15 and 502 have suggested respectively that the factories or vehicle tunnels install water spray systems to protect the machinery and structures. This study discussed the cooling effect of water spray systems in experimental and numerical analyses. The actual combustion of woods were compared with the numerical simulations. The results showed that although the flame continued, the cooling effects by water spraying process within 120 seconds were obvious. The results also indicated that the simulation results of the fifth version Fire Dynamics Simulator (FDS overestimated the space temperature before water spraying in the case of the same water spray system.

  15. Experimental and numerical analysis of the cooling performance of water spraying systems during a fire.

    Science.gov (United States)

    Chen, YaoHan; Su, ChungHwei; Tseng, JoMing; Li, WunJie

    2015-01-01

    The water spray systems are effective protection systems in the confined or unconfined spaces to avoid the damage to building structures since the high temperature when fires occur. NFPA 15 and 502 have suggested respectively that the factories or vehicle tunnels install water spray systems to protect the machinery and structures. This study discussed the cooling effect of water spray systems in experimental and numerical analyses. The actual combustion of woods were compared with the numerical simulations. The results showed that although the flame continued, the cooling effects by water spraying process within 120 seconds were obvious. The results also indicated that the simulation results of the fifth version Fire Dynamics Simulator (FDS) overestimated the space temperature before water spraying in the case of the same water spray system.

  16. Electrostatically enhanced core separator system

    Energy Technology Data Exchange (ETDEWEB)

    Easom, B.H.; Smolensky, L.A.; Altman, R.F. [LSR Technologies, Inc., Acton, MA (United States)

    1997-12-31

    The Electrostatically Enhanced Core Separator (EECS) system employs the same design principles as the mechanical Core Separator system plus an electrostatic separation enhancing technique. The EECS system contains a special type of separator, the EECS element, a conventional solids collector and means for flow recirculation. In the EECS system solids separation and collection are accomplished in two different components. The EECS element acts as a separator, not as a collector so particles are not collected on its walls. This eliminates or at least mitigates the problems associated with reentrainment (due to high or low dust resistivity), seepage (due to gas flow below the precipitator plates and over the hoppers), sneakage (due to gas flow both above and below the precipitator plates), and rapping reentrainment. If the EECS separation efficiency is high enough, particles cannot leave the system with the process stream. They recirculate until they are extracted by the collector. As a result, the separation efficiency of the EECS element determines the efficiency of the system, even if the collector efficiency is relatively low. 8 refs., 3 figs.

  17. New mechanized system for circle spraying of oil palms seedling emergence

    Directory of Open Access Journals (Sweden)

    Darius El Pebrian

    2012-04-01

    Full Text Available A new machine system has been designed, developed and evaluated for extensive circle spraying of oil palms (Elaeis guineensis Jacq. in an effort to overcome the inefficient spraying problem with the conventional spraying system. The machine system consists of a four-wheeled drive 4WD prime mover with front mounted machine attachments for the circle spraying operation. The configuration of the circle spraying attachment consists of a hexagonal curved spray boom, lifting arm, opening-tilting mechanism unit, storage tank, spray pump, solid cone nozzles, and associate hydraulic system. Field performance tests on the machine system showed an average effective field capacity of 7.89 ha per man per day and when compared to the earlier reported effective field capacity of the walking spray-operated equipment using Serena LT16 knapsack sprayer; a difference of 1.97 time for circle spraying of mature palms grove. Reduction in the human energy expenditure of 101.28 kJ man-1 h-1 or 10.68 % but an increase in the spraying cost of 1.53 USD ha-1 or 24.9 % were obtained with the machine system against the walking spraying-operated equipment using Serena LT16 knapsack sprayer. Justification for machine system to be cost effective could be satisfied if the present effective field capacity is increased to 1.263 time with good skilled operator or if the current R&D cost is reduced to 0.41 time. This is because the improved field capacity of new machine system could not rationalize its current R&D cost. Admittedly, the machine system has great potential to overcome the limitations with the current employed machine/equipment in the circle spraying operation of oil palms in the plantation.

  18. Surface morphology of spray-dried nanoparticle-coated microparticles designed as an oral drug delivery system

    Directory of Open Access Journals (Sweden)

    R. C. R. Beck

    2008-06-01

    Full Text Available This paper was devoted to studying the influence of coating material (nanocapsules or nanospheres, drug model (diclofenac, acid or salt and method of preparation on the morphological characteristics of nanoparticle-coated microparticles. The cores of microparticles were obtained by spray drying or evaporation and the coating was applied by spray drying. SEM analyses showed nanostructures coating the surface of nanocapsule-coated microparticles and a rugged surface for nanosphere-coated microparticles. The decrease in their surface areas was controlled by the nanoparticulated system, which was not dependent on microparticle size. Optical microscopy and X-ray analyses indicated that acid diclofenac crystals were present in formulations prepared with the acid as well as in the nanocapsule-coated microparticles prepared with the salt. The control of coating is dependent on the use of nanocapsules or nanospheres and independent of either the characteristics of the drug or the method of preparing the core.

  19. Synthesis of TiO{sub 2} core/RuO{sub 2} shell particles using multistep ultrasonic spray pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Stopic, Srecko, E-mail: sstopic@ime-aachen.de [IME – Process Metallurgy and Metal Recycling, RWTH Aachen University, Intzestr. 3, D-52056 Aachen (Germany); Friedrich, Bernd [IME – Process Metallurgy and Metal Recycling, RWTH Aachen University, Intzestr. 3, D-52056 Aachen (Germany); Schroeder, Michael [IPC – Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52074 Aachen (Germany); Weirich, Thomas E. [GFE – Central Facility for Electron Microscopy, RWTH Aachen University, Ahornstr. 55, D-52074 Aachen (Germany); AIXTAL – Institute of Crystallography, RWTH Aachen University, Jägerstraße 17–19, D-52066 Aachen (Germany)

    2013-09-01

    Graphical abstract: - Highlights: • TiO{sub 2} core/RuO{sub 2} shell submicron-particles were prepared via a sequential spray pyrolysis. • Spherical particles have the mean particle diameters between 200 and 400 nm. • This method is promising for synthesis of core–shell and core–multishell materials. - Abstract: Spherical submicron-particles with TiO{sub 2} core–RuO{sub 2} shell structure have been synthesized by employing sequential ultrasonic spray pyrolysis. The particles have been investigated by X-ray powder diffraction, scanning electron microscopy and different transmission electron microscopy techniques. The quality of the core–shell structure of the particles has been confirmed by comparison of the experimental data with those generated on the basis of a hard sphere core–shell model. It has been found that the mixing of the Ru-containing aerosol with the TiO{sub 2} particle stream has a significant impact on the core–shell formation. The method introduced in this study can probably be applied for preparation of core–shell and core–multishell materials that are difficult to synthesize in a single step spray pyrolysis process.

  20. Visual Control System of a Spraying Robot for Hyphantria cunea Larva Nets

    Directory of Open Access Journals (Sweden)

    Ying Zhao

    2015-01-01

    Full Text Available In order to implement automatic spraying on Hyphantria cunea larva nets, a spraying robot system with monocular hand-eye coordination and smart targeting abilities was designed according to the target net features. The system realized spatial two-dimensional motions driven by step motors on linear guide rails. Images were processed in real-time to extract the net curtain targets defined using the border area, and the optimal spraying position was then determined. An identification algorithm based on the global net image to distinguish targets before and after spray was proposed. A simulation environment was designed to verify the correctness of this method. Results showed that the highest rate of over spray is 288.5%, and the spray miss rate is 0.

  1. 30 CFR 75.1101-1 - Deluge-type water spray systems.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Deluge-type water spray systems. 75.1101-1 Section 75.1101-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1101-1 Deluge-type water spray systems. (a)...

  2. Macro controlling of copper oxide deposition processes and spray mode by using home-made fully computerized spray pyrolysis system

    Science.gov (United States)

    Essa, Mohammed Sh.; Chiad, Bahaa T.; Shafeeq, Omer Sh.

    2017-09-01

    Thin Films of Copper Oxide (CuO) absorption layer have been deposited using home-made Fully Computerized Spray Pyrolysis Deposition system FCSPD on glass substrates, at the nozzle to substrate distance equal to 20,35 cm, and computerized spray mode (continues spray, macro-control spray). The substrate temperature has been kept at 450 °c with the optional user can enter temperature tolerance values ± 5 °C. Also that fixed molar concentration of 0.1 M, and 2D platform speed or deposition platform speed of 4mm/s. more than 1000 instruction program code, and specific design of graphical user interface GUI to fully control the deposition process and real-time monitoring and controlling the deposition temperature at every 200 ms. The changing in the temperature has been recorded during deposition processes, in addition to all deposition parameters. The films have been characterized to evaluate the thermal distribution over the X, Y movable hot plate, the structure and optical energy gap, thermal and temperature distribution exhibited a good and uniform distribution over 20 cm2 hot plate area, X-ray diffraction (XRD) measurement revealed that the films are polycrystalline in nature and can be assigned to monoclinic CuO structure. Optical band gap varies from 1.5-1.66 eV depending on deposition parameter.

  3. Nanostructured Electrodes Via Electrostatic Spray Deposition for Energy Storage System

    KAUST Repository

    Chen, C.

    2014-10-02

    Energy storage systems such as Li-ion batteries and supercapacitors are extremely important in today’s society, and have been widely used as the energy and power sources for portable electronics, electrical vehicles and hybrid electrical vehicles. A lot of research has focused on improving their performance; however, many crucial challenges need to be addressed to obtain high performance electrode materials for further applications. Recently, the electrostatic spray deposition (ESD) technique has attracted great interest to satisfy the goals. Due to its many advantages, the ESD technique shows promising prospects compared to other conventional deposition techniques. In this paper, our recent research outcomes related to the ESD derived anodes for Li-ion batteries and other applications is summarized and discussed.

  4. Design of PLGA-based depot delivery systems for biopharmaceuticals prepared by spray drying

    DEFF Research Database (Denmark)

    Wan, Feng; Yang, Mingshi

    2016-01-01

    and peptide drugs with a steady pharmacokinetic/pharmacodynamic profile maintained for a long period. However, the development of PLGA-based microparticle systems is still impeded by lack of easy, fast, effective manufacturing technologies. The aim of this paper is to review recent advances in spray drying...... parameters on the critical quality attributes of the spray-dried microparticles....

  5. Ground experimental investigations into an ejected spray cooling system for space closed-loop application

    Directory of Open Access Journals (Sweden)

    Zhang Hongsheng

    2016-06-01

    Full Text Available Spray cooling has proved its superior heat transfer performance in removing high heat flux for ground applications. However, the dissipation of vapor–liquid mixture from the heat surface and the closed-loop circulation of the coolant are two challenges in reduced or zero gravity space environments. In this paper, an ejected spray cooling system for space closed-loop application was proposed and the negative pressure in the ejected condenser chamber was applied to sucking the two-phase mixture from the spray chamber. Its ground experimental setup was built and experimental investigations on the smooth circle heat surface with a diameter of 5 mm were conducted with distilled water as the coolant spraying from a nozzle of 0.51 mm orifice diameter at the inlet temperatures of 69.2 °C and 78.2 °C under the conditions of heat flux ranging from 69.76 W/cm2 to 311.45 W/cm2, volume flow through the spray nozzle varying from 11.22 L/h to 15.76 L/h. Work performance of the spray nozzle and heat transfer performance of the spray cooling system were analyzed; results show that this ejected spray cooling system has a good heat transfer performance and provides valid foundation for space closed-loop application in the near future.

  6. Ground experimental investigations into an ejected spray cooling system for space closed-loop application

    Institute of Scientific and Technical Information of China (English)

    Zhang Hongsheng; Li Yunze; Wang Shengnan; Liu Yang; Zhong Mingliang

    2016-01-01

    Spray cooling has proved its superior heat transfer performance in removing high heat flux for ground applications. However, the dissipation of vapor–liquid mixture from the heat sur-face and the closed-loop circulation of the coolant are two challenges in reduced or zero gravity space environments. In this paper, an ejected spray cooling system for space closed-loop application was proposed and the negative pressure in the ejected condenser chamber was applied to sucking the two-phase mixture from the spray chamber. Its ground experimental setup was built and exper-imental investigations on the smooth circle heat surface with a diameter of 5 mm were conducted with distilled water as the coolant spraying from a nozzle of 0.51 mm orifice diameter at the inlet temperatures of 69.2 ?C and 78.2 ?C under the conditions of heat flux ranging from 69.76 W/cm2 to 311.45 W/cm2, volume flow through the spray nozzle varying from 11.22 L/h to 15.76 L/h. Work performance of the spray nozzle and heat transfer performance of the spray cooling system were analyzed;results show that this ejected spray cooling system has a good heat transfer performance and provides valid foundation for space closed-loop application in the near future.

  7. Investigation of optimal control system for arc spraying

    Institute of Scientific and Technical Information of China (English)

    Li Heqi; Li Chunxu

    2005-01-01

    Arc-voltage feedback PID ( Proportional plus Integral plus Differential) controller and arc-current feedback PID controller are designed with an algorithm of discrete PID. In order to realize parameters optimization and adaptation of the arc-spraying process and to reduce blindness in selecting process parameters, a serial communication interface between PC and MCU (Micro Control Unit) is designed so that on-line modification of the PID control parameters is implemented. A genetic algorithm is adopted to optimize PID control parameters. Meanwhile, the error between the actual value and the setting value of spraying current is selected as the judgment criterion to determine the adaptability for the algorithm. The best optimal population of PID control parameters can be obtained, so that the optimal controlling in arc-spraying process is realized and an excellent coating of arc-spraying is obtained.

  8. Tungsten carbide coatings with different binders prepared by low power plasma spray system

    Institute of Scientific and Technical Information of China (English)

    GAO Yang; M.F.Morks; FU Ying-qing

    2004-01-01

    Thermal spraying of cermet coatings is widely used for protection of machining parts against wear and corrosion. These coatings consist of WC particles in metal binders such as Co, Cr and Ni. Three kinds of WC powders with different metal binders (Co, NiCr and CoCr) were sprayed by low power plasma spray system on Al-Si-Cu alloy substrate. Fundamental aspects of sprayed cermet coatings, including (i) the effects of binder type on the coating structure, (ii) the hardness and (iii) the microstructure, were investigated. All cermet coatings have the same phase structure such as WC and W2 C. However, the intensities of these phases are different in each coating, mainly due to the difference in solidification rate in each case. Moreover, the hardness measurements are found to be different in each coating. The results show that, binder type has a significant effect on the physical and mechanical properties of the sprayed coatings.

  9. Balanced Rotating Spray Tank and Pipe Cleaning and Cleanliness Verification System

    Science.gov (United States)

    Caimi, Raoul E. B. (Inventor); Thaxton, Eric A. (Inventor)

    1998-01-01

    A system for cleaning and verifying the cleanliness of the interior surfaces of hollow items, such as small bottles, tanks, pipes and tubes, employs a rotating spray head for supplying a gas-liquid cleaning mixture to the item's surface at a supersonic velocity. The spray head incorporates a plurality of nozzles having diverging cross sections so that the incoming gas-liquid mixture is first converged within the spray head and then diverged through the nozzles, thereby accelerating the mixture to a supersonic velocity. In the preferred embodiment, three nozzles are employed; one forwardly facing nozzle at the end of the spray head and two oppositely facing angled nozzles exiting on opposite sides of the spray head which balance each other, and therefore impart no net side load on the spray head. A drive mechanism is provided to rotate the spray head and at the same time move the head back and forth within the item to be cleaned. The drive mechanism acts on a long metal tube to which the spray head is fixed, and thus no moving parts are exposed to the interior surfaces of the items to be cleaned, thereby reducing the risk of contamination.

  10. Fine water spray system: Extinguishing tests in medium and full-scale turbine hood

    Science.gov (United States)

    Wighus, R.; Aune, P.; Drangsholt, G.; Stensaas, J. P.

    1994-12-01

    The report is based on the results from two test series, called Phase 1 and Phase 2 of the project 'Halon Replacement by Fine Water Spray Technology - Turbine Hood application'. Detailed results are presented in technical reports from Phase 1 and Phase 2. The tests were carried out in two different scales, one 30 cu m test enclosure formerly used to characterize different water spray nozzles, and a full scale 70 cu m model of a turbine hood. The scope of work in Phase 1 was to identify the extinguishing characteristics of various nozzles developed by BP Sunbury Research Center, UK, and to verify the efficiency of a total fire suppression system developed by Ginge-Kerr Offshore. The fire suppression system uses a twin-fluid nozzles using air and water at pressures about 5 bar. The nozzles produce a water spray with small droplets and high velocity. The scope of work of Phase 2 was to verify the efficiency of the Fine Water Spray nozzles fighting a variety of fire scenarios which may occur in a real turbine hood. A full scale test enclosure containing a mock-up of a turbine heated internally to simulate hot metal surfaces, with insulation mats and piping as in a real turbine hood was constructed in the large test hall of SINTEF NBL. The turbine hood model was built by elements of a Multipurpose Fire Test Rig. Realistic fires with Diesel pool- and spray fires, fires in insulation mats soaked with Diesel oil under different ventilation conditions were ignited in the turbine hood model. Number of Fine Water Spray nozzles, nozzle position and spraying sequences were varied. A base for design of a Fine Water Spray system for a turbine hood is developed, and several unique features of the performance of a Fine Water Spray fire suppression system have been documented.

  11. Spray dryer/baghouse system testing - CRADA 92-001. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Pennline, H. W.

    1992-04-28

    A series of seven tests were conducted to evaluate the effectiveness of scrubbing both NO{sub 2} and SO{sub 2} in a spray dryer/baghouse system. The operating conditions specified were a high spray dryer inlet temperature (500{degrees}F), and a high spray dryer outlet temperature (250 to 300 {degrees}F). The data required to adequately evaluate the effectiveness of this technology is enclosed. Discussion of some of the variables as well as an itemized list of the testing information is part of the report.

  12. Development of an Insect Repellent Spray for Textile Based on Permethrin-Loaded Lipid-Core Nanocapsules.

    Science.gov (United States)

    Forgearini, Joana C; Michalowski, Cecília B; Assumpção, Evelise; Pohlmann, Adriana R; Guterres, Silvia S

    2016-02-01

    The aim of this study was to prepare and characterize permethrin-loaded lipid core nanocapsules (P-LNC) in order to produce a long last insect repellent spray formulation for clothes. P-LNC were prepared by self-assembling in aqueous solution showing a mean diameter of 201 +/- 4 nm with a monomodal distribution, a permethrin content of 4.6 +/- 0.1 mg/mL and zeta potential of--16.7 +/- 4 mV. P-LNC (0.46%), as well as the commercial product (0.46%) and the hydroalcoholic solution (0.50%) of permethrin were separately sprayed onto cotton or polyester, followed by successive washes of the fabric. The results showed that the fabrics treated with P-LNC are more resistant than other solutions in terms of remaining permethrin content. After twenty washes, the cotton treated with P-LNC, presented a concentration of 566 +/- 27 mg/M2 of impregnated permethrin, while for the treatment with the substance hydroalcoholic solution and with the commercial product the concentrations values were of 340 +/- 7 mg/M2 and 224 +/- 74 mg/M2, respectively. When the test was performed using polyester, this fiber was less adhesive than cotton, resulting in a final concentration of permethrin (after 20 washes) of 81 +/- 10 mg/m2 for P-LNC suspension, 94 +/- 8 mg/M2 for the substance hydroalcoolic solution and 22 +/- 3 mg/M2 for the commercial product. After impregnating cotton with the formulations and submitting to a temperature of 200 degrees C, the P-LNC also demonstrated higher adherence compared to the other formulations (407 +/- 67 mg/m2 for P-LNC, 236 +/- 72 mg/m2 for the substance hydroalcoholic solution and 158 +/- 62 mg/m2 for commercial product). These results showed that the repellent spray composed of P-LNC developed in this work is a promising and innovative product for the individual protection against insects, useful for impregnation onto cotton garments.

  13. Multi-core fiber undersea transmission systems

    DEFF Research Database (Denmark)

    Nooruzzaman, Md; Morioka, Toshio

    2017-01-01

    Various potential architectures of branching units for multi-core fiber undersea transmission systems are presented. It is also investigated how different architectures of branching unit influence the number of fibers and those of inline components.......Various potential architectures of branching units for multi-core fiber undersea transmission systems are presented. It is also investigated how different architectures of branching unit influence the number of fibers and those of inline components....

  14. Performance of thermal-sprayed zinc anodes treated with humectants in cathodic protection systems

    Energy Technology Data Exchange (ETDEWEB)

    Bullard, Sophie J.; Covino, Bernard S., Jr.; Cramer, Stephen D.; Holcomb, Gordon R.; Russell, James H.; Bennett, John E. (JE Bennett Consulting Inc.); Milius, John K. (Corrosion Restoration Tech.); Cryer, Curtis B. (Oregon Dept. of Transportation); Soltesz, Steven M. (Oregon Dept. of Transportation)

    2001-01-01

    Thermal-sprayed Zn anodes are used for impressed current cathodic protection (ICCP) systems in Oregon's reinforced concrete coastal bridges to minimize corrosion damage. Thermal-sprayed Zn performs well as an ICCP anode but the voltage requirement can increase with increasing electrochemical age. It also performs well as a galvanic (GCP) anode but current output can decrease with increasing electrochemical age. Past research has shown that increasing moisture at the Zn anode-concrete interface improves the operation of the thermal-sprayed Zn anode. Humectants, hygroscopic materials that are applied to the surface of the Zn-anode, can increase the moisture at the zinc-concrete interface, thereby improving the performance and extending the anode service life. Results are given for humectant-treated (LiBr and LiNO3) thermal-sprayed Zn anodes used in the laboratory electrochemical aging studies and in field studies on the Yaquina Bay Bridge, Oregon, USA.

  15. Numerical model of sprayed air cooled condenser coupled to refrigerating system

    Energy Technology Data Exchange (ETDEWEB)

    Youbi-Idrissi, M.; Macchi-Tejeda, H.; Fournaison, L.; Guilpart, J. [Refrigerating Processes Research Unit, CEMAGEF, Parc de Tourvoie, BP 44, 92163 Antony Cedex (France)

    2007-07-15

    Because of technological, economic and environmental constraints, many refrigeration and air conditioning units are equipped with a simple air cooled condenser. Spraying the condenser seems to be an original solution to improve the energetic performances of such systems. To characterise this energetic benefit, a semi-local mathematical model was developed and applied to a refrigerating machine with and without spraying its air cooled condenser. It is found that, compared to a dry air cooled condenser, both the calorific capacity and machine COP increase by 13% and 55%, respectively. Furthermore, the model shows that a spray flow rate threshold occurs. It should not be exceeded to assure an effective and rational spray use. (author)

  16. Spray drying of lipid-based systems loaded with Camellia sinensis polyphenols.

    Science.gov (United States)

    Secolin, Vanessa A; Souza, Claudia R F; Oliveira, Wanderley P

    2017-03-01

    In this work, spray-dried lipid systems based on soy phosphatidylcholine, cholesterol and lauroyl polyoxylglycerides for entrapping Green tea polyphenols were produced. The aim was to study the effects of the encapsulating composition and spray drying conditions on the system performance and physicochemical product properties. The spray dryer powder production yield falls around 50.7 ± 2.8%, which is typical for lab scale spray dryers. Wrinkled and rounded particles, with low surface porosities were generated, independent of the drying carriers (trehalose or lactose) used. The product showed high encapsulation efficiency of Green tea polyphenols, which was promptly redispersible in water. It presented low density, and good compressive and flow properties. The results herein reported confirm the feasibility of the entrapment of Green tea polyphenols in lipid-based compositions by spray drying in presence of the drying carriers evaluated. The spray-dried microparticles show high potential to be used as additive in food, nutraceutical and pharmaceutical products.

  17. Analysis of cracked core spray injection line piping from the Quad Cities Units 1 and 2 boiling water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Diercks, D.R.

    1983-12-01

    Elbow assemblies and adjacent piping from the loops A and B core spray injection lines of Quad Cities Units 1 and 2 Boiling Water Reactors have been examined in order to determine the nature and causes of coolant leakages and flaw indications detected during hydrostatic tests and subsequent ultrasonic inspections. The elbow assemblies were found to contain multiple intergranular cracks in the weld heat-affected zones. The cracking was predominantly axial in orientation in the forged elbow and wedge components, whereas mixed axial and circumferential cracking was seen in the wrought piping pieces. In at least two instances, axial cracks completely penetrated the circumferential weld joining adjacent components. Based upon the observations made in the present study, the failures were attributed to intergranular stress corrosion cracking caused by the weld-induced sensitized microstructure and residual stresses present; dissolved oxygen in the reactor coolant apparently served as the corrosive species. The predominantly axial orientation of the cracks present in the forged components is believed to be related to the banded microstructure present in these components. The metallographic studies reported are supplemented by x-radiography, chemical analysis and mechanical test results, determinations of the degree of sensitization present, and measurements of weld metal delta ferrite content.

  18. 29 CFR 1910.163 - Fixed extinguishing systems, water spray and foam.

    Science.gov (United States)

    2010-07-01

    ....160. This section does not apply to automatic sprinkler systems which are covered under § 1910.159. (b... working and that no emergency egress is permitted through the drainage path. Other Fire Protection Systems ... 29 Labor 5 2010-07-01 2010-07-01 false Fixed extinguishing systems, water spray and foam....

  19. Design Optimization of Liquid Fueled High Velocity Oxy- Fuel Thermal Spraying Technique for Durable Coating for Fossil Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Choudhuri, Ahsan [Univ. of Texas, El Paso, TX (United States); Love, Norman [Univ. of Texas, El Paso, TX (United States)

    2016-11-04

    High-velocity oxy–fuel (HVOF) thermal spraying was developed in 1930 and has been commercially available for twenty-five years. HVOF thermal spraying has several benefits over the more conventional plasma spray technique including a faster deposition rate which leads to quicker turn-around, with more durable coatings and higher bond strength, hardness and wear resistance due to a homogeneous distribution of the sprayed particles. HVOF thermal spraying is frequently used in engineering to deposit cermets, metallic alloys, composites and polymers, to enhance product life and performance. HVOF thermal spraying system is a highly promising technique for applying durable coatings on structural materials for corrosive and high temperature environments in advanced ultra-supercritical coal- fired (AUSC) boilers, steam turbines and gas turbines. HVOF thermal spraying is the preferred method for producing coatings with low porosity and high adhesion. HVOF thermal spray process has been shown to be one of the most efficient techniques to deposit high performance coatings at moderate cost. Variables affecting the deposit formation and coating properties include hardware characteristics such as nozzle geometry and spraying distance and process parameters such as equivalence ratio, gas flow density, and powder feedstock. In the spray process, the powder particles experience very high speeds combined with fast heating to the powder material melting point or above. This high temperature causes evaporation of the powder, dissolution, and phase transformations. Due to the complex nature of the HVOF technique, the control and optimization of the process is difficult. In general, good coating quality with suitable properties and required performance for specific applications is the goal in producing thermal spray coatings. In order to reach this goal, a deeper understanding of the spray process as a whole is needed. Although many researchers studied commercial HVOF thermal spray

  20. Potential for HEPA filter damage from water spray systems in filter plenums

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, W. [Lawrence Livermore National Lab., CA (United States); Fretthold, J.K. [Rocky Flats Safe Sites of Colorado, Golden, CO (United States); Slawski, J.W. [Department of Energy, Germantown, MD (United States)

    1997-08-01

    The water spray systems in high efficiency particulate air (HEPA) filter plenums that are used in nearly all Department of Energy (DOE) facilities for protection against fire was designed under the assumption that the HEPA filters would not be damaged by the water sprays. The most likely scenario for filter damage involves filter plugging by the water spray, followed by the fan blowing out the filter medium. A number of controlled laboratory tests that were previously conducted in the late 1980s are reviewed in this paper to provide a technical basis for the potential HEPA filter damage by the water spray system in HEPA filter plenums. In addition to the laboratory tests, the scenario for BEPA filter damage during fires has also occurred in the field. A fire in a four-stage, BEPA filter plenum at Rocky Flats in 1980 caused the first three stages of BEPA filters to blow out of their housing and the fourth stage to severely bow. Details of this recently declassified fire are presented in this paper. Although these previous findings suggest serious potential problems exist with the current water spray system in filter plenums, additional studies are required to confirm unequivocally that DOE`s critical facilities are at risk. 22 refs., 15 figs.

  1. Development of sprayed ceramic seal systems for turbine gas path sealing

    Science.gov (United States)

    Bill, R. C.; Shiembob, L. T.; Stewart, O. L.

    1978-01-01

    A ceramic seal system is reported that employs plasma-sprayed graded metal/ceramic yttria stabilized zirconium oxide (YSZ). The performance characteristics of several YSZ configurations were determined through rig testing for thermal shock resistance, abradability, and erosion resistance. Results indicate that this type of sealing system offers the potential to meet operating requirements of future gas turbine engines.

  2. Corrosion and oxidation properties of NiCr coatings sprayed in presence of gas shroud system

    Energy Technology Data Exchange (ETDEWEB)

    Morks, M.F., E-mail: mhanna@swin.edu.au [Industrial Research Institute Swinburne, Swinburne University of Technology, Hawthorn, Melbourne, VIC 3122 (Australia); Berndt, C.C. [Industrial Research Institute Swinburne, Swinburne University of Technology, Hawthorn, Melbourne, VIC 3122 (Australia)

    2010-04-15

    The oxidation of a NiCr bond coat during air plasma spraying was controlled by designing a gas shroud system attached to the plasma torch nozzle. Two nozzles, termed as 'normal' and 'high-speed' nozzles examined the effect of nozzle internal design on the microstructure and phase structure of coatings. X-ray diffraction and SEM morphologies showed that the shroud system reduced the oxidation of NiCr particles during the spray process. Compared with conventional air plasma spraying, the argon gas shroud reduced the coating hardness because the volume fraction of partially melted particles increased. The high-speed nozzle reduced the oxidation and hardness of NiCr coatings due to the increase of partially melted particles in the coatings.

  3. Theoretical Design and First Test in Laboratory of a Composite Visual Servo-Based Target Spray Robotic System

    Directory of Open Access Journals (Sweden)

    Dongjie Zhao

    2016-01-01

    Full Text Available In order to spray onto the canopy of interval planting crop, an approach of using a target spray robot with a composite vision servo system based on monocular scene vision and monocular eye-in-hand vision was proposed. Scene camera was used to roughly locate target crop, and then the image-processing methods for background segmentation, crop canopy centroid extraction, and 3D positioning were studied. Eye-in-hand camera was used to precisely determine spray position of each crop. Based on the center and area of 2D minimum-enclosing-circle (MEC of crop canopy, a method to calculate spray position and spray time was determined. In addition, locating algorithm for the MEC center in nozzle reference frame and the hand-eye calibration matrix were studied. The processing of a mechanical arm guiding nozzle to spray was divided into three stages: reset, alignment, and hovering spray, and servo method of each stage was investigated. For preliminary verification of the theoretical studies on the approach, a simplified experimental prototype containing one spray mechanical arm was built and some performance tests were carried out under controlled environment in laboratory. The results showed that the prototype could achieve the effect of “spraying while moving and accurately spraying on target.”

  4. The design and scale-up of spray dried particle delivery systems.

    Science.gov (United States)

    Al-Khattawi, Ali; Bayly, Andrew; Phillips, Andrew; Wilson, David

    2017-05-04

    The rising demand for pharmaceutical particles with tailored physicochemical properties has opened new markets for spray drying especially for solubility enhancement, improving inhalation medicines and stabilization of biopharmaceuticals. Despite this, the spray drying literature is scattered and often does not address the principles underpinning robust development of pharmaceuticals. It is therefore necessary to present clearer picture of the field and highlight the factors influencing particle design and scale-up. Areas covered: The review presents a systematic analysis of the trends in development of particle delivery systems using spray drying. This is followed by exploring the mechanisms governing particle formation in the process stages. Particle design factors including those of equipment configurations and feed/process attributes were highlighted. Finally, the review summarises the current industrial approaches for upscaling pharmaceutical spray drying. Expert opinion: Spray drying provides the ability to design particles of the desired functionality. This greatly benefits the pharmaceutical sector especially as product specifications are becoming more encompassing and exacting. One of the biggest barriers to product translation remains one of scale-up/scale-down. A shift from trial and error approaches to model-based particle design helps to enhance control over product properties. To this end, process innovations and advanced manufacturing technologies are particularly welcomed.

  5. Formation of hydrotalcite coating on the aluminum alloy 6060 in spray system

    DEFF Research Database (Denmark)

    Zhou, Lingli; Friis, Henrik; Roefzaad, Melanie

    2016-01-01

    -layer structure with average thickness of ∼1000 nm. The hydrotalcite-coated samples performed better than those without coatings in salt-spray and filiform-corrosion tests, and further treatment involving sealing with a Mg acetate solution and dipping in a H2O2 + Ce-based solution improved the corrosion......Coatings with the composition of Li-Al-NO3 hydrotalcite were formed on the Al alloy 6060 using a spray system. The coatings consist of crystals with a typical hydrotalcite structure. Dense, uniform and blade-like flakes cover completely the surface of the Al substrate. The coatings display a multi...

  6. Numerical Analysis of the Effects of Wind and Sprayer Type on Spray Distribution in Different Orchard Training Systems

    Science.gov (United States)

    Duga, Ashenafi T.; Dekeyser, Donald; Ruysen, Kris; Bylemans, Dany; Nuyttens, David; Nicolai, Bart M.; Verboven, Pieter

    2015-12-01

    A computational fluid dynamics (CFD) model of airflow and spray application in orchards was validated using field trials and used to assess the effect of wind and sprayer type on spray distribution in different orchard training systems. Three air-assisted orchard sprayer designs (a cross-flow sprayer, an axial sprayer and a sprayer with individual spouts) and four different training systems of apple and pear trees were used for this analysis. The CFD model integrates the tree architecture into the model geometry, rather than using a generalized canopy profile approach. Predicted vertical on-tree deposition profiles agreed well with measurements. The lower airflow rate generated by the sprayer with individual spouts resulted in a significantly larger deflection of the spray particles under the same wind conditions. A detailed assessment was made on the most common axial sprayer. An increase in the magnitude of the wind speed for flow across the tree row resulted in an increase in the amount of spray detected in the air around the trees and in the ground deposition in front of the tree row. Environmental airflow in the direction of spraying gave the largest deposition on the tree, constraining the spray in the canopy region. A wind direction opposite to the spraying direction, however, resulted in an increase of the ground deposition and the amount of spray remaining in air. The model can be used to analyze the effects of implementation of more sustainable spray application procedures taking into account wind conditions, tree and machine characteristics.

  7. Uncovering the information core in recommender systems

    Science.gov (United States)

    Zeng, Wei; Zeng, An; Liu, Hao; Shang, Ming-Sheng; Zhou, Tao

    2014-08-01

    With the rapid growth of the Internet and overwhelming amount of information that people are confronted with, recommender systems have been developed to effectively support users' decision-making process in online systems. So far, much attention has been paid to designing new recommendation algorithms and improving existent ones. However, few works considered the different contributions from different users to the performance of a recommender system. Such studies can help us improve the recommendation efficiency by excluding irrelevant users. In this paper, we argue that in each online system there exists a group of core users who carry most of the information for recommendation. With them, the recommender systems can already generate satisfactory recommendation. Our core user extraction method enables the recommender systems to achieve 90% of the accuracy of the top-L recommendation by taking only 20% of the users into account. A detailed investigation reveals that these core users are not necessarily the large-degree users. Moreover, they tend to select high quality objects and their selections are well diversified.

  8. Formation of hydrotalcite coating on the aluminum alloy 6060 in spray system

    DEFF Research Database (Denmark)

    Zhou, Lingli; Friis, Henrik; Roefzaad, Melanie

    2016-01-01

    Coatings with the composition of Li-Al-NO3 hydrotalcite were formed on the Al alloy 6060 using a spray system. The coatings consist of crystals with a typical hydrotalcite structure. Dense, uniform and blade-like flakes cover completely the surface of the Al substrate. The coatings display a mult...

  9. EPICS: porting iocCore to multiple operating systems.

    Energy Technology Data Exchange (ETDEWEB)

    Kraimer, M.

    1999-09-30

    An important component of EPICS (Experimental Physics and Industrial Control System) is iocCore, which is the core software in the IOC (input/output controller) front-end processors. Currently iocCore requires the vxWorks operating system. This paper describes the porting of iocCore to other operating systems.

  10. Numerical heat transfer model for frost protection of citrus fruits by water from a spraying system

    Directory of Open Access Journals (Sweden)

    Issa Roy J.

    2012-01-01

    Full Text Available A simplified model is developed to simulate the conditions associated with the protection of fruits from frost damage using water from a spraying system. The model simulates the movement of the solidifying water front on a single fruit, and based on that determines the spray frequency needed for a water film to continuously surround the ice-coated fruit to prevent the fruit temperature from dropping below 0ºC. Simulations are presented for the frost protection of sweet oranges (citrus sinensis. The effect of environmental conditions such as air temperature, air velocity, surface radiation and water film evaporation on the development of the ice layer encasing is considered. Simulations show the effect the encasing ice sheet thickness has on the fruit temperature if water from a spraying system is turned off permanently. Experimental tests are also conducted to determine the change in the thermal properties of citrus sinensis for operating temperatures that range from above freezing to sub-freezing. The results of the experimental tests and the numerical simulations shall lead to a better understanding of fruit protection from frost damage by the application of water from a spraying system.

  11. Formation of core-shell-structured Zn2SnO4-carbon microspheres with superior electrochemical properties by one-pot spray pyrolysis.

    Science.gov (United States)

    Hong, Young Jun; Kang, Yun Chan

    2015-01-14

    Core-shell structured Zn2SnO4-carbon microspheres with different carbon contents are prepared by one-pot spray pyrolysis without any further heating process. A Zn2SnO4-carbon composite microsphere is prepared from one droplet containing Zn and Sn salts and polyvinylpyrrolidone (PVP). Melted PVP moves to the outside of the composite microsphere during the drying stage of the droplet. In addition, melting of the phase separated metal salts forms the dense core. Carbonization of the phase separated PVP forms the textured and porous thick carbon shell. The discharge capacities of the core-shell structured Zn2SnO4-carbon microspheres for the 2(nd) and 120(th) cycles at a current density of 1 A g(-1) are 864 and 770 mA h g(-1), respectively. However, the discharge capacities of the bare Zn2SnO4 microspheres prepared by the same process without PVP for the 2(nd) and 120(th) cycles are 1106 and 81 mA h g(-1), respectively. The stable and reversible discharge capacities of the Zn2SnO4-carbon composite microspheres prepared from the spray solution with 15 g PVP decrease from 894 to 528 mA h g(-1) as current density increases from 0.5 to 5 A g(-1).

  12. Core systems of geometry in animal minds.

    Science.gov (United States)

    Spelke, Elizabeth S; Lee, Sang Ah

    2012-10-05

    Research on humans from birth to maturity converges with research on diverse animals to reveal foundational cognitive systems in human and animal minds. The present article focuses on two such systems of geometry. One system represents places in the navigable environment by recording the distance and direction of the navigator from surrounding, extended surfaces. The other system represents objects by detecting the shapes of small-scale forms. These two systems show common signatures across animals, suggesting that they evolved in distant ancestral species. As children master symbolic systems such as maps and language, they come productively to combine representations from the two core systems of geometry in uniquely human ways; these combinations may give rise to abstract geometric intuitions. Studies of the ontogenetic and phylogenetic sources of abstract geometry therefore are illuminating of both human and animal cognition. Research on animals brings simpler model systems and richer empirical methods to bear on the analysis of abstract concepts in human minds. In return, research on humans, relating core cognitive capacities to symbolic abilities, sheds light on the content of representations in animal minds.

  13. Effect of nutrient spray interval and light quality in root zone on growth characteristics of Anthurium andreanum L. in aeroponic system

    OpenAIRE

    M. Kafi; Z. Shahbani; Naderi, R.; T. Taghavi

    2013-01-01

    In order to determine the most appropriate nutrient solution spraying interval and effects of light quality in the root zone on anthurium in aeroponic system, a split plot experiment, with completely randomized design, was carried out in a greenhouse located in the city of Karaj, Iran. In this study, time between the sprays was the main plot and consisted of two levels (2 minutes spray and 30 minutes without spray, and 2 minutes spray and 45 minutes without spray) and color of the containers ...

  14. The philosophical core of King's conceptual system.

    Science.gov (United States)

    Whelton, B J

    1999-04-01

    Aristotelian understanding of being human is presented as the philosophical core of King's conceptual system. A summary of King's thought is organized according to contemporary influences. The article then turns to what Aristotle teaches about the composition of the world and what it means to be a human being. Wallace's life-powers model of the soul brings these insights into contemporary thought. Aristotelian philosophy completes King's account of the personal system by providing insight into what it is to be human. Parallels in the reasoning of transaction and Aristotelian deliberation are further evidence of classical influences within King's work.

  15. Core Length and Spray Width Measurements in Shear Coaxial Rocket Injectors from X-ray Radiography Measurements

    Science.gov (United States)

    2015-05-01

    combustion applications, such as rockets, this region is also the area of flame holding, and so is of primary im- portance in predicting combustion...spray and dividing by the liquid-mass-flow rate allows a mass-averaged liquid velocity to be calculated . In the recent years x-ray radiography has...efficient, and ρl is the density of the absorbing fluid (in this case demineralized water). The mass attenuation coefficient can be calculated using

  16. Residual stress analysis of the thermal barrier coating system by considering the plasma spraying process

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myung Jae; Lee, Byung Chai [KAIST, Daejeon (Korea, Republic of); Lim, Jang Gyun; Kim, Moon Ki [Sungkyunkwan University, Suwon (Korea, Republic of)

    2014-06-15

    The residual stress is the key factor causing the reliability problem of thermal barrier coating (TBC). The failure of plasma spray coatings due to residual stresses is a serious and recurring problem of TBC. The difference of thermal expansion coefficient between the substrate and each coating combined with temperature evolution and temperature gradients during deposition process determine the residual stress for the whole TBC system. The magnitudes and distributions of the residual stresses are affected by deposition process and deposition characteristics. Most of FEA (finite element analysis) has been performed under the assumption that the multilayer coating system is stacked at once without considering the deposition process during plasma spraying. In this research, FEA for a coupled heat transfer and elastic-plastic thermal stress was performed to obtain the more detailed and reliable result of residual stress of the TBC system using the element activation/deactivation technique. The residual stress variation from the start of plasma spraying to cooling stage with room temperature was obtained systematically considering the deposition process. It can be used as reference data to improve the performance of TBC. In addition, the relationship between residual stress and coating conditions such as cooling rate and time is also examined thoroughly.

  17. Influence green sand system by core sand additions

    OpenAIRE

    N. Špirutová; J. Beňo; V. Bednářová; J. Kříž; M. Kandrnál

    2012-01-01

    Today, about two thirds of iron alloys casting (especially for graphitizing alloys of iron) are produced into green sand systems with usually organically bonded cores. Separation of core sands from the green sand mixture is very difficult, after pouring. The core sand concentration increase due to circulation of green sand mixture in a closed circulation system. Furthermore in some foundries, core sands have been adding to green sand systems as a replacement for new sands. The goal of this co...

  18. Characterization of sprays

    Science.gov (United States)

    Chigier, N.; Mao, C.-P.

    1984-01-01

    It is pointed out that most practical power generation and propulsion systems involve the burning of different types of fuel sprays, taking into account aircraft propulsion, industrial furnaces, boilers, gas turbines, and diesel engines. There has been a lack of data which can serve as a basis for spray model development and validation. A major aim of the present investigation is to fill this gap. Experimental apparatus and techniques for studying the characteristics of fuel sprays are discussed, taking into account two-dimensional still photography, cinematography, holography, a laser diffraction particle sizer, and a laser anemometer. The considered instruments were used in a number of experiments, taking into account three different types of fuel spray. Attention is given to liquid fuel sprays, high pressure pulsed diesel sprays, and coal-water slurry sprays.

  19. 一种喷雾干燥塔的新风预处理系统%Fresh Air Pretreatment System in Spray Drying Tower

    Institute of Scientific and Technical Information of China (English)

    涂伟; 周开翔; 付曜; 梅勇; 袁亮

    2016-01-01

    Spray drying technology has been widely used in food and pharmaceutical industry. Under the condition that the air in exterior environment is poor, how to make the air directly touching the product in spray drying tower qualified is core technology to ensure the quality of the product. In this article, one fresh air pretreatment system used in spray drying tower was introduced. This system has been proved to play significant roles in making the air in the tower qualified and saving the cost and energy consumption.%喷雾干燥技术已广泛应用于食品医药行业,在外部环境空气质量普遍较差的情况下,如何确保喷雾干燥塔内直接与产品接触的空气质量,将是企业保证产品质量的重要技术研究课题。介绍一种喷雾干燥塔的新风预处理系统,该系统在确保喷雾干燥塔内空气质量以及节约成本和能耗等方面具有重要意义。

  20. Enhanced toxic cloud knockdown spray system for decontamination applications

    Science.gov (United States)

    Betty, Rita G [Rio Rancho, NM; Tucker, Mark D [Albuquerque, NM; Brockmann, John E [Albuquerque, NM; Lucero, Daniel A [Albuquerque, NM; Levin, Bruce L [Tijeras, NM; Leonard, Jonathan [Albuquerque, NM

    2011-09-06

    Methods and systems for knockdown and neutralization of toxic clouds of aerosolized chemical or biological warfare (CBW) agents and toxic industrial chemicals using a non-toxic, non-corrosive aqueous decontamination formulation.

  1. Effect of antimicrobials applied on the surface of beef subprimals via an air-assisted electrostatic spraying system(ESS)or the Sprayed Lethality in Container(SLIC)method to control Shiga toxin-producing cells of Escherichia

    Science.gov (United States)

    We evaluated the efficacy of an air-assisted electrostatic spraying system (ESS) and/or the Sprayed Lethality in Container (SLIC®) method to deliver antimicrobials onto the surface of beef subprimals to reduce levels of Shiga toxin-producing cells of Escherichia coli (STEC). In brief, beef subprimal...

  2. Use of air-assisted electrostatic spraying system (ESS)or the sprayed lethality in container(SLIC) method to deliver anticmicrobials onto the surface of beef subprimals to ... shiga toxin-producing cells of Escherichia coli

    Science.gov (United States)

    We evaluated the efficacy of an air-assisted electrostatic spraying system (ESS) and/or the Sprayed Lethality in Container (SLIC) method to deliver antimicrobials onto the surface of beef subprimals to reduce levels of Shiga toxin-producing Escherichia coli (STEC). Beef subprimals were surface inocu...

  3. Effects of thermoacoustic oscillations on spray combustion dynamics with implications for lean direct injection systems

    Science.gov (United States)

    Chishty, Wajid Ali

    Thermoacoustic instabilities in modern high-performance, low-emission gas turbine engines are often observable as large amplitude pressure oscillations and can result in serious performance and structural degradations. These acoustic oscillations can cause oscillations in combustor through-flows and given the right phase conditions, can also drive unsteady heat release. To curb the potential harms caused by the existence of thermoacoustic instabilities, recent efforts have focused on the active suppression of these instabilities. Intuitively, development of effective active combustion control methodologies is strongly dependent on the knowledge of the onset and sustenance of thermoacoustic instabilities. Specially, non-premixed spray combustion environment pose additional challenges due to the inherent unstable dynamics of sprays. The understanding of the manner in which the combustor acoustics affect the spray characteristics, which in turn result in heat release oscillation, is therefore, of paramount importance. The experimental investigations and the modeling studies conducted towards achieving this knowledge have been presented in this dissertation. Experimental efforts comprise both reacting and non-reacting flow studies. Reacting flow experiments were conducted on a overall lean direct injection, swirl-stabilized combustor rig. The investigations spanned combustor characterization and stability mapping over the operating regime. The onset of thermoacoustic instability and the transition of the combustor to two unstable regimes were investigated via phase-locked chemiluminescence imaging and measurement and phase-locked acoustic characterization. It was found that the onset of the thermoacoustic instability is a function of the energy gain of the system, while the sustenance of instability is due to the in-phase relationship between combustor acoustics and unsteady heat release driven by acoustic oscillations. The presence of non-linearities in the system

  4. Rotary Mode Core Sample System availability improvement

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, W.W.; Bennett, K.L.; Potter, J.D. [Westinghouse Hanford Co., Richland, WA (United States); Cross, B.T.; Burkes, J.M.; Rogers, A.C. [Southwest Research Institute (United States)

    1995-02-28

    The Rotary Mode Core Sample System (RMCSS) is used to obtain stratified samples of the waste deposits in single-shell and double-shell waste tanks at the Hanford Site. The samples are used to characterize the waste in support of ongoing and future waste remediation efforts. Four sampling trucks have been developed to obtain these samples. Truck I was the first in operation and is currently being used to obtain samples where the push mode is appropriate (i.e., no rotation of drill). Truck 2 is similar to truck 1, except for added safety features, and is in operation to obtain samples using either a push mode or rotary drill mode. Trucks 3 and 4 are now being fabricated to be essentially identical to truck 2.

  5. Facile spray-drying/pyrolysis synthesis of core-shell structure graphite/silicon-porous carbon composite as a superior anode for Li-ion batteries

    Science.gov (United States)

    Li, Min; Hou, Xianhua; Sha, Yujing; Wang, Jie; Hu, Shejun; Liu, Xiang; Shao, Zongping

    2014-02-01

    A silicon/graphite/amorphous carbon (Si/C) composite with a low silicon content in a core-shell structure has been easily synthesized using a simple method based on spray drying in combination with a subsequent pyrolysis process; natural graphite serves as the core, and silicon nanoparticles, which filled in the porous carbon matrix formed from the pyrolysis of citric acid and pitch precursors, serve as the shell. The combination of the core-shell structure for the composite and porous carbon-coating layer accommodates the large volume change of the silicon during the lithium intercalation/extraction process, thus stabilizing the electrode structure during discharge/charge cycles. As an anode material, the as-obtained Si/C composite demonstrates high capacity and excellent cycle stability. An initial specific discharge capacity of approximately 723.8 mAh g-1 and a reversible specific capacity of approximately 600 mAh g-1 after 100 cycles at a constant density of 100 mA g-1 are reached, about two times the values for graphite. Due to the simple synthesis process and the excellent performance of the resulted electrode, great commercial potential is envisioned.

  6. University System of Georgia's eCore: Virtual General Education

    Science.gov (United States)

    Morris, Libby V.; Finnegan, Catherine L.

    2009-01-01

    This case study reviews the emergence and evolution of eCore (the University System of Georgia's electronically delivered undergraduate core courses) over eight years and summarizes the issues, ongoing challenges, and lessons learned from interinstitutional collaboration in offering and administering a "virtual" shared core. The bulk of…

  7. Influence green sand system by core sand additions

    Directory of Open Access Journals (Sweden)

    N. Špirutová

    2012-01-01

    Full Text Available Today, about two thirds of iron alloys casting (especially for graphitizing alloys of iron are produced into green sand systems with usually organically bonded cores. Separation of core sands from the green sand mixture is very difficult, after pouring. The core sand concentration increase due to circulation of green sand mixture in a closed circulation system. Furthermore in some foundries, core sands have been adding to green sand systems as a replacement for new sands. The goal of this contribution is: “How the green sand systems are influenced by core sands?”This effect is considered by determination of selected technological properties and degree of green sand system re-bonding. From the studies, which have been published yet, there is not consistent opinion on influence of core sand dilution on green sand system properties. In order to simulation of the effect of core sands on the technological properties of green sands, there were applied the most common used technologies of cores production, which are based on bonding with phenolic resin. Core sand concentration added to green sand system, was up to 50 %. Influence of core sand dilution on basic properties of green sand systems was determined by evaluation of basic industrial properties: moisture, green compression strength and splitting strength, wet tensile strength, mixture stability against staling and physical-chemistry properties (pH, conductivity, and loss of ignition. Ratio of active betonite by Methylene blue test was also determined.

  8. Effect for Recovery of the Containment Spray System to the Release of Cesium

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Mi Ro [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    In the perspective of the amount of Cs-137, the mass of Cs-137 correspondent with the 100TBq is calculated as 32g. However, during the severe accident, if the containment has been failed, it is generally expected that the mass of Cs-137 released to the environment is more than 1kg for most accident sequences So, the review and improvement of the PSA model in order to reduce containment failure frequency should be needed. Actually, the current PSA model is known to be constructed by the conservative assumptions, especially in the view point of Level 2 PSA model. Therefore, it is necessary to find this conservatism and to improve the Model using the reasonable assumptions. All of the domestic operating nuclear power plants are required to prepare the Accident Management Plan within 3 years and this Accident Management Plan should have to meet the New Safety Goal including the requirement that the sum of the accident frequency that the release of the radioactive nuclide Cs-137 to the environment exceeds the 100TBq should be less than 1.0E-6/RY. The containment spray system is the only facility that mitigates the containment over-pressurization in the operating nuclear power plants, such as Westinghouse type or OPR1000 type. In this study, the effects of the containment spray system recovery on the amount of Cesium released to the environment were analyzed. If the recovery of the containment spray system can be applied to the PSA model, it is expected that the containment failure frequency and also the amount of cesium released to the environment can be greatly reduced.

  9. An Augmented γ-Spray System to Visualize Biological Effects for Human Body

    Science.gov (United States)

    Manabe, Seiya; Tenzou, Hideki; Kasuga, Takaaki; Iwakura, Yukiko; Johnston, Robert

    2017-09-01

    The purpose of this study was to develop a new educational system with an easy-to-use interface in order to support comprehension of the biological effects of radiation on the human body within a short period of time. A paint spray-gun was used as a gamma rays source mock-up for the system. The application screen shows the figure of a human body for radiation deposition using the γ-Sprayer, a virtual radiation source, as well as equivalent dosage and a panel for setting the irradiation conditions. While the learner stands in front of the PC monitor, the virtual radiation source is used to deposit radiation on the graphic of the human body that is displayed. Tissue damage is calculated using an interpolation method from the data calculated by the PHITS simulation code in advance while the learner is pulling the trigger with respect to the irradiation time, incident position, and distance from the screen. It was confirmed that the damage was well represented by the interpolation method. The augmented ?-Spray system was assessed by questionnaire. Pre-post questionnaire was taken for our 41 students in National Institute of Technology, Kagawa College. It was also confirmed that the system has a capability of teaching the basic radiation protection concept, quantitative feeling of the radiation dose, and the biological effects

  10. Synchronized droplet size measurements for Coal-Water-Slurry (CWS) diesel sprays of an electronically-controlled fuel injection system

    Science.gov (United States)

    Kihm, K. D.; Terracina, D. P.; Payne, S. E.; Caton, J. A.

    Experiments were completed to study intermittent coal-water slurry (CWS) fuel sprays injected from an electronically-controlled accumulator injector system. A laser diffraction particle analyzing (LDPA) technique was used to measure the spray diameters (Sauter mean diameter, SMD) assuming the Rosin-Rammler two parameter model. In order to ensure an accurate synchronization of the measurement with the intermittent sprays, a new synchronization technique was developed using the light extinction signal as a triggering source for the data taking initiation. This technique allowed measurement of SMD's near the spray tip where the light extinction was low and the data were free from the multiscattering bias. Coal-water slurry fuel with 50% coal loading in mass containing 5 (mu)m mass median diameter coal particulates was considered. Injection pressures ranging from 28 to 110 MPa, two different nozzle orifice diameters, 0.2 ad 0.4 mm, and four axial measurement locations from 60 to 120 mm from the nozzle orifice were studied. Measurements were made for pressurized (2.0 MPa in gauge) and for ambient chamber conditions. The spray SMD showed an increase with the distance of the axial measurement location and with the ambient gas density, and showed a decrease with increasing injection pressure. A correlation of the Sauter mean diameter with the injection conditions was determined. The results were also compared with previous SMD correlations that were available only for diesel fuel sprays.

  11. Measurements in liquid fuel sprays

    Science.gov (United States)

    Chigier, N.

    1984-01-01

    Techniques for studying the events directly preceding combustion in the liquid fuel sprays are being used to provide information as a function of space and time on droplet size, shape, number density, position, angle of flight and velocity. Spray chambers were designed and constructed for: (1) air-assist liquid fuel research sprays; (2) high pressure and temperature chamber for pulsed diesel fuel sprays; and (3) coal-water slurry sprays. Recent results utilizing photography, cinematography, and calibration of the Malvern particle sizer are reported. Systems for simultaneous measurement of velocity and particle size distributions using laser Doppler anemometry interferometry and the application of holography in liquid fuel sprays are being calibrated.

  12. PF-4 simulated fire accident analysis: Filter-spray cool-down system reevaluation implications

    Energy Technology Data Exchange (ETDEWEB)

    White, B.W.; Gregory, W.S.

    1990-10-01

    The Los Alamos National Laboratory PF-4 facility was designed with spray cool down systems within the building's ventilation systems. The Engineering and Safety Analysis Group was asked, in cooperation with ENG-8 and MST-8, to evaluate whether the spray cool-down system still need to be classified as safety class'' systems. The study was performed using the FIRAC computer code. Given the fire source terms (hypothetical fire energy or time-temperature history), FIRAC can predict the pertinent transient flow parameters (pressures, flows, and temperatures) throughout a previously defined and selected fire zone. A computer model for the study that had all of the main ventilation systems in the south half of the PF-4 facility was used. Because the most hazardous room is located in the 400 Section, all ventilation systems but the 400 Section's one were simplified. The impetus for simplification was to keep the computer model tractable, and this was possible with the following assumptions: the fire cannot spread from one room to another, all corridor connecting doors are closed and will not fail under the pressures generated by the fire, and the principal pathway for potential release is the ventilation system. All of the blowers continue to operate, and all fire retardant systems fail to operate during the fire. The ASTM time-temperature curve was the source for the burn-room temperature, and smoke injection was used as input as well. Five different computer runs were made using different combinations of source terms and heat transfer. A connection from the burn room to the glovebox ventilation system was created by burning the glovebox plastic shielding; it was modeled by a branch having an initial flow 75 ft{sup 3}/min. 7 refs., 35 refs., 15 tabs.

  13. Two Core Systems of Dynamic Logic

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiao-jun; LI Ke-sheng; HAO Yi-jiang

    2012-01-01

    Dynamic Logic (DL) is a formal system for reasoning on the input/output behaviors of programs. Hoare Logic (HL) is the precursor of all dynamic logics known today. Two core systems of DL are Propositional Dynamic Logic (PDL) and Quantificational Dynamic Logic (QDL). PDL is an extension of propositional logic with programs and is the appropriate place to begin investigating DL. QDL can be viewed as the first-order version of PDL. Predicate Dynamic Logic (DPL) is a subsystem of QDL and can be regarded as the most basic of a hierarchy of formulas-as-programs languages. These systems constitute the main topic of this essay. The authors’ elaboration here is very brief and sketchy and with the aim of providing the readers with only the most essence of the topic on the basis of other researchers’ works. The last part is the important one in which the authors summarize the approaches of extending Dynamic Logic. The conclusions are as follows: variants of DL are obtained by reinterpreting some constructs as something else, and/or by adding rules or operators, and/or by restricting or extending or revising some constructs, and/or combining a kind of logic with another one, and/or using a comprehensive way which insights from other disciplines according to its application in various domains. In all these cases, the authors give examples to illustrate the conclusion. It is generally proposed that sometimes the introduction of a new operator or rule or construct, or the introduction of reinterpretation or restriction or extension or revision of some constructs will increase expressive power and sometimes not; sometimes it has effect on the complexity of deciding satisfiability and sometimes not. Finally, the authors sum up major aspects which we should consider during investigating a specific variant of DL. The researchers should focus on the well-formed expressions and on the validity of expressions about it with respect to standard, non-standard and syntactically

  14. cFE/CFS (Core Flight Executive/Core Flight System)

    Science.gov (United States)

    Wildermann, Charles P.

    2008-01-01

    This viewgraph presentation describes in detail the requirements and goals of the Core Flight Executive (cFE) and the Core Flight System (CFS). The Core Flight Software System is a mission independent, platform-independent, Flight Software (FSW) environment integrating a reusable core flight executive (cFE). The CFS goals include: 1) Reduce time to deploy high quality flight software; 2) Reduce project schedule and cost uncertainty; 3) Directly facilitate formalized software reuse; 4) Enable collaboration across organizations; 5) Simplify sustaining engineering (AKA. FSW maintenance); 6) Scale from small instruments to System of Systems; 7) Platform for advanced concepts and prototyping; and 7) Common standards and tools across the branch and NASA wide.

  15. 在线混药喷雾系统混药性能试验%Experiment on mixing performance of on-line mixing spray system

    Institute of Scientific and Technical Information of China (English)

    邱白晶; 马靖; 邓斌; 欧鸣雄; 董晓娅

    2014-01-01

    The aim of this study was to research the influence of the jet-mixing apparatus (one core component) on working state of the on-line mixing spray system. Due to the need of making the mixing process visible, the pesticide was simulated by carmine solution. The working states of the on-line mixing spray system with 3 types of different flow characteristics produced by 3 kinds of nozzles respectively, i.e. TR80-005c, ST110-01 and F110-015 were examined, as well as the jet-mixing apparatus with 24 different structural parameters made up of 4 types of mixing tube’s diameters and 6 types of jet nozzle’s outlet diameters. Based on spectrophotometric method, the mixing solution from the on-line mixing spray system was collected and measured by the visible spectrophotometer of UV-2102 PCS type. The absorption wavelength of carmine solution was firstly scanned, and 508 nm was selected as the measuring wavelength. Then a series of carmine standard solutions with different concentrations of 0.01, 0.02, 0.04, 0.06, 0.08 and 0.1 g/L were prepared to establish a mathematical expression of carmine solution concentration and the absorbance under the selected wavelength;finally, the concentrations of the collected samples were calculated according to the mathematical expression. The mixture homogeneity of the on-line mixing spray system operated with the nozzle of F110-015 was analyzed by the above method when jet nozzle’s outlet diameter of jet-mixing apparatus, d, was set to 2.00 mm, and the area ratio m was set to 4.00. The results of experiments indicated that the structural parameters of the jet-mixing apparatus had a significant effect on the working condition of the on-line mixing spray system. In the same kind of spray system, when the structural parameters of the jet-mixing apparatus changed, the working state of the on-line mixing spray system also changed. And there are two working states for spray system in different experiments:inhalation and backflow. The

  16. Effect of nutrient spray interval and light quality in root zone on growth characteristics of Anthurium andreanum L. in aeroponic system

    Directory of Open Access Journals (Sweden)

    M. Kafi

    2013-03-01

    Full Text Available In order to determine the most appropriate nutrient solution spraying interval and effects of light quality in the root zone on anthurium in aeroponic system, a split plot experiment, with completely randomized design, was carried out in a greenhouse located in the city of Karaj, Iran. In this study, time between the sprays was the main plot and consisted of two levels (2 minutes spray and 30 minutes without spray, and 2 minutes spray and 45 minutes without spray and color of the containers was the sub plot at three levels (black, blue and red. Results showed that 2 minutes spay and 45 minutes without spay increased number of leaves and shoot fresh weight much higher than 2 minutes spray and 30 minutes without spray. Study of light quality in the root zone showed that black color of the containers, by increasing total leaf area and shoot dry and fresh weight, was the best color treatment. Blue color in the root zone had the most influence on final root length; but was not able to increase root dry and fresh weight, because of higher number of roots in other color treatments. In general, spraying nutrient solution for two minutes, and 45 minutes without spray, along with black color containers in the root zone was the best treatment for most growth characteristics of the anthurium plant.

  17. Degradation of Organic Compounds by Active Species Sprayed in a Dielectric Barrier Corona Discharge System

    Institute of Scientific and Technical Information of China (English)

    LI Jie; SONG Ling; LIU Qiang; QU Guangzhou; LI Guofeng; WU Yan

    2009-01-01

    Investigation was made into the degradation of organic compounds by a dielectric barrier corona discharge (DBCD) system. The DBCD, consisting of a quartz tube, a concentric high voltage electrode and a net wrapped to the external wall (used as ground electrode), was introduced to generate active species which were sprayed into the organic solution through an aerator fixed on the bottom of the tube. The effect of four factors-the discharge voltage, gas flow rate, solution conductivity, and pH of wastewater, on the degradation efficiency of phenol was assessed. The obtained results demonstrated that this process was an effective method for phenol degradation. The degradation rate was enhanced with the increase in power supplied. The degradation efficiency in alkaline conditions was higher than those in acid and neutral conditions.The optimal gas flow rate for phenol degradation in the system was 1.6 L/min, while the solution conductivity had little effect on the degradation.

  18. Transient performance and intelligent combination control of a novel spray cooling loop system

    Institute of Scientific and Technical Information of China (English)

    Wang Jin; Li Yunze; Wang Jun

    2013-01-01

    Effective thermal control systems are essential for the reliable working of insulated gate bipolar transistors (IGBTs) in many applications. A novel spray cooling loop system with inte-grated sintered porous copper wick (SCLS-SPC) is proposed to meet the requirements of higher device level heat fluxes and the harsh environments in some applications such as hybrid, fuel cell vehicles and aerospace. Fuzzy logic and proportional-integral-derivative (PID) policies are applied to adjust the electronic temperature within a safe working range. To evaluate the thermal control effect, a mathematical model of a 4-node thermal network and pump are established for predicting the dynamics of the SCLS-SPC. Moreover, the transient response of the 4 nodes and vapor mass flowrate under no control, PID and Fuzzy-PID are numerically investigated and discussed in detail.

  19. Core Competence Analysis--Toyota Production System

    Institute of Scientific and Technical Information of China (English)

    钱璐宜

    2013-01-01

      Core competencies are the wel spring of new business development. It is the sharpest sword to penetrate the mature market, hold and enlarge the existing share. Toyota makes wel use of its TPS and form its own style which other car manufacturers hard to imitate.In contrast,the Chinese company---FAW only imitating the superficial aspects from Toyota and ignoring its own problems in manufacture line.

  20. Note: Automatic layer-by-layer spraying system for functional thin film coatings

    Science.gov (United States)

    Seo, Seongmin; Lee, Sangmin; Park, Yong Tae

    2016-03-01

    In this study, we have constructed an automatic spray machine for producing polyelectrolyte multilayer films containing various functional materials on wide substrates via the layer-by-layer (LbL) assembly technique. The proposed machine exhibits advantages in terms of automation, process speed, and versatility. Furthermore, it has several features that allow a fully automated spraying operation, such as various two-dimensional spraying paths, control of the flow rate and operating speed, air-assist fan-shaped twin-fluid nozzles, and an optical display. The robot uniformly sprays aqueous mixtures containing complementary (e.g., oppositely charged, capable of hydrogen bonding, or capable of covalent bonding) species onto a large-area substrate. Between each deposition of opposite species, samples are spray-rinsed with deionized water and blow-dried with air. The spraying, rinsing, and drying areas and times are adjustable by a computer program. Twenty-bilayer flame-retardant thin films were prepared in order to compare the performance of the spray-assisted LbL assembly with a sample produced by conventional dipping. The spray-coated film exhibited a reduction of afterglow time in vertical flame tests, indicating that the spray-LbL technique is a simple method to produce functional thin film coatings.

  1. Conceptual study of advanced PWR core design. Development of advanced PWR core neutronics analysis system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang Hyo; Kim, Seung Cho; Kim, Taek Kyum; Cho, Jin Young; Lee, Hyun Cheol; Lee, Jung Hun; Jung, Gu Young [Seoul National University, Seoul (Korea, Republic of)

    1995-08-01

    The neutronics design system of the advanced PWR consists of (i) hexagonal cell and fuel assembly code for generation of homogenized few-group cross sections and (ii) global core neutronics analysis code for computations of steady-state pin-wise or assembly-wise core power distribution, core reactivity with fuel burnup, control rod worth and reactivity coefficients, transient core power, etc.. The major research target of the first year is to establish the numerical method and solution of multi-group diffusion equations for neutronics code development. Specifically, the following studies are planned; (i) Formulation of various numerical methods such as finite element method(FEM), analytical nodal method(ANM), analytic function expansion nodal(AFEN) method, polynomial expansion nodal(PEN) method that can be applicable for the hexagonal core geometry. (ii) Comparative evaluation of the numerical effectiveness of these methods based on numerical solutions to various hexagonal core neutronics benchmark problems. Results are follows: (i) Formulation of numerical solutions to multi-group diffusion equations based on numerical methods. (ii) Numerical computations by above methods for the hexagonal neutronics benchmark problems such as -VVER-1000 Problem Without Reflector -VVER-440 Problem I With Reflector -Modified IAEA PWR Problem Without Reflector -Modified IAEA PWR Problem With Reflector -ANL Large Heavy Water Reactor Problem -Small HTGR Problem -VVER-440 Problem II With Reactor (iii) Comparative evaluation on the numerical effectiveness of various numerical methods. (iv) Development of HEXFEM code, a multi-dimensional hexagonal core neutronics analysis code based on FEM. In the target year of this research, the spatial neutronics analysis code for hexagonal core geometry(called NEMSNAP-H temporarily) will be completed. Combination of NEMSNAP-H with hexagonal cell and assembly code will then equip us with hexagonal core neutronics design system. (Abstract Truncated)

  2. Sea-spray geoengineering in the HadGEM2-ES earth-system model: radiative impact and climate response

    Directory of Open Access Journals (Sweden)

    A. Jones

    2012-11-01

    Full Text Available The radiative impact and climate effects of geoengineering using sea-spray aerosols have been investigated in the HadGEM2-ES Earth system model using a fully prognostic treatment of the sea-spray aerosols and also including their direct radiative effect. Two different emission patterns were considered, one to maximise the direct effect in clear skies, the other to maximise the indirect effects of the sea-spray on low clouds; in both cases the emissions were limited to 10% of the ocean area. While the direct effect was found to be significant, the indirect effects on clouds were much more effective in reducing global mean temperature as well as having less of an impact on global mean precipitation per unit temperature reduction. The impact on the distribution of precipitation was found to be similar in character, but less in degree, to that simulated by a previous study using a much simpler treatment of this geoengineering process.

  3. Liquid Methane Testing With a Large-Scale Spray Bar Thermodynamic Vent System

    Science.gov (United States)

    Hastings, L. J.; Bolshinskiy, L. G.; Hedayat, A.; Flachbart, R. H.; Sisco, J. D.; Schnell. A. R.

    2014-01-01

    NASA's Marshall Space Flight Center conducted liquid methane testing in November 2006 using the multipurpose hydrogen test bed outfitted with a spray bar thermodynamic vent system (TVS). The basic objective was to identify any unusual or unique thermodynamic characteristics associated with densified methane that should be considered in the design of space-based TVSs. Thirteen days of testing were performed with total tank heat loads ranging from 720 to 420 W at a fill level of approximately 90%. It was noted that as the fluid passed through the Joule-Thompson expansion, thermodynamic conditions consistent with the pervasive presence of metastability were indicated. This Technical Publication describes conditions that correspond with metastability and its detrimental effects on TVS performance. The observed conditions were primarily functions of methane densification and helium pressurization; therefore, assurance must be provided that metastable conditions have been circumvented in future applications of thermodynamic venting to in-space methane storage.

  4. Modeling of Spray System Operation under Hydrogen and Steam Emissions in NPP Containment during Severe Accident

    Directory of Open Access Journals (Sweden)

    Vadim E. Seleznev

    2011-01-01

    Full Text Available The paper describes one of the variants of mathematical models of a fluid dynamics process inside the containment, which occurs in the conditions of operation of spray systems in severe accidents at nuclear power plant. The source of emergency emissions in this case is the leak of the coolant or rupture at full cross-section of the main circulating pipeline in a reactor building. Leak or rupture characteristics define the localization and the temporal law of functioning of a source of emergency emission (or accrued operating of warmed up hydrogen and steam in the containment. Operation of this source at the course of analyzed accident models should be described by the assignment of the relevant Dirichlet boundary conditions. Functioning of the passive autocatalytic recombiners of hydrogen is described in the form of the complex Newton boundary conditions.

  5. A novel method to design water spray cooling system to protect floating roof atmospheric storage tanks against fires

    Directory of Open Access Journals (Sweden)

    Iraj Alimohammadi

    2015-01-01

    Full Text Available Hydrocarbon bulk storage tank fires are not very common, but their protection is essential due to severe consequences of such fires. Water spray cooling system is one of the most effective ways to reduce damages to a tank from a fire. Many codes and standards set requirements and recommendations to maximize the efficiency of water spray cooling systems, but these are widely different and still various interpretations and methods are employed to design such systems. This article provides a brief introduction to some possible design methods of cooling systems for protection of storage tanks against external non-contacting fires and introduces a new method namely “Linear Density Method” and compares the results from this method to the “Average Method” which is currently in common practice. The average Method determines the flow rate for each spray nozzle by dividing the total water demand by the number of spray nozzles while the Linear Density Method determines the nozzle flow rate based on the actual flow over the surface to be protected. The configuration of the system includes a one million barrel crude oil floating roof tank to be protected and which is placed one half tank diameter from a similar adjacent tank with a full surface fire. Thermal radiation and hydraulics are modeled using DNV PHAST Version 6.53 and Sunrise PIPENET Version 1.5.0.2722 software respectively. Spray nozzles used in design are manufactured by Angus Fire and PNR Nozzles companies. Schedule 40 carbon steel pipe is used for piping. The results show that the cooling system using the Linear Density Method consumes 3.55% more water than the design using the average method assuming a uniform application rate of 4.1 liters per minute. Despite higher water consumption the design based on Linear Density Method alleviates the problems associated with the Average Method and provides better protection.

  6. Sensors in Spray Processes

    Science.gov (United States)

    Fauchais, P.; Vardelle, M.

    2010-06-01

    This paper presents what is our actual knowledge about sensors, used in the harsh environment of spray booths, to improve the reproducibility and reliability of coatings sprayed with hot or cold gases. First are described, with their limitations and precisions, the different sensors following the in-flight hot particle parameters (trajectories, temperatures, velocities, sizes, and shapes). A few comments are also made about techniques, still under developments in laboratories, to improve our understanding of coating formation such as plasma jet temperature measurements in non-symmetrical conditions, hot gases heat flux, particles flattening and splats formation, particles evaporation. Then are described the illumination techniques by laser flash of either cold particles (those injected in hot gases, or in cold spray gun) or liquid injected into hot gases (suspensions or solutions). The possibilities they open to determine the flux and velocities of cold particles or visualize liquid penetration in the core of hot gases are discussed. Afterwards are presented sensors to follow, when spraying hot particles, substrate and coating temperature evolution, and the stress development within coatings during the spray process as well as the coating thickness. The different uses of these sensors are then described with successively: (i) Measurements limited to particle trajectories, velocities, temperatures, and sizes in different spray conditions: plasma (including transient conditions due to arc root fluctuations in d.c. plasma jets), HVOF, wire arc, cold spray. Afterwards are discussed how such sensor data can be used to achieve a better understanding of the different spray processes, compare experiments to calculations and improve the reproducibility and reliability of the spray conditions. (ii) Coatings monitoring through in-flight measurements coupled with those devoted to coatings formation. This is achieved by either maintaining at their set point both in-flight and

  7. Plasma Spraying and Characterization of Tungsten Carbide-Cobalt Coatings by the Water-Stabilized System WSP

    Directory of Open Access Journals (Sweden)

    Pavel Ctibor

    2009-01-01

    Full Text Available Tungsten carbide-cobalt powders (WC-17wt% Co were plasma sprayed by a water-stabilized system WSP. Experiments with variable feeding distances and spray distances were carried out. Thinner coatings were deposited on carbon steel substrates and thicker coatings on stainless steel substrates to compare different cooling conditions. Basic characterization of coatings was done by XRD, SEM, and light microscopy plus image analysis. Microhardness was measured on polished cross-sections. The main focus of investigation was resistance against wear in dry as well as wet conditions. The appropriate tests were performed with set-ups based on ASTM G65 and G75, respectively. The influence of spray parameters onto coating wear performance was observed. The results of mechanical tests were discussed in connection with changes of phase composition and with the quality of the coating's microstructure. The results show that for obtaining the best possible WC-17Co coating with WSP process, from the viewpoint of wear resistance, the desired parameters combination is long feeding distance combined with short spray distance.

  8. Sea-spray geoengineering in the HadGEM2-ES Earth-system model: radiative impact and climate response

    Directory of Open Access Journals (Sweden)

    A. Jones

    2012-08-01

    Full Text Available The radiative impact and climate effects of geoengineering using sea-spray aerosols have been investigated in the HadGEM2-ES Earth system model using a fully prognostic treatment of the sea-spray aerosols and also including their direct raditive effect. Two different emission patterns were considered, one to maximise the direct effect in clear skies, the other to maximise the indirect effects of the sea-spray on low clouds; in both cases the emissions were limited to 10% of the ocean area. While the direct effect was found to be significant, the indirect effects on clouds were much more effective in reducing global mean temperature. Moreover, the impact on global mean precipitation per unit temperature reduction was found to be greatest when the emission pattern for maximising the direct effect was used, suggesting that targeting the direct effect of sea-spray is not a good strategy. The impact on the distribution of precipitation was found to be similar in character, but less in degree, than that simulated by a previous study using a much simpler treatment of this geoengineering process.

  9. Design of Car Wheels Spray System%汽车轮毂自动喷涂系统的设计

    Institute of Scientific and Technical Information of China (English)

    吴月琴; 汪惠芬

    2015-01-01

    Now the job of automotive wheel spraying is done manual y in lots of domestic SMEs, which greatly affects the health of workers and also shows a low degree of automation. The paper designs an automatic spray system that can spray the wheels of dif-ferent size continuously. Three spray guns with sprocket chain and rol er slide rail are used to spray the upper and side surface of wheel simultaneously. The control system is equipped with PLC, encoders and light curtain are used to detect the speed of wheel transport line and wheel condition intel igently.%许多国内中小企业对于汽车轮毂的喷涂都采用手工喷涂,这极大影响工人的身体健康,且自动化程度较低。设计了一种可对轮毂进行连续自动喷涂的简单喷涂系统。采用了链传动、滚轮滑轨等机械结构,使用3把喷枪对轮毂上表面及侧面分别同时进行喷涂;以PLC为控制核心,采用编码器及光幕传感器对轮毂运输线速度及轮毂情况进行智能检测,实现对喷枪喷涂动作自动控制。系统可对不同尺寸的轮毂进行连续自动的喷涂。

  10. Spray Bar Zero-Gravity Vent System for On-Orbit Liquid Hydrogen Storage

    Science.gov (United States)

    Hastings, L. J.; Flachbart, R. H.; Martin, J. J.; Hedayat, A.; Fazah, M.; Lak, T.; Nguyen, H.; Bailey, J. W.

    2003-01-01

    During zero-gravity orbital cryogenic propulsion operations, a thermodynamic vent system (TVS) concept is expected to maintain tank pressure control without propellant resettling. In this case, a longitudinal spray bar mixer system, coupled with a Joule-Thompson (J-T) valve and heat exchanger, was evaluated in a series of TVS tests using the 18 cu m multipurpose hydrogen test bed. Tests performed at fill levels of 90, 50, and 25 percent, coupled with heat tank leaks of about 20 and 50 W, successfully demonstrated tank pressure control within a 7-kPa band. Based on limited testing, the presence of helium constrained the energy exchange between the gaseous and liquid hydrogen (LH2) during the mixing cycles. A transient analytical model, formulated to characterize TVS performance, was used to correlate the test data. During self-pressurization cycles following tank lockup, the model predicted faster pressure rise rates than were measured; however, once the system entered the cyclic self-pressurization/mixing/venting operational mode, the modeled and measured data were quite similar. During a special test at the 25-percent fill level, the J-T valve was allowed to remain open and successfully reduced the bulk LH2 saturation pressure from 133 to 70 kPa in 188 min.

  11. Development of Core Monitoring System for Nuclear Power Plants (I)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.H.; Kim, Y.B.; Park, M.G; Lee, E.K.; Shin, H.C.; Lee, D.J. [Korea Electric Power Research Institute, Daejeon (Korea, Republic of)

    1997-12-31

    1.Object and Necessity of the Study -The main objectives of this study are (1)conversion of APOLLO version BEACON system to HP-UX version core monitoring system, (2)provision of the technical bases to enhance the in-house capability of developing more advanced core monitoring system. 2.Results of the Study - In this study, the revolutionary core monitoring technologies such as; nodal analysis and isotope depletion calculation method, advanced schemes for power distribution control, and treatment of nuclear databank were established. The verification and validation work has been successfully performed by comparing the results with those of the design code and measurement data. The advanced graphic user interface and plant interface method have been implemented to ensure the future upgrade capability. The Unix shell scripts and system dependent software are also improved to support administrative functions of the system. (author). 14 refs., 112 figs., 52 tabs.

  12. Common Core Themes in Geomorphic, Ecological, and Social Systems

    Science.gov (United States)

    Wohl, Ellen; Gerlak, Andrea K.; Poff, N. LeRoy; Chin, Anne

    2014-01-01

    Core themes of geomorphology include: open systems and connectivity; feedbacks and complexity; spatial differentiation of dominant physical processes within a landscape; and legacy effects of historical human use of resources. Core themes of ecology include: open systems and connectivity; hierarchical, heterogeneous, dynamic, and context-dependent characteristics of ecological patterns and processes; nonlinearity, thresholds, hysteresis, and resilience within ecosystems; and human effects. Core themes of environmental governance include: architecture of institutions and decision-making; agency, or ability of actors to prescribe behavior of people in relation to the environment; adaptiveness of social groups to environmental change; accountability and legitimacy of systems of governance; allocation of and access to resources; and thresholds and feedback loops within environmental policy. Core themes common to these disciplines include connectivity, feedbacks, tipping points or thresholds, and resiliency. Emphasizing these points of disciplinary overlap can facilitate interdisciplinary understanding of complex systems, as well as more effective management of landscapes and ecosystems by highlighting drivers of change within systems. We use a previously published conceptual framework to examine how these core themes can be integrated into interdisciplinary research for human-landscape systems via the example of a river.

  13. Development of test systems for characterizing emissions from spray polyurethane foam insulation (SPFI)

    Science.gov (United States)

    The relationship between onsite manufacture of spray polyurethane foam insulation (SPFI) and potential exposures to diisocyanates, amines, flame retardants (FRs), blowing agents, aldehydes and other organic compounds that may be emitted from SPFI is not well understood. EPA is de...

  14. Development of test systems for characterizing emissions from spray polyurethane foam insulation (SPFI)

    Science.gov (United States)

    The relationship between onsite manufacture of spray polyurethane foam insulation (SPFI) and potential exposures to diisocyanates, amines, flame retardants (FRs), blowing agents, aldehydes and other organic compounds that may be emitted from SPFI is not well understood. EPA is de...

  15. CORE

    DEFF Research Database (Denmark)

    Krigslund, Jeppe; Hansen, Jonas; Hundebøll, Martin

    2013-01-01

    different flows. Instead of maintaining these approaches separate, we propose a protocol (CORE) that brings together these coding mechanisms. Our protocol uses random linear network coding (RLNC) for intra- session coding but allows nodes in the network to setup inter- session coding regions where flows...... intersect. Routes for unicast sessions are agnostic to other sessions and setup beforehand, CORE will then discover and exploit intersecting routes. Our approach allows the inter-session regions to leverage RLNC to compensate for losses or failures in the overhearing or transmitting process. Thus, we...... increase the benefits of XORing by exploiting the underlying RLNC structure of individual flows. This goes beyond providing additional reliability to each individual session and beyond exploiting coding opportunistically. Our numerical results show that CORE outperforms both forwarding and COPE...

  16. CORE

    DEFF Research Database (Denmark)

    Krigslund, Jeppe; Hansen, Jonas; Hundebøll, Martin

    2013-01-01

    different flows. Instead of maintaining these approaches separate, we propose a protocol (CORE) that brings together these coding mechanisms. Our protocol uses random linear network coding (RLNC) for intra- session coding but allows nodes in the network to setup inter- session coding regions where flows...... intersect. Routes for unicast sessions are agnostic to other sessions and setup beforehand, CORE will then discover and exploit intersecting routes. Our approach allows the inter-session regions to leverage RLNC to compensate for losses or failures in the overhearing or transmitting process. Thus, we...... increase the benefits of XORing by exploiting the underlying RLNC structure of individual flows. This goes beyond providing additional reliability to each individual session and beyond exploiting coding opportunistically. Our numerical results show that CORE outperforms both forwarding and COPE...

  17. Real-Time, Model-Based Spray-Cooling Control System for Steel Continuous Casting

    Science.gov (United States)

    Petrus, Bryan; Zheng, Kai; Zhou, X.; Thomas, Brian G.; Bentsman, Joseph

    2011-02-01

    This article presents a new system to control secondary cooling water sprays in continuous casting of thin steel slabs (CONONLINE). It uses real-time numerical simulation of heat transfer and solidification within the strand as a software sensor in place of unreliable temperature measurements. The one-dimensional finite-difference model, CON1D, is adapted to create the real-time predictor of the slab temperature and solidification state. During operation, the model is updated with data collected by the caster automation systems. A decentralized controller configuration based on a bank of proportional-integral controllers with antiwindup is developed to maintain the shell surface-temperature profile at a desired set point. A new method of set-point generation is proposed to account for measured mold heat flux variations. A user-friendly monitor visualizes the results and accepts set-point changes from the caster operator. Example simulations demonstrate how a significantly better shell surface-temperature control is achieved.

  18. A Dual-Core System Solution for Wearable Health Monitors

    NARCIS (Netherlands)

    Santana Arnaiz, O.A.; Bouwens, F.; Huisken, J.A.; De Groot, H.; Bennebroek, M.T.; Van Meerbergen, J.L.; Abbo, A.A.; Fraboulet, A.

    2011-01-01

    This paper presents a system design study for wearable sensor devices intended for healthcare and lifestyle applications based on ECG,EEG and activity monitoring. In order to meet the low-power requirement of these applications, a dual-core signal processing system is proposed which combines an ultr

  19. Low-Power Embedded DSP Core for Communication Systems

    Directory of Open Access Journals (Sweden)

    Tsao Ya-Lan

    2003-01-01

    Full Text Available This paper proposes a parameterized digital signal processor (DSP core for an embedded digital signal processing system designed to achieve demodulation/synchronization with better performance and flexibility. The features of this DSP core include parameterized data path, dual MAC unit, subword MAC, and optional function-specific blocks for accelerating communication system modulation operations. This DSP core also has a low-power structure, which includes the gray-code addressing mode, pipeline sharing, and advanced hardware looping. Users can select the parameters and special functional blocks based on the character of their applications and then generating a DSP core. The DSP core has been implemented via a cell-based design method using a synthesizable Verilog code with TSMC 0.35 m SPQM and 0.25 m 1P5M library. The equivalent gate count of the core area without memory is approximately 50 k. Moreover, the maximum operating frequency of a version is 100 MHz (0.35 m and 140 MHz (0.25 m.

  20. Characterization of NO[sub 2] and SO[sub 2] removals in a spray dryer/baghouse system

    Energy Technology Data Exchange (ETDEWEB)

    O' Dowd, W.J.; Markussen, J.M.; Pennline, H.W. (Dept. of Energy, Pittsburgh, PA (United States)); Resnik, K.P. (Gilbert/Commonwealth, Inc., Library, PA (United States))

    1994-11-01

    Oxidation of NO to NO[sub 2] has been proposed as a method for enhancing NO[sub x] removals in conventional flue gas desulfurization (FGD) processes. This experimental investigation characterizes the removals of NO[sub 2] and SO[sub 2] in a 1.1 m[sup 3](standard)/min spray dryer/baghouse system. Flue gas was generated by burning a No. 2 fuel oil, which was subsequently spiked upstream of the spray dryer with NO[sub 2] or SO[sub 2] or both. Lime slurry was injected via a rotary atomizer into the spray dryer. Variables studied include the approach to the adiabatic saturation temperature, stoichiometric ratio, SO[sub 2] concentration, and NO[sub 2] concentration. Significant quantities of NO[sub 2] are scrubbed in this system, and over half of the total removal (at inlet NO[sub 2] > 400 ppm) occurs in the baghouse. Increasing NO[sub 2] concentrations enhance the amount of NO[sub x] removed in the system. Also, the presence of significant quantities of NO[sub 2] enhances the baghouse SO[sub 2] removal. Although up to 72% NO[sub 2] removals were obtained, concentrations of NO[sub 2] that exited the system were greater than 50 ppm for all conditions investigated.

  1. Scalable and Flexible heterogeneous multi-core system

    Directory of Open Access Journals (Sweden)

    Rashmi A Jain

    2013-01-01

    Full Text Available Multi-core system has wide utility in today’s applications due to less power consumption and high performance. Many researchers are aiming at improving the performance of these systems by providing flexible multi-core architecture. Flexibility in the multi-core processors system provides high throughput for uniform parallel applications as well as high performance for more general work. This flexibility in the architecture can be achieved by scalable and changeablesize window micro architecture. It uses the concept of execution locality to provide large-window capabilities. Use of high memory-level parallelism (MLP reduces the memory wall. Micro architecture contains a set of small and fast cache processors which execute high locality code. A network of small in-order memory engines use low locality code to improve performance by using instruction level parallelism (ILP. Dynamic heterogeneous multi-core architecture is capable of reconfiguring itself to fit application requirements. Study of different scalable and flexible architectures of heterogeneous multi-core system has been carried out and has been presented.

  2. Principles and core functions of integrated child health information systems.

    Science.gov (United States)

    Hinman, Alan R; Atkinson, Delton; Diehn, Tonya Norvell; Eichwald, John; Heberer, Jennifer; Hoyle, Therese; King, Pam; Kossack, Robert E; Williams, Donna C; Zimmerman, Amy

    2004-11-01

    Infants undergo a series of preventive and therapeutic health interventions and activities. Typically, each activity includes collection and submission of data to a dedicated information system. Subsequently, health care providers, families, and health programs must query each information system to determine the child's status in a given area. Efforts are underway to integrate information in these separate information systems. This requires specifying the core functions that integrated information systems must perform.

  3. Synthesis of CuInS2 thin films by spray pyrolysis deposition system

    Science.gov (United States)

    Hussain, K. M. A.; Podder, J.; Saha, D. K.

    2013-02-01

    Copper indium disulfide (CuInS2) thin films were deposited on the glass substrate by the locally made spray pyrolysis deposition system. The films were characterized by using energy dispersive analytical X-ray (EDAX) spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD) and UV-VIS-NIR spectrophotometry. The XRD pattern indicated that the prepared CuInS2 thin films are chalcopyrite structure. Lattice parameters and FWHM values were verified by the standard values of JCPDS 270159 file. The EDAX analysis indicated the stoichiometric ratio of 1.14:1:1.88 (CIS-2) thin films. The SEM analysis showed that the average grain size of the film was 100-800 nm and that of XRD data indicate the values of 30-50 nm. The high absorption co-efficient and 1.48 eV band gap of the films indicate that the films are useful as an absorber for photovoltaic application in the solar cell.

  4. Control of cross-infection risks in the dental operatory: prevention of water retraction by bur cooling spray systems.

    Science.gov (United States)

    Crawford, J J; Broderius, C

    1988-05-01

    A new dental unit control system was found to overcome the possibility of mechanically retracting bacteria from the mouth into the water line used to provide a spray of water to cool high-speed burs during treatments. This was demonstrated by results obtained after clinical use and after use in simulated, worst case test conditions using a red tempera indicator solution and indicator bacteria.

  5. Core flow control system for field applications; Sistema de controle de core-flow

    Energy Technology Data Exchange (ETDEWEB)

    Granzotto, Desiree G.; Adachi, Vanessa Y.; Bannwart, Antonio C.; Moura, Luiz F.M. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil); Sassim, Natache S.D.A. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Centro de Estudo do Petroleo (CEPETRO); Carvalho, Carlos H.M. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2008-07-01

    The significant heavy oil reserves worldwide and the presently high crude oil prices make it essential the development of technologies for heavy oil production and transportation. Heavy oils, with their inherent features of high viscosity (100- 10,000 cP) and density (below 20 deg API) require specific techniques to make it viable their flow in pipes at high flow rates. One of the simplest methods, which do not require use of heat or diluents, is provided by oil-water annular flow (core-flow). Among the still unsolved issues regarding core-flow is the two-phase flow control in order to avoid abrupt increases in the pressure drop due to the possible occurrence of bad water-lubricated points, and thus obtain a safe operation of the line at the lowest possible water-oil ratio. This work presents results of core flow tests which allow designing a control system for the inlet pressure of the line, by actuating on the water flow rate at a fixed oil flow rate. With the circuit model and the specified controller, simulations can be done to assess its performance. The experiments were run at core-flow circuit of LABPETRO-UNICAMP. (author)

  6. Core and Shell Song Systems Unique to the Parrot Brain.

    Directory of Open Access Journals (Sweden)

    Mukta Chakraborty

    Full Text Available The ability to imitate complex sounds is rare, and among birds has been found only in parrots, songbirds, and hummingbirds. Parrots exhibit the most advanced vocal mimicry among non-human animals. A few studies have noted differences in connectivity, brain position and shape in the vocal learning systems of parrots relative to songbirds and hummingbirds. However, only one parrot species, the budgerigar, has been examined and no differences in the presence of song system structures were found with other avian vocal learners. Motivated by questions of whether there are important differences in the vocal systems of parrots relative to other vocal learners, we used specialized constitutive gene expression, singing-driven gene expression, and neural connectivity tracing experiments to further characterize the song system of budgerigars and/or other parrots. We found that the parrot brain uniquely contains a song system within a song system. The parrot "core" song system is similar to the song systems of songbirds and hummingbirds, whereas the "shell" song system is unique to parrots. The core with only rudimentary shell regions were found in the New Zealand kea, representing one of the only living species at a basal divergence with all other parrots, implying that parrots evolved vocal learning systems at least 29 million years ago. Relative size differences in the core and shell regions occur among species, which we suggest could be related to species differences in vocal and cognitive abilities.

  7. Core and Shell Song Systems Unique to the Parrot Brain.

    Science.gov (United States)

    Chakraborty, Mukta; Walløe, Solveig; Nedergaard, Signe; Fridel, Emma E; Dabelsteen, Torben; Pakkenberg, Bente; Bertelsen, Mads F; Dorrestein, Gerry M; Brauth, Steven E; Durand, Sarah E; Jarvis, Erich D

    2015-01-01

    The ability to imitate complex sounds is rare, and among birds has been found only in parrots, songbirds, and hummingbirds. Parrots exhibit the most advanced vocal mimicry among non-human animals. A few studies have noted differences in connectivity, brain position and shape in the vocal learning systems of parrots relative to songbirds and hummingbirds. However, only one parrot species, the budgerigar, has been examined and no differences in the presence of song system structures were found with other avian vocal learners. Motivated by questions of whether there are important differences in the vocal systems of parrots relative to other vocal learners, we used specialized constitutive gene expression, singing-driven gene expression, and neural connectivity tracing experiments to further characterize the song system of budgerigars and/or other parrots. We found that the parrot brain uniquely contains a song system within a song system. The parrot "core" song system is similar to the song systems of songbirds and hummingbirds, whereas the "shell" song system is unique to parrots. The core with only rudimentary shell regions were found in the New Zealand kea, representing one of the only living species at a basal divergence with all other parrots, implying that parrots evolved vocal learning systems at least 29 million years ago. Relative size differences in the core and shell regions occur among species, which we suggest could be related to species differences in vocal and cognitive abilities.

  8. An automated arc spray tooling system for rapid die-making of large-sized automobile body panels

    Institute of Scientific and Technical Information of China (English)

    HE Zhong-yun; LU Bing-heng; WANG Yi-qing; HONG Jun; TANG Yi-ping

    2006-01-01

    A creative robot wrist consisting of link mechanisms and a novel robot motion control method based on the cross-sectional vector contours of an STL-formatted model was proposed.By using the wrist and the control method,an industrial robot with five degrees of freedom for rapid tooling using metal arc spraying and electric brush plating techniques was developed.The wrist of the robot including a specially designed link mechanism can maintain the position of the spraying point on the surface of the master pattern whatever the orientation of the gun.Therefore,the kinematic nonlinear coupling between the position mechanism and orientation mechanism in a traditional robot can be avoided.The only input of the control system is the STL-formatted 3D CAD model of the pattern.Without the need of any manual programming,the metal arc spraying and brush plating (if necessary)processes can be performed automatically and efficiently after receiving the 3D CAD data of the pattern.Using this robot system in new car development and trial production,the cost and lead-time can be reduced substantially as compared with the conventional tool making method.

  9. In-line Ultrasonic Array System for Monitoring Dynamic of Coating Forming by Cold Spray Process

    Science.gov (United States)

    Lubrick, M.; Titov, S.; Leshchynsky, V.; Maev, R. Gr.

    This study attempts to test the viability of studying the cold spray process using acoustic methods, specifically testing during the actual spray process itself. Multiple composites studied by flat and multi channel transducers as well as actual online measurements are presented. It is shown that the final thickness as well as the dynamics of buildup can be evaluated (including plotting rates of buildup). Cross sections of the coating thickness are also easy to obtain and show true profiles of the coating. The data can also be used to generate real estimates for nozzle speed and spray diameter. Finally comparisons of real thickness and acoustically estimated thickness show a close linear relationship with the y intercept seeming to depend on the composition. The data clearly shows that online acoustic measurement is a viable method for estimating thickness buildup.

  10. A Novel Machine Vision System for the Inspection of Micro-Spray Nozzle

    Directory of Open Access Journals (Sweden)

    Kuo-Yi Huang

    2015-06-01

    Full Text Available In this study, we present an application of neural network and image processing techniques for detecting the defects of an internal micro-spray nozzle. The defect regions were segmented by Canny edge detection, a randomized algorithm for detecting circles and a circle inspection (CI algorithm. The gray level co-occurrence matrix (GLCM was further used to evaluate the texture features of the segmented region. These texture features (contrast, entropy, energy, color features (mean and variance of gray level and geometric features (distance variance, mean diameter and diameter ratio were used in the classification procedures. A back-propagation neural network classifier was employed to detect the defects of micro-spray nozzles. The methodology presented herein effectively works for detecting micro-spray nozzle defects to an accuracy of 90.71%.

  11. Exploration of Impinging Water Spray Heat Transfer at System Pressures Near the Triple Point

    Science.gov (United States)

    Golliher, Eric L.; Yao, Shi-Chune

    2013-01-01

    The heat transfer of a water spray impinging upon a surface in a very low pressure environment is of interest to cooling of space vehicles during launch and re-entry, and to industrial processes where flash evaporation occurs. At very low pressure, the process occurs near the triple point of water, and there exists a transient multiphase transport problem of ice, water and water vapor. At the impingement location, there are three heat transfer mechanisms: evaporation, freezing and sublimation. A preliminary heat transfer model was developed to explore the interaction of these mechanisms at the surface and within the spray.

  12. Runtime Support for Heterogeneous Multi-core Systems

    NARCIS (Netherlands)

    Sabeghi, M.

    2011-01-01

    Multi-core processing platforms are one of the major steps forward in offering high-performance computing platforms. The idea is to increase the performance by employing more processing elements to perform a job. However, this creates a challenge for both hardware developers who build such systems a

  13. High Resolution Continuous Flow Analysis System for Polar Ice Cores

    Science.gov (United States)

    Dallmayr, Remi; Azuma, Kumiko; Yamada, Hironobu; Kjær, Helle Astrid; Vallelonga, Paul; Azuma, Nobuhiko; Takata, Morimasa

    2014-05-01

    In the last decades, Continuous Flow Analysis (CFA) technology for ice core analyses has been developed to reconstruct the past changes of the climate system 1), 2). Compared with traditional analyses of discrete samples, a CFA system offers much faster and higher depth resolution analyses. It also generates a decontaminated sample stream without time-consuming sample processing procedure by using the inner area of an ice-core sample.. The CFA system that we have been developing is currently able to continuously measure stable water isotopes 3) and electrolytic conductivity, as well as to collect discrete samples for the both inner and outer areas with variable depth resolutions. Chemistry analyses4) and methane-gas analysis 5) are planned to be added using the continuous water stream system 5). In order to optimize the resolution of the current system with minimal sample volumes necessary for different analyses, our CFA system typically melts an ice core at 1.6 cm/min. Instead of using a wire position encoder with typical 1mm positioning resolution 6), we decided to use a high-accuracy CCD Laser displacement sensor (LKG-G505, Keyence). At the 1.6 cm/min melt rate, the positioning resolution was increased to 0.27mm. Also, the mixing volume that occurs in our open split debubbler is regulated using its weight. The overflow pumping rate is smoothly PID controlled to maintain the weight as low as possible, while keeping a safety buffer of water to avoid air bubbles downstream. To evaluate the system's depth-resolution, we will present the preliminary data of electrolytic conductivity obtained by melting 12 bags of the North Greenland Eemian Ice Drilling (NEEM) ice core. The samples correspond to different climate intervals (Greenland Stadial 21, 22, Greenland Stadial 5, Greenland Interstadial 5, Greenland Interstadial 7, Greenland Stadial 8). We will present results for the Greenland Stadial -8, whose depths and ages are between 1723.7 and 1724.8 meters, and 35.520 to

  14. The APR1400 Core Design by Using APA Code System

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yu Sun [Korea Electric Power Research Institue, Daejeon (Korea, Republic of); Koh, Byung Marn [USERS, Daejeon (Korea, Republic of)

    2008-05-15

    The nuclear design for APR1400 has been performed to prepare the core model for Automatic Load Follow Operation Simulation. APA (ALPHA/ PHOENIXP/ ANC) code system is a tool for the multi-cycle depletion calculations for APR1400. Its detail versions for ALPHA, PHOENIX-P and ANC are 8.9.3, 8.6.1 and 8.10.5, respectively. The first and equilibrium core depletion calculations for APR1400 have been performed to assure the target cycle length and confirm the safety parameters. The parameters are satisfied within limitation about nuclear design criteria. This APR1400 core models will be based on the design parameters for APR1400 Simulator.

  15. Fault Tolerance Middleware for a Multi-Core System

    Science.gov (United States)

    Some, Raphael R.; Springer, Paul L.; Zima, Hans P.; James, Mark; Wagner, David A.

    2012-01-01

    Fault Tolerance Middleware (FTM) provides a framework to run on a dedicated core of a multi-core system and handles detection of single-event upsets (SEUs), and the responses to those SEUs, occurring in an application running on multiple cores of the processor. This software was written expressly for a multi-core system and can support different kinds of fault strategies, such as introspection, algorithm-based fault tolerance (ABFT), and triple modular redundancy (TMR). It focuses on providing fault tolerance for the application code, and represents the first step in a plan to eventually include fault tolerance in message passing and the FTM itself. In the multi-core system, the FTM resides on a single, dedicated core, separate from the cores used by the application. This is done in order to isolate the FTM from application faults and to allow it to swap out any application core for a substitute. The structure of the FTM consists of an interface to a fault tolerant strategy module, a responder module, a fault manager module, an error factory, and an error mapper that determines the severity of the error. In the present reference implementation, the only fault tolerant strategy implemented is introspection. The introspection code waits for an application node to send an error notification to it. It then uses the error factory to create an error object, and at this time, a severity level is assigned to the error. The introspection code uses its built-in knowledge base to generate a recommended response to the error. Responses might include ignoring the error, logging it, rolling back the application to a previously saved checkpoint, swapping in a new node to replace a bad one, or restarting the application. The original error and recommended response are passed to the top-level fault manager module, which invokes the response. The responder module also notifies the introspection module of the generated response. This provides additional information to the

  16. Validation of the flux number as scaling parameter for top-spray fluidised bed systems

    DEFF Research Database (Denmark)

    Hede, Peter Dybdahl; Bach, P.; Jensen, Anker Degn

    2008-01-01

    2SO4 using Dextrin as binder in three top-spray fluidised bed scales, i.e. a small-scale (type: GEA Aeromatic-Fielder Strea-1), medium-scale (type: Niro MP-1) and large-scale (type: GEA MP-2/3). Following the parameter guidelines adapted from the original patent description, the flux number...

  17. Concept for a cyclonic spray scrubber as a fission product removal system for filtered containment venting

    Energy Technology Data Exchange (ETDEWEB)

    Lebel, Luke S., E-mail: Luke.Lebel@cnl.ca; Piro, Markus H., E-mail: Markus.Piro@cnl.ca; MacCoy, Reilly, E-mail: Reilly.MacCoy@cnl.ca; Clouthier, Anthony, E-mail: Tony.Clouthier@cnl.ca; Chin, Yu-Shan, E-mail: Sammy.Chin@cnl.ca

    2016-02-15

    Graphical abstract: - Highlights: • A new cyclonic spray scrubber concept for filtered containment venting is presented. • Mechanistic particle removal model paired with discrete particle CFD simulations. • Calculations predict that very high decontamination factors can be achieved. - Abstract: The application of a cyclonic spray scrubber as a technology for filtered containment venting is proposed in this paper. This study has paired a mechanistic model for the kinetic particle coagulation of with Euler–Lagrange discrete particle simulations in order to predict particle decontamination factors. The continuous phase behavior has been investigated using computational fluid dynamics simulations together with phase Doppler anemometry measurements. Calculations show that spray scrubbing of radionuclide-bearing aerosols could be very effective, and predict that decontamination factors can be in excess of 10{sup 6} for micron sized particles and excess of 10{sup 3} for submicron particles. In the wake of the accident at the Fukushima Daiichi Nuclear Power Plant, filtered containment venting is being viewed as an increasingly important severe accident mitigation technology. Cyclonic spray scrubbing could be implemented as a passive technology for decontaminating containment gases in an emergency prior to their discharge to the atmosphere, and is a novel approach for this application.

  18. Quantifying signal dispersion in a hybrid ice core melting system.

    Science.gov (United States)

    Breton, Daniel J; Koffman, Bess G; Kurbatov, Andrei V; Kreutz, Karl J; Hamilton, Gordon S

    2012-11-06

    We describe a microcontroller-based ice core melting and data logging system allowing simultaneous depth coregistration of a continuous flow analysis (CFA) system (for microparticle and conductivity measurement) and a discrete sample analysis system (for geochemistry and microparticles), both supplied from the same melted ice core section. This hybrid melting system employs an ice parcel tracking algorithm which calculates real-time sample transport through all portions of the meltwater handling system, enabling accurate (1 mm) depth coregistration of all measurements. Signal dispersion is analyzed using residence time theory, experimental results of tracer injection tests and antiparallel melting of replicate cores to rigorously quantify the signal dispersion in our system. Our dispersion-limited resolution is 1.0 cm in ice and ~2 cm in firn. We experimentally observe the peak lead phenomenon, where signal dispersion causes the measured CFA peak associated with a given event to be depth assigned ~1 cm shallower than the true event depth. Dispersion effects on resolution and signal depth assignment are discussed in detail. Our results have implications for comparisons of chemistry and physical properties data recorded using multiple instruments and for deconvolution methods of enhancing CFA depth resolution.

  19. Core Attributes of Stewardship; Foundation of Sound Health System

    Directory of Open Access Journals (Sweden)

    Neelesh Kapoor

    2014-06-01

    Full Text Available Stewardship is not a new concept for public policy, but has not been used to its optimum by the health policy-makers. Although it is being practiced in most successful models of health system, but the onus to this function is still due till date. Lately, few experts in World Health Organization (WHO have realized its importance and have been raising the issue at different platforms to pursue the most important function of the health system i.e. stewardship. These core attributes of stewardship need to be understood in totality for better understanding of the concept. The core attributes required for hassle free functioning of a health system include responsible manager, political will, normative dimension, balanced interventionist and proponents of good governance.

  20. Investigating the cores of fossil systems with Chandra

    CERN Document Server

    Bharadwaj, V; Sanders, J S; Schellenberger, G

    2016-01-01

    We investigate the cores of fossil galaxy groups and clusters (`fossil systems') using archival Chandra data for a sample of 17 fossil systems. We determined the cool-core fraction for fossils via three observable diagnostics, the central cooling time, cuspiness, and concentration parameter. We quantified the dynamical state of the fossils by the X-ray peak/brightest cluster galaxy (BCG), and the X-ray peak/emission weighted centre separations. We studied the X-ray emission coincident with the BCG to detect the presence of potential thermal coronae. A deprojection analysis was performed for z < 0.05 fossils to obtain cooling time and entropy profiles, and to resolve subtle temperature structures. We investigated the Lx-T relation for fossils from the 400d catalogue to see if the scaling relation deviates from that of other groups. Most fossils are identified as cool-core objects via at least two cool-core diagnostics. All fossils have their dominant elliptical galaxy within 50 kpc of the X-ray peak, and mo...

  1. Development and Assessment of Advanced Reactor Core Protection System

    Science.gov (United States)

    in, Wang-Kee; Park, Young-Ho; Baeg, Seung-Yeob

    An advanced core protection system for a pressurized water reactor, Reactor Core Protection System(RCOPS), was developed by adopting a high performance hardware platform and optimal system configuration. The functional algorithms of the core protection system were also improved to enhance the plant availability by reducing unnecessary reactor trips and increasing operational margin. The RCOPS consists of four independent safety channels providing a two-out-of-four trip logic. The reliability analysis using the reliability block diagram method showed the unavailability of the RCOPS to be lower than the conventional system. The failure mode and effects analysis demonstrated that the RCOPS does not lose its intended safety functions for most failures. New algorithms for the RCOPS functional design were implemented in order to avoid unnecessary reactor trips by providing auxiliary pre-trip alarms and signal validation logic for the control rod position. The new algorithms in the RCOPS were verified by comparing the RCOPS calculations with reference results. The new thermal margin algorithm for the RCOPS was expected to increase the operational margin to the limit for Departure from Nucleate Boiling Ratio (DNBR) by approximately 1%.

  2. Multi Microkernel Operating Systems for Multi-Core Processors

    Directory of Open Access Journals (Sweden)

    Rami Matarneh

    2009-01-01

    Full Text Available Problem statement: In the midst of the huge development in processors industry as a response to the increasing demand for high-speed processors manufacturers were able to achieve the goal of producing the required processors, but this industry disappointed hopes, because it faced problems not amenable to solution, such as complexity, hard management and large consumption of energy. These problems forced the manufacturers to stop the focus on increasing the speed of processors and go toward parallel processing to increase performance. This eventually produced multi-core processors with high-performance, if used properly. Unfortunately, until now, these processors did not use as it should be used; because of lack support of operating system and software applications. Approach: The approach based on the assumption that single-kernel operating system was not enough to manage multi-core processors to rethink the construction of multi-kernel operating system. One of these kernels serves as the master kernel and the others serve as slave kernels. Results: Theoretically, the proposed model showed that it can do much better than the existing models; because it supported single-threaded processing and multi-threaded processing at the same time, in addition, it can make better use of multi-core processors because it divided the load almost equally between the cores and the kernels which will lead to a significant improvement in the performance of the operating system. Conclusion: Software industry needed to get out of the classical framework to be able to keep pace with hardware development, this objective was achieved by re-thinking building operating systems and software in a new innovative methodologies and methods, where the current theories of operating systems were no longer capable of achieving the aspirations of future.

  3. Core and Shell Song Systems Unique to the Parrot Brain

    Science.gov (United States)

    Chakraborty, Mukta; Walløe, Solveig; Nedergaard, Signe; Fridel, Emma E.; Dabelsteen, Torben; Pakkenberg, Bente; Bertelsen, Mads F.; Dorrestein, Gerry M.; Brauth, Steven E.; Durand, Sarah E.; Jarvis, Erich D.

    2015-01-01

    The ability to imitate complex sounds is rare, and among birds has been found only in parrots, songbirds, and hummingbirds. Parrots exhibit the most advanced vocal mimicry among non-human animals. A few studies have noted differences in connectivity, brain position and shape in the vocal learning systems of parrots relative to songbirds and hummingbirds. However, only one parrot species, the budgerigar, has been examined and no differences in the presence of song system structures were found with other avian vocal learners. Motivated by questions of whether there are important differences in the vocal systems of parrots relative to other vocal learners, we used specialized constitutive gene expression, singing-driven gene expression, and neural connectivity tracing experiments to further characterize the song system of budgerigars and/or other parrots. We found that the parrot brain uniquely contains a song system within a song system. The parrot “core” song system is similar to the song systems of songbirds and hummingbirds, whereas the “shell” song system is unique to parrots. The core with only rudimentary shell regions were found in the New Zealand kea, representing one of the only living species at a basal divergence with all other parrots, implying that parrots evolved vocal learning systems at least 29 million years ago. Relative size differences in the core and shell regions occur among species, which we suggest could be related to species differences in vocal and cognitive abilities. PMID:26107173

  4. Advanced Pressure Coring System for Deep Earth Sampling (APRECOS)

    Science.gov (United States)

    Anders, E.; Rothfuss, M.; Müller, W. H.

    2009-04-01

    Nowadays the recovery of cores from boreholes is a standard operation. However, during that process the mechanical, physical, and chemical properties as well as living conditions for microorganisms are significantly altered. In-situ sampling is one approach to overcome the severe scientific limitations of conventional, depressurized core investigations by recovering, processing, and conducting experiments in the laboratory, while maintaining unchanged environmental parameters. The most successful equipment today is the suite of tools developed within the EU funded projects HYACE (Hydrate Autoclave Coring Equipment) and HYACINTH (Deployment of HYACE tools In New Tests on Hydrates) between 1997 and 2005. Within several DFG (German Research Foundation) projects the Technical University Berlin currently works on concepts to increase the present working pressure of 250 bar as well as to reduce logistical and financial expenses by merging redundant and analogous procedures and scaling down the considerable size of key components. It is also proposed to extend the range of applications for the wireline rotary pressure corer and the sub-sampling and transfer system to all types of soil conditions (soft to highly-consolidated). New modifications enable the tools to be used in other pressure related fields of research, such as unconventional gas exploration (coal-bed methane, tight gas, gas hydrate), CO2 sequestration, and microbiology of the deep biosphere. Expedient enhancement of an overall solution for pressure core retrieval, process and investigation will open the way for a complete on-site, all-purpose, in-situ equipment. The advanced assembly would allow for executing the whole operation sequences of coring, non-destructive measurement, sub-sampling and transfer into storage, measurement and transportation chambers, all in sterile, anaerobic conditions, and without depressurisation in quick succession. Extensive post-cruise handling and interim storage would be

  5. JIT Spraying and Mitigations

    CERN Document Server

    Bania, Piotr

    2010-01-01

    With the discovery of new exploit techniques, novel protection mechanisms are needed as well. Mitigations like DEP (Data Execution Prevention) or ASLR (Address Space Layout Randomization) created a significantly more difficult environment for exploitation. Attackers, however, have recently researched new exploitation methods which are capable of bypassing the operating system’s memory mitigations. One of the newest and most popular exploitation techniques to bypass both of the aforementioned security protections is JIT memory spraying, introduced by Dion Blazakis. In this article we will present a short overview of the JIT spraying technique and also novel mitigation methods against this innovative class of attacks. An anti-JIT spraying library was created as part of our shellcode execution prevention system.

  6. Development of the Learning Health System Researcher Core Competencies.

    Science.gov (United States)

    Forrest, Christopher B; Chesley, Francis D; Tregear, Michelle L; Mistry, Kamila B

    2017-08-04

    To develop core competencies for learning health system (LHS) researchers to guide the development of training programs. Data were obtained from literature review, expert interviews, a modified Delphi process, and consensus development meetings. The competencies were developed from August to December 2016 using qualitative methods. The literature review formed the basis for the initial draft of a competency domain framework. Key informant semi-structured interviews, a modified Delphi survey, and three expert panel (n = 19 members) consensus development meetings produced the final set of competencies. The iterative development process yielded seven competency domains: (1) systems science; (2) research questions and standards of scientific evidence; (3) research methods; (4) informatics; (5) ethics of research and implementation in health systems; (6) improvement and implementation science; and (7) engagement, leadership, and research management. A total of 33 core competencies were prioritized across these seven domains. The real-world milieu of LHS research, the embeddedness of the researcher within the health system, and engagement of stakeholders are distinguishing characteristics of this emerging field. The LHS researcher core competencies can be used to guide the development of learning objectives, evaluation methods, and curricula for training programs. © Health Research and Educational Trust.

  7. 9 CFR 590.542 - Spray process drying operations.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Spray process drying operations. 590..., Processing, and Facility Requirements § 590.542 Spray process drying operations. (a) The drying room shall be... interrupted. (1) Spray nozzles, orifices, cores, or whizzers shall be cleaned immediately after cessation...

  8. High Fidelity Tool for Turbulent Combustion in Liquid Launch Propulsion Systems Based on Spray-Flamelet Methodology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation proposed here is a high-performance, high-fidelity simulation capability for simulating liquid rocket spray combustion based on a novel spray-flamelet...

  9. Hollow Cone Spray Characterization and Integral Modeling

    OpenAIRE

    Bollweg, Peter

    2013-01-01

    The thesis presents a computationally efficient spray model for hollow cone sprays suitable for engine system simulation of direct injecting gasoline internal combustion engines. The model describes the transient evolution of the spray as a two-phase jet. Spatial gradients are resolved along the main injection direction. Momentum exchange, droplet heat-up, and fuel evaporation are accounted for. Diffusive transport of momentum, energy, and fuel species mass between the dense spray zone an...

  10. Yttria-stabilized zirkonia / gadolinium zirconate double-layer plasma-sprayed thermal barrier coating systems (TBCs)

    Energy Technology Data Exchange (ETDEWEB)

    Bakan, Emine

    2015-07-01

    Thermal barrier coating (TBC) research and development is driven by the desirability of further increasing the maximum inlet temperature in a gas turbine engine. A number of new top coat ceramic materials have been proposed during the last decades due to limited temperature capability (1200 C) of the state-of-the-art yttria-stabilized zirconia (7 wt. % Y{sub 2}O{sub 3}-ZrO{sub 2}, YSZ) at long term operation. Zirconate pyrochlores of the large lanthanides((Gd → La){sub 2}Zr{sub 2}O{sub 7}) have been particularly attractive due to their higher temperature phase stability than that of the YSZ. Nonetheless, the issues related with the implementation of pyrochlores such as low fracture toughness and formation of deleterious interphases with thermally grown oxide (TGO, Al{sub 2}O{sub 3}) were reported. The implication was the requirement of an interlayer between the pyrochlores and TGO, which introduced double-layer systems to the TBC literature. Furthermore, processability issues of pyrochlores associated with the different evaporation rates of lanthanide oxides and zirconia resulting in unfavorable composition variations in the coatings were addressed in different studies. After all, although the material properties are available, there is a paucity of data in the literature concerning the properties of the coatings made of pyrochlores. From the processability point of view the most reported pyrochlore is La{sub 2}Zr{sub 2}O{sub 7}. Hence, the goal of this research was to investigate plasma-sprayed Gd{sub 2}Zr{sub 2}O{sub 7} (GZO) coatings and YSZ/GZO double-layer TBC systems. Three main topics were examined based on processing, performance and properties: (i) the plasma spray processing of the GZO and its impact on the microstructural and compositional properties of the GZO coatings; (ii) the cycling lifetime of the YSZ/GZO double-layer systems under thermal gradient at a surface temperature of 1400 C; (iii) the properties of the GZO and YSZ coatings such as

  11. The Information Systems Core: A Study from the Perspective of IS Core Curricula in the U.S.

    Science.gov (United States)

    Hwang, Drew; Ma, Zhongming; Wang, Ming

    2015-01-01

    To keep up with technology changes and industry trends, it is essential for Information Systems (IS) programs to maintain up to date curricula. In doing so, IS educators need to determine what the IS core is and implement it in their curriculum. This study performed a descriptive analysis of 2,229 core courses offered by 394 undergraduate IS…

  12. Prerouted FPGA Cores for Rapid System Construction in a Dynamic Reconfigurable System

    Directory of Open Access Journals (Sweden)

    Oliver TimothyF

    2007-01-01

    Full Text Available A method of constructing prerouted FPGA cores, which lays the foundations for a rapid system construction framework for dynamically reconfigurable computing systems, is presented. Two major challenges are considered: how to manage the wires crossing a core's borders; and how to maintain an acceptable level of flexibility for system construction with only a minimum of overhead. In order to maintain FPGA computing performance, it is crucial to thoroughly analyze the issues at the lowest level of device detail in order to ensure that computing circuit encapsulation is as efficient as possible. We present the first methodology that allows a core to scale its interface bandwidth to the maximum available in a routing channel. Cores can be constructed independently from the rest of the system using a framework that is independent of the method used to place and route primitive components within the core. We use an abstract FPGA model and CAD tools that mirror those used in industry. An academic design flow has been modified to include a wire policy and an interface constraints framework that tightly constrains the use of the wires that cross a core's boundaries. Using this tool set we investigate the effect of prerouting on overall system optimality. Abutting cores are instantly connected by colocation of interface wires. Eliminating run-time routing drastically reduces the time taken to construct a system using a set of cores.

  13. System Study: Reactor Core Isolation Cooling 1998–2012

    Energy Technology Data Exchange (ETDEWEB)

    T. E. Wierman

    2013-10-01

    This report presents an unreliability evaluation of the reactor core isolation cooling (RCIC) system at 31 U.S. commercial boiling water reactors. Demand, run hours, and failure data from fiscal year 1998 through 2012 for selected components were obtained from the Equipment Performance and Information Exchange (EPIX). The unreliability results are trended for the most recent 10 year period while yearly estimates for system unreliability are provided for the entire active period. No statistically significant increasing trend was identified in the HPCI results. Statistically significant decreasing trends were identified for RCIC start-only and 8-hour trends.

  14. System Study: Reactor Core Isolation Cooling 1998-2014

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, John Alton [Idaho National Lab. (INL), Idaho Falls, ID (United States). Risk Assessment and Management Services Dept.

    2015-12-01

    This report presents an unreliability evaluation of the reactor core isolation cooling (RCIC) system at 31 U.S. commercial boiling water reactors. Demand, run hours, and failure data from fiscal year 1998 through 2014 for selected components were obtained from the Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES). The unreliability results are trended for the most recent 10 year period, while yearly estimates for system unreliability are provided for the entire active period. No statistically significant trends were identified in the RCIC results.

  15. Computation system for nuclear reactor core analysis. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Vondy, D.R.; Fowler, T.B.; Cunningham, G.W.; Petrie, L.M.

    1977-04-01

    This report documents a system which contains computer codes as modules developed to evaluate nuclear reactor core performance. The diffusion theory approximation to neutron transport may be applied with the VENTURE code treating up to three dimensions. The effect of exposure may be determined with the BURNER code, allowing depletion calculations to be made. The features and requirements of the system are discussed and aspects common to the computational modules, but the latter are documented elsewhere. User input data requirements, data file management, control, and the modules which perform general functions are described. Continuing development and implementation effort is enhancing the analysis capability available locally and to other installations from remote terminals.

  16. System Study: Reactor Core Isolation Cooling 1998–2013

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, John Alton [Idaho National Lab. (INL), Idaho Falls, ID (United States). Risk Assessment and Management Services Dept.

    2015-01-31

    This report presents an unreliability evaluation of the reactor core isolation cooling (RCIC) system at 31 U.S. commercial boiling water reactors. Demand, run hours, and failure data from fiscal year 1998 through 2013 for selected components were obtained from the Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES). The unreliability results are trended for the most recent 10-year period, while yearly estimates for system unreliability are provided for the entire active period. No statistically significant trends were identified in the RCIC results.

  17. System Would Acquire Core and Powder Samples of Rocks

    Science.gov (United States)

    Bar-Cohen, Yoseph; Randolph, James; Bao, Xiaoqi; Sherrit, Stewart; Ritz, Chuck; Cook, Greg

    2006-01-01

    A system for automated sampling of rocks, ice, and similar hard materials at and immediately below the surface of the ground is undergoing development. The system, denoted a sample preparation, acquisition, handling, and delivery (SPAHD) device, would be mounted on a robotic exploratory vehicle that would traverse the terrain of interest on the Earth or on a remote planet. The SPAHD device would probe the ground to obtain data for optimization of sampling, prepare the surface, acquire samples in the form(s) of cores and/or powdered cuttings, and deliver the samples to a selected location for analysis and/or storage.

  18. Raised herd somatic cell count due to Staphylococcus aureus following the failure of an automatic teat spraying system.

    Science.gov (United States)

    Edmondson, P W

    2012-03-01

    This study describes the failure of a single jet exit race automatic teat spray (ATS) system resulting in the spread of Staphylococcus aureus infection in a 135-cow dairy herd, which showed an increased herd somatic cell count from 91,000/ml to 554,000/ml over a nine-month period. S aureus was isolated from 34 of 46 high cell count cows. The milking procedures were modified and manual teat spraying was restarted. Bacteriology was used to identify S aureus positive high cell count cows, and first and second lactation cows were treated during lactation. If their cell counts were not reduced, these were then culled. High cell count S aureus cows in lactation three or above were culled. The three-month geometric mean cell count fell to below 150,000/ml within five months. As all replacements were home-bred, S aureus infection must have spread from within the herd itself. All other causes have been eliminated, and this spread is attributed to the failure of the ATS to carry out effective postmilking teat disinfection. The advantages and disadvantages of ATS systems are discussed, especially in relation to robotic or voluntary milking systems.

  19. 19-core MCF transmission system using EDFA with shared core pumping coupled via free-space optics.

    Science.gov (United States)

    Sakaguchi, Jun; Klaus, Werner; Puttnam, Benjamin J; Mendinueta, José Manuel Delgado; Awaji, Yoshinari; Wada, Naoya; Tsuchida, Yukihiro; Maeda, Koichi; Tadakuma, Masateru; Imamura, Katsunori; Sugizaki, Ryuichi; Kobayashi, Tetsuya; Tottori, Yusaku; Watanabe, Masayuki; Jensen, R V

    2014-01-13

    We report the development of a space division multiplexed (SDM) transmission system consisting of a 19-core fiber and 19-core Erbium-doped fiber amplifier (EDFA). A new 19-core fiber with an improved core arrangement was employed to achieve a low aggregated inter-core crosstalk of -42 dB at 1550 nm over 30 km. The EDFA uses shared free-space optics for pump beam combining and isolation, thus is SDM transparent and has some potential for cost reduction. 19.6 dB to 23.3 dB gain and 6.0 dB to 7.0 dB noise figure were obtained for each SDM channel at 1550 nm. System feasibility for SDM transmission over 1200 km was demonstrated with 100 Gb/s PDM-QPSK signals.

  20. A novel spray-dried nanoparticles-in-microparticles system for formulating scopolamine hydrobromide into orally disintegrating tablets

    Directory of Open Access Journals (Sweden)

    Li FQ

    2011-04-01

    Full Text Available Feng-Qian Li1, Cheng Yan2, Juan Bi1, Wei-Lin Lv3, Rui-Rui Ji3, Xu Chen1, Jia-Can Su3, Jin-Hong Hu31Department of Pharmaceutics, Shanghai Eighth People’s Hospital, Shanghai, People’s Republic of China; 2Department of Pharmacy, Bethune International Peace Hospital, Shijiazhuang, People’s Republic of China; 3Changhai Hospital, Second Military Medical University, Shanghai, People’s Republic of ChinaAbstract: Scopolamine hydrobromide (SH-loaded microparticles were prepared from a colloidal fluid containing ionotropic-gelated chitosan nanoparticles using a spray-drying method. The spray-dried microparticles were then formulated into orally disintegrating tablets (ODTs using a wet granulation tablet formation process. A drug entrapment efficiency of about 90% (w/w and loading capacity of 20% (w/w were achieved for the microparticles, which ranged from 2 µm to 8 µm in diameter. Results of disintegration tests showed that the formulated ODTs could be completely dissolved within 45 seconds. Drug dissolution profiles suggested that SH is released more slowly from tablets made using the microencapsulation process compared with tablets containing SH that is free or in the form of nanoparticles. The time it took for 90% of the drug to be released increased significantly from 3 minutes for conventional ODTs to 90 minutes for ODTs with crosslinked microparticles. Compared with ODTs made with noncrosslinked microparticles, it was thus possible to achieve an even lower drug release rate using tablets with appropriate chitosan crosslinking. Results obtained indicate that the development of new ODTs designed with crosslinked microparticles might be a rational way to overcome the unwanted taste of conventional ODTs and the side effects related to SH’s intrinsic characteristics.Keywords: scopolamine hydrobromide, chitosan, nanoparticles-in-microparticles system, spray-drying, orally disintegrating tablets

  1. Lecithin/TPGS-based spray-dried self-microemulsifying drug delivery systems: In vitro pulmonary deposition and cytotoxicity.

    Science.gov (United States)

    Ishak, Rania A H; Osman, Rihab

    2015-05-15

    The aim of the present work was to develop a new solid self-microemulsifying drug delivery system (SMEDDS) for the pulmonary delivery of the poorly water-soluble anti-cancer drug atorvastatin (AVT). Microemulsion (ME) was first developed using isopropyl myristate (IPM), a combination of 2 biocompatible surfactants: lecithin/d-α-tocopheryl polyethylene glycol succinate (TPGS) and ethanol as co-surfactant. Two types of lecithin with different phosphatidylcholine (PC) contents were compared. Phase diagram, physico-chemical characterization and stability studies were used to investigate ME region. Solid SMEDDS were then prepared by spray-drying the selected ME using a combination of carriers composed of sugars, leucine as dispersibility enhancer with or without polyethylene glycol (PEG) 6000. Yield, flow properties, particle size and in vitro pulmonary deposition were used to characterize the spray-dried powders. Reconstituted MEs were characterized in terms of morphology, particle size and size distribution. In vitro cytotoxicity study was undertaken on lung cancer cell line for the selected MEs and SD-SMEDDS formulae. Results showed that the most satisfactory MEs properties were obtained with 1:3 lecithin/TPGS, 1:1 lecithin/oil and 1:1 surfactant/co-surfactant ratios. A larger ME area was obtained with lecithin containing 100% PC compared to the less expensive lecithin containing 20% PC. By manipulating spray drying parameters, carrier composition and ratio of ME lipids to carrier, microparticles with more than 70% of respirable fraction could be prepared. The ME was efficiently recovered in simulated lung fluid even after removal of alcohol. The concurrent delivery of AVT with TPGS in solid SMEDDS greatly enhanced the cytotoxic activity on lung cancer cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. A control system of mobile navigation robot for precise spraying based ultrasonic detecting and ARM embedded technologies

    Science.gov (United States)

    Tang, Xiuying; Li, Cuiling; Wang, Xiu; Yue, Xinpeng; Peng, Yankun

    2011-06-01

    This paper described a control system of mobile navigation robot for precision spraying in greenhouse environment, which were composed of main control module, motor driving module, ultrasonic detecting module and wirless remote control module. The hard circuits of control system were built. The main control module used ARM7TDMI-S-based LPC2210 micro-processing controller. The motor driving module consisted of voltage amplifier circuit based SN74LS245N and DM74LS244N chips, RC filter circuit, and HM-YZ-30 DC brush motor driver. The ultrasonic detecting module consisted of four standard ultrasonic ranging modules which were arranged on the four sides around the mobile navigation robot, and used GM8125 chip to expand serial communication interfaces. An obstacle-avoiding strategy and its algorithm were proposed and the control programs of mobile navigation robot were programmed. The mobile navigation robot for spraying can realize the actions such as starting and stopping, forward and backward moving, accelerate and decelerate motion, and right and left turn. Finally, the functional experiments of the mobile navigation robot were conducted in the laboratory environment. The results showed that the ultrasonic detecting distance of the robot was 50.5mm-1832.0mm and detecting blind zone was less than 50mm, the ultrasonic detecting angle of individual ultrasonic detecting module of robot was similar to U-shaped and its vaule was about 45.66°, and the moving path of navigation robot was approximately linear.

  3. The Core Services of the European Plate Observing System (EPOS)

    Science.gov (United States)

    Hoffmann, T. L.; Euteneuer, F. H.; Lauterjung, J.

    2013-12-01

    The ESFRI project European Plate Observing System (EPOS) was launched in November 2010 and has now completed its year 3 of the four-year preparatory phase. EPOS will create a single sustainable, permanent observation infrastructure, integrating existing geophysical monitoring networks, local observatories and experimental laboratories in Europe and adjacent regions. EPOS' technical Work Package 6 has developed a three layer architectural model for the construction of the EPOS Core Services (CS) during the subsequent implementation phase. The Poster will present and detail on these three layers, consisting of the EPOS Integrated Core Services (ICS), the Thematic Core Services (TCS) and the existing National Research Infrastructures & Data Centers. The basic layer of the architecture is established by the National Research Infrastructures (RIs) & Data Centers, which generate data and information and are responsible for the operation of the instrumentation. National RIs will provide their data to the Thematic Cores Services. The Thematic Core Services constitute the community layer of EPOS architecture and they will: 1) consist of existing (e.g. ORFEUS, EMSC), developing (e.g. EUREF/GNSS) or still to be developed Service Providers for specific thematic communities, as represented within EPOS through the technical EPOS Working Groups (e.g., seismology, volcanology, geodesy, geology, analytic labs for rock physics, geomagnetism, geo-resources ... and many others), 2) provide data services to specific communities, 3) link the National Research Infrastructures to the EPOS Integrated Services, 4) include Service Providers (e.g. OneGeology+, Intermagnet) that may be merely linked or partially integrated and 5) consist of Integrated Laboratories and RIs spanning multiple EPOS disciplines and taking advantage of other existing Thematic Services. The EPOS Integrated Services constitute the ICT layer of the EPOS portal and they will: 1) provide access to multidisciplinary data

  4. Spray and atomization of diesel fuel and its alternatives from a single-hole injector using a common rail fuel injection system

    KAUST Repository

    Chen, PinChia

    2013-01-01

    Fuel spray and atomization characteristics play an important role in the performance of internal combustion engines. As the reserves of petroleum fuel are expected to be depleted within a few decades, finding alternative fuels that are economically viable and sustainable to replace the petroleum fuel has attracted much research attention. In this work, the spray and atomization characteristics were investigated for commercial No. 2 diesel fuel, biodiesel (FAME) derived from waste cooking oil (B100), 20% biodiesel blended diesel fuel (B20), renewable diesel fuel produced in house, and civil aircraft jet fuel (Jet-A). Droplet diameters and particle size distributions were measured by a laser diffraction particle analyzing system and the spray tip penetrations and cone angles were acquired using a high speed imaging technique. All experiments were conducted by employing a common-rail high-pressure fuel injection system with a single-hole nozzle under room temperature and pressure. The experimental results showed that biodiesel and jet fuel had different features compared with diesel. Longer spray tip penetration and larger droplet diameters were observed for B100. The smaller droplet size of the Jet-A were believed to be caused by its relatively lower viscosity and surface tension. B20 showed similar characteristics to diesel but with slightly larger droplet sizes and shorter tip penetration. Renewable diesel fuel showed closer droplet size and spray penetration to Jet-A with both smaller than diesel. As a result, optimizing the trade-off between spray volume and droplet size for different fuels remains a great challenge. However, high-pressure injection helps to optimize the trade-off of spray volume and droplet sizes. Furthermore, it was observed that the smallest droplets were within a region near the injector nozzle tip and grew larger along the axial and radial direction. The variation of droplet diameters became smaller with increasing injection pressure.

  5. Development of a SMART core protection system code

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Keung Koo; Lee, Ki Book; In, Wang Ki; Zee, Sung Quun

    2002-01-01

    SMART is a 330MWt integral type pressurized water reactor that can be used for cogeneration, district heating and seawater desalination as well as electricity generation. Online digital SMART core protection system(SCOPS) is one of the advanced technologies which were adopted to improve the SMART safety. SCOPS calculate the minimum DNBR and maximum linear power density based on the several online measured system parameters, such as excore detector signal, CEA positions, MCP pump speed, coolant pressure and temperatures. SCOPS assures that the SAFDL(Specified Acceptance Fuel Design Limit) on DNBR and LPD is not exceeded during the anticipated operational occurrences. This technical report provides a description of the SCOPS protection algorithm to be implemented as the computer program. In addition to this, the requirements on the protection program interfaces, system interfaces, protection program timing, and system initialization are included.

  6. Polytopol computing for multi-core and distributed systems

    Science.gov (United States)

    Spaanenburg, Henk; Spaanenburg, Lambert; Ranefors, Johan

    2009-05-01

    Multi-core computing provides new challenges to software engineering. The paper addresses such issues in the general setting of polytopol computing, that takes multi-core problems in such widely differing areas as ambient intelligence sensor networks and cloud computing into account. It argues that the essence lies in a suitable allocation of free moving tasks. Where hardware is ubiquitous and pervasive, the network is virtualized into a connection of software snippets judiciously injected to such hardware that a system function looks as one again. The concept of polytopol computing provides a further formalization in terms of the partitioning of labor between collector and sensor nodes. Collectors provide functions such as a knowledge integrator, awareness collector, situation displayer/reporter, communicator of clues and an inquiry-interface provider. Sensors provide functions such as anomaly detection (only communicating singularities, not continuous observation), they are generally powered or self-powered, amorphous (not on a grid) with generation-and-attrition, field re-programmable, and sensor plug-and-play-able. Together the collector and the sensor are part of the skeleton injector mechanism, added to every node, and give the network the ability to organize itself into some of many topologies. Finally we will discuss a number of applications and indicate how a multi-core architecture supports the security aspects of the skeleton injector.

  7. A coupled implicit solution method for turbulent spray combustion in propulsion systems

    Science.gov (United States)

    Chen, K.-H.; Shuen, J.-S.

    1993-01-01

    Many reacting flows in propulsion devices cannot be efficiently calculated by modern compressible flow CFD algorithms. Most low-speed reacting flow codes based on TEACH-type technologies are inefficient and lack robustness for complex flows. Tremendous progress has been made in high-speed compressible flow CFD in the past two decades; extending its application range to low-speed regimes is highly desirable. The objectives of this document is to present an efficient and robust algorithm for multi-phase chemically reacting flows at all speeds, with emphasis on low Mach number flows, and to calculate turbulent spray combustion flow in a gas turbine combustor.

  8. Isothermal Oxidation Behavior of Supersonic Atmospheric Plasma-Sprayed Thermal Barrier Coating System

    Science.gov (United States)

    Bai, Yu; Ding, Chunhua; Li, Hongqiang; Han, Zhihai; Ding, Bingjun; Wang, Tiejun; Yu, Lie

    2013-10-01

    In this work, Y2O3 stabilized zirconia-based thermal barrier coatings (TBCs) were deposited by conventional atmospheric plasma spraying (APS) and high efficiency supersonic atmospheric plasma spraying (SAPS), respectively. The effect of Al2O3 layer stability on the isothermal growth behavior of thermally grown oxides (TGOs) was studied. The results revealed that the Al2O3 layer experienced a three-stage change process, i.e., (1) instantaneous growth stage, (2) steady-state growth stage, and (3) depletion stage. The thickness of Al2O3 scale was proved to be an important factor for the growth rate of TGOs. The SAPS-TBCs exhibited a higher Al2O3 stability and better oxidation resistance as compared with the APS-TBCs. Additionally, it was found that inner oxides, especially nucleated on the top of the crest, continually grew and swallowed the previously formed Al2O3 layer, leading to the granulation and disappearance of continuous Al2O3 scale, which was finally replaced by the mixed oxides and spinel.

  9. 液化烃储罐水喷雾冷却系统设计%Designing of Water-Spray Cooling System for Liquefied Hydrocarbon Storage Tanks

    Institute of Scientific and Technical Information of China (English)

    赵彦永

    2000-01-01

    通过对液化烃储罐火灾特点及水喷雾冷却系统灭火机理的分析,对液化烃储罐水喷雾消防冷却系统的设计方法加以探讨。提出了"罐上喷头工作压力为定值"的假设,从而简化了设计计算。%Discussions are made on the methods for designing water-spray cooling system for liquefied hydrocarbonstorage tanks through analyzing the characteristics of the fire hazards with liquefied hydrocarbon storage tanks and the fireextinguishing mechanism of water-spray cooling system, with the hypothesis of "The working pressure of the spray nozzleson the tanks is a set value." advanced,so that design calculations are simplified.

  10. Core and shell song systems unique to the parrot brain

    DEFF Research Database (Denmark)

    Chakraborty, Mukta; Harpøth, Solveig Walløe; Nedergaard, Signe

    2015-01-01

    The ability to imitate complex sounds is rare, and among birds has been found only in parrots, songbirds, and hummingbirds. Parrots exhibit the most advanced vocal mimicry among non-human animals. A few studies have noted differences in connectivity, brain position and shape in the vocal learning...... in the vocal systems of parrots relative to other vocal learners, we used specialized constitutive gene expression, singing-driven gene expression, and neural connectivity tracing experiments to further characterize the song system of budgerigars and/or other parrots. We found that the parrot brain uniquely...... species at a basal divergence with all other parrots, implying that parrots evolved vocal learning systems at least 29 million years ago. Relative size differences in the core and shell regions occur among species, which we suggest could be related to species differences in vocal and cognitive abilities....

  11. Core and shell song systems unique to the parrot brain

    DEFF Research Database (Denmark)

    Chakraborty, Mukta; Harpøth, Solveig Walløe; Nedergaard, Signe;

    2015-01-01

    The ability to imitate complex sounds is rare, and among birds has been found only in parrots, songbirds, and hummingbirds. Parrots exhibit the most advanced vocal mimicry among non-human animals. A few studies have noted differences in connectivity, brain position and shape in the vocal learning...... in the vocal systems of parrots relative to other vocal learners, we used specialized constitutive gene expression, singing-driven gene expression, and neural connectivity tracing experiments to further characterize the song system of budgerigars and/or other parrots. We found that the parrot brain uniquely...... species at a basal divergence with all other parrots, implying that parrots evolved vocal learning systems at least 29 million years ago. Relative size differences in the core and shell regions occur among species, which we suggest could be related to species differences in vocal and cognitive abilities....

  12. Core and Shell Song Systems Unique to the Parrot Brain

    DEFF Research Database (Denmark)

    Chakraborty, Mukta; Hansen, Solveig Walløe; Nedergaard, Signe;

    2015-01-01

    The ability to imitate complex sounds is rare, and among birds has been found only in parrots, songbirds, and hummingbirds. Parrots exhibit the most advanced vocal mimicry among non-human animals. A few studies have noted differences in connectivity, brain position and shape in the vocal learning...... in the vocal systems of parrots relative to other vocal learners, we used specialized constitutive gene expression, singing-driven gene expression, and neural connectivity tracing experiments to further characterize the song system of budgerigars and/or other parrots. We found that the parrot brain uniquely...... species at a basal divergence with all other parrots, implying that parrots evolved vocal learning systems at least 29 million years ago. Relative size differences in the core and shell regions occur among species, which we suggest could be related to species differences in vocal and cognitive abilities....

  13. Nonenzymatic browning kinetics of a carbohydrate-based low-moisture food system at temperatures applicable to spray drying.

    Science.gov (United States)

    Miao, Song; Roos, Yrjö H

    2004-08-11

    Effects of water contents on nonenzymatic browning (NEB) rates of amorphous, carbohydrate-based food model systems containing L-lysine and D-xylose as reactants were studied at different temperatures (40, 50, 60, 70, 80, and 90 degrees C) applicable to spray drying conditions. Water sorption was determined gravimetrically, and data were modeled using the Brunauer-Emmett-Teller and Guggenheim-Anderson-deBoer equations. Glass transition, Tg was measured by DSC. NEB was followed spectrophotometrically. The rate of browning increased with water content and temperature, but a lower T-Tg was needed for browning at decreasing water content. Water content seemed to affect the activation energy of NEB, and higher water contents decreased the temperature dependence of the NEB. At higher temperatures, the NEB became less water content dependent and enhanced browning in spray-drying. The temperature dependence of nonenzymatic browning could also be modeled using the Williams-Landel-Ferry (WLF) equation, but the WLF constants were dependent on the water content.

  14. 77 FR 36014 - Initial Test Program of Emergency Core Cooling Systems for Boiling-Water Reactors

    Science.gov (United States)

    2012-06-15

    ... COMMISSION Initial Test Program of Emergency Core Cooling Systems for Boiling-Water Reactors AGENCY: Nuclear...-1277, ``Initial Test Program of Emergency Core Cooling Systems for Boiling- Water Reactors.'' This... testing features of emergency core cooling systems (ECCSs) for boiling-water reactors (BWRs). DATES...

  15. Experimental investigation of iodine removal and containment depressurization in containment spray system test facility of 700 MWe Indian pressurized heavy water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Manish [Department of Mechanical Engineering, I.I.T., Bombay, Powai, Mumbai (India); Kandar, T.K.; Vhora, S.F.; Mohan, Nalini [Directorate of Technology Development, Nuclear Power Corporation of India Limited, Mumbai (India); Iyer, K.N. [Department of Mechanical Engineering, I.I.T., Bombay, Powai, Mumbai (India); Prabhu, S.V., E-mail: svprabhu@iitb.ac.in [Department of Mechanical Engineering, I.I.T., Bombay, Powai, Mumbai (India)

    2017-05-15

    Highlights: • Depressurization rate in a scaled down vessel filled with air and steam is studied. • Iodine removal rate in a scaled down vessel filled with steam/air is investigated. • Effect of SMD and vessel pressure on depressurization rate is studied. • Depressurization rate decreases with the increase in the droplet size (590 μm – 1 mm) • Decrease in pressure and iodine concentration with time follow exponential trend. - Abstract: As an additional safety measure in the new 700 MWe Indian pressurized heavy water reactors, the first of a kind system called containment Spray System is introduced. The system is designed to cater/mitigate the conditions after design basis accidents i.e., loss of coolant accident and main steam line break. As a contribution to the safety analysis of condition following loss-of-coolant accidents, experiments are carried out to establish the performance of the system. The loss of coolant is simulated by injecting saturated steam and iodine vapors into the containment vessel in which air is enclosed at atmospheric and room temperature, and then the steam-air mixture is cooled by sprays of water. The effect of water spray on the containment vessel pressure and the iodine scrubbing in a scaled down facility is investigated for the containment spray system of Indian pressurized heavy water reactors. The experiments are carried out in the scaled down vessel of the diameter of 2.0 m and height of 3.5 m respectively. Experiments are conducted with water at room temperature as the spray medium. Two different initial vessel pressure i.e. 0.7 bar and 1.0 bar are chosen for the studies as they are nearing the loss of coolant accident & main steam line break pressures in Indian pressurized heavy water reactors. These pressures are chosen based on the containment resultant pressures after a design basis accident. The transient temperature and pressure distribution of the steam in the vessel are measured during the depressurization

  16. PLC-300变频自动喷淋抑尘剂系统%System of Variable Frequency Automatic Spray Dust Suppression Agent by PLC -300

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    At present ,most of the artificial dust suppression agent spraying car sprayed is the manual mode of operation ,it has the dis-advantage of low efficiency ,costly and time-consuming ,and there are all kinds of unsafe hidden danger .Some use a new spraying base station ,but the spraying amount can not be effectively controlled ,no complete data tracking mechanism ,and can not query and share of job information .For dust suppression agent spraying situation ,an automatic dust suppression agent spraying system is created ,according to the vehicle speed to change the spraying inhibitors spraying system ,using frequency control method of plc300 ,and col-lecting the truck driving time ,entering the PLC for truck speed ,then it changes the frequency of the frequency converter selection ,ac-cording to different frequency ,corresponding to different spraying quantity ;At the same time it uses Kingview software ,convenient de-tection and control of field equipment .%  目前,抑尘剂喷洒大部分采用人工上车喷洒的全手工作业方式,其缺点效率低下,费时费力,同时存在各种不安全隐患。少数新装了喷淋基站,但其喷洒量不能有效控制,没有完整的数据跟踪机制,不能对已经作业的信息进行查询和共享。针对抑尘剂喷洒现状,开发出了一套全自动抑尘剂喷洒系统,根据货车速度来改变喷淋抑制剂系统喷洒量,采用plc300的变频调速方法,采集货车行驶时间,输入plc中获得货车速度,然后对变频器的变频频率进行选择。根据不同的频率,对应不同的喷洒量;并使用组态王软件进行监控,便于对现场设备的检测与控制。

  17. Space Launch System, Core Stage, Structural Test Design and Implementation

    Science.gov (United States)

    Shaughnessy, Ray

    2017-01-01

    As part of the National Aeronautics and Space Administration's (NASA) Space Launch System (SLS) Program, engineers at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama are working to design, develop and implement the SLS Core Stage structural testing. The SLS will have the capability to return humans to the Moon and beyond and its first launch is scheduled for December of 2017. The SLS Core Stage consist of five major elements; Forward Skirt, Liquid Oxygen (LOX) tank, Intertank (IT), Liquid Hydrogen (LH2) tank and the Engine Section (ES). Structural Test Articles (STA) for each of these elements are being designed and produced by Boeing at Michoud Assembly Facility located in New Orleans, La. The structural test for the Core Stage STAs (LH2, LOX, IT and ES) are to be conducted by the MSFC Test Laboratory. Additionally, the MSFC Test Laboratory manages the Structural Test Equipment (STE) design and development to support the STAs. It was decided early (April 2012) in the project life that the LH2 and LOX tank STAs would require new test stands and the Engine Section and Intertank would be tested in existing facilities. This decision impacted schedules immediately because the new facilities would require Construction of Facilities (C of F) funds that require congressional approval and long lead times. The Engine Section and Intertank structural test are to be conducted in existing facilities which will limit lead times required to support the first launch of SLS. With a SLS launch date of December, 2017 Boeing had a need date for testing to be complete by September of 2017 to support flight certification requirements. The test facilities were required to be ready by October of 2016 to support test article delivery. The race was on to get the stands ready before Test Article delivery and meet the test complete date of September 2017. This paper documents the past and current design and development phases and the supporting processes, tools, and

  18. Water spray interaction with air-steam mixtures under containment spray conditions: experimental study in the TOSQAN facility

    Energy Technology Data Exchange (ETDEWEB)

    Porcheron, E.; Lemaitre, P.; Malet, J.; Nuboer, A.; Brun, P.; Bouilloux, L.; Vendel, J. [Institut de Radioprotection et de Surete Nucleaire (IRSN), Direction de la Surete des Usines, des laboratoires, des transports et des dechets, Saclay, BP 68 - 91192 Gif-sur-Yvette cedex (France)

    2005-07-01

    Full text of publication follows: During the course of an hypothetical severe accident in a Pressurized Water Reactor (PWR), hydrogen can be produced by the reactor core oxidation and distributed into the reactor containment according to convection flows and steam wall condensation. In order to assess the risk of detonation generated by a high local hydrogen concentration, hydrogen distribution in the containment has to be known. The TOSQAN experimental program has been created to simulate typical accidental thermal hydraulic flow conditions in the reactor containment. The present work is devoted to study the interaction of a water spray injection used as a mitigation mean in order to reduce containment pressure and to produce a mixing of air, steam and hydrogen induced by spray entrainment and condensation on droplet. In order to have a better understanding of physical phenomena, we need to make a detailed characterization of the spray and the gas. The TOSQAN facility that is highly instrumented with non-intrusive diagnostics consists in a closed cylindrical vessel (7 m{sup 3} volume, 4 m high, 1.5 m i.d.) into which steam is injected. Water droplets size is measured in the vessel by the Interferometric Laser Imaging for Droplet Sizing technique. Droplet velocity is obtained by Particle Image Velocimetry and Laser Doppler Velocimetry, and droplet temperature is measured by global rainbow refractometry. Gas concentration measurements are performed by Spontaneous Raman Scattering. The walls of the vessel are thermostatically controlled by heated oil circulation. Inner spray system that is located on the top of the enclosure on the vertical axis, is composed of a single nozzle producing a full cone water spray. Spray test scenario consists of water spray injection in TOSQAN that is first pressurized with a steam injection (steam injection is stopped before spray injection). Water spray falling into the sump is removed to avoid accumulation and evaporation

  19. Planetary Lithosphere-Outer Core-Inner Core-Mantle Coupled Evolution Over the Entire Age of the Solar System

    Science.gov (United States)

    Tackley, P. J.; Nakagawa, T.; Louro Lourenço, D. J.; Rozel, A.

    2016-12-01

    Core evolution is determined by the heat flux extracted by the mantle as a function of time, which is itself dependent on the tectonic mode of the lithosphere and its evolution with time (Nakagawa & Tackley, 2015), as well as other factors. Thus, lithosphere, mantle and core must be treated as a coupled system in order to understand long-term core evolution. We have performed coupled modelling of mantle and core using a 2D or 3D mantle convection code with parameterized core. By plastic yielding the lithosphere may develop plate tectonics, stagnant lid, or episodic lid modes of tectonics, and the mode can change with time. Our recent models demonstrate that crustal production arising from partial melting plays a major role in facilitating plate tectonics; when this is included plate tectonics or episodic lithospheric overturn can occur even when purely thermal models predict a stagnant lithosphere (Lourenco et al, 2016). These models also demonstrate transitions between tectonic models as the planet cools. Considering Earth's core evolution, there is only a limited parameter range in which the heat extracted from the core is large enough at all times for a geodynamo to exist, but small enough that the core did not cool more than observed, a balance that becomes even more difficult if the core thermal conductivity is as high as recently thought (Nakagawa & Tackley, 2013). Models typically predict too much core cooling, which can be reduced by dense layering above the CMB: in particular such a dense, compositionally-distinct layer existing from early times is important for avoiding early too-rapid core cooling (Nakagawa & Tackley, 2014). Our latest models treat Earth evolution from the magma ocean phase to the present day (Lourenco et al., presented at this meeting). In these models an initially very hot core cools extremely rapidly until it reaches the rheological transition of mantle rock ( 40% melt fraction). Therefore, it is difficult for the core temperature at

  20. An Investigation of the Effects of Wave State and Sea Spray on an Idealized Typhoon Using an Air-Sea Coupled Modeling System

    Institute of Scientific and Technical Information of China (English)

    LIU Bin; GUAN Changlong; Li'an XIE; ZHAO Dongliang

    2012-01-01

    In this study,the impact of atmosphere-wave coupling on typhoon intensity was investigated using numerical simulations of an idealized typhoon in a coupled atmosphere-wave-ocean modeling system.The coupling between atmosphere and sea surface waves considered the effects of wave state and sea sprays on air-sea momentum flux,the atmospheric low-level dissipative heating,and the wave-state-affected seaspray heat flux. Several experiments were conducted to examine the impacts of wave state,sea sprays,and dissipative heating on an idealized typhoon system. Results show that considering the wave state and sea-spray-affected sea-surface roughness reduces typhoon intensity,while including dissipative heating intensifies the typhoon system.Taking into account sea spray heat flux also strengthens the typhoon system with increasing maximum wind speed and significant wave height.The overall impact of atmosphere- wave coupling makes a positive contribution to the intensification of the idealized typhoon system.The minimum central pressure simulated by the coupled atmosphere wave experiment was 16.4 hPa deeper than that of the control run,and the maximum wind speed and significant wave height increased by 31% and 4%,respectively.Meanwhile,within the area beneath the typhoon center,the average total upward air-sea heat flux increased by 22%,and the averaged latent heat flux increased more significantly by 31% compared to the uncoupled run.

  1. Termination of light-water reactor core-melt accidents with a chemical core catcher: the core-melt source reduction system (COMSORS)

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, C.W.; Parker, G.W.; Rudolph, J.C.; Osborne-Lee, I.W. [Oak Ridge National Lab., TN (United States); Kenton, M.A. [Dames and Moore, Westmont, IL (United States)

    1996-09-01

    The Core-Melt Source Reduction System (COMSORS) is a new approach to terminate light-water reactor core melt accidents and ensure containment integrity. A special dissolution glass is placed under the reactor vessel. If core debris is released onto the glass, the glass melts and the debris dissolves into the molten glass, thus creating a homogeneous molten glass. The molten glass, with dissolved core debris, spreads into a wide pool, distributing the heat for removal by radiation to the reactor cavity above or by transfer to water on top of the molten glass. Expected equilibrium glass temperatures are approximately 600 degrees C. The creation of a low-temperature, homogeneous molten glass with known geometry permits cooling of the glass without threatening containment integrity. This report describes the technology, initial experiments to measure key glass properties, and modeling of COMSORS operations.

  2. NanoDrill: 1 Actuator Core Acquisition System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to design, build and test a 1 kg, single actuator, sample acquisition drill. The drill uses a novel method of core or powder acquisition. The core...

  3. Progress towards accelerating HOMME on hybrid multi- core systems

    Energy Technology Data Exchange (ETDEWEB)

    Archibald, Richard K [ORNL; Carpenter, Ilene L [ORNL; Evans, Katherine J [ORNL; Larkin, Jeff [Cray, Inc.; Micikevicius, Paulius [ORNL; Rosinski, James [NOAA, Boulder, CO; Schwarzmeier, James L [ORNL; Taylor, Mark [Sandia National Laboratories (SNL)

    2011-01-01

    The suitability of a spectral element based dynamical core (HOMME) within the Community Atmospheric Model (CAM) for GPU-based architectures is examined and initial performance results are reported. This work was done within a project to enable CAM to run at high resolution on next generation, multi-petaflop systems. The dynamical core is the present focus because it dominates the performance profile of our target problem. HOMME enjoys good scalability due to its underlying cubed-sphere mesh with full two-dimensional decomposition and the localization of all computational work within each element. The thread blocking and code changes that allow HOMME to effectively use GPUs are described along with a rewritten vertical remapping scheme which improves performance on both CPUs and GPUs. Validation of results in the full HOMME model is also described. Remaining issues affecting performance include optimizing the boundary exchanges for the case of multiple spectral elements being computed on the GPU and using multiple CUDA streams to overlap data transfers with computations.

  4. Creep behavior of plasma sprayed NiCr and NiCrAl coating-based systems

    Institute of Scientific and Technical Information of China (English)

    Xiancheng ZHANG; Changjun LIU; Fuzhen XUAN; Zhengdong WANG; Shan-Tung TU

    2011-01-01

    The creep behavior of the plasma sprayed NiCr and NiCrAl coating/Nickel alloy 690substrate systems at 1033 K was investigated. Results showed that there was almost no difference in the creep lives between the NiCr and NiCrAl coated specimens at a given stress level, since the contents of Cr used in the NiCr and NiCrAl powders are almost same. The relationship between the minimum creep rate and the applied stress followed the well-known Norton's power law, εmin=Aσn, with the values of A=2.66× 10-16 Mpa-n.h-1 and n=6.48. The relation between the applied stress and time to rupture of the coated specimens can be estimated by using Larson-Miller equation. The θ projection method can be used to accurately characterize the creep behavior of the coated specimens.

  5. Characteristics of Subcooled Liquid Methane During Passage Through a Spray-Bar Joule-Thompson Thermodynamic Vent System

    Science.gov (United States)

    Hastings, L. J.; Bolshinskiy, L. G.; Hedayat, A.; Schnell, A.

    2011-01-01

    NASA s Marshall Space Flight Center (MSFC) conducted liquid methane (LCH4) testing in November 2006 using the multipurpose hydrogen test bed (MHTB) outfitted with a spray-bar thermodynamic vent system (TVS). The basic objective was to identify any unusual or unique thermodynamic characteristics associated with subcooled LCH4 that should be considered in the design of space-based TVSs. Thirteen days of testing were performed with total tank heat loads ranging from 720 W to 420 W at a fill level of approximately 90%. During an updated evaluation of the data, it was noted that as the fluid passed through the Joule Thompson expansion, thermodynamic conditions consistent with the pervasive presence of metastability were indicated. This paper describes the observed thermodynamic conditions that correspond with metastability and effects on TVS performance.

  6. Improved Rock Core Sample Break-off, Retention and Ejection System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed effort advances the design of an innovative core sampling and acquisition system with improved core break-off, retention and ejection features. Phase 1...

  7. Improved Rock Core Sample Break-off, Retention and Ejection System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed effort advances the design of an innovative core sampling and acquisition system with improved core break-off, retention and ejection features. The...

  8. A spatial decision support system for guiding focal indoor residual spraying interventions in a malaria elimination zone

    Directory of Open Access Journals (Sweden)

    Gerard C. Kelly

    2011-11-01

    Full Text Available A customized geographical information system (GIS has been developed to support focal indoor residual spraying (IRS operations as part of a scaled-up campaign to progressively eliminate malaria in Vanuatu. The aims of the GISbased spatial decision support system (SDSS were to guide the planning, implementation and assessment of IRS at the household level. Additional aims of this study were to evaluate the user acceptability of a SDSS guiding IRS interventions. IRS was conducted on Tanna Island, Republic of Vanuatu between 26 October and 5 December 2009. Geo-referenced household information provided a baseline within the SDSS. An interactive mapping interface was used to delineate operation areas, extract relevant data to support IRS field teams. In addition, it was used as a monitoring tool to assess overall intervention coverage. Surveys and group discussions were conducted during the operations to ascertain user acceptability. Twenty-one operation areas, comprising a total of 187 settlements and 3,422 households were identified and mapped. A total of 3,230 households and 12,156 household structures were sprayed, covering a population of 13,512 individuals, achieving coverage of 94.4% of the households and 95.7% of the population. Village status maps were produced to visualize the distribution of IRS at the sub-village level. One hundred percent of survey respondents declared the SDSS a useful and effective tool to support IRS. The GIS-based SDSS adopted in Tanna empowered programme managers at the provincial level to implement and asses the IRS intervention with the degree of detail required for malaria elimination. Since completion, SDSS applications have expanded to additional provinces in Vanuatu and the neighbouring Solomon Islands supporting not only specific malaria elimination and control interventions, but also the broader public health sector in general.

  9. 多喷头组合变量喷药系统的设计与试验%Design and experiment of variable spraying system based on multiple combined nozzles

    Institute of Scientific and Technical Information of China (English)

    徐艳蕾; 包佳林; 付大平; 朱炽阳

    2016-01-01

    At present, in the process of agricultural production, a great use of herbicides have caused the serious pollution of soil environment and the declines of agricultural product quality, and it does not conform to the idea of the sustainable development of agriculture. Variable rate spraying technology is an important development direction to solve this problem. Mostly, the existing variable spraying system changes spraying quantity by adjusting the pressure and by the method of PWM (pulse width modulation) regulating. Pressure regulating mode at the same time of changing nozzle spraying quantity will change the liquid droplets size and spray pattern, and affect the variable spraying operation effect. For the PWM adjustment method, there is the phenomenon that spray status is not continuous at low frequency adjustment, while higher requirements exist for the life and reliability of the electromagnetic valve at high frequency adjustment. And its cost also increases accordingly. The present design of variable spraying system also has the disadvantages of high cost. In order to overcome the shortcomings of existing variable spraying system, this paper designed variable system based on the combined nozzle spraying and had corresponding test analysis. Firstly, the variable-spraying affecting factors model was established. On this basis, this paper designed the variable spraying system of multiple nozzle combination, with single ridge corresponding to the combination of 3 nozzles. High-performance electromagnetic valves were installed in front of each nozzle. By means of controlling the open-close combination of three-way electromagnetic valves, 7 kinds of nozzle spraying combinations were formed. Finally, it achieved 7 kinds of spraying amounts. The designed system could not only control the overall amount of spraying, but also increase regulating range of spraying quantity. In this paper, we designed the pipe of variable spraying system. It mainly included spraying box

  10. Effect of thermal spray processes on microstructures and properties of Ni-20%Cr coatings

    Directory of Open Access Journals (Sweden)

    Pittaya Kuntasudjai

    2006-05-01

    Full Text Available Ni-20%Cr coatings were produced using different thermal spray techniques, which were spray and fuse, flame spray and arc spray. The Ni-20%Cr powder was sprayed onto a mild steel substrate using the spray and fuse and the flame spray systems, while the Ni-20%Cr wire was sprayed using the arc spray system. SEM microstructures of the coatings suggested the spraying conditions used were able to produce dense microstructures. However, the microstructure of the arc sprayed coatings showed fine lamellar characteristics compared to the coatings prepared by the spray and fuse and the flame spray techniques. Chemical elements and oxide were quantified by EDS-SEM technique. Differences in microstructure and coating characteristics such as content of porosity and oxide due to different processing techniques significantly affected the coating properties such as adhesion strength, hardness and wear rate.

  11. Spray flow-network flow transition of binary Lennard-Jones particle system

    KAUST Repository

    Inaoka, Hajime

    2010-07-01

    We simulate gas-liquid flows caused by rapid depressurization using a molecular dynamics model. The model consists of two types of Lennard-Jones particles, which we call liquid particles and gas particles. These two types of particles are distinguished by their mass and strength of interaction: a liquid particle has heavier mass and stronger interaction than a gas particle. By simulations with various initial number densities of these particles, we found that there is a transition from a spray flow to a network flow with an increase of the number density of the liquid particles. At the transition point, the size of the liquid droplets follows a power-law distribution, while it follows an exponential distribution when the number density of the liquid particles is lower than the critical value. The comparison between the transition of the model and that of models of percolation is discussed. The change of the average droplet size with the initial number density of the gas particles is also presented. © 2010 Elsevier B.V. All rights reserved.

  12. Spray nozzle for fire control

    Science.gov (United States)

    Papavergos, Panayiotis G.

    1990-09-01

    The design of a spray nozzle for fire control is described. It produces a spray of gas and liquid having an oval transverse cross section and it comprises a mixing chamber with an oval transverse cross section adapted to induce a toroidal mixing pattern in pressurized gas and liquid introduced to the mixing chamber through a plurality of inlets. In a preferred embodiment the mixing chamber is toroidal. The spray nozzle produces an oval spray pattern for more efficient wetting of narrow passages and is suitable for fire control systems in vehicles or other confined spaces. Vehicles to which this invention may be applied include trains, armoured vehicles, ships, hovercraft, submarines, oil rigs, and most preferably, aircraft.

  13. Core to College Evaluation: Statewide Networks. Connecting Education Systems and Stakeholders to Support College Readiness

    Science.gov (United States)

    Bracco, Kathy Reeves; Klarin, Becca; Broek, Marie; Austin, Kim; Finkelstein, Neal; Bugler, Daniel; Mundry, Susan

    2014-01-01

    The Core to College initiative aims to facilitate greater coordination between K-12 and postsecondary education systems around implementation of the Common Core State Standards and aligned assessments. Core to College grants have been awarded to teams in Colorado, Florida, Hawaii, Kentucky, Louisiana, Massachusetts, North Carolina, Oregon,…

  14. The BepiColombo Archive Core System (BACS)

    Science.gov (United States)

    Macfarlane, A. J.; Osuna, P.; Pérez-López, F.; Vallejo, J. C.; Martinez, S.; Arviset, C.; Casale, M.

    2015-09-01

    BepiColombo is an interdisciplinary ESA mission to explore the planet Mercury in cooperation with JAXA. The mission consists of two separate orbiters: ESA's Mercury Planetary Orbiter (MPO) and JAXA's Mercury Magnetospheric Orbiter (MMO), which are dedicated to the detailed study of the planet and its magnetosphere. The MPO scientific payload comprises 11 instruments covering different scientific disciplines developed by several European teams. The MPO science operations will be prepared by the MPO Science Ground Segment (SGS) located at the European Space Astronomy Centre (ESAC) in Madrid. The BepiColombo Archive Core System (BACS) will be the central archive in which all mission operational data will be stored and is being developed by the Science Archives and Virtual Observatory Team (SAT) also at ESAC. The BACS will act as one of the modular subsystems within the BepiColombo Science Operations Control System (BSCS), (Vallejo 2014; Pérez-López 2014) which is under the responsibility of the SGS, with the purpose of facilitating the information exchange of data and metadata between the other subsystems of the BSCS as well as with the MPO Instrument Teams. This paper gives an overview of the concept and design of the BACS and how it integrates into the science ground segment workflow.

  15. Endospore production allows using spray-drying as a possible formulation system of the biocontrol agent Bacillus subtilis CPA-8.

    Science.gov (United States)

    Yánez-Mendizabal, V; Viñas, I; Usall, J; Cañamás, T; Teixidó, N

    2012-04-01

    The role of endospore production by Bacillus subtilis CPA-8 on survival during spray-drying was investigated by comparison with a non-spore-forming biocontrol agent Pantoea agglomerans CPA-2. Endospore formation promoted heat resistance in CPA-8 depending on growth time (72 h cultures were more resistant than 24 h ones). The survival of CPA-8 and CPA-2 after spray-drying was determined after being grown in optimised media for 24 and 72 h. Spray-dried 72 h CPA-8 had the best survival (32%), while CPA-2 viability was less than 2%. CPA-8 survival directly related with its ability to produce endospores. Spray-dried CPA-8 reduced Monilinia fructicola conidia germination similarly to fresh cells, demonstrating that spray-drying did not adversely affect biocontrol efficacy. Endospore production thus improves CPA-8 resistance to spray-drying. These results can provide a reliable basis for optimising of the spray-drying formulation process for CPA-8 and other microorganisms.

  16. Sea Spray Aerosols

    DEFF Research Database (Denmark)

    Butcher, Andrew Charles

    emissions produced directly from bubble bursting as the result of air entrainment from breaking waves and particles generated from secondary emissions of volatile organic compounds. In the first paper, we study the chemical properties of particles produced from several sea water proxies with the use...... of a cloud condensation nuclei ounter. Proxy solutions with high inorganic salt concentrations and some organics produce sea spray aerosol particles with little change in cloud condensation activity relative to pure salts. Comparison is made between a frit based method for bubble production and a plunging...... a relationship between plunging jet particle ux, oceanic particle ux, and energy dissipation rate in both systems. Previous sea spray aerosol studies dissipate an order of magnitude more energy for the same particle ux production as the open ocean. A scaling factor related to the energy expended in air...

  17. Sea Spray Aerosols

    DEFF Research Database (Denmark)

    Butcher, Andrew Charles

    emissions produced directly from bubble bursting as the result of air entrainment from breaking waves and particles generated from secondary emissions of volatile organic compounds. In the first paper, we study the chemical properties of particles produced from several sea water proxies with the use...... of a cloud condensation nuclei ounter. Proxy solutions with high inorganic salt concentrations and some organics produce sea spray aerosol particles with little change in cloud condensation activity relative to pure salts. Comparison is made between a frit based method for bubble production and a plunging...... a relationship between plunging jet particle ux, oceanic particle ux, and energy dissipation rate in both systems. Previous sea spray aerosol studies dissipate an order of magnitude more energy for the same particle ux production as the open ocean. A scaling factor related to the energy expended in air...

  18. Structurally Integrated, Damage Tolerant Thermal Spray Coatings: Processing Effects on Surface and System Functionalities

    Science.gov (United States)

    Vackel, Andrew

    Thermal Spray (TS) coatings have seen extensive application as protective surfaces to enhance the service life of substrates prone to damage in their operating environment (wear, corrosion, heat etc.). With the advent of high velocity TS processes, the ability to deposit highly dense (>99%) metallic and cermet coatings has further enhanced the protective ability of these coatings. In addition to surface functionality, the influence of the coating application on the mechanical performance of a coated component is of great concern when such a component will experience either static or cyclic loading during service. Using a process mapping methodology, the processing-property interplay between coating materials meant to provide damage tolerant surface or for structural restoration are explored in terms of relevant mechanical properties. Most importantly, the residual stresses inherent in TS deposited coatings are shown to play a significant role in the integrated mechanical performance of these coatings. Unique to high velocity TS processes is the ability to produce compressive stresses within the deposit from the cold working induced by the high kinetic energy particles upon impact. The extent of these formation stresses are explored with different coating materials, as well as processing influence. The ability of dense TS coatings to carry significant structural load and synergistically strengthen coated tensile specimens is demonstrated as a function of coating material, processing, and thickness. The sharing of load between the substrate and otherwise brittle coating enables higher loads before yield for the bi-material specimens, offering a methodology to improve the tensile performance of coated components for structural repair or multi-functionality (surface and structure). The concern of cyclic fatigue damage in coated components is explored, since the majority of service application are designed for loading to be well below the yield point. The role of

  19. Hardware virtualisation for heterogeneous many-core systems

    NARCIS (Netherlands)

    Grelck, C.; Poss, R.; Jesshope, C.

    2010-01-01

    The multi-core/many-core revolution has brought up a hardly precedented diversity in computer architecture. While parallelism id the common property, granularity of concurrent processing resources may easily span multiple orders of magnitude. This requires design decisions in the organisation of

  20. Cold Spray Forming of Inconel 718

    Science.gov (United States)

    Wong, W.; Irissou, E.; Vo, P.; Sone, M.; Bernier, F.; Legoux, J.-G.; Fukanuma, H.; Yue, S.

    2013-03-01

    Inconel 718 was cold spray formed to a 6-mm thickness on an 8-cm diameter aluminum alloy tube using Sulzer Amdry 1718 powder and the Plasma Giken PCS-1000 cold spray system. The effects of spray particle velocity and post-spray heat treatment were studied. Post-spray annealing was performed from 950 to 1250 °C for 1-2 h. The resulting microstructures as well as the corresponding mechanical properties were characterized. As-sprayed coatings exhibited very low ductility. The tensile strength and ductility of the heat-treated coatings were improved to varying levels depending on the heat-treatment and spray conditions. For coatings sprayed at higher particle velocity and heat treated at 1250 °C for 1 h, an elongation of 24% was obtained. SEM micrographs showed a higher fraction of interparticle metallurgical bonds due to some sintering effect. Corresponding fracture surfaces also revealed a higher fraction of dimple features, typically associated with ductile fracture, in the annealed coatings. The results demonstrate that cold spray forming of Inconel 718 is feasible, and with appropriate heat treatment, metallurgical bonding can be increased. The ductility of the spray-formed samples was comparable to that of the bulk material.

  1. Measures Improving the Reliability of Automatic Spraying Extinguishing System%提高自动喷淋灭火系统可靠性的措施研究

    Institute of Scientific and Technical Information of China (English)

    黄正

    2011-01-01

    Sprinkler system occupies an important position in fire extinguishing system, known as the most effective means of fire. This paper analyzed related factors influencing the reliability of automatic spraying extinguishing system, proposed several measures on improving the reliability of automatic spraying extinguishing system.%自动喷淋系统在消防灭火系统中占据着重要位置,被称为最有效的灭火手段.本文在时影响自动喷淋灭火系统可靠性的相关因素进行分析的基础上,提出了提高自动喷淋灭火系统的可靠性的几项措施..

  2. Initial Results From the new Long Coring System of RV Knorr

    Science.gov (United States)

    Curry, W.; Keigwin, L.; Broda, J.; Mountain, G.; Pisias, N.

    2008-12-01

    A new long piston coring system has been designed and built for RV Knorr. The system is capable of deploying core lengths up to 46 m and weights of ~25000 lbs. With suitable modifications to other ships, a slightly smaller system could be deployed from other large UNOLS vessels. The handling system was designed around a hybrid rope blend of Vectran and Plasma braided with a torque-balanced, non- rotating construction. The rope is 7500 m long with a breaking strength (~360,000 lbs) more than 10 times greater than the pullout tensions experienced by the coring system. The high breaking strength limits stretching during coring operations, which minimizes rebound of the rope and movement of the piston during core penetration. An accelerometer placed on the release system documented that rope rebound was less than 2 m after the release of a ~15000 lb core at a water depth of 4585 m. The handling system for the new core includes a new A-frame mounted with a load transfer winch and a vertically-mounted rigging boom; a new stern-mounted grapple for transferring the corer from starboard to stern; a new deck-mounted traction winch for the Vectran-Plasma rope; and three new computer-controlled davit cranes along the starboard rail to raise and lower the corer between horizontal and vertical orientations. During testing at Bermuda Rise, core recovery exceeded 38 m, with cores generally filling 85% to 90% of the piston core barrel length. The test location has been cored many times before and stratigraphic correlation of the new cores with ODP Site 1063 shows that the new system recovered sediments without stretching. Three cores exhibit some evidence of compression at about 30 mbsf, while two others do not. These two cores were collected with a reduced-diameter core cutter, minimizing internal friction and enhancing core recovery. Four of the new cores completely recovered the last 150,000 years of sedimentation at Bermuda Rise with an average sedimentation rate of greater

  3. The Dishwasher Spray System Research Based on the Fluent Fluid Dynamics%基于Fluent流体动力学洗碗机喷淋系统研究

    Institute of Scientific and Technical Information of China (English)

    喻永康; 何雪明

    2013-01-01

    Dishwasher, as a machine to clean the dishes instead of hands, the structure of dishwasher spray is the most important factor to determine dishwasher efficiency . Application of fluid dynamics simulation software Fluent on a commercial dishwasher spray system made corresponding fluid analysis. The result of the analysis is displayed in the form of cloud graph. By analyzing the structure of the flow field of the residual spray curve, pressure distribution, and velocity cloud etc, detect the design flaws and defects of the structure of spray of commercial dishwasher,provide the basis for structure improvement.%  洗碗机是一种代替手工洗涤碗盘碟勺等厨具的家用电器,洗碗机的喷淋结构是决定洗碗机效率的最重要因素。运用流体动力学仿真软件Fluent对一家商用洗碗机的喷淋系统作了相应的流体分析,分析的结果以云图的方式显示。通过分析喷淋系统的残差曲线图、压力分布、速度云图等,可以得出此商用洗碗机的喷淋结构的设计缺陷,为结构改进提供依据。

  4. Hierarchical functional connectivity between the core language system and the working memory system.

    Science.gov (United States)

    Makuuchi, Michiru; Friederici, Angela D

    2013-10-01

    Language processing inevitably involves working memory (WM) operations, especially for sentences with complex syntactic structures. Evidence has been provided for a neuroanatomical segregation between core syntactic processes and WM, but the dynamic relation between these systems still has to be explored. In the present functional magnetic resonance imaging (fMRI) study, we investigated the network dynamics of regions involved in WM operations which support sentence processing during reading, comparing a set of dynamic causal models (DCM) with different assumptions about the underlying connectional architecture. The DCMs incorporated the core language processing regions (pars opercularis and middle temporal gyrus), WM related regions (inferior frontal sulcus and intraparietal sulcus), and visual word form area (fusiform gyrus). The results indicate a processing hierarchy from the visual to WM to core language systems, and moreover, a clear increase of connectivity between WM regions and language regions as the processing load increases for syntactically complex sentences.

  5. Optimal Design and Analysis of the Stepped Core for Wireless Power Transfer Systems

    Directory of Open Access Journals (Sweden)

    Xiu Zhang

    2016-01-01

    Full Text Available The key of wireless power transfer technology rests on finding the most suitable means to improve the efficiency of the system. The wireless power transfer system applied in implantable medical devices can reduce the patients’ physical and economic burden because it will achieve charging in vitro. For a deep brain stimulator, in this paper, the transmitter coil is designed and optimized. According to the previous research results, the coils with ferrite core can improve the performance of the wireless power transfer system. Compared with the normal ferrite core, the stepped core can produce more uniform magnetic flux density. In this paper, the finite element method (FEM is used to analyze the system. The simulation results indicate that the core loss generated in the optimal stepped ferrite core can reduce about 10% compared with the normal ferrite core, and the efficiency of the wireless power transfer system can be increased significantly.

  6. Status of Research on Online Fuel Damage Detection and Core Damage Assessment System

    Institute of Scientific and Technical Information of China (English)

    XU; Xi-an; JI; Song-tao; GAO; Yong-guang; SHI; Xiao-lei

    2012-01-01

    <正>The technique research on the online fuel element damage detection and reactor core damage assessment is one project in the research program of the technical research for reactor key equipment maintenance and detection. The main research objective is to develop an online fuel damage detection system (FDDS), a core damage assessment system (CDAS) and make the integration of the two systems.

  7. Novel design of hollow-core multi clad fiber for long haul optical communication system

    Science.gov (United States)

    Palodiya, Vikram; Raghuwanshi, Sanjeev K.

    2016-09-01

    We have described a dispersion characteristics of hollow-core multi-clad index profiles, which include a hollow core. The designs satisfy the most important requirements for applications in long haul communication. This design fiber shows zero dispersion at 1550 nm can be obtained for the fundamental air core mode over a wide wavelength range by introducing the partial reflector layer around the core, optimizing expanded core size and silica cladding thickness. Also analyze dispersion compensating properties of these fibers. This unique structure of the fundamental air core mode is presented by the introduction of partial reflector cladding around the core. The potential applications of hollow-core multi clad fibers in long-haul optical communication system.

  8. Static spray deposition distribution characteristics of PWM-based intermittently spraying system%脉宽调制间歇喷雾变量喷施系统的静态雾量分布特性

    Institute of Scientific and Technical Information of China (English)

    魏新华; 于达志; 白敬; 蒋杉

    2013-01-01

    Owing to its intermittently spraying characteristics, spray deposition distribution uniformity of PWM-based variable rate application system is hard to control. A PWM-based variable rate application testing system was constructed by integration of a modified commercial boom sprayer and an IPC-based measurement and control system to study its static deposition distribution characteristics. The sprayer consisted of a fluid tank, a filter, a diaphragm pump, a proportional relief valve, 12 high speed on-off solenoid valves, 12 TR80-05 hollow-cone nozzles and various pipelines, mounted on a tractor, and was driven by the tractor via its power take-off shaft. The IPC-based measurement and control system was composed of a pressure sensor, 4 flow sensors, a signal conditioning module, an IPC, an analog input data acquisition card、a PWM signal output card、an analog output card, and 2 driving modules. Real-time monitoring of subgroup flow and boom pressure, feedback stable control of average boom pressure, setting of the average boom pressure, and setting of frequency and duty cycle of the PWM signal were performed by the measurement and control software which was developed with Labview. Droplets were collected with a matrix-styled droplet collection device, it had a horizontal collection dimention of 1000 mm×1000 mm and was divided evenly into 20×20 grids. Putting a paper cup in each grid, weighting the cups before and after each spraying test, droplet deposition of each grid could be deduced, and two-dimentional deposition distribution was obtained. Static deposition distributions of the PWM controlled nozzle were tested under various spray conditions of different spray pressures, different frequencies and duty cycles of PWM signal with the tractor holding still and the tested nozzle 0.5 m distance above the droplet collection area. And nonlinear regression analyses were performed on static deposition distribution specimens acquired under spray conditions of 0.3MPa

  9. Comparing a spray boom to a roller-wiper system for a single-passenger four-wheeler

    Science.gov (United States)

    James D. Haywood; Richard Hallman

    1992-01-01

    The ability of spray booms and carpet-covered roller-wipers mounted on four-wheelers to apply herbicides on pine plantings sites was tested with the following treatments: spray boom application of 0.31 kg (0.69 lb) acid equivalent glyphosate with 0.08 kg (0.18 lb) active ingredient sulfometuron in 215 liters of water/ha (23 gallons/acre) and roller-wiping the...

  10. Experimental and theoretical study on spray behaviors of modified bio-ethanol fuel employing direct injection system

    Directory of Open Access Journals (Sweden)

    Ghahremani Amirreza

    2017-01-01

    Full Text Available One of the key solutions to improve engine performance and reduce exhaust emissions of internal combustion engines is direct injection of bio-fuels. A new modified bio-ethanol is produced to be substituted by fossil fuels in gasoline direct injection engines. The key advantages of modified bio-ethanol fuel as an alternative fuel are higher octane number and oxygen content, a long-chain hydro-carbon fuel, and lower emissions compared to fossil fuels. In the present study spray properties of a modified bio-ethanol and its atomization behaviors have been studied experimentally and theoretically. Based on atomization physics of droplets dimensional analysis has been performed to develop a new non-dimensional number namely atomization index. This number determines the atomization level of the spray. Applying quasi-steady jet theory, air entrainment and fuel-air mixing studies have been performed. The spray atomization behaviors such as atomization index number, Ohnesorge number, and Sauter mean diameter have been investigated employing atomization model. The influences of injection and ambient conditions on spray properties of different blends of modified bio-ethanol and gasoline fuels have been investigated performing high-speed visualization technique. Results indicate that decreasing the difference of injection and ambient pressures increases spray cone angle and projected area, and decreases spray tip penetration length. As expected, increasing injection pressure improves atomization behaviors of the spray. Increasing percentage of modified bio-ethanol in the blend, increases spray tip penetration and decreases the projected area as well.

  11. INFLUENCE OF AIR HUMIDITY ON THE SUPPRESSION OF FUGITIVE DUST BY USING A WATER-SPRAYING SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Peter Werner Grundnig; Wilhelm H(o)flinger; Gerd Mauschitz; Zechang Liu; Guiqin Zhang; Zhiqiang Wang

    2006-01-01

    One of the main origins of fugitive dust emission arises from bulk handling in quarries or mines, in particular, from bulk materials falling from a hopper or a conveyor belt. Water-spraying systems, using two-phase nozzles,are one of the methods to suppress such dust emission. In this work we tried to develop a mathematical model to correlate air humidity, water flux through the nozzle and the dust (in particular PM10) emission, in order to improve the application and efficiency of these systems. Sand from the Yellow River in China was dropped from a conveyor belt into a dust chamber at 1 kg·min-1, wherefrom the emitted dust was sucked off and quantified via a cascade impactor. A two-phase nozzle was installed in the dust chamber with a water flux through the nozzle of 1.2 to 3 L·h-1, whereas the relative air humidity changed between 55 and 73%. Dust emission was found to be linearly dependent on relative air humidity. Furthermore model equations were developed to describe the dependence of PM10 emission on water flux and relative air humidity.

  12. Hanging core support system for a nuclear reactor. [LMFBR

    Science.gov (United States)

    Burelbach, J.P.; Kann, W.J.; Pan, Y.C.; Saiveau, J.G.; Seidensticker, R.W.

    1984-04-26

    For holding the reactor core in the confining reactor vessel, a support is disclosed that is structurally independent of the vessel, that is dimensionally accurate and stable, and that comprises tandem tension linkages that act redundantly of one another to maintain stabilized core support even in the unlikely event of the complete failure of one of the linkages. The core support has a mounting platform for the reactor core, and unitary structure including a flange overlying the top edge of the reactor vessels, and a skirt and box beams between the flange and platform for establishing one of the linkages. A plurality of tension rods connect between the deck closing the reactor vessel and the platform for establishing the redundant linkage. Loaded Belleville springs flexibly hold the tension rods at the deck and separable bayonet-type connections hold the tension rods at the platform.

  13. NanoDrill: 1 Actuator Core Acquisition System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to design, build, and test a sample acquisition drill weighing less than 1 kg. The drill uses a novel method of core or powder acquisition, and is...

  14. Fuzzy Self-tuning PID Variable Spray Control System Based on PLC Control%基于PLC控制的模糊自整定PID变量喷雾控制系统

    Institute of Scientific and Technical Information of China (English)

    董志明; 宋乐鹏

    2014-01-01

    变量喷雾控制系统具有非线性、时变性、大滞后等特点,常规PID控制不能满足变量喷雾控制系统在实际作业中理想的控制效果。因此提出了一种基于PLC控制的模糊自整定PID控制方法。PLC控制的模糊自整定PID控制结合了PLC控制灵活、多变和自适应模糊控制等特点,通过对变量喷雾控制系统的数学建模,建立了以电动PI调节阀为核心的模糊自整定PID控制系统。利用Matlab/Simulink 和模糊逻辑工具箱对普通模糊PID控制系统和基于PLC控制的模糊自整定PID控制系统进行Simulink仿真研究。实验结果表明,基于PLC控制的模糊自整定PID控制比常规PID控制在非线性、时变性、减小超调量的方面具有更好的控制品质。%Variable spray control system has nonlinear, time-varying, big lag, etc. Conventional PID control can't satisfy the variable spray control system in the actual operation of the ideal control effect, so as to put forward a fuzzy self-tuning PID control based on PLC control method. PLC control of the fuzzy self-tuning PID control combined with PLC control flexible, changeable and adaptive fuzzy control, etc. through the mathematical modeling of variable spray control system, set up electric PI regulator for the core of the fuzzy self-tuning PID control system. Using Matlab/Simulink and fuzzy logic toolbox to general fuzzy PID control system and fuzzy self-tuning PID control based on PLC control system with Simulink simulation. The experimental results showed that fuzzy self-tuning PID control based on PLC control had the better quality than the conventional PID control in the nonlinear, time-varying and the reduce of the overshoot amount.

  15. On-line core monitoring system based on buckling corrected modified one group model

    Energy Technology Data Exchange (ETDEWEB)

    Freire, Fernando S., E-mail: freire@eletronuclear.gov.br [ELETROBRAS Eletronuclear Gerencia de Combustivel Nuclear, Rio de Janeiro, RJ (Brazil)

    2011-07-01

    Nuclear power reactors require core monitoring during plant operation. To provide safe, clean and reliable core continuously evaluate core conditions. Currently, the reactor core monitoring process is carried out by nuclear code systems that together with data from plant instrumentation, such as, thermocouples, ex-core detectors and fixed or moveable In-core detectors, can easily predict and monitor a variety of plant conditions. Typically, the standard nodal methods can be found on the heart of such nuclear monitoring code systems. However, standard nodal methods require large computer running times when compared with standards course-mesh finite difference schemes. Unfortunately, classic finite-difference models require a fine mesh reactor core representation. To override this unlikely model characteristic we can usually use the classic modified one group model to take some account for the main core neutronic behavior. In this model a course-mesh core representation can be easily evaluated with a crude treatment of thermal neutrons leakage. In this work, an improvement made on classic modified one group model based on a buckling thermal correction was used to obtain a fast, accurate and reliable core monitoring system methodology for future applications, providing a powerful tool for core monitoring process. (author)

  16. Preliminary Uncertainty Analysis for SMART Digital Core Protection and Monitoring System

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Bon Seung; In, Wang Kee; Hwang, Dae Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    The Korea Atomic Energy Research Institute (KAERI) developed on-line digital core protection and monitoring systems, called SCOPS and SCOMS as a part of SMART plant protection and monitoring system. SCOPS simplified the protection system by directly connecting the four RSPT signals to each core protection channel and eliminated the control element assembly calculator (CEAC) hardware. SCOMS adopted DPCM3D method in synthesizing core power distribution instead of Fourier expansion method being used in conventional PWRs. The DPCM3D method produces a synthetic 3-D power distribution by coupling a neutronics code and measured in-core detector signals. The overall uncertainty analysis methodology which is used statistically combining uncertainty components of SMART core protection and monitoring system was developed. In this paper, preliminary overall uncertainty factors for SCOPS/SCOMS of SMART initial core were evaluated by applying newly developed uncertainty analysis method

  17. Development of Monju easy-to-introduce system for total evaluation of reactor core

    Energy Technology Data Exchange (ETDEWEB)

    Kitano, Akihiro; Teruyama, Hidehiko; Nishi, Hiroshi [Japan Nuclear Cycle Development Inst., Tsuruga Head Office, Tsuruga, Fukui (Japan); Yamaoka, Mitsuaki; Moriki, Yasuyuki [Toshiba Corp., Tokyo (Japan); Nakagawa, Masatoshi [AITEL Corp., Tokyo (Japan)

    2002-06-01

    An interactive core analysis tool for use on a PC MEISTER (Monju Easy-to-Introduce System for Total Evaluation of Reactor Core) has been developed, enabling evaluation of the overall core characteristics, including core physics, thermal hydraulics and structural integrity, in an easy but accurate manner. Data processing, such as the preparation of input data, data transfer from one code to another or display of output data, can be achieved in a systematic manner by graphical user interfaces. MEISTER has been verified by the analysis of core criticality, control rod worth and the maximum linear heat rate measured in the Monju start-up tests. (author)

  18. Efficient control system for low-concentration inorganic gases from a process vent stream: application of surfactants in spray and packed columns.

    Science.gov (United States)

    Chein, Hungmin; Aggarwal, Shankar G; Wu, Hsin-Hsien

    2004-11-01

    Control of low-concentration pollutants from a semiconductor process vent stream using a wet-scrubbing technique is a challenging task to meet Taiwan environmental emission standards. An efficient wet-scrubber is designed on a pilot scale and tested to control low concentration acid and base waste-gas emission. The scrubber system consisted of two columns, i.e., a fine spray column [cutoff diameter (based on volume), Dv(50) = 15.63 microm; Sauter mean diameter (SMD) = 7.62 microm], which is especially efficient for NH3 removal as the pH of the spraying liquid is approximately 7 followed by a packed column with a scrubbing liquid pH approximately 9.0 mainly for acids removal. It is observed that use of the surfactants in low concentration about 10(-4) M and 10(-7) M in the spray liquid and in the scrubbing liquid, respectively, remarkably enhances the removal efficiency of the system. A traditional packed column (without the spray column and the surfactant) showed that the removal efficiencies of NH3, HF, and HCl for the inlet concentration range 0.2 to 3 ppm were (n = 5) 22.6+/-3.4%, 43.4+/-5.5%, and 40.4+/-7.4%, respectively. The overall efficiencies of the proposed system (the spray column and the packed column) in the presence of the surfactant in the spray liquid and in the scrubbing liquid forthese three species were found to increase significantly (n = 5) from 60.3+/-3.6 to 82.8+/-6.8%, 59.1+/-2.7 to 83.4+/-4.2%, and 56.2+/-7.3 to 81.0+/-6.7%, respectively. In this work, development of charge on the gas-liquid interface due to the surfactants has been measured and discussed. It is concluded that the presence of charge on the gas-liquid interface is the responsible factor for enhancement of the removal efficiency (mass-transfer in liquid phase). The effects of the type of surfactants, their chain length, concentration in liquid, etc. on the removal efficiency are discussed. Since the pilot tests were performed under the operating conditions similar to most of

  19. Rapid Microcystin Determination Using a Paper Spray Ionization Method with a Time-of-Flight Mass Spectrometry System.

    Science.gov (United States)

    Zhu, Xiaoqiang; Huang, Zhengxu; Gao, Wei; Li, Xue; Li, Lei; Zhu, Hui; Mo, Ting; Huang, Bao; Zhou, Zhen

    2016-07-13

    The eutrophication of surface water sources and climate changes have resulted in an annual explosion of cyanobacterial blooms in many irrigating and drinking water resources. To decrease health risks to the public, a rapid real time method for the synchronous determination of two usually harmful microcystins (MC-RR and MC-LR) in environmental water samples was built by employing a paper spray ionization method coupled with a time-of-flight mass spectrometer system. With this approach, direct analysis of microcystin mixtures without sample preparation has been achieved. Rapid detection was performed, simulating the release process of microcystins in reservoir water samples, and the routine detection frequency was every three minutes. The identification time of microcystins was reduced from several hours to a few minutes. The limit of detection is 1 μg/L, and the limit of quantitation is 3 μg/L. This method displays the ability for carrying out rapid, direct, and high-throughput experiments for determination of microcystins, and it would be of significant interest for environmental and food safety applications.

  20. Coating Properties of WC-Ni Cold Spray Coating for the Application in Secondary Piping System of Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, JeongWon; Kim, Seunghyun; Kim, Ji Hyun [UNIST, Ulsan (Korea, Republic of)

    2015-10-15

    As a result of FAC(flow accelerated corrosion), severe accidents, failure of carbon steel like a Mihama Unit-3 occurred. Chemical composition change of carbon steel or coating to inner surface is one of methods to improve corrosion properties. Among them, thermal spray coating is convenient solution to apply at industry. Powder is melted at blast furnace and ejected to substrate. After adhesion, substrate and coating layer is cooled down and coated layer protects steel from corrosion finally. However high thermal energy is transferred to substrate and coating layer so it leads high thermal residual stress in coating procedure. Besides, high temperature for melting powder makes unexpected chemical reaction of powder like an oxidation or carburization. Whereas, cold spray uses low temperature comparing with other thermal spray. Thermal energy is used for not melting powder but high kinetic energy of powder and plastic deformation during collision. Therefore, fuel such as oxygen-acetylene gas is not needed. It needs carrier gas, compressed air, nitrogen or helium, to increase kinetic energy of powder and move powder to substrate. Comparing cold spray with high velocity oxy fuel (HVOF), one of thermal spray, cold spray coating layer contains only WC and Co. One of other problem about WC is brittleness during coating. To improve deformability of WC, binder metal is added. For example, Co, Cr, Ni, Cu, Al, Fe or etc. Additionally, binder metal lowering melting temperature of composite powder increases coating properties. Among them, Co which is widely used as binder metal maintains mechanical properties like a hardness and improves corrosion properties. Therefore Co is not suitable for binder metal of WC coating. In contrast, Ni has better corrosion resistance to alkaline environment and makes lower melting temperature. Moreover, in a view of cold spray, FCC structure has better deformability than BCC or HCP, and BCC has lowest deformability. WC is BCC structure so it

  1. Structure of high-speed sprays

    Science.gov (United States)

    Bracco, Frediano V.

    1995-01-01

    This work covered both measurements and computations and its results are documented in eight appendices. Measurements were made of drop velocity in vaporizing, steady, full-cone sprays and of drop velocity and drop size in non-vaporizing steady full-cone sprays. In similar conditions, measurements had previously been made of the intact core and of the size of the drops in the immediate vicinity of the injector, thus generating an extensive set of data which were particularly useful for the assessment and the development of multidimensional models of engine sprays. On the computational side, a line source technique was introduced to simulate the intact-core in engine sprays and two extensive numerical studies were carried out to explain the strong anisotropy of the drop velocity fluctuations that had been found in the measurements. In another interesting and timely study, the accuracy of the stochastic method of computing drop collisions and coalescence (which is the one universally used) was assessed by corresponding deterministic computations (more accurate but much more time consuming). It was concluded that the accuracy of the stochastic method in practical computations can be wanting. Finally, a numerical study of the structure of hollow-cone sprays was initiated that has since been followed by significant experimental and computational work on liquid-only and air-assisted hollow-cone injectors and sprays.

  2. Iron-based Arc Spraying Cored Wire with Chlorine Corrosion and Oxidation Resistance%抗氧化耐氯腐蚀电弧喷涂铁基粉芯线材

    Institute of Scientific and Technical Information of China (English)

    魏琪; 刘旭; 李辉; 印志勇

    2012-01-01

    采用304L不锈钢带包覆铬、镰、钼、铝、稀土等金属粉末制备粉芯丝材,使用电弧喷涂方法制备涂层,研究了合金元素成分对涂层抗高温氧化性能和抗氯腐蚀性能的影响,并与传统的Ni - Cr- Ti涂层(PS45)的性能进行了对比.结果表明,Cr元素的抗氧化性能要好于Ni元素,在氯腐蚀环境下,Ni元素的耐腐蚀性能比Cr元素更为优异,添加适当数量的Al元素、Mo元素对耐氯腐蚀性能有一定的促进作用.所研制的LJ-1铁基涂层在650℃温度下具有良好的抗高温氧化性能和耐氯腐蚀的性能,其抗氧化性能和耐氯腐蚀性能分别是Ni-Cr-Ti涂层(PS45)的0.74倍和0.67倍,但涂层成本大幅度降低,性价比提高.%A flux cored wire is developed by 304L stainless steel-strip wrapping metal powder composed of Ni, Cr, Al, Mo and rare earth elements, and the self-developed wire was sprayed by arc spraying to prepare the iron-based coating. The effects of the alloying elements on the high temperature chlorine corrosion and high temperature oxidation resistance was studied < and the performance was compared with the traditional Ni -Cr-Ti coating (PS45). It is shown that the oxidation resistance of Cr is better than Ni. In chlorine corrosion environments, Ni has better corrosion resistance than Cr. The corrosion resistance is improved by adding appropriate amount of Al and Mo element. The LJ -1 coating has excellent high temperature chlorine corrosion that is 0. 74 times the PS45 coating and high temperature oxidation resistance that is 0. 67 times the PS45 coating under 650 ℃. However, the cost of the coating is reduced significantly, and the value is good.

  3. [Photoelastic stress analysis of root dentin with different composite resin post and core systems and crowns].

    Science.gov (United States)

    Takei, Hidenori

    2010-03-01

    Much research has been reported about post and core systems with composite resin, but the influence of the different types of prefabricated posts on the distribution of stress in the root has not yet been elucidated. It is necessary to clarify the influence of the relationship between core and crown materials to obtain combined restorations. The aim of this study is to analyze the influence of the combination of various post and core systems and different kinds of crown material on the stress distribution in the root. Six 2-dimensional photoelastic premolar models were designed. Three types of post and core systems (composite resin post and core, composite resin core with the fiber post, and composite resin core with a prefabricated stainless steel post) and two kinds of crown materials (metal and hybrid-type hard composite resin) were fabricated and cemented to each model. In these models, we applied a load of 200 N at an angle of 45 degrees to the tooth axis and analyzed the fringe order using a transmission polariscope. As a result, it has been clarified that the combination of the post and core and the crown plays an important role in preventing stress concentration within root Stress concentration can be prevented using a crown fabricated with a high-elastic modulus for the post and core with a high-elastic modulus, and a crown fabricated with a low-elastic modulus for the post and core with a low-elastic modulus.

  4. Uniform spray coating for large tanks

    Science.gov (United States)

    Carter, J. M.

    1977-01-01

    System employs spray facility located within ventilated plastic booth to uniformly coat exterior of large cylindrical tanks with polyurethane foam insulation. Coating target is rotated on turntable while movable spray guns apply overlapping spirals of foam. Entire operation may be controlled by single operator from remote station.

  5. Using Multi-Core Systems for Rover Autonomy

    Science.gov (United States)

    Clement, Brad; Estlin, Tara; Bornstein, Benjamin; Springer, Paul; Anderson, Robert C.

    2010-01-01

    Task Objectives are: (1) Develop and demonstrate key capabilities for rover long-range science operations using multi-core computing, (a) Adapt three rover technologies to execute on SOA multi-core processor (b) Illustrate performance improvements achieved (c) Demonstrate adapted capabilities with rover hardware, (2) Targeting three high-level autonomy technologies (a) Two for onboard data analysis (b) One for onboard command sequencing/planning, (3) Technologies identified as enabling for future missions, (4)Benefits will be measured along several metrics: (a) Execution time / Power requirements (b) Number of data products processed per unit time (c) Solution quality

  6. Hair spray poisoning

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/002705.htm Hair spray poisoning To use the sharing features on this page, please enable JavaScript. Hair spray poisoning occurs when someone breathes in (inhales) ...

  7. Improvement of open and semi-open core wall system in tall buildings by closing of the core section in the last story

    Science.gov (United States)

    Kheyroddin, A.; Abdollahzadeh, D.; Mastali, M.

    2014-09-01

    Increasing number of tall buildings in urban population caused development of tall building structures. One of the main lateral load resistant systems is core wall system in high-rise buildings. Core wall system has two important behavioral aspects where the first aspect is related to reduce the lateral displacement by the core bending resistance and the second is governed by increasing of the torsional resistance and core warping of buildings. In this study, the effects of closed section core in the last story have been considered on the behavior of models. Regarding this, all analyses were performed by ETABS 9.2.v software (Wilson and Habibullah). Considering (a) drift and rotation of the core over height of buildings, (b) total and warping stress in the core body, (c) shear in beams due to warping stress, (d) effect of closing last story on period of models in various modes, (e) relative displacement between walls in the core system and (f) site effects in far and near field of fault by UBC97 spectra on base shear coefficient showed that the bimoment in open core is negative in the last quarter of building and it is similar to wall-frame structures. Furthermore, analytical results revealed that closed section core in the last story improves behavior of the last quarter of structure height, since closing of core section in the last story does not have significant effect on reducing base shear value in near and far field of active faults.

  8. Study on the interaction between different solute molecules in a molecular beam produced by the spray-jet technique: an application to dendrimer/dye system

    Science.gov (United States)

    Yamada, Toshiki; Ge, Maofa; Shinohara, Hidenori; Kimura, Katsumi; Mashiko, Shinro

    2003-10-01

    We report on an investigation into the interaction between different neutral non-volatile solute molecules in a molecular beam produced by the spray-jet technique that enables us to produce a molecular beam from a sprayed mist of a sample solution. This technique is applied to poly(propylene imine) dendrimer and 4-dicyanomethylene-2-methyl-6- p-dimethylaminostyryl-4H-pyran (DCM) systems. Resonantly enhanced multiphoton ionization of DCM in the DCM/dendrimer molecular beam leads to an efficient reaction between the dendrimer and DCM. The REMPI excitation spectra provide insights into the interaction between DCM and dendrimer molecules in the gas phase for the first time in these experiments.

  9. Development of Expert Controller for Plasma Spraying Process

    Institute of Scientific and Technical Information of China (English)

    LIChun-xu; CHENKe-xuan; LIHe-qi; LIDe-wu

    2004-01-01

    Aiming at the plasma spraying process control, the control system model is developed on the basis of analyzing control parameters and coating properties and their correlation, and the corresponding control method and regulations are also given. With the developed expert controller for plasma spraying process, stable spraying can be realized using ordinary spraying powder and the coating of compaction, homogeneity and high bonding strength can be obtained.

  10. Effects of conidial densities and spray volume of Metarhizium anisopliae and Beauveria bassiana fungal suspensions on conidial viability, droplet size and deposition coverage in bioassay using a novel bioassay spray system

    Science.gov (United States)

    Experiments were conducted to study the conidial viability during bioassay spray with different suspensions of Metarhizium anisopliae ATCC 62176 and Beauveria bassiana NI8, and to investigate the effects of conidial density and spray volume on the distribution of droplet size and deposit coverage us...

  11. An Ice Core Melter System for Continuous Major and Trace Chemical Analyses of a New Mt. Logan Summit Ice Core

    Science.gov (United States)

    Osterberg, E. C.; Handley, M. J.; Sneed, S. D.; Mayewski, P. A.; Kreutz, K. J.; Fisher, D. A.

    2004-12-01

    The ice core melter system at the University of Maine Climate Change Institute has been recently modified and updated to allow high-resolution (Mt. Logan summit ice core (187 m to bedrock), for analyses of 34 trace elements (Sr, Cd, Sb, Cs, Ba, Pb, Bi, U, As, Al, S, Ca, Ti, V, Cr, Mn, Fe, Co, Cu, Zn, REE suite) by inductively coupled plasma mass spectrometry (ICP-MS), 8 major ions (Na+, Ca2+, Mg2+, K+, Cl-, SO42-, NO3-, MSA) by ion chromatography (IC), stable water isotopes (δ 18O, δ D, d) and volcanic tephra. The UMaine continuous melter (UMCoM) system is housed in a dedicated clean room with HEPA filtered air. Standard clean room procedures are employed during melting. A Wagenbach-style continuous melter system has been modified to include a pure Nickel melthead that can be easily dismantled for thorough cleaning. The system allows melting of both ice and firn without wicking of the meltwater into unmelted core. Contrary to ice core melter systems in which the meltwater is directly channeled to online instruments for continuous flow analyses, the UMCoM system collects discrete samples for each chemical analysis under ultraclean conditions. Meltwater from the pristine innermost section of the ice core is split between one fraction collector that accumulates ICP-MS samples in acid pre-cleaned polypropylene vials under a class-100 HEPA clean bench, and a second fraction collector that accumulates IC samples. A third fraction collector accumulates isotope and tephra samples from the potentially contaminated outer portion of the core. This method is advantageous because an archive of each sample remains for subsequent analyses (including trace element isotope ratios), and ICP-MS analytes are scanned for longer intervals and in replicate. Method detection limits, calculated from de-ionized water blanks passed through the entire UMCoM system, are below 10% of average Mt. Logan values. A strong correlation (R2>0.9) between Ca and S concentrations measured on different

  12. Multi-core Fibers in Submarine Networks for High-Capacity Undersea Transmission Systems

    DEFF Research Database (Denmark)

    Nooruzzaman, Md; Morioka, Toshio

    2017-01-01

    Application of multi-core fibers in undersea networks for high-capacity submarine transmission systems is studied. It is demonstrated how different architectures of submerged branching unit affect network component counts in long-haul undersea transmission systems......Application of multi-core fibers in undersea networks for high-capacity submarine transmission systems is studied. It is demonstrated how different architectures of submerged branching unit affect network component counts in long-haul undersea transmission systems...

  13. Ultrahigh temperature vapor core reactor-MHD system for space nuclear electric power

    Science.gov (United States)

    Maya, Isaac; Anghaie, Samim; Diaz, Nils J.; Dugan, Edward T.

    1991-01-01

    The conceptual design of a nuclear space power system based on the ultrahigh temperature vapor core reactor with MHD energy conversion is presented. This UF4 fueled gas core cavity reactor operates at 4000 K maximum core temperature and 40 atm. Materials experiments, conducted with UF4 up to 2200 K, demonstrate acceptable compatibility with tungsten-molybdenum-, and carbon-based materials. The supporting nuclear, heat transfer, fluid flow and MHD analysis, and fissioning plasma physics experiments are also discussed.

  14. Embedded 3D Graphics Core for FPGA-based System-on-Chip Applications

    DEFF Research Database (Denmark)

    Holten-Lund, Hans Erik

    2005-01-01

    This paper presents a 3D graphics accelerator core for an FPGA based system, and illustrates how to build a System-on-Chip containing a Xilinx MicroBlaze soft-core CPU and our 3D graphics accelerator core. The system is capable of running uClinux and hardware accelerated 3D graphics applications...... consumption is reduced as well. We show how an FPGA based embedded system is capable of most tasks in a single chip solution, without requiring additional CPU or graphics chips....

  15. Low porosity and fine coatings produced by a new type nozzle of high velocity arc spray gun

    Institute of Scientific and Technical Information of China (English)

    Wang Ruijun; Zhang Tianjian; Xu Lin; Huang Xiaoou

    2006-01-01

    The new designed high-velocity arc spray gun with three different nozzles is developed to match the DZ400 arc spray system, which can produce the coatings with the structure of superfine and low porosity.This system can be used to spray three normal wires such as 4Cr13, FeCrAl and 7Cr13 (flux cored wires).Using the scanning electron microscope (SEM) to analyze shape and particles size that sprayed by the nozzles with different parameters, as well as with the S-3500N SEM and the energy spectrum analytic ( ESA ) instrument to identify the content of the oxides, porosity and thickness of the coatings, we get the result that the porosity in the coatings of solid wire is less than 3%, of the flux-cored wires is less than 5%, and the distribution of the coatings sprayed by the nozzle with secondary supplementary airflow is typically shown in the form of highdensity lamellarsplat structure and the average lamellar thickness is around 5 μm.

  16. Optimalisation and feasability of bioremediation systems for the processing of spray losses of pesticides.

    Science.gov (United States)

    De Wilde, T; Spanoghe, P; Ryckeboer, J; Springael, D; Jaeken, P

    2006-01-01

    Contamination of ground and surface water puts pressure on the use of pesticides. Pesticide contamination of water can often be linked to point sources rather than to diffuse sources. Examples of such point sources are areas on farms where pesticides are handled, filled into sprayers and where sprayers are cleaned. To reduce contamination from these point sources, different kinds of bio-remediation systems are in various member states of the EU. Bioremediation is the use of living organisms, primarily micro-organisms, to degrade the environmental contaminants into less toxic forms. In this study, the behaviour of six different pesticides with varying physico-chemical properties on substrates used in a bioremediation system is studied. The adsorption of individual pesticides on the substrates is determined. After determination of the adsorption coefficient Kd, it could be concluded for metalaxyl that coco chips had the highest sorption capacity, followed by straw, compost, willow chopping and a sandy loam soil.

  17. Financial Sector Assessment Program : Malaysia - Core Principles for Effective Deposit Insurance Systems

    OpenAIRE

    International Monetary Fund; World Bank

    2013-01-01

    This assessment of compliance with the Core Principles for Effective Deposit Insurance Systems (Core Principles) was conducted as a part of the Financial Sector Assessment Program (FSAP) performed by the International Monetary Fund and the World Bank at the request of the Malaysian government. This assessment was conducted by Claire McGuire, Senior Financial Sector Specialist with the Worl...

  18. Labview based testing system for the aim of construction of energy efficient magnetic cores

    Directory of Open Access Journals (Sweden)

    Pluta Wojciech

    2017-01-01

    The paper presents an example of an application for testing the system based on Labview platform for quality checking of large magnetic cores in the order of 1000 kg. Example of testing data for one and three phase core are presented.

  19. T-CREST: Time-predictable multi-core architecture for embedded systems

    DEFF Research Database (Denmark)

    Schoeberl, Martin; Abbaspourseyedi, Sahar; Jordan, Alexander

    2015-01-01

    Real-time systems need time-predictable platforms to allow static analysis of the worst-case execution time (WCET). Standard multi-core processors are optimized for the average case and are hardly analyzable. Within the T-CREST project we propose novel solutions for time-predictable multi-core ar...

  20. Spray casting project final report

    Energy Technology Data Exchange (ETDEWEB)

    Churnetski, S.R.; Thompson, J.E.

    1996-08-01

    Lockheed Martin Energy Systems, Inc. (Energy Systems), along with other participating organizations, has been exploring the feasibility of spray casting depleted uranium (DU) to near-net shape as a waste minimization effort. Although this technology would be useful in a variety of applications where DU was the material of choice, this effort was aimed primarily at gamma-shielding components for use in storage and transportation canisters for high-level radioactive waste, particularly in the Multipurpose Canister (MPC) application. In addition to the waste-minimization benefits, spray casting would simplify the manufacturing process by allowing the shielding components for MPC to be produced as a single component, as opposed to multiple components with many fabrication and assembly steps. In earlier experiments, surrogate materials were used to simulate the properties (specifically reactivity and density) of DU. Based on the positive results from those studies, the project participants decided that further evaluation of the issues and concerns that would accompany spraying DU was warranted. That evaluation occupied substantially all of Fiscal Year 1995, yielding conceptual designs for both an intermediate facility and a production facility and their associated engineering estimates. An intermediate facility was included in this study to allow further technology development in spraying DU. Although spraying DU to near-net shape seems to be feasible, a number of technical, engineering, and safety issues would need to be evaluated before proceeding with a production facility. This report is intended to document the results from the spray-casting project and to provide information needed by anyone interested in proceeding to the next step.

  1. Edge and core Thomson scattering systems and their calibration on the ASDEX Upgrade tokamak.

    Science.gov (United States)

    Kurzan, B; Murmann, H D

    2011-10-01

    A new 10 channel Thomson scattering (TS) system was installed on the ASDEX Upgrade tokamak to measure radial profiles of electron density and temperature at the plasma edge with high radial resolution. Together with the already existing TS system, which is now used for the core plasma, electron density and temperature profiles extending from the edge to the core are now obtained in a single discharge. The TS systems are relatively calibrated by an optical parametric oscillator.

  2. Edge and core Thomson scattering systems and their calibration on the ASDEX Upgrade tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Kurzan, B.; Murmann, H. D. [Max-Planck Institut fuer Plasmaphysik, EURATOM Association Boltzmannstr.2, 85748 Garching (Germany)

    2011-10-15

    A new 10 channel Thomson scattering (TS) system was installed on the ASDEX Upgrade tokamak to measure radial profiles of electron density and temperature at the plasma edge with high radial resolution. Together with the already existing TS system, which is now used for the core plasma, electron density and temperature profiles extending from the edge to the core are now obtained in a single discharge. The TS systems are relatively calibrated by an optical parametric oscillator.

  3. Atmospheric plasma sprayed (APS) coatings of Al2O3-TiO2 system for photocatalytic application.

    Science.gov (United States)

    Stengl, V; Ageorges, H; Ctibor, P; Murafa, N

    2009-05-01

    The goal of this study is to examine the photocatalytic ability of coatings produced by atmospheric plasma spraying (APS). The plasma gun used is a common gas-stabilized plasma gun (GSP) working with a d.c. current and a mixture of argon and hydrogen as plasma-forming gas. The TiO(2) powders are particles of about 100 nm which were agglomerated to a mean size of about 55 mum, suitable for spraying. Composition of the commercial powder is 13 wt% of TiO(2) in Al(2)O(3), whereas also in-house prepared powder with the same nominal composition but with agglomerated TiO(2) and conventional fused and crushed Al(2)O(3) was sprayed. The feedstock materials used for this purpose are alpha-alumina and anatase titanium dioxide. The coatings are analyzed by scanning electron microscopy (SEM), energy dispersion probe (EDS) and X-ray diffraction. Photocatalytic degradation of acetone is quantified for various coatings. All plasma sprayed coatings show a lamellar structure on cross section, as typical for this process. Anatase titania from feedstock powder is converted into rutile titania and alpha-alumina partly to gamma-alumina. Coatings are proven to catalyse the acetone decomposition when irradiated by UV rays.

  4. Production of dry Lactobacillus rhamnosus GG preparations by spray drying and lyophilization in aqueous two-phase systems

    Directory of Open Access Journals (Sweden)

    Katarzyna Leja

    2009-12-01

    Full Text Available Background. Drying is the oldest method of food preservation. It works by removing water from the food, which prevents the growth of microorganisms and decay. Moreover, spray or freeze drying is also used for the preservation of probiotic cultures. The aim of this study was to compare a survival rate of probiotic bacteria Lactobacillus rhamnosus during spray and freeze drying in ATPS. These results were also compared with survival rate of cells dried under the same conditions but suspended only in skim milk, 6% solution of PVP or 6% solution of dextran. Material and methods. The bacteria Lactobacillus rhamnosus GGwere suspended and spray or freeze dried in various types of aqueous two-phase emulsions: PVP/dextran, PEG4000/dextran and PEG8000/dextran. These emulsions consisted of different types of polymers and had varying ratio of polymers in dispersed (dextran and dispersing (PEG and PVP phases. Results. The research demonstrated that survival rate of bacteria directly after drying depended mainly on protective reagent, rather than on drying method. After 30-day-storage of the dried bacteria cell specimens, the highest survival rate was noted in case of freeze dried cells in milk. In case of spray drying the highest cell survival rate was observed when emulsion PVP3.6%/dextran2.4% was used as a drying medium. Conclusions. Finally, it has been found that cell survival rate was not strongly influenced by the storage temperature of the powder but it depended on the drying medium.  

  5. Financial Sector Assessment Program : Saudi Arabia - CPSS Core Principles for Systematically Important Payment Systems

    OpenAIRE

    International Monetary Fund; World Bank

    2011-01-01

    The present document is the assessment of the systemically important payment systems in the Kingdom of Saudi Arabia (KSA) based on the CPSS Core Principles for Systemically Important Payment Systems (CPSIPS). The document also contains an analysis of some developmental issues related to the reform of the payments system as a whole. The assessment was conducted in the context of the field m...

  6. Direct morphological comparison of vacuum plasma sprayed and detonation gun sprayed hydroxyapatite coatings for orthopaedic applications.

    Science.gov (United States)

    Gledhill, H C; Turner, I G; Doyle, C

    1999-02-01

    Hydroxyapatite coatings on titanium substrates were produced using two thermal spray techniques vacuum plasma spraying and detonation gun spraying. X-ray diffraction was used to compare crystallinity and residual stresses in the coatings. Porosity was measured using optical microscopy in conjunction with an image analysis system. Scanning electron microscopy and surface roughness measurements were used to characterise the surface morphologies of the coatings. The vacuum plasma sprayed coatings were found to have a lower residual stress, a higher crystallinity and a higher level of porosity than the detonation gun coatings. It is concluded that consideration needs to be given to the significance of such variations within the clinical context.

  7. Experimental research on spray and combustion characteristics of the third generation conical spray

    Institute of Scientific and Technical Information of China (English)

    FENG Li-yan; LONG Wu-qiang; DU Bao-guo; TIAN hua; OBOKATA Tomio

    2005-01-01

    A new generation conical spray system for conventional diesel engines or premixed combustion diesel engines is introduced. By means of oriented impingement method, flexible spray penetration in design is realized. High-speed photograph was used to investigate the spatial distribution characteristics of the new spray for cases of different impingement angles and needle valve opening pressures. The results show that, by applying spray impingement orientation, fuel jets spread along the cone surface as shape of sectors, so the dispersion of jets is increased obviously. Changing on impingement angle leads to variation of penetration, which is critical in homogeneous mixture preparation. Due to the flexibility of spray penetration in design, the spray impingement on liner is avoided in a great extent. The results also indicate that higher needle valve opening pressure results in longer penetration and larger spray angle after impingement. Combustion characteristics of the impinged conical spray were studied in the 1135 type diesel engine. The new impinged conical spray system work smoothly in full load range with better fuel economy and lower emissions of NOx and soot than the original test engine.

  8. Multi-Core Technology for and Fault Tolerant High-Performance Spacecraft Computer Systems

    Science.gov (United States)

    Behr, Peter M.; Haulsen, Ivo; Van Kampenhout, J. Reinier; Pletner, Samuel

    2012-08-01

    The current architectural trends in the field of multi-core processors can provide an enormous increase in processing power by exploiting the parallelism available in many applications. In particular because of their high energy efficiency, it is obvious that multi-core processor-based systems will also be used in future space missions. In this paper we present the system architecture of a powerful optical sensor system based on the eight core multi-core processor P4080 from Freescale. The fault tolerant structure and the highly effective FDIR concepts implemented on different hardware and software levels of the system are described in detail. The space application scenario and thus the main requirements for the sensor system have been defined by a complex tracking sensor application for autonomous landing or docking manoeuvres.

  9. Sample introduction systems for reversed phase LC-ICP-MS of selenium using large amounts of methanol - comparison of systems based on membrane desolvation, a spray chamber and direct injection

    DEFF Research Database (Denmark)

    Bendahl, L.; Gammelgaard, Bente

    2005-01-01

    nebuliser (MCN) in combination with a membrane desolvator ( MD), a MCN in combination with a cyclonic spray chamber ( CS) and a direct injection nebuliser ( DIN), respectively. Thirteen selenium standards diluted in 50% methanol were introduced in each system at a flow rate of 50 mu l min(-1). Except...

  10. Novel spray freeze-drying technique using four-fluid nozzle-development of organic solvent system to expand its application to poorly water soluble drugs.

    Science.gov (United States)

    Niwa, Toshiyuki; Shimabara, Hiroko; Danjo, Kazumi

    2010-02-01

    Spray freeze-drying (SFD) technique using four-fluid nozzle (4N), which is a novel particle design technique previously developed by authors, has been further developed to expand its application in pharmaceutical industry. The organic solvent was utilized as a spray solvent to dissolve the poorly soluble drug instead of conventional aqueous solution. Acetonitrile solution of the drug and aqueous solution of the polymeric carrier were separately and simultaneously atomized through 4N, and collided each other at the tip of nozzle edge. The spray mists were immediately frozen in the liquid nitrogen to form a suspension. Then, the iced droplets were freeze-dried to prepare the composite particles of the drug and carrier according to our proprietary method developed before. The resultant composite particles with phenytoin prepared by using acetonitrile (4N-SFD-MeCN system) were deeply characterized compared to those using aqueous solution (4N-SFD-aqua system) from morphological and physicochemical perspectives. The characteristic porous structure was observed in 4N-SFD-MeCN particles as well as 4N-SFD-aqua particles. However, it was found that the size and quantity of pore in 4N-SFD-MeCN particles were smaller than those of 4N-SFD-aqua particles. As a result, the former particles had 2- to 3-times smaller specific surface area than the latter particles independent of the type of carrier loaded. The slight difference of release profiles from the particles prepared between both systems was discussed from the microscopically structural viewpoint. In addition, ciclosporin was applied to organic solvent SFD system because this drug was poorly water soluble and cannot be applied to conventional aqueous SFD system. The release profiles from SFD particles were dramatically improved compared to the bulk material, suggesting that the new SFD technique using organic solvent has potential to develop the novel solubilized formulation for poorly water-soluble active pharmaceutical

  11. Characterization of Coated Sand Cores from Two Different Binder Systems for Grey Iron Castings

    DEFF Research Database (Denmark)

    Nwaogu, Ugochukwu Chibuzoh; Tiedje, Niels Skat; Poulsen, Thomas

    Expansion defects on the surface of the castings include sand burn-in, metal penetration and/or veining, finning or scab. Veining or finning and metal penetration are of interest. These defects are associated with silica sand and result from the penetration of liquid metal into cracks formed during...... differential expansion of the core during heating. The rapid expansion of silica sand up to 600 oC and especially at 573 oC, where the α – β phase transformation occurs, is the cause of stresses in the core system. These stresses cause crack formation and metal melt flows into these cracks causing finning...... or veining and metal penetration defects. The use of refractory coatings on cores is fundamental to obtaining acceptable casting surface quality and is used on resin bonded cores in production foundries. In this study new sol gel-coated sand cores made from coldbox and furan binder systems were investigated...

  12. MPI-hybrid Parallelism for Volume Rendering on Large, Multi-core Systems

    Energy Technology Data Exchange (ETDEWEB)

    Howison, Mark; Bethel, E. Wes; Childs, Hank

    2010-03-20

    This work studies the performance and scalability characteristics of"hybrid'" parallel programming and execution as applied to raycasting volume rendering -- a staple visualization algorithm -- on a large, multi-core platform. Historically, the Message Passing Interface (MPI) has become the de-facto standard for parallel programming and execution on modern parallel systems. As the computing industry trends towards multi-core processors, with four- and six-core chips common today and 128-core chips coming soon, we wish to better understand how algorithmic and parallel programming choices impact performance and scalability on large, distributed-memory multi-core systems. Our findings indicate that the hybrid-parallel implementation, at levels of concurrency ranging from 1,728 to 216,000, performs better, uses a smaller absolute memory footprint, and consumes less communication bandwidth than the traditional, MPI-only implementation.

  13. A core-item reviewer evaluation (CoRE) system for manuscript peer review.

    Science.gov (United States)

    Onitilo, Adedayo A; Engel, Jessica M; Salzman-Scott, Sherry A; Stankowski, Rachel V; Doi, Suhail A R

    2014-01-01

    Manuscript peer review is essential for ensuring accountability to all involved in the publication process, including authors, journals, and readers. Lack of consensus regarding what constitutes an accountable manuscript peer review process has resulted in varying practices from one journal to the next. Currently, reviewers are asked to make global judgments about various aspects of a paper for review irrespective of whether guided by a review checklist or not, and several studies have documented gross disagreement between reviewers of the same manuscript. We have previously proposed that the solution may be to direct reviewers to concrete items that do not require global judgments but rather provide a specific choice, along with referee justification for such choices. This study evaluated use of such a system via an international survey of health care professionals who had recently reviewed a health care--related manuscript. Results suggest that use of such a peer review system by reviewers does indeed improve interreviewer agreement, and thus, has the potential to support more consistent and effective peer review, if introduced into journal processes for peer review.

  14. Data archiving system implementation in ITER's CODAC Core System

    Energy Technology Data Exchange (ETDEWEB)

    Castro, R., E-mail: rodrigo.castro@visite.es [CIEMAT Fusion Program, Avda. Complutense 40, Madrid (Spain); Abadie, L. [ITER Organization, Route de Vinon-sur-Verdon, 13115 St. Paul-lez-Durance (France); Makushok, Y. [Sgenia, C/Chile, 4 Edificio II, Las Rozas, Madrid (Spain); Ruiz, M.; Sanz, D. [Instrumentation and Applied Acoustic Research Group, Technical University of Madrid, Madrid (Spain); Vega, J. [CIEMAT Fusion Program, Avda. Complutense 40, Madrid (Spain); Faig, J. [INDRA Sistemas, S.A. Unid. de Sistemas de Control, Dirección de Tecnología Energética, Madrid (Spain); Román-Pérez, G. [Sgenia, C/Chile, 4 Edificio II, Las Rozas, Madrid (Spain); Simrock, S.; Makijarvi, P. [ITER Organization, Route de Vinon-sur-Verdon, 13115 St. Paul-lez-Durance (France)

    2015-10-15

    Highlights: • Implementation of ITER's data archiving solution. • Integration of the solution into CODAC Core System. • Data archiving structure. • High efficient data transmission into fast plant system controllers. • Fast control and data acquisition in Linux. - Abstract: The aim of this work is to present the implementation of data archiving in ITER's CODAC Core System software. This first approach provides a client side API and server side software allowing the creation of a simplified version of ITERDB data archiving software, and implements all required elements to complete data archiving flow from data acquisition until its persistent storage technology. The client side includes all necessary components that run on devices that acquire or produce data, distributing and streaming to configure remote archiving servers. The server side comprises an archiving service that stores into HDF5 files all received data. The archiving solution aims at storing data coming for the data acquisition system, the conventional control and also processed/simulated data.

  15. Research on the Core Competitive Power Elements Evaluation System of Green Hotel

    Directory of Open Access Journals (Sweden)

    Hui Liang

    2013-12-01

    Full Text Available Green hotel is a new type of hospitality industry development model based on the concept of circular economy and sustainable development. This paper makes an analysis and evaluation of the elements of green hotel core competence, on this basis, constructs the Green Hotel core competitive evaluation index system.The construction of the system is conducive to understand the green hotel’s own competitive advantage objectively, and explore ways to enhance its core competitiveness, providing objective basis for sustainable development of China's Hotel industry.

  16. Work in Progress: Malleable Software Pipelines for Efficient Many-core System Utilization

    OpenAIRE

    Jahn, Janmartin; Kobbe, Sebastian; Pagani, Santiago; Chen, Jian-Jia; Henkel, Jörg

    2012-01-01

    International audience; This paper details our current research project on the efficient utilization of many-core systems by utilizing applications based on a novel kind of software pipelines. These pipelines form malleable applications that can change their degree of parallelism at runtime. This allows not only for a well-balanced load, but also for an efficient distribution of the cores to the individual, competing applications to maximize the overall system performance. We are convinced th...

  17. Photonic-Networks-on-Chip for High Performance Radiation Survivable Multi-Core Processor Systems

    Science.gov (United States)

    2013-12-01

    TR-14-7 Photonic-Networks-on-Chip for High Performance Radiation Survivable Multi-Core Processor Systems Approved for public release...Networks-on-Chip for High Performance Radiation Survivable Multi-Core Processor Systems DTRA01-03-D-0026 Prof. Luke Lester and Prof. Ganesh...release; distribution is unlimited. The University of New Mexico has undertaken a study to determine the effects of radiation on Quantum Dot Photonic

  18. Legal Protection on IP Cores for System-on-Chip Designs

    Science.gov (United States)

    Kinoshita, Takahiko

    The current semiconductor industry has shifted from vertical integrated model to horizontal specialization model in term of integrated circuit manufacturing. In this circumstance, IP cores as solutions for System-on-Chip (SoC) have become increasingly important for semiconductor business. This paper examines to what extent IP cores of SoC effectively can be protected by current intellectual property system including integrated circuit layout design law, patent law, design law, copyright law and unfair competition prevention act.

  19. 34 CFR 403.201 - What are the State's responsibilities for developing and implementing a statewide system of core...

    Science.gov (United States)

    2010-07-01

    ... and implementing a statewide system of core standards and measures of performance? 403.201 Section 403... a statewide system of core standards and measures of performance? (a)(1) Each State board receiving funds under the Act shall develop and implement a statewide system of core standards and measures...

  20. No Heat Spray Drying Technology

    Energy Technology Data Exchange (ETDEWEB)

    Beetz, Charles [ZoomEssence, Inc., Hebron, KY (United States)

    2016-06-15

    No Heat Spray Drying Technology. ZoomEssence has developed our Zooming™ spray drying technology that atomizes liquids to powders at ambient temperature. The process of drying a liquid into a powder form has been traditionally achieved by mixing a heated gas with an atomized (sprayed) fluid within a vessel (drying chamber) causing the solvent to evaporate. The predominant spray drying process in use today employs air heated up to 400° Fahrenheit to dry an atomized liquid into a powder. Exposing sensitive, volatile liquid ingredients to high temperature causes molecular degradation that negatively impacts solubility, stability and profile of the powder. In short, heat is detrimental to many liquid ingredients. The completed award focused on several areas in order to advance the prototype dryer to a commercial scale integrated pilot system. Prior to the award, ZoomEssence had developed a prototype ‘no-heat’ dryer that firmly established the feasibility of the Zooming™ process. The award focused on three primary areas to improve the technology: (1) improved ability to formulate emulsions for specific flavor groups and improved understanding of the relationship of emulsion properties to final dry particle properties, (2) a new production atomizer, and (3) a dryer controls system.

  1. Water Reclamation using Spray Drying Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This purpose of this project is to develop a spray drying prototype to for the recovery and recycle of water from concentrated waste water recovery system brine....

  2. Influence of Feedstock Materials and Spray Parameters on Thermal Conductivity of Wire-Arc-Sprayed Coatings

    Science.gov (United States)

    Yao, H. H.; Zhou, Z.; Wang, G. H.; He, D. Y.; Bobzin, K.; Zhao, L.; Öte, M.; Königstein, T.

    2017-03-01

    To manufacture a protective coating with high thermal conductivity on drying cylinders in paper production machines, a FeCrB-cored wire was developed, and the spraying parameters for wire-arc spraying were optimized in this study. The conventional engineering materials FeCrAl and FeCrMo coatings were produced as the reference coatings under the same experimental condition. It has been shown that the oxide content in coating influences the thermal conductivity of coating significantly. The FeCrB coating exhibits a relative higher thermal conductivity due to the lower oxide content in comparison with conventional FeCrAl and FeCrMo coatings. Moreover, the oxidation of in-flight particles can be reduced by decreasing the standoff distance contributing to the increase in the thermal conductivity of coating. Total energy consumption of a papermaking machine can be significantly reduced if the coatings applied to dryer section exhibit high thermal conductivity. Therefore, the FeCrB coating developed in this study is a highly promising coating system for drying cylinders regarding the improved thermal conductivity and low operation costs in paper production industry.

  3. Influence of Feedstock Materials and Spray Parameters on Thermal Conductivity of Wire-Arc-Sprayed Coatings

    Science.gov (United States)

    Yao, H. H.; Zhou, Z.; Wang, G. H.; He, D. Y.; Bobzin, K.; Zhao, L.; Öte, M.; Königstein, T.

    2017-02-01

    To manufacture a protective coating with high thermal conductivity on drying cylinders in paper production machines, a FeCrB-cored wire was developed, and the spraying parameters for wire-arc spraying were optimized in this study. The conventional engineering materials FeCrAl and FeCrMo coatings were produced as the reference coatings under the same experimental condition. It has been shown that the oxide content in coating influences the thermal conductivity of coating significantly. The FeCrB coating exhibits a relative higher thermal conductivity due to the lower oxide content in comparison with conventional FeCrAl and FeCrMo coatings. Moreover, the oxidation of in-flight particles can be reduced by decreasing the standoff distance contributing to the increase in the thermal conductivity of coating. Total energy consumption of a papermaking machine can be significantly reduced if the coatings applied to dryer section exhibit high thermal conductivity. Therefore, the FeCrB coating developed in this study is a highly promising coating system for drying cylinders regarding the improved thermal conductivity and low operation costs in paper production industry.

  4. Studies on Agricultural Scientific and Technical Information Core Metadata Register System

    Institute of Scientific and Technical Information of China (English)

    CUI Yun-peng; QIAN Ping; SUN Su-fen; ZHANG Jun-feng; LUO Chang-shou

    2008-01-01

    To construct the Agricultural Scientific and Technical Information Core Metadata(ASTICM)standard and its expanding principles,and to develop a register system based on ASTICM,the policy and methods of DC(Dublin Core)and SDBCM (Scientific Database Core Metadata)were studied.The construction of ASTICM has started from the proposed elements of the DCMI(Dublin Core Metadata Initiative),and has expanded the DC and SDBCM with related expanding principles.ASTICM finally includes 75 metadata elements,five expanded principles,and seven application profile creation methods.According to the requirement analysis of a large number of users of agricultural information,a register system based on ASTICM was developed.The ASTICM standard framework and its register system supported the search,sharing,integration exchange and other applications,effectively.

  5. Effect of spray system on fission product distribution in containment during a severe accident in a two-loop pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Dehjourian, Mehdi; Rahgoshay, Mohammad; Jahanfamia, Gholamreza [Dept. of Nuclear Engineering, Science and Research Branch, Islamic Azad University of Tehran, Tehran (Iran, Islamic Republic of); Sayareh, Reza [Faculty of Electrical and Computer Engineering, Kerman Graduate University of Technology, Kerman (Iran, Islamic Republic of); Shirani, Saied [Faculty of Engineering, Shahid Beheshti University, Tehran (Iran, Islamic Republic of)

    2016-08-15

    The containment response during the first 24 hours of a low-pressure severe accident scenario in a nuclear power plant with a two-loop Westinghouse-type pressurized water reactor was simulated with the CONTAIN 2.0 computer code. The accident considered in this study is a large-break loss-of-coolant accident, which is not successfully mitigated by the action of safety systems. The analysis includes pressure and temperature responses, as well as investigation into the influence of spray on the retention of fission products and the prevention of hydrogen combustion in the containment.

  6. TMS 3000 high pressure spray system. A new concept for stationary prevention of winter-induced dangers on roads and highways

    Energy Technology Data Exchange (ETDEWEB)

    Brodard, P.A. [Boschung Mecatronic SA (Switzerland)

    2004-07-01

    The BOSCHUNG products for winter service are in use world-wide with great success. Fixed and mobile equipments for both surface condition assessment (on-board sensors or Ice early warning systems) and surface treatment (snow plows, salt spreaders or fixed automated spray technology), as well as state-of-the-art data display and management software are all part of the unique product range of the Boschung group of companies. With nearly 50 years of experience in the machinery and over 30 years of experience in the electronics, Boschung clearly paves the way of winter maintenance equipment. (orig.)

  7. Effect of Spray System on Fission Product Distribution in Containment During a Severe Accident in a Two-Loop Pressurized Water Reactor

    Directory of Open Access Journals (Sweden)

    Mehdi Dehjourian

    2016-08-01

    Full Text Available The containment response during the first 24 hours of a low-pressure severe accident scenario in a nuclear power plant with a two-loop Westinghouse-type pressurized water reactor was simulated with the CONTAIN 2.0 computer code. The accident considered in this study is a large-break loss-of-coolant accident, which is not successfully mitigated by the action of safety systems. The analysis includes pressure and temperature responses, as well as investigation into the influence of spray on the retention of fission products and the prevention of hydrogen combustion in the containment.

  8. 农业自动化喷雾机械标靶害虫自动识别系统的研究%Research on Automatic Identification System of Target Pests in Agricultural Automation Spraying Machine

    Institute of Scientific and Technical Information of China (English)

    张震; 高雄; 陈铁英; 王海超

    2016-01-01

    农业喷雾对象的识别和定位是农业自动化喷雾机械研究中的核心技术之一. 对病虫害甘蓝进行精准喷洒农药,实现病虫害准确自动识别成为关键. 为此,利用机器视觉的欧氏距离甘蓝夜蛾虫害自动识别检测系统,结合由Qualityspec 光谱仪组成的光谱成像系统,对甘蓝正常叶片和遭受甘蓝夜蛾虫害的甘蓝叶片的颜色特征和光谱特征进行分析,并采用机器视觉分割阈值选取中的Otsu算法和自适应波段选择方法提取出了颜色差异的最佳几何阈值和两种叶片的特征波段. 试验结果表明:综合机器视觉和光谱技术能够实现甘蓝夜蛾虫害的自动且准确的识别,准确率可达94%. 因此,建立机器视觉和光谱技术综合识别体系,可为农作物病虫害自动防治喷雾机器人的研制奠定基础,以达到农作物病虫害实时识别和及时治理的目的.%The spray object recognition and localization is one of the core technology of automatic spray mechanization re -search .For precision spraying pesticide plant diseases and insect pests of cabbage , the accurate and automatic identifica-tion of plant diseases and insect pests of cabbage becomes the key .Therefore , using machine vision automatic identifica-tion of the Euclidean distance of cabbage moth pests detection system , combined with spectral imaging system composed of qualityspec spectrometer , Cabbage normal blade and suffer from the cabbage moth pests of cabbage leaf color features and spectral characteristics were analyzed .The best geometric threshold of color difference and characteristic bands of two kinds of leaves were extracted , using the Otsu threshold value image segmentation algorithm and adaptive band selection method.The test results show that the technology compositing image processing with spectrum can realize automatic and accurate identification of Cabbage moth pests , accuracy reaching 94%.Therefore, the establishment of

  9. Influence of Heat Treatment on the Bond Coat Cyclic Oxidation Behaviour in an Air-plasma-sprayed Thermal Barrier Coating System

    Institute of Scientific and Technical Information of China (English)

    W.R. Chen; X. Wu; B.R. Marple; P.C. Patnaik

    2004-01-01

    It is generally believed that a thermally grown oxide (TGO) layer of alumina provides enhanced protection to the metallic bond coat in thermal barrier coating (TBC) systems at elevated temperatures. However, in an air-plasma-sprayed (APS) TBC system with Co-32Ni-21Cr-8A1-0.5Y (wt%) bond coat, the TGO layer formed upon thermal exposure in air was predominantly chromia and spinels, which would not effectively protect the bond coat at above 1000℃. In addition,mixed oxides of chromia, spinel and nickel oxide formed heterogeneously between the ceramic coating and CoNiCrAlY bond coat, which would promote crack initiation and lead to premature TBC failure. A heat treatment in a low-pressure condition was applied to the as-sprayed TBC system, with the aim to produce an alumina layer as well as reduce the amount of detrimental oxides. The influence of this low-pressure oxidation treatment (LPOT) on the bond coat cyclic oxidation behaviour of the TBC system was also investigated.

  10. A Combined Brazing and Aluminizing Process for Repairing Turbine Blades by Thermal Spraying Using the Coating System NiCrSi/NiCoCrAlY/Al

    Science.gov (United States)

    Nicolaus, M.; Möhwald, K.; Maier, H. J.

    2017-08-01

    The repair and maintenance of components in the aerospace industry play an increasingly important role due to rising manufacturing costs. Besides welding, vacuum brazing is a well-established repair process for turbine blades made of nickel-based alloys. After the coating of the worn turbine blade has been removed, the manual application of the nickel-based filler metal follows. Subsequently, the hot gas corrosion-protective coating is applied by thermal spraying. The brazed turbine blade is aluminized to increase the hot gas corrosion resistance. The thermal spray technology is used to develop a two-stage hybrid technology that allows shortening the process chain for repair brazing turbine blades and is described in the present paper. In the first step, the coating is applied on the base material. Specifically, the coating system employed here is a layer system consisting of nickel filler metal, NiCoCrAlY and aluminum. The second step represents the combination of brazing and aluminizing of the coating system which is subjected to a heat treatment. The microstructure, which results from the combined brazing and aluminizing process, is characterized and the relevant diffusion processes in the coating system are illustrated. The properties of the coating and the ramifications with respect to actual applications will be discussed.

  11. Influence of Heat Treatment on the Bond Coat Cyclic Oxidation Behaviour in an Air-plasma-sprayed Thermal Barrier Coating System

    Institute of Scientific and Technical Information of China (English)

    W.R.Chen; X.Wu; B.R.Marple; P.C.Patnaik

    2004-01-01

    It is generally believed that a thermally grown oxide (TGO) layer of alumina provides enhanced protection to the metallic bond coat in thermal barrier coating (TBC) systems at elevated temperatures. However, in an air-plasma-sprayed (APS) TBC system with Co-32Ni-21Cr-8A1-0.5Y (wt%) bond coat, the TGO layer formed upon thermal exposure in air was predominantly chromia and spinels, which would not effectively protect the bond coat at above 1000℃. In addition, mixed oxides of chromia, spinel and nickel oxide formed heterogeneously between the ceramic coating and CoNiCrA1Y bond coat, which would promote crack initiation and lead to premature TBC failure. A heat treatment in a low-pressure condition was applied to the as-sprayed TBC system, with the aim to produce an alumina layer as well as reduce the amount of detrimental oxides. The influence of this low-pressure oxidation treatment (LPOT) on the bond coat cyclic oxidation behaviour of the TBC system was also investigated.

  12. Plasma-Spray Metal Coating On Foam

    Science.gov (United States)

    Cranston, J.

    1994-01-01

    Molds, forms, and other substrates made of foams coated with metals by plasma spraying. Foam might be ceramic, carbon, metallic, organic, or inorganic. After coat applied by plasma spraying, foam left intact or removed by acid leaching, conventional machining, water-jet cutting, or another suitable technique. Cores or vessels made of various foam materials plasma-coated with metals according to method useful as thermally insulating containers for foods, liquids, or gases, or as mandrels for making composite-material (matrix/fiber) parts, or making thermally insulating firewalls in automobiles.

  13. Design of automatic lawn spray distributor system based on ZigBee%基于ZigBee的智能化草坪自动喷水系统设计

    Institute of Scientific and Technical Information of China (English)

    刘智

    2012-01-01

    为了解决现有绿化养护中存在的人力浪费、布线复杂、维护繁杂等问题,采用ZigBee网络技术设计了一套智能化草坪自动喷水系统。该系统基于ZigBee网络,以CC2430模块为核心,整个传感网络由无线采集节点、路由器和监测基站组成。实践表明,该系统具有良好的实用功能,适合于绿化管理数字化建设的需求,具有较好的市场前景。%By solving the problems of human resources waste, complex cabling and troublesome maintenance .in green mainte- nance, we design a set of automatic lawn spray distribution system based on ZigBee with core module as CC2430. The sensor net- work consists of wireless acquisition nodes, router and the measurement station. Practice indicates that the system has a good practi- cabihty and meets the need of digitization construction in green management which has good market prospects.

  14. Synthesis and Characterization of Cobalt-Carbon Core-Shell Microspheres in Supercritical Carbon Dioxide System

    Institute of Scientific and Technical Information of China (English)

    Jun-song Yang; Qian-wang Chen

    2008-01-01

    The synthesis of cobalt-carbon core-shell microspheres in supercritical carbon dioxide system was investigated. Cobalt-carbon core-shell microspheres with diameter of about 1μm were prepared at 350℃ for 12 h in a closed vessel containing an appropriate amount of bis(cyclopentadienyl)cobalt powder and dry ice.Characterization by a variety of techniques,including X-ray powder diffraction,X-ray photoelectron spectroscopy,Transmission electron microscope,Fourier transform infrared spectrum and Raman spectroscopy analysis reveals that each cobalt-carbon core-shell microsphere is made up of an amorphous cobalt core with diameter less than 1 μm and an amorphous carbon shell with thickness of about 200 nm.The possible growth mechanism of cobalt-carbon core-shell microspheres is discussed,based on the pyrolysis of bis(cyclopentadienyl)cobalt in supercritical carbon dioxide and the deposition of carbon or carbon clusters with odd electrons on the surface of magnetic cobalt cores due to magnetic attraction.Magnetic measurements show 141.41 emu/g of saturation magnetization of a typical sample,which is lower than the 168 emu/g of the corresponding metal cobalt bulk material.This is attributed to the considerable mass of the carbon shell and amorphous nature of the magnetic core.Control of magnetism in the cobalt-carbon core-shell microspheres was achieved by annealing treatments.

  15. 预缩聚反应器真空喷淋系统的化学清洗%Chemical cleaning of the vacuum spray system of prepolycondensation reactor

    Institute of Scientific and Technical Information of China (English)

    刘育先; 陈红辉; 庄克威; 姚燕春; 黄海滨

    2001-01-01

    The actuating medium for the vacuum spray system of pre polycondensation reactor is ethylene glycol.Running for some time,some prepolymers will be deposited on heat-exchanger surfaces,spray nozzles and drainage tubes,etc.And that made the vacuum capacity falling down,even lose.The polymerization degree of the prepolymer is 4.And at normal temperature the prepolymer can't be dissolved in NaOH aqueous solution or NaOH*EG solution,but it can be dissolved in NaOH solution mixed with aqueous and EG.The spray system can't be corrupted or polluted by NaOH solution mixed with aqueous and EG.We successfully made chemical cleaning on 110 t/d-line using above principle.%预缩聚反应器的真空喷淋系统的工作介质是乙二醇(EG).运行一段时间后,预聚体沉积于板式换热器、喷嘴及引管等处,使抽真空能力下降直至丧失.此处的预聚体聚合度为4,不溶于常温下的NaOH水溶液,也不溶于NaOH*EG溶液,却可溶于NaOH的水和EG的混合溶液.NaOH的水和EG的混合溶液不会腐蚀喷淋系统,也不会污染喷淋系统.利用该性质成功地在110 t/d的生产装置上进行在线化学清洗.

  16. POTENTIAL: A Highly Adaptive Core of Parallel Database System

    Institute of Scientific and Technical Information of China (English)

    文继荣; 陈红; 王珊

    2000-01-01

    POTENTIAL is a virtual database machine based on general computing platforms, especially parallel computing platforms. It provides a complete solution to high-performance database systems by a 'virtual processor + virtual data bus + virtual memory' architecture. Virtual processors manage all CPU resources in the system, on which various operations are running. Virtual data bus is responsible for the management of datatransmission between associated operations, which forms the hinges of the entire system. Virtual memory provides efficient data storage and buffering mechanisms that conform to data reference behaviors in database systems. The architecture of POTENTIAL is very clear and has many good features,including high efficiency, high scalability, high extensibility, high portability, etc.

  17. Mode coupling dynamics and communication strategies for multi-core fiber systems.

    Science.gov (United States)

    Chan, Florence Y M; Lau, Alan Pak Tao; Tam, Hwa-Yaw

    2012-02-13

    The propagation dynamics of 7-core multi-core fibers (MCFs) with identical and three-types of cores are analytically derived based on the coupled-mode theory. The mode coupling dynamics can be aperiodic with transmission distance for MCF with identical cores. For MCFs with heterogeneous cores, it is found that even though signals from different core groups will not couple with each other, the coupling within their own group is significantly affected by the presence of other core groups. Joint signal processing techniques to mitigate mode coupling induced-cross-talks such as least mean square (LMS) algorithm and maximum likelihood (ML) detection are investigated and corresponding transmission performance are determined for coherent as well as intensity modulated formats. It is shown that aperiodic mode coupling in intensity modulated systems induces cross-talks that are difficult to eliminate through signal processing. The analytical insights may help in optimizing MCF designs and corresponding signal processing techniques for future high capacity MCF transmission systems.

  18. Dynamical core polarization of two-active-electron systems in strong laser fields

    CERN Document Server

    Zhao, Zengxiu

    2013-01-01

    The ionization of two-active-electron systems by intense laser fields is investigated theoretically. In comparison with time-dependent Hartree-Fock and exact two electron simulation, we show that the ionization rate is overestimated in SAE approximation. A modified single-active-electron model is formulated by taking into account of the dynamical core polarization. Applying the new approach to Ca atoms, it is found that the polarization of the core can be considered instantaneous and the large polarizability of the cation suppresses the ionization by 50% while the photoelectron cut-off energy increases slightly. The existed tunneling ionization formulation can be corrected analytically by considering core polarization.

  19. Theoretical research on construction quality real-time monitoring and system integration of core rockfill dam

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    With the enlargement of core rockfill dam construction scale and the improvement of construction mechanization level, the traditional manual construction quality control method is now difficult to meet the quality and safety demands of modern dam construction, so automatic and real-time dam construction quality monitoring with high-techs is urgently needed. The paper makes theoretical research on construction quality real-time monitoring and system integration of core rockfill dam, proposes implementation method and integrated solution of construction quality real-time monitoring of core rockfill dam construction process, realizes refining, all-whether, entire-process and real-time control and analysis on key links of dam construction, and introduces the application of the construction quality real-time monitoring and system integration technology to a practical core rockfill dam project.

  20. Theoretical research on construction quality real-time monitoring and system integration of core rockfill dam

    Institute of Scientific and Technical Information of China (English)

    ZHONG DengHua; CUI Bo; LIU DongHai; TONG DaWei

    2009-01-01

    With the enlargement of core rockfill dam construction scale and the Improvement of construction mechanization level, the traditional manual construction quality control method is now difficult to meet the quality and safety demands of modern dam construction, so automatic and real-time dam con-struction quality monitoring with high-techs is urgently needed.The paper makes theoretical research on construction quality real-time monitoring and system integration of core rock/ill dam, proposes im-plementation method and integrated solution of construction quality real-time monitoring of core rock-fill dam construction process, realizes refining, all-whether, entire-process and real-time control and analysis on key links of dam construction, and introduces the application of the construction quality real-time monitoring and system integration technology to a practical core rockfill dam project.

  1. Hybrid Parallelism for Volume Rendering on Large, Multi-core Systems

    Science.gov (United States)

    Howison, M.; Bethel, E. W.; Childs, H.

    2011-10-01

    This work studies the performance and scalability characteristics of "hybrid" parallel programming and execution as applied to raycasting volume rendering - a staple visualization algorithm - on a large, multi-core platform. Historically, the Message Passing Interface (MPI) has become the de-facto standard for parallel programming and execution on modern parallel systems. As the computing industry trends towards multi-core processors, with four- and six-core chips common today, as well as processors capable of running hundreds of concurrent threads (GPUs), we wish to better understand how algorithmic and parallel programming choices impact performance and scalability on large, distributed-memory multi-core systems. Our findings indicate that the hybrid-parallel implementation, at levels of concurrency ranging from 1,728 to 216,000, performs better, uses a smaller absolute memory footprint, and consumes less communication bandwidth than the traditional, MPI-only implementation.

  2. Multi-core System Architecture for Safety-critical Control Applications

    DEFF Research Database (Denmark)

    Li, Gang

    certification cost. Meanwhile, hardware platforms with improved processing power are required to execute the applications of larger size. To tackle the two issues mentioned above, the state of the art approaches are using more Electronic Control Units (ECU) in a federated architecture or increasing...... cores, low power consumption, on-chip interconnection and natural support to on-chip hardware diversity and redundancy at the inter-core level. The objective of this dissertation is to propose a multi-core system architecture for safety-critical control applications with reduced certification cost...... on partitioning design of both multi-core hardware and software architectures, in order to minimize efforts and cost of system certification at the integration time. Hardware architecture design concentrates on a firmware architecture on SoC platforms, providing separated hardware execution environments...

  3. A Formative Program Evaluation of Electronic Clinical Tracking System Documentation to Meet National Core Competencies.

    Science.gov (United States)

    Smith, Lynette S; Branstetter, M Laurie

    2016-09-01

    Electronic clinical tracking systems are used in many educational institutions of higher learning to document advanced practice registered nursing students' clinical experiences. Students' clinical experiences are constructed according to the National Organization of Nurse Practitioner Faculties core competencies. These competencies form a basis for evaluation of advanced practice registered nursing programs. However, no previous studies have evaluated the use of electronic clinical tracking systems to validate students' clinical experiences in meeting national core competencies. Medatrax, an electronic clinical tracking system, is evaluated using a formative program evaluation approach to determine if students' clinical documentations meet Family/Across the Lifespan Nurse Practitioner Competencies in a midsouthern family nurse practitioner program. This formative program evaluation supports the use of an electronic clinical tracking system in facilitating accreditation and program outcome goals. The significance of this study is that it provides novel evidence to support the use of an electronic clinical tracking system to assist a midsouthern school of nursing in meeting national core competencies.

  4. Development of Uncertainty Analysis Method for SMART Digital Core Protection and Monitoring System

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Bon Seung; In, Wang Kee; Hwang, Dae Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    The Korea Atomic Energy Research Institute has developed a system-integrated modular advanced reactor (SMART) for a seawater desalination and electricity generation. Online digital core protection and monitoring systems, called SCOPS and SCOMS respectively were developed. SCOPS calculates minimum DNBR and maximum LPD based on the several online measured system parameters. SCOMS calculates the variables of limiting conditions for operation. KAERI developed overall uncertainty analysis methodology which is used statistically combining uncertainty components of SMART core protection and monitoring system. By applying overall uncertainty factors in on-line SCOPS/SCOMS calculation, calculated LPD and DNBR are conservative with a 95/95 probability/confidence level. In this paper, uncertainty analysis method is described for SMART core protection and monitoring system

  5. Future Standardization of Space Telecommunications Radio System with Core Flight System

    Science.gov (United States)

    Briones, Janette C.; Hickey, Joseph P.; Roche, Rigoberto; Handler, Louis M.; Hall, Charles S.

    2016-01-01

    NASA Glenn Research Center (GRC) is integrating the NASA Space Telecommunications Radio System (STRS) Standard with the Core Flight System (cFS), an avionics software operating environment. The STRS standard provides a common, consistent framework to develop, qualify, operate and maintain complex, reconfigurable and reprogrammable radio systems. The cFS is a flexible, open architecture that features a plugand- play software executive called the Core Flight Executive (cFE), a reusable library of software components for flight and space missions and an integrated tool suite. Together, STRS and cFS create a development environment that allows for STRS compliant applications to reference the STRS application programmer interfaces (APIs) that use the cFS infrastructure. These APIs are used to standardize the communication protocols on NASAs space SDRs. The cFS-STRS Operating Environment (OE) is a portable cFS library, which adds the ability to run STRS applications on existing cFS platforms. The purpose of this paper is to discuss the cFS-STRS OE prototype, preliminary experimental results performed using the Advanced Space Radio Platform (ASRP), the GRC S- band Ground Station and the SCaN (Space Communication and Navigation) Testbed currently flying onboard the International Space Station (ISS). Additionally, this paper presents a demonstration of the Consultative Committee for Space Data Systems (CCSDS) Spacecraft Onboard Interface Services (SOIS) using electronic data sheets (EDS) inside cFE. This configuration allows for the data sheets to specify binary formats for data exchange between STRS applications. The integration of STRS with cFS leverages mission-proven platform functions and mitigates barriers to integration with future missions. This reduces flight software development time and the costs of software-defined radio (SDR) platforms. Furthermore, the combined benefits of STRS standardization with the flexibility of cFS provide an effective, reliable and

  6. A Burst Mode, Ultrahigh Temperature UF4 Vapor Core Reactor Rankine Cycle Space Power System Concept

    Science.gov (United States)

    Dugan, E. T.; Kahook, S. D.; Diaz, N. J.

    1996-01-01

    Static and dynamic neutronic analyses have been performed on an innovative burst mode (100's of MW output for a few thousand seconds) Ulvahigh Temperature Vapor Core Reactor (UTVR) space nuclear power system. The NVTR employs multiple, neutronically-coupled fissioning cores and operates on a direct, closed Rankine cycle using a disk Magnetohydrodynamic (MHD) generater for energy conversion. The UTVR includes two types of fissioning core regions: (1) the central Ultrahigh Temperature Vapor Core (UTVC) which contains a vapor mixture of highly enriched UF4 fuel and a metal fluoride working fluid and (2) the UF4 boiler column cores located in the BeO moderator/reflector region. The gaseous nature of the fuel the fact that the fuel is circulating, the multiple coupled fissioning cores, and the use of a two phase fissioning fuel lead to unique static and dynamic neutronic characteristics. Static neutronic analysis was conducted using two-dimensional S sub n, transport theory calculations and three-dimensional Monte Carlo transport theory calculations. Circulating-fuel, coupled-core point reactor kinetics equations were used for analyzing the dynamic behavior of the UTVR. In addition to including reactivity feedback phenomena associated with the individual fissioning cores, the effects of core-to-core neutronic and mass flow coupling between the UTVC and the surrounding boiler cores were also included in the dynamic model The dynamic analysis of the UTVR reveals the existence of some very effectlve inherent reactivity feedback effects that are capable of quickly stabilizing this system, within a few seconds, even when large positive reactivity insertions are imposed. If the UTVC vapor fuel density feedback is suppressed, the UTVR is still inherently stable because of the boiler core liquid-fuel volume feedback; in contrast, suppression of the vapor fuel density feedback in 'conventional" gas core cavity reactors causes them to become inherently unstable. Due to the

  7. Development of an extensible dual-core wireless sensing node for cyber-physical systems

    Science.gov (United States)

    Kane, Michael; Zhu, Dapeng; Hirose, Mitsuhito; Dong, Xinjun; Winter, Benjamin; Häckell, Mortiz; Lynch, Jerome P.; Wang, Yang; Swartz, A.

    2014-04-01

    The introduction of wireless telemetry into the design of monitoring and control systems has been shown to reduce system costs while simplifying installations. To date, wireless nodes proposed for sensing and actuation in cyberphysical systems have been designed using microcontrollers with one computational pipeline (i.e., single-core microcontrollers). While concurrent code execution can be implemented on single-core microcontrollers, concurrency is emulated by splitting the pipeline's resources to support multiple threads of code execution. For many applications, this approach to multi-threading is acceptable in terms of speed and function. However, some applications such as feedback controls demand deterministic timing of code execution and maximum computational throughput. For these applications, the adoption of multi-core processor architectures represents one effective solution. Multi-core microcontrollers have multiple computational pipelines that can execute embedded code in parallel and can be interrupted independent of one another. In this study, a new wireless platform named Martlet is introduced with a dual-core microcontroller adopted in its design. The dual-core microcontroller design allows Martlet to dedicate one core to standard wireless sensor operations while the other core is reserved for embedded data processing and real-time feedback control law execution. Another distinct feature of Martlet is a standardized hardware interface that allows specialized daughter boards (termed wing boards) to be interfaced to the Martlet baseboard. This extensibility opens opportunity to encapsulate specialized sensing and actuation functions in a wing board without altering the design of Martlet. In addition to describing the design of Martlet, a few example wings are detailed, along with experiments showing the Martlet's ability to monitor and control physical systems such as wind turbines and buildings.

  8. Phase relations in iron-rich systems and implications for the earth's core

    Science.gov (United States)

    Anderson, William W.; Svendsen, Bob; Ahrens, Thomas J.

    1987-01-01

    Recent experimental data concerning the properties of iron, iron sulfide, and iron oxide at high pressures are combined with theoretical arguments to constrain the probable behavior of the Fe-rich portions of the Fe-O and Fe-S phase diagrams. Phase diagrams are constructed for the Fe-S-O system at core pressures and temperatures. These properties are used to evaluate the current temperature distribution and composition of the core.

  9. A Review of Common Problems in Design and Installation of Water Spray Cooling and Low Expansion Foam System to Protect Storage Tanks Containing Hydrocarbons Against Fires

    Directory of Open Access Journals (Sweden)

    Iraj Alimohammadi

    2015-12-01

    Full Text Available Tank fires are rare but carry significant potential risk to life and property. For this reason fire protection of tanks is critical. Fixed Low expansion foam and water spray cooling systems are one of the most effective and economical ways to reduce damages to a tank from fire. Such systems are currently installed in many companies but are not effective enough and require involvement of firefighters which in turn threaten their lives. This paper studies in a systematic way the problems of foam and cooling systems currently installed in a few domestic companies which operate storage tanks with focus on floating and fixed roof atmospheric tanks containing hydrocarbons and offers possible solutions for more efficient installation, design and operation of such systems.

  10. A Review of Common Problems in Design and Installation of Water Spray Cooling and Low Expansion Foam System to Protect Storage Tanks Containing Hydrocarbons Against Fires

    Directory of Open Access Journals (Sweden)

    I. Alimohammadi

    2015-11-01

    Full Text Available Tank fires are rare but carry significant potential risk to life and property. For this reason fire protection of tanks is critical. Fixed Low expansion foam and water spray cooling systems are one of the most effective and economical ways to reduce damages to a tank from fire. Such systems are currently installed in many companies but are not effective enough and require involvement of firefighters which in turn threaten their lives. This paper studies in a systematic way the problems of foam and cooling systems currently installed in a few domestic companies which operate storage tanks with focus on floating and fixed roof atmospheric tanks containing hydrocarbons and offers possible solutions for more efficient installation, design and operation of such systems.

  11. Study of Multi-Function Micro-Plasma Spraying Technology

    Institute of Scientific and Technical Information of China (English)

    WANG Liuying; WANG Hangong; HUA Shaochun; CAO Xiaoping

    2007-01-01

    A multi-functional micro-arc plasma spraying system was developed according to aerodynamics and plasma spray theory. The soft switch IGBT (Insulated Gate Bipolar Transistor) invert technique, micro-computer control technique, convergent-divergent nozzle structure and axial powder feeding techniques have been adopted in the design of the micro-arc plasma spraying system. It is not only characterized by a small volume, a light weight, highly accurate control, high deposition efficiency and high reliability, but also has multi-functions in plasma spraying, welding and quenching. The experimental results showed that the system can produce a supersonic flame at a low power, spray Al2O3 particles at an average speed up to 430 m/s, and make nanostructured AT13 coatings with an average bonding strength of 42.7 MPa. Compared to conventional 9M plasma spraying with a higher power, the coatings with almost the same properties as those by conventional plasma spray can be deposited by multi-functional micro-arc plasma spraying with a lower power plasma arc due to an improved power supply design, spray gun structure and powder feeding method. Moreover, this system is suitable for working with thin parts and undertaking on site repairs, and as a result, the application of plasma spraying will be greatly extended.

  12. Dry-spray deposition of TiO2 for a flexible dye-sensitized solar cell (DSSC) using a nanoparticle deposition system (NPDS).

    Science.gov (United States)

    Kim, Min-Saeng; Chun, Doo-Man; Choi, Jung-Oh; Lee, Jong-Cheon; Kim, Yang Hee; Kim, Kwang-Su; Lee, Caroline Sunyong; Ahn, Sung-Hoon

    2012-04-01

    TiO2 powders were deposited on indium tin oxide (ITO) coated polyethylene terephthalate (PET) substrates for application to the photoelectrode of a dye-sensitized solar cell (DSSC). In the conventional DSSC manufacturing process, a semiconductor oxide such as TiO2 powder requires a sintering process at higher temperature than the glass transition temperature (T(g)) of polymers, and thus utilization of flexible polymer substrates in DSSC research has been constrained. To overcome this restriction related to sintering, we used a nanoparticle deposition system (NPDS) that could produce a thin coating layer through a dry-spray method under atmospheric pressure at room temperature. The powder was sprayed through a slit-type nozzle having a 0.4 x 10 mm2 rectangular outlet. In order to determine the deposited TiO2 thickness, five kinds of TiO2 layered specimens were prepared, where the specimens have single and double layer structures. Deposited powders on the ITO coated PET substrates were observed using FE-SEM and a scan profiler The thicker TiO2 photoelectrode with a DSSC having a double layer structure showed higher energy efficiency than the single layer case. The highest fabricated flexible DSSC displayed a short circuit current density J(sc) = 1.99 mA cm(-2), open circuit voltage V(oc) = 0.71 V, and energy efficiency eta = 0.94%. These results demonstrate the possibility of utilizing the dry-spray method to fabricate a TiO2 layer on flexible polymer substrates at room temperature under atmospheric pressure.

  13. Bond strength, microhardness, and core/veneer interface quality of an all-ceramic system.

    Science.gov (United States)

    Fahmy, Nadia Z

    2010-02-01

    This study was designed to evaluate three veneering materials for an all-ceramic alumina system in terms of bond strength, microhardness, and core/veneer interface quality. Fifteen In-Ceram cores were constructed for this study, forming three groups of five specimens each divided by the veneering ceramic disc fired on the occlusal surface of the alumina core: Vitadur N, Vitadur Alpha, or VM7. The specimens underwent shear bond and microhardness testing. Gross examination of debonded discs by SEM and EDAX analysis was conducted. Data for shear bond strength (SBS) and microhardness were presented as means and standard deviation (SD) values. One-way ANOVA and Duncan's post hoc test were used for pairwise comparison between the means when ANOVA test was significant. VM7 showed the highest shear bond value and lowest microhardness values of the three tested veneering materials. No statistically significant difference was evident between the SBSs of Vitadur N and Vitadur Alpha to the alumina cores. Vitadur Alpha showed statistically the highest mean VHN, followed by Vitadur N, while VM7 showed statistically the lowest mean values of VHN. In-Ceram core/Vitadur N disc debondings appeared to be interfacial by complete delaminations, leaving a shiny visible and quite distinct area, whereas there appeared to be perfect adhesion between the core and VM7 veneering material. VM7 appeared to possess ultra-fine texture with intimate contact to the core, forming what seemed like a transition zone where the ceramic and core appeared to blend for a distance. VM7's finer particle size has improved the core/veneer bond strength and decreased micohardness values. This new veneering material will probably enhance the performance and esthetics of the In-Ceram system.

  14. Core-shell silk hydrogels with spatially tuned conformations as drug-delivery system.

    Science.gov (United States)

    Yan, Le-Ping; Oliveira, Joaquim M; Oliveira, Ana L; Reis, Rui L

    2016-12-05

    Hydrogels of spatially controlled physicochemical properties are appealing platforms for tissue engineering and drug delivery. In this study, core-shell silk fibroin (SF) hydrogels of spatially controlled conformation were developed. The core-shell structure in the hydrogels was formed by means of soaking the preformed (enzymatically crosslinked) random coil SF hydrogels in methanol. When increasing the methanol treatment time from 1 to 10 min, the thickness of the shell layer can be tuned from about 200 to about 850 μm as measured in wet status. After lyophilization of the rehydrated core-shell hydrogels, the shell layer displayed compact morphology and the core layer presented porous structure, when observed by scanning electron microscopy. The conformation of the hydrogels was evaluated by Fourier transform infrared spectroscopy in wet status. The results revealed that the shell layer possessed dominant β-sheet conformation and the core layer maintained mainly random coil conformation. Enzymatic degradation data showed that the shell layers presented superior stability to the core layer. The mechanical analysis displayed that the compressive modulus of the core-shell hydrogels ranged from about 25 kPa to about 1.1 MPa by increasing the immersion time in methanol. When incorporated with albumin, the core-shell SF hydrogels demonstrated slower and more controllable release profiles compared with the non-treated hydrogel. These core-shell SF hydrogels of highly tuned properties are useful systems as drug-delivery system and may be applied as cartilage substitute. Copyright © 2016 John Wiley & Sons, Ltd.

  15. Examining properties of arc sprayed nanostructured coatings

    Directory of Open Access Journals (Sweden)

    A. Czupryński

    2016-04-01

    Full Text Available The article presents the results of examining properties of arc sprayed coating obtained with nano-alloy on the iron matrix with a high amount of fine carbide precipitates sprayed on non-alloyed steel plates intended for high temperature operation. Powder metal cored wire EnDOtec DO*390N 1,6 mm diameter, was used to produce, dense, very high abrasion and erosion resistant coatings approx. 1,0 mm thick. Nano-material coatings characterization was done to determine abrasion resistance, erosion resistance, adhesion strength, hardness as well as metallographic examinations. Results have proved high properties of arc sprayed nano-material coatings and have shown promising industrial applications.

  16. Implementation of Reduced Power Open Core Protocol Compliant Memory System using VHDL

    Directory of Open Access Journals (Sweden)

    Ramesh Bhakthavatchalu

    2011-01-01

    Full Text Available The design of a large scale System on Chip (SoC is becoming challenging not only due to the complexity but also due to the use of a large amount of Intellectual Properties (IP. An interface standard for IP cores is becoming important for a successful SoC design. In a SoC the different IP cores are interfaced through different protocols. It increases the complexity of the design. Open Core Protocol (OCP is an openly licensed core centric protocol intended to meet contemporary system level integration challenges. OCP promotes IP core reusability and reduces design time, design risk and manufacturing costs for SoC designs. OCP defines a highly configurable interface including data flow, control, verification and test signals required to describe an IP core's communication. This paper focuses on the design and implementation of a reconfigurable OCP compliant Master Slave interface for a memory system with burst support. The power reduction using Multivoltage design is the important feature of the paper. The proposed design was implemented in VHDL and the Synthesis is done using Synopsys ASIC synthesis tool Design Compiler.

  17. Thinking about Transformer Water Spray System Test%变压器水喷雾系统试验的思考

    Institute of Scientific and Technical Information of China (English)

    赵国刚; 王强

    2012-01-01

    Transformer water spray system has protective functions toward the transformer including: fire-fighting, fire-suppression, preventing fire from spreading, prevention of fire, etc. Starting from the importance of water spray system test, and combining with the practical experiences, this article analyses, thinks, puts forward problems and gives concrete measurements toward the following three fields of launch conditions, fire pipes, and water from fire service.%变压器水喷雾系统对变压器的防护能起到灭火、抑制火灾、防止火灾蔓延、预防着火的作用。从水喷雾系统试验的重要性着手,结合实际经验,从启动条件、消防管道、消防用水三方面进行分析、思考,提出问题,并给出具体的措施。

  18. 电力载波通信的喷雾降尘控制系统设计%Colliery Spray-dust Control System Based on Power Line Communication

    Institute of Scientific and Technical Information of China (English)

    王开青; 闫相宏; 郝海涛; 张玉

    2011-01-01

    基于电力载波通信设计了喷雾降尘控制系统.以ATmega88单片机作为主控制器,根据采煤机和支架工作产生煤尘的状况自动调节喷雾模式.该系统具有LED照明功能,耗电低,寿命长,耗水少,降尘效果明显.%A spray-dust control system is designed based on power line communication. Taking ATmega88 as the main controller, the system can automatically regulate the spray mode according to the working situation of coal mining machine and hydraulic support. The system has LED light, low power consumption, longevity, less water consumption and good spray-dust effect.

  19. Effects of self-pulsation on the spray characteristics of gas-liquid swirl coaxial injector

    Science.gov (United States)

    Kang, Zhongtao; Li, Qinglian; Cheng, Peng; Zhang, Xinqiao; Wang, Zhen-guo

    2016-10-01

    To understand the influence of self-pulsation on the spray characteristics of gas-liquid swirl coaxial injector, a back-lighting photography technique has been employed to capture the instantaneous self-pulsated spray and stable spray images with a high speed camera. The diameter and velocity of the droplets in the spray have been characterized with a Dantec Phase Doppler Anemometry (PDA) system. The effects of self-pulsation on the spray pattern, primary breakup, spray angle, diameter and velocity distribution and mass flow rate distribution are analyzed and discussed. The results show that the spray morphology is greatly influenced by self-pulsation. The stable spray has a cone shape, while the self-pulsated spray looks like a Christmas tree. The main difference of these two sprays is the primary breakup. The liquid film of stable spray keeps stable while that of self-pulsated spray oscillates periodically. The film width of self-pulsated spray varies in a large range with 'neck' and 'shoulder' features existing. The liquid film of self-pulsated spray breaks up at the second neck, and then the second shoulder begins to breakup into ligaments. The self-pulsated spray produces droplet clusters periodically, varies horizontal spray width and mass flux periodically. From the point of spatial distribution, self-pulsation is good for the spray, it uniformizes the mass flux along radius and increases the spray angle. However, when self-pulsation occurs, the SMD distribution varies from an inverted V shape to a hollow cone shape, and SMD increases at all the measuring points. Namely, from the point of atomization performance, self-pulsation has negative effects even when the breakup length is smaller. The effects of self-pulsation on the diameter and velocity distributions of the spray are mainly in the center part of the spray. The periphery of stable and self-pulsated spray has similar diameter and velocity distribution.

  20. Development of the top mounted in-core instrumentation system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Gyu-Mahn; Kim, Jong-Wook; Jeoung, Kyeong-Hoon; Kim, Tae-Wan; Park, Keun-Bae; Kim, Keung-Koo

    2008-10-15

    In this study, the design concept for a top mounted ICI system and its support structure are developed which provides the installation of a ICI system through the penetration on the top of reactor vessel closure head. The ICI support structure is consist of ICI guide tube, CEA-ESA(CEA Extension Shaft Assembly) guide tube, pressurizer heater support structure, and various support grids. This support structure provides a safe path of ICI assembly and it shall be installed between reactor vessel closure head and the top surface of upper guide structure.

  1. Cold spray nozzle design

    Science.gov (United States)

    Haynes, Jeffrey D.; Sanders, Stuart A.

    2009-06-09

    A nozzle for use in a cold spray technique is described. The nozzle has a passageway for spraying a powder material, the passageway having a converging section and a diverging section, and at least the diverging section being formed from polybenzimidazole. In one embodiment of the nozzle, the converging section is also formed from polybenzimidazole.

  2. High Level Analysis, Design and Validation of Distributed Mobile Systems with CoreASM

    Science.gov (United States)

    Farahbod, R.; Glässer, U.; Jackson, P. J.; Vajihollahi, M.

    System design is a creative activity calling for abstract models that facilitate reasoning about the key system attributes (desired requirements and resulting properties) so as to ensure these attributes are properly established prior to actually building a system. We explore here the practical side of using the abstract state machine (ASM) formalism in combination with the CoreASM open source tool environment for high-level design and experimental validation of complex distributed systems. Emphasizing the early phases of the design process, a guiding principle is to support freedom of experimentation by minimizing the need for encoding. CoreASM has been developed and tested building on a broad scope of applications, spanning computational criminology, maritime surveillance and situation analysis. We critically reexamine here the CoreASM project in light of three different application scenarios.

  3. Efficient Parallelization of Short-Range Molecular Dynamics Simulations on Many-Core Systems

    CERN Document Server

    Meyer, R

    2013-01-01

    This article describes an algorithm for the parallelization of molecular-dynamics simulations with short-range forces on many-core systems with shared-memory. The algorithm is designed to achieve high parallel speedups for strongly inhomogeneous systems like nanodevices or nanostructured materials. In the proposed scheme the calculation of the forces and the generation of neighbor lists is divided into small tasks. The tasks are then executed by a thread pool according to a dependent task schedule. This schedule is constructed in such a way that a particle is never accessed by two threads at the same time. Results from benchmark simulations show that the described algorithm achieves excellent parallel speedups above 80 % per processor core for different kinds of systems and all numbers of cores. For inhomogeneous systems the speedups are strongly superior to those obtained with spatial decomposition.

  4. Paranoid Disorders: The Core of Truth behind the Delusional System.

    Science.gov (United States)

    Kaffman, Mordecai

    1981-01-01

    The first paper in a series of articles reporting the findings, life course, and psychiatric outcomes of a group of 34 families where at least one member of the family developed a delusional system. Discusses several issues regarding the genesis, ways of reinforcement, and perpetuation of the delusional ideation. (Author)

  5. A High-Resolution Continuous Flow Analysis System for Polar Ice Cores

    DEFF Research Database (Denmark)

    Dallmayr, Remi; Goto-Azuma, Kumiko; Kjær, Helle Astrid;

    2016-01-01

    of Polar Research (NIPR) in Tokyo. The system allows the continuous analysis of stable water isotopes and electrical conductivity, as well as the collection of discrete samples from both inner and outer parts of the core. This CFA system was designed to have sufficiently high temporal resolution to detect......In recent decades, the development of continuous flow analysis (CFA) technology for ice core analysis has enabled greater sample throughput and greater depth resolution compared with the classic discrete sampling technique. We developed the first Japanese CFA system at the National Institute...

  6. A High-Resolution Continuous Flow Analysis System for Polar Ice Cores

    DEFF Research Database (Denmark)

    Dallmayr, Remi; Goto-Azuma, Kumiko; Kjær, Helle Astrid

    2016-01-01

    of Polar Research (NIPR) in Tokyo. The system allows the continuous analysis of stable water isotopes and electrical conductivity, as well as the collection of discrete samples from both inner and outer parts of the core. This CFA system was designed to have sufficiently high temporal resolution to detect...... signals of abrupt climate change in deep polar ice cores. To test its performance, we used the system to analyze different climate intervals in ice drilled at the NEEM (North Greenland Eemian Ice Drilling) site, Greenland. The quality of our continuous measurement of stable water isotopes has been...

  7. Compact Reliable Robust (CORE) Power System for Auxiliary Power Applications

    Science.gov (United States)

    2009-08-17

    SOFC stacks. The paper covers the power system development with the emphasis on the 300-hour demonstration of the 10 kWe reformer operating on JP-8...cell stack and its robustness while dramatically improving its tolerance to fuel impurities – closer to levels for SOFC stacks. This tolerance has...photograph of a SOFC reformer that was delivered to Army Research Laboratory (ARL). Presented in Figure 1b is a photograph of the 2 kWe reformer for HTPEM

  8. Fat bloom on chocolate confectionery systems - From core to surface

    OpenAIRE

    Dahlenborg, Hanna

    2014-01-01

    Abstract Fat bloom on chocolate is a major problem for the confectionery industry since the unappetising appearance and negative sensory effects lead to rejection by customers. The presence of fat bloom on chocolate confectionery systems is usually connected to migration of liquid fat due to the difference in composition between filling triacylglycerols (TAGs) and cocoa butter TAGs. The filling TAGs migrate into the chocolate shell where they can dissolve cocoa butter crystals. Consequ...

  9. Spray Rolling Aluminum Strip

    Energy Technology Data Exchange (ETDEWEB)

    Lavernia, E.J.; Delplanque, J-P; McHugh, K.M.

    2006-05-10

    Spray forming is a competitive low-cost alternative to ingot metallurgy for manufacturing ferrous and non-ferrous alloy shapes. It produces materials with a reduced number of processing steps, while maintaining materials properties, with the possibility of near-net-shape manufacturing. However, there are several hurdles to large-scale commercial adoption of spray forming: 1) ensuring strip is consistently flat, 2) eliminating porosity, particularly at the deposit/substrate interface, and 3) improving material yield. Through this program, a new strip/sheet casting process, termed spray rolling, has been developed, which is an innovative manufacturing technique to produce aluminum net-shape products. Spray rolling combines the benefits of twin-roll casting and conventional spray forming, showing a promising potential to overcome the above hurdles associated with spray forming. Spray rolling requires less energy and generates less scrap than conventional processes and, consequently, enables the development of materials with lower environmental impacts in both processing and final products. Spray Rolling was developed as a collaborative project between the University of California-Davis, the Colorado School of Mines, the Idaho National Engineering and Environmental Laboratory, and an industry team. The following objectives of this project were achieved: (1) Demonstration of the feasibility of the spray rolling process at the bench-scale level and evaluation of the materials properties of spray rolled aluminum strip alloys; and (2) Demonstration of 2X scalability of the process and documentation of technical hurdles to further scale up and initiate technology transfer to industry for eventual commercialization of the process.

  10. Baseline Design Compliance Matrix for the Rotary Mode Core Sampling System

    Energy Technology Data Exchange (ETDEWEB)

    LECHELT, J.A.

    2000-10-17

    The purpose of the design compliance matrix (DCM) is to provide a single-source document of all design requirements associated with the fifteen subsystems that make up the rotary mode core sampling (RMCS) system. It is intended to be the baseline requirement document for the RMCS system and to be used in governing all future design and design verification activities associated with it. This document is the DCM for the RMCS system used on Hanford single-shell radioactive waste storage tanks. This includes the Exhauster System, Rotary Mode Core Sample Trucks, Universal Sampling System, Diesel Generator System, Distribution Trailer, X-Ray Cart System, Breathing Air Compressor, Nitrogen Supply Trailer, Casks and Cask Truck, Service Trailer, Core Sampling Riser Equipment, Core Sampling Support Trucks, Foot Clamp, Ramps and Platforms and Purged Camera System. Excluded items are tools such as light plants and light stands. Other items such as the breather inlet filter are covered by a different design baseline. In this case, the inlet breather filter is covered by the Tank Farms Design Compliance Matrix.

  11. An Information Extraction Core System for Real World German Text Processing

    CERN Document Server

    Neumann, G; Baur, J; Becker, M; Braun, C

    1997-01-01

    This paper describes SMES, an information extraction core system for real world German text processing. The basic design criterion of the system is of providing a set of basic powerful, robust, and efficient natural language components and generic linguistic knowledge sources which can easily be customized for processing different tasks in a flexible manner.

  12. The scalability of OTR (out-of-core thermionic reactor) space nuclear power systems

    Energy Technology Data Exchange (ETDEWEB)

    Gallup, D.R.

    1990-03-01

    In this document, masses of the STAR-C power system and an optimized out-of-core thermionic reactor (OTR) power system versus power level are investigated. The impacts of key system parameters on system performance are also addressed. The STAR-C is mass competitive below about 15 kWe, but at higher power levels the scalability is relatively poor. An optimized OR is the least massive space nuclear power system below 25 kWe, and scales well to 50 kWe. The system parameters that have a significant impact on the scalability of the STAR-C are core thermal flux, thermionic converter efficiency, and core length to diameter ratio. The emissivity of the core surface is shown to be a relatively unimportant parameter. For an optimized OR power system, the most significant system parameter is the maximum allowable fuel temperature. It is also shown that if advanced radiation-hardened electronics are used in the satellite payload, a very large mass savings is realized. 10 refs., 23 figs., 7 tabs.

  13. Test-Access Planning and Test Scheduling for Embedded Core-Based System Chips

    NARCIS (Netherlands)

    Goel, Sandeep Kumar

    2005-01-01

    Advances in the semiconductor process technology enable the creation of a complete system on one single die, the so-called system chip or SOC. To reduce time-to-market for large SOCs, reuse of pre-designed and pre-veried blocks called cores is employed. Like the design style, testing of SOCs can be

  14. Core sediment biogeochemistry in specific zones of Cochin Estuarine System (CES)

    Indian Academy of Sciences (India)

    P S Akhil; Manju P Nair; C H Sujatha

    2013-12-01

    Geochemical composition is a set of data for predicting the climatic condition existing in an ecosystem. Both the surficial and core sediment geochemistry are helpful in monitoring, assessing and evaluating the marine environment. The aim of the research work is to assess the relationship between the biogeochemical constituents in the Cochin Estuarine System (CES), their modifications after a long period of anoxia and also to identify the various processes which control the sediment composition in this region, through a multivariate statistical approach. Therefore the study of present core sediment geochemistry has a critical role in unraveling the benchmark of their characterization. Sediment cores from four prominent zones of CES were examined for various biogeochemical aspects. The results have served as rejuvenating records for the prediction of core sediment status prevailing in the CES.

  15. Wavelet-Based Adaptive Solvers on Multi-core Architectures for the Simulation of Complex Systems

    Science.gov (United States)

    Rossinelli, Diego; Bergdorf, Michael; Hejazialhosseini, Babak; Koumoutsakos, Petros

    We build wavelet-based adaptive numerical methods for the simulation of advection dominated flows that develop multiple spatial scales, with an emphasis on fluid mechanics problems. Wavelet based adaptivity is inherently sequential and in this work we demonstrate that these numerical methods can be implemented in software that is capable of harnessing the capabilities of multi-core architectures while maintaining their computational efficiency. Recent designs in frameworks for multi-core software development allow us to rethink parallelism as task-based, where parallel tasks are specified and automatically mapped into physical threads. This way of exposing parallelism enables the parallelization of algorithms that were considered inherently sequential, such as wavelet-based adaptive simulations. In this paper we present a framework that combines wavelet-based adaptivity with the task-based parallelism. We demonstrate good scaling performance obtained by simulating diverse physical systems on different multi-core and SMP architectures using up to 16 cores.

  16. Analysis of ferroresonance in a neutral grounding system with nonlinear core loss

    Institute of Scientific and Technical Information of China (English)

    Hui Meng; Zhang Yan-Bin; Liu Chong-Xin

    2009-01-01

    The chaotic behaviour exhibited by a typical ferroresonant circuit in a neutral grounding system is investigated in this paper. In most earlier ferroresonance studies the core loss of the power transformer was neglected or represented by a linear resistance. However, this is not always true. In this paper the core loss of the power transformer is modelled by a third order series in voltage and the magnetization characteristics of the transformer are modelled by an 11th order two-term polynomial. Extensive simulations are carried out to analyse the effect of nonlinear core loss on transformer ferroresonance. A detailed analysis of simulation results demonstrates that, with the nonlinear core loss model used, the onset of chaos appears at a larger source voltage and the transient duration is shorter.

  17. A simplified model of aerosol removal by containment sprays

    Energy Technology Data Exchange (ETDEWEB)

    Powers, D.A. (Sandia National Labs., Albuquerque, NM (United States)); Burson, S.B. (Nuclear Regulatory Commission, Washington, DC (United States). Div. of Safety Issue Resolution)

    1993-06-01

    Spray systems in nuclear reactor containments are described. The scrubbing of aerosols from containment atmospheres by spray droplets is discussed. Uncertainties are identified in the prediction of spray performance when the sprays are used as a means for decontaminating containment atmospheres. A mechanistic model based on current knowledge of the physical phenomena involved in spray performance is developed. With this model, a quantitative uncertainty analysis of spray performance is conducted using a Monte Carlo method to sample 20 uncertain quantities related to phenomena of spray droplet behavior as well as the initial and boundary conditions expected to be associated with severe reactor accidents. Results of the uncertainty analysis are used to construct simplified expressions for spray decontamination coefficients. Two variables that affect aerosol capture by water droplets are not treated as uncertain; they are (1) [open quote]Q[close quote], spray water flux into the containment, and (2) [open quote]H[close quote], the total fall distance of spray droplets. The choice of values of these variables is left to the user since they are plant and accident specific. Also, they can usually be ascertained with some degree of certainty. The spray decontamination coefficients are found to be sufficiently dependent on the extent of decontamination that the fraction of the initial aerosol remaining in the atmosphere, m[sub f], is explicitly treated in the simplified expressions. The simplified expressions for the spray decontamination coefficient are given. Parametric values for these expressions are found for median, 10 percentile, and 90 percentile values in the uncertainty distribution for the spray decontamination coefficient. Examples are given to illustrate the utility of the simplified expressions to predict spray decontamination of an aerosol-laden atmosphere.

  18. A survey of core research in information systems

    CERN Document Server

    Sidorova, Anna; Torres, Russell; Johnson, Vess

    2013-01-01

    The Information Systems (IS) discipline was founded on the intersection of computer science and organizational sciences, and produced a rich body of research on topics ranging from database design and the strategic role of IT to website design and online consumer behavior. In this book, the authors provide an introduction to the discipline, its development, and the structure of IS research, at a level that is appropriate for emerging and current IS scholars. Guided by a bibliometric study of all research articles published in eight premier IS research journals over a 20-year period, the author

  19. Prometheus: Scalable and Accurate Emulation of Task-Based Applications on Many-Core Systems.

    Energy Technology Data Exchange (ETDEWEB)

    Kestor, Gokcen; Gioiosa, Roberto; Chavarría-Miranda, Daniel

    2015-03-01

    Modeling the performance of non-deterministic parallel applications on future many-core systems requires the development of novel simulation and emulation techniques and tools. We present “Prometheus”, a fast, accurate and modular emulation framework for task-based applications. By raising the level of abstraction and focusing on runtime synchronization, Prometheus can accurately predict applications’ performance on very large many-core systems. We validate our emulation framework against two real platforms (AMD Interlagos and Intel MIC) and report error rates generally below 4%. We, then, evaluate Prometheus’ performance and scalability: our results show that Prometheus can emulate a task-based application on a system with 512K cores in 11.5 hours. We present two test cases that show how Prometheus can be used to study the performance and behavior of systems that present some of the characteristics expected from exascale supercomputer nodes, such as active power management and processors with a high number of cores but reduced cache per core.

  20. A novel spray-dried nanoparticles-in-microparticles system for formulating scopolamine hydrobromide into orally disintegrating tablets.

    Science.gov (United States)

    Li, Feng-Qian; Yan, Cheng; Bi, Juan; Lv, Wei-Lin; Ji, Rui-Rui; Chen, Xu; Su, Jia-Can; Hu, Jin-Hong

    2011-01-01

    Scopolamine hydrobromide (SH)-loaded microparticles were prepared from a colloidal fluid containing ionotropic-gelated chitosan nanoparticles using a spray-drying method. The spray-dried microparticles were then formulated into orally disintegrating tablets (ODTs) using a wet granulation tablet formation process. A drug entrapment efficiency of about 90% (w/w) and loading capacity of 20% (w/w) were achieved for the microparticles, which ranged from 2 μm to 8 μm in diameter. Results of disintegration tests showed that the formulated ODTs could be completely dissolved within 45 seconds. Drug dissolution profiles suggested that SH is released more slowly from tablets made using the microencapsulation process compared with tablets containing SH that is free or in the form of nanoparticles. The time it took for 90% of the drug to be released increased significantly from 3 minutes for conventional ODTs to 90 minutes for ODTs with crosslinked microparticles. Compared with ODTs made with noncrosslinked microparticles, it was thus possible to achieve an even lower drug release rate using tablets with appropriate chitosan crosslinking. Results obtained indicate that the development of new ODTs designed with crosslinked microparticles might be a rational way to overcome the unwanted taste of conventional ODTs and the side effects related to SH's intrinsic characteristics.

  1. Degradation behavior of Ni3Al plasma-sprayed boiler tube steels in an energy generation system

    Science.gov (United States)

    Sidhu, Buta Singh; Prakash, S.

    2005-06-01

    Boiler steels, namely, low-C steel, ASTM-SA210-Grade A1 (GrA1), 1Cr-0.5Mo steel, ASTM-SA213-T-11 (T11) and 2.25Cr-1Mo steel, ASTM-SA213-T-22 (T22) were plasma sprayed with Ni3Al. The alloy powder was prepared by mixing Ni and Al in the stoichiometric ratio of 3 to 1. The Ni-22Cr-10Al-1Y alloy powder was used as a bond coat, with a 150 µm thick layer sprayed onto the surface before applying the 200 µm coating of Ni3Al. Exposure studies have been performed in the platen superheater zone of a coal-fired boiler at around 755 °C for 10 cycles, each of 100 h duration. The protection to the base steel was minimal for the three steels. Scale spallation and the formation of a porous and nonadherent NiO scale were probably the main reasons for the lack of protection. In the case of T22-coated steel, cracks in the coatings have been observed after the first 100 h exposure cycle.

  2. Degradation behavior of Ni{sub 3}Al plasma-sprayed boiler tube steels in an energy generation system

    Energy Technology Data Exchange (ETDEWEB)

    Sidhu, B.S.; Prakash, S. [GZS, Bathinda (India). College of Engineering

    2005-06-01

    Boiler steels, namely, low-C steel, ASTM-SA210-Grade A1 (GrA1), 1Cr-0.5Mo steel, ASTM-SA213-T-11 (T11) and 2.25Cr-1Mo steel, ASTM-SA213-T-22 (T22) were plasma sprayed with Ni3Al. The alloy powder was prepared by mixing Ni and Al in the stoichiometric ratio of 3 to 1. The Ni-22Cr-10Al-1Y alloy powder was used as a bond coat, with a 150{mu} m thick layer sprayed onto the surface before applying the 200{mu}m coating of Ni{sub 3}Al. Exposure studies have been performed in the platen superheater zone of a coal-fired boiler at around 755{sup o}C for 10 cycles, each of 100 h duration. The protection to the base steel was minimal for the three steels. Scale spallation and the formation of a porous and nonadherent NiO scale were probably the main reasons for the lack of protection. In the case of T22-coated steel, cracks in the coatings have been observed after the first 100 h exposure cycle.

  3. Test Time Minimization for Hybrid BIST of Core-Based Systems

    Institute of Scientific and Technical Information of China (English)

    Gert Jervan; Petru Eles; Zebo Peng; Raimund Ubar; Maksim Jenihhin

    2006-01-01

    This paper presents a solution to the test time minimization problem for core-based systems. We assume a hybrid BIST approach, where a test set is assembled, for each core, from pseudorandom test patterns that are generated online, and deterministic test patterns that are generated off-line and stored in the system. In this paper we propose an iterative algorithm to find the optimal combination of pseudorandom and deterministic test sets of the whole system,consisting of multiple cores, under given memory constraints, so that the total test time is minimized. Our approach employs a fast estimation methodology in order to avoid exhaustive search and to speed-up the calculation process. Experimental results have shown the efficiency of the algorithm to find near optimal solutions.

  4. Testing of an Integrated Reactor Core Simulator and Power Conversion System with Simulated Reactivity Feedback

    Science.gov (United States)

    Bragg-Sitton, Shannon M.; Hervol, David S.; Godfroy, Thomas J.

    2010-01-01

    A Direct Drive Gas-Cooled (DDG) reactor core simulator has been coupled to a Brayton Power Conversion Unit (BPCU) for integrated system testing at NASA Glenn Research Center (GRC) in Cleveland, Ohio. This is a closed-cycle system that incorporates an electrically heated reactor core module, turboalternator, recuperator, and gas cooler. Nuclear fuel elements in the gas-cooled reactor design are replaced with electric resistance heaters to simulate the heat from nuclear fuel in the corresponding fast spectrum nuclear reactor. The thermodynamic transient behavior of the integrated system was the focus of this test series. In order to better mimic the integrated response of the nuclear-fueled system, a simulated reactivity feedback control loop was implemented. Core power was controlled by a point kinetics model in which the reactivity feedback was based on core temperature measurements; the neutron generation time and the temperature feedback coefficient are provided as model inputs. These dynamic system response tests demonstrate the overall capability of a non-nuclear test facility in assessing system integration issues and characterizing integrated system response times and response characteristics.

  5. Parallel Likelihood Function Evaluation on Heterogeneous Many-core Systems

    CERN Document Server

    Jarp, Sverre; Leduc, Julien; Nowak, Andrzej; Sneen Lindal, Yngve

    2011-01-01

    This paper describes a parallel implementation that allows the evaluations of the likelihood function for data analysis methods to run cooperatively on heterogeneous computational devices (i.e. CPU and GPU) belonging to a single computational node. The implementation is able to split and balance the workload needed for the evaluation of the likelihood function in corresponding sub-workloads to be executed in parallel on each computational device. The CPU parallelization is implemented using OpenMP, while the GPU implementation is based on OpenCL. The comparison of the performance of these implementations for different configurations and different hardware systems are reported. Tests are based on a real data analysis carried out in the high energy physics community.

  6. Thermal Arc Spray Overview

    Science.gov (United States)

    Hafiz Abd Malek, Muhamad; Hayati Saad, Nor; Kiyai Abas, Sunhaji; Mohd Shah, Noriyati

    2013-06-01

    Usage of protective coating for corrosion protection was on highly demand during the past decade; and thermal spray coating played a major part during that time. In recent years, the thermal arc spray coating becomes a popular coating. Many big players in oil and gas such as PETRONAS, EXXON MOBIL and SHELL in Malaysia tend to use the coating on steel structure as a corrosion protection. Further developments in coating processes, the devices, and raw materials have led to expansion of functional coatings and applications scope from conventional coating to specialized industries. It is widely used because of its ability to withstand high process temperature, offer advantages in efficiency, lower cost and acts as a corrosion protection. Previous research also indicated that the thermal arc spray offers better coating properties compared to other methods of spray. This paper reviews some critical area of thermal spray coating by discussing the process/parameter of thermal arc spray technology and quality control of coating. Coating performance against corrosion, wear and special characteristic of coating are also described. The field application of arc spray technology are demonstrated and reviewed.

  7. Open fibre reinforced plastic (FRP) flat plate collector (FPC) and spray network systems for augmenting the evaporation rate of tannery effluent (soak liquor)

    Energy Technology Data Exchange (ETDEWEB)

    Srithar, K. [Department of Mechanical Engineering, Thiagarajar College of Engineering, Madurai 625 015 (India); Mani, A. [Department of Mechanical Engineering, Indian Institute of Technology, Madras, Chennai 600 036 (India)

    2007-12-15

    Presently, tanneries in Tamilnadu, India are required to segregate the effluent of soaking and pickling sections from other wastewater streams and send it to shallow solar pans for evaporation to avoid land pollution. A large area of solar pans is required for evaporating the water in the effluent at salt concentration in the range of 4-5%. An experimental study has been made by using fibre reinforced plastic flat plate collector (FRP-FPC) and spray system in a pilot plant with a capacity to handle 5000 l per day, which increases the evaporation rate. After increasing the salt concentration level to near saturation limit, the concentrated liquid was sent to conventional solar pans for its continued evaporation and recovery of salt. In this improved system, the rate of evaporation was found to be 30-40% more than that in the conventional solar pans. The performance is compared with the theoretically simulated performance. (author)

  8. Thailand; Financial Sector Assessment Program: Detailed Assessment of Observance of CPSS Core Principles for Systemically Important Payment Systems

    OpenAIRE

    International Monetary Fund

    2009-01-01

    This paper focuses on a detailed assessment of observance of the Committee on Payment and Settlement Systems (CPSS) core principles for systemically important payment systems in Thailand. This assessment covers the Bank of Thailand Automated High-Value Transfer Network (BAHTNET), which is a real-time gross settlement (RTGS) system. The assessment reveals that there is no explicit legislation for payment systems in Thailand. However, the legal basis for BAHTNET and payment transfers executed i...

  9. Impact on human resources: Core Laboratory versus laboratory information system versus modular robotics.

    Science.gov (United States)

    Dadoun, R

    1998-01-01

    Technological advances in laboratory systems have had a great impact on human resources. Surviving the changes requires an in-depth understanding of the technology to implement the appropriate operational model. St. Mary's is a 414-bed, acute care hospital. For 18 months, the laboratories went through the process of moving from a noncomputerized traditional model laboratory (i.e., by discipline) to a fully computerized Core Lab. The Core Lab concept fully integrates biochemistry, hematology, blood bank, and microbiology into two sections (not physically separated): tests processed by automation and tests processed manually. This approach led to a 15% reduction in staff while the volume doubled. The transitions occurred sequentially: from traditional laboratory to Core Lab (noncomputerized), from manual Core Lab to fully computerized Core Lab, and ultimately from a simulation of manual preanalytical phase to automated preanalytical phase (modular robotics). The findings show that Core Lab and computerization have almost the same impact on human resources, 35% and 30% respectively, and modular robotics the least impact with 17%.

  10. Introduction to Open Core Protocol Fastpath to System-on-Chip Design

    CERN Document Server

    Schwaderer, W David

    2012-01-01

    This book introduces Open Core Protocol (OCP), not as a conventional hardware communications protocol but as a meta-protocol: a means for describing and capturing the communications requirements of an IP core, and mapping them to a specific set of signals with known semantics.  Readers will learn the capabilities of OCP as a semiconductor hardware interface specification that allows different System-On-Chip (SoC) cores to communicate.  The OCP methodology presented enables intellectual property designers to design core interfaces in standard ways. This facilitates reusing OCP-compliant cores across multiple SoC designs which, in turn, drastically reduces design times, support costs, and overall cost for electronics/SoCs. Provides a comprehensive introduction to Open Core Protocol, which is more accessible than the full specification; Designed as a hands-on, how-to guide to semiconductor design; Includes numerous, real “usage examples” which are not available in the full specification; Integrates coverag...

  11. Data archiving and serving system implementation in CLEP's GRAS Core System

    Science.gov (United States)

    Zuo, Wei; Zeng, Xingguo; Zhang, Zhoubin; Geng, Liang; Li, Chunlai

    2017-04-01

    The Ground Research & Applications System(GRAS) is one of the five systems of China's Lunar Exploration Project(CLEP), it is responsible for data acquisition, processing, management and application, and it is also the operation control center during satellite in-orbit and payload operation management. Chang'E-1, Chang'E-2 and Chang'E-3 have collected abundant lunar exploration data. The aim of this work is to present the implementation of data archiving and Serving in CLEP's GRAS Core System software. This first approach provides a client side API and server side software allowing the creation of a simplified version of CLEPDB data archiving software, and implements all required elements to complete data archiving flow from data acquisition until its persistent storage technology. The client side includes all necessary components that run on devices that acquire or produce data, distributing and streaming to configure remote archiving servers. The server side comprises an archiving service that stores into PDS files all received data. The archiving solution aims at storing data coming for the Data Acquisition Subsystem, the Operation Management Subsystem, the Data Preprocessing Subsystem and the Scientific Application & Research Subsystem. The serving solution aims at serving data for the various business systems, scientific researchers and public users. The data-driven and component clustering methods was adopted in this system, the former is used to solve real-time data archiving and data persistence services; the latter is used to keep the continuous supporting ability of archive and service to new data from Chang'E Mission. Meanwhile, it can save software development cost as well.

  12. Desenvolvimento de um sistema de pulverização acoplável a pivô central Development of a spray system attached to center pivot

    Directory of Open Access Journals (Sweden)

    Luis A. A. Vilela

    2004-12-01

    Full Text Available Com o objetivo de se aplicar produtos químicos às culturas, desenvolveu-se um sistema de pulverização acoplável a pivô central e também um protótipo do equipamento. Durante a aplicação, a estrutura aérea do pivô central se desloca sem irrigar, apenas transportando o sistema de pulverização sobre a área. O sistema é composto de duas barras de pulverização instaladas em cada vão do pivô. O regime intermitente da pulverização, responsável pela redução da calda aplicada, foi feito por meio de um circuito eletrônico, sincronizado ao acionamento dos motorredutores, que aciona uma válvula solenóide localizada na entrada da barra de pulverização. O sistema desenvolvido possibilita aplicar-se volume de pulverização de até 246 L ha-1. Os diâmetros de gotas atenderam às recomendações técnicas para aplicação de defensivos agrícolas. Tempos ligado-desligado da válvula solenóide de 0,4 - 2,5, 0,5 - 2,5, 0,3 - 3,5 e 0,4 - 3,5 s resultaram em valores de coeficiente de variação inferiores a 15%, aceitáveis para pulverizações por meio terrestre.For the application of chemical products a equipment attached to center pivots was developed. During application, the aerial structure of the center pivot system moves, without accomplishing irrigation, just transporting the spray system around the area. In order to compensate different speeds two spray bars were installed in each pivot span. Intermittent spraying was achieved by means of solenoid valves controlled by electronic circuit synchronized with electric motor gears. The system is able to apply a minimum volume of 246 L ha-1. Drop diameters obtained were compatible with the requirements of application of chemical products. On/off time sequences of 0.4 - 2.5, 0.5 - 2.5, 0.3 - 3.5 and 0.4 - 3.5 s resulted in coefficients of variation under 15%, that are acceptable for ground based applications.

  13. An improved continuous flow analysis system for high-resolution field measurements on ice cores.

    Science.gov (United States)

    Kaufmann, Patrik R; Federer, Urs; Hutterli, Manuel A; Bigler, Matthias; Schüpbach, Simon; Ruth, Urs; Schmitt, Jochen; Stocker, Thomas F

    2008-11-01

    Continuous flow analysis (CFA) is a well-established method to obtain information about impurity contents in ice cores as indicators of past changes in the climate system. A section of an ice core is continuously melted on a melter head supplying a sample water flow which is analyzed online. This provides high depth and time resolution of the ice core records and very efficient sample decontamination as only the inner part of the ice sample is analyzed. Here we present an improved CFA system which has been totally redesigned in view of a significantly enhanced overall efficiency and flexibility, signal quality, compactness, and ease of use. These are critical requirements especially for operations of CFA during field campaigns, e.g., in Antarctica or Greenland. Furthermore, a novel deviceto measure the total air content in the ice was developed. Subsequently, the air bubbles are now extracted continuously from the sample water flow for subsequent gas measurements.

  14. A Heterogeneous Multi-core Architecture with a Hardware Kernel for Control Systems

    DEFF Research Database (Denmark)

    Li, Gang; Guan, Wei; Sierszecki, Krzysztof

    2012-01-01

    . This paper presents a multi-core architecture incorporating a hardware kernel on FPGAs, intended for high performance applications in control engineering domain. First, the hardware kernel is investigated on the basis of a component-based real-time kernel HARTEX (Hard Real-Time Executive for Control Systems......). Second, a heterogeneous multi-core architecture is investigated, focusing on its performance in relation to hard real-time constraints and predictable behavior. Third, the hardware implementation of HARTEX is designated to support the heterogeneous multi-core architecture. This hardware kernel has......Rapid industrialisation has resulted in a demand for improved embedded control systems with features such as predictability, high processing performance and low power consumption. Software kernel implementation on a single processor is becoming more difficult to satisfy those constraints...

  15. An Experimental Study on the Macroscopic Spray Characteristics of Biodiesel and Diesel in a Constant Volume Chamber

    Directory of Open Access Journals (Sweden)

    Hongzhan Xie

    2015-06-01

    Full Text Available The objective of this study was to investigate the macroscopic spray characteristics of different 0%–100% blends of biodiesel derived from drainage oil and diesel (BD0, BD20, BD50, BD80, BD100, such as spray tip penetration, average tip velocity at penetration, spray angle, average spray angle, spray evolution process, spray area and spray volume under different injection pressures (60, 70, 80, 90, 100 MPa and ambient pressures (0.1, 0.3, 0.5, 0.7, 0.9 MPa using a common rail system equipped with a constant volume chamber. The characteristic data was extracted from spray images grabbed by a high speed visualization system. The results showed that the ambient pressure and injection pressure had significant effects on the spray characteristics. As the ambient pressure increased, the spray angle increased, while the spray tip penetration and the peak of average tip velocity decreased. As the injection pressure increased, the spray tip penetration, spray angle, spray area and spray volume increased. The increasing blend ratio of biodiesel brought about a shorter spray tip penetration and a smaller spray angle compared with those of diesel. This is due to the comparatively higher viscosity and surface tension of biodiesel, which enhanced the friction effect between fuel and the injector nozzle surface and inhibited the breakup of the liquid jet.

  16. Development of melting system for Measurement of trace elements and ions in ice core

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sang Bum; Lee, Khang Hyun; Hur, Soon Do; Soyol-Erene, Tseren-Ochir; Kim, Sun Mee; Chung, Ji Woong; Jun, Seong Joon [Korea Polar Research Institute, KIOST, Incheon (Korea, Republic of); Hong, Sung Min [Dept. of Ocean Sciences, Inha University, Incheon (Korea, Republic of); Kang, Chang Hee [Dept. of Chemistry and Research Institute for Basic Sciences, Jeju National University, Jeju (Korea, Republic of)

    2015-04-15

    We present a titanium (Ti) melting head divided into three zones as an improved melting system for decontaminating ice-core samples. This system was subjected to performance tests using short ice-core samples (4 × 4 cm{sup 2}, ⁓5 cm long). The procedural blanks (PBs) and detection limits of ionic species, with the exception of math formula, were comparable with published values, but for elements the experimental procedures should be refined to obtain valid Zn concentrations due to the PB of ⁓90.0 ± 16.2 ng/L. The improved melting system efficiently decontaminated the samples, as verified by the concentration profiles of elements and ions in the melted samples from the three melting-head zones. The recovery of trace elements in ice-core samples was ⁓70–120% at ⁓100 ng/L in artificial ice cores. Because of the memory effects between ice-core samples melted in series, the melting system should be rinsed at least 5–6 times (in a total volume of ⁓2.5 mL deionized water) after each melting procedure. Finally, as an application of this technique, trace elements were measured in ice-core samples recovered from the East Rongbuk Glacier, Mount Everest, (28°03′N, 86°96′E, 6518 m a.s.l.), and the concentrations of trace elements following mechanical chiseling and the melting method were compared.

  17. [Influence of background color on chromatic value of four all-ceramic system core materials].

    Science.gov (United States)

    Ma, Yong-gang; Zhang, Nian; Deng, Xu-liang

    2010-06-01

    To investigate the influence of post-core background color on chromatic value of four all-ceramic system core materials at clinically appropriate thicknesses. Disc specimens of 15 mm in diameter and 0.80 mm in thickness (Empress II: Group A), and 0.50 mm in thickness (In-Ceram Zirconia core: Group B; Cercon base color zirconia core: Group C; Cercon base zirconia core: Group D) were fabricated, five in each group. Au-Pt alloy, Ni-Cr alloy and visible light cured dental composite resin (A2 color) background were prepared. Samples were put on different background and their chromatic values were measured with colorimeter (CIE-1976-L(*)a(*)b(*)). Color differences of each specimen on different background material were calculated. The color differences among specimens of Group A on different background material were more than 1.5 (2.83 ± 0.70) which meant it could be noticeable to eyes. Those of zirconia were less than 1.5 [Group B: (0.14 ± 0.08); Group C: (0.90 ± 0.20); Group D: (0.99 ± 0.09)]. The influence of background color on Group A was noticeable to human eyes, and as a result, tooth-colored post should be used for this all-ceramic system. For the other three kinds of zirconia core materia1 system, the color differences among specimens on different background material were unnoticeable. Therefore the three all-ceramic systems have excellent color masking ability and can be used on all color background.

  18. Measuring Spray Droplet Size from Agricultural Nozzles Using Laser Diffraction.

    Science.gov (United States)

    Fritz, Bradley K; Hoffmann, W Clint

    2016-09-16

    When making an application of any crop protection material such as an herbicide or pesticide, the applicator uses a variety of skills and information to make an application so that the material reaches the target site (i.e., plant). Information critical in this process is the droplet size that a particular spray nozzle, spray pressure, and spray solution combination generates, as droplet size greatly influences product efficacy and how the spray moves through the environment. Researchers and product manufacturers commonly use laser diffraction equipment to measure the spray droplet size in laboratory wind tunnels. The work presented here describes methods used in making spray droplet size measurements with laser diffraction equipment for both ground and aerial application scenarios that can be used to ensure inter- and intra-laboratory precision while minimizing sampling bias associated with laser diffraction systems. Maintaining critical measurement distances and concurrent airflow throughout the testing process is key to this precision. Real time data quality analysis is also critical to preventing excess variation in the data or extraneous inclusion of erroneous data. Some limitations of this method include atypical spray nozzles, spray solutions or application conditions that result in spray streams that do not fully atomize within the measurement distances discussed. Successful adaption of this method can provide a highly efficient method for evaluation of the performance of agrochemical spray application nozzles under a variety of operational settings. Also discussed are potential experimental design considerations that can be included to enhance functionality of the data collected.

  19. The Faculty of Language Integrates the Two Core Systems of Number

    Science.gov (United States)

    Hiraiwa, Ken

    2017-01-01

    Only humans possess the faculty of language that allows an infinite array of hierarchically structured expressions (Hauser et al., 2002; Berwick and Chomsky, 2015). Similarly, humans have a capacity for infinite natural numbers, while all other species seem to lack such a capacity (Gelman and Gallistel, 1978; Dehaene, 1997). Thus, the origin of this numerical capacity and its relation to language have been of much interdisciplinary interest in developmental and behavioral psychology, cognitive neuroscience, and linguistics (Dehaene, 1997; Hauser et al., 2002; Pica et al., 2004). Hauser et al. (2002) and Chomsky (2008) hypothesize that a recursive generative operation that is central to the computational system of language (called Merge) can give rise to the successor function in a set-theoretic fashion, from which capacities for discretely infinite natural numbers may be derived. However, a careful look at two domains in language, grammatical number and numerals, reveals no trace of the successor function. Following behavioral and neuropsychological evidence that there are two core systems of number cognition innately available, a core system of representation of large, approximate numerical magnitudes and a core system of precise representation of distinct small numbers (Feigenson et al., 2004), I argue that grammatical number reflects the core system of precise representation of distinct small numbers alone. In contrast, numeral systems arise from integrating the pre-existing two core systems of number and the human language faculty. To the extent that my arguments are correct, linguistic representations of number, grammatical number, and numerals do not incorporate anything like the successor function. PMID:28360870

  20. The Faculty of Language Integrates the Two Core Systems of Number.

    Science.gov (United States)

    Hiraiwa, Ken

    2017-01-01

    Only humans possess the faculty of language that allows an infinite array of hierarchically structured expressions (Hauser et al., 2002; Berwick and Chomsky, 2015). Similarly, humans have a capacity for infinite natural numbers, while all other species seem to lack such a capacity (Gelman and Gallistel, 1978; Dehaene, 1997). Thus, the origin of this numerical capacity and its relation to language have been of much interdisciplinary interest in developmental and behavioral psychology, cognitive neuroscience, and linguistics (Dehaene, 1997; Hauser et al., 2002; Pica et al., 2004). Hauser et al. (2002) and Chomsky (2008) hypothesize that a recursive generative operation that is central to the computational system of language (called Merge) can give rise to the successor function in a set-theoretic fashion, from which capacities for discretely infinite natural numbers may be derived. However, a careful look at two domains in language, grammatical number and numerals, reveals no trace of the successor function. Following behavioral and neuropsychological evidence that there are two core systems of number cognition innately available, a core system of representation of large, approximate numerical magnitudes and a core system of precise representation of distinct small numbers (Feigenson et al., 2004), I argue that grammatical number reflects the core system of precise representation of distinct small numbers alone. In contrast, numeral systems arise from integrating the pre-existing two core systems of number and the human language faculty. To the extent that my arguments are correct, linguistic representations of number, grammatical number, and numerals do not incorporate anything like the successor function.

  1. Digital veneering system enhances microtensile bond strength at zirconia core-veneer interface.

    Science.gov (United States)

    Kim, Ki-Yeon; Kwon, Taek-Ka; Kang, Tae-Joo; Yang, Jae-Ho; Lee, Shin-Jae; Yeo, In-Sung

    2014-01-01

    This study investigated the effect of digital veneering system (DVS) on strengthening the bond between a zirconia core and ceramic veneer. Specimens for Groups 1 (negative control), 2 (positive control), 3, and 4 used conventional porcelain veneering technique on untreated, sandblasted, coloring agent-treated, and modifier-treated zirconia cores respectively. Group 5 used DVS, where glass ceramic veneers—produced by computer-aided milling—were fused to zirconia cores. Microtensile bond strengths (MTBS) at the interface were measured. MTBS results of Groups 1 to 5, expressed in mean (standard deviation), were 28.1 (7.3), 27.8 (6.3), 30.0 (10.2), 32.9 (8.1), and 37.8 (8.1) MPa. The DVS group had significantly higher MTBS than the negative and positive controls (pzirconia core and ceramic veneer, indicating that this system could reduce adhesive failure-related complications that frequently occur at the zirconia core-veneer interface.

  2. Design Features of a Core Protection System for an Integral Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Bon Seung; In, Wang Kee; Kim, Keung Koo; Lee, Chung Chan; Zee, Sung Quun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2005-07-01

    A system-integrated modular advanced research reactor is under development in the KAERI. Therefore, it is required to design an advanced core protection system for an integral reactor and an online digital core protection system, SCOPS is being developed as a part of plant protection system. SCOPS calculates the minimum CHFR(Critical Heat Flux Ratio) and maximum LPD(Local Power Density) based on the several online measured system parameters, such as the excore detector signal, CEA positions, MCP pump speed, pressure and temperature. Calculated values are compared with predetermined limiting values and the trip signal is generated if necessary. This paper describes the basic design features of SCOPS and several output parameters for a simple test case are presented.

  3. 2001 spray program prospectus

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report summarizes weed control on Malheur National Wildlife Refuge in 2001. A total of 2,152 acres were sprayed. Pesticide application report records are...

  4. Zolmitriptan Nasal Spray

    Science.gov (United States)

    ... a copy of the manufacturer's information for the patient.To use the nasal spray, follow these steps: ... used to treat certain types of migraine headaches (hemiplegic or basilar) or other types of headaches (such ...

  5. Budesonide Nasal Spray

    Science.gov (United States)

    ... ingredients in budesonide nasal spray. Check the package label for a list of the ingredients.tell your doctor and pharmacist what prescription and nonprescription medications, vitamins, nutritional supplements, and herbal products you are taking or ...

  6. Fluticasone Nasal Spray

    Science.gov (United States)

    ... ingredients in fluticasone nasal spray. Check the package label for a list of the ingredients.tell your doctor and pharmacist what prescription and nonprescription medications, vitamins, nutritional supplements, and herbal products you are taking, or ...

  7. Plasma sprayed coatings on crankshaft used steels

    Science.gov (United States)

    Mahu, G.; Munteanu, C.; Istrate, B.; Benchea, M.

    2017-08-01

    Plasma spray coatings may be an alternative to conventional heat treatment of main journals and crankpins of the crankshaft. The applications of plasma coatings are various and present multiple advantages compared to electric arc wire spraying or flame spraying. The study examines the layers sprayed with the following powders: Cr3C2- 25(Ni 20Cr), Al2O3- 13TiO2, Cr2O3-SiO2- TiO2 on the surface of steels used in the construction of a crankshaft (C45). The plasma spray coatings were made with the Spray wizard 9MCE facility at atmospheric pressure. The samples were analyzed in terms of micro and morphological using optical microscopy, scanning electron microscopy and X-ray diffraction. Wear tests on samples that have undergone simulates extreme working conditions of the crankshafts. In order to emphasize adherence to the base material sprayed layer, were carried out tests of microscratches and micro-indentation. Results have showed a relatively compact morphological aspect given by the successive coatings with splat-like specific structures. Following the microscratch analysis it can be concluded that Al2O3-13TiO2 coating has a higher purpose in terms of hardness compared to Cr3C2-(Ni 20Cr) and Cr2O3-SiO2- TiO2 powders. Thermal coatings of the deposited powders have increased the mechanical properties of the material. The results stand to confirm that plasma sprayed Al2O3-13TiO2 powder is in fact a efficient solution for preventing mechanical wear, even with a faulty lubrication system.

  8. Application of the Optimized Baxter Model to the hard-core attractive Yukawa system

    NARCIS (Netherlands)

    Prinsen, P.; Pamies, J.C.; Odijk, Th.; Frenkel, D.

    2006-01-01

    We perform Monte Carlo simulations on the hard-core attractive Yukawa system to test the Optimized Baxter Model that was introduced in [P.Prinsen and T. Odijk, J. Chem. Phys. 121, p.6525 (2004)] to study a fluid phase of spherical particles interacting through a short-range pair potential. We compar

  9. Application of the optimized Baxter model to the hard-core attractive Yukawa system

    NARCIS (Netherlands)

    Prinsen, P.; Pàmies, J.C.; Odijk, T.; Frenkel, D.

    2006-01-01

    We perform Monte Carlo simulations on the hard-core attractive Yukawa system to test the optimized Baxter model that was introduced by Prinsen and Odijk [J. Chem. Phys. 121, 6525 (2004) ] to study a fluid phase of spherical particles interacting through a short-range pair potential. We compare the c

  10. Using an ontology pattern stack to engineer a core ontology of Accounting Information Systems

    NARCIS (Netherlands)

    Blums, Ivar; Weigand, Hans

    Although the field of Accounting Information Systems (AIS) has a long tradition, there is still a lack of a widely adopted conceptualization. In this paper, The UFO ontology patterns are regarded for application by analogy and extension in the engineering of a core ontology for AIS. The new IASB

  11. The Effectiveness of UK Student Counselling Services: An Analysis Using the CORE System

    Science.gov (United States)

    Connell, Janice; Barkham, Michael; Mellor-Clark, John

    2008-01-01

    Despite concern surrounding the mental health of students, brought about by the government's policy of widening participation and increasing demands upon students, the effectiveness of student counselling has been a neglected research area. This study examines data from seven UK student counselling services using the CORE System in the routine…

  12. 76 FR 34287 - ITS Joint Program Office; Core System Requirements Walkthrough and Architecture Proposal Review...

    Science.gov (United States)

    2011-06-13

    ... ITS Joint Program Office; Core System Requirements Walkthrough and Architecture Proposal Review..., U.S. Department of Transportation. ACTION: Notice. The U.S. Department of Transportation (USDOT) ITS Joint Program Office (ITS JPO) will host two free public meetings with accompanying webinars to...

  13. Using an ontology pattern stack to engineer a core ontology of Accounting Information Systems

    NARCIS (Netherlands)

    Blums, Ivar; Weigand, Hans

    2016-01-01

    Although the field of Accounting Information Systems (AIS) has a long tradition, there is still a lack of a widely adopted conceptualization. In this paper, The UFO ontology patterns are regarded for application by analogy and extension in the engineering of a core ontology for AIS. The new IASB Con

  14. Pyrosequencing reveals a core community of anodic bacterial biofilms in bioelectrochemical systems from China

    Directory of Open Access Journals (Sweden)

    Yong eXiao

    2015-12-01

    Full Text Available Bioelectrochemical systems (BESs are promising technologies for energy and product recovery coupled with wastewater treatment, and the core microbial community in electrochemically active biofilm in BESs remains controversy. In the present study, 7 anodic communities from 6 bioelectrochemical systems in 4 labs in southeast, north and south-central of China are explored by 454 pyrosequencing. A total of 251,225 effective sequences are obtained for 7 electrochemically active biofilm samples at 3% cutoff level. While Alpha-, Beta- and Gamma-proteobacteria are the most abundant classes (averaging 16.0-17.7%, Bacteroidia and Clostridia are the two sub-dominant and commonly shared classes. Six commonly shared genera i.e. Azospira, Azospirillum, Acinetobacter, Bacteroides, Geobacter, Pseudomonas and Rhodopseudomonas dominate the electrochemically active communities and are defined as core genera. A total of 25 OTUs with average relative abundance >0.5% were selected and designated as core OTUs, and some species relating to these OTUs have been reported electrochemically active. Furthermore, cyclic voltammetry and chronoamperometry tests show that two strains from Acinetobacter guillouiae and Stappia indica, bacteria relate to two core OTUs, are electrochemically active. Using randomly selected bioelectrochemical systems, the study presented extremely diverse bacterial communities in anodic biofilms, though, we still can suggest some potential microbes for investigating the electrochemical mechanisms in bioelectrochemical systems.

  15. Spray applicator for spraying coatings and other fluids in space

    Science.gov (United States)

    Kuminecz, J. F.; Lausten, M. F. (Inventor)

    1985-01-01

    A self contained spray application is developed for one handed operation in a zero gravity vacuum environment by a free flying astronaut not attached to any spacecraft. This spray applicator eliminates contamination of the operator by back spray. This applicator includes a rigid accumulator containment of a fluid within a flexible bladder the fluid being urged out of the accumulator under pressure through a spray gun. The spray gun includes a spring loaded lockable trigger which controls a valve. When in an open position, the fluid passes through the valve into the ambient environment in the form of a spray. A spray shield is provided which directs the flow of the spray from the applicator by trapping errant particles of spray yet allowing the passage of escaping gases through its material.

  16. Metal atomization spray nozzle

    Science.gov (United States)

    Huxford, Theodore J.

    1993-01-01

    A spray nozzle for a magnetohydrodynamic atomization apparatus has a feed passage for molten metal and a pair of spray electrodes mounted in the feed passage. The electrodes, diverging surfaces which define a nozzle throat and diverge at an acute angle from the throat. Current passes through molten metal when fed through the throat which creates the Lorentz force necessary to provide atomization of the molten metal.

  17. Eficiência do recobrimento de sementes de soja em equipamento com sistema de aspersão Coating efficiency of soybean seeds in equipment with spray system

    Directory of Open Access Journals (Sweden)

    Marcos Paulo Ludwig

    2011-04-01

    Full Text Available O trabalho tem o objetivo de avaliar o tratamento e o recobrimento de sementes de soja em um equipamento com sistema de aspersão da marca Grazmec Spray System®. O experimento foi realizado na Faculdade de Agronomia Eliseu Maciel (FAEM da Universidade Federal de Pelotas, RS, Brasil. Os tratamentos foram: 1 testemunha (sem passagem pelo equipamento, 2 fungicida, 3 aminoácido, 4 polímero, 5 fungicida + aminoácido, 6 fungicida + inseticida, 7 fungicida + polímero, 8 fungicida + inseticida + polímero e 9 fungicida + aminoácido + inseticida, aplicados com o equipamento. Para avaliar o experimento, foram determinados o grau de umidade, emergência em campo, índice de velocidade de emergência, massa de 1000 sementes e intensidade de cobertura das sementes. De acordo com os resultados obtidos, verificou-se que o aumento no grau de umidade das sementes de soja tratadas e/ou recobertas com o equipamento de sistema de aspersão é inferior a 1%. A emergência de plântulas, índice de velocidade de emergência e a massa de 1000 sementes não foram afetados pelo tratamento e/ou recobrimento realizado com o sistema de aspersão. O uso de polímero melhora o recobrimento das sementes no equipamento com sistema de aspersão. Porém, o equipamento deve ser regulado a cada mudança de produto e/ou semente para que o recobrimento seja eficaz.The objective of this paper was to evaluate the treatment and coating of soybean seed using equipment with spray system Grazmec®. The experiment was carried out in the Faculdade de Agronomia Eliseu Maciel of the Universidade Federal de Pelotas, Rio Grande do Sul state, Brazil. The treatments were: 1 control (without equipment, 2 fungicide, 3 amino acid, 4 polymer, 5 fungicide + amino acid, 6 fungicide + insecticide, 7 fungicide + polymer, 8 fungicide + insecticide + polymer, 9 fungicide + amino acid + insecticide, all applied with the equipment. To evaluate the experiment the moisture content determination, field

  18. 78 FR 63516 - Initial Test Program of Emergency Core Cooling Systems for New Boiling-Water Reactors

    Science.gov (United States)

    2013-10-24

    ... COMMISSION Initial Test Program of Emergency Core Cooling Systems for New Boiling-Water Reactors AGENCY... Cooling Systems for New Boiling-Water Reactors.'' This RG describes testing methods the NRC staff considers acceptable for demonstrating the operability of emergency core cooling systems (ECCSs) for boiling...

  19. Support for Programming Models in Network-on-Chip-based Many-core Systems

    DEFF Research Database (Denmark)

    Rasmussen, Morten Sleth

    and scalability in an image processing application with the aim of providing insight into parallel programming issues. The second part proposes and presents the tile-based Clupea many-core architecture, which has the objective of providing configurable support for programming models to allow different programming......This thesis addresses aspects of support for programming models in Network-on- Chip-based many-core architectures. The main focus is to consider architectural support for a plethora of programming models in a single system. The thesis has three main parts. The first part considers parallelization...

  20. A Methodology for Optimizing Multithreaded System Scalability on Multi-cores

    CERN Document Server

    Gunther, Neil J; Parvu, Stefan

    2011-01-01

    We show how to quantify scalability with the Universal Scalability Law (USL) by applying it to performance measurements of memcached, J2EE, and Weblogic on multi-core platforms. Since commercial multicores are essentially black-boxes, the accessible performance gains are primarily available at the application level. We also demonstrate how our methodology can identify the most significant performance tuning opportunities to optimize application scalability, as well as providing an easy means for exploring other aspects of the multi-core system design space.

  1. Core Community Specifications for Electron Microprobe Operating Systems: Software, Quality Control, and Data Management Issues

    Science.gov (United States)

    Fournelle, John; Carpenter, Paul

    2006-01-01

    Modem electron microprobe systems have become increasingly sophisticated. These systems utilize either UNIX or PC computer systems for measurement, automation, and data reduction. These systems have undergone major improvements in processing, storage, display, and communications, due to increased capabilities of hardware and software. Instrument specifications are typically utilized at the time of purchase and concentrate on hardware performance. The microanalysis community includes analysts, researchers, software developers, and manufacturers, who could benefit from exchange of ideas and the ultimate development of core community specifications (CCS) for hardware and software components of microprobe instrumentation and operating systems.

  2. Compact multipurpose sub-sampling and processing of in-situ cores with press (pressurized core sub-sampling and extrusion system)

    Energy Technology Data Exchange (ETDEWEB)

    Anders, E.; Muller, W.H. [Technical Univ. of Berlin, Berlin (Germany). Chair of Continuum Mechanics and Material Theory

    2008-07-01

    Climate change, declining resources and over-consumption result in a need for sustainable resource allocation, habitat conservation and claim for new technologies and prospects for damage-containment. In order to increase knowledge of the environment and to define potential hazards, it is necessary to get an understanding of the deep biosphere. In addition, the benthic conditions of sediment structure and gas hydrates, temperature, pressure and bio-geochemistry must be maintained during the sequences of sampling, retrieval, transfer, storage and downstream analysis. In order to investigate highly instable gas hydrates, which decomposes under pressure and temperature change, a suite of research technologies have been developed by the Technische Universitat Berlin (TUB), Germany. This includes the pressurized core sub-sampling and extrusion system (PRESS) that was developed in the European Union project called HYACE/HYACINTH. The project enabled well-defined sectioning and transfer of drilled pressure-cores obtained by a rotary corer and fugro pressure corer into transportation and investigation chambers. This paper described HYACINTH pressure coring and the HYACINTH core transfer. Autoclave coring tools and HYACINTH core logging, coring tools, and sub-sampling were also discussed. It was concluded that possible future applications include, but were not limited to, research in shales and other tight formations, carbon dioxide sequestration, oil and gas exploration, coalbed methane, and microbiology of the deep biosphere. To meet the corresponding requirements and to incorporate the experiences from previous expeditions, the pressure coring system would need to be redesigned to adapt it to the new applications. 3 refs., 5 figs.

  3. Uniform-droplet spray forming

    Energy Technology Data Exchange (ETDEWEB)

    Blue, C.A.; Sikka, V.K. [Oak Ridge National Lab., TN (United States); Chun, Jung-Hoon [Massachusetts Institute of Technology, Cambridge, MA (United States); Ando, T. [Tufts Univ., Medford, MA (United States)

    1997-04-01

    The uniform-droplet process is a new method of liquid-metal atomization that results in single droplets that can be used to produce mono-size powders or sprayed-on to substrates to produce near-net shapes with tailored microstructure. The mono-sized powder-production capability of the uniform-droplet process also has the potential of permitting engineered powder blends to produce components of controlled porosity. Metal and alloy powders are commercially produced by at least three different methods: gas atomization, water atomization, and rotating disk. All three methods produce powders of a broad range in size with a very small yield of fine powders with single-sized droplets that can be used to produce mono-size powders or sprayed-on substrates to produce near-net shapes with tailored microstructures. The economical analysis has shown the process to have the potential of reducing capital cost by 50% and operating cost by 37.5% when applied to powder making. For the spray-forming process, a 25% savings is expected in both the capital and operating costs. The project is jointly carried out at Massachusetts Institute of Technology (MIT), Tuffs University, and Oak Ridge National Laboratory (ORNL). Preliminary interactions with both finished parts and powder producers have shown a strong interest in the uniform-droplet process. Systematic studies are being conducted to optimize the process parameters, understand the solidification of droplets and spray deposits, and develop a uniform-droplet-system (UDS) apparatus appropriate for processing engineering alloys.

  4. Spray calcination of nuclear wastes

    Energy Technology Data Exchange (ETDEWEB)

    Bonner, W.F.; Blair, H.T.; Romero, L.S.

    1976-01-01

    The spray calciner is a relatively simple machine; operation is simple and is easily automated. Startup and shutdown can be performed in less than an hour. A wide variety of waste compositions and concentrations can be calcined under easily maintainable conditions. Spray calcination of all commercial fuel reprocessor high-level liquid wastes and mixed high and intermediate-level wastes have been demonstrated. Wastes have been calcined containing over 2M sodium. Thus waste generated during plant startup and shutdown can be blended with normal waste and calcined. Spray calcination of ILLW has also been demonstrated. A remotely replaceable atomizing nozzle has been developed for use in plant scale equipment. The 6 mm (0.25 inch) orifice and ceramic tip offer freedom from plugging and erosion thus nozzle replacement should be required only after several months operation. Calciner capacity of over 75 l/h (20 gal/h) has been demonstrated in pilot scale equipment. Sintered stainless steel filters are effective in deentraining over 99.9 percent of the solids that result from calcining the feedstock. Since such a small amount of radionuclides escape the calciner the volume of recycle required from the effluent treatment system is very small. The noncondensable off-gas volume is also low, less than 0.5 m/sup 3//min (15 scfm) for a liquid feedrate of 75 l/hr (20 gal/hr). Calcine holdup in the calciner is less than 1 kg, thus the liquid feedrate is directly relatable to calcine flowrate. The calcine produced is very fine and reactive. Successful remote operation and maintenance of a heated wall spray calciner has been demonstrated while processing actual high-level waste. During these operations radionuclide volatilization from the calciner was acceptably low. 8 figures. (DLC)

  5. Dynamical Behavior of Core 3 He Nuclear Reaction-Diffusion Systems and Sun's Gravitational Field

    Institute of Scientific and Technical Information of China (English)

    DU Jiulin; SHEN Hong

    2005-01-01

    The coupling of the sun's gravitational field with processes of diffusion and convection exerts a significant influence on the dynamical behavior of the core 3He nuclear reaction-diffusion system. Stability analyses of the system are made in this paper by using the theory of nonequilibrium dynamics. It is showed that, in the nuclear reaction regions extending from the center to about 0.38 times of the radius of the sun, the gravitational field enables the core 3He nuclear reaction-diffusion system to become unstable and, after the instability, new states to appear in the system have characteristic of time oscillation. This may change the production rates of both 7Be and 8B neutrinos.

  6. Fuzzy logic based power-efficient real-time multi-core system

    CERN Document Server

    Ahmed, Jameel; Najam, Shaheryar; Najam, Zohaib

    2017-01-01

    This book focuses on identifying the performance challenges involved in computer architectures, optimal configuration settings and analysing their impact on the performance of multi-core architectures. Proposing a power and throughput-aware fuzzy-logic-based reconfiguration for Multi-Processor Systems on Chip (MPSoCs) in both simulation and real-time environments, it is divided into two major parts. The first part deals with the simulation-based power and throughput-aware fuzzy logic reconfiguration for multi-core architectures, presenting the results of a detailed analysis on the factors impacting the power consumption and performance of MPSoCs. In turn, the second part highlights the real-time implementation of fuzzy-logic-based power-efficient reconfigurable multi-core architectures for Intel and Leone3 processors. .

  7. Determining the size of nanoparticles in the example of magnetic iron oxide core-shell systems

    Science.gov (United States)

    Jarzębski, Maciej; Kościński, Mikołaj; Białopiotrowicz, Tomasz

    2017-08-01

    The size of nanoparticles is one of the most important factors for their possible applications. Various techniques for the nanoparticle size characterization are available. In this paper selected techniques will be considered base on the prepared core-shell magnetite nanoparticles. Magnetite is one of the most investigated and developed magnetic material. It shows interesting magnetic properties which can be used for biomedical applications, such as drug delivery, hypothermia and also as a contrast agent. To reduce the toxic effects of Fe3O4, magnetic core was covered by dextran and gelatin. Moreover, the shell was doped by fluorescent dye for confocal microscopy investigation. The main investigation focused on the methods for particles size determination of modified magnetite nanoparticles prepared with different techniques. The size distribution were obtained by nanoparticle tracking analysis, dynamic light scattering and transmission electron microscopy. Furthermore, fluorescent correlation spectroscopy (FCS) and confocal microscopy were used to compare the results for particle size determination of core-shell systems.

  8. The balance of prickle/spiny-legs isoforms controls the amount of coupling between core and fat PCP systems.

    Science.gov (United States)

    Merkel, Matthias; Sagner, Andreas; Gruber, Franz Sebastian; Etournay, Raphael; Blasse, Corinna; Myers, Eugene; Eaton, Suzanne; Jülicher, Frank

    2014-09-22

    The conserved Fat and Core planar cell polarity (PCP) pathways work together to specify tissue-wide orientation of hairs and ridges in the Drosophila wing. Their components form intracellularly polarized complexes at adherens junctions that couple the polarity of adjacent cells and form global patterns. How Fat and Core PCP systems interact is not understood. Some studies suggest that Fat PCP directly orients patterns formed by Core PCP components. Others implicate oriented tissue remodeling in specifying Core PCP patterns. We use genetics, quantitative image analysis, and physical modeling to study Fat and Core PCP interactions during wing development. We show their patterns change during morphogenesis, undergoing phases of coupling and uncoupling that are regulated by antagonistic Core PCP protein isoforms Prickle and Spiny-legs. Evolving patterns of Core PCP are hysteretic: the early Core PCP pattern is modified by tissue flows and then by coupling to Fat PCP, producing sequential patterns that guide hairs and then ridges. Our data quantitatively account for altered hair and ridge polarity patterns in PCP mutants. Premature coupling between Fat and Core PCP explains altered polarity patterns in pk mutants. In other Core PCP mutants, hair polarity patterns are guided directly by Fat PCP. When both systems fail, hairs still align locally and obey signals associated with veins. Temporally regulated coupling between the Fat and Core PCP systems enables a single tissue to develop sequential polarity patterns that orient distinct morphological structures. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Energy-aware Thread and Data Management in Heterogeneous Multi-core, Multi-memory Systems

    Energy Technology Data Exchange (ETDEWEB)

    Su, Chun-Yi [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2014-12-16

    By 2004, microprocessor design focused on multicore scaling—increasing the number of cores per die in each generation—as the primary strategy for improving performance. These multicore processors typically equip multiple memory subsystems to improve data throughput. In addition, these systems employ heterogeneous processors such as GPUs and heterogeneous memories like non-volatile memory to improve performance, capacity, and energy efficiency. With the increasing volume of hardware resources and system complexity caused by heterogeneity, future systems will require intelligent ways to manage hardware resources. Early research to improve performance and energy efficiency on heterogeneous, multi-core, multi-memory systems focused on tuning a single primitive or at best a few primitives in the systems. The key limitation of past efforts is their lack of a holistic approach to resource management that balances the tradeoff between performance and energy consumption. In addition, the shift from simple, homogeneous systems to these heterogeneous, multicore, multi-memory systems requires in-depth understanding of efficient resource management for scalable execution, including new models that capture the interchange between performance and energy, smarter resource management strategies, and novel low-level performance/energy tuning primitives and runtime systems. Tuning an application to control available resources efficiently has become a daunting challenge; managing resources in automation is still a dark art since the tradeoffs among programming, energy, and performance remain insufficiently understood. In this dissertation, I have developed theories, models, and resource management techniques to enable energy-efficient execution of parallel applications through thread and data management in these heterogeneous multi-core, multi-memory systems. I study the effect of dynamic concurrent throttling on the performance and energy of multi-core, non-uniform memory access

  10. Scalable High-Performance Parallel Design for Network Intrusion Detection Systems on Many-Core Processors

    OpenAIRE

    Jiang, Hayang; Xie, Gaogang; Salamatian, Kavé; Mathy, Laurent

    2013-01-01

    Network Intrusion Detection Systems (NIDSes) face significant challenges coming from the relentless network link speed growth and increasing complexity of threats. Both hardware accelerated and parallel software-based NIDS solutions, based on commodity multi-core and GPU processors, have been proposed to overcome these challenges. Network Intrusion Detection Systems (NIDSes) face significant challenges coming from the relentless network link speed growth and increasing complexity of threats. ...

  11. Comparative assessment of out-of-core nuclear thermionic power systems

    Science.gov (United States)

    Estabrook, W. C.; Koenig, D. R.; Prickett, W. Z.

    1975-01-01

    The hardware selections available for fabrication of a nuclear electric propulsion stage for planetary exploration were explored. The investigation was centered around a heat-pipe-cooled, fast-spectrum nuclear reactor for an out-of-core power conversion system with sufficient detail for comparison with the in-core system studies completed previously. A survey of competing power conversion systems still indicated that the modular reliability of thermionic converters makes them the desirable choice to provide the 240-kWe end-of-life power for at least 20,000 full power hours. The electrical energy will be used to operate a number of mercury ion bombardment thrusters with a specific impulse in the range of about 4,000-5,000 seconds.

  12. A Testbed For Validating the LHC Controls System Core Before Deployment

    CERN Document Server

    Nguyen Xuan, J

    2011-01-01

    Since the start-up of the LHC, it is crucial to carefully test core controls components before deploying them operationally. The Testbed of the CERN accelerator controls group was developed for this purpose. It contains different hardware (PPC, i386) running various operating systems (Linux and LynxOS) and core software components running on front-ends, communication middleware and client libraries. The Testbed first executes integration tests to verify that the components delivered by individual teams interoperate, and then system tests, which verify high-level, end-user functionality. It also verifies that different versions of components are compatible, which is vital, because not all parts of the operational LHC control system can be upgraded simultaneously. In addition, the Testbed can be used for performance and stress tests. Internally, the Testbed is driven by Atlassian Bamboo, a Continuous Integration server, which builds and deploys automatically new software versions into the Test...

  13. Magnetite/poly(alkylcyanoacrylate) (core/shell) nanoparticles as 5-Fluorouracil delivery systems for active targeting.

    Science.gov (United States)

    Arias, José L; Gallardo, Visitación; Ruiz, M A Adolfina; Delgado, Angel V

    2008-05-01

    In this article, a reproducible emulsion polymerization process is described to prepare core/shell colloidal nanospheres, loaded with 5-Fluorouracil, and consisting of a magnetic core (magnetite) and a biodegradable polymeric shell [poly(ethyl-2-cyanoacrylate), poly(butylcyanoacrylate), poly(hexylcyanoacrylate), or poly(octylcyanoacrylate)]. The heterogeneous structure of these carriers can confer them both the possibility of being used as drug delivery systems and the responsiveness to external magnetic fields, allowing an active drug targeting without a concurrent systemic distribution. Zeta potential determinations as a function of ionic strength showed that the surface behaviour of the core/shell particles is similar to that of pure cyanoacrylate particles. The first magnetization curve of both magnetite and magnetite/polymer particles demonstrated that the polymer shell reduces the magnetic responsiveness of the particles, but keeps unchanged their ferrimagnetic character. Two drug loading mechanisms were studied: absorption or entrapment in the polymeric network, and surface adsorption. We found that the acidity of the medium had significant effects on the drug absorption per unit mass of polymer, and needs to be controlled to avoid formation of macroaggregates and to reach significant 5-Fluorouracil absorption. The type of polymer and the drug concentration are also main factors determining the drug incorporation to the core/shell particles. 5-Fluorouracil release evaluations showed a biphasic profile affected by the type of polymeric shell, the type of drug incorporation and the amount of drug loaded.

  14. Design and operation of the core topography data acquisition system for TMI-2

    Energy Technology Data Exchange (ETDEWEB)

    Beller, L S; Brown, H L

    1984-05-01

    Development of effective procedures for recovery from the 1979 accident at the Three Mile Island 2 nuclear station requires a detailed and quantitative description of the postaccident configuration of the core. This report describes the techniques, equipment, and procedures used for making precise ultrasonic, sonar-like measurements of the cavity left in the upper core region as a result of the accident and details the primary results of the measurements. The system developed for the measurements uses computer techniques for the command and control of remote mechanical and electronic equipment, and for data acquisition and reduction. The system was designed, fabricated, and tested; procedures developed; and personnel trained in 4-1/2 months. The primary results are detailed topographic maps of the cavity. A variety of visual aids was developed to supplement the maps and aid in interpreting companion videotape surveys. The measurements reveal a cavity of 9.3 m/sup 3/, approximately 26% of the total core volume. The cavity occupies most of the full diameter of the core to an average depth of about 1.5 m and approaches 2 m in places.

  15. Development of the RANCOR Rotary-Percussive Coring System for Mars Sample Return

    Science.gov (United States)

    Paulsen, Gale; Indyk, Stephen; Zacny, Kris

    2014-01-01

    A RANCOR drill was designed to fit a Mars Exploration Rover (MER) class vehicle. The low mass of 3 kg was achieved by using the same actuator for three functions: rotation, percussions, and core break-off. Initial testing of the drill exposed an unexpected behavior of an off-the-shelf sprag clutch used to couple and decouple rotary-percussive function from the core break off function. Failure of the sprag was due to the vibration induced during percussive drilling. The sprag clutch would back drive in conditions where it was expected to hold position. Although this did not affect the performance of the drill, it nevertheless reduced the quality of the cores produced. Ultimately, the sprag clutch was replaced with a custom ratchet system that allowed for some angular displacement without advancing in either direction. Replacing the sprag with the ratchet improved the collected core quality. Also, premature failure of a 300-series stainless steel percussion spring was observed. The 300-series percussion spring was ultimately replaced with a music wire spring based on performances of previously designed rotary-percussive drill systems.

  16. Study on a small diesel engine with direct injection impinging distribution spray combustion system. Optimum of injection system and combustion chamber; Shototsu kakusan hoshiki kogata diesel kikan ni kansuru kenkyu. Funshakei to nenshoshitsu no saitekika

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, K.; Kato, S.; Saito, T. [Kanazawa Institute of Technology, Ishikawa (Japan); Tanabe, H. [Gunma University, Gunma (Japan)

    1997-10-01

    This study is concerned with a small bore (93mm) diesel engine using impinged fuel spray, named OSKA system. The higher rate of injection show lower smoke emission with higher NOx Emission. The exhaust emission and performance were investigated under different compression ratio with higher rate of injection. The experimental results show that this OSKA system is capable for reducing the smoke emission without the deterioration of NOx emission and fuel consumption compared with the conventional DI diesel engine. 5 refs., 8 figs., 3 tabs.

  17. 喷杆式喷雾机雾滴飘移测试系统研制及性能试验%Development and performance test of spray drift test system for sprayer with bar

    Institute of Scientific and Technical Information of China (English)

    王潇楠; 何雄奎; Andreas.Herbst; Jan Langenakens; 郑建秋; 李云龙

    2014-01-01

    new equipment was developed to study spray drift of boom sprayer and to evaluate drift risk of different spray equipment in this study. ISO 22369-2-2010 had been proposed in which sprayers were classified based on the results of field tests conducted following the ISO 22866 Standard “Methods for field measurement of spray drift”. However, this test required well defined and stable conditions of wind speed and wind direction with respect to the sprayer travel direction. As an alternative methodology to simplify the assessment of spray drift risk for different equipment, this study developed drift test system to assess the amount of drift generated by field boom sprayers. The system was expected to be an effective alternative for drift assessment when wind tunnel was unavailable. This study followed the ISO 22369-2-2010 standard to test the potential drift of different nozzles indoor. According to the international standard ISO 22369-2-2010, the spray drift potential of six kinds of fan nozzle (XR110-04, IDK120-03, IDK120-04, ID120-015, ID120-025, and ID120-05) were tested and evaluated indoor by measuring the drift loss and calculating the potential drift. The method could be used for direct evaluation of drift. In the test, BSF (1‰) tracers were used to test the droplet. The test showed that the droplet size and pressure were the main factors affecting drift loss (P<0.05). When the pressure was 0.3 MPa, the potential drift of XR110-04 was 33%, which was much higher than the other 5 kinds of nozzles. The potential drift loss of nozzle Lechler ID120-025 was only 6%, which was the minimum. The risk of spray drift was closely related with the spray pressure in this study. The result showed that as the spray pressure increased, the volume of the droplet diameter became smaller, which greatly increased the potential drift. The results can provide valuble information for the reduction of pesticide spray drift and drift classification.

  18. 76 FR 21789 - ITS Joint Program Office; Vehicle to Infrastructure Core System Concept of Operations; Notice of...

    Science.gov (United States)

    2011-04-18

    ... ITS Joint Program Office; Vehicle to Infrastructure Core System Concept of Operations; Notice of... Transportation. ACTION: Notice. The U.S. Department of Transportation ITS Joint Program Office (ITS JPO) will... about the ITS JPO, visit the program's Web site at http://www.its.dot.gov . The V2I Core System...

  19. Spark Ignition of Monodisperse Fuel Sprays. Ph.D. Thesis

    Science.gov (United States)

    Danis, Allen M.; Cernansky, Nicholas P.; Namer, Izak

    1987-01-01

    A study of spark ignition energy requirements was conducted with a monodisperse spray system allowing independent control of droplet size, equivalent ratio, and fuel type. Minimum ignition energies were measured for n-heptane and methanol sprays characterized at the spark gap in terms of droplet diameter, equivalence ratio (number density) and extent of prevaporization. In addition to sprays, minimum ignition energies were measured for completely prevaporized mixtures of the same fuels over a range of equivalence ratios to provide data at the lower limit of droplet size. Results showed that spray ignition was enhanced with decreasing droplet size and increasing equivalence ratio over the ranges of the parameters studied. By comparing spray and prevaporized ignition results, the existence of an optimum droplet size for ignition was indicated for both fuels. Fuel volatility was seen to be a critical factor in spray ignition. The spray ignition results were analyzed using two different empirical ignition models for quiescent mixtures. Both models accurately predicted the experimental ignition energies for the majority of the spray conditions. Spray ignition was observed to be probabilistic in nature, and ignition was quantified in terms of an ignition frequency for a given spark energy. A model was developed to predict ignition frequencies based on the variation in spark energy and equivalence ratio in the spark gap. The resulting ignition frequency simulations were nearly identical to the experimentally observed values.

  20. Fault-Tolerant Design and Testing of USB2.0 Peripheral Devices IP Core System

    Institute of Scientific and Technical Information of China (English)

    BAI Xiaoping; WEI Yuanfeng

    2007-01-01

    Universal serial bus 2.0 (USB2.0) is a kind of mainstream interface technology. The traditional USB developing is only to develop USB peripheral devices. For the USB2.0 peripheral devices IP core system that has wide application foreground, some interference inevitably exists in signal transmitting. Some fault-tolerant design and test methods must be adopted in order to correctly transmit and receive data. Combining with a project, this paper introduces in detail about measures, hardware implement, and test methods of fault-tolerant design about USB2.0 peripheral devices IP core system. Fault-tolerant design measures, noise reduction measures of signal processing, fault-tolerant methods about data encode and decode, package identification (ID) field fault-tolerant methods, and cyclic redundancy checks fault-tolerant methods are discussed. The paper also presents some hardware implement methods about fault-tolerant design of data decode and test methods about fault-tolerant design of USB2.0 IP core system. These methods can offer the reference for development of USB2.0 system in all kinds of electronics instrumentations.

  1. Effects of aging in containment spray injection system of PWR reactor containment; Efeitos do envelhecimento no sistema de injecao de borrifo da contencao de reatores a agua pressurizada

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Diogo da S.; Lava, Deise D.; Affonso, Renato R.W.; Guimaraes, Antonio C.F.; Moreira, Maria de L., E-mail: diogosb@outlook.com, E-mail: deise_dy@hotmail.com, E-mail: raoniwa@yahoo.com.br, E-mail: tony@ien.gov.br, E-mail: malu@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2014-07-01

    This paper presents a contribution to the study of the components aging process in commercial plants of Pressurized Water Reactors (PWR). The analysis is done by applying the method of Fault trees, Monte Carlo Method and Fussell-Vesely Importance Measurement. The study on the aging of nuclear plants, is related to economic factors involved directly with the extent of their operational life, and also provides important data on issues of safety. The most recent case involving the process of extending the life of a PWR plant can be seen in Angra 1 Nuclear Power Plant by investing $ 27 million in the installation of a new reactor cover. The corrective action generated an extension of the useful life of Angra 1 estimated in twenty years, and a great savings compared to the cost of building a new plant and the decommissioning of the first, if it had reached the operation time out 40 years. The extension of the lifetime of a nuclear power plant must be accompanied by special attention from the most sensitive components of the systems to the aging process. After the application of the methodology (aging analysis of Containment Spray Injection System (CSIS)) proposed in this paper, it can be seen that increasing the probability of failure of each component, due to the aging process, generate an increased general unavailability of the system that contains these basic components. The final results obtained were as expected and can contribute to the maintenance policy, preventing premature aging in nuclear power systems.

  2. Comparison of three fungicide spray advisories for lettuce downy mildew

    NARCIS (Netherlands)

    Wu, B.M.; Subbarao, K.V.; Bruggen, van A.H.C.; Koike, S.T.

    2001-01-01

    Lettuce growers in coastal California have relied mainly on protective fungicide sprays to control downy mildew. Thus, timing of sprays before infection is critical for optimal results. A leaf-wetness-driven, infection-based advisory system, previously developed, did not always perform satisfactoril

  3. Low complexity MIMO method based on matrix transformation for few-mode multi-core optical transmission system

    Science.gov (United States)

    Pan, Xiaolong; Liu, Bo; Li, Li; Tian, Qinghua

    2016-07-01

    This paper proposes and demonstrates a low complexity multiple-input multiple-output (MIMO) equalization digital signal processing (DSP) method for the few mode multi-core (FMMC) fiber optical transmission system. The MIMO equalization algorithm offers adaptive equalization taps according to the degree of crosstalk in cores or modes, which eliminates the interference among different modes and cores in space division multiplexing (SDM) transmission system. Compared with traditional MIMO method, the proposed scheme has increased the convergence rate by 4 times and reduced the number of finite impulse response (FIR) filters by 55% when the numbers of mode and core are three.

  4. Detailed assessment of diesel spray atomization models using visible and X-ray extinction measurements

    Energy Technology Data Exchange (ETDEWEB)

    Magnotti, G. M.; Genzale, C. L.

    2017-12-01

    The physical mechanisms characterizing the breakup of a diesel spray into droplets are still unknown. This gap in knowledge has largely been due to the challenges of directly imaging this process or quantitatively measuring the outcomes of spray breakup, such as droplet size. Recent x-ray measurements by Argonne National Laboratory, utilized in this work, provide needed information about the spatial evolution of droplet sizes in selected regions of the spray under a range of injection pressures (50–150 MPa) and ambient densities (7.6–22.8 kg/m3) relevant for diesel operating conditions. Ultra-small angle x-ray scattering (USAXS) measurements performed at the Advanced Photon Source are presented, which quantify Sauter mean diameters (SMD) within optically thick regions of the spray that are inaccessible by conventional droplet sizing measurement techniques, namely in the near-nozzle region, along the spray centerline, and within the core of the spray. To quantify droplet sizes along the periphery of the spray, a complementary technique is proposed and introduced, which leverages the ratio of path-integrated x-ray and visible laser extinction (SAMR) measurements to quantify SMD. The SAMR and USAXS measurements are then utilized to evaluate current spray models used for engine computational fluid dynamic (CFD) simulations. We explore the ability of a carefully calibrated spray model, premised on aerodynamic wave growth theory, to capture the experimentally observed trends of SMD throughout the spray. The spray structure is best predicted with an aerodynamic primary and secondary breakup process that is represented with a slower time constant and larger formed droplet size than conventionally recommended for diesel spray models. Additionally, spray model predictions suggest that droplet collisions may not influence the resultant droplet size distribution along the spray centerline in downstream regions of the spray.

  5. A Common Definition of the System Operators' Core Activities[Electric Power Transmission System Operator

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-02-15

    In this report a common definition of the system operator's core activities in the Nordic countries is identified and also a list of non-core activities is introduced. As a starting point the common tasks for system responsibility as identified by Nordel has been used for the work. The term TSO (Transmission System Operator) is employed as a common denominator in the report. It is found out that the TSOs carry out common core activities in the roles as a transmission operator, a system operator and a balance settlement responsible. The core activities for the TSO as a transmission network operator are: Maintain the adequate transmission system in the long run and network development plan on the national as well as on the Nordic level using sophisticated analysis and planning methods and tools. Plan the transmission network on the national as well as on the Nordic level utilising new investments, renewal and maintenance of existing network components so that the network is secure to operate and adequate transmission capacity is guaranteed. Aim at timely network expansions using enhanced information exchange between the Nordic TSOs, and on the national level between the TSO and distribution and regional network operators, large consumers and large producers. Secure the technical compatibility with networks across the border and within a country by establishing connection requirements on the national level and ensuring that the national requirements are compatible across the Nordic power system. The core activities for the TSO as a system operator are: Define common technical requirements for the secure system operation using common planning, operation, connection and data exchange procedures. Secure the system operation with the operational planning for the following year by using information exchange between TSOs enabling the TSOs to make the best possible forecast of the global grid situation in order to assess the flows in their network and the available

  6. Science strategy for Core Science Systems in the U.S. Geological Survey, 2013-2023

    Science.gov (United States)

    Bristol, R. Sky; Euliss, Ned H.; Booth, Nathaniel L.; Burkardt, Nina; Diffendorfer, Jay E.; Gesch, Dean B.; McCallum, Brian E.; Miller, David M.; Morman, Suzette A.; Poore, Barbara S.; Signell, Richard P.; Viger, Roland J.

    2012-01-01

    Core Science Systems is a new mission of the U.S. Geological Survey (USGS) that grew out of the 2007 Science Strategy, “Facing Tomorrow’s Challenges: U.S. Geological Survey Science in the Decade 2007–2017.” This report describes the vision for this USGS mission and outlines a strategy for Core Science Systems to facilitate integrated characterization and understanding of the complex earth system. The vision and suggested actions are bold and far-reaching, describing a conceptual model and framework to enhance the ability of USGS to bring its core strengths to bear on pressing societal problems through data integration and scientific synthesis across the breadth of science.The context of this report is inspired by a direction set forth in the 2007 Science Strategy. Specifically, ecosystem-based approaches provide the underpinnings for essentially all science themes that define the USGS. Every point on earth falls within a specific ecosystem where data, other information assets, and the expertise of USGS and its many partners can be employed to quantitatively understand how that ecosystem functions and how it responds to natural and anthropogenic disturbances. Every benefit society obtains from the planet—food, water, raw materials to build infrastructure, homes and automobiles, fuel to heat homes and cities, and many others, are derived from or effect ecosystems.The vision for Core Science Systems builds on core strengths of the USGS in characterizing and understanding complex earth and biological systems through research, modeling, mapping, and the production of high quality data on the nation’s natural resource infrastructure. Together, these research activities provide a foundation for ecosystem-based approaches through geologic mapping, topographic mapping, and biodiversity mapping. The vision describes a framework founded on these core mapping strengths that makes it easier for USGS scientists to discover critical information, share and publish

  7. Science strategy for Core Science Systems in the U.S. Geological Survey, 2013-2023

    Science.gov (United States)

    Bristol, R. Sky; Euliss, Ned H.; Booth, Nathaniel L.; Burkardt, Nina; Diffendorfer, Jay E.; Gesch, Dean B.; McCallum, Brian E.; Miller, David M.; Morman, Suzette A.; Poore, Barbara S.; Signell, Richard P.; Viger, Roland J.

    2012-01-01

    Core Science Systems is a new mission of the U.S. Geological Survey (USGS) that grew out of the 2007 Science Strategy, "Facing Tomorrow's Challenges: U.S. Geological Survey Science in the Decade 2007-2017." This report describes the vision for this USGS mission and outlines a strategy for Core Science Systems to facilitate integrated characterization and understanding of the complex earth system. The vision and suggested actions are bold and far-reaching, describing a conceptual model and framework to enhance the ability of USGS to bring its core strengths to bear on pressing societal problems through data integration and scientific synthesis across the breadth of science. The context of this report is inspired by a direction set forth in the 2007 Science Strategy. Specifically, ecosystem-based approaches provide the underpinnings for essentially all science themes that define the USGS. Every point on earth falls within a specific ecosystem where data, other information assets, and the expertise of USGS and its many partners can be employed to quantitatively understand how that ecosystem functions and how it responds to natural and anthropogenic disturbances. Every benefit society obtains from the planet - food, water, raw materials to build infrastructure, homes and automobiles, fuel to heat homes and cities, and many others, are derived from or effect ecosystems. The vision for Core Science Systems builds on core strengths of the USGS in characterizing and understanding complex earth and biological systems through research, modeling, mapping, and the production of high quality data on the nation's natural resource infrastructure. Together, these research activities provide a foundation for ecosystem-based approaches through geologic mapping, topographic mapping, and biodiversity mapping. The vision describes a framework founded on these core mapping strengths that makes it easier for USGS scientists to discover critical information, share and publish results, and

  8. [A case of percutaneous coronary intervention after transfemoral implantation of a medtronic CoreValve System].

    Science.gov (United States)

    Corcione, Nicola; Ferraro, Paolo; Polimeno, Michele; Messina, Stefano; de Rosa, Vincenzo; Giordano, Arturo

    2011-12-01

    The association between aortic valve disease and coronary atherosclerosis is common. In the recent era of transcatheter aortic valve implantation there is little experience with coronary artery intervention after valve implantation. We report a case of a 80-year-old male who underwent successful coronary artery intervention few months after a Medtronic CoreValve System percutaneous implantation for severe aortic valve stenosis. Verification of the position of the used wires (crossing from inside the self expanding frame) is of utmost importance before proceeding to coronary intervention. In this case, crossing the aortic valve, coronary angiography and percutaneous coronary intervention were successfully performed. In conclusion, percutaneous coronary intervention in patients with previous Medtronic CoreValve System implantation is feasible and safe.

  9. BOLD VENTURE COMPUTATION SYSTEM for nuclear reactor core analysis, Version III

    Energy Technology Data Exchange (ETDEWEB)

    Vondy, D.R.; Fowler, T.B.; Cunningham, G.W. III.

    1981-06-01

    This report is a condensed documentation for VERSION III of the BOLD VENTURE COMPUTATION SYSTEM for nuclear reactor core analysis. An experienced analyst should be able to use this system routinely for solving problems by referring to this document. Individual reports must be referenced for details. This report covers basic input instructions and describes recent extensions to the modules as well as to the interface data file specifications. Some application considerations are discussed and an elaborate sample problem is used as an instruction aid. Instructions for creating the system on IBM computers are also given.

  10. Modeling and simulation in the systems engineering life cycle core concepts and accompanying lectures

    CERN Document Server

    Loper, Margaret L

    2015-01-01

    This easy to read text/reference provides a broad introduction to the fundamental concepts of modeling and simulation (M&S) and systems engineering, highlighting how M&S is used across the entire systems engineering lifecycle. Each chapter corresponds to a short lecture covering a core topic in M&S or systems engineering.  Topics and features: reviews the full breadth of technologies, methodologies and uses of M&S, rather than just focusing on a specific aspect of the field; presents contributions from renowned specialists in each topic covered; introduces the foundational elements and proce

  11. Nasal spray flu vaccine (image)

    Science.gov (United States)

    The flu vaccine can also be administered as a nasal spray instead of the usual injection method. It can be ... the recombinant influenza vaccine (RIV). The nasal spray flu vaccine (live attenuated influenza vaccine or LAIV) should not ...

  12. Droplets and sprays

    CERN Document Server

    Sazhin, Sergei

    2014-01-01

    Providing a clear and systematic description of droplets and spray dynamic models, this book maximises reader insight into the underlying physics of the processes involved, outlines the development of new physical and mathematical models, and broadens understanding of interactions between the complex physical processes which take place in sprays. Complementing approaches based on the direct application of computational fluid dynamics (CFD), Droplets and Sprays treats both theoretical and practical aspects of internal combustion engine process such as the direct injection of liquid fuel, subcritical heating and evaporation. Includes case studies that illustrate the approaches relevance to automotive applications,  it is also anticipated that the described models can find use in other areas such as in medicine and environmental science.

  13. Real-time Model Development of Core Protection and Monitoring System for SMART Simulator Application

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Bonseung; Hwang, Daehyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    Important features of the software models are described for the application to SMART simulator. A real-time performance of the models was examined for various simulation scenarios. Areal-time model development of core protection and monitoring algorithms for SMART simulator is being studied. Software algorithms as well as design bases and requirements for core protection and monitoring are developed and various performance tests are done. From test results, it is judged that SCOPS{sub S}SIM and SCOMS{sub S}SIM algorithms and calculational capabilities are appropriate for core protection and monitoring program in SMART simulator. A multi-purpose best-estimate simulator for the SMART is being established which is purposed to be used as a tool to evaluate the impacts of design changes on the safety performance, and to improve and/or optimize the operating procedure of the SMART. In keeping with these purposes, a real-time model of the digital core protection and monitoring systems was developed on the basis of SCOPS and SCOMS algorithms of SMART.

  14. Nuclear design of the burst power ultrahigh temperature UF4 vapor core reactor system

    Science.gov (United States)

    Kahook, Samer D.; Dugan, Edward T.

    1991-01-01

    Static and dynamic neutronic analyses are being performed, as part of an integrated series of studies, on an innovative burst power UF4 Ultrahigh Temperature Vapor Core Reactor (UTVR)/Disk Magnetohydrodynamic (MHD) generator for space nuclear power applications. This novel reactor concept operates on a direct, closed Rankine cycle in the burst power mode (hundreds of MWe for thousands of seconds). The fuel/working fluid is a mixture of UF4 and metal fluoride. Preliminary calculations indicate high overall system efficiencies (≊20%), small radiator size (≊5 m2/MWe), and high specific power (≊5 kWe/kg). Neutronic analysis has revealed a number of attractive features for this novel reactor concept. These include some unique and very effective inherent negative reactivity control mechanisms such as the vapor-fuel density power coefficient of reactivity, the direct neutronic coupling among the multiple fissioning core regions (the central vapor core and the surrounding boiler columns), and the mass flow coupling feedback between the fissioning cores.

  15. RF-TSV DESIGN, MODELING AND APPLICATION FOR 3D MULTI-CORE COMPUTER SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    Yu Le; Yang Haigang; Xie Yuanlu

    2012-01-01

    The state-of-the-art multi-core computer systems are based on Very Large Scale three Dimensional (3D) Integrated circuits (VLSI).In order to provide high-speed vertical data transmission in such 3D systems,efficient Through-Silicon Via (TSV) technology is critically important.In this paper,various Radio Frequency (RF) TSV designs and models are proposed.Specifically,the Cu-plug TSV with surrounding ground TSVs is used as the baseline structure.For further improvement,the dielectric coaxial and novel air-gap coaxial TSVs are introduced.Using the empirical parameters of these coaxial TSVs,the simulation results are obtained demonstrating that these coaxial RF-TSVs can provide two-order higher of cut-off frequencies than the Cu-plug TSVs.Based on these new RF-TSV technologies,we propose a novel 3D multi-core computer system as well as new architectures for manipulating the interfaces between RF and baseband circuit.Taking into consideration the scaling down of IC manufacture technologies,predictions for the performance of future generations of circuits are made.With simulation results indicating energy per bit and area per bit being reduced by 7% and 11% respectively,we can conclude that the proposed method is a worthwhile guideline for the design of future multi-core computer ICs.

  16. Automatic control system of spray and dust reduction in fully-mechanized working face of coal mine%煤巷综掘工作面喷雾除尘自动控制系统

    Institute of Scientific and Technical Information of China (English)

    赵杰; 王丽; 任思璟; 张鹏南; 董金波; 穆秀春

    2015-01-01

    It is a serious problem that the dust pollution at driving face in coal road.The automatic control system of dust suppression by high-pressure spray in the coal roadway is designed.Dust sensor is monitoring dust concentration of working face in real time.The PIC16F877 processor is used to control the electromagnetic valve to open and shut off the spray device of high-pressure water supply pipeline according to the upper limit and lower limit thresholds of dust concentration.When the miners go through the spray zone human body signal is detected by pyroelectric infrared sensor and the spray stops tempora-rily.The automatic control system of high -pressure spray and dust reduction has significant effect in dust concentration and improves the efficiency of reducing dust and the environment of the coal face.%针对煤巷工作面粉尘治理的问题,设计煤巷高压喷雾除尘自动控制系统。粉尘传感器及时监测工作面煤矿粉尘浓度,设置上限、下限两个动作阈值,采用PIC16 F877处理器控制电磁阀打开和关断高压供水管路喷雾装置,并可通过热释电红外传感器检测人体信号,在矿工通过喷雾区域时暂时停止喷雾。该系统实现喷雾过程自动控制,高压喷雾装置有效地降低了工作面粉尘浓度,提高了除尘效率,改善了矿工工作环境。

  17. Pressurized Water Reactor Nuclear Power Plant Spent Fuel Pool Spray System Design%压水堆核电站乏燃料池喷淋系统设计

    Institute of Scientific and Technical Information of China (English)

    苏夏

    2013-01-01

      第三代非能动压水堆核电站AP1000中首次为乏燃料池设置了喷淋系统,在超设计基准事故或恐怖袭击导致乏燃料池水排空时,为乏燃料提供冷却。喷淋系统设计中的两个重要指标是喷淋覆盖面积和单位面积有效喷淋流量。设计者应基于喷嘴性能试验结果,根据乏燃料池结构尺寸和乏燃料特性,确定喷淋流量、喷嘴数量和布置方式等参数,完成系统设计,提供足够冷却流量。%  Spray system of spent fuel pool is first designed in AP1000, it can provide spray water to cool the spent fuel in a beyond design basis event or a terror attack that drains the pool. The two most important factors of spray system are the coverage pattern and the effective flow density. The spray flowrate, the nozzle number and their location should be designed based on the spray nozzle test results, the spent fuel pool structure and the spent fuel character to achieve the intent of providing enough cooling.

  18. Systems biology definition of the core proteome of metabolism and expression is consistent with high-throughput data

    DEFF Research Database (Denmark)

    Yang, Laurence; Tan, Justin; O'Brien, Edward J.

    2015-01-01

    at the systems-level, and provides a basis for computing essential cell functions is lacking. Here, we use a systems biology-based genome-scale model of metabolism and expression to define a functional core proteome consisting of 356 gene products, accounting for 44% of the Escherichia coli proteome by mass...... genitalium). Based on transcriptomics data across environmental and genetic backgrounds, the systems biology core proteome is significantly enriched in nondifferentially expressed genes and depleted in differentially expressed genes. Compared with the noncore, core gene expression levels are also similar...... based on proteomics data. This systems biology core proteome includes 212 genes not found in previous comparative genomics-based core proteome definitions, accounts for 65% of known essential genes in E. coli, and has 78% gene function overlap with minimal genomes (Buchnera aphidicola and Mycoplasma...

  19. The research of the evaluation system towards a core enterprise's network capability in the industrial technology alliance

    Science.gov (United States)

    Yan, Guangshi; Tian, Xuelian; Shen, Xue; You, Yue

    2017-05-01

    The social network theory is introduced for the industrial technology alliance based on the actual needs of the development of the industrial technology alliance. Through discussing the influence of the core enterprise network capacity on alliance performance, this article establishes evaluation system and index model of core enterprise network ability. We also evaluate and analyze the network capacity of core enterprise by fuzzy comprehensive evaluation method. So, the evaluation method is very important and full of practical value with a new research vision.

  20. Optimization of spray deposition and Tetranychus urticae control with air assisted and electrostatic sprayer

    Directory of Open Access Journals (Sweden)

    Denise Tourino Rezende de Cerqueira

    Full Text Available ABSTRACT: Improved spray deposition can be attained by electrostatically charging spray droplets, which increases the attraction of droplets to plants and decreases operator exposure to pesticide and losses to the environment. However, this technique alone is not sufficient to achieve desirable penetration of the spray solution into the crop canopy; thus, air assistance can be added to the electrostatic spraying to further improve spray deposition. This study was conducted to compare different spraying technologies on spray deposition and two-spotted spider mite control in cut chrysanthemum. Treatments included in the study were: conventional TJ 8003 double flat fan nozzles, conventional TXVK-3 hollow cone nozzles, semi-stationary motorized jet launched spray with electrostatic spray system (ESS and air assistance (AA, and semi-stationary motorized jet launched spray with AA only (no ESS. To evaluate the effect of these spraying technologies on the control of two-spotted spider mite, a control treatment was included that did not receive an acaricide application. The AA spraying technology, with or without ESS, optimized spray deposition and provided satisfactory two-spotted spider mite control up to 4 days after application.

  1. Containment atmosphere response to external sprays

    Energy Technology Data Exchange (ETDEWEB)

    Green, J.; Almenas, K. [Univ. of Maryland, College Park, MD (United States)

    1995-09-01

    The application of external sprays to a containment steel shell can be an effective energy removal method and has been proposed in the passive AP-600 design. Reduction of the steel shell temperature in contact with the containment atmosphere enhances both heat and mass transfer driving forces. Large scale experimental data in this area is scarce, therefore the measurements obtained from the E series tests conducted at the German HDR facility deserve special attention. These long term tests simulated various severe accident conditions, including external spraying of the hemispherical steel shell. This investigation focuses upon the integral response of the HDR containment atmosphere during spray periods and upon methods by which lumped parameter system codes, like CONTAIN, model the underlying condensation phenomena. Increases in spray water flowrates above a minimum value were ineffective at improving containment pressure reduction since the limiting resistance for energy transfer lies in the noncondensable-vapor boundary layer at the inner condensing surface. The spray created an unstable condition by cooling the upper layers of a heated atmosphere and thus inducing global natural circulation flows in the facility and subsequently, abrupt changes in lighter-than-air noncondensable (J{sub 2}/He) concentrations. Modeling results using the CONTAIN code are outlined and code limitations are delineated.

  2. Microalgal cell disruption via ultrasonic nozzle spraying.

    Science.gov (United States)

    Wang, M; Yuan, W

    2015-01-01

    The objective of this study was to understand the effect of operating parameters, including ultrasound amplitude, spraying pressure, nozzle orifice diameter, and initial cell concentration on microalgal cell disruption and lipid extraction in an ultrasonic nozzle spraying system (UNSS). Two algal species including Scenedesmus dimorphus and Nannochloropsis oculata were evaluated. Experimental results demonstrated that the UNSS was effective in the disruption of microalgal cells indicated by significant changes in cell concentration and Nile red-stained lipid fluorescence density between all treatments and the control. It was found that increasing ultrasound amplitude generally enhanced cell disruption and lipid recovery although excessive input energy was not necessary for best results. The effect of spraying pressure and nozzle orifice diameter on cell disruption and lipid recovery was believed to be dependent on the competition between ultrasound-induced cavitation and spraying-generated shear forces. Optimal cell disruption was not always achieved at the highest spraying pressure or biggest nozzle orifice diameter; instead, they appeared at moderate levels depending on the algal strain and specific settings. Increasing initial algal cell concentration significantly reduced cell disruption efficiency. In all UNSS treatments, the effectiveness of cell disruption and lipid recovery was found to be dependent on the algal species treated.

  3. Numerical analysis for the matching of the core driven compression system in a double bypass engine

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xin; LIU Bao-jie

    2011-01-01

    The numerical analysis for the matching of the core driven compression system in a double bypass variable cycle engine was presented in this paper. The system consists of a one-stage-core driven fan stage (CDFS), an inner bypass duet and a five-stage high pressure compressor (HPC), providing two basic operating modes: the single bypass mode and the double bypass mode. Variable vanes are necessary to realize the mode switch of the system. The correct matching in the double bypass mode requires a proper combination of the mass flow, total pressure ratio and blade speed. The work capacity of the system decreases in the double bypass mode and the pressure ratio tends to decrease more for the CDFS and the front stages of the HPC. The overall system efficiency is higher in the double bypass mode. The radial distributions of aerodynamic parameters are similar in different modes. The notable redistribution of mass flow downstream the CDFS in the single bypass mode leads to strong radial flows and additional mixing losses. The absolute flow angles into the inner bypass increase for the inner span and decrease for the outer span when the system is switched from the single bypass mode to the double bypass mode.

  4. CFD Analysis of a Hybrid Heat Pipe for In-Core Passive Decay Heat Removal System

    Energy Technology Data Exchange (ETDEWEB)

    Jeong Yeong Shin; Kim, Kyung Mo; Bang, In Cheol [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-05-15

    Station blackout (SBO) accident is the event that all AC power is totally lost from the failure of offsite and onsite power sources. Although electricity was provided from installed batteries for active system after shutdown, they were failed due to flooding after tsunami. The vulnerability of the current operating power plant's cooling ability during extended station blackout events is demonstrated and the importance of passive system becomes emphasized. Numerous researches about passive system have been studied for proper cooling residual heat after Fukushima nuclear power plant accident. Heat pipe is the effective passive heat transfer device that latent heat of vaporization is used to transport heat over long distance with even small temperature difference. Since liquid flows due to capillary force from wick structure and steam flows up due to buoyancy force, power is not necessary. Heat pipe is widely used in removal of local hot spot heat fluxes in CPU and thermal management in space crafts and satellites. Hybrid control rod, which consists of heat pipe with B{sub 4}C for wick structure material can be used for removing residual heat after. It can be applied to both for shutdown and cooling of decay heat in reactor. This concept is independent of external reactor situation like operator's mistake or malfunction of active cooling system. Heat pipe cooling system can be applied to Emergency Core Cooling System, In-Vessel Retention, containment and spent fuel cooling, contributing to decrease Core Damage Frequency.

  5. The great dichotomy of the Solar System: small terrestrial embryos and massive giant planet cores

    CERN Document Server

    Morbidelli, A; Jacobson, S; Bitsch, B

    2015-01-01

    The basic structure of the solar system is set by the presence of low-mass terrestrial planets in its inner part and giant planets in its outer part. This is the result of the formation of a system of multiple embryos with approximately the mass of Mars in the inner disk and of a few multi-Earth-mass cores in the outer disk, within the lifetime of the gaseous component of the protoplanetary disk. What was the origin of this dichotomy in the mass distribution of embryos/cores? We show in this paper that the classic processes of runaway and oligarchic growth from a disk of planetesimals cannot explain this dichotomy, even if the original surface density of solids increased at the snowline. Instead, the accretion of drifting pebbles by embryos and cores can explain the dichotomy, provided that some assumptions hold true. We propose that the mass-flow of pebbles is two-times lower and the characteristic size of the pebbles is approximately ten times smaller within the snowline than beyond the snowline (respective...

  6. LDRD final report : a lightweight operating system for multi-core capability class supercomputers.

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Suzanne Marie; Hudson, Trammell B. (OS Research); Ferreira, Kurt Brian; Bridges, Patrick G. (University of New Mexico); Pedretti, Kevin Thomas Tauke; Levenhagen, Michael J.; Brightwell, Ronald Brian

    2010-09-01

    The two primary objectives of this LDRD project were to create a lightweight kernel (LWK) operating system(OS) designed to take maximum advantage of multi-core processors, and to leverage the virtualization capabilities in modern multi-core processors to create a more flexible and adaptable LWK environment. The most significant technical accomplishments of this project were the development of the Kitten lightweight kernel, the co-development of the SMARTMAP intra-node memory mapping technique, and the development and demonstration of a scalable virtualization environment for HPC. Each of these topics is presented in this report by the inclusion of a published or submitted research paper. The results of this project are being leveraged by several ongoing and new research projects.

  7. A commitment to values. A system integrates core values with leadership development.

    Science.gov (United States)

    Maxfield, M M

    1991-01-01

    The Values in Leadership program, a new leadership development program created by the Sisters of Charity Health Care Systems (SCHCS), is designed to empower effective leaders to live out personal values compatible with those of the organization. The program, designed for middle and senior managers, comprises seven educational modules- Living Our Values; Valuing Individual Differences; Leader as Servant; Leader as Visionary; Leader as Catalyst; Leader as Mentor; Formative Leadership; and Leader as Mentor; Motivational Coaching. Throughout the sessions, participants discuss the four roles of an effective leader-servant, visionary, catalyst, and mentor-which are grounded in SCHCS core values. Participants are also challenged to identify specific actions that can be integrated into their leadership styles. These actions, drawn from SCHCS leadership practices and core values, are reinforced when participants return to their jobs and write plans to incorporate these practices into their daily work.

  8. Calcitonin Salmon Nasal Spray

    Science.gov (United States)

    ... is important that you get enough calcium and vitamin D while you are using calcitonin salmon. Your doctor may prescribe supplements if your dietary ... examinations of the nose to make sure calcitonin salmon nasal spray is not ... such as vitamins, minerals, or other dietary supplements. You should bring ...

  9. Emergency Core Cooling Performance of the Safety System of SMART-P

    Energy Technology Data Exchange (ETDEWEB)

    Lee, G. H.; Bae, K. H.; Kim, H. C.; Zee, S. Q. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2006-07-01

    SMART-P is an integral-type PWR producing a maximum thermal power of 65.5 MW, which is a 1/5 scaled-down pilot plant of the 330 MWt SMART (System-integrated Modular Advanced ReacTor). Different from the loop type commercial PWRs, SMART-P contains the reactor coolant and the major primary circuit components, such as the core, two Main Coolant Pumps (MCPs), twelve SG cassettes, and the PZR in a single Reactor Pressure Vessel (RPV). Due to this integral arrangement of the primary system the possibility of a large pipe break is inherently eliminated and only a small branch line break or leak through a component penetrating the RPV is postulated. Also, SMART-P adopts inherent safety improving features such as a large volume of primary coolant (volume/unit power), substantially large negative moderator temperature coefficients, a low core power density, a large self-controlled N2 gas PZR, a canned motor MCP without a pump seal, and a modular helically coiled once-through SG cassette. In addition, SMART-P enhances its safety and reliability by adopting the Passive Residual Heat Removal System (PRHRS) and the Reactor Overpressure Protection System (ROPS) equipped with a Pilot Operated Safety Relief Valve (POSRV). Also, four mechanically separated trains of a Safety Injection System (SIS) are adopted in SMART-P design.

  10. 三维旋转喷枪射流分析及机械和控制研究%Study of 3D Rotated Spray Gun on Jet Flow Analysis and Machinery and Control System

    Institute of Scientific and Technical Information of China (English)

    鲁飞; 庞雷; 张的; 李沅龙; 韩彩红; 巴胜富; 苏吉鑫; 周连春

    2014-01-01

    During the oil tank mechanical washing operation , the spray guns furnished on the top of floating roof jet 3D retated flow.The jet flow wash against the top and bottom of the oil tank , and crush the freezed deposition making it break away from the face of the oil tank to aim to clean up the tank .The author designed the spray gun with the special construction from the needed jet flow, analysis of construction , movement of spray-head, gear transmission system and pneumatic contral system to meet the washing operation .Jet flow track analysis points out the movement of spray-head by the needed function of the spray gun .Spray-head movement analysis points out the geometry relation by jet flow track analysis .Gear transmission system design points out the relation of spray-head rotation and revolution ,and determines proper construction and gear ratio .Pneumatic contral system points out the proper power and the contral syetem of spray-head swing .By the analysis and study of these key technology , author de-signed the 3D rotated spray gun meeting the oil tank mechanical washing operation .%原油储罐机械清洗作业中布置在浮顶上的喷枪产生三维旋转的射流,分别对罐底和罐顶进行冲刷,使沉积凝固的原油得以破碎和溶解,脱离所附着的罐壁表面,达到清洗的目的。笔者从机械清洗需要形成的射流轨迹入手,通过对结构、喷头运动、齿轮传动系统、气动控制系统的分析研究,设计出具备特殊结构的三维旋转喷枪使其能够满足清洗工程的需要。射流轨迹分析是已知喷枪需要达到的功能的情况下分析喷头的运动模式。喷头运动分析以射流轨迹分析的结果作为输入条件,分析出结构上的几何关系。齿轮传动系统设计以运动分析为基础,计算出喷头自转速度和与公转轴线夹角速度之间的关系,并确定适当的结构和传动比。气动控制系统设计为传动系统提供合适

  11. Automated and Assistive Tools for Accelerated Code migration of Scientific Computing on to Heterogeneous MultiCore Systems

    Science.gov (United States)

    2017-04-13

    AFRL-AFOSR-UK-TR-2017-0029 Automated and Assistive Tools for Accelerated Code migration of Scientific Computing on to Heterogeneous MultiCore Systems ...MultiCore Systems 5a. CONTRACT NUMBER FA8655-12-1-2021 5b. GRANT NUMBER Grant 12-2021 5c. PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S...code for Heterogeneous multicore systems . The approach was based on the OmpSs programming model and the performance tools that constitute two strategic

  12. ITER CODAC Core System at FTU: State of the art and new perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Panella, Maurizio, E-mail: panella@enea.it [Associazione EURATOM-ENEA sulla Fusione, C.R. ENEA, via E. Fermi 45, 00044 Frascati, Rome (Italy); Centioli, Cristina [Associazione EURATOM-ENEA sulla Fusione, C.R. ENEA, via E. Fermi 45, 00044 Frascati, Rome (Italy); Di Maio, Franck [ITER Organization, CS 90 046, 13067 Saint-Paul-lez-Durance (France); Napolitano, Mathieu [Associazione EURATOM-ENEA sulla Fusione, C.R. ENEA, via E. Fermi 45, 00044 Frascati, Rome (Italy); Rojo, Mikel [Cosylab d. d., Control System Laboratory Teslova Ulica 30, SI-1000 Ljubljana (Slovenia); Vellucci, Marco; Vitale, Vincenzo [Associazione EURATOM-ENEA sulla Fusione, C.R. ENEA, via E. Fermi 45, 00044 Frascati, Rome (Italy); Wallander, Anders [ITER Organization, CS 90 046, 13067 Saint-Paul-lez-Durance (France)

    2013-10-15

    Highlights: ► The new toroidal magnet power supply control system using CODAC Core System is described. ► An analysis on the benefits of the new software framework is performed. ► A new plasma position control system as a test case for ITER CODAC fast controllers strategy is outlined. -- Abstract: Recently the slow control of the MFG1 motor flywheel generator powering FTU toroidal magnet has been redesigned within the framework of the ITER CODAC I and C architecture [1] using the software package CODAC Core System (CCS). In this paper the progress made towards the final commissioning will be detailed, focusing on the system integration in the FTU control system supervisor through a software bridge and a multithreaded channel access interface to the Plant System Host, emphasizing the problems found so far and their solutions. The development and implementation of the alarm handler, the logging system and the data archiving system will also be illustrated, as well as the relevant monitoring and visualization interfaces developed on the Mini-CODAC node with the standard EPICS tools BEAST, BOY and BEAUTY. Furthermore, the tests run on FTU that finally led to a successful commissioning will be thoroughly discussed. Due to the satisfactory outcome of the project, and taking advantage of the release of the new CCS v 3.0 introducing the management of fast controllers, an account on a possible application of the CODAC ITER fast control architecture at FTU will also be given, taking the FTU real time feedback system as the first test case, to be further extended to newly implemented fast controllers.

  13. Efficiency of static core turn-off in a system-on-a-chip with variation

    Science.gov (United States)

    Cher, Chen-Yong; Coteus, Paul W; Gara, Alan; Kursun, Eren; Paulsen, David P; Schuelke, Brian A; Sheets, II, John E; Tian, Shurong

    2013-10-29

    A processor-implemented method for improving efficiency of a static core turn-off in a multi-core processor with variation, the method comprising: conducting via a simulation a turn-off analysis of the multi-core processor at the multi-core processor's design stage, wherein the turn-off analysis of the multi-core processor at the multi-core processor's design stage includes a first output corresponding to a first multi-core processor core to turn off; conducting a turn-off analysis of the multi-core processor at the multi-core processor's testing stage, wherein the turn-off analysis of the multi-core processor at the multi-core processor's testing stage includes a second output corresponding to a second multi-core processor core to turn off; comparing the first output and the second output to determine if the first output is referring to the same core to turn off as the second output; outputting a third output corresponding to the first multi-core processor core if the first output and the second output are both referring to the same core to turn off.

  14. Development of process data capturing, analysis and controlling for thermal spray techniques - SprayTracker

    Science.gov (United States)

    Kelber, C.; Marke, S.; Trommler, U.; Rupprecht, C.; Weis, S.

    2017-03-01

    Thermal spraying processes are becoming increasingly important in high-technology areas, such as automotive engineering and medical technology. The method offers the advantage of a local layer application with different materials and high deposition rates. Challenges in the application of thermal spraying result from the complex interaction of different influencing variables, which can be attributed to the properties of different materials, operating equipment supply, electrical parameters, flow mechanics, plasma physics and automation. In addition, spraying systems are subject to constant wear. Due to the process specification and the high demands on the produced coatings, innovative quality assurance tools are necessary. A central aspect, which has not yet been considered, is the data management in relation to the present measured variables, in particular the spraying system, the handling system, working safety devices and additional measuring sensors. Both the recording of all process-characterizing variables, their linking and evaluation as well as the use of the data for the active process control presuppose a novel, innovative control system (hardware and software) that was to be developed within the scope of the research project. In addition, new measurement methods and sensors are to be developed and qualified in order to improve the process reliability of thermal spraying.

  15. Current situation and development tendency of thermal spraying materials in China

    Institute of Scientific and Technical Information of China (English)

    YU; Yue-guang

    2005-01-01

    The current situations of thermal spraying materials in China are described in this paper.The thermal spraying technology in China has a great progress over tens of years. More than one hundred varieties of material products serve thermal spraying producing now. They belong to three kinds, powders,wires and rods. Technologies for producing alloy, ceramic and composite powders, alloy and cored wires,and oxide ceramic rods are applied to large-scale production. Many research and development works on advanced materials for thermal spraying are carrying out recent years. They show that the general tendencies of thermal spraying materials in China are composite or low-impurity component, ultrafine or nanosized microstructure, high properties, and specialized and systematized applications. Thermal spraying materials have great prospects with the development of saving society in China.

  16. Brief Discussion on Design of Foam-water Spraying System for Hazardous Waste Temporary Storage%浅议危险废物暂存库泡沫-水喷淋系统设计

    Institute of Scientific and Technical Information of China (English)

    赵庆

    2014-01-01

    结合某危险废物暂存库工程设计,探讨了危险废物暂存库消防系统的选择,并介绍泡沫-水喷淋系统的两种方式以及系统设计参数选取、喷头选择和泡沫液用量计算。%Selection of fire-fighting system for hazardous waste temporary storage is discussed in the paper by combination of engineering design of a hazardous waste temporary storage, and the paper introduces two methods of foam-water spraying system, selection of design parameters, selection of spray nozzle and calculation of foam liquid dosage.

  17. America's Next Great Ship: Space Launch System Core Stage Transitioning from Design to Manufacturing

    Science.gov (United States)

    Birkenstock, Benjamin; Kauer, Roy

    2014-01-01

    The Space Launch System (SLS) Program is essential to achieving the Nation's and NASA's goal of human exploration and scientific investigation of the solar system. As a multi-element program with emphasis on safety, affordability, and sustainability, SLS is becoming America's next great ship of exploration. The SLS Core Stage includes avionics, main propulsion system, pressure vessels, thrust vector control, and structures. Boeing manufactures and assembles the SLS core stage at the Michoud Assembly Facility (MAF) in New Orleans, LA, a historical production center for Saturn V and Space Shuttle programs. As the transition from design to manufacturing progresses, the importance of a well-executed manufacturing, assembly, and operation (MA&O) plan is crucial to meeting performance objectives. Boeing employs classic techniques such as critical path analysis and facility requirements definition as well as innovative approaches such as Constraint Based Scheduling (CBS) and Cirtical Chain Project Management (CCPM) theory to provide a comprehensive suite of project management tools to manage the health of the baseline plan on both a macro (overall project) and micro level (factory areas). These tools coordinate data from multiple business systems and provide a robust network to support Material & Capacity Requirements Planning (MRP/CRP) and priorities. Coupled with these tools and a highly skilled workforce, Boeing is orchestrating the parallel buildup of five major sub assemblies throughout the factory. Boeing and NASA are transforming MAF to host state of the art processes, equipment and tooling, the most prominent of which is the Vertical Assembly Center (VAC), the largest weld tool in the world. In concert, a global supply chain is delivering a range of structural elements and component parts necessary to enable an on-time delivery of the integrated Core Stage. SLS is on plan to launch humanity into the next phase of space exploration.

  18. Interfacial characterization of ceramic core materials with veneering porcelain for all-ceramic bi-layered restorative systems.

    Science.gov (United States)

    Tagmatarchis, Alexander; Tripodakis, Aris-Petros; Filippatos, Gerasimos; Zinelis, Spiros; Eliades, George

    2014-01-01

    The aim of the study was to characterize the elemental distribution at the interface between all-ceramic core and veneering porcelain materials. Three groups of all-ceramic cores were selected: A) Glass-ceramics (Cergo, IPS Empress, IPS Empress 2, e-max Press, Finesse); B) Glass-infiltrated ceramics (Celay Alumina, Celay Zirconia) and C) Densely sintered ceramics (Cercon, Procera Alumina, ZirCAD, Noritake Zirconia). The cores were combined with compatible veneering porcelains and three flat square test specimens were produced for each system. The core-veneer interfaces were examined by scanning electron microscopy and energy dispersive x-ray microanalysis. The glass-ceramic systems showed interfacial zones reach in Si and O, with the presence of K, Ca, Al in core and Ca, Ce, Na, Mg or Al in veneer material, depending on the system tested. IPS Empress and IPS Empress 2 demonstrated distinct transitional phases at the core-veneer interface. In the glassinfiltrated systems, intermixing of core (Ce, La) with veneer (Na, Si) elements occurred, whereas an abrupt drop of the core-veneer elemental concentration was documented at the interfaces of all densely sintered ceramics. The results of the study provided no evidence of elemental interdiffusion at the core-veneer interfaces in densely sintered ceramics, which implies lack of primary chemical bonding. For the glass-containing systems (glassceramics and glass-infiltrated ceramics) interdiffusion of the glass-phase seems to play a critical role in establishing a primary bonding condition between ceramic core and veneering porcelain.

  19. Handheld and automated ultrasonic spray deposition of conductive PEDOT:PSS films and their application in AC EL devices

    NARCIS (Netherlands)

    Ely, Fernando; Matsumoto, Agatha; Zoetebier, Bram; Peressinotto, Valdirene S.; Hirata, Marcelo Kioshi; Sousa, de Douglas A.; Maciel, Rubens

    2014-01-01

    In this contribution we explore the spray deposition technique to achieve smooth films based on the conductive polymer PEDOT:PSS. Two different spray systems were used and compared namely: (a) handheld airbrush and (b) automated ultrasonic spray system. For each system a number of parameters were pr

  20. Handheld and automated ultrasonic spray deposition of conductive PEDOT:PSS films and their application in AC EL devices

    NARCIS (Netherlands)

    Ely, Fernando; Matsumoto, Agatha; Zoetebier, Bram; Peressinotto, Valdirene S.; Hirata, Marcelo Kioshi; de Sousa, Douglas A.; Maciel, Rubens

    2014-01-01

    In this contribution we explore the spray deposition technique to achieve smooth films based on the conductive polymer PEDOT:PSS. Two different spray systems were used and compared namely: (a) handheld airbrush and (b) automated ultrasonic spray system. For each system a number of parameters were

  1. Development and experiment of automatic target spray control system used in orchard sprayer%果园喷雾机自动对靶喷雾控制系统研制与试验

    Institute of Scientific and Technical Information of China (English)

    许林云; 张昊天; 张海锋; 徐业勇; 徐铭铭; 蒋雪松; 张慧春; 贾志成

    2014-01-01

    In order to improve the utilization rate of pesticides and reduce the pesticide pollution to the environment, the control system of the automatic target spray was designed to focus on a Chinese low level of mechanization about the orchard sprayer and the invalid spray existed in the gap of fruit trees when the orchard sprayer sprayed with a continuous spray method. Whether the automatic target spray system sprayed to the fruit trees, depended on the detection distance between the orchard sprayer and the fruit trees by the application of distance measuring sensors and control program, which was installed on the GY8 caterpillar self-propelled orchard sprayer manufactured by Nantong Guangyi Mechanical & Electrical Co, Ltd. This paper compared the properties of three kinds of sensors which were MB7060 ultrasonic sensor, GP2Y0A710K0F infrared sensor and DT35-B15251 laser sensor, and tested the discernible spacing for the ultrasonic sensor and the laser sensor. The laser sensor was chosen as a detection device of the orchard sprayer for its high stability, fast response and good direction, while the other two sensors were abandoned for the following reasons that the infrared sensor was seriously affected by the sunshine, and the discernible spacing of ultrasonic sensor was too wide to satisfy the working conditions of the orchard sprayer. The parameters of the target range for spray trees could be adjusted in the system of the automatic target spray, based on different planted size (spacing in the rows and spacing between rows) of an orchard and the different travel speed of the orchard sprayer. The automatic target spray system could distinguish whether the fruit tree, or the gap between fruit trees and the gap in the canopies, so as to effectively control pests with the minimum dose of pesticide and the least environmental pollution. To ensure that the droplet could cover the whole canopy, the orchard sprayer must start to spray before the nozzle assembly reached the

  2. Equations of two-phase flow in spray chamber

    Institute of Scientific and Technical Information of China (English)

    李新禹; 张志红; 金星; 徐杰

    2009-01-01

    The downstream water-air heat and moisture transfer system in a moving coordinate was studied. The relationship between the diameter of the misted droplets and the spray pressure was determined. Based on the theory of the relative velocity,the two-phase flow mode of the spray chamber and the efficiency equation for heat and moisture exchange were established. Corrections were carried out for the efficiency equation with spray pressure of 157 kPa. The results show that the pressure plays an important part in determining the efficiency of heat and moisture exchange. When the spray pressure is less than 157 kPa,better coincidence is noticed between the theoretical analysis and the test results with the error less than 6%. Greater error will be resulted in the case when the spray pressure is beyond 157 kPa. After the correction treatment,the coincidence between the theoretical and the experimental results is greatly improved.

  3. A scalable and low power VLIW DSP core for embedded system design

    Institute of Scientific and Technical Information of China (English)

    Sheraz Anjum; CHEN Jie; HAN Liang; LIN Chuan; ZHANG Xiao-xiao; SU Ye-hua; Chip Cheng

    2008-01-01

    Aims to provide the block architecture of CoStar3400 DSP that is a high performance, low power and scalable VLIW DSP core, it efficiently deployed a variable-length execution set (VLES) execution model which utilizes the maximum parallelism by allowing multiple address generations and data arithmetic logic units to exe-cute multiple instructions in a single clock cycle. The scalability was provided mainly in using more or less num-ber of functional units according to the intended application. Low power support was added by careful architectur-al design techniques such as fine-grain clock gating and activation of only the required number of control signals at each stage of the pipeline. The said features of the core make it a suitable candidate for many SoC configurations,especially for compute intensive applications such as wire-line and wireless communications, including infrastruc-ture and subscriber communications. The embedded system designers can efficiently use the scalability and VLIW features of the core by scaling the number of execution units according to specific needs of the application to effec-tively reduce the power consumption, chip area and time to market the intended final product.

  4. An experimental methodology to quantify the spray cooling event at intermittent spray impact

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Antonio L.N. [Instituto Superior Tecnico, Mechanical Engineering Department, Center for Innovation, Technology and Policy Research, IN Av. Rovisco Pais 1049-001, Lisbon Codex (Portugal)]. E-mail: moreira@dem.ist.utl.pt; Carvalho, Joao [Instituto Superior Tecnico, Mechanical Engineering Department, Center for Innovation, Technology and Policy Research, IN Av. Rovisco Pais 1049-001, Lisbon Codex (Portugal); Panao, Miguel R.O. [Instituto Superior Tecnico, Mechanical Engineering Department, Center for Innovation, Technology and Policy Research, IN Av. Rovisco Pais 1049-001, Lisbon Codex (Portugal)

    2007-04-15

    The present paper describes an experimental methodology devised to study spray cooling with multiple-intermittent sprays as those found in fuel injection systems of spark-ignition and diesel engines, or in dermatologic surgery applications. The spray characteristics and the surface thermal behaviour are measured by combining a two-component phase-Doppler anemometer with fast response surface thermocouples. The hardware allows simultaneous acquisition of Doppler and thermocouple signals which are processed in Matlab to estimate the time-varying heat flux and fluid-dynamic characteristics of the spray during impact. The time resolution of the acquisition system is limited by the data rate of validation of the phase-Doppler anemometer, but it has been shown to be accurate for the characterization of spray-cooling processes with short spurt durations for which the transient period of spray injection plays an important role. The measurements are processed in terms of the instantaneous heat fluxes, from which phase-average values of the boiling curves are obtained. Two of the characteristic parameters used in the thermal analysis of stationary spray cooling events, the critical heat flux (CHF) and Leidenfrost phenomenon, are then inferred in terms of operating conditions of the multiple-intermittent injections, such as the frequency, duration and pressure of injection. An integral method is suggested to describe the overall process of heat transfer, which accounts for the fluid-dynamic heterogeneities induced by multiple and successive droplet interactions within the area of spray impact. The method considers overall boiling curves dependant on the injection conditions and provides an empirical tool to characterize the heat transfer processes on the impact of multiple-intermittent sprays. The methodology is tested in a preliminary study of the effect of injection conditions on the heat removed by a fuel spray striking the back surface of the intake valve as in spark

  5. Multi-institutional validation of a web-based core competency assessment system.

    Science.gov (United States)

    Tabuenca, Arnold; Welling, Richard; Sachdeva, Ajit K; Blair, Patrice G; Horvath, Karen; Tarpley, John; Savino, John A; Gray, Richard; Gulley, Julie; Arnold, Teresa; Wolfe, Kevin; Risucci, Donald A

    2007-01-01

    The Association of Program Directors in Surgery and the Division of Education of the American College of Surgeons developed and implemented a web-based system for end-of-rotation faculty assessment of ACGME core competencies of residents. This study assesses its reliability and validity across multiple programs. Each assessment included ratings (1-5 scale) on 23 items reflecting the 6 core competencies. A total of 4241 end-of-rotation assessments were completed for 332 general surgery residents (> or =5 evaluations each) at 5 sites during the 2004-2005 and 2005-2006 academic years. The mean rating for each resident on each item was computed for each academic year. The mean rating of items representing each competency was computed for each resident. Additional data included USMLE and ABSITE scores, PGY, and status in program (categorical, designated preliminary, and undesignated preliminary). Coefficient alpha was greater than 0.90 for each competency score. Mean ratings for each competency increased significantly (p competencies at all PGY levels. Competency ratings of PGY 1 residents correlated significantly with USMLE Step I, ranging from (r = 0.26, p competencies correlated significantly with the 2006 ABSITE Total Percentile Score (range: r = 0.20, p core competencies are internally consistent. The pattern of statistically significant correlations between competency ratings and USMLE and ABSITE scores supports the postdictive and concurrent validity, respectively, of faculty perceptions of resident knowledge. The pattern of increased ratings as a function of PGY supports the construct validity of faculty ratings of resident core competencies.

  6. Biaxial flexural strength of Turkom-Cera core compared to two other all-ceramic systems

    Directory of Open Access Journals (Sweden)

    Bandar Mohammed Abdullah Al-Makramani

    2010-12-01

    Full Text Available Advances in all-ceramic systems have established predictable means of providing metal-free aesthetic and biocompatible materials. These materials must have sufficient strength to be a practical treatment alternative for the fabrication of crowns and fixed partial dentures. OBJECTIVES: The aim of this study was to compare the biaxial flexural strength of three core ceramic materials. MATERIAL AND METHODS: Three groups of 10 disc-shaped specimens (16 mm diameter x 1.2 mm thickness - in accordance with ISO-6872, 1995 were made from the following ceramic materials: Turkom-Cera Fused Alumina [(Turkom-Ceramic (M Sdn Bhd, Puchong, Selangor, Malaysia], In-Ceram (Vita Zahnfabrik, Bad Säckingen, Baden-Württemberg, Germany and Vitadur-N (Vita Zahnfabrik, Bad Säckingen, Baden-Württemberg, Germany, which were sintered according to the manufacturer's recommendations. The specimens were subjected to biaxial flexural strength test in an universal testing machine at a crosshead speed of 0.5 mm/min. The definitive fracture load was recorded for each specimen and the biaxial flexural strength was calculated from an equation in accordance with ISO-6872. RESULTS: The mean biaxial flexural strength values were: Turkom-Cera: 506.8±87.01 MPa, In-Ceram: 347.4±28.83 MPa and Vitadur-N: 128.7±12.72 MPa. The results were analyzed by the Levene's test and Dunnett's T3 post-hoc test (SPSS software V11.5.0 for Windows, SPSS, Chicago, IL, USA at a preset significance level of 5% because of unequal group variances (P<0.001. There was statistically significant difference between the three core ceramics (P<0.05. Turkom-Cera showed the highest biaxial flexural strength, followed by In-Ceram and Vitadur-N. CONCLUSIONS: Turkom-Cera core had significantly higher flexural strength than In-Ceram and Vitadur-N ceramic core materials.

  7. Core-level magnetic circular dichroism in 3d and 4f magnetic systems (invited) (abstract)

    Science.gov (United States)

    Koide, T.

    1994-05-01

    With the recent availability of circulary polarized synchrotron radiation over a wide photon energy range from VUV to hard X rays, the magnetic circular dichroism (MCD) in core-level photoabsorption has rapidly attracted growing interest, both experimentally and theoretically. This novel technique can provide element-specific and site-selective information about the magnetic and the electronic states in various magnetic substances because the core-level MCD process involves optical transitions in which the one-electron initial states are well localized and have well-defined angular momenta. In order to get insight into the local magnetic states in 3d and 4f magnetic systems, we have studied MCD of ferrites, Fe1-xPtx alloys, and mixed-valence CeRh3B2 at the core-absorption edges in the VUV˜soft x-ray region. The experiments were performed by utilizing directly characterized, circularly polarized undulator radiation and off-plane synchrotron radiation1 in conjunction with an ultrahigh vacuum compatible superconducting magnet of special design.2 Clear MCD signals were observed for CeRh3B2 in the prethreshold region of the Ce 4d→4f (N4,5) edges. A comparison of the experimental MCD spectrum with theoretical ones3 for uniaxial crystal fields of Δc=0 and 0.2 eV shows that the experimental spectrum qualitatively agrees with the theoretical one for Δc=0 eV. Theory predicts that the MCD pattern for ΔcCeRh3B2. We will also present the MCD data in the M2,3 core-absorption region for ferrites (Fe3O4 and CoFe2O4) and Fe1-xPtx alloys, discussing the results.

  8. Systems biology definition of the core proteome of metabolism and expression is consistent with high-throughput data.

    Science.gov (United States)

    Yang, Laurence; Tan, Justin; O'Brien, Edward J; Monk, Jonathan M; Kim, Donghyuk; Li, Howard J; Charusanti, Pep; Ebrahim, Ali; Lloyd, Colton J; Yurkovich, James T; Du, Bin; Dräger, Andreas; Thomas, Alex; Sun, Yuekai; Saunders, Michael A; Palsson, Bernhard O

    2015-08-25

    Finding the minimal set of gene functions needed to sustain life is of both fundamental and practical importance. Minimal gene lists have been proposed by using comparative genomics-based core proteome definitions. A definition of a core proteome that is supported by empirical data, is understood at the systems-level, and provides a basis for computing essential cell functions is lacking. Here, we use a systems biology-based genome-scale model of metabolism and expression to define a functional core proteome consisting of 356 gene products, accounting for 44% of the Escherichia coli proteome by mass based on proteomics data. This systems biology core proteome includes 212 genes not found in previous comparative genomics-based core proteome definitions, accounts for 65% of known essential genes in E. coli, and has 78% gene function overlap with minimal genomes (Buchnera aphidicola and Mycoplasma genitalium). Based on transcriptomics data across environmental and genetic backgrounds, the systems biology core proteome is significantly enriched in nondifferentially expressed genes and depleted in differentially expressed genes. Compared with the noncore, core gene expression levels are also similar across genetic backgrounds (two times higher Spearman rank correlation) and exhibit significantly more complex transcriptional and posttranscriptional regulatory features (40% more transcription start sites per gene, 22% longer 5'UTR). Thus, genome-scale systems biology approaches rigorously identify a functional core proteome needed to support growth. This framework, validated by using high-throughput datasets, facilitates a mechanistic understanding of systems-level core proteome function through in silico models; it de facto defines a paleome.

  9. Relation between surface roughness of free films and process parameters in spray coating.

    Science.gov (United States)

    Perfetti, G; Alphazan, T; van Hee, P; Wildeboer, W J; Meesters, G M H

    2011-02-14

    A novel spraying apparatus was developed to obtain reproducible free sprayed films. Aqueous solutions of PolyVinyl Alcohol PVA 4-98, HydroxyPropyl MethylCellulose HPMC 603 and HPMC 615 were used as reference coating materials. The apparatus is composed by a spraying system, a closed chamber containing a rotating Teflon cylinder, a pressured air supply system, a spray solution supply system, and a computerized control system. The spraying air pressure, the cylinder rotation speed, and the cylinder-spray nozzle distance were tailored in such a manner that the roughness of the obtained free films was similar to that from reference coated particles. Optimum spraying process conditions were found for all three coating materials using design of experiments. The morphology of the sprayed films obtained using the optimum conditions is evaluated by means of scanning electron microscopy (SEM), and atomic force microscopy (AFM), and then compared with those from corresponding cast films and coating layers on particles. A match was found between the morphology of sprayed films and that from the corresponding coating layer on the particle surface. The spray apparatus produced reproducible sprayed films with tuneable roughness and/or smoothness depending on the set of processing parameters. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. Synthesis and properties of novel star-shaped oligofluorene conjugated systems with BODIPY cores

    Directory of Open Access Journals (Sweden)

    Clara Orofino-Pena

    2014-11-01

    Full Text Available Star-shaped conjugated systems with varying oligofluorene arm length and substitution patterns of the central BODIPY core have been synthesised, leading to two families of compounds, T-B1–T-B4 and Y-B1–Y-B4, with T- and Y-shaped motifs, respectively. Thermal stability, cyclic voltammetry, absorption and photoluminescence spectroscopy of each member of these two families were studied in order to determine their suitability as emissive materials in photonic applications.

  11. Development of core fuel management code system for WWER-type reactors

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In this article, a core fuel management program for hexagonal pressurized water type WWER reactors (CFMHEX) has been developed, which is based on advanced three-dimensional nodal method and integrated with thermal hydraulic code to realize the coupling of neutronics and thermal-hydraulics. In CFMHEX, all these feedback effects such as burnup, power distribution, moderator density, and control rod insertion are considered. The verification and validation of the code system have been examined through the IAEA WWER-1000-type Kalinin NPP benchmark problem. The numerical results are in good agreement with measurements and are close to those of other international institutes.

  12. COOPERATIVE MODEL FOR OPTIMIZATION OF EXECUTION OF THREADS ON MULTI-CORE SYSTEM

    Directory of Open Access Journals (Sweden)

    A. A. Prihozhy

    2014-01-01

    Full Text Available The problem of the increase of efficiency of multi-thread applications on multi-core systems is investigated. The optimization cooperative model of threads execution has been proposed. It optimizes the execution order of the  computational operations and the operations of data exchange, decreases the overall time of the multithread application  execution by means of the reduction of the critical path in the concurrent algorithm graph, increases the application throughput at the growth of the number of threads, and excludes the competition among threads that is specific for preemptive multitasking...............................

  13. Constructing a core framework of visual engine for Digital Earth system

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A visual engine is the core of a Digital Earth system.There is a wide variety of functional requirements in Digital Earth system and different requirements correspond to different operations.Based on the development of the visual engine for ChinaStar,a 3D Digital China prototype software platform,and analysis of 3D Digital Earth platforms such as Google Earth,Virtual Earth,Skyline,etc,are discussed.A common core framework for a visual engine is proposed in this paper to construct a visual engine and then with this framework various Digital Earth application systems can be developed efficient.The parametric model of the Earth,scheduling and optimization in visual field,choice of 3D graphics library,and designing component-based visual engine framework of Digital Earth are discussed in detail.In addition,the relationships among these four basic components and the construction of visualization applications of Digital Earth by this method are also discussed.

  14. Numerical modelling of fuel sprays

    Energy Technology Data Exchange (ETDEWEB)

    Bergstroem, C.

    1999-06-01

    The way the fuel is introduced into the combustion chamber is one of the most important parameters for the power output and the generation of emissions in the combustion of liquid fuels. The interaction between the turbulent gas flow field and the liquid fuel droplets, the vaporisation of them and the mixing of the gaseous fuel with the ambient air that are vital parameters in the combustion process. The use of numerical calculations is an important tool to better understand these complex interacting phenomena. This thesis reports on the numerical modelling of fuel sprays in non-reacting cases using an own developed spray module. The spray module uses the stochastic parcel method to represent the spray. The module was made in such manner that it could by coupled with different gas flow solver. Results obtained from four different gas flow solvers are presented in the thesis, including the use of two different kinds of turbulence models. In the first part the spray module is coupled with a k-{eta} based 2-D cylindrical gas flow solver. A thorough sensitivity analysis was performed on the spray and gas flow solver parameters, such as grid size dependence and sensitivity to initial values of k-{eta}. The results of the spray module were also compared to results from other spray codes, e.g. the well known KIVA code. In the second part of this thesis the spray was injected into a turbulent and fully developed crossflow studied. The spray module was attached to a LES (Large Eddy Simulation) based flow solvers enabling the study of the complex structures and time dependent phenomena involved in spray in crossflows. It was found that the spray performs an oscillatory motion and that the Strouhal number in the wake was about 0.1. Different spray breakup models were evaluated by comparing with experimental results 66 refs, 56 figs

  15. Simulation of hydrogen combustion during spray operation with COCOSYS

    Energy Technology Data Exchange (ETDEWEB)

    Jankowski, Tobias; Koch, Marco K. [Ruhr-Univ. Bochum (Germany). Reactor Simulation and Safety Group

    2017-01-15

    The OECD/NEA THAI-2 test HD-33 is simulated with the Containment Code System COCOSYS. The test investigates hydrogen deflagration during spray system operation. Two calculations with different input parameters are performed to show the general capabilities of the deflagration model FRONT. Nevertheless, the experimental flame front propagation is not simulated sufficiently by the ignition of the zones, because of a missing interface between the used spray and combustion model as well as a neglect of spray induced turbulences. Therefore it might be thought about a more mechanistic approach.

  16. Meaningful timescales from Monte Carlo simulations of particle systems with hard-core interactions

    Science.gov (United States)

    Costa, Liborio I.

    2016-12-01

    A new Markov Chain Monte Carlo method for simulating the dynamics of particle systems characterized by hard-core interactions is introduced. In contrast to traditional Kinetic Monte Carlo approaches, where the state of the system is associated with minima in the energy landscape, in the proposed method, the state of the system is associated with the set of paths traveled by the atoms and the transition probabilities for an atom to be displaced are proportional to the corresponding velocities. In this way, the number of possible state-to-state transitions is reduced to a discrete set, and a direct link between the Monte Carlo time step and true physical time is naturally established. The resulting rejection-free algorithm is validated against event-driven molecular dynamics: the equilibrium and non-equilibrium dynamics of hard disks converge to the exact results with decreasing displacement size.

  17. Functional design standard of on-line digital core protection and monitoring systems for SMART

    Energy Technology Data Exchange (ETDEWEB)

    In, Wang Kee; Kim, Keung Koo; Zee, Sung Qunn [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-12-01

    The general requirements for the system I/O and the functional design were developed based on the conceptual design of SCOPS and SCOMS for SMART. The reactor trip functions were preliminarily determined to define the design basis events of SCOPS. The sensor requirements for SCOPS and SCOMS were also established. The sensor requirements for SCOPS and SCOMS were also established. The detailed functional design of the SMART digital core protection and monitoring systems will be performed based on the functional design standard in this report. The results of this study will also be useful to determine the reactor trip functions as well as the system and sensor requirements. 3 refs., 2 figs., 5 tabs. (Author)

  18. Plasma Spray Forming

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In the course of plasma spray, the plasma jet is comprehensively functioned by such effects as thermal pinch, magnetic pinch and mechanical compression and the flow is jetting at a high speed, the energy is concentrated and its center temperature is so high as to reach upwards of 15 000 ℃ which is capable of melting various kinds of materials inclusive of ceramic, it has a broad applied prospects in the fields of automobile, electronics, telecommunications, medical treatment, air navigation & space navigati...

  19. Combustion Characteristics of Sprays

    Science.gov (United States)

    1989-08-01

    regarded by implication or otherwise, or in any way licensing the holder or any other person or corporation, or conveying any rights or permission to...00 _’N 1. TI TLE inctuat Security CZaaafication5 Combustion Characteristics of Sprays 12. PERSONAL AUTHOR(S) Sohrab, Siavash H. 13& TYPE OF REPORT...to ?!HF of rich butane/air 3unsen flames. .lso, the rotacion speed and :he oerodic temDeracure fluc:uations of rotacfng ?HF are examined. :’!naily

  20. Vacuum plasma spray coating

    Science.gov (United States)

    Holmes, Richard R.; Mckechnie, Timothy N.

    1989-01-01

    Currently, protective plasma spray coatings are applied to space shuttle main engine turbine blades of high-performance nickel alloys by an air plasma spray process. Originally, a ceramic coating of yttria-stabilized zirconia (ZrO2.12Y2O3) was applied for thermal protection, but was removed because of severe spalling. In vacuum plasma spray coating, plasma coatings of nickel-chromium-aluminum-yttrium (NiCrAlY) are applied in a reduced atmosphere of argon/helium. These enhanced coatings showed no spalling after 40 MSFC burner rig thermal shock cycles between 927 C (1700 F) and -253 C (-423 F), while current coatings spalled during 5 to 25 test cycles. Subsequently, a process was developed for applying a durable thermal barrier coating of ZrO2.8Y2O3 to the turbine blades of first-stage high-pressure fuel turbopumps utilizing the enhanced NiCrAlY bond-coating process. NiCrAlY bond coating is applied first, with ZrO2.8Y2O3 added sequentially in increasing amounts until a thermal barrier coating is obtained. The enchanced thermal barrier coating has successfully passed 40 burner rig thermal shock cycles.

  1. Spray boom for selectively spraying a herbicidal composition onto dicots

    DEFF Research Database (Denmark)

    2012-01-01

    There is provided a method and spray boom for discriminating cereal crop (monocot) and weeds (dicots). The spray boom includes means for digitally recording an image of a selected area to be treated by a nozzle on the spray boom, whereby a plant material is identified based on a segmentation...... procedure; and means for detecting the edges and estimating the angles of the edges of the leaves so as to discriminate between dicots and monocots; and means for activating one or more of the spray nozzles in response to detected dicots so as to selectively apply the herbicidal composition onto the sensed...... area containing the dicots....

  2. Dispersiveness of Liquid Droplets Sprayed with Cocurrent Gas Flow

    Directory of Open Access Journals (Sweden)

    Arkhipov Vladimir

    2016-01-01

    Full Text Available Pneumohydraulic stand, equipped with a set of aerosol systems laser diagnostics devices, are presented. The results of experimental measurements of the aerosol liquid-drop size distribution in the ejection nozzle spray pattern are provided.

  3. Fabrication of monodispersive nanoscale alginate-chitosan core-shell particulate systems for controlled release studies

    Science.gov (United States)

    Körpe, Didem Aksoy; Malekghasemi, Soheil; Aydın, Uğur; Duman, Memed

    2014-12-01

    Biopolymers such as chitosan and alginate are widely used for controlled drug delivery systems. The present work aimed to develop a new protocol for preparation of monodisperse alginate-coated chitosan nanoparticles at nanoscale. Modifications of preparation protocol contain changing the pH of polymer solutions and adding extra centrifugation steps into the procedure. While chitosan nanoparticles were synthesized by ionic gelation method, they were coated with alginate by electrostatic interaction. The size, morphology, charge, and structural characterization of prepared core-shell nanoparticulated system were performed by AFM, Zeta sizer, and FTIR. BSA and DOX were loaded as test biomolecules to core and shell part of the nanoparticle, respectively. Release profiles of BSA and DOX were determined by spectrophotometry. The sizes of both chitosan and alginate-coated chitosan nanoparticles which were prepared by modified protocol were measured to be 50 ± 10 and 60 ± 3 nm, respectively. After loading BSA and DOX, the average size of the particles increased to 80 ± 7 nm. Moreover, while the zeta potential of chitosan nanoparticles was positive value, the value was inverted to negative after alginate coating. Release profile measurements of BSA and DOX were determined during 57 and 2 days, respectively. Our results demonstrated that monodisperse alginate-coated nanoparticles were synthesized and loaded successfully using our modified protocol.

  4. Fundamental studies of spray combustion

    Energy Technology Data Exchange (ETDEWEB)

    Li, S.C.; Libby, P.A.; Williams, F.A. [Univ. of California, San Diego, CA (United States)

    1997-12-31

    Our research on spray combustion involves both experiment and theory and addresses the characteristics of individual droplets and of sprays in a variety of flows: laminar and turbulent, opposed and impinging. Currently our focus concerns water and fuel sprays in two stage laminar flames, i.e., flames arising, for example from a stream of fuel and oxidizer flowing opposite to an air stream carrying a water spray. Our interest in these flames is motivated by the goals of reducing pollutant emissions and extending the range of stable spray combustion. There remains considerable research to be carried out in order to achieve these goals. Thus far our research on the characteristics of sprays in turbulent flows has been limited to nonreacting jets impinging on a plate but this work will be extended to opposed flows with and without a flame. In the following we discuss details of these studies and our plans for future work.

  5. Improvement of the Cubic Spline Function Sets for a Synthesis of the Axial Power Distribution of a Core Protection System

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Bon-Seung; Lee, Chung-Chan; Zee, Sung-Quun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2006-07-01

    Online digital core protection system(SCOPS) for a system-integrated modular reactor is being developed as a part of a plant protection system at KAERI. SCOPS calculates the minimum CHFR and maximum LPD based on several online measured system parameters including 3-level ex-core detector signals. In conventional ABB-CE digital power plants, cubic spline synthesis technique has been used in online calculations of the core axial power distributions using ex-core detector signals once every 1 second in CPC. In CPC, pre-determined cubic spline function sets are used depending on the characteristics of the ex-core detector responses. But this method shows an unnegligible power distribution error for the extremely skewed axial shapes by using restrictive function sets. Therefore, this paper describes the cubic spline method for the synthesis of an axial power distribution and it generates several new cubic spline function sets for the application of the core protection system, especially for the severely distorted power shapes needed reactor type.

  6. Tomographic shadowgraphy for spray diagnostics

    OpenAIRE

    Klinner, Joachim; Willert, Christian

    2011-01-01

    This contribution introduces 3-D shadowgraphy which is capable of resolving the placement of the liquid phase within a certain spray volume both spatially and temporally. The method is based on a multiple view camera setup and inline illumination provided by current pulsed LEDs. The quality of spray reconstruction was investigated using experimental data from multiple view shadowgraphs of hollow cone and flat fan water sprays. After calibration and determination of a 3-D mapping f...

  7. Characterization of the Annular Core Research Reactor (ACRR Neutron Radiography System Imaging Plane

    Directory of Open Access Journals (Sweden)

    Kaiser Krista

    2016-01-01

    Full Text Available The Annular Core Research Reactor (ACRR at Sandia National Laboratories (SNL is an epithermal pool-type research reactor licensed up to a thermal power of 2.4 MW. The ACRR facility has a neutron radiography facility that is used for imaging a wide range of items including reactor fuel and neutron generators. The ACRR neutron radiography system has four apertures (65:1, 125:1, 250:1, and 500:1 available to experimenters. The neutron flux and spectrum as well as the gamma dose rate were characterized at the imaging plane for the ACRR's neutron radiography system for the 65:1, 125:1 and 250:1 apertures.

  8. Characterization of the Annular Core Research Reactor (ACRR) Neutron Radiography System Imaging Plane

    Science.gov (United States)

    Kaiser, Krista; Chantel Nowlen, K.; DePriest, K. Russell

    2016-02-01

    The Annular Core Research Reactor (ACRR) at Sandia National Laboratories (SNL) is an epithermal pool-type research reactor licensed up to a thermal power of 2.4 MW. The ACRR facility has a neutron radiography facility that is used for imaging a wide range of items including reactor fuel and neutron generators. The ACRR neutron radiography system has four apertures (65:1, 125:1, 250:1, and 500:1) available to experimenters. The neutron flux and spectrum as well as the gamma dose rate were characterized at the imaging plane for the ACRR's neutron radiography system for the 65:1, 125:1 and 250:1 apertures.

  9. Fiber optic direct Raman imaging system based on a hollow-core fiber bundle

    Science.gov (United States)

    Inoue, S.; Katagiri, T.; Matsuura, Y.

    2015-03-01

    A Raman imaging system which combined a hollow fiber bundle and a direct imaging technique was constructed for high-speed endoscopic Raman imaging. The hollow fiber bundle is fabricated by depositing a silver thin film on the inner surface of pre-drawn glass capillary bundle. It performs as a fiber optic probe which transmits a Raman image with high signal-to-noise ratio because the propagating light is confined into the air core inducing little light scattering. The field of view on the sample is uniformly irradiated by the excitation laser light via the probe. The back-scattered image is collected by the probe and captured directly by an image sensor. A pair of thin film tunable filters is used to select target Raman band. This imaging system enables flexible and high-speed Raman imaging of biological tissues.

  10. Creating value-focused healthcare delivery systems: Part three--Core competencies.

    Science.gov (United States)

    Beveridge, R N

    1997-01-01

    Value is created through the delivery of high-quality, cost--effective healthcare services. The ability to create value from the providers' perspective is facilitated through the development and implementation of essential, customer-focused core competencies. These core competencies include customer relationship management, payer/provider relationship management, disease management, outcomes management, financial/cost management, and information management. Customer relationship management is the foundation upon which all core competencies must be built. All of the core competencies must focus on the needs of the customers, both internal and external. Structuring all processes involved in the core competencies from the perspective of the customer will ensure that value is created throughout the system. Payer/provider relationship management will become a crucial pillar for healthcare providers in the future. As more vertical integration among providers occurs, the management of the relationships among providers and with payers will become more important. Many of the integration strategies being implemented across the country involve the integration of hospitals, physicians, and payers to form accountable health plans. The relationships must be organized to form "win/win" situations, where all parties are focused on a shared vision of creating value and none of the parties benefits at the expense of the others. Disease management in creating value requires that we begin examining the disease process along the entire continuum. Not only must providers be able to provide high-quality acute and chronic care, but they must also begin to focus more heavily on programs of prevention. Value is created throughout the system through reducing the prevalence and incidence of disease. Only through managing the full continuum of health will value be created throughout the healthcare delivery system. Outcomes management ensures that the outcomes are the highest quality at a cost

  11. Are the core values of the radiological protection system shared across cultures?

    Science.gov (United States)

    Zölzer, F

    2016-06-01

    In spite of ongoing globalisation in many fields, the ethics of radiological protection have long been discussed almost exclusively in terms of 'Western' moral philosophy concepts such as utilitarianism or deontology. A cross-cultural discourse in this field is only just beginning. In 'Principles of Biomedical Ethics', Beauchamp and Childress suggested that there exists a 'common morality' which is 'not relative to cultures or individuals, because it transcends both'. They proposed four cross-culturally valid principles for decision making in medicine: respect for autonomy, non-maleficence, beneficence, and justice. A similar approach is being developed by the International Commission on Radiological Protection Task Group 94 on the ethics of radiological protection. Here, the core values are: human dignity, beneficence/non-maleficence, prudence, and justice. Other values could be added, such as consideration for the interests of society as a whole or the interests of future generations, or procedural values such as transparency and accountability; this paper will include a brief discussion on how they relate to the four basic principles. The main question to be addressed here, however, is whether the proposed core values are indeed part of a 'common morality'. This, as it will be argued, cannot be decided by a global opinion poll, but has to be based on an analysis of the written and oral traditions that have provided ethical orientation throughout history, and are still considered seminal by the majority of people. It turns out that there are indeed many commonalities across cultures, and that the concept of globally shared core values for the radiological protection system is not hopelessly idealistic.

  12. Biaxial flexural strength of Turkom-Cera core compared to two other all-ceramic systems.

    Science.gov (United States)

    Al-Makramani, Bandar Mohammed Abdullah; Razak, Abdul Aziz Abdul; Abu-Hassan, Mohamed Ibrahim

    2010-12-01

    Advances in all-ceramic systems have established predictable means of providing metal-free aesthetic and biocompatible materials. These materials must have sufficient strength to be a practical treatment alternative for the fabrication of crowns and fixed partial dentures. The aim of this study was to compare the biaxial flexural strength of three core ceramic materials. Three groups of 10 disc-shaped specimens (16 mm diameter x 1.2 mm thickness - in accordance with ISO-6872, 1995) were made from the following ceramic materials: Turkom-Cera Fused Alumina [(Turkom-Ceramic (M) Sdn Bhd, Puchong, Selangor, Malaysia)], In-Ceram (Vita Zahnfabrik, Bad Säckingen, Baden-Württemberg, Germany) and Vitadur-N (Vita Zahnfabrik, Bad Säckingen, Baden-Württemberg, Germany), which were sintered according to the manufacturer's recommendations. The specimens were subjected to biaxial flexural strength test in an universal testing machine at a crosshead speed of 0.5 mm/min. The definitive fracture load was recorded for each specimen and the biaxial flexural strength was calculated from an equation in accordance with ISO-6872. The mean biaxial flexural strength values were: Turkom-Cera: 506.8 ± 87.01 MPa, In-Ceram: 347.4 ± 28.83 MPa and Vitadur-N: 128.7 ± 12.72 MPa. The results were analyzed by the Levene's test and Dunnett's T3 post-hoc test (SPSS software V11.5.0 for Windows, SPSS, Chicago, IL, USA ) at a preset significance level of 5% because of unequal group variances (Pcore ceramics (Pstrength, followed by In-Ceram and Vitadur-N. Turkom-Cera core had significantly higher flexural strength than In-Ceram and Vitadur-N ceramic core materials.

  13. A Down-to-Earth Educational Operating System for Up-in-the-Cloud Many-Core Architectures

    Science.gov (United States)

    Ziwisky, Michael; Persohn, Kyle; Brylow, Dennis

    2013-01-01

    We present "Xipx," the first port of a major educational operating system to a processor in the emerging class of many-core architectures. Through extensions to the proven Embedded Xinu operating system, Xipx gives students hands-on experience with system programming in a distributed message-passing environment. We expose the software primitives…

  14. A Down-to-Earth Educational Operating System for Up-in-the-Cloud Many-Core Architectures

    Science.gov (United States)

    Ziwisky, Michael; Persohn, Kyle; Brylow, Dennis

    2013-01-01

    We present "Xipx," the first port of a major educational operating system to a processor in the emerging class of many-core architectures. Through extensions to the proven Embedded Xinu operating system, Xipx gives students hands-on experience with system programming in a distributed message-passing environment. We expose the software primitives…

  15. Mars/master coupled system calculation of the OECD MSLB benchmark exercise 3 with refined core thermal-hydraulic nodalization

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, J.J.; Joo, H.G.; Cho, B.O.; Zee, S.Q.; Lee, W.J. [Korea Atomic Energy Research Inst., Daejeon (Korea, Republic of)

    2001-07-01

    To assess the performance of KAERI coupled multi-dimensional system thermal- hydraulics (T/H) and three-dimensional (3-D) kinetics code, MARS/MASTER, Exercise III of the OECD main steam line break benchmark problem is solved. The coupled code is capable of employing an individual flow channel for each fuel assembly as well as lumped ones. The basic analysis model of the reference plant consists of four major components: a 3-D core neutronics model, a 3-D thermal-hydraulic model for the reactor vessel employing lumped flow channels, a refined core T/H model and a 1-D T/H model for coolant system. Calculations were performed with and without the refined core T/H model. The results of the basic calculation performed without the refined core T/H model show that the core power distribution evolves to a highly localized shape due to the presence of a stuck rod, as well as asymmetric flow distribution in the reactor core. The results of the refined core T/H model indicate that the local peaking factor can be reduced by as much as 22 % through accurate representation of the local T/H feedback effects. Nonetheless, the global transient behaviors are not significantly affected. (author)

  16. Architectural Issues of a Location-Aware System Applied in Fruit Fly E-Monitoring and Spraying Control

    Directory of Open Access Journals (Sweden)

    T. Tsiligiridis

    2014-12-01

    Full Text Available In the present paper we describe an e-monitoring location-aware system, based on a real-time Wireless Multimedia Sensor Network (WMSN, integrated with a semi-automatic trapping and insect counting, based on existing traps, able to acquire and transmit data to a remote server, and a Decision Support System (DSS that will perform the final optimization of the control treatments. In spite the tremendous technological advances in recent years, WSNs cannot meet all the requirements of ubiquitous intelligent environment mainly because scalar data such as temperature, air humidity, air pressure, etc., are not able to detect all environmental events, like insect detection. For this reasons the efforts are concentrated on the design issues of a WMSN platform, able to collect and integrate multimedia data from the field. Further, a flexible architecture needs to be adopted for integration of a WMSN to the cloud for multimedia sensor data collection and sharing using Web services.

  17. Effects of spray-drying and choice of solid carriers on concentrations of Labrasol® and Transcutol® in solid self-microemulsifying drug delivery systems (SMEDDS).

    Science.gov (United States)

    Li, Liang; Yi, Tao; Lam, Christopher Wai-Kei

    2013-01-02

    Solid self-microemulsifying drug delivery systems (SMEDDS) have been used increasingly for improving the bioavailability of hydrophobic drugs. Labrasol® and Transcutol® are used widely as surfactant and solubilizer in the formulation of solid SMEDDS. We investigated the effects of spray-drying and the use of different solid carriers on concentrations of Labrasol® and Transcutol® in solid SMEDDS with scutellarin as the formulated drug. Liquid and gas chromatography tandem mass spectrometry (LC-MS and GC-MS) methods were developed for measuring low concentrations of Labrasol® and Transcutol®. In the preparation of solid SMEDDS, lactose, hydroxypropylmethyl cellulose (HPMC) and microcrystalline cellulose (MCC) were used as solid carriers. Judging from the retention ratios of Labrasol® and Transcutol®, the droplet size of solid SMEDDS increased after spray-drying of liquid SMEDDS, and concentrations of these excipients decreased after the solidifying procedure. In such reduction, Lactose and HPMC were found to preserve Labrasol® and Transcutol® better than MCC during spray-drying, and the resultant droplet sizes were smaller than that of MCC. Labrasol® and Transcutol® showed good thermal stability at 60 °C degree for 10 days. It can be concluded that spray-drying could increase the droplet size of solid SMEDDS and decreased the concentration of Labrasol® and Transcutol® therein, while water-soluble solid carriers could preserve Labrasol® and Transcutol® better than insoluble carriers in the solid SMEDDS.

  18. Dust Reduction of High-pressure Spray System to Regional Controlled Recirculation Ventilation Process%区域受控循环通风过程中的高压喷雾降尘

    Institute of Scientific and Technical Information of China (English)

    李锦峰; 谢贤平; 章能胜; 纪承子; 王彦波

    2013-01-01

    受控循环通风技术可以应用于低瓦斯煤矿,而非煤具有低瓦斯或无瓦斯的特性,为该项技术的广泛应用提供了有利条件,只要能对循环风中的粉尘进行有效净化,就可以充分发挥其系统优越性.在应用该项技术的过程中,通常考虑循环工作面污染物为连续产生,循环通风系统中有净化器情况下的降尘措施,如凿岩、连续放矿、连续出矿.通过研究循环系统内粉尘粒径与高压喷雾粒径间的匹配关系,提出喷嘴迎风向下45°、喷嘴直径1.0mm、喷水水压7.5 MPa、喷嘴间距0.5m的布置形式,可以使粒径为10μm以下的粉尘降尘率达到90%,这可以满足循环风的降尘要求.%Controlled recirculation ventilation technology can be widely used in low-content gas coal mines, and non-coal mines have the characteristic of low-content gas or no gas, which provide anvantages for the widely use of this technology. As long as dust at circulated air is effectively purified, superiority of this technology will be fully brought into play. In u-sing this technology, it is usually considered that pollutants at recirculation working face is generated continuously and purifier is used to reduce dust at such processes as rock drilling, continuous oredrawing and continuous removal in recirculation ventilation system. After researching on the matching relationship between dust size in recirculation system and particle size of high-pressure spray, the layout form with spray head laying against the wind of 45°down, the diameter of spray head of 1. 0 mm, the hydraulic pressure of spraying water of 7. 5 MPa, and the interval distance of spray head 0. 5m can reduce the dust with particle size of 10μm by 90% , which can meet the dust reduction requirements of circulation system.

  19. Evaluation of Retention of two Different Cast Post-Core Systems and Fracture Resistance of the Restored Teeth

    Science.gov (United States)

    Khaledi, Amir Ali Reza; Sheykhian, Shekufe; Khodaei, Arash

    2015-01-01

    Statement of the Problem The survival of pulpless teeth restored with different post and core systems is still a controversial issue. Purpose This study compared the retention of two different post and core systems and also the fracture resistance of teeth restored with these systems. Material and Method Eighty endodontically treated maxillary central incisors were sectioned perpendicular to the long axis at a point 2mm incisal to the cemento-enamel junction (CEJ) and then the root canals were obturated. The restored teeth were randomly divided into two equal groups of 40. One group was restored with Nickel-Chromium (Ni-Cr) post and core system and the other group with Non-Precious Gold alloy (NPG) system. For evaluation of fracture resistance of the restored teeth, the specimens (n=20 per each group) were mounted in acrylic resin blocks and a layer of polyvinyl siloxane was applied to cover the roots. Loads were applied at an angle of 45 degrees to the long axis of the teeth and measured with a universal testing machine. The axial retention values of the studied groups (no=20) were measured on an Instron testing machine at a crosshead speed of 0.5 mm/min. Statistical analyses were performed using SPSS version 19.00 and student’s t-test (α=0.05). Results Although retention failure load for Ni-Cr system was lower than NPG system, there was no significant difference between the two systems (p= 0.7). However, fracture resistance of the teeth restored with Ni-Cr post and core system was significantly higher than NPG group (p= 0.000). Conclusion There was no significant difference between the retention of the studied post and core systems. Although significantly higher fracture thresholds were recorded for Ni-Cr post and core group, the failure loads of both systems may rarely occur clinically. PMID:26046108

  20. Nonluminous Spray Combustion in a Jet-Mixing-Type Combustor

    OpenAIRE

    1990-01-01

    A new combustion system called a jet-mixing-type combustor was designed to obtain a nonluminous blue flame of a kerosene spray. A spray was injected by a conventional-type swirl atomizer into the combustor, and combustion air was introduced through a baffle plate with 16 inlet holes. The principle of this combustion method was revealed as a prompt mixing of the air and spray, which was achieved by high-speed air jets. The combustion characteristics such as combustion stability, temperature di...

  1. Spray drying technique. I: Hardware and process parameters.

    Science.gov (United States)

    Cal, Krzysztof; Sollohub, Krzysztof

    2010-02-01

    Spray drying is a transformation of feed from a fluid state into a dried particulate form by spraying the feed into a hot drying medium. The main aim of drying by this method in pharmaceutical technology is to obtain dry particles with desired properties. This review presents the hardware and process parameters that affect the properties of the dried product. The atomization devices, drying chambers, air-droplet contact systems, the collection of dried product, auxiliary devices, the conduct of the spray drying process, and the significance of the individual parameters in the drying process, as well as the obtained product, are described and discussed.

  2. Guest Editorial Particle Sizing And Spray Analysis

    Science.gov (United States)

    Chigier, Norman; Stewart, Gerald

    1984-10-01

    The measurement of particle size and velocity in particle laden flows is a subject of interest in a variety of industrial applications. In combustion systems for electricity generation, industrial processes and heating, and transportation, where liquid and solid fuels are injected into air streams for burning in furnaces, boilers, and gas turbine and diesel engines, the initial size and velocity distributions of particles are determining factors in the overall combustion efficiency and the emission of pollutants and particulates. In the design of injectors and burners for the atomization of liquid fuels, a great deal of attention is being focused on developing instrumentation for the accurate measurement of size and velocity distributions in sprays as a function of space and time. Most recent advances in optical engineering techniques using lasers for particle measurement have focused on detailed spray characterization, where there is a major concern with spherical liquid droplets within the size range of 1 to 500 μm in diameter, with droplet velocities within the range of 1 to 100 m/s, and the requirement for making in situ measurements of moving particles by nonintrusive optical probes. The instruments being developed for spray analysis have much wider applications. These include measurement in particle laden flows encountered in a variety of industrial processes with solid particles in gas and liquid streams and liquid particles in gas streams. Sprays used in agriculture, drying, food processing, coating of materials, chemical processing, clean rooms, pharmaceuticals, plasma spraying, and icing wind tunnels are examples of systems for which information is being sought on particle and fluid dynamic interactions in which there is heat, mass, and momentum transfer in turbulent reacting flows.

  3. Vaccine delivery system for tuberculosis based on nano-sized hepatitis B virus core protein particles

    Directory of Open Access Journals (Sweden)

    Dhanasooraj D

    2013-02-01

    Full Text Available Dhananjayan Dhanasooraj, R Ajay Kumar, Sathish MundayoorMycobacterium Research Group, Rajiv Gandhi Centre for Biotechnology, Kerala, IndiaAbstract: Nano-sized hepatitis B virus core virus-like particles (HBc-VLP are suitable for uptake by antigen-presenting cells. Mycobacterium tuberculosis antigen culture filtrate protein 10 (CFP-10 is an important vaccine candidate against tuberculosis. The purified antigen shows low immune response without adjuvant and tends to have low protective efficacy. The present study is based on the assumption that expression of these proteins on HBc nanoparticles would provide higher protection when compared to the native antigen alone. The cfp-10 gene was expressed as a fusion on the major immunodominant region of HBc-VLP, and the immune response in Balb/c mice was studied and compared to pure proteins, a mixture of antigens, and fusion protein-VLP, all without using any adjuvant. The humoral, cytokine, and splenocyte cell proliferation responses suggested that the HBc-VLP bearing CFP-10 generated an antigen-specific immune response in a Th1-dependent manner. By virtue of its self-adjuvant nature and ability to form nano-sized particles, HBc-VLPs are an excellent vaccine delivery system for use with subunit protein antigens identified in the course of recent vaccine research.Keywords: Mycobacterium tuberculosis, VLP, hepatitis B virus core particle, CFP-10, self-adjuvant, vaccine delivery

  4. The Systems Biology Markup Language (SBML) Level 3 Package: Layout, Version 1 Core.

    Science.gov (United States)

    Gauges, Ralph; Rost, Ursula; Sahle, Sven; Wengler, Katja; Bergmann, Frank Thomas

    2015-09-04

    Many software tools provide facilities for depicting reaction network diagrams in a visual form. Two aspects of such a visual diagram can be distinguished: the layout (i.e.: the positioning and connections) of the elements in the diagram, and the graphical form of the elements (for example, the glyphs used for symbols, the properties of the lines connecting them, and so on). For software tools that also read and write models in SBML (Systems Biology Markup Language) format, a common need is to store the network diagram together with the SBML representation of the model. This in turn raises the question of how to encode the layout and the rendering of these diagrams. The SBML Level 3 Version 1 Core specification does not provide a mechanism for explicitly encoding diagrams, but it does provide a mechanism for SBML packages to extend the Core specification and add additional syntactical constructs. The Layout package for SBML Level 3 adds the necessary features to SBML so that diagram layouts can be encoded in SBML files, and a companion package called SBML Rendering specifies how the graphical rendering of elements can be encoded. The SBML Layout package is based on the principle that reaction network diagrams should be described as representations of entities such as species and reactions (with direct links to the underlying SBML elements), and not as arbitrary drawings or graphs; for this reason, existing languages for the description of vector drawings (such as SVG) or general graphs (such as GraphML) cannot be used.

  5. Aluminum 2195 T8 Gore Development for Space Launch System Core and Upper Stage

    Science.gov (United States)

    Volz, Martin

    2015-01-01

    Gores are pie-shaped panels that are welded together to form the dome ends of rocket fuel tanks as shown in figure 1. Replacing aluminum alloy 2219 with aluminum (Al)-lithium (Li) alloy 2195 as the Space Launch System (SLS) cryogenic tank material would save enormous amounts of weight. In fact, it has been calculated that simply replacing Al 2219 gores with Al 2195 gores on the SLS core stage domes could save approximately 3,800 pound-mass. This is because the Al-Li 2195 alloy exhibits both higher mechanical properties and lower density than the SLS baseline Al 2219 alloy. Indeed, the known advantages of Al 2195 led to its use as a replacement for Al 2219 in the shuttle external tank program. The required thicknesses of Al 2195 gores for either SLS core stage tanks or upper stage tanks will depend on the specific design configurations. The required thicknesses or widths may exceed the current experience base in the manufacture of such gores by the stretch-forming process. Accordingly, the primary objective of this project was to enhance the formability of Al 2195 by optimizing the heat treatment and stretch-forming process for gore thicknesses up to 0.75 inches, which envelop the maximum expected gore thicknesses for SLS tank configurations.

  6. A Multi-Core Parallelization Strategy for Statistical Significance Testing in Learning Classifier Systems.

    Science.gov (United States)

    Rudd, James; Moore, Jason H; Urbanowicz, Ryan J

    2013-11-01

    Permutation-based statistics for evaluating the significance of class prediction, predictive attributes, and patterns of association have only appeared within the learning classifier system (LCS) literature since 2012. While still not widely utilized by the LCS research community, formal evaluations of test statistic confidence are imperative to large and complex real world applications such as genetic epidemiology where it is standard practice to quantify the likelihood that a seemingly meaningful statistic could have been obtained purely by chance. LCS algorithms are relatively computationally expensive on their own. The compounding requirements for generating permutation-based statistics may be a limiting factor for some researchers interested in applying LCS algorithms to real world problems. Technology has made LCS parallelization strategies more accessible and thus more popular in recent years. In the present study we examine the benefits of externally parallelizing a series of independent LCS runs such that permutation testing with cross validation becomes more feasible to complete on a single multi-core workstation. We test our python implementation of this strategy in the context of a simulated complex genetic epidemiological data mining problem. Our evaluations indicate that as long as the number of concurrent processes does not exceed the number of CPU cores, the speedup achieved is approximately linear.

  7. Sprayed skin turbine component

    Science.gov (United States)

    Allen, David B

    2013-06-04

    Fabricating a turbine component (50) by casting a core structure (30), forming an array of pits (24) in an outer surface (32) of the core structure, depositing a transient liquid phase (TLP) material (40) on the outer surface of the core structure, the TLP containing a melting-point depressant, depositing a skin (42) on the outer surface of the core structure over the TLP material, and heating the assembly, thus forming both a diffusion bond and a mechanical interlock between the skin and the core structure. The heating diffuses the melting-point depressant away from the interface. Subsurface cooling channels (35) may be formed by forming grooves (34) in the outer surface of the core structure, filling the grooves with a fugitive filler (36), depositing and bonding the skin (42), then removing the fugitive material.

  8. History and Systems of Psychology: A Course to Unite a Core Curriculum

    Science.gov (United States)

    Williams, Joshua L.; McCarley, Nancy; Kraft, John

    2013-01-01

    Core curricula are designed, in part, to help undergraduate students become intellectually well-rounded. To merge core curricula with the components of the scholarship of teaching and learning movement, students engaged in core curricula need capstone courses designed to aid them in retaining information over the long term and synthesizing…

  9. Effect of whey protein isolate and β-cyclodextrin wall systems on stability of microencapsulated vanillin by spray-freeze drying method.

    Science.gov (United States)

    Hundre, Swetank Y; Karthik, P; Anandharamakrishnan, C

    2015-05-01

    Vanillin flavour is highly volatile in nature and due to that application in food incorporation is limited; hence microencapsulation of vanillin is an ideal technique to increase its stability and functionality. In this study, vanillin was microencapsulated for the first time by non-thermal spray-freeze-drying (SFD) technique and its stability was compared with other conventional techniques such as spray drying (SD) and freeze-drying (FD). Different wall materials like β-cyclodextrin (β-cyd), whey protein isolate (WPI) and combinations of these wall materials (β-cyd + WPI) were used to encapsulate vanillin. SFD microencapsulated vanillin with WPI showed spherical shape with numerous fine pores on the surface, which in turn exhibited good rehydration ability. On the other hand, SD powder depicted spherical shape without pores and FD encapsulated powder yielded larger particle sizes with flaky structure. FTIR analysis confirmed that there was no interaction between vanillin and wall materials. Moreover, spray-freeze-dried vanillin + WPI sample exhibited better thermal stability than spray dried and freeze-dried microencapsulated samples.

  10. Challenges in forming the solar system's giant planet cores via pebble accretion

    Energy Technology Data Exchange (ETDEWEB)

    Kretke, K. A.; Levison, H. F., E-mail: kretke@boulder.swri.edu [Southwest Research Institute, 1050 Walnut Street, Suite 300, Boulder, CO 80302 (United States)

    2014-12-01

    Though ∼10 M {sub ⊕} mass rocky/icy cores are commonly held as a prerequisite for the formation of gas giants, theoretical models still struggle to explain how these embryos can form within the lifetimes of gaseous circumstellar disks. In recent years, aerodynamic-aided accretion of 'pebbles', objects ranging from centimeters to meters in size, has been suggested as a potential solution to this long-standing problem. While pebble accretion has been demonstrated to be extremely effective in local simulations that look at the detailed behavior of these pebbles in the vicinity of a single planetary embryo, to date there have been no global simulations demonstrating the effectiveness of pebble accretion in a more complicated, multi-planet environment. Therefore, we have incorporated the aerodynamic-aided accretion physics into LIPAD, a Lagrangian code that can follow the collisional/accretional/dynamical evolution of a protoplanetary system, to investigate how pebble accretion manifests itself in the larger planet formation picture. We find that under generic circumstances, pebble accretion naturally leads to an 'oligarchic' type of growth in which a large number of planetesimals grow to similar-sized planets. In particular, our simulations tend to form hundreds of Mars- and Earth-mass objects between 4 and 10 AU. While merging of some oligarchs may grow massive enough to form giant planet cores, leftover oligarchs lead to planetary systems that cannot be consistent with our own solar system. We investigate various ideas presented in the literature (including evaporation fronts and planet traps) and find that none easily overcome this tendency toward oligarchic growth.

  11. Oxidation behaviour at 1123 K of AISI 304-Ni/Al-Al2O3/TiO2 multilayer system deposited by flame spray

    Directory of Open Access Journals (Sweden)

    Cervera, I.

    2011-04-01

    Full Text Available The oxidation behaviour of alumina/titania (97/3, 87/13 and 60/40 ceramic coatings using a Ni-Al coupling layer was studied in a thermobalance. Both layers were deposited on an AISI 304 stainless steel base metal by the flame spray technique. The coated steel was heated from room temperature to 1,123 K at 40 K min –1, oxidized in air for 50 h, and then cooled to room temperature at 40 K min–1. The mass gain was mainly attributed to the oxidation of Ni-Al coupling layer. Kinetic laws, DW·S –1 (mg.mm–2 vs. time (hours were close to a parabolic plot for each sample. Surface composition of ceramic top layer and the cross section of multilayer system were analysed using a wide range of experimental techniques including Scanning Electron Microscopy (SEM, equipped with a link energy dispersive X-Ray spectroscopy (EDX and X-Ray diffraction (XRD before and after the oxidation process. Coatings 97/3 and 87/13 presented a stable structure after flame spray deposition and they did not evolve with the oxidation process, while most of the 60/40 coating changed to a metastable structure after deposition and to a more stable structure after oxidation with high micro-cracks content. SEM and EDX microanalysis of the cross-sections showed that significant oxidation and a weak intergranular precipitation had been produced in the coupling layer and on the stainless steel base metal, respectively.El comportamiento a oxidación de recubrimientos cerámicos alúmina/titania (97/3, 87/13, 60/40 usando una capa de anclaje Ni-Al se ha estudiado mediante una termobalanza. Ambas capas se han depositado sobre un acero inoxidable AISI 304 utilizando la técnica de proyección llama (FS. El acero recubierto se ha calentado desde la temperatura ambiente hasta 1.123 K a 40 K min–1, se ha oxidado al aire durante 50 h, y luego se ha enfriado hasta la temperatura ambiente a 40 K min–1. La ganancia en masa se atribuye a la oxidación de la capa de enganche Ni-Al. La cin

  12. Experiments on aerosol removal by high-pressure water spray

    Energy Technology Data Exchange (ETDEWEB)

    Corno, Ada del, E-mail: delcorno@rse-web.it [RSE, Power Generation Technologies and Materials Dept, via Rubattino 54, I-20134 Milano (Italy); Morandi, Sonia, E-mail: morandi@rse-web.it [RSE, Power Generation Technologies and Materials Dept, via Rubattino 54, I-20134 Milano (Italy); Parozzi, Flavio, E-mail: parozzi@rse-web.it [RSE, Power Generation Technologies and Materials Dept, via Rubattino 54, I-20134 Milano (Italy); Araneo, Lucio, E-mail: lucio.araneo@polimi.it [Politecnico di Milano, Department of Energy, via Lambruschini 4A, I-20156 Milano (Italy); CNR-IENI, via Cozzi 53, I-20125 Milano (Italy); Casella, Francesco, E-mail: francesco2.casella@mail.polimi.it [Politecnico di Milano, Department of Energy, via Lambruschini 4A, I-20156 Milano (Italy)

    2017-01-15

    Highlights: • Experimental research to measure the efficiency of high-pressure sprays in capturing aerosols if applied to a filtered containment venting system in case of severe accident. • Cloud of monodispersed SiO{sub 2} particles with sizes 0.5 or 1.0 μm and initial concentration in the range 2–90 mg/m{sup 3}. • Carried out in a chamber 0.5 × 1.0 m and 1.5 m high, with transparent walls equipped with a high pressure water spray with single nozzle. • Respect to low-pressure sprays, removal efficiency turned out significant: the half-life for 1 μm particles with a removal high-pressure spray system is orders of magnitude shorter than that with a low-pressure sprays system. - Abstract: An experimental research was managed in the framework of the PASSAM European Project to measure the efficiency of high-pressure sprays in capturing aerosols when applied to a filtered containment venting system in case of severe accident. The campaign was carried out in a purposely built facility composed by a scrubbing chamber 0.5 × 1.0 m and 1.5 m high, with transparent walls to permit the complete view of the aerosol removal process, where the aerosol was injected to form a cloud of specific particle concentration. The chamber was equipped with a high pressure water spray system with a single nozzle placed on its top. The test matrix consisted in the combination of water pressure injections, in the range 50–130 bar, on a cloud of monodispersed SiO{sub 2} particles with sizes 0.5 or 1.0 μm and initial concentration ranging between 2 and 99 mg/m{sup 3}. The spray was kept running for 2 min and the efficiency of the removal was evaluated, along the test time, using an optical particle sizer. With respect to low-pressure sprays, the removal efficiency turned out much more significant: the half-life for 1 μm particles with a removal high-pressure spray system is orders of magnitude shorter than that with a low-pressure spray system. The highest removal rate was

  13. Development of precision spray forming for rapid tooling

    Energy Technology Data Exchange (ETDEWEB)

    Yang Yunfeng [VTT Technical Research Centre of Finland, POB 1000, FI-02044 VTT (Finland); Hannula, Simo-Pekka [VTT Technical Research Centre of Finland, POB 1000, FI-02044 VTT (Finland); Laboratory of Materials Science, Helsinki University of Technology, POB 6200, FI-02015 TKK (Finland)], E-mail: simo-pekka.hannula@tkk.fi

    2008-03-25

    The aim of the work is to improve the capability of the precision spray forming (PSF) rapid tooling process so that it can be extended to various applications. This work comprises the upgrading of the current spray-forming machine from single atomizer to twin atomizers, so that the capability is much improved in terms of insert size and complexity. As a result, the insert size is increased from about 200 mm to 400 mm in diameter, and the process is more reliable to make complex structures. Know-how is accumulated for making large and/or complex inserts with controllable surface and internal soundness. A process of spray forming conformal cooling channels in die inserts or other components used at elevated temperatures is also developed and various mould inserts are spray formed. In this paper the plant modification is described. It is shown that the twin atomizers are more reliable in spray forming small inserts of about 200 mm in diameter and of high complexity than the single atomizer system. Spray forming of disc type inserts up to 400 mm diameter is demonstrated. Influence of deposition temperature and substrate moving speed, as well as the treatment of the ceramic mould surface is determined and the technical measures to prevent surface defects related to large insert spray forming are specified.

  14. Characteristics of spray pattern on injection conditions using GDI injector

    Energy Technology Data Exchange (ETDEWEB)

    Lee, T.H. [Hanyang University, Graduate School, Seoul (Korea); Lee, K.H.; Lee, C.S. [Hanyang University, Seoul (Korea); Kim, J.Y.; Baik, S.K. [Kefico (Korea)

    1999-11-01

    Recently GDI(Gasoline Direct Injection) engine is spotlighted to achieve higher thermal efficiency under partial loads and better performance at full loads. To realize these, it is essential to make both super-lean stratified combustion and homogeneous combustion. When compared to PFI(Port Fuel Injection) engine, GDI engine needs more complicated control and optimal design with piston cavity. In addition, spray pattern must be optimized according to injection timing because ambient pressure in combustion chamber is also varied. Thus spray structure should be analyzed in details to meet various conditions. In this experimental study, system of spray visualization was built for coping with variable ambient pressures in high pressure chamber and the spray characteristics were investigated for a few sample GDI injectors. To make clear spray pattern, the images for vertical and horizontal sections were taken as fuel injection was processed. With an increase at the ambient pressure in chamber, the tip penetration and spray diameter is inclined to decrease due to rising resistance caused by the drag force of the ambient air. These results provide the information on macro spray structure and design factors for developing GDI injector. (author). 4 refs., 12 figs., 1 tab.

  15. PERIPHERY/CORE RELATIONS IN THE INCA EMPIRE CARROTS AND STICKS IN AN ANDEAN WORLD SYSTEM

    Directory of Open Access Journals (Sweden)

    Lawrence A. Kuznar

    2015-08-01

    Full Text Available The Inca Empire exhibited labor exploitation and the rational extraction of resources from peripheral polities by a core polity. These characteristics fit the general definition of a world empire, although core/periphery relations were diverse. The nature of core/periphery relations depended on several attributes of the conquered polity including population size, political power, natural resources, and distance from the Inca core at Cuzco. A dynamic picture of core/periphery relations emerges as the outcome of Inca demands for labor and raw materials, and peripheral peoples' desire for control over their autonomy while seeking benefits from the Inca state.

  16. Microplasma sprayed hydroxyapatite coatings

    CERN Document Server

    Dey, Arjun

    2015-01-01

    ""This unique book on development of microplasma sprayed HAp coating has been organized in a very compact yet comprehensive manner. This book also highlights the horizons of future research that invites the attention of global community, particularly those in bio-medical materials and bio-medical engineering field. This book will surely act as a very useful reference material for both graduate/post-graduate students and researchers in the field of biomedical, orthopedic and manufacturing engineering and research. I truly believ that this is the first ever effort which covers almost all the

  17. Shaping the nervous system: role of the core planar cell polarity genes.

    Science.gov (United States)

    Tissir, Fadel; Goffinet, André M

    2013-08-01

    Planar cell polarity (PCP) is complementary to the intrinsic polarization of single cells and refers to the global coordination of cell behaviour in the plane of a tissue and, by extension, to the signalling pathways that control it. PCP is most evident in cell sheets, and research into PCP was for years confined to studies in Drosophila melanogaster. However, PCP has more recently emerged as an important phenomenon in vertebrates, in which it regulates various developmental processes and is associated with multiple disorders. In particular, core PCP genes are crucial for the development and function of the nervous system. They are involved in neural tube closure, ependymal polarity, neuronal migration, dendritic growth and axon guidance.

  18. Element Specific Observation of Ferromagnetic Interlayer Exchange Coupled Dual Vortex Core Nano Systems

    Science.gov (United States)

    Pulecio, Javier; Arena, Dario; Warnicke, Peter; Im, Mi-Young; Pollard, Shawn; Fischer, Peter; Zhu, Yimei

    2013-03-01

    We report on the magnetic evolution of magnetic vortices in nanoscale and multilayer disk structures. The tri-layer structure consists of Co and Permalloy (Py) layers, coupled across a thin (1nm) Cu spacer that provides strong coupling between the Co and Py layers. Element-resolved full-field XMCD microscopy is combined with ultra-high resolution Lorentz transmission electron microscopy, permitting measurement of both layer-resolved domain patterns and the vortex structure averaged across the tri-layer. We examine the evolution of the vortex structure while the nanostructure is cycled through the M-H hysteresis loop. In particular we will discuss the effects of strong interlayer exchanged coupling on a dual vortex core system, including analysis of the layer-resolved coercivity, and the evolution, deformation, annihilation, and nucleation of the vortices.

  19. Challenges in Forming the Solar System's Giant Planet Cores via Pebble Accretion

    CERN Document Server

    Kretke, K A

    2014-01-01

    Though ~10 Earth mass rocky/icy cores are commonly held as a prerequisite for the formation of gas giants, theoretical models still struggle to explain how these embryos can form within the lifetimes of gaseous circumstellar disks. In recent years, aerodynamic-aided accretion of "pebbles," objects ranging from centimeters to meters in size, has been suggested as a potential solution to this long-standing problem. While pebble accretion has been demonstrated to be extremely effective in local simulations that look at the detailed behavior of these pebbles in the vicinity of a single planetary embryo, to date there have been no global simulations demonstrating the effectiveness of pebble accretion in a more complicated, multi-planet environment. Therefore, we have incorporated the aerodynamic-aided accretion physics into LIPAD, a Lagrangian code which can follow the collisional / accretional / dynamical evolution of a protoplanetary system, to investigate the how pebble accretion manifests itself in the larger ...

  20. ADVANCED SCHEDULER FOR COOPERATIVE EXECUTION OF THREADS ON MULTI-CORE SYSTEM

    Directory of Open Access Journals (Sweden)

    O. N. Karasik

    2017-01-01

    Full Text Available Three architectures of the cooperative thread scheduler in a multithreaded application that is executed on a multi-core system are considered. Architecture A0 is based on the synchronization and scheduling facilities, which are provided by the operating system. Architecture A1 introduces a new synchronization primitive and a single queue of the blocked threads in the scheduler, which reduces the interaction activity between the threads and operating system, and significantly speed up the processes of blocking and unblocking the threads. Architecture A2 replaces the single queue of blocked threads with dedicated queues, one for each of the synchronizing primitives, extends the number of internal states of the primitive, reduces the inter- dependence of the scheduling threads, and further significantly speeds up the processes of blocking and unblocking the threads. All scheduler architectures are implemented on Windows operating systems and based on the User Mode Scheduling. Important experimental results are obtained for multithreaded applications that implement two blocked parallel algorithms of solving the linear algebraic equation systems by the Gaussian elimination. The algorithms differ in the way of the data distribution among threads and by the thread synchronization models. The number of threads varied from 32 to 7936. Architecture A1 shows the acceleration of up to 8.65% and the architecture A2 shows the acceleration of up to 11.98% compared to A0 architecture for the blocked parallel algorithms computing the triangular form and performing the back substitution. On the back substitution stage of the algorithms, architecture A1 gives the acceleration of up to 125%, and architecture A2 gives the acceleration of up to 413% compared to architecture A0. The experiments clearly show that the proposed architectures, A1 and A2 outperform A0 depending on the number of thread blocking and unblocking operations, which happen during the execution of

  1. Experimental investigation of inter-core crosstalk tolerance of MIMO-OFDM/OQAM radio over multicore fiber system.

    Science.gov (United States)

    He, Jiale; Li, Borui; Deng, Lei; Tang, Ming; Gan, Lin; Fu, Songnian; Shum, Perry Ping; Liu, Deming

    2016-06-13

    In this paper, the feasibility of space division multiplexing for optical wireless fronthaul systems is experimentally demonstrated by implementing high speed MIMO-OFDM/OQAM radio signals over 20km 7-core fiber and 0.4m wireless link. Moreover, the impact of optical inter-core crosstalk in multicore fibers on the proposed MIMO-OFDM/OQAM radio over fiber system is experimentally evaluated in both SISO and MIMO configurations for comparison. The experimental results show that the inter-core crosstalk tolerance of the proposed radio over fiber system can be relaxed to -10 dB by using the proposed MIMO-OFDM/OQAM processing. These results could guide high density multicore fiber design to support a large number of antenna modules and a higher density of radio-access points for potential applications in 5G cellular system.

  2. Suggested Methods for Preventing Core Saturation Instability in HVDC Transmission Systems

    Energy Technology Data Exchange (ETDEWEB)

    Norheim, Ian

    2002-07-01

    In this thesis a study of the HVDC related phenomenon core saturation instability and methods to prevent this phenomenon is performed. It is reason to believe that this phenomenon caused disconnection of the Skagerrak HVDC link 10 August 1993. Internationally, core saturation instability has been reported at several HVDC schemes and thorough complex studies of the phenomenon has been performed. This thesis gives a detailed description of the phenomenon and suggest some interesting methods to prevent the development of it. Core saturation instability and its consequences can be described in a simplified way as follows: It is now assumed that a fundamental harmonic component is present in the DC side current. Due to the coupling between the AC side and the DC side of the HVDC converter, a subsequent second harmonic positive-sequence current and DC currents will be generated on the AC side. The DC currents will cause saturation in the converter transformers. This will cause the magnetizing current to also have a second harmonic positive-sequence component. If a high second harmonic impedance is seen from the commutation bus, a high positive-sequence second harmonic component will be present in the commutation voltages. This will result in a relatively high fundamental frequency component in the DC side voltage. If the fundamental frequency impedance at the DC side is relatively low the fundamental component in the DC side current may become larger than it originally was. In addition the HVDC control system may contribute to the fundamental frequency component in the DC side voltage, and in this way cause a system even more sensitive to core saturation instability. The large magnetizing currents that eventually will flow on the AC side cause large zero-sequence currents in the neutral conductors of the AC transmission lines connected to the HVDC link. This may result in disconnection of the lines. Alternatively, the harmonics in the large magnetizing currents may cause

  3. Investigation of high-temperature materials for uranium-fluoride-based gas core reactor systems

    Energy Technology Data Exchange (ETDEWEB)

    Collins, C.; Wang, S.C.P.; Anghaie, S.

    1988-01-01

    The development of the uranium-fluoride-based gas core reactor (GCR) systems will depend on the availability of wall materials that can survive the severe thermal, chemical, and nuclear environments of these systems. In the GCR system, the fuel/working fluid chemical constituents include enriched uranium fluorides UF{sub n} (n = 1 to 4) and fluorides operating at gas pressures of {approx}1 to 100 atm. The peak temperature of the fissioning gas/working fluid in the system can be 4000 K or higher, and the temperatures of the inner surface of the construction wall may exceed 1500 K. Wall materials that can be compatible in this environment must possess high melting points, good resistance to creep and thermal shock, and high resistance to fluorination. Compatible materials that feature high fluorination resistance are those that either do not react with fluorine/fluoride gases or those that can form a protective fluoride scale, which prevents or reduces further attack by the corrosive gas. Because fluorine and fluoride gases are strong oxidizing agents, formation of high melting point protective scales on substrate materials is more likely to be expected. This paper summarizes results of corrosion testing for evaluation of materials compatibility with uranium fluoride. These tests have been carried out by exposing different materials to UF{sub 6} gas in a closed capsule at temperatures up to 1500 K. Past exposure examinations were conducted to determine the morphology and composition of scales that were formed.

  4. ANALISIS PENGARUH KESUKSESAN IMPLEMENTASI CORE BANKING SYSTEM (CBS DENGAN BERBASIS MODEL DELONE DAN MCLEAN

    Directory of Open Access Journals (Sweden)

    Mardiana Andarwati

    2016-10-01

    Full Text Available AbstractCore Banking System (CBS is banking application system implementation to improve service customers, but whether the bank knew that CBS was categorized applied successfully or not.The purpose of theseresearch are determine the successful implementation of CBS using models DeLone and Mclean IS Success consisting of six variables are system quality , information quality, usage , user satisfaction , individual impact , and impact organizations. Test the hypothesis using the Partial Least Suare (PLS.The results of this study are the quality of the system on the intensity of use and user satisfaction are positive and significant,the quality of information on the intensity of use is positive and significant and then user satisfaction isnegative and not significant, the influence of the intensity of use of the employment impacts of individual positive and significant, user satisfaction to the impact of individual positivel and significant, the intensity of use of the user satisfaction the positive and significant, and the impact individual on the impact of the organizationis positive and significant. So, as to impact individual the best relationship of the impact organization 

  5. Solitons in a hard-core bosonic system: Gross–Pitaevskii type and beyond

    Indian Academy of Sciences (India)

    Radha Balakrishnan; Indubala I Satija

    2015-11-01

    We present a unified formulation to investigate solitons for all background densities in the Bose–Einstein condensate of a system of hard-core bosons with nearest-neighbour attractive interactions, using an extended Bose–Hubbard lattice model. We derive in detail the characteristics of the solitons supported in the continuum version, for the various cases possible. In general, two species of solitons appear: A nonpersistent (NP) type that fully delocalizes at its maximum speed and a persistent (P) type that survives even at its maximum speed. When the background condensate density is nonzero, both species coexist, the soliton is associated with a constant intrinsic frequency, and its maximum speed is the speed of sound. In contrast, when the background condensate density is zero, the system has neither a fixed frequency, nor a speed of sound. Here, the maximum soliton speed depends on the frequency, which can be tuned to lead to a cross-over between the NP-type and the P-type at a certain critical frequency, determined by the energy parameters of the system. We provide a single functional form for the soliton profile, from which diverse characteristics for various background densities can be obtained. Using mapping to spin systems enables us to characterize, in a unified fashion, the corresponding class of magnetic solitons in Heisenberg spin chains with different types of anisotropy.

  6. A systems approach to teach core topics across graduate medical education programmes.

    Science.gov (United States)

    Varkey, Prathibha; Karlapudi, Sudhakar P

    2008-12-01

    Core curricula including Ethics, Medico-legal issues, Socioeconomics, and Quality Improvement (QI) are relevant and significant for graduate medical education programmes, regardless of specialty. A lack of faculty expertise in these content areas is a frequently cited concern among specialty programmes in graduate medical education. We report the results of an institutional systems-approach to assist this challenge. Our institution has 86 post-graduate residency and fellowship training programmes serving 1068 learners. Directors of these programmes expressed the need for a centralised approach to teach learners about insurance systems and the basics of QI. Two subject matter experts in the fields of insurance systems and 1 expert in QI conducted 2 institution-wide didactics on each of the content areas, attended by 192 and 225 learners respectively. Significant improvement in learner knowledge was noted for all 3 knowledge-based questions for both content areas (P didactics. Systems-wide didactic sessions for learners of different residencies has several advantages including the efficient use of content experts, prevention of resource burnout, and cost effectiveness. This strategy may also assist programmes directors in meeting external accreditation requirements.

  7. Spray algorithm without interface construction

    Science.gov (United States)

    Al-Kadhem Majhool, Ahmed Abed; Watkins, A. P.

    2012-05-01

    This research is aimed to create a new and robust family of convective schemes to capture the interface between the dispersed and the carrier phases in a spray without the need to build up the interface boundary. The selection of the Weighted Average Flux (WAF) scheme is due to this scheme being designed to deal with random flux scheme which is second-order accurate in space and time. The convective flux in each cell face utilizes the WAF scheme blended with Switching Technique for Advection and Capturing of Surfaces (STACS) scheme for high resolution flux limiters. In the next step, the high resolution scheme is blended with the WAF scheme to provide the sharpness and boundedness of the interface by using switching strategy. In this work, the Eulerian-Eulerian framework of non-reactive turbulent spray is set in terms of theoretical proposed methodology namely spray moments of drop size distribution, presented by Beck and Watkins [1]. The computational spray model avoids the need to segregate the local droplet number distribution into parcels of identical droplets. The proposed scheme is tested on capturing the spray edges in modelling hollow cone sprays without need to reconstruct two-phase interface. A test is made on simple comparison between TVD scheme and WAF scheme using the same flux limiter on convective flow hollow cone spray. Results show the WAF scheme gives a better prediction than TVD scheme. The only way to check the accuracy of the presented models is by evaluating the spray sheet thickness.

  8. Fundamental Study on the Effect of Spray Parameters on Characteristics of P3HT:PCBM Active Layers Made by Spray Coating

    Directory of Open Access Journals (Sweden)

    Yu Xie

    2015-08-01

    Full Text Available This paper is an attempt to elucidate the effects of the important spray characteristics on the surface morphology and light absorbance of spray-on P3HT:PCBM thin-films, used as an active layer in polymer solar cells (PSCs. Spray coating or deposition is a viable scalable technique for the large-scale, fast, and low-cost fabrication of solution-processed solar cells, and has been widely used for device fabrication, although the fundamental understanding of the underlying and controlling parameters, such as spray characteristics, droplet dynamics, and surface wettability, is still limited, making the results on device fabrication not reproducible and unreliable. In this paper, following the conventional PSC architecture, a PEDOT:PSS layer is first spin-coated on glass substrates, followed by the deposition of P3HT:PCBM using an automatic ultrasonic spray coating system, with a movable nozzle tip, to mimic an industrial manufacturing process. To gain insight, the effects of the spray carrier air pressure, the number of spray passes, the precursor flow rate, and precursor concentration are studied on the surface topography and light absorbance spectra of the spray-on films. Among the results, it is found that despite the high roughness of spray-on films, the light absorbance of the film is satisfactory. It is also found that the absorbance of spray-on films is a linear function of the number of spray passes or deposition layers, based on which an effective film thickness is defined for rough spray-on films. The effective thickness of a rough spray-on P3HT:PCBM film was found to be one-quarter of that of a flat film predicted by a simple mass balance.

  9. Formation of Core-Shell Particles by Interfacial Radical Polymerization Initiated by a Glucose Oxidase-Mediated Redox System.

    Science.gov (United States)

    Shenoy, Raveesh; Tibbitt, Mark W; Anseth, Kristi S; Bowman, Christopher N

    2013-03-12

    A unique design paradigm to form core-shell particles based on interfacial radical polymerization is described. The interfacial initiation system is comprised of an enzymatic reaction between glucose and glucose oxidase (GOx) to generate hydrogen peroxide, which, in the presence of iron (Fe(2+)), generates hydroxyl radicals that initiate polymerization. Shell formation on prefabricated polymeric cores is achieved by localizing the initiation reaction to the interface of the core and a surrounding aqueous monomer formulation into which it is immersed. The interfacially confined initiation reaction is accomplished by incorporating one or more of the initiating species in the particle core and the remainder of the complementary initiating components in the surrounding media such that interactions and the resulting initiation reaction occur at the interface. This work is focused on engineering the reaction behavior and mass transport processes to promote interfacially confined polymerization, controlling the rate of shell formation, and manipulating the structure of the core-shell particle. Specifically, incorporating GOx in the precursor solution used to fabricate cores ranging from 100 to 200 μm, and the remainder of the complementary initiating components and monomer in the bulk solution prior to interfacial polymerization yielded shells whose average thickness was 20 μm after 4 min of immersion and at a bulk iron concentration of 12.5 mM. When the locations of glucose and GOx are interchanged, the average thickness of the shell was 15 or 100 μm for bulk iron concentrations of 45 and 12.5 mM, respectively. The initial locations of glucose and GOx also determine the degree of interpenetration of the core and the shell. Specifically, for a bulk iron concentration of 45 mM, the thickness of the interpenetrating layer averaged 12 μm when GOx was initially within the core, whereas no interpenetrating layer was observed when glucose was incorporated in the core. The

  10. Magnetic Resonance Imaging measurements of a water spray upstream and downstream of a spray nozzle exit orifice

    Science.gov (United States)

    Mastikhin, Igor; Arbabi, Aidin; Bade, Kyle M.

    2016-05-01

    Sprays are dynamic collections of droplets dispersed in a gas, with many industrial and agricultural applications. Quantitative characterization is essential for understanding processes of spray formation and dynamics. There exists a wide range of measurement techniques to characterize sprays, from direct imaging to phase Doppler interferometry to X-rays, which provide detailed information on spray characteristics in the "far-nozzle" region (≫10 diameters of the nozzle). However, traditional methods are limited in their ability to characterize the "near-nozzle" region where the fluid may be inside the nozzle, optically dense, or incompletely atomized. Magnetic Resonance Imaging (MRI) presents potential as a non-invasive technique that is capable of measuring optically inaccessible fluid in a quantitative fashion. In this work, MRI measurements of the spray generated by ceramic flat-fan nozzles were performed. A wide range of flow speeds in the system (0.2 to >25 m/s) necessitated short encoding times. A 3D Conical SPRITE and motion-sensitized 3D Conical SPRITE were employed. The signal from water inside the nozzle was well-characterized, both via proton density and velocity measurements. The signal outside the nozzle, in the near-nozzle region, was detectable, corresponding to the expected flat-fan spray pattern up to 3 mm away. The results demonstrate the potential of MRI for measuring spray characteristics in areas inaccessible by other methods.

  11. A simulation study on optimal oil spraying mode for high-speed rolling bearing

    Directory of Open Access Journals (Sweden)

    B.T. Pang

    2008-12-01

    Full Text Available Purpose: In this study, a numerical simulation model of the oil spraying system is established.Design/methodology/approach: Spraying lubrication is a common form of the rolling bearing lubrication. Butwith the increase of the bearing speed, the roller cage is frequently shattered, which may lead to failure of thebearing. The shatter of roller cage may be related to the spraying mode of oil. For high-speed rolling bearing,the roller cage shatter can be cracked due to the shortage of oil, caused by lubricating oil not sprayed into theroller cage shatter. This condition can be ameliorated by changing the spraying mode of oil supply system. Themodel considered the spraying speed, spraying angle, oil pressure, oil viscosity, structure of roller cage shatter,rotating speed as the main parameters. By optimization, the best way of oil spraying was obtained which canmeet lubrication requirement of high-speed rolling bearing. At the same time, the numerical simulation resultsalso revealed that the optimal spraying mode is different for different rolling bearings.Findings: The simulating results indicate that due to the effect of the air pressure and airflow thickness, theoptimal spraying position is at a region closer to the inner ring of the bearings.Practical implications: This paper will provide useful information to applying numerical simulation of the oilspraying system.Originality/value: The computer simulation allows to better understand the interdependence betweenparameters of process and choosing optimal solution.

  12. Electrostatic charge on spray droplets of aqueous surfactant solutions

    OpenAIRE

    POLAT, Mehmet; Polat, Hürriyet; Chander, Subhash

    2000-01-01

    Electrostatic charges on individual spray droplets were measured using a refined form of the Millikan oil drop method. The measurement system consisted of three main sections; a droplet generation cell, a settling column and a charge measurement chamber. The trajectories required for calculation of charge were determined using a high-speed motion analyzer coupled to a long-focal-length microscope. Charges on droplets were manipulated by the addition of surface-active agents into the spray sol...

  13. The Core Curricula of Information Systems Undergraduate Programs: A Survey of AACSB-Accredited Colleges in the United States

    Science.gov (United States)

    Yang, Samuel C.

    2016-01-01

    The author examines the present state of information systems undergraduate programs in the United States. He reviewed 516 institutions and collected data on 234 institutions offering information systems (IS) undergraduate programs. Of seven core courses required by the IS 2010 curriculum model, four are required by more than 50% of the programs,…

  14. Study on the Measurement Systems and Implementation Methods of Strategic Distributor's Core Competence Under Supply Chain Management

    Institute of Scientific and Technical Information of China (English)

    YANG Jianhua

    2006-01-01

    Under the circumstance of buyer's market, the general core competence of supply chain is radically determined by the core competence of distributors facing customers directly. Based on the analysis of channel management and creation model, the traditional Manufacture-Distributor relationship is discussed including the disadvantages of common distributor Core Competence evaluation. Meanwhile, In this paper, the Logarithm Triangular Fuzzy Number-AHP method is creatively used to evaluate the strategic distributor Core Competence evaluation index system. This method also overcomes some disadvantages that experts can directly give definite numbers when the traditional AHP method is used to value certainty and measure the qualitative index. More important, it is a scientific qualitative and quantitative evaluation tool. Then the real cases are researched based on all discussions above.

  15. Real-time Performance Verification of Core Protection and Monitoring System with Integrated Model for SMART Simulator

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Bon-Seung; Kim, Sung-Jin; Hwang, Dae-Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    In keeping with these purposes, a real-time model of the digital core protection and monitoring systems for simulator implementation was developed on the basis of SCOPS and SCOMS algorithms. In addition, important features of the software models were explained for the application to SMART simulator, and the real-time performance of the models linked with DLL was examined for various simulation scenarios. In this paper, performance verification of core protection and monitoring software is performed with integrated simulator model. A real-time performance verification of core protection and monitoring software for SMART simulator was performed with integrated simulator model. Various DLL connection tests were done for software algorithm change. In addition, typical accident scenarios of SMART were simulated with 3KEYMASTER and simulated results were compared with those of DLL linked core protection and monitoring software. Each calculational result showed good agreements.

  16. Preliminary Test of a small heat pipe for hybrid control rod in-core passive decay heat removal system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Guk; Ban, In Cheol [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-05-15

    This paper introduces 'Hybrid control rod' combining its original function and heat removal ability. The high temperature operation and high resistance of radiation should be considered to adopt the hybrid heat pipe at the in-core condition. Other design consideration is to make extra inlet parts because it has a high risk of inlet boundary failure. It means that the introduction of heat pipe system is difficult to present nuclear power plants. The other concepts are presented to out-core cooling design but it has low performance compared with in-core heat removal system. Hybrid heat pipe for in-core heat removal system suggests the solution of these problems. Ultimate objective of this research is to develop the passive emergency decay heat removal system using hybrid heat pipes targeting design bases accidents such as station black-out (SBO) and small break loss of coolant accident (SBLOCA). The purpose of this work is to confirm the performance and heat transfer behavior of hybrid heat pipe. The hybrid heat pipe has special condition for operation. Therefore, it is hard to analyze their behavior in core. Table I shows the characteristics of hybrid heat pipe and consideration for manufacturing the heat pipe.

  17. Breeding system evolution influenced the geographic expansion and diversification of the core Corvoidea (Aves: Passeriformes).

    Science.gov (United States)

    Marki, Petter Z; Fabre, Pierre-Henri; Jønsson, Knud A; Rahbek, Carsten; Fjeldså, Jon; Kennedy, Jonathan D

    2015-07-01

    Birds vary greatly in their life-history strategies, including their breeding systems, which range from brood parasitism to a system with multiple nonbreeding helpers at the nest. By far the most common arrangement, however, is where both parents participate in raising the young. The traits associated with parental care have been suggested to affect dispersal propensity and lineage diversification, but to date tests of this potential relationship at broad temporal and spatial scales have been limited. Here, using data from a globally distributed group of corvoid birds in concordance with state-dependent speciation and extinction models, we suggest that pair breeding is associated with elevated speciation rates. Estimates of transition between breeding systems imply that cooperative lineages frequently evolve biparental care, whereas pair breeders rarely become cooperative. We further highlight that these groups have differences in their spatial distributions, with pair breeders overrepresented on islands, and cooperative breeders mainly found on continents. Finally, we find that speciation rates appear to be significantly higher on islands compared to continents. These results imply that the transition from cooperative breeding to pair breeding was likely a significant contributing factor facilitating dispersal across tropical archipelagos, and subsequent world-wide phylogenetic expansion among the core Corvoidea.

  18. On the formation of compact planetary systems via concurrent core accretion and migration

    CERN Document Server

    Coleman, Gavin A L

    2016-01-01

    We present the results of planet formation N-body simulations based on a comprehensive physical model that includes planetary mass growth through mutual embryo collisions and planetesimal/boulder accretion, viscous disc evolution, planetary migration and gas accretion onto planetary cores. The main aim of this study is to determine which set of model parameters leads to the formation of planetary systems that are similar to the compact low mass multi-planet systems that have been discovered by radial velocity surveys and the Kepler mission. We vary the initial disc mass, solids-to-gas ratio and the sizes of the boulders/planetesimals, and for a restricted volume of the parameter space we find that compact systems containing terrestrial planets, super-Earths and Neptune-like bodies arise as natural outcomes of the simulations. Disc models with low values of the solids-to-gas ratio can only form short-period super-Earths and Neptunes when small planetesimals/boulders provide the main source of accretion, since ...

  19. A Multiple System of Radio Sources at the Core of the L723 Multipolar Outflow

    CERN Document Server

    Carrasco-Gonzalez, Carlos; Rodriguez, Luis F; Torrelles, Jose M; Osorio, Mayra; Girart, Jose M

    2007-01-01

    We present high angular resolution Very Large Array multi-epoch continuum observations at 3.6 cm and 7 mm towards the core of the L723 multipolar outflow revealing a multiple system of four radio sources suspected to be YSOs in a region of only ~4 arcsecs (1200 AU) in extent. The 3.6 cm observations show that the previously detected source VLA 2 contains a close (separation ~0.29 arcsecs or ~90 AU) radio binary, with components (A and B) along a position angle of ~150 degrees. The northern component (VLA 2A) of this binary system is also detected in the 7 mm observations, with a positive spectral index between 3.6 cm and 7 mm. In addition, the source VLA 2A is associated with extended emission along a position angle of ~115 degrees, that we interpret as outflowing shock-ionized gas that is exciting a system of HH objects with the same position angle. A third, weak 3.6 cm source, VLA 2C, that is detected also at 7 mm, is located ~0.7 arcsecs northeast of VLA 2A, and is possibly associated with the water maser ...

  20. Methods for coating conduit interior surfaces utilizing a thermal spray gun with extension arm

    Science.gov (United States)

    Moore, Karen A.; Zatorski, Raymond A.

    2007-10-02

    Systems and methods for applying a coating to an interior surface of a conduit. In one embodiment, a spray gun configured to apply a coating is attached to an extension arm which may be inserted into the bore of a pipe. The spray gun may be a thermal spray gun adapted to apply a powder coating. An evacuation system may be used to provide a volume area of reduced air pressure for drawing overspray out of the pipe interior during coating. The extension arm as well as the spray gun may be cooled to maintain a consistent temperature in the system, allowing for more consistent coating.