WorldWideScience

Sample records for core shroud welds

  1. Seismic core shroud

    International Nuclear Information System (INIS)

    Puri, A.; Mullooly, J.F.

    1981-01-01

    A core shroud is provided, comprising: a coolant boundary, following the shape of the core boundary, for channeling the coolant through the fuel assemblies; a cylindrical band positioned inside the core barrel and surrounding the coolant boundary; and support members extending from the coolant boundary to the band, for transferring load from the coolant boundary to the band. The shroud may be assembled in parts using automated welding techniques, and it may be adjusted to fit the reactor core easily

  2. Repairing method and apparatus for weld portion of reactor core shroud

    Energy Technology Data Exchange (ETDEWEB)

    Tsujimura, Hiroshi; Tamai, Yasukata; Kurosawa, Koichi (Hitachi Ltd., Tokyo (Japan)); Toyota, Seiichi; Kikuchi, Toshikazu.

    1993-12-07

    A method of repairing a weld portion in a cylindrical reactor core shroud comprises a first step of inspecting a weld portion by an ultrasonic flow testing device from the surface of the reactor core shroud, a second step of applying repairing fabrication for cracked portion if it is discovered by the test and a third step of applying a surface modification to the fabricated portion after the repairing fabrication. As a result, repairing fabrication for the crack caused by stress corrosion crack or the like is enabled and reoccurrence of the stress corrosion crack in the repair fabrication portion can be prevented. Operator's exposure dose is minimized by shielding with reactor water or shielding plate. In a case of using the shielding plate, welding and surface improvement can be practiced in atmospheric air instead of water-submerged welding. Water does not intrude from the outside of the shroud and occurrence of penetration crack can be coped with. Further, it is possible to reduce cost and save labors for parts exchange by using the parts in common, to improve the operation efficiency. (N.H.).

  3. Repairing method and apparatus for weld portion of reactor core shroud

    International Nuclear Information System (INIS)

    Tsujimura, Hiroshi; Tamai, Yasukata; Kurosawa, Koichi; Toyota, Seiichi; Kikuchi, Toshikazu.

    1993-01-01

    A method of repairing a weld portion in a cylindrical reactor core shroud comprises a first step of inspecting a weld portion by an ultrasonic flow testing device from the surface of the reactor core shroud, a second step of applying repairing fabrication for cracked portion if it is discovered by the test and a third step of applying a surface modification to the fabricated portion after the repairing fabrication. As a result, repairing fabrication for the crack caused by stress corrosion crack or the like is enabled and reoccurrence of the stress corrosion crack in the repair fabrication portion can be prevented. Operator's exposure dose is minimized by shielding with reactor water or shielding plate. In a case of using the shielding plate, welding and surface improvement can be practiced in atmospheric air instead of water-submerged welding. Water does not intrude from the outside of the shroud and occurrence of penetration crack can be coped with. Further, it is possible to reduce cost and save labors for parts exchange by using the parts in common, to improve the operation efficiency. (N.H.)

  4. Determination of the neutron fluence in the welding of the 'Core shroud' of the BWR reactor core

    International Nuclear Information System (INIS)

    Lucatero, M.A.; Xolocostli M, J.V.; Gomez T, A.M.; Palacios H, J.C.

    2006-01-01

    With the purpose of defining the inspection frequency, in function of the embrittlement of the materials that compose the welding of the 'Core Shroud' or encircling of the core of a BWR type reactor, is necessary to know the neutron fluence received for this welding. In the work the calculated values of neutron fluence accumulated maxim (E > 1 MeV) during the first 8 operation cycles of the reactor are presented. The calculations were carried out according to the NRC Regulatory Guide 1.190, making use of the DORT code, which solves the transport equation in discreet ordinate in two dimensions (xy, rΘ, and rz). The results in 3D were obtained applying the Synthesis method according to the guide before mentioned. Results are presented for the horizontal welding H3, H4, and H5, showing the corresponding curves to the fluence accumulated to the cycle 8 and a projection for the cycle 14 is presented. (Author)

  5. Core shroud corner joints

    Science.gov (United States)

    Gilmore, Charles B.; Forsyth, David R.

    2013-09-10

    A core shroud is provided, which includes a number of planar members, a number of unitary corners, and a number of subassemblies each comprising a combination of the planar members and the unitary corners. Each unitary corner comprises a unitary extrusion including a first planar portion and a second planar portion disposed perpendicularly with respect to the first planar portion. At least one of the subassemblies comprises a plurality of the unitary corners disposed side-by-side in an alternating opposing relationship. A plurality of the subassemblies can be combined to form a quarter perimeter segment of the core shroud. Four quarter perimeter segments join together to form the core shroud.

  6. Determination of the neutron fluence in the welding of the 'Core shroud' of the BWR reactor core; Determinacion de la fluencia neutronica en las soldaduras del 'core shroud' del nucleo de un reactor BWR

    Energy Technology Data Exchange (ETDEWEB)

    Lucatero, M A; Xolocostli M, J V; Gomez T, A M; Palacios H, J C [ININ, 52750 Ocoyoacac, Estado de mexico (Mexico)

    2006-07-01

    With the purpose of defining the inspection frequency, in function of the embrittlement of the materials that compose the welding of the 'Core Shroud' or encircling of the core of a BWR type reactor, is necessary to know the neutron fluence received for this welding. In the work the calculated values of neutron fluence accumulated maxim (E > 1 MeV) during the first 8 operation cycles of the reactor are presented. The calculations were carried out according to the NRC Regulatory Guide 1.190, making use of the DORT code, which solves the transport equation in discreet ordinate in two dimensions (xy, r{theta}, and rz). The results in 3D were obtained applying the Synthesis method according to the guide before mentioned. Results are presented for the horizontal welding H3, H4, and H5, showing the corresponding curves to the fluence accumulated to the cycle 8 and a projection for the cycle 14 is presented. (Author)

  7. Changing the core shroud support in Oskarshamn 1

    International Nuclear Information System (INIS)

    Graae, Tapani

    1995-01-01

    Oskarshamn 1 is now being prepared for restart after a repair and upgrade outage which has lasted for over two years. The modernisation programme, called Fenix, included the repair of the core shroud following the discovery of weld cracking in it, a problem that has plagued BWRs throughout the world. At Oskarshamn 1 it was decided to replace the shroud support. (author)

  8. Structural assessment of TAPS core shroud under accident loads

    International Nuclear Information System (INIS)

    Bhasin, Vivek; Kushwaha, H.S.; Mahajan, S.C.; Kakodkar, A.

    1996-09-01

    Over the last few years, the Core Shroud of Boiling Water Reactors (BWRs) operating in foreign countries, have developed cracks at weld locations. As a first step for assessment of structural safety of Tarapur Atomic Power Station (TAPS) core shroud, its detailed stress analysis was done for postulated accident loads. This report is concerned with structural assessment of core shroud, of BWR at TAPS, subjected to loads resulting from main steam line break (MSLB), recirculation line break (RLB) and safe shut down earthquake. The stress analysis was done for core shroud in healthy condition and without any crack since, visual examination conducted till now, do not indicate presence of any flaw. Dynamic structural analysis for MSLB and RLB events was done using dynamic load factor (DLF) method. The complete core shroud and its associated components were modelled and analysed using 3D plate/shell elements. Since, the components of core shroud are submerged in water, hence, hydrodynamic added mass was also considered for evaluation of natural frequencies. It was concluded that from structural point of view, adequate safety margin is available under all the accident loads. Nonlinear analysis was done to evaluate buckling/collapse load. The collapse/buckling load have sufficient margin against the allowable limits. The displacements are low hence, the insertion of control rod may not be affected. (author)

  9. Determination of the neutron fluence in the welding of the 'Core shroud' of the BWR reactor core; Determinacion de la fluencia neutronica en las soldaduras del 'core shroud' del nucleo de un reactor BWR

    Energy Technology Data Exchange (ETDEWEB)

    Lucatero, M.A.; Xolocostli M, J.V.; Gomez T, A.M.; Palacios H, J.C. [ININ, 52750 Ocoyoacac, Estado de mexico (Mexico)]. e-mail: mal@nuclear.inin.mx

    2006-07-01

    With the purpose of defining the inspection frequency, in function of the embrittlement of the materials that compose the welding of the 'Core Shroud' or encircling of the core of a BWR type reactor, is necessary to know the neutron fluence received for this welding. In the work the calculated values of neutron fluence accumulated maxim (E > 1 MeV) during the first 8 operation cycles of the reactor are presented. The calculations were carried out according to the NRC Regulatory Guide 1.190, making use of the DORT code, which solves the transport equation in discreet ordinate in two dimensions (xy, r{theta}, and rz). The results in 3D were obtained applying the Synthesis method according to the guide before mentioned. Results are presented for the horizontal welding H3, H4, and H5, showing the corresponding curves to the fluence accumulated to the cycle 8 and a projection for the cycle 14 is presented. (Author)

  10. Latest SCC Issues of core shroud and recirculation piping in Japanese BWRs

    International Nuclear Information System (INIS)

    Okamura, Yuichi; Sakashita, Akihiro; Fukuda, Toshihiko; Yamashita, Hironobu; Futami, Tsuneo

    2003-01-01

    This paper reports that a high incidence of stress corrosion cracking (SCC) cracks have been found in the core Shroud and PLR piping of several Japanese BWR plants. The results of investigations show the cracks to be of SCC type in 316L stainless steel and with different characteristics from the type in 304 stainless steel. The cracks on the shroud surface were mainly verified near the shroud ring weld line and core region weld line, and the crack shape could be classified into two types: one type was circumferential cracking in the shroud ring, and the other was isolated occurrences of radial cracking in the core region. The structural integrity of those shrouds with cracks was evaluated under a conservative assumption and confirmed to be adequate. A relatively large error was identified in measuring the crack depth in the PLR piping. (author)

  11. Experimental determination of residual stress by neutron diffraction in a boiling water reactor core shroud

    International Nuclear Information System (INIS)

    Payzant, A.; Spooner, S.; Zhu, Xiaojing; Hubbard, C.R.

    1996-01-01

    Residual strains in a 51 mm (2-inch) thick 304L stainless steel plate have been measured by neutron diffraction and interpreted in terms of residual stress. The plate, measuring (300 mm) in area, was removed from a 6m (20-ft.) diameter unirradiated boiling water reactor core shroud, and included a multiple-pass horizontal weld which joined two of the cylindrical shells which comprise the core shroud. Residual stress mapping was undertaken in the heat affected zone, concentrating on the outside half of the plate thickness. Variations in residual stresses with location appeared consistent with trends expected from finite element calculations, considering that a large fraction of the residual hoop stress was released upon removal of the plate from the core shroud cylinder

  12. LOFT drag-disc turbine tansducer shroud and cover weld analysis and evaluation

    International Nuclear Information System (INIS)

    Martinell, J.S.

    1978-01-01

    The results are presented of stress analysis and evaluation of the drag-disc turbine transducer (DTT) shroud and cover welds used in the Loss-of-Fluid Test (LOFT) facility. The analysis concerns LOFT DTTs currently installed and/or planned for use in future experiments by LOFT Experimental Measurements Branch personnel. Thermal/hydraulic conditions for Experiments L1-5 and L2-4 (for all nuclear tests) were used to predict the loads experienced by the various shroud and cover welds. The results of this analysis include minimum fatigue life for all subject welds, and Applied Mechanics Branch recommendations for improving the structural integrity of critically stressed welds

  13. Last experiences on ID BWR shroud inspection and the new developments to examine the below core plate areas

    Energy Technology Data Exchange (ETDEWEB)

    Alberdi, R.; Gonzalez, E.; Willke, A.; Yague, L. [TECNATOM SA, Madrid (Spain)

    2001-07-01

    In recent years, the owners of BWR type nuclear power plants have had to address new inspection requirements relating to the core shroud inside the reactor vessel, the aim of which is to contain the fuel assemblies and provide support for the structures located in the upper part of the reactor. The shroud consists of a cylinder measuring some 40-50 mm in thickness, manufactured from various sections of AISI-304 stainless steel and INCONEL, joined by vertical and circumferential welds. The appearance of unstable cracks in these welds would directly affect the structural integrity of the component and the safety of the plant. As regards access to the core shroud and to the surface to be examined, two alternatives might be considered: inspection from outside the component, moving along the so-called annulus between the reactor vessel wall and the component (OD inspection), or from the interior (ID inspection). With a view to addressing this problem, Tecnatom has in recent years launched several projects, grouped under the generic name TEIDE, in order to develop scanners and NDT techniques achieving the maximum inspection coverage of this component. The decision was taken to perform ID inspections, mainly because this type of scanners were not available at that time, and which provide the 4 following advantages. 1) Maximum inspected weld length. This avoids interference with the jet pumps and the systems present in the annulus and affecting OD inspections. Besides, the repairs performed on in-service core shrouds in all cases imply the addition of new fixed elements on their outer surface, since the fuel assembly space must be left free. 2) Reduction of inspection times and of unforeseen events: maintenance of planning schedules, reduction of personnel doses, reduced critical path time. 3) High inspection accuracy and repeatability. 4) Simplification of equipment positioning work (similar to the installation of fuel assemblies). As regards inspection techniques, the

  14. Installation technology of reactor internals on shroud replacement work

    International Nuclear Information System (INIS)

    Miyano, Hiroshi

    1999-01-01

    Since the replacement of large welded reactor internals much as a core shroud did not have a precedent in the world, quite a few technologies had to be developed. Especially for the installation of new core shroud, jet pumps, core plate and top guide, the accurate weld and fit-up techniques for large structures was required to secure their integrity. The vessel shielding system was utilized to reduce general area dose rate such that all replacement work. For jet pump installation, automatic remote welding machines were used for high radiation area. As for the core shroud, shroud support weld prep machining tool with high accuracy, jacking system to support fit-up, new weld machine for small work space and low heat input weld joint were developed. Shroud replacement work in Fukushima Dai-ichi NPS Unit 3 (1F-3) with application of these development techniques, was successfully accomplished. The technology is applied for 1F-2 replacement work also. (author)

  15. Effect of shroud material on the spherical aberration in electromagnetic focusing lens used in electron beam welding machines

    International Nuclear Information System (INIS)

    Saha, Srijit Kumar; Gupta, Sachin; Kandaswamy, E.

    2015-01-01

    Beam Power density on the target (typically 10"5 -10"6 W/cm"2 ) plays a major role in attaining good weld quality in electron beam welding. Spherical aberration in the electromagnetic focusing lenses places a limitation in attaining the required power density on the target. Conventionally, iron or low carbon steel core are being used as a shroud material in the electromagnetic lenses. The practical difficulty faced in the long term performance of these lenses has initiated a systematic study for various shroud materials and the effect on spherical aberration limited spot size. The particle trajectories were simulated with different magnetic materials, using commercial software. The spherical aberration was found to be the lowest in the air core lens. The possibility of using an aircore electromagnetic focusing lens in electron beam machines is discussed in this paper. The beam power density is limited by various factors such as spherical aberration, space charge aberrations, gun alignment and power source parameters. (author)

  16. Status report: Intergranular stress corrosion cracking of BWR core shrouds and other internal components

    International Nuclear Information System (INIS)

    1996-03-01

    On July 25, 1994, the US Nuclear Regulatory Commission (NRC) issued Generic Letter (GL) 94-03 to obtain information needed to assess compliance with regulatory requirements regarding the structural integrity of core shrouds in domestic boiling water reactors (BWRs). This report begins with a brief description of the safety significance of intergranular stress corrosion cracking (IGSCC) as it relates to the design and function of BWR core shrouds and other internal components. It then presents a brief history of shroud cracking events both in the US and abroad, followed by an indepth summary of the industry actions to address the issue of IGSCC in BWR core shrouds and other internal components. This report summarizes the staff's basis for issuing GL 94-03, as well as the staff's assessment of plant-specific responses to GL 94-03. The staff is continually evaluating the licensee inspection programs and the results from examinations of BWR core shrouds and other internal components. This report is representative of submittals to and evaluations by the staff as of September 30, 1995. An update of this report will be issued at a later date

  17. Assessment of the fracture toughness of irradiated stainless steel for BWR core shrouds

    International Nuclear Information System (INIS)

    Carter, R.G.; Gamble, R.M.

    2002-01-01

    Data from previously performed experiments were collected and evaluated to determine the relationship between fracture toughness and neutron fluence for conditions representative of BWR core shrouds. This relationship together with EPFM (elastic-plastic fracture mechanics) analysis methods similar to those in Appendix K of Section XI of the ASME Code were used to compute margin against failure as a function of neutron fluence for postulated cracks in BWR core shrouds. The results indicate that EPFM analyses can be used for flaw evaluation of core shrouds at fluence levels less than 3.10 21 n/cm 2 (E > 1 MeV). At fluence levels equal to or greater than 3.10 21 n/cm 2 , LEFM (linear-elastic fracture mechanics) analyses should be used with K Ic = 55 MPa-(m) 0.5 . (authors)

  18. BWRVIP-123, Revision 1NP: BWR Vessel and Internals Project Removal and Analysis of Material Samples from Core Shroud and Top Guide at Susquehanna Unit 2

    International Nuclear Information System (INIS)

    Howell, D.; Haertel, T.; Lindberg, J.; Oliver, B.; Greenwood, L.

    2005-01-01

    Fast and thermal fluence were determined by a laboratory analysis of the samples. Fluence in the upper regions of the shroud (between the H1 and H2 welds) was substantially lower than that in the belt line region (near the H4 weld). Fluence in the top guide was significantly higher than fluence on the core shroud. As expected, helium concentrations were highest in regions where fluence was highest. Estimates of the initial boron concentration were similar to measurements made on materials removed from other reactors. A technical justification evaluated the acceptability of the sampling process with respect to structural consequences of material removal and to increased cracking susceptibility due to the as-left condition. It was determined that the sampling process was acceptable on both counts

  19. ''Last experiences on ID BWR shroud inspection and the new developments to examine the below core plate areas''

    Energy Technology Data Exchange (ETDEWEB)

    Alberdi, R.; Willke, A.; Gonzalez, E.; Yague, L

    2001-07-01

    In recent years, the owners of BWR type nuclear power plants have had to address new inspection requirements relating to the core shroud inside the reactor vessel, the aim of which is to contain the fuel assemblies and provide support for the structures located in the upper part of the reactor. The shroud consists of a cylinder measuring some 40-50 mm in thickness, manufactured from various sections of AISI-304 stainless steel and INCONEL, joined by vertical and circumferential welds. The appearance of unstable cracks in these welds would directly affect the structural integrity of the component and the safety of the plant. As regards access to the core shroud and to the surface to be examined, two alternatives might be considered: inspection from outside the component, moving along the so-called annulus between the reactor vessel wall and the component (OD inspection), or from the interior (ID inspection). With a view to addressing this problem, Tecnatom has in recent years launched several projects, grouped under the generic name TEIDE, in order to develop scanners and NDT techniques achieving the maximum inspection coverage of this component. As regards inspection techniques, the decision was taken to carry out acquisition simultaneously using both ultrasonics (UT) and eddy currents (ET). (author)

  20. Reactor shroud joint

    International Nuclear Information System (INIS)

    Ballas, G.J.; Fife, A.B.; Ganz, I.

    1998-01-01

    A shroud for a nuclear reactor is described. In one embodiment, the shroud includes first and second shroud sections, and each shroud section includes a substantially cylindrical main body having a first end and a second end. With respect to each shroud section, a flange is located at the main body first end, and the flange has a plurality of bolt openings therein and a plurality of scalloped regions. The first shroud section is welded to the second shroud section, and at least some of the bolt openings in the first shroud section flange align with respective bolt openings in the second shroud section flange. In the event that the onset of inter-granular stress corrosion cracking is ever detected in the weld between the shroud section, bolts are inserted through bolt openings in the first shroud section flange and through aligned bolt openings the second shroud section flange. Each bolt, in one embodiment, has a shank section and first and second threaded end sections. Nuts are threadedly engaged to the threaded end sections and tightened against the respective flanges. 4 figs

  1. Radiation control in the core shroud replacement project of Fukushima-Daiichi NPS Unit no.2

    International Nuclear Information System (INIS)

    Kokubun, Yasunori; Haraguchi, Kazuyuki; Yoshizawa, Yuji; Yamada, Yasuo

    2000-01-01

    In Fukushima-Daiichi NPS Unit no.2, the core shroud replacement was made following that of Unit no.3. This project involves replacement of wide-ranging equipment, with the project extending over a long period of time. This was expected to increase the dose equivalent of workers. Accordingly, various measures to lower the dose equivalent were planned and implemented. We outline radiation controls implemented during the project period. The shroud replacement project was a preventive maintenance project which consisted of replacing the core shroud and other internals with those less susceptible to stress corrosion cracking. Problems related to radiation control during the replacement project of Unit no.3 the year before last were summarized. We studied, planned, and implemented measures to be reflected in the project for Unit no.2. This was done to lower the dose equivalent as much as possible while paying due attention to safety and economy. For radiation control during the project for Unit no.2, experiments with Unit no.3 were fully exploited and any effective measures taken at that time were adopted in this project. Problems pointed out after that project with Unit no.3 resulted in new or improved measures being taken with Unit no.2. Measures taken over from the project with Unit no.3; a. Daily analysis of difference between expected and actual dose equivalents b. Dose reduction measures, chemical decontamination, temporary shield, flushing, etc.; New or improved measures; a. Dose reduction measures: Mechanical removal of radiation sources, strengthening of shield, etc.; b. Automatic remote control system; c. Use of new protective devices. With measures implemented as described above, the dose equivalent during shroud replacement of Unit no.2 was reduced by about 30% when compared with that (11.5 persons · Sv) in the case of Unit no.3. Implemented radiation controls will be checked and reviewed in future for reflection in projects with other units. (author)

  2. Comparison of design margin for core shroud in between design and construction code and fitness-for-service code

    International Nuclear Information System (INIS)

    Dozaki, Koji

    2007-01-01

    Structural design methods for core shroud of BWR are specified in JSME Design and Construction Code, like ASME Boiler and Pressure Vessel Code Sec. III, as a part of core support structure. Design margins are defined according to combination of the structural design method selected and service limit considered. Basically, those margins in JSME Code were determined after ASME Sec. III. Designers can select so-called twice-slope method for core shroud design among those design methods. On the other hand, flaw evaluation rules have been established for core shroud in JSME Fitness-for-Service Code. Twice-slope method is also adopted for fracture evaluation in that code even when the core shroud contains a flaw. Design margin was determined as structural factors separately from Design and Construction Code. As a natural consequence, there is a difference in those design margins between the two codes. In this paper, it is shown that the design margin in Fitness-for-Service Code is conservative by experimental evidences. Comparison of design margins between the two codes is discussed. (author)

  3. Impact forces on a core shroud of an excited PWR fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Collard, B.; Vallory, J. [CEA Cadarache, 13 - Saint Paul lez Durance (France)

    2001-07-01

    Seismic excitation of PWR internals may induce large motions of the fuel assemblies (FA). This could result in impact between assemblies or between assemblies and core shroud. Forces generated during these shocks are often the basis for the maximum design loads of the spacer grids and fuel rods. An experimental program has been conducted at the French Nuclear Reactor Directorate (CEA) to measure the impact forces of a reduced scale FA on the test section under different environmental conditions. Within the framework of the tests presented, the effect of the FA environment (air, stagnant water, water under flow) on the maximum impact forces measured at grid levels and on the energy dissipated during the shock is examined. A 'fluid cushioning' effect (dissipative) between the grids and the wall is sought. Experimental results show that the axial flow has a great influence on the impact forces. The greater the axial flow velocity is, the lower the impact forces are. The tests of impact of an assembly on a wall were analyzed compared to the tests carried out without impact. This analysis related on the measured forces of impact and the variation of the measured/computed total energy of the system. The whole of these tests in air and water shows that the 'fluid cushioning' effect required exists but is not significant. Thus the presence of water does not decrease the forces of impact, and does not amplify the quantity of energy dissipated during the shock. The fact that the 'fluid cushioning' effect is weak compared to more analytical tests probably comes from our 'not perfect' or 'realistic' conditions of tests which involve an angle between the grid and the wall at the shock moment.

  4. Impact forces on a core shroud of an excited PWR fuel assembly

    International Nuclear Information System (INIS)

    Collard, B.; Vallory, J.

    2001-01-01

    Seismic excitation of PWR internals may induce large motions of the fuel assemblies (FA). This could result in impact between assemblies or between assemblies and core shroud. Forces generated during these shocks are often the basis for the maximum design loads of the spacer grids and fuel rods. An experimental program has been conducted at the French Nuclear Reactor Directorate (CEA) to measure the impact forces of a reduced scale FA on the test section under different environmental conditions. Within the framework of the tests presented, the effect of the FA environment (air, stagnant water, water under flow) on the maximum impact forces measured at grid levels and on the energy dissipated during the shock is examined. A 'fluid cushioning' effect (dissipative) between the grids and the wall is sought. Experimental results show that the axial flow has a great influence on the impact forces. The greater the axial flow velocity is, the lower the impact forces are. The tests of impact of an assembly on a wall were analyzed compared to the tests carried out without impact. This analysis related on the measured forces of impact and the variation of the measured/computed total energy of the system. The whole of these tests in air and water shows that the 'fluid cushioning' effect required exists but is not significant. Thus the presence of water does not decrease the forces of impact, and does not amplify the quantity of energy dissipated during the shock. The fact that the 'fluid cushioning' effect is weak compared to more analytical tests probably comes from our 'not perfect' or 'realistic' conditions of tests which involve an angle between the grid and the wall at the shock moment

  5. Comparison of hot ductility and stress corrosion cracking sensitivity of heat affected zone among type 304, type 316 and type 347 austenitic stainless steels for BWR core shroud and recirculation line piping

    International Nuclear Information System (INIS)

    Yamamura, Yoshihiko; Kayano, Rinzo; Azuma, Tukasa; Tanaka, Yasuhiko; Ishio, Kotaro; Sasaki, Tomo; Suzuki, Komei

    2005-01-01

    The present paper proposes the weld structure shroud made by the integrated type forging. The proposed structure can minimize the occurrence of SCC in the joint weld portion in the shroud. Furthermore, based on the measurement on EPR (Electrochemical Potentiokinetic Reactivation) ratio of simulated HAZ (Heat Affected Zone) which was made by giving double thermal cycles and plastic deformation to the material, the requirement of carbon content of less than 0.04 % is proposed for type 316 steel. The requirement proposed is the same restriction as that of KTA regel

  6. Aerodynamic effect of a honeycomb rotor tip shroud on a 50.8-centimeter-tip-diameter core turbine

    Science.gov (United States)

    Moffitt, T. P.; Whitney, W. J.

    1983-01-01

    A 50.8-cm-tip-diameter turbine equipped with a rotor tip shroud of hexagonal cell (or honeycomb) cross section has been tested in warm air (416 K) for a range of shroud coolant to primary flow rates. Test results were also obtained for the same turbine operated with a solid shroud for comparison. The results showed that the combined effect of the honeycomb shroud and the coolant flow was to cause a reduction of 2.8 points in efficiency at design speed, pressure ratio, and coolant flow rate. With the coolant system inactivated, the honeycomb shroud caused a decrease in efficiency of 2.3 points. These results and those obtained from a small reference turbine indicate that the dominant factor governing honeycomb tip shroud loss is the ratio of honeycomb depth to blade span. The loss results of the two shrouds could be correlated on this basis. The same honeycomb and coolant effects are expected to occur for the hot (2200 K) version of this turbine.

  7. Optimisation of the core shroud bypass flow in the nuclear power plant Unterweser. Part 2: hardware implementation

    International Nuclear Information System (INIS)

    Ploeger, M.; Weissmueller, W.; Strobel, R.

    2001-01-01

    As result of the thermohydraulic analysis a modification of the upper core shroud former plate was identified. The goal was to machine 36 holes with a diameter of 56 mm into the plate. Among different methods of machining the EDM technique was selected. EDM means ''electric discharge machining''. This method contained some advantages. First, most of the equipment was available and the erodiation tools had to be optimised only. Secondly, EDM does not produce any metal chips which could probably reach the primary circuit. Tests were made using two types of erodiation electrodes. One type like a tube machined a circular groove into the 30 mm thick plate leaving two ligaments of solid material at the bottom of the groove. These were cut out in a second step. The EDM tool for cutting out is shown. The structure of the groove making tool looks quite similar. It differs in the kind of electrode only. Handling the EDM tools in the test facility is ALSO shown. (author)

  8. Weld metal microstructures of hardfacing deposits produced by self-shielded flux-cored arc welding

    International Nuclear Information System (INIS)

    Dumovic, M.; Monaghan, B.J.; Li, H.; Norrish, J.; Dunne, D.P.

    2015-01-01

    The molten pool weld produced during self-shielded flux-cored arc welding (SSFCAW) is protected from gas porosity arising from oxygen and nitrogen by reaction ('killing') of these gases by aluminium. However, residual Al can result in mixed micro-structures of δ-ferrite, martensite and bainite in hardfacing weld metals produced by SSFCAW and therefore, microstructural control can be an issue for hardfacing weld repair. The effect of the residual Al content on weld metal micro-structure has been examined using thermodynamic modeling and dilatometric analysis. It is concluded that the typical Al content of about 1 wt% promotes δ-ferrite formation at the expense of austenite and its martensitic/bainitic product phase(s), thereby compromising the wear resistance of the hardfacing deposit. This paper also demonstrates how the development of a Schaeffler-type diagram for predicting the weld metal micro-structure can provide guidance on weld filler metal design to produce the optimum microstructure for industrial hardfacing applications.

  9. Stress corrosion cracking countermeasure observed on Ni-based alloy welds of BWR core support structure

    International Nuclear Information System (INIS)

    Sagawa, Wataru; Aoki, Takayuki; Itou, Takashi; Enomoto, Kunio; Hayashi, Eisaku; Ishikawa, Tetsuya

    2009-01-01

    The effect of hydrostatic test on the residual stress re-distribution was simulated by experiment to confirm the residual stress behavior of the cone-shaped shroud support to reactor pressure vessel (RPV) weld, where a number of cracks due to stress corrosion cracking (SCC) were observed on the inner side only. Test specimen with tensile residual stress was loaded and unloaded with axial plus bending load, which simulates the hydrostatic test load, and the strain change was measured during the test to observe the residual stress behavior. The results verify that the residual stresses of the shroud support to the RPV weld were reduced and the stresses on inner and outer sides were reversed by the hydrostatic test. As the SCC countermeasure, the shot peening (SP) technology was applied. Residual stress reduction by SP on the complicated configuration, and improvement of SCC resistance and endurance of the compressive residual stress were experimentally confirmed. Then, SP treatment procedures on the actual structure were confirmed and a field application technique was established

  10. Automatic welding technologies for long-distance pipelines by use of all-position self-shielded flux cored wires

    Directory of Open Access Journals (Sweden)

    Zeng Huilin

    2014-10-01

    Full Text Available In order to realize the automatic welding of pipes in a complex operation environment, an automatic welding system has been developed by use of all-position self-shielded flux cored wires due to their advantages, such as all-position weldability, good detachability, arc's stability, low incomplete fusion, no need for welding protective gas or protection against wind when the wind speed is < 8 m/s. This system consists of a welding carrier, a guide rail, an auto-control system, a welding source, a wire feeder, and so on. Welding experiments with this system were performed on the X-80 pipeline steel to determine proper welding parameters. The welding technique comprises root welding, filling welding and cover welding and their welding parameters were obtained from experimental analysis. On this basis, the mechanical properties tests were carried out on welded joints in this case. Results show that this system can help improve the continuity and stability of the whole welding process and the welded joints' inherent quality, appearance shape, and mechanical performance can all meet the welding criteria for X-80 pipeline steel; with no need for windbreak fences, the overall welding cost will be sharply reduced. Meanwhile, more positive proposals were presented herein for the further research and development of this self-shielded flux core wires.

  11. Pipeline welding with Flux Cored and Metal Cored Wire; Soldagem de dutos com processos Arame Tubular e de Alma Metalica

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Ubirajara Pereira da [ITW Soldagem Brasil Miller-Hobart, Sao Paulo, SP (Brazil)

    2003-07-01

    Different welding process like SMAW, Semi-Automatic FCAW Gas-shielded and Self-shielded and Mechanized GMAW-MAG with Solid Wire are suggested to weld Transmission Pipelines. Presently, the largest extensions of Transmission Pipelines under construction, are in China like Lines West-East, Zong-Wu, Shan-Jing Fuxian and some others, totalizing about 8.000 km, and all using Semi-Automatic Self Shielded Flux Cored Arc Welding Process. Also, several papers and magazines that covers Transmission Pipelines Welding, not frequently mention Operational aspects of the process and some other variables like environment and site geography. This presentation intends to cover some of the Operational aspects of the Flux Cored Arc Welding and GMAW-Metal Cored in order to give sufficient information for Construction, Engineering, Projects e Contractors so they can evaluate these Process against the SMAW or even Mechanized Systems, considering the Operation Factor, Efficiency and Deposition Rate. We will not cover operational details of the GMAW Mechanized Systems but only suggest that be evaluated the possibility to replace the GMAW-Solid Wire by the GMAW-Metal Cored Wire. (author)

  12. Use of eddy current mixes to solve a weld examination application

    International Nuclear Information System (INIS)

    Ward, R.C.; LaBoissonniere, A.

    1995-01-01

    The augmentation of typical nondestructive (i.e., ultrasound) weld inspection techniques by the use of eddy current tools may significantly enhance the quality and reliability of weld inspections. One recent example is the development of an eddy current technique for use in the examination of BWR core shroud welds, where multi-frequency mixes are used to eliminate signals coming from the weld material so that the examination of the heat affected zone is enhanced. An analysis tool most commonly associated with ultrasound examinations, the C-Scan based on gated information, may be implemented with eddy current data to enhance analysis

  13. Effect of Shrouding Gas Temperature on Characteristics of a Supersonic Jet Flow Field with a Shrouding Laval Nozzle Structure

    Science.gov (United States)

    Liu, Fuhai; Sun, Dongbai; Zhu, Rong; Li, Yilin

    2018-05-01

    Coherent jet technology was been widely used in the electric arc furnace steelmaking process to protect the kinetic energy of supersonic oxygen jets and achieve a better mixing effect. For this technology, the total temperature distribution of the shrouding jet has a great impact on the velocity of the main oxygen jet. In this article, a supersonic shrouding nozzle using a preheating shrouding jet is proposed to increase the shrouding jet velocity. Both numerical simulation and experimental studies were carried out to analyze its effect on the axial velocity, total temperature and turbulence kinetic energy profiles of the main oxygen jet. Based on these results, it was found that a significant amount of kinetic energy was removed from the main oxygen jet when it passed though the shock wave using a high-temperature shrouding jet, which made the average axial velocity of the coherent jet lower than for a conventional jet in the potential core region. However, the supersonic shrouding nozzle and preheating technology employed for this nozzle design significantly improved the shrouding gas velocity, forming a low-density gas zone at the exit of the main oxygen jet and prolonging the velocity potential core length.

  14. Ceramic gas turbine shroud

    Science.gov (United States)

    Shi, Jun; Green, Kevin E.

    2014-07-22

    An example gas turbine engine shroud includes a first annular ceramic wall having an inner side for resisting high temperature turbine engine gasses and an outer side with a plurality of radial slots. A second annular metallic wall is positioned radially outwardly of and enclosing the first annular ceramic wall and has a plurality of tabs in communication with the slot of the first annular ceramic wall. The tabs of the second annular metallic wall and slots of the first annular ceramic wall are in communication such that the first annular ceramic wall and second annular metallic wall are affixed.

  15. Double Fillet Welding of Carbon Steel T-Joint by Double Channel Shielding Gas Metal Arc Welding Method Using Metal Cored Wire

    Directory of Open Access Journals (Sweden)

    Mert T.

    2017-06-01

    Full Text Available Low carbon steel material and T-joints are frequently used in ship building and steel constructions. Advantages such as high deposition rates, high quality and smooth weld metals and easy automation make cored wires preferable in these industries. In this study, low carbon steel materials with web and flange thicknesses of 6 mm, 8 mm and 10 mm were welded with conventional GMAW and double channel shielding gas metal arc welding (DMAG method to form double fillet T-joints using metal cored wire. The difference between these two methods were characterized by measurements of mean welding parameters, Vickers hardness profiles, weld bead and HAZ geometry of the joints and thermal camera temperature measurements. When weld bead and HAZ geometries are focused, it was seen filler metal molten area increased and base metal molten area decreased in DMAG of low carbon steel. When compared with traditional GMAW, finer and acicular structures in weld metal and more homogenous and smaller grains in HAZ are obtained with double channel shielding gas metal arc welding.

  16. Shroud cutting techniques and collection systems for secondary radioactivity release

    International Nuclear Information System (INIS)

    Yokoi, H.; Watanabe, A.; Uetake, N.; Shimura, T.; Omote, T.; Adachi, H.; Murakami, S.; Kobayashi, H.; Gotoh, M.

    2001-01-01

    Replacement of in-core shroud has been conducted as part of the preventive maintenance program in Tsuruga-1. The EDM (electric discharged machining) and plasma cutting methods were applied to in-core shroud cutting and secondary cutting in the DSP (dryer/separator pool), respectively. The cutting systems were improved in order to decrease radioactive secondary products. 1) Fundamental EDM cutting tests: fundamental EDM cutting tests were carried out in order to study secondary products. It could be presumed that volatile Co-carbonyl compound was generated by using a carbon electrode. The Ag/W electrode was effective as EDM electrode for in-core shroud cutting to prevent generation of Co-carbonyl compound and to decrease the total amount of secondary products. 2) In-core shroud cutting in RPV (reactor pressure vessel): EDM cutting system with the Ag/W electrode and collection system could keep a good environment during in-core shroud cutting in Tsuruga-1. Activity concentration was lower value than limitation of mask charge level, 4E-6 Bq/cm 3 , even near the water surface. 3) Secondary plasma cutting in DSP: the secondary cutting work was successful in the point of reduction of working period and radiation exposure. The amount of radiation exposure was reduced to 60% of the planned value, because of adequate decontamination of the working environment and reduction of number of torch maintenance tasks by improvements of the underwater cutting device

  17. Using NJOY99 and MCNP4B2 to Estimate the Radiation Damage Displacements per Atom per Second in Steel Within the Boiling Water Reactor Core Shroud and Vessel Wall from Reactor-Grade Mixed-Oxide/Uranium Oxide Fuel for the Nuclear Power Plant at Laguna Verde, Veracruz, Mexico

    International Nuclear Information System (INIS)

    Vickers, Lisa

    2003-01-01

    The government of Mexico has expressed interest in utilizing the Laguna Verde boiling water reactor (BWR) nuclear power plant for the disposition of reprocessed spent uranium oxide (UOX) fuel in the form of reactor-grade mixed-oxide (MOX) fuel. MOX fuel would replace spent UOX fuel as a fraction in the core from 18 to 30% depending on the fuel loading cycle. MOX fuel is expected to increase the neutron fluence, flux, fuel centerline temperature, reactor core pressure, and yield higher energy neutrons.There is concern that a core with a fraction of MOX fuel (i.e., increased 239 Pu wt%) would increase the radiation damage displacements per atom per second (dpa-s -1 ) in steel within the core shroud and vessel wall as compared to only conventional, enriched UOX fuel in the core. The evaluation of radiation damage within the core shroud and vessel wall is a concern because of the potentially adverse affect to personnel and public safety, environment, and operating life of the reactor.The primary uniqueness of this paper is the computation of radiation damage (dpa-s -1 ) using NJOY99-processed cross sections for steel within the core shroud and vessel wall. Specifically, the unique radiation damage results are several orders of magnitude greater than results of previous works. In addition, the conclusion of this paper was that the addition of the maximum fraction of one-third MOX fuel to the LV1 BWR core did significantly increase the radiation damage in steel within the core shroud and vessel wall such that without mitigation of radiation damage by periodic thermal annealing or reduction in operating parameters such as neutron fluence, core temperature, and pressure, it posed a potentially adverse affect to the personnel and public safety, environment, and operating life of the reactor

  18. Shroud brushing device

    International Nuclear Information System (INIS)

    Sakamaki, Kazuo; Takabayashi, Jun-ichi.

    1996-01-01

    A roller screw is assembled at an axial center of the inside of a device main body. A nut is assembled to the axial center of the roller screw secured so as not to be rotated, and a base is integrally connected to the nut. An air cylinder is pivoted to the base by a pin, and an arm is disposed to a piston rod of the air cylinder. The top end of the arm is secured to a motor case, and a brush is rotated by an electric motor in the motor case. The device main body is suspended into the reactor pressure vessel of a BWR type reactor, and seated on the upper surface of a fuel support metal fitting. The roller screw is rotated to move vertically the arm by way of the nut and the base. The device main body is rotated to rotate the arm. The arm is extended and then the electric motor is driven to rotate the brush thereby polishing the inner surface of the shroud. (I.N.)

  19. Shroud brushing device

    Energy Technology Data Exchange (ETDEWEB)

    Sakamaki, Kazuo; Takabayashi, Jun-ichi

    1996-07-12

    A roller screw is assembled at an axial center of the inside of a device main body. A nut is assembled to the axial center of the roller screw secured so as not to be rotated, and a base is integrally connected to the nut. An air cylinder is pivoted to the base by a pin, and an arm is disposed to a piston rod of the air cylinder. The top end of the arm is secured to a motor case, and a brush is rotated by an electric motor in the motor case. The device main body is suspended into the reactor pressure vessel of a BWR type reactor, and seated on the upper surface of a fuel support metal fitting. The roller screw is rotated to move vertically the arm by way of the nut and the base. The device main body is rotated to rotate the arm. The arm is extended and then the electric motor is driven to rotate the brush thereby polishing the inner surface of the shroud. (I.N.)

  20. Airfoil nozzle and shroud assembly

    Science.gov (United States)

    Shaffer, J.E.; Norton, P.F.

    1997-06-03

    An airfoil and nozzle assembly are disclosed including an outer shroud having a plurality of vane members attached to an inner surface and having a cantilevered end. The assembly further includes a inner shroud being formed by a plurality of segments. Each of the segments having a first end and a second end and having a recess positioned in each of the ends. The cantilevered end of the vane member being positioned in the recess. The airfoil and nozzle assembly being made from a material having a lower rate of thermal expansion than that of the components to which the airfoil and nozzle assembly is attached. 5 figs.

  1. Welding.

    Science.gov (United States)

    Cowan, Earl; And Others

    The curriculum guide for welding instruction contains 16 units presented in six sections. Each unit is divided into the following areas, each of which is color coded: terminal objectives, specific objectives, suggested activities, and instructional materials; information sheet; transparency masters; assignment sheet; test; and test answers. The…

  2. Influence of preheating on API 5L-X80 pipeline joint welding with self shielded flux-cored wire

    International Nuclear Information System (INIS)

    Cooper, R.; Silva, J. H. F.; Trevisan, R. E.

    2004-01-01

    The present work refers to the characterization of API 5L-X80 pipeline joints welded with self-shielded flux cored wire. This process was evaluated under preheating conditions, with an uniform and steady heat input. All joints were welded in flat position (1G), with the pipe turning and the torch still. Tube dimensions were 762 mm in external diameter and 16 mm in thickness. Welds were applied on single V-groove, with six weld beads, along with three levels of preheating temperatures (room temperature, 100 degree centigree, 160 degree centigree). These temperatures were maintained as inter pass temperature. The filler metal E71T8-K6 with mechanical properties different from parent metal was used in under matched conditions. The weld characterization is presented according to the mechanical test results of tensile strength, hardness and impact test. The mechanical tests were conducted according to API 1104, AWS and ASTM standards. API 1104 and API 51 were used as screening criteria. According to the results obtained, it was possible to remark that it is appropriate to weld API 5L-X80 steel ducts with Self-shielded Flux Cored wires, in conformance to the API standards and no preheat temperature is necessary. (Author) 22 refs

  3. Report of lower endplug welding, and testing and inspecting result for MONJU 1{sup th} reload core fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Kajiyama, Takasi; Numata, Kazuaki; Ohtani, Seiji [Quality Assuranse Section, Technical Administration Division, Plutonium Fuel Center, Tokai Works, Japan Nuclear Cycle Development Inst., Tokai, Ibaraki (Japan); Kobayashi, Hiromi; Watanabe, Hiroaki; Goto, Tatsuro; Takahashi, Hideki; Nagasaku, Katsuhiko [Inspection Development Campany Ltd., Tokai, Ibaraki (Japan)

    2000-02-01

    The procedure and result of lower endplugwelding, Test and Inspection and Shipment of the 1{sup th} reload core fuel assembly (80 Fuel Assemblies) for the fast breeder reactor MONJU are reported, which had been examined and inspected in Tamatsukuri Branch, Material Insurance Office, Quality Assurance Section, Technical Administration Division, Plutonium Fuel Center (before: Inspection Section, Plutonium Fuel Division), from June 1994 to January 1996. The number of cladding tubes welded to the endplug were totally 13,804: 7,418 for Core - Inside of 43 fuel Assemblies and 6,836 for Core-Outside of 37 fuel Assemblies. 13,794 of them, 7,414 Core-Inside and 6,379 Core-Outside, were approved by the test and sent to Plutonium Fuel Center. 10 of them weren't approved mainly because of default welding. Disapproval rating was 0.07%. (author)

  4. Technology of Welding Joints Mixed with Duplex Steel

    Directory of Open Access Journals (Sweden)

    Słania J.

    2016-03-01

    Full Text Available Results of the examinations of sample plates of mixed joints with the duplex steel were discussed. Examinations were taken on the sample plates of mixed joints of sheet plates type P355NL1 and X2CrNiMoN22-5-3 welded by the flux-cored wire DW-329A by the Kobelco company of the following category T 22 9 3 NL RC/M3 in the gas shroud M21 (Ar+18%CO2 (plate no.1, and nickel covered electrodes E Ni 6082 by the Böhler company (plate no. 2. Results of the side bend test of welded joint, transverse tensile test, stretching of the weld metal, impact strength, micro and macroscopic metallographic examinations, and measurements of the delta ferrite content were presented.

  5. Effect of welding process, type of electrode and electrode core diameter on the tensile property of 304L austenitic stainless steel

    Directory of Open Access Journals (Sweden)

    Akinlabi OYETUNJI

    2014-11-01

    Full Text Available The effect of welding process, type of electrode and electrode core diameter on the tensile property of AISI 304L Austenitic Stainless Steel (ASS was studied. The tensile strength property of ASS welded samples was evaluated. Prepared samples of the ASS were welded under these three various variables. Tensile test was then carried out on the welded samples. It was found that the reduction in ultimate tensile strength (UTS of the butt joint samples increases with increase in core diameter of the electrode. Also, the best electrode for welding 304L ASS is 308L stainless steel-core electrode of 3.2 mm core diameter. It is recommended that the findings of this work can be applied in the chemical, food and oil industries where 304L ASS are predominantly used.

  6. Characterization of welding of AISI 304l stainless steel similar to the core encircling of a BWR reactor

    International Nuclear Information System (INIS)

    Gachuz M, M.E.; Palacios P, F.; Robles P, E.F.

    2003-01-01

    Plates of austenitic stainless steel AISI 304l of 0.0381 m thickness were welded by means of the SMAW process according to that recommended in the Section 9 of the ASME Code, so that it was reproduced the welding process used to assemble the encircling of the core of a BWR/5 reactor similar to that of the Laguna Verde Nucleo electric plant, there being generated the necessary documentation for the qualification of the one welding procedure and of the welder. They were characterized so much the one base metal, as the welding cord by means of metallographic techniques, scanning electron microscopy, X-ray diffraction, mechanical essays and fracture mechanics. From the obtained results it highlights the presence of an area affected by the heat of up to 1.5 mm of wide and a value of fracture tenacity (J IC ) to ambient temperature for the base metal of 528 KJ/m 2 , which is diminished by the presence of the welding and by the increment in the temperature of the one essay. Also it was carried out an fractographic analysis of the fracture zone generated by the tenacity essays, what evidence a ductile fracture. The experimental values of resistance and tenacity are important for the study of the structural integrity of the encircling one of the core. (Author)

  7. Mechanical properties of API X80 steel pipe joints welded by Flux Core Arc Weld Process; Propriedades mecanicas de juntas de tubos de aco API X80 soldadas com arame tubulares

    Energy Technology Data Exchange (ETDEWEB)

    Ordonez, Robert E. Cooper; Silva, Jose Hilton F.; Trevisan, Roseana E. [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica. Dept. de Engenharia de Fabricacao

    2003-07-01

    Flux Core Arc Welding processes (FCAW) are beginning to be applied in pipeline welds, however, very limited experimental data regarding mechanical properties of pipeline weld joints with these processes are available in the literature. In this paper, the effects of preheat temperature and type of FCAW on mechanical properties (microhardness and tensile strength) of API X80 weld joint steel are presented. FCAW processes with gas protection and self-shielded were used. Multipasses welding were applied in 30'' diameter and 0,625'' thickness tubes. Influence factors were: FCAW type and preheat temperature. Acceptance criteria of welded joints were evaluated by API 1104 standard for tensile strength test and ASTM E384-99 for microhardness test. The results obtained showed that FCAW type and preheat temperature have no influence on mechanical properties of API X80 joint steel. (author)

  8. Processes, Techniques, and Successes in Welding the Dry Shielded Canisters of the TMI-2 Reactor Core Debris

    International Nuclear Information System (INIS)

    Zirker, L.R.; Rankin, R.A.; Ferrell, L.J.

    2002-01-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) is operated by Bechtel-BWXT Idaho LLC (BBWI), which recently completed a very successful $100 million Three-Mile Island-2 (TMI-2) program for the Department of Energy (DOE). This complex and challenging program used an integrated multidisciplinary team approach that loaded, welded, and transported an unprecedented 25 dry shielded canisters (DSC) in seven months, and did so ahead of schedule. The program moved over 340 canisters of TMI-2 core debris that had been in wet storage into a dry storage facility at the INEEL. The main thrust of this paper is relating the innovations, techniques, approaches, and lessons learned associated to welding of the DSC's. This paper shows the synergism of elements to meet program success and shares these lessons learned that will facilitate success with welding of dry shielded canisters in other DOE complex dry storage programs

  9. Storage rack for fuel cell receiving shrouds

    International Nuclear Information System (INIS)

    Mollon, L.

    1978-01-01

    Disclosed is a rack for receiving a multiplicity of vertical tubular shrouds or tubes for storing spent nuclear fuel cells. The rack comprises a plurality of horizontally reticulated frames interconnected by tension rods and spacing tubes surrounding the rods

  10. Numerical weld modeling - a method for calculating weld-induced residual stresses

    International Nuclear Information System (INIS)

    Fricke, S.; Keim, E.; Schmidt, J.

    2001-01-01

    In the past, weld-induced residual stresses caused damage to numerous (power) plant parts, components and systems (Erve, M., Wesseling, U., Kilian, R., Hardt, R., Bruemmer, G., Maier, V., Ilg, U., 1994. Cracking in Stabilized Austenitic Stainless Steel Piping of German Boiling Water Reactors - Characteristic Features and Root Causes. 20. MPA-Seminar 1994, vol. 2, paper 29, pp.29.1-29.21). In the case of BWR nuclear power plants, this damage can be caused by the mechanism of intergranular stress corrosion cracking in austenitic piping or the core shroud in the reactor pressure vessel and is triggered chiefly by weld-induced residual stresses. One solution of this problem that has been used in the past involves experimental measurements of residual stresses in conjunction with weld optimization testing. However, the experimental analysis of all relevant parameters is an extremely tedious process. Numerical simulation using the finite element method (FEM) not only supplements this method but, in view of modern computer capacities, is also an equally valid alternative in its own right. This paper will demonstrate that the technique developed for numerical simulation of the welding process has not only been properly verified and validated on austenitic pipe welds, but that it also permits making selective statements on improvements to the welding process. For instance, numerical simulation can provide information on the starting point of welding for every weld bead, the effect of interpass cooling as far as a possible sensitization of the heat affected zone (HAZ) is concerned, the effect of gap width on the resultant weld residual stresses, or the effect of the 'last pass heat sink welding' (welding of the final passes while simultaneously cooling the inner surface with water) producing compressive stresses in the root area of a circumferential weld in an austenitic pipe. The computer program FERESA (finite element residual stress analysis) was based on a commercially

  11. Use of the gapped bead-on-plate test to investigate hydrogen induced cracking of flux cored arc welds of a quenched and tempered steel

    International Nuclear Information System (INIS)

    Chen, Liang; Dunne, Druce; Davidson, Len

    2014-01-01

    Gapped bead-on-plate (G-BOP) testing of flux cored arc welds was conducted to assess the susceptibility to hydrogen induced cold cracking (HICC) of weld metal deposited on a high strength quenched and tempered steel. For preheat temperatures higher than 40°C, no weld metal cracking was observed using a shielding gas consisting of argon with 20% carbon dioxide. In contrast, the no-crack condition was not achieved for a shielding gas consisting of argon-5% carbon dioxide for preheat temperatures lower than 100°C. This extraordinary difference in weld metal HICC resistance indicates that, in general, the shielding gas mixture can exert a major influence on weld metal transverse cold cracking behaviour

  12. The Shroud of Turin: Relic or icon?

    International Nuclear Information System (INIS)

    Dale, W.S.A.

    1987-01-01

    The Shroud of Turin, a linen cloth on which appear the imprints of the front and back of a crucified man, can be historically traced to ca. 1354 A.D. Many believe it to be a true relic of the Passion of Christ. Many others regard it as a fake. This paper suggests a third alternative, that it is an icon dating from the 11th century. If future scientific tests, of which radiocarbon dating will be the most important, support this theory, the Shroud of Turin may well be recognized as one of the masterpieces of Christian art. (orig.)

  13. Compressor ported shroud for foil bearing cooling

    Science.gov (United States)

    Elpern, David G [Los Angeles, CA; McCabe, Niall [Torrance, CA; Gee, Mark [South Pasadena, CA

    2011-08-02

    A compressor ported shroud takes compressed air from the shroud of the compressor before it is completely compressed and delivers it to foil bearings. The compressed air has a lower pressure and temperature than compressed outlet air. The lower temperature of the air means that less air needs to be bled off from the compressor to cool the foil bearings. This increases the overall system efficiency due to the reduced mass flow requirements of the lower temperature air. By taking the air at a lower pressure, less work is lost compressing the bearing cooling air.

  14. An ultrasonic methodology for in-service inspection of shell weld of core support structure in a sodium cooled fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Anish, E-mail: anish@igcar.gov.in; Rajkumar, K.V.; Sharma, Govind K.; Dhayalan, R.; Jayakumar, T.

    2015-02-15

    Highlights: • We demonstrate a novel ultrasonic methodology for in-service inspection of shell weld of core support structure in a sodium cooled fast breeder reactor. • The methodology comprises of the inspection of shell weld immersed in sodium from the outside surface of the main vessel using ultrasonic guided wave. • The formation and propagation of guided wave modes are validated by finite element simulation of the inspection methodology. • A defect down to 20% of 30 mm thick wall (∼6 mm) in the shell weld can be detected reliably using the developed methodology. - Abstract: The paper presents a novel ultrasonic methodology developed for in-service inspection (ISI) of shell weld of core support structure of main vessel of 500 MWe prototype fast breeder reactor (PFBR). The methodology comprises of the inspection of shell weld immersed in sodium from the outsider surface of the main vessel using a normal beam longitudinal wave ultrasonic transducer. Because of the presence of curvature in the knuckle region of the main vessel, the normal beam longitudinal wave enters the support shell plate at an angle and forms the guided waves by mode conversion and multiple reflections from the boundaries of the shell plate. Hence, this methodology can be used to detect defects in the shell weld of the core support structure. The successful demonstration of the methodology on a mock-up sector made of stainless steel indicated that an artificial defect down to 20% of 30 mm thick wall (∼6 mm) in the shell weld can be detected reliably.

  15. Estimates of the hydrologic impact of drilling water on core samples taken from partially saturated densely welded tuff

    International Nuclear Information System (INIS)

    Buscheck, T.A.; Nitao, J.J.

    1987-09-01

    The purpose of this work is to determine the extent to which drill water might be expected to be imbibed by core samples taken from densely welded tuff. In a related experimental study conducted in G-Tunnel, drill water imbibition by the core samples was observed to be minimal. Calculations were carried out with the TOUGH code with the intent of corroborating the imbibition observations. Due to the absence of hydrologic data pertaining directly to G-Tunnel welded tuff, it was necessary to apply data from a similar formation. Because the moisture retention curve was not available for imbibition conditions, the drainage curve was applied to the model. The poor agreement between the observed and calculated imbibition data is attributed primarily to the inappropriateness of the drainage curve. Also significant is the value of absolute permeability (k) assumed in the model. Provided that the semi-log plot of the drainage and imbibition moisture retention curves are parallel within the saturation range of interest, a simple relationship exists between the moisture retention curve, k, and porosity (/phi/) which are assumed in the model and their actual values. If k and /phi/ are known, we define the hysteresis factor λ to be the ratio of the imbibition and drainage suction pressures for any saturation within the range of interest. If k and /phi/ are unknown, λ also accounts for the uncertainties in their values. Both the experimental and modeling studies show that drill water imbibition by the core has a minimal effect on its saturation state. 22 refs., 6 figs., 2 tabs

  16. Specification for corrosion-resisting chromium and chromium-nickel steel bare and composite metal cored and stranded arc welding electrodes and welding rods

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    This specification prescribes requirements for corrosion or heat resisting chromium and chromium-nickel steel electrodes and welding rods. These electrodes and welding rods are normally used for arc welding and include those alloy steels designated as corrosion or heat-resisting chromium and chromium-nickel steels, in which chromium exceeds 4.0 percent and nickel does not exceed 50.0 percent

  17. Repairing method for shroud in reactor pressure vessel

    International Nuclear Information System (INIS)

    Watanabe, Yusuke.

    1996-01-01

    The present invention provides a method of repairing a shroud disposed in a pressure vessel of a BWR type reactor. Namely, a baffle plate is disposed on the outer surface of the lower portion of the shroud supported by a shroud support of the pressure vessel. The baffle plate is connected with a lug for securing a shroud head bolt disposed on the outer surface of an upper portion of the shroud by reinforcing members. With such a constitution, when crackings are caused in the shroud, the development of the crackings can be prevented without losing the function of securing the shroud head bolt. Further, if a material having thermal expansion coefficient lower than that of austenite stainless steel is used for the material of the reinforcing member, clamping load to be applied upon attaching the auxiliary member can be reduced. As a result, operation for the attachment is facilitated. (I.S.)

  18. Design and Analysis of Horizontal Axial Flow Motor Shroud

    Science.gov (United States)

    Wang, Shiming; Shen, Yu

    2018-01-01

    The wind turbine diffuser can increase the wind energy utilization coefficient of the wind turbine, and the addition of the shroud to the horizontal axis wind turbine also plays a role of accelerating the flow of the condensate. First, the structure of the shroud was designed and then modeled in gambit. The fluent software was used to establish the mathematical model for simulation. The length of the shroud and the opening angle of the shroud are analyzed to determine the best shape of the shroud. Then compared the efficiency with or without the shroud, through the simulation and the experiment of the water tank, it is confirmed that the horizontal axis of the shroud can improve the hydrodynamic performance.

  19. Prediction of residual stress distributions due to surface machining and welding and crack growth simulation under residual stress distribution

    International Nuclear Information System (INIS)

    Ihara, Ryohei; Katsuyama, JInya; Onizawa, Kunio; Hashimoto, Tadafumi; Mikami, Yoshiki; Mochizuki, Masahito

    2011-01-01

    Research highlights: → Residual stress distributions due to welding and machining are evaluated by XRD and FEM. → Residual stress due to machining shows higher tensile stress than welding near the surface. → Crack growth analysis is performed using calculated residual stress. → Crack growth result is affected machining rather than welding. → Machining is an important factor for crack growth. - Abstract: In nuclear power plants, stress corrosion cracking (SCC) has been observed near the weld zone of the core shroud and primary loop recirculation (PLR) pipes made of low-carbon austenitic stainless steel Type 316L. The joining process of pipes usually includes surface machining and welding. Both processes induce residual stresses, and residual stresses are thus important factors in the occurrence and propagation of SCC. In this study, the finite element method (FEM) was used to estimate residual stress distributions generated by butt welding and surface machining. The thermoelastic-plastic analysis was performed for the welding simulation, and the thermo-mechanical coupled analysis based on the Johnson-Cook material model was performed for the surface machining simulation. In addition, a crack growth analysis based on the stress intensity factor (SIF) calculation was performed using the calculated residual stress distributions that are generated by welding and surface machining. The surface machining analysis showed that tensile residual stress due to surface machining only exists approximately 0.2 mm from the machined surface, and the surface residual stress increases with cutting speed. The crack growth analysis showed that the crack depth is affected by both surface machining and welding, and the crack length is more affected by surface machining than by welding.

  20. Aerothermal optimization of partially shrouded axial turbines[Dissertation 17138

    Energy Technology Data Exchange (ETDEWEB)

    Porreca, L.

    2007-07-01

    This work presents the results of an aerodynamic and thermal study of three different shrouded axial turbine configurations (turbomachinery). The blade geometry of the turbine stages and the tip clearances of the test cases under investigation are identical although the shroud design is different. The first test case (RRD) is representative of a full shroud geometry while the second (CPS) and third (EPS) test cases adopt different partial shroud arrangements. In the EPS case, a shroud platform is added to cover the blade throat. Partial shrouds are sometimes used in industrial application in order to benefit from the aerodynamic advantage of shrouded configuration as well as reducing thermal load and mechanical stress on the blade root. However, the optimal compromise between mechanical issues and aerodynamic performances is still an open issue due to the resulting highly 3-dimensional unsteady flow field, difficulty of achieve an optimal cooling and severe heat load on the shroud sealing fins. An experimental investigation is carried out in order to quantify the effect of the shroud geometry on the aerodynamic performances and to study the resultant flow field in all test cases. The analysis has been conducted in an experimental low-speed axial turbine facility at the Turbomachinery Laboratory at ETH Zurich. Steady and fast response aerodynamic probe technology (FRAP) has been used to characterize the flow field. Moreover, a stereoscopic PIV technique has been design and applied in this experimental facility for the first time. The flow field analysis shows that the effect of the shroud geometry is significant from 60% blade height span to the tip. Tip leakage vortex in the first rotor is originated in the partial shroud test cases while the full shroud case present only a weak indigenous tip passage vortex. Secondary flows development in the following second stator resulted to be greatly affected by the leakage/main flow interaction of the first rotor. The

  1. Lightweight submersed 'Walking' NDE manipulators for PWR and BWR vessel weld inspection

    International Nuclear Information System (INIS)

    Saernmark, Ivan; Lenz, Herbert

    2008-01-01

    Three new manipulators developed by WesDyne TRC in Sweden have under the year 2007 performed three very successful inspections in the PWR reactor Ringhals 3 and the BWR reactors Ringhals 1 and Oskarshamn 1. The manipulator systems can be used to perform inspection of circumferential and vertical welds on the reactor pressure vessel, the core shroud, core shroud support in BWR reactors or vessel and core barrel welds in PWR reactors. Most other flat or curved surfaces can be inspected using the new concept through relatively simple mechanical reconfigurations of system modules. The first inspection was performed on the R3 PWR core barrel in June 2007 with a very good result. This Manipulator is designed for access in very narrow gaps and for the type of core barrels with a shield covering the whole area of the perimeter. The manipulator is attached to the inspection area by means of a new unique suction cup system. The current manipulators consist of a curved horizontal beam, with radius similar to the reactor vessel, and a straight vertical beam, forming a T-shaped structure. By alternating the application of suction cup pairs on the horizontal beam and the vertical beam and by driving the scanning motors, the manipulator performs an incremental translational movement upwards/downwards or from side to side. The principles of this system give a well defined and stable platform for global and local positioning accuracy. A combination of advanced sensor solutions provides accurate position information in the absence of other physical reference objects. The system is controlled by the new WesDyne TRC Motor Control Panel and software, the MCP is specifically designed for remote control of submersed manipulators using techniques for cable reduction

  2. Lightweight submersed 'Walking' NDE manipulators for PWR and BWR vessel weld inspection

    Energy Technology Data Exchange (ETDEWEB)

    Saernmark, Ivan; Lenz, Herbert [WesDyne TRC AB, Stockholm (Sweden)

    2008-04-15

    Three new manipulators developed by WesDyne TRC in Sweden have under the year 2007 performed three very successful inspections in the PWR reactor Ringhals 3 and the BWR reactors Ringhals 1 and Oskarshamn 1. The manipulator systems can be used to perform inspection of circumferential and vertical welds on the reactor pressure vessel, the core shroud, core shroud support in BWR reactors or vessel and core barrel welds in PWR reactors. Most other flat or curved surfaces can be inspected using the new concept through relatively simple mechanical reconfigurations of system modules. The first inspection was performed on the R3 PWR core barrel in June 2007 with a very good result. This Manipulator is designed for access in very narrow gaps and for the type of core barrels with a shield covering the whole area of the perimeter. The manipulator is attached to the inspection area by means of a new unique suction cup system. The current manipulators consist of a curved horizontal beam, with radius similar to the reactor vessel, and a straight vertical beam, forming a T-shaped structure. By alternating the application of suction cup pairs on the horizontal beam and the vertical beam and by driving the scanning motors, the manipulator performs an incremental translational movement upwards/downwards or from side to side. The principles of this system give a well defined and stable platform for global and local positioning accuracy. A combination of advanced sensor solutions provides accurate position information in the absence of other physical reference objects. The system is controlled by the new WesDyne TRC Motor Control Panel and software, the MCP is specifically designed for remote control of submersed manipulators using techniques for cable reduction.

  3. A non-destructive evaluation of transverse hydrogen cracking in high strength flux-cored weld metal

    International Nuclear Information System (INIS)

    Sterjovski, Z.; Carr, D. G.; Holdstock, R.; Nolan, D.; Norrish, J.

    2007-01-01

    Transverse hydrogen cracking in high strength weld metal (WM) is a potentially serious problem in thick-sections, especially in highly restrained structures. This paper presents preliminary re suits for which transverse weld metal hydrogen cracking was purposefully generated in 40 mm thick high strength WM to study the effectiveness of various non-destructive testing methods in locating and sizing transverse cracks. Transverse WM hydrogen cracking was intentionally produced by: increasing diffusible hydrogen levels through the introduction of 2% hydrogen in CO 2 shielding gas and minimizing interpass temperature and time; increasing the cracking susceptibility of the micro structure by increasing cooling rate with a large-scale test plate and maintaining an interpass temperature below 70 deg C; increasing stress levels with the use of stiffeners and end welds; and rapid postweld cooling to a temperature lower than 100 deg C. The extent of transverse weld metal hydrogen cracking was evaluated by non-destructive testing (NDT), which included conventional ultrasonic testing, radiography, acoustic emission monitoring and magnetic particle inspection. It was established that conventional ultrasonic testing was the most effective of the NDT techniques used. Acoustic emission monitoring revealed that two different types of emissions emanated from the weld metal and that the majority of emissions occurred within the first 48 hours of welding, although there was some evidence of cracking well after this initial 48 hour period. Larger sized cracks were observed near the transverse stiffeners (and weld ends) where tensile residual stresses (both longitudinal and transverse) were thought to be highest and the micro structure was therefore more susceptible to cracking. Additionally, numerous finer cracks were located in the top third of the plate (in the thickness direction) and on both sides of the weld centre line

  4. Optimization of power generation from shrouded wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Foote, Tudor; Agarwal, Ramesh [Department of Mechanical Engineering and Materials Science, Washington University in St. Louis (United States)

    2013-07-01

    In past several years, several studies have shown that the shrouded wind turbines can generate greater power compared to bare turbines. The objective of this study is to determine the potential of shrouded wind turbines for increased power generation by conducting numerical simulations. An analytical/computational study is performed by employing the well-known commercial Computational Fluid Dynamics (CFD) software FLUENT. An actuator disc model is used to model the turbine. The incompressible Navier-Stokes equations and a two equation realizable {kappa}-{epsilon} model are employed in the calculations. The power coefficient Cp and generated power are calculated for a large number of cases for horizontal axis wind turbines (HAWT) of various diameters and wind speeds for both bare and shrouded turbines. The design of the shroud is optimized by employing a single objective genetic algorithm; the objective being the maximization of the power coefficient Cp. It was found that the shroud indeed increases the Cp beyond the Betz’s limit significantly and as a result the generated power; this effect is consistent with that found in the recent literature that the shrouded wind-turbines can generate greater power than the bare turbines. The optimized shape of the shroud or diffuser further increases the generated power and Cp.

  5. Fluidized-bed calciner with combustion nozzle and shroud

    International Nuclear Information System (INIS)

    Wielang, J.A.; Palmer, W.B.; Kerr, W.B.

    1977-01-01

    A nozzle employed as a burner within a fluidized bed is coaxially enclosed within a tubular shroud that extends beyond the nozzle length into the fluidized bed. The open-ended shroud portion beyond the nozzle end provides an antechamber for mixture and combustion of atomized fuel with an oxygen-containing gas. The arrangement provides improved combustion efficiency and excludes bed particles from the high-velocity, high-temperature portions of the flame to reduce particle attrition. 4 claims, 2 figures

  6. Cadmium verification measurements of HFIR shroud assembly 22

    International Nuclear Information System (INIS)

    Chapman, J.A.; Schultz, F.J.

    1994-04-01

    This report discusses radiation-based nondestructive examination methods which have been used to successfully verify the presence of cadmium in High Flux Isotope Reactor (HFIR) spent-fuel shroud assembly number 22 (SA22). These measurements show, in part, that SA22 is certified to meet the criticality safety specifications for a proposed reconfiguration of the HFIR spent-fuel storage array. Measurement of the unique 558.6-keV gamma-ray from neutron radiative capture on cadmium provided conclusive evidence for the presence of cadmium in the outer shroud of the assembly. Cadmium verification in the center post and outer shroud was performed by measuring the degree of neutron transmission in SA22 relative to two calibration shroud assemblies. Each measurement was performed at a single location on the center post and outer shroud. These measurements do not provide information on the spatial distribution or uniformity of cadmium within an assembly. Separate measurements using analog and digital radiography were performed to (a) globally map the continuity of cadmium internal mass, and (b) locally determine the thickness of cadmium. Radiography results will be reported elsewhere. The measurements reported here should not be used to infer the thickness of cadmium in either the center post or outer shroud of an assembly

  7. Application of immersion phased array UT technique in nickel based alloy weld

    International Nuclear Information System (INIS)

    Hirasawa, Taiji; Nagai, Satoshi; Murakami, Koji; Yuguchi, Yasuhiro; Ootsubo, Tooru; Naruse, Katsuhiko

    2007-01-01

    The improvement of defect detection and sizing capabilities for nondestructive inspection technique has been required in order to ensure the reliable operation and life extension of nuclear power plant. Immersion phased array UT technique which is not affected the surface geometry of welds has been developed for inspection of BWR internals such as shroud, shroud support, and so on. Phased array UT technique was applied for shroud support mockup specimen with fatigue crack and partially SCC. From the experimental results, the superior performance of phased array UT for the RPV outside and inside inspection was shown. (author)

  8. WELDING PROCESS

    Science.gov (United States)

    Zambrow, J.; Hausner, H.

    1957-09-24

    A method of joining metal parts for the preparation of relatively long, thin fuel element cores of uranium or alloys thereof for nuclear reactors is described. The process includes the steps of cleaning the surfaces to be jointed, placing the sunfaces together, and providing between and in contact with them, a layer of a compound in finely divided form that is decomposable to metal by heat. The fuel element members are then heated at the contact zone and maintained under pressure during the heating to decompose the compound to metal and sinter the members and reduced metal together producing a weld. The preferred class of decomposable compounds are the metal hydrides such as uranium hydride, which release hydrogen thus providing a reducing atmosphere in the vicinity of the welding operation.

  9. Postirradiation examination of JOYO MK-II control rod (CRM601). Irradiation performance of shroud type absorber pin

    International Nuclear Information System (INIS)

    Tanaka, Kosuke; Kikuchi, Shin; Katsuyama, Kozo; Nagamine, Tsuyoshi; Mitsugi, Takeshi; Uto, Manabu; Tatebe, Kazuaki; Onose, Shoji; Maruyama, Tadashi

    1998-10-01

    This paper describes the results of postirradiation examination and analysis by CORAL code for irradiation performance of CRM601 control rod, which was the 6th reloaded control rod with shroud type absorber pins for use in JOYO MK-II core. The detailed visual examination indicated that there was no cladding breach in absorber pins. However, sodium ingress from the vent tube was observed in four absorber pins among seven pins. While a remarkable oval deformation occurred in cladding tube of helium bonded absorber pins, a little or no diametral change was observed in the absorber pins in which sodium ingress took place. From metallurgical observations and the analysis by CORAL code, it was estimated that the shroud tube installed in helium bonded absorber pins were irradiated at 720degC, and those in sodium bonded absorber pins were irradiated at 420degC. It was confirmed that diametral change of cladding depended on the initial gap between shroud and cladding tube. The results of present investigation indicate that it is desirable to use the materials with low thermal expansion coefficient for shroud tubes, and that sodium bonded absorber pins were advantageous for obtaining long life control rods. (author)

  10. Bimetallic Blisks with Shrouded Turbine Blades for Gas Turbine Engines

    Directory of Open Access Journals (Sweden)

    L. A. Magerramova

    2015-01-01

    Full Text Available The paper discusses prospects of using blisks with shrouded blades. Increasing an engine life and efficiency as well as mass reduction can also be achieved by increasing blade numbers and decreasing disk diameter. But design engineers are faced with the problem of blade placement because of the disk size and root dimensions.The problem of increasing life and cyclic durability, vibration strength, and lightweight design of the turbine gas turbine wheels, can be solved by an elimination of blade - disk locks.The technology of manufacturing one-piece blisks by connecting the blades with the disc part using hot isostatic pressing was developed. This technology allows us to use blades with shrouds. It is necessary to increase efficiency and to improve high cycle fatigue performance of rotor blades.One of the pressing problems is to ensure the necessary position of shrouds in relation to each other in the manufacturing process as well as in the service. Numerical studies of the influence of the shroud mounting position on blade strength during operation allowed us to develop a methodology of choosing a shroud mounting position.Based on the two turbine wheels (LPT and HPT calculations advantages of blisk design with respect to the lock-based design were shown. Application of bimetallic blisks with shrouded blades resulted in a lifespan increase and weight reduction.In addition, other advantages of blisk design are as follows: possible reduction in the number of parts, elimination of leaks and fretting that take place in the blade - disk locks, exception of expensive broaching operations and disk alloy saving. The shortcoming is elimination of damping in root connection. In addition, there are no widely used repair methods.Despite these disadvantages the usage of bimetallic turbine blisks with shrouded blades is very promising.

  11. Shroud leakage flow models and a multi-dimensional coupling CFD (computational fluid dynamics) method for shrouded turbines

    International Nuclear Information System (INIS)

    Zou, Zhengping; Liu, Jingyuan; Zhang, Weihao; Wang, Peng

    2016-01-01

    Multi-dimensional coupling simulation is an effective approach for evaluating the flow and aero-thermal performance of shrouded turbines, which can balance the simulation accuracy and computing cost effectively. In this paper, 1D leakage models are proposed based on classical jet theories and dynamics equations, which can be used to evaluate most of the main features of shroud leakage flow, including the mass flow rate, radial and circumferential momentum, temperature and the jet width. Then, the 1D models are expanded to 2D distributions on the interface by using a multi-dimensional scaling method. Based on the models and multi-dimensional scaling, a multi-dimensional coupling simulation method for shrouded turbines is developed, in which, some boundary source and sink are set on the interface between the shroud and the main flow passage. To verify the precision, some simulations on the design point and off design points of a 1.5 stage turbine are conducted. It is indicated that the models and methods can give predictions with sufficient accuracy for most of the flow field features and will contribute to pursue deeper understanding and better design methods of shrouded axial turbines, which are the important devices in energy engineering. - Highlights: • Free and wall attached jet theories are used to model the leakage flow in shrouds. • Leakage flow rate is modeled by virtual labyrinth number and residual-energy factor. • A scaling method is applied to 1D model to obtain 2D distributions on interfaces. • A multi-dimensional coupling CFD method for shrouded turbines is proposed. • The proposed coupling method can give accurate predictions with low computing cost.

  12. ACT Payload Shroud Structural Concept Analysis and Optimization

    Science.gov (United States)

    Zalewski, Bart B.; Bednarcyk, Brett A.

    2010-01-01

    Aerospace structural applications demand a weight efficient design to perform in a cost effective manner. This is particularly true for launch vehicle structures, where weight is the dominant design driver. The design process typically requires many iterations to ensure that a satisfactory minimum weight has been obtained. Although metallic structures can be weight efficient, composite structures can provide additional weight savings due to their lower density and additional design flexibility. This work presents structural analysis and weight optimization of a composite payload shroud for NASA s Ares V heavy lift vehicle. Two concepts, which were previously determined to be efficient for such a structure are evaluated: a hat stiffened/corrugated panel and a fiber reinforced foam sandwich panel. A composite structural optimization code, HyperSizer, is used to optimize the panel geometry, composite material ply orientations, and sandwich core material. HyperSizer enables an efficient evaluation of thousands of potential designs versus multiple strength and stability-based failure criteria across multiple load cases. HyperSizer sizing process uses a global finite element model to obtain element forces, which are statistically processed to arrive at panel-level design-to loads. These loads are then used to analyze each candidate panel design. A near optimum design is selected as the one with the lowest weight that also provides all positive margins of safety. The stiffness of each newly sized panel or beam component is taken into account in the subsequent finite element analysis. Iteration of analysis/optimization is performed to ensure a converged design. Sizing results for the hat stiffened panel concept and the fiber reinforced foam sandwich concept are presented.

  13. Efforts for optimization of BWR core internals replacement

    International Nuclear Information System (INIS)

    Iizuka, N.

    2000-01-01

    The core internal components replacement of a BWR was successfully completed at Fukushima-Daiichi Unit 3 (1F3) of the Tokyo Electric Power Company (TEPCO) in 1998. The core shroud and the majority of the internal components made by type 304 stainless steel (SS) were replaced with the ones made of low carbon type 316L SS to improve Intergranular Stress Corrosion Cracking (IGSCC) resistance. Although this core internals replacement project was completed, several factors combined to result in a longer-than-expected period for the outage. It was partly because the removal work of the internal components was delayed. Learning a lesson from whole experience in this project, some methods were adopted for the next replacement project at Fukushima-Daiichi Unit 2 (1F2) to shorten the outage and reduce the total radiation exposure. Those are new removal processes and new welding machine and so on. The core internals replacement work was ended at 1F2 in 1999, and both the period of outage and the total radiation exposure were the same degree as expected previous to starting of this project. This result shows that the methods adopted in this project are basically applicable for the core internals replacement work and the whole works about the BWR core internals replacement were optimized. The outline of the core internals replacement project and applied technologies at 1F3 and 1F2 are discussed in this paper. (author)

  14. Characterization of welding of AISI 304l stainless steel similar to the core encircling of a BWR reactor; Caracterizacion de soldaduras de acero inoxidable AISI 304L similares a las de la envolvente del nucleo de un reactor BWR

    Energy Technology Data Exchange (ETDEWEB)

    Gachuz M, M.E.; Palacios P, F.; Robles P, E.F. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2003-07-01

    Plates of austenitic stainless steel AISI 304l of 0.0381 m thickness were welded by means of the SMAW process according to that recommended in the Section 9 of the ASME Code, so that it was reproduced the welding process used to assemble the encircling of the core of a BWR/5 reactor similar to that of the Laguna Verde Nucleo electric plant, there being generated the necessary documentation for the qualification of the one welding procedure and of the welder. They were characterized so much the one base metal, as the welding cord by means of metallographic techniques, scanning electron microscopy, X-ray diffraction, mechanical essays and fracture mechanics. From the obtained results it highlights the presence of an area affected by the heat of up to 1.5 mm of wide and a value of fracture tenacity (J{sub IC}) to ambient temperature for the base metal of 528 KJ/m{sup 2}, which is diminished by the presence of the welding and by the increment in the temperature of the one essay. Also it was carried out an fractographic analysis of the fracture zone generated by the tenacity essays, what evidence a ductile fracture. The experimental values of resistance and tenacity are important for the study of the structural integrity of the encircling one of the core. (Author)

  15. A shrouded aerosol sampling probe: Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    McFarland, A.R.; Ortiz, C.A.; Moore, M.E.; DeOtte, R.E. Jr.; Somasundaram, S.

    1988-08-01

    A new device has been developed for sampling aerosol particles from moving air streams--a shrouded probe. In the design reported herein, a 30 mm diameter sampling probe is located concentrically within a 105 mm diameter cylindrically-shaped shroud. The flow rate through the sampling probe is a constant value of 170 l/min. The dynamic pressure of the external air stream forces flow through the region between the shroud and the internal probe. The velocity of the main air stream, U/sub o/, is reduced in the shroud such that the velocity just upstream of the probe, U/sub s/, is 0.40 that of U/sub o/. By reducing the main air stream velocity, the aerosol losses on the internal walls of the probe inlet are considerably reduced. For a typical isokinetic probe sampling at 170 l/min in an air stream with a velocity of 14 m/s, the wall losses of 10 μm aerodynamic diameter particles are 39% of the total aspirated aerosol; whereas, the wall losses in the shrouded probe are 13%. Also, by reducing the velocity of the air stream in the shroud, anisokinetic effects can be substantially reduced. Wind tunnel experiments with 10 μm diameter particles over the range of free stream velocities of 2.0 to 14 m/s show the transmission ratio (ratio of aerosol transmitted through the probe to aerosol concentration in the free stream) to be within the range of 0.93 to 1.11. These data are for a constant flow rate of 170 l/min through the probe. 19 refs., 7 figs

  16. Welding hazards

    International Nuclear Information System (INIS)

    Khan, M.A.

    1992-01-01

    Welding technology is advancing rapidly in the developed countries and has converted into a science. Welding involving the use of electricity include resistance welding. Welding shops are opened in residential area, which was causing safety hazards, particularly the teenagers and children who eagerly see the welding arc with their naked eyes. There are radiation hazards from ultra violet rays which irritate the skin, eye irritation. Welding arc light of such intensity could damage the eyes. (Orig./A.B.)

  17. Effect of Partial Shrouds on the Performance and Flow Field of a Low-Aspect-Ratio Axial-Flow Fan Rotor

    Directory of Open Access Journals (Sweden)

    N. Sitaram

    2011-01-01

    Full Text Available The flow field at the rotor exit of a low aspect ratio axial flow fan for different tip geometries and for different flow coefficients is measured in the present study. The following configurations are tested: (1 rotor without partial shroud, designated as rotor (wos, (2 rotor with partial shroud, designated as rotor (ws, and (3 rotor with perforated (perforations in the shape of discrete circular holes partial shroud, designated as rotor (wps. From steady state measurements, the performance of rotor (wps is found to be the best. Both the rotors with partial shrouds have stalled at a higher flow coefficient compared to that of rotor (wos. From periodic flow measurements, it is concluded that the low velocity region near the tip section is considerably reduced with the use of partial shrouds with perforations. The extent of this low velocity region for both rotor (wos and rotor (wps increases with decreasing flow coefficient due to increased stage loading. This core of low momentum fluid has moved inwards of the annulus and towards the pressure side as the flow coefficient decreases. The extent of the low momentum fluid is smaller for rotor (wps than that of rotor (wos at all flow coefficients.

  18. Double-ended metal halide arc discharge lamp with electrically isolated containment shroud

    Science.gov (United States)

    Muzeroll, Martin M. (Inventor)

    1994-01-01

    A double-ended arc discharge lamp includes a sealed, light-transmissive outer jacket, a light-transmissive shroud mounted within the outer jacket and directly supported by the outer jacket, and an arc discharge tube mounted within the shroud. The arc tube is typically a metal halide arc discharge tube. In a preferred embodiment, the shroud includes an outwardly flared portion at each end. The outwardly flared portions space the shroud from the outer jacket and support the shroud within the outer jacket. The outwardly flared portions of the shroud can be affixed to the outer jacket by fusing. The outer jacket can be provided with inwardly extending dimples for locating the shroud with respect to the outer jacket. In another embodiment, the outer jacket includes reduced diameter portions near each end which are attached to the shroud.

  19. Detection of failed fuel rods in shrouded BWR fuel assemblies

    International Nuclear Information System (INIS)

    Baero, G.; Boehm, W.; Goor, B.; Donnelly, T.

    1988-01-01

    A manipulator and an ultrasonic testing (UT) technique were developed to identify defective fuel rods in shrouded BWR fuel assemblies. The manipulator drives a UT probe axially through the bottom tie plate into the water channels between the fuel rods. The rotating UT probe locates defective fuel rods by ingressed water which attenuates the UT-signal. (author)

  20. Monitoring of chromium and nickel in biological fluids of stainless steel welders using the flux-cored-wire (FCW) welding method.

    Science.gov (United States)

    Stridsklev, Inger Cecilie; Schaller, Karl-Heinz; Langård, Sverre

    2004-11-01

    This study was undertaken to investigate the exposure to chromium (Cr) and nickel (Ni) in flux-cored wire (FCW) welders welding on stainless steel (SS). Seven FCW welders were monitored for 3 days to 1 workweek, measuring Cr and Ni in air, blood, and urine. The welders were questioned about exposure to Cr and Ni during their whole working careers, with emphasis on the week of monitoring, about the use of personal protective equipment and their smoking habits. The air concentrations were mean 200 microg/m(3) (range 2.4-2,744) for total Cr, 11.3 microg/m(3) (416.7) for Ni during the workdays for the five welders who were monitored with air measurements. The levels of Cr and Ni in biological fluids varied between different workplaces. For Cr in whole blood, plasma, and erythrocytes, the mean levels after work were 1.25 (<0.4-8.3) and 1.68 (<0.2-8.0) and 0.9 (<0.4-7.2) microg/l, respectively. For Ni most of the measurements in whole blood and plasma were below the detection limits, the mean levels after work being 0.84 (<0.8-3.3) and 0.57 microg/l (<0.4-1.7), respectively. Mean levels for Cr and Ni in the urine after work were 3.96 (0.34-40.7) and 2.50 (0.56-5.0) microg/g creatinine, respectively. Correlations between the Cr(VI) levels measured in air and the levels of total Cr in the measured biological fluids were found. The results seem to support the view that monitoring of Cr in the urine may be versatile for indirect monitoring of the Cr(VI) air level in FCW welders. The results seem to suggest that external and internal exposure to Cr and Ni in FCW welders welding SS is low in general.

  1. Welding Curriculum.

    Science.gov (United States)

    Alaska State Dept. of Education, Juneau. Div. of Adult and Vocational Education.

    This competency-based curriculum guide is a handbook for the development of welding trade programs. Based on a survey of Alaskan welding employers, it includes all competencies a student should acquire in such a welding program. The handbook stresses the importance of understanding the principles associated with the various elements of welding.…

  2. Heat transfer and flow characteristics on a gas turbine shroud.

    Science.gov (United States)

    Obata, M; Kumada, M; Ijichi, N

    2001-05-01

    The work described in this paper is an experimental investigation of the heat transfer from the main flow to a turbine shroud surface, which may be applicable to ceramic gas turbines. Three kinds of turbine shrouds are considered with a flat surface, a taper surface and a spiral groove surface opposite to the blades in an axial flow turbine of actual turbo-charger. Heat transfer measurements were performed for the experimental conditions of a uniform heat flux or a uniform wall temperature. The effects of the inlet flow angle, rotational speed, and tip clearance on the heat transfer coefficient were clarified under on- and off-design flow conditions. The mean heat transfer coefficient was correlated to the blade Reynolds number and tip clearance, and compared with an experimental correlation and measurements of a flat surface. A comparison was also made for the measurement of static pressure distributions.

  3. Advanced Welding Concepts

    Science.gov (United States)

    Ding, Robert J.

    2010-01-01

    Four advanced welding techniques and their use in NASA are briefly reviewed in this poster presentation. The welding techniques reviewed are: Solid State Welding, Friction Stir Welding (FSW), Thermal Stir Welding (TSW) and Ultrasonic Stir Welding.

  4. Resistance seam welding

    International Nuclear Information System (INIS)

    Schueler, A.W.

    1977-01-01

    The advantages and disadvantages of the resistance seam welding process are presented. Types of seam welds, types of seam welding machines, seam welding power supplies, resistance seam welding parameters and seam welding characteristics of various metals

  5. Studies on the radiocarbon sample from the shroud of turin

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Raymond N. [Los Alamos National Laboratory, University of California, 1961 Cumbres Patio, Los Alamos, NM 87544 (United States)]. E-mail: rnrogers@att.net

    2005-01-20

    In 1988, radiocarbon laboratories at Arizona, Cambridge, and Zurich determined the age of a sample from the Shroud of Turin. They reported that the date of the cloth's production lay between A.D. 1260 and 1390 with 95% confidence. This came as a surprise in view of the technology used to produce the cloth, its chemical composition, and the lack of vanillin in its lignin. The results prompted questions about the validity of the sample. Preliminary estimates of the kinetics constants for the loss of vanillin from lignin indicate a much older age for the cloth than the radiocarbon analyses. The radiocarbon sampling area is uniquely coated with a yellow-brown plant gum containing dye lakes. Pyrolysis-mass-spectrometry results from the sample area coupled with microscopic and microchemical observations prove that the radiocarbon sample was not part of the original cloth of the Shroud of Turin. The radiocarbon date was thus not valid for determining the true age of the shroud.

  6. Design and performance of a small shrouded Cretan windwheel

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, P D; Probert, S D

    1982-02-01

    A Cretan-type windwheel is attractive because of its design simplicity, low cost, durability and ease of construction by semi-skilled labor from a variety of indigenous materials. Test data for a shrouded version of the ''cycle wheel'', Cretan system are presented. The use of nine loosely sheeted sails produced a maximum power output of 14 W for an air speed at entry to the rotor of 5 m s/sup -1/, corresponding to a free stream wind of less than 3.5ms/sup -1/. For this system it was found that tight (rather than loose) sails harnessed relatively little power. The presence of the shroud, which reduced tip losses, led to higher power coefficients being attainable. Two possible applications for a larger version (than tested) shrouded, Cretan type windwheel are described, namely for irrigation and land drainage in undeveloped countries and for stimulating a peristaltic pump which acts as a gravitational boost to drive solar-heated anti-freeze liquid around a low height, domestic central-heating circuit. 22 refs.

  7. Studies on the radiocarbon sample from the shroud of turin

    International Nuclear Information System (INIS)

    Rogers, Raymond N.

    2005-01-01

    In 1988, radiocarbon laboratories at Arizona, Cambridge, and Zurich determined the age of a sample from the Shroud of Turin. They reported that the date of the cloth's production lay between A.D. 1260 and 1390 with 95% confidence. This came as a surprise in view of the technology used to produce the cloth, its chemical composition, and the lack of vanillin in its lignin. The results prompted questions about the validity of the sample. Preliminary estimates of the kinetics constants for the loss of vanillin from lignin indicate a much older age for the cloth than the radiocarbon analyses. The radiocarbon sampling area is uniquely coated with a yellow-brown plant gum containing dye lakes. Pyrolysis-mass-spectrometry results from the sample area coupled with microscopic and microchemical observations prove that the radiocarbon sample was not part of the original cloth of the Shroud of Turin. The radiocarbon date was thus not valid for determining the true age of the shroud

  8. An outlook on comparison of hybrid welds of different root pass and ...

    Indian Academy of Sciences (India)

    Pritesh Prajapati

    2018-05-11

    May 11, 2018 ... pass and filler pass of flux cored arc welding and gas metal arc welding were acquired. The comparative ... [2], GMAW-plasma welding [3], laser welding-gas tung- sten arc welding ..... by optical emission spectroscopy. Plasma ...

  9. Welding Technician

    Science.gov (United States)

    Smith, Ken

    2009-01-01

    About 95% of all manufactured goods in this country are welded or joined in some way. These welded products range in nature from bicycle handlebars and skyscrapers to bridges and race cars. The author discusses what students need to know about careers for welding technicians--wages, responsibilities, skills needed, career advancement…

  10. Effects of Radial Reflector Composition on Core Reactivity and Peak Power

    International Nuclear Information System (INIS)

    Park, Sang Yoon; Lee, Kyung Hoon; Song, Jae Seung

    2007-10-01

    The effects of radial SA-240 alloy shroud on core reactivity and peak power are evaluated. The existence of radial SA-240 alloy shroud makes reflector water volume decrease, so the thermal absorption cross section of radial reflector is lower than without SA-240 alloy shroud case. Finally, the cycle length is increased from 788 EFPD to 845 EFPD and the peak power is decreased from 1.66 to 1.49. In the case of without SA-240 alloy shroud, a new core loading pattern search has been performed. For the guarantee of the same equivalent cycle length of with SA-240 alloy shroud case, the enrichment of U-235 should be increased from 4.22 w/o to 4.68 w/o. The nuclear key safety parameters of new core loading pattern have been calculated and recorded for the future

  11. Effects of Radial Reflector Composition on Core Reactivity and Peak Power

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Yoon; Lee, Kyung Hoon; Song, Jae Seung

    2007-10-15

    The effects of radial SA-240 alloy shroud on core reactivity and peak power are evaluated. The existence of radial SA-240 alloy shroud makes reflector water volume decrease, so the thermal absorption cross section of radial reflector is lower than without SA-240 alloy shroud case. Finally, the cycle length is increased from 788 EFPD to 845 EFPD and the peak power is decreased from 1.66 to 1.49. In the case of without SA-240 alloy shroud, a new core loading pattern search has been performed. For the guarantee of the same equivalent cycle length of with SA-240 alloy shroud case, the enrichment of U-235 should be increased from 4.22 w/o to 4.68 w/o. The nuclear key safety parameters of new core loading pattern have been calculated and recorded for the future.

  12. Resistance welding

    DEFF Research Database (Denmark)

    Bay, Niels; Zhang, Wenqi; Rasmussen, Mogens H.

    2003-01-01

    Resistance welding comprises not only the well known spot welding process but also more complex projection welding operations, where excessive plastic deformation of the weld point may occur. This enables the production of complex geometries and material combinations, which are often not possible...... to weld by traditional spot welding operations. Such joining processes are, however, not simple to develop due to the large number of parameters involved. Development has traditionally been carried out by large experimental investigations, but the development of a numerical programme system has changed...... this enabling prediction of the welding performance in details. The paper describes the programme in short and gives examples on industrial applications. Finally investigations of causes for failure in a complex industrial joint of two dissimilar metals are carried out combining numerical modelling...

  13. Analysis, Verification, and Application of Equations and Procedures for Design of Exhaust-pipe Shrouds

    Science.gov (United States)

    Ellerbrock, Herman H.; Wcislo, Chester R.; Dexter, Howard E.

    1947-01-01

    Investigations were made to develop a simplified method for designing exhaust-pipe shrouds to provide desired or maximum cooling of exhaust installations. Analysis of heat exchange and pressure drop of an adequate exhaust-pipe shroud system requires equations for predicting design temperatures and pressure drop on cooling air side of system. Present experiments derive such equations for usual straight annular exhaust-pipe shroud systems for both parallel flow and counter flow. Equations and methods presented are believed to be applicable under certain conditions to the design of shrouds for tail pipes of jet engines.

  14. Summary of the guideline on underwater laser beam repair welding

    International Nuclear Information System (INIS)

    Ichikawa, Hiroya; Yoda, Masaki; Motora, Yuichi

    2013-01-01

    It is known that stress corrosion cracking (SCC) might occur at the weld of a reactor pressure vessel or core internals. Underwater laser beam clad welding for mitigation of SCC has been already established and the guideline 'Underwater laser beam clad welding' was published. Moreover, the guideline 'Seal welding' was also published as a repair method for SCC. In addition to these guidelines, the guideline 'Underwater laser beam repair welding' was newly published in November, 2012 for the repair welding after completely removing a SCC crack occurred in weld or base metal. This paper introduces the summary of this guideline. (author)

  15. Mechanical properties of welded joints of duplex steels

    International Nuclear Information System (INIS)

    Kawiak, M.; Nowacki, J.

    2003-01-01

    The paper presents the study results of mechanical properties of duplex steels UNS S31803 welded joints as well as duplex and NV A36 steels welded joints. They have ben welded by FCAW method in CO 2 using FCW 2205-H flux-cored wire. The joints have been subjected: tensile tests, impact tests, bending tests, hardness tests and metallographic investigations. The influence of welding parameters and mechanical properties of the joints was appreciated. The welding method assured high tensile strength of the joints (approximately 770 MPa) and high impact strength of the welds (approximately 770 J). All samples were broken outside of welds. (author)

  16. Turin workshop on radiocarbon dating the Turin Shroud

    International Nuclear Information System (INIS)

    Gove, H.E.

    1987-01-01

    A workshop to explore the procedures for making carbon-14 measurements on the cloth of the Shroud of Turin was held in Turin, Italy on September 29, 30 and October 1, 1986. It was sponsored by the Pontifical Academy of Sciences whose president chaired the workshop and by the Archbishop of Turin. Twenty-two people participated including representatives from seven laboratories who have indicated a willingness to carry out the measurements if a request to do so from the Vatican is forthcoming. A protocol for carrying out this task was agreed upon by the workshop delegates and has been presented to Vatican authorities. (orig.)

  17. Design of Shrouded Airborne Wind Turbine & CFD Analysis

    Science.gov (United States)

    Anbreen, Faiqa; Faiqa Anbreen Collaboration

    2015-11-01

    The focus is to design a shrouded airborne wind turbine, capable to generate 70 kW to propel a leisure boat. The idea of designing an airborne turbine is to take the advantage of different velocity layers in the atmosphere. The blades have been designed using NREL S826 airfoil, which has coefficient of lift CL of 1.4 at angle of attack, 6°. The value selected for CP is 0.8. The rotor diameter is 7.4 m. The balloon (shroud) has converging-diverging nozzle design, to increase the mass flow rate through the rotor. The ratio of inlet area to throat area, Ai/At is 1.31 and exit area to throat area, Ae/At is1.15. The Solidworks model has been analyzed numerically using CFD. The software used is StarCCM +. The Unsteady Reynolds Averaged Navier Stokes Simulation (URANS) K- ɛ model has been selected, to study the physical properties of the flow, with emphasis on the performance of the turbine. Stress analysis has been done using Nastran. From the simulations, the torque generated by the turbine is approximately 800N-m and angular velocity is 21 rad/s.

  18. User manual for SPLASH (Single Panel Lamp and Shroud Helper).

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Marvin Elwood

    2006-02-01

    The radiant heat test facility develops test sets providing well-characterized thermal environments, often representing fires. Many of the components and procedures have become standardized to such an extent that the development of a specialized design tool to determine optimal configurations for radiant heat experiments was appropriate. SPLASH (Single Panel Lamp and Shroud Helper) is that tool. SPLASH is implemented as a user-friendly, Windows-based program that allows a designer to describe a test setup in terms of parameters such as number of lamps, power, position, and separation distance. This document is a user manual for that software. Any incidental descriptions of theory are only for the purpose of defining the model inputs. The theory for the underlying model is described in SAND2005-2947 (Ref. [1]). SPLASH provides a graphical user interface to define lamp panel and shroud designs parametrically, solves the resulting radiation enclosure problem for up to 2500 surfaces, and provides post-processing to facilitate understanding and documentation of analyzed designs.

  19. Medical News From Scientific Analysis of the Turin Shroud

    Directory of Open Access Journals (Sweden)

    Bevilacqua M.

    2015-01-01

    Full Text Available This paper synthetizes a series of works recently published in reference to medical studies regarding both the physical conditions of the Man who was wrapped in the Turin Shroud (TS and the tortures to which this Man was subjected. An event that influenced the rapid course of the Passion and the cause of death of the TS Man was the fall under the weight of the cross. This Man shows, on the right side, shoulder lowering, flat hand and henophthalmos, revealing a violent blunt trauma, from behind, to neck, chest and shoulder, with the entire brachial plexus injury and muscular damage to the neck bottom with the head bent forward and turned to the left, on the cross, as he had a stiff neck. Most likely, falling the body forward, the chest trauma caused a heart and lung contusion with hemothorax. The wrists were easily nailed in the Destot space with ulnar artery cutting and partial tear of the ulnar nerve cause of the thumb retraction and its disappearance on the Shroud. The nail in the right foot was driven in the tarsal bones. The right foot was probably dislocated to the ankle. The lance penetrated in the sixth intercostal space. The likely cause of immediate death was a myocardial infarction with rupture, haemopericardium and heart tamponade of a subject with cardiac contusion. Tortures and other medical conditions have only accelerated the death.

  20. Soldadura (Welding). Spanish Translations for Welding.

    Science.gov (United States)

    Hohhertz, Durwin

    Thirty transparency masters with Spanish subtitles for key words are provided for a welding/general mechanical repair course. The transparency masters are on such topics as oxyacetylene welding; oxyacetylene welding equipment; welding safety; different types of welds; braze welding; cutting torches; cutting with a torch; protective equipment; arc…

  1. WELDING TORCH

    Science.gov (United States)

    Correy, T.B.

    1961-10-01

    A welding torch into which water and inert gas are piped separately for cooling and for providing a suitable gaseous atmosphere is described. A welding electrode is clamped in the torch by a removable collet sleeve and a removable collet head. Replacement of the sleeve and head with larger or smaller sleeve and head permits a larger or smaller welding electrode to be substituted on the torch. (AEC)

  2. Welding stresses

    International Nuclear Information System (INIS)

    Poirier, J.; Barbe, B.; Jolly, N.

    1976-01-01

    The aim is to show how internal stresses are generated and to fix the orders of magnitude. A realistic case, the vertical welding of thick plates free to move one against the other, is described and the deformations and stresses are analyzed. The mathematical model UEDA, which accounts for the elastic modulus, the yield strength and the expansion coefficient of the metal with temperature, is presented. The hypotheses and results given apply only to the instantaneous welding of a welded plate and to a plate welded by a moving electrode [fr

  3. Measurement of Total Condensation on a Shrouded Cryogenic Surface using a Single Quart Crystal Microbalance

    International Nuclear Information System (INIS)

    Haid, B.J.; Malsbury, T.N.; Gibson, C.R.; Warren, C.T.

    2008-01-01

    A single quartz crystal microbalance (QCM) is cooled to 18 K to measure condensation rates inside of a retractable ''shroud'' enclosure. The shroud is of a design intended to minimize condensate on fusion targets to be fielded at the National Ignition Facility (NIF). The shroud has a double-wall construction with an inner wall that may be cooled to 75-100 K. The QCM and the shroud system were mounted in a vacuum chamber and cooled using a cryocooler. Condensation rates were measured at various vacuum levels and compositions, and with the shroud open or closed. A technique for measuring total condensate during the cooldown of the system with an accuracy of better than 1.0 x 10 -6 g/cm 2 was also demonstrated. The technique involved a separate measurement of the condensate-free crystal frequency as a function of temperature that was later applied to the measurement of interest

  4. WELDING METHOD

    Science.gov (United States)

    Cornell, A.A.; Dunbar, J.V.; Ruffner, J.H.

    1959-09-29

    A semi-automatic method is described for the weld joining of pipes and fittings which utilizes the inert gasshielded consumable electrode electric arc welding technique, comprising laying down the root pass at a first peripheral velocity and thereafter laying down the filler passes over the root pass necessary to complete the weld by revolving the pipes and fittings at a second peripheral velocity different from the first peripheral velocity, maintaining the welding head in a fixed position as to the specific direction of revolution, while the longitudinal axis of the welding head is disposed angularly in the direction of revolution at amounts between twenty minutas and about four degrees from the first position.

  5. Influence of preheating on API 5L-X80 pipeline joint welding with self shielded flux-cored wire; Influencia del precalentamiento en las propiedades de uniones soldadas de acero API 5L-X80 soldadas con alambre tubular autoprotegido

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, R.; Silva, J. H. F.; Trevisan, R. E.

    2004-07-01

    The present work refers to the characterization of API 5L-X80 pipeline joints welded with self-shielded flux cored wire. This process was evaluated under preheating conditions, with an uniform and steady heat input. All joints were welded in flat position (1G), with the pipe turning and the torch still. Tube dimensions were 762 mm in external diameter and 16 mm in thickness. Welds were applied on single V-groove, with six weld beads, along with three levels of preheating temperatures (room temperature, 100 degree centigree, 160 degree centigree). These temperatures were maintained as inter pass temperature. The filler metal E71T8-K6 with mechanical properties different from parent metal was used in under matched conditions. The weld characterization is presented according to the mechanical test results of tensile strength, hardness and impact test. The mechanical tests were conducted according to API 1104, AWS and ASTM standards. API 1104 and API 51 were used as screening criteria. According to the results obtained, it was possible to remark that it is appropriate to weld API 5L-X80 steel ducts with Self-shielded Flux Cored wires, in conformance to the API standards and no preheat temperature is necessary. (Author) 22 refs.

  6. Weld nugget formation in resistance spot welding of new lightweight sandwich material

    DEFF Research Database (Denmark)

    Sagüés Tanco, J.; Nielsen, Chris Valentin; Chergui, Azeddine

    2015-01-01

    Weldability of a new lightweight sandwich material, LITECOR®, by resistance spot welding is analyzed by experiments and numerical simulations. The spot welding process is accommodated by a first pulse squeezing out the non-conductive polymer core of the sandwich material locally to allow metal......–metal contact. This is facilitated by the use of a shunt tool and is followed by a second pulse for the actual spot welding and nugget formation. A weldability lobe in the time-current space of the second pulse reveals a process window of acceptable size for automotive assembly lines. Weld growth curves...... with experimental results in the range of welding parameters leading to acceptable weld nugget sizes. The validated accuracy of the commercially available software proves the tool useful for assisting the choice of welding parameters....

  7. Welding process

    International Nuclear Information System (INIS)

    Abdul Nassir Ibrahim; Azali Muhammad; Ab. Razak Hamzah; Abd. Aziz Mohamed; Mohamad Pauzi Ismail

    2008-01-01

    For the final chapter of this book, there is basic introduction on welding process. The good radiography must know somehow on welding process so that they can know what kind of welding that must rejected or not. All of the exposure technique that mention in earlier chapter almost applicable in this field because welding process is critical problem if there is no inspection will be done. So, for this chapter, all the discontinuity that usually appeared will be discussed and there is another discontinuity maybe not to important and do not give big impact if found it, do not described here. On top of that, the decision to accept or reject based on code, standard and specification that agreed by both to make sure that decision that agreed is corrected and more meaningful.

  8. Fluid structure interaction studies on acoustic load response of light water nuclear reactor core internals under blowdown condition

    International Nuclear Information System (INIS)

    Moses Lemuel Raj, G.; Singh, R.K.; Kushwaha, H.S.; Venkat Raj, V.

    1998-12-01

    Acoustic load evaluation within two phase medium and the related fluid-structure interaction analysis in case of Loss of Coolant Accidents (LOCA) for light water reactor systems is an important inter-disciplinary area. The present work highlights the development of a three-dimensional finite element code FLUSHEL to analyse LOCA induced depressurization problems for Pressurised Water Reactor (PWR) core barrel and Boiling Water Reactor (BWR) core shroud. With good comparison obtained between prediction made by the present code and the experimental results of HDR-PWR test problem, coupled fluid-structure interaction analysis of core shroud of Tarapur Atomic Power Station (TAPS) is presented for recirculation line break. It is shown that the acoustic load induced stresses in the core shroud are small and downcomer acoustic cavity modes are decoupled with the shell multi-lobe modes. Thus the structural integrity of TAPS core shroud for recirculation line break induced acoustic load is demonstrated. (author)

  9. Syllabus in Trade Welding.

    Science.gov (United States)

    New York State Education Dept., Albany. Bureau of Secondary Curriculum Development.

    The syllabus outlines material for a course two academic years in length (minimum two and one-half hours daily experience) leading to entry-level occupational ability in several welding trade areas. Fourteen units covering are welding, gas welding, oxyacetylene welding, cutting, nonfusion processes, inert gas shielded-arc welding, welding cast…

  10. Control of the flow in the annular region of a shrouded cylinder with splitter plate

    Directory of Open Access Journals (Sweden)

    Ozkan Gokturk Memduh

    2017-01-01

    Full Text Available In the present study, the flow control with a splitter plate was studied considering the annular region of a shrouded cylinder. The effect of splitter plate angle, α which was defined according to the cylinder centreline is investigated experimentally in deep water using Particle image Velocimetry (PIV technique and flow visualization by dye injection method. The range of splitter plate angle was selected within 60°≤ α ≤180° with an increment of 30°. The porosity of the shroud which is a perforated cylinder was selected as β=0.7 in order to have larger fluid entrainment through the cylinder. The results were compared with the no-plate case and showed that the splitter plate located in the annular region of shrouded cylinders is effective on reducing the turbulence levels just behind the cylinder base, as well as the near wake of the perforated shroud.

  11. Control of the flow in the annular region of a shrouded cylinder with splitter plate

    Science.gov (United States)

    Ozkan, Gokturk Memduh; Durhasan, Tahir; Pinar, Engin; Yenicun, Arda; Akilli, Huseyin; Sahin, Besir

    In the present study, the flow control with a splitter plate was studied considering the annular region of a shrouded cylinder. The effect of splitter plate angle, α which was defined according to the cylinder centreline is investigated experimentally in deep water using Particle image Velocimetry (PIV) technique and flow visualization by dye injection method. The range of splitter plate angle was selected within 60°≤ α ≤180° with an increment of 30°. The porosity of the shroud which is a perforated cylinder was selected as β=0.7 in order to have larger fluid entrainment through the cylinder. The results were compared with the no-plate case and showed that the splitter plate located in the annular region of shrouded cylinders is effective on reducing the turbulence levels just behind the cylinder base, as well as the near wake of the perforated shroud.

  12. Computational Study on the Effect of Shroud Shape on the Efficiency of the Gas Turbine Stage

    Science.gov (United States)

    Afanas'ev, I. V.; Granovskii, A. V.

    2018-03-01

    The last stages of powerful power gas turbines play an important role in the development of power and efficiency of the whole unit as well as in the distribution of the flow parameters behind the last stage, which determines the efficient operation of the exhaust diffusers. Therefore, much attention is paid to improving the efficiency of the last stages of gas turbines as well as the distribution of flow parameters. Since the long blades of the last stages of multistage high-power gas turbines could fall into the resonance frequency range in the course of operation, which results in the destruction of the blades, damping wires or damping bolts are used for turning out of resonance frequencies. However, these damping elements cause additional energy losses leading to a reduction in the efficiency of the stage. To minimize these losses, dampening shrouds are used instead of wires and bolts at the periphery of the working blades. However, because of the strength problems, designers have to use, instead of the most efficient full shrouds, partial shrouds that do not provide for significantly reducing the losses in the tip clearance between the blade and the turbine housing. In this paper, a computational study is performed concerning an effect that the design of the shroud of the turbine-working blade exerted on the flow structure in the vicinity of the shroud and on the efficiency of the stage as a whole. The analysis of the flow structure has shown that a significant part of the losses under using the shrouds is associated with the formation of vortex zones in the cavities on the turbine housing before the shrouds, between the ribs of the shrouds, and in the cavities at the outlet behind the shrouds. All the investigated variants of a partial shrouding are inferior in efficiency to the stages with shrouds that completely cover the tip section of the working blade. The stage with a unshrouded working blade was most efficient at the values of the relative tip clearance

  13. NK-1 Removable Cryogenic Shroud (A Study of the Bimba Pneumatic Cylinder)

    International Nuclear Information System (INIS)

    Anderson, K.; Stefanescu, D.

    2003-01-01

    The Mark 1 Cryostat requires a cryogenic shroud that must be retracted immediately before firing the NIF laser. This paper evaluates a pneumatic cylinder that has been chosen to open and close the shroud. After a variety of motion control and vacuum compatibility experiments, we concluded that the Bimba feedback control cylinder may be used to retract the shroud with certain modifications to its control system and additional rod seals. The Mark I Cryostat is a system that allows fielding of a wide range of targets on the National Ignition Facility (NIF). The purpose is to have a system with the capability of controlling the target temperature between ∼10 and 300 K. While in the Target Chamber, a shroud must cover the cooled targets. This shroud allows the cold target to be shielded from condensable residual gasses in the target chamber. The removable shroud may be cooled to 80 K to provide a radiant shield for the target from the room temperature target chamber. The shroud must remain over the target until approximately one second before shot time, and then retract on command, without inducing vibration into the target. An actuation system design, which removes the shroud, is constrained by the size limitations of the MK-1, the need to build from low-activation materials, the need to operate in a vacuum, and the need for high reliability. The scheme for retracting the shroud that they investigated was a pressurized air cylinder. The pneumatic cylinder tested in our experiments was built by the Bimba Manufacturing Company. We thought it would be suitable for shroud retraction because its manufacturer claimed that its motion was smooth, highly accurate, controllable and the appropriate size for our needs. The pneumatic cylinder moves a piston by changing the gas pressure in the two sections of the cylinder on either side of the piston. The cylinder also uses the piston as a voltage potentiometer to determine the current position of the piston. This voltage is then

  14. Transfiguring the Dead: The Iconography, Commemorative Use, and Materiality of Mummy Shrouds from Roman Egypt

    OpenAIRE

    Jimenez, Lissette Marie

    2014-01-01

    The mummy shrouds, often overlooked or dissected into dichotomous parts because of their Hellenistic and Egyptian hybrid pictorial nature, provide unparalleled insight into religious and social facets of life and death in Roman Egypt. Moving beyond the aesthetic properties of these objects and focusing on the symbolic and material functions of the iconography on the shrouds enables a fuller understanding of individual and collective social aspirations of the inhabitants of Roman Egypt. When v...

  15. Regimes of Micro-bubble Formation Using Gas Injection into Ladle Shroud

    Science.gov (United States)

    Chang, Sheng; Cao, Xiangkun; Zou, Zongshu

    2018-06-01

    Gas injection into a ladle shroud is a practical approach to produce micro-bubbles in tundishes, to promote inclusion removal from liquid steel. A semi-empirical model was established to characterize the bubble formation considering the effect of shearing action combined with the non-fully bubble break-up by turbulence. The model shows a good accuracy in predicting the size of bubbles formed in complex flow within the ladle shroud.

  16. Welding superalloy sheet for superconducting cable jackets

    International Nuclear Information System (INIS)

    Summers, L.T.; Strum, M.J.; Morris, J.W. Jr.

    1983-08-01

    Autogenous gas tungsten arc welds produced in A-286 exhibit significantly lower yield and ultimate tensile strengths than comparably heat-treated base metal. Deformation in the aged weld metal is highly localized and delineates the dendritic microstructure. The observed mechanical properties are caused by the formation of precipitate-free regions located at the dendrite cores. These regions form as the result of titanium segregation during weld pool solidification which yields dendrite cores sufficiently lean in titanium as to prevent nucleation of the hardening phase

  17. ITER lip seal welding and cutting developments

    International Nuclear Information System (INIS)

    Levesy, B.; Cordier, J.J.; Jokinen, T.; Kujanpää, V.; Karhu, M.; Le Barbier, R.; Määttä, T.; Martins, J.P.; Utin, Y.

    2015-01-01

    Highlights: • Different TIG and Laser welding techniques are tested. • Twin spot laser welding techniques is the best. • Limited heat input gives a stable weld pool in all positions. • Penetrations is achieved. • Lip seal welding and cutting with a robotic arm is successfully performed on a representative mock-up. - Abstract: The welded lip seals form part of the torus primary vacuum boundary in between the port plugs and the vacuum vessel, and are classified as Protection Important Component. In order to refurbish the port plugs or the in-vessel components, port plugs have to be removed from the machine. The lip seal design must enable up to ten opening of the vacuum vessel during the life time operation of the ITER machine. Therefore proven, remote reliable cutting and re-welding are essential, as these operations need to be performed in the port cells in a nuclear environment, where human presence will be restricted. Moreover, the combination of size of the components to be welded (∼10 m long vacuum compatible thin welds) and the congested environment close to the core of the machine constraint the type and size of tools to be used. This paper describes the lip seal cutting and welding development programme performed at the VTT Technical Research Centre, Finland. Potential cutting and welding techniques are analyzed and compared. The development of the cutting, TIG and laser welding techniques on samples are presented. Effects of lip seal misalignments and optimization of the 2 welding processes are discussed. Finally, the manufacturing and test of the two 1.2 m × 1 m representative mock-ups are presented. The set-up and use of a robotic arm for the mock-up cutting and welding operations are also described.

  18. ITER lip seal welding and cutting developments

    Energy Technology Data Exchange (ETDEWEB)

    Levesy, B.; Cordier, J.J.; Jokinen, T. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Kujanpää, V.; Karhu, M. [VTT Technical Research Centre of Finland (Finland); Le Barbier, R. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Määttä, T. [VTT Technical Research Centre of Finland (Finland); Martins, J.P.; Utin, Y. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France)

    2015-10-15

    Highlights: • Different TIG and Laser welding techniques are tested. • Twin spot laser welding techniques is the best. • Limited heat input gives a stable weld pool in all positions. • Penetrations is achieved. • Lip seal welding and cutting with a robotic arm is successfully performed on a representative mock-up. - Abstract: The welded lip seals form part of the torus primary vacuum boundary in between the port plugs and the vacuum vessel, and are classified as Protection Important Component. In order to refurbish the port plugs or the in-vessel components, port plugs have to be removed from the machine. The lip seal design must enable up to ten opening of the vacuum vessel during the life time operation of the ITER machine. Therefore proven, remote reliable cutting and re-welding are essential, as these operations need to be performed in the port cells in a nuclear environment, where human presence will be restricted. Moreover, the combination of size of the components to be welded (∼10 m long vacuum compatible thin welds) and the congested environment close to the core of the machine constraint the type and size of tools to be used. This paper describes the lip seal cutting and welding development programme performed at the VTT Technical Research Centre, Finland. Potential cutting and welding techniques are analyzed and compared. The development of the cutting, TIG and laser welding techniques on samples are presented. Effects of lip seal misalignments and optimization of the 2 welding processes are discussed. Finally, the manufacturing and test of the two 1.2 m × 1 m representative mock-ups are presented. The set-up and use of a robotic arm for the mock-up cutting and welding operations are also described.

  19. Welding of the A1 reactor pressure vessel

    International Nuclear Information System (INIS)

    Becka, J.

    1975-01-01

    As concerns welding, the A-1 reactor pressure vessel represents a geometrically complex unit containing 1492 welded joints. The length of welded sections varies between 10 and 620 mm. At an operating temperature of 120 degC and a pressure of 650 N/cm 2 the welded joints in the reactor core are exposed to an integral dose of 3x10 18 n/cm 2 . The chemical composition is shown for pressure vessel steel as specified by CSN 413090.9 modified by Ni, Ti and Al additions, and for the welding electrodes used. The requirements are also shown for the mechanical properties of the base and the weld metals. The technique and conditions of welding are described. No defects were found in ultrasonic testing of welded joints. (J.B.)

  20. Welding template

    International Nuclear Information System (INIS)

    Ben Venue, R.J. of.

    1976-01-01

    A welding template is described which is used to weld strip material into a cellular grid structure for the accommodation of fuel elements in a nuclear reactor. On a base plate the template carries a multitude of cylindrical pins whose upper half is narrower than the bottom half and only one of which is attached to the base plate. The others are arrested in a hexagonal array by oblong webs clamped together by chuck jaws which can be secured by means of screws. The parts are ground very accurately. The template according to the invention is very easy to make. (UWI) [de

  1. MAG narrow gap welding - an economic way to minimize welding expenses

    International Nuclear Information System (INIS)

    Kast, W.; Scholz, E.; Weyland, F.

    1982-01-01

    The thicker structural components are, the more important it is to take measures to reduce the volume of the weld. The welding process requiring the smallest possible weld section is the so-called narrow gap process. In submerged arc narrow gap welding as well as in MAG narrow gap welding different variants are imaginable, some of them already in practical use. With regard to efficiency and weld quality an optimum variant of the MAG narrow gap welding process is described. It constitutes a two wire system in which two wire electrodes of 1.2 mm diameter are arranged one behind the other. In order to avoid lack of fusion, the wire guides are slightly pointed towards each groove face. Thus, by inclining the two arcs burning one behind the other in the direction of weld progress, it is achieved that two separately solidifying weld pools and two beads per layer are simultaneously formed. Welding parameters are selected in such a way that a heat input of 16-20 kJ/cm and a deposition rate of 11-16 kgs/h are obtained. In spite of this comparatively high deposition rate, good impact values are found both in the weld and HAZ (largely reduced coarse-grain zone) which is due to an optimum weld build-up. With the available welding equipment the process can be applied to structural members having a thickness of 40-400 mm. The width of gap is 13 mm (root section) with a bevel angle of 1 0 . As filler metal, basic flux-cored wires are used which, depending on the base metal to be welded and the required tensile properties, can be of the Mn-, MnMo-, MnCrMo-, MnNi-, or MnNiMo-alloyed types. (orig.)

  2. Control system of power supply for resistance welding machine

    Directory of Open Access Journals (Sweden)

    Світлана Костянтинівна Поднебенна

    2017-06-01

    Full Text Available This article describes the existing methods of heat energy stabilizing, which are realized in thyristor power supplies for resistance welding machines. The advantages and features of thyristor power supplies have been described. A control system of power supply for resistance welding machine with stabilization of heat energy in a welding spot has been developed. Measurements are performed in primary winding of a welding transformer. Weld spot heating energy is calculated as the difference between the energy, consumed from the mains, and the energy losses in the primary and secondary circuits of the welding transformer as well as the energy losses in the transformer core. Algorithms of digital signal processing of the developed control system are described in the article. All measurements and calculations are preformed automatically in real-time. Input signals to the control system are: transformer primary voltage and current, temperature of the welding circuit. The designed control system ensures control of the welding heat energy and is not influenced by the supply voltage and impedance changes caused by insertion of the ferromagnetic mass in the welding circuit, the temperature change during the welding process. The developed control system for resistance welding machine makes it possible to improve the quality of welded joints, increase the efficiency of the resistance welding machine

  3. Melt Infiltrated Ceramic Matrix Composites for Shrouds and Combustor Liners of Advanced Industrial Gas Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Gregory Corman; Krishan Luthra; Jill Jonkowski; Joseph Mavec; Paul Bakke; Debbie Haught; Merrill Smith

    2011-01-07

    This report covers work performed under the Advanced Materials for Advanced Industrial Gas Turbines (AMAIGT) program by GE Global Research and its collaborators from 2000 through 2010. A first stage shroud for a 7FA-class gas turbine engine utilizing HiPerComp{reg_sign}* ceramic matrix composite (CMC) material was developed. The design, fabrication, rig testing and engine testing of this shroud system are described. Through two field engine tests, the latter of which is still in progress at a Jacksonville Electric Authority generating station, the robustness of the CMC material and the shroud system in general were demonstrated, with shrouds having accumulated nearly 7,000 hours of field engine testing at the conclusion of the program. During the latter test the engine performance benefits from utilizing CMC shrouds were verified. Similar development of a CMC combustor liner design for a 7FA-class engine is also described. The feasibility of using the HiPerComp{reg_sign} CMC material for combustor liner applications was demonstrated in a Solar Turbines Ceramic Stationary Gas Turbine (CSGT) engine test where the liner performed without incident for 12,822 hours. The deposition processes for applying environmental barrier coatings to the CMC components were also developed, and the performance of the coatings in the rig and engine tests is described.

  4. Molecular exploration of the first-century Tomb of the Shroud in Akeldama, Jerusalem.

    Directory of Open Access Journals (Sweden)

    Carney D Matheson

    Full Text Available The Tomb of the Shroud is a first-century C.E. tomb discovered in Akeldama, Jerusalem, Israel that had been illegally entered and looted. The investigation of this tomb by an interdisciplinary team of researchers began in 2000. More than twenty stone ossuaries for collecting human bones were found, along with textiles from a burial shroud, hair and skeletal remains. The research presented here focuses on genetic analysis of the bioarchaeological remains from the tomb using mitochondrial DNA to examine familial relationships of the individuals within the tomb and molecular screening for the presence of disease. There are three mitochondrial haplotypes shared between a number of the remains analyzed suggesting a possible family tomb. There were two pathogens genetically detected within the collection of osteological samples, these were Mycobacterium tuberculosis and Mycobacterium leprae. The Tomb of the Shroud is one of very few examples of a preserved shrouded human burial and the only example of a plaster sealed loculus with remains genetically confirmed to have belonged to a shrouded male individual that suffered from tuberculosis and leprosy dating to the first-century C.E. This is the earliest case of leprosy with a confirmed date in which M. leprae DNA was detected.

  5. Molecular Exploration of the First-Century Tomb of the Shroud in Akeldama, Jerusalem

    Science.gov (United States)

    Matheson, Carney D.; Vernon, Kim K.; Lahti, Arlene; Fratpietro, Renee; Spigelman, Mark; Gibson, Shimon; Greenblatt, Charles L.; Donoghue, Helen D.

    2009-01-01

    The Tomb of the Shroud is a first-century C.E. tomb discovered in Akeldama, Jerusalem, Israel that had been illegally entered and looted. The investigation of this tomb by an interdisciplinary team of researchers began in 2000. More than twenty stone ossuaries for collecting human bones were found, along with textiles from a burial shroud, hair and skeletal remains. The research presented here focuses on genetic analysis of the bioarchaeological remains from the tomb using mitochondrial DNA to examine familial relationships of the individuals within the tomb and molecular screening for the presence of disease. There are three mitochondrial haplotypes shared between a number of the remains analyzed suggesting a possible family tomb. There were two pathogens genetically detected within the collection of osteological samples, these were Mycobacterium tuberculosis and Mycobacterium leprae. The Tomb of the Shroud is one of very few examples of a preserved shrouded human burial and the only example of a plaster sealed loculus with remains genetically confirmed to have belonged to a shrouded male individual that suffered from tuberculosis and leprosy dating to the first-century C.E. This is the earliest case of leprosy with a confirmed date in which M. leprae DNA was detected. PMID:20016819

  6. Design of a Helium Vapor Shroud for Liquid Hydrogen Fueling of an Unmanned Aerial Vehicle (UAV)

    Science.gov (United States)

    Cavender, K.; Evans, C.; Haney, J.; Leachman, J.

    2017-12-01

    Filling a vehicular liquid hydrogen fuel tank presents the potential for flammable mixtures due to oxygen concentration from liquid air condensation. Current liquid hydrogen tank designs utilize insulating paradigms such as aerogel/fiberglass materials, vacuum jackets, or inert gas purge systems to keep the outer surface from reaching the condensation temperature of air. This work examines the heat transfer at the refuelling connection of the tank to identify potential areas of condensation, as well as the surface temperature gradient. A shrouded inert gas purge was designed to minimize vehicle weight and refuelling time. The design of a shrouded inert gas purge system is presented to displace air preventing air condensation. The design investigates 3D printed materials for an inert gas shroud, as well as low-temperature sealing designs. Shroud designs and temperature profiles were measured and tested by running liquid nitrogen through the filling manifold. Materials for the inert gas shroud are discussed and experimental results are compared to analytical model predictions. Suggestions for future design improvements are made.

  7. Characteristic Evaluation of a Shrouded Propeller Mechanism for a Magnetic Actuated Microrobot

    Directory of Open Access Journals (Sweden)

    Qiang Fu

    2015-09-01

    Full Text Available Medical microrobots have been widely used in clinical applications, particularly the spiral type locomotion mechanism, which was recently considered one of the main self-propelling mechanisms for the next medical microrobot to perform tasks such as capsule endoscopy and drug delivery. However, limits in clinical applications still exist. The spiral action of the microrobot while being used for diagnosis may lead to pain or even damage to the intestinal wall due to the exposed mechanisms. Therefore, a new locomotive mechanism, named the shrouded propeller mechanism, was proposed to achieve a high level of medical safety as well as effective propulsive performance in our study. The shrouded propeller mechanism consists of a bare spiral propeller and a non-rotating nozzle. To obtain a high effective propulsive performance, two types of screw grooves with different shapes including the cylindrical screw groove and the rectangular screw groove with different parameters were analyzed using the shrouded model. Two types of magnetic actuated microrobots with different driving modes, the electromagnetic (three-pole rotor actuated microrobot and the permanent magnet (O-ring type magnet actuated microrobot were designed to evaluate the performance of the electromagnetic actuation system. Based on experimental results, the propulsive force of the proposed magnetic actuated microrobot with a shrouded propeller was larger than the magnetic actuated microrobot with a bare spiral propeller under the same parameters. Additionally, the shrouded propeller mechanism as an actuator can be used for other medical microrobots for flexible locomotion.

  8. Welding with the TIG automatic process of the end fittings for the execution of the Embalse nuclear power plant fuel channel rechange

    International Nuclear Information System (INIS)

    Suarez, P.O.

    1990-01-01

    The present work describes the methodology for the cutting of the existing welding and subsequent welding applied by the TIG process of the coupling composed by the shroud ring and the end fitting ring from one of Embalse nuclear power plant's fuel channels. The replacement will be previously determined by the SLAR-ETTE mechanism where a displacement operated among the Gartner Spring rings, the pressure tubes are separated from the Calandria tubes. The welding to be carried out has the function of stamping the CO 2 annular gas (thermal insulator) circulating between the pressure tube and the Calandria one during the functioning of the plant. (Author) [es

  9. WELDABILITY, WELDING METALLURGY, WELDING CHEMISTRY

    OpenAIRE

    Sarjito Jokosisworo

    2012-01-01

    Sambungan las merupakan bagian penting dari stuktur/bangunan yang dilas, dan kunci dari logam induk yang baik adalah kemampuan las (weld ability). Kemampuan las yang baik dan kemudahan dalam fabrikasi dari suatu logam merupakan pertimbangan dalam memilih suatu logam untuk konstruksi.

  10. CFD study of leakage flows in shroud cavities of a compressor impeller

    Science.gov (United States)

    Soldatova, K.

    2017-08-01

    The flow character in a gap between shroud disc of an impeller and a stator surface (shroud cavity) influences disc friction loss, labyrinth seal loss (parasitic losses) and thrust force. Flow calculations inside the shroud cavity of a model of centrifugal compressor stage and its labyrinth seal in a range of flow rates and axial width and radial gap are presented. The results are presented in terms of non-dimensional coefficients of flow, disc friction and seal leakage losses coefficients and pressure coefficient. The distributions meridional and tangential flow velocities correspond to the continuity and equilibrium equations - flow radial circulation exists in wide cavity and is absent in narrow cavities. The radial pressure distributions as measured and calculated are not fully comparable. The possible reason is that CFD-calculated leakage coefficient is less than calculated by A.Stodola formula. The influence of a cavity width on the losses and the thrust force requires a balanced design.

  11. Repair-welding technology of irradiated materials - WIM project

    International Nuclear Information System (INIS)

    Nakata, K.; Oishi, M.

    1998-01-01

    A new project on the development of repair-welding technology for core internals and reactor (pressure) vessel, consigned by the Ministry of International Trade and Industry (MITI), has been started from October 1997. The objective of the project is classified into three points as follows: (1) to develop repair-welding techniques for neutron irradiated materials, (2) to prove the availability of the techniques for core internals and reactor (pressure) vessel, and (3) to recommend the updated repair-welding for the Technical Rules and Standards. Total planning, neutron irradiation, preparation of welding equipment are now in progress. The materials are austenitic stainless steels and a low alloy steel. Neutron irradiation is performed using test reactors. In order to suppress the helium aggregation along grain boundaries, low heat input welding techniques, such as laser, low heat input TIG and friction weldings, will be applied. (author)

  12. Development of thick wall welding and cutting tools for ITER

    International Nuclear Information System (INIS)

    Nakahira, Masataka; Takahashi, Hiroyuki; Akou, Kentaro; Koizumi, Koichi

    1998-01-01

    The Vacuum Vessel, which is a core component of International Thermonuclear Experimental Reactor (ITER), is required to be exchanged remotely in a case of accident such as superconducting coil failure. The in-vessel components such as blanket and divertor are planned to be exchanged or fixed. In these exchange or maintenance operations, the thick wall welding and cutting are inevitable and remote handling tools are necessary. The thick wall welding and cutting tools for blanket are under developing in the ITER R and D program. The design requirement is to weld or cut the stainless steel of 70 mm thickness in the narrow space. Tungsten inert gas (TIG) arc welding, plasma cutting and iodine laser welding/cutting are selected as primary option. Element welding and cutting tests, design of small tools to satisfy space requirement, test fabrication and performance tests were performed. This paper reports the tool design and overview of welding and cutting tests. (author)

  13. Development of thick wall welding and cutting tools for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Nakahira, Masataka; Takahashi, Hiroyuki; Akou, Kentaro; Koizumi, Koichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-04-01

    The Vacuum Vessel, which is a core component of International Thermonuclear Experimental Reactor (ITER), is required to be exchanged remotely in a case of accident such as superconducting coil failure. The in-vessel components such as blanket and divertor are planned to be exchanged or fixed. In these exchange or maintenance operations, the thick wall welding and cutting are inevitable and remote handling tools are necessary. The thick wall welding and cutting tools for blanket are under developing in the ITER R and D program. The design requirement is to weld or cut the stainless steel of 70 mm thickness in the narrow space. Tungsten inert gas (TIG) arc welding, plasma cutting and iodine laser welding/cutting are selected as primary option. Element welding and cutting tests, design of small tools to satisfy space requirement, test fabrication and performance tests were performed. This paper reports the tool design and overview of welding and cutting tests. (author)

  14. Welding processes handbook

    CERN Document Server

    Weman, Klas

    2011-01-01

    Offers an introduction to the range of available welding technologies. This title includes chapters on individual techniques that cover principles, equipment, consumables and key quality issues. It includes material on such topics as the basics of electricity in welding, arc physics, and distortion, and the weldability of particular metals.$bThe first edition of Welding processes handbook established itself as a standard introduction and guide to the main welding technologies and their applications. This new edition has been substantially revised and extended to reflect the latest developments. After an initial introduction, the book first reviews gas welding before discussing the fundamentals of arc welding, including arc physics and power sources. It then discusses the range of arc welding techniques including TIG, plasma, MIG/MAG, MMA and submerged arc welding. Further chapters cover a range of other important welding technologies such as resistance and laser welding, as well as the use of welding techniqu...

  15. Experimental and Numerical Study of the Effect of Gas-Shrouded Plasma Spraying on Cathode Coating of Alkaline Electrolysis Cells

    Science.gov (United States)

    Liu, T.; Reißner, R.; Schiller, G.; Ansar, A.

    2018-01-01

    The aim of this work is to improve the performance of electrodes prepared via atmospheric plasma spray by means of gas shrouding which is expected to apparently reduce the oxygen content of the plasma plume and subsequently improve the coating quality. Electrodes with dual-layer coating for alkaline water electrolysis were deposited on Ni-coated perforated substrates. Microstructure and morphology were studied by SEM. Element content was measured by EDS. Enthalpy probe was employed for measuring plasma temperature and velocity as well as the gas composition. For verifying and better understanding the shrouding effect numerical calculation was carried out according to the experimental settings. Electrochemical test was carried out to validate the shrouding effect. The results showed slight protecting effect of gas shrouding on plasma plume and the final coating. Over the dual-layer section, the measured oxygen fraction was 3.46 and 3.15% for the case without gas shrouding and with gas shrouding, respectively. With gas shrouding the coating exhibited similar element contents as the coating sprayed by VPS, while no obvious improvement was observed in the microstructure or the morphology. Evident electrochemical improvement was nevertheless achieved that with gas shrouding the electrode exhibited similar performance as that of the VPS-sprayed electrode.

  16. Friction Stir Welding

    Science.gov (United States)

    Nunes, Arthur C., Jr.

    2008-01-01

    Friction stir welding (FSW) is a solid state welding process invented in 1991 at The Welding Institute in the United Kingdom. A weld is made in the FSW process by translating a rotating pin along a weld seam so as to stir the sides of the seam together. FSW avoids deleterious effects inherent in melting and promises to be an important welding process for any industries where welds of optimal quality are demanded. This article provides an introduction to the FSW process. The chief concern is the physical effect of the tool on the weld metal: how weld seam bonding takes place, what kind of weld structure is generated, potential problems, possible defects for example, and implications for process parameters and tool design. Weld properties are determined by structure, and the structure of friction stir welds is determined by the weld metal flow field in the vicinity of the weld tool. Metal flow in the vicinity of the weld tool is explained through a simple kinematic flow model that decomposes the flow field into three basic component flows: a uniform translation, a rotating solid cylinder, and a ring vortex encircling the tool. The flow components, superposed to construct the flow model, can be related to particular aspects of weld process parameters and tool design; they provide a bridge to an understanding of a complex-at-first-glance weld structure. Torques and forces are also discussed. Some simple mathematical models of structural aspects, torques, and forces are included.

  17. Molten core retention assembly

    International Nuclear Information System (INIS)

    Lampe, R.F.

    1976-01-01

    Molten fuel produced in a core overheating accident is caught by a molten core retention assembly consisting of a horizontal baffle plate having a plurality of openings therein, heat exchange tubes having flow holes near the top thereof mounted in the openings, and a cylindrical imperforate baffle attached to the plate and surrounding the tubes. The baffle assembly is supported from the core support plate of the reactor by a plurality of hanger rods which are welded to radial beams passing under the baffle plate and intermittently welded thereto. Preferably the upper end of the cylindrical baffle terminates in an outwardly facing lip to which are welded a plurality of bearings having slots therein adapted to accept the hanger rods

  18. Introduction to Welding.

    Science.gov (United States)

    Fortney, Clarence; Gregory, Mike

    This curriculum guide provides six units of instruction on basic welding. Addressed in the individual units of instruction are the following topics: employment opportunities for welders, welding safety and first aid, welding tools and equipment, basic metals and metallurgy, basic math and measuring, and procedures for applying for a welding job.…

  19. Distortion Control during Welding

    NARCIS (Netherlands)

    Akbari Pazooki, A.M.

    2014-01-01

    The local material expansion and contraction involved in welding result in permanent deformations or instability i.e., welding distortion. Considerable efforts have been made in controlling welding distortion prior to, during or after welding. Thermal Tensioning (TT) describes a group of in-situ

  20. Welding and cutting

    International Nuclear Information System (INIS)

    Drews, P.; Schulze Frielinghaus, W.

    1978-01-01

    This is a survey, with 198 literature references, of the papers published in the fields of welding and cutting within the last three years. The subjects dealt with are: weldability of the materials - Welding methods - Thermal cutting - Shaping and calculation of welded joints - Environmental protection in welding and cutting. (orig.) [de

  1. Assessment of low-order theories for analysis and design of shrouded wind turbines using CFD

    International Nuclear Information System (INIS)

    Aranake, Aniket C; Lakshminarayan, Vinod K; Duraisamy, Karthik

    2014-01-01

    The use of a shroud around the rotor of a wind turbine has been known to augment the airflow through the rotor plane and hence result in improved performance. This work uses Computational Fluid Dynamics (CFD) to assess the validity of several simple theories which attempt to extend Betz theory to shrouded turbines. Two CFD models are employed and compared to predictions of previously published models. The first makes use of a fixed pressure-drop actuator disk, while the second incorporates the twist and chord distribution of the turbine blade as well as an airfoil polar using a technique much like the classical blade element momentum (BEM) method. Calculations are performed for a sweep of turbine loadings using the fixed pressure-drop model and a sweep of tip speed ratios using the BEM model for both an open and shrouded turbine. Power is computed using a control volume approach for the fixed pressure-drop model and by integrating tangential forces for the BEM model. Information including mass flow ratio, power coefficient ratio, axial induction, and shroud force is extracted from the solution fields and compared against the predictions of low-order theories. Finally, the blade element model is used to redesign the turbine twist distribution to achieve greater performance across a range of tip speed ratios

  2. Advanced Welding Applications

    Science.gov (United States)

    Ding, Robert J.

    2010-01-01

    Some of the applications of advanced welding techniques are shown in this poster presentation. Included are brief explanations of the use on the Ares I and Ares V launch vehicle and on the Space Shuttle Launch vehicle. Also included are microstructural views from four advanced welding techniques: Variable Polarity Plasma Arc (VPPA) weld (fusion), self-reacting friction stir welding (SR-FSW), conventional FSW, and Tube Socket Weld (TSW) on aluminum.

  3. Effect of Relative Movement between the Shroud and Blade on Tip Leakage Flow Characteristics

    Directory of Open Access Journals (Sweden)

    Xiaochun Wang

    2017-10-01

    Full Text Available An experimental and numerical investigation into the tip leakage flow of a turbine rotor is carried out using a particle image velocimetry (PIV system and the commercial software ANSYS CFX 14.0. The specimen used in this work is a typical GE-E3 model with a new squealer tip design. The experimental data are used to create a turbulence model and numerical strategy. Through the validated turbulence model and numerical strategy, simulations are carried out to compare the characteristics of the tip leakage flow in three cases: (1 the blade is rotating, but the shroud is stationary, which is the real status of turbine rotor operation; (2 the blade is stationary, but the shroud moves, to simulate their relative movement; (3 the blade is stationary, and the shroud is also stationary, this is a simplified case, but has been widely used in the experiments on rotor tip leakage flow. Detailed analysis of the flow phenomena shows that the second case is a reasonable alternative approach to simulate the real state. However, the flow patterns in the third case exhibit some evident differences from the real status. These differences are caused by the inaccurate viscous force arising from the stationary blade and shroud. In this work, a modification method for the experiments conducted in the third case is firstly proposed, which is realized through adding an imaginary roughness at the shroud wall to be close to the real viscous effect, and to thereby reduce the deviation of the experiment from the real case. According to the results calculated by ANSYS CFX, the flow structure in the modification case is very close to the real status. Besides, this modification case is an easy and cheap way to simulate the real tip leakage flow.

  4. Development of end plug welding method in the fabrication of FBR fuel pins

    International Nuclear Information System (INIS)

    Ohtani, Seiji; Sawayama, Takeo; Tateishi, Yoshinori

    1977-01-01

    As a part of the development of the automatic and remote controlled fabrication of FBR fuel pins, welding of fuel pin end plugs has been examined. Cladding tubes and end plugs used for this experiment are made of SUS 316, and they are the components of fuel pins for the prototype fast breeder reactor (Monju) or the second core of Joyo (Joyo MK-II). The welding tests of cladding tubes and four kinds of end plugs were carried out by means of two techniques; tungsten inert gas welding and laser welding. It can be said that no considerable difference was observed in weld penetration, occurrence rate of weld defects and breaking strength between the tight fit and the loose fit plugs. The face-to-face fit welding requires the least welding heat input, but involves much difficulty in the control of weld penetration and bead zone diameter. The good concentrative property and high energy density of laser beam make the face of weld hollow due to the vaporization of weld metal. However, this problem can be easily solved by changing the shape of end plugs. Good results in the other characteristics of the weld also were obtained by this laser welding. Further experiment is needed in connection with the compatibility of weld metal with sodium and neutron irradiation before final judgement is made on the laser welding technique. (Nakai, Y.)

  5. Numerical Investigation of the Interaction between Mainstream and Tip Shroud Leakage Flow in a 2-Stage Low Pressure Turbine

    Science.gov (United States)

    Jia, Wei; Liu, Huoxing

    2014-06-01

    The pressing demand for future advanced gas turbine requires to identify the losses in a turbine and to understand the physical mechanisms producing them. In low pressure turbines with shrouded blades, a large portion of these losses is generated by tip shroud leakage flow and associated interaction. For this reason, shroud leakage losses are generally grouped into the losses of leakage flow itself and the losses caused by the interaction between leakage flow and mainstream. In order to evaluate the influence of shroud leakage flow and related losses on turbine performance, computational investigations for a 2-stage low pressure turbine is presented and discussed in this paper. Three dimensional steady multistage calculations using mixing plane approach were performed including detailed tip shroud geometry. Results showed that turbines with shrouded blades have an obvious advantage over unshrouded ones in terms of aerodynamic performance. A loss mechanism breakdown analysis demonstrated that the leakage loss is the main contributor in the first stage while mixing loss dominates in the second stage. Due to the blade-to-blade pressure gradient, both inlet and exit cavity present non-uniform leakage injection and extraction. The flow in the exit cavity is filled with cavity vortex, leakage jet attached to the cavity wall and recirculation zone induced by main flow ingestion. Furthermore, radial gap and exit cavity size of tip shroud have a major effect on the yaw angle near the tip region in the main flow. Therefore, a full calculation of shroud leakage flow is necessary in turbine performance analysis and the shroud geometric features need to be considered during turbine design process.

  6. Selected Welding Techniques, Part 2

    National Research Council Canada - National Science Library

    1964-01-01

    Partial contents: CONVENTIONAL WELD JOINTS VERSUS BUTT JOINTS IN 1-INCH ALUMINUM PLATE, SPECIAL WELD JOINT PREPARATION, UPSET METAL EDGES FOR INCREASED WELD JOINT STRENGTH, OUT-OF-POSITION WELDING OF HEAVY GAGE...

  7. Automatic welding of fuel elements

    International Nuclear Information System (INIS)

    Briola, J.

    1958-01-01

    The welding process depends on the type of fuel element, the can material and the number of cartridges to be welded: - inert-gas welding (used for G2 and the 1. set of EL3), - inert atmosphere arc welding (used for welding uranium and zirconium), - electronic welding (used for the 2. set of EL3 and the tank of Proserpine). (author) [fr

  8. Detecting flaws in welds

    International Nuclear Information System (INIS)

    Woodacre, A.; Lawton, H.

    1979-01-01

    An apparatus and a method for detecting flaws in welds in a workpiece, the portion of the workpiece containing the weld is maintained at a constant temperature and the weld is scanned by an infra red detector. The weld is then scanned again with the workpiece in contact with a cooling probe to produce a steeper temperature gradient across the weld. Comparison of the signals produced by each scan reveals the existence of defects in the welds. The signals may be displayed on an oscilloscope and the display may be observed by a TV camera and recorded on videotape. (UK)

  9. Fusion welding process

    Science.gov (United States)

    Thomas, Kenneth C.; Jones, Eric D.; McBride, Marvin A.

    1983-01-01

    A process for the fusion welding of nickel alloy steel members wherein a ferrite containing pellet is inserted into a cavity in one member and melted by a welding torch. The resulting weld nugget, a fusion of the nickel containing alloy from the members to be welded and the pellet, has a composition which is sufficiently low in nickel content such that ferrite phases occur within the weld nugget, resulting in improved weld properties. The steel alloys encompassed also include alloys containing carbon and manganese, considered nickel equivalents.

  10. Weld controller for automated nuclear service welding

    International Nuclear Information System (INIS)

    Barfield, K.L.; Strubhar, P.M.; Green, D.I.

    1995-01-01

    B and W Nuclear Technologies (BWNT) uses many different types of weld heads for automated welding in the commercial nuclear service industry. Some weld heads are purchased as standard items, while others are custom designed and fabricated by BWNT requiring synchronized multiaxis motion control. BWNT recently completed a development program to build a common weld controller that interfaces to all types of weld heads used by BWNT. Their goal was to construct a system that had the flexibility to add different modules to increase the capability of the controller as different application needs become necessary. The benefits from having a common controller are listed. This presentation explains the weld controller system and the types of applications to which it has been applied

  11. Project of integrity assessment of flawed components with structural discontinuity (IAF). Data book for residual stress analysis in weld joint. Analysis model of dissimilar metal weld joint applied post weld heat treatment (PWHT)

    International Nuclear Information System (INIS)

    2012-12-01

    The project of Integrity Assessment of Flawed Components with Structural Discontinuity (IAF) was entrusted to Japan Power Engineering and Inspection Corporation (JAPEIC) from Nuclear and Industrial Safety Agency (NISA) and started from FY 2001. And then, it was taken over to Japan Nuclear Energy Safety Organization (JNES) which was established in October 2003 and carried out until FY 2007. In the IAF project, weld joints between nickel based alloys and low alloy steels around penetrations in reactor vessel, safe-end of nozzles and shroud supports were selected from among components and pipe arrangements in nuclear power plants, where high residual stresses were generated due to welding and complex structure. Residual stresses around of the weld joints were estimated by finite element analysis method (FEM) with a general modeling method, then the reasonability and the conservativeness was evaluated. In addition, for postulated surface crack of stress corrosion cracking (SCC), a simple calculation method of stress intensity factor (K) required to estimate the crack growth was proposed and the effectiveness was confirmed. JNES compiled results of the IAF project into Data Books of Residual Stress Analysis of Weld Joint, and Data Book of Simplified Stress Intensity Factor Calculation for Penetration of Reactor as typical Structure Discontinuity, respectively. Data Books of Residual Stress Analysis in Weld Joint. 1. Butt Weld Joint of Small Diameter Cylinder (4B Sch40) (JNES-RE-2012-0005), 2. Dissimilar Metal Weld Joint in Safe End (One-Side Groove Joint (JNES-RE-2012-0006), 3. Dissimilar Metal Weld Joint in Safe End (Large Diameter Both-Side Groove Joint) (JNES-RE-2012-0007), 4. Weld Joint around Penetrations in Reactor Vessel (Insert Joint) (JNES-RE-2012-0008), 5. Weld Joint in Shroud Support (H8, H9, H10 and H11 Welds) (JNES-RE-2012-0009), 6. Analysis Model of Dissimilar Metal Weld Joint Applied Post Weld Heat Treatment (PWHT) (JNES-RE-2012-0010). Data Book of

  12. Metallurgy of gas turbine blades with integral shroud and its influence on blades performance

    International Nuclear Information System (INIS)

    Mazur, Z.; Marino, C.; Kubiak, J.

    1999-01-01

    The influence of the microstructure of the gas turbine blades with integral shroud on the blades performance is presented. The analysis of the solidification process of the gas turbine blades during conventionally casting process (equiaxed grains) with all elements which has influence on the mode of its solidification and variation of the microstructure is carried out. Also, the evaluation of the failure of the gas turbine blade is present. A detailed analysis of the blade tip shroud microstructure (presence of the equiaxed and columnar grains) and its influence on the failure initiation and propagation is carried out. Finally, conclusions and some necessary improvements of the blades casting process to prevent blades failures are presented. (Author) 2 refs

  13. Detailed Aerodynamic Analysis of a Shrouded Tail Rotor Using an Unstructured Mesh Flow Solver

    Science.gov (United States)

    Lee, Hee Dong; Kwon, Oh Joon

    The detailed aerodynamics of a shrouded tail rotor in hover has been numerically studied using a parallel inviscid flow solver on unstructured meshes. The numerical method is based on a cell-centered finite-volume discretization and an implicit Gauss-Seidel time integration. The calculation was made for a single blade by imposing a periodic boundary condition between adjacent rotor blades. The grid periodicity was also imposed at the periodic boundary planes to avoid numerical inaccuracy resulting from solution interpolation. The results were compared with available experimental data and those from a disk vortex theory for validation. It was found that realistic three-dimensional modeling is important for the prediction of detailed aerodynamics of shrouded rotors including the tip clearance gap flow.

  14. Effects of Stator Shroud Injection on the Aerodynamic Performance of a Single-Stage Transonic Axial Compressor

    International Nuclear Information System (INIS)

    Dinh, Cong-Truong; Ma, Sang-Bum; Kim, Kwang Yong

    2017-01-01

    In this study, stator shroud injection in a single-stage transonic axial compressor is proposed. A parametric study of the effect of stator shroud injection on aerodynamic performances was conducted using the three-dimensional Reynolds-averaged Navier-Stokes equations. The curvature, length, width, and circumferential angle of the stator shroud injector and the air injection mass flow rate were selected as the test parameters. The results of the parametric study show that the aerodynamic performances of the single-stage transonic axial compressor were improved by stator shroud injection. The aerodynamic performances were the most sensitive to the injection mass flow rate. Further, the total pressure ratio and adiabatic efficiency were the maximum when the ratio of circumferential angle was 10%.

  15. Effects of Stator Shroud Injection on the Aerodynamic Performance of a Single-Stage Transonic Axial Compressor

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, Cong-Truong; Ma, Sang-Bum; Kim, Kwang Yong [Inha Univ., Incheon (Korea, Republic of)

    2017-01-15

    In this study, stator shroud injection in a single-stage transonic axial compressor is proposed. A parametric study of the effect of stator shroud injection on aerodynamic performances was conducted using the three-dimensional Reynolds-averaged Navier-Stokes equations. The curvature, length, width, and circumferential angle of the stator shroud injector and the air injection mass flow rate were selected as the test parameters. The results of the parametric study show that the aerodynamic performances of the single-stage transonic axial compressor were improved by stator shroud injection. The aerodynamic performances were the most sensitive to the injection mass flow rate. Further, the total pressure ratio and adiabatic efficiency were the maximum when the ratio of circumferential angle was 10%.

  16. Handbook of Plastic Welding

    DEFF Research Database (Denmark)

    Islam, Aminul

    The purpose of this document is to summarize the information about the laser welding of plastic. Laser welding is a matured process nevertheless laser welding of micro dimensional plastic parts is still a big challenge. This report collects the latest information about the laser welding of plastic...... materials and provides an extensive knowhow on the industrial plastic welding process. The objectives of the report include: - Provide the general knowhow of laser welding for the beginners - Summarize the state-of-the-art information on the laser welding of plastics - Find the technological limits in terms...... of design, materials and process - Find the best technology, process and machines adaptive to Sonion’s components - Provide the skills to Sonion’s Design Engineers for successful design of the of the plastic components suitable for the laser welding The ultimate goal of this report is to serve...

  17. Welding engineering handbook. Volume 1

    International Nuclear Information System (INIS)

    Sundarrajan, S.; Bhaskar, S.V.; Amarnath Kumar, G.C.

    1992-11-01

    In this Welding Engineering Handbook, we have brought key application areas of welding which are of technocommercial importance. These details are not normally available. Each author, highly specialized in these areas has spent considerable amount of time and covered the topic exhaustively giving valuable details. Each application area has different quality requirements which are brought out clearly. This handbook is designed to cater the information source for various professionals in core sector industries like fabrication, shipbuilding, automobiles, nuclear plants, machine building, fertilisers and chemical industry, pressure vessel manufactures etc. We are sure that this handbook will serve as a reference reckoner to all plant/works managers, maintenance, projects, engineers, R and D and students. (original)

  18. Theory and experimental validation of SPLASH (Single Panel Lamp and Shroud Helper).

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Marvin Elwood; Porter, Jason M.

    2005-06-01

    The radiant heat test facility develops test sets providing well-characterized thermal environments, often representing fires. Many of the components and procedures have become standardized to such an extent that the development of a specialized design tool was appropriate. SPLASH (Single Panel Lamp and Shroud Helper) is that tool. SPLASH is implemented as a user-friendly program that allows a designer to describe a test setup in terms of parameters such as lamp number, power, position, and separation distance. Thermal radiation is the dominant mechanism of heat transfer and the SPLASH model solves a radiation enclosure problem to estimate temperature distributions in a shroud providing the boundary condition of interest. Irradiance distribution on a specified viewing plane is also estimated. This document provides the theoretical development for the underlying model. A series of tests were conducted to characterize SPLASH's ability to analyze lamp and shroud systems. The comparison suggests that SPLASH succeeds as a design tool. Simplifications made to keep the model tractable are demonstrated to result in estimates that are only approximately as uncertain as many of the properties and characteristics of the operating environment.

  19. Shrouds of the Night Masks of the Milky Way and Our Awesome New View of Galaxies

    CERN Document Server

    Block, David L

    2009-01-01

    The Milky Way has captivated the mind of multitudes ever since the beginning of time. Particularly striking are its apparent dusty gaping voids. With the advent of near-infrared technology, astronomers have discovered an awesome new view of its structure, and of the structure of other galaxies around us. Galaxies are encased within shrouds of the night: shrouds or veils of cosmic dust, which have given us a totally incomplete picture of what our majestic Universe actually looks like. Shrouds of the Night features some of the most remarkable early photographic work of masters such as Isaac Roberts and Edward Barnard, before presenting to the reader the unmasked (dust penetrated) view of our cosmos, using some of the world’s largest ground and space-based telescopes. "Galaxies are the 'ecosystems' of the cosmos – vast assemblages in which gas and dust are recycled through successive generations of stars. The authors of this beautiful book describe our ever-sharpening view of the Milky Way, the galaxy that i...

  20. Nondestructive testing: welding industry

    International Nuclear Information System (INIS)

    Raj, Baldev; Subramanian, C.V.

    1992-01-01

    This chapter highlights various conventional and advanced nondestructive testing (NDT) techniques that have been used for weld evaluation. Welding Codes and Standards of International and National organisations that have been followed in India for various weld evaluation purposes are also included. The chapter also emphasises the importance of NDT by way of a few case studies that have been carried out on important critical welded components. (author). 12 refs., 17 figs., 1 appendix

  1. Welding repair of a dissimilar weld and respective consequences for other German plants

    International Nuclear Information System (INIS)

    Brummer, G.; Dauwel, W.; Wesseling, U.; Ilg, U.; Lauer, P.; Widera, M.; Wachter, O.

    2002-01-01

    During a regular refueling outage in a German nuclear power plant in year 2000, additional non-destructive examinations have been performed on request of the Authority, to fulfill some recommendations of the independent experts with regard to the retrospective application of the Basic Safety Concept for the ferritic main coolant piping of this plant. During these inspections, indications were found in a dissimilar weld between one of the fifteen MCL (main coolant lines) nozzles and the ECC (emergency core cooling) system piping. By means of on-site metallography and laboratory investigations on three boat samples taken from this weld, it could be shown that the indications were due to hot cracking in the surface layer of the weld. In the course of these investigations, at three locations at the circumference of the weld, dis-bonding defects were found between the ferritic base metal of the nozzle and the austenitic weld butter, which has been applied to join the nozzle to the austenitic safe-end. According to the results of the extensive investigations, the dis-bonding occurred during the manufacturing process after stress-relief heat-treatment of the buttering during the welding of the austenitic safe-end to the butter material. There was no evidence for any crack growth during operation of the plant. Due to the large size of the boat-samples, a weld repair was mandatory. This repair has been performed using the so-called temper-bead technique as specified in the ASME Code, without subsequent stress relief heat treatment, using an advanced automatic orbital TIG welding process. The welding has been successfully performed without the need of further repair work. For those dissimilar welds, all other plants, except one, had used Inconel welding material for buttering the ferritic nozzle instead of stainless steel welding metal. For metallurgical reasons, dis-bonding along the fusion line for Inconel buttered dissimilar welds is unlikely to occur. Nevertheless all

  2. Ultrasound and Eddy-Current inspection of longitudinal shroud welds in the Santa Maria de Garona Nuclear Power Plant

    International Nuclear Information System (INIS)

    Elorza, J.; Fernandez, F.

    1998-01-01

    This is the first time that this kind of inspection has been performed in the world with the Ultrasound (UT) and Eddy-Current (EC) techniques. The inspection, performed during the 19th refueling outage in March 1997, using the MIDAS acquisition and analysis system, which allows joint UT and EC inspection. MIDAS is the new inspection system developed by Tecnatom for vessel internals that integrates acquisition and evaluation of the data obtained from the use of Ultrasound and Eddy-Current inspection techniques. The inspection was completed in less than the scheduled time, and covered the programmed volumes without any noteworthy incidents. (Author)

  3. Instructional Guidelines. Welding.

    Science.gov (United States)

    Fordyce, H. L.; Doshier, Dale

    Using the standards of the American Welding Society and the American Society of Mechanical Engineers, this welding instructional guidelines manual presents a course of study in accordance with the current practices in industry. Intended for use in welding programs now practiced within the Federal Prison System, the phases of the program are…

  4. Welding Course Curriculum.

    Science.gov (United States)

    Genits, Joseph C.

    This guide is intended for use in helping students gain a fundamental background on the major aspects of the welding trade. The course emphasis is on mastery of the manipulative skills necessary to develop successful welding techniques and on acquisition of an understanding of the specialized tools and equipment used in welding. The first part…

  5. Underwater welding of steel

    International Nuclear Information System (INIS)

    Ibarra, S.; Olson, D.L.

    1992-01-01

    A fundamental basis to understand the behavior of wet underwater welding of steel is introduced. Both the pyrometallurgical and physical metallurgy concepts are discussed. Modifications of welding consumables and practice are suggested. This chapter promotes further contributions of meatllurgical research to improve and promote wet underwater welding. (orig.)

  6. Welding Over Paint Primer

    National Research Council Canada - National Science Library

    Johnson, Kevin S; Liu, Stephen; Olson, David L

    1998-01-01

    .... According to the hydrogen-oxygen and }hydrogen-fluorine equilibrium considerations, an increase in the partial pressure of oxygen or fluorine could decrease the partial pressure of hydrogen within the welding arc. Consequently, a welding consumable that contains chemical ingredients of high oxygen and fluorine potential would be capable of minimizing hydrogen pick-up in the weld pool.

  7. Electrolytic reduction runs of 0.6 kg scale-simulated oxide fuel in a Li2O-LiCl molten salt using metal anode shrouds

    Science.gov (United States)

    Choi, Eun-Young; Lee, Jeong; Heo, Dong Hyun; Lee, Sang Kwon; Jeon, Min Ku; Hong, Sun Seok; Kim, Sung-Wook; Kang, Hyun Woo; Jeon, Sang-Chae; Hur, Jin-Mok

    2017-06-01

    Ten electrolytic reduction or oxide reduction (OR) runs of a 0.6 kg scale-simulated oxide fuel in a Li2O-LiCl molten salt at 650 °C were conducted using metal anode shrouds. During this procedure, an anode shroud surrounds a platinum anode and discharges hot oxygen gas from the salt to outside of the OR apparatus, thereby preventing corrosion of the apparatus. In this study, a number of anode shrouds made of various metals were tested. Each metallic anode shroud consisted of a lower porous shroud for the salt phase and an upper nonporous shroud for the gas phase. A stainless steel (STS) wire mesh with five-ply layer was a material commonly used for the lower porous shroud for the OR runs. The metals tested for the upper nonporous shroud in the different OR runs are STS, nickel, and platinum- or silver-lined nickel. The lower porous shroud showed no significant damage during two consecutive OR runs, but exhibited signs of damage from three or more runs due to thermal stress. The upper nonporous shrouds made up of either platinum- or silver-lined nickel showed excellent corrosion resistance to hot oxygen gas while STS or nickel without any platinum or silver lining exhibited poor corrosion resistance.

  8. Orbital welding technique

    International Nuclear Information System (INIS)

    Hoeschen, W.

    2003-01-01

    The TIG (Tungsten-inert gas) orbital welding technique is applied in all areas of pipe welding. The process is mainly used for austenitic and ferritic materials but also for materials like aluminium, nickel, and titanium alloys are commonly welded according to this technique. Thin-walled as well as thick-walled pipes are welded economically. The application of orbital welding is of particular interest in the area of maintenance of thick-walled pipes that is described in this article. (orig.) [de

  9. Homogeneous weldings of copper

    International Nuclear Information System (INIS)

    Campurri, C.; Lopez, M.; Fernandez, R.; Osorio, V.

    1995-01-01

    This research explored the metallurgical and mechanical properties of arc welding of copper related with influence of Argon, Helium and mixtures of them. Copper plates of 6 mm thickness were welded with different mixtures of the mentioned gases. The radiography of welded specimens with 100% He and 100% Ar does not show show any porosity. On the other hand, the copper plates welded different gas mixtures presented uniform porosity in the welded zone. The metallographies show recrystallized grain in the heat affected zone, while the welding zone showed a dendritic structure. The results of the tensile strength vary between a maximum of 227 MPa for 100% He and a minimum of 174 MOa for the mixture of 60% He and 40% Ar. For the elongation after fracture the best values, about 36%, were obtained for pure gases. As a main conclusion, we can say that arc welding of copper is possible without loosing the mechanical and metallurgical properties of base metal. 6 refs

  10. Torque strength of an endplate welding due to process parameters using a fuel assembling welder

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Dae-Seo; Kim, Soo-Sung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-05-15

    As fuel bundles in a PHWR core irradiated, inner pressure in the claddings of the fuel rods increases owing to the outer pressure and fission products of the nuclear fissions. Because of a leak possibility from a welding between a cladding and end plug, this welding part is connected with the safety of nuclear fuel rods. Endplug-cladding welding of nuclear fuel rods in a PHWR takes advantage of a resistance upset butt welding. The weldment between a cladding and endplug is to be sound to prevent a leakage of fission products from a cladding as a UO{sub 2} pellet is irradiated. Weld flash was made from a deformation due to a welding heat and increasing the pressure of the resistivity and resistance from a cladding and endplug. Weld line of a welding interface, microstructure of a weldment and a crystallographic structure change were sources of an iodine induced SCC in a reactor. The soundness of a weldment is important because a weld line connects the leakage of fission products from an operational reactor. In this study, welding specimens were fabricated by a resistance welding method using a bundle fuel welder to measure and analyze the torque of an endplug-endplate welding. The torque of a weldment between an endplug and endplate was measured and analyzed with the welding time. The weldability of a weldment between an endplug and endplate was investigated by a metallographic examination.

  11. Effect of the Grain Size of the Initial Structure of 1565chM Alloy on the Structure and Properties of the Joints Fabricated by Friction Stir Welding

    Science.gov (United States)

    Ovchinnikov, V. V.; Drits, A. M.; Gureeva, M. A.; Malov, D. V.

    2017-12-01

    The effect of the initial grain size in the structure of the aluminum 1565chM alloy on the mechanical properties of the welded joints formed by friction stir welding and on the grain size in the weld core is studied. It is shown that the design of tool and, especially, the parameters of a screw groove exert a great effect on the grain size in the weld core.

  12. Structure of Ti-6Al-4V nanostructured titanium alloy joint obtained by resistance spot welding

    Energy Technology Data Exchange (ETDEWEB)

    Klimenov, V. A., E-mail: klimenov@tpu.ru [Tomsk State University of Architecture and Building, 2 Solyanaya Sq, Tomsk, 634003 (Russian Federation); National Research Tomsk Polytechnic University, 30 Lenin Av., Tomsk, 634050 (Russian Federation); Kurgan, K. A., E-mail: kirill-k2.777@mail.ru [Tomsk State University of Architecture and Building, 2 Solyanaya Sq, Tomsk, 634003 (Russian Federation); Chumaevskii, A. V., E-mail: tch7av@gmail.com [Institute of Strength Physics and Materials Science, Siberian Branch of the Russian Academy of Sciences, 2/4 Akademicheskii pr., Tomsk, 634021 (Russian Federation); Klopotov, A. A., E-mail: klopotovaa@tsuab.ru [Tomsk State University of Architecture and Building, 2 Solyanaya Sq, Tomsk, 634003 (Russian Federation); National Research Tomsk State University, 36 Lenin Ave., Tomsk, 634050 (Russian Federation); Gnyusov, S. F., E-mail: gnusov@rambler.ru [National Research Tomsk Polytechnic University, 30 Lenin Av., Tomsk, 634050 (Russian Federation)

    2016-01-15

    The structure of weld joints of the titanium alloy Ti-6Al-4V in the initial ultrafine-grained state, obtained by resistance spot welding, is studied using the optical and scanning electron microscopy method and the X-ray structure analysis. The carried out studies show the relationship of the metal structure in the weld zone with main joint zones. The structure in the core zone and the heat affected zone is represented by finely dispersed grains of needle-shaped martensite, differently oriented in these zones. The change in the microhardness in the longitudinal section of the weld joint clearly correlates with structural changes during welding.

  13. Effects on the efficiency of activated carbon on exposure to welding fumes

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, D. [Southern Company Services, Inc., Birmingham, AL (United States)

    1995-02-01

    It is the intention of this paper to document that certain types of welding fumes have little or no effect on the effectiveness of the carbon filter air filtration efficiency when directly exposed to a controlled amount of welding fumes for a short-term period. The welding processes studied were restricted to shielded metal arc welding (SMAW), flux cored arc welding (FCAW), gas tungsten arc welding (GTAW) and gas metal arc welding (GMAW) processes. Contrary to the SMAW and FCAW processes, the GTAW (or TIG) and the GMAW (or MIG) welding processes do not require the use of flux as part of the overall process. Credit was taken for these processes occurring in inert gas environments and producing minimal amount of smoke. It was concluded that a study involving the SMAW process would also envelop the effects of the TIG and MIG welding processes. The quantity of welding fumes generated during the arc welding process is a function of the particular process, the size and type of electrode, welding machine amperage, and operator proficiency. For this study, the amount of welding for specific testing was equated to the amount of welding normally conducted during plant unit outages. Different welding electrodes were also evaluated, and the subsequent testing was limited to an E7018 electrode which was judged to be representative of all carbon and stainless steel electrodes commonly used at the site. The effect of welding fumes on activated charcoal was tested using a filtration unit complete with prefilters, upstream and downstream high efficiency particulate air (HEPA) filters, and a carbon adsorber section. The complete system was field tested in accordance with ANSI N510 standards prior to exposing the filters and the adsorber bed to welding fumes. The carbon samples were tested at an established laboratory using ASTM D3803-1989 standards.

  14. Seeing Inscriptions on the Shroud of Turin: The Role of Psychological Influences in the Perception of Writing.

    Directory of Open Access Journals (Sweden)

    Timothy R Jordan

    Full Text Available The Shroud of Turin (hereafter the Shroud is one of the most widely known and widely studied artifacts in existence, with enormous historical and religious significance. For years, the Shroud has inspired worldwide interest in images on its fabric which appear to be of the body and face of a man executed in a manner consistent with crucifixion, and many believe that these images were formed in the Shroud's fibers during the Resurrection of Jesus of Nazareth. But, more recently, other reports have suggested that the Shroud also contains evidence of inscriptions, and these reports have been used to add crucial support to the view that the Shroud is the burial cloth of Jesus. Unfortunately, these reports of inscriptions are based on marks that are barely visible on the Shroud, even when images are enhanced, and the actual existence of writing on the Shroud is still a matter of considerable debate. Here we discuss previous evidence concerning the psychological processes involved generally in the perception of writing, and especially when letters and words are indistinct. We then report two experiments in which the influence of religious context on perception of inscriptions was addressed specifically, using an image of woven fabric (modern linen containing no writing and with no religious provenance. This image was viewed in two different contexts: in the Religious Context, participants were informed that the image was of a linen artifact that was important to the Christian faith whereas, in the non-religious Neutral Context, participants were informed that the image was of a simple piece of linen. Both groups were told that the image may contain faint words and were asked to report any words they could see. All participants detected words on the image, and indicated that these words were visible and were able to trace on the image the words they detected. In each experiment, more religious words were detected in the Religious Context condition than

  15. Seeing Inscriptions on the Shroud of Turin: The Role of Psychological Influences in the Perception of Writing.

    Science.gov (United States)

    Jordan, Timothy R; Sheen, Mercedes; Abedipour, Lily; Paterson, Kevin B

    2015-01-01

    The Shroud of Turin (hereafter the Shroud) is one of the most widely known and widely studied artifacts in existence, with enormous historical and religious significance. For years, the Shroud has inspired worldwide interest in images on its fabric which appear to be of the body and face of a man executed in a manner consistent with crucifixion, and many believe that these images were formed in the Shroud's fibers during the Resurrection of Jesus of Nazareth. But, more recently, other reports have suggested that the Shroud also contains evidence of inscriptions, and these reports have been used to add crucial support to the view that the Shroud is the burial cloth of Jesus. Unfortunately, these reports of inscriptions are based on marks that are barely visible on the Shroud, even when images are enhanced, and the actual existence of writing on the Shroud is still a matter of considerable debate. Here we discuss previous evidence concerning the psychological processes involved generally in the perception of writing, and especially when letters and words are indistinct. We then report two experiments in which the influence of religious context on perception of inscriptions was addressed specifically, using an image of woven fabric (modern linen) containing no writing and with no religious provenance. This image was viewed in two different contexts: in the Religious Context, participants were informed that the image was of a linen artifact that was important to the Christian faith whereas, in the non-religious Neutral Context, participants were informed that the image was of a simple piece of linen. Both groups were told that the image may contain faint words and were asked to report any words they could see. All participants detected words on the image, and indicated that these words were visible and were able to trace on the image the words they detected. In each experiment, more religious words were detected in the Religious Context condition than in the Neutral

  16. Effects of Hydrocarbon-Based Grease on Rapid Prototype Material Used for Grease Retention Shrouds

    Science.gov (United States)

    Zakrajsek, Andrew J.; Valco, Daniel J.; Street, Kenneth W., Jr.

    2010-01-01

    Effects of hydrocarbon-based greases on specific rapid prototype (RP) materials used to fabricate grease retention shrouds (GRS) were explored in this study. Grease retention shrouds are being considered as a way to maintain adequate grease lubrication at the gear mesh in a prototype research transmission system. Due to their design and manufacturing flexibility, rapid prototype materials were chosen for the grease retention shrouds. In order to gain a better understanding of the short and long term effects grease pose on RP materials, research was conducted on the interaction of hydrocarbon-based grease with RP materials. The materials used in this study were durable polyamide (nylon), acrylonitrile butadiene styrene (ABS), and WaterClear 10120. Testing was conducted using Mobilgrease 28 and Syn-Tech 3913G grease (gear coupling grease). These greases were selected due to their regular use with mechanical components. To investigate the effect that grease has on RP materials, the following methods were used to obtain qualitative and quantitative data: Fourier transform infrared spectroscopy (FT-IR), interference profilometer measurements, digital camera imaging, physical shape measurement, and visual observations. To record the changes in the RP materials due to contact with the grease, data was taken before and after the grease application. Results showed that the WaterClear 10120 RP material provided the best resistance to grease penetration as compared to nylon and ABS RP materials. The manufacturing process, and thus resulting surface conditions of the RP material, played a key role in the grease penetration properties and resilience of these materials.

  17. PIV Measurements of Flows around the Wind Turbines with a Flanged-Diffuser Shroud

    Institute of Scientific and Technical Information of China (English)

    Kazuhiko Toshimitsu; Koutarou Nishikawa; Wataru Haruki; Shinichi Oono; Manabu Takao; Yuji Ohya

    2008-01-01

    The wind turbines with a flanged-diffuser shroud -so called "wind lens turbine"- are developed as one of high performance wind turbines by Ohya et al. In order to investigate the flow characteristics and flow acceleration, the paper presents the flow velocity measurements of a long-type and a compact-type wind turbines with a flanged-diffuser shroud by particle image velocimetry. In the case of the long type wind turbine, the velocity vec-tors of the inner flow field of the diffuser for turbine blades rotating and no blades rotating are presented at Rey-nolds number, 0.9x105. Furthermore the flow fields between with and without rotating are compared. Through the PIV measurement results, one can realize that the turbine blades rotating affects as suppress the disturbance and the flow separation near the inner wall of the diffuser. The time average velocity vectors are made on the av-erage of the instantaneous velocity data. There are two large vortices in downstream region of the diffuser. One vortex behind the flange acts as suck in wind to the diffuser and raise the inlet flow velocity. Another large vortex appears in downstream. It might be act as blockage vortex of main flow. The large blockage vortex is not clear in the instantaneous velocity vectors, however it exists clearly in the time average flow field. The flow field around the wind turbine with a compact-type flanged-diffuser shroud is also investigated. The flow pattern behind the flange of the compact-type turbine is the same as the long-type one. It means that the effect of flow acceleration is caused by the unsteady vortices behind the flange. The comparison with CFD and PIV results of meridional time-average streamlines after the compact-type diffuser is also presented.

  18. Welding skate with computerized controls

    Science.gov (United States)

    Wall, W. A., Jr.

    1968-01-01

    New welding skate concept for automatic TIG welding of contoured or double-contoured parts combines lightweight welding apparatus with electrical circuitry which computes the desired torch angle and positions a torch and cold-wire guide angle manipulator.

  19. Phase-Averaged Method Applied to Periodic Flow Between Shrouded Corotating Disks

    Directory of Open Access Journals (Sweden)

    Shen-Chun Wu

    2003-01-01

    Full Text Available This study investigates the coherent flow fields between corotating disks in a cylindrical enclosure. By using two laser velocimeters and a phase-averaged technique, the vortical structures of the flow could be reconstructed and their dynamic behavior was observed. The experimental results reveal clearly that the flow field between the disks is composed of three distinct regions: an inner region near the hub, an outer region, and a shroud boundary layer region. The outer region is distinguished by the presence of large vortical structures. The number of vortical structures corresponds to the normalized frequency of the flow.

  20. Electrode for welding steel for WWER-1000 reactor pressure vessel

    International Nuclear Information System (INIS)

    Lakatos, L.

    Of two types of electrodes, ie., with an alloyed core and with an unalloyed core, an electrode was chosen consisting of a basic coat and an unalloyed core. Fluctuations are shown of shear strength, tensile strenght and contraction with the welding mode and annealing temperature. It was found that pre-heating to 250 and 350 degC, respectively, was most suitable for welding a pressure vessel manufactured from material designated SKODA A3/II. Annealing aimed at removing stress was chosen at 650 to 700 degC. (H.S.)

  1. Challenges to Resistance Welding

    DEFF Research Database (Denmark)

    Song, Quanfeng

    This report originates from the compulsory defense during my Ph.D. study at the Technical University of Denmark. Resistance welding is an old and well-proven technology. Yet the emergence of more and more new materials, new designs, invention off new joining techniques, and more stringent...... requirement in quality have imposed challenges to the resistance welding. More some research and development have to be done to adapt the old technology to the manufacturing industry of the 21st century. In the 1st part of the report, the challenging factors to the resistance welding are reviewed. Numerical...... simulation of resistance welding has been under development for many years. Yet it is no easy to make simulation results reliable and accurate because of the complexity of resistance welding process. In the 2nd part of the report numerical modeling of resistance welding is reviewed, some critical factors...

  2. Ultrasonic Stir Welding

    Science.gov (United States)

    Nabors, Sammy

    2015-01-01

    NASA Marshall Space Flight Center (MSFC) developed Ultrasonic Stir Welding (USW) to join large pieces of very high-strength metals such as titanium and Inconel. USW, a solid-state weld process, improves current thermal stir welding processes by adding high-power ultrasonic (HPU) energy at 20 kHz frequency. The addition of ultrasonic energy significantly reduces axial, frictional, and shear forces; increases travel rates; and reduces wear on the stir rod, which results in extended stir rod life. The USW process decouples the heating, stirring, and forging elements found in the friction stir welding process allowing for independent control of each process element and, ultimately, greater process control and repeatability. Because of the independent control of USW process elements, closed-loop temperature control can be integrated into the system so that a constant weld nugget temperature can be maintained during welding.

  3. Automatization of welding

    International Nuclear Information System (INIS)

    Iwabuchi, Masashi; Tomita, Jinji; Nishihara, Katsunori.

    1978-01-01

    Automatization of welding is one of the effective measures for securing high degree of quality of nuclear power equipment, as well as for correspondence to the environment at the site of plant. As the latest ones of the automatic welders practically used for welding of nuclear power apparatuses in factories of Toshiba and IHI, those for pipes and lining tanks are described here. The pipe welder performs the battering welding on the inside of pipe end as the so-called IGSCC countermeasure and the succeeding butt welding through the same controller. The lining tank welder is able to perform simultaneous welding of two parallel weld lines on a large thin plate lining tank. Both types of the welders are demonstrating excellent performance at the shops as well as at the plant site. (author)

  4. Mississippi Curriculum Framework for Welding (Program CIP: 48.0508--Welder/Welding Technologist). Secondary Programs.

    Science.gov (United States)

    Mississippi Research and Curriculum Unit for Vocational and Technical Education, State College.

    This document, which reflects Mississippi's statutory requirement that instructional programs be based on core curricula and performance-based assessment, contains outlines of the instructional units required in local instructional management plans and daily lesson plans for welding I and II. Presented first are a program description and course…

  5. Dual wire welding torch and method

    Science.gov (United States)

    Diez, Fernando Martinez; Stump, Kevin S.; Ludewig, Howard W.; Kilty, Alan L.; Robinson, Matthew M.; Egland, Keith M.

    2009-04-28

    A welding torch includes a nozzle with a first welding wire guide configured to orient a first welding wire in a first welding wire orientation, and a second welding wire guide configured to orient a second welding wire in a second welding wire orientation that is non-coplanar and divergent with respect to the first welding wire orientation. A method of welding includes moving a welding torch with respect to a workpiece joint to be welded. During moving the welding torch, a first welding wire is fed through a first welding wire guide defining a first welding wire orientation and a second welding wire is fed through a second welding wire guide defining a second welding wire orientation that is divergent and non-coplanar with respect to the first welding wire orientation.

  6. Development of maintenance technology with underwater TIG welding for spent fuel storage pool

    International Nuclear Information System (INIS)

    Obana, Takeshi; Hamada, Yasumitsu; Ooeda, Kaoru; Katou, Masahide; Ootsuka, Toshihiro; Toyoda, Seiichi; Hosogane, Atsushi

    2007-01-01

    The core technology of underwater TIG welding process has been developed and welding equipment system has been manufactured, for application to the maintenance of the spent fuel storage pool of Rokkasho reprocessing plant. Basic experiments for understanding the conditions of dry area and the range of welding conditions was performed, and mock examination for simulation of real environment by using the developed welding equipment was also carried out to judge the applicability of the system. For the purpose that can be selected water removing method for different spatial conditions of the parts to be maintained in underwater, two kinds of welding equipment systems of Chamber type and Partition type were developed and manufactured. On the basis of fundamental experiments, the conditions of dry area formation and welding parameters range for high-reliability weld were discussed. Thus the proper condition in this process was able to be established. With the welding equipment systems of the Chamber type and Partition type, the practical use examination of underwater TIG welding process was executed by mock examination for simulating the real environment. As a result, it was confirmed that the underwater TIG welding could obtain the same reliability as a usual in-air TIG welding, and the operation and the control at remote distance were also possible. And the reliability of the patch-plate fillet weld could be evaluated by remote inspection with the expansion visual test. (author)

  7. Reflection of illumination laser from gas metal arc weld pool surface

    International Nuclear Information System (INIS)

    Ma, Xiaoji; Zhang, YuMing

    2009-01-01

    The weld pool is the core of the welding process where complex welding phenomena originate. Skilled welders acquire their process feedback primarily from the weld pool. Observation and measurement of the three-dimensional weld pool surface thus play a fundamental role in understanding and future control of complex welding processes. To this end, a laser line is projected onto the weld pool surface in pulsed gas metal arc welding (GMAW) and an imaging plane is used to intercept its reflection from the weld pool surface. Resultant images of the reflected laser are analyzed and it is found that the weld pool surface in GMAW does specularly reflect the projected laser as in gas tungsten arc welding (GTAW). Hence, the weld pool surface in GMAW is also specular and it is in principle possible that it may be observed and measured by projecting a laser pattern and then intercepting and imaging the reflection from it. Due to high frequencies of surface fluctuations, GMAW requires a relatively short time to image the reflected laser

  8. Electric arc welding gun

    Science.gov (United States)

    Luttrell, Edward; Turner, Paul W.

    1978-01-01

    This invention relates to improved apparatus for arc welding an interior joint formed by intersecting tubular members. As an example, the invention is well suited for applications where many similar small-diameter vertical lines are to be welded to a long horizontal header. The improved apparatus includes an arc welding gun having a specially designed welding head which is not only very compact but also produces welds that are essentially free from rolled-over solidified metal. The welding head consists of the upper end of the barrel and a reversely extending electrode holder, or tip, which defines an acute angle with the barrel. As used in the above-mentioned example, the gun is positioned to extend upwardly through the vertical member and the joint to be welded, with its welding head disposed within the horizontal header. Depending on the design of the welding head, the barrel then is either rotated or revolved about the axis of the vertical member to cause the electrode to track the joint.

  9. Electron beam welding

    International Nuclear Information System (INIS)

    Schwartz, M.M.

    1974-01-01

    Electron-beam equipment is considered along with fixed and mobile electron-beam guns, questions of weld environment, medium and nonvacuum welding, weld-joint designs, tooling, the economics of electron-beam job shops, aspects of safety, quality assurance, and repair. The application of the process in the case of individual materials is discussed, giving attention to aluminum, beryllium, copper, niobium, magnesium, molybdenum, tantalum, titanium, metal alloys, superalloys, and various types of steel. Mechanical-property test results are examined along with the areas of application of electron-beam welding

  10. Robot welding process control

    Science.gov (United States)

    Romine, Peter L.

    1991-01-01

    This final report documents the development and installation of software and hardware for Robotic Welding Process Control. Primary emphasis is on serial communications between the CYRO 750 robotic welder, Heurikon minicomputer running Hunter & Ready VRTX, and an IBM PC/AT, for offline programming and control and closed-loop welding control. The requirements for completion of the implementation of the Rocketdyne weld tracking control are discussed. The procedure for downloading programs from the Intergraph, over the network, is discussed. Conclusions are made on the results of this task, and recommendations are made for efficient implementation of communications, weld process control development, and advanced process control procedures using the Heurikon.

  11. Use of servo controlled weld head for end closure welding

    Energy Technology Data Exchange (ETDEWEB)

    Pathak, S.K.; Setty, D.S.; Rameswara Rao, A.; Hemantha Rao, G.V.S.; Jayaraj, R.N. [Nuclear Fuel Complex, Dept. of Atomic Energy, Hyderabad (India)

    2010-07-01

    In the PHWR fuel fabrication line resistance welding processes are used for joining various zirconium based alloy components to fuel tube of similar material. The quality requirement of these welding processes is very stringent and has to meet all the product requirements. At present these welding processes are being carried out by using standard resistance welding machines. In the resistance welding process in addition to current and time, force is one of the critical and important parameter, which influences the weld quality. At present advanced feed back type fast response medium frequency weld controllers are being used. This has upslope/down slope, constant and repetitive weld pattern selection features makes this critical welding process more reliable. Compared to weld controllers, squeeze force application devices are limited and normally standard high response pneumatic cylinders are used in the welding process. With this type of devices the force is constant during welding process and cannot be varied during welding process as per the material deformation characteristics. Similarly due to non-availability of feed back systems in the squeeze force application systems restricts the accuracy and quality of the welding process. In the present paper the influence of squeeze force pattern on the weld quality using advanced feed back type servo based force control system was studied. Different squeeze forces were used during pre and post weld heat periods along with constant force and compared with the weld quality. (author)

  12. Effects of Contextual Information on Seeing Pareidolic Religious Inscriptions on an Artifact: Implications for the Shroud of Turin.

    Science.gov (United States)

    Sheen, Mercedes; Jordan, Timothy R

    2015-12-01

    Several reports suggest that images of the Shroud of Turin contain faint religious inscriptions that support the view that the Shroud has special religious significance. Against this background, we investigated effects of contextual information on detecting religious inscriptions using an image of plain modern linen with no religious provenance and containing no writing. The image was viewed in three contexts: In the Neutral Context, participants were told that the image was of a simple piece of linen; in the Religious Context, participants were told that the image was of an important religious artifact; and in the Religious Context + Options condition, participants were also given plausible word options. Very few words were detected in the Neutral Context, significantly more in the Religious Context, and most in the Religious Context+Options condition. Some implications of these findings for reports of inscriptions in the context-laden conditions surrounding the Shroud of Turin are discussed. © The Author(s) 2015.

  13. Exposure to inhalable, respirable, and ultrafine particles in welding fume.

    Science.gov (United States)

    Lehnert, Martin; Pesch, Beate; Lotz, Anne; Pelzer, Johannes; Kendzia, Benjamin; Gawrych, Katarzyna; Heinze, Evelyn; Van Gelder, Rainer; Punkenburg, Ewald; Weiss, Tobias; Mattenklott, Markus; Hahn, Jens-Uwe; Möhlmann, Carsten; Berges, Markus; Hartwig, Andrea; Brüning, Thomas

    2012-07-01

    This investigation aims to explore determinants of exposure to particle size-specific welding fume. Area sampling of ultrafine particles (UFP) was performed at 33 worksites in parallel with the collection of respirable particles. Personal sampling of respirable and inhalable particles was carried out in the breathing zone of 241 welders. Median mass concentrations were 2.48 mg m(-3) for inhalable and 1.29 mg m(-3) for respirable particles when excluding 26 users of powered air-purifying respirators (PAPRs). Mass concentrations were highest when flux-cored arc welding (FCAW) with gas was applied (median of inhalable particles: 11.6 mg m(-3)). Measurements of particles were frequently below the limit of detection (LOD), especially inside PAPRs or during tungsten inert gas welding (TIG). However, TIG generated a high number of small particles, including UFP. We imputed measurements welding fume. Concentrations were mainly predicted by the welding process and were significantly higher when local exhaust ventilation (LEV) was inefficient or when welding was performed in confined spaces. Substitution of high-emission techniques like FCAW, efficient LEV, and using PAPRs where applicable can reduce exposure to welding fume. However, harmonizing the different exposure metrics for UFP (as particle counts) and for the respirable or inhalable fraction of the welding fume (expressed as their mass) remains challenging.

  14. Hybrid Welding of 45 mm High Strength Steel Sections

    Science.gov (United States)

    Bunaziv, Ivan; Frostevarg, Jan; Akselsen, Odd M.; Kaplan, Alexander F.

    Thick section welding has significant importance for oil and gas industry in low temperature regions. Arc welding is usually employed providing suitable quality joints with acceptable toughness at low temperatures with very limited productivity compared to modern high power laser systems. Laser-arc hybrid welding (LAHW) can enhance the productivity by several times due to higher penetration depth from laser beam and combined advantages of both heat sources. LAHW was applied to join 45 mm high strength steel with double-sided technique and application of metal cored wire. The process was captured by high speed camera, allowing process observation in order to identify the relation of the process stability on weld imperfections and efficiency. Among the results, it was found that both arc power and presence of a gap increased penetration depth, and that higher welding speeds cause unstable processing and limits penetration depth. Over a wide range of heat inputs, the welds where found to consist of large amounts of fine-grained acicular ferrite in the upper 60-75% part of welds. At the root filler wire mixing was less and cooling faster, and thus found to have bainitic transformation. Toughness of deposited welds provided acceptable toughness at -50 °C with some scattering.

  15. Argon Shrouded Plasma Spraying of Tantalum over Titanium for Corrosion Protection in Fluorinated Nitric Acid Media

    Science.gov (United States)

    Vetrivendan, E.; Jayaraj, J.; Ningshen, S.; Mallika, C.; Kamachi Mudali, U.

    2018-02-01

    Argon shrouded plasma spraying (ASPS) was used to deposit a Ta coating on commercially pure Ti (CP-Ti) under inert argon, for dissolver vessel application in the aqueous spent fuels reprocessing plant with high plutonium content. Oxidation during plasma spraying was minimized by shrouding argon system. Porosity and oxide content were controlled by optimizing the spraying parameters, to obtain a uniform and dense Ta coating. The Ta particle temperature and velocity were optimized by judiciously controlling the spray parameters, using a spray diagnostic charge-coupled device camera. The corrosion resistance of the Ta coatings developed by ASPS was investigated by electrochemical studies in 11.5 M HNO3 and 11.5 M HNO3 + 0.05 M NaF. Similarly, the durability of the ASPS Ta coating/substrate was evaluated as per ASTM A262 Practice-C test in boiling nitric acid and fluorinated nitric acid for 240 h. The ASPS Ta coating exhibited higher corrosion resistance than the CP-Ti substrate, as evident from electrochemical studies, and low corrosion rate with excellent coating stability in boiling nitric, and fluorinated nitric acid. The results of the present study revealed that tantalum coating by ASPS is a promising strategy for improving the corrosion resistance in the highly corrosive reprocessing environment.

  16. Strength evaluation of jointed parts between ODS cladding and end plug by means of alternative welding method. Research report

    International Nuclear Information System (INIS)

    Hatakeyama, Koichi; Mizuta, Syunji; Fujiwara, Masayuki; Ukai, Shigeharu

    2001-12-01

    For the purpose of urgently discerning the applicability of ODS cladding tube to the long life core of the fast reactors, the irradiation test using Russian fast reactor BOR-60 is planned. In this irradiation test, TIG welding or laser welding will be applied as welding method of ODS cladding with end plug. In this report, applicability of alternative welding method, i.e., TIG welding, laser welding, and also electron beam welding and 3 kinds of brazing diffusion bonding technique was evaluated. In addition, bending test and internal creep rupture test of the samples which were welded by laser and TIG welding were carried out. Following results were obtained in this study. (1) Tensile strength of laser welding test specimens with the highest energy density is most excellent in the welding process (over 90% of the base metal strength). (2) In the brazing filler metal, the tensile strength of the nickel brazing was most excellent (over 84% of the base metal strength). (3) In the bending test of laser and TIG welded test specimens, the crack was generated in circumferential direction of weld zone, which relatively corresponds to small bending angle. (4) As result of internal creep rupture test at 700degC, cladding itself was ruptured in the high stress region, whereas, weld zone was ruptured in the low stress level. (author)

  17. Full system decontamination for dose reduction at the preventive maintenance work of the reactor core internals

    International Nuclear Information System (INIS)

    Sato, Y.; Inami, I.; Suzuki, N.; Fujimori, A.; Wille, H.

    2000-01-01

    At the Fukushima Dai-ichi Nuclear Power Station unit 3 and unit 2 of Tokyo Electric Power Company (TEPCO), the replacement of the core shroud and internals have been conducted respectively in the FY 1997 outage and in the FY 1998 outage. The replacement of the welded core internals in operating BWR plants is the first time in the world as complete countermeasure to improve SCC resistance. At present both units are operating smoothly. The developed technology concept is to restore those internals in air inside the reactor pressure vessel. To reduce the radiation dose rate inside the RPV, not only a shielding method was applied to cut the radiation from the irradiated structures but also a chemical decontamination method was applied to dissolve the radioactive crud deposit on the surface by using chemical agents. The CORD UV process was applied for this Full System Decontamination including operating the reactor recirculation pumps. The critical pass time required was approximately 7 days for each unit. In both units the radioactivity of 10 TBq (280 Ci) and the Fe, Ni, Cr crud of 60-70 kg as metal in total was dissolved and removed by 5 m 3 (175 ft 3 ) ion exchange resins as only waste generated. The obtained decontamination factor (DF) at the RPV bottom reached 40-100. As result, the dose rate decreased to approximately 0.1 mSv/h under water. Before and after the installation of the in-vessel shielding, a mechanical cleaning was extensively applied inside the RPV to remove the residual crud as well as the cutting particles. As result, the RPV bottom dose rate decreased further to 0.03 mSv/h under water and 0.2 mSv/h in air. A better working environment for human access than expected was established inside the RPV, resulting the 70, 140 man*Sv saving respectively at unit 3 (1F-3) and unit 2 (1F-2). (author)

  18. Development of New Materials and Technologies for Welding and Surfacing at Research and Production Center 'Welding Processes and Technologies'

    International Nuclear Information System (INIS)

    Kozyrev, N A; Kryukov, R E; Galevsky, G V; Titov, D A; Shurupov, V M

    2015-01-01

    The paper provides description of research into the influence of new materials and technologies on quality parameters of welds and added metal carried out at research and production center «Welding processes and technologies».New welding technologies of tanks for northern conditions are considered, as well as technologies of submerged arc welding involving fluxing agents AN - 348, AN - 60, AN - 67, OK. 10.71 and carbon-fluorine containing additives, new flux cored wires and surfacing technologies, teaching programs and a trainer for welders are designed. (paper)

  19. Measuring weld heat to evaluate weld integrity

    Energy Technology Data Exchange (ETDEWEB)

    Schauder, V., E-mail: schauder@hks-prozesstechnik.de [HKS-Prozesstechnik GmbH, Halle (Germany)

    2015-11-15

    Eddy current and ultrasonic testing are suitable for tube and pipe mills and have been used for weld seam flaw detection for decades, but a new process, thermography, is an alternative. By measuring the heat signature of the weld seam as it cools, it provides information about weld integrity at and below the surface. The thermal processes used to join metals, such as plasma, induction, laser, and gas tungsten arc welding (GTAW), have improved since they were developed, and they get better with each passing year. However, no industrial process is perfect, so companies that conduct research in flaw detection likewise continue to develop and improve the technologies used to verify weld integrity: ultrasonic testing (UT), eddy current testing (ET), hydrostatic, X-ray, magnetic particle, and liquid penetrant are among the most common. Two of these are used for verifying the integrity of the continuous welds such as those used on pipe and tube mills: UT and ET. Each uses a transmitter to send waves of ultrasonic energy or electrical current through the material and a receiver (probe) to detect disturbances in the flow. The two processes often are combined to capitalize on the strengths of each. While ET is good at detecting flaws at or near the surface, UT penetrates the material, detecting subsurface flaws. One drawback is that sound waves and electrical current waves have a specific direction of travel, or an alignment. A linear defect that runs parallel to the direction of travel of the ultrasonic sound wave or a flaw that is parallel to the coil winding direction of the ET probe can go undetected. A second drawback is that they don't detect cold welds. An alternative process, thermography, works in a different fashion: It monitors the heat of the material as the weld cools. Although it measures the heat at the surface, the heat signature provides clues about cooling activity deep in the material, resulting in a thorough assessment of the weld's integrity It

  20. TIG welding method and TIG welding device

    International Nuclear Information System (INIS)

    Yoneda, Eishi

    1998-01-01

    The present invention provides a method of TIG welding for members having different heat capacities including a cladding tube and an end plug of a fuel rod to be used, for example, in a reactor, and a device therefor. Namely, in the TIG welding method, the flow rate of a sealed gas to the side of a member having smaller heat capacity is made greater than that on the side of the member having greater heat capacity bordered on the top end of a welding electrode. Since the sealed gas is jetted being localized relative to the welding electrode, arc is restricted in a region of the member having smaller heat capacity and is increased at a region having a larger heat capacity. As a result, the arc is localized, so that the heat input amount to the region having a large heat capacity is increased, and then a plurality of members at the abutting portion are melted uniformly thereby capable of obtaining a uniform molten pool. A bead is formed at the abutting portion thereby capable of obtaining a welded portion with less unevenness and having large strength. (I.S.)

  1. Explosion metal welding

    International Nuclear Information System (INIS)

    Popoff, A.A.

    1976-01-01

    Process parameters pertaining to welding similar and dissimilar metals using explosives are reviewed. The discussion centers on the interrelationship of physical parameters which play a part in achieving desirable metallurgical results. Present activities in explosion metal welding at LASL are presented and shown how they related to the interests of the ERDA community

  2. Electron beam welding

    International Nuclear Information System (INIS)

    Gabbay, M.

    1972-01-01

    The bead characteristics and the possible mechanisms of the electron beam penetration are presented. The different welding techniques are exposed and the main parts of an electron beam welding equipment are described. Some applications to nuclear, spatial and other industries are cited [fr

  3. Welding problems in nuclear power engineering

    International Nuclear Information System (INIS)

    Zubchenko, A.S.

    1986-01-01

    The problems of welding industry in nuclear power plant engineering, mainly related to the improvement of molten bath protection, are considered. Development of new materials for welding electrodes, for cladding and welding fluxes, is pointed out. Production of the following equipment is brought to a commercial level: welding heads and welding machines for branch pipe welding, anticorrosion cladding, zonal thermal treatment, electron beam welding facilities for the welding and maintenance of turbineblades, equipment for nondestructive testing of welded joints

  4. Method for welding beryllium

    Science.gov (United States)

    Dixon, R.D.; Smith, F.M.; O`Leary, R.F.

    1997-04-01

    A method is provided for joining beryllium pieces which comprises: depositing aluminum alloy on at least one beryllium surface; contacting that beryllium surface with at least one other beryllium surface; and welding the aluminum alloy coated beryllium surfaces together. The aluminum alloy may be deposited on the beryllium using gas metal arc welding. The aluminum alloy coated beryllium surfaces may be subjected to elevated temperatures and pressures to reduce porosity before welding the pieces together. The aluminum alloy coated beryllium surfaces may be machined into a desired welding joint configuration before welding. The beryllium may be an alloy of beryllium or a beryllium compound. The aluminum alloy may comprise aluminum and silicon. 9 figs.

  5. Method for welding beryllium

    International Nuclear Information System (INIS)

    Dixon, R.D.; Smith, F.M.; O'Leary, R.F.

    1997-01-01

    A method is provided for joining beryllium pieces which comprises: depositing aluminum alloy on at least one beryllium surface; contacting that beryllium surface with at least one other beryllium surface; and welding the aluminum alloy coated beryllium surfaces together. The aluminum alloy may be deposited on the beryllium using gas metal arc welding. The aluminum alloy coated beryllium surfaces may be subjected to elevated temperatures and pressures to reduce porosity before welding the pieces together. The aluminum alloy coated beryllium surfaces may be machined into a desired welding joint configuration before welding. The beryllium may be an alloy of beryllium or a beryllium compound. The aluminum alloy may comprise aluminum and silicon. 9 figs

  6. Transition welds in welding of two-ply steels

    International Nuclear Information System (INIS)

    Fartushnyj, V.G.; Evsyukov, Yu.G.

    1977-01-01

    Studied were physico-mechanical properties of welds made by various welding wires of chromium-nickel and nickel-chromium steels in submerged arc welding of double-layer steels with main layer of the VSt.3sp. carbon steel. It is shown that service-reliable structures welded of two-layer steels are obtained by providing the content from 11 to 20 % Ni in the automatically welded transition layer

  7. A study on an efficient prediction of welding deformation for T-joint laser welding of sandwich panel PART I : Proposal of a heat source model

    Directory of Open Access Journals (Sweden)

    Jae Woong Kim

    2013-09-01

    Full Text Available The use of I-Core sandwich panel has increased in cruise ship deck structure since it can provide similar bending strength with conventional stiffened plate while keeping lighter weight and lower web height. However, due to its thin plate thickness, i.e. about 4~6 mm at most, it is assembled by high power CO2 laser welding to minimize the welding deformation. This research proposes a volumetric heat source model for T-joint of the I-Core sandwich panel and a method to use shell element model for a thermal elasto-plastic analysis to predict welding deformation. This paper, Part I, focuses on the heat source model. A circular cone type heat source model is newly suggested in heat transfer analysis to realize similar melting zone with that observed in experiment. An additional suggestion is made to consider negative defocus, which is commonly applied in T-joint laser welding since it can provide deeper penetration than zero defocus. The proposed heat source is also verified through 3D thermal elasto-plastic analysis to compare welding deformation with experimental results. A parametric study for different welding speeds, defocus values, and welding powers is performed to investigate the effect on the melting zone and welding deformation. In Part II, focuses on the proposed method to employ shell element model to predict welding deformation in thermal elasto-plastic analysis instead of solid element model.

  8. Grinding Parts For Automatic Welding

    Science.gov (United States)

    Burley, Richard K.; Hoult, William S.

    1989-01-01

    Rollers guide grinding tool along prospective welding path. Skatelike fixture holds rotary grinder or file for machining large-diameter rings or ring segments in preparation for welding. Operator grasps handles to push rolling fixture along part. Rollers maintain precise dimensional relationship so grinding wheel cuts precise depth. Fixture-mounted grinder machines surface to quality sufficient for automatic welding; manual welding with attendant variations and distortion not necessary. Developed to enable automatic welding of parts, manual welding of which resulted in weld bead permeated with microscopic fissures.

  9. Prediction of Weld Residual Stress of Narrow Gap Welds

    International Nuclear Information System (INIS)

    Yang, Jun Seog; Huh, Nam Su

    2010-01-01

    The conventional welding technique such as shield metal arc welding has been mostly applied to the piping system of the nuclear power plants. It is well known that this welding technique causes the overheating and welding defects due to the large groove angle of weld. On the other hand, the narrow gap welding(NGW) technique has many merits, for instance, the reduction of welding time, the shrinkage of weld and the small deformation of the weld due to the small groove angle and welding bead width comparing with the conventional welds. These characteristics of NGW affect the deformation behavior and the distribution of welding residual stress of NGW, thus it is believed that the residual stress results obtained from conventional welding procedure may not be applied to structural integrity evaluation of NGW. In this paper, the welding residual stress of NGW was predicted using the nonlinear finite element analysis to simulate the thermal and mechanical effects of the NGW. The present results can be used as the important information to perform the flaw evaluation and to improve the weld procedure of NGW

  10. Capabilities of infrared weld monitor

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, P.G.; Keske, J.S.; Leong, K.H.; Kornecki, G.

    1997-11-01

    A non-obtrusive pre-aligned, solid-state device has been developed to monitor the primary infrared emissions during laser welding. The weld monitor output is a 100-1000 mV signal that depends on the beam power and weld characteristics. The DC level of this signal is related to weld penetration, while AC portions of the output can be correlated with surface irregularities and part misalignment or contamination. Changes in DC behavior are also noted for both full and deep penetration welds. Full penetration welds are signified by an abrupt reduction in the weld monitor output. Bead on plate welds were made on steel, aluminum, and magnesium with both a CW CO{sub 2} laser and a pulsed Nd:YAG laser to explore the relationships between the weld characteristics and the weld monitor output.

  11. Prediction of Weld Penetration in FCAW of HSLA steel using Artificial Neural Networks

    International Nuclear Information System (INIS)

    Asl, Y. Dadgar; Mostafa, N. B.; Panahizadeh, V. R.; Seyedkashi, S. M. H.

    2011-01-01

    Flux-cored arc welding (FCAW) is a semiautomatic or automatic arc welding process that requires a continuously-fed consumable tubular electrode containing a flux. The main FCAW process parameters affecting the depth of penetration are welding current, arc voltage, nozzle-to-work distance, torch angle and welding speed. Shallow depth of penetration may contribute to failure of a welded structure since penetration determines the stress-carrying capacity of a welded joint. To avoid such occurrences; the welding process parameters influencing the weld penetration must be properly selected to obtain an acceptable weld penetration and hence a high quality joint. Artificial neural networks (ANN), also called neural networks (NN), are computational models used to express complex non-linear relationships between input and output data. In this paper, artificial neural network (ANN) method is used to predict the effects of welding current, arc voltage, nozzle-to-work distance, torch angle and welding speed on weld penetration depth in gas shielded FCAW of a grade of high strength low alloy steel. 32 experimental runs were carried out using the bead-on-plate welding technique. Weld penetrations were measured and on the basis of these 32 sets of experimental data, a feed-forward back-propagation neural network was created. 28 sets of the experiments were used as the training data and the remaining 4 sets were used for the testing phase of the network. The ANN has one hidden layer with eight neurons and is trained after 840 iterations. The comparison between the experimental results and ANN results showed that the trained network could predict the effects of the FCAW process parameters on weld penetration adequately.

  12. Fracture toughness of austenitic stainless steel weld metal at 4 K

    International Nuclear Information System (INIS)

    Goodwin, G.M.

    1984-08-01

    Selection of the welding processess and weld filler metals for fabrication of a large toroidal superconducting magnet is described. Data available in the literature are collected and compared with data generated in this study for three welding processes, shielded metal arc (SMA), gas tungsten arc (GTA), and flux cored arc (FCA) welds had the highest fracture toughness as measured by K/sub Ic/ estimated from J/sub Ic/. The SMA and FCA welds had about the same toughness, below the GTA values but above the average from the literature. The fracture mode for all three processes was typified by ductile dimples. The fracture morphology of the FCA weld specimens was influenced by the solidification substructure, and small particles were found to be nucleation sites for void formation, especially for the GTA welds. All three welding processes were deemed adequate for the intended service and were used to fabricate the large magnet. A trunnion-type turning fixture eliminated the need for welding in the vertical and overhead positions. The GTA process was used for all root passes, and the horizontal welds were filled by the SMA process. Over 80% of the welds were done in the flat position with the FCA process, and its high deposition rate and ease of operation are credited with contributing greatly to the success of the effort

  13. Welding method, and welding device for use therein, and method of analysis for evaluating welds

    NARCIS (Netherlands)

    Aendenroomer, A.J.; Den Ouden, G.; Xiao, Y.H.; Brabander, W.A.J.

    1995-01-01

    Described is a method of automatically welding pipes, comprising welding with a pulsation welding current and monitoring, by means of a sensor, the variations occurring in the arc voltage caused by weld pool oscillations. The occurrence of voltage variations with only frequency components below 100

  14. Application of high efficiency and reliable 3D-designed integral shrouded blades to nuclear turbines

    International Nuclear Information System (INIS)

    Watanabe, Eiichiro; Ohyama, Hiroharu; Tashiro, Hikaru; Sugitani, Toshiro; Kurosawa, Masaru

    1998-01-01

    Mitsubishi Heavy Industries, Ltd. has recently developed new blades for nuclear turbines, in order to achieve higher efficiency and higher reliability. The 3D aerodynamic design for 41 inch and 46 inch blades, their one piece structural design (integral-shrouded blades: ISB), and the verification test results using a model steam turbine are described in this paper. The predicted efficiency and lower vibratory stress have been verified. Based on these 60Hz ISB, 50Hz ISB series are under development using 'the law of similarity' without changing their thermodynamic performance and mechanical stress levels. Our 3D-designed reaction blades which are used for the high pressure and low pressure upstream stages, are also briefly mentioned. (author)

  15. Weld analysis and control system

    Science.gov (United States)

    Kennedy, Larry Z. (Inventor); Rodgers, Michael H. (Inventor); Powell, Bradley W. (Inventor); Burroughs, Ivan A. (Inventor); Goode, K. Wayne (Inventor)

    1994-01-01

    The invention is a Weld Analysis and Control System developed for active weld system control through real time weld data acquisition. Closed-loop control is based on analysis of weld system parameters and weld geometry. The system is adapted for use with automated welding apparatus having a weld controller which is capable of active electronic control of all aspects of a welding operation. Enhanced graphics and data displays are provided for post-weld analysis. The system provides parameter acquisition, including seam location which is acquired for active torch cross-seam positioning. Torch stand-off is also monitored for control. Weld bead and parent surface geometrical parameters are acquired as an indication of weld quality. These parameters include mismatch, peaking, undercut, underfill, crown height, weld width, puddle diameter, and other measurable information about the weld puddle regions, such as puddle symmetry, etc. These parameters provide a basis for active control as well as post-weld quality analysis and verification. Weld system parameters, such as voltage, current and wire feed rate, are also monitored and archived for correlation with quality parameters.

  16. Welding processes handbook

    CERN Document Server

    Weman, Klas

    2003-01-01

    Deals with the main commercially significant and commonly used welding processes. This title takes the student or novice welder through the individual steps involved in each process in an easily understood way. It covers many of the requirements referred to in European Standards including EN719, EN 729, EN 729 and EN 287.$bWelding processes handbook is a concise, explanatory guide to the main commercially significant and commonly-used welding processes. It takes the novice welder or student through the individual steps involved in each process in a clear and easily understood way. It is intended to provide an up-to-date reference to the major applications of welding as they are used in industry. The contents have been arranged so that it can be used as a textbook for European welding courses in accordance with guidelines from the European Welding Federation. Welding processes and equipment necessary for each process are described so that they can be applied to all instruction levels required by the EWF and th...

  17. Commonalities between the Shroud of Turin and the Sudarium of Oviedo

    Directory of Open Access Journals (Sweden)

    Hermosilla Alfonso Sánchez

    2015-01-01

    Full Text Available In 1989 EDICES (Spanish Sindonology Research Centre Team started researching about the Sudarium of Oviedo, developing the pioneer research started in the sixties by Monsignor Giulio Ricci, who was a member of the Papal Curia and President of the “Roman Centre of Sindonology”aaRicci, G. L'Uomo Della Sindone é Gesú, 2a Edición, 1969., furthermore, he was a scholar of the Gospel of Saint John, the reading of chapter 20, Bible verses 4-8: “4 They were running together, but the other disciple ran faster than Peter and was the first to arrive at the tomb.5 Bending down to take a look, he saw the linen cloths lying there, but he didn't go in.6 Following him, Simon Peter entered the tomb and saw the linen cloths lying there.7 He also saw the face cloth that had been on Jesus' head. It wasn't with the other clothes but was folded up in its own place.8Then the other disciple, the one who arrived at the tomb first, also went inside. He saw and believed.” This made him look for a second funerary linen used to wrap the corpse of Jesus of Nazareth. This seek led him to the Sudarium of Oviedo. The similarity of the shape of the stains and its size with the Shroud of Turin made him think that he had really found the relic which Saint Joan mentions. From the Forensic Anthropology and Forensic Medicine point of view, all the information discovered by the scientific research is compatible with the hypothesis that the Shroud of Turin and the Sudarium of Oviedo covered the corpse of the same person.

  18. Thermal stir welding process

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2012-01-01

    A welding method is provided for forming a weld joint between first and second elements of a workpiece. The method includes heating the first and second elements to form an interface of material in a plasticized or melted state interface between the elements. The interface material is then allowed to cool to a plasticized state if previously in a melted state. The interface material, while in the plasticized state, is then mixed, for example, using a grinding/extruding process, to remove any dendritic-type weld microstructures introduced into the interface material during the heating process.

  19. Thermal stir welding apparatus

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2011-01-01

    A welding method and apparatus are provided for forming a weld joint between first and second elements of a workpiece. The method includes heating the first and second elements to form an interface of material in a plasticized or melted state interface between the elements. The interface material is then allowed to cool to a plasticized state if previously in a melted state. The interface material, while in the plasticized state, is then mixed, for example, using a grinding/extruding process, to remove any dendritic-type weld microstructures introduced into the interface material during the heating process.

  20. Review of Welding Terminology

    Directory of Open Access Journals (Sweden)

    Angelika Petrėtienė

    2011-04-01

    Full Text Available The paper discusses welding terms in accordance with the Lithuanian standard LST EN 1792 „Welding. The multilingual list of welding terms and similar processes”, „The Russian–Lithuanian dictionary of the terms of mechanical engineering technology and welding“ and the examples from postgraduates‘ final works. It analyses the infringement of lexical, word-building and morphological rules. First-year students should already be familiar with the standardized terms of their speciality. More active propagation of the terms should help to avoid terminology mistakes in various scientific spheres.

  1. Half bead welding technique

    International Nuclear Information System (INIS)

    Canonico, D.A.; Holz, P.P.

    1978-05-01

    The ORNL has employed the Section XI half-bead procedure for six repair welds. Table 2 identifies the repairs and the components upon which they were accomplished. The weld repairs were performed to permit us to evaluate material properties, residual stresses, weld repair procedures, and structural behavior of repaired pressure vessels. As a consequence of our study we concluded that when the half bead procedure is correctly applied: (1) there is no metallurgical degradation of the base material, (2) residual stresses of yield point magnitude will be present, and (3) the structural integrity of the pressure vessel is not impaired at Charpy V-notch upper shelf temperatures

  2. Electrolytic reduction runs of 0.6 kg scale-simulated oxide fuel in a Li{sub 2}O-LiCl molten salt using metal anode shrouds

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Eun-Young, E-mail: eychoi@kaeri.re.kr [Korea Atomic Energy Research Institute, Daedoek-daero 989-111, Yuseong-gu, Daejeon 34057 (Korea, Republic of); Lee, Jeong; Heo, Dong Hyun; Lee, Sang Kwon [Korea Atomic Energy Research Institute, Daedoek-daero 989-111, Yuseong-gu, Daejeon 34057 (Korea, Republic of); Jeon, Min Ku [Korea Atomic Energy Research Institute, Daedoek-daero 989-111, Yuseong-gu, Daejeon 34057 (Korea, Republic of); Department of Quantum Energy Chemical Engineering, University of Science and Technology, Gajeong-ro 217, Yuseong-gu, Daejeon 34113 (Korea, Republic of); Hong, Sun Seok [Korea Atomic Energy Research Institute, Daedoek-daero 989-111, Yuseong-gu, Daejeon 34057 (Korea, Republic of); Kim, Sung-Wook [Korea Atomic Energy Research Institute, Daedoek-daero 989-111, Yuseong-gu, Daejeon 34057 (Korea, Republic of); Department of Quantum Energy Chemical Engineering, University of Science and Technology, Gajeong-ro 217, Yuseong-gu, Daejeon 34113 (Korea, Republic of); Kang, Hyun Woo; Jeon, Sang-Chae; Hur, Jin-Mok [Korea Atomic Energy Research Institute, Daedoek-daero 989-111, Yuseong-gu, Daejeon 34057 (Korea, Republic of)

    2017-06-15

    Ten electrolytic reduction or oxide reduction (OR) runs of a 0.6 kg scale-simulated oxide fuel in a Li{sub 2}O-LiCl molten salt at 650 °C were conducted using metal anode shrouds. During this procedure, an anode shroud surrounds a platinum anode and discharges hot oxygen gas from the salt to outside of the OR apparatus, thereby preventing corrosion of the apparatus. In this study, a number of anode shrouds made of various metals were tested. Each metallic anode shroud consisted of a lower porous shroud for the salt phase and an upper nonporous shroud for the gas phase. A stainless steel (STS) wire mesh with five-ply layer was a material commonly used for the lower porous shroud for the OR runs. The metals tested for the upper nonporous shroud in the different OR runs are STS, nickel, and platinum- or silver-lined nickel. The lower porous shroud showed no significant damage during two consecutive OR runs, but exhibited signs of damage from three or more runs due to thermal stress. The upper nonporous shrouds made up of either platinum- or silver-lined nickel showed excellent corrosion resistance to hot oxygen gas while STS or nickel without any platinum or silver lining exhibited poor corrosion resistance. - Highlights: •Electrolytic reduction runs of a 0.6 kg scale-simulated oxide fuel in a Li{sub 2}O-LiCl molten salt at 650 °C were conducted using metal anode shrouds. •Each metallic anode shroud consisted of a lower porous shroud for the salt phase and an upper nonporous shroud for the gas phase. •The upper nonporous shrouds made up of noble metal-lined nickel showed excellent corrosion resistance to hot oxygen gas.

  3. Recent developments in pipeline welding practice

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    Fourteen chapters are included: overview of pipeline welding systems and quality assurance, CRC automatic welding system, H.C. Price Co. automatic welding system, semi-automatic MIG-welding process, partial penetration welding of steel pipes for gas distribution, construction procedures and quality control in offshore pipeline construction, welding in repair and maintenance of gas transmission pipelines, British Gas studies of welding on pressurized gas transmission pipelines, hot tapping pipelines, underwater welding for offshore pipelines and associated equipment, radial friction welding, material composition vs weld properties, review of NDT of pipeline welds, and safety assurance in pipeline construction. A bibliography of approximately 150 references is included, arranged according to subject and year.

  4. Hybrid laser-arc welding

    DEFF Research Database (Denmark)

    Hybrid laser-arc welding (HLAW) is a combination of laser welding with arc welding that overcomes many of the shortfalls of both processes. This important book gives a comprehensive account of hybrid laser-arc welding technology and applications. The first part of the book reviews...... the characteristics of the process, including the properties of joints produced by hybrid laser-arc welding and ways of assessing weld quality. Part II discusses applications of the process to such metals as magnesium alloys, aluminium and steel as well as the use of hybrid laser-arc welding in such sectors as ship...... building and the automotive industry. With its distinguished editor and international team of contributors, Hybrid laser-arc welding, will be a valuable source of reference for all those using this important welding technology. Professor Flemming Ove Olsen works in the Department of Manufacturing...

  5. Residual stress by repair welds

    International Nuclear Information System (INIS)

    Mochizuki, Masahito; Toyoda, Masao

    2003-01-01

    Residual stress by repair welds is computed using the thermal elastic-plastic analysis with phase-transformation effect. Coupling phenomena of temperature, microstructure, and stress-strain fields are simulated in the finite-element analysis. Weld bond of a plate butt-welded joint is gouged and then deposited by weld metal in repair process. Heat source is synchronously moved with the deposition of the finite-element as the weld deposition. Microstructure is considered by using CCT diagram and the transformation behavior in the repair weld is also simulated. The effects of initial stress, heat input, and weld length on residual stress distribution are studied from the organic results of numerical analysis. Initial residual stress before repair weld has no influence on the residual stress after repair treatment near weld metal, because the initial stress near weld metal releases due to high temperature of repair weld and then stress by repair weld regenerates. Heat input has an effect for residual stress distribution, for not its magnitude but distribution zone. Weld length should be considered reducing the magnitude of residual stress in the edge of weld bead; short bead induces high tensile residual stress. (author)

  6. Welding of refractory alloys

    International Nuclear Information System (INIS)

    Lessmann, G.G.

    1984-01-01

    This review primarily summarizes welding evaluations supported by NASA-Lewis Research Center in the 1960s. A literature search run in preparation for this review indicates that more recent work is modest by comparison. Hence, this review restates these accomplishments briefly and addresses opportunities which have evolved in welding technology (such as lasers) in the intervening decade. Emphasis in this review is given to tantalum- and niobium-base alloys. Considerable work was also done to assure that a consistent comparison was made with tungsten. A wide variety of candidate alloys derived primarily from developments directed at aircraft propulsion applications were available. Early efforts by NASA were directed at screening studies to select promising structural alloys for the space power application. This objective required fine tuning of welding procedures, e.g., the demonstration of stringent standards for control of welding atmosphere to assure good corrosion resistance in liquid alkali metals. 16 figures, 6 tables

  7. Multispot fiber laser welding

    DEFF Research Database (Denmark)

    Schutt Hansen, Klaus

    This dissertation presents work and results achieved in the field of multi beam fiber laser welding. The project has had a practical approach, in which simulations and modelling have been kept at a minimum. Different methods to produce spot patterns with high power single mode fiber lasers have...... been examined and evaluated. It is found that both diamond turned DOE’s in zinc sulphide and multilevel etched DOE’s (Diffractive Optical Elements) in fused silica have a good performance. Welding with multiple beams in a butt joint configuration has been tested. Results are presented, showing it has...... been possible to control the welding width in incremental steps by adding more beams in a row. The laser power was used to independently control the keyhole and consequently the depth of fusion. An example of inline repair of a laser weld in butt joint configuration was examined. Zinc powder was placed...

  8. Friction stir welding tool

    Science.gov (United States)

    Tolle,; Charles R. , Clark; Denis E. , Barnes; Timothy, A [Ammon, ID

    2008-04-15

    A friction stir welding tool is described and which includes a shank portion; a shoulder portion which is releasably engageable with the shank portion; and a pin which is releasably engageable with the shoulder portion.

  9. A Relationship of the Torque Strength between Endplates and Endcaps due to the Welding Parameters

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Dae Seo; Kim, Soo Sung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-10-15

    As fuel bundles in a PHWR core irradiated, inner pressure in the claddings of the fuel rods increases owing to the outer pressure and fission products of the nuclear fissions. Because of a leak possibility from a welding between a cladding and an endcap, this welding part is connected with the safety of nuclear fuel rods. Endcap-cladding welding of nuclear fuel rods in a PHWR takes advantage of a resistance upset butt welding. The weldment between a cladding and an endcap is to be sound to prevent a leakage of fission products from a cladding as a UO{sub 2} pellet is irradiated. Weld flash was made from a deformation due to a welding heat and increasing the pressure of the resistivity and resistance from a cladding and an endcap. Weld line of a welding interface, microstructure of a weldment and a crystallographic structure change were sources of an iodine induced SCC in a reactor. The soundness of a weldment is important because a weld line connects the leakage of fission products from an operational reactor. In this study, welding specimens were fabricated by a resistance welding method using a fuel bundle welder to measure and analyze the torque strength of an endplate-endcap welding. The torque strength between endplates and endcaps was measured and analyzed with the welding current and the welding time. The torque strength between endplates and endcaps was, on the whole, within 6.9-12.7 N{center_dot}m in the range of fabrication specification of the fuel bundles. The weldability of between an endplate and an endcap was investigated by a metallographic examination.

  10. An Experimental Investigation on APR1400 Penetration Weld Failure by Metallic Melt

    International Nuclear Information System (INIS)

    An, Sang Mo; Ha, Kwang Soon; Kim, Hwan Yeol

    2014-01-01

    The penetrations are considered as the most vulnerable parts with respect to the reactor vessel failure when a core melt severe accident occurs and the corium reaches the lower head. Penetration tube failure modes can be divided into two categories; tube ejection out of the vessel lower head and rupture of the penetration tube outside the vessel. Tube ejection begins with degrading the penetration tube weld strength to zero as the weld is exposed to temperatures as high as the weld melting temperature, which is called weld failure, and then overcoming any binding force in the hole in the vessel wall that results from differential thermal expansion of the tube and vessel wall. Tube rupture assumes that the debris bed has melted the instrument tube inside the reactor and melt migrates down into the tube to a location outside the vessel wall where a pressure rupture can occur, thus breaching the pressure boundary. In the present paper, we have a focus on the tube ejection failure mode, specifically on the APR1400 weld failure by direct contact with a metallic melt. The objective is to investigate experimentally the ablation kinetics of an APR1400 penetration weld during the interactions with a metallic melt and to suggest the modification of the existing weld failure model. This paper involves the interaction experiments of two different metallic melts (metallic corium and stainless steel melts) with a weld specimen, and rough estimation of weld failure time. The interaction experiments between the metallic melts and an APR1400 penetration weld were performed to investigate the ablation kinetics of the penetration weld. Metallic corium and stainless steel melts were generated using an induction heating technique and interacted with a penetration weld specimen. The ablation rate of the weld specimen showed a range from 0.109 to 0..244 mm/s and thus the APR1400 penetration weld was estimated to be failed at hundreds of times after the interaction with the melt

  11. Underwater Welding Techniques

    OpenAIRE

    Esam F. Alajmi; Ahmad A. Alqenaei

    2017-01-01

    Welding demand in offshore and marine applications is increased with the increasing in oil and gas activities as well as increasing in the marine transportation and industrial applications. Applications of underwater welding well be increased in Kuwait in the coming years due to the strategic directive of the country toward starting the offshore oil and gas exploration and production, and the increase in marine transportation projects. Therefore, there is a need to understand the concept of u...

  12. Estudo comparativo da resistência ao desgaste abrasivo do revestimento de três ligas metálicas utilizadas na indústria, aplicadas por soldagem com arames tubulares Comparative study of the wear resistance of three metal cored wire welded coatings used in industry

    Directory of Open Access Journals (Sweden)

    Ricardo Vinícius de Melo Leite

    2009-12-01

    expenditure on maintenance in industries. For the application of the coating by welding, cored wire have been a viable alternative, because of its high productivity and high weld quality, replacing in part, the use of the stick electrode. The objective of this work is to make a comparative study of the abrasive wear resistant coating deposited by welding with selfshielded cored wires of three metal alloys used in industry, first the Fe-Cr-C alloy, the second the Fe-Cr-C alloy with niobium and boron addition, and the third the Fe-Cr-C with niobium addition. The wear resistant coatings, known as hardfacing were deposited on carbon steel plates, with the same parameters and procedures of welding. The samples were obtained by cutting and grinding and were subjected to abrasive wear tests, in a Rubber Wheel apparatus, according to procedure established by ASTM G65-91. The results showed that the Fe-Cr-C alloy with Niobium and Boron addition presented superiority in terms of wear resistence.

  13. Process stability during fiber laser-arc hybrid welding of thick steel plates

    Science.gov (United States)

    Bunaziv, Ivan; Frostevarg, Jan; Akselsen, Odd M.; Kaplan, Alexander F. H.

    2018-03-01

    Thick steel plates are frequently used in shipbuilding, pipelines and other related heavy industries, and are usually joined by arc welding. Deep penetration laser-arc hybrid welding could increase productivity but has not been thoroughly investigated, and is therefore usually limited to applications with medium thickness (5-15 mm) sections. A major concern is process stability, especially when using modern welding consumables such as metal-cored wire and advanced welding equipment. High speed imaging allows direct observation of the process so that process behavior and phenomena can be studied. In this paper, 45 mm thick high strength steel was welded (butt joint double-sided) using the fiber laser-MAG hybrid process utilizing a metal-cored wire without pre-heating. Process stability was monitored under a wide range of welding parameters. It was found that the technique can be used successfully to weld thick sections with appropriate quality when the parameters are optimized. When comparing conventional pulsed and the more advanced cold metal transfer pulse (CMT+P) arc modes, it was found that both can provide high quality welds. CMT+P arc mode can provide more stable droplet transfer over a limited range of travel speeds. At higher travel speeds, an unstable metal transfer mechanism was observed. Comparing leading arc and trailing arc arrangements, the leading arc configuration can provide higher quality welds and more stable processing at longer inter-distances between the heat sources.

  14. Automatic welding machine for piping

    International Nuclear Information System (INIS)

    Yoshida, Kazuhiro; Koyama, Takaichi; Iizuka, Tomio; Ito, Yoshitoshi; Takami, Katsumi.

    1978-01-01

    A remotely controlled automatic special welding machine for piping was developed. This machine is utilized for long distance pipe lines, chemical plants, thermal power generating plants and nuclear power plants effectively from the viewpoint of good quality control, reduction of labor and good controllability. The function of this welding machine is to inspect the shape and dimensions of edge preparation before welding work by the sense of touch, to detect the temperature of melt pool, inspect the bead form by the sense of touch, and check the welding state by ITV during welding work, and to grind the bead surface and inspect the weld metal by ultrasonic test automatically after welding work. The construction of this welding system, the main specification of the apparatus, the welding procedure in detail, the electrical source of this welding machine, the cooling system, the structure and handling of guide ring, the central control system and the operating characteristics are explained. The working procedure and the effect by using this welding machine, and the application to nuclear power plants and the other industrial field are outlined. The HIDIC 08 is used as the controlling computer. This welding machine is useful for welding SUS piping as well as carbon steel piping. (Nakai, Y.)

  15. Development of laser cutting/welding system for remote maintenance of ITER manifold

    Energy Technology Data Exchange (ETDEWEB)

    Yamaoka, Hiroto; Tsuchiya, Kazuyuki; Awano, Toshihiko [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan); Oka, Kiyoshi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    2002-09-01

    A remote pipe cutting/welding system using a YAG laser was designed and fabricated for the maintenance of the main structural parts of ITER (International Thermonuclear Experimental Reactor), and a mock-up test carried out. The functions of this system are to cut 100A x Sch 40 pipes of SUS316L by internal access, to adjust the core gap between the as-cut pipe and new pipe, and to weld the pipes automatically. The core gap of the pipes could be decreased within the proper welding conditions by the mock-up test, and sound beads were obtained. (author)

  16. Alternate Welding Processes for In-Service Welding

    Science.gov (United States)

    2009-04-24

    Conducting weld repairs and attaching hot tap tees onto pressurized pipes has the advantage of avoiding loss of service and revenue. However, the risks involved with in-service welding need to be managed by ensuring that welding is performed in a rep...

  17. Certification of a weld produced by friction stir welding

    Science.gov (United States)

    Obaditch, Chris; Grant, Glenn J

    2013-10-01

    Methods, devices, and systems for providing certification of friction stir welds are disclosed. A sensor is used to collect information related to a friction stir weld. Data from the sensor is compared to threshold values provided by an extrinsic standard setting organizations using a certification engine. The certification engine subsequently produces a report on the certification status of the weld.

  18. Seismic analysis for shroud facility in-pile tube and saturated temperature capsules

    International Nuclear Information System (INIS)

    Iimura, Koichi; Yamaura, Takayuki; Ogawa, Mitsuhiro

    2009-07-01

    At Oarai Research and Development Center, Japan Atomic Energy Agency (JAEA), the plan of repairing and refurbishing Japan Materials Testing Reactor (JMTR) has progressed in order to restart JMTR operation in the fiscal 2011. As a part of effective use of JMTR, the neutron irradiation tests of LWR fuels and materials has been planned in order to study their soundness. By using Oarai Shroud Facility (OSF-1) and Fuel Irradiation Facility with the He-3 gas control system for power lamping test using Boiling Water Capsules (BOCA Irradiation Facility), the irradiation tests with power ramping will be carried out to study the soundness of fuel under LWR Transient condition. OSF-1 is the irradiation facility of shroud type that can insert and eject the capsule under reactor operation, and is composed of 'In-pile Tube', 'Cooling system' and 'Capsule exchange system'. BOCA Irradiation Facility is the facility which simulates irradiation environment of LWR, and is composed of 'Boiling water Capsule', 'Capsule control system' and 'Power control system by He-3'. By using Saturated temperature Capsules and the water environment control system, the material irradiation tests under the water chemistry condition of LWR will be carried out to clarify the mechanism of IASCC. In JMTR, these facilities are in service at the present. However, the detailed design for renewal or remodeling was carried out based on the new design condition in order to be correspondent to the irradiation test plan after restart JMTR operation. In this seismic analysis of the detailed design, each equipment classification and operating state were arranged with 'Japanese technical standards of the structure on nuclear facility for test research' and 'Technical guidelines for seismic design of nuclear power plants on current, and then, stress calculation and evaluation were carried out by FEM piping analysis code 'SAP' and structure analysis code 'ABAQUS'. About the stress of the seismic force, it was proven

  19. Ultrasonic inspection of austenitic welds

    International Nuclear Information System (INIS)

    Baikie, B.L.; Wagg, A.R.; Whittle, M.J.; Yapp, D.

    1976-01-01

    The ultrasonic examination of austenitic stainless steel weld metal has always been regarded as a difficult proposition because of the large and variable ultrasonic attenuations and back scattering obtained from apparently similar weld deposits. The work to be described shows how the existence of a fibre texture within each weld deposit (as a result of epitaxial growth through successive weld beads) produces a systematic variation in the ultrasonic attenuation coefficient and the velocity of sound, depending upon the angle between the ultrasonic beam and the fibre axis. Development work has shown that it is possible to adjust the welding parameters to ensure that the crystallographic texture within each weld is compatible with improved ultrasonic transmission. The application of the results to the inspection of a specific weld in type 316 weld metal is described

  20. Arc-weld pool interactions

    International Nuclear Information System (INIS)

    Glickstein, S.S.

    1978-08-01

    The mechanisms involved in arc-weld pool interactions are extremely complex and no complete theory is presently available to describe much of the phenomena observed during welding. For the past several years, experimental and analytical studies have been undertaken at the Bettis Atomic Power Laboratory to increase basic understanding of the gas tungsten arc welding process. These studies have included experimental spectral analysis of the arc in order to determine arc temperature and analytical modeling of the arc and weld puddle. The investigations have been directed toward determining the cause and effects of variations in the energy distribution incident upon the weldment. In addition, the effect of weld puddle distortion on weld penetration was investigated, and experimental and analytical studies of weld process variables have been undertaken to determine the effects of the variables upon weld penetration and configuration. A review of the results and analysis of these studies are presented

  1. Resistance Spot Welding of dissimilar Steels

    Directory of Open Access Journals (Sweden)

    Ladislav Kolařík

    2012-01-01

    Full Text Available This paper presents an analysis of the properties of resistance spot welds between low carbon steel and austenitic CrNi stainless steel. The thickness of the welded dissimilar materials was 2 mm. A DeltaSpot welding gun with a process tape was used for welding the dissimilar steels. Resistance spot welds were produced with various welding parameters (welding currents ranging from 7 to 8 kA. Light microscopy, microhardness measurements across the welded joints, and EDX analysis were used to evaluate the quality of the resistance spot welds. The results confirm the applicability of DeltaSpot welding for this combination of materials.

  2. Strength-limited magnetic field intensity of toroidal magnet systems fabricated or the base of layer-by-layer shrouded solenoids

    International Nuclear Information System (INIS)

    Litvinnko, Yu.A.

    1982-01-01

    The possibilities, as to the ultimate magnetic field strength, of tokamak magnet systems made on the base of layer-by-laeyer shrouded coils are considered numerically. The toroidal magnet system is considered which consists of N skewe, layer-by-layer shrouded, equistrong coils in the ideal torus approximation. The dependences of the ragnetic field strength on the internal- and external torus radii, pulse duration and aspect ratio for copper coils shrouded with fiberglass are calculated as an example. The analysis of the obtained results shows that using of the layer-by-layer shrouding scheme for toroidal solenoid coils leads to a considerable growth of the ultimate magnetic field strengths in a wide duration range. For example, the limiting field strength along the toroidal solenoid axis of the considered type inside the ''FT'' installation toroidal solenoid at equivalent field pulse duration of approximately 0.3 s reaches H 0 =1.3zx10 7 A/m

  3. Multipass autogenous electron beam welding

    International Nuclear Information System (INIS)

    Murphy, J.L.; Mustaleski, T.M. Jr.; Watson, L.C.

    1986-01-01

    A multipass, autogenous welding procedure was developed for 7.6 mm (0.3 in.) wall thickness Type 304L stainless steel cylinders. The joint geometry has a 1.5 mm (0.06 in.) root-face width and a rectangular stepped groove that is 0.762 mm (0.03 in.) wide at the top of the root face and extends 1.5 mm in height, terminating into a groove width of 1.27 mm which extends to the outside of the 1.27 mm high weld-boss. One weld pass is made on the root, three passes on the 0.762 mm wide groove and three passes to complete the weld. Multipass, autogenous, electron beam welds maintain the characteristic high depth-to-width ratios and low heat input of single-pass, electron beam welds. The increased part distortion (which is still much less than from arc processes) in multipass weldments is corrected by a preweld machined compensation. Mechanical properties of multipass welds compare well with single-pass welds. The yield strength of welds in aluminum alloy 5083 is approximately the same for single-pass or multipass electron beam and gas, metal-arc welds. The incidence and size of porosity is less in multipass electron beam welding of aluminum as compared to gas, metal-arc welds. The multipass, autogenous, electron beam welding method has proven to be a reliable way to make some difficult welds in multilayer parts or in an instance where inside part temperature or weld underbead must be controlled and weld discontinuities must be minimized

  4. Numerical and experimental analysis of a darrieus-type cross flow water turbine in bare and shrouded configurations

    International Nuclear Information System (INIS)

    Roa, A M; Aumelas, V; MaItre, T; Pellone, C

    2010-01-01

    The aim of this paper is to present the results of the analysis of a Darrieus-type cross flow water turbine in bare and shrouded configurations. Numerical results are compared to experimental data and differences found in values are also highlighted. The benefit of the introduction of a channelling device, which generates an efficiency increment factor varying from 2 to 5, depending on the configuration, is discussed.

  5. Laser welding engineering

    International Nuclear Information System (INIS)

    Bhieh, N. M.; El Eesawi, M. E.; Hashkel, A. E.

    2007-01-01

    Laser welding was in its early life used mainly for unusual applications where no other welding process would be suitable that was twenty five years ago. Today, laser welding is a fully developed part of the metal working industry, routinely producing welds for common items such as cigarette lighters, which springs, motor/transformer lamination, hermetic seals, battery and pacemaker cans and hybrid circuit packages. Yet very few manufacturing engineering have seriously considers employing lasers in their own operations. Why? There are many reasons, but a main one must be not acquainted with the operation and capabilities of a laser system. Other reasons, such as a relatively high initial cost and a concern about using lasers in the manufacturing environment, also are frequently cited, and the complexity of the component and flexibility of the light delivery system. Laser welding could be used in place of many different standard processes, such as resistance (spot or seam), submerged arc, RF induction, high-frequency resistance, ultrasonic and electronic and electron-beam. while each of these techniques has established an independent function in the manufacturing world, the flexible laser welding approach will operate efficiently and economically in many different applications. Its flexibility will even permit the welding system to be used for other machining function, such as drilling, scribing, sealing and serializing. In this article, we will look at how laser welding works and what benefits it can offer to manufacturing engineers. Some industry observers state that there are already 2,000 laser machine tools being used for cutting, welding and drilling and that the number could reach 30,000 over the next 15 years as manufacturing engineers become more aware of the capabilities of lasers [1). While most laser applications are dedicated to one product or process that involves high-volume, long-run manufacturing, the flexibility of a laser to supply energy to hard

  6. Welding. Performance Objectives. Intermediate Course.

    Science.gov (United States)

    Vincent, Kenneth

    Several intermediate performance objectives and corresponding criterion measures are listed for each of nine terminal objectives for an intermediate welding course. The materials were developed for a 36-week (3 hours daily) course designed to prepare the student for employment in the field of welding. Electric welding and specialized (TIG & MIG)…

  7. Welding. Performance Objectives. Basic Course.

    Science.gov (United States)

    Vincent, Kenneth

    Several intermediate performance objectives and corresponding criterion measures are listed for each of eight terminal objectives for a basic welding course. The materials were developed for a 36-week (2 hours daily) course developed to teach the fundamentals of welding shop work, to become familiar with the operation of the welding shop…

  8. Pulsed TIG welding of pipes

    International Nuclear Information System (INIS)

    Killing, U.

    1989-01-01

    The present study investigates into the effects of impulse welding parameters on weld geometry in the joint welding of thin-walled sheets and pipes (d=2.5 mm), and it uses random samples of thick-walled sheets and pipes (d=10 mm), in fixed positions. (orig./MM) [de

  9. Friction welding method

    International Nuclear Information System (INIS)

    Ishida, Ryuichi; Hatanaka, Tatsuo.

    1969-01-01

    A friction welding method for forming a lattice-shaped base and tie plate supporter for fuel elements is disclosed in which a plate formed with a concavity along its edge is pressure welded to a rotating member such as a boss by longitudinally contacting the projecting surfaces remaining on either side of the concavity with the rotating member during the high speed rotation thereof in the presence of an inert gas. Since only the two projecting surfaces of the plate are fused by friction to the rotary member, heat expansion is absorbed by the concavity to prevent distortion; moreover, a two point contact surface assures a stable fitting and promotes the construction of a rigid lattice in which a number of the abovementioned plates are friction welded between rotating members to form any desired complex arrangement. The inert has serves to protect the material quality of the contacting surfaces from air during the welding step. The present invention thus provides a method in which even Zircaloy may be friction welded in place of casting stainless steel in the construction of supporting lattices to thereby enhance neutron economy. (K. J. Owens)

  10. Investigation of flow in axial turbine stage without shroud-seal

    Directory of Open Access Journals (Sweden)

    Straka Petr

    2015-01-01

    Full Text Available This article deals with investigation of the influence of the radial gaps on the efficiency of the axial turbine stage. The investigation was carried out for the axial stage of the low-power turbine with the drum-type rotor without the shroud. In this configuration the flow through the radial gap under the hub-end of the stator blades and above the tip-end of the rotor blades leads to generation of the strong secondary flows, which decrease the efficiency of the stage. This problem was studied by experiment as well as by numerical modelling. The experiment was performed on the test rig equipped with the water brake dynamometer, torque meter and rotatable stator together with the linear probe manipulator. Numerical modelling was carried out for both the steady flow using the ”mixing plane” interface and the unsteady flow using the ”sliding mesh” interface between the stator and rotor wheels. The influence of the radial gap was studied in two configuration a positive and b negative overlapping of the tip-ends of the rotor blades. The efficiency of the axial stage in dependence on the expansion ratio, velocity ratio and the configuration as well as the details of the flow fields are presented in this paper.

  11. Comments on the analysis interpretation by Rogers and Latendresse regarding samples coming from the Shroud of Turin

    Energy Technology Data Exchange (ETDEWEB)

    Bella, Marco [Department of Chemistry, Sapienza University of Roma, P.le Aldo Moro 5, 00185 Roma (Italy); Garlaschelli, Luigi [Department of Chemistry, University of Pavia, Via Taramelli 10, 27100 Pavia (Italy); Samperi, Roberto, E-mail: Marco.Bella@uniroma1.it [Department of Chemistry, Sapienza University of Roma, P.le Aldo Moro 5, 00185 Roma (Italy)

    2016-05-20

    Highlights: • A paper by R. Rogers supported the presence of an “invisible mending” on the Turin Shroud. • We have shown that no mass spectrometry evidence supports this pseudoscientific theory. • M. Latendresse commented on our work, but wrongly assigned a key spectrum. • The two samples underwent different treatments, making them non-comparable. • No evidence of any kind (chemical or instrumental) supports this pseudoscientific theory. - Abstract: The presence of a “invisible mending” has been proposed as an explanation for medieval radiocarbon dating measurements made on the Shroud of Turin. Here we show that the chemical analysis which was to support this theory is not consistent, and no scientific data confirm these speculations. Specifically, the samples of the Shroud image fibers underwent a different cleaning procedure with regards to those allegedly belonging to the medieval mending. There is no reliable indication of the supposedly diagnostic compounds (e.g. gum Arabic, pentoses). The only detectable difference between the samples is the presence of a compound with an aliphatic chain which cannot be identified more in detail, e.g. as sebum.

  12. Friction stir welding tool and process for welding dissimilar materials

    Science.gov (United States)

    Hovanski, Yuri; Grant, Glenn J; Jana, Saumyadeep; Mattlin, Karl F

    2013-05-07

    A friction stir welding tool and process for lap welding dissimilar materials are detailed. The invention includes a cutter scribe that penetrates and extrudes a first material of a lap weld stack to a preselected depth and further cuts a second material to provide a beneficial geometry defined by a plurality of mechanically interlocking features. The tool backfills the interlocking features generating a lap weld across the length of the interface between the dissimilar materials that enhances the shear strength of the lap weld.

  13. Computational study of the effects of shroud geometric variation on turbine performance in a 1.5-stage high-loaded turbine

    Science.gov (United States)

    Jia, Wei; Liu, Huoxing

    2013-10-01

    Generally speaking, main flow path of gas turbine is assumed to be perfect for standard 3D computation. But in real engine, the turbine annulus geometry is not completely smooth for the presence of the shroud and associated cavity near the end wall. Besides, shroud leakage flow is one of the dominant sources of secondary flow in turbomachinery, which not only causes a deterioration of useful work but also a penalty on turbine efficiency. It has been found that neglect shroud leakage flow makes the computed velocity profiles and loss distribution significantly different to those measured. Even so, the influence of shroud leakage flow is seldom taken into consideration during the routine of turbine design due to insufficient understanding of its impact on end wall flows and turbine performance. In order to evaluate the impact of tip shroud geometry on turbine performance, a 3D computational investigation for 1.5-stage turbine with shrouded blades was performed in this paper. The following geometry parameters were varied respectively: Inlet cavity length and exit cavity length

  14. Plasma Processes of Cutting and Welding

    Science.gov (United States)

    1976-02-01

    TIG process. 2.2.2 Keyhole Welding In plasma arc welding , the term...Cutting 3 3 4 4 4 2.2 Plasma Arc Welding 5 2.2.1 Needle Arc Welding 2.2.2 Keyhole Welding 5 6 3. Applications 8 93.1 Economics 4. Environmental Aspects of...Arc Lengths III. Needle Arc Welding Conditions IV. Keyhole Welding Conditions v. Chemical Analyses of Plates Used - vii - 1. 2. 3. 4. 5. 6. 7. 8.

  15. Friction Stir Welding Process: A Green Technology

    OpenAIRE

    Esther T. Akinlabi; Stephen A. Akinlabi

    2012-01-01

    Friction Stir Welding (FSW) is a solid state welding process invented and patented by The Welding Institute (TWI) in the United Kingdom in 1991 for butt and lap welding of metals and plastics. This paper highlights the benefits of friction stir welding process as an energy efficient and a green technology process in the field of welding. Compared to the other conventional welding processes, its benefits, typical applications and its use in joining similar and dissimilar materia...

  16. Weld Nugget Temperature Control in Thermal Stir Welding

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2014-01-01

    A control system for a thermal stir welding system is provided. The control system includes a sensor and a controller. The sensor is coupled to the welding system's containment plate assembly and generates signals indicative of temperature of a region adjacent and parallel to the welding system's stir rod. The controller is coupled to the sensor and generates at least one control signal using the sensor signals indicative of temperature. The controller is also coupled to the welding system such that at least one of rotational speed of the stir rod, heat supplied by the welding system's induction heater, and feed speed of the welding system's weld material feeder are controlled based on the control signal(s).

  17. Thermal Stir Welding: A New Solid State Welding Process

    Science.gov (United States)

    Ding, R. Jeffrey

    2003-01-01

    Thermal stir welding is a new welding process developed at NASA's Marshall Space Flight Center in Huntsville, AL. Thermal stir welding is similar to friction stir welding in that it joins similar or dissimilar materials without melting the parent material. However, unlike friction stir welding, the heating, stirring and forging elements of the process are all independent of each other and are separately controlled. Furthermore, the heating element of the process can be either a solid-state process (such as a thermal blanket, induction type process, etc), or, a fusion process (YG laser, plasma torch, etc.) The separation of the heating, stirring, forging elements of the process allows more degrees of freedom for greater process control. This paper introduces the mechanics of the thermal stir welding process. In addition, weld mechanical property data is presented for selected alloys as well as metallurgical analysis.

  18. Numerical simulation of welding

    DEFF Research Database (Denmark)

    Hansen, Jan Langkjær; Thorborg, Jesper

    Aim of project:To analyse and model the transient thermal field from arc welding (SMAW, V-shaped buttweld in 15mm plate) and to some extend the mechanical response due to the thermal field. - To implement this model in a general purpose finite element program such as ABAQUS.The simulation...... stress is also taken into account.Work carried out:With few means it is possible to define a thermal model which describes the thermal field from the welding process in reasonable agreement with reality. Identical results are found with ABAQUS and Rosenthal’s analytical solution of the governing heat...... transfer equation under same conditions. It is relative easy tointroduce boundary conditions such as convection and radiation where not surprisingly the radiation has the greatest influence especially from the high temperature regions in the weld pool and the heat affected zone.Due to the large temperature...

  19. Milestones in welding technology

    Science.gov (United States)

    Dolby, Richard E.

    2013-09-01

    Sir Alan's PhD thesis describes his research into cracking during arc welding of armour steels. Throughout his career, he had a strong interest in defects of all types, how they formed in metallic structures and how the larger ones could be detected and sized by non-destructive techniques. He was also vitally concerned with how defects impacted on the engineering integrity of welded structures, particularly the risk of fracture in nuclear plant. This study presents a view of some of the major milestones in global welding technology that took place over the 60 or more years of Sir Alan's career and highlights those where he had a personal and direct involvement.

  20. Welding technologies for nuclear machinery and equipment

    International Nuclear Information System (INIS)

    Kobayashi, Masahiro; Yokono, Tomomi.

    1991-01-01

    The main welding methods applied to nuclear machinery and equipment are shielded metal arc welding, submerged arc welding, MAG welding and TIG welding. But in the last 10 years, in order to improve the reliability required for the welding of nuclear machinery and equipment, the welding technologies aiming at the reduction of heat input, the decrease of the number of welding pass and the automatic control of welding factors have been applied for the main purpose of bettering the quality and excluding human errors. The merits and the technology of narrow gap, pulsed MAG welding and melt-through welding are explained. As the automation of TIG welding, image processing type narrow gap, hot wire TIG welding and remote control type automatic TIG welding are described. For the longitudinal welding of active metal sheet products, plasma key-hole welding is applied. Since the concentration of its arc is good, high speed welding with low heat input can be done. For the stainless steel cladding by welding, electroslag welding has become to be employed in place of conventional submerged arc welding. Arc is not generated in the electroslag welding, and the penetration into base metal is small. (K.I.)

  1. Mechanized hyperbaric welding by robots

    International Nuclear Information System (INIS)

    Aust, E.; Santos, J.F. dos; Bohm, K.H.; Hensel, H.D.

    1988-01-01

    At the GKSS-Forschungszentrum investigations are carried out on mechanized welded test plates produced under working pressure between 10 to 110 bar in breathable TRIMIX-5-atmosphere. The welds are performed by a modified industrial robot, which was adapted in its components to withstand these severe conditions. Variations on the welding parameters were made to maintain a stable arc as well as to provide on indication of the effect of the variables on the mechanical properties of the welded joint. During all tests the robot showed a very good function. Good reliable welds were achieved meeting the requirements according API II04 or BS 4515-1984. (orig.) [de

  2. Spot Welding of Honeycomb Structures

    Science.gov (United States)

    Cohal, V.

    2017-08-01

    Honeycomb structures are used to prepare meals water jet cutting machines for textile. These honeycomb structures are made of stainless steel sheet thickness of 0.1-0.2 mm. Corrugated sheet metal strips are between two gears with special tooth profile. Hexagonal cells for obtaining these strips are welded points between them. Spot welding device is three electrodes in the upper part, which carries three welding points across the width of the strip of corrugated sheet metal. Spot welding device filled with press and advance mechanisms. The paper presents the values of the regime for spot welding.

  3. Navier-Stokes analysis of an oxidizer turbine blade with tip clearance with and without a mini-shroud

    Science.gov (United States)

    Chan, Tony; Dejong, Frederik J.

    1993-01-01

    The Gas Generator Oxidizer Turbine (GGOT) Blade is being analyzed by various investigators under the NASA MSFC-sponsored Turbine Stage Technology Team design effort. The present work concentrates on the tip clearance region flow and associated losses; however, flow details for the passage region are also obtained in the simulations. The present calculations simulate the rotor blade row in a rotating reference frame with the appropriate coriolis and centrifugal acceleration term included in the momentum equations. The upstream computational boundary is located about one axial chord from the blade leading edge. The boundary conditions at this location have been determined by Pratt & Whitney using an Euler analysis without the vanes to obtain approximately the same flow profiles at the rotor as were obtained with the Euler stage analysis including the vanes. Inflow boundary layer profiles are then constructed assuming the skin friction coefficient at both the hub and the casing. The downstream computational boundary is located about one axial chord from the blade trailing edge, and the circumferentially averaged static pressure at this location was also obtained from the P&W Euler analysis. Results obtained for the 3-D baseline GGOT geometry at the full scale design Reynolds number show a region of high loss in the region near the casing. Particle traces in the near tip region show vortical flow behavior of the fluid which passes through the clearance region and exits at the downstream edge of the gap. In an effort to reduce clearance flow losses, the mini-shroud concept was proposed by the Pratt & Whitney design team. Calculations were performed on the GGO geometry with the mini-shroud. Results of these calculations indicate that the mini-shroud does not significantly affect the flow in the passage region, and although the tip clearance flow is different, the mini-shroud does not seem to prevent the above-mentioned vortical flow behavior. Since both flow distortion

  4. Understanding Friction Stir Welding

    Science.gov (United States)

    Nunes, A. C., Jr.

    2018-01-01

    This Technical Memorandum explains the friction stir welding process in terms of two basic concepts: the concentration of deformation in a shear surface enveloping the tool and the composition of the overall plastic flow field around the tool from simple flow field components. It is demonstrated how weld structure may be understood and torque, drag, and lateral tool forces may be estimated using these concepts. Some discrepancies between computations and accompanying empirical data are discussed in the text. This work is intended to be helpful to engineers in diagnosing problems and advancing technology.

  5. Welding method by remote handling

    International Nuclear Information System (INIS)

    Hashinokuchi, Minoru.

    1994-01-01

    Water is charged into a pit (or a water reservoir) and an article to be welded is placed on a support in the pit by remote handling. A steel plate is disposed so as to cover the article to be welded by remote handling. The welding device is positioned to the portion to be welded and fixed in a state where the article to be welded is shielded from radiation by water and the steel plate. Water in the pit is drained till the portion to be welded is exposed to the atmosphere. Then, welding is conducted. After completion of the welding, water is charged again to the pit and the welding device and fixing jigs are decomposed in a state where the article to be welded is shielded again from radiation by water and the steel plate. Subsequently, the steel plate is removed by remote handling. Then, the article to be welded is returned from the pit to a temporary placing pool by remote handling. This can reduce operator's exposure. Further, since the amount of the shielding materials can be minimized, the amount of radioactive wastes can be decreased. (I.N.)

  6. Effect of welding processes and consumables on fatigue crack growth behaviour of armour grade quenched and tempered steel joints

    Directory of Open Access Journals (Sweden)

    G. Magudeeswaran

    2014-03-01

    Full Text Available Quenched and Tempered (Q&T steels are widely used in the construction of military vehicles due to its high strength to weight ratio and high hardness. These steels are prone to hydrogen induced cracking (HIC in the heat affected zone (HAZ after welding. The use of austenitic stainless steel (ASS consumables to weld the above steel was the only available remedy because of higher solubility for hydrogen in austenitic phase. The use of stainless steel consumables for a non-stainless steel base metal is not economical. Hence, alternate consumables for welding Q&T steels and their vulnerability to HIC need to be explored. Recent studies proved that low hydrogen ferritic steel (LHF consumables can be used to weld Q&T steels, which can give very low hydrogen levels in the weld deposits. The use of ASS and LHF consumables will lead to distinct microstructures in their respective welds. This microstructural heterogeneity will have a drastic influence in the fatigue crack growth resistance of armour grade Q&T steel welds. Hence, in this investigation an attempt has been made to study the influence of welding consumables and welding processes on fatigue crack growth behaviour of armour grade Q&T Steel joints. Shielded metal arc welding (SMAW and Flux cored arc welding (FCAW were used for fabrication of joints using ASS and LHF consumables. The joints fabricated by SMAW process using LHF consumable exhibited superior fatigue crack growth resistance than all other joints.

  7. Ultrasonic inspection of austenitic welds

    Energy Technology Data Exchange (ETDEWEB)

    Tomlinson, J R; Wagg, A R; Whittle, M J [N.D.T. Applications Centre, CEGB, Manchester (United Kingdom)

    1980-11-01

    The metallurgical structure of austenitic welds is described and contrasted with that found in ferritic welds. It is shown that this structure imparts a marked elastic anisotropy in the ultrasonic propagation parameters. Measurements of variations in the apparent attenuation of sound and deviations in the beam direction are described. The measurements are interpreted in terms of the measured velocity anisotropy. Two applications of the fundamental work are described. In the first it is shown how, by using short pulse compression wave probes, and with major modification of the welding procedure, a stainless steel fillet weld in an AGR boiler can be inspected. In the second application, alternative designs of a transition butt weld have been compared for ease of ultrasonic inspection. The effects of two different welding processes on such an inspection are described. Finally, the paper examines the prospects for future development of inspection and defect-sizing techniques for austenitic welds. (author)

  8. Visualization of Spot- welding Resistance

    Directory of Open Access Journals (Sweden)

    Michal Černý

    2016-01-01

    Full Text Available This contribution devotes to monitoring of processes running during joining of steel sheets by incadescent so called point welding using non-destructive trial method – acoustic emission (AE. The joining process is detailed described within experimental measuring from the point of view of metallurgic effects runnig during weld creation (records obtained by means of AE method. It takes into consideration quality of joined steels within welding data of steel producer. Steel welding (determined by chemical composition during mechanical verification and firmness of welds consider results of measurement AE and fracture effect of point joints. The measurement also demonstrates conclusion about connection of metallurgic processes with material wave effects (AE measurement and their impact on firmness of joint at steel with guaranteed welding, difficult welding and at their potential combination.

  9. Recent Corrosion Research Trends in Weld Joints

    International Nuclear Information System (INIS)

    Kim, Hwan Tae; Kil, Sang Cheol; Hwang, Woon Suk

    2007-01-01

    The increasing interest in the corrosion properties of weld joints in the corrosive environment is placing stringent demands on the manufacturing techniques and performance requirements, and the manufacture employs the high quality and efficiency welding process to produce welds. Welding plays an important role in the fabrication of chemical plants, nuclear power plant, ship construction, and this has led to an increasing attention to the corrosion resistant weld joints. This paper covers recent technical trends of welding technologies for corrosion resistance properties including the COMPENDEX DB analysis of welding materials, welding process, and welding fabrications

  10. Welding technology transfer task/laser based weld joint tracking system for compressor girth welds

    Science.gov (United States)

    Looney, Alan

    1991-01-01

    Sensors to control and monitor welding operations are currently being developed at Marshall Space Flight Center. The laser based weld bead profiler/torch rotation sensor was modified to provide a weld joint tracking system for compressor girth welds. The tracking system features a precision laser based vision sensor, automated two-axis machine motion, and an industrial PC controller. The system benefits are elimination of weld repairs caused by joint tracking errors which reduces manufacturing costs and increases production output, simplification of tooling, and free costly manufacturing floor space.

  11. 49 CFR 192.225 - Welding procedures.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Welding procedures. 192.225 Section 192.225... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Welding of Steel in Pipelines § 192.225 Welding procedures. (a) Welding must be performed by a qualified welder in accordance with welding procedures...

  12. Integrated sensors for robotic laser welding

    NARCIS (Netherlands)

    Iakovou, D.; Aarts, Ronald G.K.M.; Meijer, J.; Beyer, E.; Dausinger, F; Ostendorf, A; Otto, A.

    2005-01-01

    A welding head is under development with integrated sensory systems for robotic laser welding applications. Robotic laser welding requires sensory systems that are capable to accurately guide the welding head over a seam in three-dimensional space and provide information about the welding process as

  13. ICT diagnostic method of beryllium welding quality

    International Nuclear Information System (INIS)

    Sun Lingxia; Wei Kentang; Ye Yunchang

    2002-01-01

    To avoid the interference of high density material for the quality assay of beryllium welding line, a slice by slice scanning method was proposed based upon the research results of the Industrial Computerized Tomography (ICT) diagnostics for weld penetration, weld width, off-centered deviation and weld defects of beryllium-ring welding seam with high density material inside

  14. Sensor integration for robotic laser welding processes

    NARCIS (Netherlands)

    Iakovou, D.; Aarts, Ronald G.K.M.; Meijer, J.; Ostendorf, A; Hoult, A.; Lu, Y.

    2005-01-01

    The use of robotic laser welding is increasing among industrial applications, because of its ability to weld objects in three dimensions. Robotic laser welding involves three sub-processes: seam detection and tracking, welding process control, and weld seam inspection. Usually, for each sub-process,

  15. Numerical analysis of weld pool oscillation in laser welding

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jung Ho [Chungbuk National University, Cheongju (Korea, Republic of); Farson, Dave F [The Ohio State University, Columbus (United States); Hollis, Kendall; Milewski, John O. [Los Alamos National Laboratory, Los Alamos (United States)

    2015-04-15

    Volume of fluid (VOF) numerical simulation was used to investigate melt flow and volumetric oscillation of conduction-mode pulsed laser weld pools. The result is compared to high speed video stream of titanium laser spot welding experiment. The total simulation time is 10ms with the first 5 ms being heating and melting under constant laser irradiation and the remaining 5 ms corresponding to resolidification of the weld pool. During the melting process, the liquid pool did not exhibit periodic oscillation but was continually depressed by the evaporation recoil pressure. After the laser pulse, the weld pool was excited into volumetric oscillation by the release of pressure on its surface and oscillation of the weld pool surface was analyzed. The simulation model suggested adjusting thermal diffusivity to match cooling rate and puddle diameter during solidification which is distinguishable from previous weld pool simulation. The frequency continuously increased from several thousand cycles per second to tens of thousands of cycles per second as the weld pool solidified and its diameter decreased. The result is the first trial of investigation of small weld pool oscillation in laser welding although there have been several reports about arc welding.

  16. Deconvoluting the Friction Stir Weld Process for Optimizing Welds

    Science.gov (United States)

    Schneider, Judy; Nunes, Arthur C.

    2008-01-01

    In the friction stir welding process, the rotating surfaces of the pin and shoulder contact the weld metal and force a rotational flow within the weld metal. Heat, generated by the metal deformation as well as frictional slippage with the contact surface, softens the metal and makes it easier to deform. As in any thermo-mechanical processing of metal, the flow conditions are critical to the quality of the weld. For example, extrusion of metal from under the shoulder of an excessively hot weld may relax local pressure and result in wormhole defects. The trace of the weld joint in the wake of the weld may vary geometrically depending upon the flow streamlines around the tool with some geometry more vulnerable to loss of strength from joint contamination than others. The material flow path around the tool cannot be seen in real time during the weld. By using analytical "tools" based upon the principles of mathematics and physics, a weld model can be created to compute features that can be observed. By comparing the computed observations with actual data, the weld model can be validated or adjusted to get better agreement. Inputs to the model to predict weld structures and properties include: hot working properties ofthe metal, pin tool geometry, travel rate, rotation and plunge force. Since metals record their prior hot working history, the hot working conditions imparted during FSW can be quantified by interpreting the final microstructure. Variations in texture and grain size result from variations in the strain accommodated at a given strain rate and temperature. Microstructural data from a variety of FSWs has been correlated with prior marker studies to contribute to our understanding of the FSW process. Once this stage is reached, the weld modeling process can save significant development costs by reducing costly trial-and-error approaches to obtaining quality welds.

  17. Residual stress investigation of copper plate and canister EB-Welds Complementary Results

    International Nuclear Information System (INIS)

    Gripenberg, H.

    2009-03-01

    The residual stresses in copper as induced by EB-welding were studied by specimens where the weld had two configurations: either a linear or a circumferential weld. This report contains the residual stress measurements of two plates, containing linear welds, and the full-scale copper lid specimen to which a hollow cylinder section had been joined by a circumferential EB-weld. The residual stress state of the EB-welded copper specimens was investigated by X-ray diffraction (XRD), hole drilling (HD) ring core (RC) and contour method (CM). Three specimens, canister XK010 and plates X251 and X252, were subjected to a thorough study aiming at quantitative determination of the residual stress state in and around the EB-welds using XRD for surface and HD and RC for spatial stress analysis. The CM maps one stress component over a whole cross section. The surface residual stresses measured by XRD represent the machined condition of the copper material. The XRD study showed that the stress changes towards compression close to the weld in the hollow cylinder, which indicates shrinkage in the hoop direction. According to the same analogy, the shrinkage in the axial direction is much smaller. The HD measurements showed that the stress state in the base material is bi-axial and, in terms of von Mises stress, 50 MPa for the plates and 20 MPa for the cylinder part of the canister. The stress state in the EB-welds of all specimens differs clearly from the stress state in the base material being more tensile, with higher magnitudes of von Mises stress in the plate than in the canister welds. The HD and RC results were obtained using linear elastic theory. The RC measurements showed that the maximum principal stress in the BM is close to zero near the surface and it becomes slightly tensile, 10 MPa, deeper under the surface. Welding pushed the general stress state towards tension with the maximum principal stress reaching 50 MPa, deeper than 5 mm below the surface in the weld. The

  18. Welding in nuclear engineering

    International Nuclear Information System (INIS)

    1982-01-01

    The 3rd international conference 'Welding in nuclear engineering', organized in 1978 by the Deutscher Verband fuer Schweisstechnik e.V., was, like the two foregoing conferences in 1970 and 1974, an absolute success. The noteworthy echo to this meeting in the international technical world - the number of 650 participants from 26 countries is self-evidence - and this fact, was for the Deutscher Verband fuer Schweisstechnik e.V. occasion and at the same time an obligation now to follow in the same way, the meeting that was started 12 years ago, by organizing the international conference 'Welding in nuclear engineering'. The conference this year offers in addition to the two plenary session lectures, 34 short reports and a further 28 single contributions in the form of two poster-sessions. Unfortunately, it was again not possible to accept all the papers submitted because the conference was limited to 2 days only. Nevertheless, the papers will offer a representative cross-section through the total range of welding engineering. In particular, the poster session, which take place for the first time within the scope of a meeting organized by the Working Group 'Welding in Nuclear Engineering', should contribute to the aim that this time again the discussions will form the main point of the conference. (orig./RW) [de

  19. Welding. Student Learning Guide.

    Science.gov (United States)

    Palm Beach County Board of Public Instruction, West Palm Beach, FL.

    This student learning guide contains 30 modules for completing a course in welding. It is designed especially for use in secondary schools in Palm Beach County, Florida. Each module covers one task, and consists of a purpose, performance objective, enabling objectives, learning activities keyed to resources, information sheets, student self-check…

  20. Thermal Stresses in Welding

    DEFF Research Database (Denmark)

    Hansen, Jan Langkjær

    1998-01-01

    Studies of the transient temperature fields and the hereby induced deformations and stressses in a butt-welded mild steel plate modelledrespectively in 2D plane stress state (as well as plane strain state) and in full 3D have been done. The model has been implemented in the generalpurpose FE...

  1. State Skill Standards: Welding

    Science.gov (United States)

    Pointer, Mike; Naylor, Randy; Warden, John; Senek, Gene; Shirley, Charles; Lefcourt, Lew; Munson, Justin; Johnson, Art

    2005-01-01

    The Department of Education has undertaken an ambitious effort to develop statewide occupational skill standards. The standards in this document are for welding programs and are designed to clearly state what the student should know and be able to do upon completion of an advanced high-school program. The writing team determined that any statewide…

  2. Elementary TIG Welding Skills.

    Science.gov (United States)

    Pierson, John E., III

    The text was prepared to help deaf students develop the skills needed by an employed welder. It uses simplified language and illustrations to present concepts which should be reinforced by practical experience with welding skills. Each of the 12 lessons contains: (1) an information section with many illustrations which presents a concept or…

  3. Welding, Bonding and Fastening, 1984

    Science.gov (United States)

    Buckley, J. D. (Editor); Stein, B. A. (Editor)

    1985-01-01

    A compilation of papers presented in a joint NASA, American Society for Metals, The George Washington University, American Welding Soceity, and Society of Manufacturing Engineers conference on Welding, Bonding, and Fastening at Langley Research Center, Hampton, VA, on October 23 to 25, 1984 is given. Papers were presented on technology developed in current research programs relevant to welding, bonding, and fastening of structural materials required in fabricating structures and mechanical systems used in the aerospace, hydrospace, and automotive industries. Topics covered in the conference included equipment, hardware and materials used when welding, brazing, and soldering, mechanical fastening, explosive welding, use of unique selected joining techniques, adhesives bonding, and nondestructive evaluation. A concept of the factory of the future was presented, followed by advanced welding techniques, automated equipment for welding, welding in a cryogenic atmosphere, blind fastening, stress corrosion resistant fasteners, fastening equipment, explosive welding of different configurations and materials, solid-state bonding, electron beam welding, new adhesives, effects of cryogenics on adhesives, and new techniques and equipment for adhesive bonding.

  4. Galvanic corrosion of beryllium welds

    International Nuclear Information System (INIS)

    Hill, M.A.; Butt, D.P.; Lillard, R.S.

    1997-01-01

    Beryllium is difficult to weld because it is highly susceptible to cracking. The most commonly used filler metal in beryllium welds is Al-12 wt.% Si. Beryllium has been successfully welded using Al-Si filler metal with more than 30 wt.% Al. This filler creates an aluminum-rich fusion zone with a low melting point that tends to backfill cracks. Drawbacks to adding a filler metal include a reduction in service temperature, a lowering of the tensile strength of the weld, and the possibility for galvanic corrosion to occur at the weld. To evaluate the degree of interaction between Be and Al-Si in an actual weld, sections from a mock beryllium weldment were exposed to 0.1 M Cl - solution. Results indicate that the galvanic couple between Be and the Al-Si weld material results in the cathodic protection of the weld and of the anodic dissolution of the bulk Be material. While the cathodic protection of Al is generally inefficient, the high anodic dissolution rate of the bulk Be during pitting corrosion combined with the insulating properties of the Be oxide afford some protection of the Al-Si weld material. Although dissolution of the Be precipitate in the weld material does occur, no corrosion of the Al-Si matrix was observed

  5. Analysis of the thermal hydraulics and core degradation behavior in the PHEBUS-FPT1 test train with impact/SAMPSON code

    International Nuclear Information System (INIS)

    Terada, Masafumi; Ikeda, Takashi; Nakahara, Katsuhiko; Shirakawa, Noriyuki; Horie, Hideki; Katsuragi, Kazuyuki; Yamagishi, Makoto; Ito, Takahiro

    2003-01-01

    As one of the verification studies of SAMPSON code, PHEBUS-FPT1, which is authorized as the International Standard Problem-46, was analyzed about the in-core phenomena with four modules, the molten core relocation analysis (MCRA) module, the fuel rod heat up analysis (FRHA) module, the fission product release analysis (FPRA) module, and the analysis control module (ACM) of SAMPSON. This paper describes the analysis of thermal hydraulics and core degradation behavior in the test train. Two-dimensional version of MCRA models the whole structure of the test train in the cylindrical system, including the fuel bundle and the shroud. FRHA models eighteen irradiated fuel rods, two fresh fuel rods, and one control rod in the center of the bundle. FRHA evaluates the transient behavior of fuel rods and releases failed fuel components to MCRA. MCRA evaluates the fluid dynamics of steam and debris considering the thermal and fluid mechanical interaction between them, and at the same time the thermal interaction between gas/debris and shroud material. By the phase change model of MCRA, molten debris forms debris pool and a part of them possibly freezes on fuel rods or shroud surface, then forms crust. This combination of modules of SAMPSON was proved to be capable for modeling the PHEBUS-FPT1 in-core phenomena sufficiently. The analysis has shown sufficient agreement with test results regarding to steam flow rates at the outlet, reproducing its reduction due to hydrogen generation, steam and shroud temperature, and debris relocation behavior. (author)

  6. In-field Welding and Coating Protocols

    Science.gov (United States)

    2009-05-12

    Gas Technology Institute (GTI) and Edison Welding Institute (EWI) created both laboratory and infield girth weld samples to evaluate the effects of weld geometry and hydrogen off-gassing on the performance of protective coatings. Laboratory made plat...

  7. Perspectives of special welding methods. 1

    International Nuclear Information System (INIS)

    Herden, G.; Buness, G.; Wiesner, P.

    1976-01-01

    Laser, electron, ion, and light beam welding as well as plasma arc welding are considered to be special fusion welding methods. The stage of development and possible future applications of these methods are described. (author)

  8. Improvements in and relating to welding

    International Nuclear Information System (INIS)

    Taylor, B.D.

    1979-01-01

    This invention concerns apparatus for use in welding, particularly welding which must be effected in a predetermined, for example, inert atmosphere, e.g. the welding of reactive materials such as zircaloy, titanium, magnesium, aluminium, etc. (U.K.)

  9. Welding for the CRBRP steam generators

    International Nuclear Information System (INIS)

    Spalaris, C.N.; Ring, P.J.; Durand, R.E.; Wright, E.A.

    1979-01-01

    The rationale for selecting weld design, welding procedures and inspection methods was based upon the desire to obtain the highest reliability welds for the CRBRP steam generators. To assure the highest weld reliability, heavy emphasis was placed on the control of material cleanliness and composition substantially exceeding the requirements of the ASME Code for 2-1/4Cr--1Mo. The high tube/tubesheet weld quality was achieved through close material control, an extensive weld development program and the selection of high reliability welding equipment. Shell and nozzle weld fabrication using TIG, MIG, and submerged arc procedures are also being controlled through precise specifications, including preheat and postheat programs, together with radiography and ultrasonic inspection to ascertain the weld quality desired. Details of the tube/tubesheet welding and shell welding are described and results from the weld testing program are discussed

  10. Influence of the Operational Wear of the Stator Parts of Shroud Seals on the Economic Efficiency of the Steam Turbines

    Science.gov (United States)

    Kostyuk, A. G.; Dmitriev, S. S.; Petrunin, B. N.; Gusev, A. A.

    2018-01-01

    During the operation of steam turbines under transient conditions, due to different thermal expansion of the stator and rotor parts in the radial and axial directions, the clearances fixed in the course of assembling the seals of the flow path change, which causes rubbing in the seals and the wear of the latter. This inevitably increases the leakages through the seals. A particularly large difference in the relative axial and radial displacements of the rotor and stator parts is observed during the turbine start-ups when the difference in their temperature expansion is maximal. Upon the turbine stops, the turbine shafting runs down freely, as a rule, passing through all critical speeds at which the amplitude of the shafting oscillations reach their peak values, which also leads to seizures in the seals and their wear and tear. The seizures in the seals may also be a consequence of the eccentricity between the rotor and stator caused by the thermal strain of the stator, incorrect choice of the clearances, floating-up of the rotor in the bearing, and many other factors. Recently, standard shroud labyrinth seals are being replaced in the steam turbines by seals with honeycomb stator inserts, the design of which allows the ridges to cut into the honeycomb surface without damaging the former, which allows fixing a radial clearance in the seals of 0.5 mm. On the honeycomb surface where the ridges touch it, grooves are cut through. The wear of the shroud seals reduces the efficiency of the steam turbines during the operation to the greatest degree. However, by the present there have been no exact quantitative data available on the change in the leakage through the worn-out honeycomb seals. The paper presents the results of comparative experimental studies on the flow and power characteristics of seal models with smooth and honeycomb stator parts for various degrees of their wear. The studies showed that the leakages through the worn-out stator parts of the honeycomb seals

  11. Developments in welding and joining methods of metallic materials

    International Nuclear Information System (INIS)

    Pilarczyk, J.

    2007-01-01

    The impact of the welding technology on the economy development. The welding and joining methods review. The particular role of the laser welding and its interesting applications: with filler metal, twin spot laser welding, hybrid welding process, remote welding. The fiber lasers. The high intensity electron beams applications for surface modification. The TIG welding with the use of the active flux. Friction welding, friction stir welding and friction linear welding. (author)

  12. Welding wire pressure sensor assembly

    Science.gov (United States)

    Morris, Timothy B. (Inventor); Milly, Peter F., Sr. (Inventor); White, J. Kevin (Inventor)

    1994-01-01

    The present invention relates to a device which is used to monitor the position of a filler wire relative to a base material being welded as the filler wire is added to a welding pool. The device is applicable to automated welding systems wherein nonconsumable electrode arc welding processes are utilized in conjunction with a filler wire which is added to a weld pool created by the electrode arc. The invention senses pressure deviations from a predetermined pressure between the filler wire and the base material, and provides electrical signals responsive to the deviations for actuating control mechanisms in an automatic welding apparatus so as to minimize the pressure deviation and to prevent disengagement of the contact between the filler wire and the base material.

  13. Fundamental Laser Welding Process Investigations

    DEFF Research Database (Denmark)

    Bagger, Claus; Olsen, Flemming Ove

    1998-01-01

    In a number of systematic laboratory investigations the fundamental behavior of the laser welding process was analyzed by the use of normal video (30 Hz), high speed video (100 and 400 Hz) and photo diodes. Sensors were positioned to monitor the welding process from both the top side and the rear...... side of the specimen.Special attention has been given to the dynamic nature of the laser welding process, especially during unstable welding conditions. In one series of experiments, the stability of the process has been varied by changing the gap distance in lap welding. In another series...... video pictures (400 Hz), a clear impact on the seam characteristics has been identified when a hump occurs.Finally, a clear correlation between the position of the focus point, the resultant process type and the corresponding signal intensity and signal variation has been found for sheets welded...

  14. INERT GAS SHIELD FOR WELDING

    Science.gov (United States)

    Jones, S.O.; Daly, F.V.

    1958-10-14

    S>An inert gas shield is presented for arc-welding materials such as zirconium that tend to oxidize rapidly in air. The device comprises a rectangular metal box into which the welding electrode is introduced through a rubber diaphragm to provide flexibility. The front of the box is provided with a wlndow having a small hole through which flller metal is introduced. The box is supplied with an inert gas to exclude the atmosphere, and with cooling water to promote the solidification of the weld while in tbe inert atmosphere. A separate water-cooled copper backing bar is provided underneath the joint to be welded to contain the melt-through at the root of the joint, shielding the root of the joint with its own supply of inert gas and cooling the deposited weld metal. This device facilitates the welding of large workpieces of zirconium frequently encountered in reactor construction.

  15. Metals welding by using laser

    International Nuclear Information System (INIS)

    Al-Qaisy, R.A.W.

    1991-01-01

    In the present work, same welding ''conduction limited type'' under atmospheric conditions was performed using pulsed Ng:YAG laser to weld; low carbon steel (LCS), stainless steel (304) (SUS304), stainless steel (303) (SUS303), and brass. Microstructure of welded zone, heat affected zone (HAZ), and the laser energy on penetration depth and effective diameter were studied. Tensile test, micro-hardness, and surface roughness of welded and parent metals were also dealt with. Melting efficiency was worked out and an under vacuum seam welding of low carbon steel has been accomplished. Finally spot welding of aluminium tungsten, and platinium wires were employed using different layer energies. 34 tabs.; 82 figs.; 51 refs.; 1 app

  16. Corrosion of carbon steel welds

    International Nuclear Information System (INIS)

    Daniel, B.

    1988-09-01

    This report assesses the factors which cause preferential attack to occur in carbon steel fusion welds. It was concluded that the main factors were: the inclusion content of the weld metal, the potential of the weld metal being less noble than that of the parent, and the presence of low-temperature transformation products in the heat-affected zone of the weld. These factors should be minimized or eliminated as appropriate so that the corrosion allowances determined for carbon steel waste drums is also adequate for the welds. An experimental/theoretical approach is recommended to evaluate the relative corrosion resistance of welds prepared from BS 4360 grade 43A steel to that of the parent material. (author)

  17. Investigation on mechanical properties of welded material under different types of welding filler (shielded metal arc welding)

    Science.gov (United States)

    Tahir, Abdullah Mohd; Lair, Noor Ajian Mohd; Wei, Foo Jun

    2018-05-01

    The Shielded Metal Arc Welding (SMAW) is (or the Stick welding) defined as a welding process, which melts and joins metals with an arc between a welding filler (electrode rod) and the workpieces. The main objective was to study the mechanical properties of welded metal under different types of welding fillers and current for SMAW. This project utilized the Design of Experiment (DOE) by adopting the Full Factorial Design. The independent variables were the types of welding filler and welding current, whereas the other welding parameters were fixed at the optimum value. The levels for types of welding filler were by the models of welding filler (E6013, E7016 and E7018) used and the levels for welding current were 80A and 90A. The responses were the mechanical properties of welded material, which include tensile strength and hardness. The experiment was analyzed using the two way ANOVA. The results prove that there are significant effects of welding filler types and current levels on the tensile strength and hardness of the welded metal. At the same time, the ANOVA results and interaction plot indicate that there are significant interactions between the welding filler types and the welding current on both the hardness and tensile strength of the welded metals, which has never been reported before. This project found that when the amount of heat input with increase, the mechanical properties such as tensile strength and hardness decrease. The optimum tensile strength for welded metal is produced by the welding filler E7016 and the optimum of hardness of welded metal is produced by the welding filler E7018 at welding current of 80A.

  18. Spraying of metallic powders by hybrid gas/water torch and the effects of inert gas shrouding

    Czech Academy of Sciences Publication Activity Database

    Kavka, Tetyana; Matějíček, Jiří; Ctibor, Pavel; Hrabovský, Milan

    2012-01-01

    Roč. 21, 3-4 (2012), s. 695-705 ISSN 1059-9630 R&D Projects: GA MPO FR-TI2/702; GA MPO FR-TI2/561 Institutional research plan: CEZ:AV0Z20430508 Keywords : copper * tungsten * hybrid water-gas torch * plasma facing materials * plasma spraying * gas shroud Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.481, year: 2012 http://www.springerlink.com/content/j07t3222hnv87882/fulltext.pdf

  19. Pulsed ultrasonic stir welding system

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2013-01-01

    An ultrasonic stir welding system includes a welding head assembly having a plate and a rod passing through the plate. The rod is rotatable about a longitudinal axis thereof. During a welding operation, ultrasonic pulses are applied to the rod as it rotates about its longitudinal axis. The ultrasonic pulses are applied in such a way that they propagate parallel to the longitudinal axis of the rod.

  20. Viewing Welds By Computer Tomography

    Science.gov (United States)

    Pascua, Antonio G.; Roy, Jagatjit

    1990-01-01

    Computer tomography system used to inspect welds for root penetration. Source illuminates rotating welded part with fan-shaped beam of x rays or gamma rays. Detectors in circular array on opposite side of part intercept beam and convert it into electrical signals. Computer processes signals into image of cross section of weld. Image displayed on video monitor. System offers only nondestructive way to check penetration from outside when inner surfaces inaccessible.

  1. Welding facilities for NPP assembling

    International Nuclear Information System (INIS)

    Rojtenberg, S.S.

    1987-01-01

    Recommendations concerning the choice of equipment for welding in pre-assembling work shops, in the enlarging assembling shops and at the assembling site, are given. Advanced production automatic welders and semiautomatic machines, applied during the NPP equipment assembling as well as automatic machines specially produced for welding the main reactor components and pipelines are described. Automatic and semiautomatic machine and manual welding post supply sources are considered

  2. Generation rate of carbon monoxide from CO2 arc welding.

    Science.gov (United States)

    Ojima, Jun

    2013-01-01

    CO poisoning has been a serious industrial hazard in Japanese workplaces. Although incomplete combustion is the major cause of CO generation, there is a risk of CO poisoning during some welding operations. The aim of the present study was to evaluate the generation rate of CO from CO2 arc welding under controlled laboratory conditions and estimate the ventilation requirements for the prevention of CO poisoning. Bead on plate welding was carried out with an automatic welding robot on a rolled steel base metal under several conditions. The concentration of emitted CO from the welding was measured by a real-time CO monitor in a well-ventilated laboratory that was free from ambient CO contamination. The generation rate of CO was obtained from the three measurements-the flow rate of the welding exhaust gas, CO concentration in the exhaust gas and the arcing time. Then the ventilation requirement to prevent CO poisoning was calculated. The generation rate of CO was found to be 386-883 ml/min with a solid wire and 331-1,293 ml/min with a flux cored wire respectively. It was found that the CO concentration in a room would be maintained theoretically below the OSHA PEL (50 ppm) providing the ventilation rate in the room was 6.6-25.9 m3/min. The actual ventilation requirement was then estimated to be 6.6-259 m3/min considering incomplete mixing. In order to prevent CO poisoning, some countermeasures against gaseous emission as well as welding fumes should be taken eagerly.

  3. Pulsed ultrasonic stir welding method

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2013-01-01

    A method of performing ultrasonic stir welding uses a welding head assembly to include a plate and a rod passing through the plate. The rod is rotatable about a longitudinal axis thereof. In the method, the rod is rotated about its longitudinal axis during a welding operation. During the welding operation, a series of on-off ultrasonic pulses are applied to the rod such that they propagate parallel to the rod's longitudinal axis. At least a pulse rate associated with the on-off ultrasonic pulses is controlled.

  4. Socket welds in nuclear facilities

    International Nuclear Information System (INIS)

    Anderson, P.A.; Torres, L.L.

    1995-01-01

    Socket welds are easier and faster to make than are butt welds. However, they are often not used in nuclear facilities because the crevices between the pipes and the socket sleeves may be subject to crevice corrosion. If socket welds can be qualified for wider use in facilities that process nuclear materials, the radiation exposures to welders can be significantly reduced. The current tests at the Idaho Chemical Processing Plant (ICPP) are designed to determine if socket welds can be qualified for use in the waste processing system at a nuclear fuel processing plant

  5. Programmable Automated Welding System (PAWS)

    Science.gov (United States)

    Kline, Martin D.

    1994-01-01

    An ambitious project to develop an advanced, automated welding system is being funded as part of the Navy Joining Center with Babcock & Wilcox as the prime integrator. This program, the Programmable Automated Welding System (PAWS), involves the integration of both planning and real-time control activities. Planning functions include the development of a graphical decision support system within a standard, portable environment. Real-time control functions include the development of a modular, intelligent, real-time control system and the integration of a number of welding process sensors. This paper presents each of these components of the PAWS and discusses how they can be utilized to automate the welding operation.

  6. Comparison of Welding Residual Stresses of Hybrid Laser-Arc Welding and Submerged Arc Welding in Offshore Steel Structures

    DEFF Research Database (Denmark)

    Andreassen, Michael Joachim; Yu, Zhenzhen; Liu, Stephen

    2016-01-01

    In the offshore industry, welding-induced distortion and tensile residual stresses have become a major concern in relation to the structural integrity of a welded structure. Particularly, the continuous increase in size of welded plates and joints needs special attention concerning welding induced...... residual stresses. These stresses have a negative impact on the integrity of the welded joint as they promote distortion, reduce fatigue life, and contribute to corrosion cracking and premature failure in the weld components. This paper deals with the influence and impact of welding method on the welding...... induced residual stresses. It is also investigated whether the assumption of residual stresses up to yield strength magnitude are present in welded structures as stated in the design guidelines. The fatigue strength for welded joints is based on this assumption. The two welding methods investigated...

  7. Optimisation of welding procedures for duplex and superduplex stainless steels

    International Nuclear Information System (INIS)

    Westin, Elin M.

    2014-01-01

    Austenitic stainless steels are increasingly being replaced by duplex grades that can offer similar corrosion resistance with far higher strength. This increased strength makes it possible to reduce material consumption whilst also decreasing transport and construction costs. Although established welding methods used for austenitic steels can be used for duplex steels, modification of the procedures can lead to improved results. This paper reviews the welding of duplex stainless steel and examines precautions that may be required. The advantages and disadvantages of different welding methods are highlighted and some high productivity solutions are presented. The application of a more efficient process with a high deposition rate (e.g. flux- cored arc welding) can decrease labour costs. Further close control of heat input and interpass temperature can result in more favourable microstructures and final properties. Although welding adversely affects the corrosion resistance of austenitic and duplex stainless steels, particularly the pitting resistance, relative to the parent material, this problem can be minimised by proper backing gas protection and subsequent pickling.

  8. Characterization of Gas Metal Arc Welding welds obtained with new high Cr–Mo ferritic stainless steel filler wires

    International Nuclear Information System (INIS)

    Villaret, V.; Deschaux-Beaume, F.; Bordreuil, C.; Fras, G.; Chovet, C.; Petit, B.; Faivre, L.

    2013-01-01

    Highlights: • New metal cored filler wires for welding 444 grade stainless steel are manufactured. • The effect of Nb and Ti minor elements on the fusion zone properties is investigated. • The relation between composition of fusion zone and grain structure is investigated. • Oxidation rates of fusion zones and base metal are compared. • High temperature behavior of the welded samples are studied. - Abstract: Several compositions of metal cored filler wire were manufactured to define the best welding conditions for homogeneous welding, by Gas Metal Arc Welding (GMAW) process, of a modified AISI 444 ferritic stainless steel dedicated to automotive exhaust manifold applications. The patented grade is know under APERAM trade name K44X and has been developed to present improved high temperature fatigue properties. All filler wires investigated contained 19% Cr and 1.8% Mo, equivalent to the base metal K44X chemistry, but various titanium and niobium contents. Chemical analyses and microstructural observations of fusion zones revealed the need of a minimum Ti content of 0.15% to obtain a completely equiaxed grain structure. This structure conferred on the fusion zone a good ductility even in the as-welded state at room temperature. Unfortunately, titanium additions decreased the oxidation resistance at 950 °C if no significant Nb complementary alloying was made. The combined high Ti and Nb additions made it possible to obtain for the welded structure, after optimized heat treatment, high temperature tensile strengths and ductility for the fusion zones and assemblies, rather close to those of the base metal. 950 °C aging heat treatment was necessary to restore significantly the ductility of the as welded structure. Both fusion zone and base metal presented rather homogenized properties. Finally, with the optimized composition of the cored filler wire – 0.3 Ti minimum (i.e. 0.15% in the fusion zone) and high Nb complementary additions, the properties

  9. Hot Corrosion of Inconel 625 Overlay Weld Cladding in Smelting Off-Gas Environment

    Science.gov (United States)

    Mohammadi Zahrani, E.; Alfantazi, A. M.

    2013-10-01

    Degradation mechanisms and hot corrosion behavior of weld overlay alloy 625 were studied. Phase structure, morphology, thermal behavior, and chemical composition of deposited salt mixture on the weld overlay were characterized utilizing XRD, SEM/EDX, DTA, and ICP/OES, respectively. Dilution level of Fe in the weldment, dendritic structure, and degradation mechanisms of the weld were investigated. A molten phase formed on the weld layer at the operating temperature range of the boiler, which led to the hot corrosion attack in the water wall and the ultimate failure. Open circuit potential and weight-loss measurements and potentiodynamic polarization were carried out to study the hot corrosion behavior of the weld in the simulated molten salt medium at 873 K, 973 K, and 1073 K (600 °C, 700 °C, and 800 °C). Internal oxidation and sulfidation plus pitting corrosion were identified as the main hot corrosion mechanisms in the weld and boiler tubes. The presence of a significant amount of Fe made the dendritic structure of the weld susceptible to preferential corrosion. Preferentially corroded (Mo, Nb)-depleted dendrite cores acted as potential sites for crack initiation from the surface layer. The penetration of the molten phase into the cracks accelerated the cracks' propagation mainly through the dendrite cores and further crack branching/widening.

  10. Analytical real-time measurement of a three-dimensional weld pool surface

    International Nuclear Information System (INIS)

    Zhang, WeiJie; Zhang, YuMing; Wang, XueWu

    2013-01-01

    The ability to observe and measure weld pool surfaces in real-time is the core of the foundation for next generation intelligent welding that can partially imitate skilled welders who observe the weld pool to acquire information on the welding process. This study aims at the real-time measurement of the specular three-dimensional (3D) weld pool surface under a strong arc in gas tungsten arc welding (GTAW). An innovative vision system is utilized in this study to project a dot-matrix laser pattern on the specular weld pool surface. Its reflection from the surface is intercepted at a distance from the arc by a diffuse plane. The intercepted laser dots illuminate this plane producing an image showing the reflection pattern. The deformation of this reflection pattern from the projected pattern (e.g. the dot matrix) is used to derive the 3D shape of the reflection surface, i.e., the weld pool surface. Based on careful analysis, the underlying reconstruction problem is formulated mathematically. An analytic solution is proposed to solve this formulated problem resulting in the weld pool surface being reconstructed on average in 3.04 ms during welding experiments. A vision-based monitoring system is thus established to measure the weld pool surface in GTAW in real-time. In order to verify the effectiveness of the proposed reconstruction algorithm, first numerical simulation is conducted. The proposed algorithm is then tested on a spherical convex mirror with a priori knowledge of its geometry. The detailed analysis of the measurement error validates the accuracy of the proposed algorithm. Results from the real-time experiments verify the robustness of the proposed reconstruction algorithm. (paper)

  11. Steels and welding nuclear

    International Nuclear Information System (INIS)

    Sessa, M.; Milella, P.P.

    1987-01-01

    This ENEA Data-Base regards mechanical properties, chemical composition and heat treatments of nuclear pressure vessel materials: type A533-B, A302-B, A508 steel plates and forgings, submerged arc welds and HAZ before and after nuclear irradiation. Irradiation experiments were generally performed in high flux material test reactors. Data were collected from international available literature about water nuclear reactors pressure vessel materials embrittlement

  12. A reliability analysis framework with Monte Carlo simulation for weld structure of crane's beam

    Science.gov (United States)

    Wang, Kefei; Xu, Hongwei; Qu, Fuzheng; Wang, Xin; Shi, Yanjun

    2018-04-01

    The reliability of the crane product in engineering is the core competitiveness of the product. This paper used Monte Carlo method analyzed the reliability of the weld metal structure of the bridge crane whose limit state function is mathematical expression. Then we obtained the minimum reliable welding feet height value for the welds between cover plate and web plate on main beam in different coefficients of variation. This paper provides a new idea and reference for the growth of the inherent reliability of crane.

  13. Method Of Bonding A Metal Connection To An Electrode Including A Core Having A Fiber Or Foam Type Structure For An Electrochemical Cell, An

    Science.gov (United States)

    Loustau, Marie-Therese; Verhoog, Roelof; Precigout, Claude

    1996-09-24

    A method of bonding a metal connection to an electrode including a core having a fiber or foam-type structure for an electrochemical cell, in which method at least one metal strip is pressed against one edge of the core and is welded thereto under compression, wherein, at least in line with the region in which said strip is welded to the core, which is referred to as the "main core", a retaining core of a type analogous to that of the main core is disposed prior to the welding.

  14. Gas Metal Arc Welding. Welding Module 5. Instructor's Guide.

    Science.gov (United States)

    Missouri Univ., Columbia. Instructional Materials Lab.

    This guide is intended to assist vocational educators in teaching an eight-unit module in gas metal arc welding. The module is part of a welding curriculum that has been designed to be totally integrated with Missouri's Vocational Instruction Management System. The following topics are covered in the module: safety and testing, gas metal arc…

  15. Laser Welding Test Results with Gas Atmospheres in Welding Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Joung, Chang-Young; Hong, Jin-Tae; Ahn, Sung-Ho; Heo, Sung-Ho; Jang, Seo-Yun; Yang, Tae-Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The weld beads of specimens welded under identical conditions in the helium and argon gas were cleaner, more regular, and steadier than those in a vacuum. The penetration depth of the FZ in the vacuum was much deeper than those in the helium and argon gas. To measure the irradiation properties of nuclear fuel in a test reactor, a nuclear fuel test rod instrumented with various sensors must be fabricated with assembly processes. A laser welding system to assemble the nuclear fuel test rod was designed and fabricated to develop various welding technologies of the fuel test rods to joint between a cladding tube and end-caps. It is an air-cooling optical fiber type and its emission modes are a continuous (CW) mode of which the laser generates continuous emission, and pulse (QCW) mode in which the laser internally generates sequences of pulses. We considered the system welding a sample in a chamber that can weld a specimen in a vacuum and inert gas atmosphere, and the chamber was installed on the working plate of the laser welding system. In the chamber, the laser welding process should be conducted to have no defects on the sealing area between a cladding tube and an end-cap.

  16. Sustainability of Welding Process through Bobbin Friction Stir Welding

    Science.gov (United States)

    Sued, M. K.; Samsuri, S. S. M.; Kassim, M. K. A. M.; Nasir, S. N. N. M.

    2018-03-01

    Welding process is in high demand, which required a competitive technology to be adopted. This is important for sustaining the needs of the joining industries without ignoring the impact of the process to the environment. Friction stir welding (FSW) is stated to be benefitting the environment through low energy consumption, which cannot be achieved through traditional arc welding. However, this is not well documented, especially for bobbin friction stir welding (BFSW). Therefore, an investigation is conducted by measuring current consumption of the machine during the BFSW process. From the measurement, different phases of BFSW welding process and its electrical demand are presented. It is found that in general total energy in BFSW is about 130kW inclusive of all identified process phases. The phase that utilise for joint formation is in weld phase that used the highest total energy of 120kWs. The recorded total energy is still far below the traditional welding technology and the conventional friction stir welding (CFSW) energy demand. This indicates that BFSW technology with its vast benefit able to sustain the joining technology in near future.

  17. Reduction in degree of absorber-cladding mechanical interaction by shroud tube in control rods for the fast reactor

    International Nuclear Information System (INIS)

    Donomae, Takako; Katsuyama, Kozo; Tachi, Yoshiaki; Maeda, Koji; Yamamoto, Masaya; Soga, Tomonori

    2011-01-01

    Research and development of a long-life control rod for fast reactors is being conducted at Joyo. One of the challenges in developing a long-life control rod is the restraint of absorber-cladding mechanical interaction (ACMI). First, a helium-bonding rod was selected as a control rod for the experimental fast reactor Joyo, which is the first liquid metal fast reactor in Japan. Its lifetime was limited by ACMI, which is induced by the swelling and relocation of B 4 C pellets. To restrain ACMI, a shroud tube was inserted into the gap between the B 4 C pellets and the cladding tube. However, once B 4 C pellets cracked and broke into small fragments, relocation occurred. After this, the narrow gap closed immediately as the degree of B 4 C pellet swelling increased. To solve this problem, the gap was widened during design, and sodium was selected as the bonding material instead of helium to restrain the increase in pellet temperature. Irradiation testing of the modified sodium-bonding control rod confirmed that ACMI would be restrained by the shroud tube regardless of the occurrence of B 4 C pellet relocation. As a result of these improvements, the estimated lifetime of the control rod at Joyo was doubled. In this paper, the results of postirradiation examination are reported. (author)

  18. Lifetime embrittlement of reactor core materials

    International Nuclear Information System (INIS)

    Kreyns, P.H..; Bourgeois, W.F.; Charpentier, P.L.; Kammenzind, B.F.; Franklin, D.G.; White, C.J.

    1994-08-01

    Over a core lifetime, the reactor materials Zircaloy-2, Zircaloy-4, and hafnium may become embrittled due to the absorption of corrosion- generated hydrogen and to neutron irradiation damage. Results are presented on the effects of fast fluence on the fracture toughness of wrought Zircaloy-2, Zircaloy-4, and hafnium; Zircaloy-4 to hafnium butt welds; and hydrogen precharged beta treated and weld metal Zircaloy-4 for fluences up to a maximum of approximately 150 x 10 24 n/M 2 (> 1 Mev). While Zircaloy-4 did not exhibit a decrement in K IC due to irradiation, hafnium and butt welds between hafnium and Zircaloy-4 are susceptible to embrittlement with irradiation. The embrittlement can be attributed to irradiation strengthening, which promotes cleavage fracture in hafnium and hafnium-Zircaloy welds, and, in part, to the lower chemical potential of hydrogen in Zircaloy-4 compared to hafnium, which causes hydrogen, over time, to drift from the hafnium end toward the Zircaloy-4 end and to precipitate at the interface between the weld and base-metal interface. Neutron radiation apparently affects the fracture toughness of Zircaloy-2, Zircaloy-4, and hafnium in different ways. Possible explanations for these differences are suggested. It was found that Zircaloy-4 is preferred over Zircaloy-2 in hafnium-to- Zircaloy butt-weld applications due to its absence of a radiation- induced reduction in K IC plus its lower hydrogen absorption characteristics compared with Zircaloy-2

  19. [New welding processes and health effects of welding].

    Science.gov (United States)

    La Vecchia, G Marina; Maestrelli, Piero

    2011-01-01

    This paper describes some of the recent developments in the control technology to enhance capability of Pulse Gas Metal Arc Welding. Friction Stir Welding (FSW) processing has been also considered. FSW is a new solid-state joining technique. Heat generated by friction at the rotating tool softens the material being welded. FSW can be considered a green and energy-efficient technique without deleterious fumes, gas, radiation, and noise. Application of new welding processes is limited and studies on health effects in exposed workers are lacking. Acute and chronic health effects of conventional welding have been described. Metal fume fever and cross-shift decline of lung function are the main acute respiratory effects. Skin and eyes may be affected by heat, electricity and UV radiations. Chronic effects on respiratory system include chronic bronchitis, a benign pneumoconiosis (siderosis), asthma, and a possible increase in the incidence of lung cancer. Pulmonary infections are increased in terms of severity, duration, and frequency among welders.

  20. A control system for uniform bead in fillet arc welding on tack welds

    International Nuclear Information System (INIS)

    Kim, Jae Woong; Lee, Jun Young

    2008-01-01

    Positioning a workpiece accurately and preventing weld distortion, tack welding is often adopted before main welding in the construction of welded structures. However, this tack weld deteriorates the final weld bead profile, so that the grinding process is usually performed for a uniform weld bead profile. In this study, a control system for uniform weld bead is proposed for the fillet arc welding on tack welds. The system consists of GMA welding machine, torch manipulator, laser vision sensor for measuring the tack weld size and the database for optimal welding conditions. Experiments have been performed for constructing the database and for evaluating the control capability of the system. It has been shown that the system has the capability to smooth the bead at the high level of quality

  1. Prediction of microsegregation and pitting corrosion resistance of austenitic stainless steel welds by modelling

    Energy Technology Data Exchange (ETDEWEB)

    Vilpas, M. [VTT Manufacturing Technology, Espoo (Finland). Materials and Structural Integrity

    1999-07-01

    solidification, the dendrite cores were predicted to be the weakest link with respect to weld pitting corrosion resistance. In primary ferritic solidification, the second phase austenite in the vicinity of d/g interfaces was predicted to show lowest pitting corrosion resistance. Solidification parameters used in the modelling were verified by cooling rate and dendrite arm spacing measurements as well as by analytical calculations. Experimental investigations using electron probe microanalyses (EPMA, CMA), electron microscopy (SEM, FEG-STEM), microstructural investigations and pitting corrosion tests were used in assessing the calculated microsegregation and CPT-temperatures and showed a reasonably good compatibility with the results of modelling. (orig.)

  2. Effects of Fusion Tack Welds on Self-Reacting Friction Stir Welds

    Science.gov (United States)

    Nunes, A. C., Jr.; Pendleton, M. L.; Brooke, S. A.; Russell, C. K.

    2012-01-01

    In order to know whether fusion tack welds would affect the strength of self-reacting friction stir seam welds in 2195-T87 aluminum alloy, the fracture stresses of 144 tensile test coupons cut from 24 welded panels containing segments of friction stir welds were measured. Each of the panels was welded under unique processing conditions. A measure of the effect of the tack welds for each panel was devised. An analysis of the measures of the tack weld effect supported the hypothesis that fusion tack welds do not affect the strength of self-reacting friction stir welds to a 5% level of confidence.

  3. The Role of Spraying Parameters and Inert Gas Shrouding in Hybrid Water-Argon Plasma Spraying of Tungsten and Copper for Nuclear Fusion Applications

    Czech Academy of Sciences Publication Activity Database

    Matějíček, Jiří; Kavka, Tetyana; Bertolissi, Gabriele; Ctibor, Pavel; Vilémová, Monika; Mušálek, Radek; Nevrlá, Barbara

    2013-01-01

    Roč. 22, č. 5 (2013), s. 744-755 ISSN 1059-9630 R&D Projects: GA MPO FR-TI2/702; GA TA ČR TA01010300 Institutional support: RVO:61389021 Keywords : plasma spraying * tungsten * copper * inert gas shrouding * water-argon plasma torch * gas shroud * hybrid plasma torch * influence of spray parameters * nuclear fusion * oxidation Subject RIV: JG - Metallurgy Impact factor: 1.491, year: 2013 http://link.springer.com/content/pdf/10.1007%2Fs11666-013-9895-x.pdf

  4. Residual stress reduction in the penetration nozzle weld joint by overlay welding

    International Nuclear Information System (INIS)

    Jiang, Wenchun; Luo, Yun; Wang, B.Y.; Tu, S.T.; Gong, J.M.

    2014-01-01

    Highlights: • Residual stress reduction in penetration weld nozzle by overlay welding was studied. • The overlay weld can decrease the residual stress in the weld root. • Long overlay welding is proposed in the actual welding. • Overlay weld to decrease residual stress is more suitable for thin nozzle. - Abstract: Stress corrosion cracking (SCC) in the penetration nozzle weld joint endangers the structural reliability of pressure vessels in nuclear and chemical industries. How to decrease the residual stress is very critical to ensure the structure integrity. In this paper, a new method, which uses overlay welding on the inner surface of nozzle, is proposed to decrease the residual stresses in the penetration joint. Finite element simulation is used to study the change of weld residual stresses before and after overlay welding. It reveals that this method can mainly decrease the residual stress in the weld root. Before overlay welding, large tensile residual stresses are generated in the weld root. After overlay weld, the tensile hoop stress in weld root has been decreased about 45%, and the radial stress has been decreased to compressive stress, which is helpful to decrease the susceptibility to SCC. With the increase of overlay welding length, the residual stress in weld root has been greatly decreased, and thus the long overlay welding is proposed in the actual welding. It also finds that this method is more suitable for thin nozzle rather than thick nozzle

  5. Ultrasonic inspection of austenitic welds

    International Nuclear Information System (INIS)

    Baikie, B.L.; Wagg, A.R.; Whittle, M.J.; Yapp, D.

    1976-01-01

    Optical and X-ray metallography combined with ultrasonic testing by compression waves was used for inspection of stainless steel weld metal produced by three different welding techniques. X-ray diffraction showed that each weld possessed a characteristic fibre textured structure which was shown by optical microscopy to be parallel to columnar grain boundaries. Metallographic evidence suggested that the development of fibre texture is due to the mechanism of competitive growth. From observations made as a result of optical metallographic examination the orientation of the fibre axis could be predicted if the weld geometry and welding procedure were known. Ultrasonic velocity and attenuation measurements as a continuous function of grain orientation, made on cylinders machined from weld samples, showed that attenuation was strongly orientation dependent. It was concluded that the sensitivity of ultrasonic inspection to small defects is unlikely to be as high for austenitic welds as for ferritic even when transmission is improved by modifying the welding procedure to improve the ultrasonic transmission. (U.K.)

  6. Metal Working and Welding Operations.

    Science.gov (United States)

    Marine Corps Inst., Washington, DC.

    This student guide, one of a series of correspondence training courses designed to improve the job performance of members of the Marine Corps, deals with the skills needed by metal workers and welders. Addressed in the six individual units of the course are the following topics: weldable metals and their alloys, arc welding, gas welding,…

  7. Welding abilities of UFG metals

    Science.gov (United States)

    Morawiński, Łukasz; Chmielewski, Tomasz; Olejnik, Lech; Buffa, Gianluca; Campanella, Davide; Fratini, Livan

    2018-05-01

    Ultrafine Grained (UFG) metals are characterized by an average grain size of welded joints with similar properties to the base of UFG material are crucial for the production of finished engineering components. Conventional welding methods based on local melting of the joined edges cannot be used due to the UFG microstructure degradation caused by the heat occurrence in the heat affected zone. Therefore, the possibility of obtaining UFG materials joints with different shearing plane (SP) positions by means of friction welded processes, which do not exceed the melting temperature during the process, should be investigated. The article focuses on the Linear Friction Welding (LFW) method, which belongs to innovative welding processes based on mixing of the friction-heated material in the solid state. LFW is a welding process used to joint bulk components. In the process, the friction forces work due to the high frequency oscillation and the pressure between the specimens is converted in thermal energy. Character and range of recrystallization can be controlled by changing LFW parameters. Experimental study on the welded UFG 1070 aluminum alloy by means of FLW method, indicates the possibility of reducing the UFG structure degradation in the obtained joint. A laboratory designed LFW machine has been used to weld the specimens with different contact pressure and oscillation frequency.

  8. Arc modeling for welding analysis

    International Nuclear Information System (INIS)

    Glickstein, S.S.

    1978-04-01

    A one-dimensional model of the welding arc that considers heat generation by the Joule effect and heat losses by radiation and conduction has been used to study the effects of various gases and gas mixtures currently employed for welding applications. Minor additions of low ionization potential impurities to these gases are shown to significantly perturb the electrical properties of the parent gas causing gross changes in the radial temperature distribution of the arc discharge. Such changes are reflected in the current density distribution and ultimately in the input energy distribution to the weldment. The result is observed as a variation in weld penetration. Recently published experiments and analyses of welding arcs are also evaluated and shown to contain erroneous data and results. Contrary to previous beliefs, the inclusion of a radiation loss term in the basic energy balance equation is important and cannot be considered as negligible in an argon arc at temperatures as low as 10,000 0 K. The one-dimensional analysis of the welding arc as well as the evaluation of these earlier published reports helps to explain the effects of various gases used for welding, improves our understanding of the physics of the welding arc, and provides a stepping stone for a more elaborate model which can be applied to help optimize welding parameters

  9. Laser welding of tailored blanks

    International Nuclear Information System (INIS)

    Pecas, P.; Gouveia, H.; Quintino, L.; Olsen, F.O.

    1998-01-01

    Laser welding has an increasing role in the automotive industry, namely on the sub-assemblies manufacturing. Several sheet-shape parts are laser welded, on a dissimilar combination of thicknesses and materials, and are afterwards formed (stamped) being transformed in a vehicle body component. In this paper low carbon CO 2 laser welding, on the thicknesses of 1,25 and 0.75 mm, formability investigation is described. There will be a description of how the laser welded blanks behave in different forming tests, and the influence of misalignment and undercut on the formability. The quality is evaluated by measuring the limit strain and limit effective strain for the laser welded sheets and the base material, which will be presented in a forming limit diagram. (Author) 14 refs

  10. Reduction of Biomechanical and Welding Fume Exposures in Stud Welding.

    Science.gov (United States)

    Fethke, Nathan B; Peters, Thomas M; Leonard, Stephanie; Metwali, Mahmoud; Mudunkotuwa, Imali A

    2016-04-01

    The welding of shear stud connectors to structural steel in construction requires a prolonged stooped posture that exposes ironworkers to biomechanical and welding fume hazards. In this study, biomechanical and welding fume exposures during stud welding using conventional methods were compared to exposures associated with use of a prototype system that allowed participants to weld from an upright position. The effect of base material (i.e. bare structural beam versus galvanized decking) on welding fume concentration (particle number and mass), particle size distribution, and particle composition was also explored. Thirty participants completed a series of stud welding simulations in a local apprenticeship training facility. Use of the upright system was associated with substantial reductions in trunk inclination and the activity levels of several muscle groups. Inhalable mass concentrations of welding fume (averaged over ~18 min) when using conventional methods were high (18.2 mg m(-3) for bare beam; 65.7 mg m(-3) for through deck), with estimated mass concentrations of iron (7.8 mg m(-3) for bare beam; 15.8 mg m(-3) for through deck), zinc (0.2 mg m(-3) for bare beam; 15.8 mg m(-3) for through deck), and manganese (0.9 mg m(-3) for bare beam; 1.5 mg m(-3) for through deck) often exceeding the American Conference of Governmental Industrial Hygienists Threshold Limit Values (TLVs). Number and mass concentrations were substantially reduced when using the upright system, although the total inhalable mass concentration remained above the TLV when welding through decking. The average diameters of the welding fume particles for both bare beam (31±17 nm) through deck conditions (34±34 nm) and the chemical composition of the particles indicated the presence of metallic nanoparticles. Stud welding exposes ironworkers to potentially high levels of biomechanical loading (primarily to the low back) and welding fume. The upright system used in this study improved exposure

  11. Proteomics Core

    Data.gov (United States)

    Federal Laboratory Consortium — Proteomics Core is the central resource for mass spectrometry based proteomics within the NHLBI. The Core staff help collaborators design proteomics experiments in a...

  12. 46 CFR 154.660 - Pipe welding.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Pipe welding. 154.660 Section 154.660 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR... § 154.660 Pipe welding. (a) Pipe welding must meet Part 57 of this chapter. (b) Longitudinal butt welds...

  13. 49 CFR 195.214 - Welding procedures.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Welding procedures. 195.214 Section 195.214... PIPELINE Construction § 195.214 Welding procedures. (a) Welding must be performed by a qualified welder in accordance with welding procedures qualified under Section 5 of API 1104 or Section IX of the ASME Boiler and...

  14. 29 CFR 1910.255 - Resistance welding.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 5 2010-07-01 2010-07-01 false Resistance welding. 1910.255 Section 1910.255 Labor... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Welding, Cutting and Brazing § 1910.255 Resistance welding. (a.... Ignitron tubes used in resistance welding equipment shall be equipped with a thermal protection switch. (3...

  15. METHOD AND SYSTEM FOR LASER WELDING

    DEFF Research Database (Denmark)

    2008-01-01

    The invention relates to laser welding of at least two adjacent, abutting or overlapping work pieces in a welding direction using multiple laser beams guided to a welding region, wherein at least two of the multiple laser beams are coupled into the welding region so as to form a melt and at least...

  16. 49 CFR 179.300-9 - Welding.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Welding. 179.300-9 Section 179.300-9... Specifications for Multi-Unit Tank Car Tanks (Classes DOT-106A and 110AW) § 179.300-9 Welding. (a) Longitudinal... fusion welded on class DOT-110A tanks. Welding procedures, welders and fabricators must be approved in...

  17. Tailor-welded blanks and their production

    Science.gov (United States)

    Yan, Qi

    2005-01-01

    Tailor welded blanks had been widely used in the automobile industry. A tailor welded blank consists of several flat sheets that were laser welded together before stamping. A combination of different materials, thickness, and coatings could be welded together to form a blank for stamping car body panels. As for the material for automobile industry, this technology was one of the development trend for automobile industry because of its weight reduction, safety improvement and economical use of materials. In this paper, the characters and production of tailor welded blanks in the market were discussed in detail. There had two major methods to produce tailor welded blanks. Laser welding would replace mesh seam welding for the production of tailor welded blanks in the future. The requirements on the edge preparation of unwelded blanks for tailor welded blanks were higher than the other steel processing technology. In order to produce the laser welded blank, there had the other process before the laser welding in the factory. In the world, there had three kinds of patterns for the large volume production of tailor welded blanks. In China, steel factory played the important role in the promotion of the application of tailor welded blanks. The competition for the supply of tailor welded blanks to the automobile industry would become fierce in the near future. As a result, the demand for the quality control on the production of tailor welded blanks would be the first priority concern for the factory.

  18. Clamp and Gas Nozzle for TIG Welding

    Science.gov (United States)

    Gue, G. B.; Goller, H. L.

    1982-01-01

    Tool that combines clamp with gas nozzle is aid to tungsten/inert-gas (TIG) welding in hard-to-reach spots. Tool holds work to be welded while directing a stream of argon gas at weld joint, providing an oxygen-free environment for tungsten-arc welding.

  19. Electron beam welding fundamentals and applications

    International Nuclear Information System (INIS)

    Mara, G.L.; Armstrong, R.E.

    1975-01-01

    The electron beam welding process is described and the unique mode of operation and penetration explained by a description of the forces operating within the weld pool. This penetration model is demonstrated by high speed cinematography of the weld pool on several materials. The conditions under which weld defects are formed are discussed and examples are presented. (auth)

  20. Electron beam welding of aluminium components

    International Nuclear Information System (INIS)

    Maajid, Ali; Vadali, S.K.; Maury, D.K.

    2015-01-01

    Aluminium is one of the most widely used materials in industries like transportation, shipbuilding, manufacturing, aerospace, nuclear, etc. The challenges in joining of aluminium are distortion, cleanliness and quality. Main difficulties faced during fusion welding of aluminium components are removal of surface oxide layer, weld porosity, high heat input requirement, distortion, hot cracking, etc. Physical properties of aluminium such as its high thermal conductivity, high coefficient of thermal expansion, no change in colour at high temperature, large difference in the melting points of the metal and its oxide (∼ 1400 °C) compound the difficulties faced during welding. Gas Tungsten Arc Welding (GTAW), Gas Metal Arc Welding (GMAW), Plasma Arc Welding (PAW), etc are generally used in industries for fusion welding of aluminium alloys. However in case of thicker jobs the above processes are not suitable due to requirements of elaborate edge preparation, preheating of jobs, fixturing to prevent distortion, etc. Moreover, precise control over the heat input during welding and weld bead penetration is not possible with above processes. Further, if heat sensitive parts are located near the weld joint then high energy density beam welding process like Electron Beam Welding (EBW) is the best possible choice for aluminium welding.This paper discusses EB welding of aluminium components, typical geometry of components, selection/optimization of welding parameters, problems faced during standardization of welding and process parameters and their remedies etc.

  1. Effects of nitrogen and pulsed mean welding current in AISI 316 austenitic stainless steel solidification cracks; Efecto del nitrogeno y la corriente media pulsada de soldadura en la formacion de grietas de solidificacion en aceros inoxidables AISI 316L

    Energy Technology Data Exchange (ETDEWEB)

    Trevisan, R. E.; Braga, E.; Fals, H. C.

    2002-07-01

    An analysis of the influence of nitrogen concentration in the weld zone and the pulsed mean welding current in the solidification crack formation is presented in this paper. The AISI 316L austenitic stainless steel was employed as the metal base. The welding was done using CC+ pulsed flux cored are welding process and AWS E316L wire type. The tests were conducted using CO{sub 2} shielding gas with four different nitrogen levels (0,5; 10 and 15%) in order to induce different nitrogen weld metal concentrations. The pulsed mean welding current was varied in three levels and the. Transvarestraint tangential strain test was fixed of 5%. The results showed that the solidification cracking decreased as the pulsed mean welding current increase. It was also verified that an increase of the weld zone nitrogen level was associated with a decrease in both the total length of solidification crack and the amount of {delta} ferrite. (AUthor) 20 refs.

  2. Stress analysis of shielded receiver lifting frame for core sampler truck number-sign 2

    International Nuclear Information System (INIS)

    Ziada, H.H.

    1994-01-01

    This analysis evaluates the structural design adequacy of the shielded receiver lifting frame (SRLF) for the rotary mode core sampler truck number 2 (RMCST number-sign 2). The analysis considers the loads expected during operation of the SRLF. Most of the existing welds were not in conformance with those specified on the drawings, H-2-91715 and -91716 (RHO 1988a and RHO 1988b). Stress analysts and engineers examined the configuration of the welds connecting the frame members of the SRLF and those connecting the SRLF to the drill rig. In comparison to those shown on the drawing, some of the actual welds appear stronger and others undersized. For example, the actual fillet welds completely encircle the junctures of members, although the drawings show some welds to be on two sides only. Attempts to find the original design calculations were unsuccessful. To resolve the nonconformance, the critical welds were identified by analysis and subsequently inspected to ensure they are as large or larger than the minimum is defined by weld leg size. A required weld size, as determined by stress analysis, of 0.1 inch or larger is considered to be critical. This size was selected because no existing welds were found to be less than 0.125 inch. Analysis results led to weld modifications to strengthen the SRLF. The weld modifications performed are described in WHC 1994

  3. Machine for welding solar cell connections

    Energy Technology Data Exchange (ETDEWEB)

    Lorans, D.Y.

    1977-08-09

    A machine for welding a connection wire over a solar cell electrode is described which comprises a base, a welding mount for the solar cell which is supported on the base, means for holding the solar cell on the welding mount, welding electrodes, means to lower the welding electrodes over the solar cell and the connection wire superimposed thereon, means for applying electric current pulses to said welding electrodes. It is characterized by the fact that it further comprises means for imparting to said mount an alternating transverse movement in relation to said base before and during the welding operation.

  4. Spot Welding Characterizations With Time Variable

    International Nuclear Information System (INIS)

    Abdul Hafid; Pinitoyo, A.; History; Paidjo, Andryansyah; Sagino, Sudarmin; Tamzil, M.

    2001-01-01

    For obtain spot welding used effective data, this research is made, so that time operational of machine increasing. Welding parameters are material classification, electrical current, and weld time. All of the factors are determined welding quality. If the plate more thick, the time must be longer when the current constant. Another factor as determined welding quality are surface condition of electrode, surface condition of weld material, and material classifications. In this research, the weld machine type IP32A2 VI (110 V), Rivoira trademark is characterized

  5. Development of automatic laser welding system

    International Nuclear Information System (INIS)

    Ohwaki, Katsura

    2002-01-01

    Laser are a new production tool for high speed and low distortion welding and applications to automatic welding lines are increasing. IHI has long experience of laser processing for the preservation of nuclear power plants, welding of airplane engines and so on. Moreover, YAG laser oscillators and various kinds of hardware have been developed for laser welding and automation. Combining these welding technologies and laser hardware technologies produce the automatic laser welding system. In this paper, the component technologies are described, including combined optics intended to improve welding stability, laser oscillators, monitoring system, seam tracking system and so on. (author)

  6. Research on the Effects of Technical Parameters on the Molding of the Weld by A-TIG Welding

    OpenAIRE

    Shi, Kai; Pan, Wu

    2012-01-01

    The effects of welding parameters on the molding of weld by A-TIG welding of a 4mm thickness mild steel plate is studied in the present paper. The results obtained show that: as welding current increases A-TIG welding penetration gets deeper than TIG welding; size and shape of HAZ has remarkable change; A-TIG welding has the narrower weld pool width than TIG welding.

  7. Plasma spot welding of ferritic stainless steels

    International Nuclear Information System (INIS)

    Lesnjak, A.; Tusek, J.

    2002-01-01

    Plasma spot wedding of ferritic stainless steels studied. The study was focused on welding parameters, plasma and shieldings and the optimum welding equipment. Plasma-spot welded overlap joints on a 0.8 mm thick ferritic stainless steel sheet were subjected to a visual examination and mechanical testing in terms of tension-shear strength. Several macro specimens were prepared Plasma spot welding is suitable to use the same gas as shielding gas and as plasma gas , i. e. a 98% Ar/2% H 2 gas mixture. Tension-shear strength of plasma-spot welded joint was compared to that of resistance sport welded joints. It was found that the resistance welded joints withstand a somewhat stronger load than the plasma welded joints due to a large weld sport diameter of the former. Strength of both types of welded joints is approximately the same. (Author) 32 refs

  8. Automatic welding of stainless steel tubing

    Science.gov (United States)

    Clautice, W. E.

    1978-01-01

    The use of automatic welding for making girth welds in stainless steel tubing was investigated as well as the reduction in fabrication costs resulting from the elimination of radiographic inspection. Test methodology, materials, and techniques are discussed, and data sheets for individual tests are included. Process variables studied include welding amperes, revolutions per minute, and shielding gas flow. Strip chart recordings, as a definitive method of insuring weld quality, are studied. Test results, determined by both radiographic and visual inspection, are presented and indicate that once optimum welding procedures for specific sizes of tubing are established, and the welding machine operations are certified, then the automatic tube welding process produces good quality welds repeatedly, with a high degree of reliability. Revised specifications for welding tubing using the automatic process and weld visual inspection requirements at the Kennedy Space Center are enumerated.

  9. Torque Measurement of Welding of Endplug-Endplate using Multi-pin Remote Welding System

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Dae-Seo; Kim, Soo-Sung; Park, Geun-Il; Lee, Jung-Won; Song, Kee-Chan [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2006-07-01

    As fuel bundles in PHWR irradiates, inner pressure in claddings of fuel rods increases owing to outer pressure and fission products of nuclear fissions. Because of leak possibility of welding between cladding and end plug, this welding part connects with safety of nuclear fuel rods. Because of importance of this welding part, weldability of end plug-cladding of nuclear fuel rods is continually researched. Welding method for research and commercialization is classified as melting, solid type welding or resistance welding. End plug cladding welding of nuclear fuel rods in PHWR takes advantage of resistance upset butt welding using multicycle mode. This method makes weld flash and shapes re-entrant corner owing to welding heat due to resistivity, contact resistance of cladding-end plug, and inelasticity deformation due to pressure. Welding part between cladding and end plug receives stresses and makes small cracks. In this study, remote welding system for multi-pin assembly was designed, fabricated and welding specimens of end plug-endplate were made using electrical resistance method. The torques of welding between end plug and endplate were measured. These results on welding current, pressure of main electrode and pressure of branch electrode were analyzed. Weldability between end plug and endplate was confirmed through metallographic examinations. In the future, optimal welding examinations due to welding current, welding pressure and welding time will be performed to improve weldability of end plug-endplate.

  10. Welding Penetration Control of Fixed Pipe in TIG Welding Using Fuzzy Inference System

    Science.gov (United States)

    Baskoro, Ario Sunar; Kabutomori, Masashi; Suga, Yasuo

    This paper presents a study on welding penetration control of fixed pipe in Tungsten Inert Gas (TIG) welding using fuzzy inference system. The welding penetration control is essential to the production quality welds with a specified geometry. For pipe welding using constant arc current and welding speed, the bead width becomes wider as the circumferential welding of small diameter pipes progresses. Having welded pipe in fixed position, obviously, the excessive arc current yields burn through of metals; in contrary, insufficient arc current produces imperfect welding. In order to avoid these errors and to obtain the uniform weld bead over the entire circumference of the pipe, the welding conditions should be controlled as the welding proceeds. This research studies the intelligent welding process of aluminum alloy pipe 6063S-T5 in fixed position using the AC welding machine. The monitoring system used a charge-coupled device (CCD) camera to monitor backside image of molten pool. The captured image was processed to recognize the edge of molten pool by image processing algorithm. Simulation of welding control using fuzzy inference system was constructed to simulate the welding control process. The simulation result shows that fuzzy controller was suitable for controlling the welding speed and appropriate to be implemented into the welding system. A series of experiments was conducted to evaluate the performance of the fuzzy controller. The experimental results show the effectiveness of the control system that is confirmed by sound welds.

  11. Versatile Friction Stir Welding/Friction Plug Welding System

    Science.gov (United States)

    Carter, Robert

    2006-01-01

    A proposed system of tooling, machinery, and control equipment would be capable of performing any of several friction stir welding (FSW) and friction plug welding (FPW) operations. These operations would include the following: Basic FSW; FSW with automated manipulation of the length of the pin tool in real time [the so-called auto-adjustable pin-tool (APT) capability]; Self-reacting FSW (SRFSW); SR-FSW with APT capability and/or real-time adjustment of the distance between the front and back shoulders; and Friction plug welding (FPW) [more specifically, friction push plug welding] or friction pull plug welding (FPPW) to close out the keyhole of, or to repair, an FSW or SR-FSW weld. Prior FSW and FPW systems have been capable of performing one or two of these operations, but none has thus far been capable of performing all of them. The proposed system would include a common tool that would have APT capability for both basic FSW and SR-FSW. Such a tool was described in Tool for Two Types of Friction Stir Welding (MFS- 31647-1), NASA Tech Briefs, Vol. 30, No. 10 (October 2006), page 70. Going beyond what was reported in the cited previous article, the common tool could be used in conjunction with a plug welding head to perform FPW or FPPW. Alternatively, the plug welding head could be integrated, along with the common tool, into a FSW head that would be capable of all of the aforementioned FSW and FPW operations. Any FSW or FPW operation could be performed under any combination of position and/or force control.

  12. Welding of 6061-T651 Aluminium and the relationship of tensile properties to hardness in the heat affect zone. ENG919 Dissertation

    International Nuclear Information System (INIS)

    Stathers, P.

    2000-11-01

    Two objectives are envisaged for this work; the first is to conduct a literature review of 6061 aluminium and welding practices for this alloy and current best welding practice with an emphasis on welding for nuclear applications. Recent developments in the use of innovative welding practice will also be reviewed. The intention is to provide a background of information in order to avoid weld-related problems that have the potential to shorten the life of expensive and difficult-to-replace critical components. The literature survey will include a review of the base alloy and the effect of welding on the mechanical properties in the weld zone (weld metal and heat affected zone (HAZ)). Included, as part of this objective is to review the welding of aluminium to create an awareness of potential difficulties for future critical welding applications. The literature survey would also include the aspect of nuclear-induced changes in properties, particularly within the weld zone. This element of the survey would investigate factors for consideration in selecting the welding method and filler material. The American Society of Mechanical Engineers (ASME) have a nuclear Code Case (N519) 14 covering the use of 6061 aluminium in nuclear core components. This Code Case calls for the implementation of a surveillance program to monitor changes in properties during service. The literature survey will address this requirement and make a set of recommendations as a first step towards implementing such a program. A second objective is to develop a model that relates mechanical properties to hardness measurements in the weld zone. This model has the potential to be used as a tool for checking weld metal properties and the extent of changes in HAZ properties. The intention is to thermally overage the base alloy to various hardness values and relate the hardness to tensile and Charpy impact toughness values. Welded test plates will be prepared using Gas Metal Arc Welding (GMAW) and

  13. Corrosion Properties of Laser Welded Stainless Steel

    DEFF Research Database (Denmark)

    Weldingh, Jakob; Olsen, Flemmming Ove

    1997-01-01

    In this paper the corrosion properties of laser welded AISI 316L stainless steel are examined. A number of different welds has been performed to test the influence of the weld parameters of the resulting corrosion properties. It has been chosen to use the potential independent critical pitting...... temperature (CPT) test as corrosion test. The following welding parameters are varied: Welding speed, lsser power, focus point position and laser operation mode (CW or pulsed)....

  14. Heat Source - Materials Interactions during Fusion Welding.

    Science.gov (United States)

    1982-04-30

    the capabilities of ultrasonic weld pool measurement, and to address questions of applications to active pool size control. -- mom- 44 TIG welding ...preparation. The fraction of absorbed power increases dramatically upon formation of a keyhole . As a result, welds made with sharply beveled edge...laser end electron beam welding processes characteristically produce a deel,, narrow weld bead. This bead is formed by a keyhole mode of operation in

  15. Real time computer controlled weld skate

    Science.gov (United States)

    Wall, W. A., Jr.

    1977-01-01

    A real time, adaptive control, automatic welding system was developed. This system utilizes the general case geometrical relationships between a weldment and a weld skate to precisely maintain constant weld speed and torch angle along a contoured workplace. The system is compatible with the gas tungsten arc weld process or can be adapted to other weld processes. Heli-arc cutting and machine tool routing operations are possible applications.

  16. Collection of arc welding process data

    OpenAIRE

    K. Luksa; Z. Rymarski

    2006-01-01

    Purpose: The aim of the research was to examine the possibility of detecting welding imperfections by recording the instant values of welding parameters. The microprocessor controlled system for real-time collection and display of welding parameters was designed, implemented and tested.Design/methodology/approach: The system records up to 4 digital or analog signals collected from welding process and displays their run on the LCD display. To disturb the welding process artificial disturbances...

  17. Analysis And Control System For Automated Welding

    Science.gov (United States)

    Powell, Bradley W.; Burroughs, Ivan A.; Kennedy, Larry Z.; Rodgers, Michael H.; Goode, K. Wayne

    1994-01-01

    Automated variable-polarity plasma arc (VPPA) welding apparatus operates under electronic supervision by welding analysis and control system. System performs all major monitoring and controlling functions. It acquires, analyzes, and displays weld-quality data in real time and adjusts process parameters accordingly. Also records pertinent data for use in post-weld analysis and documentation of quality. System includes optoelectronic sensors and data processors that provide feedback control of welding process.

  18. Friction Welding of Titanium and Carbon Steel

    OpenAIRE

    Atsushi, HASUI; Yoichi, KIRA; Faculty of Science and Technology, Keio University; Ishikawajima-Harima Heavy Industries, Co., Ltd.

    1985-01-01

    Titanium-steel is a combination of dissimilar materials, which are difficult to weld in general, owing to inevitable formation of brittle intermetallic compounds. A prominent feature of friction welding process is ability to weld dissimilar materials in many kinds of combinations. This report deals with friction weldabilily of pure titanium and S25C steel, which are 12 mm in diameter. Main results are summarized as follows; (1) Suitable welding conditions to obtain a sound weld, which has a j...

  19. Recent advances in the TIG welding process and the application of the welding of nuclear components

    International Nuclear Information System (INIS)

    Lucas, W.; Males, B.O.

    1982-01-01

    Recent advances in the field of precision arc welding techniques and infacilities for production of nuclear power plant components arc presented. Of the precision welding techniques, pulsed TIG welding, pulsed plasma arc welding, hot-wire TIG welding, and pulsed inert-gas metal-arc welding. In the field of weld cladding, GMA plasma welding is cited as an alternative to submerged-arc welding with a strip electrode. Transistors and computer-controlled welding systems get a special mention. Applications of TIG welding in the UK are cited, e.g. welding of components for the AGR nuclear power plant and construction of equipment for repair work in feedwater pipes of the MAGNOX reactor. (orig.) [de

  20. Investigation into Variations of Welding Residual Stresses and Redistribution Behaviors for Different Repair Welding Widths

    International Nuclear Information System (INIS)

    Park, Chiyong; Lee, Hweesueng; Huh, Namsu

    2014-01-01

    In this study, we investigated the variations in welding residual stresses in dissimilar metal butt weld due to width of repair welding and re-distribution behaviors resulting from similar metal welding (SMW) and mechanical loading. To this end, detailed two-dimensional axi-symmetric finite element (FE) analyses were performed considering five different repair welding widths. Based on the FE results, we first evaluated the welding residual stress distributions in repair welding. We then investigated the re-distribution behaviors of the residual stresses due to SMW and mechanical loads. It is revealed that large tensile welding residual stresses take place in the inner surface and that its distribution is affected, provided repair welding width is larger than certain value. The welding residual stresses resulting from repair welding are remarkably reduced due to SMW and mechanical loading, regardless of the width of the repair welding

  1. Cracking in fusion zone and heat affected zone of electron beam welded Inconel-713LC gas turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Chamanfar, A., E-mail: achamanfar@gmail.com [Département de Génie Mécanique, École de Technologie Supérieure, 1100 rue Notre-Dame Ouest, Montréal, Québec, Canada H3C 1K3 (Canada); Jahazi, M. [Département de Génie Mécanique, École de Technologie Supérieure, 1100 rue Notre-Dame Ouest, Montréal, Québec, Canada H3C 1K3 (Canada); Bonakdar, A.; Morin, E. [Siemens Canada Limited, 9545 Côte-de-Liesse, Dorval, Québec, Canada H9P 1A5 (Canada); Firoozrai, A. [Département de Génie Mécanique, École de Technologie Supérieure, 1100 rue Notre-Dame Ouest, Montréal, Québec, Canada H3C 1K3 (Canada)

    2015-08-26

    Electron beam welding (EBW) of shrouds in Inconel-713LC low pressure gas turbine blades was associated with cracking in fusion zone (FZ) and heat affected zone (HAZ) leading to a high scrap rate in manufacturing of gas turbine blades. In this study, in order to develop a detailed map of cracks and understand the root cause of cracking, a comprehensive microstructural and numerical analysis was performed. The elemental mapping in scanning electron microscope (SEM)-energy dispersive spectral analysis revealed segregation of alloying elements in the cracked area of FZ and HAZ. In other words, one of the cracking mechanisms in FZ and HAZ was found to be segregation induced liquation and subsequent cracking due to thermal and mechanical tensile stresses generated during EBW. Cracking in FZ also occurred because of low strength of the solidifying weld metal as well as solidification contraction. As well, γ′ dissolution and reprecipitation in HAZ leading to decreased ductility and generation of contraction stresses was another mechanism for cracking in HAZ. The numerical model was capable to predict the cracking location as well as cracking orientation with respect to the weld line.

  2. Experimental study on variations in Charpy impact energies of low carbon steel, depending on welding and specimen cutting method

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhaorui; Kang, Hansaem; Lee, Young Seog [Chung-Ang University, Seoul (Korea, Republic of)

    2016-05-15

    This paper presents an experimental study that examines variations of Charpy impact energy of a welded steel plate, depending upon the welding method and the method for obtaining the Charpy specimens. Flux cored arc welding (FCAW) and Gas tungsten arc welding (GTAW) were employed to weld an SA516 Gr. 70 steel plate. The methods of wire cutting and water-jet cutting were adopted to take samples from the welded plate. The samples were machined according to the recommendations of ASTM SEC. II SA370, in order to fit the specimen dimension that the Charpy impact test requires. An X-ray diffraction (XRD) method was used to measure the as-weld residual stress and its redistribution after the samples were cut. The Charpy impact energy of specimens was considerably dependent on the cutting methods and locations in the welded plate where the specimens were taken. The specimens that were cut by water jet followed by FCAW have the greatest resistance-to-fracture (Charpy impact energy). Regardless of which welding method was used, redistributed transverse residual stress becomes compressive when the specimens are prepared using water-jet cutting. Meanwhile, redistributed transverse residual stress becomes tensile when the specimens are prepared using wire cutting.

  3. 10,170 flawless welds

    CERN Multimedia

    Antonella Del Rosso

    2014-01-01

    The welding of tubes containing the principal current-carrying busbars in the LHC magnets was one of the main activities of the SMACC project. After a year of preparation and another of intense activity in the tunnel, the last weld was completed on Wednesday 14 May. Over 10,170 welds have been inspected and not a single fault has been found.    The welder (above) creates the weld using an orbital welding machine (below) specifically designed for CERN. Each of the eight sectors of the LHC contains around 210 interconnects between the superconducting magnets. Consolidating these interconnections was the SMACC project’s primary objective. One of the last jobs before closing the interconnects is the welding of the M lines: each has a 104 mm diameter and a radial clearance of just 45 mm. In total: 10,170 welds carried out in a single year of activities. A true challenge, which was carried out by a team of 30 highly specialised welders, working under the supervision o...

  4. Deformation During Friction Stir Welding

    Science.gov (United States)

    White, Henry J.

    2002-01-01

    Friction Stir Welding (FSW) is a solid state welding process that exhibits characteristics similar to traditional metal cutting processes. The plastic deformation that occurs during friction stir welding is due to the superposition of three flow fields: a primary rotation of a radially symmetric solid plug of metal surrounding the pin tool, a secondary uniform translation, and a tertiary ring vortex flow (smoke rings) surrounding the tool. If the metal sticks to the tool, the plug surface extends down into the metal from the outer edge of the tool shoulder, decreases in diameter like a funnel, and closes up beneath the pin. Since its invention, ten years have gone by and still very little is known about the physics of the friction stir welding process. In this experiment, an H13 steel weld tool (shoulder diameter, 0.797 in; pin diameter, 0.312 in; and pin length, 0.2506 in) was used to weld three 0.255 in thick plates. The deformation behavior during friction stir welding was investigated by metallographically preparing a plan view sections of the weldment and taking Vickers hardness test in the key-hole region.

  5. LASER WELDING WITH MICRO-JET COOLING FOR TRUCK FRAME WELDING

    OpenAIRE

    Jan PIWNIK; Bożena SZCZUCKA-LASOTA; Tomasz WĘGRZYN; Wojciech MAJEWSKI

    2017-01-01

    The aim of this paper is to analyse the mechanical properties of the weld steel structure of car body truck frames after laser welding. The best welding conditions involve the use of proper materials and alloy elements in steel and filer materials, in addition to welding technology, state of stress and temperature of exploitation. We present for the first time the properties of steel track structures after laser welding with micro-jet cooling. Therefore, good selection of both welding paramet...

  6. A study of weld quality in ultrasonic spot welding of similar and dissimilar metals

    International Nuclear Information System (INIS)

    Al-Sarraf, Z; Lucas, M

    2012-01-01

    Several difficulties are faced in joining thinner sheets of similar and dissimilar materials from fusion welding processes such as resistance welding and laser welding. Ultrasonic metal welding overcomes many of these difficulties by using high frequency vibration and applied pressure to create a solid-state weld. Ultrasonic metal welding is an effective technique in joining small components, such as in wire bonding, but is also capable of joining thicker sheet, depending on the control of welding conditions. This study presents the design, characterisation and test of a lateral-drive ultrasonic metal welding device. The ultrasonic welding horn is modelled using finite element analysis and its vibration behaviour is characterised experimentally to ensure ultrasonic energy is delivered to the weld coupon. The welding stack and fixtures are then designed and mounted on a test machine to allow a series of experiments to be conducted for various welding and ultrasonic parameters. Weld strength is subsequently analysed using tensile-shear tests. Control of the vibration amplitude profile through the weld cycle is used to enhance weld strength and quality, providing an opportunity to reduce part marking. Optical microscopic examination and scanning electron microscopy (SEM) were employed to investigate the weld quality. The results show how the weld quality is particularly sensitive to the combination of clamping force and vibration amplitude of the welding tip.

  7. The technology and welding joint properties of hybrid laser-tig welding on thick plate

    Science.gov (United States)

    Shenghai, Zhang; Yifu, Shen; Huijuan, Qiu

    2013-06-01

    The technologies of autogenous laser welding and hybrid laser-TIG welding are used on thick plate of high strength lower alloy structural steel 10CrNiMnMoV in this article. The unique advantages of hybrid laser-TIG welding is summarized by comparing and analyzing the process parameters and welding joints of autogenous laser welding laser welding and hybrid laser-TIG welding. With the optimal process parameters of hybrid welding, the good welding joint without visible flaws can be obtained and its mechanical properties are tested according to industry standards. The results show that the hybrid welding technology has certain advantages and possibility in welding thick plates. It can reduce the demands of laser power, and it is significant for lowering the aspect ratio of weld during hybrid welding, so the gas in the molten pool can rise and escape easily while welding thick plates. Therefore, the pores forming tendency decreases. At the same time, hybrid welding enhances welding speed, and optimizes the energy input. The transition and grain size of the microstructure of hybrid welding joint is better and its hardness is higher than base material. Furthermore, its tensile strength and impact toughness is as good as base material. Consequently, the hybrid welding joint can meet the industry needs completely.

  8. Forced response of turbomachinery part span shrouds-linked blading; Reponse forcee des aubages de turbomachines liaisonnes par nageoires

    Energy Technology Data Exchange (ETDEWEB)

    Ravoux, J.

    2003-06-15

    This work treats of the design of blading systems fitted with part span shrouds (snubber) for turbo-machineries. The first chapter makes a status of the existing calculation techniques for blading systems. The second chapter presents the experimental system developed for the study, the different implementations of its exploitation and its potentialities. The third chapter presents the numerical and experimental results linked with a linear approach: this approach allows the validation of the experimental system and the adjustment of numerical models. The fourth chapter sets up and validates the numerical and experimental tools and techniques linked with the exhaustive exploitation of the system. Finally, a synthesis of the main results is presented with their perspectives for future works. (J.S.)

  9. Application to nuclear turbines of high-efficiency and reliable 3D-designed integral shrouded blades

    International Nuclear Information System (INIS)

    Watanabe, Eiichiro; Ohyama, Hiroharu; Tashiro, Hikaru; Sugitani, Toshio; Kurosawa, Masaru

    1999-01-01

    Mitsubishi Heavy Industries, Ltd. (MHI) has recently developed new blades for nuclear turbines, in order to achieve higher efficiency and higher reliability. The three-dimensional aerodynamic design for 41-inch and 46-inch blades, their one piece structural design (integral shrouded blades: ISB), and the verification test results using a model steam turbine are described in this paper. The predicted efficiency and lower vibratory stress have been verified. On the basis of these 60 Hz ISB, 50 Hz ISB series are under development using 'the law of similarity' without changing their thermodynamic performance and mechanical stress levels. Our 3D-designed reaction blades which are used for the high pressure and low pressure upstream stages, are also briefly mentioned. (author)

  10. A pc program for the fast assessment of long-arc shrouds and continuous-tie arrangements

    International Nuclear Information System (INIS)

    Wan, S.M.; Lam. T.C.T.; Redding, M.L.; Ortolano, R.J.

    1991-01-01

    This paper reports that a computer program LARC (Long-arc Axial Response Calculation) has been successfully developed to achieve the fast assessment for the effectiveness of a proposed long-arc shroud or continuous-tie arrangement, with respect to the axial modes of vibration. The program allows designers/analysts to conveniently perform modal as well as forced harmonic response calculations for various proposed blade group arrangements. Comparisons between responses for different group lengths will indicate the susceptibility of each grouping to strong dynamic response. LARC is a PC-based program with a user-friendly interface and graphic display. Natural frequencies are calculated by an eigenvalue extraction technique. Resonant response, obtained in term s of the axial displacement at the blade tip, will provide analysts with the information necessary to evaluate the potential success of the proposed configuration. Test case results from LARC compare well against results from BLADE

  11. Plasticity Theory of Fillet Welds

    DEFF Research Database (Denmark)

    Hansen, Thomas

    2005-01-01

    a safe and statically admissible stress distribution is established. The plasticity solutions are compared with tests carried out at the Engineering Academy of Denmark, Lyngby, in the early nineties, and old fillet weld tests. The new failure conditions are in very good agreement with the yield load......This paper deals with simple methods for calculation of fillet welds based on the theory of plasticity. In developing the solutions the lower-bound theorem is used. The welding material and parts of the base material are subdivided into triangular regions with homogeneous stress fields; thereby...... tests, but not so good agreement with the old failure load tests....

  12. Review of laser hybrid welding

    DEFF Research Database (Denmark)

    Bagger, Claus

    2004-01-01

    In this artucle an overview og the hybrid welding process is given. After a short historic overview, a review of the fundamental phenomenon taking place when a laser (CO2 or Nd:YAG) interacts in the same molten pool as a more conventional source of energy, e.g. tungsten in-active gas, plasma......, or metal inactive gas/metal active gas.This is followed by reports of how the many process parameters governing the hybrid welding process can be set and how the choice of secondary energy source, shielding gas, etc. can affect the overall welding process....

  13. Novel Process Revolutionizes Welding Industry

    Science.gov (United States)

    2008-01-01

    Glenn Research Center, Delphi Corporation, and the Michigan Research Institute entered into a research project to study the use of Deformation Resistance Welding (DRW) in the construction and repair of stationary structures with multiple geometries and dissimilar materials, such as those NASA might use on the Moon or Mars. Traditional welding technologies are burdened by significant business and engineering challenges, including high costs of equipment and labor, heat-affected zones, limited automation, and inconsistent quality. DRW addresses each of those issues, while drastically reducing welding, manufacturing, and maintenance costs.

  14. Waste canister closure welding using the inertia friction welding process

    International Nuclear Information System (INIS)

    Klein, R.F.; Siemens, D.H.; Kuruzar, D.L.

    1986-02-01

    Liquid radioactive waste presently stored in underground tanks is to undergo a vitrifying process which will immobilize it in a solid form. This solid waste will be contained in a stainless steel canister. The canister opening requires a positive seal weld, the properties and thickness of which are at least equal to those of the canister material. This paper describes the inertia friction welding process and a proposed equipment design concept that will provide a positive, reliable, inspectable, and full thickness seal weld while providing easily maintainable equipment, even though the weld is made in a highly contaminated hot cell. All studies and tests performed have shown the concept to be highly feasible. 2 refs., 6 figs

  15. Texture characterisation of hexagonal metals: Magnesium AZ91 alloy, welded by laser processing

    International Nuclear Information System (INIS)

    Kouadri, A.; Barrallier, L.

    2006-01-01

    Cooled and cast magnesium AZ91 alloy was welded using a CO 2 laser. The changes in the microstructure were analysed by optical and scanning electron microscopy and X-ray diffraction. Modification of the anisotropic properties was evaluated by the characterization of the texture in the base metal, in the core of the welded zone and in the welded zone close to the surface. In the two former zones, we have not observed a texture. Laser welding only leads to a change of the grain size and a disappearance of the eutectic phase. By contrast, in the welded zone close to the surface, the laser process leads both to a finer microstructure, to a loss of the Al-content and to the presence of several texture components. In this zone, our results showed that these textures are on pyramidal {101-bar 1} and prismatic {101-bar 0} planes. Much of the explanation for such texture rests with the fact that during the laser welding, material solidifies in strong non-equilibrium conditions. The kinetics of the nucleation and the growth are partly controlled by the high-rise and high fall of the temperature and the power produced by the laser process. The nature of the texture has been explained by the presence of a columnar to equiaxed transition in the welded zone

  16. Microstructural Effects on Hydrogen Delayed Fracture of 600 MPa and 800 MPa grade Deposited Weld Metal

    International Nuclear Information System (INIS)

    Kang, Hee Jae; Lee, Tae Woo; Cho, Kyung Mox; Kang, Namhyun; Yoon, Byung Hyun; Park, Seo Jeong; Chang, Woong Seong

    2012-01-01

    Hydrogen-delayed fracture (HDF) was analyzed from the deposited weld metals of 600-MPa and 800-MPa flux-cored arc (FCA) welding wires, and then from the diffusible hydrogen behavior of the weld zone. Two types of deposited weld metal, that is, rutile weld metal and alkali weld metal, were used for each strength level. Constant loading test (CLT) and thermal desorption spectrometry (TDS) analysis were conducted on the hydrogen pre-charged specimens electrochemically for 72 h. The effects of microstructures such as acicular ferrite, grain-boundary ferrite, and low-temperature-transformation phase on the time-to failure and amount of diffusible hydrogen were analyzed. The fracture time for hydrogen-purged specimens in the constant loading tests decreased as the grain size of acicular ferrite decreased. The major trapping site for diffusible hydrogen was the grain boundary, as determined by calculating the activation energies for hydrogen detrapping. As the strength was increased and alkali weld metal was used, the resistance to HDF decreased.

  17. Development of welding technique by remote control at the JMTR Hot Laboratory

    International Nuclear Information System (INIS)

    Shimizu, Michio; Iwamatu, Sigemi; Takada, Humiki

    2000-03-01

    Several kinds of welding techniques have been systematically developed using the remote controlled procedures in the JMTR Hot Laboratory. These are as follows, (1) re-instrumentation's of FP gas pressure gauge and thermocouple to an irradiated fuel rod for the centerline temperature measurement, (2) welding of the un-irradiated/irradiated specimen and machining process to produce tensile test specimens, (3) fabrication of Co-60 radiation source from materials for reactivity adjustment in JMTR core, (4) re-capsuling of irradiated materials in the different types of irradiation facilities. These research and development of circumferential and sealed welding for capsuling and welding of irradiated specimen for re-irradiation were implemented under the remote-controlled conditions in the Hot Cell. These techniques will be very indispensable for supporting the irradiation experiments to be conducted in the JMTR. (author)

  18. Dictionary: Welding, cutting and allied processes. Pt. 2

    International Nuclear Information System (INIS)

    Kleiber, A.W.

    1987-01-01

    The dictionary contains approximately 40 000 entries covering all aspects of welding technology. It is based on the evaluation of numerous English, American and German sources. This comprehensive and up to date dictionary will be a reliable and helpful aid in evaluation and translating. The dictionary covers the following areas: Welding: gas welding, arc welding, gas shielded welding, resistance welding, welding of plastics, special welding processes; Cutting: flame cutting, arc cutting and special thermal cutting processes; Soldering: brazing and soldering; Other topics: thermal spraying, metal to metal adhesion, welding filler materials and other consumables, test methods, plant and equipment, accessories, automation, welding trade, general welding terminology. (orig./HP) [de

  19. Automatic welding and cladding in heavy fabrication

    International Nuclear Information System (INIS)

    Altamer, A. de

    1980-01-01

    A description is given of the automatic welding processes used by an Italian fabricator of pressure vessels for petrochemical and nuclear plant. The automatic submerged arc welding, submerged arc strip cladding, pulsed TIG, hot wire TIG and MIG welding processes have proved satisfactory in terms of process reliability, metal deposition rate, and cost effectiveness for low alloy and carbon steels. An example shows sequences required during automatic butt welding, including heat treatments. Factors which govern satisfactory automatic welding include automatic anti-drift rotator device, electrode guidance and bead programming system, the capability of single and dual head operation, flux recovery and slag removal systems, operator environment and controls, maintaining continuity of welding and automatic reverse side grinding. Automatic welding is used for: joining vessel sections; joining tubes to tubeplate; cladding of vessel rings and tubes, dished ends and extruded nozzles; nozzle to shell and butt welds, including narrow gap welding. (author)

  20. Materials participation in welded joints manufacturing

    Science.gov (United States)

    Ghenghea, L. D.

    2016-08-01

    Management of materials dilution to form a joint with higher features asked by complex metallic structures is a problem that took attention and efforts of welding processes researchers and this communication will give a little contribution presenting some scientific and experimental results of dilution processes studied by Welding Research Group from Iasi, Romania, TCM Department. Liquid state welding processes have a strong dependence related to dilution of base and filler materials, the most important are for automatic joining using welding. The paper presents a review of some scientific works already published and their contributions, results of dilution coefficient evaluation using weighing, graphics and software applied for shielded metal arc welding process. Paper results could be used for welders’ qualification, welding procedure specification and other welding processes researchers’ activities. The results of Welding Research Group from Iasi, Romania, TCM Department, show dilution coefficient values between 20-30 % of base material and 70-80 % of filler material for studied welding process.

  1. Gas Shielding Technology for Welding and Brazing

    Science.gov (United States)

    Nunes, Arthur J.; Gradl, Paul R.

    2012-01-01

    Welding is a common method that allows two metallic materials to be joined together with high structural integrity. When joints need to be leak-tight, light-weight, or free of contaminant-trapping seams or surface asperities, welding tends to be specified. There are many welding techniques, each with its own advantages and disadvantages. Some of these techniques include Forge Welding, Gas Tungsten Arc Welding, Friction Stir Welding, and Laser Beam Welding to name a few. Whichever technique is used, the objective is a structural joint that meets the requirements of a particular component or assembly. A key practice in producing quality welds is the use of shielding gas. This article discusses various weld techniques, quality of the welds, and importance of shielding gas in each of those techniques. Metallic bonds, or joints, are produced when metals are put into intimate contact. In the solid-state "blacksmith welding" process, now called Forge Welding (FOW), the site to be joined is pounded into intimate contact. The surfaces to be joined usually need to be heated to make it easier to deform the metal. The surfaces are sprinkled with a flux to melt surface oxides and given a concave shape so that surface contamination can be squeezed out of the joint as the surfaces are pounded together; otherwise the surface contamination would be trapped in the joint and would weaken the weld. In solid-state welding processes surface oxides or other contamination are typically squeezed out of the joint in "flash."

  2. Method for enhanced control of welding processes

    Science.gov (United States)

    Sheaffer, Donald A.; Renzi, Ronald F.; Tung, David M.; Schroder, Kevin

    2000-01-01

    Method and system for producing high quality welds in welding processes, in general, and gas tungsten arc (GTA) welding, in particular by controlling weld penetration. Light emitted from a weld pool is collected from the backside of a workpiece by optical means during welding and transmitted to a digital video camera for further processing, after the emitted light is first passed through a short wavelength pass filter to remove infrared radiation. By filtering out the infrared component of the light emitted from the backside weld pool image, the present invention provides for the accurate determination of the weld pool boundary. Data from the digital camera is fed to an imaging board which focuses on a 100.times.100 pixel portion of the image. The board performs a thresholding operation and provides this information to a digital signal processor to compute the backside weld pool dimensions and area. This information is used by a control system, in a dynamic feedback mode, to automatically adjust appropriate parameters of a welding system, such as the welding current, to control weld penetration and thus, create a uniform weld bead and high quality weld.

  3. MFDC - technological improvement in resistance welding controls

    Energy Technology Data Exchange (ETDEWEB)

    Somani, A.K.; Naga Bhaskar, V.; Chandramouli, J.; Rameshwara Rao, A. [Nuclear Fuel Complex, Dept. of Atomic Energy, Hyderabad (India)

    2008-07-01

    Among the various Resistance Welding operations carried out in the production line of a fuel bundle end plug welding is the most critical operation. Welding controllers play a very vital role in obtaining consistent weld quality by regulating and controlling the weld current. Conventional mains synchronized welding controllers are at best capable of controlling the weld current at a maximum speed of the mains frequency. In view of the very short welding durations involved in the various stages of a fuel bundle fabrication, a need was felt for superior welding controllers. Medium Frequency Welding Controllers offer a solution to these limitations in addition to offering other advantages. Medium Frequency power sources offer precise welding current control as they regulate and correct the welding current faster, typically twenty times faster when operated at 1000Hz. An MFDC was employed on one of the welding machines and its performance was studied. This paper discusses about the various advantages of MFDCs with other controllers employed at NFC to end plug welding operation. (author)

  4. Experimental study on hollow structural component by explosive welding

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Mianjun, E-mail: dmjwl@163.com [PLA University of Science and Technology, Nanjing 210007 (China); Wei, Ling, E-mail: 386006087@qq.com [Tongda College, Nanjing University of Posts and Telecommunication, Nanjing 210007 (China); Hong, Jin [PLA University of Science and Technology, Nanjing 210007 (China); Ran, Hong [Southwestern Institute of Physics, Chengdu 610041 (China); Ma, Rui; Wang, Yaohua [PLA University of Science and Technology, Nanjing 210007 (China)

    2014-12-15

    Highlights: • This paper relates to a study on a thin double-layers hollow structural component by using an explosive welding technology. • This thin double-layer hollow structural component is an indispensable component required for certain core equipment of thermonuclear experimental reactor. • An adjusted explosive welding technology for manufacturing an inconel625 hollow structural component was developed which cannot be made by common technology. • The result shows that a metallurgical bonding was realized by the ribs and slabs of the hollow sheet. • The shearing strength of bonding interface exceeds that of the parent metal. - Abstract: A large thin-walled hollow structural component with sealed channels is required for the vacuum chamber of a thermonuclear experimental reactor, with inconel625 as its fabrication material. This hollow structural component is rarely manufactured by normal machining method, and its manufacture is also problematic in the field of explosive welding. With this in mind, we developed an adjusted explosive welding technology which involves a two-step design, setting and annealing technology. The joints were evaluated using optical microscope and scanning electron microscope, and a mechanical experiment was conducted, involving micro-hardness test, cold helium leak test and hydraulic pressure test. The results showed that a metallurgical bonding was realized by the ribs and slabs, and the shearing strength of the bonding interface exceeded that of the parent metal. Hence, the hollow structural component has a good comprehensive mechanical performance and sealing property.

  5. Experimental study on hollow structural component by explosive welding

    International Nuclear Information System (INIS)

    Duan, Mianjun; Wei, Ling; Hong, Jin; Ran, Hong; Ma, Rui; Wang, Yaohua

    2014-01-01

    Highlights: • This paper relates to a study on a thin double-layers hollow structural component by using an explosive welding technology. • This thin double-layer hollow structural component is an indispensable component required for certain core equipment of thermonuclear experimental reactor. • An adjusted explosive welding technology for manufacturing an inconel625 hollow structural component was developed which cannot be made by common technology. • The result shows that a metallurgical bonding was realized by the ribs and slabs of the hollow sheet. • The shearing strength of bonding interface exceeds that of the parent metal. - Abstract: A large thin-walled hollow structural component with sealed channels is required for the vacuum chamber of a thermonuclear experimental reactor, with inconel625 as its fabrication material. This hollow structural component is rarely manufactured by normal machining method, and its manufacture is also problematic in the field of explosive welding. With this in mind, we developed an adjusted explosive welding technology which involves a two-step design, setting and annealing technology. The joints were evaluated using optical microscope and scanning electron microscope, and a mechanical experiment was conducted, involving micro-hardness test, cold helium leak test and hydraulic pressure test. The results showed that a metallurgical bonding was realized by the ribs and slabs, and the shearing strength of the bonding interface exceeded that of the parent metal. Hence, the hollow structural component has a good comprehensive mechanical performance and sealing property

  6. Cu-Fe welding techniques by electromagnetic and electron beam welding processes

    International Nuclear Information System (INIS)

    Kumar, Satendra; Saroj, P.C.; Kulkarni, M.R.; Sharma, A.; Rajawat, R.K.; Saha, T.K.

    2015-01-01

    Electromagnetic welding being a solid state welding process has been found suitable for welding Copper and Iron which are conventionally very tricky. Owing to good electrical conductivity of both copper and iron, they are best suited combination for EM welding. For the experimental conditions presented above, 1.0 mm wall thickness of Cu tube was lap welded to Fe disc. A heavy duty four disc stainless steel coil was used for electromagnetic welding of samples. MSLD of the welded samples indicated leak proof joints. Metallographic examination of the welds also revealed defect free interfaces. Electron beam welding is also a non-conventional welding process used for joining dissimilar materials. Autogenous welding of the above specimen was carried out by EBW method for the sake of comparison. A characterization analysis of the above mentioned joining processes will be discussed in the paper. (author)

  7. Effect of Welding Parameters on Dilution and Weld Bead Geometry in Cladding

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The effect of pulsed gas metal arc welding (GMAW) variables on the dilution and weld bead geometry in cladding X65 pipeline steel with 316L stainless steel was studied. Using a full factorial method, a series of experiments were carried out to know the effect of wire feed rate, welding speed, distance between gas nozzle and plate, and the vertical angle of welding on dilution and weld bead geometry. The findings indicate that the dilution of weld metal and its dimension i.e. width, height and depth increase with the feed rate, but the contact angle of the bead decreases first and then increases. Meantime, welding speed has an opposite effect except for dilution. There is an interaction effect between welding parameters at the contact angle. The results also show forehand welding or decreasing electrode extension decrease the angle of contact. Finally,a mathematical model is contrived to highlight the relationship between welding variables with dilution and weld bead geometry.

  8. Weld bonding of stainless steel

    DEFF Research Database (Denmark)

    Santos, I. O.; Zhang, Wenqi; Goncalves, V.M.

    2004-01-01

    . The overall assessment of the weld bonding process is made using several commercial adhesives with varying working times under different surface conditions. The quality of the resulting joints is evaluated by means of macroetching observations, tension-shear tests and peel tests. The theoretical investigation......This paper presents a comprehensive theoretical and experimental investigation of the weld bonding process with the purpose of evaluating its relative performance in case of joining stainless steel parts, against alternative solutions based on structural adhesives or conventional spot-welding...... of the process consists of numerical predictions based on the commercial finite element program SORPAS with the purpose of establishing the most favourable parameters that allow spot-welding through the adhesives....

  9. Welding and Production Metallurgy Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This 6000 square foot facility represents the only welding laboratory of its kind within DA. It is capable of conducting investigations associated with solid state...

  10. Thermomechanical Modelling of Resistance Welding

    DEFF Research Database (Denmark)

    Bay, Niels; Zhang, Wenqi

    2007-01-01

    The present paper describes a generic programme for analysis, optimization and development of resistance spot and projection welding. The programme includes an electrical model determining electric current and voltage distribution as well as heat generation, a thermal model calculating heat...

  11. Welding process modelling and control

    Science.gov (United States)

    Romine, Peter L.; Adenwala, Jinen A.

    1993-01-01

    The research and analysis performed, and software developed, and hardware/software recommendations made during 1992 in development of the PC-based data acquisition system for support of Welding Process Modeling and Control is reported. A need was identified by the Metals Processing Branch of NASA Marshall Space Flight Center, for a mobile data aquisition and analysis system, customized for welding measurement and calibration. Several hardware configurations were evaluated and a PC-based system was chosen. The Welding Measurement System (WMS) is a dedicated instrument, strictly for the use of data aquisition and analysis. Although the WMS supports many of the functions associated with the process control, it is not the intention for this system to be used for welding process control.

  12. Welding development for LMFBR applications

    International Nuclear Information System (INIS)

    Slaughter, G.M.; Edmonds, D.P.; Goodwin, G.M.; King, J.F.; Moorhead, A.J.

    1976-01-01

    High-quality welds with suitable properties for long-time elevated-temperature nuclear service are among the most critical needs in today's welding technology. Safe, reliable, and economic generation of future power depends on welded construction in systems such as Liquid Metal Fast Breeder Reactors (LMFBRs). Rapid thermal transients in LMFBR systems at coolant temperatures around 590 to 650 0 C (1000 to 1200 0 F) could cause creep and creep-fatigue damage that is not encountered in lower temperature reactor systems. The undesirable consequences of interaction between the two working fluids - sodium and steam - in the steam generators are also of major concern. Thus sound welds that have excellent reliability over a 30-year service life are essential. Several programs are actively underway at ORNL to satisfy this critical need and selected portions of three of these programs are discussed briefly

  13. Evaluating the Properties of Dissimilar Metal Welding Between Inconel 625 and 316L Stainless Steel by Applying Different Welding Methods and Consumables

    Science.gov (United States)

    Kourdani, Ahmad; Derakhshandeh-Haghighi, Reza

    2018-04-01

    The current work was carried out to characterize welding of Inconel 625 superalloy and 316L stainless steel. In the present study, shielded metal arc welding (SMAW) and gas tungsten arc welding (GTAW) with two types of filler metals (ERNiCrMo-3 and ERSS316L) and an electrode (ENiCrMo-3) were utilized. This paper describes the selection of the proper welding method and welding consumables in dissimilar metal joining. During solidification of ERNiCrMo-3 filler metal, Nb and Mo leave dendritic cores and are rejected to inter-dendritic regions. However, ERSS316L filler metal has small amounts of elements with a high tendency for segregation. So, occurrence of constitutional super-cooling for changing the solidification mode from cellular to dendritic or equiaxed is less probable. Using GTAW with lower heat input results in higher cooling rate and finer microstructure and less Nb segregation. The interface between weld metal and base metal and also unmixed zones was evaluated by scanning electron microscopy and energy dispersive X-ray (EDX) analysis. Microhardness measurements, tensile test, and Charpy impact test were performed to see the effect of these parameters on mechanical properties of the joints.

  14. Laser welding of aluminium alloys

    OpenAIRE

    Forsman, Tomas

    2000-01-01

    This thesis treats laser welding of aluminium alloys from a practical perspective with elements of mathematical analysis. The theoretical work has in all cases been verified experimentally. The aluminium alloys studied are from the 5xxx and 6xxx groups which are common for example in the automotive industry. Aluminium has many unique physical properties. The properties which more than others have been shown to influence the welding process is its high reflection, high thermal conductivity, lo...

  15. Austenitic stainless steel weld inspection

    International Nuclear Information System (INIS)

    Mech, S.J.; Emmons, J.S.; Michaels, T.E.

    1978-01-01

    Analytical techniques applied to ultrasonic waveforms obtained from inspection of austenitic stainless steel welds are described. Experimental results obtained from a variety of geometric and defect reflectors are presented. Specifically, frequency analyses parameters, such as simple moments of the power spectrum, cross-correlation techniques, and adaptive learning network analysis, all represent improvements over conventional time domain analysis of ultrasonic waveforms. Results for each of these methods are presented, and the overall inspection difficulties of austenitic stainless steel welds are discussed

  16. Laser based spot weld characterization

    Science.gov (United States)

    Jonietz, Florian; Myrach, Philipp; Rethmeier, Michael; Suwala, Hubert; Ziegler, Mathias

    2016-02-01

    Spot welding is one of the most important joining technologies, especially in the automotive industry. Hitherto, the quality of spot welded joints is tested mainly by random destructive tests. A nondestructive testing technique offers the benefit of cost reduction of the testing procedure and optimization of the fabrication process, because every joint could be examined. This would lead to a reduced number of spot welded joints, as redundancies could be avoided. In the procedure described here, the spot welded joint between two zinc-coated steel sheets (HX340LAD+Z100MB or HC340LA+ZE 50/50) is heated optically on one side. Laser radiation and flash light are used as heat sources. The melted zone, the so called "weld nugget" provides the mechanical stability of the connection, but also constitutes a thermal bridge between the sheets. Due to the better thermal contact, the spot welded joint reveals a thermal behavior different from the surrounding material, where the heat transfer between the two sheets is much lower. The difference in the transient thermal behavior is measured with time resolved thermography. Hence, the size of the thermal contact between the two sheets is determined, which is directly correlated to the size of the weld nugget, indicating the quality of the spot weld. The method performs well in transmission with laser radiation and flash light. With laser radiation, it works even in reflection geometry, thus offering the possibility of testing with just one-sided accessibility. By using heating with collimated laser radiation, not only contact-free, but also remote testing is feasible. A further convenience compared to similar thermographic approaches is the applicability on bare steel sheets without any optical coating for emissivity correction. For this purpose, a proper way of emissivity correction was established.

  17. Welding of Prosthetic Alloys

    Directory of Open Access Journals (Sweden)

    Wojciechowska M.

    2015-04-01

    Full Text Available This paper presents the techniques of joining metal denture elements, used in prosthetic dentistry: the traditional soldering technique with a gas burner and a new technique of welding with a laser beam; the aim of the study was to make a comparative assessment of the quality of the joints in view of the possibility of applying them in prosthetic structures. Fractographic examinations were conducted along with tensile strength and impact strength tests, and the quality of the joints was assessed compared to the solid metal. The experiments have shown that the metal elements used to make dentures, joined by the technique which employs a laser beam, have better strength properties than those achieved with a gas burner.

  18. Ship construction and welding

    CERN Document Server

    Mandal, Nisith R

    2017-01-01

    This book addresses various aspects of ship construction, from ship types and construction materials, to welding technologies and accuracy control. The contents of the book are logically organized and divided into twenty-one chapters. The book covers structural arrangement with longitudinal and transverse framing systems based on the service load, and explains basic structural elements like hatch side girders, hatch end beams, stringers, etc. along with structural subassemblies like floors, bulkheads, inner bottom, decks and shells. It presents in detail double bottom construction, wing tanks & duct keels, fore & aft end structures, etc., together with necessary illustrations. The midship sections of various ship types are introduced, together with structural continuity and alignment in ship structures. With regard to construction materials, the book discusses steel, aluminum alloys and fiber reinforced composites. Various methods of steel material preparation are discussed, and plate cutting and form...

  19. Size-separated particle fractions of stainless steel welding fume particles - A multi-analytical characterization focusing on surface oxide speciation and release of hexavalent chromium.

    Science.gov (United States)

    Mei, N; Belleville, L; Cha, Y; Olofsson, U; Odnevall Wallinder, I; Persson, K-A; Hedberg, Y S

    2018-01-15

    Welding fume of stainless steels is potentially health hazardous. The aim of this study was to investigate the manganese (Mn) and chromium (Cr) speciation of welding fume particles and their extent of metal release relevant for an inhalation scenario, as a function of particle size, welding method (manual metal arc welding, metal arc welding using an active shielding gas), different electrodes (solid wires and flux-cored wires) and shielding gases, and base alloy (austenitic AISI 304L and duplex stainless steel LDX2101). Metal release investigations were performed in phosphate buffered saline (PBS), pH 7.3, 37°, 24h. The particles were characterized by means of microscopic, spectroscopic, and electroanalytical methods. Cr was predominantly released from particles of the welding fume when exposed in PBS [3-96% of the total amount of Cr, of which up to 70% as Cr(VI)], followed by Mn, nickel, and iron. Duplex stainless steel welded with a flux-cored wire generated a welding fume that released most Cr(VI). Nano-sized particles released a significantly higher amount of nickel compared with micron-sized particle fractions. The welding fume did not contain any solitary known chromate compounds, but multi-elemental highly oxidized oxide(s) (iron, Cr, and Mn, possibly bismuth and silicon). Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Hybrid laser-TIG welding, laser beam welding and gas tungsten arc welding of AZ31B magnesium alloy

    International Nuclear Information System (INIS)

    Liu Liming; Wang Jifeng; Song Gang

    2004-01-01

    Welding of AZ31B magnesium alloy was carried out using hybrid laser-TIG (LATIG) welding, laser beam welding (LBW) and gas tungsten arc (TIG) welding. The weldability and microstructure of magnesium AZ31B alloy welded using LATIG, LBW and TIG were investigated by OM and EMPA. The experimental results showed that the welding speed of LATIG was higher than that of TIG, which was caught up with LBW. Besides, the penetration of LATIG doubles that of TIG, and was four times that of LBW. In addition, arc stability was improved in hybrid of laser-TIG welding compared with using the TIG welding alone, especially at high welding speed and under low TIG current. It was found that the heat affect zone of joint was only observed in TIG welding, and the size of grains in it was evidently coarse. In fusion zone, the equiaxed grains exist, whose size was the smallest welded by LBW, and was the largest by TIG welding. It was also found that Mg concentration of the fusion zone was lower than that of the base one by EPMA in three welding processes

  1. Effects of post weld heat treatment and weld overlay on the residual stress and mechanical properties in dissimilar metal weld

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Wagner R.C.; Ribeiro, Vladimir S.; Vilela, Alisson H.F.; Almeida, Camila R.O.; Rabello, Emerson G., E-mail: wrcc@cdtn.br, E-mail: camilarezende.cr@gmail.com, E-mail: egr@cdtn.br, E-mail: vladimirsoler@hotmail.com, E-mail: ahfv02@outlook.com [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    The object of this work is a dissimilar metal weld (DMW) pipe joint between carbon steel (A-106 Gr B) and stainless steel (A-312 TP316L) pipes and filler metals of Nickel alloy (82/182), which find wide application in the field of chemical, oil, petroleum industries, fossil fuel and nuclear power plant. A lot of the failures that have occurred in dissimilar metal welded are affected greatly by residual stresses. Residual stress is often a cause of premature failure of critical components under normal operation of welded components. Several methods have been tested and developed for removing the tensile residual stresses. The aim of the methods is to reduce the tensile stress state or to create compressive stresses at a predefined area, such as the inner surface of a welded pipe joint. Post weld heat treatment (PWHT) and weld overlay (WOL) are two of the residual stress mitigation methods which reduce the tensile residual stress, create compressive stresses and arrest crack initiation and crack growth. The technique used to substantially minimized or eliminated this failure development in the root weld is the post weld heat treatments (stress relief heat treatment) or the weld overlay. In this work was studied the effectiveness in reducing internal residual stress in dissimilar metal welded pipe joints subjected to post weld heat treatment and weld overlay, measurement by hole-drilling strain-gage method of stress relaxation. Also held was mechanical characterization of the welded pipe joint itself. (author)

  2. Effects of post weld heat treatment and weld overlay on the residual stress and mechanical properties in dissimilar metal weld

    International Nuclear Information System (INIS)

    Campos, Wagner R.C.; Ribeiro, Vladimir S.; Vilela, Alisson H.F.; Almeida, Camila R.O.; Rabello, Emerson G.

    2017-01-01

    The object of this work is a dissimilar metal weld (DMW) pipe joint between carbon steel (A-106 Gr B) and stainless steel (A-312 TP316L) pipes and filler metals of Nickel alloy (82/182), which find wide application in the field of chemical, oil, petroleum industries, fossil fuel and nuclear power plant. A lot of the failures that have occurred in dissimilar metal welded are affected greatly by residual stresses. Residual stress is often a cause of premature failure of critical components under normal operation of welded components. Several methods have been tested and developed for removing the tensile residual stresses. The aim of the methods is to reduce the tensile stress state or to create compressive stresses at a predefined area, such as the inner surface of a welded pipe joint. Post weld heat treatment (PWHT) and weld overlay (WOL) are two of the residual stress mitigation methods which reduce the tensile residual stress, create compressive stresses and arrest crack initiation and crack growth. The technique used to substantially minimized or eliminated this failure development in the root weld is the post weld heat treatments (stress relief heat treatment) or the weld overlay. In this work was studied the effectiveness in reducing internal residual stress in dissimilar metal welded pipe joints subjected to post weld heat treatment and weld overlay, measurement by hole-drilling strain-gage method of stress relaxation. Also held was mechanical characterization of the welded pipe joint itself. (author)

  3. Influence of Welding Process and Post Weld Heat Treatment on Microstructure and Pitting Corrosion Behavior of Dissimilar Aluminium Alloy Welds

    Science.gov (United States)

    Venkata Ramana, V. S. N.; Mohammed, Raffi; Madhusudhan Reddy, G.; Srinivasa Rao, K.

    2018-03-01

    Welding of dissimilar Aluminum alloy welds is becoming important in aerospace, shipbuilding and defence applications. In the present work, an attempt has been made to weld dissimilar aluminium alloys using conventional gas tungsten arc welding (GTAW) and friction stir welding (FSW) processes. An attempt was also made to study the effect of post weld heat treatment (T4 condition) on microstructure and pitting corrosion behaviour of these welds. Results of the present investigation established the differences in microstructures of the base metals in T4 condition and in annealed conditions. It is evident that the thickness of the PMZ is relatively more on AA2014 side than that of AA6061 side. In FS welds, lamellar like shear bands are well noticed on the top of the stir zone. The concentration profile of dissimilar friction stir weld in T4 condition revealed that no diffusion has taken place at the interface. Poor Hardness is observed in all regions of FS welds compared to that of GTA welds. Pitting corrosion resistance of the dissimilar FS welds in all regions was improved by post weld heat treatment.

  4. Study on Laser Welding Process Monitoring Method

    OpenAIRE

    Knag , Heeshin

    2017-01-01

    International audience; In this paper, a study of quality monitoring technology for the laser welding was conducted. The laser welding and the industrial robotic systems were used with robot-based laser welding systems. The laser system used in this study was 1.6 kW fiber laser, while the robot system was Industrial robot (pay-load : 130 kg). The robot-based laser welding system was equipped with a laser scanner system for remote laser welding. The welding joints of steel plate and steel plat...

  5. Study on Laser Welding Process Monitoring Method

    OpenAIRE

    Heeshin Knag

    2016-01-01

    In this paper, a study of quality monitoring technology for the laser welding was conducted. The laser welding and the industrial robotic systems were used with robot-based laser welding systems. The laser system used in this study was 1.6 kW fiber laser, while the robot system was Industrial robot (pay-load : 130 kg). The robot-based laser welding system was equipped with a laser scanner system for remote laser welding. The welding joints of steel plate and steel plate coated with zinc were ...

  6. Automatic Control Of Length Of Welding Arc

    Science.gov (United States)

    Iceland, William F.

    1991-01-01

    Nonlinear relationships among current, voltage, and length stored in electronic memory. Conceptual microprocessor-based control subsystem maintains constant length of welding arc in gas/tungsten arc-welding system, even when welding current varied. Uses feedback of current and voltage from welding arc. Directs motor to set position of torch according to previously measured relationships among current, voltage, and length of arc. Signal paths marked "calibration" or "welding" used during those processes only. Other signal paths used during both processes. Control subsystem added to existing manual or automatic welding system equipped with automatic voltage control.

  7. Nuclear fuel rod end plug weld inspection

    International Nuclear Information System (INIS)

    Parker, M. A.; Patrick, S. S.; Rice, G. F.

    1985-01-01

    Apparatus and method for testing TIG (tungsten inert gas) welds of end plugs on a sealed nuclear reactor fuel rod. An X-ray fluorescent spectrograph testing unit detects tungsten inclusion weld defects in the top end plug's seal weld. Separate ultrasonic weld inspection system testing units test the top end plug's seal and girth welds and test the bottom end plug's girth weld for penetration, porosity and wall thinning defects. The nuclear fuel rod is automatically moved into and out from each testing unit and is automatically transported between the testing units by rod handling devices. A controller supervises the operation of the testing units and the rod handling devices

  8. Welding wires for high-tensile steels

    International Nuclear Information System (INIS)

    Laz'ko, V.E.; Starova, L.L.; Koval'chuk, V.G.; Maksimovich, T.L.; Labzina, I.E.; Yadrov, V.M.

    1993-01-01

    Strength of welded joints in arc welding of high-tensile steels of mean and high thickness by welding wires is equal to approximately 1300 MPa in thermohardened state and approximately 600 MPa without heat treatment. Sv-15Kh2NMTsRA-VI (EhK44-VI) -Sv-30Kh2NMTsRA-VI (EkK47-VI) welding wires are suggested for welding of medium-carbon alloyed steels. These wires provide monotonous growth of ultimate strength of weld metal in 1250-1900 MPa range with increase of C content in heat-treated state

  9. The role of nitrogen in improving pitting corrosion resistance of high-alloy austenitic and duplex stainless steel welds

    International Nuclear Information System (INIS)

    Vilpas, M.; Haenninen, H.

    1999-01-01

    The effects of nitrogen alloyed shielding gas on weld nitrogen content and pitting corrosion resistance of super austenitic (6%Mo) and super duplex stainless steels have been studied with special emphasis on microsegregation behaviour of Cr, Mo and N. The measurements performed with the 6%Mo steel indicate that all these elements segregate interdendritically in the fully austenitic weld metal. With nitrogen addition to the shielding gas the enrichment of nitrogen to the interdendritic regions is more pronounced than to the dendrite cores due to which the pitting corrosion resistance of the dendrite cores increases only marginally. In the super duplex steel welds nitrogen enriches in austenite increasing its pitting corrosion resistance more effectively. In these welds the pitting corrosion resistance of the ferrite phase remains lower. (orig.)

  10. Upgraded HFIR Fuel Element Welding System

    International Nuclear Information System (INIS)

    Sease, John D.

    2010-01-01

    The welding of aluminum-clad fuel plates into aluminum alloy 6061 side plate tubing is a unique design feature of the High Flux Isotope Reactor (HFIR) fuel assemblies as 101 full-penetration circumferential gas metal arc welds (GMAW) are required in the fabrication of each assembly. In a HFIR fuel assembly, 540 aluminum-clad fuel plates are assembled into two nested annular fuel elements 610 mm (24-inches) long. The welding process for the HFIR fuel elements was developed in the early 1960 s and about 450 HFIR fuel assemblies have been successfully welded using the GMAW process qualified in the 1960 s. In recent years because of the degradation of the electronic and mechanical components in the old HFIR welding system, reportable defects in plate attachment or adapter welds have been present in almost all completed fuel assemblies. In October 2008, a contract was awarded to AMET, Inc., of Rexburg, Idaho, to replace the old welding equipment with standard commercially available welding components to the maximum extent possible while maintaining the qualified HFIR welding process. The upgraded HFIR welding system represents a major improvement in the welding system used in welding HFIR fuel elements for the previous 40 years. In this upgrade, the new inner GMAW torch is a significant advancement over the original inner GMAW torch previously used. The innovative breakthrough in the new inner welding torch design is the way the direction of the cast in the 0.762 mm (0.030-inch) diameter aluminum weld wire is changed so that the weld wire emerging from the contact tip is straight in the plane perpendicular to the welding direction without creating any significant drag resistance in the feeding of the weld wire.

  11. Development of technique for laser welding of biological tissues using laser welding device and nanocomposite solder.

    Science.gov (United States)

    Gerasimenko, A; Ichcitidze, L; Podgaetsky, V; Ryabkin, D; Pyankov, E; Saveliev, M; Selishchev, S

    2015-08-01

    The laser device for welding of biological tissues has been developed involving quality control and temperature stabilization of weld seam. Laser nanocomposite solder applied onto a wound to be weld has been used. Physicochemical properties of the nanocomposite solder have been elucidated. The nature of the tissue-organizing nanoscaffold has been analyzed at the site of biotissue welding.

  12. Welding of Thin Steel Plates by Hybrid Welding Process Combined TIG Arc with YAG Laser

    Science.gov (United States)

    Kim, Taewon; Suga, Yasuo; Koike, Takashi

    TIG arc welding and laser welding are used widely in the world. However, these welding processes have some advantages and problems respectively. In order to improve problems and make use of advantages of the arc welding and the laser welding processes, hybrid welding process combined the TIG arc with the YAG laser was studied. Especially, the suitable welding conditions for thin steel plate welding were investigated to obtain sound weld with beautiful surface and back beads but without weld defects. As a result, it was confirmed that the shot position of the laser beam is very important to obtain sound welds in hybrid welding. Therefore, a new intelligent system to monitor the welding area using vision sensor is constructed. Furthermore, control system to shot the laser beam to a selected position in molten pool, which is formed by TIG arc, is constructed. As a result of welding experiments using these systems, it is confirmed that the hybrid welding process and the control system are effective on the stable welding of thin stainless steel plates.

  13. TECHNOLOGICAL ISSUES IN MECHANISED FEED WIG/TIG WELDING SURFACING OF WELDING

    Directory of Open Access Journals (Sweden)

    BURCA Mircea

    2016-09-01

    manual welding tests in the light of using the process for welding surfacing being known that in such applications mechanised operations are recommended whenever possible given the latter strengths i.e. increased productivity and quality deposits. The research also aims at achieving a comparative a study between wire mechanised feed based WIG manual welding and the manual rod entry based manual welding in terms of geometry deposits, deposits aesthetics, operating technique, productivity, etc . In this regard deposits were made by means of two welding procedures, and subsequently welding surfacing was made with the optimum values of the welding parameters in this case.

  14. Nitrogen And Oxygen Amount In Weld After Welding With Micro-Jet Cooling

    Directory of Open Access Journals (Sweden)

    Węgrzyn T.

    2015-06-01

    Full Text Available Micro-jet cooling after welding was tested only for MIG welding process with argon, helium and nitrogen as a shielded gases. A paper presents a piece of information about nitrogen and oxygen in weld after micro-jet cooling. There are put down information about gases that could be chosen both for MIG/MAG welding and for micro-jet process. There were given main information about influence of various micro-jet gases on metallographic structure of steel welds. Mechanical properties of weld was presented in terms of nitrogen and oxygen amount in WMD (weld metal deposit.

  15. Mechanical and electrochemical characteristics with welding materials in robotic MIG welding of dissimilar Al alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seong Jong; Han, Min Su; Woo, Yong Bin [Mokpo Maritime Univ., Mokpo (Korea, Republic of)

    2013-05-15

    In this study, mechanical and electrochemical characteristics with welding material in MIG welded with ROBOT for dissimilar Al alloys were investigated using various experiment methods. The MIG welding by ROBOT with ER5183 and ER5556 for the 5456-H116 and 6061-T6 Al alloy were carried out. The hardness of welding zone was lower than that of base metal. In electrochemical experiment, ER5183 welding material presented excellent characteristics. The yield strength and maximum tensile strength in welding with welding material of ER5183 presented lower value than those of ER5556. The elongation and time-to-fracture showed the opposite results.

  16. Experimental and simulated strength of spot welds

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Bennedbæk, Rune A.K.; Larsen, Morten B.

    2014-01-01

    Weld strength testing of single spots in DP600 steel is presented for the three typical testing procedures, i.e. tensile-shear, cross-tension and peel testing. Spot welds are performed at two sets of welding parameters and strength testing under these conditions is presented by load......-elongation curves revealing the maximum load and the elongation at break. Welding and strength testing is simulated by SORPAS® 3D, which allows the two processes to be prepared in a combined simulation, such that the simulated welding properties are naturally applied to the simulation of strength testing. Besides...... the size and shape of the weld nugget, these properties include the new strength of the material in the weld and the heat affected zone based on the predicted hardness resulting from microstructural phase changes simulated during cooling of the weld before strength testing. Comparisons between overall...

  17. Automatic monitoring of vibration welding equipment

    Science.gov (United States)

    Spicer, John Patrick; Chakraborty, Debejyo; Wincek, Michael Anthony; Wang, Hui; Abell, Jeffrey A; Bracey, Jennifer; Cai, Wayne W

    2014-10-14

    A vibration welding system includes vibration welding equipment having a welding horn and anvil, a host device, a check station, and a robot. The robot moves the horn and anvil via an arm to the check station. Sensors, e.g., temperature sensors, are positioned with respect to the welding equipment. Additional sensors are positioned with respect to the check station, including a pressure-sensitive array. The host device, which monitors a condition of the welding equipment, measures signals via the sensors positioned with respect to the welding equipment when the horn is actively forming a weld. The robot moves the horn and anvil to the check station, activates the check station sensors at the check station, and determines a condition of the welding equipment by processing the received signals. Acoustic, force, temperature, displacement, amplitude, and/or attitude/gyroscopic sensors may be used.

  18. Advances in welding science and technology

    International Nuclear Information System (INIS)

    David, S.A.; Babu, S.S.; Vitek, J.M.

    1995-01-01

    Over the years, welding has been more of an art than a science, but in the last few decades major advances have taken place in welding science and technology. With the development of new methodologies at the crossroads of basic and applied sciences, enormous opportunities and potential exist to develop a science-based design of composition, structure, and properties of welds with intelligent control and automation of the welding processes. In the last several decades, welding has evolved as an interdisciplinary activity requiring synthesis of knowledge from various disciplines and incorporating the most advanced tools of various basic applied sciences. A series of international conferences and other publications have covered the issues, current trends and directions in welding science and technology. In the last few decades, major progress has been made in (i) understanding physical processes in welding, (ii) characterization of microstructure and properties, and (iii) intelligent control and automation of welding. This paper describes some of these developments

  19. Physical bases for diffusion welding processes optimization

    International Nuclear Information System (INIS)

    Bulygina, S.M.; Berber, N.N.; Mukhambetov, D.G.

    1999-01-01

    One of wide-spread method of different materials joint is diffusion welding. It has being brought off at the expense of mutual diffusion of atoms of contacting surfaces under long-duration curing at its heating and compression. Welding regime in dependence from properties of welding details is defining of three parameters: temperature, pressure, time. Problem of diffusion welding optimization concludes in determination less values of these parameters, complying with requirements for quality of welded joint. In the work experiments on diffusion welding for calculated temperature and for given surface's roughness were carried out. Tests conduct on samples of iron and iron-nickel alloy with size 1·1·1 cm 3 . Optimal regime of diffusion welding of examined samples in vacuum is defined. It includes compression of welding samples, heating, isothermal holding at temperature 650 deg C during 0.5 h and affords the required homogeneity of joint

  20. Laser-GMA Hybrid Pipe Welding System

    National Research Council Canada - National Science Library

    Reutzel, Edward W; Kern, Ludwig; Sullivan, Michael J; Tressler, Jay F; Avalos, Juan

    2007-01-01

    The combination of laser welding with conventional gas metal arc welding technology offers substantial increases in production rate of joining pipe through single-pass joining compared to multi-pass...

  1. Repair welding of fusion reactor components

    International Nuclear Information System (INIS)

    Chin, B.A.

    1993-01-01

    Experiments have shown that irradiated Type 316 stainless steel is susceptible to heat-affected-zone (HAZ) cracking upon cooling when welded using the gas tungsten arc (GTA) process under lateral constraint. The cracking has been hypothesized to be caused by stress-assisted helium bubble growth and rupture at grain boundaries. This study utilized an experimental welding setup which enabled different compressive stresses to be applied to the plates during welding. Autogenous GTA welds were produced in Type 316 stainless steel doped with 256 appm helium. The application of a compressive stress, 55 MPa, during welding suppressed the previously observed catastrophic cracking. Detailed examinations conducted after welding showed a dramatic change in helium bubble morphology. Grain boundary bubble growth along directions parallel to the weld was suppressed. Results suggest that stress-modified welding techniques may be used to suppress or eliminate helium-induced cracking during joining of irradiated materials

  2. Interpretation of aluminum-alloy weld radiography

    Science.gov (United States)

    Duren, P. C.; Risch, E. R.

    1971-01-01

    Report proposes radiographic terminology standardization which allows scientific interpretation of radiographic films to replace dependence on individual judgement and experience. Report includes over 50 photographic pages where radiographs of aluminum welds with defects are compared with prepared weld sections photomacrographs.

  3. Nickel-base alloy overlay weld with improved ultrasonic flaw detection by magnetic stirring welding

    International Nuclear Information System (INIS)

    Takashi, Hirano; Kenji, Hirano; Masayuki, Watando; Takahiro, Arakawa; Minoru, Maeda

    2001-01-01

    Ultrasonic flaw detection is more difficult in Nickel-base alloy welds containing dendrites owing to the decrease ultrasonic transmissibility they cause. The present paper discusses application of magnetic stirring welding as a means for reducing dendrite growth with consequent improvement in ultrasonic transmissibility. Single pass and multi-pass welding tests were conducted to determine optimal welding conditions. By PT and macro observation subsequent to welding was carried out, optimal operation conditions were clarified. Overlay welding tests and UT clearly indicated ultrasonic beam transmissibility in overlay welds to be improved and detection capacity to be greater through application of magnetic stirring welding. Optimal operation conditions were determined based on examination of temper bead effects in the heat affected zone of low alloy steel by application of magnetic stirring welding to the butt welded joints between low alloy and stainless steel. Hardness in this zone of low alloy steel after the fourth layer was less than 350 HV. (author)

  4. Modeling of welded bead profile for rapid prototyping by robotic MAG welding

    Institute of Scientific and Technical Information of China (English)

    CAO Yong; ZHU Sheng; WANG Tao; WANG Wanglong

    2009-01-01

    As a deposition technology, robotic metal active gas(MAG) welding has shown new promise for rapid prototyping (RP) of metallic parts. During the process of metal forming using robotic MAG welding, sectional profile of single-pass welded bead is critical to formed accuracy and quality of metal pans. In this paper, the experiments of single-pass welded bead for rapid prototyping using robotic MAG welding were carried out. The effect of some edge detectors on the cross-sectional edge of welded bead was discussed and curve fitting was applied using leat square fitting. Consequently, the mathematical model of welded bead profile was developed. The experimental results show that good shape could be obtained under suitable welding parameters. Canny operawr is suitable to edge detection of welded bead profile, and the mathematical model of welded bead profile developed is approximately parabola.

  5. The effects of welded joint characteristics on its properties in HDPE thermal fusion welding

    Science.gov (United States)

    Dai, Hongbin; Peng, Jun

    2017-05-01

    In this paper, PE100 pipes with the diameter of 200 mm and the thickness of 11.9 mm were used as material. The welded joints were obtained in different welding pressures with the optimal welding temperature of 220∘C. Reheating process on the welded joints with the temperature of 130∘C was carried out. The joints exhibited X-type, and the cause of X-type joints was discussed. The temperature field in the forming process of welded joints was measured, and tensile and bending tests on welded joints were carried out. The fracture surface of welded joints was observed by scanning electron microscopy (SEM), and crystallinity calculation was taken by X-ray diffraction (XRD). The mechanism of X-type weld profile effects on welded joints properties was analyzed. It was concluded that the mechanical properties of welded joints decrease with the reduced X distance between lines.

  6. Fusion welding of thin metal foils

    International Nuclear Information System (INIS)

    Casey, H.

    1975-01-01

    Aspects of fusion welding of thin metal foils are reviewed and the current techniques employed at LASL to join foils are described. Techniques for fusion welding approximately 0.025-mm-thick foils of copper, aluminum, and stainless steels have been developed using both electron beam and laser welding equipment. These techniques, together with the related aspects of joint design, tooling and fixturing, joint preparation, and modifications to the commercially available welding equipment, are included in the review. (auth)

  7. Characterization of duplex stainless steel weld metals obtained by hybrid plasma-gas metal arc welding

    OpenAIRE

    Yurtisik,Koray; Tirkes,Suha; Dykhno,Igor; Gur,C. Hakan; Gurbuz,Riza

    2013-01-01

    Despite its high efficiency, autogenous keyhole welding is not well-accepted for duplex stainless steels because it causes excessive ferrite in as-welded duplex microstructure, which leads to a degradation in toughness and corrosion properties of the material. Combining the deep penetration characteristics of plasma arc welding in keyhole mode and metal deposition capability of gas metal arc welding, hybrid plasma - gas metal arc welding process has considered for providing a proper duplex mi...

  8. Corrosion Behavior of Arc Weld and Friction Stir Weld in Al 6061-T6 Alloys

    International Nuclear Information System (INIS)

    Yoon, Byoung Hyun; Kim, Heung Ju; Chang, Woong Seong; Kweon, Young Gak

    2006-01-01

    For the evaluation of corrosion resistance of Al 6061-T6 Alloy, Tafel method and immersion test was performed with Friction Stir Weld(FSW) and Gas Metal Arc Weld(GMAW). The Tafel and immersion test results indicated that GMA weld was severely attacked compared with those of friction stir weld. It may be mainly due to the galvanic corrosion mechanism act on the GMA weld

  9. 46 CFR 154.665 - Welding procedures.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Welding procedures. 154.665 Section 154.665 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS... Construction § 154.665 Welding procedures. Welding procedure tests for cargo tanks for a design temperature...

  10. 49 CFR 195.224 - Welding: Weather.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Welding: Weather. 195.224 Section 195.224 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.224 Welding: Weather. Welding must be protected from weather conditions that...

  11. 49 CFR 179.100-9 - Welding.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Welding. 179.100-9 Section 179.100-9... Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.100-9 Welding. (a) All..., appendix W (IBR, see § 171.7 of this subchapter). Welding procedures, welders and fabricators shall be...

  12. 49 CFR 179.400-11 - Welding.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Welding. 179.400-11 Section 179.400-11...-11 Welding. (a) Except for closure of openings and a maximum of two circumferential closing joints in... subchapter). (d) Each welding procedure, welder, and fabricator must be approved. [Amdt. 179-32, 48 FR 27708...

  13. 49 CFR 179.200-10 - Welding.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Welding. 179.200-10 Section 179.200-10... Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.200-10 Welding. (a) All joints... W (IBR, see § 171.7 of this subchapter). Welding procedures, welders and fabricators shall be...

  14. 49 CFR 179.11 - Welding certification.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Welding certification. 179.11 Section 179.11 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY... Design Requirements § 179.11 Welding certification. (a) Welding procedures, welders and fabricators shall...

  15. 30 CFR 75.1729 - Welding operations.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Welding operations. 75.1729 Section 75.1729 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1729 Welding operations. Welding...

  16. 30 CFR 77.408 - Welding operations.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Welding operations. 77.408 Section 77.408 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... for Mechanical Equipment § 77.408 Welding operations. Welding operations shall be shielded and the...

  17. 49 CFR 179.220-10 - Welding.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Welding. 179.220-10 Section 179.220-10... Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-10 Welding. (a) All joints... of this subchapter). Welding procedures, welders, and fabricators shall be approved. (b) Radioscopy...

  18. Welding metallurgy of austenitic stainless steels

    International Nuclear Information System (INIS)

    Ibrahim, A.N.

    1983-01-01

    Austenitic stainless steels welds are commonly found in nuclear reactor systems. The macrostructure and the transformation of delta -phase into γ - phase which occur during rapid solidification of such welds are discussed. Finally, several types of defects which are derived from the welding operation, particularly defects of crack type, are also discussed in brief. (author)

  19. Low Speed Control for Automatic Welding

    Science.gov (United States)

    Iceland, W. E.

    1982-01-01

    Amplifier module allows rotating positioner of automatic welding machine to operate at speeds below normal range. Low speeds are precisely regulated by a servomechanism as are normal-range speeds. Addition of module to standard welding machine makes it unnecessary to purchase new equipment for low-speed welding.

  20. New process for weld metal reliability

    International Nuclear Information System (INIS)

    Hebel, A.G.

    1985-01-01

    The industry-wide nature of weld cracking alerts one to the possibility that there is a fundamental law being overlooked. And in overlooking this law, industry is unable to counteract it. That law mandates that restraint during welding causes internal stress; internal stress causes weld metal to crack. Component restraint during welding, according to the welding standard, is the major cause of weld metal failures. When the metal working industry accepts this fact and begins to counter the effects of restraint, the number of weld failures experienced fall dramatically. Bonal Technologies, inc., of Detroit, has developed the first consistently effective non-thermal process to relieve stress caused by restraint during welding. Bonal's patented Mets-Lax sub-resonant stress relief acts as a restraint neutralizer when used during welding. Meta-Lax weld conditioning produces a finer more uniform weld grain structure. A finer, more uniform grain structure is a clear metallurgical indication of improved mechanical weld properties. Other benefits like less internal stress, and less warpage are also achieved

  1. Resistance welding equipment manufacturing capability for exports

    Energy Technology Data Exchange (ETDEWEB)

    Sastry, V.S.; Raju, Y.S.; Somani, A.K.; Setty, D.S.; Rameswara Raw, A.; Hermantha Rao, G.V.S.; Jayaraj, R.N. [Nuclear Fuel Complex, Dept. of Atomic Energy, Hyderbad (India)

    2010-07-01

    Indian Pressurised Heavy Water Reactor (PHWR) fuel bundle is fully welded and is unique in its design. Appendage welding, end closure welding, and end plate welding is carried out using resistance welding technique. Out of many joining processes available, resistance-welding process is reliable, environment friendly and best suitable for mass production applications. Nuclear Fuel Complex (NFC), an industrial unit is established in Hyderabad, under the aegis of the Dept of Atomic Energy to manufacture fuel for Pressurised Heavy Water Reactors. From inception, NFC has given importance for self-reliance and indigenization with respect to manufacturing process and equipment. Sintering furnaces, centreless grinders, appendage-welding machines, end-closure welding equipment and end-plate welding equipments, which were initially imported, are either indigenized or designed and manufactured in house. NFC has designed, manufactured a new appendage-welding machine for manufacturing 37 element fuel bundles. Recently NFC has bagged an order from IAEA through international bidding for design, manufacture, supply, erection and commissioning of end-closure welding equipment. The paper gives in detail the salient features of these welding equipment. (author)

  2. Fracture toughness of stainless steel welds

    International Nuclear Information System (INIS)

    Mills, W.J.

    1985-11-01

    The effects of temperature, composition and weld-process variations on the fracture toughness behavior for Types 308 and 16-8-2 stainless steel (SS) welds were examined using the multiple-specimen J/sub R/-curve procedure. Fracture characteristics were found to be dependent on temperature and weld process but not on filler material. Gas-tungsten-arc (GTA) welds exhibited the highest fracture toughness, a shielded metal-arc (SMA) weld exhibited an intermediate toughness and submerged-arc (SA) welds yielded the lowest toughness. Minimum-expected fracture properties were defined from lower-bound J/sub c/ and tearing modulus values generated here and in previous studies. Fractographic examination revealed that microvoid coalescence was the operative fracture mechanism for all welds. Second phase particles of manganese silicide were found to be detrimental to the ductile fracture behavior because they separated from the matrix during the initial stages of plastic straining. In SA welds, the high density of inclusions resulting from silicon pickup from the flux promoted premature dimple rupture. The weld produced by the SMA process contained substantially less manganese silicide, while GTA welds contained no silicide inclusions. Delta ferrite particles present in all welds were substantially more resistant to local failure than the silicide phase. In welds containing little or no manganese silicide, delta ferrite particles initiated microvoid coalescence but only after extensive plastic straining

  3. Multipass welding of nuclear reactor components - computations

    International Nuclear Information System (INIS)

    Hedblom, E.

    2002-01-01

    The finite element method is used to compare different welding procedures. The simulations are compared with measurements. Two different geometries and two different welding procedures are evaluated. It is found that a narrow gap weld gives smaller tensile residual axial stresses on the inside of the pipe. This is believed to reduce the risk for intergranular stress corrosion cracking

  4. Performance of mesh seam welds in tailor welded blanks; Terado blank yo mash seam yosetsubu no tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Uchihara, M; Takahashi, M; Kurita, M; Hirose, Y; Fukui, K [Sumitomo Metal Industries, Ltd., Osaka (Japan)

    1997-10-01

    Formability, fatigue properties and corrosion behavior of mash seam welded steel sheets were investigated and the results were compared with laser weld. The stretch formability of mash seam weld and laser weld were same level. Mash seam weld however, showed slightly smaller formability in hole expansion test. The fatigue strength of mash seam welds was lower than that of laser welds in case of differential thickness joints. Corrosion was apt to initiate at weld in both mash seam and laser weld with E-coat. The corrosion resistance of welds was improved by using zinc coated steel. 3 refs., 14 figs., 2 tabs.

  5. Advances in automatic welding control

    International Nuclear Information System (INIS)

    White, D.; Woodacre, A.; Taylor, A.F.

    1972-01-01

    The development at the Reactor Fuel Element Laboratories, UKAEA Springfields, of a computer-based welding process control system, was aimed initially at the TIG welding of the end seals of nuclear fuel elements. The system provides for mixed multi-station operation with on-line real-time capability and can be used either as a research tool or for production requirements at competitive costs. The operation of the control system, the form of power source, and the servo motor control units are described. Typically, continuous or pulse-arc welding sequences can be digitally programmed on 0.1 sec increments, with current in 0.5 A increments up to a maximum of 256 A; up to three servo motors can be operated with speeds selected in 0.1 percent increments of their maximum. Up to six welding parameters can be monitored digitally at speeds from once every 10 msec. Some applications are described and it is shown that the equipment has wider uses outside the nuclear fuel element field. High quality industrial welding requirements can also be met and the system is not limited to the TIG process

  6. Advances in automatic welding control

    International Nuclear Information System (INIS)

    White, D.; Woodacre, A.; Taylor, A.F.

    1972-01-01

    The development at the Reactor Fuel Element Laboratories, UKAEA Springfields, of a computer-based welding process control system, was aimed initially at the TIG welding of the end seals of nuclear fuel elements. The system provides for mixed multi-station operation with on-line real-time capability and can be used either as a research tool or for production requirements at competitive costs. The operation of the control system, the form of power source and servo motor control units are described. Typically, continuous or pulse-arc welding sequences can be digitally programmed on 0.1 sec increments, with current in 0.5 A increments up to a maximum of 256 A; up to three servo motors can be operated with speeds selected in 0.1% increments of their maximum. Up to six welding parameters can be monitored digitally at speeds from once every 10 msec. Some applications are described and it is shown that the equipment has wider uses outside the nuclear fuel element field. High quality industrial welding requirements can also be met and the system is not limited to the TIG process. (author)

  7. Laser weld process monitoring and control using chromatic filtering of thermal radiation from a weld pool

    International Nuclear Information System (INIS)

    Kim, Cheol Jung; Kim, Min Suk; Baik, Sung Hoon; Chung, Chin Man

    2000-06-01

    The application of high power Nd: YAG lasers for precision welding in industry has been growing quite fast these days in diverse areas such as the automobile, the electronics and the aerospace industries. These diverse applications also require the new developments for the precise control and the reliable process monitoring. Due to the hostile environment in laser welding, a remote monitoring is required. The present development relates in general to weld process monitoring techniques, and more particularly to improved methods and apparatus for real-time monitoring of thermal radiation of a weld pool to monitor a size variation and a focus shift of the weld pool for weld process control, utilizing the chromatic aberration of focusing lens or lenses. The monitoring technique of the size variation and the focus shift of a weld pool is developed by using the chromatic filtering of the thermal radiation from a weld pool. The monitoring of weld pool size variation can also be used to monitor the weld depth in a laser welding. Furthermore, the monitoring of the size variation of a weld pool is independent of the focus shift of a weld pool and the monitoring of the focus shift of a weld pool is independent of the size variation of a weld pool

  8. Laser weld process monitoring and control using chromatic filtering of thermal radiation from a weld pool

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Cheol Jung; Kim, Min Suk; Baik, Sung Hoon; Chung, Chin Man

    2000-06-01

    The application of high power Nd: YAG lasers for precision welding in industry has been growing quite fast these days in diverse areas such as the automobile, the electronics and the aerospace industries. These diverse applications also require the new developments for the precise control and the reliable process monitoring. Due to the hostile environment in laser welding, a remote monitoring is required. The present development relates in general to weld process monitoring techniques, and more particularly to improved methods and apparatus for real-time monitoring of thermal radiation of a weld pool to monitor a size variation and a focus shift of the weld pool for weld process control, utilizing the chromatic aberration of focusing lens or lenses. The monitoring technique of the size variation and the focus shift of a weld pool is developed by using the chromatic filtering of the thermal radiation from a weld pool. The monitoring of weld pool size variation can also be used to monitor the weld depth in a laser welding. Furthermore, the monitoring of the size variation of a weld pool is independent of the focus shift of a weld pool and the monitoring of the focus shift of a weld pool is independent of the size variation of a weld pool.

  9. A Comparative Study of Welded ODS Cladding materials for AFCI/GNEP Applications

    Energy Technology Data Exchange (ETDEWEB)

    Indrajit Charit; Megan Frary; Darryl Butt; K.L. Murty; Larry Zirker; James Cole; Mitchell Meyer; Rajiv S. Mishra; Mark Woltz

    2011-03-31

    This research project involved working on the pressure resistance welding of oxide dispersion strengthened (ODS) alloys which will have a large role to play in advanced nuclear reactors. The project also demonstrated the research collaboration between four universities and one nation laboratory (Idaho National Laboratory) with participation from an industry for developing for ODS alloys. These alloys contain a high number density of very fine oxide particles that can impart high temperature strength and radiation damage resistance suitable for in-core applications in advanced reactors. The conventional fusion welding techniques tend to produce porosity-laden microstructure in the weld region and lead to the agglomeration and non-uniform distribution of the neededoxide particles. That is why two solid state welding methods - pressure resistance welding (PRW) and friction stir welding (FSW) - were chosen to be evaluated in this project. The proposal is expected to support the development of Advanced Burner Reactors (ABR) under the GNEP program (now incorporated in Fuel Cycle R&D program). The outcomes of the concluded research include training of graduate and undergraduate students and get them interested in nuclear related research.

  10. Microstructural analysis of laser weld fusion zone in Haynes 282 superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Osoba, L.O. [Department of Mechanical and Manufacturing Engineering, University of Manitoba, Winnipeg, Manitoba, R3T 5V6 (Canada); Ding, R.G. [Department of Metallurgy and Materials Engineering, University of Birmingham, Birmingham B15 2TT (United Kingdom); Ojo, O.A., E-mail: ojo@cc.umanitoba.ca [Department of Mechanical and Manufacturing Engineering, University of Manitoba, Winnipeg, Manitoba, R3T 5V6 (Canada)

    2012-03-15

    Analytical electron microscopy and spectroscopy analyses of the fusion zone (FZ) microstructure in autogenous laser beam welded Haynes 282 (HY 282) superalloy were performed. The micro-segregation patterns observed in the FZ indicate that Co, Cr and Al exhibited a nearly uniform distribution between the dendrite core and interdendritic regions while Ti and Mo were rejected into the interdendritic liquid during the weld solidification. Transmission electron diffraction analysis and energy dispersive X-ray microanalysis revealed the second phase particles formed along the FZ interdendritic region to be Ti-Mo rich MC-type carbide particles. Weld FZ solidification cracking, which is sometimes associated with the formation of {gamma}-{gamma}' eutectic in {gamma}' precipitation strengthened nickel-base superalloys, was not observed in the HY 282 superalloy. Modified primary solidification path due to carbon addition in the newly developed superalloy is used to explain preclusion of weld FZ solidification cracking in the material. - Highlights: Black-Right-Pointing-Pointer A newly developed superalloy was welded by CO{sub 2} laser beam joining technique. Black-Right-Pointing-Pointer Electron microscopy characterization of the weld microstructure was performed. Black-Right-Pointing-Pointer Identified interdendritic microconstituents consist of MC-type carbides. Black-Right-Pointing-Pointer Modification of primary solidification path is used to explain cracking resistance.

  11. A Comparative Study of Welded ODS Cladding materials for AFCI/GNEP Applications

    International Nuclear Information System (INIS)

    Charit, Indrajit; Frary, Megan; Butt, Darryl; Murty, K.L.; Zirker, Larry; Cole, James; Meyer, Mitchell; Mishra, Rajiv S.; Woltz, Mark

    2011-01-01

    This research project involved working on the pressure resistance welding of oxide dispersion strengthened (ODS) alloys which will have a large role to play in advanced nuclear reactors. The project also demonstrated the research collaboration between four universities and one nation laboratory (Idaho National Laboratory) with participation from an industry for developing for ODS alloys. These alloys contain a high number density of very fine oxide particles that can impart high temperature strength and radiation damage resistance suitable for in-core applications in advanced reactors. The conventional fusion welding techniques tend to produce porosity-laden microstructure in the weld region and lead to the agglomeration and non-uniform distribution of the needed oxide particles. That is why two solid state welding methods - pressure resistance welding (PRW) and friction stir welding (FSW) - were chosen to be evaluated in this project. The proposal is expected to support the development of Advanced Burner Reactors (ABR) under the GNEP program (now incorporated in Fuel Cycle R and D program). The outcomes of the concluded research include training of graduate and undergraduate students and get them interested in nuclear related research.

  12. Microstructural analysis of laser weld fusion zone in Haynes 282 superalloy

    International Nuclear Information System (INIS)

    Osoba, L.O.; Ding, R.G.; Ojo, O.A.

    2012-01-01

    Analytical electron microscopy and spectroscopy analyses of the fusion zone (FZ) microstructure in autogenous laser beam welded Haynes 282 (HY 282) superalloy were performed. The micro-segregation patterns observed in the FZ indicate that Co, Cr and Al exhibited a nearly uniform distribution between the dendrite core and interdendritic regions while Ti and Mo were rejected into the interdendritic liquid during the weld solidification. Transmission electron diffraction analysis and energy dispersive X-ray microanalysis revealed the second phase particles formed along the FZ interdendritic region to be Ti–Mo rich MC-type carbide particles. Weld FZ solidification cracking, which is sometimes associated with the formation of γ–γ' eutectic in γ' precipitation strengthened nickel-base superalloys, was not observed in the HY 282 superalloy. Modified primary solidification path due to carbon addition in the newly developed superalloy is used to explain preclusion of weld FZ solidification cracking in the material. - Highlights: ► A newly developed superalloy was welded by CO 2 laser beam joining technique. ► Electron microscopy characterization of the weld microstructure was performed. ► Identified interdendritic microconstituents consist of MC-type carbides. ► Modification of primary solidification path is used to explain cracking resistance.

  13. Estimation of weld nugget temperature by thermography method in resistance projection welding process

    International Nuclear Information System (INIS)

    Setty, D.S.; Rameswara Roa, A.; Hemantha Rao, G.V.S.; Jaya Raj, R.N.

    2008-01-01

    In the Pressurized Heavy Water Reactor (PHWR) fuel manufacturing, zirconium alloy appendages like spacer and bearing pads are welded to the thin wall zirconium alloy fuel tubes by using resistance projection welding process. Out of many joining processes available, resistance-welding process is reliable, environment friendly and best suitable for mass production applications. In the fuel assembly, spacer pads are used to get the required inter-element spacing and Bearing pads are used to get the required load-bearing surface for the fuel assembly. Performance of the fuel assembly in the reactor is greatly influenced by these weld joint's quality. Phase transformation from α to β phase is not acceptable while welding these tiny appendages. At present only destructive metallography test is available for this purpose. This can also be achieved by measuring weld nugget temperature where in the phase transformation temperature for zirconium alloy material is 853 o C. The temperature distribution during resistance welding of tiny parts cannot be measured by conventional methods due to very small space and short weld times involved in the process. Shear strength, dimensional accuracy and weld microstructures are some of the key parameters used to measure the quality of appendage weld joints. Weld parameters were optimized with the help of industrial experimentation methodology. Individual projection welding by split electrode concept, and during welding on empty tube firm support is achieved on inner side of the tube by using expandable pneumatic mandrel. In the present paper, an attempt was made to measure the weld nugget temperature by thermography technique and is correlated with standard microstructures of zirconium alloy material. The temperature profiles in the welding process are presented for different welding conditions. This technique has helped in measuring the weld nugget temperature more accurately. It was observed that in the present appendage welding

  14. Effect of weld spacing on microstructure and mechanical properties of CLAM electron beam welding joints

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Yutao; Huang, Bo, E-mail: aufa0007@163.com; Zhang, Junyu; Zhang, Baoren; Liu, Shaojun; Huang, Qunying

    2016-11-15

    Highlights: • The welded joints of CLAM steel with different weld spacings have been fabricated with electron beam welding, and a simplified model of CLAM sheet was proposed. • The microstructure and mechanical properties such as microhardness, impact and tensile were investigated at different welding spacing for both conditions of as-welded and post weld heat treatment (PWHT). • The effect of the welding thermal cycle was significantly when the weld spacings were smaller than 4 mm. • When the weld spacing was small enough, the original microstructures would be fragmented with the high heat input. - Abstract: China low activation martensitic (CLAM) steel has been chosen as the primary structural material in the designs of dual function lithium-lead (DFLL) blanket for fusion reactors, China helium cooled ceramic breeder (HCCB) test blanket module (TBM) for ITER and China fusion engineering test reactor (CFETR) blanket. The cooling components of the blankets are designed with high density cooling channels (HDCCs) to remove the high nuclear thermal effectively. Hence, the welding spacing among the channels are small. In this paper, the welded joints of CLAM steel with different weld spacings have been fabricated with electron beam welding (EBW). The weld spacing was designed to be 2 mm, 3 mm, 4 mm, 6 mm and 8 mm. The microstructure and mechanical properties such as microhardness, impact and tensile were investigated at different welding spacing for both conditions of as-welded and post weld heat treatment (PWHT). The PWHT is tempering at 740 °C for 120 min. The results showed that the grain size in the heat affected zone (HAZ) increased with the increasing weld spacing, and the joint with small weld spacing had a better performance after PWHT. This work would give useful guidance to improve the preparation of the cooling components of blanket.

  15. Repair welding and online radiography

    International Nuclear Information System (INIS)

    Nuding, W.; Grimm, R.; Link, R.; Schroeder, P.; Schroeder, G.

    1990-01-01

    The status of a joint project is reported, which is to develop a computerized testing and welding system for repair work in turbine blades. An X-ray radiographic testing device consisting of microfocus tube, manipulator and image processing system, is modified for this purpose so as to offer a greater number of image points scanned for image processing, and to thus achieve a better resolution for reliable detection of even very small defects. The consistency of the X-ray tube performance, which is a pre-requisite for automation, is to be achieved by a wa tercooled, high-duty tube head. The recording of defect coordinates in the repair zone is done for input into a welding robot to be developed by other partners in the project, so as to allow automated welding work. (orig.) [de

  16. Residual stresses in zircaloy welds

    International Nuclear Information System (INIS)

    Santisteban, J. R.; Fernandez, L; Vizcaino, P.; Banchik, A.D.; Samper, R; Martinez, R. L; Almer, J; Motta, A.T.; Colas, K.B; Kerr, M.; Daymond, M.R

    2009-01-01

    Welds in Zirconium-based alloys are susceptible to hydrogen embrittlement, as H enters the material due to dissociation of water. The yield strain for hydride cracking has a complex dependence on H concentration, stress state and texture. The large thermal gradients produced by the applied heat; drastically changes the texture of the material in the heat affected zone, enhancing the susceptibility to delayed hydride cracking. Normally hydrides tend to form as platelets that are parallel to the normal direction, but when welding plates, hydride platelets may form on cooling with their planes parallel to the weld and through the thickness of the plates. If, in addition to this there are significant tensile stresses, the susceptibility of the heat affected zone to delayed hydride cracking will be increased. Here we have measured the macroscopic and microscopic residual stressed that appear after PLASMA welding of two 6mm thick Zircaloy-4 plates. The measurements were based on neutron and synchrotron diffraction experiments performed at the Isis Facility, UK, and at Advanced Photon Source, USA, respectively. The experiments allowed assessing the effect of a post-weld heat treatment consisting of a steady increase in temperature from room temperature to 450oC over a period of 4.5 hours; followed by cooling with an equivalent cooling rate. Peak tensile stresses of (175± 10) MPa along the longitudinal direction were found in the as-welded specimen, which were moderately reduced to (150±10) MPa after the heat-treatment. The parent material showed intergranular stresses of (56±4) MPa, which disappeared on entering the heat-affected zone. In-situ experiments during themal cyclong of the material showed that these intergranular stresses result from the anisotropy of the thermal expansion coefficient of the hexagonal crystal lattice. [es

  17. Method and device for weld deposit cladding

    International Nuclear Information System (INIS)

    Barger, J.J.

    1977-01-01

    In order to get weld beads of good quality, uniform thickness and faultless transition regions between neighboring beads in weld deposit cladding of metallic workpoeces, it is proposed to use a device in which the electromagnets are arranged adjacent to th zone of molten welding powder and molten metal besides having got suitable supplies for applying the welding powder, the polarity of the magnets being chosen in such a way that the lines of flux between the poles are counteracting the lines of flux surrounding the electrode band because of the welding current. Several variants of arranging the electrodes are presented in detail. (UWI) [de

  18. Grain refinement control in TIG arc welding

    Science.gov (United States)

    Iceland, W. F.; Whiffen, E. L. (Inventor)

    1975-01-01

    A method for controlling grain size and weld puddle agitation in a tungsten electrode inert gas welding system to produce fine, even grain size and distribution is disclosed. In the method the frequency of dc welding voltage pulses supplied to the welding electrode is varied over a preselected frequency range and the arc gas voltage is monitored. At some frequency in the preselected range the arc gas voltage will pass through a maximum. By maintaining the operating frequency of the system at this value, maximum weld puddle agitation and fine grain structure are produced.

  19. Advances in welding science - a perspective

    International Nuclear Information System (INIS)

    David, S.A.; Vitek, J.M.; Babu, S.S.; DebRoy, T.

    1995-01-01

    The ultimate goal of welding technology is to improve the joint integrity and increase productivity. Over the years, welding has been more of an art than a science, but in the last few decades major advances have taken place in welding science and technology. With the development of new methodologies at the crossroads of basic and applied sciences, enormous opportunities and potential exist to develop a science-based tailoring of composition, structure, and properties of welds with intelligent control and automation of the welding processes

  20. Weld pool and keyhole dynamic analysis based on visual system and neural network during laser keyhole welding

    OpenAIRE

    Luo, Masiyang

    2014-01-01

    In keyhole fiber laser welding processes, the weld pool behavior and keyhole dynamics are essential to determining welding quality. To observe and control the welding process, the accurate extraction of the weld pool boundary as well as the width is required. In addition, because of the cause-and-effect relationship between the welding defects and stability of the keyhole, which is primarily determined by keyhole geometry during the welding process, the stability of keyhole needs to be consid...

  1. STUDY AND ANALYSIS OF THE EFFECT OF WELDING PROCESS ON DISTORTION WITH 304L STAINLESS STEEL WELD JOINTS

    OpenAIRE

    Dhananjay Kumar*, Dharamvir mangal

    2017-01-01

    The effect of welding process on the distortion with 304L stainless steel 12thk weld joints made by TIG (tungsten inert gas) and SMAW (Shielded metal arc welding) welding process involving different type joint configuration have been studied. The joint configurations employed were double V-groove edge preparation for double side SMAW welding and square – butt preparation for double side TIG welding. All weld joints passed by radiographic. Distortion measurements were carried out using height ...

  2. Online NIR diagnostic of laser welding processes and its potential for quality assuring sensor systems

    Science.gov (United States)

    Dorsch, Friedhelm; Braun, Holger; Keβler, Steffen; Pfitzner, Dieter; Rominger, Volker

    2014-02-01

    We have integrated an imaging thermographic sensor into commercial welding optics for observation of the weld zone. Key element of the sensor is an InGaAs-camera that detects the thermal radiation of the welding process in the wavelength range of 1,200 to 1,700 nm. This is well suited to record images of the keyhole, the melt pool and the thermal trace. The sensor was integrated to the welding heads for on-axis observation to minimize the interfering contour to ensure easy adaption to industrial processes. The welding heads used were established industrial-grade TRUMPF optics: a BEO fixed optics with 280 mm focal length, or a TRUMPF PFO-3D scanner optics with 450 mm focal length. We used a TRUMPF TruDisk 16002 16kW-thin disk laser that transmits its power through a 200 μm core diameter light cable. The images were recorded and features of the various process zones were evaluated by image processing. It turns out that almost all weld faults can be clearly detected in the NIR images. Quantitative features like the dimension of the melt pool and the thermal trace can be derived from the captured images. They are correlated to process input parameters as well as to process results. In contrast to observation in the visible spectrum the NIR camera records the melt pool without auxiliary illumination. As an unrivaled attribute of the NIR sensor it supports an online heat flow thermography of the seam and allows identifying missing fusion ("false friends") of lap joints virtually during the welding process. Automated weld fault detection and documentation is possible by online image processing which sets the basis for comprehensive data documentation for quality assurance and traceability.

  3. Shimmed electron beam welding process

    Science.gov (United States)

    Feng, Ganjiang; Nowak, Daniel Anthony; Murphy, John Thomas

    2002-01-01

    A modified electron beam welding process effects welding of joints between superalloy materials by inserting a weldable shim in the joint and heating the superalloy materials with an electron beam. The process insures a full penetration of joints with a consistent percentage of filler material and thereby improves fatigue life of the joint by three to four times as compared with the prior art. The process also allows variable shim thickness and joint fit-up gaps to provide increased flexibility for manufacturing when joining complex airfoil structures and the like.

  4. Advantages of new micro-jet welding technology on weld microstructure control

    Directory of Open Access Journals (Sweden)

    Jan PIWNIK

    2013-01-01

    Full Text Available An innovative apparatus to welding process with micro-jet cooling of the weld made it possible to carry out technological tests, which have proved theoretical considerations about this problem. This project gives real opportunities for professional development in the field of welding with controlling the parameters of weld structure. These tests have proved that the new micro-jet technology has the potential for growth. It may be great achievement of welding technology in order to increase weld metal strength. The new technology with micro-jet cooling may have many practical applications in many fields, for example such as in the transport industry or to repair damaged metal elements. The advantages of the new device over the traditional system are the ability to control the structure of the weld, the weld mechanical performance increases and improve the quality of welded joints.

  5. Influence of weld structure on cross-weld creep behavior in P23 steel

    Energy Technology Data Exchange (ETDEWEB)

    Allen, D.J.; Degnan, C.C. [E.ON Engineering (United Kingdom); Brett, S.J. [RWE npower (United Kingdom); Buchanan, L.W. [Doosan Babcock (United Kingdom)

    2010-07-01

    A thick section pipe weld in low alloy steel P23 has been characterised by cross-weld creep rupture testing at a range of stresses, together with all-weld-metal and parent material testing, under the auspices of the UK High Temperature Power Plant Forum. The results generally show that the weld metal can be weak when tested in the transverse (cross-weld) orientation, and can fail with limited overall ductility by cracking in the zone of refined weld metal beneath the fusion boundary of the superposed weld bead. However, one specimen showed a much superior performance, which could be understood in terms of its locally more creep resistant weld macrostructure. The implications for P23 performance and weld manufacture are discussed. (orig.)

  6. Transformer core

    NARCIS (Netherlands)

    Mehendale, A.; Hagedoorn, Wouter; Lötters, Joost Conrad

    2008-01-01

    A transformer core includes a stack of a plurality of planar core plates of a magnetically permeable material, which plates each consist of a first and a second sub-part that together enclose at least one opening. The sub-parts can be fitted together via contact faces that are located on either side

  7. Transformer core

    NARCIS (Netherlands)

    Mehendale, A.; Hagedoorn, Wouter; Lötters, Joost Conrad

    2010-01-01

    A transformer core includes a stack of a plurality of planar core plates of a magnetically permeable material, which plates each consist of a first and a second sub-part that together enclose at least one opening. The sub-parts can be fitted together via contact faces that are located on either side

  8. Variant selection of martensites in steel welded joints with low transformation temperature weld metals

    International Nuclear Information System (INIS)

    Takahashi, Masaru; Yasuda, Hiroyuki Y.

    2013-01-01

    Highlights: ► We examined the variant selection of martensites in the weld metals. ► We also measured the residual stress developed in the butt and box welded joints. ► 24 martensite variants were randomly selected in the butt welded joint. ► High tensile residual stress in the box welded joint led to the strong variant selection. ► We discussed the rule of the variant selection focusing on the residual stress. -- Abstract: Martensitic transformation behavior in steel welded joints with low transformation temperature weld (LTTW) metal was examined focusing on the variant selection of martensites. The butt and box welded joints were prepared with LTTW metals and 980 MPa grade high strength steels. The residual stress of the welded joints, which was measured by a neutron diffraction technique, was effectively reduced by the expansion of the LTTW metals by the martensitic transformation during cooling after the welding process. In the LTTW metals, the retained austenite and martensite phases have the Kurdjumov–Sachs (K–S) orientation relationship. The variant selection of the martensites in the LTTW metals depended strongly on the type of welded joints. In the butt welded joint, 24 K–S variants were almost randomly selected while a few variants were preferentially chosen in the box welded joint. This suggests that the high residual stress developed in the box welded joint accelerated the formation of specific variants during the cooling process, in contrast to the butt welded joint with low residual stress

  9. EFFECTS OF ELECTRODE DEFORMATION OF RESISTANCE SPOT WELDING ON 304 AUSTENITIC STAINLESS STEEL WELD GEOMETRY

    Directory of Open Access Journals (Sweden)

    Nachimani Charde

    2012-12-01

    Full Text Available The resistance spot welding process is accomplished by forcing huge amounts of current flow from the upper electrode tip through the base metals to the lower electrode tip, or vice versa or in both directions. A weld joint is established between the metal sheets through fusion, resulting in a strong bond between the sheets without occupying additional space. The growth of the weld nugget (bond between sheets is therefore determined from the welding current density; sufficient time for current delivery; reasonable electrode pressing force; and the area provided for current delivery (electrode tip. The welding current and weld time control the root penetration, while the electrode pressing force and electrode tips successfully accomplish the connection during the welding process. Although the welding current and weld time cause the heat generation at the areas concerned (electrode tip area, the electrode tips’ diameter and electrode pressing forces also directly influence the welding process. In this research truncated-electrode deformation and mushrooming effects are observed, which result in the welded areas being inconsistent due to the expulsion. The copper to chromium ratio is varied from the tip to the end of the electrode whilst the welding process is repeated. The welding heat affects the electrode and the electrode itself influences the shape of the weld geometry.

  10. Experimental investigation on the weld pool formation process in plasma keyhole arc welding

    Science.gov (United States)

    Van Anh, Nguyen; Tashiro, Shinichi; Van Hanh, Bui; Tanaka, Manabu

    2018-01-01

    This paper seeks to clarify the weld pool formation process in plasma keyhole arc welding (PKAW). We adopted, for the first time, the measurement of the 3D convection inside the weld pool in PKAW by stereo synchronous imaging of tungsten tracer particles using two sets of x-ray transmission systems. The 2D convection on the weld pool surface was also measured using zirconia tracer particles. Through these measurements, the convection in a wide range of weld pools from the vicinity of the keyhole to the rear region was successfully visualized. In order to discuss the heat transport process in a weld pool, the 2D temperature distribution on the weld pool surface was also measured by two-color pyrometry. The results of the comprehensive experimental measurement indicate that the shear force due to plasma flow is found to be the dominant driving force in the weld pool formation process in PKAW. Thus, heat transport in a weld pool is considered to be governed by two large convective patterns near the keyhole: (1) eddy pairs on the surface (perpendicular to the torch axis), and (2) eddy pairs on the bulk of the weld pool (on the plane of the torch). They are formed with an equal velocity of approximately 0.35 m s-1 and are mainly driven by shear force. Furthermore, the flow velocity of the weld pool convection becomes considerably higher than that of other welding processes, such as TIG welding and GMA welding, due to larger plasma flow velocity.

  11. Influence of Loading Direction and Weld Reinforcement on Fatigue Performance of TIG Weld Seam

    Directory of Open Access Journals (Sweden)

    HUI Li

    2018-02-01

    Full Text Available The influence of loading direction and weld reinforcement on fatigue performance of TC2 titanium alloy TIG weld seam was investigated via fatigue experiments and SEM fracture observation. The results show that the fatigue life of retaining weld reinforcement specimens is lower than that of removing one in the same weld direction. The fatigue life of oblique weld specimens is higher than that of straight one with the same weld reinforcement treatment. The initiation of removing weld reinforcement specimens' fatigue crack sources is in the hole defect, but the weld reinforcement specimen initiate at the weld toes. During the early stage of fatigue crack propagation, the cracks all grow inside the weld seam metal with obvious fatigue striation. And the fatigue cracks of oblique weld specimens pass through the weld seam into the base with a typical toughness fatigue striation during the last stage of fatigue crack propagation. The dimple of straight weld specimens is little and shallow in the final fracture zone. The oblique weld specimens broke in the base metal area, and the dimple is dense.

  12. TIG welding power supply with improved efficiency

    Directory of Open Access Journals (Sweden)

    Сергій Володимирович Гулаков

    2015-03-01

    Full Text Available In the article, the influence of the DC component of the welding current during TIG (Tungsten Inert Gas welding is discussed. Known methods of DC current cancellation are reviewed, such as capacitor bank or diode/thyristor network insertion in the secondary circuit of the welding transformer. A new method of controlling the magnitude and shape of the TIG welding current is proposed. The idea is to insert a controlled voltage source in the secondary circuit of the welding transformer. This controlled voltage source is realized using a full-bridge voltage source inverter (VSI. VSI control system design issues are discussed. VSI is controlled by a three-level hysteretic current controller, while current reference is generated using lookup table driven by PLL (Phase Locked Loop locked to the mains frequency. Simulation results are shown. The proposed topology of TIG power supply allows to provide magnitude and shape control of the welding current, with the limitation that its DC component must be zero. Thus, some capabilities of professional AC-TIG welders are obtained using substantially lower cost components: VSI built using high-current low voltage MOSFETs with control system based on 32-bit ARM microcontroller. The use of proposed TIG welding power supply will eliminate the DC component of the welding current, improve welding transformer’s power factor and improve welding technology by increasing the welding arc stability

  13. Development of high productivity pipeline girth welding

    International Nuclear Information System (INIS)

    Yapp, David; Liratzis, Theocharis

    2010-01-01

    The trend for increased oil and gas consumption implies a growth of long-distance pipeline installations. Welding is a critical factor in the installation of pipelines, both onshore and offshore, and the rate at which the pipeline can be laid is generally determined by the speed of welding. This has resulted in substantial developments in pipeline welding techniques. Arc welding is still the dominant process used in practice, and forge welding processes have had limited successful application to date, in spite of large investments in process development. Power beam processes have also been investigated in detail and the latest laser systems now show promise for practical application. In recent years the use of high strength steels has substantially reduced the cost of pipeline installation, with X70 and X80 being commonly used. This use of high strength pipeline produced by thermomechanical processing has also been researched. They must all meet three requirments, high productivity, satisfactory weld properties, and weld quality

  14. Experimental analysis of cut welding in aluminium

    DEFF Research Database (Denmark)

    Dorph, Pernille; De Chiffre, Leonardo; Bay, Niels

    1993-01-01

    Cut welding is a newly developed cold pressure welding process. In the present work, an experimental investigation was carried out analyzing the mechanisms involved in cut welding of a block to a strip. Experiments were carried out in technically pure aluminium. The investigation has involved...... tensile testing and metallographic investigations of the welds. The results show that this variant of cut welding is a very reproducible process giving a weld strength equal to 30-40% the strength of the parent material. The experiments have shown that the reason for this relatively low strength...... is an uneven pressure distribution along the weld due to a wave formed during sliding. Attempts to alter the material flow during sliding are presented....

  15. Hybrid Laser Welding of Large Steel Structures

    DEFF Research Database (Denmark)

    Farrokhi, Farhang

    Manufacturing of large steel structures requires the processing of thick-section steels. Welding is one of the main processes during the manufacturing of such structures and includes a significant part of the production costs. One of the ways to reduce the production costs is to use the hybrid...... laser welding technology instead of the conventional arc welding methods. However, hybrid laser welding is a complicated process that involves several complex physical phenomena that are highly coupled. Understanding of the process is very important for obtaining quality welds in an efficient way....... This thesis investigates two different challenges related to the hybrid laser welding of thick-section steel plates. Employing empirical and analytical approaches, this thesis attempts to provide further knowledge towards obtaining quality welds in the manufacturing of large steel structures....

  16. Strengthening Hadfield steel welds by nitrogen alloying

    International Nuclear Information System (INIS)

    Efstathiou, C.; Sehitoglu, H.

    2009-01-01

    Strengthening Hadfield steel weld repairs by introducing nitrogen into the weld region was proven to be feasible via two welding techniques. The first technique required a pure Hadfield steel filler material to be diffusion treated in a high pressure nitrogen gas environment, and subsequently used during tungsten inert gas welding with a pure argon shielding gas. The second technique used a Hadfield steel filler material, and a 10% nitrogen containing argon shielding gas during tungsten inert gas welding. Both techniques increased the yield strength, the hardening rate, and the ultimate strength of the weld region. Using optical microscopy, scanning electron microscopy, and Auger spectroscopy, we determined that the increased strength of the weld region resulted from a combination of nitrogen alloying and microstructural refinement

  17. Welding processes and ocular hazards and protection.

    Science.gov (United States)

    Pabley, A S; Keeney, A H

    1981-07-01

    There are approximately 60 different forms of welding, but only six of these are commonly used. Shielded metal-arc or stick welding, gas metal-arc welding, and oxyacetylene welding are the most frequently used. All produce ultraviolet, visible, and infrared radiation at damaging levels. Conventional glass welding shields contain ultraviolet, visible, and infrared absorbers. Infrared absorbers, however, cause heating and secondary re-radiation. New polycarbonate lenses offer greater impact resistance, and have less tendency to welding spatter. Early abrasion-resistant and reflective coatings on plastics were ineffective. Thin layers of gold with proprietary coatings provide cool reflection and surface resistance. Thermal monitoring of welding indicated that these new shields reduce temperature rises above the ambient by 150% to 175% compared to green glass filter plates without interfering with the welder's vision.

  18. Advances in solar cell welding technology

    Energy Technology Data Exchange (ETDEWEB)

    Chidester, L.G.; Lott, D.R.

    1982-09-01

    In addition to developing the rigid substrate welded conventional cell panels for an earlier U.S. flight program, LMSC recently demonstrated a welded lightweight array system using both 2 x 4 and 5.9 x 5.9 cm wraparound solar cells. This weld system uses infrared sensing of weld joint temperature at the cell contact metalization interface to precisely control weld energy on each joint. Modules fabricated using this weld control system survived lowearth-orbit simulated 5-year tests (over 30,000 cycles) without joint failure. The data from these specifically configured modules, printed circuit substrate with copper interconnect and dielectric wraparound solar cells, can be used as a basis for developing weld schedules for additional cell array panel types.

  19. Linear discriminant analysis for welding fault detection

    International Nuclear Information System (INIS)

    Li, X.; Simpson, S.W.

    2010-01-01

    This work presents a new method for real time welding fault detection in industry based on Linear Discriminant Analysis (LDA). A set of parameters was calculated from one second blocks of electrical data recorded during welding and based on control data from reference welds under good conditions, as well as faulty welds. Optimised linear combinations of the parameters were determined with LDA and tested with independent data. Short arc welds in overlap joints were studied with various power sources, shielding gases, wire diameters, and process geometries. Out-of-position faults were investigated. Application of LDA fault detection to a broad range of welding procedures was investigated using a similarity measure based on Principal Component Analysis. The measure determines which reference data are most similar to a given industrial procedure and the appropriate LDA weights are then employed. Overall, results show that Linear Discriminant Analysis gives an effective and consistent performance in real-time welding fault detection.

  20. Numerical Simulation of Duplex Steel Multipass Welding

    Directory of Open Access Journals (Sweden)

    Giętka T.

    2016-12-01

    Full Text Available Analyses based on FEM calculations have significantly changed the possibilities of determining welding strains and stresses at early stages of product design and welding technology development. Such an approach to design enables obtaining significant savings in production preparation and post-weld deformation corrections and is also important for utility properties of welded joints obtained. As a result, it is possible to make changes to a simulated process before introducing them into real production as well as to test various variants of a given solution. Numerical simulations require the combination of problems of thermal, mechanical and metallurgical analysis. The study presented involved the SYSWELD software-based analysis of GMA welded multipass butt joints made of duplex steel sheets. The analysis of the distribution of stresses and displacements were carried out for typical welding procedure as during real welding tests.

  1. Mechanical Properties of Plug Welds after Micro-Jet Cooling

    Directory of Open Access Journals (Sweden)

    Hadryś D.

    2016-12-01

    Full Text Available New technology of micro-jet welding could be regarded as a new way to improve mechanical properties of plug welds. The main purpose of that paper was analyzing of mechanical properties of plug welds made by MIG welding method with micro-jet cooling. The main way for it was comparison of plug welds made by MIG welding method with micro-jet cooling and plug welds made by ordinary MIG welding method. It is interesting for steel because higher amount of acicular ferrite (AF in weld metal deposit (WMD is obtained in MIG welding method with micro-jet cooling in relation to ordinary MIG welding method. This article presents the influence of the cooling medium and the number of micro-jet streams on mechanical properties of the welded joint. Mechanical properties were described by force which is necessary to destroy weld joint.

  2. A Brief Introduction to the Theory of Friction Stir Welding

    Science.gov (United States)

    Nunes, Arthur C., Jr.

    2008-01-01

    Friction stir welding (FSW) is a solid state welding process invented in 1991 at The Welding Institute in the United Kingdom. A weld is made in the FSW process by translating a rotating pin along a weld seam so as to stir the sides of the seam together. FSW avoids deleterious effects inherent in melting and is already an important welding process for the aerospace industry, where welds of optimal quality are demanded. The structure of welds determines weld properties. The structure of friction stir welds is determined by the flow field in the weld metal in the vicinity of the weld tool. A simple kinematic model of the FSW flow field developed at Marshall Space Flight Center, which enables the basic features of FSW microstructure to be understood and related to weld process parameters and tool design, is explained.

  3. Core support structure for nuclear power plants

    International Nuclear Information System (INIS)

    Steinkamp, E.; Tautz, J.; Ries, H.

    1979-01-01

    A core support structure for nuclear power plants includes a grid of mutually crossing bridges and a support ring surrounding the grid and connected to ends of the outer bridges of the grid, the grid being formed of profile rod crosses having legs of given length, respective legs of pairs of adjacent crosses abutting one another endwise to form together a side of the smallest mesh opening of the grid, and weld means for securing the profile rod crosses to one another at the mutually abutting ends of the legs thereof; and method of producing the foregoing core support structure

  4. Development of laser weld monitoring system for PWR space grid

    International Nuclear Information System (INIS)

    Chung, Chin Man; Kim, Cheol Jung; Kim, Min Suk

    1998-06-01

    The laser welding monitoring system was developed to inspect PWR space grid welding for KNFC. The demands for this optical monitoring system were applied to Q.C. and process control in space grid welding. The thermal radiation signal from weld pool can be get the variation of weld pool size. The weld pool size and depth are verified by analyzed wavelength signals from weld pool. Applied this monitoring system in space grid weld, improved the weld productivity. (author). 4 refs., 5 tabs., 31 figs

  5. Mechanical Properties of Plug Welds after Micro-Jet Cooling

    OpenAIRE

    Hadryś D.

    2016-01-01

    New technology of micro-jet welding could be regarded as a new way to improve mechanical properties of plug welds. The main purpose of that paper was analyzing of mechanical properties of plug welds made by MIG welding method with micro-jet cooling. The main way for it was comparison of plug welds made by MIG welding method with micro-jet cooling and plug welds made by ordinary MIG welding method. It is interesting for steel because higher amount of acicular ferrite (AF) in weld metal deposit...

  6. Underwater welding and repair technologies applied in PWR environment

    International Nuclear Information System (INIS)

    Scandella, Fabrice; Carpreau, Jean-Michel

    2012-01-01

    The authors describe several welding processes and technologies which have been used for underwater applications and which can be applied when repairing components of a PWR type reactor. They address, describe and discuss wet arc welding processes, the peculiarities of underwater welding, and the use of various processes such as 111, 114 and 135 processes, underwater welding with the hybrid plasma MIG-MAG process, underwater welding with the laser wire process, underwater welding with the FSW, FSP or UWFSW processes, underwater welding with variants of the friction welding process (friction surfacing, taper stitch welding, hydro-pillar processing

  7. Effects of alloying element on weld characterization of laser-arc hybrid welding of pure copper

    Science.gov (United States)

    Hao, Kangda; Gong, Mengcheng; Xie, Yong; Gao, Ming; Zeng, Xiaoyan

    2018-06-01

    Effects of alloying elements of Si and Sn on weld characterizations of laser-arc hybrid welded pure copper (Cu) with thickness of 2 mm was studied in detail by using different wires. The weld microstructure was analyzed, and the mechanical properties (micro-hardness and tensile property), conductivity and corrosion resistance were tested. The results showed that the alloying elements benefit the growth of column grains within weld fusion zone (FZ), increase the ultimate tensile strength (UTS) of the FZ and weld corrosion resistance, and decrease weld conductivity. The mechanisms were discussed according to the results.

  8. Nitrogen And Oxygen Amount In Weld After Welding With Micro-Jet Cooling

    OpenAIRE

    Węgrzyn T.; Piwnik J.

    2015-01-01

    Micro-jet cooling after welding was tested only for MIG welding process with argon, helium and nitrogen as a shielded gases. A paper presents a piece of information about nitrogen and oxygen in weld after micro-jet cooling. There are put down information about gases that could be chosen both for MIG/MAG welding and for micro-jet process. There were given main information about influence of various micro-jet gases on metallographic structure of steel welds. Mechanical properties of weld was pr...

  9. 49 CFR 195.234 - Welds: Nondestructive testing.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Welds: Nondestructive testing. 195.234 Section 195... HAZARDOUS LIQUIDS BY PIPELINE Construction § 195.234 Welds: Nondestructive testing. (a) A weld may be... weld. (b) Any nondestructive testing of welds must be performed— (1) In accordance with a written set...

  10. 49 CFR 192.235 - Preparation for welding.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Preparation for welding. 192.235 Section 192.235... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Welding of Steel in Pipelines § 192.235 Preparation for welding. Before beginning any welding, the welding surfaces must be clean and free of any material that...

  11. Core lifter

    Energy Technology Data Exchange (ETDEWEB)

    Pavlov, N G; Edel' man, Ya A

    1981-02-15

    A core lifter is suggested which contains a housing, core-clamping elements installed in the housing depressions in the form of semirings with projections on the outer surface restricting the rotation of the semirings in the housing depressions. In order to improve the strength and reliability of the core lifter, the semirings have a variable transverse section formed from the outside by the surface of the rotation body of the inner arc of the semiring aroung the rotation axis and from the inner a cylindrical surface which is concentric to the outer arc of the semiring. The core-clamping elements made in this manner have the possibility of freely rotating in the housing depressions under their own weight and from contact with the core sample. These semirings do not have weakened sections, have sufficient strength, are inserted into the limited ring section of the housing of the core lifter without reduction in its through opening and this improve the reliability of the core lifter in operation.

  12. Welding procedure specification for arc welding of St 52-3N steel plates with covered electrodes

    International Nuclear Information System (INIS)

    Cvetkovski, S.; Slavkov, D.; Magdeski, J.

    2003-01-01

    In this paper the results of approval welding technology for arc welding of plates made of St 52-3N steel are presented. Metal arc welding with covered electrode is used welding process. Test specimens are butt welded in different welding positions P A , P F , P C and P D . Before start welding preliminary welding procedure was prepared. After welding of test specimens non destructive and destructive testing was performed. Obtained results were compared with standard DIN 17100 which concerns to chemical composition and mechanical properties of base material. It was confirmed that in all cases mechanical properties of welded joint are higher than those of base material, so preliminary welding procedure (pWTS) can be accepted as welding procedure specification WPS for metal arc welding of St52-3N steel. (Original)

  13. Fundamentals of Welding. Teacher Edition.

    Science.gov (United States)

    Fortney, Clarence; And Others

    These instructional materials assist teachers in improving instruction on the fundamentals of welding. The following introductory information is included: use of this publication; competency profile; instructional/task analysis; related academic and workplace skills list; tools, materials, and equipment list; and 27 references. Seven units of…

  14. Mechanics Model of Plug Welding

    Science.gov (United States)

    Zuo, Q. K.; Nunes, A. C., Jr.

    2015-01-01

    An analytical model has been developed for the mechanics of friction plug welding. The model accounts for coupling of plastic deformation (material flow) and thermal response (plastic heating). The model predictions of the torque, energy, and pull force on the plug were compared to the data of a recent experiment, and the agreements between predictions and data are encouraging.

  15. Welding the CNGS decay tube

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    3.6 km of welds were required for the 1 km long CERN Neutrinos to Gran Sasso (CNGS) decay tube, in which particles produced in the collision with a proton and a graphite target will decay into muons and muon neutrinos. Four highly skilled welders performed this delicate task.

  16. The welding of alloy 800

    International Nuclear Information System (INIS)

    Ward, M.; Norman, P.L.

    1975-01-01

    This paper reviews the technical literature published on the welding of alloy 800. Much of this work has been carried out using the Varestraint and Gleeble tests to investigate the susceptibility of the alloy and of high nickel consumables to hot-cracking. Inspite of much reported work, it is pointed out that many years of experience in the use of alloy 800 shows it to be readily weldable without any major problems occurring due to hot-cracking. The elements investigated include titanium, aluminium, sulphur, phosphorus and carbon, and the effects of these elements are discuused in terms of their effects on the hot-ductility curves obtained by Gleeble testing. Conclusions reached by various researchers state that the individual effects of the above five elements may be masked by other unknown factors. It is concluded that with correct welding procedures alloy 800 can be welded without cracking problems even with high heat input welding processes using either high-nickel filler wires or a matching electrode. Matching composition filler wires have been used with success but none are at present available commercially. (author)

  17. Next generation self-shielded flux cored electrode with improved toughness for off shore oil well platform structures

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Daya; Soltis, Patrick; Narayanan, Badri; Quintana, Marie; Fox, Jeff [The Lincoln Electric Company (United States)

    2005-07-01

    Self-shielded flux cored arc welding electrodes (FCAW-S) are ideal for outdoor applications, particularly open fabrication yards where high winds are a possibility. Development work was carried out on a FCAW-S electrode for welding 70 and 80 ksi yield strength base materials with a required minimum average Charpy V-Notch (CVN) absorbed energy value of 35 ft-lb at -40 deg F in the weld metal. The effect of Al, Mg, Ti, and Zr on CVN toughness was evaluated by running a Design of Experiments approach to systematically vary the levels of these components in the electrode fill and, in turn, the weld metal. These electrodes were used to weld simulated pipe joints. Over the range of compositions tested, 0.05% Ti in the weld metal was found to be optimum for CVN toughness. Ti also had a beneficial effect on the usable voltage range. Simulated offshore joints were welded to evaluate the effect of base metal dilution, heat input, and welding procedure on the toughness of weld metal. CVN toughness was again measured at -40 deg F on samples taken from the root and the cap pass regions. The root pass impact toughness showed strong dependence on the base metal dilution and the heat input used to weld the root and fill passes. (author)

  18. Microstructure Evolution and Selective Corrosion Resistance in Underwater Multi-pass 2101 Duplex Stainless Steel Welding Joints

    Science.gov (United States)

    Hu, Yu; Shi, Yonghua; Shen, Xiaoqin; Wang, Zhongmin

    2018-05-01

    A recently developed promising material, 2101 lean duplex stainless steel, represents an alternative to 304 austenite stainless steel. In this work, multi-pass 2101 weld joints were fabricated using the flux-cored arc welding method in a hyperbaric chamber. The pressure varied from 0 to 0.75 MPa. The evolution of the welding process and microstructure was investigated. γ 2 formation in the reheated zones of the WM and HAZ was not uniform. The closer the reheated zone is to the subsequent heat source, the greater the γ 2 formation in the reheated zone. Sufficient primary austenite transformation inhibited Cr2N precipitation and the subsequent intragranular γ 2 formation in the reheated weld passes of the 0.45 MPa weld metal. The localized corrosion resistance of each zone of the 0.45 MPa DSS joint was measured using non-destructive double-loop electrochemical potentiokinetic reactivation tests. The localized corrosion was induced by γ 2 and Cr2N. The root region of the 0.45 MPa weld metal underwent two subsequent welding thermal cycles, which induced increased γ 2 formation and lower resistance to corrosion because of the decreased pitting resistance value of γ 2. The correlation between microstructure evolution and the distribution of selective corrosion was determined.

  19. Influence of weld discontinuities on strain controlled fatigue behavior of 308 stainless steel weld metal

    International Nuclear Information System (INIS)

    Bhanu Sankara Rao, K.; Valsan, M.; Sandhya, R.; Mannan, S.L.; Rodriguez, P.

    1994-01-01

    Detailed investigations have been performed for assessing the importance of weld discontinuities in strain controlled low cycle fatigue (LCF) behavior of 308 stainless steel (SS) welds. The LCF behavior of 308 SS welds containing defects was compared with that of type 304 SS base material and 308 SS sound weld metal. Weld pads were prepared by shielded metal arc welding process. Porosity and slag inclusions were introduced deliberately into the weld metal by grossly exaggerating the conditions normally causing such defects. Total axial strain controlled LCF tests have been conducted in air at 823 K on type 304 SS base and 308 SS sound weld metal employing strain amplitudes in the range from ±0.25 to ±0.8 percent. A single strain amplitude of ±0.25 percent was used for all the tests conducted on weld samples containing defects. The results indicated that the base material undergoes cyclic hardening whereas sound and defective welds experience cyclic softening. Base metal showed higher fatigue life than sound weld metal at all strain amplitudes. The presence of porosity and slag inclusions in the weld metal led to significant reduction in life. Porosity on the specimen surface has been found to be particularly harmful and caused a reduction in life by a factor of seven relative to sound weld metal

  20. Automatic orbital GTAW welding: Highest quality welds for tomorrow's high-performance systems

    Science.gov (United States)

    Henon, B. K.

    1985-01-01

    Automatic orbital gas tungsten arc welding (GTAW) or TIG welding is certain to play an increasingly prominent role in tomorrow's technology. The welds are of the highest quality and the repeatability of automatic weldings is vastly superior to that of manual welding. Since less heat is applied to the weld during automatic welding than manual welding, there is less change in the metallurgical properties of the parent material. The possibility of accurate control and the cleanliness of the automatic GTAW welding process make it highly suitable to the welding of the more exotic and expensive materials which are now widely used in the aerospace and hydrospace industries. Titanium, stainless steel, Inconel, and Incoloy, as well as, aluminum can all be welded to the highest quality specifications automatically. Automatic orbital GTAW equipment is available for the fusion butt welding of tube-to-tube, as well as, tube to autobuttweld fittings. The same equipment can also be used for the fusion butt welding of up to 6 inch pipe with a wall thickness of up to 0.154 inches.