WorldWideScience

Sample records for core promoter structure

  1. Core histone genes of Giardia intestinalis: genomic organization, promoter structure, and expression

    Directory of Open Access Journals (Sweden)

    Adam Rodney D

    2007-04-01

    Full Text Available Abstract Background Giardia intestinalis is a protist found in freshwaters worldwide, and is the most common cause of parasitic diarrhea in humans. The phylogenetic position of this parasite is still much debated. Histones are small, highly conserved proteins that associate tightly with DNA to form chromatin within the nucleus. There are two classes of core histone genes in higher eukaryotes: DNA replication-independent histones and DNA replication-dependent ones. Results We identified two copies each of the core histone H2a, H2b and H3 genes, and three copies of the H4 gene, at separate locations on chromosomes 3, 4 and 5 within the genome of Giardia intestinalis, but no gene encoding a H1 linker histone could be recognized. The copies of each gene share extensive DNA sequence identities throughout their coding and 5' noncoding regions, which suggests these copies have arisen from relatively recent gene duplications or gene conversions. The transcription start sites are at triplet A sequences 1–27 nucleotides upstream of the translation start codon for each gene. We determined that a 50 bp region upstream from the start of the histone H4 coding region is the minimal promoter, and a highly conserved 15 bp sequence called the histone motif (him is essential for its activity. The Giardia core histone genes are constitutively expressed at approximately equivalent levels and their mRNAs are polyadenylated. Competition gel-shift experiments suggest that a factor within the protein complex that binds him may also be a part of the protein complexes that bind other promoter elements described previously in Giardia. Conclusion In contrast to other eukaryotes, the Giardia genome has only a single class of core histone genes that encode replication-independent histones. Our inability to locate a gene encoding the linker histone H1 leads us to speculate that the H1 protein may not be required for the compaction of Giardia's small and gene-rich genome.

  2. The punctilious RNA polymerase II core promoter.

    Science.gov (United States)

    Vo Ngoc, Long; Wang, Yuan-Liang; Kassavetis, George A; Kadonaga, James T

    2017-07-01

    The signals that direct the initiation of transcription ultimately converge at the core promoter, which is the gateway to transcription. Here we provide an overview of the RNA polymerase II core promoter in bilateria (bilaterally symmetric animals). The core promoter is diverse in terms of its composition and function yet is also punctilious, as it acts with strict rules and precision. We additionally describe an expanded view of the core promoter that comprises the classical DNA sequence motifs, sequence-specific DNA-binding transcription factors, chromatin signals, and DNA structure. This model may eventually lead to a more unified conceptual understanding of the core promoter. © 2017 Vo ngoc et al.; Published by Cold Spring Harbor Laboratory Press.

  3. Functional Screening of Core Promoter Activity.

    Science.gov (United States)

    Even, Dan Y; Kedmi, Adi; Ideses, Diana; Juven-Gershon, Tamar

    2017-01-01

    The core promoter is the DNA sequence that recruits the basal transcription machinery and directs accurate initiation of transcription. It is an active contributor to gene expression that can be rationally designed to manipulate the levels of expression. Core promoter function can be analyzed using different experimental approaches. Here, we describe the qualitative and quantitative analysis of engineered core promoter functions using the EGFP reporter gene that is driven by distinct core promoters. Expression plasmids are transfected into different mammalian cell lines, and the resulting fluorescence is monitored by live cell imaging , as well as by flow cytometry. In order to verify that the transcriptional activity of the examined core promoters is indeed a function of their activity, as opposed to differences in DNA uptake, real-time quantitative PCR analysis is performed. Importantly, the described methodology for functional screening of core promoter activity has enabled the analysis of engineered potent core promoters for extended time periods.

  4. Dynamic usage of transcription start sites within core promoters

    DEFF Research Database (Denmark)

    Kawaji, Hideya; Frith, Martin C; Katayama, Shintaro

    2006-01-01

    BACKGROUND: Mammalian promoters do not initiate transcription at single, well defined base pairs, but rather at multiple, alternative start sites spread across a region. We previously characterized the static structures of transcription start site usage within promoters at the base pair level......, based on large-scale sequencing of transcript 5' ends. RESULTS: In the present study we begin to explore the internal dynamics of mammalian promoters, and demonstrate that start site selection within many mouse core promoters varies among tissues. We also show that this dynamic usage of start sites...

  5. Movable magnetic porous cores enclosed within carbon microcapsules: structure-controlled synthesis and promoted carbon-based applications.

    Science.gov (United States)

    You, Lijun; Zhang, Yuting; Xu, Shuai; Guo, Jia; Wang, Changchun

    2014-09-10

    Rattle-type porous carbon microcapsules (RPCMs) were deliberately designed to combine multiple functions with the aim of improving the applicability of amorphous carbon in a synergistic fashion. A movable Fe3O4 nanocluster coated with porous carbon is encapsulated in the cavity of a carbon microcapsule with an eggshell-like characteristic, allowing for storage, adsorption, and exchange of matters through the mesoporous channels of the carbon layer. The synthetic strategy of RPCMs is flexible and universal, involving the constitution and carbonization of Fe3O4@PF@PS@PF template particles. This results in a double carbon shell and a sandwiched hollow cavity with a movable magnetic core. There is evidence that RPCMs possess large surface areas, hierarchical pore sizes, hydrophobicity, and magnetic responsiveness. Hence, diverse applications have been investigated. It is proved that RPCMs exhibit excellent performance in the effective enrichment of peptides/proteins. The detection limit toward peptides could reach as low as 10 nM, and the enrichment capacity toward MYO protein is as high as 410 mg/g (protein/beads). Furthermore, RPCMs are able to harvest proteins in complex real samples such as fetal bovine serum and rabbit blood. In addition, RPCMs could be fabricated in a supercapacitor electrode and display outstanding energy-storage performance. The electrochemical measurements demonstrate that RPCM-based electrodes have a specific capacitance of as high as 216 F/g (0.1 A/g), long-term cycling stability with a capacitance retention of 92.4% over 1000 cycles (0.2 A/g), and good electronic conductivity.

  6. Exome-based Variant Detection in Core Promoters.

    Science.gov (United States)

    Kim, Yeong C; Cui, Jian; Luo, Jiangtao; Xiao, Fengxia; Downs, Bradley; Wang, San Ming

    2016-07-28

    Core promoter controls the initiation of transcription. Core promoter sequence change can disrupt transcriptional regulation, lead to impairment of gene expression and ultimately diseases. Therefore, comprehensive characterization of core promoters is essential to understand normal and abnormal gene expression in biomedical studies. Here we report the development of EVDC (Exome-based Variant Detection in Core promoters) method for genome-scale analysis of core-promoter sequence variation. This method is based on the fact that exome sequences contain the sequences not only from coding exons but also from non-coding region including core promoters generated by random fragmentation in exome sequencing process. Using exome data from three cell types of CD4+ T cells, CD19+ B cells and neutrophils of a single individual, we characterized the features of core promoter-mapped exome sequences, and analysed core-promoter variation in this individual genome. We also compared the core promoters between YRI (Yoruba in Ibadan, Nigeria) and the CEU (Utah residents of European decedent) populations using the exome data generated by the 1000 Genome project, and observed much higher variation in YRI population than in CEU population. Our study demonstrates that the EVDC method provides a simple but powerful means for genome-wile de novo characterization of core promoter sequence variation.

  7. Inner core structure behind the PKP core phase triplication

    NARCIS (Netherlands)

    Blom, Nienke A.; Deuss, Arwen; Paulssen, Hanneke; Waszek, Lauren

    2015-01-01

    The structure of the Earth's inner core is not well known between depths of ∼100–200 km beneath the inner core boundary. This is a result of the PKP core phase triplication and the existence of strong precursors to PKP phases, which hinder the measurement of inner core compressional PKIKP waves at e

  8. Inner core structure behind the PKP core phase triplication

    NARCIS (Netherlands)

    Blom, Nienke A.; Deuss, Arwen; Paulssen, Hanneke; Waszek, Lauren

    The structure of the Earth's inner core is not well known between depths of ∼100–200 km beneath the inner core boundary. This is a result of the PKP core phase triplication and the existence of strong precursors to PKP phases, which hinder the measurement of inner core compressional PKIKP waves at

  9. Regulatory Enhancer-Core-Promoter Communication via Transcription Factors and Cofactors.

    Science.gov (United States)

    Zabidi, Muhammad A; Stark, Alexander

    2016-12-01

    Gene expression is regulated by genomic enhancers that recruit transcription factors and cofactors to activate transcription from target core promoters. Over the past years, thousands of enhancers and core promoters in animal genomes have been annotated, and we have learned much about the domain structure in which regulatory genomes are organized in animals. Enhancer-core-promoter targeting occurs at several levels, including regulatory domains, DNA accessibility, and sequence-encoded core-promoter specificities that are likely mediated by different regulatory proteins. We review here current knowledge about enhancer-core-promoter targeting, regulatory communication between enhancers and core promoters, and the protein factors involved. We conclude with an outlook on open questions that we find particularly interesting and that will likely lead to additional insights in the upcoming years.

  10. The core promoter: At the heart of gene expression.

    Science.gov (United States)

    Danino, Yehuda M; Even, Dan; Ideses, Diana; Juven-Gershon, Tamar

    2015-08-01

    The identities of different cells and tissues in multicellular organisms are determined by tightly controlled transcriptional programs that enable accurate gene expression. The mechanisms that regulate gene expression comprise diverse multiplayer molecular circuits of multiple dedicated components. The RNA polymerase II (Pol II) core promoter establishes the center of this spatiotemporally orchestrated molecular machine. Here, we discuss transcription initiation, diversity in core promoter composition, interactions of the basal transcription machinery with the core promoter, enhancer-promoter specificity, core promoter-preferential activation, enhancer RNAs, Pol II pausing, transcription termination, Pol II recycling and translation. We further discuss recent findings indicating that promoters and enhancers share similar features and may not substantially differ from each other, as previously assumed. Taken together, we review a broad spectrum of studies that highlight the importance of the core promoter and its pivotal role in the regulation of metazoan gene expression and suggest future research directions and challenges.

  11. Composite Structure with Origami Core

    Science.gov (United States)

    2016-07-19

    preparation). Hence, we are able to produce foldcores in any given shape. Mechanical behaviour of sandwich shells with foldcores Equipped with the...being pressed in order to invert the tube inside out. For a tube with circular section, this particular mode of failure has been proven to consume the...to design the most suitable folded core structure for given applications. Gattas J M and You Z, The Behaviour of Curved-Crease Foldcores under

  12. The features of Drosophila core promoters revealed by statistical analysis

    Directory of Open Access Journals (Sweden)

    Trifonov Edward N

    2006-06-01

    Full Text Available Abstract Background Experimental investigation of transcription is still a very labor- and time-consuming process. Only a few transcription initiation scenarios have been studied in detail. The mechanism of interaction between basal machinery and promoter, in particular core promoter elements, is not known for the majority of identified promoters. In this study, we reveal various transcription initiation mechanisms by statistical analysis of 3393 nonredundant Drosophila promoters. Results Using Drosophila-specific position-weight matrices, we identified promoters containing TATA box, Initiator, Downstream Promoter Element (DPE, and Motif Ten Element (MTE, as well as core elements discovered in Human (TFIIB Recognition Element (BRE and Downstream Core Element (DCE. Promoters utilizing known synergetic combinations of two core elements (TATA_Inr, Inr_MTE, Inr_DPE, and DPE_MTE were identified. We also establish the existence of promoters with potentially novel synergetic combinations: TATA_DPE and TATA_MTE. Our analysis revealed several motifs with the features of promoter elements, including possible novel core promoter element(s. Comparison of Human and Drosophila showed consistent percentages of promoters with TATA, Inr, DPE, and synergetic combinations thereof, as well as most of the same functional and mutual positions of the core elements. No statistical evidence of MTE utilization in Human was found. Distinct nucleosome positioning in particular promoter classes was revealed. Conclusion We present lists of promoters that potentially utilize the aforementioned elements/combinations. The number of these promoters is two orders of magnitude larger than the number of promoters in which transcription initiation was experimentally studied. The sequences are ready to be experimentally tested or used for further statistical analysis. The developed approach may be utilized for other species.

  13. Classification of Promoters Based on the Combination of Core Promoter Elements Exhibits Different Histone Modification Patterns

    Science.gov (United States)

    Natsume-Kitatani, Yayoi; Mamitsuka, Hiroshi

    2016-01-01

    Four different histones (H2A, H2B, H3, and H4; two subunits each) constitute a histone octamer, around which DNA wraps to form histone-DNA complexes called nucleosomes. Amino acid residues in each histone are occasionally modified, resulting in several biological effects, including differential regulation of transcription. Core promoters that encompass the transcription start site have well-conserved DNA motifs, including the initiator (Inr), TATA box, and DPE, which are collectively called the core promoter elements (CPEs). In this study, we systematically studied the associations between the CPEs and histone modifications by integrating the Drosophila Core Promoter Database and time-series ChIP-seq data for histone modifications (H3K4me3, H3K27ac, and H3K27me3) during development in Drosophila melanogaster via the modENCODE project. We classified 96 core promoters into four groups based on the presence or absence of the TATA box or DPE, calculated the histone modification ratio at the core promoter region, and transcribed region for each core promoter. We found that the histone modifications in TATA-less groups were static during development and that the core promoters could be clearly divided into three types: i) core promoters with continuous active marks (H3K4me3 and H3K27ac), ii) core promoters with a continuous inactive mark (H3K27me3) and occasional active marks, and iii) core promoters with occasional histone modifications. Linear regression analysis and non-linear regression by random forest showed that the TATA-containing groups included core promoters without histone modifications, for which the measured RNA expression values were not predictable accurately from the histone modification status. DPE-containing groups had a higher relative frequency of H3K27me3 in both the core promoter region and transcribed region. In summary, our analysis showed that there was a systematic link between the existence of the CPEs and the dynamics, frequency and influence

  14. Classification of Promoters Based on the Combination of Core Promoter Elements Exhibits Different Histone Modification Patterns.

    Directory of Open Access Journals (Sweden)

    Yayoi Natsume-Kitatani

    Full Text Available Four different histones (H2A, H2B, H3, and H4; two subunits each constitute a histone octamer, around which DNA wraps to form histone-DNA complexes called nucleosomes. Amino acid residues in each histone are occasionally modified, resulting in several biological effects, including differential regulation of transcription. Core promoters that encompass the transcription start site have well-conserved DNA motifs, including the initiator (Inr, TATA box, and DPE, which are collectively called the core promoter elements (CPEs. In this study, we systematically studied the associations between the CPEs and histone modifications by integrating the Drosophila Core Promoter Database and time-series ChIP-seq data for histone modifications (H3K4me3, H3K27ac, and H3K27me3 during development in Drosophila melanogaster via the modENCODE project. We classified 96 core promoters into four groups based on the presence or absence of the TATA box or DPE, calculated the histone modification ratio at the core promoter region, and transcribed region for each core promoter. We found that the histone modifications in TATA-less groups were static during development and that the core promoters could be clearly divided into three types: i core promoters with continuous active marks (H3K4me3 and H3K27ac, ii core promoters with a continuous inactive mark (H3K27me3 and occasional active marks, and iii core promoters with occasional histone modifications. Linear regression analysis and non-linear regression by random forest showed that the TATA-containing groups included core promoters without histone modifications, for which the measured RNA expression values were not predictable accurately from the histone modification status. DPE-containing groups had a higher relative frequency of H3K27me3 in both the core promoter region and transcribed region. In summary, our analysis showed that there was a systematic link between the existence of the CPEs and the dynamics, frequency

  15. Engineered Magnetic Core-Shell Structures.

    Science.gov (United States)

    Alavi Nikje, Mir Mohammad; Vakili, Maryam

    2015-01-01

    In recent years, engineered magnetic core-shell structures are playing an important role in the wide range of various applications. These magnetic core-shell structures have attracted considerable attention because of their unique properties and various applications. Also, the synthesis of engineered magnetic core-shell structures has attracted practical interest because of potential applications in areas such as ferrofluids, medical imaging, drug targeting and delivery, cancer therapy, separations, and catalysis. So far a large number of engineered magnetic core-shell structures have been successfully synthesized. This review article focuses on the recent progress in synthesis and characterization of engineered magnetic core-shell structures. Also, this review gives a brief description of the various application of these structures. It is hoped that this review will play some small part in helping future developments in important field.

  16. Characterization of nonconventional hepatitis B viruses lacking the core promoter.

    Science.gov (United States)

    Chang, Shau-Feng; Chang, Shih-Hsuan; Li, Bi-Chen; Will, Hans; Netter, Hans Jürgen

    2004-12-20

    The core gene (C-gene) promoter and regulatory sequences play a central role in the hepatitis B virus (HBV) life cycle. They are essential for the synthesis of the pregenomic and precore mRNA. The pregenomic RNA is the template required for replication and also the template for the synthesis of the core protein and polymerase. Here, we report the in vivo existence and functional characterization of HBV variants that lack the C-gene promoter region and the regulatory sequences located therein. HBV promoter fragments were isolated by PCR from sera of chronic carriers and characterized. Truncated promoter elements were identified, and then tested in the context of wild-type genomes in the HuH-7 cell line. The expression of the recombinant HBV genome resulted in the synthesis of surface proteins, and low level of core protein as well as a transcript pattern similar to, but smaller in size to wild-type virus. The recombinant HBV genome with the truncated promoter region produced pregenomic RNA-like transcripts. These transcripts were encapsidated and reverse transcribed when complemented by sufficient core and polymerase protein. These date provide an explanation as to why such deletion mutants of HBV can be produced at all, they highlight the functional potentials of viral sequences activated by mutations and may be of relevance for viral evolution and persistence.

  17. Characterizing Facesheet/Core Disbonding in Honeycomb Core Sandwich Structure

    Science.gov (United States)

    Rinker, Martin; Ratcliffe, James G.; Adams, Daniel O.; Krueger, Ronald

    2013-01-01

    Results are presented from an experimental investigation into facesheet core disbonding in carbon fiber reinforced plastic/Nomex honeycomb sandwich structures using a Single Cantilever Beam test. Specimens with three, six and twelve-ply facesheets were tested. Specimens with different honeycomb cores consisting of four different cell sizes were also tested, in addition to specimens with three different widths. Three different data reduction methods were employed for computing apparent fracture toughness values from the test data, namely an area method, a compliance calibration technique and a modified beam theory method. The compliance calibration and modified beam theory approaches yielded comparable apparent fracture toughness values, which were generally lower than those computed using the area method. Disbonding in the three-ply facesheet specimens took place at the facesheet/core interface and yielded the lowest apparent fracture toughness values. Disbonding in the six and twelve-ply facesheet specimens took place within the core, near to the facesheet/core interface. Specimen width was not found to have a significant effect on apparent fracture toughness. The amount of scatter in the apparent fracture toughness data was found to increase with honeycomb core cell size.

  18. Encapsulation into complex coacervate core micelles promotes EGFP dimerization

    NARCIS (Netherlands)

    Nolles, A.; Dongen, Van N.J.E.; Westphal, A.H.; Visser, A.J.W.G.; Kleijn, J.M.; Berkel, Van W.J.H.; Borst, J.W.

    2017-01-01

    Complex coacervate core micelles (C3Ms) are colloidal structures useful for encapsulation of biomacromolecules. We previously demonstrated that enhanced green fluorescent protein (EGFP) can be encapsulated into C3Ms using the diblock copolymer

  19. Core promoter recognition complex changes accompany liver development

    Science.gov (United States)

    D’Alessio, Joseph A.; Ng, Raymond; Willenbring, Holger; Tjian, Robert

    2011-01-01

    Recent studies of several key developmental transitions have brought into question the long held view of the basal transcriptional apparatus as ubiquitous and invariant. In an effort to better understand the role of core promoter recognition and coactivator complex switching in cellular differentiation, we have examined changes in transcription factor IID (TFIID) and cofactor required for Sp1 activation/Mediator during mouse liver development. Here we show that the differentiation of fetal liver progenitors to adult hepatocytes involves a wholesale depletion of canonical cofactor required for Sp1 activation/Mediator and TFIID complexes at both the RNA and protein level, and that this alteration likely involves silencing of transcription factor promoters as well as protein degradation. It will be intriguing for future studies to determine if a novel and as yet unknown core promoter recognition complex takes the place of TFIID in adult hepatocytes and to uncover the mechanisms that down-regulate TFIID during this critical developmental transition. PMID:21368148

  20. Structure of Hot Molecular Cores

    OpenAIRE

    Rolffs, Rainer

    2011-01-01

    High-mass stars form deeply embedded in dense molecular gas, which they heat up and ionize due to their high energy output. During an early phase, the ionization is confined to small regions, and the stellar radiation is absorbed by dust. The high temperatures lead to the evaporation of ice mantles around dust grains, and many highly excited and complex molecules can be observed in these Hot Molecular Cores. At later stages, the whole molecular cloud is ionized and disrupted, and a...

  1. Core promoter acetylation is not required for high transcription from the phosphoenolpyruvate carboxylase promoter in maize

    Directory of Open Access Journals (Sweden)

    Horst Ina

    2009-12-01

    Full Text Available Abstract Background Acetylation of promoter nucleosomes is tightly correlated and mechanistically linked to gene activity. However, transcription is not necessary for promoter acetylation. It seems, therefore, that external and endogenous stimuli control histone acetylation and by this contribute to gene regulation. Photosynthetic genes in plants are excellent models with which to study the connection between stimuli and chromatin modifications because these genes are strongly expressed and regulated by multiple stimuli that are easily manipulated. We have previously shown that acetylation of specific histone lysine residues on the photosynthetic phosphoenolpyruvate carboxylase (Pepc promoter in maize is controlled by light and is independent of other stimuli or gene activity. Acetylation of upstream promoter regions responds to a set of other stimuli which include the nutrient availability of the plant. Here, we have extended these studies by analysing histone acetylation during the diurnal and circadian rhythm of the plant. Results We show that histone acetylation of individual lysine residues is removed from the core promoter before the end of the illumination period which is an indication that light is not the only factor influencing core promoter acetylation. Deacetylation is accompanied by a decrease in gene activity. Pharmacological inhibition of histone deacetylation is not sufficient to prevent transcriptional repression, indicating that deacetylation is not controlling diurnal gene regulation. Variation of the Pepc promoter activity during the day is controlled by the circadian oscillator as it is maintained under constant illumination for at least 3 days. During this period, light-induced changes in histone acetylation are completely removed from the core promoter, although the light stimulus is continuously applied. However, acetylation of most sites on upstream promoter elements follows the circadian rhythm. Conclusion Our results

  2. Nuclear factor Y regulates ancient budgerigar hepadnavirus core promoter activity.

    Science.gov (United States)

    Shen, Zhongliang; Liu, Yanfeng; Luo, Mengjun; Wang, Wei; Liu, Jing; Liu, Wei; Pan, Shaokun; Xie, Youhua

    2016-09-16

    Endogenous viral elements (EVE) in animal genomes are the fossil records of ancient viruses and provide invaluable information on the origin and evolution of extant viruses. Extant hepadnaviruses include avihepadnaviruses of birds and orthohepadnaviruses of mammals. The core promoter (Cp) of hepadnaviruses is vital for viral gene expression and replication. We previously identified in the budgerigar genome two EVEs that contain the full-length genome of an ancient budgerigar hepadnavirus (eBHBV1 and eBHBV2). Here, we found eBHBV1 Cp and eBHBV2 Cp were active in several human and chicken cell lines. A region from nt -85 to -11 in eBHBV1 Cp was critical for the promoter activity. Bioinformatic analysis revealed a putative binding site of nuclear factor Y (NF-Y), a ubiquitous transcription factor, at nt -64 to -50 in eBHBV1 Cp. The NF-Y core binding site (ATTGG, nt -58 to -54) was essential for eBHBV1 Cp activity. The same results were obtained with eBHBV2 Cp and duck hepatitis B virus Cp. The subunit A of NF-Y (NF-YA) was recruited via the NF-Y core binding site to eBHBV1 Cp and upregulated the promoter activity. Finally, the NF-Y core binding site is conserved in the Cps of all the extant avihepadnaviruses but not of orthohepadnaviruses. Interestingly, a putative and functionally important NF-Y core binding site is located at nt -21 to -17 in the Cp of human hepatitis B virus. In conclusion, our findings have pinpointed an evolutionary conserved and functionally critical NF-Y binding element in the Cps of avihepadnaviruses.

  3. Core promoter recognition complex changes accompany liver development

    OpenAIRE

    D’Alessio, Joseph A.; Ng, Raymond; Willenbring, Holger; Tjian, Robert

    2011-01-01

    Recent studies of several key developmental transitions have brought into question the long held view of the basal transcriptional apparatus as ubiquitous and invariant. In an effort to better understand the role of core promoter recognition and coactivator complex switching in cellular differentiation, we have examined changes in transcription factor IID (TFIID) and cofactor required for Sp1 activation/Mediator during mouse liver development. Here we show that the differentiation of fetal li...

  4. Genome-wide analysis of core promoter elements from conserved human and mouse orthologous pairs

    OpenAIRE

    Jin, Victor X.; Singer, Gregory AC; Agosto-Pérez, Francisco J; Liyanarachchi, Sandya; Davuluri, Ramana V.

    2006-01-01

    Background The canonical core promoter elements consist of the TATA box, initiator (Inr), downstream core promoter element (DPE), TFIIB recognition element (BRE) and the newly-discovered motif 10 element (MTE). The motifs for these core promoter elements are highly degenerate, which tends to lead to a high false discovery rate when attempting to detect them in promoter sequences. Results In this study, we have performed the first analysis of these core promoter elements in orthologous mouse a...

  5. Genome-wide computational prediction and analysis of core promoter elements across plant monocots and dicots.

    Directory of Open Access Journals (Sweden)

    Sunita Kumari

    Full Text Available Transcription initiation, essential to gene expression regulation, involves recruitment of basal transcription factors to the core promoter elements (CPEs. The distribution of currently known CPEs across plant genomes is largely unknown. This is the first large scale genome-wide report on the computational prediction of CPEs across eight plant genomes to help better understand the transcription initiation complex assembly. The distribution of thirteen known CPEs across four monocots (Brachypodium distachyon, Oryza sativa ssp. japonica, Sorghum bicolor, Zea mays and four dicots (Arabidopsis thaliana, Populus trichocarpa, Vitis vinifera, Glycine max reveals the structural organization of the core promoter in relation to the TATA-box as well as with respect to other CPEs. The distribution of known CPE motifs with respect to transcription start site (TSS exhibited positional conservation within monocots and dicots with slight differences across all eight genomes. Further, a more refined subset of annotated genes based on orthologs of the model monocot (O. sativa ssp. japonica and dicot (A. thaliana genomes supported the positional distribution of these thirteen known CPEs. DNA free energy profiles provided evidence that the structural properties of promoter regions are distinctly different from that of the non-regulatory genome sequence. It also showed that monocot core promoters have lower DNA free energy than dicot core promoters. The comparison of monocot and dicot promoter sequences highlights both the similarities and differences in the core promoter architecture irrespective of the species-specific nucleotide bias. This study will be useful for future work related to genome annotation projects and can inspire research efforts aimed to better understand regulatory mechanisms of transcription.

  6. Major histocompatibility complex class I core promoter elements are not essential for transcription in vivo.

    Science.gov (United States)

    Barbash, Zohar S; Weissman, Jocelyn D; Campbell, John A; Mu, Jie; Singer, Dinah S

    2013-11-01

    The role of core promoter elements in regulating transcription initiation is largely unknown for genes subject to complex regulation. Major histocompatibility complex class I genes are ubiquitously expressed and governed by tissue-specific and hormonal signals. Transcription initiates at multiple sites within the core promoter, which contains elements homologous to the canonical elements CCAAT, TATAA, Sp1 binding site (Sp1BS), and Initiator (Inr). To determine their functions, expression of class I transgenes with individually mutated elements was assessed. Surprisingly, all mutant promoters supported transcription. However, each mutated core promoter element had a distinct effect on expression: CAAT box mutations modulated constitutive expression in nonlymphoid tissues, whereas TATAA-like element mutations dysregulated transcription in lymphoid tissues. Inr mutations aberrantly elevated expression. Sp1BS element mutations resulted in variegated transgene expression. RNA polymerase II binding and histone H3K4me3 patterns correlated with transgene expression; H3K9me3 marks partially correlated. Whereas the wild-type, TATAA-like, and CAAT mutant promoters were activated by gamma interferon, the Sp1 and Inr mutants were repressed, implicating these elements in regulation of hormonal responses. These results lead to the surprising conclusion that no single element is required for promoter activity. Rather, each plays a distinct role in promoter activity, chromatin structure, tissue-specific expression, and extracellular signaling.

  7. Mammalian RNA polymerase II core promoters: insights from genome-wide studies

    DEFF Research Database (Denmark)

    Sandelin, Albin; Carninci, Piero; Lenhard, Boris

    2007-01-01

    The identification and characterization of mammalian core promoters and transcription start sites is a prerequisite to understanding how RNA polymerase II transcription is controlled. New experimental technologies have enabled genome-wide discovery and characterization of core promoters, revealin...

  8. Engineering of core promoter regions enables the construction of constitutive and inducible promoters in Halomonas sp.

    Science.gov (United States)

    Li, Tingting; Li, Teng; Ji, Weiyue; Wang, Qiuyue; Zhang, Haoqian; Chen, Guo-Qiang; Lou, Chunbo; Ouyang, Qi

    2016-02-01

    Halomonas strain TD01, a newly identified halophilic bacterium, has proven to be a promising low-cost host for the production of chemicals. However, genetic manipulation in Halomonas sp. is still difficult due to the lack of well-characterized and tunable expression systems. In this study, a systematic, efficient method was exploited to construct both a constitutive promoter library and inducible promoters. Porin, a highly expressed protein in Halomonas TD01, was first identified from the Halomonas TD01 proteome. Subsequent study of the intergenic region upstream of porin led to the identification of a core promoter region, including -10 and -35 elements. By randomizing the sequence between the -35 and -10 elements, a constitutive promoter library was obtained with 310-fold variation in transcriptional activity; an inducible promoter with a >200-fold induction was built by integrating a lac operator into the core promoter region. As two complementary expression systems, the constitutive and inducible promoters were then employed to regulate the biosynthetic pathway of poly-3-hydroxybutyrate (PHB) in Halomonas TD01, demonstrating the usefulness of the expression systems, furthermore, they could be applied in future metabolic engineering of Halomonas TD strains, and the systematic method used in this study can be generalized to other less-characterized bacterial strains.

  9. Structural modeling of sandwich structures with lightweight cellular cores

    Science.gov (United States)

    Liu, T.; Deng, Z. C.; Lu, T. J.

    2007-10-01

    An effective single layered finite element (FE) computational model is proposed to predict the structural behavior of lightweight sandwich panels having two dimensional (2D) prismatic or three dimensional (3D) truss cores. Three different types of cellular core topology are considered: pyramidal truss core (3D), Kagome truss core (3D) and corrugated core (2D), representing three kinds of material anisotropy: orthotropic, monoclinic and general anisotropic. A homogenization technique is developed to obtain the homogenized macroscopic stiffness properties of the cellular core. In comparison with the results obtained by using detailed FE model, the single layered computational model can give acceptable predictions for both the static and dynamic behaviors of orthotropic truss core sandwich panels. However, for non-orthotropic 3D truss cores, the predictions are not so well. For both static and dynamic behaviors of a 2D corrugated core sandwich panel, the predictions derived by the single layered computational model is generally acceptable when the size of the unit cell varies within a certain range, with the predictions for moderately strong or strong corrugated cores more accurate than those for weak cores.

  10. Structural modeling of sandwich structures with lightweight cellular cores

    Institute of Scientific and Technical Information of China (English)

    T. Liu; Z. C. Deng; T. J. Lu

    2007-01-01

    An effective single layered finite element (FE) computational model is proposed to predict the structural behavior of lightweight sandwich panels having two dimensional (2D) prismatic or three dimensional (3D) truss cores.Three different types of cellular core topology are considered: pyramidal truss core (3D), Kagome truss core (3D) and corrugated core (2D), representing three kinds of material anisotropy: orthotropic, monoclinic and general anisotropic. A homogenization technique is developed to obtain the homogenized macroscopic stiffness properties of the cellular core. In comparison with the results obtained by using detailed FE model, the single layered computational model cangive acceptable predictions for both the static and dynamic behaviors of orthotropic truss core sandwich panels. However, for non-orthotropic 3D truss cores, the predictions are not so well. For both static and dynamic behaviors of a 2D corrugated core sandwich panel, the predictions derived by the single layered computational model is generally acceptable when the size of the unit cell varies within a certain range, with the predictions for moderately strong or strong corrugated cores more accurate than those for weak cores.

  11. HDAC Activity Is Required for Efficient Core Promoter Function at the Mouse Mammary Tumor Virus Promoter

    Directory of Open Access Journals (Sweden)

    Sang C. Lee

    2011-01-01

    Full Text Available Histone deacetylases (HDACs have been shown to be required for basal or inducible transcription at a variety of genes by poorly understood mechanisms. We demonstrated previously that HDAC inhibition rapidly repressed transcription from the mouse mammary tumor virus (MMTV promoter by a mechanism that does not require the binding of upstream transcription factors. In the current study, we find that HDACs work through the core promoter sequences of MMTV as well as those of several cellular genes to facilitate transcriptional initiation through deacetylation of nonhistone proteins.

  12. The core structure of presolar graphite onions

    CERN Document Server

    Fraundorf, P B; Wackenhut, Martin

    2002-01-01

    Of the ``presolar particles'' extracted from carbonaceous chondrite dissolution residues, i.e. of those particles which show isotopic evidence of solidification in the neighborhood of other stars prior to the origin of our solar system, one subset has an interesting concentric graphite-rim/graphene-core structure. We show here that single graphene sheet defects in the onion cores (e.g. cyclopentane loops) may be observable edge-on by HREM. This could allow a closer look at models for their formation, and in particular strengthen the possibility that growth of these assemblages proceeds atom-by-atom with the aid of such in-plane defects, under conditions of growth (e.g. radiation fluxes or grain temperature) which discourage the graphite layering that dominates subsequent formation of the rim.

  13. Structure and dynamics of core-periphery networks

    CERN Document Server

    Csermely, Peter; Wu, Ling-Yun; Uzzi, Brian

    2013-01-01

    Recent studies uncovered important core/periphery network structures characterizing complex sets of cooperative and competitive interactions between network nodes, be they proteins, cells, species or humans. Better characterization of the structure, dynamics and function of core/periphery networks is a key step of our understanding cellular functions, species adaptation, social and market changes. Here we summarize the current knowledge of the structure and dynamics of "traditional" core/periphery networks, rich-clubs, nested, bow-tie and onion networks. Comparing core/periphery structures with network modules, we discriminate between global and local cores. The core/periphery network organization lies in the middle of several extreme properties, such as random/condensed structures, clique/star configurations, network symmetry/asymmetry, network assortativity/disassortativity, as well as network hierarchy/anti-hierarchy. These properties of high complexity together with the large degeneracy of core pathways e...

  14. The CompHP Core Competencies Framework for Health Promotion in Europe

    Science.gov (United States)

    Barry, Margaret M.; Battel-Kirk, Barbara; Dempsey, Colette

    2012-01-01

    Background: The CompHP Project on Developing Competencies and Professional Standards for Health Promotion in Europe was developed in response to the need for new and changing health promotion competencies to address health challenges. This article presents the process of developing the CompHP Core Competencies Framework for Health Promotion across…

  15. The CompHP Core Competencies Framework for Health Promotion in Europe

    Science.gov (United States)

    Barry, Margaret M.; Battel-Kirk, Barbara; Dempsey, Colette

    2012-01-01

    Background: The CompHP Project on Developing Competencies and Professional Standards for Health Promotion in Europe was developed in response to the need for new and changing health promotion competencies to address health challenges. This article presents the process of developing the CompHP Core Competencies Framework for Health Promotion across…

  16. Predicting Polymerase Ⅱ Core Promoters by Cooperating Transcription Factor Binding Sites in Eukaryotic Genes

    Institute of Scientific and Technical Information of China (English)

    Xiao-Tu MA; Min-Ping QIAN; Hai-Xu TANG

    2004-01-01

    Several discriminate functions for predicting core promoters that based on the potential cooperation between transcription factor binding sites (TFBSs) are discussed. It is demonstrated that the promoter predicting accuracy is improved when the cooperation among TFBSs is taken into consideration.The core promoter region of a newly discovered gene CKLFSF1 is predicted to locate more than 1.5 kb far away from the 5′ end of the transcript and in the last intron of its upstream gene, which is experimentally confirmed later. The core promoters of 3402 human RefSeq sequences, obtained by extending the mRNAs in human genome sequences, are predicted by our algorithm, and there are about 60% of the predicted core promoters locating within the ± 500 bp region relative to the annotated transcription start site.

  17. Synthetic Core Promoters as Universal Parts for Fine-Tuning Expression in Different Yeast Species.

    Science.gov (United States)

    Portela, Rui M C; Vogl, Thomas; Kniely, Claudia; Fischer, Jasmin E; Oliveira, Rui; Glieder, Anton

    2017-03-17

    Synthetic biology and metabolic engineering experiments frequently require the fine-tuning of gene expression to balance and optimize protein levels of regulators or metabolic enzymes. A key concept of synthetic biology is the development of modular parts that can be used in different contexts. Here, we have applied a computational multifactor design approach to generate de novo synthetic core promoters and 5' untranslated regions (UTRs) for yeast cells. In contrast to upstream cis-regulatory modules (CRMs), core promoters are typically not subject to specific regulation, making them ideal engineering targets for gene expression fine-tuning. 112 synthetic core promoter sequences were designed on the basis of the sequence/function relationship of natural core promoters, nucleosome occupancy and the presence of short motifs. The synthetic core promoters were fused to the Pichia pastoris AOX1 CRM, and the resulting activity spanned more than a 200-fold range (0.3% to 70.6% of the wild type AOX1 level). The top-ten synthetic core promoters with highest activity were fused to six additional CRMs (three in P. pastoris and three in Saccharomyces cerevisiae). Inducible CRM constructs showed significantly higher activity than constitutive CRMs, reaching up to 176% of natural core promoters. Comparing the activity of the same synthetic core promoters fused to different CRMs revealed high correlations only for CRMs within the same organism. These data suggest that modularity is maintained to some extent but only within the same organism. Due to the conserved role of eukaryotic core promoters, this rational design concept may be transferred to other organisms as a generic engineering tool.

  18. Material with core-shell structure

    Science.gov (United States)

    Luhrs, Claudia; Richard, Monique N.; Dehne, Aaron; Phillips, Jonathan; Stamm, Kimber L.; Fanson, Paul T.

    2011-11-15

    Disclosed is a material having a composite particle, the composite particle including an outer shell and a core. The core is made from a lithium alloying material and the outer shell has an inner volume that is greater in size than the core of the lithium alloying material. In some instances, the outer mean diameter of the outer shell is less than 500 nanometers and the core occupies between 5 and 99% of the inner volume. In addition, the outer shell can have an average wall thickness of less than 100 nanometers.

  19. Sandwiched structural panel having a bi-directional core structure

    Science.gov (United States)

    Weddendorf, Bruce (Inventor)

    1995-01-01

    A structural panel assembly has a bi-directional core structure sandwiched between and secured to a pair of outer side wall members. The core structure is formed from first and second perpendicular series of elongated strip members having crenelated configurations. The strip members in the first series thereof are transversely interwoven with the strip members in the second series thereof in a manner such that crest portions of the strip members in the first series overlie and oppose trough portions of the strip members in the second series, and trough portions of the strip members in the first series underlie and oppose crest portions of the strip members in the second series. The crest portions of all of the strip members lie generally in a first plane and are secured to the inner side of one of the panel assembly outer side walls, and the trough portions of all of the strip members lie generally in a second plane and are secured to the inner side of the other panel assembly outer side wall.

  20. Evolution of Drosophila ribosomal protein gene core promoters.

    Science.gov (United States)

    Ma, Xiaotu; Zhang, Kangyu; Li, Xiaoman

    2009-03-01

    The coordinated expression of ribosomal protein genes (RPGs) has been well documented in many species. Previous analyses of RPG promoters focus only on Fungi and mammals. Recognizing this gap and using a comparative genomics approach, we utilize a motif-finding algorithm that incorporates cross-species conservation to identify several significant motifs in Drosophila RPG promoters. As a result, significant differences of the enriched motifs in RPG promoter are found among Drosophila, Fungi, and mammals, demonstrating the evolutionary dynamics of the ribosomal gene regulatory network. We also report a motif present in similar numbers of RPGs among Drosophila species which does not appear to be conserved at the individual RPG gene level. A module-wise stabilizing selection theory is proposed to explain this observation. Overall, our results provide significant insight into the fast-evolving nature of transcriptional regulation in the RPG module.

  1. Application Analysis of Strengthened Story in Frame-Core Structures

    Institute of Scientific and Technical Information of China (English)

    SU Yuan; CHEN Chuan-yao; LI Li

    2009-01-01

    Lateral deflection formulas are presented for analysis of the strengthened story applied to frame-core structures. For the frame-core structures with top outriggers and with middle outriggers, the relationship between stiffness characteristic parameters of frame and outriggers and the top drift of structures under different loads is analyzed. It is indicated that when stiffness characteristic parameter of frame is large, outrigger efficiency for top drift reduction is low, and the mutation of internal forces occurs; when the stiffness characteristic parameter of frame is less than 3, installing the strengthened story is advantageous to frame-core structures.

  2. Network nestedness as generalized core-periphery structures

    CERN Document Server

    Lee, Sang Hoon

    2016-01-01

    The concept of nestedness, in particular for ecological and economical networks, has been introduced as a structural characteristic of real interacting systems. We suggest that the nestedness is in fact another way to express a mesoscale network property called the core-periphery structure. With real ecological mutualistic networks and synthetic model networks, we reveal the strong correlation between the nestedness and core-peripheriness, by defining the network-level measures for nestedness and core-peripheriness in case of weighted and bipartite networks. However, at the same time, via more sophisticated null-model analysis, we also discover that the degree (the number of connected neighbors of a node) distribution poses quite severe restrictions on the possible nestedness and core-peripheriness parameter space. Therefore, there must exist structurally interwoven properties in more fundamental levels of network formation, behind this seemingly obvious relation between nestedness and core-periphery structur...

  3. Evolutionary trend of exceptionally long human core promoter short tandem repeats.

    Science.gov (United States)

    Ohadi, M; Mohammadparast, S; Darvish, H

    2012-10-01

    Short tandem repeats (STRs) are variable elements that play a significant role in genome evolution by creating and maintaining quantitative genetic variation. Because of their proximity to the +1 transcription start site (TSS) and polymorphic nature, core promoter STRs may be considered a novel source of variation across species. In a genome-scale analysis of the entire human protein-coding genes annotated in the GeneCards database (19,927), we analyze the prevalence and repeat numbers of different classes of core promoter STRs in the interval between -120 and +1 to the TSS. We also analyze the evolutionary trend of exceptionally long core promoter STRs of ≥6-repeats. 133 genes (~2%) had core promoter STRs of ≥6-repeats. In the majority of those genes, the STR motifs were found to be conserved across evolution. Di-nucleotide repeats had the highest representation in the human core promoter long STRs (72 genes). Tri- (52 genes), tetra-, penta-, and hexa-nucleotide STRs (9 genes) were also present in the descending prevalence. The majority of those genes (84 genes) revealed directional expansion of core promoter STRs from mouse to human. However, in a number of genes, the difference in average allele size across species was sufficiently small that there might be a constraint on the evolution of average allele size. Random drift of STRs from mouse to human was also observed in a minority of genes. Future work on the genes listed in the current study may further our knowledge into the potential importance of core promoter STRs in human evolution.

  4. Embedded atom study of dislocation core structure in Fe

    Energy Technology Data Exchange (ETDEWEB)

    Farkas, D.; Rodriguez, P.L. (Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States). Dept. of Materials Science and Engineering Centro Atomico Bariloche (Argentina))

    1994-04-01

    The relaxed atomistic structure of dislocation cores in body centered cubic metals was investigated many years ago, using pair potentials. These studies are now classic and have been the basis for understanding mechanical behavior of these materials. They constitute the classic example of the importance of non-elastic core effect for the dislocations responsible for deformation, as described in several reviews written on the subject. Volume-dependent interatomic potentials were introduced in 1984. Despite the importance of the results obtained with pair potentials, no calculation of dislocation cores in pure bcc metals using volume-dependent interatomic potentials has yet been performed. The purpose of the present investigation is to compute the structures of 1/2[111] screw dislocation cores Fe. The objective is to compare these results with the structures obtained with pair potentials. The computation of Peierls stresses with pair potentials usually gives an overestimate of the actual Peierls stress. In the present work, they also use an improved boundary condition technique for the simulation of the dislocation cores can give more accurate Peierls stresses using manageable atomic block sizes. They also use a more recent graphical method for the representation of the core structures to obtain the information on the core structures and their relationship to the various crystallographic planes in the material and to analyze the shape of core in relation with the possible glide planes of the dislocation.

  5. Process to make core-shell structured nanoparticles

    Science.gov (United States)

    Luhrs, Claudia; Phillips, Jonathan; Richard, Monique N

    2014-01-07

    Disclosed is a process for making a composite material that contains core-shell structured nanoparticles. The process includes providing a precursor in the form of a powder a liquid and/or a vapor of a liquid that contains a core material and a shell material, and suspending the precursor in an aerosol gas to produce an aerosol containing the precursor. In addition, the process includes providing a plasma that has a hot zone and passing the aerosol through the hot zone of the plasma. As the aerosol passes through the hot zone of the plasma, at least part of the core material and at least part of the shell material in the aerosol is vaporized. Vapor that contains the core material and the shell material that has been vaporized is removed from the hot zone of the plasma and allowed to condense into core-shell structured nanoparticles.

  6. Establishing the Structural Integrity of Core-Shell Nanoparticles against Elemental Migration using Luminescent Lanthanide Probes.

    Science.gov (United States)

    Chen, Bing; Peng, Dengfeng; Chen, Xian; Qiao, Xvsheng; Fan, Xianping; Wang, Feng

    2015-10-19

    Core-shell structured nanoparticles are increasingly used to host luminescent lanthanide ions but the structural integrity of these nanoparticles still lacks sufficient understanding. Herein, we present a new approach to detect the diffusion of dopant ions in core-shell nanostructures using luminescent lanthanide probes whose emission profile and luminescence lifetime are sensitive to the chemical environment. We show that dopant ions in solution-synthesized core-shell nanoparticles are firmly confined in the designed locations. However, annealing at certain temperatures (greater than circa 350 °C) promotes diffusion of the dopant ions and leads to degradation of the integrity of the nanoparticles. These insights into core-shell nanostructures should enhance our ability to understand and use lanthanide-doped luminescent nanoparticles.

  7. CORE

    DEFF Research Database (Denmark)

    Krigslund, Jeppe; Hansen, Jonas; Hundebøll, Martin

    2013-01-01

    different flows. Instead of maintaining these approaches separate, we propose a protocol (CORE) that brings together these coding mechanisms. Our protocol uses random linear network coding (RLNC) for intra- session coding but allows nodes in the network to setup inter- session coding regions where flows...... intersect. Routes for unicast sessions are agnostic to other sessions and setup beforehand, CORE will then discover and exploit intersecting routes. Our approach allows the inter-session regions to leverage RLNC to compensate for losses or failures in the overhearing or transmitting process. Thus, we...... increase the benefits of XORing by exploiting the underlying RLNC structure of individual flows. This goes beyond providing additional reliability to each individual session and beyond exploiting coding opportunistically. Our numerical results show that CORE outperforms both forwarding and COPE...

  8. CORE

    DEFF Research Database (Denmark)

    Krigslund, Jeppe; Hansen, Jonas; Hundebøll, Martin

    2013-01-01

    different flows. Instead of maintaining these approaches separate, we propose a protocol (CORE) that brings together these coding mechanisms. Our protocol uses random linear network coding (RLNC) for intra- session coding but allows nodes in the network to setup inter- session coding regions where flows...... intersect. Routes for unicast sessions are agnostic to other sessions and setup beforehand, CORE will then discover and exploit intersecting routes. Our approach allows the inter-session regions to leverage RLNC to compensate for losses or failures in the overhearing or transmitting process. Thus, we...... increase the benefits of XORing by exploiting the underlying RLNC structure of individual flows. This goes beyond providing additional reliability to each individual session and beyond exploiting coding opportunistically. Our numerical results show that CORE outperforms both forwarding and COPE...

  9. ProMT: effective human promoter prediction using Markov chain model based on DNA structural properties.

    Science.gov (United States)

    Xiong, Dapeng; Liu, Rongjie; Xiao, Fen; Gao, Xieping

    2014-12-01

    The core promoters play significant and extensive roles for the initiation and regulation of DNA transcription. The identification of core promoters is one of the most challenging problems yet. Due to the diverse nature of core promoters, the results obtained through existing computational approaches are not satisfactory. None of them considered the potential influence on performance of predictive approach resulted by the interference between neighboring TSSs in TSS clusters. In this paper, we sufficiently considered this main factor and proposed an approach to locate potential TSS clusters according to the correlation of regional profiles of DNA and TSS clusters. On this basis, we further presented a novel computational approach (ProMT) for promoter prediction using Markov chain model and predictive TSS clusters based on structural properties of DNA. Extensive experiments demonstrated that ProMT can significantly improve the predictive performance. Therefore, considering interference between neighboring TSSs is essential for a wider range of promoter prediction.

  10. Fanconi anemia core complex gene promoters harbor conserved transcription regulatory elements.

    Directory of Open Access Journals (Sweden)

    Daniel Meier

    Full Text Available The Fanconi anemia (FA gene family is a recent addition to the complex network of proteins that respond to and repair certain types of DNA damage in the human genome. Since little is known about the regulation of this novel group of genes at the DNA level, we characterized the promoters of the eight genes (FANCA, B, C, E, F, G, L and M that compose the FA core complex. The promoters of these genes show the characteristic attributes of housekeeping genes, such as a high GC content and CpG islands, a lack of TATA boxes and a low conservation. The promoters functioned in a monodirectional way and were, in their most active regions, comparable in strength to the SV40 promoter in our reporter plasmids. They were also marked by a distinctive transcriptional start site (TSS. In the 5' region of each promoter, we identified a region that was able to negatively regulate the promoter activity in HeLa and HEK 293 cells in isolation. The central and 3' regions of the promoter sequences harbor binding sites for several common and rare transcription factors, including STAT, SMAD, E2F, AP1 and YY1, which indicates that there may be cross-connections to several established regulatory pathways. Electrophoretic mobility shift assays and siRNA experiments confirmed the shared regulatory responses between the prominent members of the TGF-β and JAK/STAT pathways and members of the FA core complex. Although the promoters are not well conserved, they share region and sequence specific regulatory motifs and transcription factor binding sites (TBFs, and we identified a bi-partite nature to these promoters. These results support a hypothesis based on the co-evolution of the FA core complex genes that was expanded to include their promoters.

  11. Photochemical Synthesis of Au@Pd Core-Shell Nanoparticles for Methanol Oxidation Reaction: the Promotional Effect of the Au Core

    Directory of Open Access Journals (Sweden)

    Dong Yingnan

    2016-01-01

    Full Text Available A novel method for synthesizing Au@Pd core-shell nanoparticles was proposed based on photochemistry. By irradiating the mixture of Au (III and Pd (II ions using ultraviolet light, the Au@Pd core-shell nanoparticles were prepared. The size of the nanoparticles and the thickness of the Pd shell could be efficiently adjusted by changing the molar ratio of Au (III to Pd (II ion. In this way, nanoparticles with diameter in the range of 5.6~4.6 nm were obtained. The core-shell structure of the synthesized nanoparticles was showed by the characterization using UV-Vis, TEM/HR-TEM and XPS. The paper investigated the electrocatalysis performance of Au@Pd nanoparticles in the methanol catalytic oxidation reaction, as well as the electron donating effect of Au core to Pd shell and the promotion of this effect on the catalytic activity of Pd shell. The experimental results provided reference for the development of non-platinum catalysts of low-temperature fuel cell anode.

  12. Characterization and identification of microRNA core promoters in four model species.

    Directory of Open Access Journals (Sweden)

    Xuefeng Zhou

    2007-03-01

    Full Text Available MicroRNAs are short, noncoding RNAs that play important roles in post-transcriptional gene regulation. Although many functions of microRNAs in plants and animals have been revealed in recent years, the transcriptional mechanism of microRNA genes is not well-understood. To elucidate the transcriptional regulation of microRNA genes, we study and characterize, in a genome scale, the promoters of intergenic microRNA genes in Caenorhabditis elegans, Homo sapiens, Arabidopsis thaliana, and Oryza sativa. We show that most known microRNA genes in these four species have the same type of promoters as protein-coding genes have. To further characterize the promoters of microRNA genes, we developed a novel promoter prediction method, called common query voting (CoVote, which is more effective than available promoter prediction methods. Using this new method, we identify putative core promoters of most known microRNA genes in the four model species. Moreover, we characterize the promoters of microRNA genes in these four species. We discover many significant, characteristic sequence motifs in these core promoters, several of which match or resemble the known cis-acting elements for transcription initiation. Among these motifs, some are conserved across different species while some are specific to microRNA genes of individual species.

  13. Quantitative Analyses of Core Promoters Enable Precise Engineering of Regulated Gene Expression in Mammalian Cells.

    Science.gov (United States)

    Ede, Christopher; Chen, Ximin; Lin, Meng-Yin; Chen, Yvonne Y

    2016-05-20

    Inducible transcription systems play a crucial role in a wide array of synthetic biology circuits. However, the majority of inducible promoters are constructed from a limited set of tried-and-true promoter parts, which are susceptible to common shortcomings such as high basal expression levels (i.e., leakiness). To expand the toolbox for regulated mammalian gene expression and facilitate the construction of mammalian genetic circuits with precise functionality, we quantitatively characterized a panel of eight core promoters, including sequences with mammalian, viral, and synthetic origins. We demonstrate that this selection of core promoters can provide a wide range of basal gene expression levels and achieve a gradient of fold-inductions spanning 2 orders of magnitude. Furthermore, commonly used parts such as minimal CMV and minimal SV40 promoters were shown to achieve robust gene expression upon induction, but also suffer from high levels of leakiness. In contrast, a synthetic promoter, YB_TATA, was shown to combine low basal expression with high transcription rate in the induced state to achieve significantly higher fold-induction ratios compared to all other promoters tested. These behaviors remain consistent when the promoters are coupled to different genetic outputs and different response elements, as well as across different host-cell types and DNA copy numbers. We apply this quantitative understanding of core promoter properties to the successful engineering of human T cells that respond to antigen stimulation via chimeric antigen receptor signaling specifically under hypoxic environments. Results presented in this study can facilitate the design and calibration of future mammalian synthetic biology systems capable of precisely programmed functionality.

  14. HCV core protein promotes hepatocyte proliferation and chemoresistance by inhibiting NR4A1

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Yongsheng, E-mail: yongshengtanwhu@126.com; Li, Yan, E-mail: liyansd2@163.com

    2015-10-23

    This study investigated the effect of HCV core protein on the proliferation of hepatocytes and hepatocellular carcinoma cells (HCC), the influence of HCV core protein on HCC apoptosis induced by the chemotherapeutic agent cisplatin, and the mechanism through which HCV core protein acts as a potential oncoprotein in HCV-related HCC by measuring the levels of NR4A1 and Runt-related transcription factor 3 (RUNX3), which are associated with tumor suppression and chemotherapy resistance. In the present study, PcDNA3.1-core and RUNX3 siRNA were transfected into LO2 and HepG2 cells using Lipofectamine 2000. LO2-core, HepG2-core, LO2-RUNX3 {sup low} and control cells were treated with different concentrations of cisplatin for 72 h, and cell proliferation and apoptosis were assayed using the CellTiter 96{sup ®}Aqueous Non-Radioactive Cell Proliferation Assay Kit. Western blot and real time PCR analyses were used to detect NR4A1, RUNX3, smad7, Cyclin D1 and BAX. Confocal microscopy was used to determine the levels of NR4A1 in HepG2 and HepG2-core cells. The growth rate of HepG2-core cells was considerably greater than that of HepG2 cells. HCV core protein increased the expression of cyclin D1 and decreased the expressions of NR4A1 and RUNX3. In LO2 – RUNX3 {sup low}, the rate of cell proliferation and the level of cisplatin resistance were the same as in the LO2 -core. These results suggest that HCV core protein decreases the sensitivity of hepatocytes to cisplatin by inhibiting the expression of NR4A1 and promoting the expression of smad7, which negatively regulates the TGF-β pathway. This effect results in down regulation of RUNX3, a target of the TGF-β pathway. Taken together, these findings indicate that in hepatocytes, HCV core protein increases drug resistance and inhibits cell apoptosis by inhibiting the expressions of NR4A1 and RUNX3. - Highlights: • HCV core protein inhibits HepG2 cell sensitivity to cisplatin. • Core expression in HepG2 decreases

  15. Genome-wide computational prediction and analysis of core promoter elements across plant monocots and dicots

    Science.gov (United States)

    Transcription initiation, essential to gene expression regulation, involves recruitment of basal transcription factors to the core promoter elements (CPEs). The distribution of currently known CPEs across plant genomes is largely unknown. This is the first large scale genome-wide report on the compu...

  16. Investigation of intravalence, core-valence and core-core electron correlation effects in polonium atomic structure calculations

    Science.gov (United States)

    Quinet, Pascal

    2014-09-01

    A detailed investigation of the atomic structure and radiative parameters involving the lowest states within the 6p4, 6p36d, 6p37s, 6p37p and 6p37d configurations of neutral polonium is reported in the present paper. Using different physical models based on the pseudo-relativistic Hartree-Fock approach, the influence of intravalence, core-valence and core-core electron correlation on the atomic parameters is discussed in detail. This work allowed us to fix the spectroscopic designation of some experimental level energy values and to provide for the first time a set of reliable oscillator strengths corresponding to 31 Po I spectral lines in the wavelength region from 175 to 987 nm.

  17. PARTNERSHIP BETWEEN CTSI AND BUSINESS SCHOOLS CAN PROMOTE BEST PRACTICES FOR CORE FACILITIES AND RESOURCES

    Science.gov (United States)

    Reeves, Lilith; Dunn-Jensen, Linda M.; Baldwin, Timothy T.; Tatikonda, Mohan V.; Cornetta, Kenneth

    2013-01-01

    Biomedical research enterprises require a large number of core facilities and resources to supply the infrastructure necessary for translational research. Maintaining the financial viability and promoting efficiency in an academic environment can be particularly challenging for medical schools and universities. The Indiana Clinical and Translational Sciences Institute sought to improve core and service programs through a partnership with the Indiana University Kelley School of Business. The program paired teams of Masters of Business Administration students with cores and programs that self-identified the need for assistance in project management, financial management, marketing, or resource efficiency. The projects were developed by CTSI project managers and business school faculty using service-learning principles to ensure learning for students who also received course credit for their participation. With three years of experience, the program demonstrates a successful partnership that improves clinical research infrastructure by promoting business best practices and providing a valued learning experience for business students. PMID:23919365

  18. Partnership between CTSI and business schools can promote best practices for core facilities and resources.

    Science.gov (United States)

    Reeves, Lilith; Dunn-Jensen, Linda M; Baldwin, Timothy T; Tatikonda, Mohan V; Cornetta, Kenneth

    2013-08-01

    Biomedical research enterprises require a large number of core facilities and resources to supply the infrastructure necessary for translational research. Maintaining the financial viability and promoting efficiency in an academic environment can be particularly challenging for medical schools and universities. The Indiana Clinical and Translational Sciences Institute sought to improve core and service programs through a partnership with the Indiana University Kelley School of Business. The program paired teams of Masters of Business Administration students with cores and programs that self-identified the need for assistance in project management, financial management, marketing, or resource efficiency. The projects were developed by CTSI project managers and business school faculty using service-learning principles to ensure learning for students who also received course credit for their participation. With three years of experience, the program demonstrates a successful partnership that improves clinical research infrastructure by promoting business best practices and providing a valued learning experience for business students. © 2013 Wiley Periodicals, Inc.

  19. Genome-wide detection and analysis of hippocampus core promoters using DeepCAGE

    DEFF Research Database (Denmark)

    Valen, Eivind; Pascarella, Giovanni; Chalk, Alistair;

    2009-01-01

    in a given tissue. Here, we present a new method for high-throughput sequencing of 5' cDNA tags-DeepCAGE: merging the Cap Analysis of Gene Expression method with ultra-high-throughput sequence technology. We apply DeepCAGE to characterize 1.4 million sequenced TSS from mouse hippocampus and reveal a wealth...... of novel core promoters that are preferentially used in hippocampus: This is the most comprehensive promoter data set for any tissue to date. Using these data, we present evidence indicating a key role for the Arnt2 transcription factor in hippocampus gene regulation. DeepCAGE can also detect promoters...

  20. Flexural Behavior of Aluminum Honeycomb Core Sandwich Structure

    Science.gov (United States)

    Matta, Vidyasagar; Kumar, J. Suresh; Venkataraviteja, Duddu; Reddy, Guggulla Bharath Kumar

    2017-05-01

    This project is concerned with the fabrication and flexural testing of aluminium honey comb sandwich structure which is a special case of composite materials that is fabricated by attaching two thin but stiff skins to a light weight but thick core. The core material is normally low density material but its high thickness provide the sandwich composite with high bonding stiffness. Honeycomb core are classified into two types based on the materials and structures. Hexagonal shape has a unique properties i.e has more bonding strength and less formation time based on the cell size and sheet thickness. Sandwich structure exhibit different properties such as high load bearing capacity at low weight and has excellent thermal insulation. By considering the above properties it has tendency to minimize the structural problem. So honey comb sandwich structure is choosed. The core structure has a different applications such as aircraft, ship interiors, construction industries. As there is no proper research on strength characteristics of sandwich structure. So, we use light weight material to desire the strength. There are different parameters involved in this structure i.e cell size, sheet thickness and core height. In this project we considered 3 level of comparison among the 3 different parameters cell size of 4, 6 and 8 mm, sheet thickness of 0.3, 0.5 and 0.7 mm, and core height of 20,25 and 30 mm. In order to reduce the number of experiment we use taguchi design of experiment, and we select the L8 orthogonal array is the best array for this type of situation, which clearly identifies the parameters by independent of material weight to support this we add the minitab software, to identify the main effective plots and regression equation which involves the individual response and corresponding parameters. Aluminium material is used for the fabrication of Honeycomb sandwich structure among the various grades of aluminium we consider the AL6061 which is light weight material

  1. High performance carbon nanotube-Si core-shell wires with a rationally structured core for lithium ion battery anodes.

    Science.gov (United States)

    Fan, Yu; Zhang, Qing; Lu, Congxiang; Xiao, Qizhen; Wang, Xinghui; Tay, Beng Kang

    2013-02-21

    Core-shell Si nanowires are very promising anode materials. Here, we synthesize vertically aligned carbon nanotubes (CNTs) with relatively large diameters and large inter-wire spacing as core wires and demonstrate a CNT-Si core-shell wire composite as a lithium ion battery (LIB) anode. Owing to the rationally engineered core structure, the composite shows good capacity retention and rate performance. The excellent performance is superior to most core-shell nanowires previously reported.

  2. Multiple structural alignment and core detection by geometric hashing.

    Science.gov (United States)

    Leibowitz, N; Fligelman, Z Y; Nussinov, R; Wolfson, H J

    1999-01-01

    A Multiple Structural Alignment algorithm is presented. The algorithm accepts an ensemble of protein structures and finds the largest substructure (core) of C alpha atoms whose geometric configuration appear in all the molecules of the ensemble (core). Both the detection of this core and the resulting structural alignment are done simultaneously. Other large enough multistructural superimpositions are detected as well. Our method is based on the Geometric Hashing paradigm and a superimposition clustering technique which represents superimpositions by sets of matching atoms. The algorithm proved to be efficient on real data in a series of experiments. The same method can be applied to any ensemble of molecules (not necessarily proteins) since our basic technique is sequence order independent.

  3. Surface and Core Electronic Structure of Oxidized Silicon Nanocrystals

    Directory of Open Access Journals (Sweden)

    Noor A. Nama

    2010-01-01

    Full Text Available Ab initio restricted Hartree-Fock method within the framework of large unit cell formalism is used to simulate silicon nanocrystals between 216 and 1000 atoms (1.6–2.65 nm in diameter that include Bravais and primitive cell multiples. The investigated properties include core and oxidized surface properties. Results revealed that electronic properties converge to some limit as the size of the nanocrystal increases. Increasing the size of the core of a nanocrystal resulted in an increase of the energy gap, valence band width, and cohesive energy. The lattice constant of the core and oxidized surface parts shows a decreasing trend as the nanocrystal increases in a size that converges to 5.28 Ǻ in a good agreement with the experiment. Surface and core convergence to the same lattice constant reflects good adherence of oxide layer at the surface. The core density of states shows highly degenerate states that split at the oxygenated (001-(1×1 surface due to symmetry breaking. The nanocrystal surface shows smaller gap and higher valence and conduction bands when compared to the core part, due to oxygen surface atoms and reduced structural symmetry. The smaller surface energy gap shows that energy gap of the nanocrystal is controlled by the surface part. Unlike the core part, the surface part shows a descending energy gap that proves its obedience to quantum confinement effects. Nanocrystal geometry proved to have some influence on all electronic properties including the energy gap.

  4. Engaging Stakeholders and Promoting Uptake of OMERACT Core Outcome Instrument Sets.

    Science.gov (United States)

    Tunis, Sean R; Maxwell, Lara J; Graham, Ian D; Shea, Beverley J; Beaton, Dorcas E; Bingham, Clifton O; Brooks, Peter; Conaghan, Philip G; D'Agostino, Maria Antonietta; de Wit, Maarten P; Gossec, Laure; March, Lyn M; Simon, Lee S; Singh, Jasvinder A; Strand, Vibeke; Wells, George A; Tugwell, Peter

    2017-08-01

    While there has been substantial progress in the development of core outcomes sets, the degree to which these are used by researchers is variable. We convened a special workshop on knowledge translation at the Outcome Measures in Rheumatology (OMERACT) 2016 with 2 main goals. The first focused on the development of a formal knowledge translation framework and the second on promoting uptake of recommended core outcome domain and instrument sets. We invited all 189 OMERACT 2016 attendees to the workshop; 86 attended, representing patient research partners (n = 15), healthcare providers/clinician researchers (n = 52), industry (n = 4), regulatory agencies (n = 4), and OMERACT fellows (n = 11). Participants were given an introduction to knowledge translation and were asked to propose and discuss recommendations for the OMERACT community to (1) strengthen stakeholder involvement in the core outcome instrument set development process, and (2) promote uptake of core outcome sets with a specific focus on the potential role of post-regulatory decision makers. We developed the novel "OMERACT integrated knowledge translation" framework, which formalizes OMERACT's knowledge translation strategies. We produced strategies to improve stakeholder engagement throughout the process of core outcome set development and created a list of creative and innovative ways to promote the uptake of OMERACT's core outcome sets. The guidance provided in this paper is preliminary and is based on the views of the participants. Future work will engage OMERACT groups, "post-regulatory decision makers," and a broad range of different stakeholders to identify and evaluate the most useful methods and processes, and to revise guidance accordingly.

  5. The expanded FindCore method for identification of a core atom set for assessment of protein structure prediction.

    Science.gov (United States)

    Snyder, David A; Grullon, Jennifer; Huang, Yuanpeng J; Tejero, Roberto; Montelione, Gaetano T

    2014-02-01

    Maximizing the scientific impact of NMR-based structure determination requires robust and statistically sound methods for assessing the precision of NMR-derived structures. In particular, a method to define a core atom set for calculating superimpositions and validating structure predictions is critical to the use of NMR-derived structures as targets in the CASP competition. FindCore (Snyder and Montelione, Proteins 2005;59:673-686) is a superimposition independent method for identifying a core atom set and partitioning that set into domains. However, as FindCore optimizes superimposition by sensitively excluding not-well-defined atoms, the FindCore core may not comprise all atoms suitable for use in certain applications of NMR structures, including the CASP assessment process. Adapting the FindCore approach to assess predicted models against experimental NMR structures in CASP10 required modification of the FindCore method. This paper describes conventions and a standard protocol to calculate an "Expanded FindCore" atom set suitable for validation and application in biological and biophysical contexts. A key application of the Expanded FindCore method is to identify a core set of atoms in the experimental NMR structure for which it makes sense to validate predicted protein structure models. We demonstrate the application of this Expanded FindCore method in characterizing well-defined regions of 18 NMR-derived CASP10 target structures. The Expanded FindCore protocol defines "expanded core atom sets" that match an expert's intuition of which parts of the structure are sufficiently well defined to use in assessing CASP model predictions. We also illustrate the impact of this analysis on the CASP GDT assessment scores.

  6. Update to Core reporting practices in structural equation modeling.

    Science.gov (United States)

    Schreiber, James B

    2016-07-21

    This paper is a technical update to "Core Reporting Practices in Structural Equation Modeling."(1) As such, the content covered in this paper includes, sample size, missing data, specification and identification of models, estimation method choices, fit and residual concerns, nested, alternative, and equivalent models, and unique issues within the SEM family of techniques.

  7. COUPLED VIBRATION OF STRUCTURAL THIN-WALLED CORES

    Institute of Scientific and Technical Information of China (English)

    Shiu Cho; J.S. Kuang

    2000-01-01

    This paper presents an analysis of the coupled vibration of asymmetric core structures in tall buildings. The governing equation of free vibration and its corresponding eigenvalue problem, which is a set of equations for laterally flexural vibrations in two different directions coupled by a warping-St. Venant torsional vibration, are derived. Based on the Calerkin method, a generalized approximate method is developed for the analysis of coupled vibration and thus proposed for determining the natural fiequeneies and mode shapes of the structure in triply-coupled vibration. The results of the proposed method for the example structure show good agreement with those of the FEM analysis. The proposed method has been shown to provide a sim ple and rapid, yet accurate, means for coupled vibration analysis of core structures.

  8. Preparation of porous carbon particle with shell/core structure

    Directory of Open Access Journals (Sweden)

    2007-05-01

    Full Text Available Porous carbon particles with a shell/core structure have been prepared successfully by controlled precipitation of the polymer from droplets of oil-in-water emulsion, followed by curing and carbonization. The droplets of the oil phase are composed of phenolic resin (PFR, a good solvent (ethyl acetate and porogen (Poly(methyl methacrylate, PMMA. The microstructure was characterized in detail by scanning electron microscopy (SEM, transmission electron microscopy (TEM, nitrogen adsorption, and thermo gravimetric analysis (TGA. The obtained carbon particles have a capsular structure with a microporous carbon shell and a mesoporous carbon core. The BET surface area and porous volume are calculated to be 499 m2g-1 and 0.56 cm3g-1, respectively. The effects of the amount of porogen (PMMA, co-solvent (acetone and surfactant on the resultant structure were studied in detail.

  9. Structural Characterization of Core Region in Erwinia amylovora Lipopolysaccharide

    Directory of Open Access Journals (Sweden)

    Angela Casillo

    2017-03-01

    Full Text Available Erwinia amylovora (E. amylovora is the first bacterial plant pathogen described and demonstrated to cause fire blight, a devastating plant disease affecting a wide range of species including a wide variety of Rosaceae. In this study, we reported the lipopolysaccharide (LPS core structure from E. amylovora strain CFBP1430, the first one for an E. amylovora highly pathogenic strain. The chemical characterization was performed on the mutants waaL (lacking only the O-antigen LPS with a complete LPS-core, wabH and wabG (outer-LPS core mutants. The LPSs were isolated from dry cells and analyzed by means of chemical and spectroscopic methods. In particular, they were subjected to a mild acid hydrolysis and/or a hydrazinolysis and investigated in detail by one and two dimensional Nuclear Magnetic Resonance (NMR spectroscopy and ElectroSpray Ionization Fourier Transform-Ion Cyclotron Resonance (ESI FT-ICR mass spectrometry.

  10. Structural Characterization of Core Region in Erwinia amylovora Lipopolysaccharide

    Science.gov (United States)

    Casillo, Angela; Ziaco, Marcello; Lindner, Buko; Merino, Susana; Mendoza-Barberá, Elena; Tomás, Juan M.; Corsaro, Maria Michela

    2017-01-01

    Erwinia amylovora (E. amylovora) is the first bacterial plant pathogen described and demonstrated to cause fire blight, a devastating plant disease affecting a wide range of species including a wide variety of Rosaceae. In this study, we reported the lipopolysaccharide (LPS) core structure from E. amylovora strain CFBP1430, the first one for an E. amylovora highly pathogenic strain. The chemical characterization was performed on the mutants waaL (lacking only the O-antigen LPS with a complete LPS-core), wabH and wabG (outer-LPS core mutants). The LPSs were isolated from dry cells and analyzed by means of chemical and spectroscopic methods. In particular, they were subjected to a mild acid hydrolysis and/or a hydrazinolysis and investigated in detail by one and two dimensional Nuclear Magnetic Resonance (NMR) spectroscopy and ElectroSpray Ionization Fourier Transform-Ion Cyclotron Resonance (ESI FT-ICR) mass spectrometry. PMID:28273861

  11. Chesapeake Bay Impact Structure Deep Drilling Project Completes Coring

    Directory of Open Access Journals (Sweden)

    the Scientific Staff of the Chesapeake Bay Impact Structure Deep Drilling Project

    2006-09-01

    Full Text Available The Chesapeake Bay Impact Structure Deep Drilling Project (CBIS Project completed its coring operations during September–December 2005 and April–May 2006. Cores were collected continuously to a total depth of 1766 m. The recovered section consists of 1322 m of impactites beneath 444 m of post-impact continental shelf sediments.The CBIS Project is a joint venture of the International Continental Scientifi c Drilling Program (ICDP and the U.S. Geological Survey (USGS. Project activities began with a planning workshop in September 2003 attended by sixtythree scientists from ten countries. Field operations began with site preparation in July 2005, and coring began in September 2005. Drilling, Observation and Sampling of theEarth’s Continental Crust (DOSECC was the general contractor for the drilling operations throughout 2005.

  12. Structural Characterization of Core Region in Erwinia amylovora Lipopolysaccharide.

    Science.gov (United States)

    Casillo, Angela; Ziaco, Marcello; Lindner, Buko; Merino, Susana; Mendoza-Barberá, Elena; Tomás, Juan M; Corsaro, Maria Michela

    2017-03-04

    Erwinia amylovora (E. amylovora) is the first bacterial plant pathogen described and demonstrated to cause fire blight, a devastating plant disease affecting a wide range of species including a wide variety of Rosaceae. In this study, we reported the lipopolysaccharide (LPS) core structure from E. amylovora strain CFBP1430, the first one for an E. amylovora highly pathogenic strain. The chemical characterization was performed on the mutants waaL (lacking only the O-antigen LPS with a complete LPS-core), wabH and wabG (outer-LPS core mutants). The LPSs were isolated from dry cells and analyzed by means of chemical and spectroscopic methods. In particular, they were subjected to a mild acid hydrolysis and/or a hydrazinolysis and investigated in detail by one and two dimensional Nuclear Magnetic Resonance (NMR) spectroscopy and ElectroSpray Ionization Fourier Transform-Ion Cyclotron Resonance (ESI FT-ICR) mass spectrometry.

  13. Coupling Mode of Dual-Core Micro Structured Fibers

    CERN Document Server

    Debbal, Mohammed

    2015-01-01

    The photonic crystal fibers (PCF) or air-silica microstructured fibers consist of a periodic array of dielectric transverse. By introducing a defect in this structure, it is possible to guide the light by a photonic bandgap effect, whose properties are different fundamentally from the guide by total internal reflection that takes place in conventional fibers. PCF with two cores have significant potential, and this is one of the main motivations witches led us to approach this theme in this article. Analysis of the inter-core coupling was also necessary to study the problem of crosstalk. Their knowledge is important because it is a preliminary work to the study and understanding of multi-core PCF or an array of guides in the microstructured cladding. It then presents the main results on the effects of beating between the various modes under linear conditions.

  14. The Physical and Chemical Structure of Hot Molecular Cores

    CERN Document Server

    Nomura, H

    2004-01-01

    We have made self-consistent models of the density and temperature profiles of the gas and dust surrounding embedded luminous objects using a detailed radiative transfer model together with observations of the spectral energy distribution of hot molecular cores. Using these profiles we have investigated the hot core chemistry which results when grain mantles are evaporated, taking into account the different binding energies of the mantle molecules, as well a model in which we assume that all molecules are embedded in water ice and have a common binding energy. We find that most of the resulting column densities are consistent with those observed toward the hot core G34.3+0.15 at a time around 10$^4$ years after central luminous star formation. We have also investigated the dependence of the chemical structure on the density profile which suggests an observational possibility of constraining density profiles from determination of the source sizes of line emission from desorbed molecules.

  15. Core Promoter Plasticity Between Maize Tissues and Genotypes Contrasts with Predominance of Sharp Transcription Initiation Sites.

    Science.gov (United States)

    Mejía-Guerra, María Katherine; Li, Wei; Galeano, Narmer F; Vidal, Mabel; Gray, John; Doseff, Andrea I; Grotewold, Erich

    2015-12-01

    Core promoters are crucial for gene regulation, providing blueprints for the assembly of transcriptional machinery at transcription start sites (TSSs). Empirically, TSSs define the coordinates of core promoters and other regulatory sequences. Thus, experimental TSS identification provides an essential step in the characterization of promoters and their features. Here, we describe the application of CAGE (cap analysis of gene expression) to identify genome-wide TSSs used in root and shoot tissues of two maize (Zea mays) inbred lines (B73 and Mo17). Our studies indicate that most TSS clusters are sharp in maize, similar to mice, but distinct from Arabidopsis thaliana, Drosophila melanogaster, or zebra fish, in which a majority of genes have broad-shaped TSS clusters. We established that ∼38% of maize promoters are characterized by a broader TATA-motif consensus, and this motif is significantly enriched in genes with sharp TSSs. A noteworthy plasticity in TSS usage between tissues and inbreds was uncovered, with ∼1500 genes showing significantly different dominant TSSs, sometimes affecting protein sequence by providing alternate translation initiation codons. We experimentally characterized instances in which this differential TSS utilization results in protein isoforms with additional domains or targeted to distinct subcellular compartments. These results provide important insights into TSS selection and gene expression in an agronomically important crop.

  16. Assessing intern core competencies with an objective structured clinical examination.

    Science.gov (United States)

    Short, Matthew W; Jorgensen, Jennifer E; Edwards, John A; Blankenship, Robert B; Roth, Bernard J

    2009-09-01

    Residents are evaluated using Accreditation Council for Graduate Medical Education (ACGME) core competencies. An Objective Structured Clinical Examination (OSCE) is a potential evaluation tool to measure these competencies and provide outcome data. Create an OSCE to evaluate and demonstrate improvement in intern core competencies of patient care, medical knowledge, practice-based learning and improvement, interpersonal and communication skills, professionalism, and systems-based practice before and after internship. From 2006 to 2008, 106 interns from 10 medical specialties were evaluated with a preinternship and postinternship OSCE at Madigan Army Medical Center. The OSCE included eight 12-minute stations that collectively evaluated the 6 ACGME core competencies using human patient simulators, standardized patients, and clinical scenarios. Interns were scored using objective and subjective criteria, with a maximum score of 100 for each competency. Stations included death notification, abdominal pain, transfusion consent, suture skills, wellness history, chest pain, altered mental status, and computer literature search. These stations were chosen by specialty program directors, created with input from board-certified specialists, and were peer reviewed. All OSCE testing on the 106 interns (ages 25 to 44 [average, 28.6]; 70 [66%] men; 65 [58%] allopathic medical school graduates) resulted in statistically significant improvement in all ACGME core competencies: patient care (71.9% to 80.0%, P core competencies and test for interval improvement. The OSCE is a valuable assessment tool to provide outcome measures on resident competency performance and evaluate program effectiveness.

  17. Effect of Silicon Alloying on the Structure of Exoplanetary Cores

    Science.gov (United States)

    Wicks, J. K.; Smith, R.; Coppari, F.; Kraus, R. G.; Newman, M.; Duffy, T. S.

    2015-12-01

    The composition of cores of terrestrial planets are expected to be broadly similar to that of Earth in that they are comprised of a Fe-Ni alloy with variable amounts of light elements such as O, Si, C, S, and H. With the increasing number of discoveries of Super-Earths (rocky planets many times the mass of our own), the properties of terrestrial phases at ultrahigh pressures are required to understand and interpret the variability of large-scale exoplanet observations. The properties of the cores of these bodies are important for understanding the bulk chemistry, thermal evolution, magnetic fields, and, ultimately, habitability of a planet. Recent diamond anvil cell studies interrogating the structure of iron generally agree that Fe should be hcp at core pressures and temperatures, although other structures have been proposed. At higher pressures and with the addition of light elements, the structure is less understood. The addition of large amounts of Si, for example, stabilizes the cubic B2 structure with respect to hcp at outer core pressures. Our goal in this study is to explore the effect of Si-alloying at inner core and exoplanetary-core pressures. Dynamic compression experiments were carried out at the Omega Laser at the Laboratory for Laser Energetics, University of Rochester. High pressures were achieved by focusing laser drives onto target packages containing Fe-Si alloys. Pressures within the sample were determined by monitoring the velocity history at the sample/window interface. Quasi-monochromatic X-rays, timed with maximum compression of the Fe-alloy sample, were generated via laser irradiation of iron or germanium foils arranged in a backlighter configuration and collected on image plates lining the inner walls of a box attached to the target package. In this presentation we will report on the effect of Si-alloying on the structure and density of Fe over the pressure range 100-1000 GPa. We find that while Fe with 7 wt.% Si remains in the hcp

  18. Structure and stability of complex coacervate core micelles with lysozyme.

    Science.gov (United States)

    Lindhoud, Saskia; Vries, Renko de; Norde, Willem; Stuart, Martien A Cohen

    2007-07-01

    Encapsulation of enzymes by polymers is a promising method to influence their activity and stability. Here, we explore the use of complex coacervate core micelles for encapsulation of enzymes. The core of the micelles consists of negatively charged blocks of the diblock copolymer PAA42PAAm417 and the positively charged homopolymer PDMAEMA150. For encapsulation, part of the positively charged homopolymer was replaced by the positively charged globular protein lysozyme. We have studied the formation, structure, and stability of the resulting micelles for three different mixing ratios of homopolymer and lysozyme: a system predominantly consisting of homopolymer, a system predominantly consisting of lysozyme, and a system where the molar ratio between the two positively charged molecules was almost one. We also studied complexes made of only lysozyme and PAA42PAAm417. Complex formation and the salt-induced disintegration of the complexes were studied using dynamic light-scattering titrations. Small-angle neutron scattering was used to investigate the structures of the cores. We found that micelles predominantly consisting of homopolymer are spherical but that complex coacervate core micelles predominantly consisting of lysozyme are nonspherical. The stability of the micelles containing a larger fraction of lysozyme is lower.

  19. Variations in the core promoter/pre-core region in HBV genotype C in Japanese and Northern Vietnamese patients.

    Science.gov (United States)

    Truong, Bui Xuan; Yano, Yoshihiko; Seo, Yasushi; Phuong, Tran Minh; Tanaka, Yasuhito; Kato, Hirotaka; Miki, Akira; Utsumi, Takako; Azuma, Takeshi; Trach, Nguyen Khanh; Mizokami, Masashi; Hayashi, Yoshitake; Kasuga, Masato

    2007-09-01

    Hepatitis B virus (HBV) subgenotypes Cs (C1) and Ce (C2) are common in East Asia. To investigate the genomic difference of HBV genotype C between two separated regions, 50 subgenotype Cs-infected Vietnamese and 70 subgenotype Ce-infected Japanese patients were enrolled for analysis. The patients were categorized to either a hepatocellular carcinoma group (HCC) or a non-HCC group including liver cirrhosis, chronic hepatitis, and asymptomatic carriers. HBV serology, HBV-DNA level, and variations in core promoter/pre-core region were examined. Phylogenetic analysis based on the full genome sequences and nucleotide sequences partly in the S gene and in the P gene revealed that all Japanese strains (70/70) were subgenotype Ce, and nearly all of the Vietnamese strains (50/51) were subgenotype Cs, excluding one subgenotype C5. C1858 and G1775 were common in the Vietnamese (64% and 40%) but not in the Japanese (0%). The prevalence of C/A1753 in Vietnamese was higher than that in the Japanese (32% vs. 17.1%), however the frequency of A1896 in the Japanese was significantly higher (32.9% vs. 12%, P HBV-DNA, the Japanese HCC had a relatively low level. In the Vietnamese, C/A1753 and C1858 were associated closely with T1762A1764, higher HBV-DNA levels and higher HCC incidence. The multivariate analysis revealed that male, T1653 and C/A1753 were independent risk factors for HCC. The subgenotypes and unique mutations of HBV genotype C in the Vietnamese and Japanese differed, and C/A1753 and C1858 variants might play a role in the pathogenesis of liver disease in Vietnamese patients.

  20. Stability for Structures Armored with Core-LocTM

    OpenAIRE

    ÇEVİK, Esin ÖZKAN; CİHAN, Kubilay; YÜKSEL, Yalçın

    2014-01-01

    In conventional two-layer systems various armor units such as tetrapod, dolos, and tribar have been commonly used. Recent developments are accropode and core-locTM, which can be used in a single layer of armoring. The units for one-layer systems have an interlocking response under waves and hence their stability is high. The structure slope, wave conditions and placement methods are other areas of interest related to the stability of breakwater armor units. This study was intended ...

  1. Structural characterization of core-bradavidin in complex with biotin

    Science.gov (United States)

    Agrawal, Nitin; Määttä, Juha A. E.; Kulomaa, Markku S.; Hytönen, Vesa P.; Johnson, Mark S.; Airenne, Tomi T.

    2017-01-01

    Bradavidin is a tetrameric biotin-binding protein similar to chicken avidin and bacterial streptavidin, and was originally cloned from the nitrogen-fixing bacteria Bradyrhizobium diazoefficiens. We have previously reported the crystal structure of the full-length, wild-type (wt) bradavidin with 138 amino acids, where the C-terminal residues Gly129-Lys138 (“Brad-tag”) act as an intrinsic ligand (i.e. Gly129-Lys138 bind into the biotin-binding site of an adjacent subunit within the same tetramer) and has potential as an affinity tag for biotechnological purposes. Here, the X-ray structure of core-bradavidin lacking the C-terminal residues Gly114-Lys138, and hence missing the Brad-tag, was crystallized in complex with biotin at 1.60 Å resolution [PDB:4BBO]. We also report a homology model of rhodavidin, an avidin-like protein from Rhodopseudomonas palustris, and of an avidin-like protein from Bradyrhizobium sp. Ai1a-2, both of which have the Brad-tag sequence at their C-terminus. Moreover, core-bradavidin V1, an engineered variant of the original core-bradavidin, was also expressed at high levels in E. coli, as well as a double mutant (Cys39Ala and Cys69Ala) of core-bradavidin (CC mutant). Our data help us to further engineer the core-bradavidin–Brad-tag pair for biotechnological assays and chemical biology applications, and provide deeper insight into the biotin-binding mode of bradavidin. PMID:28426764

  2. A model for the internal structure of molecular cloud cores

    CERN Document Server

    McLaughlin, D E; McLaughlin, Dean E; Pudritz, Ralph E

    1996-01-01

    We generalize the classic Bonnor-Ebert stability analysis of pressure-truncated, self-gravitating gas spheres, to include clouds with arbitrary equations of state. A virial-theorem analysis is also used to incorporate mean magnetic fields into such structures. The results are applied to giant molecular clouds (GMCs), and to individual dense cores, with an eye to accounting for recent observations of the internal velocity-dispersion profiles of the cores in particular. We argue that GMCs and massive cores are at or near their critical mass, and that in such a case the size-linewidth and mass-radius relations between them are only weakly dependent on their internal structures; any gas equation of state leads to essentially the same relations. We briefly consider the possibility that molecular clouds can be described by polytropic pressure-density relations (of either positive or negative index), but show that these are inconsistent with the apparent gravitational virial equilibrium, 2U + W = 0 of GMCs and of ma...

  3. Geochemical Comparison of Four Cores from the Manson Impact Structure

    Science.gov (United States)

    Korotev, Randy L.; Rockow, Kaylynn M.; Jolliff, Bradley L.; Haskin, Larry A.; McCarville, Peter; Crossey, Laura J.

    1996-01-01

    Concentrations of 33 elements were determined in relatively unaltered, matrix-rich samples of impact breccia at approximately 3-m-depth intervals in the M-1 core from the Manson impact structure, Iowa. In addition, 46 matrix-rich samples from visibly altered regions of the M-7, M-8, and M-10 cores were studied, along with 42 small clasts from all four cores. Major element compositions were determined for a subset of impact breccias from the M-1 core, including matrix-rich impact-melt breccia. Major- and trace-element compositions were also determined for a suite of likely target rocks. In the M-1 core, different breccia units identified from lithologic examination of cores are compositionally distinct. There is a sharp compositional discontinuity at the boundary between the Keweenawan-shale-clast breccia and the underlying unit of impact-melt breccia (IMB) for most elements, suggesting minimal physical mixing between the two units during emplacement. Samples from the 40-m-thick IMB (M-1) are all similar to each other in composition, although there are slight increases in concentration with depth for those elements that have high concentrations in the underlying fragmental-matrix suevite breccia (SB) (e.g., Na, Ca, Fe, Sc), presumably as a result of greater clast proportions at the bottom margin of the unit of impact-melt breccia. The high degree of compositional similarity we observe in the impact-melt breccias supports the interpretation that the matrix of this unit represents impact melt. That our analyses show such compositional similarity results in part from our technique for sampling these breccias: for each sample we analyzed a few small fragments (total mass: approximately 200 mg) selected to be relatively free of large clasts and visible signs of alteration instead of subsamples of powders prepared from a large mass of breccia. The mean composition of the matrix-rich part of impact-melt breccia from the M-1 core can be modeled as a mixture of approximately

  4. Promoting Utilization of Saccharum spp. Genetic Resources through Genetic Diversity Analysis and Core Collection Construction

    Science.gov (United States)

    Pathak, Bhuvan; Ayala-Silva, Tomas; Yang, Xiping; Todd, James; Glynn, Neil C.; Kuhn, David N.; Glaz, Barry; Gilbert, Robert A.; Comstock, Jack C.; Wang, Jianping

    2014-01-01

    Sugarcane (Saccharum spp.) and other members of Saccharum spp. are attractive biofuel feedstocks. One of the two World Collections of Sugarcane and Related Grasses (WCSRG) is in Miami, FL. This WCSRG has 1002 accessions, presumably with valuable alleles for biomass, other important agronomic traits, and stress resistance. However, the WCSRG has not been fully exploited by breeders due to its lack of characterization and unmanageable population. In order to optimize the use of this genetic resource, we aim to 1) genotypically evaluate all the 1002 accessions to understand its genetic diversity and population structure and 2) form a core collection, which captures most of the genetic diversity in the WCSRG. We screened 36 microsatellite markers on 1002 genotypes and recorded 209 alleles. Genetic diversity of the WCSRG ranged from 0 to 0.5 with an average of 0.304. The population structure analysis and principal coordinate analysis revealed three clusters with all S. spontaneum in one cluster, S. officinarum and S. hybrids in the second cluster and mostly non-Saccharum spp. in the third cluster. A core collection of 300 accessions was identified which captured the maximum genetic diversity of the entire WCSRG which can be further exploited for sugarcane and energy cane breeding. Sugarcane and energy cane breeders can effectively utilize this core collection for cultivar improvement. Further, the core collection can provide resources for forming an association panel to evaluate the traits of agronomic and commercial importance. PMID:25333358

  5. Promoting utilization of Saccharum spp. genetic resources through genetic diversity analysis and core collection construction.

    Directory of Open Access Journals (Sweden)

    Spurthi N Nayak

    Full Text Available Sugarcane (Saccharum spp. and other members of Saccharum spp. are attractive biofuel feedstocks. One of the two World Collections of Sugarcane and Related Grasses (WCSRG is in Miami, FL. This WCSRG has 1002 accessions, presumably with valuable alleles for biomass, other important agronomic traits, and stress resistance. However, the WCSRG has not been fully exploited by breeders due to its lack of characterization and unmanageable population. In order to optimize the use of this genetic resource, we aim to 1 genotypically evaluate all the 1002 accessions to understand its genetic diversity and population structure and 2 form a core collection, which captures most of the genetic diversity in the WCSRG. We screened 36 microsatellite markers on 1002 genotypes and recorded 209 alleles. Genetic diversity of the WCSRG ranged from 0 to 0.5 with an average of 0.304. The population structure analysis and principal coordinate analysis revealed three clusters with all S. spontaneum in one cluster, S. officinarum and S. hybrids in the second cluster and mostly non-Saccharum spp. in the third cluster. A core collection of 300 accessions was identified which captured the maximum genetic diversity of the entire WCSRG which can be further exploited for sugarcane and energy cane breeding. Sugarcane and energy cane breeders can effectively utilize this core collection for cultivar improvement. Further, the core collection can provide resources for forming an association panel to evaluate the traits of agronomic and commercial importance.

  6. Promoting utilization of Saccharum spp. genetic resources through genetic diversity analysis and core collection construction.

    Science.gov (United States)

    Nayak, Spurthi N; Song, Jian; Villa, Andrea; Pathak, Bhuvan; Ayala-Silva, Tomas; Yang, Xiping; Todd, James; Glynn, Neil C; Kuhn, David N; Glaz, Barry; Gilbert, Robert A; Comstock, Jack C; Wang, Jianping

    2014-01-01

    Sugarcane (Saccharum spp.) and other members of Saccharum spp. are attractive biofuel feedstocks. One of the two World Collections of Sugarcane and Related Grasses (WCSRG) is in Miami, FL. This WCSRG has 1002 accessions, presumably with valuable alleles for biomass, other important agronomic traits, and stress resistance. However, the WCSRG has not been fully exploited by breeders due to its lack of characterization and unmanageable population. In order to optimize the use of this genetic resource, we aim to 1) genotypically evaluate all the 1002 accessions to understand its genetic diversity and population structure and 2) form a core collection, which captures most of the genetic diversity in the WCSRG. We screened 36 microsatellite markers on 1002 genotypes and recorded 209 alleles. Genetic diversity of the WCSRG ranged from 0 to 0.5 with an average of 0.304. The population structure analysis and principal coordinate analysis revealed three clusters with all S. spontaneum in one cluster, S. officinarum and S. hybrids in the second cluster and mostly non-Saccharum spp. in the third cluster. A core collection of 300 accessions was identified which captured the maximum genetic diversity of the entire WCSRG which can be further exploited for sugarcane and energy cane breeding. Sugarcane and energy cane breeders can effectively utilize this core collection for cultivar improvement. Further, the core collection can provide resources for forming an association panel to evaluate the traits of agronomic and commercial importance.

  7. X-ray structures in galaxy cluster cores

    CERN Document Server

    Pierre, M; Pierre, Marguerite; Starck, Jean-Luc

    1997-01-01

    Using a set of ROSAT HRI deep pointings, we investigate the presence of small-scale structures in the central regions of clusters of galaxies. Our sample comprises 23 objects up to z=0.32, 13 of them known to host a cooling flow. Structures are detected and characterized using a wavelet analysis, their statistical significance being assessed by a rigorous treatment of photon noise. We then investigate in detail the geometrical properties of the smallest scale structures. Contrary to previous claims, we find very few ``filaments'' or point-like features at a 3.7 sigma level, except at the very cluster centers. Complex cores are conspicuous in at least three massive cooling flows located at z = 0.22-0.26. From our initial data set we have simulated a redshifted sample, and analyzed it in the same way in order to investigate any instrumental/resolution effect on the detectability of structures. On the one hand, the topology of the core down to the limiting resolution appears to be, at least in our redshift range...

  8. Structural changes in TAF4b-TFIID correlate with promoter selectivity.

    Science.gov (United States)

    Liu, Wei-Li; Coleman, Robert A; Grob, Patricia; King, David S; Florens, Laurence; Washburn, Michael P; Geles, Kenneth G; Yang, Joyce L; Ramey, Vincent; Nogales, Eva; Tjian, Robert

    2008-01-18

    Proper ovarian development requires the cell type-specific transcription factor TAF4b, a subunit of the core promoter recognition complex TFIID. We present the 35 A structure of a cell type-specific core promoter recognition complex containing TAF4b and TAF4 (4b/4-IID), which is responsible for directing transcriptional synergy between c-Jun and Sp1 at a TAF4b target promoter. As a first step toward correlating potential structure/function relationships of the prototypic TFIID versus 4b/4-IID, we have compared their 3D structures by electron microscopy and single-particle reconstruction. These studies reveal that TAF4b incorporation into TFIID induces an open conformation at the lobe involved in TFIIA and putative activator interactions. Importantly, this open conformation correlates with differential activator-dependent transcription and promoter recognition by 4b/4-IID. By combining functional and structural analysis, we find that distinct localized structural changes in a megadalton macromolecular assembly can significantly alter its activity and lead to a TAF4b-induced reprogramming of promoter specificity.

  9. Space Launch System, Core Stage, Structural Test Design and Implementation

    Science.gov (United States)

    Shaughnessy, Ray

    2017-01-01

    As part of the National Aeronautics and Space Administration's (NASA) Space Launch System (SLS) Program, engineers at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama are working to design, develop and implement the SLS Core Stage structural testing. The SLS will have the capability to return humans to the Moon and beyond and its first launch is scheduled for December of 2017. The SLS Core Stage consist of five major elements; Forward Skirt, Liquid Oxygen (LOX) tank, Intertank (IT), Liquid Hydrogen (LH2) tank and the Engine Section (ES). Structural Test Articles (STA) for each of these elements are being designed and produced by Boeing at Michoud Assembly Facility located in New Orleans, La. The structural test for the Core Stage STAs (LH2, LOX, IT and ES) are to be conducted by the MSFC Test Laboratory. Additionally, the MSFC Test Laboratory manages the Structural Test Equipment (STE) design and development to support the STAs. It was decided early (April 2012) in the project life that the LH2 and LOX tank STAs would require new test stands and the Engine Section and Intertank would be tested in existing facilities. This decision impacted schedules immediately because the new facilities would require Construction of Facilities (C of F) funds that require congressional approval and long lead times. The Engine Section and Intertank structural test are to be conducted in existing facilities which will limit lead times required to support the first launch of SLS. With a SLS launch date of December, 2017 Boeing had a need date for testing to be complete by September of 2017 to support flight certification requirements. The test facilities were required to be ready by October of 2016 to support test article delivery. The race was on to get the stands ready before Test Article delivery and meet the test complete date of September 2017. This paper documents the past and current design and development phases and the supporting processes, tools, and

  10. Genome-wide identification of human- and primate-specific core promoter short tandem repeats.

    Science.gov (United States)

    Bushehri, A; Barez, M R Mashhoudi; Mansouri, S K; Biglarian, A; Ohadi, M

    2016-08-01

    Recent reports of a link between human- and primate-specific genetic factors and human/primate-specific characteristics and diseases necessitate genome-wide identification of those factors. We have previously reported core promoter short tandem repeats (STRs) of extreme length (≥6-repeats) that have expanded exceptionally in primates vs. non-primates, and may have a function in adaptive evolution. In the study reported here, we extended our study to the human STRs of ≥3-repeats in the category of penta and hexaucleotide STRs, across the entire human protein coding gene core promoters, and analyzed their status in several superorders and orders of vertebrates, using the Ensembl database. The ConSite software was used to identify the transcription factor (TF) sets binding to those STRs. STR specificity was observed at different levels of human and non-human primate (NHP) evolution. 73% of the pentanucleotide STRs and 68% of the hexanucleotide STRs were found to be specific to human and NHPs. AP-2alpha, Sp1, and MZF were the predominantly selected TFs (90%) binding to the human-specific STRs. Furthermore, the number of TF sets binding to a given STR was found to be a selection factor for that STR. Our findings indicate that selected STRs, the cognate binding TFs, and the number of TF set binding to those STRs function as switch codes at different levels of human and NHP evolution and speciation.

  11. Combined exposure to big endothelin-1 and mechanical loading in bovine sternal cores promotes osteogenesis.

    Science.gov (United States)

    Meyer, Luisa A; Johnson, Michael G; Cullen, Diane M; Vivanco, Juan F; Blank, Robert D; Ploeg, Heidi-Lynn; Smith, Everett L

    2016-04-01

    Increased bone formation resulting from mechanical loading is well documented; however, the interactions of the mechanotransduction pathways are less well understood. Endothelin-1, a ubiquitous autocrine/paracrine signaling molecule promotes osteogenesis in metastatic disease. In the present study, it was hypothesized that exposure to big endothelin-1 (big ET1) and/or mechanical loading would promote osteogenesis in ex vivo trabecular bone cores. In a 2×2 factorial trial of daily mechanical loading (-2000με, 120cycles daily, "jump" waveform) and big ET1 (25ng/mL), 48 bovine sternal trabecular bone cores were maintained in bioreactor chambers for 23days. The bone cores' response to the treatment stimuli was assessed with percent change in core apparent elastic modulus (ΔEapp), static and dynamic histomorphometry, and prostaglandin E2 (PGE2) secretion. Two-way ANOVA with a post hoc Fisher's LSD test found no significant treatment effects on ΔEapp (p=0.25 and 0.51 for load and big ET1, respectively). The ΔEapp in the "no load + big ET1" (CE, 13±12.2%, p=0.56), "load + no big ET1" (LC, 17±3.9%, p=0.14) and "load + big ET1" (LE, 19±4.2%, p=0.13) treatment groups were not statistically different than the control group (CC, 3.3%±8.6%). Mineralizing surface (MS/BS), mineral apposition (MAR) and bone formation rates (BFR/BS) were significantly greater in LE than CC (p=0.037, 0.0040 and 0.019, respectively). While the histological bone formation markers in LC trended to be greater than CC (p=0.055, 0.11 and 0.074, respectively) there was no difference between CE and CC (p=0.61, 0.50 and 0.72, respectively). Cores in LE and LC had more than 50% greater MS/BS (p=0.037, p=0.055 respectively) and MAR (p=0.0040, p=0.11 respectively) than CC. The BFR/BS was more than two times greater in LE (p=0.019) and LC (p=0.074) than CC. The PGE2 levels were elevated at 8days post-osteotomy in all groups and the treatment groups remained elevated compared to the CC group on days 15

  12. Ion Structure Near a Core-Shell Dielectric Nanoparticle

    Science.gov (United States)

    Ma, Manman; Gan, Zecheng; Xu, Zhenli

    2017-02-01

    A generalized image charge formulation is proposed for the Green's function of a core-shell dielectric nanoparticle for which theoretical and simulation investigations are rarely reported due to the difficulty of resolving the dielectric heterogeneity. Based on the formulation, an efficient and accurate algorithm is developed for calculating electrostatic polarization charges of mobile ions, allowing us to study related physical systems using the Monte Carlo algorithm. The computer simulations show that a fine-tuning of the shell thickness or the ion-interface correlation strength can greatly alter electric double-layer structures and capacitances, owing to the complicated interplay between dielectric boundary effects and ion-interface correlations.

  13. IDEAL STRUCTURE OF UNIFORM ROE ALGEBRAS OVER SIMPLE CORES

    Institute of Scientific and Technical Information of China (English)

    CHEN XIAOMAN; WANG QIN

    2004-01-01

    This paper characterizes ideal structure of the uniform Roe algebra B* (X) over sinple cores X. A necessary and sufficient condition for a principal ideal of B*(X) to be spatial is given and an example of non-spatial ideal of B* (X) is constructed. By establishing an one-one correspondence between the ideals of B* (X) and the ω-filters on X, the maximal ideals of B* (X) are completely described by the corona of the Stone-Cech compactification of X.

  14. The relationship between the hepatitis B virus base core and precore/core promoter mutations and the development of cirrhotic hepatocellular carcinoma and noncirrhotic hepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)

    徐尧江

    2013-01-01

    Objective To investigate the mutations of basal core promoter(BCP) and precore(PreC) region of hepatitis B virus(HBV) and the association with the development of hepatocellular carcinoma in patients with chronic HBV infection. Methods Totally 381 untreated HBV patients were recruited from the Department of Infectious

  15. The repeat domain of the melanosome fibril protein Pmel17 forms the amyloid core promoting melanin synthesis.

    Science.gov (United States)

    McGlinchey, Ryan P; Shewmaker, Frank; McPhie, Peter; Monterroso, Begoña; Thurber, Kent; Wickner, Reed B

    2009-08-18

    Pmel17 is a melanocyte protein necessary for eumelanin deposition 1 in mammals and found in melanosomes in a filamentous form. The luminal part of human Pmel17 includes a region (RPT) with 10 copies of a partial repeat sequence, pt.e.gttp.qv., known to be essential in vivo for filament formation. We show that this RPT region readily forms amyloid in vitro, but only under the mildly acidic conditions typical of the lysosome-like melanosome lumen, and the filaments quickly become soluble at neutral pH. Under the same mildly acidic conditions, the Pmel filaments promote eumelanin formation. Electron diffraction, circular dichroism, and solid-state NMR studies of Pmel17 filaments show that the structure is rich in beta sheet. We suggest that RPT is the amyloid core domain of the Pmel17 filaments so critical for melanin formation.

  16. Toward a detailed description of the thermally induced dynamics of the core promoter.

    Directory of Open Access Journals (Sweden)

    Boian S Alexandrov

    2009-03-01

    Full Text Available Establishing the general and promoter-specific mechanistic features of gene transcription initiation requires improved understanding of the sequence-dependent structural/dynamic features of promoter DNA. Experimental data suggest that a spontaneous dsDNA strand separation at the transcriptional start site is likely to be a requirement for transcription initiation in several promoters. Here, we use Langevin molecular dynamic simulations based on the Peyrard-Bishop-Dauxois nonlinear model of DNA (PBD LMD to analyze the strand separation (bubble dynamics of 80-bp-long promoter DNA sequences. We derive three dynamic criteria, bubble probability, bubble lifetime, and average strand separation, to characterize bubble formation at the transcriptional start sites of eight mammalian gene promoters. We observe that the most stable dsDNA openings do not necessarily coincide with the most probable openings and the highest average strand displacement, underscoring the advantages of proper molecular dynamic simulations. The dynamic profiles of the tested mammalian promoters differ significantly in overall profile and bubble probability, but the transcriptional start site is often distinguished by large (longer than 10 bp and long-lived transient openings in the double helix. In support of these results are our experimental transcription data demonstrating that an artificial bubble-containing DNA template is transcribed bidirectionally by human RNA polymerase alone in the absence of any other transcription factors.

  17. Hepatitis C Virus E2 Envelope Glycoprotein Core Structure

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Leopold; Giang, Erick; Nieusma, Travis; Kadam, Rameshwar U.; Cogburn, Kristin E.; Hua, Yuanzi; Dai, Xiaoping; Stanfield, Robyn L.; Burton, Dennis R.; Ward, Andrew B.; Wilson, Ian A.; Law, Mansun

    2014-08-26

    Hepatitis C virus (HCV), a Hepacivirus, is a major cause of viral hepatitis, liver cirrhosis, and hepatocellular carcinoma. HCV envelope glycoproteins E1 and E2 mediate fusion and entry into host cells and are the primary targets of the humoral immune response. The crystal structure of the E2 core bound to broadly neutralizing antibody AR3C at 2.65 angstroms reveals a compact architecture composed of a central immunoglobulin-fold β sandwich flanked by two additional protein layers. The CD81 receptor binding site was identified by electron microscopy and site-directed mutagenesis and overlaps with the AR3C epitope. The x-ray and electron microscopy E2 structures differ markedly from predictions of an extended, three-domain, class II fusion protein fold and therefore provide valuable information for HCV drug and vaccine design.

  18. Dendritic Structure Analysis of CMSX-4 Cored Turbine Blades Roots

    Directory of Open Access Journals (Sweden)

    Krawczyk J.

    2016-06-01

    Full Text Available The microstructure of as-cast cored turbine blades roots, made of the single-crystal CMSX-4 nickel-based superalloy was investigated. Analysed blades were obtained by directional solidification technique in the industrial ALD Bridgman induction furnace. The investigations of the microstructure of blades roots were performed using SEM and X-ray techniques including diffraction topography with the use of Auleytner method. Characteristic shapes of dendrites with various arrangement were observed on the SEM images taken from the cross-sections, made transversely to the main blades axis. The differences in quality of the structure in particular areas of blades roots were revealed. Based on the results, the influence of cooling bores on blades root structure was analysed and the changes in the distribution and geometry of cooling bores were proposed.

  19. Exceptional expansion and conservation of a CT-repeat complex in the core promoter of PAXBP1 in primates.

    Science.gov (United States)

    Mohammadparast, Saeid; Bayat, Hadi; Biglarian, Akbar; Ohadi, Mina

    2014-08-01

    Adaptive evolution may be linked with the genomic distribution and function of short tandem repeats (STRs). Proximity of the core promoter STRs to the +1 transcription start site (TSS), and their mutable nature are characteristics that highlight those STRs as a novel source of interspecies variation. The PAXBP1 gene (alternatively known as GCFC1) core promoter contains the longest STR identified in a Homo sapiens gene core promoter. Indeed, this core promoter is a stretch of four consecutive CT-STRs. In the current study, we used the Ensembl, NCBI, and UCSC databases to analyze the evolutionary trend and functional implication of this CT-STR complex in six major lineages across vertebrates, including primates, non-primate mammals, birds, reptiles, amphibians, and fish. We observed exceptional expansion (≥4-repeats) and conservation of this CT-STR complex across primates, except prosimians, Microcebus murinus and Otolemur garnettii (Fisher exact Pprimate lineages. Different length alleles across the PAXBP1 core promoter CT-STRs significantly altered gene expression in vitro (Pprimates and non-primates. To our knowledge, this is the first instance of expansion and conservation of a STR complex co-occurring specifically with the primate lineage.

  20. DNA structure in human RNA polymerase II promoters

    DEFF Research Database (Denmark)

    Pedersen, Anders Gorm; Baldi, Pierre; Chauvin, Yves

    1998-01-01

    the high-bendability regions position nucleosomes at the downstream end of the transcriptional start point, and consider the possibility of interaction between histone-like TAFs and this area. We also propose the use of this structural signature in computational promoter-finding algorithms.......The fact that DNA three-dimensional structure is important for transcriptional regulation begs the question of whether eukaryotic promoters contain general structural features independently of what genes they control. We present an analysis of a large set of human RNA polymerase II promoters...... with a very low level of sequence similarity. The sequences, which include both TATA-containing and TATA-less promoters, are aligned by hidden Markov models. Using three different models of sequence-derived DNA bendability, the aligned promoters display a common structural profile with bendability being low...

  1. Methionine Oxidation Perturbs the Structural Core of the Prion Protein and Suggests a Generic Misfolding Pathway*

    Science.gov (United States)

    Younan, Nadine D.; Nadal, Rebecca C.; Davies, Paul; Brown, David R.; Viles, John H.

    2012-01-01

    Oxidative stress and misfolding of the prion protein (PrPC) are fundamental to prion diseases. We have therefore probed the effect of oxidation on the structure and stability of PrPC. Urea unfolding studies indicate that H2O2 oxidation reduces the thermodynamic stability of PrPC by as much as 9 kJ/mol. 1H-15N NMR studies indicate methionine oxidation perturbs key hydrophobic residues on one face of helix-C as follows: Met-205, Val-209, and Met-212 together with residues Val-160 and Tyr-156. These hydrophobic residues pack together and form the structured core of the protein, stabilizing its ternary structure. Copper-catalyzed oxidation of PrPC causes a more significant alteration of the structure, generating a monomeric molten globule species that retains its native helical content. Further copper-catalyzed oxidation promotes extended β-strand structures that lack a cooperative fold. This transition from the helical molten globule to β-conformation has striking similarities to a misfolding intermediate generated at low pH. PrP may therefore share a generic misfolding pathway to amyloid fibers, irrespective of the conditions promoting misfolding. Our observations support the hypothesis that oxidation of PrP destabilizes the native fold of PrPC, facilitating the transition to PrPSc. This study gives a structural and thermodynamic explanation for the high levels of oxidized methionine in scrapie isolates. PMID:22654104

  2. 3.5A cryoEM structure of hepatitis B virus core assembled from full-length core protein.

    Directory of Open Access Journals (Sweden)

    Xuekui Yu

    Full Text Available The capsid shell of infectious hepatitis B virus (HBV is composed of 240 copies of a single protein called HBV core antigen (HBc. An atomic model of a core assembled from truncated HBc was determined previously by X-ray crystallography. In an attempt to obtain atomic structural information of HBV core in a near native, non-crystalline environment, we reconstructed a 3.5Å-resolution structure of a recombinant core assembled from full-length HBc by cryo electron microscopy (cryoEM and derived an atomic model. The structure shows that the 240 molecules of full-length HBc form a core with two layers. The outer layer, composed of the N-terminal assembly domain, is similar to the crystal structure of the truncated HBc, but has three differences. First, unlike the crystal structure, our cryoEM structure shows no disulfide bond between the Cys61 residues of the two subunits within the dimer building block, indicating such bond is not required for core formation. Second, our cryoEM structure reveals up to four more residues in the linker region (amino acids 140-149. Third, the loops in the cryoEM structures containing this linker region in subunits B and C are oriented differently (~30° and ~90° from their counterparts in the crystal structure. The inner layer, composed of the C-terminal arginine-rich domain (ARD and the ARD-bound RNAs, is partially-ordered and connected with the outer layer through linkers positioned around the two-fold axes. Weak densities emanate from the rims of positively charged channels through the icosahedral three-fold and local three-fold axes. We attribute these densities to the exposed portions of some ARDs, thus explaining ARD's accessibility by proteases and antibodies. Our data supports a role of ARD in mediating communication between inside and outside of the core during HBV maturation and envelopment.

  3. Optimization of competitively differentiated polymerase chain reaction in detection of HBV basal core promoter mutation

    Institute of Scientific and Technical Information of China (English)

    Xiao-Mou Peng; Lin Gu; Xue-Juan Chen; Jian-Guo Li; Yang-Su Huang; Zhi-Liang Gao

    2005-01-01

    AIM: To improve competitively differentiated polymerase chain reaction (CD-PCR) in detection of HBV basal core promoter mutation.METHODS: Recombinant plasmid of double point mutation A1762T/G1764A in basal core promoter of HBV constructed by site-directed mutagenesis was used as mutant control.To reveal the deficiency mechanism of CD-PCR, relationship between the circle number of PCR and the increased speed of products of each competitive primer was comparatively studied. Diversified amount of dNTPs and mutual primer of the competitive primers were tried to optimize CDPCR. Optimized CD-PCR was evaluated by detecting A1762T/G1764A mutation in recombinant plasmids and clinical sera from patients with HBV infection. RESULTS: The deficiency mechanism of CD-PCR was that the products of mismatched competitive primer grew fast when the amplification of matched primer entered into plateau stage, which led to decrease in or disappearance of the difference in the amount of their products. This phenomenon could be eliminated by reducing dNTPs to10 μmol/L and mutual primer to about 100 nmol/L. Optimized CD-PCR could detect both mutant and wild strain indepe ndent of the amount of templates and the number of PCRcycles. Its detection limit was 103 copies/mL, about 50 copies/reaction. About 10% of mutant DNAs among wild type DNAs could be detected. A1762T/G1764A mutant was detected in 41.8% (51/122) of patients with HBV infection, but not detected in controls with negative HBsAg. CONCLUSION: Optimized CD-PCR can detect mutation independent of the amount of initial templates and the number of PCR cycles.

  4. Synergetic effect of organic cores and inorganic shells for core/shell structured composite abrasives for chemical mechanical planarization

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yang, E-mail: cy.jpu@126.com [School of Materials Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164 (China); Li, Zhina [School of Materials Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164 (China); Miao, Naiming [School of Mechanical Engineering, Changzhou University, Changzhou, Jiangsu 213016 (China)

    2014-09-30

    Highlights: • The damage-free polishing mechanism of core/shell composite abrasive was explored. • The organic core is help to decrease surface roughness and mechanical damages. • The inorganic shell is in favor of improving material removal rate. • The enhanced CMP behavior is due to the synergistic effect between core and shell. - Abstract: Core/shell structured organic/inorganic composite microspheres has an important potential application in efficient and damage-free chemical mechanical planarization/polishing (CMP) as a kind of novel abrasive due to its uniform non-rigid mechanical property. However, the synergistic effect of material removal between organic cores and inorganic shells of composite abrasives is ambiguous. In this work, oxide-CMP performances of various slurries, containing polystyrene (PS) spheres, solid abrasives (SiO{sub 2} or CeO{sub 2}), mixed abrasives ((PS + SiO{sub 2}) or (PS + CeO{sub 2})), core/shell composites (PS/SiO{sub 2} or PS/CeO{sub 2}), were investigated by atomic force microscopy. Experiment results indicated that the surfaces polished by composite abrasives exhibited lower surface roughness, fewer scratches as well as lower topographical variations than those by other type of abrasives. The core/shell structure of composite abrasives plays an important role in improving CMP behavior. Moreover, the organic cores are mainly beneficial to decrease surface roughness and mechanical damages, and the inorganic shells are in favor of improving material removal rate.

  5. Density functional theory studies of screw dislocation core structures in bcc metals

    DEFF Research Database (Denmark)

    Frederiksen, Søren Lund; Jacobsen, Karsten Wedel

    2003-01-01

    The core structures of (I 11) screw dislocations in bee metals are studied using density functional theory in the local-density approximation. For Mo and Fe, direct calculations of the core structures show the cores to be symmetric with respect to 180degrees rotations around an axis perpendicular...

  6. Wage structure and the incentive effects of promotions

    NARCIS (Netherlands)

    van Herpen, M.; Cools, C.; van Praag, M.

    2006-01-01

    This paper studies wage structure characteristics and their incentive effects within one firm. Based on personnel records and an employee survey, we provide evidence that wages are attached to jobs and that promotions play a dominant role as a wage determinant. We furthermore show that a promotion a

  7. Wage structure and the incentive effects of promotions

    NARCIS (Netherlands)

    van Herpen, M.; Cools, C.; van Praag, M.

    2006-01-01

    This paper studies wage structure characteristics and their incentive effects within one firm. Based on personnel records and an employee survey, we provide evidence that wages are attached to jobs and that promotions play a dominant role as a wage determinant. We furthermore show that a promotion

  8. [Establishment of industry promotion technology system in Chinese medicine secondary exploitation based on "component structure theory"].

    Science.gov (United States)

    Cheng, Xu-Dong; Feng, Liang; Zhang, Ming-Hua; Gu, Jun-Fei; Jia, Xiao-Bin

    2014-10-01

    The purpose of the secondary exploitation of Chinese medicine is to improve the quality of Chinese medicine products, enhance core competitiveness, for better use in clinical practice, and more effectively solve the patient suffering. Herbs, extraction, separation, refreshing, preparation and quality control are all involved in the industry promotion of Chinese medicine secondary exploitation of industrial production. The Chinese medicine quality improvement and industry promotion could be realized with the whole process of process optimization, quality control, overall processes improvement. Based on the "component structure theory", "multi-dimensional structure & process dynamic quality control system" and systematic and holistic character of Chinese medicine, impacts of whole process were discussed. Technology systems of Chinese medicine industry promotion was built to provide theoretical basis for improving the quality and efficacy of the secondary development of traditional Chinese medicine products.

  9. Structural properties of prokaryotic promoter regions correlate with functional features.

    Science.gov (United States)

    Meysman, Pieter; Collado-Vides, Julio; Morett, Enrique; Viola, Roberto; Engelen, Kristof; Laukens, Kris

    2014-01-01

    The structural properties of the DNA molecule are known to play a critical role in transcription. In this paper, the structural profiles of promoter regions were studied within the context of their diversity and their function for eleven prokaryotic species; Escherichia coli, Klebsiella pneumoniae, Salmonella Typhimurium, Pseudomonas auroginosa, Geobacter sulfurreducens Helicobacter pylori, Chlamydophila pneumoniae, Synechocystis sp., Synechoccocus elongates, Bacillus anthracis, and the archaea Sulfolobus solfataricus. The main anchor point for these promoter regions were transcription start sites identified through high-throughput experiments or collected within large curated databases. Prokaryotic promoter regions were found to be less stable and less flexible than the genomic mean across all studied species. However, direct comparison between species revealed differences in their structural profiles that can not solely be explained by the difference in genomic GC content. In addition, comparison with functional data revealed that there are patterns in the promoter structural profiles that can be linked to specific functional loci, such as sigma factor regulation or transcription factor binding. Interestingly, a novel structural element clearly visible near the transcription start site was found in genes associated with essential cellular functions and growth in several species. Our analyses reveals the great diversity in promoter structural profiles both between and within prokaryotic species. We observed relationships between structural diversity and functional features that are interesting prospects for further research to yet uncharacterized functional loci defined by DNA structural properties.

  10. Structural properties of prokaryotic promoter regions correlate with functional features.

    Directory of Open Access Journals (Sweden)

    Pieter Meysman

    Full Text Available The structural properties of the DNA molecule are known to play a critical role in transcription. In this paper, the structural profiles of promoter regions were studied within the context of their diversity and their function for eleven prokaryotic species; Escherichia coli, Klebsiella pneumoniae, Salmonella Typhimurium, Pseudomonas auroginosa, Geobacter sulfurreducens Helicobacter pylori, Chlamydophila pneumoniae, Synechocystis sp., Synechoccocus elongates, Bacillus anthracis, and the archaea Sulfolobus solfataricus. The main anchor point for these promoter regions were transcription start sites identified through high-throughput experiments or collected within large curated databases. Prokaryotic promoter regions were found to be less stable and less flexible than the genomic mean across all studied species. However, direct comparison between species revealed differences in their structural profiles that can not solely be explained by the difference in genomic GC content. In addition, comparison with functional data revealed that there are patterns in the promoter structural profiles that can be linked to specific functional loci, such as sigma factor regulation or transcription factor binding. Interestingly, a novel structural element clearly visible near the transcription start site was found in genes associated with essential cellular functions and growth in several species. Our analyses reveals the great diversity in promoter structural profiles both between and within prokaryotic species. We observed relationships between structural diversity and functional features that are interesting prospects for further research to yet uncharacterized functional loci defined by DNA structural properties.

  11. Seismic Structures in the Earth's Inner Core Below Southeastern Asia

    Science.gov (United States)

    Krasnoshchekov, Dmitry; Kaazik, Petr; Kozlovskaya, Elena; Ovtchinnikov, Vladimir

    2016-05-01

    Documenting seismic heterogeneities in the Earth's inner core (IC) is important in terms of getting an insight into its history and dynamics. A valuable means for studying properties and spatial structure of such heterogeneities is provided by measurements of body waves refracted in the vicinity of the inner core boundary (ICB). Here, we investigate eastern hemisphere of the solid core by means of PKPBC-PKPDF differential travel times that sample depths from 140 to 360 km below its boundary. We study 292 polar and 133 equatorial residuals measured over the traces that probe roughly the same volume of the IC in both planes. Equatorial residuals show slight spatial variations in the sampled IC volume mostly below the level of 0.5 %, whereas polar residuals are up to three times as big, direction dependent and can exhibit higher local variations. The measurements reveal fast changes in seismic velocity within a restricted volume of the IC. We interpret the observations in terms of anisotropy and check against several anisotropy models few of which have been found capable of fitting the residuals scatter. We particularly quantify the model where a dipping discontinuity separates fully isotropic roof of the IC from its anisotropic body, whereas the depth of isotropy-anisotropy transition increases in southeast direction from 190 km below Southeastern Asia (off the coast of China) to 350 km beneath Australia. Another acceptable model cast in terms of localized anisotropic heterogeneities is valid if 33 largest polar measurements over the rays sampling a small volume below Southeastern Asia and the rest of polar data are treated separately. This model envisages almost isotropic eastern hemisphere of the IC at least down to the depth of 360 km below the ICB and constrains the anisotropic volume only to the ranges of North latitudes from 18° to 23°, East longitudes from 125° to 135° and depths exceeding 170 km. The anisotropy strength in either model is about 2

  12. Structural and Biochemical Insights into MLL1 Core Complex Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Avdic, Vanja; Zhang, Pamela; Lanouette, Sylvain; Groulx, Adam; Tremblay, Véronique; Brunzelle, Joseph; Couture, Jean-François (Ottawa); (NWU)

    2012-05-02

    Histone H3 Lys-4 methylation is predominantly catalyzed by a family of methyltransferases whose enzymatic activity depends on their interaction with a three-subunit complex composed of WDR5, RbBP5, and Ash2L. Here, we report that a segment of 50 residues of RbBP5 bridges the Ash2L C-terminal domain to WDR5. The crystal structure of WDR5 in ternary complex with RbBP5 and MLL1 reveals that both proteins binds peptide-binding clefts located on opposite sides of WDR5s {beta}-propeller domain. RbBP5 engages in several hydrogen bonds and van der Waals contacts within a V-shaped cleft formed by the junction of two blades on WDR5. Mutational analyses of both the WDR5 V-shaped cleft and RbBP5 residues reveal that the interactions between RbBP5 and WDR5 are important for the stimulation of MLL1 methyltransferase activity. Overall, this study provides the structural basis underlying the formation of the WDR5-RbBP5 subcomplex and further highlight the crucial role of WDR5 in scaffolding the MLL1 core complex.

  13. High thermal stability of core-shell structures dominated by negative interface energy.

    Science.gov (United States)

    Zhu, Yong-Fu; Zhao, Ning; Jin, Bo; Zhao, Ming; Jiang, Qing

    2017-03-29

    Nanoscale core/shell structures are of interest in catalysis due to their superior catalytic properties. Here we investigated the thermal stability of the coherent core-shell structures in a thermodynamic way by considering the impact from the core with the bulk melting point Tm(∞) lower or higher than the shell. When a low-Tm(∞) core is adopted, core-shell melting induced by the melting depression of the core does not occur upon heating because of the superheating, although the melting depression of the core can be triggered ultimately by the preferential melting of the high-Tm(∞) shell for small cores. The superheating of the core is contributed by the negative solid-solid interface energy, while the depression is originated from the positive solid-liquid interface energy. Owing to the presence of the negative interface energy, moreover, the low-Tm(∞)-core structure possesses a low difference in thermal expansion between the core and the shell, high activation energy of outward atomic diffusion from the core to shell, and low heat capacity. This result is beneficial for the core-shell structure design for its application in catalysis.

  14. Core Oligosaccharide of Plesiomonas shigelloides PCM 2231 (Serotype O17 Lipopolysaccharide — Structural and Serological Analysis

    Directory of Open Access Journals (Sweden)

    Anna Maciejewska

    2013-02-01

    Full Text Available The herein presented complete structure of the core oligosaccharide of lipopolysaccharide (LPS P. shigelloides Polish Collection of Microorganisms (PCM 2231 (serotype O17 was investigated by 1H, 13C NMR spectroscopy, mass spectrometry, chemical analyses and serological methods. The core oligosaccharide is composed of an undecasaccharide, which represents the second core type identified for P. shigelloides serotype O17 LPS. This structure is similar to that of the core oligosaccharide of P. shigelloides strains 302-73 (serotype O1 and 7-63 (serotype O17 and differs from these only by one sugar residue. Serological screening of 55 strains of P. shigelloides with the use of serum against identified core oligosaccharide conjugated with bovine serum albumin (BSA indicated the presence of similar structures in the LPS core region of 28 O-serotypes. This observation suggests that the core oligosaccharide structure present in strain PCM 2231 could be the most common type among P. shigelloides lipopolysaccharides.

  15. PROFILE VICTIMS OF NOTIFIED IN CORE AND VIOLENCE PREVENTION TO HEALTH PROMOTION

    Directory of Open Access Journals (Sweden)

    Juliete Tasca

    2014-06-01

    Full Text Available Study aiming to identify the profile of the victims reported in the core of violence prevention and health promotion, in a city in the extreme south of Santa Catarina. Research of quali-quantitative methodological approach, descriptive-exploratory documentary and field. The survey was conducted from the analysis of notifications from SINAN-information system of reportable diseases-from 2010 to October 2012 and realization of interview with the nurse program participant. In the data analysis phase, the information were quantified through Microsoft Office Excel and presented by means of quantitative analysis. Organized analysis and interpretation of qualitative data from the categorization of data. In relation to the types of violence, 40.92 was characterised with physical violence; 16.47 auto injury caused; 13.07 neglect and abandonment; 10.29 disability or mental disorder; 6.71; moral psychological violence; 6.07 violence with a firearm; 3.24 sexual violence; 1.81 violence related to work; 1.02 torture; 0.26 legal intervention; 0.07 sexual O perfil das vítimas da violência exploitation; 0.07 trafficking human beings. The violence is considered a public health problem of multiple dimensions requiring increasingly in-depth studies and public policies involving beyond theme of violence, security, education and culture for peace.

  16. Profile victims of notified in Core and Violence Prevention to Health Promotion

    Directory of Open Access Journals (Sweden)

    Juliete Tasca

    2014-09-01

    Full Text Available Study aiming to identify the profile of the victims reported in the core of violence prevention and health promotion, in a city in the extreme south of Santa Catarina. Research of quali-quantitative methodological approach, descriptive-exploratory documentary and field. The survey was conducted from the analysis of notifications from SINAN-information system of reportable diseases-from 2010 to October 2012 and realization of interview with the nurse program participant. In the data analysis phase, the information were quantified through Microsoft Office Excel and presented by means of quantitative analysis. Organized analysis and interpretation of qualitative data from the categorization of data. In relation to the types of violence, 40.92 was characterised with physical violence; 16.47 auto injury caused; 13.07 neglect and abandonment; 10.29 disability or mental disorder; 6.71; moral psychological violence; 6.07 violence with a firearm; 3.24 sexual violence; 1.81 violence related to work; 1.02 torture; 0.26 legal intervention; 0.07 sexual exploitation; 0.07 trafficking human beings. The violence is considered a public health problem of multiple dimensions requiring increasingly in-depth studies and public policies involving beyond theme of violence, security, education and culture for peace.

  17. Structure and stability of complex coacervate core micelles with lysozyme

    NARCIS (Netherlands)

    Lindhoud, Saskia; de Vries, Renko; Norde, Willem; Cohen Stuart, Martien A.

    Encapsulation of enzymes by polymers is a promising method to influence their activity and stability. Here, we explore the use of complex coacervate core micelles for encapsulation of enzymes. The core of the micelles consists of negatively charged blocks of the diblock copolymer PAA(42)PAAm(417)

  18. Structure and Stability of Complex Coacervate Core Micelles with Lysozyme

    NARCIS (Netherlands)

    Lindhoud, Saskia; de Vries, Renko; Norde, Willem; Cohen Stuart, Martinus Abraham

    2007-01-01

    Encapsulation of enzymes by polymers is a promising method to influence their activity and stability. Here, we explore the use of complex coacervate core micelles for encapsulation of enzymes. The core of the micelles consists of negatively charged blocks of the diblock copolymer PAA42PAAm417 and

  19. Structure and stability of complex coacervate core micelles with lysozyme

    NARCIS (Netherlands)

    Lindhoud, S.; Vries, de R.J.; Norde, W.; Cohen Stuart, M.A.

    2007-01-01

    Encapsulation of enzymes by polymers is a promising method to influence their activity and stability. Here, we explore the use of complex coacervate core micelles for encapsulation of enzymes. The core of the micelles consists of negatively charged blocks of the diblock copolymer PAA42PAAm417 and th

  20. Structure and Stability of Complex Coacervate Core Micelles with Lysozyme

    NARCIS (Netherlands)

    Lindhoud, Saskia; Vries, de Renko; Norde, Willem; Cohen Stuart, Martien A.

    2007-01-01

    Encapsulation of enzymes by polymers is a promising method to influence their activity and stability. Here, we explore the use of complex coacervate core micelles for encapsulation of enzymes. The core of the micelles consists of negatively charged blocks of the diblock copolymer PAA42PAAm417 and th

  1. Structure and stability of complex coacervate core micelles with lysozyme

    NARCIS (Netherlands)

    Lindhoud, Saskia; de Vries, Renko; Norde, Willem; Cohen Stuart, Martien A.

    2007-01-01

    Encapsulation of enzymes by polymers is a promising method to influence their activity and stability. Here, we explore the use of complex coacervate core micelles for encapsulation of enzymes. The core of the micelles consists of negatively charged blocks of the diblock copolymer PAA(42)PAAm(417) an

  2. Analysis of the effect of core structure upon dineutron correlation using antisymmetrized molecular dynamics

    CERN Document Server

    Kobayashi, Fumiharu

    2015-01-01

    We extend the method of antisymmetrized molecular dynamics to investigate dineutron correlation. We apply this method to $^{10}$Be as an example and investigate the motion of two neutrons around a largely deformed $^8$Be core by analyzing the two-neutron overlap function around the core. We show that the core structure plays an important role in dineutron formation and expansion from the core and that the present framework is effective for the studies of dineutron correlation.

  3. High-resolution crystal structure of a hepatitis B virus replication inhibitor bound to the viral core protein.

    Science.gov (United States)

    Klumpp, Klaus; Lam, Angela M; Lukacs, Christine; Vogel, Robert; Ren, Suping; Espiritu, Christine; Baydo, Ruth; Atkins, Kateri; Abendroth, Jan; Liao, Guochun; Efimov, Andrey; Hartman, George; Flores, Osvaldo A

    2015-12-01

    The hepatitis B virus (HBV) core protein is essential for HBV replication and an important target for antiviral drug discovery. We report the first, to our knowledge, high-resolution crystal structure of an antiviral compound bound to the HBV core protein. The compound NVR-010-001-E2 can induce assembly of the HBV core wild-type and Y132A mutant proteins and thermostabilize the proteins with a Tm increase of more than 10 °C. NVR-010-001-E2 binds at the dimer-dimer interface of the core proteins, forms a new interaction surface promoting protein-protein interaction, induces protein assembly, and increases stability. The impact of naturally occurring core protein mutations on antiviral activity correlates with NVR-010-001-E2 binding interactions determined by crystallography. The crystal structure provides understanding of a drug efficacy mechanism related to the induction and stabilization of protein-protein interactions and enables structure-guided design to improve antiviral potency and drug-like properties.

  4. High-resolution crystal structure of a hepatitis B virus replication inhibitor bound to the viral core protein

    Science.gov (United States)

    Klumpp, Klaus; Lam, Angela M.; Lukacs, Christine; Vogel, Robert; Ren, Suping; Espiritu, Christine; Baydo, Ruth; Atkins, Kateri; Abendroth, Jan; Liao, Guochun; Efimov, Andrey; Hartman, George; Flores, Osvaldo A.

    2015-01-01

    The hepatitis B virus (HBV) core protein is essential for HBV replication and an important target for antiviral drug discovery. We report the first, to our knowledge, high-resolution crystal structure of an antiviral compound bound to the HBV core protein. The compound NVR-010–001-E2 can induce assembly of the HBV core wild-type and Y132A mutant proteins and thermostabilize the proteins with a Tm increase of more than 10 °C. NVR-010–001-E2 binds at the dimer–dimer interface of the core proteins, forms a new interaction surface promoting protein–protein interaction, induces protein assembly, and increases stability. The impact of naturally occurring core protein mutations on antiviral activity correlates with NVR-010–001-E2 binding interactions determined by crystallography. The crystal structure provides understanding of a drug efficacy mechanism related to the induction and stabilization of protein–protein interactions and enables structure-guided design to improve antiviral potency and drug-like properties. PMID:26598693

  5. Density-Based and Transport-Based Core-Periphery Structures in Networks

    CERN Document Server

    Lee, Sang Hoon; Porter, Mason A

    2013-01-01

    Networks often possess mesoscale structures, and studying them can yield insights into both structure and function. It is most common to study community structure, but numerous other types of mesoscale structures also exist. In this paper, we examine core-periphery structures based on both density and transportation. In such structures, core network components are well-connected both among themselves and to peripheral components, which are not well-connected to anything. We examine core-periphery structures in a wide range of examples of transportation, social, and financial networks---including road networks in large urban areas, a rabbit warren, a dolphin social network, a European interbank network, and a migration network between counties in the United States. We illustrate that a recently developed transport-based notion of node coreness is very useful for characterizing transportation networks. We also generalize this notion to examine core versus peripheral edges, and we show that this new diagnostic i...

  6. Nucleosome Positioning and NDR Structure at RNA Polymerase III Promoters

    Science.gov (United States)

    Helbo, Alexandra Søgaard; Lay, Fides D.; Jones, Peter A.; Liang, Gangning; Grønbæk, Kirsten

    2017-02-01

    Chromatin is structurally involved in the transcriptional regulation of all genes. While the nucleosome positioning at RNA polymerase II (pol II) promoters has been extensively studied, less is known about the chromatin structure at pol III promoters in human cells. We use a high-resolution analysis to show substantial differences in chromatin structure of pol II and pol III promoters, and between subtypes of pol III genes. Notably, the nucleosome depleted region at the transcription start site of pol III genes extends past the termination sequences, resulting in nucleosome free gene bodies. The +1 nucleosome is located further downstream than at pol II genes and furthermore displays weak positioning. The variable position of the +1 location is seen not only within individual cell populations and between cell types, but also between different pol III promoter subtypes, suggesting that the +1 nucleosome may be involved in the transcriptional regulation of pol III genes. We find that expression and DNA methylation patterns correlate with distinct accessibility patterns, where DNA methylation associates with the silencing and inaccessibility at promoters. Taken together, this study provides the first high-resolution map of nucleosome positioning and occupancy at human pol III promoters at specific loci and genome wide.

  7. The study of the transformer gene from Bactrocera dorsalis and B. correcta with putative core promoter regions.

    Science.gov (United States)

    Laohakieat, Kamoltip; Aketarawong, Nidchaya; Isasawin, Siriwan; Thitamadee, Siripong; Thanaphum, Sujinda

    2016-02-01

    The transformer (tra) is a sex determining switch in different orders of insects, including Diptera, as in the family Tephritidae. The lifelong autoregulatory loop of tra female-specific splicing can be reset by the intervention of male-specific primary signals (M factor). In early development, the functional female and truncated male TRA proteins relay the sexual fates to the alternative splicing of a bisexual switch gene, doublesex (dsx) cascading the sexual differentiation processes. Bactrocera dorsalis (Hendel) and Bactrocera correcta (Bezzi) are among the Bactrocera model worldwide key pests. Area-wide integrated pest management using the male-only Sterile Insect Technique (SIT) relying on genetic sexing systems is effective in control programs. We undertook the molecular characterization and comparative studies of the tra orthologues in the Bactrocera species, including the Salaya1 genetic sexing strain (GSS). RT-PCR revealed that B. dorsalis tra (Bdtra) and B. correcta tra (Bctra) transcripts contained conservation of both constitutive exons and male-specific exons as in other Bactrocera. However, new Bdtra male-specific exons were retained, diversifying the pattern of the male-specifically spliced transcripts. The coding sequences of tra were highly conserved in Bactrocera (86-95%) but less so among related genera (61-65%) within the same Tephritidae family. A conservation of deduced amino acid sequences (18 residues), called the TEP region, was identified to be distinctive among tephritids. The 5' regulatory sequence containing many structural characteristics of the putative core promoter was discovered in B. correcta. The expression patterns of Bdtra and Bctra were sex-specifically spliced and the signals relayed to the dsx genes in the adult wild-types. However, the coexistence of male- and female-specifically spliced transcripts (980 and 626 bp, respectively) of the B. dorsalis wild-type strain was found in the Salaya1 GSS adult males. The Bdtra RNA

  8. Nonlinear Light Dynamics in Multi-Core Structures

    Science.gov (United States)

    2017-02-27

    be generated in continuous-discrete optical media such as multi-core optical fiber or waveguide arrays; localisation dynamics in a continuous...space and time that can be generated in continuous-discrete optical media such as multi-core optical fiber or waveguide arrays; localisation dynamics in...gives another practical possibility to localize and control light both in space and time. The combination of these two features leads to a rich variety

  9. Internal structure of Pluto and Charon with an iron core

    CERN Document Server

    Aitta, A

    2015-01-01

    Pluto has been observed by the New Horizons space probe to have some relatively fresh ice on the old ices covering most of the surface. Pluto was thought to consist of only a rocky core below the ice. Here I show that Pluto can have an iron core, as can also its companion Charon, which has recently been modelled to have one. The presence of an iron core means the giant impact origin calculations should be redone to include iron and thus higher temperatures. An iron core leads to the possibility of a different geology. An originally molten core becomes solid later, with contraction and a release of latent heat. The space vacated allows the upper rock layers to flow downwards at some locations at the surface of the core, and some of the ice above the rock to descend, filling the spaces left by the rock motion downwards. These phenomena can lead to the forces recently deforming the icy surface of Pluto, and in a lesser way, of Charon.

  10. Prevalence of the initiator over the TATA box in human and yeast genes and identification of DNA motifs enriched in human TATA-less core promoters.

    Science.gov (United States)

    Yang, Chuhu; Bolotin, Eugene; Jiang, Tao; Sladek, Frances M; Martinez, Ernest

    2007-03-01

    The core promoter of eukaryotic genes is the minimal DNA region that recruits the basal transcription machinery to direct efficient and accurate transcription initiation. The fraction of human and yeast genes that contain specific core promoter elements such as the TATA box and the initiator (INR) remains unclear and core promoter motifs specific for TATA-less genes remain to be identified. Here, we present genome-scale computational analyses indicating that approximately 76% of human core promoters lack TATA-like elements, have a high GC content, and are enriched in Sp1-binding sites. We further identify two motifs - M3 (SCGGAAGY) and M22 (TGCGCANK) - that occur preferentially in human TATA-less core promoters. About 24% of human genes have a TATA-like element and their promoters are generally AT-rich; however, only approximately 10% of these TATA-containing promoters have the canonical TATA box (TATAWAWR). In contrast, approximately 46% of human core promoters contain the consensus INR (YYANWYY) and approximately 30% are INR-containing TATA-less genes. Significantly, approximately 46% of human promoters lack both TATA-like and consensus INR elements. Surprisingly, mammalian-type INR sequences are present - and tend to cluster - in the transcription start site (TSS) region of approximately 40% of yeast core promoters and the frequency of specific core promoter types appears to be conserved in yeast and human genomes. Gene Ontology analyses reveal that TATA-less genes in humans, as in yeast, are frequently involved in basic "housekeeping" processes, while TATA-containing genes are more often highly regulated, such as by biotic or stress stimuli. These results reveal unexpected similarities in the occurrence of specific core promoter types and in their associated biological processes in yeast and humans and point to novel vertebrate-specific DNA motifs that might play a selective role in TATA-independent transcription.

  11. The Liaonan Metamorphic Core Complex: Constitution, Structure and Evolution

    Institute of Scientific and Technical Information of China (English)

    LIU Junlai; GUAN Huimei; JI Mo; CAO Shuyun; HU Ling

    2006-01-01

    The Liaonan metamorphic core complex (mcc) has a three-layer structure and is constituted by five parts, i.e. a detachment fault zone, an allochthonous upper plate and an supradetachment basin above the fault zone, and highly metamorphosed rocks and intrusive rocks in the lower plate. The allochthonous upper plate is mainly of Neoproterozoic and Paleozoic rocks weakly deformed and metamorphosed in pre-Indosinan stage. Above these rocks is a small-scale supradetachment basin of Cretaceous sedimentary and volcanic rocks. The lower plate is dominated by Archean TTG gneisses with minor amount of supracrustal rocks. The Archean rocks are intruded by late Mesozoic synkinematic monzogranitic and granitic plutons. Different types of fault rocks, providing clues to the evolution of the detachment fault zone, are well-preserved in the fault zone, e.g. mylonitic gneiss,mylonites, brecciated mylonites, microbreccias and pseudotachylites. Lineations in lower plate granitic intrusions have consistent orientation that indicate uniform top-to-NW shearing along the main detachment fault zone. This also provides evidence for the synkinematic characteristics of the granitic plutons in the lower plate. Structural analysis of the different parts in the mcc and isotopic dating of plutonic rocks from the lower plate and mylonitic rocks from detachment fault zone suggest that exhumation of the mcc started with regional crustal extension due to crustal block rotation and tangential shearing. The extension triggered magma formation, upwelling and emplacement. This event ended with appearance of pseudotachylite and fault gauges formed at the uppermost crustal level.U-Pb dating of single zircon grains from granitic rocks in the lower plate gives an age of 130±5 Ma, and biotite grains from the main detachment fault zone have 40Ar-39Ar ages of 108-119 Ma. Several aspects may provide constraints for the exhumation of the Liaonan mcc. These include regional extensional setting, cover

  12. Engineering review of the core support structure of the Gas Cooled Fast Breeder Reactor

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-09-01

    The review of the core support structure of the gas cooled fast breeder reactor (GCFR) covered such areas as the design criteria, the design and analysis of the concepts, the development plan, and the projected manufacturing costs. Recommendations are provided to establish a basis for future work on the GCFR core support structure.

  13. Mechanical Response of All-composite Pyramidal Lattice Truss Core Sandwich Structures

    Institute of Scientific and Technical Information of China (English)

    Ming Li; Linzhi Wu; Li Ma; Bing Wang; Zhengxi Guan

    2011-01-01

    The mechanical performance of an all-composite pyramidal lattice truss core sandwich structure was investigated both theoretically and experimentally. Sandwich structures were fabricated with a hot compression molding method using carbon fiber reinforced composite T700/3234. The out-of-plane compression and shear tests were conducted. Experimental results showed that the all-composite pyramidal lattice truss core sandwich structures were more weight efficient than other metallic lattice truss core sandwich structures. Failure modes revealed that node rupture dominated the mechanical behavior of sandwich structures.

  14. Effect of varying geometrical parameters of trapezoidal corrugated-core sandwich structure

    Directory of Open Access Journals (Sweden)

    Zaid N.Z.M.

    2017-01-01

    Full Text Available Sandwich structure is an attractive alternative that increasingly used in the transportation and aerospace industry. Corrugated-core with trapezoidal shape allows enhancing the damage resistance to the sandwich structure, but on the other hand, it changes the structural response of the sandwich structure. The aim of this paper is to study the effect of varying geometrical parameters of trapezoidal corrugated-core sandwich structure under compression loading. The corrugated-core specimen was fabricated using press technique, following the shape of trapezoidal shape. Two different materials were used in the study, glass fibre reinforced plastic (GFRP and carbon fibre reinforced plastic (CFRP. The result shows that the mechanical properties of the core in compression loading are sensitive to the variation of a number of unit cells and the core thickness.

  15. Promoting quality of care in disaster response: A survey of core surgical competencies.

    Science.gov (United States)

    Wong, Evan G; Razek, Tarek; Elsharkawi, Hossam; Wren, Sherry M; Kushner, Adam L; Giannou, Christos; Khwaja, Kosar A; Beckett, Andrew; Deckelbaum, Dan L

    2015-07-01

    Recent humanitarian crises have led to a call for professionalization of the humanitarian field, but core competencies for the delivery of surgical care have yet to be established. The objective of this study was to survey surgeons with experience in disaster response to identify surgical competencies required to be effective in these settings. An online survey elucidating demographic information, scope of practice, and previous experience in global health and disaster response was transmitted to surgeons from a variety of surgical societies and nongovernmental organizations. Participants were provided with a list of 111 operative procedures and were asked to identify those deemed essential to the toolset of a frontline surgeon in disaster response via a Likert scale. Responses from personnel with experience in disaster response were contrasted with those from nonexperienced participants. A total of 147 surgeons completed the survey. Participants held citizenship in 22 countries, were licensed in 30 countries, and practiced in >20 countries. Most respondents (56%) had previous experience in humanitarian response. The majority agreed or strongly agreed that formal training (54%), past humanitarian response (94%), and past global health experiences (80%) provided adequate preparation. The most commonly deemed important procedures included control of intraabdominal hemorrhage (99%), abdominal packing for trauma (99%), and wound debridement (99%). Procedures deemed important by experienced personnel spanned multiple specialties. This study addressed specifically surgical competencies in disaster response. We provide a list of operative procedures that should set the stage for further structured education programs. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Structure analysis and core community detection of embodied resources networks among regional industries

    Science.gov (United States)

    He, Xijun; Dong, Yanbo; Wu, Yuying; Wei, Guodan; Xing, Lizhi; Yan, Jia

    2017-08-01

    To address the double pressure of scarce resources and regional industrial isomorphism, this paper applied the concepts of exergy and embodied resources based on economic input-output (I-O) data. We constructed the embodied resources networks among the regional industries of Beijing-Tianjin-Hebei (also known as Jing-Jin-Ji) in China. We analyzed the rules of embodied resources consumption in the area's industries, identified the core community structures, and studied the characteristics of industrial homogeneity through regional comparisons. The results showed that the dependence on scarce resources of industrial operations in Beijing was less than in Jin-Ji, while the dependence on finance, technology, information, and other service resources in Beijing was higher than in Jin-Ji. The I-O efficiency of embodied resources among industries and the agglomeration of correlation relationships in industries with large embodied resources were higher than in Jin-Ji. The industrial coincidence degree in the ;bridge; industries and in the core community in Jin-Ji was higher than in Jing-Jin and Jing-Ji, which means the industrial homogeneous competition of Jin-Ji was higher, too. This study makes a significant contribution toward promoting the dislocation development of regional industries, accelerating the coordination of resources, and reducing homogeneity competition.

  17. Promoting Research as a Core Value in Master's-Level Counselor Education

    Science.gov (United States)

    Huber, Charles H.; Savage, Todd A.

    2009-01-01

    Theory, practice, and research are all espoused to be core values within counselor education. The authors assert that research needs to become directly associated with theory and practice for it to be a concurrent core value. "Action research" is most simply defined as a form of research that is practitioner based. The authors propose infusing…

  18. Wage structure and the incentive effect of promotions

    NARCIS (Netherlands)

    van Herpen, M.; Cools, K.; van Praag, C.M.

    2004-01-01

    This paper studies wage structure characteristics and their consequent incentive effects empirically. Based on personnel records and an employee survey, we provide evidence that wages are attached to jobs and that promotions play a dominant role as a wage determinant. Our findings indicate furthermo

  19. Wage structure and the incentive effect of promotions

    NARCIS (Netherlands)

    van Herpen, M.; Cools, K.; van Praag, C.M.

    2004-01-01

    This paper studies wage structure characteristics and their consequent incentive effects empirically. Based on personnel records and an employee survey, we provide evidence that wages are attached to jobs and that promotions play a dominant role as a wage determinant. Our findings indicate

  20. Density functional theory studies of screw dislocation core structures in bcc metals

    DEFF Research Database (Denmark)

    Frederiksen, Søren Lund; Jacobsen, Karsten Wedel

    2003-01-01

    The core structures of (I 11) screw dislocations in bee metals are studied using density functional theory in the local-density approximation. For Mo and Fe, direct calculations of the core structures show the cores to be symmetric with respect to 180degrees rotations around an axis perpendicular...... to the dislocation line. The magnetic moment in the Fe core is shown to be reduced relative to the bulk value. Calculations of gamma surfaces and the elastic constants B, C' and c(44) are reported for Fe and all group VB and VIB metals. Using a criterion suggested by Vitek and Duesbery the calculations point...

  1. Hepatitis B virus subgenotypes and basal core promoter mutations in Indonesia

    Institute of Scientific and Technical Information of China (English)

    Andi Utama; Sigit Purwantomo; Marlinang Diarta Siburian; Rama Dhenni; Rino Alvani Gani; Irsan Hasan; Andri Sanityoso; Upik Anderiani Miskad; Fardah Akil; Irawan Yusuf; Wenny Astuti Achwan; Soewignjo Soemohardjo; Syafruddin AR Lelosutan; Ruswhandi Martamala; Benyamin Lukito; Unggul Budihusodo; Laurentius Adrianus Lesmana; Ali Sulaiman; Susan Tai

    2009-01-01

    AIM:To identify the distribution of hepatitis B virus(HBV) subgenotype and basal core promoter(BCP) mutations among patients with HBV-associated liver disease in Indonesia.METHODS:Patients with chronic hepatitis (CH,n=61),liver cirrhosis (LC,n = 62),and hepatocellular carcinoma (HCC,n = 48) were included in this study.HBV subgenotype was identified based on S or preS gene sequence,and mutations in the HBx gene including the overlapping BCP region were examined by direct sequencing.RESULTS:HBV genotype B (subgenotypes B2,B3,B4,B5 and B7) the major genotype in the samples,accounted for 75.4%,71.0% and 75.0% of CH,LC and HCC patients,respectively,while the genotype C(subgenotypes C1,C2 and C3) was detected in 24.6%,29.0%,and 25.0% of CH,LC,and HCC patients,respectively.Subgenotypes B3 (84.9%) and C1 (82.2%) were the main subgenotype in HBV genotype B and C,respectively.Serotype adw2 (84.9%) and adrq+(89.4%) were the most prevalent in HBV genotype B and C,respectively.Double mutation (A1762T/G1764A) in the BCP was significantly higher in LC (59.7%) and HCC (54.2%) than in CH (19.7%),suggesting that this mutation was associated with severity of liver disease.The T1753V was also higher in LC (46.8%),but lower in HCC (22.9%) and CH (18.0%),suggesting that this mutation may be an indicator of cirrhosis.CONCLUSION:HBV genotype B/B3 and C/C1 are the major genotypes in Indonesia.Mutations in BCP,such as A1762T/G1764A and T1753V,might have an association with manifestations of liver disease.

  2. Rigid polyurethane foam – kenaf core composites for structural applications

    Science.gov (United States)

    Kenaf (Hibiscus cannabinus L.) is a fast growing summer annual crop with numerous commercial applications (fibers, biofuels, bioremediation, paper pulp, building materials, cover crops, and livestock forages). The stalks of the kenaf plants contain two distinct fiber types, bast and core fibers. The...

  3. Coordination polymer core/shell structures: Preparation and up/down-conversion luminescence.

    Science.gov (United States)

    Li, Bingmei; Xu, Hualan; Xiao, Chen; Shuai, Min; Chen, Weimin; Zhong, Shengliang

    2016-10-01

    Coordination polymer (CP) core-shell nanoparticles with Gd-based CP (GdCP) as core and Eu-based CP (EuCP) as shell have been successfully prepared. Allantoin was employed as the organic building block without the assistance of any template. The composition, size and structure of the core-shell nanospheres were well characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray (EDX), powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FT-IR), thermo-gravimetric analysis (TG). Results show that the resultant cores are uniform nanospheres with diameter of approximately 45nm, while the diameters of the core-shell nanospheres are increased to approximately 60nm. The core-shell products show enhanced luminescence efficiency than the core under 980nm laser excitation and decreased down-conversion luminescence when excited at 394nm.

  4. Creating academic structures to promote nursing's role in global health policy.

    Science.gov (United States)

    Gimbel, S; Kohler, P; Mitchell, P; Emami, A

    2017-03-01

    We highlight key components of emerging academic structures in global health nursing and explain how this investment can expand nursing's broader engagement in global health policy development. Engaging nursing in global health policy development is vital to ensure the scale-up of effective health programmes. Globally, nurses promote development of interprofessional healthcare teams who are responsible for translating sound global health policy and evidence-based programming into practice. However, the role of nurses within policy forums and on influential decision-making bodies within the global health space remains limited, which reinforces suboptimal global health policy implementation. Investment in globally engaged academic structures is an important way to expand participation of nursing in global health policy development. A review of the current knowledge and substantive findings related to academic structures promoting global health nursing was conducted, and included a directed search of institutional websites, related grey and peer-reviewed literature, and communication with top-tier schools of nursing in the United States, to identify specific developments in global health nursing academic structures. Effective academic structures promoting global health nursing include a framework of four critical components - Research, Education, Policy and Partnership. Academic structure type and core activities vary depending on institutional priorities. Increasingly, global health research, driven by individual nursing investigators, is expanding; however, in order to translate these advances into expanded involvement in global health policy development, academic structures within schools of nursing need to systematically expand educational opportunities, bolster research capacity and promote partnership with policymakers. © 2017 The Authors International Nursing Review published by John Wiley & Sons Ltd on behalf of International Council of Nurses.

  5. Multiple genome alignment for identifying the core structure among moderately related microbial genomes.

    Science.gov (United States)

    Uchiyama, Ikuo

    2008-10-31

    Identifying the set of intrinsically conserved genes, or the genomic core, among related genomes is crucial for understanding prokaryotic genomes where horizontal gene transfers are common. Although core genome identification appears to be obvious among very closely related genomes, it becomes more difficult when more distantly related genomes are compared. Here, we consider the core structure as a set of sufficiently long segments in which gene orders are conserved so that they are likely to have been inherited mainly through vertical transfer, and developed a method for identifying the core structure by finding the order of pre-identified orthologous groups (OGs) that maximally retains the conserved gene orders. The method was applied to genome comparisons of two well-characterized families, Bacillaceae and Enterobacteriaceae, and identified their core structures comprising 1438 and 2125 OGs, respectively. The core sets contained most of the essential genes and their related genes, which were primarily included in the intersection of the two core sets comprising around 700 OGs. The definition of the genomic core based on gene order conservation was demonstrated to be more robust than the simpler approach based only on gene conservation. We also investigated the core structures in terms of G+C content homogeneity and phylogenetic congruence, and found that the core genes primarily exhibited the expected characteristic, i.e., being indigenous and sharing the same history, more than the non-core genes. The results demonstrate that our strategy of genome alignment based on gene order conservation can provide an effective approach to identify the genomic core among moderately related microbial genomes.

  6. Multiple genome alignment for identifying the core structure among moderately related microbial genomes

    Directory of Open Access Journals (Sweden)

    Uchiyama Ikuo

    2008-10-01

    Full Text Available Abstract Background Identifying the set of intrinsically conserved genes, or the genomic core, among related genomes is crucial for understanding prokaryotic genomes where horizontal gene transfers are common. Although core genome identification appears to be obvious among very closely related genomes, it becomes more difficult when more distantly related genomes are compared. Here, we consider the core structure as a set of sufficiently long segments in which gene orders are conserved so that they are likely to have been inherited mainly through vertical transfer, and developed a method for identifying the core structure by finding the order of pre-identified orthologous groups (OGs that maximally retains the conserved gene orders. Results The method was applied to genome comparisons of two well-characterized families, Bacillaceae and Enterobacteriaceae, and identified their core structures comprising 1438 and 2125 OGs, respectively. The core sets contained most of the essential genes and their related genes, which were primarily included in the intersection of the two core sets comprising around 700 OGs. The definition of the genomic core based on gene order conservation was demonstrated to be more robust than the simpler approach based only on gene conservation. We also investigated the core structures in terms of G+C content homogeneity and phylogenetic congruence, and found that the core genes primarily exhibited the expected characteristic, i.e., being indigenous and sharing the same history, more than the non-core genes. Conclusion The results demonstrate that our strategy of genome alignment based on gene order conservation can provide an effective approach to identify the genomic core among moderately related microbial genomes.

  7. Supermodes in Coupled Multi-Core Waveguide Structures

    Science.gov (United States)

    2016-04-01

    gentle bends . Because modes travel at different group velocities, if three guided modes are assumed to be excited with amplitudes A, B, C and phase φa...mode multi-core waveguide arrays can be strongly affected by angle-dependent cou- plings, leading to different modal field profiles. Analytical...and 37 sites. We begin our analysis by assuming that in all cases, each waveguide element is assumed to be cylindrical (of radius a) and single-moded

  8. Further HTGR core support structure reliability studies. Interim report No. 1

    Energy Technology Data Exchange (ETDEWEB)

    Platus, D.L.

    1976-01-13

    Results of a continuing effort to investigate high temperature gas cooled reactor (HTGR) core support structure reliability are described. Graphite material and core support structure component physical, mechanical and strength properties required for the reliability analysis are identified. Also described are experimental and associated analytical techniques for determining the required properties, a procedure for determining number of tests required, properties that might be monitored by special surveillance of the core support structure to improve reliability predictions, and recommendations for further studies. Emphasis in the study is directed towards developing a basic understanding of graphite failure and strength degradation mechanisms; and validating analytical methods for predicting strength and strength degradation from basic material properties.

  9. Stress Distribution on Sandwich Structure with Triangular Grid Cores Suffered from Bending Load

    Directory of Open Access Journals (Sweden)

    Cui Xu

    2015-01-01

    Full Text Available Triangular grid reinforced by carbon fiber/epoxy (CF/EP was designed and manufactured. The sandwich structure was prepared by gluing the core and composite skins. The mechanical properties of the sandwich structure were investigated by the finite element analysis (FEA and three-point bending methods. The calculated bending stiffness and core shear stress were compared to the characteristics of a honeycomb sandwich structure. The results indicated that the triangular core ultimately failed under a bending load of 11000 N; the principal stress concentration was located at the loading region; and the cracks occurred on the interface top skin and triangular core. In addition, the ultimate stress bearing of the sandwich structure was 8828 N. The experimental results showed that the carbon fiber reinforced triangular grid was much stiffer and stronger than the honeycomb structure.

  10. Structures of the compact helical core domains of feline calicivirus and murine norovirus VPg proteins.

    Science.gov (United States)

    Leen, Eoin N; Kwok, K Y Rex; Birtley, James R; Simpson, Peter J; Subba-Reddy, Chennareddy V; Chaudhry, Yasmin; Sosnovtsev, Stanislav V; Green, Kim Y; Prater, Sean N; Tong, Michael; Young, Joanna C; Chung, Liliane M W; Marchant, Jan; Roberts, Lisa O; Kao, C Cheng; Matthews, Stephen; Goodfellow, Ian G; Curry, Stephen

    2013-05-01

    We report the solution structures of the VPg proteins from feline calicivirus (FCV) and murine norovirus (MNV), which have been determined by nuclear magnetic resonance spectroscopy. In both cases, the core of the protein adopts a compact helical structure flanked by flexible N and C termini. Remarkably, while the core of FCV VPg contains a well-defined three-helix bundle, the MNV VPg core has just the first two of these secondary structure elements. In both cases, the VPg cores are stabilized by networks of hydrophobic and salt bridge interactions. The Tyr residue in VPg that is nucleotidylated by the viral NS7 polymerase (Y24 in FCV, Y26 in MNV) occurs in a conserved position within the first helix of the core. Intriguingly, given its structure, VPg would appear to be unable to bind to the viral polymerase so as to place this Tyr in the active site without a major conformation change to VPg or the polymerase. However, mutations that destabilized the VPg core either had no effect on or reduced both the ability of the protein to be nucleotidylated and virus infectivity and did not reveal a clear structure-activity relationship. The precise role of the calicivirus VPg core in virus replication remains to be determined, but knowledge of its structure will facilitate future investigations.

  11. Residual dent in locally loaded foam core sandwich structures – Analysis and use for NDI

    NARCIS (Netherlands)

    Koysin, V.; Shipsha, Andrey

    2008-01-01

    This paper addresses the residual denting in the face sheet and corresponding core damage in a locally loaded flat sandwich structure with foam core. The problem is analytically considered in the context of elastic bending of the face sheet accompanied by non-linear deformation of the crushed foam

  12. Core-Shell-structured Dendritic Mesoporous Silica Nanoparticles for Combined Photodynamic Therapy and Antibody Delivery.

    Science.gov (United States)

    Abbaraju, Prasanna Lakshmi; Yang, Yannan; Yu, Meihua; Fu, Jianye; Xu, Chun; Yu, Chengzhong

    2017-07-04

    Multifunctional core-shell-structured dendritic mesoporous silica nanoparticles with a fullerene-doped silica core, a dendritic silica shell and large pores have been prepared. The combination of photodynamic therapy and antibody therapeutics significantly inhibits the cancer cell growth by effectively reducing the level of anti-apoptotic proteins. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Promoting the energy structure optimization around Chinese Beijing-Tianjin area by developing biomass energy

    Science.gov (United States)

    Zhao, Li; Sun, Du; Wang, Shi-Yu; Zhao, Feng-Qing

    2017-06-01

    In recent years, remarkable achievements in the utilization of biomass energy have been made in China. However, there are still some problems, such as irrational industry layout, immature existing market survival mechanism and lack of core competitiveness. On the basis of investigation and research, some recommendations and strategies are proposed for the development of biomass energy around Chinese Beijing-Tianjin area: scientific planning and precise laying out of biomass industry; rationalizing the relationship between government and enterprises and promoting the establishment of a market-oriented survival mechanism; combining ‘supply side’ with ‘demand side’ to optimize product structure; extending industrial chain to promote industry upgrading and sustainable development; and comprehensive co-ordinating various types of biomass resources and extending product chain to achieve better economic benefits.

  14. Mutational analysis of the UCP2 core promoter and relationships of variants with obesity

    DEFF Research Database (Denmark)

    Dalgaard, Louise T; Andersen, Gitte; Larsen, Lesli H;

    2003-01-01

    To identify polymorphisms in the human uncoupling protein 2 gene (UCP2) promoter and to investigate whether these were associated with obesity or weight gain.......To identify polymorphisms in the human uncoupling protein 2 gene (UCP2) promoter and to investigate whether these were associated with obesity or weight gain....

  15. Preparation, characterization and photocatalytic activities of ZrWMoO{sub 8}/Ag composites with core-shell structure

    Energy Technology Data Exchange (ETDEWEB)

    Liu Qinqin, E-mail: liu_qin_qin@126.com [School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013 (China); Sun Shuai; Li Haohua; Yang Xiaofei; Shen Hao; Cheng Xiaonong; Dong Shubin [School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013 (China)

    2012-11-15

    ZrWMoO{sub 8} rods with negative thermal expansion and ZrWMoO{sub 8}/Ag composites with core-shell structure were first proved to exhibit photocatalytic activity under UV-irradiation. Highlights: Black-Right-Pointing-Pointer ZrWMoO{sub 8} rods with negative thermal expansion property were first studied for its photocatalytic activity. Black-Right-Pointing-Pointer ZrWMoO{sub 8}/Ag composites with core-shell structure were prepared using a simple reduction method. Black-Right-Pointing-Pointer Improved photocatalytic activity was found in the ZrWMoO{sub 8}/Ag heterostructures. Black-Right-Pointing-Pointer The ZrWMoO{sub 8}/Ag heterostructure promotes the separation of electron-hole pairs and enhances the photocatalytic activity. - Abstract: A novel photocatalytic ZrWMoO{sub 8}/Ag composite with core-shell structure was prepared. The composites were composed of ZrWMoO{sub 8} rods with negative thermal expansion (NTE) property as cores and Ag nanoparticles as shell. The resulting products were characterized by means of X-ray diffraction (XRD), transmission electron microscopy (TEM) and UV-visible spectrophotometer (UV-vis DRS). The results showed that ZrWMoO{sub 8} rods displayed not only negative thermal expansion but also photocatalytic efficiency toward Rhodamine B (RB) degradation under UV-irradiation. The as-prepared ZrWMoO{sub 8}/Ag composites exhibited a higher photocatalytic activity than that of pure ZrWMoO{sub 8}, thereby implying that the ZrWMoO{sub 8}/Ag interfaces promote the separation of photogenerated electron-hole pairs and enhance the photocatalytic activity.

  16. AIRS-observed warm core structures of tropical cyclones over the western North Pacific

    Science.gov (United States)

    Gao, Si; Chen, Baiqing; Li, Tim; Wu, Naigeng; Deng, Wenjian

    2017-03-01

    Atmospheric Infrared Sounder (AIRS) temperature profiles during the period 2003-2013 are used to examine the warm core structures and evolution characteristics associated with the formation and development of western North Pacific (WNP) tropical cyclones (TCs). The warm core with a steady 1.5-K warming in the layer of 500-300 hPa occurs 24 h prior to tropical storm formation. Apparent eye warming extends upward to upper troposphere and downward to near surface after tropical storm formation. TC intensity shows a robust positive correlation with the warm core strength and has a weaker but still significant positive correlation with the warm core height (the weaker correlation is primarily attributed to the scattered warm core heights of weak TCs). Future 24-h intensity change of TCs has little correlation with the warm core height while it has a significant negative correlation with the warm core strength. Weak to moderate warm core at 500-200 hPa may be a necessary but not sufficient initial condition for TC rapid intensification. AIRS-observed warm core structures, in combination with other environmental factors, have the potential to improve the prediction of tropical storm formation and rapid intensification of WNP TCs.

  17. THE STRUCTURE OF GAS-ACCRETING PROTOPLANETS AND THE CONDITION OF THE CRITICAL CORE MASS

    Energy Technology Data Exchange (ETDEWEB)

    Kanagawa, Kazuhiro D. [Department of Cosmosciences, Graduate School of Science, Hokkaido University, N10 W8, Sapporo 060-0810 (Japan); Fujimoto, Masayuki Y., E-mail: kanagawa@astro1.sci.hokudai.ac.jp [Nuclear Reaction Data Center, Graduate School of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810 (Japan)

    2013-03-01

    In the core accretion model for the formation of gas giant planets, runaway gas accretion onto a core is the primary requisite, triggered when the core mass reaches a critical value. The recently revealed wide diversity of the extrasolar giant planets suggests the necessity to further the understanding of the conditions resulting in the critical core mass that initiates runaway accretion. We study the internal structure of protoplanets under hydrostatic and thermal equilibria represented in terms of a polytropic equation of state to investigate what factors determine and affect the critical core mass. We find that the protoplanets, embedded in protoplanetary disks, have the same configuration as red giants, characterized by the envelope of the centrally condensed type solution. Applying the theory of stellar structure with homology invariants, we demonstrate that there are three types of criteria for the critical core mass depending on the stiffness of polytrope and the nature of outer boundary condition. For the stiff polytropes of index N {<=} 3 with the Bondi radius as the outer boundary, the criterion governing the critical core mass occurs at the surface. For stiff polytropes with the Hill outer boundary and for soft polytropes of N > 3, this criterion acts at the bottom of gaseous envelope. Further, we elucidate the roles and effects of coexistent radiative and convective zones in the envelope of critical core mass. Based on the results, we discuss the relevance of Bondi and Hill surface conditions and explore the parameter dependences of critical core mass.

  18. The weak core and the structure of elites in social multiplex networks

    CERN Document Server

    Corominas-Murtra, Bernat

    2014-01-01

    Recent approaches on elite identification highlighted the important role of {\\em intermediaries}, by means of a new definition of the core of a multiplex network, the {\\em generalised} $K$-core. This newly introduced core subgraph crucially incorporates those individuals who, in spite of not being very connected, maintain the cohesiveness and plasticity of the core. Interestingly, it has been shown that the performance on elite identification of the generalised $K$-core is sensibly better that the standard $K$-core. Here we go further: Over a multiplex social system, we isolate the community structure of the generalised $K$-core and we identify the weakly connected regions acting as bridges between core communities, ensuring the cohesiveness and connectivity of the core region. This gluing region is the {\\em Weak core} of the multiplex system. We test the suitability of our method on data from the society of 420.000 players of the Massive Multiplayer Online Game {\\em Pardus}. Results show that the generalised...

  19. Synthesis of core-shell structured magnetic nanoparticles with a carbide shell

    Science.gov (United States)

    Hou, Shushan; Chi, Yue; Zhao, Zhankui

    2017-03-01

    Core-shell structured materials combining the functionalities of the core and shell have great application potential in many fields. In this work, by combining solvothermal, polymerization and the high temperature carbonization, we have successfully developed a facile method to generate core-shell structured nanoparticles which possess an internal magnetic nanoparticle with a carbide shell. The thickness of resorcinol formaldehyde resin as intermediate transition shell could be easily adjusted by changing the concentration of the RF precursor. The resulting nanoparticles possess well-defined structure, uniform size and high magnetization. The unique nanostructure of the magnetic core-shell structured nanoparticles could lead to many promising applications in areas ranging from drug delivery to the purifyication of sewage.

  20. Liquid-crystalline hybrid materials based on [60]fullerene and bent-core structures.

    Science.gov (United States)

    Vergara, Jorge; Barberá, Joaquín; Serrano, José Luis; Ros, M Blanca; Sebastián, Nerea; de la Fuente, Rosario; López, David O; Fernández, Gustavo; Sánchez, Luis; Martín, Nazario

    2011-12-23

    What a core-ker! By the appropriate combination of promesogenic bent-core structures and the C(60)  unit, lamellar polar liquid-crystal phases were induced. The supramolecular organization of the functional fullerene-based assemblies, the temperature range of the soft phase, the stabilization of the mesophase-like order at room temperature, and the molecular switching under an electric field can be tuned, depending on the molecular structure.

  1. Promoting Access to Common Core Mathematics for Students with Severe Disabilities through Mathematical Problem Solving

    Science.gov (United States)

    Spooner, Fred; Saunders, Alicia; Root, Jenny; Brosh, Chelsi

    2017-01-01

    There is a need to teach the pivotal skill of mathematical problem solving to students with severe disabilities, moving beyond basic skills like computation to higher level thinking skills. Problem solving is emphasized as a Standard for Mathematical Practice in the Common Core State Standards across grade levels. This article describes a…

  2. UNAIDS ‘multiple sexual partners’ core indicator: promoting sexual networks to reduce potential biases

    Directory of Open Access Journals (Sweden)

    Zacharie Tsala Dimbuene

    2014-03-01

    Full Text Available UNAIDS proposed a set of core indicators for monitoring changes in the worldwide AIDS epidemic. This paper explores the validity and effectiveness of the ‘multiple sexual partners’ core indicator, which is only partially captured with current available data. The paper also suggests an innovative approach for collecting more informative data that can be used to provide an accurate measure of the UNAIDS's ‘multiple sexual partners’ core indicator. Specifically, the paper addresses three major limitations associated with the indicator when it is measured with respondents’ sexual behaviors. First, the indicator assumes that a person's risk of contracting HIV/AIDS/STIs is merely a function of his/her own sexual behavior. Second, the indicator does not account for a partner's sexual history, which is very important in assessing an individual's risk level. Finally, the 12-month period used to define a person's risks can be misleading, especially because HIV/AIDS theoretically has a period of latency longer than a year. The paper concludes that, programmatically, improvements in data collection are a top priority for reducing the observed bias in the ‘multiple sexual partners’ core indicator.

  3. Analysis of ultra-deep pyrosequencing and cloning based sequencing of the basic core promoter/precore/core region of hepatitis B virus using newly developed bioinformatics tools.

    Directory of Open Access Journals (Sweden)

    Mukhlid Yousif

    Full Text Available AIMS: The aims of this study were to develop bioinformatics tools to explore ultra-deep pyrosequencing (UDPS data, to test these tools, and to use them to determine the optimum error threshold, and to compare results from UDPS and cloning based sequencing (CBS. METHODS: Four serum samples, infected with either genotype D or E, from HBeAg-positive and HBeAg-negative patients were randomly selected. UDPS and CBS were used to sequence the basic core promoter/precore region of HBV. Two online bioinformatics tools, the "Deep Threshold Tool" and the "Rosetta Tool" (http://hvdr.bioinf.wits.ac.za/tools/, were built to test and analyze the generated data. RESULTS: A total of 10952 reads were generated by UDPS on the 454 GS Junior platform. In the four samples, substitutions, detected at 0.5% threshold or above, were identified at 39 unique positions, 25 of which were non-synonymous mutations. Sample #2 (HBeAg-negative, genotype D had substitutions in 26 positions, followed by sample #1 (HBeAg-negative, genotype E in 12 positions, sample #3 (HBeAg-positive, genotype D in 7 positions and sample #4 (HBeAg-positive, genotype E in only four positions. The ratio of nucleotide substitutions between isolates from HBeAg-negative and HBeAg-positive patients was 3.5 ∶ 1. Compared to genotype E isolates, genotype D isolates showed greater variation in the X, basic core promoter/precore and core regions. Only 18 of the 39 positions identified by UDPS were detected by CBS, which detected 14 of the 25 non-synonymous mutations detected by UDPS. CONCLUSION: UDPS data should be approached with caution. Appropriate curation of read data is required prior to analysis, in order to clean the data and eliminate artefacts. CBS detected fewer than 50% of the substitutions detected by UDPS. Furthermore it is important that the appropriate consensus (reference sequence is used in order to identify variants correctly.

  4. Precore/basal core promoter mutants and hepatitis B viral DNA levels as predictors for liver deaths and hepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)

    Myron J Tong; Lawrence M Blatt; Jia-Horng Kao; Jason Tzuying Cheng; William G Corey

    2006-01-01

    AIM: To conduct a retrospective study in 400 chronic hepatitis B patients in order to identify hepatitis B viral factors associated with complications of liver disease or development of hepatocellular carcinoma.METHODS: The mean follow-up time was 83.6 ± 39.6mo. Alpha-fetoprotein test and abdominal ultrasound were used for cancer surveillance. Hepatitis B basal core promoter mutants, precore mutants, genotypes,hepatitis B viral DNA (HBV DNA) level and hepatitis B e antigen (HBeAg) were measured. Univariate analysis and logistic regression were used to assess odds ratios for viral factors related to liver deaths and hepatocellular carcinoma development.RESULTS: During follow-up, 38 patients had liver deaths not related to hepatocellular carcinoma. On multivariate analysis, older age [odds ratio: 95.74 (12.13-891.31);P < 0.0001], male sex [odds ratio: 7.61 (2.20-47.95);P = 0.006], and higher log10 HBV DNA [odds ratio:4.69 (1.16-20.43); P < 0.0001] were independently predictive for these liver related deaths. Also, 31 patients developed hepatocellular carcinoma. Multivariate analysis showed that older age [odds ratio: 26.51 (2.36-381.47);P = 0.007], presence of precore mutants [odds ratio:4.23 (1.53-19.58); P = 0.02] and presence of basal core promoter mutants [odds ratio: 2.93 (1.24-7.57); P =0.02] were independent predictors for progression to hepatocellular carcinoma.CONCLUSION: Our results show that high levels of baseline serum HBV DNA are associated with nonhepatocellular carcinoma-related deaths of liver failure,while genetic mutations in the basal core promoter and precore regions are predictive for development of hepatocellular carcinoma.

  5. Design Guideline of Hollow-Core Fibres with Cobweb Cladding Structure

    Institute of Scientific and Technical Information of China (English)

    HUO Liang; YU Rong-Jin; ZHANG Bing; CHEN Ming-Yang; LI Bing-Xin

    2006-01-01

    @@ By using a plane wave expansion method, some important parameters of designing the hollow-core fibre with cobweb cladding structure are analysed. Taking a dielectric material PMMA, for example, the tolerance of the parameters is discussed. The results show that the parameters of the structure possess oneselfofa regularity and limit, and have a larger tolerance for the structural parameters in fabrication.

  6. Full-length RNA structure prediction of the HIV-1 genome reveals a conserved core domain

    DEFF Research Database (Denmark)

    Sükösd, Zsuzsanna; Andersen, Ebbe Sloth; Seemann, Ernst Stefan;

    2015-01-01

    of the HIV-1 genome is highly variable in most regions, with a limited number of stable and conserved RNA secondary structures. Most interesting, a set of long distance interactions form a core organizing structure (COS) that organize the genome into three major structural domains. Despite overlapping...

  7. Structural developmental psychology and health promotion in the third age.

    Science.gov (United States)

    Bauger, Lars; Bongaardt, Rob

    2017-01-12

    In response to the ever-increasing longevity in Western societies, old age has been divided into two different periods, labelled the third and fourth age. Where the third age, with its onset at retirement, mostly involves positive aspects of growing old, the fourth age involves functional decline and increased morbidity. This article focuses on the entry to the third age and its potential for health promotion initiatives. Well-being is an important factor to emphasize in such health promotion, and this article views the lifestyle of third agers as essential for their well-being. The structural developmental theory of Robert Kegan delineates how a person's way of knowing develops throughout the life course. This theory is an untapped and salient perspective for health promotion initiatives in the third age. This article outlines Kegan's approach as a tool for developing psychologically spacious health promotion, and suggests future directions for research on the topic. © The Author 2017. Published by Oxford University Press.

  8. Core American values and the structure of antigay prejudice.

    Science.gov (United States)

    Callahan, Matthew Paolucci; Vescio, Theresa K

    2011-01-01

    This work presents a new scale to measure conflicting attitudes toward sexual minorities. This scale parallels existing measures of conflicting racial attitudes (anti-Black and pro-Black attitudes; Katz & Hass, 1988). After constructing and validating measures of antigay and progay attitudes, we tested relationships among core American values with racial and sexual minority attitudes. We examined relations among the Protestant Work Ethic (PWE), Traditional Family Ideology (TFI), and egalitarian values with attitudes toward racial outgroups and sexual minorities. The results revealed that both PWE values and egalitarian values predicted anti-Black attitudes. By contrast, endorsement of egalitarian values, but not PWE values, predicted pro-Black attitudes. Results also revealed a similar but distinct pattern among values and heterosexuals' attitudes toward sexual minorities. TFI, but not egalitarian value endorsement, predicted antigay attitudes, whereas both TFI and egalitarian value endorsement predicted progay attitudes. The implications of these findings are discussed.

  9. Structural Evolution of Core-Shell Gold Nanoclusters: Aun(-) (n = 42-50).

    Science.gov (United States)

    Pande, Seema; Huang, Wei; Shao, Nan; Wang, Lei-Ming; Khetrapal, Navneet; Mei, Wai-Ning; Jian, Tian; Wang, Lai-Sheng; Zeng, Xiao Cheng

    2016-11-22

    Gold nanoclusters have attracted great attention in the past decade due to their remarkable size-dependent electronic, optical, and catalytic properties. However, the structures of large gold clusters are still not well-known because of the challenges in global structural searches. Here we report a joint photoelectron spectroscopy (PES) and theoretical study of the structural evolution of negatively charged core-shell gold nanoclusters (Aun(-)) for n = 42-50. Photoelectron spectra of size-selected Aun(-) clusters are well resolved with distinct spectral features, suggesting a dominating structural type. The combined PES data and density functional calculations allow us to systematically identify the global minimum or candidates of the global minima of these relatively large gold nanoclusters, which are found to possess low-symmetry structures with gradually increasing core sizes. Remarkably, the four-atom tetrahedral core, observed first in Au33(-), continues to be highly robust and is even present in clusters as large as Au42(-). Starting from Au43(-), a five-atom trigonal bipyramidal core appears and persists until Au47(-). Au48(-) possesses a six-atom core, while Au49(-) and Au50(-) feature seven- and eight-atom cores, respectively. Notably, both Au46(-) and Au47(-) contain a pyramidal Au20 motif, which is stacked with another truncated pyramid by sharing a common 10-atom triangular face. The present study sheds light on our understanding of the structural evolution of the medium-sized gold nanoclusters, the shells and core as well as how the core-shell structures may start to embrace the golden pyramid (bulk-like) fragment.

  10. Regulation of gene expression in the protozoan parasite Entamoeba invadens: identification of core promoter elements and promoters with stage-specific expression patterns.

    Science.gov (United States)

    Manna, Dipak; Ehrenkaufer, Gretchen M; Singh, Upinder

    2014-10-01

    Developmental switching between life-cycle stages is a common feature among many pathogenic organisms. Entamoeba histolytica is an important human pathogen and is a leading parasitic cause of death globally. During its life cycle, Entamoeba converts between cysts (essential for disease transmission) and trophozoites (responsible for tissue invasion). Despite being central to its biology, the triggers that are involved in the developmental pathways of this parasite are not well understood. In order to define the transcriptional network associated with stage conversion we used Entamoeba invadens which serves as a model system for Entamoeba developmental biology, and performed RNA sequencing at different developmental time points. In this study RNA-Seq data was utilised to define basal transcriptional control elements as well as to identify promoters which regulate stage-specific gene expression patterns. We discovered that the 5' and 3' untranslated regions of E. invadens genes are short, a median of 20 nucleotides (nt) and 26 nt respectively. Bioinformatics analysis of DNA sequences proximate to the start and stop codons identified two conserved motifs: (i) E. invadens Core Promoter Motif - GAAC-Like (EiCPM-GL) (GAACTACAAA), and (ii) E. invadens 3'-U-Rich Motif (Ei3'-URM) (TTTGTT) in the 5' and 3' flanking regions, respectively. Electrophoretic mobility shift assays demonstrated that both motifs specifically bind nuclear protein(s) from E. invadens trophozoites. Additionally, we identified select genes with stage-specific expression patterns and analysed the ability of each gene promoter to drive a luciferase reporter gene during the developmental cycle. This approach confirmed three trophozoite-specific, four encystation-specific and two excystation-specific promoters. This work lays the framework for use of stage-specific promoters to express proteins of interest in a particular life-cycle stage, adding to the molecular toolbox for genetic manipulation of E

  11. Design of buffer structure at core nodes in optical burst switching

    Institute of Scientific and Technical Information of China (English)

    LI Lei; ZHANG Min-gde; SUN Xiao-han

    2006-01-01

    Reasonable and effective buffer structures are proposed in core routers /nodes of optical burst switching.Based on the model of burst traffics and their contentions,the basic qualifications for the design of buffer structures are concluded.With these qualifications,buffer and switch integrated structures are proposed;and by conclusion and expansion,the classification rules of buffer structures are also proposed from different angles.The schemes to integrate structures are analyzed and simulated.

  12. X-ray imaging of vortex cores in confined magnetic structures

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, P; Im, M -Y; Kasai, S; Yamada, K; Ono, T; Thiaville, A

    2011-02-11

    Cores of magnetic vortices in micron-sized NiFe disk structures, with thicknesses between 150 and 50 nm, were imaged and analyzed by high-resolution magnetic soft x-ray microscopy. A decrease of the vortex-core radius was observed from approximately 38 to 18 nm with decreasing disk thickness. By comparing with full three-dimensional micromagnetic simulations showing the well-known barrel structure, we obtained excellent agreement, taking into account instrumental broadening and a small perpendicular anisotropy. The proven magnetic spatial resolution of better than 25 nm was sufficient to identify a negative dip close to the vortex core, originating from stray fields of the core. Magnetic vortex structures can serve as test objects for evaluating sensitivity and spatial resolution of advanced magnetic microscopy techniques.

  13. Amygdala structure and core dimensions of the affective personality.

    Science.gov (United States)

    Frühholz, Sascha; Schlegel, Katja; Grandjean, Didier

    2017-05-16

    While biological models of human personality propose that socio-affective traits and skills are rooted in the structure of the amygdala, empirical evidence remains sparse and inconsistent. Here, we used a comprehensive assessment of the affective personality and tested its association with global, local, and laterality measures of the amygdala structure. Results revealed three broad dimensions of the affective personality that were differentially related to bilateral amygdala structures. Dysfunctional and maladaptive affective traits were associated with a global size and local volume reduction of the amygdala, whereas adaptive emotional skills were linked to an increased size of the left amygdala. Furthermore, reduced asymmetry in the bilateral global amygdala volume was linked to higher affective instability and might be a potential precursor of psychiatric disorders. This study demonstrates that structural amygdala measures provide a neural basis for all major dimensions of the human personality related to adaptive and maladaptive socio-affective functioning.

  14. Core 3 mucin-type O-glycan restoration in colorectal cancer cells promotes MUC1/p53/miR-200c-dependent epithelial identity.

    Science.gov (United States)

    Ye, J; Wei, X; Shang, Y; Pan, Q; Yang, M; Tian, Y; He, Y; Peng, Z; Chen, L; Chen, W; Wang, R

    2017-07-24

    The attachment of cell-surface carbohydrates to proteins mediated by the amino acids serine or threonine (O-glycan) is involved in tumor metastasis; the roles of O-glycans vary depending on their structure, but the detailed mechanisms by which O-glycans trigger signaling to control tumor metastasis are largely unknown. In this study, we found that the reduced expression of core 3 synthase correlated with metastasis to lymph nodes and distant organs, resulting in poor prognosis for colorectal cancer (CRC) patients. Mechanically, we revealed that mucin-type core 3 O-glycan was synthesized at the membrane-tethered MUC1 N terminus because of core 3 synthase expression in colon cancer cells. This further inhibited the translocation of MUC1-C to the nucleus, initiated p53 gene transcription that was dependent on the inhibition of MUC1-C nucleus translocation, activated p53-mediated miR-200c expression and resulted in mesenchymal-epithelial transition (MET). Inhibition of MUC1 via small interfering RNA (siRNA) in re-expressed core 3 synthase colon cancer cells further inhibited MUC1-C nucleus translocation, increased p53 and miR-200c expression, and enhanced MET. However, inhibition of p53 via siRNA or miR-200c via miR-200c inhibitor in re-expressed core 3 synthase colon cancer cells promoted the epithelial-mesenchymal transition (EMT) in a reversible manner. Core 3 synthase mRNA levels and the p53 mRNA levels or miR-200c levels in the colon cancerous samples were positively correlated. Our findings suggest a novel mechanism linking mucin-type core 3 O-glycan to the EMT-MET plasticity of CRC cells via MUC1/p53/miR-200c-dependent signaling cascade and shed light on therapeutic strategies to treat this malignancy.Oncogene advance online publication, 24 July 2017; doi:10.1038/onc.2017.241.

  15. Hepatitis B virus genotypes and mutations in the basal core promoter and pre-core/core in chronically infected patients in southern Brazil: a cross-sectional study of HBV genotypes and mutations in chronic carriers

    Directory of Open Access Journals (Sweden)

    Flávia Miryan Martins Almeida de Mello

    2014-12-01

    Full Text Available Introduction In Brazil, little data exist regarding the distribution of genotypes in relation to basal core promoter (BCP and precore/core mutations among chronic hepatitis B virus (HBV carriers from different regions of the country. The aim of this study was to identify HBV genotypes and the frequency of mutations at the BCP and precore/core region among the prevalent genotypes in chronic carriers from southern Brazil. Methods Nested-polymerase chain reaction (nested-PCR products amplified from the S-polymerase gene, BCP and precore/core region from 54 samples were sequenced and analyzed. Results Phylogenetic analysis of the S-polymerase gene sequences showed that 66.7% (36/54 of the patients were infected with genotype D (D1, D2, D3, 25.9% (14/54 with genotype A (A1, A2, 5.6% (3/54 with subgenotype C2, and 2% (1/54 with genotype E. A comparison of virological characteristics showed significant differences between genotypes A, C and D. The comparison between HBeAg status and the G1896A stop codon mutation in patients with genotype D revealed a relationship between HBV G1896A precore mutants and genotype D and hepatitis B e antigen (HBeAg seroconversion. Genotype D had a higher prevalence of the G1896A mutation and the presence of a thymine at position 1858. Genotype A was associated with a higher prevalence of the G1862T mutation and the presence of a cytosine at position 1858. Conclusions HBV genotype D (D3 is predominant in HBV chronic carriers from southern Brazil. The presence of mutations in the BCP and precore/core region was correlated with the HBV genotype and HBeAg negative status.

  16. Polymer-virus core-shell structures prepared via co-assembly and template synthesis methods

    Institute of Scientific and Technical Information of China (English)

    SUTHIWANGCHAROEN; Nisaraporn; PREVELIGE; Peter; E.Jr

    2010-01-01

    Bionanoparticles(BNPs),consisting of virus and virus-like assemblies,have attracted much attention in the biomedical field for their applications such as imaging and targeted drug delivery,owing to their well-defined structures and well-controlled chemistries.BNPs-based core-shell structures provide a unique system for the investigation of biological interactions such as protein-protein and protein-carbohydrate interactions.However,it is still a challenge to prepare the BNPs-based core-shell structures.Herein,we describe(i) co-assembly method and(ii) template synthesis method in the development of polymer-BNPs core-shell structures.These two methods can be divided into three different systems.In system A,different polymers including poly(2-vinylpyridine)(P2VP),poly(4-vinylpyridine)(P4VP) and poly(ε-caprolactone)-block-poly(2-vinylpyridine)(PCL-b-P2VP) can form a raspberry-like structure with BNPs.In system B,polystyrene(PS) spheres end capped with free amine and BNPs can form a core-shell structure.In System C,layer-by-layer(LBL) method is used to prepare positive charged PS particles,which can be used as a template to form the core-shell structures with BNPs.These two methods may open a new way for preparing novel protein-based functional materials for potential applications in the biomedical field.

  17. LIGHT-WEIGHT LOAD-BEARING STRUCTURES REINFORCED BY CORE ELEMENTS MADE OF SEGMENTS AND A METHOD OF CASTING SUCH STRUCTURES

    DEFF Research Database (Denmark)

    2009-01-01

    The invention relates to a light-weight load-bearing structure, reinforced by core elements (2) of a strong material constituting one or more compression or tension zones in the structure to be cast, which core (2) is surrounded by or adjacent to a material of less strength compared to the core (2......), where the core (2) is constructed from segments (1) of core elements (2) assembled by means of one or more prestressing elements (4). The invention further relates to a method of casting of light-weight load-bearing structures, reinforced by core elements (2) of a strong material constituting one...... or more compression or tension zones in the structure to be cast, which core (2) is surrounded by or adjacent to a material of less strength compared to the core (2), where the core (2) is constructed from segments (1) of core elements (2) assembled and hold together by means of one or more prestressing...

  18. LIGHT-WEIGHT LOAD-BEARING STRUCTURES REINFORCED BY CORE ELEMENTS MADE OF SEGMENTS AND A METHOD OF CASTING SUCH STRUCTURES

    DEFF Research Database (Denmark)

    2009-01-01

    The invention relates to a light-weight load-bearing structure, reinforced by core elements (2) of a strong material constituting one or more compression or tension zones in the structure to be cast, which core (2) is surrounded by or adjacent to a material of less strength compared to the core (2...... or more compression or tension zones in the structure to be cast, which core (2) is surrounded by or adjacent to a material of less strength compared to the core (2), where the core (2) is constructed from segments (1) of core elements (2) assembled and hold together by means of one or more prestressing......), where the core (2) is constructed from segments (1) of core elements (2) assembled by means of one or more prestressing elements (4). The invention further relates to a method of casting of light-weight load-bearing structures, reinforced by core elements (2) of a strong material constituting one...

  19. Physical property data from the ICDP-USGS Eyreville cores A and B, Chesapeake Bay impact structure, Virginia, USA, acquired using a multisensor core logger

    Science.gov (United States)

    Pierce, H.A.; Murray, J.B.

    2009-01-01

    The International Continental Scientific Drilling Program (ICDP) and the U.S. Geological Survey (USGS) drilled three core holes to a composite depth of 1766 m within the moat of the Chesapeake Bay impact structure. Core recovery rates from the drilling were high (??90%), but problems with core hole collapse limited the geophysical downhole logging to natural-gamma and temperature logs. To supplement the downhole logs, ??5% of the Chesapeake Bay impact structure cores was processed through the USGS GeoTek multisensor core logger (MSCL) located in Menlo Park, California. The measured physical properties included core thickness (cm), density (g cm-3), P-wave velocity (m s-1), P-wave amplitude (%), magnetic susceptibility (cgs), and resistivity (ohm-m). Fractional porosity was a secondary calculated property. The MSCL data-sampling interval for all core sections was 1 cm longitudinally. Photos of each MSCL sampled core section were imbedded with the physical property data for direct comparison. These data have been used in seismic, geologic, thermal history, magnetic, and gravity models of the Chesapeake Bay impact structure. Each physical property curve has a unique signature when viewed over the full depth of the Chesapeake Bay impact structure core holes. Variations in the measured properties reflect differences in pre-impact target-rock lithologies and spatial variations in impact-related deformation during late-stage crater collapse and ocean resurge. ?? 2009 The Geological Society of America.

  20. Periodic mesoporous organosilica (PMO) materials with uniform spherical core-shell structure.

    Science.gov (United States)

    Haffer, Stefanie; Tiemann, Michael; Fröba, Michael

    2010-09-10

    We report the synthesis of monodisperse, spherical periodic mesoporous organosilica (PMO) materials. The particles have diameters between about 350 and 550 nm. They exhibit a regular core-shell structure with a solid, non-porous silica core and a mesoporous PMO shell with a thickness of approximately 75 nm and uniform pores of about 1.7 nm. The synthesis of the core and the shell is carried out in a one-pot, two-stage synthesis and can be accomplished at temperatures between 25 and 100 °C. Higher synthesis temperatures lead to substantial shrinking of the solid core, generating an empty void between core and shell. This leads to interesting cavitation phenomena in the nitrogen physisorption analysis at 77.4 K.

  1. Magnetic, Structural, and Particle Size Analysis of Single- and Multi-Core Magnetic Nanoparticles

    DEFF Research Database (Denmark)

    Ludwig, Frank; Kazakova, Olga; Barquin, Luis Fernandez

    2014-01-01

    We have measured and analyzed three different commercial magnetic nanoparticle systems, both multi-core and single-core in nature, with the particle (core) size ranging from 20 to 100 nm. Complementary analysis methods and same characterization techniques were carried out in different labs...... and the results are compared with each other. The presented results primarily focus on determining the particle size—both the hydrodynamic size and the individual magnetic core size—as well as magnetic and structural properties. The used analysis methods include transmission electron microscopy, static...... and dynamic magnetization measurements, and Mössbauer spectroscopy. We show that particle (hydrodynamic and core) size parameters can be determined from different analysis techniques and the individual analysis results agree reasonably well. However, in order to compare size parameters precisely determined...

  2. Substantiation of concrete core rational parameters for bending composite structures

    Directory of Open Access Journals (Sweden)

    Vatulia Glib

    2017-01-01

    Full Text Available In order to provide bending structures rationalization for reducing the materials consumption, labor and power inputs, construction or renovation terms, the authors considered the possibility of utilizing the structures with external steel sheet reinforcement and concrete layer made from fibers of different types. Experimental researches of various authors, both domestic and overseas, have been analyzed during the preliminary investigations. As a result, the steel and basalt fibers were selected for further inquiry, proved their rational sizes, percentage to concrete mass in structures worked under thermal and force impacts. It was developed the algorithm and software, helps to determine the stress-strain state and carrying capacity of composite floor slabs with different end and load conditions. It was concluded the necessity of physical-mechanical and thermal physic properties clarification of heated fibrous concrete. The experiment planning was performed to obtain the temperature dependences of strength and modulus of deformation, thermal conductivity and specific heat capacity of fibrous concrete mix.

  3. Analysis of HBV genotype, drug resistant mutations, and pre-core/basal core promoter mutations in Korean patients with acute hepatitis B.

    Science.gov (United States)

    Lee, Jong Ho; Hong, Sun Pyo; Jang, Eun Sun; Park, Sang Jong; Hwang, Seong Gyu; Kang, Sook-Kyoung; Jeong, Sook-Hyang

    2015-06-01

    Acute hepatitis B, caused by hepatitis B virus (HBV) strains with drug resistant mutations or pre-core/basal core promoter (PC/BCP) mutations, is a public health concern, because this infection is often associated with poor disease outcome or difficulty in therapeutic choice. The HBV genotype, the prevalence of drug resistant mutations, and PC/BCP mutations in Korean patients with acute hepatitis B were studied. From 2006 to 2008, 36 patients with acute hepatitis B were enrolled prospectively in four general hospitals. Among them, 20 showed detectable HBV DNA (median value was 4.8 log copies/mL). HBV genotyping and analysis of HBV mutations that conferred resistance against lamivudine, adefovir, or entecavir and of PC/BCP mutations were performed using highly sensitive restriction fragment mass polymorphism (RFMP) analysis. All 20 patients were infected with HBV genotype C, which causes almost all cases of chronic hepatitis B in Korea. No patient showed mutations that conferred resistance against lamivudine (L180M, M204V/I), adefovir (A181T, N236S), or entecavir (I169M, A184T/V, S202I/G, M250V/I/L). However, four patients had BCP mutations, and two had PC mutations. Platelet counts were significantly lower in the four patients with PC/BCP mutations compared to those with wild type. In this study, all acute hepatitis B patients had genotype C HBV strains with no drug resistant mutations. However, 20% showed PC/BCP mutations. This highlights the need for further study on the significance of PC/BCP mutations.

  4. Evolution of Wurtzite Structured GaAs Shells Around InAs Nanowire Cores

    Directory of Open Access Journals (Sweden)

    Kim Y

    2009-01-01

    Full Text Available Abstract GaAs was radially deposited on InAs nanowires by metal–organic chemical vapor deposition and resultant nanowire heterostructures were characterized by detailed electron microscopy investigations. The GaAs shells have been grown in wurtzite structure, epitaxially on the wurtzite structured InAs nanowire cores. The fundamental reason of structural evolution in terms of material nucleation and interfacial structure is given.

  5. Replacement of the human cytomegalovirus promoter with fish enhancer and core elements to control the expression of the G gene of viral haemorrhagic septicemia virus (VHSV).

    Science.gov (United States)

    Martinez-Lopez, A; Chinchilla, B; Encinas, P; Gomez-Casado, E; Estepa, A; Coll, J M

    2012-12-15

    This work explores some of the possibilities to replace human cytomegalovirus (CMV) core and/or enhancer promoter control elements to create new expression vectors for use with fish. The work is relevant to fish vaccination, since DNA vaccines use eukaryotic expression plasmids controlled by the human cytomegalovirus (CMV) promoter to be effective against novirhabdoviruses, such as viral haemorrhagic septicemia virus (VHSV), one of the most devastating fish viral European diseases. To reduce possible homologous recombination with fish genome, core and enhancer sequences from fish origin, such as trout interferon-inducible myxovirus protein (Mx), zebrafish retrovirus long terminal repeat (LTR) and carp β-actin (AE6), were combined with those of CMV to design alternative hybrid promoters. The substitution of CMV core and/or enhancer with the corresponding elements of Mx or the LTR core maintained a similar in vitro protein G expression level than that obtained by using the CMV promoter. Vectors using the dsRNA-inducible Mx enhancer followed either by the LTR or the AE6 cores showed the highest in vitro protein G expression levels. Furthermore, synthetic constructs using the Mx enhancer maintained their polyI:C induction capabilities despite the core used. Some of these hybrid promoters might contribute to the development of all-fish-vectors for DNA vaccines while others might be useful for more basic studies.

  6. A Noninvasive Magnetic Stimulator Utilizing Secondary Ferrite Cores and Resonant Structures for Field Enhancement

    CERN Document Server

    Pradhan, Raunaq

    2016-01-01

    In this paper, secondary ferrite cores and resonant structures have been used for field enhancement. The tissue was placed between the double square source coil and the secondary ferrite core. Resonant coils were added which aided in modulating the electric field in the tissue. The field distribution in the tissue was measured using electromagnetic simulations and ex-vivo measurements with tissue. Calculations involve the use of finite element analysis (Ansoft HFSS) to represent the electrical properties of the physical structure. The setup was compared to a conventional design in which the secondary ferrite cores were absent. It was found that the induced electric field could be increased by 122%, when ferrite cores were placed below the tissue at 450 kHz source frequency. The induced electric field was found to be localized in the tissue, verified using ex-vivo experiments. This preliminary study maybe further extended to establish the verified proposed concept with different complicated body parts modelled...

  7. Guided wave propagation in a honeycomb composite sandwich structure in presence of a high density core.

    Science.gov (United States)

    Sikdar, Shirsendu; Banerjee, Sauvik

    2016-09-01

    A coordinated theoretical, numerical and experimental study is carried out in an effort to interpret the characteristics of propagating guided Lamb wave modes in presence of a high-density (HD) core region in a honeycomb composite sandwich structure (HCSS). Initially, a two-dimensional (2D) semi-analytical model based on the global matrix method is used to study the response and dispersion characteristics of the HCSS with a soft core. Due to the complex structural characteristics, the study of guided wave (GW) propagation in HCSS with HD-core region inherently poses many challenges. Therefore, a numerical simulation of GW propagation in the HCSS with and without the HD-core region is carried out, using surface-bonded piezoelectric wafer transducer (PWT) network. From the numerical results, it is observed that the presence of HD-core significantly decreases both the group velocity and the amplitude of the received GW signal. Laboratory experiments are then conducted in order to verify the theoretical and numerical results. A good agreement between the theoretical, numerical and experimental results is observed in all the cases studied. An extensive parametric study is also carried out for a range of HD-core sizes and densities in order to study the effect due to the change in size and density of the HD zone on the characteristics of propagating GW modes. It is found that the amplitudes and group velocities of the GW modes decrease with the increase in HD-core width and density.

  8. Structural and magnetic properties of core-shell iron-iron oxide nanoparticles

    DEFF Research Database (Denmark)

    Kuhn, Luise Theil; Bojesen, A.; Timmermann, L.

    2002-01-01

    We present studies of the structural and magnetic properties of core-shell iron-iron oxide nanoparticles. alpha-Fe nanoparticles were fabricated by sputtering and subsequently covered with a protective nanocrystalline oxide shell consisting of either maghaemite (gamma-Fe2O3) or partially oxidized...... magnetite (Fe3O4). We observed that the nanoparticles were stable against further oxidation, and Mossbauer spectroscopy at high applied magnetic fields and low temperatures revealed a stable form of partly oxidized magnetite. The nanocrystalline structure of the oxide shell results in strong canting...... of the spin structure in the oxide shell, which thereby modifies the magnetic properties of the core-shell nanoparticles....

  9. Improved damage tolerant face/core interface design in sandwich structures

    DEFF Research Database (Denmark)

    Lundsgaard-Larsen, Christian; Berggreen, Christian; Quispitupa, Amilcar

    2009-01-01

    kinking behavior may be altered / avoided by changing the interface design by using Chopped Strand Mat (CSM), Continuous Filament Mat (CFM) and woven mats at the face/core interface as sources for fiber bridging, thus keeping and arresting the crack in the interface.......A face/core debond in a sandwich structure may propagate in the interface or kink into either the face or core depending on the mode-mixity of the loading. This study explores experimental methodologies for mapping the kinking behavior at various mode-mixities. Further, it is shown that the crack...

  10. Comparative studies in method for stratigraphical structure measurement of ice cores: Identification of cloudy bands

    Institute of Scientific and Technical Information of China (English)

    Morimasa Takata; Hitoshi Shoji; Atsushi Miyamoto; Kimiko Shimohara

    2003-01-01

    Cloudy bands are typical stratigraphic structure in deep ice core.Detailed recording of cloudy bands is important for dating of ice core since pair of series cloudy band and clear layer is corresponds to annual layer and it sometimes corresponds to volcanic ash layer.We developed two type scanners, transmitted light method and laser tomograph method for the stratigraphic study.Measurements were carried out for NGRIP deep ice core, which containing many cloudy bands, using the two type scanners and digital camera.We discussed about the possibility of identification of cloudy bands by each method and about advantage and disadvantage of measurements and their results.

  11. Investigation of influence of micro-structure on magnetic properties of amorphous powder core

    Institute of Scientific and Technical Information of China (English)

    GUO Feng; BA Shan; LI Deren; LU Zhichao; LU Caowei; WANG Jun

    2006-01-01

    The influence of micro-structure on magnetic properties of amorphous powder core was investigated. The results show that the amorphous powders of the powder core become crystallized with the increase of annealing temperature, and the permeability decreases from 60 to 12, the core loss increases from 0.2 to 0.3 W·cm-3 , DC-bias characteristic was improved with further increase of annealing temperature, and the magnetic properties become deteriorated due to decrease of permeability and enhancement of coercive force resulting from the crystallization of amorphous powder.

  12. Atomistic simulation of dislocation core structures in ordered TiAl

    Energy Technology Data Exchange (ETDEWEB)

    Panova, J.; Farkas, D. [Virginia Polytechnic Inst., Blacksburg, VA (United States). Dept. of Materials Science and Engineering

    1995-12-31

    Interatomic potentials of the Embedded Atom type were used in the simulation of the dislocation core structures in TiAl. Different orientations of the dislocation line were simulated for the most commonly observed TiAl slip systems. Low-temperature dislocation behavior is interpreted in terms of ordinary dislocation motion. The effect of applied stress on the shape of the dislocation core and its mobility is examined as well. For the superdislocations several possible types of dissociations were studied.

  13. The structure of the Morganella morganii lipopolysaccharide core region and identification of its genomic loci.

    Science.gov (United States)

    Vinogradov, Evgeny; Nash, John H E; Foote, Simon; Young, N Martin

    2015-01-30

    The core region of the lipopolysaccharide of Morganella morganii serotype O:1ab was obtained by hydrolysis of the LPS and studied by 2D NMR, ESI MS, and chemical methods. Its structure was highly homologous to those from the two major members of the same Proteeae tribe, Proteus mirabilis and Providencia alcalifaciens, and analysis of the M. morganii genome disclosed that the loci for its outer core, lipid A and Ara4N moieties are similarly conserved.

  14. How is kinematic structure connected to the core scale from filament scale?; Mopra mapping observations with multi-lines of dense cores in Lupus I

    Science.gov (United States)

    Kiyokane, Kazuhiro; Saito, Masao; Tachihara, Kengo; Saigo, Kazuya; van Kempen, Tim; Cortes, Paulo; Hill, Tracey; Knee, Lewis; Kurono, Yasutaka; Takahashi, Satoko; Aya, Higuchi; Nyman, Lars-Ake

    2014-06-01

    Recently, high sensitivity mappings of nearby molecular clouds in far-infrared and submillimeter wavelengths with Hershel and AzTEC/ASTE show ubiquitous existence of the filamentary structures with 0.1-pc uniform width. It is important to investigate dense core formation from large scale structure via fragmentation. We have conducted MOPRA multi-line mapping observations covered on 0.02 - 0.2 pc scales of 8 dense cores in a filamentary cloud of nearby Lupus I at 140 pc. A class 0/I protostellar core IRAS 15398-3359 is included as a sample, which has an adjacent prestellar core with the separation of 0.13pc in the west. The maps of N2H+, HNC, HC3N show well associated with each core. The velocity field of C18O shows 1.4 km/s/pc from north to south over the region containing two dense cores, which is consistent with past observation of NANTEN. In contrast to C18O results, the velocity field of HC3N shows different structures, which suggest counter rotation of two dense cores; 1.2 km/s/pc from north-west to south-east around a protostellar core and 0.8 km/s/pc from east to west around a presteller core. The filament will be fragmentized and collapsed to dense cores when the line density is over 2Cs/G (where Cs is sound speed and G is gravitational constant). If that velocity gradient was caused by such situation, it should be red-blue-red-blue across two dense cores but the observed kinematics is not consistent with this scenario, which requires that the filament structure would be extremely curved with a skew angle. Although we cannot reject the collapsing interruption, those results suggest the spin-up rotating picture separated from large-scale structure.

  15. Full-length RNA structure prediction of the HIV-1 genome reveals a conserved core domain

    DEFF Research Database (Denmark)

    Sukosd, Zsuzsanna; Andersen, Ebbe S.; Seemann, Stefan E.

    2015-01-01

    protein-coding regions the COS is supported by a particular high frequency of compensatory base changes, suggesting functional importance for this element. This new structural element potentially organizes the whole genome into three major domains protruding from a conserved core structure with potential...

  16. Exploring the impact of socio-technical core-periphery structures in open source software development

    NARCIS (Netherlands)

    Amrit, Chintan; Hillegersberg, van Jos

    2010-01-01

    In this paper we apply the social network concept of core-periphery structure to the socio-technical structure of a software development team. We propose a socio-technical pattern that can be used to locate emerging coordination problems in Open Source projects. With the help of our tool and method

  17. Hydrophobic Core Variations Provide a Structural Framework for Tyrosine Kinase Evolution and Functional Specialization.

    Science.gov (United States)

    Mohanty, Smita; Oruganty, Krishnadev; Kwon, Annie; Byrne, Dominic P; Ferries, Samantha; Ruan, Zheng; Hanold, Laura E; Katiyar, Samiksha; Kennedy, Eileen J; Eyers, Patrick A; Kannan, Natarajan

    2016-02-01

    Protein tyrosine kinases (PTKs) are a group of closely related enzymes that have evolutionarily diverged from serine/threonine kinases (STKs) to regulate pathways associated with multi-cellularity. Evolutionary divergence of PTKs from STKs has occurred through accumulation of mutations in the active site as well as in the commonly conserved hydrophobic core. While the functional significance of active site variations is well understood, relatively little is known about how hydrophobic core variations contribute to PTK evolutionary divergence. Here, using a combination of statistical sequence comparisons, molecular dynamics simulations, mutational analysis and in vitro thermostability and kinase assays, we investigate the structural and functional significance of key PTK-specific variations in the kinase core. We find that the nature of residues and interactions in the hydrophobic core of PTKs is strikingly different from other protein kinases, and PTK-specific variations in the core contribute to functional divergence by altering the stability and dynamics of the kinase domain. In particular, a functionally critical STK-conserved histidine that stabilizes the regulatory spine in STKs is selectively mutated to an alanine, serine or glutamate in PTKs, and this loss-of-function mutation is accommodated, in part, through compensatory PTK-specific interactions in the core. In particular, a PTK-conserved phenylalanine in the I-helix appears to structurally and functionally compensate for the loss of STK-histidine by interacting with the regulatory spine, which has far-reaching effects on enzyme activity, inhibitor sensing, and stability. We propose that hydrophobic core variations provide a selective advantage during PTK evolution by increasing the conformational flexibility, and therefore the allosteric potential of the kinase domain. Our studies also suggest that Tyrosine Kinase Like kinases such as RAF are intermediates in PTK evolutionary divergence inasmuch as they

  18. Electronic structure and intersubband magnetoabsorption spectra of CdSe/CdS core-shell nanowires

    Science.gov (United States)

    Xiong, Wen

    2016-10-01

    The electronic structures of CdSe/CdS core-shell nanowires are calculated based on the effective-mass theory, and it is found that the hole states in CdSe/CdS core-shell nanowires are strongly mixed, which are very different from the hole states in CdSe or CdS nanowires. In addition, we find the three highest hole states at the Γ point are almost localized in the CdSe core and the energies of the hole states in CdSe/CdS core-shell nanowires can be enhanced greatly when the core radius Rc increases and the total radius R is fixed. The degenerate hole states are split by the magnetic field, and the split energies will increase when |Jh | increases from 1/2 to 7/2, while they are almost not influenced by the change of the core radius Rc. The absorption spectra of CdSe/CdS core-shell nanowires at the Γ point are also studied in the magnetic field when the temperature T is considered, and we find there are only two peaks will arise if the core radius Rc and the temperature T increase. The intensity of each optical absorption can be considerably enhanced by increasing the core radius Rc when the temperature T is fixed, it is due to the increase of their optical transition matrix element. Meanwhile, the intensity of each optical absorption can be decreased when the temperature T increases and the core radius Rc is fixed, and this is because the Fermi-Dirac distribution function of the corresponding hole states will increase as the increase of the temperature T.

  19. Core-satellite ZnS-Ag nanoassemblies: Synthesis, structure, and optical properties.

    Science.gov (United States)

    Rohani, Parham; Sharma, Munish K; Swihart, Mark T

    2016-02-01

    We synthesized hollow core-satellite nanoassemblies comprised of hollow zinc sulfide (ZnS) shells decorated with silver nanoparticles (Ag NPs). This was achieved by solution-phase attachment of Ag NPs to hollow ZnS nanospheres (NSs) prepared by spray pyrolysis. This produces an aqueous dispersion of ZnS-Ag hybrid structures, 50-500nm in overall diameter. We characterized the nanostructures by scanning electron microscopy (SEM), transmission electron microscopy (TEM), powder X-ray diffraction (XRD), and energy dispersive X-ray spectroscopy (EDX) to elucidate the ZnS (core)-Ag (satellite) morphology and optimize conditions for producing such structures. Optical spectroscopy showed that photoluminescence of ZnS was quenched by Ag while absorbance was enhanced. This work provides a simple and general means of producing hollow core-satellite structures that could be of broad applicability.

  20. Evolution of Prolate Molecular Clouds at HII Boundaries: I. Formation of fragment-core structures

    CERN Document Server

    Kinnear, Timothy M; White, Glenn J; Goodwin, Simon

    2014-01-01

    The evolution of a prolate cloud at an Hii boundary is investigated using Smoothed Particle Hydrodynamics (SPH). The prolate molecular clouds in our investigation are set with their semi-major axis perpendicular to the radiative direction of a plane parallel ionising Extreme Ultraviolet (EUV) flux. Simulations on three high mass prolate clouds reveal that EUV radiation can trigger distinctive high density core formation embedded in a final linear structure. This contrasts with results of the previous work in which only an isotropic Far Ultraviolet (FUV) interstellar background flux was applied. A systematic investigation on a group of prolate clouds of equal mass but different initial densities and geometric shapes finds that the distribution of the cores over the final linear structure changes with the initial conditions of the prolate cloud and the strength of the EUV radiation flux. These highly condensed cores may either scatter over the full length of the final linear structure or form two groups of high...

  1. Core-Shell Structure of a Silicon Nanorod/Carbon Nanotube Field Emission Cathode

    Directory of Open Access Journals (Sweden)

    Bohr-Ran Huang

    2012-01-01

    Full Text Available A novel core-shell structure of silicon nanorods/carbon nanotubes (SiNRs/CNTs is developed for use in field emission cathodes. The CNTs were synthesized on SiNRs, using the Ag-assisted electroless etching technique to form the SiNRs/CNT core-shell structure. This resulting SiNRs/CNT field emission cathode demonstrated improved field emission properties including a lower turn-on electric field on (1.3 V/μm, 1 μA/cm2, a lower threshold electric field th (1.8 V/μm, 1 mA/cm2, and a higher enhancement factor (2347. These superior properties indicate that this core-shell structure of SiNRs/CNTs has good potential in field emission cathode applications.

  2. Comparison between triangular and hexagonal modeling of a hexagonal-structured reactor core using box method

    Energy Technology Data Exchange (ETDEWEB)

    Malmir, Hessam, E-mail: malmir@energy.sharif.edu [Department of Energy Engineering, Sharif University of Technology, Azadi Street, Tehran (Iran, Islamic Republic of); Moghaddam, Nader Maleki [Department of Nuclear Engineering and Physics, Amir Kabir University of Technology (Tehran Polytechnique), Hafez Street, Tehran (Iran, Islamic Republic of); Zahedinejad, Ehsan [Department of Energy Engineering, Sharif University of Technology, Azadi Street, Tehran (Iran, Islamic Republic of)

    2011-02-15

    A hexagonal-structured reactor core (e.g. VVER-type) is mostly modeled by structured triangular and hexagonal mesh zones. Although both the triangular and hexagonal models give good approximations over the neutronic calculation of the core, there are some differences between them that seem necessary to be clarified. For this purpose, the neutronic calculations of a hexagonal-structured reactor core have to be performed using the structured triangular and hexagonal meshes based on box method of discretisation and then the results of two models should be benchmarked in different cases. In this paper, the box method of discretisation is derived for triangular and hexagonal meshes. Then, two 2-D 2-group static simulators for triangular and hexagonal geometries (called TRIDIF-2 and HEXDIF-2, respectively) are developed using the box method. The results are benchmarked against the well-known CITATION computer code in case of a VVER-1000 reactor core. Furthermore, the relative powers calculated by the TRIDIF-2 and HEXDIF-2 along with the ones obtained by the CITATION code are compared with the verified results which have been presented in the Final Safety Analysis Report (FSAR) of the aforementioned reactor. Different benchmark cases revealed the reliability of the box method in contrast with the CITATION code. Furthermore, it is shown that the triangular modeling of the core is more acceptable compared with the hexagonal one.

  3. Identification of the core promoter of STK11 gene and its transcriptional regulation by p53

    Institute of Scientific and Technical Information of China (English)

    Maojin Yao; Chenjie Li; Yi Chu; Fei Wang; Xiaoliu Shi; Yongjun Wang; Hongwei Shen; Wenfeng Ning; Jianguang Tang; Xiangping Wang; Jie Li; Shiquang Zhou; Xin Yi

    2008-01-01

    Peutz-Jeghers syndrome (PJS) is an autosomal dominant disease characterized by mucocutaneous pigmentation and hamartomatous polyps. Most cases of PJS involve the inactivation of germline mutations in the serine/threonine kinase gene STK11 which is also known as LKB1. The function of STK11 was previously linked to the tumor suppressor p53 and was shown to activate the p53 target p21/ WAF1. Recently, STK11 was reported to be interacting with p53 physically in the nucleus and it can directly or indirectly phosphorylate p53. Here we characterized the 5'-flanking region of human STK11 gene and identified a 161-bp fragment with promoter activity. Sequence analysis, mutagenesis and gel shift studies revealed a binding site of Spl and p53, which affects the promoter activity. Mutation analyses showed that this fragment was required for p53-mediated transcriptional activation. This transcriptional activation was further confirmed by real-time quantitative RT-PCR and Western blot analysis. Transient transfection of p53 expression plasmid into fetal liver cell lines increased STK11 mRNA and protein levels. In conclusion, our results reveal a new role for p53 in elevating STK11 gene expression via a positive feedback pattern.

  4. Effect of annealing temperature on the stress and structural properties of Ge core fibre

    Science.gov (United States)

    Zhao, Ziwen; Cheng, Xueli; Xue, Fei; He, Ting; Wang, Tingyun

    2017-09-01

    Effect of annealing temperature on the stress and structural properties of a Ge core fibre via the molten core drawing (MCD) method is investigated using Raman spectroscopy, Scanning electronic microscopy (SEM), and X-ray diffraction. The experimental results showed that the Raman peak position of the Ge fibre shifted from 297.6 cm-1 to 300.5 cm-1, and the FWHM value decreased from 4.53 cm-1 to 4.31 cm-1, when the annealing is carried out at 700 °C, 800 °C, and 900 °C, respectively. For the Ge core annealed at 900 °C, an apparent crystal grain can be seen in the SEM image, and the diffraction peaks of the (3 3 1) plane are generated in the X-ray diffraction spectra. These results show that optimising the annealing temperature allows the release of the residual stress in the Ge core. When the Ge core fibre is annealed at 900 °C, it exhibits the lowest residual stress and the highest crystal quality, and the quality improvement relative to that of the sample annealed at 800 °C is significant. Hence, annealing at around 900 °C can greatly improve the quality of a Ge core fibre. Further performance improvement of the Ge core fibre by annealing techniques can be anticipated.

  5. Synthesis, structural, optical and photocatalytic properties of CdS/ZnS core/shell nanoparticles

    Science.gov (United States)

    Reddy, Ch. Venkata; Shim, Jaesool; Cho, Migyung

    2017-04-01

    CdS, ZnS and CdS/ZnS core/shell nanoparticles were successfully synthesized via two-step synthesis method. The as-prepared CdS, ZnS and CdS/ZnS core/shell nanoparticles were used to study the structural, morphological, and optical properties by PXRD, TEM, HRTEM, UV-vis spectroscopy, N2 adsorption-desorption, FT-IR, PL and Raman spectroscopy measurements. The XRD pattern confirms the crystal structure of the prepared ZnS, CdS, and CdS/ZnS core/shell nanoparticles. The crystallinity of the as-prepared samples is confirmed by PXRD, TEM and HRTEM analysis. The BET analysis showed that the CdS/ZnS core/shell nanoparticles had larger surface area and pore diameter than CdS and ZnS. The Raman and FT-IR spectra confirm the fundamental vibrational modes of CdS and ZnS respectively. Compared to pure CdS and ZnS, CdS/ZnS core/shell nanoparticles exhibited higher photocatalytic activity for the degradation of methyl orange (MO). The enhancement of photocatalytic activity in the CdS/ZnS core/shell nanoparticles is due to the interface actions between CdS and ZnS, which greatly reduces the recombination of photogenerated electrons-holes pair. The proposed mechanism for degradation of MO dye is discussed in detail.

  6. High-resolution probing of inner core structure with seismic interferometry

    KAUST Repository

    Huang, Hsin-Hua

    2015-12-23

    © 2015. American Geophysical Union. All Rights Reserved. Increasing complexity of Earth\\'s inner core has been revealed in recent decades as the global distribution of seismic stations has improved. The uneven distribution of earthquakes, however, still causes a biased geographical sampling of the inner core. Recent developments in seismic interferometry, which allow for the retrieval of core-sensitive body waves propagating between two receivers, can significantly improve ray path coverage of the inner core. In this study, we apply such earthquake coda interferometry to 1846 USArray stations deployed across the U.S. from 2004 through 2013. Clear inner core phases PKIKP2 and PKIIKP2 are observed across the entire array. Spatial analysis of the differential travel time residuals between the two phases reveals significant short-wavelength variation and implies the existence of strong structural variability in the deep Earth. A linear N-S trending anomaly across the middle of the U.S. may reflect an asymmetric quasi-hemispherical structure deep within the inner core with boundaries of 99°W and 88°E.

  7. On the properties of{110} dissociated superdislocation in B2 structure YAg and YCu: Core structure and Peierls stress

    Institute of Scientific and Technical Information of China (English)

    Xiao-zhi WU; Shao-feng WANG

    2009-01-01

    The simplified one-dimensional dislocation equation for mixed dislocations is derived briefly from the two-dimensional modified Peierls-Nabarro equation taking into account the discreteness effect of crystals. The collinear dissociated core structure of {110} superdislocations in the novel B2 structure YAg and YCu are investigated with the simplified equation Both the core width and the dissociated width are increasing with the increases in the dislocation angle of super-dislocations. The dissociated width determined by con-tinuum elastic theory is inaccurate for the high antiphase boundary energy but is recovered for the low antiphase boundary energy.The Peierls stress of the dissociated dislocation is replaced by that of superpartials The results SNOW tilat both the unstable stacking fault energy and the core width are crucial for the Peierls stress in the case of a narrow core stucture. However,the core width becomes the main factor in controlling the Peierls stress in the case of a wide core.

  8. Structures of 3-layer planar waveguide where core field can become uniform

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Theoretical analysis and numerical results for typical examples are presented for three-layer planar waveguides with nonlinear claddings to find the appropriate structures in which the core electric field can become uniform at appropriate optical power while the cladding fields decay exponentially. It is shown that there are five kinds of such structures. The electric field profiles are plotted for the five typical examples. We notify that the occurrence of uniform field in a waveguide core may perhaps have prospective applications in waveguide, opto-electronic and photonic devices.

  9. Preparation of Hollow Spherical and Core/shell Structured Powders by Plasma Processing

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Xiaofeng; ZHOU; Kesong; DENG; Changguang; SONG; Jinbing; ZHANG; Jifu; DONG; Shujuan

    2015-01-01

    Four types of hollow spherical micro- and nano-szied powders of ZrO2-7wt.%Y2O3(7YSZ), ZrO2-7wt.%Y2O3, Al2O3-13 wt.% TiO2(AT) and WC as well as one type of core/shell structured powder of ZrB2-30 wt.%Mo Si2 were prepared via plasma processing. In addition, the formation mechanisms of hollow spherical and core/shell structured powders prepared via plasma processing were also proposed.

  10. Trends in dislocation core structures and mechanical behavior in B2 aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Vailhe, C.; Farkas, D. [Virginia Polytechnic Inst., Blacksburg, VA (United States). Dept. of Materials Science and Engineering

    1995-08-01

    In an effort to understand the deformation mechanism in high temperature B2 intermetallics, atomistic simulations were carried out for dislocation cores in a series of compounds exhibiting the B2 structure (FeAl, NiAl, CoAl). A comparison was made on the basis of core structures, dislocation splittings and Peierls stress values. The (110) and (112) {gamma} surfaces were computed for these three compounds. The importance of the APB values and the maximum shear faults for explaining the dislocation behavior is discussed.

  11. Flux-flow resistivity in UPt3: Evidence for nonsingular vortex-core structure

    Science.gov (United States)

    Lütke-Entrup, N.; Blaauwgeers, R.; Plaçais, B.; Huxley, A.; Kambe, S.; Krusius, M.; Mathieu, P.; Simon, Y.

    2001-07-01

    We have investigated the core structure of B-phase vortex lines in two clean UPt3 crystals, using flux-flow dissipation as the probe. The flux-flow resistivity is determined from the skin depth of the high-frequency oscillations of the vortex lines in the pinned state. With Ĥ⊥ĉ, our data agree with the previously established scaling law of the moderately clean limit with anisotropic gap. When Ĥ||ĉ, the resistivity is three times larger. We interpret this increase as evidence for a vortex-core structure with two length scales, as predicted for UPt3 with a two-component order parameter.

  12. Electronic Structure Calculations and Adaptation Scheme in Multi-core Computing Environments

    Energy Technology Data Exchange (ETDEWEB)

    Seshagiri, Lakshminarasimhan; Sosonkina, Masha; Zhang, Zhao

    2009-05-20

    Multi-core processing environments have become the norm in the generic computing environment and are being considered for adding an extra dimension to the execution of any application. The T2 Niagara processor is a very unique environment where it consists of eight cores having a capability of running eight threads simultaneously in each of the cores. Applications like General Atomic and Molecular Electronic Structure (GAMESS), used for ab-initio molecular quantum chemistry calculations, can be good indicators of the performance of such machines and would be a guideline for both hardware designers and application programmers. In this paper we try to benchmark the GAMESS performance on a T2 Niagara processor for a couple of molecules. We also show the suitability of using a middleware based adaptation algorithm on GAMESS on such a multi-core environment.

  13. Magnetic properties of mixed spin (1, 3/2) Ising nanoparticles with core-shell structure

    Science.gov (United States)

    Deviren, Bayram; Şener, Yunus

    2015-07-01

    The magnetic properties of mixed spin-1 and spin-3/2 Ising nanoparticles with core/shell structure are studied by using the effective-field theory with correlations. We investigate the thermal variations of the core, shell and total magnetizations and the Q-, R-, P-, S-, N- and L-types of compensation behavior in Néel classification nomenclature exists in the system. The effects of the crystal-field, core and shell interactions and interface coupling, on the phase diagrams are investigated in detail and the obtained phase diagrams are presented in three different planes. The system exhibits both second- and first-order phase transitions besides tricritical point, double critical end point, triple point and critical end point depending on the appropriate values of the interaction parameters. The system strongly affected by the surface situations and some characteristic phenomena are found depending on the ratio of the physical parameters in the surface shell and the core.

  14. Structured Annual Faculty Review Program Accelerates Professional Development and Promotion

    Directory of Open Access Journals (Sweden)

    Stanley J. Robboy MD

    2017-03-01

    Full Text Available This retrospective observational study on faculty development analyzes the Duke University Pathology Department’s 18-year experience with a structured mentoring program involving 51 junior faculty members. The majority had MD degrees only (55%. The percentage of young women faculty hires before 1998 was 25%, increasing to 72% after 2005. Diversity also broadened from 9% with varied heritages before 1998 to 37% since then. The mentoring process pivoted on an annual review process. The reviews generally helped candidates focus much earlier, identified impediments they individually felt, and provided new avenues to gain a national reputation for academic excellence. National committee membership effectively helped gain national exposure. Thirty-eight percent of the mentees served on College of American Pathologists (CAP committees, exponential multiples of any other national society. Some used CAP resources to develop major programs, some becoming nationally and internationally recognized for their academic activities. Several faculty gained national recognition as thought leaders for publishing about work initiated to serve administrative needs in the Department. The review process identified the need for more protected time for research, issues with time constraints, and avoiding exploitation when collaborating with other departments. This review identified a rigorous faculty mentoring and review process that included annual career counseling, goal-oriented academic careers, monitored advancement to promotion, higher salaries, and national recognition. All contributed to high faculty satisfaction and low faculty turnover. We conclude that a rigorous annual faculty review program and its natural sequence, promotion, can greatly foster faculty satisfaction.

  15. Improved Solar-Driven Photocatalytic Performance of Highly Crystalline Hydrogenated TiO2 Nanofibers with Core-Shell Structure

    Science.gov (United States)

    Wu, Ming-Chung; Chen, Ching-Hsiang; Huang, Wei-Kang; Hsiao, Kai-Chi; Lin, Ting-Han; Chan, Shun-Hsiang; Wu, Po-Yeh; Lu, Chun-Fu; Chang, Yin-Hsuan; Lin, Tz-Feng; Hsu, Kai-Hsiang; Hsu, Jen-Fu; Lee, Kun-Mu; Shyue, Jing-Jong; Kordás, Krisztián; Su, Wei-Fang

    2017-01-01

    Hydrogenated titanium dioxide has attracted intensive research interests in pollutant removal applications due to its high photocatalytic activity. Herein, we demonstrate hydrogenated TiO2 nanofibers (H:TiO2 NFs) with a core-shell structure prepared by the hydrothermal synthesis and subsequent heat treatment in hydrogen flow. H:TiO2 NFs has excellent solar light absorption and photogenerated charge formation behavior as confirmed by optical absorbance, photo-Kelvin force probe microscopy and photoinduced charge carrier dynamics analyses. Photodegradation of various organic dyes such as methyl orange, rhodamine 6G and brilliant green is shown to take place with significantly higher rates on our novel catalyst than on pristine TiO2 nanofibers and commercial nanoparticle based photocatalytic materials, which is attributed to surface defects (oxygen vacancy and Ti3+ interstitial defect) on the hydrogen treated surface. We propose three properties/mechanisms responsible for the enhanced photocatalytic activity, which are: (1) improved absorbance allowing for increased exciton generation, (2) highly crystalline anatase TiO2 that promotes fast charge transport rate, and (3) decreased charge recombination caused by the nanoscopic Schottky junctions at the interface of pristine core and hydrogenated shell thus promoting long-life surface charges. The developed H:TiO2 NFs can be helpful for future high performance photocatalysts in environmental applications. PMID:28102314

  16. Improved Solar-Driven Photocatalytic Performance of Highly Crystalline Hydrogenated TiO2 Nanofibers with Core-Shell Structure.

    Science.gov (United States)

    Wu, Ming-Chung; Chen, Ching-Hsiang; Huang, Wei-Kang; Hsiao, Kai-Chi; Lin, Ting-Han; Chan, Shun-Hsiang; Wu, Po-Yeh; Lu, Chun-Fu; Chang, Yin-Hsuan; Lin, Tz-Feng; Hsu, Kai-Hsiang; Hsu, Jen-Fu; Lee, Kun-Mu; Shyue, Jing-Jong; Kordás, Krisztián; Su, Wei-Fang

    2017-01-19

    Hydrogenated titanium dioxide has attracted intensive research interests in pollutant removal applications due to its high photocatalytic activity. Herein, we demonstrate hydrogenated TiO2 nanofibers (H:TiO2 NFs) with a core-shell structure prepared by the hydrothermal synthesis and subsequent heat treatment in hydrogen flow. H:TiO2 NFs has excellent solar light absorption and photogenerated charge formation behavior as confirmed by optical absorbance, photo-Kelvin force probe microscopy and photoinduced charge carrier dynamics analyses. Photodegradation of various organic dyes such as methyl orange, rhodamine 6G and brilliant green is shown to take place with significantly higher rates on our novel catalyst than on pristine TiO2 nanofibers and commercial nanoparticle based photocatalytic materials, which is attributed to surface defects (oxygen vacancy and Ti(3+) interstitial defect) on the hydrogen treated surface. We propose three properties/mechanisms responsible for the enhanced photocatalytic activity, which are: (1) improved absorbance allowing for increased exciton generation, (2) highly crystalline anatase TiO2 that promotes fast charge transport rate, and (3) decreased charge recombination caused by the nanoscopic Schottky junctions at the interface of pristine core and hydrogenated shell thus promoting long-life surface charges. The developed H:TiO2 NFs can be helpful for future high performance photocatalysts in environmental applications.

  17. Improved Solar-Driven Photocatalytic Performance of Highly Crystalline Hydrogenated TiO2 Nanofibers with Core-Shell Structure

    Science.gov (United States)

    Wu, Ming-Chung; Chen, Ching-Hsiang; Huang, Wei-Kang; Hsiao, Kai-Chi; Lin, Ting-Han; Chan, Shun-Hsiang; Wu, Po-Yeh; Lu, Chun-Fu; Chang, Yin-Hsuan; Lin, Tz-Feng; Hsu, Kai-Hsiang; Hsu, Jen-Fu; Lee, Kun-Mu; Shyue, Jing-Jong; Kordás, Krisztián; Su, Wei-Fang

    2017-01-01

    Hydrogenated titanium dioxide has attracted intensive research interests in pollutant removal applications due to its high photocatalytic activity. Herein, we demonstrate hydrogenated TiO2 nanofibers (H:TiO2 NFs) with a core-shell structure prepared by the hydrothermal synthesis and subsequent heat treatment in hydrogen flow. H:TiO2 NFs has excellent solar light absorption and photogenerated charge formation behavior as confirmed by optical absorbance, photo-Kelvin force probe microscopy and photoinduced charge carrier dynamics analyses. Photodegradation of various organic dyes such as methyl orange, rhodamine 6G and brilliant green is shown to take place with significantly higher rates on our novel catalyst than on pristine TiO2 nanofibers and commercial nanoparticle based photocatalytic materials, which is attributed to surface defects (oxygen vacancy and Ti3+ interstitial defect) on the hydrogen treated surface. We propose three properties/mechanisms responsible for the enhanced photocatalytic activity, which are: (1) improved absorbance allowing for increased exciton generation, (2) highly crystalline anatase TiO2 that promotes fast charge transport rate, and (3) decreased charge recombination caused by the nanoscopic Schottky junctions at the interface of pristine core and hydrogenated shell thus promoting long-life surface charges. The developed H:TiO2 NFs can be helpful for future high performance photocatalysts in environmental applications.

  18. Core promoter-specific gene regulation: TATA box selectivity and Initiator-dependent bi-directionality of serum response factor-activated transcription.

    Science.gov (United States)

    Xu, Muyu; Gonzalez-Hurtado, Elsie; Martinez, Ernest

    2016-04-01

    Gene-specific activation by enhancers involves their communication with the basal RNA polymerase II transcription machinery at the core promoter. Core promoters are diverse and may contain a variety of sequence elements such as the TATA box, the Initiator (INR), and the downstream promoter element (DPE) recognized, respectively, by the TATA-binding protein (TBP) and TBP-associated factors of the TFIID complex. Core promoter elements contribute to the gene selectivity of enhancers, and INR/DPE-specific enhancers and activators have been identified. Here, we identify a TATA box-selective activating sequence upstream of the human β-actin (ACTB) gene that mediates serum response factor (SRF)-induced transcription from TATA-dependent but not INR-dependent promoters and requires the TATA-binding/bending activity of TBP, which is otherwise dispensable for transcription from a TATA-less promoter. The SRF-dependent ACTB sequence is stereospecific on TATA promoters but activates in an orientation-independent manner a composite TATA/INR-containing promoter. More generally, we show that SRF-regulated genes of the actin/cytoskeleton/contractile family tend to have a TATA box. These results suggest distinct TATA-dependent and INR-dependent mechanisms of TFIID-mediated transcription in mammalian cells that are compatible with only certain stereospecific combinations of activators, and that a TBP-TATA binding mechanism is important for SRF activation of the actin/cytoskeleton-related gene family.

  19. Nucleosome structure of the yeast CHA1 promoter

    DEFF Research Database (Denmark)

    Moreira, José Manuel Alfonso; Holmberg, S

    1998-01-01

    conditions. Five yeast TBP mutants defective in different steps in activated transcription abolished CHA1 expression, but failed to affect induction-dependent chromatin rearrangement of the promoter region. Progressive truncations of the RNA polymerase II C-terminal domain caused a progressive reduction......The Saccharomyces cerevisiae CHA1 gene encodes the catabolic L-serine (L-threonine) dehydratase. We have previously shown that the transcriptional activator protein Cha4p mediates serine/threonine induction of CHA1 expression. We used accessibility to micrococcal nuclease and DNase I to determine...... the in vivo chromatin structure of the CHA1 chromosomal locus, both in the non-induced state and upon induction. Upon activation, a precisely positioned nucleosome (nuc-1) occluding the TATA box and the transcription start site is removed. A strain devoid of Cha4p showed no chromatin alteration under inducing...

  20. Tuning the conductivity and inner structure of electrospun fibers to promote cardiomyocyte elongation and synchronous beating.

    Science.gov (United States)

    Liu, Yaowen; Lu, Jinfu; Xu, Guisen; Wei, Jiaojun; Zhang, Zhibin; Li, Xiaohong

    2016-12-01

    The key to addressing the challenges facing cardiac tissue engineering is the integration of physical, chemical, and electrical cues into scaffolds. Aligned and conductive scaffolds have been fabricated as synthetic microenvironments to improve the function of cardiomyocytes. However, up to now, the influence of conductive capability and inner structure of fibrous scaffolds have not been determined on the cardiomyocyte morphologies and beating patterns. In the current study, highly aligned fibers were fabricated with loaded up to 6% of carbon nanotubes (CNTs) to modulate the electrical conductivity, while blend and coaxial electrospinning were utilized to create a bulk distribution of CNTs in fiber matrices and a spatial embedment in fiber cores, respectively. Conductive networks were formed in the fibrous scaffolds after the inoculation of over 3% CNTs, and the increase in the conductivity could maintain the cell viabilities, induce the cell elongation, enhance the production of sarcomeric α-actinin and troponin I, and promote the synchronous beating of cardiomyocytes. Although the conductivity of blend fibers is slightly higher than that of coaxial fibers with the same CNT loadings, the lower exposures to CNTs resulted in higher cell viability, elongation, extracellular matrix secretion and beating rates for cardiomyocytes on coaxial fibers. Taken altogether, core-sheath fibers with loaded 5% of CNTs in the fiber cores facilitated the cardiomyocyte growth with a production of organized contractile proteins and a pulsation frequency close to that of the atrium. It is suggested that electrospun scaffolds that couple conductivity and fibrous structure considerations may provide optimal stimuli to foster cell morphology and functions for myocardial regeneration or establishment of in vitro cardiomyocyte culture platform for drug screening.

  1. The Relationship Between Atomic Structure and Strain Distribution of Misfit Dislocation Cores at Cubic Heteroepitaxial Interfaces.

    Science.gov (United States)

    Wen, Cai

    2017-03-09

    The atomic reconstruction of a misfit dislocation (MD) core causes change in the strain distribution around the core. Several MD cores at the AlSb/GaAs (001) cubic zincblende interface, including a symmetrical glide set Lomer dislocation (LD), a left-displaced glide set LD, a glide set LD with an atomic step, a symmetrical shuffle set LD, and a 60° dislocation pair, were studied using simulated projected potential and aberration-corrected transmission electron microscope images. Image deconvolution was also used to restore structure images from nonoptimum-defocus images. The corresponding biaxial strain maps, ε xx (in-plane) and ε yy (out-of-plane), were obtained by geometric phase analysis using the GaAs substrate as the reference lattice. The results show that atomic structure characteristics of MD cores can be revealed by the strain maps. The strain maps should be measured from optimum-defocus images or restored structure images. Furthermore, the ε xx strain map has been found more accurate than the ε yy strain map for MD cores, and the specimen thickness should be below the critical thickness due to the influence of dynamical scattering.

  2. Mapping the Atomistic Structure of Graded Core/Shell Colloidal Nanocrystals.

    Science.gov (United States)

    Yarema, Maksym; Xing, Yunhua; Lechner, Rainer T; Ludescher, Lukas; Dordevic, Nikola; Lin, Weyde M M; Yarema, Olesya; Wood, Vanessa

    2017-09-15

    Engineering the compositional gradient for core/shell semiconductor nanocrystals improves their optical properties. To date, however, the structure of graded core/shell nanocrystal emitters has only been qualitatively described. In this paper, we demonstrate an approach to quantify nanocrystal structure, selecting graded Ag-In-Se/ZnSe core/shell nanocrystals as a proof-of-concept material. A combination of multi-energy small-angle X-ray scattering and electron microscopy techniques enables us to establish the radial distribution of ZnSe with sub-nanometer resolution. Using ab initio shape-retrieval analysis of X-ray scattering spectra, we further determine the average shape of nanocrystals. These results allow us to generate three-dimensional, atomistic reconstructions of graded core/shell nanocrystals. We use these reconstructions to calculate solid-state Zn diffusion in the Ag-In-Se nanocrystals and the lattice mismatch between nanocrystal monolayers. Finally, we apply these findings to propose design rules for optimal shell structure and record-luminescent core/shell nanocrystals.

  3. Relation between hepatitis B virus genotypes and gene mutation of basic core promoter in Li nationality

    Institute of Scientific and Technical Information of China (English)

    Juntao Zeng; Zhengwen Liu; Shiping Zeng; Jing Chen

    2009-01-01

    Objective:To investigate the relation between hepatitis B virus(HBV) genotypes and the double mutation of A-to-T nucleotide(nt) 1762 and G-to-A nt 1764 in basic core promotev(BCP T1762/A1764) in patients of the Li nationality. Methods:Subjects were 125 HBV DNA positive patients that belong to the Li nationality on Hainan Island. HBV DNA genotype was determined by real time fluorimetrypolymerase chain reaction. BCP T1762/A1764 mutation was performed using the direct sequencing method. Results:The prevalence rates of genotype B, genotype C, genotype D, genotype C and D mixed infection(genotype C+D) and genotype B and D mixed infection (genotype B+C) were 31.20%, 53.60%, 12.00%, 2.40% and 0.80% respectively. Mutation frequencies in patients infected with HBV genotype C(58.21%) were significantly higher than in those infected with other genotypes (P <0.01). The serum viral load of the patients with genotype C(5.74±1.21) was also higher than that of those with genotype B(P <0.01). Conclusion:The major genotypes in the Li nationality were genotype C and genotype B. The infection of genotype D and mixed infection also occurred in the Li nationality. Genotype C HBV has a higher replication rate, and the different degrees of pathogenecity among HBV genotypes may be related to BCP T1762/ A1764 mutation frequency.

  4. Use of the PSA enhancer core element to modulate the expression of prostate- and non-prostate-specific basal promoters in a lentiviral vector context.

    Science.gov (United States)

    Chapel-Fernandes, S; Jordier, F; Lauro, F; Maitland, N; Chiaroni, J; de Micco, P; Mannoni, P; Bagnis, C

    2006-10-01

    Composite promoters combining the prostate-specific antigen (PSA) enhancer core element with promoter elements derived from gene coding for human prostate-specific transglutaminase gene, prostate-specific membrane antigen gene, prostate-specific antigen, rat probasin or phosphoglycerate kinase were characterized for their ability to specifically express the enhanced green fluorescent protein (EGFP) gene in prostate versus non-prostate cancer cell lines when transferred with a human immunodeficiency virus-1-based lentiviral vector. By themselves minimal proximal promoter elements were found to inefficiently promote relevant tissue-specific expression; in all the vectors tested, addition of the PSA enhancer core element markedly improved EGFP expression in LnCaP, a cancer prostate cell line used as a model for prostate cancer. The composite promoter was inactive in HuH7, a hepatocarcinoma cell line used as a model of neighboring non-prostate cancer cells. Among the promoters tested, the combination of the PSA enhancer and the rat probasin promoter showed both high specificity and a strong EGFP expression. Neither a high viral input nor the presence of the cPPT/CTS sequence affected composite promoter behavior. Our data suggest that composite prostate-specific promoters constructed by combining key elements from various promoters can improve and/or confer tissue specific expression in a lentiviral vector context.

  5. CORE: Common Region Extension Based Multiple Protein Structure Alignment for Producing Multiple Solution

    Institute of Scientific and Technical Information of China (English)

    Woo-Cheol Kim; Sanghyun Park; Jung-Im Won

    2013-01-01

    Over the past several decades,biologists have conducted numerous studies examining both general and specific functions of proteins.Generally,if similarities in either the structure or sequence of amino acids exist for two proteins,then a common biological function is expected.Protein function is determined primarily based on the structure rather than the sequence of amino acids.The algorithm for protein structure alignment is an essential tool for the research.The quality of the algorithm depends on the quality of the similarity measure that is used,and the similarity measure is an objective function used to determine the best alignment.However,none of existing similarity measures became golden standard because of their individual strength and weakness.They require excessive filtering to find a single alignment.In this paper,we introduce a new strategy that finds not a single alignment,but multiple alignments with different lengths.This method has obvious benefits of high quality alignment.However,this novel method leads to a new problem that the running time for this method is considerably longer than that for methods that find only a single alignment.To address this problem,we propose algorithms that can locate a common region (CORE) of multiple alignment candidates,and can then extend the CORE into multiple alignments.Because the CORE can be defined from a final alignment,we introduce CORE* that is similar to CORE and propose an algorithm to identify the CORE*.By adopting CORE* and dynamic programming,our proposed method produces multiple alignments of various lengths with higher accuracy than previous methods.In the experiments,the alignments identified by our algorithm are longer than those obtained by TM-align by 17% and 15.48%,on average,when the comparison is conducted at the level of super-family and fold,respectively.

  6. Fragmentation of massive dense cores down to ≲ 1000 AU: Relation between fragmentation and density structure

    Energy Technology Data Exchange (ETDEWEB)

    Palau, Aina; Girart, Josep M. [Institut de Ciències de l' Espai (CSIC-IEEC), Campus UAB-Facultat de Ciències, Torre C5-parell 2, E-08193 Bellaterra, Catalunya (Spain); Estalella, Robert [Departament d' Astronomia i Meteorologia (IEEC-UB), Institut de Ciències del Cosmos, Universitat de Barcelona, Martí i Franquès, 1, E-08028 Barcelona (Spain); Fuente, Asunción [Observatorio Astronómico Nacional, P.O. Box 112, E-28803 Alcalá de Henares, Madrid (Spain); Fontani, Francesco; Sánchez-Monge, Álvaro [Osservatorio Astrofisico di Arcetri, INAF, Lago E. Fermi 5, I-50125 Firenze (Italy); Commerçon, Benoit; Hennebelle, Patrick [Laboratoire de Radioastronomie, UMR CNRS 8112, École Normale Supérieure et Observatoire de Paris, 24 rue Lhomond, F-75231 Paris Cedex 05 (France); Busquet, Gemma [INAF-Istituto di Astrofisica e Planetologia Spaziali, Area di Recerca di Tor Vergata, Via Fosso Cavaliere 100, I-00133 Roma (Italy); Bontemps, Sylvain [Université de Bordeaux, LAB, UMR 5804, F-33270 Floirac (France); Zapata, Luis A. [Centro de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, P.O. Box 3-72, 58090 Morelia, Michoacán (Mexico); Zhang, Qizhou [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Di Francesco, James, E-mail: palau@ieec.uab.es [Department of Physics and Astronomy, University of Victoria, P.O. Box 355, STN CSC, Victoria, BC, V8W 3P6 (Canada)

    2014-04-10

    In order to shed light on the main physical processes controlling fragmentation of massive dense cores, we present a uniform study of the density structure of 19 massive dense cores, selected to be at similar evolutionary stages, for which their relative fragmentation level was assessed in a previous work. We inferred the density structure of the 19 cores through a simultaneous fit of the radial intensity profiles at 450 and 850 μm (or 1.2 mm in two cases) and the spectral energy distribution, assuming spherical symmetry and that the density and temperature of the cores decrease with radius following power-laws. Even though the estimated fragmentation level is strictly speaking a lower limit, its relative value is significant and several trends could be explored with our data. We find a weak (inverse) trend of fragmentation level and density power-law index, with steeper density profiles tending to show lower fragmentation, and vice versa. In addition, we find a trend of fragmentation increasing with density within a given radius, which arises from a combination of flat density profile and high central density and is consistent with Jeans fragmentation. We considered the effects of rotational-to-gravitational energy ratio, non-thermal velocity dispersion, and turbulence mode on the density structure of the cores, and found that compressive turbulence seems to yield higher central densities. Finally, a possible explanation for the origin of cores with concentrated density profiles, which are the cores showing no fragmentation, could be related with a strong magnetic field, consistent with the outcome of radiation magnetohydrodynamic simulations.

  7. Crystal Structure of a Complex of Surfactant Protein D (SP-D) and Haemophilus influenzae Lipopolysaccharide Reveals Shielding of Core Structures in SP-D-Resistant Strains.

    Science.gov (United States)

    Clark, Howard W; Mackay, Rose-Marie; Deadman, Mary E; Hood, Derek W; Madsen, Jens; Moxon, E Richard; Townsend, J Paul; Reid, Kenneth B M; Ahmed, Abdul; Shaw, Amy J; Greenhough, Trevor J; Shrive, Annette K

    2016-05-01

    The carbohydrate recognition domains (CRDs) of lung collectin surfactant protein D (SP-D) recognize sugar patterns on the surface of lung pathogens and promote phagocytosis. Using Haemophilus influenzae Eagan strains expressing well-characterized lipopolysaccharide (LPS) surface structures of various levels of complexity, we show that bacterial recognition and binding by SP-D is inversely related to LPS chain extent and complexity. The crystal structure of a biologically active recombinant trimeric SP-D CRD complexed with a delipidated Eagan 4A LPS suggests that efficient LPS recognition by SP-D requires multiple binding interactions utilizing the three major ligand-binding determinants in the SP-D binding pocket, with Ca-dependent binding of inner-core heptose accompanied by interaction of anhydro-Kdo (4,7-anhydro-3-deoxy-d-manno-oct-2-ulosonic acid) with Arg343 and Asp325. Combined with enzyme-linked immunosorbent assays (ELISAs) and fluorescence-activated cell sorter (FACS) binding analyses, our results show that extended LPS structures previously thought to be targets for collectins are important in shielding the more vulnerable sites in the LPS core, revealing a mechanism by which pathogens with complex LPS extensions efficiently evade a first-line mucosal innate immune defense. The structure also reveals for the first time the dominant form of anhydro-Kdo.

  8. Improved Fabrication of Ceramic Matrix Composite/Foam Core Integrated Structures

    Science.gov (United States)

    Hurwitz, Frances I.

    2009-01-01

    The use of hybridized carbon/silicon carbide (C/SiC) fabric to reinforce ceramic matrix composite face sheets and the integration of such face sheets with a foam core creates a sandwich structure capable of withstanding high-heatflux environments (150 W/cm2) in which the core provides a temperature drop of 1,000 C between the surface and the back face without cracking or delamination of the structure. The composite face sheet exhibits a bilinear response, which results from the SiC matrix not being cracked on fabrication. In addition, the structure exhibits damage tolerance under impact with projectiles, showing no penetration to the back face sheet. These attributes make the composite ideal for leading edge structures and control surfaces in aerospace vehicles, as well as for acreage thermal protection systems and in high-temperature, lightweight stiffened structures. By tailoring the coefficient of thermal expansion (CTE) of a carbon fiber containing ceramic matrix composite (CMC) face sheet to match that of a ceramic foam core, the face sheet and the core can be integrally fabricated without any delamination. Carbon and SiC are woven together in the reinforcing fabric. Integral densification of the CMC and the foam core is accomplished with chemical vapor deposition, eliminating the need for bond-line adhesive. This means there is no need to separately fabricate the core and the face sheet, or to bond the two elements together, risking edge delamination during use. Fibers of two or more types are woven together on a loom. The carbon and ceramic fibers are pulled into the same pick location during the weaving process. Tow spacing may be varied to accommodate the increased volume of the combined fiber tows while maintaining a target fiber volume fraction in the composite. Foam pore size, strut thickness, and ratio of face sheet to core thickness can be used to tailor thermal and mechanical properties. The anticipated CTE for the hybridized composite is managed by

  9. Green Infrastructure Research Promotes Students' Deeper Interest in Core Courses of a Water Resources Program

    Science.gov (United States)

    Yerk, W.; Montalto, F. A.; Foti, R.

    2015-12-01

    As one of most innovative among low impact development technologies, Green Infrastructure (GI) is a new technology that presents a range of potential research opportunities. Inherently linked to sustainability, urban quality of life, resilience, and other such topics, GI also represents a unique opportunity to highlight the social relevance of practical STEM research to undergraduate students. The nature of research on urban GI, in fact, as well as the accessibility of the GI sites, allows students to combine hands-on experience with theoretical work. Furthermore, the range of scales of the projects is such that they can be managed within a single term, but does not preclude longer engagement. The Sustainable Water Resource Engineering lab at Drexel University is engaged in two types of GI research outside the classroom. One type is a research co-op research internship. The second is a selective university-wide faculty-mentored summer scholarship STAR (Students Tackling Advanced Research) specifically designed for freshmen. The research projects we developed for those curricula can be accomplished by undergraduate students, but also address a larger research need in this emerging field. The research tasks have included identifying and calibrating affordable instruments, designing and building experimental setups, and monitoring and evaluating performance of GI sites. The work also promoted deeper understanding of the hydrological processes and initiated learning beyond the students' current curricula. The practice of the Lab's research being embedded into the educational process receives positive feedback from the students and achieves meaningful and long-lasting learning objectives. The experience helps students to students acquire hands-on experience, improves their metacognition and evidence-based inquiring into real-world problems, and further advances decision-making and communication skills.

  10. Up-regulation effect of hepatitis B virus genome A1846T mutation on viral replication and core promoter activity

    Directory of Open Access Journals (Sweden)

    Ling JIANG

    2013-01-01

    Full Text Available Objective  To evaluate the influence of hepatitis B virus (HBV genome nucleotide A1846T mutation on the viral replication capacity and the transcription activity of HBV core promoter (CP in vitro. Methods  A total of 385 patients with hepatitis B admitted to the 302 Hospital of PLA were enrolled in the study, including 116 with moderate chronic hepatitis B (CHB-M, 123 with severe chronic hepatitis B (CHB-S, and 146 with acute-on-chronic liver failure (ACLF. Serum HBV DNA was isolated and full-length HBV genome was amplified. The incidence of A1846T was analyzed. Full-length HBV genomes containing 1846T mutation were cloned into pGEM-T easy vector, and the counterpart wild-type 1846A plasmids were obtained by site-directed mutagenesis. The full-length HBV genome was released from recombinant plasmid by BspQ Ⅰ/Sca Ⅰ digestion, and then transfected into HepG2 cells. Secreted HBsAg level and intracellular HBV core particles were measured 72 hours post-transfection to analyze the replication capacity (a 1.0-fold HBV genome model. 1846 mutant and wild-type full-length HBV genomes were extracted to amplify the fragment of HBV CP region, and the dual luciferase reporter of the pGL3-CP was constructed. The luciferase activity was detected 48 hours post-transfection. Results  The incidence of A1846T mutation gradually increased with the severity of hepatitis B, reaching 31.03%, 42.27%, and 55.48% in CHB-M, CHB-S and ACLF patients respectively (P<0.01. The replication capacity of 1846T mutants, level of secreted HBsAg, and transcriptional activity of CP promoter were increased by 320%, 28% and 85% respectively, compared with 1846A wild-type strains. While the more common double mutation A1762T/G1764A in CP region was increased by 67%, 9% and 72% respectively, compared with its counterpart wild-type strains. A1846T had a greater influence on viral replication capacity in vitro. Conclusions A1846T mutation could significantly increase the

  11. Convection Destroys the Core/Mantle Structure in Hybrid C/O/Ne White Dwarfs

    CERN Document Server

    Brooks, Jared; Bildsten, Lars; Quataert, Eliot; Paxton, Bill

    2016-01-01

    A hybrid C/O/Ne white dwarf (WD) -- an unburned C/O core surrounded by an O/Ne/Na mantle -- can be formed if the carbon flame is quenched in a super-AGB (SAGB) star or white dwarf merger remnant. We show that this segregated hybrid structure becomes unstable to rapid mixing within 2,000 years of the onset of WD cooling. Carbon burning includes a weak reaction that removes electrons, resulting in a lower electron-to-baryon ratio ($Y_{\\rm e}$) in the regions processed by carbon burning compared to the unburned C/O core, making the O/Ne mantle denser than the C/O core as the WD cools. This is unstable to efficient mixing. We use the results of $\\texttt{MESA}$ models with different size C/O cores to quantify the rate at which the cores mix with the mantle as they cool. In all cases, we find that the WDs undergo significant core/mantle mixing on timescales shorter than the time available to grow the WD to the Chandrasekhar mass ($M_{\\rm Ch}$) by accretion. As a result, hybrid WDs that reach $M_{\\rm Ch}$ due to lat...

  12. Current and historical drivers of landscape genetic structure differ in core and peripheral salamander populations.

    Directory of Open Access Journals (Sweden)

    Rachael Y Dudaniec

    Full Text Available With predicted decreases in genetic diversity and greater genetic differentiation at range peripheries relative to their cores, it can be difficult to distinguish between the roles of current disturbance versus historic processes in shaping contemporary genetic patterns. To address this problem, we test for differences in historic demography and landscape genetic structure of coastal giant salamanders (Dicamptodon tenebrosus in two core regions (Washington State, United States versus the species' northern peripheral region (British Columbia, Canada where the species is listed as threatened. Coalescent-based demographic simulations were consistent with a pattern of post-glacial range expansion, with both ancestral and current estimates of effective population size being much larger within the core region relative to the periphery. However, contrary to predictions of recent human-induced population decline in the less genetically diverse peripheral region, there was no genetic signature of population size change. Effects of current demographic processes on genetic structure were evident using a resistance-based landscape genetics approach. Among core populations, genetic structure was best explained by length of the growing season and isolation by resistance (i.e. a 'flat' landscape, but at the periphery, topography (slope and elevation had the greatest influence on genetic structure. Although reduced genetic variation at the range periphery of D. tenebrosus appears to be largely the result of biogeographical history rather than recent impacts, our analyses suggest that inherent landscape features act to alter dispersal pathways uniquely in different parts of the species' geographic range, with implications for habitat management.

  13. Novel strengthening methods for ultralightweight sandwich structures with periodic lattice cores

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Recent development of ultralightweight lattice-cored sandwiches is reviewed,with focus placed on various novel fabrication methods introduced to strengthen these structures,covering not only research results published in the Science China Series E-Tech Sci,but also those in other domestic and overseas scientific journals.

  14. Simulant-material experimental investigation of flow dynamics in the CRBR Upper-Core Structure

    Energy Technology Data Exchange (ETDEWEB)

    Wilhelm, D.; Starkovich, V.S.; Chapyak, E.J.

    1982-09-01

    The results of a simulant-material experimental investigation of flow dynamics in the Clinch River Breeder Reactor (CRBR) Upper Core Structure are described. The methodology used to design the experimental apparatus and select test conditions is detailed. Numerous comparisons between experimental data and SIMMER-II Code calculations are presented with both advantages and limitations of the SIMMER modeling features identified.

  15. Core level excitations — A fingerprint of structural and electronic properties of epitaxial silicene

    NARCIS (Netherlands)

    Friedlein, R.; Fleurence, A.; Aoyagi, K.; Jong, de M.P.; Van Bui, H.; Wiggers, F.B.; Yoshimoto, S.; Koitaya, T.; Shimizu, S.; Noritake, H.; Mukai, K.; Yoshinobu, J.; Yamada-Takamura, Y.

    2014-01-01

    From the analysis of high-resolution Si 2p photoelectron and near-edge x-ray absorption fine structure (NEXAFS) spectra, we show that core level excitations of epitaxial silicene on ZrB2(0001) thin films are characteristically different from those of sp 3-hybridized silicon. In particular, it is rev

  16. Structure of the protein core of translation initiation factor 2 in apo, GTP-bound and GDP-bound forms

    Energy Technology Data Exchange (ETDEWEB)

    Simonetti, Angelita [IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Centre National de la Recherche Scientifique (CNRS) UMR 7104/Institut National de la Santé de la Recherche Médicale - INSERM U964/Université de Strasbourg, 1 Rue Laurent Fries, 67404 Illkirch (France); Marzi, Stefano [Architecture et Réactivité de l’ARN, UPR 9002 CNRS, IBMC (Institute of Molecular and Cellular Biology), 15 Rue R. Descartes, 67084 Strasbourg, France, Université de Strasbourg, 67000 Strasbourg (France); Fabbretti, Attilio [University of Camerino, 62032 Camerino (Monaco) (Italy); Hazemann, Isabelle; Jenner, Lasse [IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Centre National de la Recherche Scientifique (CNRS) UMR 7104/Institut National de la Santé de la Recherche Médicale -INSERM U964/Université de Strasbourg, 1 Rue Laurent Fries, 67404 Illkirch (France); Urzhumtsev, Alexandre [IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Centre National de la Recherche Scientifique (CNRS) UMR 7104/Institut National de la Santé de la Recherche Médicale - INSERM U964/Université de Strasbourg, 1 Rue Laurent Fries, 67404 Illkirch (France); Université de Lorraine, 54506 Vandoeuvre-lès-Nancy (France); Gualerzi, Claudio O. [University of Camerino, 62032 Camerino (Monaco) (Italy); Klaholz, Bruno P., E-mail: klaholz@igbmc.fr [IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Centre National de la Recherche Scientifique (CNRS) UMR 7104/Institut National de la Santé de la Recherche Médicale - INSERM U964/Université de Strasbourg, 1 Rue Laurent Fries, 67404 Illkirch (France)

    2013-06-01

    The crystal structures of the eubacterial translation initiation factor 2 in apo form and with bound GDP and GTP reveal conformational changes upon nucleotide binding and hydrolysis, notably of the catalytically important histidine in the switch II region. Translation initiation factor 2 (IF2) is involved in the early steps of bacterial protein synthesis. It promotes the stabilization of the initiator tRNA on the 30S initiation complex (IC) and triggers GTP hydrolysis upon ribosomal subunit joining. While the structure of an archaeal homologue (a/eIF5B) is known, there are significant sequence and functional differences in eubacterial IF2, while the trimeric eukaryotic IF2 is completely unrelated. Here, the crystal structure of the apo IF2 protein core from Thermus thermophilus has been determined by MAD phasing and the structures of GTP and GDP complexes were also obtained. The IF2–GTP complex was trapped by soaking with GTP in the cryoprotectant. The structures revealed conformational changes of the protein upon nucleotide binding, in particular in the P-loop region, which extend to the functionally relevant switch II region. The latter carries a catalytically important and conserved histidine residue which is observed in different conformations in the GTP and GDP complexes. Overall, this work provides the first crystal structure of a eubacterial IF2 and suggests that activation of GTP hydrolysis may occur by a conformational repositioning of the histidine residue.

  17. Structure and Cellular Roles of the RMI Core Complex from the Bloom Syndrome Dissolvasome

    Energy Technology Data Exchange (ETDEWEB)

    Hoadley, Kelly A.; Xu, Dongyi; Xue, Yutong; Satyshur, Kenneth A.; Wang, Weidong; Keck, James L. (NIH); (UW-MED)

    2010-11-11

    BLM, the protein product of the gene mutated in Bloom syndrome, is one of five human RecQ helicases. It functions to separate double Holliday junction DNA without genetic exchange as a component of the dissolvasome, which also includes topoisomerase III{alpha} and the RMI (RecQ-mediated genome instability) subcomplex (RMI1 and RMI2). We describe the crystal structure of the RMI core complex, comprising RMI2 and the C-terminal OB domain of RMI1. The overall RMI core structure strongly resembles two-thirds of the trimerization core of the eukaryotic single-stranded DNA-binding protein, Replication Protein A. Immunoprecipitation experiments with RMI2 variants confirm key interactions that stabilize the RMI core interface. Disruption of this interface leads to a dramatic increase in cellular sister chromatid exchange events similar to that seen in BLM-deficient cells. The RMI core interface is therefore crucial for BLM dissolvasome assembly and may have additional cellular roles as a docking hub for other proteins.

  18. Structure and cellular roles of the RMI core complex from the bloom syndrome dissolvasome.

    Science.gov (United States)

    Hoadley, Kelly A; Xu, Dongyi; Xue, Yutong; Satyshur, Kenneth A; Wang, Weidong; Keck, James L

    2010-09-08

    BLM, the protein product of the gene mutated in Bloom syndrome, is one of five human RecQ helicases. It functions to separate double Holliday junction DNA without genetic exchange as a component of the "dissolvasome," which also includes topoisomerase IIIα and the RMI (RecQ-mediated genome instability) subcomplex (RMI1 and RMI2). We describe the crystal structure of the RMI core complex, comprising RMI2 and the C-terminal OB domain of RMI1. The overall RMI core structure strongly resembles two-thirds of the trimerization core of the eukaryotic single-stranded DNA-binding protein, Replication Protein A. Immunoprecipitation experiments with RMI2 variants confirm key interactions that stabilize the RMI core interface. Disruption of this interface leads to a dramatic increase in cellular sister chromatid exchange events similar to that seen in BLM-deficient cells. The RMI core interface is therefore crucial for BLM dissolvasome assembly and may have additional cellular roles as a docking hub for other proteins.

  19. Structural characterization of Pt-Pd core-shell nanoparticles by Cs-corrected STEM

    Energy Technology Data Exchange (ETDEWEB)

    Esparza, R., E-mail: resparza@fata.unam.mx [Universidad Nacional Autonoma de Mexico, Centro de Fisica Aplicada y Tecnologia Avanzada (Mexico); Garcia-Ruiz, Amado F. [UPIICSA-COFAA, Instituto Politecnico Nacional (Mexico); Velazquez Salazar, J. J. [University of Texas at San Antonio, Department of Physics and Astronomy (United States); Perez, R. [Universidad Nacional Autonoma de Mexico, Centro de Fisica Aplicada y Tecnologia Avanzada (Mexico); Jose-Yacaman, M. [The University of Texas at San Antonio, Department of Physics and Astronomy (United States)

    2013-01-15

    Pt-Pd core-shell nanoparticles were synthesized using a modified polyol method. A thermal method under refluxing, carrying on the reaction up to 285 Degree-Sign C, has been performed to reduce metallic salts using ethylene glycol as reducer and poly(N-vinyl-2-pyrrolidone) as protective reagent of the formed bimetallic nanoparticles. According to other works, this type of structure has been studied and utilized to successfully increase the catalytic properties of monometallic nanoparticles Pt or Pd. Core-shell bimetallic nanoparticles were structurally characterized using aberration-corrected scanning transmission electron microscopy (Cs-STEM) equipped with a high-angle annular dark field detector, energy-dispersive X-ray spectrometry (EDS), and electron energy-loss spectroscopy (EELS). The high-resolution elemental line scan and mappings were carried out using a combination of STEM-EDS and STEM-EELS. The obtained results show the growth of the Pd shell on the Pt core with polyhedral morphology. The average size of the bimetallic nanoparticles was 13.5 nm and the average size of the core was 8.5 nm; consequently, the thickness of the shell was around 2.5 nm. The growth of the Pd shell on the Pt core is layer by layer, suggesting a Frank-van der Merwe growth mechanism.

  20. Structure and genome organization of AFV2, a novel archaeal lipothrixvirus with unusual terminal and core structures

    DEFF Research Database (Denmark)

    Häring, Monika; Vestergaard, Gisle Alberg; Brügger, Kim;

    2005-01-01

    A novel filamentous virus, AFV2, from the hyperthermophilic archaeal genus Acidianus shows structural similarity to lipothrixviruses but differs from them in its unusual terminal and core structures. The double-stranded DNA genome contains 31,787 bp and carries eight open reading frames homologou...... to those of other lipothrixviruses, a single tRNA(Lys) gene containing a 12-bp archaeal intron, and a 1,008-bp repeat-rich region near the center of the genome....

  1. Synthesis and properties MFe2O4 (M = Fe, Co) nanoparticles and core-shell structures

    Science.gov (United States)

    Yelenich, O. V.; Solopan, S. O.; Greneche, J. M.; Belous, A. G.

    2015-08-01

    Individual Fe3-xO4 and CoFe2O4 nanoparticles, as well as Fe3-xO4/CoFe2O4 core/shell structures were synthesized by the method of co-precipitation from diethylene glycol solutions. Core/shell structure were synthesized with CoFe2O4-shell thickness of 1.0, 2.5 and 3.5 nm. X-ray diffraction patterns of individual nanoparticles and core/shell are similar and indicate that all synthesized samples have a cubic spinel structure. Compares Mössbauer studies of CoFe2O4, Fe3-xO4 nanoparticles indicate superparamagnetic properties at 300 K. It was shown that individual magnetite nanoparticles are transformed into maghemite through oxidation during the synthesis procedure, wherein the smallest nanoparticles are completely oxidized while a magnetite core does occur in the case of the largest nanoparticles. The Mössbauer spectra of core/shell nanoparticles with increasing CoFe2O4-shell thickness show a gradual decrease in the relative intensity of the quadrupole doublet and significant decrease of the mean isomer shift value at both RT and 77 K indicating a decrease of the superparamagnetic relaxation phenomena. Specific loss power for the prepared ferrofluids was experimentally calculated and it was determined that under influence of ac-magnetic field magnetic fluid based on individual CoFe2O4 and Fe3-xO4 particles are characterized by very low heating temperature, when magnetic fluids based on core/shell nanoparticles demonstrate higher heating effect.

  2. Re-refinement of the spliceosomal U4 snRNP core-domain structure.

    Science.gov (United States)

    Li, Jade; Leung, Adelaine K; Kondo, Yasushi; Oubridge, Chris; Nagai, Kiyoshi

    2016-01-01

    The core domain of small nuclear ribonucleoprotein (snRNP), comprised of a ring of seven paralogous proteins bound around a single-stranded RNA sequence, functions as the assembly nucleus in the maturation of U1, U2, U4 and U5 spliceosomal snRNPs. The structure of the human U4 snRNP core domain was initially solved at 3.6 Å resolution by experimental phasing using data with tetartohedral twinning. Molecular replacement from this model followed by density modification using untwinned data recently led to a structure of the minimal U1 snRNP at 3.3 Å resolution. With the latter structure providing a search model for molecular replacement, the U4 core-domain structure has now been re-refined. The U4 Sm site-sequence AAUUUUU has been shown to bind to the seven Sm proteins SmF-SmE-SmG-SmD3-SmB-SmD1-SmD2 in an identical manner as the U1 Sm-site sequence AAUUUGU, except in SmD1 where the bound U replaces G. The progression from the initial to the re-refined structure exemplifies a tortuous route to accuracy: where well diffracting crystals of complex assemblies are initially unavailable, the early model errors are rectified by exploiting preliminary interpretations in further experiments involving homologous structures. New insights are obtained from the more accurate model.

  3. Thermal Stability of Co-Pt and Co-Au Core-Shell Structured Nanoparticles: Insights from Molecular Dynamics Simulations.

    Science.gov (United States)

    Wen, Yu-Hua; Huang, Rao; Shao, Gui-Fang; Sun, Shi-Gang

    2017-09-07

    Co-Pt and Co-Au core-shell nanoparticles were heated by molecular dynamics simulations to investigate their thermal stability. Two core structures, that is, hcp Co and fcc Co, have been addressed. The results demonstrate that the hcp-fcc phase transition happens in the hcp-Co-core/fcc-Pt-shell nanoparticle, while it is absent in the hcp-Co-core/fcc-Au-shell one. The stacking faults appear in both Pt and Au shells despite different structures of the Co core. The Co core and Pt shell concurrently melt and present an identical melting point in both Co-Pt core-shell nanoparticles. However, typical two-stage melting occurs in both Co-Au core-shell nanoparticles. Furthermore, the Au shell in the hcp-Co-core/fcc-Au-shell nanoparticle exhibits a lower melting point than that in the fcc-Co-core/fcc-Au-shell one, while the melting points are closely equal for both hcp and fcc Co cores. All of these observations suggest that their thermal stability strongly depends on the structure of the core and the element of the shell.

  4. EXTENDED CORE STRUCTURE OF DISSOCIATED EDGE DISLOCATIONS IN FCC CRYSTALS WITH CONSIDERATION OF DISCRETENESS

    Institute of Scientific and Technical Information of China (English)

    Xiaozhi Wu; Shaofeng Wang; Huili Zhang

    2008-01-01

    The extended core structure of the dissociated edge dislocation in Al,Au,Ag,Cu and Ni is determined within lattice theory of dislocation.The 2D dislocation equation governing the displacements is coupled by the restoring forces that are determined by the parameterization of the generalized stacking fault energies.The Ritz variational method is presented to solve the dislocation equation and the trial solution is constituted by two arctan-type functions with two undetermined parameters.The core widths of partial dislocations are wider than that obtained in generalized Peierls-Nabarro model due to the consideration of discreteness of crystal.

  5. Cycle 0(CY1991) NLS trade studies and analyses report. Book 1: Structures and core vehicle

    Science.gov (United States)

    1992-01-01

    This report (SR-1: Structures, Trades, and Analysis), documents the Core Tankage Trades and analyses performed in support of the National Launch System (NLS) Cycle 0 preliminary design activities. The report covers trades that were conducted on the Vehicle Assembly, Fwd Skirt, LO2 Tank, Intertank, LH2 Tank, and Aft Skirt of the NLS Core Tankage. For each trade study, a two page executive summary and the detail trade study are provided. The trade studies contain study results, recommended changes to the Cycle 0 Baselines, and suggested follow on tasks to be performed during Cycle 1.

  6. Toward core inter-professional health promotion competencies to address the non-communicable diseases and their risk factors through knowledge translation: Curriculum content assessment

    OpenAIRE

    Dean, Elizabeth; Moffat, Marilyn; Skinner, Margot; Dornelas de Andrade, Armele; Myezwa, Hellen; Söderlund, Anne

    2014-01-01

    Background To increase the global impact of health promotion related to non-communicable diseases, health professionals need evidence-based core competencies in health assessment and lifestyle behavior change. Assessment of health promotion curricula by health professional programs is a first step. Such program assessment is a means of 1. demonstrating collective commitment across health professionals to prevent non-communicable diseases; 2. addressing the knowledge translation gap between wh...

  7. Coercivity enhancement in Ce-Fe-B based magnets by core-shell grain structuring

    Directory of Open Access Journals (Sweden)

    M. Ito

    2016-05-01

    Full Text Available Ce-based R2Fe14B (R= rare-earth nano-structured permanent magnets consisting of (Ce,Nd2Fe14B core-shell grains separated by a non-magnetic grain boundary phase, in which the relative amount of Nd to Ce is higher in the shell of the magnetic grain than in its core, were fabricated by Nd-Cu infiltration into (Ce,Nd2Fe14B hot-deformed magnets. The coercivity values of infiltrated core-shell structured magnets are superior to those of as-hot-deformed magnets with the same overall Nd content. This is attributed to the higher value of magnetocrystalline anisotropy of the shell phase in the core-shell structured infiltrated magnets compared to the homogeneous R2Fe14B grains of the as-hot-deformed magnets, and to magnetic isolation of R2Fe14B grains by the infiltrated grain boundary phase. First order reversal curve (FORC diagrams suggest that the higher anisotropy shell suppresses initial magnetization reversal at the edges and corners of the R2Fe14B grains.

  8. The core structure of Mars as expected to be seen by InSight's VBB seismometer

    Science.gov (United States)

    Hempel, Stefanie; Garcia, Raphael; Wieczorek, Mark; Murdoch, Naomi

    2016-04-01

    The question of the Martian core concerns our basic understanding of the planet's thermal evolution, dynamo models for the past and present, the composition of the Martian mantle, especially in regards to its iron content and prevalent phase transitions, which in turn constrain possible regimes of mantle convection. So far the (outer) core radius of Mars is uncertain to about 250 kilometers (Sohl et al., 2005), and evidence neither supports nor falsifies the existence of an inner core (Defraigne et al., 2003). We apply our extensions of the ray tracing toolbox TauP (Crotwell et al., 1999) to compute amplitude loss, ellipticity, crustal and topography corrections in combination with existing models of seismic activity on Mars (Golombek, 1992, Knapmeyer et al., 2006), crustal thickness models (Wieczorek, 2007) and structure models (e.g. Okal and Anderson, 1978, Zharkov and Gudkova, 2000, Rivoldini et al., 2011). In preparation for NASA's discovery mission InSight, we simulate the detected relative travel-time curves at a single seismic station in Elysium Planitia for several models of Martian structure, seismicity, environmental and instrumental noise. We discuss possibilities and difficulties of considering the effects of Martian ellipticity and topography up to degree 8 and 30, respectively. Furthermore, we demonstrate the effect of low velocity layers, as well as the relevance of modeling the effects of ellipticity and crustal thickness during the interpretation of seismic data acquired by InSight's SEIS instrument on Mars, especially concerning seismic phases which provide direct evidence on the core structure of Mars.

  9. Molecular dynamics study of crater formation by core-shell structured cluster impact

    Science.gov (United States)

    Aoki, Takaaki; Seki, Toshio; Matsuo, Jiro

    2012-07-01

    Crater formation processes by the impacts of large clusters with binary atomic species were studied using molecular dynamics (MD) simulations. Argon and xenon atoms are artificially organized in core-shell cluster structures with various component ratios and irradiated on a Si(1 0 0) target surface. When the cluster has Xe1000 core covered with 1000 Ar atoms, and impacts at a total of 20 keV, the core Xe cluster penetrates into the deep area, and a crater with a conical shape is left on the target. On the other hand, in the case of a cluster with the opposite structure, Ar1000 core covered with 1000 Xe atoms, the cluster stops at a shallow area of the target. The incident cluster atoms are mixed and tend to spread in a lateral direction, which results in a square shaped crater with a shallower hole and wider opening. The MD simulations suggest that large cluster impacts cause different irradiation effects by changing the structure, even if the component ratio is the same.

  10. The Structure and Evolution of Magnetized Cloud Cores in a Zero--Density Background

    CERN Document Server

    Curry, C L; Curry, Charles L.; Stahler, Steven W.

    2001-01-01

    Molecular-line observations of star-forming cloud cores indicate that they are not the flattened structures traditionally considered by theory. Rather, they are elongated, perhaps in the direction of their internal magnetic field. We are thus motivated to consider the structure and evolution of axisymmetric, magnetized clouds that start from a variety of initial states, both flattened (oblate) and elongated (prolate). We devise a new technique, dubbed the $q$-method, that allows us to construct magnetostatic equilibria of any specified shape. We find, in agreement with previous authors, that the field lines in oblate clouds bend inward. However, those in prolate clouds bow outward, confining the structures through magnetic tension. We next follow the quasi-static evolution of these clouds via ambipolar diffusion, under the assumption of constant core mass. An oblate cloud either relaxes to a magnetically force-free sphere or, if sufficiently massive, flattens along its polar axis as its central density runs a...

  11. Orientation of aromatic residues in amyloid cores: Structural insights into prion fiber diversity

    KAUST Repository

    Reymer, Anna

    2014-11-17

    Structural conversion of one given protein sequence into different amyloid states, resulting in distinct phenotypes, is one of the most intriguing phenomena of protein biology. Despite great efforts the structural origin of prion diversity remains elusive, mainly because amyloids are insoluble yet noncrystalline and therefore not easily amenable to traditional structural-biology methods. We investigate two different phenotypic prion strains, weak and strong, of yeast translation termination factor Sup35 with respect to angular orientation of tyrosines using polarized light spectroscopy. By applying a combination of alignment methods the degree of fiber orientation can be assessed, which allows a relatively accurate determination of the aromatic ring angles. Surprisingly, the strains show identical average orientations of the tyrosines, which are evenly spread through the amyloid core. Small variations between the two strains are related to the local environment of a fraction of tyrosines outside the core, potentially reflecting differences in fibril packing.

  12. Systematic mining of analog series with related core structures in multi-target activity space.

    Science.gov (United States)

    Gupta-Ostermann, Disha; Hu, Ye; Bajorath, Jürgen

    2013-08-01

    We have aimed to systematically extract analog series with related core structures from multi-target activity space to explore target promiscuity of closely related analogous. Therefore, a previously introduced SAR matrix structure was adapted and further extended for large-scale data mining. These matrices organize analog series with related yet distinct core structures in a consistent manner. High-confidence compound activity data yielded more than 2,300 non-redundant matrices capturing 5,821 analog series that included 4,288 series with multi-target and 735 series with multi-family activities. Many matrices captured more than three analog series with activity against more than five targets. The matrices revealed a variety of promiscuity patterns. Compound series matrices also contain virtual compounds, which provide suggestions for compound design focusing on desired activity profiles.

  13. Raman spectroscopic characterization of the core-rim structure in reaction bonded boron carbide ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Jannotti, Phillip; Subhash, Ghatu, E-mail: subhash@ufl.edu [Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida 32611 (United States); Zheng, James Q.; Halls, Virginia [Program Executive Office—Soldier Protection and Individual Equipment, US Army, Fort Belvoir, Virginia 22060 (United States); Karandikar, Prashant G.; Salamone, S.; Aghajanian, Michael K. [M-Cubed Technologies, Inc., Newark, Delaware 19711 (United States)

    2015-01-26

    Raman spectroscopy was used to characterize the microstructure of reaction bonded boron carbide ceramics. Compositional and structural gradation in the silicon-doped boron carbide phase (rim), which develops around the parent boron carbide region (core) due to the reaction between silicon and boron carbide, was evaluated using changes in Raman peak position and intensity. Peak shifting and intensity variation from the core to the rim region was attributed to changes in the boron carbide crystal structure based on experimental Raman observations and ab initio calculations reported in literature. The results were consistent with compositional analysis determined by energy dispersive spectroscopy. The Raman analysis revealed the substitution of silicon atoms first into the linear 3-atom chain, and then into icosahedral units of the boron carbide structure. Thus, micro-Raman spectroscopy provided a non-destructive means of identifying the preferential positions of Si atoms in the boron carbide lattice.

  14. Synthesis and Surface Properties of Silica Spheres with Core Shell Structure by One Convenient Method

    Directory of Open Access Journals (Sweden)

    D. P. Das

    2009-01-01

    Full Text Available Earlier, we have published a paper on the preparation of silica sphere using propanol as cosurfactant. We report here a highly cost-effective method of preparation of mesoporous silica spheres with core shell structure using sodium silicate as silica precursor, cetyltrimethyl ammonium bromide (CTAB as surfactant, and methanol as cosurfactant. Thus after removal of the template by dissolutions or/and activation at higher temperature, mesoporous silica spheres with core shell structure were obtained. The products prepared with methanol to CTAB molar ratio 8.5 : 1 were confirmed to give best results. All the spherical products have very large surface area (∼589–1044 m2/g, pore volume (∼0.98–1.41 cm3/g, and ordered pore structure.

  15. Interactive diversity promotes the evolution of cooperation in structured populations

    Science.gov (United States)

    Su, Qi; Li, Aming; Zhou, Lei; Wang, Long

    2016-10-01

    Evolutionary games on networks traditionally assume that each individual adopts an identical strategy to interact with all its neighbors in each generation. Considering the prevalent diversity of individual interactions in the real society, here we propose the concept of interactive diversity, which allows individuals to adopt different strategies against different neighbors in each generation. We investigate the evolution of cooperation based on the edge dynamics rather than the traditional nodal dynamics in networked systems. The results show that, without invoking any other mechanisms, interactive diversity drives the frequency of cooperation to a high level for a wide range of parameters in both well-mixed and structured populations. Even in highly connected populations, cooperation still thrives. When interactive diversity and large topological heterogeneity are combined together, however, in the relaxed social dilemma, cooperation level is lower than that with just one of them, implying that the combination of many promotive factors may make a worse outcome. By an analytical approximation, we get the condition under which interactive diversity provides more advantages for cooperation than traditional evolutionary dynamics does. Numerical simulations validating the approximation are also presented. Our work provides a new line to explore the latent relation between the ubiquitous cooperation and individuals’ distinct responses in different interactions. The presented results suggest that interactive diversity should receive more attention in pursuing mechanisms fostering cooperation.

  16. Upper-ocean velocity structure of Gulf Stream warm-core ring 82B

    Science.gov (United States)

    Joyce, T. M.; Kennelly, M. A.

    1985-01-01

    Acoustic-Doppler current profiling of warm-core ring (WCR) 82B revealed changes in the velocity structure over much of the ring's 7-month lifespan. As ring diameter decreased, peak speeds in the high-velocity region decreased from 0.8 m/s in April 1982 to 0.5 m/s in August 1982. Azimuthally averaged velocities revealed the core of WCR 82B to be in near solid-body rotation, with little measurable horizontal divergence at 100 m. In addition, potential vorticity was conserved in the ring core despite interactions with the Gulf Stream and large changes in ring size. Deviations from symmetry in WCR 82B were caused by superposition with the shelf-slope front, small cyclonic eddies, and upper-layer mean flow.

  17. The stability and catalytic activity of W13@Pt42 core-shell structure

    Science.gov (United States)

    Huo, Jin-Rong; Wang, Xiao-Xu; Li, Lu; Cheng, Hai-Xia; Su, Yan-Jing; Qian, Ping

    2016-10-01

    This paper reports a study of the electronic properties, structural stability and catalytic activity of the W13@Pt42 core-shell structure using the First-principles calculations. The degree of corrosion of W13@Pt42 core-shell structure is simulated in acid solutions and through molecular absorption. The absorption energy of OH for this structure is lower than that for Pt55, which inhibits the poison effect of O containing intermediate. Furthermore we present the optimal path of oxygen reduction reaction catalyzed by W13@Pt42. Corresponding to the process of O molecular decomposition, the rate-limiting step of oxygen reduction reaction catalyzed by W13@Pt42 is 0.386 eV, which is lower than that for Pt55 of 0.5 eV. In addition by alloying with W, the core-shell structure reduces the consumption of Pt and enhances the catalytic efficiency, so W13@Pt42 has a promising perspective of industrial application.

  18. The stability and catalytic activity of W13@Pt42 core-shell structure

    Science.gov (United States)

    Huo, Jin-Rong; Wang, Xiao-Xu; Li, Lu; Cheng, Hai-Xia; Su, Yan-Jing; Qian, Ping

    2016-01-01

    This paper reports a study of the electronic properties, structural stability and catalytic activity of the W13@Pt42 core-shell structure using the First-principles calculations. The degree of corrosion of W13@Pt42 core-shell structure is simulated in acid solutions and through molecular absorption. The absorption energy of OH for this structure is lower than that for Pt55, which inhibits the poison effect of O containing intermediate. Furthermore we present the optimal path of oxygen reduction reaction catalyzed by W13@Pt42. Corresponding to the process of O molecular decomposition, the rate-limiting step of oxygen reduction reaction catalyzed by W13@Pt42 is 0.386 eV, which is lower than that for Pt55 of 0.5 eV. In addition by alloying with W, the core-shell structure reduces the consumption of Pt and enhances the catalytic efficiency, so W13@Pt42 has a promising perspective of industrial application. PMID:27759038

  19. The stability and catalytic activity of W13@Pt42 core-shell structure.

    Science.gov (United States)

    Huo, Jin-Rong; Wang, Xiao-Xu; Li, Lu; Cheng, Hai-Xia; Su, Yan-Jing; Qian, Ping

    2016-10-19

    This paper reports a study of the electronic properties, structural stability and catalytic activity of the W13@Pt42 core-shell structure using the First-principles calculations. The degree of corrosion of W13@Pt42 core-shell structure is simulated in acid solutions and through molecular absorption. The absorption energy of OH for this structure is lower than that for Pt55, which inhibits the poison effect of O containing intermediate. Furthermore we present the optimal path of oxygen reduction reaction catalyzed by W13@Pt42. Corresponding to the process of O molecular decomposition, the rate-limiting step of oxygen reduction reaction catalyzed by W13@Pt42 is 0.386 eV, which is lower than that for Pt55 of 0.5 eV. In addition by alloying with W, the core-shell structure reduces the consumption of Pt and enhances the catalytic efficiency, so W13@Pt42 has a promising perspective of industrial application.

  20. THE DEPENDENCE OF PRESTELLAR CORE MASS DISTRIBUTIONS ON THE STRUCTURE OF THE PARENTAL CLOUD

    Energy Technology Data Exchange (ETDEWEB)

    Parravano, Antonio [Centro De Fisica Fundamental, Universidad de Los Andes, Merida (Venezuela, Bolivarian Republic of); Sanchez, Nestor [S. D. Astronomia y Geodesia, Fac. CC. Matematicas, Universidad Complutense de Madrid (Spain); Alfaro, Emilio J. [Instituto de Astrofisica de Andalucia (CSIC), Granada (Spain)

    2012-08-01

    The mass distribution of prestellar cores is obtained for clouds with arbitrary internal mass distributions using a selection criterion based on the thermal and turbulent Jeans mass and applied hierarchically from small to large scales. We have checked this methodology by comparing our results for a log-normal density probability distribution function with the theoretical core mass function (CMF) derived by Hennebelle and Chabrier, namely a power law at large scales and a log-normal cutoff at low scales, but our method can be applied to any mass distributions representing a star-forming cloud. This methodology enables us to connect the parental cloud structure with the mass distribution of the cores and their spatial distribution, providing an efficient tool for investigating the physical properties of the molecular clouds that give rise to the prestellar core distributions observed. Simulated fractional Brownian motion (fBm) clouds with the Hurst exponent close to the value H = 1/3 give the best agreement with the theoretical CMF derived by Hennebelle and Chabrier and Chabrier's system initial mass function. Likewise, the spatial distribution of the cores derived from our methodology shows a surface density of companions compatible with those observed in Trapezium and Ophiucus star-forming regions. This method also allows us to analyze the properties of the mass distribution of cores for different realizations. We found that the variations in the number of cores formed in different realizations of fBm clouds (with the same Hurst exponent) are much larger than the expected root N statistical fluctuations, increasing with H.

  1. Weibull analysis and flexural strength of hot-pressed core and veneered ceramic structures.

    Science.gov (United States)

    Bona, Alvaro Della; Anusavice, Kenneth J; DeHoff, Paul H

    2003-11-01

    To test the hypothesis that the Weibull moduli of single- and multilayer ceramics are controlled primarily by the structural reliability of the core ceramic.Methods. Seven groups of 20 bar specimens (25 x 4 x 1.2 mm) were made from the following materials: (1) IPS Empress--a hot-pressed (HP) leucite-based core ceramic; (2) IPS Empress2--a HP lithia-based core ceramic; (3 and 7) Evision--a HP lithia-based core ceramic (ES); (4) IPS Empress2 body--a glass veneer; (5) ES (1.1 mm thick) plus a glaze layer (0.1 mm); and (6) ES (0.8 mm thick) plus veneer (0.3 mm) and glaze (0.1 mm). Each specimen was subjected to four-point flexure loading at a cross-head speed of 0.5 mm/min while immersed in distilled water at 37 degrees C, except for Group 7 that was tested in a dry environment. Failure loads were recorded and the fracture surfaces were examined using SEM. ANOVA and Duncan's multiple range test were used for statistical analysis. No significant differences were found between the mean flexural strength values of Groups 2, 3, 5, and 6 or between Groups 1 and 4 (p>0.05). However, significant differences were found for dry (Group 7) and wet (Groups 1-6) conditions. Glazing had no significant effect on the flexural strength or Weibull modulus. The strength and Weibull modulus of the ES ceramic were similar to those of Groups 5 and 6. The structural reliability of veneered core ceramic is controlled primarily by that of the core ceramic.

  2. A core competency-based objective structured clinical examination (OSCE) can predict future resident performance.

    Science.gov (United States)

    Wallenstein, Joshua; Heron, Sheryl; Santen, Sally; Shayne, Philip; Ander, Douglas

    2010-10-01

    This study evaluated the ability of an objective structured clinical examination (OSCE) administered in the first month of residency to predict future resident performance in the Accreditation Council for Graduate Medical Education (ACGME) core competencies. Eighteen Postgraduate Year 1 (PGY-1) residents completed a five-station OSCE in the first month of postgraduate training. Performance was graded in each of the ACGME core competencies. At the end of 18 months of training, faculty evaluations of resident performance in the emergency department (ED) were used to calculate a cumulative clinical evaluation score for each core competency. The correlations between OSCE scores and clinical evaluation scores at 18 months were assessed on an overall level and in each core competency. There was a statistically significant correlation between overall OSCE scores and overall clinical evaluation scores (R = 0.48, p competencies of patient care (R = 0.49, p competencies. An early-residency OSCE has the ability to predict future postgraduate performance on a global level and in specific core competencies. Used appropriately, such information can be a valuable tool for program directors in monitoring residents' progress and providing more tailored guidance. © 2010 by the Society for Academic Emergency Medicine.

  3. Detectability of temporal changes in fine structures near the inner core boundary beneath the eastern hemisphere

    Science.gov (United States)

    Yu, Wen-che

    2016-04-01

    The inner core boundary (ICB), where melting and solidification of the core occur, plays a crucial role in the dynamics of the Earth's interior. To probe temporal changes near the ICB beneath the eastern hemisphere, I analyze differential times of PKiKP (dt(PKiKP)), double differential times of PKiKP-PKPdf, and PKiKP coda waves from repeating earthquakes in the Southwest Pacific subduction zones. Most PKiKP differential times are within ±30 ms, comparable to inherent travel time uncertainties due to inter-event separations, and suggest no systematic changes as a function of calendar time. Double differential times measured between PKiKP codas and PKiKP main phases show promising temporal changes, with absolute values of time shifts of >50 ms for some observations. However, there are discrepancies among results from different seismographs in the same calendar time window. Negligible changes in PKiKP times, combined with changes in PKiKP coda wave times on 5 year timescales, favor a smooth inner core boundary with fine-scale structures present in the upper inner core. Differential times of PKiKP can be interpreted in the context of either melting based on translational convection, or growth based on thermochemical mantle-inner core coupling. Small dt(PKiKP) values with inherent uncertainties do not have sufficient resolution to distinguish the resultant longitudinal (melting) and latitudinal (growth) dependencies predicted on the basis of the two models on 5 year timescales.

  4. Preoperative Assessment of TERT Promoter Mutation on Thyroid Core Needle Biopsies Supports Diagnosis of Malignancy and Addresses Surgical Strategy.

    Science.gov (United States)

    Crescenzi, A; Trimboli, P; Modica, D C; Taffon, C; Guidobaldi, L; Taccogna, S; Rainer, A; Trombetta, M; Papini, E; Zelano, G

    2016-03-01

    In the last decade, several molecular markers have been proposed to improve the diagnosis of thyroid nodules. Among these, mutations in the telomerase reverse transcriptase (TERT) promoter have been correlated to malignant tumors, characterized by highest recurrence and decreased patients' survival. This suggests an important role of TERT mutational analysis in the clinical diagnosis and management of thyroid cancer patients. The aim of the study was to demonstrate the adequacy of core needle biopsy (CNB) for the preoperative assessment of TERT mutational status, to reach a more accurate definition of malignancy and a more appropriate surgical planning. Indeed, CNB is gaining momentum for improving diagnosis of thyroid nodules deemed inconclusive by fine needle aspirate (FNA). The study included 50 patients submitted to CNB due to inconclusive FNA report. TERT mutational status was correlated with BRAF mutation, definitive histology, and post-operative TNM staging of the neoplasia. C228T mutation of the TERT promoter was reported in 10% of the papillary carcinomas (PTC) series. When compared with final histology, all cases harboring TERT mutation resulted as locally invasive PTCs. The prevalence of TERT mutated cases was 17.6% among locally advanced PTCs. TERT analysis on CNB allows the assessment of the pathological population on paraffin sections before DNA isolation, minimizing the risk of false negatives due to poor sampling that affects FNA, and gathering aggregate information about morphology and TERT mutational status. Data indicating a worse outcome of the tumor might be used to individualize treatment decision, surgical option, and follow-up design. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Amorphous Silicon Solar cells with a Core-Shell Nanograting Structure

    CERN Document Server

    Yang, L; Okuno, Y; He, S

    2011-01-01

    We systematically investigate the optical behaviors of an amorphous silicon solar cell based on a core-shell nanograting structure. The horizontally propagating Bloch waves and Surface Plasmon Polariton (SPP) waves lead to significant absorption enhancements and consequently short-circuit current enhancements of this structure, compared with the conventional planar one. The perpendicular carrier collection makes this structure optically thick and electronically thin. An optimal design is achieved through full-field numerical simulation, and physical explanation is given. Our numerical results show that this configuration has ultrabroadband, omnidirectional and polarization-insensitive responses, and has a great potential in photovoltaics.

  6. Fragmentation of massive dense cores down to ~1000 AU: Relation between fragmentation and density structure

    CERN Document Server

    Palau, Aina; Girart, J M; Fuente, A; Fontani, F; Commercon, B; Busquet, G; Bontemps, S; Sanchez-Monge, A; Zapata, L A; Zhang, Q; Hennebelle, P; Di Francesco, J

    2014-01-01

    In order to shed light on the main physical processes controlling fragmentation of massive dense cores, we present a uniform study of the density structure of 19 massive dense cores, selected to be at similar evolutionary stages, for which their relative fragmentation level was assessed in a previous work. We inferred the density structure of the 19 cores through a simultaneous fit of the radial intensity profiles at 450 and 850 micron (or 1.2 mm in two cases) and the Spectral Energy Distribution, assuming spherical symmetry and that the density and temperature of the cores decrease with radius following power-laws. We find a weak (inverse) trend of fragmentation level and density power-law index, with steeper density profiles tending to show lower fragmentation, and vice versa. In addition, we find a trend of fragmentation increasing with density within a given radius, which arises from a combination of flat density profile and high central density and is consistent with Jeans fragmentation. We considered th...

  7. Core/shell structured iron/iron-oxide nanoparticles as excellent MRI contrast enhancement agents

    Energy Technology Data Exchange (ETDEWEB)

    Khurshid, Hafsa, E-mail: hkhurshi@udel.edu [Department of Physics and Astronomy, University of Delaware, 217 sharp lab, Newark, DE 19716 (United States); Hadjipanayis, Costas G. [Department of Neurological Surgery, Emory University School of Medicine Atlanta, GA 30322 (United States); Chen, Hongwei [Department of Radiology, Emory University School of Medicine Atlanta, GA 30322 (United States); Li, Wanfeng [Department of Physics and Astronomy, University of Delaware, 217 sharp lab, Newark, DE 19716 (United States); Mao, Hui [Department of Radiology, Emory University School of Medicine Atlanta, GA 30322 (United States); Machaidze, Revaz [Department of Neurological Surgery, Emory University School of Medicine Atlanta, GA 30322 (United States); Tzitzios, Vasilis [Institute of Materials Science, “Demokritos” 15310 Athens (Greece); Hadjipanayis, George C. [Department of Physics and Astronomy, University of Delaware, 217 sharp lab, Newark, DE 19716 (United States)

    2013-04-15

    We report the use of metallic iron-based nanoparticles for magnetic resonance imaging (MRI) applications. Core/shell structured iron-based nanoparticles prepared by thermally decomposing organo-metallic compounds of iron at high temperature in the presence of hydrophobic surfactants were coated and stabilized in the aqueous solvent using the newly developed polysiloxane PEO–b–PγMPS (poly(ethylene oxide)–block–poly (γ methacryloxypropyl trimethyl oxysilane)) diblock copolymers. Particles are well suspended in water and retain their core–shell morphology after coating with the copolymer. In comparison to the conventionally used iron-oxide nanoparticles, core/shell structured iron/iron-oxide nanoparticles offer a much stronger T{sub 2} shortening effect than that of iron-oxide with the same core size due to their better magnetic properties. -- Highlights: ► Core/shell Fe/Fe-oxide nanoparticles were synthesized by organo-metallic synthesis. ► Water dispersibility was obtained by coating particles with a polysiloxane diblock copolymer. ► In comparison to Fe-oxide, Fe/Fe-oxide nanoparticles offer a much stronger T{sub 2} shortening effect.

  8. Structural and magnetic properties of core-shell Au/Fe3O4 nanoparticles

    Science.gov (United States)

    León Félix, L.; Coaquira, J. A. H.; Martínez, M. A. R.; Goya, G. F.; Mantilla, J.; Sousa, M. H.; Valladares, L. De Los Santos; Barnes, C. H. W.; Morais, P. C.

    2017-02-01

    We present a systematic study of core-shell Au/Fe3O4 nanoparticles produced by thermal decomposition under mild conditions. The morphology and crystal structure of the nanoparticles revealed the presence of Au core of d = (6.9 ± 1.0) nm surrounded by Fe3O4 shell with a thickness of ~3.5 nm, epitaxially grown onto the Au core surface. The Au/Fe3O4 core-shell structure was demonstrated by high angle annular dark field scanning transmission electron microscopy analysis. The magnetite shell grown on top of the Au nanoparticle displayed a thermal blocking state at temperatures below TB = 59 K and a relaxed state well above TB. Remarkably, an exchange bias effect was observed when cooling down the samples below room temperature under an external magnetic field. Moreover, the exchange bias field (HEX) started to appear at T~40 K and its value increased by decreasing the temperature. This effect has been assigned to the interaction of spins located in the magnetically disordered regions (in the inner and outer surface of the Fe3O4 shell) and spins located in the ordered region of the Fe3O4 shell.

  9. Synthesis and Microwave Absorption Properties of Core-Shell Structured Co3O4-PANI Nanocomposites

    Directory of Open Access Journals (Sweden)

    Hongyan Xu

    2015-01-01

    Full Text Available The core-shell structured Co3O4-PANI nanocomposites have been successfully prepared using an in situ polymerization method, while the core Co3O4 nanoparticles were synthesized by carbon-assisted method using degreasing cotton as a template. The obtained samples were characterized by XRD, TEM, FTIR, and XPS. The results indicated that the amorphous PANI was well covered on the surface of the spinel Co3O4 and the Co3O4-PANI with core-shell structure was formed with particle size of about 100 nm. The interfacial interaction of the core-shell nanocomposite greatly enhances the microwave absorption properties. The maximum reflection loss of Co3O4-PANI is up to −45.8 dB at 11.7 GHz with a thickness of 2.5 mm and the adsorption bandwidth with the reflection loss below −10 dB reaches 14.1 GHz ranging from 3.9 to 18 GHz when the thickness is between 2 and 5.5 mm. Therefore, the facilely synthesized and low-cost Co3O4-PANI nanocomposite with superior microwave absorption properties can be a promising nanomaterial for high efficient microwave absorption.

  10. CAPS-1 promotes fusion competence of stationary dense-core vesicles in presynaptic terminals of mammalian neurons.

    Science.gov (United States)

    Farina, Margherita; van de Bospoort, Rhea; He, Enqi; Persoon, Claudia M; van Weering, Jan R T; Broeke, Jurjen H; Verhage, Matthijs; Toonen, Ruud F

    2015-02-26

    Neuropeptides released from dense-core vesicles (DCVs) modulate neuronal activity, but the molecules driving DCV secretion in mammalian neurons are largely unknown. We studied the role of calcium-activator protein for secretion (CAPS) proteins in neuronal DCV secretion at single vesicle resolution. Endogenous CAPS-1 co-localized with synaptic markers but was not enriched at every synapse. Deletion of CAPS-1 and CAPS-2 did not affect DCV biogenesis, loading, transport or docking, but DCV secretion was reduced by 70% in CAPS-1/CAPS-2 double null mutant (DKO) neurons and remaining fusion events required prolonged stimulation. CAPS deletion specifically reduced secretion of stationary DCVs. CAPS-1-EYFP expression in DKO neurons restored DCV secretion, but CAPS-1-EYFP and DCVs rarely traveled together. Synaptic localization of CAPS-1-EYFP in DKO neurons was calcium dependent and DCV fusion probability correlated with synaptic CAPS-1-EYFP expression. These data indicate that CAPS-1 promotes fusion competence of immobile (tethered) DCVs in presynaptic terminals and that CAPS-1 localization to DCVs is probably not essential for this role.

  11. Thermodynamic and structural determinants of differential Pdx1 binding to elements from the insulin and IAPP promoters.

    Science.gov (United States)

    Bastidas, Monique; Showalter, Scott A

    2013-09-23

    In adult mammals, the production of insulin and other peptide hormones, such as the islet amyloid polypeptide (IAPP), is limited to β-cells due to tissue-specific expression of a set of transcription factors, the best known of which is pancreatic duodenal homeobox protein 1 (Pdx1). Like many homeodomain transcription factors, Pdx1 binds to a core DNA recognition sequence containing the tetranucleotide 5'-TAAT-3'; its consensus recognition element is 5'-CTCTAAT(T/G)AG-3'. Currently, a complete thermodynamic profile of Pdx1 binding to near-consensus and native promoter sequences has not been established, obscuring the mechanism of target site selection by this critical transcription factor. Strikingly, while Pdx1 responsive elements in the human insulin promoter conform to the pentanucleotide 5'-CTAAT-3' sequence, the Pdx1 responsive elements in the human iapp promoter all contain a substitution to 5'-TTAAT-3'. The crystal structure of Pdx1 bound to the consensus nucleotide sequence does not explain how Pdx1 identifies this natural variation, if it does at all. Here we report a combination of isothermal calorimetric titrations, NMR spectroscopy, and extensive multi-microsecond molecular dynamics calculations of Pdx1 that define its interactions with a panel of natural promoter elements and consensus-derived sequences. Our results show a small preference of Pdx1 for a C base 5' relative to the core TAAT promoter element. Molecular mechanics calculations, corroborated by experimental NMR data, lead to a rational explanation for sequence discrimination at this position. Taken together, our results suggest a molecular mechanism for differential Pdx1 affinity to elements from the insulin and iapp promoter sequences. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Efficient Design and Analysis of Lightweight Reinforced Core Sandwich and PRSEUS Structures

    Science.gov (United States)

    Bednarcyk, Brett A.; Yarrington, Phillip W.; Lucking, Ryan C.; Collier, Craig S.; Ainsworth, James J.; Toubia, Elias A.

    2012-01-01

    Design, analysis, and sizing methods for two novel structural panel concepts have been developed and incorporated into the HyperSizer Structural Sizing Software. Reinforced Core Sandwich (RCS) panels consist of a foam core with reinforcing composite webs connecting composite facesheets. Boeing s Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) panels use a pultruded unidirectional composite rod to provide axial stiffness along with integrated transverse frames and stitching. Both of these structural concepts are ovencured and have shown great promise applications in lightweight structures, but have suffered from the lack of efficient sizing capabilities similar to those that exist for honeycomb sandwich, foam sandwich, hat stiffened, and other, more traditional concepts. Now, with accurate design methods for RCS and PRSEUS panels available in HyperSizer, these concepts can be traded and used in designs as is done with the more traditional structural concepts. The methods developed to enable sizing of RCS and PRSEUS are outlined, as are results showing the validity and utility of the methods. Applications include several large NASA heavy lift launch vehicle structures.

  13. Hypervelocity Impact Performance of Open Cell Foam Core Sandwich Panel Structures

    Science.gov (United States)

    Ryan, Shannon; Christiansen, Eric; Lear, Dana

    2009-01-01

    Metallic foams are a relatively new class of materials with low density and novel physical, mechanical, thermal, electrical and acoustic properties. Although incompletely characterized, they offer comparable mechanical performance to traditional spacecraft structural materials (i.e. honeycomb sandwich panels) without detrimental through-thickness channeling cells. There are two competing types of metallic foams: open cell and closed cell. Open cell foams are considered the more promising technology due to their lower weight and higher degree of homogeneity. Leading micrometeoroid and orbital debris shields (MMOD) incorporate thin plates separated by a void space (i.e. Whipple shield). Inclusion of intermediate fabric layers, or multiple bumper plates have led to significant performance enhancements, yet these shields require additional non-ballistic mass for installation (fasteners, supports, etc.) that can consume up to 35% of the total shield weight [1]. Structural panels, such as open cell foam core sandwich panels, that are also capable of providing sufficient MMOD protection, represent a significant potential for increased efficiency in hypervelocity impact shielding from a systems perspective through a reduction in required non-ballistic mass. In this paper, the results of an extensive impact test program on aluminum foam core sandwich panels are reported. The effect of pore density, and core thickness on shielding performance have been evaluated over impact velocities ranging from 2.2 - 9.3 km/s at various angles. A number of additional tests on alternate sandwich panel configurations of comparable-weight have also been performed, including aluminum honeycomb sandwich panels (see Figure 1), Nomex honeycomb core sandwich panels, and 3D aluminum honeycomb sandwich panels. A total of 70 hypervelocity impact tests are reported, from which an empirical ballistic limit equation (BLE) has been derived. The BLE is in the standard form suitable for implementation in

  14. Promoters of Escherichia coli versus promoter islands: function and structure comparison.

    Directory of Open Access Journals (Sweden)

    Valeriy V Panyukov

    Full Text Available Expression of bacterial genes takes place under the control of RNA polymerase with exchangeable σ-subunits and multiple transcription factors. A typical promoter region contains one or several overlapping promoters. In the latter case promoters have the same or different σ-specificity and are often subjected to different regulatory stimuli. Genes, transcribed from multiple promoters, have on average higher expression levels. However, recently in the genome of Escherichia coli we found 78 regions with an extremely large number of potential transcription start points (promoter islands, PIs. It was shown that all PIs interact with RNA polymerase in vivo and are able to form transcriptionally competent open complexes both in vitro and in vivo but their transcriptional activity measured by oligonucleotide microarrays was very low, if any. Here we confirmed transcriptional defectiveness of PIs by analyzing the 5'-end specific RNA-seq data, but showed their ability to produce short oligos (9-14 bases. This combination of functional properties indicated a deliberate suppression of transcriptional activity within PIs. According to our data this suppression may be due to a specific conformation of the DNA double helix, which provides an ideal platform for interaction with both RNA polymerase and the histone-like nucleoid protein H-NS. The genomic DNA of E.coli contains therefore several dozen sites optimized by evolution for staying in a heterochromatin-like state. Since almost all promoter islands are associated with horizontally acquired genes, we offer them as specific components of bacterial evolution involved in acquisition of foreign genetic material by turning off the expression of toxic or useless aliens or by providing optimal promoter for beneficial genes. The putative molecular mechanism underlying the appearance of promoter islands within recipient genomes is discussed.

  15. Three-dimensional structure of the inner core of rice dwarf virus

    Institute of Scientific and Technical Information of China (English)

    SHAO; Chenghua

    2001-01-01

    [1]Suzuki, N., Sugawara, M., Kusano, T. et al., Immunodetection of rice dwarf phytoreoviral protein in both insect and plant hosts, Virology, 1994, 202: 41.[2]Omura, T., Ishikawa, K., Hirano, H. et al., The outer capid protein of rice dwarf virus is encoded by genome segment S8, J. Gen. Virol., 1989, 70: 2759.[3]Lu, G. Y., Zhou, Z. H., Baker, M. L. et al., Structure of double-shelled rice dwarf virus, J.Virol., 1998, 72: 8541.[4]Reinisch, K. M., Nibert, M. L., Harrison, S. C., Structure of the reovirus core at 3.6 ? resolution, Nature, 2000, 404: 960.[5]Zhang, H., Zhang, J., Yu, X. et al., Visualization of protein-RNA interactions in cytoplasmic polyhedrosis virus, J. Virol., 1999, 73: 1624.[6]Zhou, Z. H., Hardt, S., Wang, B. et al., CTF determination of images of ice-embedded single particles using a graphics inter-face, J. Struct. Biol., 1996, 116: 216.[7]Zhou, Z. H., Chiu, W., Haskell, K. et al., Refinement of herpesvirus B-capsid using parallel supercomputers, Biophys. J., 1998, 74: 576.[8]Zhou, Z. H., He, J., Jakana, J. et al., Assembly of VP26 in HSV-1 inferred from structures of wild-type and recombinant cap-sids, Nature Struct. Biol., 1995, 2: 1026.[9]Grimes, J. M., Burroughs, J. N., Patrice, G. et al., The atomic structure of the bluetongue virus core, Nature, 1998, 395: 470.[10] Lawton, J. A., Estes, M. K., Prasad, B. V. V., Three-dimensional visualization of mRNA release from actively transcribing rotavirus particles, Nat. Struc. Bio., 1997, 4: 118.[11] Ueda, S., Masuta, C., Uyeda, I., Hypothesis on particle structure and assembly of rice dwarf phytoreovirus: interactions among multiple structural proteins, J.Gen.Virol., 1997, 78: 3135.[12] Kano, H., Koizumi, M., Noda, H. et al., Nucleotide sequence of rice dwarf virus(RDV) genome segment S3 coding for 114 K major core protein, Nucleic Acids Res., 1990, 18: 6700.[13] Nakata, M., Fukunaga, K., Suzuki, N., Polypeptide components of rice dwarf virus, Ann

  16. Standard Test Method for Water Absorption of Core Materials for Structural Sandwich Constructions

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2001-01-01

    1.1 This test method covers the determination of the relative amount of water absorption by various types of structural core materials when immersed or in a high relative humidity environment. This test method is intended to apply to only structural core materials; honeycomb, foam, and balsa wood. 1.2 The values stated in SI units are to be regarded as the standard. The inch-pound units given may be approximate. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  17. Structure of RCC1 chromatin factor bound to the nucleosome core particle

    Energy Technology Data Exchange (ETDEWEB)

    Makde, Ravindra D.; England, Joseph R.; Yennawar, Hemant P.; Tan, Song (Penn)

    2010-11-11

    The small GTPase Ran enzyme regulates critical eukaryotic cellular functions including nuclear transport and mitosis through the creation of a RanGTP gradient around the chromosomes. This concentration gradient is created by the chromatin-bound RCC1 (regulator of chromosome condensation) protein, which recruits Ran to nucleosomes and activates Ran's nucleotide exchange activity. Although RCC1 has been shown to bind directly with the nucleosome, the molecular details of this interaction were not known. Here we determine the crystal structure of a complex of Drosophila RCC1 and the nucleosome core particle at 2.9 {angstrom} resolution, providing an atomic view of how a chromatin protein interacts with the histone and DNA components of the nucleosome. Our structure also suggests that the Widom 601 DNA positioning sequence present in the nucleosomes forms a 145-base-pair nucleosome core particle, not the expected canonical 147-base-pair particle.

  18. Cryo-EM Structure of the TOM Core Complex from Neurospora crassa.

    Science.gov (United States)

    Bausewein, Thomas; Mills, Deryck J; Langer, Julian D; Nitschke, Beate; Nussberger, Stephan; Kühlbrandt, Werner

    2017-08-10

    The TOM complex is the main entry gate for protein precursors from the cytosol into mitochondria. We have determined the structure of the TOM core complex by cryoelectron microscopy (cryo-EM). The complex is a 148 kDa symmetrical dimer of ten membrane protein subunits that create a shallow funnel on the cytoplasmic membrane surface. In the core of the dimer, the β-barrels of the Tom40 pore form two identical preprotein conduits. Each Tom40 pore is surrounded by the transmembrane segments of the α-helical subunits Tom5, Tom6, and Tom7. Tom22, the central preprotein receptor, connects the two Tom40 pores at the dimer interface. Our structure offers detailed insights into the molecular architecture of the mitochondrial preprotein import machinery. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Design and optimization of 32-core rod/trench assisted square-lattice structured single-mode multi-core fiber.

    Science.gov (United States)

    Xie, Xueqin; Tu, Jiajing; Zhou, Xian; Long, Keping; Saitoh, Kunimasa

    2017-03-06

    We propose and design a kind of heterogeneous rod-assisted and trench-assisted multi-core fiber (Hetero-RA-TA-MCF) with 32 cores arranged in square-lattice structure (SLS), and then we introduce the design method for Hetero-RA-TA-MCF. Simulation results show that the Hetero-RA-TA-32-Core-Fiber achieves average effective area (Aeff) of about 74 μm2, low crosstalk (XT) of about -31 dB/100km, threshold value of bending radius (Rpk) of 7.0 cm, relative core multiplicity factor (RCMF) of 8.74, and cable cutoff wavelength (λcc) of less than 1.53 μm.

  20. Gap state related blue light emitting boron-carbon core shell structures

    Science.gov (United States)

    Singh, Paviter; Kaur, Manpreet; Singh, Bikramjeet; Kaur, Gurpreet; Singh, Kulwinder; Kumar, Manjeet; Bala, Rajni; Thakur, Anup; Kumar, Akshay

    2016-05-01

    Boron- carbon core shell structures have been synthesized by solvo-thermal synthesis route. The synthesized material is highly pure. X-ray diffraction analysis confirms the reduction of reactants in to boron and carbon. Scanning Electron Microscopy (SEM) analysis showed that the shell is uniform with average thickness of 340 nm. Photo luminescence studies showed that the material is blue light emitting with CIE color coordinates: x=0.16085, y=0.07554.

  1. Structural performance of complex core systems for FRP-balsa composite sandwich bridge decks

    OpenAIRE

    Osei-Antwi, Michael

    2014-01-01

    Based on current fiber-reinforced polymer (FRP) composite construction principles, FRP decks fall into two categories: pultruded decks and sandwich decks. Sandwich decks comprise face sheets and either honeycombs or foams reinforced with internal FRP webs for shear resistance. The honeycomb structure and the webs cause debonding between the upper face sheets and the core due to the uneven support of the former. An alternative material that has high shear capacity and can provide uniform ...

  2. A simple approach to the construction of the core structure present in bielschowskysin and hippolachnin A

    Indian Academy of Sciences (India)

    RITABRATA DATTA; MALASALA SUMALATHA; SUBRATA GHOSH

    2016-07-01

    A convenient route for the synthesis of oxacyclobutapentalene, the tricyclic bridged core structure present in bioactive marine diterpene bielschowskysin and the polyketide hippolachnin A, is reported. The key steps involve ring closing metathesis of a triene derived from D-mannitol to produce selectively the dihydrofuran derivative instead of the cyclopentene derivative and a Cu(I)-catalyzed intramolecular [2+2]photocycloaddition of the dihydrofuran derivative.

  3. Understanding twinning nucleation and dislocation core structure through interscale hybrid method

    DEFF Research Database (Denmark)

    Xu, Ben; Zhang, Xiaodan

    2014-01-01

    The variety of emerging simulation methods and improved computational power advance the understanding in nanometals as a good compensation of the experiments. In this paper, the first principle methods are discussed, especially as a useful combination of the classical molecular dynamics, to overc......, to overcome the disadvantages of the latter method. Two examples are given as: the nucleation of the {10-12} deformation twinning in magnesium, and the screw dislocation core structure with/without hydrogen in tungsten....

  4. An origin of arc structures deeply embedded in dense molecular cloud cores

    CERN Document Server

    Matsumoto, Tomoaki; Tokuda, Kazuki; Inutsuka, Shu-ichiro

    2015-01-01

    We investigated the formation of arc-like structures in the infalling envelope around protostars, motivated by the recent ALMA observations of the high-density molecular cloud core, MC27/L1527F. We performed self-gravitational hydrodynamical numerical simulations with an adaptive mesh refinement code. A filamentary cloud with a 0.1~pc width fragments into cloud cores because of perturbations due to weak turbulence. The cloud core undergoes gravitational collapse to form multiple protostars, and gravitational torque from the orbiting protostars produces arc structures extending up to a 1000~AU scale. As well as on a spatial extent, the velocity ranges of the arc structures, $\\sim0.5\\,\\mathrm{km\\,s}^{-1}$, are in agreement with the ALMA observations. We also found that circumstellar disks are often misaligned in triple system. The misalignment is caused by the tidal interaction between the protostars when they undergo close encounters because of a highly eccentric orbit of the tight binary pair.

  5. Organic-Inorganic Hydrophobic Nanocomposite Film with a Core-Shell Structure

    Directory of Open Access Journals (Sweden)

    Peng Liu

    2016-12-01

    Full Text Available A method to prepare novel organic-inorganic hydrophobic nanocomposite films was proposed by a site-specific polymerization process. The inorganic part, the core of the nanocomposite, is a ternary SiO2–Al2O3–TiO2 nanoparticles, which is grafted with methacryloxy propyl trimethoxyl silane (KH570, and wrapped by fluoride and siloxane polymers. The synthesized samples are characterized by transmission electron microscopy (TEM, Fourier transform infrared (FTIR spectrscopy, X-ray diffractometry (XRD, contact angle meter (CA, and scanning electron microscope (SEM. The results indicate that the novel organic-inorganic hydrophobic nanocomposite with a core-shell structure was synthesized successfully. XRD analysis reveals the nanocomposite film has an amorphous structure, and FTIR analysis indicates the nanoparticles react with a silane coupling agent (methacryloxy propyl trimethoxyl silane KH570. Interestingly, the morphology of the nanoparticle film is influenced by the composition of the core. Further, comparing with the film synthesized by silica nanoparticles, the film formed from SiO2–Al2O3–TiO2 nanoparticles has higher hydrophobic performance, i.e., the contact angle is greater than 101.7°. In addition, the TEM analysis reveals that the crystal structure of the particles can be changed at high temperatures.

  6. Structure of Protein Phosphatase 2A Core Enzyme Bound to Tumor-Inducing Toxins

    Energy Technology Data Exchange (ETDEWEB)

    Xing,Y.; Xu, Y.; Chen, Y.; Jeffrey, P.; Chao, Y.; Lin, Z.; Li, Z.; Strack, S.; Stock, J.; Shi, Y.

    2006-01-01

    The serine/threonine phosphatase protein phosphatase 2A (PP2A) plays an essential role in many aspects of cellular functions and has been shown to be an important tumor suppressor. The core enzyme of PP2A comprises a 65 kDa scaffolding subunit and a 36 kDa catalytic subunit. Here we report the crystal structures of the PP2A core enzyme bound to two of its inhibitors, the tumor-inducing agents okadaic acid and microcystin-LR, at 2.6 and 2.8 {angstrom} resolution, respectively. The catalytic subunit recognizes one end of the elongated scaffolding subunit by interacting with the conserved ridges of HEAT repeats 11-15. Formation of the core enzyme forces the scaffolding subunit to undergo pronounced structural rearrangement. The scaffolding subunit exhibits considerable conformational flexibility, which is proposed to play an essential role in PP2A function. These structures, together with biochemical analyses, reveal significant insights into PP2A function and serve as a framework for deciphering the diverse roles of PP2A in cellular physiology.

  7. Simulation Based Optimization of Complex Monolithic Composite Structures Using Cellular Core Technology

    Science.gov (United States)

    Hickmott, Curtis W.

    Cellular core tooling is a new technology which has the capability to manufacture complex integrated monolithic composite structures. This novel tooling method utilizes thermoplastic cellular cores as inner tooling. The semi-rigid nature of the cellular cores makes them convenient for lay-up, and under autoclave temperature and pressure they soften and expand providing uniform compaction on all surfaces including internal features such as ribs and spar tubes. This process has the capability of developing fully optimized aerospace structures by reducing or eliminating assembly using fasteners or bonded joints. The technology is studied in the context of evaluating its capabilities, advantages, and limitations in developing high quality structures. The complex nature of these parts has led to development of a model using the Finite Element Analysis (FEA) software Abaqus and the plug-in COMPRO Common Component Architecture (CCA) provided by Convergent Manufacturing Technologies. This model utilizes a "virtual autoclave" technique to simulate temperature profiles, resin flow paths, and ultimately deformation from residual stress. A model has been developed simulating the temperature profile during curing of composite parts made with the cellular core technology. While modeling of composites has been performed in the past, this project will look to take this existing knowledge and apply it to this new manufacturing method capable of building more complex parts and develop a model designed specifically for building large, complex components with a high degree of accuracy. The model development has been carried out in conjunction with experimental validation. A double box beam structure was chosen for analysis to determine the effects of the technology on internal ribs and joints. Double box beams were manufactured and sectioned into T-joints for characterization. Mechanical behavior of T-joints was performed using the T-joint pull-off test and compared to traditional

  8. Structural and functional analysis of the bovine Mx1 promoter.

    Science.gov (United States)

    Yamada, Kohji; Nakatsu, Yuichiro; Onogi, Akio; Takasuga, Akiko; Sugimoto, Yoshikazu; Ueda, Junji; Watanabe, Tomomasa

    2009-04-01

    The bovine Mx1 promoter region was found to contain 4 IFN-stimulated response elements (ISREs), 7 GC boxes, 2 IL-6 responsive elements, 2 NFκB-binding sites and 2 AP-1-binding sites. Among Holstein, Charolai, and Brahman breeds, 5 nucleotide substitutions were detected in the promoter region. After the Mx1 promoter region from Holstein had been constructed with pGL-basic expression vector, the transfected cells showed promoter activity after IFN induction. Several artificial deletion mutants were prepared to determine the important regulatory elements responsible for the promoter activity, and it was found that ISRE has a key function in IFN response. The proximal ISRE1 showed potential induction by IFN. Furthermore, the proximal GC boxes were found to be essential for IFN response in the bovine Mx1 promoter with the deletion mutants. In this case, the 2 GC boxes exhibited a synergistic activation in the IFN response. Mithramycin A, an agent that inhibits gene expression selectively by coating GC boxes, was used, and Mx mRNA expression in MDBK cells was suppressed by this chemical. Therefore, GC boxes were also shown to be essential for IFN response in the bovine Mx1 gene.

  9. Effect of Ni Core Structure on the Electrocatalytic Activity of Pt-Ni/C in Methanol Oxidation

    Directory of Open Access Journals (Sweden)

    Vladimir Linkov

    2013-07-01

    Full Text Available Methanol oxidation catalysts comprising an outer Pt-shell with an inner Ni-core supported on carbon, (Pt-Ni/C, were prepared with either crystalline or amorphous Ni core structures. Structural comparisons of the two forms of catalyst were made using transmission electron microscopy (TEM, X-ray diffraction (XRD and X-ray photoelectron spectroscopy (XPS, and methanol oxidation activity compared using CV and chronoamperometry (CA. While both the amorphous Ni core and crystalline Ni core structures were covered by similar Pt shell thickness and structure, the Pt-Ni(amorphous/C catalyst had higher methanol oxidation activity. The amorphous Ni core thus offers improved Pt usage efficiency in direct methanol fuel cells.

  10. Variability in the precore and core promoter regions of HBV strains in Morocco: characterization and impact on liver disease progression.

    Directory of Open Access Journals (Sweden)

    Bouchra Kitab

    Full Text Available BACKGROUND: Hepatitis B virus (HBV is one of the most common human pathogens that cause aggressive hepatitis and advanced liver disease (AdLD, including liver cirrhosis and Hepatocellular Carcinoma. The persistence of active HBV replication and liver damage after the loss of hepatitis B e antigen (HBeAg has been frequently associated with mutations in the pre-core (pre-C and core promoter (CP regions of HBV genome that abolish or reduce HBeAg expression. The purpose of this study was to assess the prevalence of pre-C and CP mutations and their impact on the subsequent course of liver disease in Morocco. METHODS/PRINCIPAL FINDINGS: A cohort of 186 patients with HBeAg-negative chronic HBV infection was studied (81 inactive carriers, 69 with active chronic hepatitis, 36 with AdLD. Pre-C and CP mutations were analyzed by PCR-direct sequencing method. The pre-C stop codon G1896A mutation was the most frequent (83.9% and was associated with a lower risk of AdLD development (OR, 0.4; 95% CI, 0.15-1.04; p = 0.04. HBV-DNA levels in patients with G1896A were not significantly different from the other patients carrying wild-type strains (p = 0.84. CP mutations C1653T, T1753V, A1762T/G1764A, and C1766T/T1768A were associated with higher HBV-DNA level and increased liver disease severity. Multiple logistic regression analysis showed that older age (≥ 40 years, male sex, high viral load (>4.3 log(10 IU/mL and CP mutations C1653T, T1753V, A1762T/G1764A, and C1766T/T1768A were independent risk factors for AdLD development. Combination of these mutations was significantly associated with AdLD (OR, 7.52; 95% CI, 4.8-8; p<0.0001. CONCLUSIONS: This study shows for the first time the association of HBV viral load and CP mutations with the severity of liver disease in Moroccan HBV chronic carriers. The examination of CP mutations alone or in combination could be helpful for prediction of the clinical outcome.

  11. Variability in the Precore and Core Promoter Regions of HBV Strains in Morocco: Characterization and Impact on Liver Disease Progression

    Science.gov (United States)

    Kitab, Bouchra; Essaid El Feydi, Abdellah; Afifi, Rajaa; Trepo, Christian; Benazzouz, Mustapha; Essamri, Wafaa; Zoulim, Fabien; Chemin, Isabelle; Alj, Hanane Salih; Ezzikouri, Sayeh; Benjelloun, Soumaya

    2012-01-01

    Background Hepatitis B virus (HBV) is one of the most common human pathogens that cause aggressive hepatitis and advanced liver disease (AdLD), including liver cirrhosis and Hepatocellular Carcinoma. The persistence of active HBV replication and liver damage after the loss of hepatitis B e antigen (HBeAg) has been frequently associated with mutations in the pre-core (pre-C) and core promoter (CP) regions of HBV genome that abolish or reduce HBeAg expression. The purpose of this study was to assess the prevalence of pre-C and CP mutations and their impact on the subsequent course of liver disease in Morocco. Methods/Principal Findings A cohort of 186 patients with HBeAg-negative chronic HBV infection was studied (81 inactive carriers, 69 with active chronic hepatitis, 36 with AdLD). Pre-C and CP mutations were analyzed by PCR-direct sequencing method. The pre-C stop codon G1896A mutation was the most frequent (83.9%) and was associated with a lower risk of AdLD development (OR, 0.4; 95% CI, 0.15–1.04; p = 0.04). HBV-DNA levels in patients with G1896A were not significantly different from the other patients carrying wild-type strains (p = 0.84). CP mutations C1653T, T1753V, A1762T/G1764A, and C1766T/T1768A were associated with higher HBV-DNA level and increased liver disease severity. Multiple logistic regression analysis showed that older age (≥40 years), male sex, high viral load (>4.3 log10 IU/mL) and CP mutations C1653T, T1753V, A1762T/G1764A, and C1766T/T1768A were independent risk factors for AdLD development. Combination of these mutations was significantly associated with AdLD (OR, 7.52; 95% CI, 4.8–8; pviral load and CP mutations with the severity of liver disease in Moroccan HBV chronic carriers. The examination of CP mutations alone or in combination could be helpful for prediction of the clinical outcome. PMID:22905181

  12. Seismic Structure in the Vicinity of the Inner Core Boundary beneath northeastern Asia

    Science.gov (United States)

    Ibourichene, A. S.; Romanowicz, B. A.

    2016-12-01

    The inner core boundary (ICB) separates the solid inner core from the liquid outer core. The crystallization of iron occurring at this limit induces the expulsion of lighter elements such as H, O, S, Si into the outer core, generating chemically-driven convection, which provides power for the geodynamo. Both the F layer, right above the ICB, and the uppermost inner core, are affected by this process so that their properties provide important constraints for a better understanding of core dynamics and, ultimately, the generation and sustained character of the earth's magnetic field. In this study, we investigate the evolution of model parameters (P-velocity, density and quality factor) with depth in the vicinity of the ICB. For this purpose, we combine observations of two body wave phases sensitive to this region: the PKP(DF) phase refracted in the inner core and the PKiKP reflected on the ICB. Variations in the PKP(DF)/PKiKP amplitude ratio and PKP(DF)-PKiKP differential travel times can be related to structure around the ICB. We use waveform data from earthquakes located in Sumatra and recorded by the dense USArray seismic network, which allows us to sample ICB structure beneath northeastern Asia. Observed waveforms are compared to synthetics computed using the DSM method (e.g., Geller et Takeuchi, 1995) in model AK135 (e.g., Montagner & Kennett, 1996) in order to measure amplitude and travel time anomalies. Previous studies (e.g., Tanaka, 1997 ; Cao and Romanowicz, 2004, Yu and Wen, 2006; Waszek and Deuss, 2011) have observed an hemispherical pattern in the vicinity of the ICB exhibiting a faster and more attenuated eastern hemisphere compared to the western hemisphere. The region studied is located in the eastern hemisphere. We find that, on average, travel time anomalies are consistent with previous studies of the eastern hemisphere, however, amplitude ratios are not. We conduct a parameter search for the 1D model that best fits our data. We also consider

  13. Strain-induced structural defects and their effects on the electrochemical performances of silicon core/germanium shell nanowire heterostructures.

    Science.gov (United States)

    Lin, Yung-Chen; Kim, Dongheun; Li, Zhen; Nguyen, Binh-Minh; Li, Nan; Zhang, Shixiong; Yoo, Jinkyoung

    2017-01-19

    We report on strain-induced structural defect formation in core Si nanowires of a Si/Ge core/shell nanowire heterostructure and the influence of the structural defects on the electrochemical performances in lithium-ion battery anodes based on Si/Ge core/shell nanowire heterostructures. The induced structural defects consisting of stacking faults and dislocations in the core Si nanowire were observed for the first time. The generation of stacking faults in the Si/Ge core/shell nanowire heterostructure is observed to prefer settling in either only the Ge shell region or in both the Ge shell and Si core regions and is associated with the increase of the shell volume fraction. The relaxation of the misfit strain in the [112] oriented core/shell nanowire heterostructure leads to subsequent gliding of Shockley partial dislocations, preferentially forming the twins. The observation of crossover of defect formation is of great importance for understanding heteroepitaxy in radial heterostructures at the nanoscale and for building three dimensional heterostructures for the various applications. Furthermore, the effect of the defect formation on the nanomaterial's functionality is investigated using electrochemical performance tests. The Si/Ge core/shell nanowire heterostructures enhance the gravimetric capacity of lithium ion battery anodes under fast charging/discharging rates compared to Si nanowires. However, the induced structural defects hamper lithiation of the Si/Ge core/shell nanowire heterostructure.

  14. Contamination assessment in microbiological sampling of the Eyreville core, Chesapeake Bay impact structure

    Science.gov (United States)

    Gronstal, A.L.; Voytek, M.A.; Kirshtein, J.D.; Von der, Heyde; Lowit, M.D.; Cockell, C.S.

    2009-01-01

    Knowledge of the deep subsurface biosphere is limited due to difficulties in recovering materials. Deep drilling projects provide access to the subsurface; however, contamination introduced during drilling poses a major obstacle in obtaining clean samples. To monitor contamination during the 2005 International Continental Scientific Drilling Program (ICDP)-U.S. Geological Survey (USGS) deep drilling of the Chesapeake Bay impact structure, four methods were utilized. Fluorescent microspheres were used to mimic the ability of contaminant cells to enter samples through fractures in the core material during retrieval. Drilling mud was infused with a chemical tracer (Halon 1211) in order to monitor penetration of mud into cores. Pore water from samples was examined using excitation-emission matrix (EEM) fl uorescence spectroscopy to characterize dissolved organic carbon (DOC) present at various depths. DOC signatures at depth were compared to signatures from drilling mud in order to identify potential contamination. Finally, microbial contaminants present in drilling mud were identified through 16S ribosomal deoxyribonucleic acid (rDNA) clone libraries and compared to species cultured from core samples. Together, these methods allowed us to categorize the recovered core samples according to the likelihood of contamination. Twenty-two of the 47 subcores that were retrieved were free of contamination by all the methods used and were subsequently used for microbiological culture and culture-independent analysis. Our approach provides a comprehensive assessment of both particulate and dissolved contaminants that could be applied to any environment with low biomass. ?? 2009 The Geological Society of America.

  15. Depleted cores, multi-component fits, and structural parameter relations for luminous early-type galaxies

    CERN Document Server

    Dullo, Bililign T

    2013-01-01

    New surface brightness profiles from 26 early-type galaxies with partially depleted cores have been extracted from the full radial extent of Hubble Space Telescope images, giving us a total sample of 31 such core-Sersic galaxies. We have carefully quantified the radial stellar distributions of the elliptical galaxies using the core-Sersic model whereas for the lenticular galaxies a core-Sersic bulge plus an exponential disc model gives the best representation. We additionally caution about the excessive use of multiple Sersic functions for decomposing galaxies. The structural parameters obtained from our fitted models are used to update several `central' as well as `global' galaxy scaling relations. We find near-linear relations between the break radius R_b and the spheroid luminosity L such that R_b ~ L^(1.13 +/- 0.13), and with the supermassive black hole mass M_BH such that R_b ~ M_BH^(0.83+/- 0.21). This is internally consistent with the notion that major, dry mergers add the stellar and black hole mass i...

  16. Synthesis and characterisation of core-shell structures for orthopaedic surgery.

    Science.gov (United States)

    Rusen, Edina; Zaharia, Cătălin; Zecheru, Teodora; Mărculescu, Bogdan; Filmon, Robert; Chappard, Daniel; Bădulescu, Roxana; Cincu, Corneliu

    2007-01-01

    This paperwork deals with the obtaining and characterisation of new acrylic cements for bone surgery. The final mixture of cement contains derivatives of methacryloyloxyethyl phosphate, methacrylic acid or 2-acrylamido-2-methyl-1-propane sulphonic acid. The idea of using these monomers is sustained by their ability to form ionic bonds with barium, which is responsible for X-ray reflection and by the biocompatibility of these structures. The strategy consists in the obtaining of core-shell structures through heterogeneous polymerisation, which are used for final cement's manufacture. The orthopaedic cements were characterised by SEM, EDX, compression resistance and cytotoxicity assays.

  17. Crystallization of ion clouds in octupole traps: structural transitions, core melting, and scaling laws

    CERN Document Server

    Calvo, Florent; Yurtsever, Ersin

    2009-01-01

    The stable structures and melting properties of ion clouds in isotropic octupole traps are investigated using a combination of semi-analytical and numerical models, with a particular emphasis at finite size scaling effects. Small-size clouds are found to be hollow and arranged in shells corresponding approximately to the solutions of the Thomson problem. The shell structure is lost in clusters containing more than a few thousands of ions, the inner parts of the cloud becoming soft and amorphous. While melting is triggered in the core shells, the melting temperature unexpectedly follows the rule expected for three-dimensional dense particles, with a depression scaling linearly with the inverse radius.

  18. MAGNETIC CORE SHELL STRUCTURES: from 0D to 1D assembling.

    Science.gov (United States)

    Ficai, Denisa; Ficai, Anton; Dinu, Elena; Oprea, Ovidiu; Sonmez, Maria; Keler, Memduh Kagan; Sahin, Yesim Muge; Ekren, Nazmi; Inan, Ahmet Talat; Daglilar, Sibel; Gunduz, Oguzhan

    2015-01-01

    Material research and development studies are focused on different techniques of bringing out nanomaterials with desired characteristics and properties. From the point of view of materials development, nowadays scientists are strongly focused on obtaining materials with predefined characteristics and properties. The morphology control seems to be a determinant factor and increasing attention is devoted to this aspect. At this moment it is possible to engineer the material's features by using different methods and materials combination for both medical and industrial applications. In the applications of chemistry and synthesis, biology, mechanics, optics solar cells and microelectronics tailoring the adjustable parameters of stoichiometry, chemical structure, shape and segregation are evaluated and opens new fields. Because of the magnetic features of nanoparticles and durable particle size, less than 100 nm, this study is aiming to describe their uses in practical applications. That's why the whole hydrodynamic magnetic core shell topic will be reviewed on this paper. Additionally, the properties acting in general sight in solid-state physics are utilized for material selection and for defining issue connecting the core, shell structure and their producing properties. Here, in the study of core/shell nanoparticle various physical and chemical synthesis routes and the effect of electrospun method are briefly discussed. Starting from a real void of the scientific literature, the existent data related to the 1D magnetic electrospun materials are reviewed. The perspectives in the medical, environmental or energetic sector is great and bring some real advantages related to the 0D core@shell structures because both mechanical and biological properties are dependent on the morphology of the materials.

  19. Discovery of protein complexes with core-attachment structures from Tandem Affinity Purification (TAP) data.

    Science.gov (United States)

    Wu, Min; Li, Xiao-Li; Kwoh, Chee-Keong; Ng, See-Kiong; Wong, Limsoon

    2012-09-01

    Many cellular functions involve protein complexes that are formed by multiple interacting proteins. Tandem Affinity Purification (TAP) is a popular experimental method for detecting such multi-protein interactions. However, current computational methods that predict protein complexes from TAP data require converting the co-complex relationships in TAP data into binary interactions. The resulting pairwise protein-protein interaction (PPI) network is then mined for densely connected regions that are identified as putative protein complexes. Converting the TAP data into PPI data not only introduces errors but also loses useful information about the underlying multi-protein relationships that can be exploited to detect the internal organization (i.e., core-attachment structures) of protein complexes. In this article, we propose a method called CACHET that detects protein complexes with Core-AttaCHment structures directly from bipartitETAP data. CACHET models the TAP data as a bipartite graph in which the two vertex sets are the baits and the preys, respectively. The edges between the two vertex sets represent bait-prey relationships. CACHET first focuses on detecting high-quality protein-complex cores from the bipartite graph. To minimize the effects of false positive interactions, the bait-prey relationships are indexed with reliability scores. Only non-redundant, reliable bicliques computed from the TAP bipartite graph are regarded as protein-complex cores. CACHET constructs protein complexes by including attachment proteins into the cores. We applied CACHET on large-scale TAP datasets and found that CACHET outperformed existing methods in terms of prediction accuracy (i.e., F-measure and functional homogeneity of predicted complexes). In addition, the protein complexes predicted by CACHET are equipped with core-attachment structures that provide useful biological insights into the inherent functional organization of protein complexes. Our supplementary material can

  20. Hepatitis B virus genotype C isolates with wild-type core promoter sequence replicate less efficiently than genotype B isolates but possess higher virion secretion capacity.

    Science.gov (United States)

    Qin, Yanli; Tang, Xiaoli; Garcia, Tamako; Hussain, Munira; Zhang, Jiming; Lok, Anna; Wands, Jack; Li, Jisu; Tong, Shuping

    2011-10-01

    Infection by hepatitis B virus (HBV) genotype C is associated with a prolonged viremic phase, delayed hepatitis B e antigen (HBeAg) seroconversion, and an increased incidence of liver cirrhosis and hepatocellular carcinoma compared with genotype B infection. Genotype C is also associated with the more frequent emergence of core promoter mutations, which increase genome replication and are independently associated with poor clinical outcomes. We amplified full-length HBV genomes from serum samples from Chinese and U. S. patients with chronic HBV infection and transfected circularized genome pools or dimeric constructs of individual clones into Huh7 cells. The two genotypes could be differentiated by Western blot analysis due to the reactivities of M and L proteins toward a monoclonal pre-S2 antibody and slightly different S-protein mobilities. Great variability in replication capacity was observed for both genotypes. The A1762T/G1764A core promoter mutations were prevalent in genotype C isolates and correlated with increased replication capacity, while the A1752G/T mutation frequently found in genotype B isolates correlated with a low replication capacity. Importantly, most genotype C isolates with wild-type core promoter sequence replicated less efficiently than the corresponding genotype B isolates due to less efficient transcription of the 3.5-kb RNA. However, genotype C isolates often displayed more efficient virion secretion. We propose that the low intracellular levels of viral DNA and core protein of wild-type genotype C delay immune clearance and trigger the subsequent emergence of A1762T/G1764A core promoter mutations to upregulate replication; efficient virion secretion compensates for the low replication capacity to ensure the establishment of persistent infection by genotype C.

  1. Crystal Structure of the Heterotrimer Core of Saccharomyces cerevisiae AMPK Homologue SNF1

    Energy Technology Data Exchange (ETDEWEB)

    Amodeo,G.; Rudolph, M.; Tong, L.

    2007-01-01

    AMP-activated protein kinase (AMPK) is a central regulator of energy homeostasis in mammals and is an attractive target for drug discovery against diabetes, obesity and other diseases. The AMPK homologue in Saccharomyces cerevisiae, known as SNF1, is essential for responses to glucose starvation as well as for other cellular processes, although SNF1 seems to be activated by a ligand other than AMP. Here we report the crystal structure at 2.6 resolution of the heterotrimer core of SNF1. The ligand-binding site in the {gamma}-subunit (Snf4) has clear structural differences from that of the Schizosaccharomyces pombe enzyme, although our crystallographic data indicate that AMP can also bind to Snf4. The glycogen-binding domain in the {beta}-subunit (Sip2) interacts with Snf4 in the heterotrimer but should still be able to bind carbohydrates. Our structure is supported by a large body of biochemical and genetic data on this complex. Most significantly, the structure reveals that part of the regulatory sequence in the {alpha}-subunit (Snf1) is sequestered by Snf4, demonstrating a direct interaction between the {alpha}- and {gamma}-subunits and indicating that our structure may represent the heterotrimer core of SNF1 in its activated state.

  2. Characterization of the basal core promoter and precore regions in anti-HBe-positive inactive carriers of hepatitis B virus.

    Science.gov (United States)

    Ledesma, María Mora González López; Galdame, Omar; Bouzas, Belén; Tadey, Luciana; Livellara, Beatriz; Giuliano, Silvina; Viaut, Marcela; Paz, Silvia; Fainboim, Hugo; Gadano, Adrian; Campos, Rodolfo; Flichman, Diego

    2011-05-01

    The study of hepatitis B virus (HBV) genomic heterogeneity has become a major issue in investigations aimed at understanding the relationship between HBV mutants and the wide spectrum of clinical and pathological conditions associated with HBV infection. Although most chronically infected HBV patients are inactive carriers, several virological aspects of this state remain unclear. In order to determine the prevalence and clinical significance of mutations in the basal core promoter (BCP) and precore (pC) regions among inactive carriers, the nucleotide sequences from 41 inactive carriers were analyzed and compared with those from 29 individuals with chronic active hepatitis. Genotypes A (24.3%), D (37.1%), F1b (12.9%), and F4 (18.6%) were the most prevalent. Mutations in the BCP/pC regions were observed in most of the inactive carriers (92.7%) and in most of the patients with chronic active hepatitis (93.1%). The prevalence of mutation 1764(A) was significantly higher in patients with chronic active hepatitis (65.5%) than in inactive carriers (36.6%) (p=0.038), whereas the prevalences of mutations at the other positions analyzed were not significantly different. Older patients (>50 years) showed BCP/pC patterns with a higher number of substitutions. Mutations were found to be biased by genotype: the 1896(A) mutation was highly prevalent in genotypes D and F4, while alternative substitutions in the pC region were more prevalent in genotypes A and F1b. Mutations in the BCP/pC regions are the hallmark of chronic anti-HBe-positive individuals; nevertheless, the even distribution of mutations in active and inactive carriers suggests that BCP/pC mutations may occur during HBV infection not strictly related to the HBV infection activity. Copyright © 2011. Published by Elsevier Ltd.

  3. Potassium dependent rescue of a myopathy with core-like structures in mouse.

    Science.gov (United States)

    Hanson, M Gartz; Wilde, Jonathan J; Moreno, Rosa L; Minic, Angela D; Niswander, Lee

    2015-01-07

    Myopathies decrease muscle functionality. Mutations in ryanodine receptor 1 (RyR1) are often associated with myopathies with microscopic core-like structures in the muscle fiber. In this study, we identify a mouse RyR1 model in which heterozygous animals display clinical and pathological hallmarks of myopathy with core-like structures. The RyR1 mutation decreases sensitivity to activated calcium release and myoplasmic calcium levels, subsequently affecting mitochondrial calcium and ATP production. Mutant muscle shows a persistent potassium leak and disrupted expression of regulators of potassium homeostasis. Inhibition of KATP channels or increasing interstitial potassium by diet or FDA-approved drugs can reverse the muscle weakness, fatigue-like physiology and pathology. We identify regulators of potassium homeostasis as biomarkers of disease that may reveal therapeutic targets in human patients with myopathy of central core disease (CCD). Altogether, our results suggest that amelioration of potassium leaks through potassium homeostasis mechanisms may minimize muscle damage of myopathies due to certain RyR1 mutations.

  4. Core-shell structured PEO-chitosan nanofibers by coaxial electrospinning.

    Science.gov (United States)

    Pakravan, Mehdi; Heuzey, Marie-Claude; Ajji, Abdellah

    2012-02-13

    Core-shell structured PEO-chitosan nanofibers have been produced using a coaxial electrospinning setup. PEO and chitosan solutions, both in an aqueous acetic acid solvent, were used as the inner (core) and outer (shell) layer, respectively. Uniform-sized defect-free nanofibers of 150-190 nm diameter were produced. In addition, hollow nanofibers could be obtained subsequent to PEO washing of the membranes. The core-shell nanostructure and existence of chitosan on the shell layer were confirmed by TEM images obtained before and after washing the PEO content with water. The presence of chitosan on the surface of the composite nanofibers was further supported by XPS studies. The chitosan and PEO compositions in the nanofibrous mats were determined by TGA analysis, which were similar to their ratio in the feed solutions. The local compositional homogeneity of the membranes and the efficiency of the washing step to remove PEO were also verified by FTIR. In addition, DSC and XRD were used to characterize the crystalline structure and morphology of the co-electrospun nonwoven mats. The prepared coaxial nanofibers (hollow and solid) have several potential applications due to the presence of chitosan on their outer surfaces.

  5. Effects of Core Softness and Bimodularity of Fibreglass Layers on Flexural Stiffness of Polymer Sandwich Structures

    Directory of Open Access Journals (Sweden)

    Šuba Oldřich

    2017-01-01

    Full Text Available This paper deals with the study of the flexural stiffness of the sandwich structures based on fibreglass and polymeric foams. The influence of geometrical and material parameters on the resulting effective flexural stiffness of the sandwich structure is being studied experimentally, analytically and by using FEM models. The effective modulus of elasticity of the sandwich-structured element is being studied and its theoretical and model dependencies on the flexibility of the foam core and bimodularity of the fibreglass layers are being investigated. The achieved results are compared with the experimentally observed values. This study shows that it is necessary to pay special attention to the issue of flexural stiffness of the walls when designing sandwich shell products in order to prevent possible failures in the practical applications of these types of structures.

  6. Hydrophobic core/hydrophilic shell structured mesoporous silica nanospheres: enhanced adsorption of organic compounds from water.

    Science.gov (United States)

    Li, Shuru; Jiao, Xuan; Yang, Hengquan

    2013-01-29

    Inspired by the structure features of micelle, we attempt to synthesize a novel functionalized mesoporous silica nanosphere consisting of a hydrophobic core and a hydrophilic shell. The obtained solid materials were structurally confirmed by N(2) sorption, X-ray diffraction (XRD), and transmission electron microscopy (TEM). Their compositions were characterized by Fourier transfer infrared spectroscopy (FT-IR), solid state NMR, X-ray photoelectron spectroscopy (XPS), and elemental analysis. Its fundamental properties such as dispersibility in water or organic phase, wettability, and adsorption ability toward hydrophobic organics in water were investigated. It was revealed that these important properties could be facilely adjusted through varying structure and composition. In particular, these materials showed much better adsorption ability toward hydrophobic organic molecules in water than conventional monofunctionalized mesoporous materials, owing to possessing the hydrophobic/hydrophilic domain-segregated and hierarchically functionalized mesoporous structures. The intriguing properties would make mesoporous materials more accessible to many important applications, especially in aqueous systems.

  7. A review of MAAP4 code structure and core T/H model

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yong Mann; Park, Soo Yong

    1998-03-01

    The modular accident analysis program (MAAP) version 4 is a computer code that can simulate the response of LWR plants during severe accident sequences and includes models for all of the important phenomena which might occur during accident sequences. In this report, MAAP4 code structure and core thermal hydraulic (T/H) model which models the T/H behavior of the reactor core and the response of core components during all accident phases involving degraded cores are specifically reviewed and then reorganized. This reorganization is performed via getting the related models together under each topic whose contents and order are same with other two reports for MELCOR and SCDAP/RELAP5 to be simultaneously published. Major purpose of the report is to provide information about the characteristics of MAAP4 core T/H models for an integrated severe accident computer code development being performed under the one of on-going mid/long-term nuclear developing project. The basic characteristics of the new integrated severe accident code includes: 1) Flexible simulation capability of primary side, secondary side, and the containment under severe accident conditions, 2) Detailed plant simulation, 3) Convenient user-interfaces, 4) Highly modularization for easy maintenance/improvement, and 5) State-of-the-art model selection. In conclusion, MAAP4 code has appeared to be superior for 3) and 4) items but to be somewhat inferior for 1) and 2) items. For item 5), more efforts should be made in the future to compare separated models in detail with not only other codes but also recent world-wide work. (author). 17 refs., 1 tab., 12 figs.

  8. Molecular and Structural Basis of Inner Core Lipopolysaccharide Alterations in Escherichia coli

    Science.gov (United States)

    Klein, Gracjana; Müller-Loennies, Sven; Lindner, Buko; Kobylak, Natalia; Brade, Helmut; Raina, Satish

    2013-01-01

    It is well established that lipopolysaccharide (LPS) often carries nonstoichiometric substitutions in lipid A and in the inner core. In this work, the molecular basis of inner core alterations and their physiological significance are addressed. A new inner core modification of LPS is described, which arises due to the addition of glucuronic acid on the third heptose with a concomitant loss of phosphate on the second heptose. This was shown by chemical and structural analyses. Furthermore, the gene whose product is responsible for the addition of this sugar was identified in all Escherichia coli core types and in Salmonella and was designated waaH. Its deduced amino acid sequence exhibits homology to glycosyltransferase family 2. The transcription of the waaH gene is positively regulated by the PhoB/R two-component system in a growth phase-dependent manner, which is coordinated with the transcription of the ugd gene explaining the genetic basis of this modification. Glucuronic acid modification was observed in E. coli B, K12, R2, and R4 core types and in Salmonella. We also show that the phosphoethanolamine (P-EtN) addition on heptose I in E. coli K12 requires the product of the ORF yijP, a new gene designated as eptC. Incorporation of P-EtN is also positively regulated by PhoB/R, although it can occur at a basal level without a requirement for any regulatory inducible systems. This P-EtN modification is essential for resistance to a variety of factors, which destabilize the outer membrane like the addition of SDS or challenge to sublethal concentrations of Zn2+. PMID:23372159

  9. Microarray Analysis of Antibodies Induced with Synthetic Antitumor Vaccines: Specificity against Diverse Mucin Core Structures.

    Science.gov (United States)

    Pett, Christian; Cai, Hui; Liu, Jia; Palitzsch, Björn; Schorlemer, Manuel; Hartmann, Sebastian; Stergiou, Natascha; Lu, Mengji; Kunz, Horst; Schmitt, Edgar; Westerlind, Ulrika

    2017-03-17

    Glycoprotein research is pivotal for vaccine development and biomarker discovery. Many successful methodologies for reliably increasing the antigenicity toward tumor-associated glycopeptide structures have been reported. Deeper insights into the quality and specificity of the raised polyclonal, humoral reactions are often not addressed, despite the fact that an immunological memory, which produces antibodies with cross-reactivity to epitopes exposed on healthy cells, may cause autoimmune diseases. In the current work, three MUC1 antitumor vaccine candidates conjugated with different immune stimulants are evaluated immunologically. For assessment of the influence of the immune stimulant on antibody recognition, a comprehensive library of mucin 1 glycopeptides (>100 entries) is synthesized and employed in antibody microarray profiling; these range from small tumor-associated glycans (TN , STN , and T-antigen structures) to heavily extended O-glycan core structures (type-1 and type-2 elongated core 1-3 tri-, tetra-, and hexasaccharides) glycosylated in variable density at the five different sites of the MUC1 tandem repeat. This is one of the most extensive glycopeptide libraries ever made through total synthesis. On tumor cells, the core 2 β-1,6-N-acetylglucosaminyltransferase-1 (C2GlcNAcT-1) is down-regulated, resulting in lower amounts of the branched core 2 structures, which favor formation of linear core 1 or core 3 structures, and in particular, truncated tumor-associated antigen structures. The core 2 structures are commonly found on healthy cells and the elucidation of antibody cross-reactivity to such epitopes may predict the tumor-selectivity and safety of synthetic vaccines. With the extended mucin core structures in hand, antibody cross-reactivity toward the branched core 2 glycopeptide epitopes is explored. It is observed that the induced antibodies recognize MUC1 peptides with very high glycosylation site specificity. The nature of the

  10. Analysis about the Influence of Clay Core Wall Structure towards the Slope Stability of High Embankment Dam

    Directory of Open Access Journals (Sweden)

    Li Bin

    2015-01-01

    Full Text Available As the main part of the anti-seepage system, core wall is a key point in the design of high em-bankment dam. The dam slope stability is a major factor for the type of core wall. But it is still unclear what effects the core wall structure might have on the slope stability. Based on practical projects of high embankment dam in Nuozhadu, Lianghekou and Shuangjiangkou, this paper analyzes safety factors and dangerous slip sur-faces of dam slopes of high embankment dams in both straight and slanting core wall structures and compares the influences of different core wall structures on the slope stability of high embankment dam through numerical calculations. The safety margin of the embankment dam of straight core wall is larger than that of slanting core wall in the operating condition of the reservoir water level’s drawdown. Compared with that of the straight core wall scheme, the position of the dangerous slip surface of the downstream dam slope is closer to the dam crest in the slanting core wall scheme.

  11. Synthesis and characterization of magnetic polymer microspheres with a core-shell structure

    Institute of Scientific and Technical Information of China (English)

    Ming; Lu; Shu; Bai; Kun; Yang; Yan; Sun

    2007-01-01

    Non-porous magnetic polymer microspheres with a core-shell structure were prepared by a novel micro-suspension polymerization technique.A stable iron oxide ferrofluid was used to supply the magnetic core, and the polymeric shell was made of glycidyl methacrylate (GMA monomer)and ethylene dimethacrylate (cross-linker). In the preparation, polyvinyl alcohol was used as the stabilizer, and a lauryl alcohol mixture as the dispersant. The influence of various conditions such as aqueous phase volume, GMA and initiator amounts, reaction time and stirring speed on the character of the microspheres was investigated. The magnetic microspheres were then characterized briefly. The results indicate that the microspheres with active epoxy groups had a narrow size distribution range from 1 to 10 μm with a volume-weighted mean diameter of 4.5 μm.The saturation magnetization reached 19.9 emu/g with little coercivity and remanence.

  12. Open structure ZnO/CdSe core/shell nanoneedle arrays for solar cells.

    Science.gov (United States)

    Chen, Yanxue; Wei, Lin; Zhang, Guanghua; Jiao, Jun

    2012-09-20

    Open structure ZnO/CdSe core/shell nanoneedle arrays were prepared on a conducting glass (SnO2:F) substrate by solution deposition and electrochemical techniques. A uniform CdSe shell layer with a grain size of approximately several tens of nanometers was formed on the surface of ZnO nanoneedle cores after annealing at 400°C for 1.5 h. Fabricated solar cells based on these nanostructures exhibited a high short-circuit current density of about 10.5 mA/cm2 and an overall power conversion efficiency of 1.07% with solar illumination of 100 mW/cm2. Incident photo-to-current conversion efficiencies higher than 75% were also obtained.

  13. Structural optical correlated properties of SnO2/Al2O3 core@ shell heterostructure

    Science.gov (United States)

    Heiba, Zein K.; Imam, N. G.; Bakr Mohamed, Mohamed

    2016-07-01

    Nano size polycrystalline samples of the core@shell heterostructure of SnO2 @ xAl2O3 (x = 0, 25, 50, 75 wt.%) were synthesized by sol-gel technique. The resulting samples were characterized with fourier transform infrared spectroscopy (FT-IR), photoluminescence (PL) and X-ray powder diffraction (XRD). The XRD patterns manifest diffraction peaks of SnO2 as main phase with weak peaks corresponding to Al2O3 phase. The formation of core@ shell structure is confirmed by TEM images and Rietveld quantitative phase analysis which revealed that small part of Al2O3 is incorporated into the SnO2 lattice while the main part (shell) remains as a separate phase segregated on the grain boundary surface of SnO2 (core). It is found that the grain size of the mixed oxides SnO2 @ xAl2O3 is below 10 nm while for pure SnO2 it is over 41 nm, indicating that alumina can effectively prevent SnO2 from further growing up in the process of calcination. This is confirmed by the large increase in the specific surface area for mixed oxide samples. The PL emission showed great dependence on the structure properties analyzed by XRD and FTIR. The PL results recommend Al2O3@SnO2 core@shell heterostructure to be a promising short-wavelength luminescent optoelectronic devices for blue, UV, and laser light-emitting diodes.

  14. Hypervelocity Impact Performance of Open Cell Foam Core Sandwich Panel Structures

    Science.gov (United States)

    Ryan, S.; Ordonez, E.; Christiansen, E. L.; Lear, D. M.

    2010-01-01

    Open cell metallic foam core sandwich panel structures are of interest for application in spacecraft micrometeoroid and orbital debris shields due to their novel form and advantageous structural and thermal performance. Repeated shocking as a result of secondary impacts upon individual foam ligaments during the penetration process acts to raise the thermal state of impacting projectiles ; resulting in fragmentation, melting, and vaporization at lower velocities than with traditional shielding configurations (e.g. Whipple shield). In order to characterize the protective capability of these structures, an extensive experimental campaign was performed by the Johnson Space Center Hypervelocity Impact Technology Facility, the results of which are reported in this paper. Although not capable of competing against the protection levels achievable with leading heavy shields in use on modern high-risk vehicles (i.e. International Space Station modules), metallic foam core sandwich panels are shown to provide a substantial improvement over comparable structural panels and traditional low weight shielding alternatives such as honeycomb sandwich panels and metallic Whipple shields. A ballistic limit equation, generalized in terms of panel geometry, is derived and presented in a form suitable for application in risk assessment codes.

  15. Genetic diversity and population structure analysis to construct a core collection from a large Capsicum germplasm.

    Science.gov (United States)

    Lee, Hea-Young; Ro, Na-Young; Jeong, Hee-Jin; Kwon, Jin-Kyung; Jo, Jinkwan; Ha, Yeaseong; Jung, Ayoung; Han, Ji-Woong; Venkatesh, Jelli; Kang, Byoung-Cheorl

    2016-11-14

    Conservation of genetic diversity is an essential prerequisite for developing new cultivars with desirable agronomic traits. Although a large number of germplasm collections have been established worldwide, many of them face major difficulties due to large size and a lack of adequate information about population structure and genetic diversity. Core collection with a minimum number of accessions and maximum genetic diversity of pepper species and its wild relatives will facilitate easy access to genetic material as well as the use of hidden genetic diversity in Capsicum. To explore genetic diversity and population structure, we investigated patterns of molecular diversity using a transcriptome-based 48 single nucleotide polymorphisms (SNPs) in a large germplasm collection comprising 3,821 accessions. Among the 11 species examined, Capsicum annuum showed the highest genetic diversity (HE = 0.44, I = 0.69), whereas the wild species C. galapagoense showed the lowest genetic diversity (HE = 0.06, I = 0.07). The Capsicum germplasm collection was divided into 10 clusters (cluster 1 to 10) based on population structure analysis, and five groups (group A to E) based on phylogenetic analysis. Capsicum accessions from the five distinct groups in an unrooted phylogenetic tree showed taxonomic distinctness and reflected their geographic origins. Most of the accessions from European countries are distributed in the A and B groups, whereas the accessions from Asian countries are mainly distributed in C and D groups. Five different sampling strategies with diverse genetic clustering methods were used to select the optimal method for constructing the core collection. Using a number of allelic variations based on 48 SNP markers and 32 different phenotypic/morphological traits, a core collection 'CC240' with a total of 240 accessions (5.2 %) was selected from within the entire Capsicum germplasm. Compared to the other core collections, CC240 displayed higher genetic

  16. FANCJ promotes DNA synthesis through G-quadruplex structures

    NARCIS (Netherlands)

    Castillo Bosch, Pau; Segura-Bayona, Sandra; Koole, Wouter; van Heteren, Jane T; Dewar, James M; Tijsterman, Marcel; Knipscheer, Puck

    2014-01-01

    Our genome contains many G-rich sequences, which have the propensity to fold into stable secondary DNA structures called G4 or G-quadruplex structures. These structures have been implicated in cellular processes such as gene regulation and telomere maintenance. However, G4 sequences are prone to mut

  17. The structure of the nucleosome core particle of chromatin in chicken erythrocytes visualized by using atomic force microscopy

    Institute of Scientific and Technical Information of China (English)

    ZHAOHUI; YIZHANG; 等

    1999-01-01

    The structure of the nuclosome core particle of chromatin in chicken erythrocytes has been examined by using AFM.The 146 bp of DNA wrapped twice around the core histone octamer are clearly visualized.Both the ends of entry/exit of linker DNA are also demonstrated.The dimension of the nucleosome core particles is - 1-4 nm in height and - 13-22 nm in width.In addition,superbeads (width of - 48-57 nm,height of - 2-3 nm )are occasionally revealed,two turns of DNA around the core particles are also detected.

  18. HCV core protein-induced down-regulation of microRNA-152 promoted aberrant proliferation by regulating Wnt1 in HepG2 cells.

    Directory of Open Access Journals (Sweden)

    Shifeng Huang

    Full Text Available BACKGROUND: Hepatitis C virus (HCV has been reported to regulate cellular microRNAs (miRNAs. The HCV core protein is considered to be a potential oncoprotein in HCV-related hepatocellular carcinoma (HCV-HCC, but HCV core-regulated miRNAs are largely unknown. Our preliminary experiments revealed significant down-regulation of microRNA-152 (miR-152 by HCV core protein in HepG2 cells. Through target gene prediction softwares, Wnt1 was predicted to be a potential target of miR-152. The present study was initiated to investigate whether miR-152 is aberrantly regulated by the HCV core protein, and involved in the regulation of the aberrant proliferation of HCV-HCC cells. METHODS: MiR-152 levels were examined by stem-loop real-time RT-PCR (SLqRT-PCR. Cell proliferation was analyzed by MTT and colony formation assay. Cell cycle analysis was performed by flow cytometry. Luciferase reporter assay was conducted to confirm miRNA-target association. Wnt1 expression was determined by real-time qPCR and Western blotting. RESULTS: HCV core protein significantly suppressed miR-152 expression, and led to significant Wnt1 up-regulation with a concomitant aberrantly promoted proliferation. Moreover, we validated that miR-152 inhibition promoted, while miR-152 mimics inhibited cell proliferation. Using, qRT-PCR and western blot, Wnt1 was demonstrated to be regulated by miR-152. Luciferase activity assay showed that while miR-152 mimics significantly reduced the luciferase activity by 83.76% (P<0.0001, miR-152 inhibitor showed no effect on luciferase reporter. Most notably, salvage expression of miR-152 after Ad-HCV core infection for 24 h almost totally reversed the proliferation-promoting effect of the HCV core protein, and meanwhile, reduced the expression of both Wnt1 mRNA and protein to basal levels. CONCLUSION: These findings provide important evidence that the reduced miR-152 expression by HCV core protein can indirectly lose an inhibitory effect on Wnt1

  19. Stronger enhancer II/core promoter activities of hepatitis B virus isolates of B2 subgenotype than those of C2 subgenotype

    OpenAIRE

    Yanli Qin; Xueshi Zhou; Haodi Jia; Chaoyang Chen; Weifeng Zhao; Jiming Zhang; Shuping Tong

    2016-01-01

    Hepatitis B virus (HBV) genotype C causes prolonged chronic infection and increased risk for liver cancer than genotype B. Our previous work revealed lower replication capacity of wild-type genotype C2 than B2 isolates. HBV DNA replication is driven by pregenomic RNA, which is controlled by core promoter (CP) and further augmented by enhancer I (ENI) and enhancer II (ENII). DNA fragments covering these regulatory elements were amplified from B2 and C2 isolates to generate luciferase reporter ...

  20. Structure-Based Drug Discovery Accelerated by Many-Core Devices.

    Science.gov (United States)

    Feinstein, Wei; Brylinski, Michal

    2016-01-01

    Computer-aided design is one of the critical components of modern drug discovery. Drug development is routinely streamlined using computational approaches to improve hit identification and lead selection, enhance bioavailability, and reduce toxicity. A mounting body of genomic knowledge accumulated during the last decade or so presents great opportunities for pharmaceutical research. However, new challenges also arose because processing this large volume of data demands unprecedented computing resources. On the other hand, the state-of-the-art heterogeneous systems deliver petaflops of peak performance to accelerate scientific discovery. In this communication, we review modern parallel accelerator architectures, mainly focusing on Intel Xeon Phi many-core devices. Xeon Phi is a relatively new platform that features tens of computing cores with hundreds of threads offering massively parallel capabilities for a broad range of application. We also discuss common parallel programming frameworks targeted to this accelerator, including OpenMP, OpenCL, MPI and HPX. Recent advances in code development for many-core devices are described to demonstrate the advantages of heterogeneous implementations over the traditional, serial computing. Finally, we highlight selected algorithms, eFindSite, a ligand binding site predictor, a force field for bio-molecular simulations, and BUDE, a structure-based virtual screening engine, to demonstrate how modern drug discovery is accelerated by heterogeneous systems equipped with parallel computing devices.

  1. Structuring a written examination to assess ASBH health care ethics consultation core knowledge competencies.

    Science.gov (United States)

    White, Bruce D; Jankowski, Jane B; Shelton, Wayne N

    2014-01-01

    As clinical ethics consultants move toward professionalization, the process of certifying individual consultants or accrediting programs will be discussed and debated. With certification, some entity must be established or ordained to oversee the standards and procedures. If the process evolves like other professions, it seems plausible that it will eventually include a written examination to evaluate the core knowledge competencies that individual practitioners should possess to meet peer practice standards. The American Society for Bioethics and Humanities (ASBH) has published core knowledge competencies for many years that are accepted by experts as the prevailing standard. Probably any written examination will be based upon the ASBH core knowledge competencies. However, much remains to be done before any examination may be offered. In particular, it seems likely that a recognized examining board must create and validate examination questions and structure the examination so as to establish meaningful, defensible parameters after dealing with such challenging questions as: Should the certifying examination be multiple choice or short-answer essay? How should the test be graded? What should the pass rate be? How may the examination be best administered? To advance the field of health care ethics consultation, thought leaders should start to focus on the written examination possibilities, to date unaddressed carefully in the literature. Examination models-both objective and written-must be explored as a viable strategy about how the field of health care ethics consultations can grow toward professionalization.

  2. Structural and Magnetic Response in Bimetallic Core/Shell Magnetic Nanoparticles

    Directory of Open Access Journals (Sweden)

    Adeela Nairan

    2016-04-01

    Full Text Available Bimagnetic monodisperse CoFe2O4/Fe3O4 core/shell nanoparticles have been prepared by solution evaporation route. To demonstrate preferential coating of iron oxide onto the surface of ferrite nanoparticles X-ray diffraction (XRD, High resolution transmission electron microscope (HR-TEM and Raman spectroscopy have been performed. XRD analysis using Rietveld refinement technique confirms single phase nanoparticles with average seed size of about 18 nm and thickness of shell is 3 nm, which corroborates with transmission electron microscopy (TEM analysis. Low temperature magnetic hysteresis loops showed interesting behavior. We have observed large coercivity 15.8 kOe at T = 5 K, whereas maximum saturation magnetization (125 emu/g is attained at T = 100 K for CoFe2O4/Fe3O4 core/shell nanoparticles. Saturation magnetization decreases due to structural distortions at the surface of shell below 100 K. Zero field cooled (ZFC and Field cooled (FC plots show that synthesized nanoparticles are ferromagnetic till room temperature and it has been noticed that core/shell sample possess high blocking temperature than Cobalt Ferrite. Results indicate that presence of iron oxide shell significantly increases magnetic parameters as compared to the simple cobalt ferrite.

  3. Structural and Magnetic Response in Bimetallic Core/Shell Magnetic Nanoparticles

    Science.gov (United States)

    Nairan, Adeela; Khan, Usman; Iqbal, Munawar; Khan, Maaz; Javed, Khalid; Riaz, Saira; Naseem, Shahzad; Han, Xiufeng

    2016-01-01

    Bimagnetic monodisperse CoFe2O4/Fe3O4 core/shell nanoparticles have been prepared by solution evaporation route. To demonstrate preferential coating of iron oxide onto the surface of ferrite nanoparticles X-ray diffraction (XRD), High resolution transmission electron microscope (HR-TEM) and Raman spectroscopy have been performed. XRD analysis using Rietveld refinement technique confirms single phase nanoparticles with average seed size of about 18 nm and thickness of shell is 3 nm, which corroborates with transmission electron microscopy (TEM) analysis. Low temperature magnetic hysteresis loops showed interesting behavior. We have observed large coercivity 15.8 kOe at T = 5 K, whereas maximum saturation magnetization (125 emu/g) is attained at T = 100 K for CoFe2O4/Fe3O4 core/shell nanoparticles. Saturation magnetization decreases due to structural distortions at the surface of shell below 100 K. Zero field cooled (ZFC) and Field cooled (FC) plots show that synthesized nanoparticles are ferromagnetic till room temperature and it has been noticed that core/shell sample possess high blocking temperature than Cobalt Ferrite. Results indicate that presence of iron oxide shell significantly increases magnetic parameters as compared to the simple cobalt ferrite.

  4. Distinct features of the histone core structure in nucleosomes containing the histone H2A.B variant

    National Research Council Canada - National Science Library

    Sugiyama, Masaaki; Arimura, Yasuhiro; Shirayama, Kazuyoshi; Fujita, Risa; Oba, Yojiro; Sato, Nobuhiro; Inoue, Rintaro; Oda, Takashi; Sato, Mamoru; Heenan, Richard K; Kurumizaka, Hitoshi

    2014-01-01

    .... Comparisons with the canonical H2A nucleosome structure revealed that the DNA termini of the H2A.B nucleosome are detached from the histone core surface, and flexibly expanded toward the solvent...

  5. Structural proteins of ribonucleic acid tumor viruses. Purification of envelope, core, and internal components.

    Science.gov (United States)

    Strand, M; August, J T

    1976-01-25

    Murine type C virus structural proteins, the envelope glycopeptides, 30,000 dalton major core protein, and 15,000 dalton internal protein have each been purified to near homogeneity and in high yield from the smae batch of virus by use of phosphocellulose column chromatography and gel filtration procedures. Evidence that these proteins are specified by the viral genome was obtained by competition radioimmunoassay analysis, comparing these polypeptides from Rauscher virus cultivated in a variety of mammalian cell lines; all of the reactive antigenic determinants of these proteins appeared to be virus-specific.

  6. Diffractive imaging of transient electronic core-shell structures in a nanoplasma

    CERN Document Server

    Rupp, Daniela; Adolph, Marcus; Gorkhover, Tais; Krikunova, Maria; Müller, Jan-Phillipe; Müller, Maria; Oelze, Tim; Ovcharenko, Yevheniy; Sauppe, Mario; Schorb, Sebastian; Wolter, David; Harmand, Marion; Treusch, Rolf; Bostedt, Christoph; Möller, Thomas

    2016-01-01

    We have recorded the coherent diffraction images of individual xenon clusters using intense extreme ultraviolet free-electron laser pulses tuned to atomic and ionic resonances in order to elucidate the influence of light induced electronic changes on the diffraction pattern. The data show the emergence of a transient core-shell structure within the otherwise homogeneous sample. Simulations indicate that ionization and nanoplasma formation result in a cluster shell with strongly altered refraction. The presented resonant scattering approach enables the imaging of ultrafast electron dynamics with unprecedented spatial resolution on their natural time scale.

  7. Diverse Melting Modes and Structural Collapse of Hollow Bimetallic Core-Shell Nanoparticles: A Perspective from Molecular Dynamics Simulations

    Science.gov (United States)

    Huang, Rao; Shao, Gui-Fang; Zeng, Xiang-Ming; Wen, Yu-Hua

    2014-11-01

    Introducing hollow structures into metallic nanoparticles has become a promising route to improve their catalytic performances. A fundamental understanding of thermal stability of these novel nanostructures is of significance for their syntheses and applications. In this article, molecular dynamics simulations have been employed to offer insights into the thermodynamic evolution of hollow bimetallic core-shell nanoparticles. Our investigation reveals that for hollow Pt-core/Au-shell nanoparticle, premelting originates at the exterior surface, and a typical two-stage melting behavior is exhibited, similar to the solid ones. However, since the interior surface provides facilitation for the premelting initiating at the core, the two-stage melting is also observed in hollow Au-core/Pt-shell nanoparticle, remarkably different from the solid one. Furthermore, the collapse of hollow structure is accompanied with the overall melting of the hollow Pt-core/Au-shell nanoparticle while it occurs prior to that of the hollow Au-core/Pt-shell nanoparticle and leads to the formation of a liquid-core/solid-shell structure, although both of them finally transform into a mixing alloy with Au-dominated surface. Additionally, the existence of stacking faults in the hollow Pt-core/Au-shell nanoparticle distinctly lowers its melting point. This study could be of great importance to the design and development of novel nanocatalysts with both high activity and excellent stability.

  8. Diverse Melting Modes and Structural Collapse of Hollow Bimetallic Core-Shell Nanoparticles: A Perspective from Molecular Dynamics Simulations

    Science.gov (United States)

    Huang, Rao; Shao, Gui-Fang; Zeng, Xiang-Ming; Wen, Yu-Hua

    2014-01-01

    Introducing hollow structures into metallic nanoparticles has become a promising route to improve their catalytic performances. A fundamental understanding of thermal stability of these novel nanostructures is of significance for their syntheses and applications. In this article, molecular dynamics simulations have been employed to offer insights into the thermodynamic evolution of hollow bimetallic core-shell nanoparticles. Our investigation reveals that for hollow Pt-core/Au-shell nanoparticle, premelting originates at the exterior surface, and a typical two-stage melting behavior is exhibited, similar to the solid ones. However, since the interior surface provides facilitation for the premelting initiating at the core, the two-stage melting is also observed in hollow Au-core/Pt-shell nanoparticle, remarkably different from the solid one. Furthermore, the collapse of hollow structure is accompanied with the overall melting of the hollow Pt-core/Au-shell nanoparticle while it occurs prior to that of the hollow Au-core/Pt-shell nanoparticle and leads to the formation of a liquid-core/solid-shell structure, although both of them finally transform into a mixing alloy with Au-dominated surface. Additionally, the existence of stacking faults in the hollow Pt-core/Au-shell nanoparticle distinctly lowers its melting point. This study could be of great importance to the design and development of novel nanocatalysts with both high activity and excellent stability. PMID:25394424

  9. What does determine the sign of core in Magnetic Flux Rope structures of the Earth's magnetotail

    Directory of Open Access Journals (Sweden)

    D. V. Sarafopoulos

    2014-09-01

    Full Text Available This paper primarily examines the key factors being involved in precisely determining the sign of the core field in a magnetic flux rope (MFR like structure embedded in the tailward plasma flow associated with the Earth's magnetotail. Magnetic flux ropes are frequently detected by satellites moving smoothly northwards (upwards or southwards (downwards and crossing almost the whole plasma sheet; the sign of the rope's core is associated with the local tail's motion: If the tail is bending to an upward or downward direction, then the sign of the rope's core, being essentially an intense By deviation, will be positive or negative correspondingly. On the basis of this observational finding, a major question concerns the mechanism by which the tail's motion is dictated. The reconnection process acting in the tail will obviously produce symmetric structures of MFRs (with respect to the neutral sheet plane; therefore, the detected organized asymmetry may be an additional indication in the whole magnetotail' s dynamics. Moreover, we discuss the issue of the core's sign in cases without any significant magnetotail's motion. A model interpreting the diagnosed behavior is introduced: Once a tailward ion jet is produced in a thinned plasma sheet, it might form clockwise or counterclockwise ion vortices (i.e., loop-like ion currents providing the "magnetic core" with the appropriate sign. The crucial role of the interplanetary By deviation of the magnetic field (IMF is scrutinized and taken into account. The whole model is tested under the condition of long-lasting extraordinary events characterized by a persistent-intense By deviation with a duration up to 34 min. This work, based on Geotail single-satellite measurements, is not a statistical one; it is a first approach allowing the reconstruction of measurements in the whole range of the magnetotail's deflections, from negligible up to stronger significant magnetotail movements, and should be therefore

  10. Core size determination and structural characterization of intravenous iron complexes by cryogenic transmission electron microscopy.

    Science.gov (United States)

    Wu, Yong; Petrochenko, Peter; Chen, Lynn; Wong, Sook Yee; Absar, Mohammad; Choi, Stephanie; Zheng, Jiwen

    2016-05-30

    Understanding physicochemical properties of intravenous (IV) iron drug products is essential to ensure the manufacturing process is consistent and streamlined. The history of physicochemical characterization of IV iron complex formulations stretches over several decades, with disparities in iron core size and particle morphology as the major source of debate. One of the main reasons for this controversy is room temperature sample preparation artifacts, which affect accurate determination of size, shape and agglomeration/aggregation of nanoscale iron particles. The present study is first to report the ultra-fine iron core structures of four IV iron complex formulations, sodium ferric gluconate, iron sucrose, low molecular weight iron dextran and ferumoxytol, using a cryogenic transmission electron microscopy (cryo-TEM) preservation technique, as opposed to the conventional room temperature (RT-TEM) technique. Our results show that room temperature preparation causes nanoparticle aggregation and deformation, while cryo-TEM preserves IV iron colloidal suspension in their native frozen-hydrated and undiluted state. In contrast to the current consensus in literature, all four IV iron colloids exhibit a similar morphology of their iron oxide cores with a spherical shape, narrow size distribution and an average size of 2nm. Moreover, out of the four tested formulations, ferumoxytol exhibits a cluster-like community of several iron carbohydrate particles which likely accounts for its large hydrodynamic size of 25nm, measured with dynamic light scattering. Our findings outline a suitable method for identifying colloidal nanoparticle core size in the native state, which is increasingly important for manufacturing and design control of complex drug formulations, such as IV iron drug products.

  11. The Chicxulub impact structure: What does the Yaxcopoil-1 drill core reveal?

    Science.gov (United States)

    Elbra, T.

    2013-05-01

    The Chicxulub impact structure, one of the largest impact structures on Earth, was formed 65 Ma by hypervelocity impact which led to the large mass-extinction at K-Pg boundary. This well preserved but buried structure has undergone numerous drillings and studies aimed to understand the formation mechanism, structure and age of the crater. The Yaxcopoil-1 (Yax-1) drill core, located in the southern sector of the Chicxulub crater, in the outer part of an annular trough, 62 km from the crater center, was drilled by ICDP in 2001-2002. Petrophysical, rock- and paleomagnetic studies of Yax-1 (Elbra and Pesonen, 2011) showed that physical properties characterize the various lithological units. Dependence on mineral composition rather than fabric was observed in pre-impact lithologies contrarily to the post-impact and impact rocks where the physical properties were dominated by porosity and reflected, in case of impactites, the impact formation mechanism with its numerous features resulting from melting, brecciation and fracturing. Furthermore, while the pre- and post-impact lithologies in Yax-1 are mostly dia- or paramagnetic, the impactite units indicated enhanced magnetizations and the presence of ferromagnetic, probably hydrothermally deposited magnetite and pyrrhotite. The sharp contrast of the impactites to the target and to post-impact lithologies allowed establishing the contact (especially the K-Pg boundary) between. The anisotropy, shape and orientation of the magnetic fraction illustrated the fabric randomization and showed the influence of impact-related redeposition and hydrothermal activity. The paleomagnetic data suggested that the Chicxulub impact occurred during the reverse polarity geomagnetic chron 29R, which is in agreement with the isotopic dates of the Chicxulub impact as well as with expected K-Pg boundary polarity. Reference Elbra, T. and Pesonen, L.J., 2011. Physical properties of the Yaxcopoil-1 deep drill core, Chicxulub impact structure, Mexico

  12. Structure of the RNA polymerase core-binding domain of sigma(54) reveals a likely conformational fracture point.

    Science.gov (United States)

    Hong, Eunmi; Doucleff, Michaeleen; Wemmer, David E

    2009-07-03

    Transcription initiation by bacterial sigma(54)-RNA polymerase requires a conformational change of the holopolymerase-DNA complex, driven by an enhancer-binding protein. Although structures of the core polymerase and the more common sigma(70) factor have been determined, little is known about the structure of the sigma(54) variant. We report here the structure of an Aquifex aeolicus sigma(54) domain (residues 69-198), which binds core RNA polymerase. The structure is composed of two distinct subdomains held together by a small, conserved hydrophobic interface that appears to act as a fracture point in the structure. The N-terminal, four-helical subdomain has a negative surface and conserved residues that likely contact the core polymerase, while the C-terminal, three-helical bundle has a strongly positive patch that could contact DNA. Sequence conservation indicates that these structural features are conserved and are important for the role of sigma(54) in the polymerase complex.

  13. Genetic Structure and Selection of a Core Collection for Long Term Conservation of Avocado in Mexico

    Science.gov (United States)

    Guzmán, Luis F.; Machida-Hirano, Ryoko; Borrayo, Ernesto; Cortés-Cruz, Moisés; Espíndola-Barquera, María del Carmen; Heredia García, Elena

    2017-01-01

    Mexico, as the center of origin of avocado (Persea americama Mill.), harbors a wide genetic diversity of this species, whose identification may provide the grounds to not only understand its unique population structure and domestication history, but also inform the efforts aimed at its conservation. Although molecular characterization of cultivated avocado germplasm has been studied by several research groups, this had not been the case in Mexico. In order to elucidate the genetic structure of avocado in Mexico and the sustainable use of its genetic resources, 318 avocado accessions conserved in the germplasm collection in the National Avocado Genebank were analyzed using 28 markers [9 expressed sequence tag-Simple Sequence Repeats (SSRs) and 19 genomic SSRs]. Deviation from Hardy Weinberg Equilibrium and high inter-locus linkage disequilibrium were observed especially in drymifolia, and guatemalensis. Total averages of the observed and expected heterozygosity were 0.59 and 0.75, respectively. Although clear genetic differentiation was not observed among 3 botanical races: americana, drymifolia, and guatemalensis, the analyzed Mexican population can be classified into two groups that correspond to two different ecological regions. We developed a core-collection by K-means clustering method. The selected 36 individuals as core-collection successfully represented more than 80% of total alleles and showed heterozygosity values equal to or higher than those of the original collection, despite its constituting slightly more than 10% of the latter. Accessions selected as members of the core collection have now become candidates to be introduced in cryopreservation implying a minimum loss of genetic diversity and a back-up for existing field collections of such important genetic resources. PMID:28286510

  14. From field to database : a user-oriented approche to promote cyber-curating of scientific drilling cores

    Science.gov (United States)

    Pignol, C.; Arnaud, F.; Godinho, E.; Galabertier, B.; Caillo, A.; Billy, I.; Augustin, L.; Calzas, M.; Rousseau, D. D.; Crosta, X.

    2016-12-01

    Managing scientific data is probably one the most challenging issues in modern science. In plaeosciences the question is made even more sensitive with the need of preserving and managing high value fragile geological samples: cores. Large international scientific programs, such as IODP or ICDP led intense effort to solve this problem and proposed detailed high standard work- and dataflows thorough core handling and curating. However many paleoscience results derived from small-scale research programs in which data and sample management is too often managed only locally - when it is… In this paper we present a national effort leads in France to develop an integrated system to curate ice and sediment cores. Under the umbrella of the national excellence equipment program CLIMCOR, we launched a reflexion about core curating and the management of associated fieldwork data. Our aim was then to conserve all data from fieldwork in an integrated cyber-environment which will evolve toward laboratory-acquired data storage in a near future. To do so, our demarche was conducted through an intimate relationship with field operators as well laboratory core curators in order to propose user-oriented solutions. The national core curating initiative proposes a single web portal in which all teams can store their fieldwork data. This portal is used as a national hub to attribute IGSNs. For legacy samples, this requires the establishment of a dedicated core list with associated metadata. However, for forthcoming core data, we developed a mobile application to capture technical and scientific data directly on the field. This application is linked with a unique coring-tools library and is adapted to most coring devices (gravity, drilling, percussion etc.) including multiple sections and holes coring operations. Those field data can be uploaded automatically to the national portal, but also referenced through international standards (IGSN and INSPIRE) and displayed in international

  15. Impact of structure and functionality of core polyol in highly functional biobased epoxy resins.

    Science.gov (United States)

    Pan, Xiao; Webster, Dean C

    2011-09-01

    Highly functional biobased epoxy resins were prepared using dipentaerythritol (DPE), tripentaerythritol (TPE), and sucrose as core polyols that were substituted with epoxidized soybean oil fatty acids, and the impact of structure and functionality of the core polyol on the properties of the macromolecular resins and their epoxy-anhydride thermosets was explored. The chemical structures, functional groups, molecular weights, and compositions of epoxies were characterized using nuclear magnetic resonance (NMR) spectroscopy, Fourier-transform infrared (FTIR) spectroscopy, gel permeation chromatography (GPC), and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI MS). The epoxies were also studied for their bulk viscosity, intrinsic viscosity, and density. Crosslinked with dodecenyl succinic anhydride (DDSA), epoxy-anhydride thermosets were evaluated using differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), tensile tests, and tests of coating properties. Epoxidized soybean oil (ESO) was used as a control. Overall, the sucrose-based thermosets exhibited the highest moduli, having the most rigid and ductile performance while maintaining the highest biobased content. DPE/TPE-based thermosets showed modestly better thermosetting performance than the control ESO thermoset.

  16. Interface effect of magnetic properties in Ni nanoparticles with a hcp core and fcc shell structure.

    Science.gov (United States)

    Choo, Seongmin; Lee, Kyujoon; Jo, Younghun; Yoon, Seon-Mi; Choi, Jae-Young; Kim, Jea-Young; Park, Jea-Hoon; Lee, Kyung-Jin; Lee, Jong-Heun; Jung, Myung-Hwa

    2011-07-01

    We have fabricated hexagonal close-packed (hcp) Ni nanoparticles covered by a face-centered cubic (fcc) Ni surface layer by polyol method. The magnetic properties have been investigated as a function of temperature and applied magnetic field. The magnetic behavior reveals that the system should be divided magnetically into three distinct phases with different origins. The fcc Ni phase on the shell contributes to the superparamagnetism through a wide temperature range up to 360 K. The hcp Ni phase at the core is associated with antiferromagnetic nature below 12 K. These observations are in good agreement with the X-ray absorption spectroscopy and magnetic circular dichroism measurements. In our particular case, the unique hcp core and fcc shell structure gives rise to an additional anomaly at 20 K in the zero-field-cooled magnetization curve. Its position is barely affected by the magnetic field but its structure disappears above 30 kOe, showing a metamagnetic transition in the magnetization versus magnetic field curve. This new phase originates from the magnetic exchange at the interface between the hcp and fcc Ni sublattices.

  17. SYNTHESIS AND CHARACTERIZATION OF NANO METALS WITH CORE-SHELL STRUCTURE

    Institute of Scientific and Technical Information of China (English)

    Ru-Shi Liu; Hau-Ming Chen; Shu-Fen Hu

    2004-01-01

    Using AUcore-Ptshell as an example, the synthesis and characterization of nano metals with core-shell structure is demonstrated in a systematic study on the amount-dependent morphology change in a series of Au-Pt bimetallic nanoparticles synthesized using chemical reduction. While the amount of Au precursor is kept constant throughout the whole series of compounds to obtain a fixed Au core size (~7.5 nm), the Au/Pt ratio is varied from 1/1 to 1/4 in order to synthesize Pt shell layers of different thickness. We observed a remarkable shift of surface plasmon band to around 410 nm. With the aid of high resolution transmission electron microscope (HRTEM) and energy-dispersive spectrometer (EDS), the composition of the shell layer is found to be a Pt-enriched Au-Pt alloy. As the amount of Pt increases, string-like Pt clusters form on the surface of the nanoparticles. The average diameter of these Pt clusters is about 2 nm. This special structure may possess unique catalytic properties.

  18. Structural characteristics of the core layer and biomimetic model of the ladybug forewing.

    Science.gov (United States)

    Chen, Jinxiang; Xu, Mengye; Okabe, Yoji; Guo, Zhensheng; Yu, Xindi

    2017-07-19

    To explore the characteristics of the core structure of ladybug (Harmonia axyridis) forewings, their microstructure was studied using microscopes. The results suggest that trabeculae exist in the frame of the beetle (ladybug) forewing for the first time; this study represents the first determination of the parameters N, the total number of trabeculae in each forewing, and λt, the ratio of the cross-sectional area of the trabeculae to the effective area of trabecular distribution. The cross-sectional area of a single trabecula in the ladybug forewing is smaller than those in two other kinds of beetles, Allomyrina dichotoma and Prosopocoilus inclinatus. However, the average trabecular density of the ladybug forewing is 84 per square millimeter, which is the highest among these three kinds of beetles. The λt values are 1.0%, 1.5% and 10.5% for H. axyridis, A. dichotoma and P. inclinatus, respectively, and the corresponding N values are approximately 1.4, 1.7 and 3.7 thousand, respectively. Based on these findings, a biomimetic model of the ladybug forewing is proposed, which is characterized by a core structure with a high-density distribution of thin trabeculae surrounded by a foam-like material. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Fluid-structure interaction analysis of a hypothetical core disruptive accident in LMFBRs

    Energy Technology Data Exchange (ETDEWEB)

    Liu Chuang [Department of Engineering Mechanics, Tsinghua University, Beijing 100084 (China)]. E-mail: lch98@mails.tsinghua.edu.cn; Zhang Xiong [Department of Engineering Mechanics, Tsinghua University, Beijing 100084 (China); Lu Mingwan [Department of Engineering Mechanics, Tsinghua University, Beijing 100084 (China)

    2005-03-01

    To ensure safety, it is necessary to assess the integrity of a reactor vessel of liquid-metal fast breeder reactor (LMFBR) under HCDA. Several important problems for a fluid-structural interaction analysis of HCDA are discussed in the present paper. Various loading models of hypothetical core disruptive accident (HCDA) are compared and the polytropic processes of idea gas (PPIG) law is recommended. In order to define a limited total energy release, a '5% truncation criterion' is suggested. The relationship of initial pressure of gas bubble and the total energy release is given. To track the moving interfaces and to avoid the severe mesh distortion an arbitrary Lagrangrian-Eulerian (ALE) approach is adopted in the finite element modeling (FEM) analysis. Liquid separation and splash from a free surface are discussed. By using an elasticity solution under locally uniform pressure, two simplified analytical solutions for 3D and axi-symmetric case of the liquid impact pressure on roof slab are derived. An axi-symmetric finite elements code FRHCDA for fluid-structure interaction analysis of hypothetical core disruptive accident in LMFBR is developed. The CONT benchmark problem is calculated. The numerical results agree well with those from published papers.

  20. Electronic structure of edge dislocation of core-doped Ti in Fe

    Institute of Scientific and Technical Information of China (English)

    DANG Hongli; WANG Chongyu; SHU Xiaolin

    2004-01-01

    The electronic structure of an edge dislocation doped Ti lying in the (001) plane with Burgers Vector along [100] direction in body-centered cubic iron is investigated using the first principles discrete variational method (DVM) based on the density-functional theory. The binding energy, impurity formation energy, interatomic energy, Mulliken orbital populations and charge density difference are presented in this paper. By calculating the binding energy of the clean dislocation system and the Ti-doped system, it is found that the binding energy of Ti-doped dislocation system is lower than that of the clean dislocation system, which implies that the Ti-doped dislocation system is more stable than the clean dislocation system. The calculated result of the impurity formation energy predicts the trapping effect of dislocation core for Ti, which shows that Ti atom prefers to occupy the place at the dislocation core. The calculated results of the interatomic energy and the difference charge density of dislocation doped Ti system indicate that the stronger bonding formed between the Ti impurity and its neighbor Fe atoms will affect the mechanical property of edge dislocation. Considering the influence of Ti on the electronic structure and the energies, we can predict that the trace Ti in transition metal Fe with dislocation defect can give a significant contribution to the solid solution hardening effects and will influence the mechanical property of materials.

  1. Mutagenicity in a Molecule: Identification of Core Structural Features of Mutagenicity Using a Scaffold Analysis.

    Directory of Open Access Journals (Sweden)

    Kuo-Hsiang Hsu

    Full Text Available With advances in the development and application of Ames mutagenicity in silico prediction tools, the International Conference on Harmonisation (ICH has amended its M7 guideline to reflect the use of such prediction models for the detection of mutagenic activity in early drug safety evaluation processes. Since current Ames mutagenicity prediction tools only focus on functional group alerts or side chain modifications of an analog series, these tools are unable to identify mutagenicity derived from core structures or specific scaffolds of a compound. In this study, a large collection of 6512 compounds are used to perform scaffold tree analysis. By relating different scaffolds on constructed scaffold trees with Ames mutagenicity, four major and one minor novel mutagenic groups of scaffold are identified. The recognized mutagenic groups of scaffold can serve as a guide for medicinal chemists to prevent the development of potentially mutagenic therapeutic agents in early drug design or development phases, by modifying the core structures of mutagenic compounds to form non-mutagenic compounds. In addition, five series of substructures are provided as recommendations, for direct modification of potentially mutagenic scaffolds to decrease associated mutagenic activities.

  2. Novel structural features of the immunocompetent ceramide phospho-inositol glycan core from Trichomonas vaginalis.

    Science.gov (United States)

    Heiss, Christian; Wang, Zhirui; Black, Ian; Azadi, Parastoo; Fichorova, Raina N; Singh, Bibhuti N

    2016-01-01

    The ceramide phosphoinositol glycan core (CPI-GC) of the lipophosphoglycan of Trichomonas vaginalis is a major virulent factor of this common genitourinary parasite. While its carbohydrate composition has been reported before, its structure has remained largely unknown. We isolated the glycan portions of CPI-GC by nitrous acid deamination and hydrofluoric acid treatment and investigated their structures by methylation analysis and 1- and 2-D NMR. We found that the α-anomer of galactose is a major constituent of CPI-GC. The β-anomer was found exclusively at the non-reducing end of CPI-GC side chains. Furthermore the data showed that the rhamnan backbone is more complex than previously thought and that the inositol residue at the reducing end is linked to a 4-linked α-glucuronic acid (GlcA) residue. This appears to be the most striking and novel feature of this GPI-anchor type molecule.

  3. Three-dimensional structure of the inner core of rice dwarf virus

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Rice dwarf virus (RDV) is a double-shelled icosahedral virus.Using electron cryomicroscopy and computer reconstruction techniques, we have determined a 3.3 nm resolution three-dimensional (3D) structure of the inner shell capsid without the outer shell and viral RNA. The results show that the inner shell is a thin, densely packed, smooth structure, which provides a scaffold for the full virus. A total of 120 copies of the major inner shell capsid protein P3 forms 60 dimers arranged in a T=1 icosahedral lattice. A close examination on the subunit packing of the T=1 inner core P3 with that of the T=13l outer shell P8 indicated that P8 trimers connect with P3 through completely non-equivalent, yet highly specific, intermolecular interactions.

  4. Isostructural solid-solid phase transition in monolayers of soft core-shell particles at fluid interfaces: structure and mechanics.

    Science.gov (United States)

    Rey, Marcel; Fernández-Rodríguez, Miguel Ángel; Steinacher, Mathias; Scheidegger, Laura; Geisel, Karen; Richtering, Walter; Squires, Todd M; Isa, Lucio

    2016-04-21

    We have studied the complete two-dimensional phase diagram of a core-shell microgel-laden fluid interface by synchronizing its compression with the deposition of the interfacial monolayer. Applying a new protocol, different positions on the substrate correspond to different values of the monolayer surface pressure and specific area. Analyzing the microstructure of the deposited monolayers, we discovered an isostructural solid-solid phase transition between two crystalline phases with the same hexagonal symmetry, but with two different lattice constants. The two phases corresponded to shell-shell and core-core inter-particle contacts, respectively; with increasing surface pressure the former mechanically failed enabling the particle cores to come into contact. In the phase-transition region, clusters of particles in core-core contacts nucleate, melting the surrounding shell-shell crystal, until the whole monolayer moves into the second phase. We furthermore measured the interfacial rheology of the monolayers as a function of the surface pressure using an interfacial microdisk rheometer. The interfaces always showed a strong elastic response, with a dip in the shear elastic modulus in correspondence with the melting of the shell-shell phase, followed by a steep increase upon the formation of a percolating network of the core-core contacts. These results demonstrate that the core-shell nature of the particles leads to a rich mechanical and structural behavior that can be externally tuned by compressing the interface, indicating new routes for applications, e.g. in surface patterning or emulsion stabilization.

  5. Genetic diversity and structure of core collection of winter mushroom (Flammulina velutipes) developed by genomic SSR markers.

    Science.gov (United States)

    Liu, Xiao Bin; Li, Jing; Yang, Zhu L

    2018-01-01

    A core collection is a subset of an entire collection that represents as much of the genetic diversity of the entire collection as possible. The establishment of a core collection for crops is practical for efficient management and use of germplasm. However, the establishment of a core collection of mushrooms is still in its infancy, and no established core collection of the economically important species Flammulina velutipes has been reported. We established the first core collection of F. velutipes, containing 32 strains based on 81 genetically different F. veltuipes strains. The allele retention proportion of the core collection for the entire collection was 100%. Moreover, the genetic diversity parameters (the effective number of alleles, Nei's expected heterozygosity, the number of observed heterozygosity, and Shannon's information index) of the core collection showed no significant differences from the entire collection (p > 0.01). Thus, the core collection is representative of the genetic diversity of the entire collection. Genetic structure analyses of the core collection revealed that the 32 strains could be clustered into 6 groups, among which groups 1 to 3 were cultivars and groups 4 to 6 were wild strains. The wild strains from different locations harbor their own specific alleles, and were clustered stringently in accordance with their geographic origins. Genetic diversity analyses of the core collection revealed that the wild strains possessed greater genetic diversity than the cultivars. We established the first core collection of F. velutipes in China, which is an important platform for efficient breeding of this mushroom in the future. In addition, the wild strains in the core collection possess favorable agronomic characters and produce unique bioactive compounds, adding value to the platform. More attention should be paid to wild strains in further strain breeding.

  6. Crystal structure of the yeast TSC1 core domain and implications for tuberous sclerosis pathological mutations.

    Science.gov (United States)

    Sun, Wei; Zhu, Ye Julia; Wang, Zhizhi; Zhong, Qiang; Gao, Feng; Lou, Jizhong; Gong, Weimin; Xu, Wenqing

    2013-01-01

    Tuberous sclerosis complex is a disease caused by mutations in two tumor-suppressor genes, TSC1 and TSC2. The TSC1 protein, also known as hamartin, has a critical role in controlling mTOR signalling. TSC1 does not bear apparent sequence homology with other proteins. Here we show that the N-terminal half of yeast TSC1 forms a protease-resistant domain, which is evolutionarily conserved. The crystal structure of this yeast TSC1 core domain shows that it contains a pseudo-HEAT repeat fold with its C-terminal end capped by a helical subdomain. This allows us to model the three-dimensional structure of the human TSC1 N-terminal domain (TSC1-NTD), which anchors essentially all pathogenic TSC1 missense mutations found in tuberous sclerosis patients. Interestingly, most pathogenic mutations map inside of the folded TSC1-NTD structure, whereas most non-pathogenic variants are on the structural surface. This indicates that the disruption of the TSC1-NTD globular structure is a major cause of tuberous sclerosis.

  7. Caloric Restriction Promotes Structural and Metabolic Changes in the Skin

    Directory of Open Access Journals (Sweden)

    Maria Fernanda Forni

    2017-09-01

    Full Text Available Caloric restriction (CR is the most effective intervention known to enhance lifespan, but its effect on the skin is poorly understood. Here, we show that CR mice display fur coat remodeling associated with an expansion of the hair follicle stem cell (HFSC pool. We also find that the dermal adipocyte depot (dWAT is underdeveloped in CR animals. The dermal/vennule annulus vasculature is enlarged, and a vascular endothelial growth factor (VEGF switch and metabolic reprogramming in both the dermis and the epidermis are observed. When the fur coat is removed, CR mice display increased energy expenditure associated with lean weight loss and locomotion impairment. Our findings indicate that CR promotes extensive skin and fur remodeling. These changes are necessary for thermal homeostasis and metabolic fitness under conditions of limited energy intake, suggesting a potential adaptive mechanism.

  8. 提升焊管企业核心竞争力的有效途径%Effective Way to Promoting Core Competitiveness of Welded Pipe Enterprise

    Institute of Scientific and Technical Information of China (English)

    白功利

    2012-01-01

    针对目前国内外焊管产品市场供大于求的局面,以及我国焊管产品出口面临的严峻形势,分析了我国焊管生产技术、机组装备水平及高端焊管产品的研发状况,探讨了提升我国焊管企业核心竞争力的几种有效途径,包括企业集团战略的实施、生产技术和装备水平的不断改进、企业科技创新和产品结构的调整以及品牌战略和人才战略的实施.最后对焊管企业的管理和发展提出了建议.%Aimaing at oversupply situation of welded pipe products in domestic and overseas market, and the severe situation for China welded pipe products export, it analyzed welded pipe production technology, unit equipment level and development status of high-end welded pipe products in China domestic, disscussed several effective ways to promoting core competitiveness of welded pipe enterprise, including implementating corporate group strategy, updating technology and equipment level, technological innovation, adjusting product structure, and carrying out brand strategy and talent strategy. In the end, it put forward proposals to management and development for welded pipe enterprise.

  9. Insertion of core CpG island element into human CMV promoter for enhancing recombinant protein expression stability in CHO cells.

    Science.gov (United States)

    Mariati; Yeo, Jessna H M; Koh, Esther Y C; Ho, Steven C L; Yang, Yuansheng

    2014-01-01

    The human cytomegalovirus promoter (hCMV) is susceptible to gene silencing in CHO cells, most likely due to epigenetic events, such as DNA methylation and histone modifications. The core CpG island element (IE) from the hamster adenine phosphoribosyltransferase gene has been shown to prevent DNA methylation. A set of modified hCMV promoters was developed by inserting one or two copies of IE in either forward or reverse orientations either upstream of the hCMV enhancer, between the enhancer and core promoter (CP), or downstream of the CP. The modified hCMV with one copy of IE inserted between the enhancer and core promoter in reverse orientation (MR1) was most effective at enhancing expression stability without compromising expression level when compared with the wild-type (WT) hCMV. A third of 18 EGFP expressing clones generated using MR1 retained 70% of their starting expression level after 8 weeks of culture in the absence of selection pressure, while none of 18 WT hCMV generated clones had expression above 50%. MR1 also improved antibody expression stability of methotrexate (MTX) amplified CHO cell lines. Stably transfected pools generated using MR1 maintained 62% of their original monoclonal antibody titer after 8 weeks of culture in the absence of MTX, compared to only 37% for WT hCMV pools. Low levels of CpG methylation within both WT hCMV and MR1 were observed in all the analyzed cell lines and the methylation levels did not correlate to the expression stability, suggesting IE enhances expression stability by other mechanisms other than preventing methylation. © 2014 American Institute of Chemical Engineers.

  10. Development of in-service inspection system for core support graphite structures in the high temperature engineering test reactor (HTTR)

    Energy Technology Data Exchange (ETDEWEB)

    Sumita, Junya; Hanawa, Satoshi; Kikuchi, Takayuki; Ishihara, Masahiro [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    2003-03-01

    Visual inspection of core support graphite structures using TV camera as in-service inspection and measurement of material characteristics using surveillance test specimens are planned in the High Temperature Engineering Test Reactor (HTTR) to confirm structural integrity of the core support graphite structures. For the visual inspection, in-service inspection system developed from September 1996 to June 1998, and pre-service inspection using the system was carried out. As the result of the pre-service inspection, it was validated that high quality of visual inspection with TV camera can be carried out, and also structural integrity of the core support graphite structures at the initial stage of the HTTR operation was confirmed. (author)

  11. Core-Shell Structural CdS@SnO₂ Nanorods with Excellent Visible-Light Photocatalytic Activity for the Selective Oxidation of Benzyl Alcohol to Benzaldehyde.

    Science.gov (United States)

    Liu, Ya; Zhang, Ping; Tian, Baozhu; Zhang, Jinlong

    2015-07-01

    Core-shell structural CdS@SnO2 nanorods (NRs) were fabricated by synthesizing SnO2 nanoparticles with a solvent-assisted interfacial reaction and further anchoring them on the surface of CdS NRs under ultrasonic stirring. The morphology, composition, and microstructures of the obtained samples were characterized by field-emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and nitrogen adsorption-desorption. It was found that SnO2 nanoparticles can be tightly anchored on the surface of CdS NRs, and the thickness of SnO2 shells can be conveniently adjusted by simply changing the addition amount of SnO2 quantum dots. UV-vis diffuse reflectance spectrum indicated that SnO2 shell layer also can enhance the visible light absorption of CdS NRs to a certain extent. The results of transient photocurrents and photoluminescence spectra revealed that the core-shell structure can effectively promote the separation rate of electron-hole pairs and prolong the lifetime of electrons. Compared with the single CdS NRs, the core-shell structural CdS@SnO2 exhibited a remarkably enhanced photocatalytic activity for selective oxidation of benzyl alcohol (BA) to benzaldehyde (BAD) under visible light irradiation, attributed to the more efficient separation of electrons and holes, improved surface area, and enhanced visible light absorption of core-shell structure. The radical scavenging experiments proved that in acetonitrile solution, ·O2- and holes are the main reactive species responsible for BA to BAD transformation, and the lack of ·OH radicals is favorable to obtaining high reaction selectivity.

  12. HCV core protein promotes liver fibrogenesis via up-regulation of CTGF with TGF-beta1.

    Science.gov (United States)

    Shin, Ju Yeop; Hur, Wonhee; Wang, Jin Sang; Jang, Jeong Won; Kim, Chang Wook; Bae, Si Hyun; Jang, Sung Key; Yang, Se-Hwan; Sung, Young Chul; Kwon, Oh-Joo; Yoon, Seung Kew

    2005-04-30

    Liver cirrhosis is one of the major complications of hepatitis C virus (HCV) infection, but the mechanisms underlying HCV-related fibrogenesis are still not clear. Although the roles of HCV core protein remain poorly understood, it is supposed to play an important role in the regulation of cellular growth and hepatocarcinogenesis. The aim of this study was to examine the role of HCV core protein on the hepatic fibrogenesis. We established an in vitro co-culture system with primary hepatic stellate cell (HSC) isolated from rats, and a stable HepG2-HCV core cell line which had been transfected with HCV core gene. The expressions of fibrosis-related molecules transforming growth factor beta1 (TGF-beta1), transforming growth factor beta receptor II (TGFbetaRII), alpha-smooth muscle actin (alpha-SMA) and connective tissue growth factor (CTGF) were analyzed via histological or molecular methods. In addition, the expression levels of matrix metaloprotinase-2 (MMP-2) and collagen type I (Col I) from the co-cultured media were measured by zymogram and ELISA, respectively. The expressions of alpha-SMA, TGF-beta1, Col I, TGFbetaRII and MMP-2 were significantly increased in the co-culture of stable HepG2-HCV core with HSC. Moreover, the significant increases of CTGF and TGF-beta1 in the HCV core-expressing cells were observed by either Northern or Western blot analysis. These results suggest that HCV core protein may contribute to the hepatic fibrogenesis via up-regulation of CTGF and TGF-beta1.

  13. Domains of Core Competency, Standards, and Quality Assurance for Building Global Capacity in Health Promotion: The Galway Consensus Conference Statement

    Science.gov (United States)

    Allegrante, John P.; Barry, Margaret M.; Airhihenbuwa, Collins O.; Auld, M. Elaine; Collins, Janet L.; Lamarre, Marie-Claude; Magnusson, Gudjon; McQueen, David V.; Mittelmark, Maurice B.

    2009-01-01

    This paper reports the outcome of the Galway Consensus Conference, an effort undertaken as a first step toward international collaboration on credentialing in health promotion and health education. Twenty-nine leading authorities in health promotion, health education, and public health convened a 2-day meeting in Galway, Ireland, during which the…

  14. Punishment can promote defection in group-structured populations.

    Science.gov (United States)

    Powers, Simon T; Taylor, Daniel J; Bryson, Joanna J

    2012-10-21

    Pro-social punishment, whereby cooperators punish defectors, is often suggested as a mechanism that maintains cooperation in large human groups. Importantly, models that support this idea have to date only allowed defectors to be the target of punishment. However, recent empirical work has demonstrated the existence of anti-social punishment in public goods games. That is, individuals that defect have been found to also punish cooperators. Some recent theoretical studies have found that such anti-social punishment can prevent the evolution of pro-social punishment and cooperation. However, the evolution of anti-social punishment in group-structured populations has not been formally addressed. Previous work has informally argued that group-structure must favour pro-social punishment. Here we formally investigate how two demographic factors, group size and dispersal frequency, affect selection pressures on pro- and anti-social punishment. Contrary to the suggestions of previous work, we find that anti-social punishment can prevent the evolution of pro-social punishment and cooperation under a range of group structures. Given that anti-social punishment has now been found in all studied extant human cultures, the claims of previous models showing the co-evolution of pro-social punishment and cooperation in group-structured populations should be re-evaluated.

  15. Sub Angstrom imaging of dislocation core structures: How well areexperiments comparable with theory?

    Energy Technology Data Exchange (ETDEWEB)

    Kisielowski, C.; Freitag, B.; Xu, X.; Beckman, S.P.; Chrzan, D.C.

    2005-12-16

    During the past 50 years Transmission Electron Microscopy (TEM) has evolved from an imaging tool to a quantitative method that approaches the ultimate goal of understanding the atomic structure of materials atom by atom in three dimensions both experimentally and theoretically. Today's TEM abilities are tested in the special case of a Ga terminated 30 degree partial dislocation in GaAs:Be where it is shown that a combination of high-resolution phase contrast imaging, Scanning TEM, and local Electron Energy Loss Spectroscopy allows for a complete analysis of dislocation cores and associated stacking faults. We find that it is already possible to locate atom column positions with picometer precision in directly interpretable images of the projected crystal structure and that chemically different elements can already be identified together with their local electronic structure. In terms of theory, the experimental results can be quantitatively compared with ab initio electronic structure total energy calculations. By combining elasticity theory methods with atomic theory an equivalent crystal volume can be addressed. Therefore, it is already feasible to merge experiments and theory on a picometer length scale. While current experiments require the utilization of different, specialized instruments it is foreseeable that the rapid improvement of electron optical elements will soon generate a next generation of microscopes with the ability to image and analyze single atoms in one instrument with deep sub Angstrom spatial resolution and an energy resolution better than 100 meV.

  16. X-ray photoelectron spectroscopy studies on core-shell structured nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, M. [Surface Physics Division, Saha Institute of Nuclear Physics, Kolkata 700064 (India); Basu, S.; Ghosh, B. [Unit on Nano Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India); Chakravorty, D. [Unit on Nano Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India)], E-mail: mlsdc@iacs.res.in

    2007-08-15

    Core-shell nanostructures were grown in silica-based glasses. Copper-copper oxide and iron-iron oxide structures had diameters in the range 3-6 nm, with shell thicknesses {approx}1-2 nm. Silver-lithium niobate core-shell nanostructures had diameters in the range 4.2-46 nm and thicknesses varying from 2.2 to 22 nm. X-ray photoelectron spectroscopy studies were carried out on all these specimens. The analyses of these results show the presence of Cu{sup +}/Cu{sup 2+}, Fe{sup 2+}/Fe{sup 3+} and Nb{sup 4+}/Nb{sup 5+} valence states in the above three systems. Electrical resistivity data were fitted satisfactorily to the small polaron hopping model in the case of copper and iron-containing specimens. The presence of ions in the lithium niobate shell provides direct evidence of the formation of localized states between which variable range hopping conduction can be effected.

  17. Feedback, scatter and structure in the core of the PKS 0745-191 galaxy cluster

    CERN Document Server

    Sanders, J S; Hlavacek-Larrondo, J; Russell, H R; Taylor, G B; Hofmann, F; Tremblay, G; Walker, S A

    2014-01-01

    We present Chandra X-ray Observatory observations of the core of the galaxy cluster PKS 0745-191. Its centre shows X-ray cavities caused by AGN feedback and cold fronts with an associated spiral structure. The cavity energetics imply they are powerful enough to compensate for cooling. Despite the evidence for AGN feedback, the Chandra and XMM-RGS X-ray spectra are consistent with a few hundred solar masses per year cooling out of the X-ray phase, sufficient to power the emission line nebula. The coolest X-ray emitting gas and brightest nebula emission is offset by around 5 kpc from the radio and X-ray nucleus. Although the cluster has a regular appearance, its core shows density, temperature and pressure deviations over the inner 100 kpc, likely associated with the cold fronts. After correcting for ellipticity and projection effects, we estimate density fluctuations of ~4 per cent, while temperature, pressure and entropy have variations of 10-12 per cent. We describe a new code, MBPROJ, able to accurately obt...

  18. Core level excitations—A fingerprint of structural and electronic properties of epitaxial silicene

    Energy Technology Data Exchange (ETDEWEB)

    Friedlein, R., E-mail: friedl@jaist.ac.jp; Fleurence, A.; Aoyagi, K.; Yamada-Takamura, Y. [School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1, Asahidai, Nomi, Ishikawa 923-1292 (Japan); Jong, M. P. de; Van Bui, H.; Wiggers, F. B. [MESA Institute for Nanotechnology, University of Twente, 7500 AE Enschede (Netherlands); Yoshimoto, S.; Koitaya, T.; Shimizu, S.; Noritake, H.; Mukai, K.; Yoshinobu, J. [The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan)

    2014-05-14

    From the analysis of high-resolution Si 2p photoelectron and near-edge x-ray absorption fine structure (NEXAFS) spectra, we show that core level excitations of epitaxial silicene on ZrB{sub 2}(0001) thin films are characteristically different from those of sp{sup 3}-hybridized silicon. In particular, it is revealed that the lower Si 2p binding energies and the low onset in the NEXAFS spectra as well as the occurrence of satellite features in the core level spectra are attributed to the screening by low-energy valence electrons and interband transitions between π bands, respectively. The analysis of observed Si 2p intensities related to chemically distinct Si atoms indicates the presence of at least one previously unidentified component. The presence of this component suggests that the observation of stress-related stripe domains in scanning tunnelling microscopy images is intrinsically linked to the relaxation of Si atoms away from energetically unfavourable positions.

  19. Inner Structure of Starless Core L694--2 Derived from Millimeter-Wave Interferometry

    CERN Document Server

    Harvey, D W A; Myers, P C; Tafalla, M; Harvey, Daniel W.A.; Wilner, David J.; Myers, Philip C.; Tafalla, Mario

    2003-01-01

    We study the density structure of candidate contracting starless core L694-2 using 1.3 mm dust continuum observations from the IRAM Plateau de Bure Interferometer and the Berkeley-Illinois-Maryland Array, probing spatial scales from 10000-500 AU. The long baseline PdBI observations detect no emission, and limit the contamination from a compact component F_c < 2.7 mJy. This limit corresponds to a very small disk mass, M_disk < 5e-4 M_sun x (60 K / T_disk), and bolsters the ``starless'' interpretation of the core. The shorter baseline BIMA data are compared to density models using a physically motivated temperature distribution with a central minimum. This analysis provides clear evidence for a turn-over from the steep outer density profile observed in dust extinction to much more shallow behavior in the inner regions (<7500 AU). The best fit Bonnor-Ebert, Plummer-like, broken power law, and end-on cylinder models produce very similar flattened profiles and cannot be distinguished. We quantify the sens...

  20. Structure of the hot molecular core G10.47+0.03

    CERN Document Server

    Rolffs, Rainer; Zhang, Qizhou; Zapata, Luis

    2011-01-01

    The physical structure of hot molecular cores, where forming massive stars have heated up dense dust and gas, but have not yet ionized the molecules, poses a prominent challenge in the research of high-mass star formation and astrochemistry. We aim at constraining the spatial distribution of density, temperature, velocity field, and chemical abundances in the hot molecular core G10.47+0.03. With the Submillimeter Array (SMA), we obtained high spatial and spectral resolution of a multitude of molecular lines at different frequencies, including at 690 GHz. At 345 GHz, our beam size is 0.3", corresponding to 3000 AU. We analyze the data using the three-dimensional dust and line radiative transfer code RADMC-3D, and myXCLASS for line identification. We find hundreds of molecular lines from complex molecules and high excitations. Even vibrationally excited HC15N at 690 GHz is detected. The HCN abundance at high temperatures is very high. Absorption against the dust continuum occurs in twelve transitions, whose sha...

  1. Expression pattern and core region analysis of AtMPK3 promoter in response to environmental stresses

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The protein kinase AtMPK3,a component of the MAP kinase cascade,plays an important role in stress signal transduction in plant cells. To clarify how AtMPK3 is regulated at the transcriptional level in response to various environmental factors, the 1016-bp promoter sequence upstream of the transcription start site of the AtMPK3 gene was isolated. Analyses of the promoter sequence using plant promoter databases revealed that the AtMPK3 promoter contains many potential cis-acting elements involved in environmental stress responses. We constructed four deletion mutants of the AtMPK3 promoter, and introduced the intact and truncated promoter sequences fused to the β-glucuronidase (GUS) gene into Arabidopsis. GUS histochemical staining and quantitative fluorometric GUS assays were performed to visualize and compare the expression patterns in response to different environmental stimuli. The region between-188 and-62 upstream of the transcription start site was identified as the essential DNA sequence of the AtMPK3 promoter for responses to drought, high salinity, low temperature, and wounding. These results advance our understanding of the molecular mechanisms controlling AtMPK3 expression in response to different environmental stimuli.

  2. Pulse electrodeposition to prepare core-shell structured AuPt@Pd/C catalyst for formic acid fuel cell application

    Science.gov (United States)

    Lu, Xueyi; Luo, Fan; Song, Huiyu; Liao, Shijun; Li, Hualing

    2014-01-01

    A novel core-shell structured AuPt@Pd/C catalyst for the electrooxidation of formic acid is synthesized by a pulse electrodeposition process, and the AuPt core nanoparticles are obtained by a NaBH4 reduction method. The catalyst is characterized with X-ray powder diffraction and transmission electron microscopy, thermogravimetric analysis, cyclic voltammetry, CO stripping and X-ray photoelectron spectroscopy. The core-shell structure of the catalyst is revealed by the increase in particle size resulting from a Pd layer covering the AuPt core, and by a negative shift in the CO stripping peaks. The addition of a small amount of Pt improves the dispersion of Au and results in smaller core particles. The catalyst's activity is evaluated by cyclic voltammetry in formic acid solution. The catalyst shows excellent activity towards the anodic oxidation of formic acid, the mass activity reaches 4.4 A mg-1Pd and 0.83 A mg-1metal, which are 8.5 and 1.6 times that of commercial Pd/C. This enhanced electrocatalytic activity could be ascribed to the good dispersion of Au core particles resulting from the addition of Pt, as well as to the interaction between the Pd shell layer and the Au and Pt in the core nanoparticles.

  3. Detailed analysis of Helicobacter pylori Fur-regulated promoters reveals a Fur box core sequence and novel Fur-regulated genes.

    Science.gov (United States)

    Pich, Oscar Q; Carpenter, Beth M; Gilbreath, Jeremy J; Merrell, D Scott

    2012-06-01

    In Helicobacter pylori, iron balance is controlled by the Ferric uptake regulator (Fur), an iron-sensing repressor protein that typically regulates expression of genes implicated in iron transport and storage. Herein, we carried out extensive analysis of Fur-regulated promoters and identified a 7-1-7 motif with dyad symmetry (5'-TAATAATnATTATTA-3'), which functions as the Fur box core sequence of H. pylori. Addition of this sequence to the promoter region of a typically non-Fur regulated gene was sufficient to impose Fur-dependent regulation in vivo. Moreover, mutation of this sequence within Fur-controlled promoters negated regulation. Analysis of the H. pylori chromosome for the occurrence of the Fur box established the existence of well-conserved Fur boxes in the promoters of numerous known Fur-regulated genes, and revealed novel putative Fur targets. Transcriptional analysis of the new candidate genes demonstrated Fur-dependent repression of HPG27_51, HPG27_52, HPG27_199, HPG27_445, HPG27_825 and HPG27_1063, as well as Fur-mediated activation of the cytotoxin associated gene A, cagA (HPG27_507). Furthermore, electrophoretic mobility shift assays confirmed specific binding of Fur to the promoters of each of these genes. Future experiments will determine whether loss of Fur regulation of any of these particular genes contributes to the defects in colonization exhibited by the H. pylori fur mutant.

  4. Polystyrene-ZnO core-shell microspheres and hollow ZnO structures synthesized with the sulfonated polystyrene templates

    Science.gov (United States)

    Yang, Yang; Chu, Ying; Zhang, Yanping; Yang, Fuyong; Liu, Jinglin

    2006-02-01

    Mono-sized sulfonated polystyrene (PS) microspheres were used as templates to prepare PS-zinc oxide (ZnO) core-shell microspheres. Two different hollow ZnO structures were obtained after removing the PS cores by solvent extraction or calcinations. However, we obtained rod-like ZnO by either using unsulfonated PS microspheres as templates or without any templates. Transmission electron microscope (TEM) and scanning electron microscope (SEM) images were used to characterize the structures and morphologies of all the samples. X-ray diffraction (XRD), electron diffraction (ED) and infrared (IR) spectra were, respectively, used to study the crystal structure and composition of samples, respectively.

  5. A simple method to prepare titania nanomaterials of core-shell structure,hollow nanospheres and mesoporous nanoparticles

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hui; LI DeQian; SHAO GaoSong; YUAN ZhongYong

    2009-01-01

    A simple method to prepare titania nanomaterials of core-shell structure,hollow nanospheres and mesoporous nanoparticlee has been developed.The core-shell nanostructures with NH4CI as core and aggregated NH4Cl crystals,which could be transformed into mesoporous anatase nanoparticles or hollow nanospheres by calcination at 500℃ or extraction with methanol,respectively.The hierarchical mesoporous nanostructures benefited the photocatalytic activities of the resultant titania nanomaterials,demonstrated by the UV light photodegradation of Methyl Orange.

  6. All-fiber modal interferometer based on an up-taper-core-offset structure for curvature sensing

    Institute of Scientific and Technical Information of China (English)

    马林; 齐艳辉; 孙将; 康泽新; 简水生

    2015-01-01

    A high-sensitivity curvature sensor based on an up-taper-core-offset structure is proposed and demonstrated in this paper. Here two specially designed cascaded up-tapers with maximum diameters of 247 µm and 251 µm, respectively, are used as a cladding mode exciting component. The excited cladding modes will propagate in the cladding and re-couplers with the core mode at the core-offset jointing point. When the curvature is changed, the dip wavelength of the sensor will shift to a blue wavelength and an average curvature sensitivity of more than−12.5 nm/m−1 is achieved within the measured curvature intervals.

  7. A simple method to prepare titania nanomaterials of core-shell structure, hollow nanospheres and mesoporous nanoparticles

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A simple method to prepare titania nanomaterials of core-shell structure, hollow nanospheres and mesoporous nanoparticles has been developed. The core-shell nanostructures with NH4Cl as core and TiO2·xH2O-NH4Cl as shell were prepared in nonaqueous system by the deposition on the surface of the aggregated NH4Cl crystals, which could be transformed into mesoporous anatase nanoparticles or hollow nanospheres by calcination at 500℃ or extraction with methanol, respectively. The hierarchical mesoporous nanostructures benefited the photocatalytic activities of the resultant titania nanomateri-als, demonstrated by the UV light photodegradation of Methyl Orange.

  8. Dislocation Core Structure and Peierls Stress of B2-Based AlSc in {110} Plane

    Science.gov (United States)

    Li, S. R.; Wu, X. Z.; Zhang, T.; Tian, Y. X.; Yan, Z. X.; Zhu, H. Z.

    2016-10-01

    The core structure and Peierls stress of , , and dislocations in {110} plane of B2-based AlSc (B2-AlSc) have been investigated using improved dislocation equations combined with the generalized stacking fault (GSF) energy. The truncated approximation method is utilized to construct the dissociated and undissociated dislocations in AlSc, then the effects of dislocation angles on the elastic strain energy and misfit energy are presented. Specifically, with increasing dislocation angle, the misfit energy, elastic strain energy, and total energy, and their corresponding stresses, decrease on the {110} and {110} slip systems. However, for {110} dislocation, all energies and corresponding stresses exhibit the relationship 0° > 54.7° > 35.3° > 90°. The misfit energy is always smaller than the elastic strain energy, even by one or two orders of magnitude, and their phases are always opposite.

  9. Crystal structure of the RC-LH1 core complex from Rhodopseudomonas palustris.

    Science.gov (United States)

    Roszak, Aleksander W; Howard, Tina D; Southall, June; Gardiner, Alastair T; Law, Christopher J; Isaacs, Neil W; Cogdell, Richard J

    2003-12-12

    The crystal structure at 4.8 angstrom resolution of the reaction center-light harvesting 1 (RC-LH1) core complex from Rhodopseudomonas palustris shows the reaction center surrounded by an oval LH1 complex that consists of 15 pairs of transmembrane helical alpha- and beta-apoproteins and their coordinated bacteriochlorophylls. Complete closure of the RC by the LH1 is prevented by a single transmembrane helix, out of register with the array of inner LH1 alpha-apoproteins. This break, located next to the binding site in the reaction center for the secondary electron acceptor ubiquinone (UQB), may provide a portal through which UQB can transfer electrons to cytochrome b/c1.

  10. Crystal Structure of the Catalytic Core of an RNA-Polymerase Ribozyme

    Energy Technology Data Exchange (ETDEWEB)

    Shechner, David M.; Grant, Robert A.; Bagby, Sarah C.; Koldobskaya, Yelena; Piccirilli, Joseph A.; Bartel, David P.; (MIT); (HHMI); (UC)

    2010-09-02

    Primordial organisms of the putative RNA world would have required polymerase ribozymes able to replicate RNA. Known ribozymes with polymerase activity best approximating that needed for RNA replication contain at their catalytic core the class I RNA ligase, an artificial ribozyme with a catalytic rate among the fastest of known ribozymes. Here we present the 3.0 angstrom crystal structure of this ligase. The architecture resembles a tripod, its three legs converging near the ligation junction. Interacting with this tripod scaffold through a series of 10 minor-groove interactions (including two A-minor triads) is the unpaired segment that contributes to and organizes the active site. A cytosine nucleobase and two backbone phosphates abut the ligation junction; their location suggests a model for catalysis resembling that of proteinaceous polymerases.

  11. The core and O-polysaccharide structure of the Caulobacter crescentus lipopolysaccharide.

    Science.gov (United States)

    Jones, Michael D; Vinogradov, Evgeny; Nomellini, John F; Smit, John

    2015-01-30

    Here we describe the analysis of the structure of the lipopolysaccharide (LPS) from Caulobacter crescentus strain JS1025, a derivative of C. crescentus CB15 NA1000 with an engineered amber mutation in rsaA, leading to the loss of the protein S-layer and gene CCNA_00471 encoding a putative GDP-L-fucose synthase. LPS was isolated using an aqueous membrane disruption method. Polysaccharide and core oligosaccharide were produced by mild acid hydrolysis and analyzed by nuclear magnetic resonance spectroscopy and chemical methods. Spectra revealed the presence of two polysaccharides, one of them, a rhamnan, could be removed using periodate oxidation. Another polymer, built from 4-amino-4-deoxy-D-rhamnose (perosamine), mannose, and 3-O-methyl-glucose, should be the O-chain of the LPS according to genetic data. The attribution of the rhamnan as a part of LPS or a separate polymer was not possible.

  12. Core-shell structured nanospheres with mesoporous silica shell and Ni core as a stable catalyst for hydrolytic dehydrogenation of ammonia borane

    Institute of Scientific and Technical Information of China (English)

    Hua; Liu; Changyan; Cao; Ping; Li; Yu; Yu; Weiguo; Song

    2014-01-01

    Core-shell structured nanospheres with mesoporous silica shell and Ni core(denoted as Ni@meso-SiO2) are prepared through a three-step process. Monodispersed Ni precursors are first prepared, and then coated with mesoporous SiO2. Final Ni@meso-SiO2spheres are obtained after calcination. The products are characterized by X-ray powder diffraction, transmission electron microscopy and N2adsorption-desorption methods. These spheres have a high surface area and are well dispersed in water, showing a high catalytic activity with a TOF value of 18.5,and outstanding stability in hydrolytic dehydrogenation of ammonia borane at room temperature.

  13. Toward core inter-professional health promotion competencies to address the non-communicable diseases and their risk factors through knowledge translation: curriculum content assessment.

    Science.gov (United States)

    Dean, Elizabeth; Moffat, Marilyn; Skinner, Margot; Dornelas de Andrade, Armele; Myezwa, Hellen; Söderlund, Anne

    2014-07-14

    To increase the global impact of health promotion related to non-communicable diseases, health professionals need evidence-based core competencies in health assessment and lifestyle behavior change. Assessment of health promotion curricula by health professional programs is a first step. Such program assessment is a means of 1. demonstrating collective commitment across health professionals to prevent non-communicable diseases; 2. addressing the knowledge translation gap between what is known about non-communicable diseases and their risk factors consistent with 'best' practice; and, 3. establishing core health-based competencies in the entry-level curricula of established health professions. Consistent with the World Health Organization's definition of health (i.e., physical, emotional and social wellbeing) and the Ottawa Charter, health promotion competencies are those that support health rather than reduce signs and symptoms primarily. A process algorithm to guide the implementation of health promotion competencies by health professionals is described. The algorithm outlines steps from the initial assessment of a patient's/client's health and the indications for health behavior change, to the determination of whether that health professional assumes primary responsibility for implementing health behavior change interventions or refers the patient/client to others.An evidence-based template for assessment of the health promotion curriculum content of health professional education programs is outlined. It includes clinically-relevant behavior change theory; health assessment/examination tools; and health behavior change strategies/interventions that can be readily integrated into health professionals' practices. Assessment of the curricula in health professional education programs with respect to health promotion competencies is a compelling and potentially cost-effective initial means of preventing and reversing non-communicable diseases. Learning evidence

  14. Cationic niosomes an effective gene carrier composed of novel spermine-derivative cationic lipids: effect of central core structures.

    Science.gov (United States)

    Opanasopit, Praneet; Leksantikul, Lalita; Niyomtham, Nattisa; Rojanarata, Theerasak; Ngawhirunpat, Tanasait; Yingyongnarongkul, Boon-Ek

    2017-05-01

    Cationic niosomes formulated from Span 20, cholesterol (Chol) and novel spermine-based cationic lipids of multiple central core structures (di(oxyethyl)amino, di(oxyethyl)amino carboxy, 3-amino-1,2-dioxypropyl and 2-amino-1,3-dioxypropyl) were successfully prepared for improving transfection efficiency in vitro. The niosomes composed of spermine cationic lipid with central core structure of di(oxyethyl)amino revealed the highest gene transfection efficiency. To investigate the factors affecting gene transfection and cell viability including differences in the central core structures of cationic lipids, the composition of vesicles, molar ratio of cationic lipids in formulations and the weight ratio of niosomes to DNA. Cationic niosomes composed of nonionic surfactants (Span20), cholesterol and spermine-based cationic lipids of multiple central core structures were formulated. Gene transfection and cell viability were evaluated on a human cervical carcinoma cell line (HeLa cells) using pDNA encoding green fluorescent protein (pEGFP-C2). The morphology, size and charge were also characterized. High transfection efficiency was obtained from cationic niosomes composed of Span20:Chol:cationic lipid at the molar ratio of 2.5:2.5:0.5 mM. Cationic lipids with di(oxyethyl)amino as a central core structure exhibited highest transfection efficiency. In addition, there was also no serum effect on transfection efficiency. These novel cationic niosomes may constitute a good alternative carrier for gene transfection.

  15. Emergence of cluster structures and collectivity within a no-core shell-model framework

    Science.gov (United States)

    Launey, K. D.; Dreyfuss, A. C.; Draayer, J. P.; Dytrych, T.; Baker, R.

    2014-12-01

    An innovative symmetry-guided concept, which capitalizes on partial as well as exact symmetries that underpin the structure of nuclei, is discussed. Within this framework, ab initio applications of the theory to light nuclei reveal the origin of collective modes and the emergence a simple orderly pattern from first principles. This provides a strategy for determining the nature of bound states of nuclei in terms of a relatively small fraction of the complete shell-model space, which, in turn, can be used to explore ultra-large model spaces for a description of alpha-cluster and highly deformed structures together with the associated rotations. We find that by using only a fraction of the model space extended far beyond current no-core shell-model limits and a long-range interaction that respects the symmetries in play, the outcome reproduces characteristic features of the low-lying 0+ states in 12 C (including the elusive Hoyle state and its 2+ excitation) and agrees with ab initio results in smaller spaces. This is achieved by selecting those particle configurations and components of the interaction found to be foremost responsible for the primary physics governing clustering phenomena and large spatial deformation in the ground-state and Hoyle-state rotational bands of 12 C. For these states, we offer a novel perspective emerging out of no-core shell-model considerations, including a discussion of associated nuclear deformation, matter radii, and density distribution. The framework we find is also extensible to negative-parity states (e.g., the 3-1 state in 12C) and beyond, namely, to the low-lying 0+ states of 8Be as well as the ground-state rotational band of Ne, Mg, and Si isotopes. The findings inform key features of the nuclear interaction and point to a new insight into the formation of highly-organized simple patterns in nuclear dynamics.

  16. Constraints on the lithospheric structure of mid ocean ridges from oceanic core complex morphology

    Science.gov (United States)

    Larson, Mark Oscar

    The Mid-oceanic ridge system is a feature unique to Earth. It is one of the fundamental components of plate tectonics and reflects interior processes of mantle convection within the Earth. The thermal structure beneath the mid-ocean ridges has been the subject of several modeling studies. It is expected that the elastic thickness of the lithosphere is larger near the transform faults that bound mid-ocean ridge segments. Oceanic core complexes (OCCs), which are generally thought to result from long-lived fault slip and elastic flexure, have a shape that is sensitive to elastic thickness. By modeling the shape of OCCs emplaced along a ridge segment, it is possible to constraint elastic thickness and therefore the thermal structure of the plate and how it varies along-axis. This thesis builds upon previous studies that utilize thin plate flexure to reproduce the shape of OCCs. I compare OCC shape to a suite of models in which elastic thickness, fault dip, fault heave, crustal thickness, and axial infill are systematically varied. Using a grid search, I constrain the parameters that best reproduce the bathymetry and/or the slope of ten candidate OCCs identified along the 12°-15°N segment of the Mid-Atlantic Ridge. The lithospheric elastic thicknesses that explains these OCCs is thinner than previous investigators suggested and the fault planes dip more shallowly in the subsurface, although at an angle compatible with Anderson's theory of faulting. No relationships between model parameters and an oceanic core complexes location within a segment are identified with the exception that the OCCs located less than 20km from a transform fault have slightly larger elastic thickness than OCCs in the middle of the ridge segment.

  17. Site-specific carbon deposition for hierarchically ordered core/shell-structured graphitic carbon with remarkable electrochemical performance.

    Science.gov (United States)

    Lv, Yingying; Wu, Zhangxiong; Qian, Xufang; Fang, Yin; Feng, Dan; Xia, Yongyao; Tu, Bo; Zhao, Dongyuan

    2013-10-01

    A fascinating core-shell-structured graphitic carbon material composed of ordered microporous core and uniform mesoporous shell is fabricated for the first time through a site-specific chemical vapor deposition process by using a nanozeolite@mesostructured silica composite molecular sieve as the template. The mesostructure-directing agent cetyltrimethylammonium bromide in the shell of the template can be either burned off or carbonized so that it is successfully utilized as a pore switch to turn the shell of the template "on" or "off" to allow selective carbon deposition. The preferred carbon deposition process can be performed only in the inner microporous zeolite cores or just within the outer mesoporous shells, resulting in a zeolite-like ordered microporous carbon or a hollow mesoporous carbon. Full carbon deposition in the template leads to the new core-shell-structured microporous@mesoporous carbon with a nanographene-constructed framework for fast electron transport, a microporous nanocore with large surface area for high-capacity storage of lithium ions, a mesoporous shell with highly opened mesopores as a transport layer for lithium ions and electron channels to access inner cores. The ordered micropores are protected by the mesoporous shell, avoiding pore blockage as the formation of solid electrolyte interphase layers. Such a unique core-shell-structured microporous@mesoporous carbon material represents a newly established lithium ion storage model, demonstrating high reversible energy storage, excellent rate capability, and long cyclic stability.

  18. Structure of the protein core of the glypican Dally-like and localization of a region important for hedgehog signaling

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min-Sung; Saunders, Adam M.; Hamaoka, Brent Y.; Beachy, Philip A.; Leahy, Daniel J. (Stanford-MED); (JHU)

    2011-09-20

    Glypicans are heparan sulfate proteoglycans that modulate the signaling of multiple growth factors active during animal development, and loss of glypican function is associated with widespread developmental abnormalities. Glypicans consist of a conserved, approximately 45-kDa N-terminal protein core region followed by a stalk region that is tethered to the cell membrane by a glycosyl-phosphatidylinositol anchor. The stalk regions are predicted to be random coil but contain a variable number of attachment sites for heparan sulfate chains. Both the N-terminal protein core and the heparan sulfate attachments are important for glypican function. We report here the 2.4-{angstrom} crystal structure of the N-terminal protein core region of the Drosophila glypican Dally-like (Dlp). This structure reveals an elongated, {alpha}-helical fold for glypican core regions that does not appear homologous to any known structure. The Dlp core protein is required for normal responsiveness to Hedgehog (Hh) signals, and we identify a localized region on the Dlp surface important for mediating its function in Hh signaling. Purified Dlp protein core does not, however, interact appreciably with either Hh or an Hh:Ihog complex.

  19. Specific mutations of basal core promoter are associated with chronic liver disease in hepatitis B virus subgenotype D1 prevalent in Turkey.

    Science.gov (United States)

    Sunbul, Mustafa; Sugiyama, Masaya; Kurbanov, Fuat; Leblebicioglu, Hakan; Khan, Anis; Elkady, Abeer; Tanaka, Yasuhito; Mizokami, Masashi

    2013-02-01

    The role of hepatitis B virus (HBV) genetics in the clinical manifestations of infection is being increasingly recognized. Genotype D is one of eight currently recognized major HBV genotypes. The virus is ubiquitous worldwide, but shows different features in different regions. One hundred and ninety-eight patients with chronic HBV infection were enrolled in this study, 38 of whom had been diagnosed with cirrhosis of the liver and/or hepatocellular carcinoma. HBV DNA was isolated from the patients' blood samples and the entire genome and/or the basal core promoter/core promoter region sequenced. Phylogenetic analysis of the complete genomes revealed that subgenotype D1 is the most prevalent subgenotype in Turkey, but there was no definite phylogenetic grouping according to geography for isolates from different regions within Turkey, or for isolates in Turkey relative to other parts of the world. Turkish isolates tended to be genetically similar to European and central Asian isolates. Overall, HBV-infection in Turkey appears to be characterized by early HBeAg seroconversion, a high incidence of the A1896 core promoter mutation and a small viral load. Genotype D characteristic mutations A1757 and T1764/G1766 were found in the BCP region. T1773 was associated with T1764/G1766 and a larger viral load. In conclusion, infection with HBV genotype D in Turkey has a similar clinical outcome to that of Europe and central Asia. Genotypic mutations in genotype D may be linked with disease prognosis in Turkey, but further studies with higher sample numbers and balanced clinical groups are needed to confirm this.

  20. Low frequency of mutations in the core promoter and precore regions of hepatitis B virus in anti-HBe positive Brazilian carriers

    Directory of Open Access Journals (Sweden)

    Niel Christian

    2001-07-01

    Full Text Available Abstract Background Mutations in the core promoter and precore regions of the hepatitis B virus (HBV genome, notably the double substitution (AGG to TGA at nt positions 1762-1764 in the core promoter, and the precore stop codon mutation G to A at nt 1896, can often explain the anti-HBe phenotype in chronic carriers. However, the A1896 mutation is restricted to HBV isolates that have T at nt 1858. The double substitution at positions 1762-1764 has been described to occur preferentially in patients infected with strains showing C instead of T at nt 1858. Results HBV DNAs from 29 anti-HBe Brazilian samples were characterized by nucleotide sequencing of PCR products from precore region. Among them, 18 isolates presented C at nt 1858 (mostly genotype A strains. The 11 remaining isolates (genotypes D and F had T1858. The stop codon mutation at nt 1896 was found in seven isolates (24% of the total and 63% of the isolates that had T1858. The frequency of the double substitution at positions 1762-1764 was surprisingly low (20% among C1858 isolates. An association between A1896 and TGA 1762-1764 mutations was observed among genotype D isolates: these showed either none of the two mutations or both. Furthermore, strains mutated at positions 1896 and/or 1762-1764 also presented an elevated number of other, less common substitutions in the core promoter and precore regions. Conclusions The data reported here are not in accordance with some reports from other parts of the world. In half of the isolates, none of the mutations previously described could explain the anti-HBe phenotype.

  1. Synthesis, structural characterization and magnetic properties of Fe/Pt core-shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Pisane, K. L.; Singh, Sobhit; Seehra, M. S., E-mail: mseehra@wvu.edu [Department of Physics and Astronomy, West Virginia University, Morgantown, West Virginia 26506-6315 (United States)

    2015-05-07

    Structural and magnetic properties of Fe/Pt core-shell nanostructure prepared by a sequential reduction process are reported. Transmission electron microscopy shows nearly spherical particles fitting a lognormal size distribution with D{sub o} = 3.0 nm and distribution width λ{sub D} = 0.31. In x-ray diffraction, Bragg lines only from the Pt shell are clearly identified with line-widths yielding crystallite size = 3.1 nm. Measurements of magnetization M vs. T (2 K–350 K) in magnetic fields up to 90 kOe show a blocking temperature T{sub B} = 13 K below which hysteresis loops are observed with coercivity H{sub C} increasing with decreasing T reaching H{sub C} = 750 Oe at 2 K. Temperature dependence of the ac susceptibilities at frequencies f{sub m} = 10 Hz–5 kHz is measured to determine the change in T{sub B} with f{sub m} using the Vogel-Fulcher law. This analysis shows the presence of significant interparticle interaction, the Neel-Brown relaxation frequency f{sub o} = 5.3 × 10{sup 10 }Hz and anisotropy constant K{sub a} = 3.6 × 10{sup 6 }ergs/cm{sup 3}. A fit of the M vs. H data up to H = 90 kOe for T > T{sub B} to the modified Langevin function taking particle size distribution into account yields magnetic moment per particle consistent with the proposed core-shell structure; Fe core of 2.2 nm diameter and Pt shell of 0.4 nm thickness.

  2. On the structure of Ce-containing silicophosphate glasses: a core-shell molecular dynamics investigation.

    Science.gov (United States)

    Gambuzzi, Elisa; Pedone, Alfonso

    2014-10-21

    Classical molecular dynamics simulations have been used to investigate the local and medium range structure of Ce-containing silicophosphate glasses widely used in optical and photonic devices because of their enhanced UV absorption and radiation damage resistance properties. New Ce(3+)-O and Ce(4+)-O parameters for a force-field based on the core-shell model were developed by fitting on the crystalline structures of Ce-containing crystal phases, and used to get insights into the structure of five silicophosphate glasses with increasing Ce2O3 and P2O5 content. An excellent agreement between experimental and computational data was found for the local environment around cerium ions and network former cations. The Ce(3+)-O bond lengths are generally longer than Ce(4+)-O, which shows higher coordination numbers. Both P and Si are four-fold coordinated; their allocation in the network is not uniform: the increasing Ce content leads to the formation of silica-rich domains and phosphate-rich domains, which entrap Ce cations increasing their solubility in the glass. We found that both the Q(n) distributions of phosphorous and Ce clustering depend on the Ce/P ratio in the glass. In particular, Ce clustering begins for Ce/P ratios between 0.17 and 0.29 in the glass series investigated.

  3. Theory and computer simulation of hard-core Yukawa mixtures: thermodynamical, structural and phase coexistence properties

    Science.gov (United States)

    Mkanya, Anele; Pellicane, Giuseppe; Pini, Davide; Caccamo, Carlo

    2017-09-01

    We report extensive calculations, based on the modified hypernetted chain (MHNC) theory, on the hierarchical reference theory (HRT), and on Monte Carlo simulations, of thermodynamical, structural and phase coexistence properties of symmetric binary hard-core Yukawa mixtures (HCYM) with attractive interactions at equal species concentration. The obtained results are throughout compared with those available in the literature for the same systems. It turns out that the MHNC predictions for thermodynamic and structural quantities are quite accurate in comparison with the MC data. The HRT is equally accurate for thermodynamics, and slightly less accurate for structure. Liquid-vapor (LV) and liquid-liquid (LL) consolute coexistence conditions as emerging from simulations, are also highly satisfactorily reproduced by both the MHNC and HRT for relatively long ranged potentials. When the potential range reduces, the MHNC faces problems in determining the LV binodal line; however, the LL consolute line and the critical end point (CEP) temperature and density turn out to be still satisfactorily predicted within this theory. The HRT also predicts with good accuracy the CEP position. The possibility of employing liquid state theories HCYM for the purpose of reliably determining phase equilibria in multicomponent colloidal fluids of current technological interest, is discussed.

  4. Structural stability of alloyed and core-shell Cu-Pt bimetallic nanoparticles

    Science.gov (United States)

    Peng, Hongcheng; Qi, Weihong; Ji, Wenhai; Li, Siqi; He, Jieting

    2017-03-01

    Combining the bond-energy model and Debye theory, we generalized the Gibbs free energy model for Cu-Pt nanoparticles (NPs) by introducing a shape factor considering the shape effect. We studied the structural stability of the Cu-Pt NPs and plotted the corresponding composition-, shape- and size-dependent phase diagrams. It is shown that the Cu-Pt NPs can form alloyed structure in a large size range. But when the particle size continues to decrease, the NPs will form the core-shell structure due to surface segregation. Meanwhile, the composition segregation could make the atoms of less-content element to gather in the surface. The predictions from the present calculated phase diagrams are consistent with a series of experimental results in literatures. To further prove the efficiency of the phase diagrams, we synthesized the alloyed Cu-Pt NPs of 4-15 nm by a co-reduction method, which is in agreement with the predictions from the phase diagrams.

  5. Detection of the Elite Structure in a Virtual Multiplex Social System by Means of a Generalised K-Core

    Science.gov (United States)

    Corominas-Murtra, Bernat; Fuchs, Benedikt; Thurner, Stefan

    2014-01-01

    Elites are subgroups of individuals within a society that have the ability and means to influence, lead, govern, and shape societies. Members of elites are often well connected individuals, which enables them to impose their influence to many and to quickly gather, process, and spread information. Here we argue that elites are not only composed of highly connected individuals, but also of intermediaries connecting hubs to form a cohesive and structured elite-subgroup at the core of a social network. For this purpose we present a generalization of the -core algorithm that allows to identify a social core that is composed of well-connected hubs together with their ‘connectors’. We show the validity of the idea in the framework of a virtual world defined by a massive multiplayer online game, on which we have complete information of various social networks. Exploiting this multiplex structure, we find that the hubs of the generalised -core identify those individuals that are high social performers in terms of a series of indicators that are available in the game. In addition, using a combined strategy which involves the generalised -core and the recently introduced -core, the elites of the different ’nations’ present in the game are perfectly identified as modules of the generalised -core. Interesting sudden shifts in the composition of the elite cores are observed at deep levels. We show that elite detection with the traditional -core is not possible in a reliable way. The proposed method might be useful in a series of more general applications, such as community detection. PMID:25541957

  6. Free energy and structure of dislocation cores in two-dimensional crystals

    NARCIS (Netherlands)

    Bladon, P.B.; Frenkel, D.

    2004-01-01

    The nature of the melting transition in two dimensions is critically dependent on the core energy of dislocations. In this paper, we report calculations of the core free energy and the core size of dislocations in two-dimensional solids of systems interacting via square well, hard disk, and r-12

  7. Core and Valence Structures in K beta X-ray Emission Spectra of Chromium Materials

    NARCIS (Netherlands)

    Torres Deluigi, Maria; de Groot, Frank M. F.|info:eu-repo/dai/nl/08747610X; Lopez-Diaz, Gaston; Tirao, German; Stutz, Guillermo; Riveros de la Vega, Jose

    2014-01-01

    We analyze the core and valence transitions in chromium in a series of materials with a number of different ligands and including the oxidation states: Cr-II, Cr-III, Cr-IV, and Cr-VI. To study the core-to-core transitions we employ the CTM4XAS program and investigate the shapes, widths,

  8. Synthesis and in vitro transfection efficiency of spermine-based cationic lipids with different central core structures and lipophilic tails.

    Science.gov (United States)

    Niyomtham, Nattisa; Apiratikul, Nuttapon; Suksen, Kanoknetr; Opanasopit, Praneet; Yingyongnarongkul, Boon-Ek

    2015-02-01

    Twelve spermine-based cationic lipids with four different central core structures (di(oxyethyl)amino, di(oxyethyl)amino carboxy, 3-amino-1,2-dioxypropyl and 2-amino-1,3-dioxypropyl) and three hydrophobic tails (lauric acid, myristic acid and palmitic acid) were synthesized. The liposomes containing lipids and DOPE showed moderate to good in vitro DNA delivery into HeLa cells. GFP expression experiments revealed that liposomes composed of lipids with 3-amino-1,2-dioxypropyl as a central core structure exhibited highest transfection efficiency under serum-free condition. Whereas, lipid with 2-amino-1,3-dioxypropyl core structure showed highest transfection under 10% serum condition. Moreover, the liposomes and lipoplexes composted of these cationic lipids exhibited low cytotoxicity.

  9. Comparison of the Structural Performance of Monolithic and Precast Reinforced Concrete Core Walls

    OpenAIRE

    Nakachi, Tadaharu

    2014-01-01

    In the core wall system in high-rise buildings, the four L-shaped core walls at the center effectively reduce seismic vibration. On the other hand, precast core walls are effective for construction because they can be built more quickly than cast-in-place core walls. In this study, a lateral loading test was conducted on a monolithic wall column simulating the corner and the area near the corner of an L-shaped core wall. The test results were compared with those of a precast wall column teste...

  10. Atomic structure and thermal stability of Pt-Fe bimetallic nanoparticles: from alloy to core/shell architectures.

    Science.gov (United States)

    Huang, Rao; Wen, Yu-Hua; Shao, Gui-Fang; Sun, Shi-Gang

    2016-06-22

    Bimetallic nanoparticles comprising noble metal and non-noble metal have attracted intense interest over the past few decades due to their low cost and significantly enhanced catalytic performances. In this article, we have explored the atomic structure and thermal stability of Pt-Fe alloy and core-shell nanoparticles by molecular dynamics simulations. In Fe-core/Pt-shell nanoparticles, Fe with three different structures, i.e., body-centered cubic (bcc), face-centered cubic (fcc), and amorphous phases, has been considered. Our results show that Pt-Fe alloy is the most stable configuration among the four types of bimetallic nanoparticles. It has been discovered that the amorphous Fe cannot stably exist in the core and preferentially transforms into the fcc phase. The phase transition from bcc to hexagonal close packed (hcp) has also been observed in bcc-Fe-core/Pt-shell nanoparticles. In contrast, Fe with the fcc structure is the most preferred as the core component. These findings are helpful for understanding the structure-property relationships of Pt-Fe bimetallic nanoparticles, and are also of significance to the synthesis and application of noble metal based nanoparticle catalysts.

  11. The core planar cell polarity gene prickle interacts with flamingo to promote sensory axon advance in the Drosophila embryo.

    Science.gov (United States)

    Mrkusich, Eli M; Flanagan, Dustin J; Whitington, Paul M

    2011-10-01

    The atypical cadherin Drosophila protein Flamingo and its vertebrate homologues play widespread roles in the regulation of both dendrite and axon growth. However, little is understood about the molecular mechanisms that underpin these functions. Whereas flamingo interacts with a well-defined group of genes in regulating planar cell polarity, previous studies have uncovered little evidence that the other core planar cell polarity genes are involved in regulation of neurite growth. We present data in this study showing that the planar cell polarity gene prickle interacts with flamingo in regulating sensory axon advance at a key choice point - the transition between the peripheral nervous system and the central nervous system. The cytoplasmic tail of the Flamingo protein is not required for this interaction. Overexpression of another core planar cell polarity gene dishevelled produces a similar phenotype to prickle mutants, suggesting that this gene may also play a role in regulation of sensory axon advance.

  12. Mid-Infrared Extinction Mapping of Infrared Dark Clouds II. The Structure of Massive Starless Cores and Clumps

    CERN Document Server

    Butler, Michael J

    2012-01-01

    (abridged) We develop the mid-infrared extinction (MIREX) mapping technique of Butler & Tan (2009, Paper I), presenting a new method to correct for the Galactic foreground emission based on observed saturation in independent cores. Using Spitzer GLIMPSE 8 micron images, this allows us to accurately probe mass surface densities, Sigma, up to ~0.5g/cm^2 with 2" resolution. We then characterize the structure of 42 massive starless and early-stage IRDC cores and their surrounding clumps, measuring Sigma_cl(r) from the core/clump centers. We first assess the properties of the core/clump at a scale where the total enclosed mass as projected on the sky is M_cl=60Msun. We find these objects have a mean radius of R_cl~0.1pc, mean Sigma_cl=0.3g/cm^2 and, if fit by a power law density profile rho_cl ~ r^{-k_{rho,cl}}, a mean value of k_{rho,cl}=1.1. If we assume a core is embedded in each clump and subtract the surrounding clump envelope to derive the core properties, we find a mean core density power law index of k...

  13. Structural studies show energy transfer within stabilized phycobilisomes independent of the mode of rod-core assembly.

    Science.gov (United States)

    David, Liron; Prado, Mindy; Arteni, Ana A; Elmlund, Dominika A; Blankenship, Robert E; Adir, Noam

    2014-03-01

    The major light harvesting complex in cyanobacteria and red algae is the phycobilisome (PBS), comprised of hundreds of seemingly similar chromophores, which are protein bound and assembled in a fashion that enables highly efficient uni-directional energy transfer to reaction centers. The PBS is comprised of a core containing 2-5 cylinders surrounded by 6-8 rods, and a number of models have been proposed describing the PBS structure. One of the most critical steps in the functionality of the PBS is energy transfer from the rod substructures to the core substructure. In this study we compare the structural and functional characteristics of high-phosphate stabilized PBS (the standard fashion of stabilization of isolated complexes) with cross-linked PBS in low ionic strength buffer from two cyanobacterial species, Thermosynechococcus vulcanus and Acaryochloris marina. We show that chemical cross-linking preserves efficient energy transfer from the phycocyanin containing rods to the allophycocyanin containing cores with fluorescent emission from the terminal emitters. However, this energy transfer is shown to exist in PBS complexes of different structures as characterized by determination of a 2.4Å structure by X-ray crystallography, single crystal confocal microscopy, mass spectrometry and transmission electron microscopy of negatively stained and cryogenically preserved complexes. We conclude that the PBS has intrinsic structural properties that enable efficient energy transfer from rod substructures to the core substructures without requiring a single unique structure. We discuss the significance of our observations on the functionality of the PBS in vivo.

  14. Analysis of hydrologic structures within Mauna Kea volcano using diamond wireline core drilling

    Science.gov (United States)

    Thomas, D. M.; Haskins, E.

    2013-12-01

    The Humu'ula Groundwater Research Project was undertaken on the Island of Hawaii in an effort to characterize the hydrologic structures controlling groundwater movement and storage within the dry (~430 mm/year annual rainfall) saddle region between Mauna Loa and Mauna Kea volcanoes. The project drilled a 1764 m, continuously-cored, borehole from an elevation of 1946 m amsl. The shallow stratigraphy consisted of alluvial outwash of clastic debris, of both volcanic and glacial origin, from the upper slopes of Mauna Kea, and was underlain by highly permeable post-shield lavas to depths of a few hundred meters. Below this depth, shield stage lavas were dominated by highly-fractured and permeable pahoehoe lavas and (less common) a'a flows and occasional soil and ash accumulations at flow boundaries. As depths increased below 1000 m, progressive compaction of fragmental material was found at the flow boundaries and, by depths of ~1500 m, much of the void space in the flow boundaries had been collapsed and compacted. Increasing secondary mineralization was observed below about 1000 m depth that was exacerbated by rising temperatures and temperature gradients toward the bottom of the hole. Hydrologic conditions were strikingly different from those predicted by conventional models for ocean islands: the formation was dry down to only ~150 m where the first, thin, perched aquifer was encountered; a second, more substantial, perched aquifer was reached at only ~220 m depth that extended to ~360 m where a sequence of (remarkably thin) perching formations were recovered in the core down to about 420 m where unsaturated rocks were again encountered. Saturated conditions resumed at 550 m depth that continued to the total depth drilled; this latter zone is inferred to be the basal aquifer for Mauna Kea within this region of the island. Our initial analysis of the core suggests that thin, clay-rich, perching formations in the shallow stratigraphic column play a much larger role in

  15. The Essence and Structure of Masters’ of Public Administration Core Competencies in the USA

    Directory of Open Access Journals (Sweden)

    Shevchenko Alina

    2016-09-01

    Full Text Available The article deals with revealing the essence and structure of Masters’ of Public Administration professional training in the USA. It has been concluded that Public Administration studies the realization of government policies and trains future public administrators for professional activity; is guided by political science and administrative law; aims to improve the justice, equality, security and efficiency of public services. It has been indicated that the MPA degree is dedicated for those willing to work in public sector. It has been found out that MPA programs are designed to develop the abilities, skills and methods specialists use to realize policies, programs and projects as well as to resolve crucial issues within their organization and/or in society. It has been stated that in the United States of America Master of Public Administration (MPA and Master of Business Administration programs (MBA are quite similar, however, have certain differences. It has been defined that the MPA program focuses on different ethical and sociological criteria secondary for business administrators. Simultaneously MPA programs encompass economy courses to supply students with knowledge of microeconomic and macroeconomic issues. It has been specified that MPA programs are built on a range of core competencies defined by the Network of Schools of Public Policy, Affairs, and Administration (NASPAA. The list of the core competencies (to lead and manage in public governance; to participate in and contribute to the public policy progress; to analyze, synthesize, think critically, solve problems and make decisions; to articulate and apply a public service perspective; to communicate and interact productively with a diverse and changing workforce and citizenry and their detailed characteristics have been presented. It has been identified that cultural competency of future public administrators has become an essential constituent of public affairs curricula. It has

  16. X-ray observations of complex temperature structure in the cool-core cluster A85

    Energy Technology Data Exchange (ETDEWEB)

    Schenck, David E.; Datta, Abhirup; Burns, Jack O. [Center for Astrophysics and Space Astronomy, Department of Astrophysical and Planetary Science, University of Colorado, Boulder, CO 80309 (United States); Skillman, Sam [Kavli Fellow, Kavli Institute for Particle Astrophysics and Cosmology, SLAC, CA 94025 (United States)

    2014-07-01

    X-ray observations were used to examine the complex temperature structure of A85, a cool-core galaxy cluster. Temperature features can provide evidence of merging events which shock heat the intracluster gas. Temperature maps were made from both Chandra and XMM-Newton observations. The combination of a new, long-exposure XMM observation and an improved temperature map binning technique produced the highest fidelity temperature maps of A85 to date. Hot regions were detected near the subclusters to the south and southwest in both the Chandra and XMM temperature maps. The presence of these structures implies A85 is not relaxed. The hot regions may indicate the presence of shocks. The Mach numbers were estimated to be ∼1.9 at the locations of the hot spots. Observational effects will tend to systematically reduce temperature jumps, so the measured Mach numbers are likely underestimated. Neither temperature map showed evidence for a shock in the vicinity of the presumed radio relic near the southwest subcluster. However, the presence of a weak shock cannot be ruled out. There was tension between the temperatures measured by the two instruments.

  17. X-ray Observations of Complex Temperature Structure in the Cool-core cluster Abell 85

    CERN Document Server

    Schenck, David; Burns, Jack; Skillman, Sam

    2014-01-01

    X-ray observations were used to examine the complex temperature structure of Abell 85, a cool-core galaxy cluster. Temperature features can provide evidence of merging events which shock heat the intracluster gas. Temperature maps were made from both \\textit{Chandra} and \\textit{XMM-Newton} obervations. The combination of a new, long-exposure \\textit{XMM} observation and an improved temperature map binning technique produced the highest fidelity temperature maps of A85 to date. Hot regions were detected near the subclusters to the South and Southwest in both the \\textit{Chandra} and \\textit{XMM} temperature maps. The presence of these structures implies A85 is not relaxed. The hot regions may indicate the presence of shocks. The Mach numbers were estimated to be $\\sim$1.9 at the locations of the hot spots. Observational effects will tend to systematically reduce temperature jumps, so the measured Mach numbers are likely underestimated. Neither temperature map showed evidence for a shock in the vicinity of the...

  18. Nuclear structure and the fate of core collapse (Type II) supernova

    Energy Technology Data Exchange (ETDEWEB)

    Gai, Moshe [LNS at Avery Point, University of Connecticut, Groton, CT 06340-6097 (United States); Wright Lab, Dept. of Physics, Yale University, New Haven, CT 06520-8124 (United States)

    2014-08-15

    For a long time Gerry Brown and his collaborator Hans Bethe considered the question of the final fate of a core collapse (Type II) supernova. Recalling ideas from nuclear structure on Kaon condensate and a soft equation of state of the dense nuclear matter they concluded that progenitor stars with mass as low as 17–18M{sub ⊙} (including supernova 1987A) could collapse to a small mass black hole with a mass just beyond 1.5M{sub ⊙}, the upper bound they derive for a neutron star. We discuss another nuclear structure effect that determines the carbon to oxygen ratio (C/O) at the end of helium burning. This ratio also determines the fate of a Type II supernova with a carbon rich progenitor star producing a neutron star and oxygen rich collapsing to a black hole. While the C/O ratio is one of the most important nuclear inputs to stellar evolution it is still not known with sufficient accuracy. We discuss future efforts to measure with gamma-beam and TPC detector of the {sup 12}C(α,γ){sup 16}O reaction that determines the C/O ratio in stellar helium burning.

  19. Porous shell/dense core structures prepared in tungsten phosphate glass through template-free route

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento Correa, Deleon; Alves, Oswaldo Luiz [Institute of Chemistry, University of Campinas - UNICAMP, Campinas, SP (Brazil); Odone Mazali, Italo, E-mail: mazali@iqm.unicamp.br [Institute of Chemistry, University of Campinas - UNICAMP, Campinas, SP (Brazil)

    2010-07-01

    The preparation of the 11.7Li{sub 2}O-39.7WO{sub 3}-10.9CaO-37.7P{sub 2}O{sub 5} glass (pgLWCP) was based on a one-step heat treatment of the 6Li{sub 2}O-18WO{sub 3}-43CaO-33P{sub 2}O{sub 5} (gLWCP) glass followed by leaching of the {beta}-Ca{sub 2}P{sub 2}O{sub 7} phase formed during the crystallization process. The porous structure was formed in the region formerly occupied by the {beta}-Ca{sub 2}P{sub 2}O{sub 7} phase. The gLWCP undergoes devitrification through surface crystallization. This process occurs after a thermal treatment in lower temperature and in a shorter period of time than that required for the complete crystallization. After acid leaching treatment, we obtained a core-/shell-like structure with a very well-defined dense glass (gLWCP)/porous glass (pgLWCP) interface. The pgLWCP exhibits reversible coloration-decoloration reactions.

  20. Shear faults and dislocation core structure simulations in B2 FeAl

    Energy Technology Data Exchange (ETDEWEB)

    Vailhe, C.; Farkas, D. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States). Dept. of Materials Science and Engineering

    1997-11-01

    Embedded atom potentials were derived for the Fe-Al system reproducing lattice and elastic properties of B2 FeAl. The structure and energy of vacancies, antisites and anti phase boundaries (APBs) were studied. A significant decrease in the APB energy was obtained for Fe-rich B2 alloys. Shear fault energies along the {l_brace}110{r_brace} and {l_brace}112{r_brace} planes were computed showing that stable planar faults deviated from the exact APB fault. Core structures and critical Peierls stress values were simulated for the <100> and <111> dislocations. The superpartials created in the dissociation reactions were not of the 1/2<111> type, but 1/8<334> in accordance with the stable planar fault in the {l_brace}110{r_brace} planes. The results obtained for these simulations are discussed in terms of the mechanical behavior of FeAl and in comparison with B2 NiAl.

  1. Structure of the Particle-Hole Amplitudes in No-core Shell Model Wave Functions

    CERN Document Server

    Hayes, A C

    2009-01-01

    We study the structure of the no-core shell model wave functions for $^6$Li and $^{12}$C by investigating the ground state and first excited state electron scattering charge form factors. In both nuclei, large particle-hole ($ph$) amplitudes in the wave functions appear with the opposite sign to that needed to reproduce the shape of the $(e,e')$ form factors, the charge radii, and the B(E2) values for the lowest two states. The difference in sign appears to arise mainly from the monopole $\\Delta\\hbar\\omega=2$ matrix elements of the kinetic and potential energy (T+V) that transform under the harmonic oscillator SU(3) symmetries as $(\\lambda,\\mu)=(2,0)$. These are difficult to determine self-consistently, but they have a strong effect on the structure of the low-lying states and on the giant monopole and quadrupole resonances. The Lee-Suzuki transformation, used to account for the restricted nature of the space in terms of an effective interaction, introduces large higher-order $\\Delta\\hbar\\omega=n, n>$2, $ph$ ...

  2. Structure and thermodynamics of hard-core Yukawa fluids: thermodynamic perturbation approaches.

    Science.gov (United States)

    Kim, Eun-Young; Kim, Soon-Chul; Seong, Baek-Seok

    2011-07-21

    The thermodynamic perturbation theories, which are based on the power series of a coupling constant (λ-expansion), have been proposed for studying the structural and thermodynamic properties of a hard-core Yukawa (HCY) fluid: one (A1-approximation) is the perturbation theory based on the hard-sphere repulsion as a reference system. The other (A2-approximation) is the perturbation theory based on the reference system which incorporates both the repulsive and short-range attractive interactions. The first-order mean-spherical approximation (FMSA) provided by Tang and Lu [J. Chem. Phys. 99, 9828 (1993)] has been employed for investigating the thermodynamic properties of a HCY fluid using the alternative method via the direct correlation function. The calculated results show that (i) the A1 and A2 approximations are in excellent agreements with previous computer simulation results in the literature and compare with the semi-empirical works of Shukla including the higher-order free energy terms, (ii) the A1 and A2 approximations are better than the FMSA and the mean-spherical approximation, (iii) the A2-approximation compares with the A1-approximation, even though the perturbation effect of an A2-approximation is much smaller than that of an A1-approximation, and that (iv) the FMSA study is particularly of advantage in providing the structure and thermodynamics in a simple and analytic manner.

  3. Fabrication and Testing of Durable Redundant and Fluted-Core Joints for Composite Sandwich Structures

    Science.gov (United States)

    Lin, Shih-Yung; Splinter, Scott C.; Tarkenton, Chris; Paddock, David A.; Smeltzer, Stanley S.; Ghose, Sayata; Guzman, Juan C.; Stukus, Donald J.; McCarville, Douglas A.

    2013-01-01

    The development of durable bonded joint technology for assembling composite structures is an essential component of future space technologies. While NASA is working toward providing an entirely new capability for human space exploration beyond low Earth orbit, the objective of this project is to design, fabricate, analyze, and test a NASA patented durable redundant joint (DRJ) and a NASA/Boeing co-designed fluted-core joint (FCJ). The potential applications include a wide range of sandwich structures for NASA's future launch vehicles. Three types of joints were studied -- splice joint (SJ, as baseline), DRJ, and FCJ. Tests included tension, after-impact tension, and compression. Teflon strips were used at the joint area to increase failure strength by shifting stress concentration to a less sensitive area. Test results were compared to those of pristine coupons fabricated utilizing the same methods. Tensile test results indicated that the DRJ design was stiffer, stronger, and more impact resistant than other designs. The drawbacks of the DRJ design were extra mass and complex fabrication processes. The FCJ was lighter than the DRJ but less impact resistant. With barely visible but detectable impact damages, all three joints showed no sign of tensile strength reduction. No compression test was conducted on any impact-damaged sample due to limited scope and resource. Failure modes and damage propagation were also studied to support progressive damage modeling of the SJ and the DRJ.

  4. Nuclear Structure and the Fate of Core Collapse (Type II) Supernova

    CERN Document Server

    Gai, Moshe

    2014-01-01

    For a long time Gerry Brown and his collaborator Hans Bethe considered the question of the final fate of a core collapse (Type II) supernova. Recalling ideas from nuclear structure on Kaon condensate and a soft equation of state of the dense nuclear matter they concluded that progenitor stars with mass as low a 17-18M$_\\odot$ (including supernova 1987A) could collapse to a small mass black hole with a mass just beyond 1.5M$_\\odot$, the upper bound they derive for a neutron star. We discuss another nuclear structure effect that determines the carbon to oxygen ratio (C/O) at the end of helium burning. This ratio also determines the fate of a Type II supernova with a carbon rich progenitor star producing a neutron star and oxygen rich collapsing to a black hole. While the C/O ratio is one of the most important nuclear input to stellar evolution it is still not known with sufficient accuracy. We discuss future efforts to measure with gamma-beam and TPC detector the 12C(a,g)16O reaction that determines the C/O rat...

  5. Analysis of HSV-I ICP22 effects on HCMV major immediate-early promoter structure

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The human cytomegalovirus (HCMV) major immediate-early (MIE) promoter has strong transcriptional promoting capability. Its cis-acting regulatory elements form a special structure in this region that is repeated multiple times; the biological significance of these elements and their different compositions in the transcriptional promoting process remain unclear. Our results demonstrate that the HSV-I MIE protein ICP22 can generate strong repression of many viral and cellular promoters and enhancers. We further studied the transcriptional effects of ICP22 on structural elements and mutations in various HCMV MIE promoters by using a CAT assay. In spite of different transcriptional effects of all the ele- ments in the presence of ICP22, the transcriptional efficiencies exhibited by mutations generated by different compositions and an entire HCMV promoter, are not the simple sum of the functions of these elements. Furthermore, the transcriptional activities of specific sequences were not affected by the presence of ICP22. Therefore, it is assumed that the HCMV MIE promoter co-regulates expression of downstream genes by using viral and cellular specific factors via a specific pathway.

  6. Structural basis for promoter specificity switching of RNA polymerase by a phage factor.

    Science.gov (United States)

    Tagami, Shunsuke; Sekine, Shun-ichi; Minakhin, Leonid; Esyunina, Daria; Akasaka, Ryogo; Shirouzu, Mikako; Kulbachinskiy, Andrey; Severinov, Konstantin; Yokoyama, Shigeyuki

    2014-03-01

    Transcription of DNA to RNA by DNA-dependent RNA polymerase (RNAP) is the first step of gene expression and a major regulation point. Bacteriophages hijack their host's transcription machinery and direct it to serve their needs. The gp39 protein encoded by Thermus thermophilus phage P23-45 binds the host's RNAP and inhibits transcription initiation from its major "-10/-35" class promoters. Phage promoters belonging to the minor "extended -10" class are minimally inhibited. We report the crystal structure of the T. thermophilus RNAP holoenzyme complexed with gp39, which explains the mechanism for RNAP promoter specificity switching. gp39 simultaneously binds to the RNAP β-flap domain and the C-terminal domain of the σ subunit (region 4 of the σ subunit [σ4]), thus relocating the β-flap tip and σ4. The ~45 Å displacement of σ4 is incompatible with its binding to the -35 promoter consensus element, thus accounting for the inhibition of transcription from -10/-35 class promoters. In contrast, this conformational change is compatible with the recognition of extended -10 class promoters. These results provide the structural bases for the conformational modulation of the host's RNAP promoter specificity to switch gene expression toward supporting phage development for gp39 and, potentially, other phage proteins, such as T4 AsiA.

  7. Versatile Core-Shell Nanoparticle@Metal-Organic Framework Nanohybrids: Exploiting Mussel-Inspired Polydopamine for Tailored Structural Integration.

    Science.gov (United States)

    Zhou, Jiajing; Wang, Peng; Wang, Chenxu; Goh, Yi Ting; Fang, Zheng; Messersmith, Phillip B; Duan, Hongwei

    2015-07-28

    We report a versatile strategy based on the use of multifunctional mussel-inspired polydopamine for constructing well-defined single-nanoparticle@metal-organic framework (MOF) core-shell nanohybrids. The capability of polydopamine to form a robust conformal coating on colloidal substrates of any composition and to direct the heterogeneous nucleation and growth of MOFs makes it possible for customized structural integration of a broad range of inorganic/organic nanoparticles and functional MOFs. Furthermore, the unique redox activity of polydopamine adds additional possibilities to tailor the functionalities of the nanohybrids by sandwiching plasmonic/catalytic metal nanostructures between the core and shell via localized reduction. The core-shell nanohybrids, with the molecular sieving effect of the MOF shell complementing the intrinsic properties of nanoparticle cores, represent a unique class of nanomaterials of considerable current interest for catalysis, sensing, and nanomedicine.

  8. Focused library with a core structure extracted from natural products and modified: application to phosphatase inhibitors and several biochemical findings.

    Science.gov (United States)

    Hirai, Go; Sodeoka, Mikiko

    2015-05-19

    Synthesis of a focused library is an important strategy to create novel modulators of specific classes of proteins. Compounds in a focused library are composed of a common core structure and different diversity structures. In this Account, we describe our design and synthesis of libraries focused on selective inhibitors of protein phosphatases (PPases). We considered that core structures having structural and electronic features similar to those of PPase substrates, phosphate esters, would be a reasonable choice. Therefore, we extracted core structures from natural products already identified as PPase inhibitors. Since many PPases share similar active-site structures, such phosphate-mimicking core structures should interact with many enzymes in the same family, and therefore the choice of diversity structures is pivotal both to increase the binding affinity and to achieve specificity for individual enzymes. Here we present case studies of application of focused libraries to obtain PPase inhibitors, covering the overall process from selection of core structures to identification and evaluation of candidates in the focused libraries. To synthesize a library focused on protein serine-threonine phosphatases (PPs), we chose norcantharidin as a core structure, because norcantharidin dicarboxylate shows a broad inhibition profile toward several PPs. From the resulting focused library, we identified a highly selective PP2B inhibitor, NCA-01. On the other hand, to find inhibitors of dual-specificity protein phosphatases (DSPs), we chose 3-acyltetronic acid extracted from natural product RK-682 as a core structure, because its structure resembles the transition state in the dephosphorylation reaction of DSPs. However, a highly selective inhibitor was not found in the resulting focused library. Furthermore, an inherent drawback of compounds having the highly acidic 3-acyltetronic acid as a core structure is very weak potency in cellulo, probably due to poor cell membrane

  9. Specific mutations in the enhancer II/core promoter/precore regions of hepatitis B virus subgenotype C2 in Korean patients with hepatocellular carcinoma.

    Science.gov (United States)

    Kim, Ja Kyung; Chang, Hye Young; Lee, Jung Min; Baatarkhuu, Oidov; Yoon, Young Joon; Park, Jun Yong; Kim, Do Young; Han, Kwang-Hyub; Chon, Chae Yoon; Ahn, Sang Hoon

    2009-06-01

    Recently, hepatitis B virus (HBV) genotypes and mutations have been reported to be related to hepatocellular carcinoma (HCC). This cross-sectional case-control study examined the relationship between HCC and mutations in the enhancer II/core promoter and precore regions of HBV by comparing 135 Korean HCC patients infected with HBV genotype C2 (HBV/C2; HCC group) with 135 age-, sex-, and hepatitis B e antigen (HBeAg) status-matched patients without HCC (non- HCC group). Age and sex were also matched between HBeAg-positive and -negative patients. The prevalence of T1653, A1689, V1753, T1762/A1764, T1846, A1850, C1858, and A1896 mutations was evaluated in this population. The prevalence of the T1653 mutation in the box alpha region, the T1689 [corrected] mutation in between the box alpha and beta regions, and the T1762/A1764 mutations in the basal core promoter region was significantly higher in the HCC group compared to the non-HCC group (8.9% vs. 2.2%, P = 0.017; 19.3% vs. 4.4%, P HBV/C2.

  10. Isolation and Structural Analysis of the Seed-Specific Promoter from Soybean

    Institute of Scientific and Technical Information of China (English)

    CAIYIN Qing-ge-le; LI Ming-chun; CAI Yi; ZHAO Gui-lan; ZHAO Yue-ju; XING Lai-jun

    2005-01-01

    The promoter region (BCSP666) of β-conglycinin α-subunit gene from the genomic DNA of soybean Jilin 43 was isolated by PCR method. Sequencing analysis showed that the cloned fragment BCSP666 had the similar structure to the soybean seed-specific promoter β-conglycinin α'-subunit gene promoter and β-conglycinin β-subunit gene promoter, and it also contains many motifs that contribute to the seed-specific promoter activity. Based on this sequencing analysis, we deduced that promoter fragment BCSP666 had the seed-sepecific promoter activity. And then we constructed the seedspecific expression vector pBMI666 with the promoter fragment BCSP666 and △6-fatty acid desaturase gene from Mortierella isabellina. The △6-fatty acid desaturase is the rate-limiting enzyme of the desaturation of linoleic acid in the production of a human essential fatty acid, γ-linolenic acid(GLA). The production of γ-linolenic acid(GLA) was observed in soybean callus cells, which were transformed with this vector. This confirmed the activity of the activity fragment BCSP666.

  11. A Common Precursor Approach to Structurally Diverse Natural Products: The Synthesis of the Core Structure of (±)-Clausenamide and the Total Synthesis of (±)-Hyalodendrin

    OpenAIRE

    Szulc, B. R.; Sil, B. C.; Ruiz, A; Hilton, S. T.

    2015-01-01

    Structurally diverse natural products from unrelated sources typically require the development of individual synthetic routes. In a novel approach, we have shown that the epidithiodiketopiperazine-derived natural product (±)-hyalodendrin and the core structure of the unrelated pyrrolidine-derived natural product clausenamide can be synthesised from a common synthetic precursor in good yield by simple variation of the reaction conditions.

  12. Detection of the elite structure in a virtual multiplex social system by means of a generalised K-core.

    Directory of Open Access Journals (Sweden)

    Bernat Corominas-Murtra

    Full Text Available Elites are subgroups of individuals within a society that have the ability and means to influence, lead, govern, and shape societies. Members of elites are often well connected individuals, which enables them to impose their influence to many and to quickly gather, process, and spread information. Here we argue that elites are not only composed of highly connected individuals, but also of intermediaries connecting hubs to form a cohesive and structured elite-subgroup at the core of a social network. For this purpose we present a generalization of the K-core algorithm that allows to identify a social core that is composed of well-connected hubs together with their 'connectors'. We show the validity of the idea in the framework of a virtual world defined by a massive multiplayer online game, on which we have complete information of various social networks. Exploiting this multiplex structure, we find that the hubs of the generalised K-core identify those individuals that are high social performers in terms of a series of indicators that are available in the game. In addition, using a combined strategy which involves the generalised Kcore and the recently introduced M-core, the elites of the different 'nations' present in the game are perfectly identified as modules of the generalised K-core. Interesting sudden shifts in the composition of the elite cores are observed at deep levels. We show that elite detection with the traditional K-core is not possible in a reliable way. The proposed method might be useful in a series of more general applications, such as community detection.

  13. Direct imaging the upconversion nanocrystal core/shell structure at the subnanometer level: shell thickness dependence in upconverting optical properties.

    Science.gov (United States)

    Zhang, Fan; Che, Renchao; Li, Xiaomin; Yao, Chi; Yang, Jianping; Shen, Dengke; Hu, Pan; Li, Wei; Zhao, Dongyuan

    2012-06-13

    Lanthanide-doped upconversion nanoparticles have shown considerable promise in solid-state lasers, three-dimensional flat-panel displays, and solar cells and especially biological labeling and imaging. It has been demonstrated extensively that the epitaxial coating of upconversion (UC) core crystals with a lattice-matched shell can passivate the core and enhance the overall upconversion emission intensity of the materials. However, there are few papers that report a precise link between the shell thickness of core/shell nanoparticles and their optical properties. This is mainly because rare earth fluoride upconversion core/shell structures have only been inferred from indirect measurements to date. Herein, a reproducible method to grow a hexagonal NaGdF(4) shell on NaYF(4):Yb,Er nanocrystals with monolayer control thickness is demonstrated for the first time. On the basis of the cryo-transmission electron microscopy, rigorous electron energy loss spectroscopy, and high-angle annular dark-field investigations on the core/shell structure under a low operation temperature (96 K), direct imaging the NaYF(4):Yb,Er@NaGdF(4) nanocrystal core/shell structure at the subnanometer level was realized for the first time. Furthermore, a strong linear link between the NaGdF(4) shell thickness and the optical response of the hexagonal NaYF(4):Yb,Er@NaGdF(4) core/shell nanocrystals has been established. During the epitaxial growth of the NaGdF(4) shell layer by layer, surface defects of the nanocrystals can be gradually passivated by the homogeneous shell deposition process, which results in the obvious enhancement in overall UC emission intensity and lifetime and is more resistant to quenching by water molecules.

  14. Determination of the effect of initial inner-core structure on tropical cyclone intensification and track on a beta plane

    Science.gov (United States)

    Chen, Guanghua

    2016-08-01

    The sensitivity of TC intensification and track to the initial inner-core structure on a β plane is investigated using a numerical model. The results show that the vortex with large inner-core winds (CVEX-EXP) experiences an earlier intensification than that with small inner-core winds (CCAVE-EXP), but they have nearly the same intensification rate after spin-up. In the early stage, the convective cells associated with surface heat flux are mainly confined within the inner-core region in CVEX-EXP, whereas the vortex in CCAVE-EXP exhibits a considerably asymmetric structure with most of the convective vortices being initiated to the northeast in the outer-core region due to the β effect. The large inner-core inertial stability in CVEX-EXP can prompt a high efficiency in the conversion from convective heating to kinetic energy. In addition, much stronger straining deformation and PBL imbalance in the inner-core region outside the primary eyewall ensue during the initial development stage in CVEX-EXP than in CCAVE-EXP, which is conducive to the rapid axisymmetrization and early intensification in CVEX-EXP. The TC track in CVEX-EXP sustains a northwestward displacement throughout the integration, whereas the TC in CCAVE-EXP undergoes a northeastward recurvature when the asymmetric structure is dominant. Due to the enhanced asymmetric convection to the northeast of the TC center in CCAVE-EXP, a pair of secondary gyres embedded within the large-scale primary β gyres forms, which modulates the ventilation flow and thus steers the TC to move northeastward.

  15. Solution structure of the porcine sapovirus VPg core reveals a stable three-helical bundle with a conserved surface patch.

    Science.gov (United States)

    Hwang, Hyo-Jeong; Min, Hye Jung; Yun, Hyosuk; Pelton, Jeffery G; Wemmer, David E; Cho, Kyoung-Oh; Kim, Jeong-Sun; Lee, Chul Won

    2015-04-17

    Viral protein genome-linked (VPg) proteins play a critical role in the life cycle of vertebrate and plant positive-sense RNA viruses by acting as a protein primer for genome replication and as a protein cap for translation initiation. Here we report the solution structure of the porcine sapovirus VPg core (VPg(C)) determined by multi-dimensional NMR spectroscopy. The structure of VPg(C) is composed of three α-helices stabilized by several conserved hydrophobic residues that form a helical bundle core similar to that of feline calicivirus VPg. The putative nucleotide acceptor Tyr956 within the first helix of the core is completely exposed to solvent accessible surface to facilitate nucleotidylation by viral RNA polymerase. Comparison of VPg structures suggests that the surface for nucleotidylation site is highly conserved among the Caliciviridae family, whereas the backbone core structures are different. These structural features suggest that caliciviruses share common mechanisms of VPg-dependent viral replication and translation. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Embedded atom computer simulation of lattice distortion and dislocation core structure and mobility in Fe-Cr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Farkas, D.; Schon, C.G.; Lima, M.S.F. de [Virginia Polytechnic Inst., Blacksburg, VA (United States). Dept. of Materials Science and Engineering; Goldenstein, H. [Escola Politecnica USP, Sao Paulo (Brazil). Dept. de Metalurgia

    1996-01-01

    The atomistic structure of dislocation cores of <111> screw dislocations in disordered Fe-Cr b.c.c. alloys was simulated using embedded atom method potentials and molecular statics computer simulation. The mixed Fe-Cr interatomic potentials used were derived by fitting to the thermodynamic data of the disordered system and the measured lattice parameter changes of Fe upon Cr additions. The potentials predict phase separation as the most stable configuration for the central region of the phase diagram. The next most stable situation is the disordered b.c.c. phase. The structure of the screw 1/2 <111> dislocation core was studied using atomistic computer simulation and an improved visualization method for the representation of the resulting structures. The structure of the dislocation core is different from that typical of 1/2 <111> dislocations in pure b.c.c. materials. The core structure in the alloy tends to lose the threefold symmetry seen in pure b.c.c. materials and the stress necessary to initiate dislocation motion increases with Cr content. The mobility of kinks in these screw dislocations was also simulated and it was found that while the critical stress for kink motion in pure Fe is extremely low, it increases significantly with the addition of Cr. The implications of these differences for mechanical behavior are discussed.

  17. Decorin core protein (decoron shape complements collagen fibril surface structure and mediates its binding.

    Directory of Open Access Journals (Sweden)

    Joseph P R O Orgel

    Full Text Available Decorin is the archetypal small leucine rich repeat proteoglycan of the vertebrate extracellular matrix (ECM. With its glycosaminoglycuronan chain, it is responsible for stabilizing inter-fibrillar organization. Type I collagen is the predominant member of the fibrillar collagen family, fulfilling both organizational and structural roles in animal ECMs. In this study, interactions between decoron (the decorin core protein and binding sites in the d and e(1 bands of the type I collagen fibril were investigated through molecular modeling of their respective X-ray diffraction structures. Previously, it was proposed that a model-based, highly curved concave decoron interacts with a single collagen molecule, which would form extensive van der Waals contacts and give rise to strong non-specific binding. However, the large well-ordered aggregate that is the collagen fibril places significant restraints on modes of ligand binding and necessitates multi-collagen molecular contacts. We present here a relatively high-resolution model of the decoron-fibril collagen complex. We find that the respective crystal structures complement each other well, although it is the monomeric form of decoron that shows the most appropriate shape complementarity with the fibril surface and favorable calculated energies of interaction. One molecule of decoron interacts with four to six collagen molecules, and the binding specificity relies on a large number of hydrogen bonds and electrostatic interactions, primarily with the collagen motifs KXGDRGE and AKGDRGE (d and e(1 bands. This work helps us to understand collagen-decorin interactions and the molecular architecture of the fibrillar ECM in health and disease.

  18. Structural Rearrangement upon Fragmentation of the Stability Core of the ALS-Linked Protein TDP-43.

    Science.gov (United States)

    Morgan, Brittany R; Zitzewitz, Jill A; Massi, Francesca

    2017-08-08

    Amyotrophic lateral sclerosis (ALS) is the most common adult degenerative motor neuron disease. Experimental evidence indicates a direct role of transactive-response DNA-binding protein 43 (TDP-43) in the pathology of ALS and other neurodegenerative diseases. TDP-43 has been identified as a major component of cytoplasmic inclusions in patients with sporadic ALS; however, the molecular basis of the disease mechanism is not yet fully understood. Fragmentation within the second RNA recognition motif (RRM2) of TDP-43 has been observed in patient tissues and may play a role in the formation of aggregates in disease. To determine the structural and dynamical changes resulting from the truncation that could lead to aggregation and toxicity, we performed molecular dynamics simulations of the full-length RRM2 domain (the stability core of TDP-43) and of a truncated variant (where residues 189-207 are deleted to mimic a site of cleavage within RRM2 found in ALS patients). Our simulations show heterogeneous structural reorganization and decreased stability of the truncated RRM2 domain compared to the full-length domain, consistent with previous experimental results. The decreased stability and structural reorganization in the truncated RRM2 result in a higher probability of protein-protein interactions through altered electrostatic surface charges and increased accessibility of hydrophobic residues (including the nuclear export sequence), providing a rationale for the increased cytoplasmic aggregation of RRM2 fragments seen in sporadic ALS patients. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  19. Immobilization of cholesterol oxidase on magnetic fluorescent core-shell-structured nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jun, E-mail: hjun@whut.edu.cn; Liu, Huichao; Zhang, Peipei; Zhang, Pengfei; Li, Mengshi; Ding, Liyun

    2015-12-01

    The magnetic fluorescent core-shell structured nanoparticles, Fe{sub 3}O{sub 4}@SiO{sub 2}(F)@meso–SiO{sub 2} nanoparticles, were prepared. Cholesterol oxidase (COD) was immobilized on their surface to form Fe{sub 3}O{sub 4}@SiO{sub 2}(F)@meso–SiO{sub 2}@COD nanoparticles. Optimal immobilization was achieved with 2.5% (v/v) APTES, 2.0% (v/v) GA, 10 mg COD (in 15 mg carrier) and solution pH of 7.0. Fe{sub 3}O{sub 4}@SiO{sub 2}(F)@meso–SiO{sub 2}@COD nanoparticles showed maximal catalytic activity at pH 7.0 and 50 °C. The thermal, storage and operational stabilities of COD were improved greatly after its immobilization. After the incubation at 50 °C for 5 h, the nanoparticles and free COD retained 80% and 46% of its initial activity, respectively. After kept at 4 °C for 30 days, the nanoparticles and free COD maintained 86% and 65% of initial activity, respectively. The nanoparticles retained 71% of its initial activity after 7 consecutive operations. Since Fe{sub 3}O{sub 4}@SiO{sub 2}(F)@meso–SiO{sub 2}@COD nanoparticles contained tris(2,2-bipyridyl)dichloro-ruthenium(II) hexahydrate (Ru(bpy){sub 3}Cl{sub 2}) and were optical sensitive to oxygen in solution, it might be used as the sensing material and has the application potential in multi parameter fiber optic biosensor based on enzyme catalysis and oxygen consumption. - Highlights: • COD was immobilized on magnetic fluorescent core-shell structured nanoparticles. • The nanoparticles were optical sensitive to oxygen in water solution. • The nanoparticles have remarkable improved stability compared with free COD. • The nanoparticles can probably be used in multi parameter fiber optic Biosensor.

  20. Structure, coercive control, and autonomy promotion: A comparison of fathers' and mothers' food parenting strategies.

    Science.gov (United States)

    Pratt, Mercedes; Hoffmann, Debra; Taylor, Maija; Musher-Eizenman, Dara

    2017-05-01

    This study explored differences in mothers' and fathers' food parenting strategies, specifically coercive control, structure, and autonomy promotion, and whether parenting style and parental responsibility for food parenting related to the use of these strategies. Parents of children aged 2.5-7.5 years ( N = 497) reported about their parenting practices and food parenting strategies. Parenting style accounted for the majority of the variance in food parenting. Fathers were more authoritarian than mothers. Authoritarian and permissive parenting practices were related to more coercive strategies. Mothers reported more food parenting responsibility. Responsibility was related to less coercive practices and more autonomy promotion and structure.

  1. The Welfare Effects of Price Advertising with Basket Shopping: Structural Estimates from Supermarket Promotions

    DEFF Research Database (Denmark)

    Gao, Cixiu

    2015-01-01

    This paper empirically examines welfare effects of the informative price advertising in the supermarket retail industry, using structural estimation approaches and individual scanner data. Supermarket retailers use promotions (advertised price cuts) to announce sales as a competing instrument. Us...... as a means of business stealing. Finally, a counterfactual experiment of online shopping, in which transportation costs are removed, is found welfare-improving........ Using a spatial model that accounts for consumer shopping behavior and retailer pricing behavior, I structurally estimate consumer demand and the marginal costs of promotion, following the discrete choice literature and moment inequality approach. The simulation results numerically show that the private...

  2. The Welfare Effects of Price Advertising with Basket Shopping: Structural Estimates from Supermarket Promotions

    DEFF Research Database (Denmark)

    Gao, Cixiu

    2015-01-01

    This paper empirically examines welfare effects of the informative price advertising in the supermarket retail industry, using structural estimation approaches and individual scanner data. Supermarket retailers use promotions (advertised price cuts) to announce sales as a competing instrument. Us...... as a means of business stealing. Finally, a counterfactual experiment of online shopping, in which transportation costs are removed, is found welfare-improving........ Using a spatial model that accounts for consumer shopping behavior and retailer pricing behavior, I structurally estimate consumer demand and the marginal costs of promotion, following the discrete choice literature and moment inequality approach. The simulation results numerically show that the private...

  3. Nucleoporins as components of the nuclear pore complex core structure and Tpr as the architectural element of the nuclear basket.

    Science.gov (United States)

    Krull, Sandra; Thyberg, Johan; Björkroth, Birgitta; Rackwitz, Hans-Richard; Cordes, Volker C

    2004-09-01

    The vertebrate nuclear pore complex (NPC) is a macromolecular assembly of protein subcomplexes forming a structure of eightfold radial symmetry. The NPC core consists of globular subunits sandwiched between two coaxial ring-like structures of which the ring facing the nuclear interior is capped by a fibrous structure called the nuclear basket. By postembedding immunoelectron microscopy, we have mapped the positions of several human NPC proteins relative to the NPC core and its associated basket, including Nup93, Nup96, Nup98, Nup107, Nup153, Nup205, and the coiled coil-dominated 267-kDa protein Tpr. To further assess their contributions to NPC and basket architecture, the genes encoding Nup93, Nup96, Nup107, and Nup205 were posttranscriptionally silenced by RNA interference (RNAi) in HeLa cells, complementing recent RNAi experiments on Nup153 and Tpr. We show that Nup96 and Nup107 are core elements of the NPC proper that are essential for NPC assembly and docking of Nup153 and Tpr to the NPC. Nup93 and Nup205 are other NPC core elements that are important for long-term maintenance of NPCs but initially dispensable for the anchoring of Nup153 and Tpr. Immunogold-labeling for Nup98 also results in preferential labeling of NPC core regions, whereas Nup153 is shown to bind via its amino-terminal domain to the nuclear coaxial ring linking the NPC core structures and Tpr. The position of Tpr in turn is shown to coincide with that of the nuclear basket, with different Tpr protein domains corresponding to distinct basket segments. We propose a model in which Tpr constitutes the central architectural element that forms the scaffold of the nuclear basket.

  4. "Hot cores" in proteins: Comparative analysis of the apolar contact area in structures from hyper/thermophilic and mesophilic organisms

    Directory of Open Access Journals (Sweden)

    Bossa Francesco

    2008-02-01

    Full Text Available Abstract Background A wide variety of stabilizing factors have been invoked so far to elucidate the structural basis of protein thermostability. These include, amongst the others, a higher number of ion-pairs interactions and hydrogen bonds, together with a better packing of hydrophobic residues. It has been frequently observed that packing of hydrophobic side chains is improved in hyperthermophilic proteins, when compared to their mesophilic counterparts. In this work, protein crystal structures from hyper/thermophilic organisms and their mesophilic homologs have been compared, in order to quantify the difference of apolar contact area and to assess the role played by the hydrophobic contacts in the stabilization of the protein core, at high temperatures. Results The construction of two datasets was carried out so as to satisfy several restrictive criteria, such as minimum redundancy, resolution and R-value thresholds and lack of any structural defect in the collected structures. This approach allowed to quantify with relatively high precision the apolar contact area between interacting residues, reducing the uncertainty due to the position of atoms in the crystal structures, the redundancy of data and the size of the dataset. To identify the common core regions of these proteins, the study was focused on segments that conserve a similar main chain conformation in the structures analyzed, excluding the intervening regions whose structure differs markedly. The results indicated that hyperthermophilic proteins underwent a significant increase of the hydrophobic contact area contributed by those residues composing the alpha-helices of the structurally conserved regions. Conclusion This study indicates the decreased flexibility of alpha-helices in proteins core as a major factor contributing to the enhanced termostability of a number of hyperthermophilic proteins. This effect, in turn, may be due to an increased number of buried methyl groups in

  5. Antioxidant Treatment Reduces Formation of Structural Cores and Improves Muscle Function in RYR1Y522S/WT Mice

    Directory of Open Access Journals (Sweden)

    Antonio Michelucci

    2017-01-01

    Full Text Available Central core disease (CCD is a congenital myopathy linked to mutations in the ryanodine receptor type 1 (RYR1, the sarcoplasmic reticulum Ca2+ release channel of skeletal muscle. CCD is characterized by formation of amorphous cores within muscle fibers, lacking mitochondrial activity. In skeletal muscle of RYR1Y522S/WT knock-in mice, carrying a human mutation in RYR1 linked to malignant hyperthermia (MH with cores, oxidative stress is elevated and fibers present severe mitochondrial damage and cores. We treated RYR1Y522S/WT mice with N-acetylcysteine (NAC, an antioxidant provided ad libitum in drinking water for either 2 or 6 months. Our results show that 2 months of NAC treatment starting at 2 months of age, when mitochondrial and fiber damage was still minimal, (i reduce formation of unstructured and contracture cores, (ii improve muscle function, and (iii decrease mitochondrial damage. The beneficial effect of NAC treatment is also evident following 6 months of treatment starting at 4 months of age, when structural damage was at an advanced stage. NAC exerts its protective effect likely by lowering oxidative stress, as supported by the reduction of 3-NT and SOD2 levels. This work suggests that NAC administration is beneficial to prevent mitochondrial damage and formation of cores and improve muscle function in RYR1Y522S/WT mice.

  6. Comparison of Prestellar Core Elongations and Large-scale Molecular Cloud Structures in the Lupus I Region

    Science.gov (United States)

    Poidevin, Frédérick; Ade, Peter A. R.; Angile, Francesco E.; Benton, Steven J.; Chapin, Edward L.; Devlin, Mark J.; Fissel, Laura M.; Fukui, Yasuo; Gandilo, Natalie N.; Gundersen, Joshua O.; Hargrave, Peter C.; Klein, Jeffrey; Korotkov, Andrei L.; Matthews, Tristan G.; Moncelsi, Lorenzo; Mroczkowski, Tony K.; Netterfield, Calvin B.; Novak, Giles; Nutter, David; Olmi, Luca; Pascale, Enzo; Savini, Giorgio; Scott, Douglas; Shariff, Jamil A.; Diego Soler, Juan; Tachihara, Kengo; Thomas, Nicholas E.; Truch, Matthew D. P.; Tucker, Carole E.; Tucker, Gregory S.; Ward-Thompson, Derek

    2014-08-01

    Turbulence and magnetic fields are expected to be important for regulating molecular cloud formation and evolution. However, their effects on sub-parsec to 100 parsec scales, leading to the formation of starless cores, are not well understood. We investigate the prestellar core structure morphologies obtained from analysis of the Herschel-SPIRE 350 μm maps of the Lupus I cloud. This distribution is first compared on a statistical basis to the large-scale shape of the main filament. We find the distribution of the elongation position angle of the cores to be consistent with a random distribution, which means no specific orientation of the morphology of the cores is observed with respect to the mean orientation of the large-scale filament in Lupus I, nor relative to a large-scale bent filament model. This distribution is also compared to the mean orientation of the large-scale magnetic fields probed at 350 μm with the Balloon-borne Large Aperture Telescope for Polarimetry during its 2010 campaign. Here again we do not find any correlation between the core morphology distribution and the average orientation of the magnetic fields on parsec scales. Our main conclusion is that the local filament dynamics—including secondary filaments that often run orthogonally to the primary filament—and possibly small-scale variations in the local magnetic field direction, could be the dominant factors for explaining the final orientation of each core.

  7. Novel design of a refractive index sensor based on a dual-core micro-structured optical fiber

    CERN Document Server

    Tsigaridas, G; Persephonis, P

    2014-01-01

    In the present work a new model of a refractive index (RI) sensor is exhibited. This is based on a dual core micro-structured optical fiber (MOF), where two holes are introduced at the core centers. In this way, the model enhances the interaction of the fiber modes propagated in the core region, providing the possibility of increasing the dimensions of the fiber sensor. Thus, the filling of the fiber holes with the fluid under study is facilitated, and generally the practical use of the system as a refractive index sensor is simplified. The influence of the core separation and the diameter of the central holes on the sensitivity of the sensor have been studied by a numerical simulation. The results are in agreement with the expected behavior as it is determined by the physics of the problem. Based on the same operating principle, it is verified that a dual-core conventional optical fiber with micro-fluidic channels at the center of the cores, can also operates as an RI sensor.

  8. Comparison of prestellar core elongations and large-scale molecular cloud structures in the Lupus I region

    Energy Technology Data Exchange (ETDEWEB)

    Poidevin, Frédérick [UCL, KLB, Department of Physics and Astronomy, Gower Place, London WC1E 6BT (United Kingdom); Ade, Peter A. R.; Hargrave, Peter C.; Nutter, David [School of Physics and Astronomy, Cardiff University, Queens Buildings, The Parade, Cardiff CF24 3AA (United Kingdom); Angile, Francesco E.; Devlin, Mark J.; Klein, Jeffrey [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Benton, Steven J.; Netterfield, Calvin B. [Department of Physics, University of Toronto, 60 St. George Street, Toronto, ON M5S 1A7 (Canada); Chapin, Edward L. [XMM SOC, ESAC, Apartado 78, E-28691 Villanueva de la Canãda, Madrid (Spain); Fissel, Laura M.; Gandilo, Natalie N. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada); Fukui, Yasuo [Department of Physics, Nagoya University, Chikusa-ku, Nagoya, Aichi 464-8601 (Japan); Gundersen, Joshua O. [Department of Physics, University of Miami, 1320 Campo Sano Drive, Coral Gables, FL 33146 (United States); Korotkov, Andrei L. [Department of Physics, Brown University, 182 Hope Street, Providence, RI 02912 (United States); Matthews, Tristan G.; Novak, Giles [Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Moncelsi, Lorenzo; Mroczkowski, Tony K. [California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Olmi, Luca, E-mail: fpoidevin@iac.es [Physics Department, University of Puerto Rico, Rio Piedras Campus, Box 23343, UPR station, San Juan, PR 00931 (United States); and others

    2014-08-10

    Turbulence and magnetic fields are expected to be important for regulating molecular cloud formation and evolution. However, their effects on sub-parsec to 100 parsec scales, leading to the formation of starless cores, are not well understood. We investigate the prestellar core structure morphologies obtained from analysis of the Herschel-SPIRE 350 μm maps of the Lupus I cloud. This distribution is first compared on a statistical basis to the large-scale shape of the main filament. We find the distribution of the elongation position angle of the cores to be consistent with a random distribution, which means no specific orientation of the morphology of the cores is observed with respect to the mean orientation of the large-scale filament in Lupus I, nor relative to a large-scale bent filament model. This distribution is also compared to the mean orientation of the large-scale magnetic fields probed at 350 μm with the Balloon-borne Large Aperture Telescope for Polarimetry during its 2010 campaign. Here again we do not find any correlation between the core morphology distribution and the average orientation of the magnetic fields on parsec scales. Our main conclusion is that the local filament dynamics—including secondary filaments that often run orthogonally to the primary filament—and possibly small-scale variations in the local magnetic field direction, could be the dominant factors for explaining the final orientation of each core.

  9. Experimental study of partially-cured Z-pins reinforced foam core composites:K-Cor sandwich structures

    Institute of Scientific and Technical Information of China (English)

    Zheng Yingying; Xiao Jun; Duan Mufeng; Li Yong

    2014-01-01

    This paper presents an experimental study of a novel K-Cor sandwich structure rein-forced with partially-cured Z-pins. The influence of pultrusion processing parameters on Z-pins characteristics was studied and the effect of Z-pins on mechanical properties was disclosed. Differential scanning calorimetry (DSC) and optical microscopy (OM) methods were employed to determine the curing degree of as-prepared Z-pins and observe the implanted Z-pins in the K-Cor structure. These partially-cured Z-pins were treated with a stronger bonding link between face sheets and the foam core by means of a hot-press process, thereby decreasing burrs and cracking defects when the Z-pins were implanted into the Rohacell foam core. The results of the out-of-plane tensile tests and the climbing drum peel (CDP) tests showed that K-Cor structures exhibited superior mechanical performance as compared to X-Cor and blank foam core. The observed results of failure modes revealed that an effective bonding link between the foam core and face sheets that was provided from partially-cured Z-pins contributed to the enhanced mechan-ical performances of K-Cor sandwich structures.

  10. Experimental study of partially-cured Z-pins reinforced foam core composites: K-Cor sandwich structures

    Directory of Open Access Journals (Sweden)

    Zheng Yingying

    2014-02-01

    Full Text Available This paper presents an experimental study of a novel K-Cor sandwich structure reinforced with partially-cured Z-pins. The influence of pultrusion processing parameters on Z-pins characteristics was studied and the effect of Z-pins on mechanical properties was disclosed. Differential scanning calorimetry (DSC and optical microscopy (OM methods were employed to determine the curing degree of as-prepared Z-pins and observe the implanted Z-pins in the K-Cor structure. These partially-cured Z-pins were treated with a stronger bonding link between face sheets and the foam core by means of a hot-press process, thereby decreasing burrs and cracking defects when the Z-pins were implanted into the Rohacell foam core. The results of the out-of-plane tensile tests and the climbing drum peel (CDP tests showed that K-Cor structures exhibited superior mechanical performance as compared to X-Cor and blank foam core. The observed results of failure modes revealed that an effective bonding link between the foam core and face sheets that was provided from partially-cured Z-pins contributed to the enhanced mechanical performances of K-Cor sandwich structures.

  11. Structure of the exon junction core complex with a trapped DEAD-box ATPase bound to RNA

    DEFF Research Database (Denmark)

    Andersen, Christian Brix Folsted; Ballut, Lionel; Johansen, Jesper Sanderhoff;

    2006-01-01

    In higher eukaryotes, a multiprotein exon junction complex is deposited on spliced messenger RNAs. The complex is organized around a stable core, which serves as a binding platform for numerous factors that influence messenger RNA function. Here, we present the crystal structure of a tetrameric e...

  12. Mazatan metamorphic core complex (Sonora, Mexico): structures along the detachment fault and its exhumation evolution

    Science.gov (United States)

    Granillo, Ricardo Vega; Calmus, Thierry

    2003-08-01

    The Mazatán Sierra is the southernmost metamorphic core complex (MCC) of the Tertiary extensional belt of the western Cordillera. Its structural and lithological features are similar to those found in other MCC in Sonora and Arizona. The lower plate is composed of Proterozoic igneous and metamorphic rocks intruded by Tertiary plutons, both of which are overprinted by mylonitic foliation and N70°E-trending stretching lineation. Ductile and brittle-ductile deformations were produced by Tertiary extension along a normal shear zone or detachment fault. Shear sense is consistent across the Sierra and indicates a top to the WSW motion. The lithology and fabric reflect variations in temperature and pressure conditions during extensional deformation. The upper plate consists mainly of Cambrian-Mississippian limestone and minor quartzite, covered by upper Cretaceous volcanic rocks, and then by Tertiary syntectonic sedimentary deposits with interbedded volcanic flows. Doming caused uplift and denudation of the detachment, as well as successive low-angle and high-angle normal faulting across the western slope of Mazatán Sierra. An 18±3 Ma apatite fission-track age was obtained for a sample of Proterozoic monzogranite from the lower plate. The mean fission-track length indicates rapid cooling and consequent rapid uplift of this sample during the last stage of crustal extension.

  13. Reinforcement of Natural Rubber with Core-Shell Structure Silica-Poly(Methyl Methacrylate Nanoparticles

    Directory of Open Access Journals (Sweden)

    Qinghuang Wang

    2012-01-01

    Full Text Available A highly performing natural rubber/silica (NR/SiO2 nanocomposite with a SiO2 loading of 2 wt% was prepared by combining similar dissolve mutually theory with latex compounding techniques. Before polymerization, double bonds were introduced onto the surface of the SiO2 particles with the silane-coupling agent. The core-shell structure silica-poly(methyl methacrylate, SiO2-PMMA, nanoparticles were formed by grafting polymerization of MMA on the surface of the modified SiO2 particles via in situ emulsion, and then NR/SiO2 nanocomposite was prepared by blending SiO2-PMMA and PMMA-modified NR (NR-PMMA. The Fourier transform infrared spectroscopy results show that PMMA has been successfully introduced onto the surface of SiO2, which can be well dispersed in NR matrix and present good interfacial adhesion with NR phase. Compared with those of pure NR, the thermal resistance and tensile properties of NR/SiO2 nanocomposite are significantly improved.

  14. Water- and Temperature-Triggered Reversible Structural Transformation of Tetranuclear Cobalt(II) Cores Sandwiched by Polyoxometalates.

    Science.gov (United States)

    Kuriyama, Yosuke; Kikukawa, Yuji; Suzuki, Kosuke; Yamaguchi, Kazuya; Mizuno, Noritaka

    2016-03-14

    Although stimuli-responsive structural transformations of inorganic materials have attracted considerable attention because of their potential use as functional switchable materials, multinuclear metal cores frequently suffer from unexpected dissociation of metal cations and/or irreversible transformations into infinite structures. In this study, we describe the successful demonstration of the water- and temperature-triggered reversible structural transformation between cubane- and planar-type tetranuclear Co(II) cores sandwiched by polyoxometalates. The arrangements and coordination geometries of the Co(II) cations were interconverted by simple hydration and dehydration, resulting in the manipulation of the magnetic and optical properties of these compounds. Moreover, this system showed unique thermochromism through temperature-dependent reversible structural interconversion.

  15. Enhancing oxidative stability in heated oils using core/shell structures of collagen and α-tocopherol complex.

    Science.gov (United States)

    Gim, Seo Yeong; Hong, Seungmi; Kim, Jisu; Kwon, YongJun; Kim, Mi-Ja; Kim, GeunHyung; Lee, JaeHwan

    2017-11-15

    In this study, collagen mesh structure was prepared by carrying α-tocopherol in the form of core/shell complex. Antioxidant properties of α-tocopherol loaded carriers were tested in moisture added bulk oils at 140°C. From one gram of collagen core/shell complex, 138mg α-tocopherol was released in medium chain triacylglycerol (MCT). α-Tocopherol was substantially protected against heat treatment when α-tocopherol was complexed in collagen core/shell. Oxidative stability in bulk oil was significantly enhanced by added collagen mesh structure or collagen core/shell complex with α-tocopherol compared to that in control bulk oils (pcore/shell with α-tocopherol (p>0.05). Results of DPPH loss in methanol demonstrated that collagen core/shell with α-tocopherol had significantly (pcore/shell complex is a promising way to enhance the stability of α-tocopherol and oxidative stability in oil-rich foods prepared at high temperature. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Thermal Stability of Platinum-Cobalt Bimetallic Nanoparticles: Chemically Disordered Alloys, Ordered Intermetallics, and Core-Shell Structures.

    Science.gov (United States)

    Huang, Rao; Shao, Gui-Fang; Zhang, Yang; Wen, Yu-Hua

    2017-04-12

    Pt-Co bimetallic nanoparticles are promising candidates for Pt-based nanocatalysts and magnetic-storage materials. By using molecular dynamics simulations, we here present a detailed examination on the thermal stabilities of Pt-Co bimetallic nanoparticles with three configurations including chemically disordered alloy, ordered intermetallics, and core-shell structures. It has been revealed that ordered intermetallic nanoparticles possess better structural and thermal stability than disordered alloyed ones for both Pt3Co and PtCo systems, and Pt3Co-Pt core-shell nanoparticles exhibit the highest melting points and the best thermal stability among Pt-Co bimetallic nanoparticles, although their meltings all initiate at the surface and evolve inward with increasing temperatures. In contrast, Co-Pt core-shell nanoparticles display the worst thermal stability compared with the aforementioned nanoparticles. Furthermore, their melting initiates in the core and extends outward surface, showing a typical two-stage melting mode. The solid-solid phase transition is discovered in Co core before its melting. This work demonstrates the importance of composition distribution to tuning the properties of binary nanoparticles.

  17. Core-shell structured titanium-nitrogen alloys with high strength, high thermal stability and good plasticity.

    Science.gov (United States)

    Zhang, Y S; Zhao, Y H; Zhang, W; Lu, J W; Hu, J J; Huo, W T; Zhang, P X

    2017-01-06

    Multifunctional materials with more than two good properties are widely required in modern industries. However, some properties are often trade-off with each other by single microstructural designation. For example, nanostructured materials have high strength, but low ductility and thermal stability. Here by means of spark plasma sintering (SPS) of nitrided Ti particles, we synthesized bulk core-shell structured Ti alloys with isolated soft coarse-grained Ti cores and hard Ti-N solid solution shells. The core-shell Ti alloys exhibit a high yield strength (~1.4 GPa) comparable to that of nanostructured states and high thermal stability (over 1100 °C, 0.71 of melting temperature), contributed by the hard Ti-N shells, as well as a good plasticity (fracture plasticity of 12%) due to the soft Ti cores. Our results demonstrate that this core-shell structure offers a design pathway towards an advanced material with enhancing strength-plasticity-thermal stability synergy.

  18. Core-shell structured titanium-nitrogen alloys with high strength, high thermal stability and good plasticity

    Science.gov (United States)

    Zhang, Y. S.; Zhao, Y. H.; Zhang, W.; Lu, J. W.; Hu, J. J.; Huo, W. T.; Zhang, P. X.

    2017-01-01

    Multifunctional materials with more than two good properties are widely required in modern industries. However, some properties are often trade-off with each other by single microstructural designation. For example, nanostructured materials have high strength, but low ductility and thermal stability. Here by means of spark plasma sintering (SPS) of nitrided Ti particles, we synthesized bulk core-shell structured Ti alloys with isolated soft coarse-grained Ti cores and hard Ti-N solid solution shells. The core-shell Ti alloys exhibit a high yield strength (~1.4 GPa) comparable to that of nanostructured states and high thermal stability (over 1100 °C, 0.71 of melting temperature), contributed by the hard Ti-N shells, as well as a good plasticity (fracture plasticity of 12%) due to the soft Ti cores. Our results demonstrate that this core-shell structure offers a design pathway towards an advanced material with enhancing strength-plasticity-thermal stability synergy.

  19. Structures of oncogenic, suppressor and rescued p53 core-domain variants: mechanisms of mutant p53 rescue

    Energy Technology Data Exchange (ETDEWEB)

    Wallentine, Brad D.; Wang, Ying; Tretyachenko-Ladokhina, Vira; Tan, Martha; Senear, Donald F. [University of California, Irvine, Irvine, CA 92697 (United States); Luecke, Hartmut, E-mail: hudel@uci.edu [University of California, Irvine, Irvine, CA 92697 (United States); University of California, Irvine, Irvine, CA 92697 (United States); University of California, Irvine, Irvine, CA 92697 (United States); University of California, Irvine, Irvine, CA 92697 (United States); Universidad del Pais Vasco, 48940 Leioa (Spain)

    2013-10-01

    X-ray crystallographic structures of four p53 core-domain variants were determined in order to gain insights into the mechanisms by which certain second-site suppressor mutations rescue the function of a significant number of cancer mutations of the tumor suppressor protein p53. To gain insights into the mechanisms by which certain second-site suppressor mutations rescue the function of a significant number of cancer mutations of the tumor suppressor protein p53, X-ray crystallographic structures of four p53 core-domain variants were determined. These include an oncogenic mutant, V157F, two single-site suppressor mutants, N235K and N239Y, and the rescued cancer mutant V157F/N235K/N239Y. The V157F mutation substitutes a smaller hydrophobic valine with a larger hydrophobic phenylalanine within strand S4 of the hydrophobic core. The structure of this cancer mutant shows no gross structural changes in the overall fold of the p53 core domain, only minor rearrangements of side chains within the hydrophobic core of the protein. Based on biochemical analysis, these small local perturbations induce instability in the protein, increasing the free energy by 3.6 kcal mol{sup −1} (15.1 kJ mol{sup −1}). Further biochemical evidence shows that each suppressor mutation, N235K or N239Y, acts individually to restore thermodynamic stability to V157F and that both together are more effective than either alone. All rescued mutants were found to have wild-type DNA-binding activity when assessed at a permissive temperature, thus pointing to thermodynamic stability as the critical underlying variable. Interestingly, thermodynamic analysis shows that while N239Y demonstrates stabilization of the wild-type p53 core domain, N235K does not. These observations suggest distinct structural mechanisms of rescue. A new salt bridge between Lys235 and Glu198, found in both the N235K and rescued cancer mutant structures, suggests a rescue mechanism that relies on stabilizing the

  20. Core Structure of S2 from the Human Coronavirus NL63 Spike Glycoprotein

    Energy Technology Data Exchange (ETDEWEB)

    Zheng,Q.; Deng, Y.; Liu, J.; van der Hoek, L.; Berkhout, B.; Lu, M.

    2006-01-01

    Human coronavirus NL63 (HCoV-NL63) has recently been identified as a causative agent of acute respiratory tract illnesses in infants and young children. The HCoV-NL63 spike (S) protein mediates virion attachment to cells and subsequent fusion of the viral and cellular membranes. This viral entry process is a primary target for vaccine and drug development. HCoV-NL63 S is expressed as a single-chain glycoprotein and consists of an N-terminal receptor-binding domain (S1) and a C-terminal transmembrane fusion domain (S2). The latter contains two highly conserved heptad-repeat (HR) sequences that are each extended by 14 amino acids relative to those of the SARS coronavirus or the prototypic murine coronavirus, mouse hepatitis virus. Limited proteolysis studies of the HCoV-NL63 S2 fusion core identify an {alpha}-helical domain composed of a trimer of the HR segments N57 and C42. The crystal structure of this complex reveals three C42 helices entwined in an oblique and antiparallel manner around a central triple-stranded coiled coil formed by three N57 helices. The overall geometry comprises distinctive high-affinity conformations of interacting cross-sectional layers of the six helices. As a result, this structure is unusually stable, with an apparent melting temperature of 78 {sup o}C in the presence of the denaturant guanidine hydrochloride at 5 M concentration. The extended HR regions may therefore be required to prime the group 1 S glycoproteins for their fusion-activating conformational changes during viral entry. Our results provide an initial basis for understanding an intriguing interplay between the presence or absence of proteolytic maturation among the coronavirus groups and the membrane fusion activity of their S glycoproteins. This study also suggests a potential strategy for the development of improved HCoV-NL63 fusion inhibitors.

  1. Pore - to - Core Modeling of Soil Organic Matter Decomposition in 3D Soil Structures

    Science.gov (United States)

    Falconer, R. E.; Battaia, G.; Baveye, P.; Otten, W.

    2013-12-01

    There is a growing body of literature supporting the need for microbial contributions to be considered explicitly in carbon-climate models. There is also overwhelming evidence that physical protection within aggregates can play a significant role in organic matter dynamics. Yet current models of soil organic matter dynamics divide soil organic matter into conceptual pools with distinct turnover times, assuming that a combination of biochemical and physical properties control decay without explicit description. Albeit robust in their application, such models are not capable to account for changes in soil structure or microbial populations, or accurately predict the effect of wetness or priming. A spatially explicit model is presented that accounts for microbial dynamics and physical processes, permitting consideration of the heterogeneity of the physical and chemical microenvironments at scales relevant for microbes. Exemplified for fungi, we investigate how micro-scale processes manifest at the core scale with particular emphasis on evolution of CO2 and biomass distribution. The microbial model is based upon previous (Falconer et al, 2012) and includes the following processes: uptake, translocation, recycling, enzyme production, growth, spread and respiration. The model is parameterised through a combination of literature data and parameter estimation (Cazelles et al., 2012).The Carbon model comprises two pools, particulate organic matter which through enzymatic activity is converted into dissolved organic matter. The microbial and carbon dynamics occur within a 3D soil structure obtained by X-ray CT. We show that CO2 is affected not only by the amount of Carbon in the soil but also by microbial dynamics, soil structure and the spatial distribution of OM. The same amount of OM can result in substantially different respiration rates, with surprisingly more CO2 with increased clustering of OM. We can explain this from the colony dynamics, production of enzymes and

  2. A tetraphenylethylene core-based 3D structure small molecular acceptor enabling efficient non-fullerene organic solar cells.

    Science.gov (United States)

    Liu, Yuhang; Mu, Cheng; Jiang, Kui; Zhao, Jingbo; Li, Yunke; Zhang, Lu; Li, Zhengke; Lai, Joshua Yuk Lin; Hu, Huawei; Ma, Tingxuan; Hu, Rongrong; Yu, Demei; Huang, Xuhui; Tang, Ben Zhong; Yan, He

    2015-02-01

    A tetraphenylethylene core-based small molecular acceptor with a unique 3D molecular structure is developed. Bulk-heterojunction blend films with a small feature size (≈20 nm) are obtained, which lead to non-fullerene organic solar cells (OSCs) with 5.5% power conversion efficiency. The work provides a new molecular design approach to efficient non-fullerene OSCs based on 3D-structured small-molecule acceptors.

  3. Antibodies against non-structural c100/3 and structural core antigen of hepatitis C virus (HCV) in hemodialysis patients

    OpenAIRE

    Yoshida,C.F.T.; Takahashi, Y.; B.O.M. Vanderborght; Rouzere,C. D.; França,M. S. de; Takahashi,C.; Takamizawa, A; Yoshida, I.; Schatzmayr, H. G.

    1993-01-01

    Two groups of patients undergoing hemodialysis (HD) maintenance were evaluated for their antibody response to non-structural c100/3 protein and structural core protein of hepatitis C virus (HCV). Forty-six patients (Group 1) never presented liver abnormalities during HD treatment, while 52 patients (Group 2) had either current or prior liver enzyme elevations. Prevalence rates of 32.6% and 41.3% were found for anti-c100/3 and anti-HCV core antibodies, respectively, in patients with silent inf...

  4. DETERMINATION OF CENTRAL ENGINE POSITION AND ACCRETION DISK STRUCTURE IN NGC 4261 BY CORE SHIFT MEASUREMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Haga, Takafumi; Doi, Akihiro; Murata, Yasuhiro [Department of Space and Astronautical Science, The Graduate University for Advanced Studies (SOKENDAI), 3-1-1 Yoshinodai, Chuou-ku, Sagamihara, Kanagawa, 252-5210 (Japan); Sudou, Hiroshi [Department of Mathematical and Design Engineering, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu City 5011-1193 (Japan); Kameno, Seiji [Joint ALMA Observatory, Alonso de Córdova 3107 Vitacura, Santiago (Chile); Hada, Kazuhiro, E-mail: haga@vsop.isas.jaxa.jp [Mizusawa VLBI Observatory, National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2015-07-01

    We report multifrequency phase-referenced observations of the nearby radio galaxy NGC 4261, which has prominent two-sided jets, using the Very Long Baseline Array at 1.4–43 GHz. We measured radio core positions showing observing frequency dependences (known as “core shift”) in both approaching jets and counterjets. The limit of the core position as the frequency approaches infinity, which suggests a jet base, is separated by 82 ± 16 μas upstream in projection, corresponding to (310 ± 60)R{sub s} (R{sub s}: Schwarzschild radius) as a deprojected distance, from the 43 GHz core in the approaching jet. In addition, the innermost component at the counterjet side appeared to approach the same position at infinity of the frequency, indicating that cores on both sides are approaching the same position, suggesting a spatial coincidence with the central engine. Applying a phase-referencing technique, we also obtained spectral index maps, which indicate that emission from the counterjet is affected by free–free absorption (FFA). The result of the core shift profile on the counterjet also requires FFA because the core positions at 5–15 GHz cannot be explained by a simple core shift model based on synchrotron self-absorption (SSA). Our result is apparently consistent with the SSA core shift with an additional disk-like absorber over the counterjet side. Core shift and opacity profiles at the counterjet side suggest a two-component accretion: a radiatively inefficient accretion flow at the inner region and a truncated thin disk in the outer region. We proposed a possible solution about density and temperature profiles in the outer disk on the basis of the radio observation.

  5. Effect of Paclitaxel-Mesoporous Silica Nanoparticles with a Core-Shell Structure on the Human Lung Cancer Cell Line A549

    Science.gov (United States)

    Wang, Tieliang; Liu, Ying; Wu, Chao

    2017-01-01

    A nanodrug delivery system of paclitaxel-mesoporous silica nanoparticles with a core-shell structure (PAC-csMSN) was used to increase the dissolution of paclitaxel (PAC) and improve its treatment of lung cancer. PAC was loaded into the core-shell mesoporous silica nanoparticles (csMSN) by the adsorption equilibrium method and was in an amorphous state in terms of its mesoporous structure. In vitro and in vivo studies showed that csMSN increased the dissolution rate of PAC and improved its lung absorption. The area under concentration-time curve (AUC) value of PAC-csMSN used for pulmonary delivery in rabbits was 2.678-fold higher than that obtained with the PAC. After continuous administration for 3 days, a lung biopsy showed no signs of inflammation. Cell apoptosis results obtained by flow cytometry indicated that PAC-csMSN was more potent than pure PAC in promoting cell apoptosis. An absorption investigation of PAC-csMSN in A549 cells was carried out by transmission electron microscopy (TEM) and laser scanning confocal microscopy (LSCM). The obtained results indicated that the cellular uptake was time-dependent and csMSN was uptaken into the cytoplasm. All these results demonstrate that csMSN have the potential to achieve pulmonary inhalation administration of poorly water-soluble drugs for the treatment of lung cancer.

  6. Core-shell-structured silica/polyacrylate particles prepared by Pickering emulsion: influence of the nucleation model on particle interfacial organization and emulsion stability.

    Science.gov (United States)

    Ji, Jing; Shu, Shi; Wang, Feng; Li, Zhilin; Liu, Jingjun; Song, Ye; Jia, Yi

    2014-01-01

    This work reports a new evidence of the versatility of silica sol as a stabilizer for Pickering emulsions. The organization of silica particles at the oil-water interface is a function of the nucleation model. The present results show that nucleation model, together with monomer hydrophobicity, can be used as a trigger to modify the packing density of silica particles at the oil-water interface: Less hydrophobic methylmethacrylate, more wettable with silica particles, favors the formation of core-shell-structured composite when the composite particles are prepared by miniemulsion polymerization in which monomers are fed in batch (droplet nucleation). By contrast, hydrophobic butylacrylate promotes the encapsulating efficiency of silica when monomers are fed dropwise (homogeneous nucleation). The morphologies of polyacrylate-nano-SiO2 composites prepared from different feed ratio of methylmethacrylate/butylacrylate (with different hydrophobicity) and by different feed processes are characterized by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) techniques. The results from SEM and TEM show that the morphologies of the as-prepared polyacrylate/nano-SiO2 composite can be a core-shell structure or a bare acrylic sphere. The stability of resulting emulsions composed of these composite particles is strongly dependent on the surface coverage of silica particles. The emulsion stability is improved by densely silica-packed composite particles.

  7. Supporting Structures for Education for Sustainable Development and School-Based Health Promotion

    Science.gov (United States)

    Madsen, Katrine Dahl; Nordin, Lone Lindegaard; Simovska, Venka

    2016-01-01

    The article aims to explore the following question: "How is education for sustainable development and health education in schools approached and contextualized at a municipal level, and what contradictions and tensions might local structures imply for sustainable health promoting school development?" Based on interviews with key agents…

  8. Supporting structures for education for sustainable development and school-based health promotion

    DEFF Research Database (Denmark)

    Madsen, Katrine Dahl; Nordin, Lone Lindegard; Simovska, Venka

    2016-01-01

    The article aims to explore the following question: How is education for sustainable development and health education in schools approached and contextualized at a municipal level, and what contradictions and tensions might local structures imply for sustainable health promoting school development...

  9. COMPASS: Collaborative Organizational Model to Promote Aligned Support Structures. Final Evaluation Report

    Science.gov (United States)

    Holliday, Lisa; Philp, Joel

    2015-01-01

    In 2010, Iredell-Statesville Schools was awarded an Investing in Innovation grant (i3) from the Office of Innovation and Improvement within the Federal Department of Education. Collaborative Organizational Model to Promote Aligned Support Structures (COMPASS) is a development grant that seeks to meet the needs of students with disabilities,…

  10. Supporting Structures for Education for Sustainable Development and School-Based Health Promotion

    Science.gov (United States)

    Madsen, Katrine Dahl; Nordin, Lone Lindegaard; Simovska, Venka

    2016-01-01

    The article aims to explore the following question: "How is education for sustainable development and health education in schools approached and contextualized at a municipal level, and what contradictions and tensions might local structures imply for sustainable health promoting school development?" Based on interviews with key agents…

  11. Structural and optical investigation of semiconductor CdSe/CdS core-shell quantum dot thin films.

    Science.gov (United States)

    Sharma, A B; Sharma, Sudhir Kumar; Sharma, M; Pandey, R K; Reddy, D S

    2009-03-01

    Highly luminescent CdSe/CdS core-shell nanocrystals have been assembled on indium tin oxide (ITO) coated glass substrates using a wet synthesis route. The physical properties of the quantum dots (QD) have been investigated using X-ray diffraction, transmission electron microscopy and optical absorption spectroscopy techniques. These quantum dots showed a strong enhancement in the near band edge absorption. The in situ luminescence behavior has been interpreted in the light of the quantum confinement effect and induced strain in the core-shell structure.

  12. The effects of the solid inner core and nonhydrostatic structure on the earth's forced nutations and earth tides

    Science.gov (United States)

    De Vries, Dan; Wahr, John M.

    1991-01-01

    This paper computes the effects of the solid inner core (IC) on the forced nutations and earth tides, and on certain of the earth's rotational normal modes. The theoretical results are extended to include the effects of a solid IC and of nonhydrostatic structure. The presence of the IC is responsible for a new, almost diurnal, prograde normal mode which involves a relative rotation between the IC and fluid outer core about an equatorial axis. It is shown that the small size of the IC's effects on both nutations and tides is a consequence of the fact that the IC's moments of inertia are less than 1/1000 of the entire earth's.

  13. Ag@ZnO core-shell nanoparticles study by first principle: The structural, magnetic and optical properties

    Science.gov (United States)

    Cheng, Hai-Xia; Wang, Xiao-Xu; Hu, Yao-Wen; Song, Hong-Quan; Huo, Jin-Rong; Li, Lu; Qian, Ping; Song, Yu-Jun

    2016-12-01

    Ag@ZnO core-shell nanoparticles of around 72 atoms have been investigated by the density functional theory, revealing proving for the first time that the core-shell structure exhibits a shrinkage phenomenon from outer shell in agreement with the other studies in literatures. Our calculations predict that the Ag@ZnO core-shell structure is a ferromagnetic spin polarized state, and the magnetism mainly stems from the spin splitting of 2p electrons of O atoms. In addition, the total and partial DOS of Ag@ZnO indicate that the nanostructure is a half-metallic nanoparticle and has the characters of the p-type semiconductor. Furthermore, the optical properties calculations show that the absorption edge of Ag@ZnO have a red shift and good photocatalysis compare to that of the bulk ZnO. These results of the Ag@ZnO core-shell structure obtain a well agreement with the experimental measurement.

  14. Structural Transformation of the Amyloidogenic Core Region of TDP-43 Protein Initiates Its Aggregation and Cytoplasmic Inclusion*

    Science.gov (United States)

    Jiang, Lei-Lei; Che, Mei-Xia; Zhao, Jian; Zhou, Chen-Jie; Xie, Mu-Yun; Li, Hai-Yin; He, Jian-Hua; Hu, Hong-Yu

    2013-01-01

    TDP-43 (TAR DNA-binding protein of 43 kDa) is a major deposited protein in amyotrophic lateral sclerosis and frontotemporal dementia with ubiquitin. A great number of genetic mutations identified in the flexible C-terminal region are associated with disease pathologies. We investigated the molecular determinants of TDP-43 aggregation and its underlying mechanisms. We identified a hydrophobic patch (residues 318–343) as the amyloidogenic core essential for TDP-43 aggregation. Biophysical studies demonstrated that the homologous peptide formed a helix-turn-helix structure in solution, whereas it underwent structural transformation from an α-helix to a β-sheet during aggregation. Mutation or deletion of this core region significantly reduced the aggregation and cytoplasmic inclusions of full-length TDP-43 (or TDP-35 fragment) in cells. Thus, structural transformation of the amyloidogenic core initiates the aggregation and cytoplasmic inclusion formation of TDP-43. This particular core region provides a potential therapeutic target to design small-molecule compounds for mitigating TDP-43 proteinopathies. PMID:23689371

  15. Preliminary study of degradation from neutron effects of core-structural materials of Thai Research Reactor TRR-1/M1

    Science.gov (United States)

    Ampornrat, P.; Boonsuwan, P.; Sangkaew, S.; Angwongtrakool, T.

    2017-06-01

    Thai research reactor went first critical in 1962. The reactor was converted in 1977 from an MTR-type with high-enriched uranium fuel to a TRIGA-MARK III type using low-enriched uranium fuel, called TRR-1/M1. Since the TRR-1/M1 has been operated for almost 40 years, degradation of reactor structural materials is expected. In this preliminary study, the potential degradation from neutron effects of core-structural materials, e.g., fuel clad (SS304) and core components (Al6061) were studied. Assessment included calculation of neutron energy, flux and fluence in the reactor core to evaluate displacement rate (dpa) and irradiation effects on the material properties. Results showed maximum displacement rates on SS304 was 5.24×10-8 per cm3·sec and on Al6061 was 1.14×10-8 per cm3·sec. The corresponding maximum displacement levels were ∼17 dpa for SS304, and ∼4 dpa for Al6061. At these levels of displacement, it is possible for the materials to result in tensile strength increasing and ductility reduction. Further inspection on the core-structural materials needs to be conducted to validate the assessment results from this study.

  16. Multifrequency studies of massive cores with complex spatial and kinematic structures

    Science.gov (United States)

    Pirogov, L. E.; Shul'ga, V. M.; Zinchenko, I. I.; Zemlyanukha, P. M.; Patoka, A. N.; Tomasson, M.

    2016-10-01

    Five regions of massive-star formation have been observed in various molecular lines in the frequency range˜85-89 GHz. The studied regions comprise dense cores, which host young stellar objects. The physical parameters of the cores are estimated, including the kinetic temperatures (˜20-40 K), the sizes of the emitting regions (˜0.1-0.6 pc), and the virial masses (˜40-500 M ⊙). The column densities and abundances of various molecules are calculated assuming Local Thermodynamical Equilibrium(LTE). The core in 99.982+4.17, which is associated with the weakest IRAS source, is characterized by reduced molecular abundances. The molecular line widths decrease with increasing distance from the core centers ( b). For b ≳ 0.1 pc, the dependences Δ V ( b) are close to power laws (∝ b - p ), where p varies from ~0.2 to ~0.5, depending on the object. In four cores, the asymmetries of the optically thick HCN(1-0) and HCO+(1-0) lines indicates systematicmotions along the line of sight: collapse in two cores and expansion in two others. Approximate estimates of the accretion rates in the collapsing cores indicate that the forming stars have masses exceeding the solar mass.

  17. Functional Analysis of the Dioxin Response Elements (DREs of the Murine CYP1A1 Gene Promoter: Beyond the Core DRE Sequence

    Directory of Open Access Journals (Sweden)

    Shuaizhang Li

    2014-04-01

    Full Text Available The aryl hydrocarbon receptor (AhR is a ligand-dependent transcription factor that mediates the biological and toxicological effects of halogenated aromatic hydrocarbons, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD. When activated by dioxin, the cytosolic AhR protein complex translocates into the nucleus and dimerizes with the ARNT (Ah receptor nuclear translocator protein. The heteromeric ligand:AhR/Arnt complex then recognizes and binds to its specific DNA recognition site, the dioxin response element (DRE. DREs are located upstream of cytochrome P4501A1 (CYP1A1 and other AhR-responsive genes, and binding of the AhR complex stimulates their transcription. Although CYP1A1 expression has been used as the model system to define the biochemical and molecular mechanism of AhR action, there is still limited knowledge about the roles of each of the seven DREs located in the CYP1A1 promoter. These seven DREs are conserved in mouse, human and rat. Deletion analysis showed that a single DRE at -488 was enough to activate the transcription. Truncation analysis demonstrated that the DRE at site -981 has the highest transcriptional efficiency in response to TCDD. This result was verified by mutation analysis, suggesting that the conserved DRE at site -981 could represent a significant and universal AhR regulatory element for CYP1A1. The reversed substituted intolerant core sequence (5'-GCGTG-3' or 5'-CACGC-3' of seven DREs reduced the transcriptional efficiency, which illustrated that the adjacent sequences of DRE played a vital role in activating transcription. The core DRE sequence (5'-TNGCGTG-3' tends to show a higher transcriptional level than that of the core DRE sequence (5'-CACGCNA-3' triggered by TCDD. Furthermore, in the core DRE (5'-TNGCGTG-3' sequence, when “N” is thymine or cytosine (T or C, the transcription efficiency was stronger compared with that of the other nucleotides. The effects of DRE orientation, DRE adjacent sequences and

  18. Large-pitch kagome-structured hollow-core photonic crystal fiber

    Science.gov (United States)

    Couny, F.; Benabid, F.; Light, P. S.

    2006-12-01

    We report the fabrication and characterization of a new type of hollow-core photonic crystal fiber based on large-pitch (˜12μm) kagome lattice cladding. The optical characteristics of the 19-cell, 7-cell, and single-cell core defect fibers include broad optical transmission bands covering the visible and near-IR parts of the spectrum with relatively low loss and low chromatic dispersion, no detectable surface modes and high confinement of light in the core. Various applications of such a novel fiber are also discussed, including gas sensing, quantum optics, and high harmonic generation.

  19. Polymersomes, smaller than you think: ferrocene as a TEM probe to determine core structure

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, A. H., E-mail: ahj@soton.ac.u [University of Southampton, School of Biological Sciences (United Kingdom); Dalton, P. D. [Queensland University of Technology, Institute of Health and Biomedical Innovation (Australia); Newman, T. A. [University of Southampton, School of Medicine, Clinical Neurosciences (United Kingdom)

    2010-08-15

    By incorporating ferrocene into the hydrophobic membrane of PEG-b-PCL polymersome nanoparticles it is possible to selectively visualize their core using Transmission Electron Microscopy (TEM). Two different sizes of ferrocene-loaded polymersomes with mean hydrodynamic diameters of approximately 40 and 90 nm were prepared. Image analysis of TEM pictures of these polymersomes found that the mean diameter of the core was 4-5 times smaller than the mean hydrodynamic diameter. The values obtained also allow the surface diameter and internal volume of the core to be calculated.

  20. Frizzled-Induced Van Gogh Phosphorylation by CK1ε Promotes Asymmetric Localization of Core PCP Factors in Drosophila

    Directory of Open Access Journals (Sweden)

    Lindsay K. Kelly

    2016-07-01

    Full Text Available Epithelial tissues are polarized along two axes. In addition to apical-basal polarity, they are often polarized within the plane of the epithelium, so-called Planar Cell Polarity (PCP. PCP depends upon Wnt/Frizzled (Fz signaling factors, including Fz itself and Van Gogh (Vang/Vangl. We sought to understand how Vang interaction with other core PCP factors affects Vang function. We find that Fz induces Vang phosphorylation in a cell-autonomous manner. Vang phosphorylation occurs on conserved N-terminal serine/threonine residues, is mediated by CK1ε/Dco, and is critical for polarized membrane localization of Vang and other PCP proteins. This regulatory mechanism does not require Fz signaling through Dishevelled and thus represents a cell-autonomous upstream interaction between Fz and Vang. Furthermore, this signaling event appears to be related to Wnt5a-mediated Vangl2 phosphorylation during mouse limb patterning and may thus be a general mechanism underlying Wnt-regulated PCP establishment.

  1. Frizzled-Induced Van Gogh Phosphorylation by CK1ε Promotes Asymmetric Localization of Core PCP Factors in Drosophila.

    Science.gov (United States)

    Kelly, Lindsay K; Wu, Jun; Yanfeng, Wang A; Mlodzik, Marek

    2016-07-12

    Epithelial tissues are polarized along two axes. In addition to apical-basal polarity, they are often polarized within the plane of the epithelium, so-called Planar Cell Polarity (PCP). PCP depends upon Wnt/Frizzled (Fz) signaling factors, including Fz itself and Van Gogh (Vang/Vangl). We sought to understand how Vang interaction with other core PCP factors affects Vang function. We find that Fz induces Vang phosphorylation in a cell-autonomous manner. Vang phosphorylation occurs on conserved N-terminal serine/threonine residues, is mediated by CK1ε/Dco, and is critical for polarized membrane localization of Vang and other PCP proteins. This regulatory mechanism does not require Fz signaling through Dishevelled and thus represents a cell-autonomous upstream interaction between Fz and Vang. Furthermore, this signaling event appears to be related to Wnt5a-mediated Vangl2 phosphorylation during mouse limb patterning and may thus be a general mechanism underlying Wnt-regulated PCP establishment. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  2. Synthesis and Structure Control of A New Kind of Inelastomer Impact Modifier with Core-shell Structure and Impact Modification to PVC/CPE

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A new kind of inelastomer impact modifier with a core-shell structure was synthesized by employing a multi-step composite emulsion polymerization technique, the size and morphology structure of the core-shell particles could be controlled by the multi-step composite emulsion polymerization technique. The study of the impact strength and the elongation at break of the PVC/CPE blend with different contents of core-shell particles(C-S) indicated that the mechanical properties of PVC/CPE/C-S composite were the best when the concentration of the particle was 2.5%(mass fraction) which showed the different regularities and characteristics of elastomer toughening plastic.

  3. Structure-Related Optical Fingerprints in the Absorption Spectra of Colloidal Quantum Dots: Random Alloy vs. Core/Shell Systems

    CERN Document Server

    Mourad, Daniel

    2016-01-01

    We argue that the experimentally easily accessible optical absorption spectrum can often be used to distinguish between a random alloy phase and a stoichiometrically equivalent core/shell realization of ensembles of monodisperse colloidal semiconductor quantum dots without the need for more advanced structural characterization tools. Our proof-of-concept is performed by conceptually straightforward exact-disorder tight-binding calculations. The underlying stochastical tight-binding scheme only parametrizes bulk band structure properties and does not employ additional free parameters to calculate the optical absorption spectrum, which is an easily accessible experimental property. The method is applied to selected realizations of type-I Cd(Se,S) and type-II (Zn,Cd)(Se,S) alloyed quantum dots with an underlying zincblende crystal structure and the corresponding core/shell counterparts.

  4. Triple layered core-shell structure with surface fluorinated ZnO-carbon nanotube composites and its electron emission properties

    Science.gov (United States)

    Wang, H. Y.; Chua, Daniel H. C.

    2013-01-01

    Core-shelled structures such as zinc oxide (ZnO) on carbon nanotubes (CNTs) give rise to interesting material properties. In this work, a triple-layered core-shell-shell structure is presented where the effects of fluorine (F) incorporation on the outmost shell of the ZnO-CNT structure are studied. The samples prepared ranged from a short 2 min to a 30 min immersion in carbon tetraflouride (CF4) plasma. In addition, its effects on the electron emission properties also studied and it is shown that the plasma immersions create thinner field emitters with sharp tiny wrinkles giving rise to more electron emission sites and higher enhancement factor. In addition, X-ray photoelectron spectroscopy measurements showed that F ions replace O in ZnO coatings during immersion process, thus increasing the electrical conductivity and shifts the Fermi level of ZnO upwards. Both physical and electronic effects further contribute to a lower threshold field.

  5. Photochemical synthesis of bimetallic Au-Ag nanoparticles with "core-shell" type structure by seed mediated catalytic growth

    Institute of Scientific and Technical Information of China (English)

    DONG Shou-an; TANG Chun

    2005-01-01

    The colloidal Au core/Ag shell structure composite nanoparticles were synthesized in PEG-acetone solution by photochemical route. The monodispersed Au nanoparticles with average diameter of 3.9 nm were used as growth seeds. The optical property of colloids and the sizes of composite nanoparticles were characterized when the molar ratio of Au to Ag ranges from 4 : 1 to 1 : 4. The results show that a composite nanoparticle structure similar to strawberry shape is formed at the molar ratio of Au to Ag from 4 : 1 to 1 : 1; the composite nanoparticles consisting of a core of Au and shell of Ag were generated at the 1: 4 molar ratio, having a striking feature of forming interconnected network structure.

  6. Core Structure and Non-Abelian Reconnection of Defects in a Biaxial Nematic Spin-2 Bose-Einstein Condensate

    CERN Document Server

    Borgh, Magnus O

    2016-01-01

    We calculate the energetic structure of defect cores and propose controlled methods to imprint a nontrivially entangled vortex pair that undergoes non-Abelian vortex reconnection in a biaxial nematic spin-2 condensate. For a singular vortex, we find three superfluid cores in addition to depletion of the condensate density. These exhibit order parameter symmetries that are different from the discrete symmetry of the biaxial nematic phase, forming an interface between the defect and the bulk superfluid. We provide a detailed analysis of phase mixing in the resulting vortex cores and find an instability dependent upon the orientation of the order parameter. We further show that the spin-2 condensate is a promising system for observing spontaneous deformation of a point defect into an "Alice ring" that has so far avoided experimental detection.

  7. From text to structured data: Converting a word-processed floristic checklist into Darwin Core Archive format.

    Science.gov (United States)

    Remsen, David; Knapp, Sandra; Georgiev, Teodor; Stoev, Pavel; Penev, Lyubomir

    2012-01-01

    The paper describes a pilot project to convert a conventional floristic checklist, written in a standard word processing program, into structured data in the Darwin Core Archive format. After peer-review and editorial acceptance, the final revised version of the checklist was converted into Darwin Core Archive by means of regular expressions and published thereafter in both human-readable form as traditional botanical publication and Darwin Core Archive data files. The data were published and indexed through the Global Biodiversity Information Facility (GBIF) Integrated Publishing Toolkit (IPT) and significant portions of the text of the paper were used to describe the metadata on IPT. After publication, the data will become available through the GBIF infrastructure and can be re-used on their own or collated with other data.

  8. Structural glitches near the cores of red giants revealed by oscillations in g-mode period spacings from stellar models

    CERN Document Server

    Cunha, M S; Avelino, P P; Christensen-Dalsgaard, J; Townsend, R H D

    2015-01-01

    With recent advances in asteroseismology it is now possible to peer into the cores of red giants, potentially providing a way to study processes such as nuclear burning and mixing through their imprint as sharp structural variations -- glitches -- in the stellar cores. Here we show how such core glitches can affect the oscillations we observe in red giants. We derive an analytical expression describing the expected frequency pattern in the presence of a glitch. This formulation also accounts for the coupling between acoustic and gravity waves. From an extensive set of canonical stellar models we find glitch-induced variation in the period spacing and inertia of non-radial modes during several phases of red-giant evolution. Significant changes are seen in the appearance of mode amplitude and frequency patterns in asteroseismic diagrams such as the power spectrum and the \\'echelle diagram. Interestingly, along the red-giant branch glitch-induced variation occurs only at the luminosity bump, potentially providin...

  9. Inner-shell photoabsorption spectra--A theoretical study to determine the geometry structure of the core excited methane

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Based on multi-scattering self-consistent field method, the photoabsorption spectra near C 1s threshold of CH4 (near-threshold structure) have been studied with the broken symmetry from Td. The most possible geometry of the core excited CH**4 is determined as the C3v symmetry; the core excited CH**4 molecules have the same bond angle (109.5°) as that of the ground state CH4 and consist of one shorter bond length (1.91 a.u.) and three longer bond lengths (2.04 a.u.). The three longer bond lengths are almost the same as that of the ground state CH4, and the averaged bond length (2.01 a.u.) of core excited CH**4 is shorter than that of the ground state CH4 (2.06 a.u.).

  10. An Innovative Collagen-Based Cell-Printing Method for Obtaining Human Adipose Stem Cell-Laden Structures Consisting of Core-Sheath Structures for Tissue Engineering.

    Science.gov (United States)

    Yeo, MyungGu; Lee, Ji-Seon; Chun, Wook; Kim, Geun Hyung

    2016-04-11

    Three-dimensional (3D) cell printing processes have been used widely in various tissue engineering applications due to the efficient embedding of living cells in appropriately designed micro- or macro-structures. However, there are several issues to overcome, such as the limited choice of bioinks and tailor-made fabricating strategies. Here, we suggest a new, innovative cell-printing process, supplemented with a core-sheath nozzle and an aerosol cross-linking method, to obtain multilayered cell-laden mesh structure and a newly considered collagen-based cell-laden bioink. To obtain a mechanically and biologically enhanced cell-laden structure, we used collagen-bioink in the core region, and also used pure alginate in the sheath region to protect the cells in the collagen during the printing and cross-linking process and support the 3D cell-laden mesh structure. To achieve the most appropriate conditions for fabricating cell-embedded cylindrical core-sheath struts, various processing conditions, including weight fractions of the cross-linking agent and pneumatic pressure in the core region, were tested. The fabricated 3D MG63-laden mesh structure showed significantly higher cell viability (92 ± 3%) compared with that (83 ± 4%) of the control, obtained using a general alginate-based cell-printing process. To expand the feasibility to stem cell-embedded structures, we fabricated a cell-laden mesh structure consisting of core (cell-laden collagen)/sheath (pure alginate) using human adipose stem cells (hASCs). Using the selected processing conditions, we could achieve a stable 3D hASC-laden mesh structure. The fabricated cell-laden 3D core-sheath structure exhibited outstanding cell viability (91%) compared to that (83%) of an alginate-based hASC-laden mesh structure (control), and more efficient hepatogenic differentiations (albumin: ∼ 1.7-fold, TDO-2: ∼ 7.6-fold) were observed versus the control. The selection of collagen-bioink and the new printing strategy

  11. The G1613A mutation in the HBV genome affects HBeAg expression and viral replication through altered core promoter activity.

    Directory of Open Access Journals (Sweden)

    Man-Shan Li

    Full Text Available Infection of hepatitis B virus (HBV causes acute and chronic hepatitis and is closely associated with the development of cirrhosis and hepatocellular carcinoma (HCC. Previously, we demonstrated that the G1613A mutation in the HBV negative regulatory element (NRE is a hotspot mutation in HCC patients. In this study, we further investigated the functional consequences of this mutation in the context of the full length HBV genome and its replication. We showed that the G1613A mutation significantly suppresses the secretion of e antigen (HBeAg and enhances the synthesis of viral DNA, which is in consistence to our clinical result that the G1613A mutation associates with high viral load in chronic HBV carriers. To further investigate the molecular mechanism of the mutation, we performed the electrophoretic mobility shift assay with the recombinant RFX1 protein, a trans-activator that was shown to interact with the NRE of HBV. Intriguingly, RFX1 binds to the G1613A mutant with higher affinity than the wild-type sequence, indicating that the mutation possesses the trans-activating effect to the core promoter via NRE. The trans-activating effect was further validated by the enhancement of the core promoter activity after overexpression of RFX1 in liver cell line. In summary, our results suggest the functional consequences of the hotspot G1613A mutation found in HBV. We also provide a possible molecular mechanism of this hotspot mutation to the increased viral load of HBV carriers, which increases the risk to HCC.

  12. Meisoindigo, but not its core chemical structure indirubin, inhibits zebrafish interstitial leukocyte chemotactic migration.

    Science.gov (United States)

    Ye, Baixin; Xiong, Xiaoxing; Deng, Xu; Gu, Lijuan; Wang, Qiongyu; Zeng, Zhi; Gao, Xiang; Gao, Qingping; Wang, Yueying

    2017-12-01

    Inflammatory disease is a big threat to human health. Leukocyte chemotactic migration is required for efficient inflammatory response. Inhibition of leukocyte chemotactic migration to the inflammatory site has been shown to provide therapeutic targets for treating inflammatory diseases. Our study was designed to discover effective and safe compounds that can inhibit leukocyte chemotactic migration, thus providing possible novel therapeutic strategy for treating inflammatory diseases. In this study, we used transgenic zebrafish model (Tg:zlyz-EGFP line) to visualize the process of leukocyte chemotactic migration. Then, we used this model to screen the hit compound and evaluate its biological activity on leukocyte chemotactic migration. Furthermore, western blot analysis was performed to evaluate the effect of the hit compound on the AKT or ERK-mediated pathway, which plays an important role in leukocyte chemotactic migration. In this study, using zebrafish-based chemical screening, we identified that the hit compound meisoindigo (25 μM, 50 μM, 75 μM) can significantly inhibit zebrafish leukocyte chemotactic migration in a dose-dependent manner (p = 0.01, p = 0.0006, p migration (p = 0.43). Furthermore, our results unexpectedly showed that indirubin, the core structure of meisoindigo, had no significant effect on zebrafish leukocyte chemotactic migration (p = 0.6001). Additionally, our results revealed that meisoindigo exerts no effect on the Akt or Erk-mediated signalling pathway. Our results suggest that meisoindigo, but not indirubin, is effective for inhibiting leukocyte chemotactic migration, thus providing a potential therapeutic agent for treating inflammatory diseases.

  13. The Structure of the Solar Core: an Observer's Point of View

    Science.gov (United States)

    Appourchaux, T.

    Since the beginning of helioseismology, most of the internal and dynamics structure of the Sun has been revealed or so we thought. The last island where our powerful tools start to fail is the solar core, where nuclear reactions take place. With the advent of SOHO and GONG, we have now a quality of helioseismic data without precedence that should enable us to understand better the physics of the deepest solar regions. This goal can be partially achieved by measuring low-degree rotational splitting of p-modes, and by detecting the elusive g-modes. In a first part, I will review the fitting techniques that are being used for inferring the rotational splittings of low-degree p-modes. I will particularly focus on Fourier spectra fitting developped by Schou (1992) and refined by Appourchaux et al (1998). I will show how one can visualize from the data, the leakage matrix and how one can clean the data from the mode leakages. I will give examples of systematic errors introduced by the leakage matrix and by modes of aliasing degrees. I will also compare the Fourier spectra fitting technique to others techniques that use power spectra. I will give some recent results from SOHO and GONG. In a second part, I will report on the progress of the Phoebus group for detecting g-modes. The Phoebus group is composed of team members of BiSON, VIRGO and SOI/MDI. I will summarize some of the techniques we used for finding g-modes, and how one can use those for finding low-order low-frequency p-modes. I will, most probably, not report on g-mode detection but most likely stress that the future ahead of us is brighter than ever.

  14. Magnetic model for a horse-spleen ferritin with a three-phase core structure

    Energy Technology Data Exchange (ETDEWEB)

    Jung, J.H.; Eom, T.W. [Quantum Photonic Science Research Center, Department of Physics and Research Institute for Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of); Lee, Y.P., E-mail: yplee@hanyang.ac.kr [Quantum Photonic Science Research Center, Department of Physics and Research Institute for Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of); Rhee, J.Y. [Department of Physics, Sungkyunkwan University, Suwon (Korea, Republic of); Choi, E.H. [Kwangwoon University, Seoul (Korea, Republic of)

    2011-12-15

    The increasing interests in magnetic nanoparticles has prompted research on ferritin, which is naturally a well-defined iron-storage protein in most living organisms. However, the exact magnetic behavior of ferritin is not well understood, because the crystal structures of ferritin and ferrihydrite, its major component, are not fully understood. Briefly, we discuss the previous magnetization models of ferritin and ferrihydrite and we present a new model ({Sigma}3L) of the initial magnetization of ferritin, considering its different phases. The new model includes three Langevin-function terms, which represent three different magnetic moments provided by the likely hydroxide and oxide mineral phases in ferritin. Compared to previous models, our simple model fits the experimental data 12 times better in terms of the sum of least squares. The magnetic independence of each component supports the multi-phase compositional model of the mineral core of horse-spleen ferritin. This {Sigma}3L model gives a quantization of the amounts of the different phases within horse-spleen ferritins that matches other published experimental data: 60-80% ferrihydrite, 15-25% maghemite/magnetite, and 1-10% hematite. - Highlights: > We present a new model ({Sigma}3L) of the initial magnetization of ferritin, considering its different phases. > New model includes three Langevin-function terms, which represent three different magnetic moments provided by ferritin phases. > Compared to previous models, our simple model fits the experimental data 12 times better in terms of the sum of least square. > The magnetic independence of each component supports that ferritin and ferrihydrite are composed of different phases.

  15. Effects of hepatitis B virus precore and basal core promoter mutations on the expression of viral antigens: genotype B vs C.

    Science.gov (United States)

    Liu, C-J; Cheng, H-R; Chen, C-L; Chen, T-C; Tseng, T-C; Wang, Z-L; Chen, P-J; Liu, C-H; Chen, D-S; Kao, J-H

    2011-10-01

    Hepatitis B virus (HBV) genotypes/mutants are known to affect natural outcomes. The virologic differences among HBV genotype, precore and basal core promoter (BCP) mutations were investigated. HBV strains were isolated from 18 hepatitis B e antigen (HBeAg)-positive patients (nine genotype B and nine genotype C). All had precore and BCP wild-type sequences. After cloning of full-length HBV genome, the effects of viral genotype, precore and BCP mutations singly or additively on the expression of viral DNA and antigens were investigated by mutagenesis and transfection assays in Huh7 cells. Significant findings included the following: (i) expression of intracellular core protein increased when precore or BCP mutation was introduced in genotype C strains; (ii) expression of intracellular surface protein was lower in genotype C precore wild-type strain compared with genotype B; (iii) precore mutation was associated with a lower extracellular expression level of HBV DNA; (iv) secretion of hepatitis B surface antigen in genotype C was lower than that in genotype B; and (v) secretion of HBeAg in genotype B was lower than that in genotype C. No additive effect was observed by combining precore and BCP mutations. Hence, HBV genotype and precore/BCP mutations correlate with intrahepatic expression of viral antigens in vitro.

  16. An affected core drives network integration deficits of the structural connectome in 22q11.2 deletion syndrome

    Directory of Open Access Journals (Sweden)

    František Váša

    2016-01-01

    Full Text Available Chromosome 22q11.2 deletion syndrome (22q11DS is a genetic disease known to lead to cerebral structural alterations, which we study using the framework of the macroscopic white-matter connectome. We create weighted connectomes of 44 patients with 22q11DS and 44 healthy controls using diffusion tensor magnetic resonance imaging, and perform a weighted graph theoretical analysis. After confirming global network integration deficits in 22q11DS (previously identified using binary connectomes, we identify the spatial distribution of regions responsible for global deficits. Next, we further characterize the dysconnectivity of the deficient regions in terms of sub-network properties, and investigate their relevance with respect to clinical profiles. We define the subset of regions with decreased nodal integration (evaluated using the closeness centrality measure as the affected core (A-core of the 22q11DS structural connectome. A-core regions are broadly bilaterally symmetric and consist of numerous network hubs — chiefly parietal and frontal cortical, as well as subcortical regions. Using a simulated lesion approach, we demonstrate that these core regions and their connections are particularly important to efficient network communication. Moreover, these regions are generally densely connected, but less so in 22q11DS. These specific disturbances are associated to a rerouting of shortest network paths that circumvent the A-core in 22q11DS, “de-centralizing” the network. Finally, the efficiency and mean connectivity strength of an orbito-frontal/cingulate circuit, included in the affected regions, correlate negatively with the extent of negative symptoms in 22q11DS patients, revealing the clinical relevance of present findings. The identified A-core overlaps numerous regions previously identified as affected in 22q11DS as well as in schizophrenia, which approximately 30–40% of 22q11DS patients develop.

  17. Structural Properties of Gene Promoters Highlight More than Two Phenotypes of Diabetes.

    Science.gov (United States)

    Ionescu-Tîrgovişte, Constantin; Gagniuc, Paul Aurelian; Guja, Cristian

    2015-01-01

    Genome-wide association studies (GWAS) published in the last decade raised the number of loci associated with type 1 (T1D) and type 2 diabetes (T2D) to more than 50 for each of these diabetes phenotypes. The environmental factors seem to play an important role in the expression of these genes, acting through transcription factors that bind to promoters. Using the available databases we examined the promoters of various genes classically associated with the two main diabetes phenotypes. Our comparative analyses have revealed significant architectural differences between promoters of genes classically associated with T1D and T2D. Nevertheless, five gene promoters (about 16%) belonging to T1D and six gene promoters (over 19%) belonging to T2D have shown some intermediary structural properties, suggesting a direct relationship to either LADA (Latent Autoimmune Diabetes in Adults) phenotype or to non-autoimmune type 1 phenotype. The distribution of these promoters in at least three separate classes seems to indicate specific pathogenic pathways. The image-based patterns (DNA patterns) generated by promoters of genes associated with these three phenotypes support the clinical observation of a smooth link between specific cases of typical T1D and T2D. In addition, a global distribution of these DNA patterns suggests that promoters of genes associated with T1D appear to be evolutionary more conserved than those associated with T2D. Though, the image based patterns obtained by our method might be a new useful parameter for understanding the pathogenetic mechanism and the diabetogenic gene networks.

  18. Flavonoids promoting HaCaT migration: I. Hologram quantitative structure-activity relationships.

    Science.gov (United States)

    Cho, Moonjae; Yoon, Hyuk; Park, Mijoo; Kim, Young Hwa; Lim, Yoongho

    2014-03-15

    Cell migration plays an important role in multicellular development and preservation. Because wound healing requires cell migration, compounds promoting cell migration can be used for wound repair therapy. Several plant-derived polyphenols are known to promote cell migration, which improves wound healing. Previous studies of flavonoids on cell lines have focused on their inhibitory effects and not on wound healing. In addition, studies of flavonoids on wound healing have been performed using mixtures. In this study, individual flavonoids were used for cellular migration measurements. Relationships between the cell migration effects of flavonoids and their structural properties have never been reported. Here, we investigated the migration of keratinocytes caused by 100 flavonoids and examined their relationships using hologram quantitative structure-activity relationships. The structural conditions responsible for efficient cell migration on keratinocyte cell lines determined from the current study will facilitate the design of flavonoids with improved activity.

  19. Protein encapsulated core-shell structured particles prepared by coaxial electrospraying: investigation on material and processing variables.

    Science.gov (United States)

    Zamani, Maedeh; Prabhakaran, Molamma P; Thian, Eng San; Ramakrishna, Seeram

    2014-10-01

    Biodegradable polymeric particles have been extensively investigated for controlled drug delivery of various therapeutic agents. 'Coaxial' electrospraying was successfully employed in this study, to fabricate core-shell PLGA particles containing bovine serum albumin (BSA) as the model protein, and the results were also compared to particles prepared by 'emulsion' electrospraying. Two different molecular weights of PLGA were employed to encapsulate the protein. Solution properties and processing parameters were found to influence the morphology of the core-shell particles. Depending on the type of solvent used to dissolve the polymer as well as the polymer concentration and molecular weight, the mean diameter of the particles varied between 3.0 to 5.5 μm. Fluorescence microscopic analysis of the electrosprayed particles using FITC-conjugated BSA demonstrated the core-shell structure of the developed particles. The encapsulation efficiency and release behavior of BSA was influenced by shell:core feeding ratio, protein concentration, and the electrospraying method. The encapsulation efficiency of BSA within the core-shell particles of high and low molecular weight PLGA was found 15.7% and 25.1% higher than the emulsion electrosprayed particles, respectively. Moreover, the total amount of BSA released from low molecular weight PLGA particles was significantly higher than high molecular weight PLGA particles within 43 days of release studies, with negligible effect on encapsulation efficiency. The technique of coaxial electrospraying has high potential for encapsulation of susceptible protein-based therapeutic agents such as growth factors for multiple drug delivery applications.

  20. Core-Shell Structure and Photoluminescence of CdS Quantum Dots

    Institute of Scientific and Technical Information of China (English)

    邹炳锁; 武振羽; 曹立; 戴建华; 张泽勃; 聂玉昕; 解思深

    2001-01-01

    A double-potential-well model is proposed to describe the core-shell thickness-dependent photoluminescence peaks and energy relaxations in semiconductor quantum dots (QDs). The surface effect plays an important role in the formation of new states-polaronic states around the surface of QDs. The polaronic states formed emit light due to the strong interaction between the core state (confined state) and the surface state with an enhanced participation of the size effect.

  1. Physical mechanism of surface roughening of the radial Ge-core/Si-shell nanowire heterostructure and thermodynamic prediction of surface stability of the InAs-core/GaAs-shell nanowire structure.

    Science.gov (United States)

    Cao, Y Y; Ouyang, G; Wang, C X; Yang, G W

    2013-02-13

    As a promising and typical semiconductor heterostructure at the nanoscale, the radial Ge/Si NW heterostructure, that is, the Ge-core/Si-shell NW structure, has been widely investigated and used in various nanodevices such as solar cells, lasers, and sensors because of the strong changes in the band structure and increased charge carrier mobility. Therefore, to attain high quality radial semiconductor NW heterostructures, controllable and stable epitaxial growth of core-shell NW structures has become a major challenge for both experimental and theoretical evaluation. Surface roughening is usually undesirable for the epitaxial growth of high quality radial semiconductor NW heterostructures, because it would destroy the core-shell NW structures. For example, the surface of the Ge-core/Si-shell NWs always exhibits a periodic modulation with island-like morphologies, that is, surface roughening, during epitaxial growth. Therefore, the physical understanding of the surface roughening behavior during the epitaxial growth of core-shell NW structures is essential and urgent for theoretical design and experimentally controlling the growth of high quality radial semiconductor NW heterostructures. Here, we proposed a quantitative thermodynamic theory to address the physical process of epitaxial growth of core-shell NW structures and surface roughening. We showed that the transformation from the Frank-van der Merwe mode to the Stranski-Krastanow mode during the epitaxial growth of radial semiconductor NW heterostructures is the physical origin of surface roughening. We deduced the thermodynamic criterion for the formation of the surface roughening and the phase diagram of growth and showed that the radius of the NWs and the thickness of the shell layer can not only determine the formation of the surface roughening in a core-shell NW structure, but also control the periodicity and amplitude of the surface roughness. The agreement between the theoretical results and the

  2. Promoting Morphological Awareness in Children with Language Needs: Do the Common Core State Standards Pave the Way?

    Science.gov (United States)

    Gabig, Cheryl Smith; Zaretsky, Elena

    2013-01-01

    Recent research has acknowledged the importance of morphological awareness, beyond phonological awareness, to literacy achievement in both reading and writing for children, adolescents, and adults. Morphological awareness is the ability to recognize, reflect on, and manipulate the sublexical structure of words--the roots, prefixes, and suffixes.…

  3. Size dependent structural, vibrational and magnetic properties of BiFeO3 and core-shell structured BiFeO3@SiO2 nanoparticles

    Science.gov (United States)

    Chauhan, Sunil; Kumar, Manoj; Chhoker, Sandeep; Katyal, S. C.

    2014-04-01

    Bulk BiFeO3, BiFeO3 nanoparticles and core-shell structured BiFeO3@SiO2 nanoparticles were synthesized by solid state reaction method, sol-gel and Stöber process (SiO2 shell) respectively. Transmission electron microscopy image confirmed the core-shell structure of BiFeO3@SiO2 nanoparticles with BiFeO3 core ˜50-90 nm and SiO2 shell ˜16 nm. X-ray diffraction and FTIR spectroscopy results showed the presence of distorted rhombohedral structure with R3c space group in all three samples. The magnetic measurement indicated the existence of room-temperature weak ferromagnetism in core-shell BiFeO3@SiO2 nanoparticles and BiFeO3 nanoparticles, whereas bulk BiFeO3 showed antiferromagnteic nature. Electron Spin Resonance results confirmed the enhancement in magnetic properties of coreshell structured BiFeO3@SiO2 nanoparticles in comparison with BiFeO3 nanoparticles and bulk BiFeO3.

  4. Molecular dynamics study on core-shell structure stability of aluminum encapsulated by nano-carbon materials

    Science.gov (United States)

    Yi, Qingwen; Xu, Jingcheng; Liu, Yi; Zhai, Dong; Zhou, Kai; Pan, Deng

    2017-02-01

    A ReaxFF reactive forcefield for aluminum-carbon composite system has been developed to investigate structural stability and thermal decomposition mechanism of nano-carbon materials coating aluminum particles. Research results indicated the Al@C particles were structurally stable in a broad temperature range from room temperature up to 2735 K. In particular, the broken carbon cage self-healed to reconstruct a more stable Al@C core-shell structure after Al atoms sequentially departing from carbon cage during thermal decomposition, proffering an effective protection for aluminum surface-activeness.

  5. A core-shell structured nanocomposite material for detection, adsorption and removal of Hg(II) ions in water.

    Science.gov (United States)

    Li, Le; Tang, Shuangyang; Ding, Dexin; Hu, Nan; Yang, Shengyuan; He, Shuya; Wang, Yongdong; Tan, Yan; Sun, Jing

    2012-11-01

    In this paper, a core-shell structured nanocomposite material was prepared for the detection, adsorption and removal of Hg(ll) ions in aqueous solution. The core was made from Fe3O4 nanoparticles with superparamagnetic behavior and the outer shell was made from amorphous silica modified with pyrene-based sensing-probes. The material could detect and adsorb Hg(II) ions in aqueous solution due to its surface being modified with pyrene-based sensing-probes, and could easily be removed from the solution by magnetic force because of its core being made from magnetic Fe3O4 nanoparticles. This multifunctional core-shell structure was confirmed and characterized by TEM, IR spectra, TGA, XRD and N2 adsorption/desorption isotherms. Experiments were conducted on its functions of detection, adsorption and removal of Hg(II) ions in aqueous solution. The experimental results showed that this composite material had high sensitivity and unique selectivity to Hg(II), and that it could easily be removed from the solution.

  6. Detection of the elite structure in a virtual multiplex social system by means of a generalized $K$-core

    CERN Document Server

    Corominas-Murtra, Bernat; Thurner, Stefan

    2013-01-01

    Elites are subgroups of individuals within a society that have the ability and means to influence, lead, govern, and shape societies. Members of elites are often well connected individuals, which enables them to impose their influence to many and to quickly gather, process, and spread information. Here we argue that elites are not only composed of highly connected individuals, but also of intermediaries connecting hubs to form a cohesive and structured elite-subgroup at the core of a social network. For this purpose we present a generalization of the $K$-core algorithm that allows to identify a social core that is composed of well-connected hubs together with their `connectors'. We show the validity of the idea in the framework of a virtual society comprised of 420.000 people engaged in a massive multiplayer online game, on which we have complete information of various social networks. Exploiting this multiplex structure, we find that the hubs of the generalized $K$-core identify those individuals that are hi...

  7. Philanthropic Discourse vs Promotional Genre: To Study the Rhetorical Choices of Promotion and Structural Moves of Two Appeal Letters in Hong Kong

    Directory of Open Access Journals (Sweden)

    Patrick Chi-wai LEE

    2016-09-01

    Full Text Available Based on two appeal letters from (i Oxfam Hong Kong and (ii Hong Kong Committee For United Nations Children's Fund (UNICEF, this paper aims to study the rhetorical choices of promotion and structural moves of two appeal letters, exploring whether the philanthropic discourse can be viewed in line with the promotional genre. The findings appear to reveal that there is a hybrid form of promotional genre in philanthropic discourse, with reference to Bhatia’s (1998 generic patterns in fund-raising discourse framework. There are similar structural moves of advertising, although the move sequences could vary. However, the move of “introducing the cause” is always found at the very beginning because the readers are more interested to realise what the main theme of the appeal letter is. In addition, appeal letters are found to be modelled in promotional genre, in which they are rhetorical choices of promotion attracting attention from readers – by using “you” and marked devices of attention getters. The findings in this study appear to be in line with the argument that promotional concerns have influenced the nature of philanthropic discourse. Keywords: appeal letters, Hong Kong, promotional genre, rhetorical choices of promotion

  8. Coevolution of Structure and Strategy Promoting Fairness in the Ultimatum Game

    Institute of Scientific and Technical Information of China (English)

    DENG Li-Li; TANG Wan-Sheng; ZHANG Jian-Xiong

    2011-01-01

    We try to figure out how the structure evolution and strategy evolution commonly affect the emergence of fair behaviors in the ultimatum game under a complex network framework.By allowing the players to change their neighbors in the network as well as their strategies,several experiments have been conducted.Results of the simulations show that the coevolution has substantial impacts on the resulting outcomes for the strategy adopted as well as the ultimate structure.With increasing structure updating rate,players offer more in the ultimatum game,but players will offer less with increasing strategy updating rate. In particular,the ratio of structure updating to strategy updating also affects the emergence of fairness substantially because the larger the ratio,the more the players offer.In addition,the mutation in strategies plays a promoting role in the emergence of fairness.Moreover,the initial random network is evolved into the structure with small-world effects.By comparison with the traditional models of static structures,we show that allowing the network structure and strategy to coevolve generally promotes the emergence of fairness.

  9. Facile Synthesis of Yolk/Core-Shell Structured TS-1@Mesosilica Composites for Enhanced Hydroxylation of Phenol

    KAUST Repository

    Zou, Houbing

    2015-12-14

    © 2015 by the authors. In the current work, we developed a facile synthesis of yolk/core-shell structured TS-1@mesosilica composites and studied their catalytic performances in the hydroxylation of phenol with H2O2 as the oxidant. The core-shell TS-1@mesosilica composites were prepared via a uniform coating process, while the yolk-shell TS-1@mesosilica composite was prepared using a resorcinol-formaldehyde resin (RF) middle-layer as the sacrificial template. The obtained materials were characterized by X-ray diffraction (XRD), N2 sorption, Fourier transform infrared spectoscopy (FT-IR) UV-Visible spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The characterization results showed that these samples possessed highly uniform yolk/core-shell structures, high surface area (560–700 m2 g−1) and hierarchical pore structures from oriented mesochannels to zeolite micropores. Importantly, owing to their unique structural properties, these composites exhibited enhanced activity, and also selectivity in the phenol hydroxylation reaction.

  10. Computer simulation of dislocation core structure of metastable left angle 111 right angle dislocations in NiAl