WorldWideScience

Sample records for core optical ring

  1. Optical absorptions of an exciton in a quantum ring: Effect of the repulsive core

    International Nuclear Information System (INIS)

    Xie, Wenfang

    2013-01-01

    We study the optical absorptions of an exciton in a quantum ring. The quantum ring is described as a circular quantum dot with a repulsive core. The advantage of our methodology is that one can investigate the influence of the repulsive core by varying two parameters in the confinement potential. The linear, third-order nonlinear and total optical absorption coefficients have been examined with the change of the confinement potential. The results show that the optical absorptions are strongly affected by the repulsive core. Moreover, the repulsive core can influence the oscillation in the resonant peak of the absorption coefficients.

  2. Chemical Sensors Based on Optical Ring Resonators

    Science.gov (United States)

    Homer, Margie; Manfreda, Allison; Mansour, Kamjou; Lin, Ying; Ksendzov, Alexander

    2005-01-01

    Chemical sensors based on optical ring resonators are undergoing development. A ring resonator according to this concept is a closed-circuit dielectric optical waveguide. The outermost layer of this waveguide, analogous to the optical cladding layer on an optical fiber, is a made of a polymer that (1) has an index of refraction lower than that of the waveguide core and (2) absorbs chemicals from the surrounding air. The index of refraction of the polymer changes with the concentration of absorbed chemical( s). The resonator is designed to operate with relatively strong evanescent-wave coupling between the outer polymer layer and the electromagnetic field propagating along the waveguide core. By virtue of this coupling, the chemically induced change in index of refraction of the polymer causes a measurable shift in the resonance peaks of the ring. In a prototype that has been used to demonstrate the feasibility of this sensor concept, the ring resonator is a dielectric optical waveguide laid out along a closed path resembling a racetrack (see Figure 1). The prototype was fabricated on a silicon substrate by use of standard techniques of thermal oxidation, chemical vapor deposition, photolithography, etching, and spin coating. The prototype resonator waveguide features an inner cladding of SiO2, a core of SixNy, and a chemical-sensing outer cladding of ethyl cellulose. In addition to the ring Chemical sensors based on optical ring resonators are undergoing development. A ring resonator according to this concept is a closed-circuit dielectric optical waveguide. The outermost layer of this waveguide, analogous to the optical cladding layer on an optical fiber, is a made of a polymer that (1) has an index of refraction lower than that of the waveguide core and (2) absorbs chemicals from the surrounding air. The index of refraction of the polymer changes with the concentration of absorbed chemical( s). The resonator is designed to operate with relatively strong

  3. Radio and optical observations of 0218+357 - The smallest Einstein ring?

    Science.gov (United States)

    O'Dea, Christopher P.; Baum, Stefi A.; Stanghellini, Carlo; Dey, Arjun; Van Breugel, Wil; Deustua, Susana; Smith, Eric P.

    1992-01-01

    VLA radio observations and optical imaging and spectroscopy of the Einstein radio ring 0218+357 are presented. The ring is detected at 22.4 GHz and shows a basically similar structure at 5, 15, and 22.4 GHz. The B component has varied and was about 15 percent brighter in the 8.4 GHz data than in the data of Patnaik et al. (1992). The ring is highly polarized. A weak jetlike feature extending out roughly 2 arcsec to the southeast of component A is detected at 6 cm. The source has amorphous radio structure extending out to about 11 arcsec from the core. For an adopted redshift of 0.68, the extended radio emission is very powerful. The optical spectrum is rather red and shows no strong features. A redshift of about 0.68 is obtained. The identification is a faint compact m(r) about 20 galaxy which extends to about 4.5 arcsec (about 27 kpc). As much as 50 percent of the total light may be due to a central AGN. The observed double core and ring may be produced by an off-center radio core with extended radio structure.

  4. Novel Fiber-Optic Ring Acoustic Emission Sensor.

    Science.gov (United States)

    Wei, Peng; Han, Xiaole; Xia, Dong; Liu, Taolin; Lang, Hao

    2018-01-13

    Acoustic emission technology has been applied to many fields for many years. However, the conventional piezoelectric acoustic emission sensors cannot be used in extreme environments, such as those with heavy electromagnetic interference, high pressure, or strong corrosion. In this paper, a novel fiber-optic ring acoustic emission sensor is proposed. The sensor exhibits high sensitivity, anti-electromagnetic interference, and corrosion resistance. First, the principle of a novel fiber-optic ring sensor is introduced. Different from piezoelectric and other fiber acoustic emission sensors, this novel sensor includes both a sensing skeleton and a sensing fiber. Second, a heterodyne interferometric demodulating method is presented. In addition, a fiber-optic ring sensor acoustic emission system is built based on this method. Finally, fiber-optic ring acoustic emission experiments are performed. The novel fiber-optic ring sensor is glued onto the surface of an aluminum plate. The 150 kHz standard continuous sinusoidal signals and broken lead signals are successfully detected by the novel fiber-optic ring acoustic emission sensor. In addition, comparison to the piezoelectric acoustic emission sensor is performed, which shows the availability and reliability of the novel fiber-optic ring acoustic emission sensor. In the future, this novel fiber-optic ring acoustic emission sensor will provide a new route to acoustic emission detection in harsh environments.

  5. Novel Fiber-Optic Ring Acoustic Emission Sensor

    Directory of Open Access Journals (Sweden)

    Peng Wei

    2018-01-01

    Full Text Available Acoustic emission technology has been applied to many fields for many years. However, the conventional piezoelectric acoustic emission sensors cannot be used in extreme environments, such as those with heavy electromagnetic interference, high pressure, or strong corrosion. In this paper, a novel fiber-optic ring acoustic emission sensor is proposed. The sensor exhibits high sensitivity, anti-electromagnetic interference, and corrosion resistance. First, the principle of a novel fiber-optic ring sensor is introduced. Different from piezoelectric and other fiber acoustic emission sensors, this novel sensor includes both a sensing skeleton and a sensing fiber. Second, a heterodyne interferometric demodulating method is presented. In addition, a fiber-optic ring sensor acoustic emission system is built based on this method. Finally, fiber-optic ring acoustic emission experiments are performed. The novel fiber-optic ring sensor is glued onto the surface of an aluminum plate. The 150 kHz standard continuous sinusoidal signals and broken lead signals are successfully detected by the novel fiber-optic ring acoustic emission sensor. In addition, comparison to the piezoelectric acoustic emission sensor is performed, which shows the availability and reliability of the novel fiber-optic ring acoustic emission sensor. In the future, this novel fiber-optic ring acoustic emission sensor will provide a new route to acoustic emission detection in harsh environments.

  6. Optical bio-chemical sensors on SNOW ring resonators

    Science.gov (United States)

    Khorasaninejad, Mohammadreza; Clarke, Nigel; Anantram, M. P.; Singh Saini, Simarjeet

    2011-08-01

    In this paper, we propose and analyze novel ring resonator based bio-chemical sensors on silicon nanowire optical waveguide (SNOW) and show that the sensitivity of the sensors can be increased by an order of magnitude as compared to silicon-on-insulator based ring resonators while maintaining high index contrast and compact devices. The core of the waveguide is hollow and allows for introduction of biomaterial in the center of the mode, thereby increasing the sensitivity of detection. A sensitivity of 243 nm/refractive index unit (RIU) is achieved for a change in bulk refractive index. For surface attachment, the sensor is able to detect monolayer attachments as small as 1 Å on the surface of the silicon nanowires.

  7. Electro-optical hybrid slip ring

    Science.gov (United States)

    Hong, En

    2005-11-01

    The slip ring is a rotary electrical interface, collector, swivel or rotary joint. It is a physical system that can perform continuous data transfer and data exchange between a stationary and a rotating structure. A slip ring is generally used to transfer data or power from an unrestrained, continuously rotating electro-mechanical system in real-time, thereby simplifying operations and eliminating damage-prone wires dangling from moving joints. Slip rings are widely used for testing, evaluating, developing and improving various technical equipment and facilities with rotating parts. They are widely used in industry, especially in manufacturing industries employing turbo machinery, as in aviation, shipbuilding, aerospace, defense, and in precise facilities having rotating parts such as medical Computerized Tomography (CT) and MRI scanners and so forth. Therefore, any improvement in slip ring technology can impact large markets. Research and development in this field will have broad prospects long into the future. The goal in developing the current slip ring technology is to improve and increase the reliability, stability, anti-interference, and high data fidelity between rotating and stationary structures. Up to now, there have been numerous approaches used for signal and data transfer utilizing a slip ring such as metal contacts, wires, radio transmission, and even liquid media. However, all suffer from drawbacks such as data transfer speed limitations, reliability, stability, electro-magnetic interference and durability. The purpose of the current research is to break through these basic limitations using an optical solution, thereby improving performance in current slip ring applications. This dissertation introduces a novel Electro-Optical Hybrid Slip Ring technology, which makes "through the air" digital-optical communication between stationary and rotating systems a reality with high data transfer speed, better reliability and low interference susceptibility

  8. Electron localization and optical absorption of polygonal quantum rings

    Science.gov (United States)

    Sitek, Anna; Serra, Llorenç; Gudmundsson, Vidar; Manolescu, Andrei

    2015-06-01

    We investigate theoretically polygonal quantum rings and focus mostly on the triangular geometry where the corner effects are maximal. Such rings can be seen as short core-shell nanowires, a generation of semiconductor heterostructures with multiple applications. We show how the geometry of the sample determines the electronic energy spectrum, and also the localization of electrons, with effects on the optical absorption. In particular, we show that irrespective of the ring shape low-energy electrons are always attracted by corners and are localized in their vicinity. The absorption spectrum in the presence of a magnetic field shows only two peaks within the corner-localized state domain, each associated with different circular polarization. This picture may be changed by an external electric field which allows previously forbidden transitions, and thus enables the number of corners to be determined. We show that polygonal quantum rings allow absorption of waves from distant ranges of the electromagnetic spectrum within one sample.

  9. Generating broadband vortex modes in ring-core fiber by using a plasmonic q-plate.

    Science.gov (United States)

    Ye, Jingfu; Li, Yan; Han, Yanhua; Deng, Duo; Su, Xiaoya; Song, He; Gao, Jianmin; Qu, Shiliang

    2017-08-15

    A mode convertor was proposed and investigated for generating vortex modes in a ring-core fiber based on a plasmonic q-plate (PQP), which is composed of specially organized L-shaped resonator (LSR) arrays. A multicore fiber was used to transmit fundamental modes, and the LSR arrays were used to modulate phases of these fundamental modes. Behind the PQP, the transmitted fundamental modes with gradient phase distribution can be considered as the incident lights for generating broadband vortex modes in the ring-core fiber filter. The topological charges of generated vortex modes can be various by using an optical PQP with different q, and the chirality of the generated vortex mode can be controlled by the sign of q and handedness of the incident circularly polarized light. The operation bandwidth is 800 nm in the range of 1200-2000 nm, which covers six communication bands from the O band to the U band. The separation of vortex modes also was addressed by using a dual ring-core fiber. The mode convertor is of potential interest for connecting a traditional network and vortex communication network.

  10. Design and characterization of 16-mode PANDA polarization-maintaining few-mode ring-core fiber for spatial division multiplexing

    Science.gov (United States)

    Cao, Yuan; Zhao, Yongli; Yu, Xiaosong; Han, Jiawei; Zhang, Jie

    2017-11-01

    A PANDA polarization-maintaining few-mode ring-core fiber (PM-FM-RCF) structure with two air holes around the ring core is proposed. The relative mode multiplicity factor (RMMF) is defined to evaluate the spatial efficiency of the designed PM-FM-RCF. The performance analysis and comparison of the proposed PANDA PM-FM-RCFs considering three different types of step-index profiles are detailed. Through modal characteristic analysis and numerical simulation, the PM-FM-RCF with a lower refractive index difference (Δnoi=1.5%) between the ring core and the inner central circle can support up to 16 polarization modes with large RMMF at C-band, which shows the optimum modal properties compared with the PM-FM-RCF with higher Δnoi. All the supported polarization modes are effectively separated from their adjacent polarization modes with effective refractive index differences (Δn) larger than 10-4, which also show relatively small chromatic dispersion (-20 to 25 ps/nm/km), low attenuation (<1.4 dB/km), and small bending radius (˜8 mm) over the C-band. The designed PM-FM-RCF can be compatible with standard single-mode fibers and applied in multiple-input multiple-output-free spatial division multiplexing optical networks for short-reach optical interconnection.

  11. Optical bistability of optical fiber ring doped by Erbium and quantum dots

    International Nuclear Information System (INIS)

    Safari, S.; Tofighi, S.; Bahrampour, A.; Sajad, B.; Shahshahani, F.

    2012-01-01

    In this paper, theoretical analysis of the steady state behavior of the optical bistability in an optical fiber ring doped by Erbium and quantum dots is presented. The up and down switching power is calculated and the dependence of the switching power on different fiber ring parameters is investigated. The switching power for this type of optical bistability device is obtained much lower than the fiber ring which its half length is doped by Erbium ion.

  12. Design of all-optical flip-flop by using optical bistability in passive micro-rings

    International Nuclear Information System (INIS)

    Karimi, M.; Abolfazli, M. J.; Rouholamini Nejad, H.; Bahrampour, A.

    2007-01-01

    In this paper at first, Optical bistability in the micro ring resonators in the presence of Kerr and two-photon absorption effects is studied and also, attenuation in micro rings with these nonlinear effects is calculated. An all-optical R-S flip-flop is designed by using optical bistability. Conditions for SET and RESET signals are calculated and their dependences on the optical parameters of micro rings are investigated.

  13. A multi-ring optical packet and circuit integrated network with optical buffering.

    Science.gov (United States)

    Furukawa, Hideaki; Shinada, Satoshi; Miyazawa, Takaya; Harai, Hiroaki; Kawasaki, Wataru; Saito, Tatsuhiko; Matsunaga, Koji; Toyozumi, Tatuya; Wada, Naoya

    2012-12-17

    We newly developed a 3 × 3 integrated optical packet and circuit switch-node. Optical buffers and burst-mode erbium-doped fiber amplifiers with the gain flatness are installed in the 3 × 3 switch-node. The optical buffer can prevent packet collisions and decrease packet loss. We constructed a multi-ring optical packet and circuit integrated network testbed connecting two single-ring networks and a client network by the 3 × 3 switch-node. For the first time, we demonstrated 244 km fiber transmission and 5-node hopping of multiplexed 14-wavelength 10 Gbps optical paths and 100 Gbps optical packets encapsulating 10 Gigabit Ethernet frames on the testbed. Error-free (frame error rate optical packets of various packet lengths. In addition, successful avoidance of packet collisions by optical buffers was confirmed.

  14. Saturn's F Ring Core: Calm in the Midst of Chaos

    Science.gov (United States)

    Cuzzi, J. N.; Whizin, A. D.; Hogan, R. C.; Dobrovolskis, A. R.; Dones, L.; Showalter. M. R.; Colwell, J. E.; Scargle, J. D.

    2013-01-01

    The long-term stability of the narrow F Ring core has been hard to understand. Instead of acting as "shepherds", Prometheus and Pandora together stir the vast preponderance of the region into a chaotic state, consistent with the orbits of newly discovered objects like S/2004S6. We show how a comb of very narrow radial locations of high stability in semimajor axis is embedded within this otherwise chaotic region. The stability of these semimajor axes relies fundamentally on the unusual combination of rapid apse precession and long synodic period which characterizes the region. This situation allows stable "antiresonances" to fall on or very close to traditional Lindblad resonances which, under more common circumstances, are destabilizing. We present numerical integrations of tens of thousands of test particles over tens of thousands of Prometheus orbits that map out the effect. The stable antiresonance zones are most stable in a subset of the region where Prometheus first-order resonances are least cluttered by Pandora resonances. This region of optimum stability is paradoxically closer to Prometheus than a location more representative of "torque balance", helping explain a longstanding paradox. One stable zone corresponds closely to the currently observed semimajor axis of the F Ring core. While the model helps explain the stability of the narrow F Ring core, it does not explain why the F Ring material all shares a common apse longitude; we speculate that collisional damping at the preferred semimajor axis (not included in the current simulations) may provide that final step. Essentially, we find that the F Ring core is not confined by a combination of Prometheus and Pandora, but a combination of Prometheus and precession.

  15. Ring-array processor distribution topology for optical interconnects

    Science.gov (United States)

    Li, Yao; Ha, Berlin; Wang, Ting; Wang, Sunyu; Katz, A.; Lu, X. J.; Kanterakis, E.

    1992-01-01

    The existing linear and rectangular processor distribution topologies for optical interconnects, although promising in many respects, cannot solve problems such as clock skews, the lack of supporting elements for efficient optical implementation, etc. The use of a ring-array processor distribution topology, however, can overcome these problems. Here, a study of the ring-array topology is conducted with an aim of implementing various fast clock rate, high-performance, compact optical networks for digital electronic multiprocessor computers. Practical design issues are addressed. Some proof-of-principle experimental results are included.

  16. Integrated polymer micro-ring resonators for optical sensing applications

    Science.gov (United States)

    Girault, Pauline; Lorrain, Nathalie; Poffo, Luiz; Guendouz, Mohammed; Lemaitre, Jonathan; Carré, Christiane; Gadonna, Michel; Bosc, Dominique; Vignaud, Guillaume

    2015-03-01

    Micro-resonators (MR) have become a key element for integrated optical sensors due to their integration capability and their easy fabrication with low cost polymer materials. Nowadays, there is a growing need on MRs as highly sensitive and selective functions especially in the areas of food and health. The context of this work is to implement and study integrated micro-ring resonators devoted to sensing applications. They are fabricated by processing SU8 polymer as core layer and PMATRIFE polymer as lower cladding layer. The refractive index of the polymers and of the waveguide structure as a function of the wavelength is presented. Using these results, a theoretical study of the coupling between ring and straight waveguides has been undertaken in order to define the MR design. Sub-micronic gaps of 0.5 μm to 1 μm between the ring and the straight waveguides have been successfully achieved with UV (i-lines) photolithography. Different superstrates such as air, water, and aqueous solutions with glucose at different concentrations have been studied. First results show a good normalized transmission contrast of 0.98, a resonator quality factor around 1.5 × 104 corresponding to a coupling ratio of 14.7%, and ring propagation losses around 5 dB/cm. Preliminary sensing experiments have been performed for different concentrations of glucose; a sensitivity of 115 ± 8 nm/RIU at 1550 nm has been obtained with this couple of polymers.

  17. Development of an RF accelerating structure loaded with multi-ring magnetic cores

    International Nuclear Information System (INIS)

    Morita, Yuichi; Kageyama, Tatsuya; Kato, Ichiro; Yamashita, Satoru

    2012-01-01

    In order to upgrade the J-PARC rings (RCS and MR) for more beam powers, the existing accelerating structures for both rings need to be improved for better performance especially in the long-term reliability. As a solution for this purpose, we have proposed a new accelerating structure loaded with multi-ring core modules. Each core module consists of three ring FINEMET cores with different radial sizes concentrically arranged and sandwiched between two glass epoxy plates with flow channels grooved on the surfaces. The Fe-based FINEMET cores are to be cooled with the turbulent flow of Fluorinert (chemically inert perfluorinated liquid). Therefore, the cores need neither impregnation nor coating with epoxy resin for anti corrosion. A half-gap cavity loaded with three core modules, which is a minimum configuration for the performance test, is under fabrication. Additionally, a high efficient solid state RF amplifier is under development. Thirty two amplifier modules, each of which is a push-pull class-D amplifier driven by power MOSFET hybrids, are combined to deliver RF power up to 60 kW (peak power with a duty factor of 50%) at frequencies 1.7 ± 0.2MHz. The amplitude of the RF output can be modulated by changing the voltage across the drain and source of the power MOSFET in proportion to the wave envelope. This paper reports the recent status of our R and D activities. (author)

  18. 2-LP mode few-mode fiber amplifier employing ring-core erbium-doped fiber.

    Science.gov (United States)

    Ono, Hirotaka; Hosokawa, Tsukasa; Ichii, Kentaro; Matsuo, Shoichiro; Nasu, Hitoshi; Yamada, Makoto

    2015-10-19

    A fiber amplifier supporting 2 LP modes that employs a ring-core erbium-doped fiber (RC-EDF) is investigated to reduce differential modal gain (DMG). The inner and outer radii of the ring-core of the RC-EDF are clarified for 2-LP mode operation of the amplifier, and are optimized to reduce the DMG. It is shown that using the overlap integral between the erbium-doped core area and the signal power mode distribution is a good way to optimize the inner and outer radii of the ring-core of the RC-EDF and thus minimize the DMG. A fabricated RC-EDF and a constructed 2-LP mode EDFA are described and a small DMG of around 1 dB is realized for LP01, LP11 and LP21 pumping.

  19. Ring resonator systems to perform optical communication enhancement using soliton

    CERN Document Server

    Amiri, Iraj Sadegh

    2014-01-01

    The title explain new technique of secured and high capacity optical communication signals generation by using the micro and nano ring resonators. The pulses are known as soliton pulses which are more secured due to having the properties of chaotic and dark soliton signals with ultra short bandwidth. They have high capacity due to the fact that ring resonators are able to generate pulses in the form of solitons in multiples and train form. These pulses generated by ring resonators are suitable in optical communication due to use the compact and integrated rings system, easy to control, flexibi

  20. Metallic nanoshells with semiconductor cores: optical characteristics modified by core medium properties.

    Science.gov (United States)

    Bardhan, Rizia; Grady, Nathaniel K; Ali, Tamer; Halas, Naomi J

    2010-10-26

    It is well-known that the geometry of a nanoshell controls the resonance frequencies of its plasmon modes; however, the properties of the core material also strongly influence its optical properties. Here we report the synthesis of Au nanoshells with semiconductor cores of cuprous oxide and examine their optical characteristics. This material system allows us to systematically examine the role of core material on nanoshell optical properties, comparing Cu(2)O core nanoshells (ε(c) ∼ 7) to lower core dielectric constant SiO(2) core nanoshells (ε(c) = 2) and higher dielectric constant mixed valency iron oxide nanoshells (ε(c) = 12). Increasing the core dielectric constant increases nanoparticle absorption efficiency, reduces plasmon line width, and modifies plasmon energies. Modifying the core medium provides an additional means of tailoring both the near- and far-field optical properties in this unique nanoparticle system.

  1. Optical line shape of molecular rings: Influence of correlated nondiagonal disorder

    International Nuclear Information System (INIS)

    Barvik, I.; Warns, Ch.; Reineker, P.

    2006-01-01

    We investigate the optical properties of molecular rings which are generally influenced by many kinds of static disorder. Recently, Papiz suggested that quasistatic disorder, anticorrelated between neighboring transfer integrals, plays an important role. We simulate such a disorder by slow colored dichotomic Markov processes with long-time constants for the decay of their correlation functions. The colored dichotomic Markov processes leading to transfer integral fluctuations can be uncorrelated, anticorrelated or partially correlated between nearest neighboring transfer integrals in the ring. The optical line shape of the molecular ring is modeled and investigated in dependence on the parameters of the stochastic processes. Conclusions as regards the influence of the correlation on the splitting of the optical line shape, the shift of the optical absorption maximum and the width of the optical line are drawn

  2. Scanning microscopy of magnetic domains using the Fe 3p core level transverse magneto-optical Kerr effect

    Science.gov (United States)

    Friedrich, J.; Rozhko, I.; Voss, J.; Hillebrecht, F. U.; Kisker, E.; Wedemeier, V.

    1999-04-01

    We demonstrate the feasibility of the vacuum ultraviolet analog to visible-light magneto-optical imaging of magnetic structures using the resonantly enhanced transverse magneto-optical Kerr effect at core level thresholds with incident p-polarized radiation. The advantages are element specificity and a variable information depth. We used the scanning x-ray microscope at HASYLAB capable of obtaining about 1 μm resolution by means of its focusing ellipsoidal ring mirror. The p-polarized component of the reflected light was selected using multilayer reflection at an additional plane mirror downstream to the sample. Micrographs of the optical reflectivity were taken in the vicinity of the Fe 3p core level threshold at 53.7 and 56.5 eV photon energy where the magneto-optical effect is of opposite sign. Magnetic domains are visible in the difference of both recorded images.

  3. Geometric and potential dynamics interpretation of the optic ring resonator bistability

    Science.gov (United States)

    Chiangga, S.; Chittha, T.; Frank, T. D.

    2015-07-01

    The optical bistability is a fundamental nonlinear feature of the ring resonator. A geometric and potential dynamics interpretation of the bistability is given. Accordingly, the bistability of the nonlinear system is shown to be a consequence of geometric laws of vector calculus describing the resonator ring. In contrast, the so-called transcendental relations that have been obtained in the literature in order to describe the optical wave are interpreted in terms of potential dynamical systems. The proposed novel interpretation provides new insights into the nature of the ring resonator optical bistability. The fundamental work by Rukhlenko, Premaratne and Agrawal (2010) as well as a more recent study by Chiangga, Pitakwongsaporn, Frank and Yupapin (2013) are considered.

  4. Optical distortions in electron/positron storage rings

    International Nuclear Information System (INIS)

    Brown, K.L.; Donald, M.; Servranckx, R.

    1983-01-01

    We have studied the optical distortions in the PEP electron/positron storage ring for various optical configurations using the computer programs DIMAT, HARMON, PATRICIA, and TURTLE. The results are shown graphically by tracing several thousand trajectories from one interaction region to the next using TURTLE and by tracing a few selected rays several hundred turns using the programs DIMAT and PATRICIA. The results show an interesting correlation between the calculated optical cleanliness of a particular lattice configuration and the observed operating characteristics of the machine

  5. Tunable optical analog to electromagnetically induced transparency in graphene-ring resonators system.

    Science.gov (United States)

    Wang, Yonghua; Xue, Chenyang; Zhang, Zengxing; Zheng, Hua; Zhang, Wendong; Yan, Shubin

    2016-12-12

    The analogue of electromagnetically induced transparency in optical ways has shown great potential in optical delay and quantum-information technology due to its flexible design and easy implementation. The chief drawback for these devices is the bad tunability. Here we demonstrate a tunable optical transparency system formed by graphene-silicon microrings which could control the transparent window by electro-optical means. The device consists of cascaded coupled ring resonators and a graphene/graphene capacitor which integrated on one of the rings. By tuning the Fermi level of the graphene sheets, we can modulate the round-trip ring loss so that the transparency window can be dynamically tuned. The results provide a new method for the manipulation and transmission of light in highly integrated optical circuits and quantum information storage devices.

  6. Neural networks within multi-core optic fibers.

    Science.gov (United States)

    Cohen, Eyal; Malka, Dror; Shemer, Amir; Shahmoon, Asaf; Zalevsky, Zeev; London, Michael

    2016-07-07

    Hardware implementation of artificial neural networks facilitates real-time parallel processing of massive data sets. Optical neural networks offer low-volume 3D connectivity together with large bandwidth and minimal heat production in contrast to electronic implementation. Here, we present a conceptual design for in-fiber optical neural networks. Neurons and synapses are realized as individual silica cores in a multi-core fiber. Optical signals are transferred transversely between cores by means of optical coupling. Pump driven amplification in erbium-doped cores mimics synaptic interactions. We simulated three-layered feed-forward neural networks and explored their capabilities. Simulations suggest that networks can differentiate between given inputs depending on specific configurations of amplification; this implies classification and learning capabilities. Finally, we tested experimentally our basic neuronal elements using fibers, couplers, and amplifiers, and demonstrated that this configuration implements a neuron-like function. Therefore, devices similar to our proposed multi-core fiber could potentially serve as building blocks for future large-scale small-volume optical artificial neural networks.

  7. Transmission in Optically Transparent Core Networks

    Science.gov (United States)

    Kilper, Dan; Jensen, Rich; Petermann, Klaus; Karasek, Miroslav

    2007-03-01

    Call for Papers: Transmission in Optically Transparent Core Networks Guest Feature Editors Dan Kilper and Rich Jensen, Coordinating Associate Editors Klaus Petermann and Miroslav Karasek, Guest Feature Editors Submission deadline: 15 June 2007 Optically transparent networks in which optical transport signals are routed uninterrupted through multiple nodes have long been viewed as an important evolutionary step in fiber optic communications. More than a decade of research and development on transparent network technologies together with the requisite traffic growth has culminated in the recent deployment of commercial optically transparent systems. Although many of the traditional research goals of optical transmission remain important, optical transparency introduces new challenges. Greater emphasis is placed on system efficiency and control. The goal of minimizing signal terminations, which has been pursued through increasing reach and channel capacity, also can be realized through wavelength routing techniques. Rather than bounding system operation by rigid engineering rules, the physical layer is controlled and managed by automation tools. Many static signal impairments become dynamic due to network reconfiguration and transient fault events. Recently new directions in transmission research have emerged to address transparent networking problems. This special issue of the Journal of Optical Networking will examine the technologies and theory underpinning transmission in optically transparent core networks, including both metropolitan and long haul systems. Scope of Submission The special issue editors are soliciting high-quality original research papers related to transmission in optically transparent core networks. Although this does not include edge networks such as access or enterprise networks, core networks that have access capabilities will be considered in scope as will topics related to the interworking between core and edge networks. The core network

  8. Low emittance optics of photon factory storage ring at KEK

    International Nuclear Information System (INIS)

    Kamiya, Y.; Katoh, M.; Honjo, I.; Araki, A.; Kihara, M.

    1987-01-01

    A new optics is being successfully tested at the Photon Factory Storage Ring (PF-RING) in order to reduce the emittance to 0.13 mm mrad, about one third of the present value. This optics with four additional quadrupole magnets is a modified version of one of the optics designed as an option at the early period of PF construction. One advantage of this new optics is that the beta-function at RF-sections is smaller than that of the old option. The other advantage is that the dispersion function is zero at the long straight sections for insertion devices and RF cavities. The aim of this paper is to describe the new low-emittance optics as well as the parameters of the new quadrupole magnets and power supplies. Some preliminary results of machine study are also presented

  9. Tree ring and ice core time scales around the Santorini eruption

    Science.gov (United States)

    Löfroth, Elin; Muscheler, Raimund; Aldahan, Ala; Possnert, Göran; Berggren, Ann-Marie

    2010-05-01

    When studying cosmogenic radionuclides in ice core and tree ring archives around the Santorini eruption a ~20 year discrepancy was found between the records (Muscheler 2009). In this study a new 10Be dataset from the NGRIP ice core is presented. It has a resolution of 7 years and spans the period 3752-3244 BP (1803-1295 BC). The NGRIP 10Be record and the previously published 10Be GRIP record were compared to the IntCal datasets to further investigate the discrepancy between the ice core and tree ring chronologies. By modelling the 14C production rate based on atmospheric 14C records a comparison could be made to the 10Be flux which is assumed to represent the 10Be production rate. This showed a time shift of ~23 years between the records. The sensitivity of the results to changes in important model parameters was evaluated. Uncertainties in the carbon cycle model cannot explain a substantial part of the timing differences. Potential influences of climate and atmospheric processes on the 10Be deposition were studied using δ18O from the respective cores and GISP2 ice core ion data. The comparison to δ18O revealed a small but significant correlation between 10Be flux and δ18O when the 14C-derived production signal was removed from the 10Be curves. The ion data, as proxies for atmospheric circulation changes, did not show any correlations to the 10Be record or the 10Be/14C difference. When including possible data uncertainties there is still a minimum discrepancy of ~10 years between the 10Be ice core and the 14C tree ring record. Due to lack of alternative explanations it is concluded that the ice core and/or the tree ring chronologies contains unaccounted errors in this range. This also reconciles the radiocarbon 1627-1600 BC (Friedrich et al., 2006) and ice core 1642±5 BC (Vinther et al., 2006) datings of the Santorini eruption. Friedrich, W.L., Kromer, B., Friedrich, M., Heinemeier, J., Pfeiffer, T., & Talamo, S., 2006: Santorini eruption radiocarbon dated to

  10. On Embedding N2R Structures in Optical Fiber OMS-SP Ring

    DEFF Research Database (Denmark)

    Riaz, Muhammad Tahir; Pedersen, Jens Myrup; Nielsen, Rasmus Hjorth

    2006-01-01

    The objective of this paper is to propose methods for embedding N2R structures in optical fiber OMS-SP rings. The OMS-SP ring supports full mesh structure and restoration on the optical level. The N2R structures have been proven to be superior to other degree 3 network structures. Two main mapping...

  11. Reduced thermal sensitivity of hybrid air-core photonic band-gap fiber ring resonator

    Science.gov (United States)

    Feng, Li-shuang; Wang, Kai; Jiao, Hong-chen; Wang, Jun-jie; Liu, Dan-ni; Yang, Zhao-hua

    2018-01-01

    A novel hybrid air-core photonic band-gap fiber (PBF) ring resonator with twin 90° polarization-axis rotated splices is proposed and demonstrated. Frist, we measure the temperature dependent birefringence coefficient of air-core PBF and Panda fiber. Experimental results show that the relative temperature dependent birefringence coefficient of air-core PBF is 1.42×10-8/°C, which is typically 16 times less than that of Panda fiber. Then, we extract the geometry profile of air-core PBF from scanning electron microscope (SEM) images. Numerical modal is built to distinguish the fast axis and slow axis in the fiber. By precisely setting the length difference in air-core PBF and Panda fiber between two 90° polarization-axis rotated splicing points, the hybrid air-core PBF ring resonator is constructed, and the finesse of the resonator is 8.4. Environmental birefringence variation induced by temperature change can be well compensated, and experimental results show an 18-fold reduction in thermal sensitivity, compared with resonator with twin 0° polarization-axis rotated splices.

  12. Bifurcation structure of an optical ring cavity

    DEFF Research Database (Denmark)

    Kubstrup, C.; Mosekilde, Erik

    1996-01-01

    One- and two-dimensional continuation techniques are applied to determine the basic bifurcation structure for an optical ring cavity with a nonlinear absorbing element (the Ikeda Map). By virtue of the periodic structure of the map, families of similar solutions develop in parameter space. Within...

  13. Reflective variable optical attenuators and fibre ring lasers for wavelength-division multiplexing systems

    Science.gov (United States)

    Liu, He Liang

    Wavelength division multiplexing (WDM) optical fibre system is an important enabling technology to fulfill the demands for bandwidth in the modern information age. The main objective of this project is to study novel devices with the potential to enhance the performance of WDM systems. In particular, a novel reflective variable optical attenuator (RVOA) used for dynamic gain equalization (DGE) and fibre lasers based on an entirely new type of erbium-doped fibres with ultrawide tuning range were investigated theoretically and experimentally. We proposed a new type of RVOA device which could be potentially integrated with arrayed waveguide grating (AWG) to reduce the cost of DGE substantially. Initially, fibre-based RVOAs, fabricated with optical fibre components such as fibre coupler and Faraday rotator mirror, were investigated theoretically and experimentally. Larger attenuation range up to 22 dB was realized for fibre coupler-based ROVA with a Faraday rotator mirror and its polarization-dependent loss is about 0.5 dB. Then polymeric waveguide-based RVOAs were investigated theoretically and experimentally. Using an epoxy Novolak resin as core material and an UV-cured resin (Norland's NOA61) as cladding material, a polymeric waveguide RVOA was successfully fabricated. The dynamic 15 dB attenuation range was achieved and the PDL was less than 0.2 dB. The measured insertion loss of the polymeric waveguide RVOA was too large (about 18 dB) and was mainly induced by coupling loss, material loss and poor alignment. In the second part of the study, fibre ring lasers with continuous wavelength tuning over wide wavelength range and fibre ring lasers with discrete wavelength tuning were investigated. Tunable lasers are important devices in WDM systems because they could be employed as reserved sources and therefore avoiding the need to stock large inventory of lasers to cover the ITU-wavelength grid. In this project, erbium ions doped bismuth oxide glass fibres instead of

  14. A review of methods for experimentally determining linear optics in storage rings

    International Nuclear Information System (INIS)

    Safranek, J.

    1995-01-01

    In order to maximize the brightness and provide sufficient dynamic aperture in synchrotron radiation storage rings, one must understand and control the linear optics. Control of the horizontal beta function and dispersion is important for minimizing the horizontal beam size. Control of the skew gradient distribution is important for minimizing the vertical size. In this paper, various methods for experimentally determining the optics in a storage ring will be reviewed. Recent work at the National Synchrotron Light Source X-Ray Ring will be presented as well as work done at laboratories worldwide

  15. Integrated refractive index optical ring resonator detector for capillary electrophoresis.

    Science.gov (United States)

    Zhu, Hongying; White, Ian M; Suter, Jonathan D; Zourob, Mohammed; Fan, Xudong

    2007-02-01

    We developed a novel miniaturized and multiplexed, on-capillary, refractive index (RI) detector using liquid core optical ring resonators (LCORRs) for future development of capillary electrophoresis (CE) devices. The LCORR employs a glass capillary with a diameter of approximately 100 mum and a wall thickness of a few micrometers. The circular cross section of the capillary forms a ring resonator along which the light circulates in the form of the whispering gallery modes (WGMs). The WGM has an evanescent field extending into the capillary core and responds to the RI change due to the analyte conducted in the capillary, thus permitting label-free measurement. The resonating nature of the WGM enables repetitive light-analyte interaction, significantly enhancing the LCORR sensitivity. This LCORR architecture achieves dual use of the capillary as a sensor head and a CE fluidic channel, allowing for integrated, multiplexed, and noninvasive on-capillary detection at any location along the capillary. In this work, we used electro-osmotic flow and glycerol as a model system to demonstrate the fluid transport capability of the LCORRs. In addition, we performed flow speed measurement on the LCORR to demonstrate its flow analysis capability. Finally, using the LCORR's label-free sensing mechanism, we accurately deduced the analyte concentration in real time at a given point on the capillary. A sensitivity of 20 nm/RIU (refractive index units) was observed, leading to an RI detection limit of 10-6 RIU. The LCORR marries photonic technology with microfluidics and enables rapid on-capillary sample analysis and flow profile monitoring. The investigation in this regard will open a door to novel high-throughput CE devices and lab-on-a-chip sensors in the future.

  16. Omnidirectional piezo-optical ring sensor for enhanced guided wave structural health monitoring

    International Nuclear Information System (INIS)

    Giurgiutiu, Victor; Roman, Catalin; Lin, Bin; Frankforter, Erik

    2015-01-01

    This paper presents a novel method for the detection of ultrasonic waves from acoustic emission events using piezoelectric wafer ac3tive sensors (PWAS) and optical fiber Bragg grating (FBG) sensing combined with mechanical resonance amplification principles. The method is best suited for detecting the out-of-plane motion of the AE wave with preference for a certain frequency that can be adjusted by design. Several issues are discussed: (a) study the mode shapes of the sensors under different resonance frequencies in order to understand the behavior of the ring in a frequency band of interest; (b) comparison of analytical results and mode shapes with FEM predictions; (c) choice of the final piezo-optical ring sensor shape; (d) testing of the piezo-optical ring sensor prototype; (e) discussion of the ring-sensor test results in comparison with conventional results from PWAS and FBG sensors mounted directly on the test structure. The paper ends with summary, conclusions, and suggestions for further work. (paper)

  17. Residual stresses measurement by using ring-core method and 3D digital image correlation technique

    International Nuclear Information System (INIS)

    Hu, Zhenxing; Xie, Huimin; Zhu, Jianguo; Wang, Huaixi; Lu, Jian

    2013-01-01

    Ring-core method/three-dimensional digital image correlation (3D DIC) residual stresses measurement is proposed. Ring-core cutting is a mechanical stress relief method, and combining with 3D DIC system the deformation of the specimen surface can be measured. An optimization iteration method is proposed to obtain the residual stress and rigid-body motion. The method has the ability to cut an annular trench at a different location out of the field of view. A compression test is carried out to demonstrate how residual stress is determined by using 3D DIC system and outfield measurement. The results determined by the approach are in good agreement with the theoretical value. Ring-core/3D DIC has shown its robustness to determine residual stress and can be extended to application in the engineering field. (paper)

  18. Analysis of ringing effects due to magnetic core materials in pulsed nuclear magnetic resonance circuits

    International Nuclear Information System (INIS)

    Prabhu Gaunkar, N.; Bouda, N. R. Y.; Nlebedim, I. C.; Hadimani, R. L.; Mina, M.; Jiles, D. C.; Bulu, I.; Ganesan, K.; Song, Y. Q.

    2015-01-01

    This work presents investigations and detailed analysis of ringing in a non-resonant pulsed nuclear magnetic resonance (NMR) circuit. Ringing is a commonly observed phenomenon in high power switching circuits. The oscillations described as ringing impede measurements in pulsed NMR systems. It is therefore desirable that those oscillations decay fast. It is often assumed that one of the causes behind ringing is the role of the magnetic core used in the antenna (acting as an inductive load). We will demonstrate that an LRC subcircuit is also set-up due to the inductive load and needs to be considered due to its parasitic effects. It is observed that the parasitics associated with the inductive load become important at certain frequencies. The output response can be related to the response of an under-damped circuit and to the magnetic core material. This research work demonstrates and discusses ways of controlling ringing by considering interrelationships between different contributing factors

  19. Analysis of ringing effects due to magnetic core materials in pulsed nuclear magnetic resonance circuits

    Energy Technology Data Exchange (ETDEWEB)

    Prabhu Gaunkar, N., E-mail: neelampg@iastate.edu; Bouda, N. R. Y.; Nlebedim, I. C.; Hadimani, R. L.; Mina, M.; Jiles, D. C. [Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011 (United States); Bulu, I.; Ganesan, K.; Song, Y. Q. [Schlumberger-Doll Research, Cambridge, Massachusetts 02139 (United States)

    2015-05-07

    This work presents investigations and detailed analysis of ringing in a non-resonant pulsed nuclear magnetic resonance (NMR) circuit. Ringing is a commonly observed phenomenon in high power switching circuits. The oscillations described as ringing impede measurements in pulsed NMR systems. It is therefore desirable that those oscillations decay fast. It is often assumed that one of the causes behind ringing is the role of the magnetic core used in the antenna (acting as an inductive load). We will demonstrate that an LRC subcircuit is also set-up due to the inductive load and needs to be considered due to its parasitic effects. It is observed that the parasitics associated with the inductive load become important at certain frequencies. The output response can be related to the response of an under-damped circuit and to the magnetic core material. This research work demonstrates and discusses ways of controlling ringing by considering interrelationships between different contributing factors.

  20. Synchronization in a Random Length Ring Network for SDN-Controlled Optical TDM Switching

    DEFF Research Database (Denmark)

    Kamchevska, Valerija; Cristofori, Valentina; Da Ros, Francesco

    2016-01-01

    . In addition, we propose a novel synchronization algorithm that enables automatic synchronization of software defined networking controlled all-optical TDM switching nodes connected in a ring network. Besides providing synchronization, the algorithm also can facilitate dynamic slot size change and failure......In this paper we focus on optical time division multiplexed (TDM) switching and its main distinguishing characteristics compared with other optical subwavelength switching technologies. We review and discuss in detail the synchronization requirements that allow for proper switching operation...... detection. We experimentally validate the algorithm behavior and achieve correct operation for three different ring lengths. Moreover, we experimentally demonstrate data plane connectivity in a ring network composed of three nodes and show successful wavelength division multiplexing space division...

  1. Optical Bistability in Graded Core-Shell Granular Composites

    International Nuclear Information System (INIS)

    Wu Ya-Min; Chen Guo-Qing; Xue Si-Zhong; Zhu Zhuo-Wei; Ma Chao-Qun

    2012-01-01

    The intrinsic optical bistability (OB) of graded core-shell granular composites is investigated. The coated particles are made of cores with gradient dielectric function in c (r) = A(r/a) k and nonlinear shells. In view of the exponential distribution of the core dielectric constant, the potential functions of each region are obtained by solving the Maxwell equations, and the mathematical expressions of electric field in the shells and cores are determined. Numerical study reveals that the optical bistable threshold and the threshold width of the composite medium are dependent on the shell thickness, core dielectric exponent, and power function coefficient. The optical bistable width increases with the decreasing shell thickness and the power exponent and with the increasing power function coefficient

  2. Double-Slot Hybrid Plasmonic Ring Resonator Used for Optical Sensors and Modulators

    Directory of Open Access Journals (Sweden)

    Xu Sun

    2015-11-01

    Full Text Available An ultra-high sensitivity double-slot hybrid plasmonic (DSHP ring resonator, used for optical sensors and modulators, is developed. Due to high index contrast, as well as plasmonic enhancement, a considerable part of the optical energy is concentrated in the narrow slots between Si and plasmonic materials (silver is used in this paper, which leads to high sensitivity to the infiltrating materials. By partial opening of the outer plasmonic circular sheet of the DSHP ring, a conventional side-coupled silicon on insulator (SOI bus waveguide can be used. Experimental results demonstrate ultra-high sensitivity (687.5 nm/RIU of the developed DSHP ring resonator, which is about five-times higher than for the conventional Si ring with the same geometry. Further discussions show that a very low detection limit (5.37 × 10−6 RIU can be achieved after loaded Q factor modifications. In addition, the plasmonic metal structures offer also the way to process optical and electronic signals along the same hybrid plasmonic circuits with small capacitance (~0.275 fF and large electric field, which leads to possible applications in compact high-efficiency electro-optic modulators, where no extra electrodes for electronic signals are required.

  3. Efficient Test Application for Core-Based Systems Using Twisted-Ring Counters

    OpenAIRE

    Anshuman Chandra; Krishnendu Chakrabarty; Mark C. Hansen

    2001-01-01

    We present novel test set encoding and pattern decompression methods for core-based systems. These are based on the use of twisted-ring counters and offer a number of important advantages–significant test compression (over 10X in many cases), less tester memory and reduced testing time, the ability to use a slow tester without compromising test quality or testing time, and no performance degradation for the core under test. Surprisingly, the encoded test sets obtained from partially-specified...

  4. Synchronization Algorithm for SDN-controlled All-Optical TDM Switching in a Random Length Ring Network

    DEFF Research Database (Denmark)

    Kamchevska, Valerija; Cristofori, Valentina; Da Ros, Francesco

    2016-01-01

    We propose and demonstrate an algorithm that allows for automatic synchronization of SDN-controlled all-optical TDM switching nodes connected in a ring network. We experimentally show successful WDM-SDM transmission of data bursts between all ring nodes.......We propose and demonstrate an algorithm that allows for automatic synchronization of SDN-controlled all-optical TDM switching nodes connected in a ring network. We experimentally show successful WDM-SDM transmission of data bursts between all ring nodes....

  5. Carrier states and optical response in core-shell-like semiconductor nanostructures

    Science.gov (United States)

    Duque, C. M.; Mora-Ramos, M. E.; Duque, C. A.

    2017-02-01

    The charge carrier states in a GaAs/Al?Ga?As axially symmetric core-shell quantum wire are calculated in the effective mass approximation via a spectral method. The possible presence of externally applied electric and magnetic fields is taken into account, together with the variation in the characteristic in-plane dimensions of the structure. The obtained energy spectrum is used to evaluate the optical response through the coefficients of intersubband optical absorption and relative refractive index change. The particular geometry of the system also allows to use the same theoretical model in order to determine the photoluminescence peak energies associated to correlated electron-hole states in double GaAs/Al?Ga?As quantum rings, showing a good agreement when they are compared with recent experimental reports. This agreement may validate the use of both the calculation process and the approximate model of abrupt, circularly shaped cross section geometry for the system.

  6. Linear and nonlinear optical susceptibilities in a laterally coupled quantum-dot–quantum-ring system

    International Nuclear Information System (INIS)

    Zeng, Zaiping; Garoufalis, Christos S.; Baskoutas, Sotirios

    2014-01-01

    Linear and nonlinear optical susceptibilities in a laterally coupled quantum-dot–quantum-ring system have been theoretically studied. In general, we find that the structure parameters of the coupled system significantly affect the optical susceptibilities. The enhancement of the coupling effects between the dot and ring is found to increase considerably the optical susceptibilities and redshift drastically the transition energies. Comparing to the linear susceptibility, the nonlinear optical susceptibility is found to be more sensitive to the variation of the structure parameters. A comprehensive analysis of the electron probability density movement with respect to the modification of the structure parameters is provided, which offers a unique perspective of the ground-state localization. - Highlights: • Optical susceptibilities in a quantum-dot–quantum-ring system are studied. • The structure parameters significantly affect the optical susceptibilities. • The enhancement of the coupling effects increases the optical susceptibilities. • The nonlinear susceptibility is more sensitive to the change in structure parameters. • A comprehensive analysis of the electron probability density movement is provided

  7. Small slot waveguide rings for on-chip quantum optical circuits.

    Science.gov (United States)

    Rotenberg, Nir; Türschmann, Pierre; Haakh, Harald R; Martin-Cano, Diego; Götzinger, Stephan; Sandoghdar, Vahid

    2017-03-06

    Nanophotonic interfaces between single emitters and light promise to enable new quantum optical technologies. Here, we use a combination of finite element simulations and analytic quantum theory to investigate the interaction of various quantum emitters with slot-waveguide rings. We predict that for rings with radii as small as 1.44 μm, with a Q-factor of 27,900, near-unity emitter-waveguide coupling efficiencies and emission enhancements on the order of 1300 can be achieved. By tuning the ring geometry or introducing losses, we show that realistic emitter-ring systems can be made to be either weakly or strongly coupled, so that we can observe Rabi oscillations in the decay dynamics even for micron-sized rings. Moreover, we demonstrate that slot waveguide rings can be used to directionally couple emission, again with near-unity efficiency. Our results pave the way for integrated solid-state quantum circuits involving various emitters.

  8. Optical properties of Au colloids self-organized into rings via copolymer templates

    Energy Technology Data Exchange (ETDEWEB)

    Lamarre, S. S. [Laval University, Department of Chemistry (Canada); Sarrazin, A.; Proust, J.; Yockell-Lelievre, H.; Plain, J. [University of Technology of Troyes, Laboratory of Nanotechnology, Instrumentation and Optics, Charles Delaunay Institute (France); Ritcey, A. M. [Laval University, Department of Chemistry (Canada); Maurer, T., E-mail: thomas.maurer@utt.fr [University of Technology of Troyes, Laboratory of Nanotechnology, Instrumentation and Optics, Charles Delaunay Institute (France)

    2013-05-15

    The investigation of the localized surface plasmon resonance for plasmonic nanoparticles has opened new perspectives for optical nanosensors. Nowadays, an issue in plasmonics is the development of large scale and low cost devices. We focus here on the Langmuir-Blodgett technique to self-organize gold nanoparticles ({approx}7 nm) into rings ({approx}60 nm) via polystyrene-b-polymethylmethacrylate templates. In particular, we investigated the optical properties of organized gold nanoparticle rings over large areas and report experimental evidence for plasmon resonances of both individual nanoparticles and collective modes. This paves the way for designing devices with multiple resonances in the visible-infra-red spectrum and developing optical sensors.

  9. Experimental refractive index determination of the optic fiber's core

    International Nuclear Information System (INIS)

    Oezelsoy, S.

    2005-01-01

    In this work, the Fresnel's fundamental Law was used to be able to obtain the refractive index of the fiber optic's core. The intensity of light reflected from the boundary between two mediums was measured by the optical powermeter (Melles Griot, Universal optical powermeter). In recent technology, the light that is illuminated from the light source can be transported to the boundary region and measured with minimum loss by using the optic fibers which make the measurement more sensitively. The liquid and the optic fiber's core whose refractive indices will be measured are the two mediums and the surface of the optic fiber's core is the boundary region. By dipping the fiber optic probe to the liquids, the reflected light intensities were measured with powermeter via Silicon Detector for single mode fiber and multimode fiber respectively to obtain the refractive index of the optic fiber's core. At this work, because of the using the diode laser with 661,4 nm (FWHM) and He-Ne laser with 632,8 nm (FWHM) the refractive indices were measured at this wavelengthes with the Refractometer (Abbe 60-70, Bellingham+Stanley). If the refractive indices of two mediums are equal, the light doesn't reflect from the boundary. The graphic is drawn depend upon the refractive index of the liquids versus the back reflected light energy and from the minimum point of the curve the effective refractive index of the fiber optic's core is calculated for 661,4 nm and 780 nm

  10. The formation mechanisms and optical characteristics of GaSb quantum rings

    International Nuclear Information System (INIS)

    Lin, Wei-Hsun; Pao, Chun-Wei; Wang, Kai-Wei; Liao, Yu-An; Lin, Shih-Yen

    2013-01-01

    The growth mechanisms and optical characteristics of GaSb quantum rings (QRs) are investigated. Although As-for-Sb exchange is the mechanism responsible for the dot-to-ring transition, significant height difference between GaSb quantum dots (QDs) and QRs in a dot/ring mixture sample suggests that the dot-to-ring transition is not a spontaneous procedure. Instead, it is a rapid transition procedure as long as it initiates. A model is established to explain this phenomenon. Larger ring inner diameters and heights of the sample with longer post Sb soaking time suggest that As-for-Sb exchange takes places in both vertical and lateral directions. The decreasing ring densities, enlarged ring inner/outer diameters and eventually flat GaSb surfaces observed with increasing growth temperatures are resulted from enhanced adatom migration and As-for-Sb exchange with increasing growth temperatures

  11. Protection of Passive Optical Networks by Using Ring Topology and Tunable Splitters

    Directory of Open Access Journals (Sweden)

    Pavel Lafata

    2013-01-01

    Full Text Available This article proposes an innovative method for protecting of passive optical networks (PONs, especially the central optical unit – optical line termination (OLT. PON networks are typically used in modern high-speed access networks, but there are also several specific applications, such as in business, army or science sector, which require a complex protection and backup system against failures and malfunctions. A standard tree or star topologies, which are usually used for PON networks, are significantly vulnerable mainly against the malfunctions and failures of OLT unit or feeder optical cable. The method proposed in this paper is focused on forming PON network with ring topology using passive optical splitters. The main idea is based on the possibility of placing both OLT units (primary and secondary on the opposite sides of the ring, which can potentially increase the resistance of network. This method is described in the article and scenarios and calculations using symmetric or tunable asymmetric passive optical splitters are included as well.

  12. Tuning of few-electron states and optical absorption anisotropy in GaAs quantum rings.

    Science.gov (United States)

    Wu, Zhenhua; Li, Jian; Li, Jun; Yin, Huaxiang; Liu, Yu

    2017-11-15

    The electronic and optical properties of a GaAs quantum ring (QR) with few electrons in the presence of the Rashba spin-orbit interaction (RSOI) and the Dresselhaus spin-orbit interaction (DSOI) have been investigated theoretically. The configuration interaction (CI) method is employed to calculate the eigenvalues and eigenstates of the multiple-electron QR accurately. Our numerical results demonstrate that the symmetry breaking induced by the RSOI and DSOI leads to an anisotropic distribution of multi-electron states. The Coulomb interaction offers additional modulation of the electron distribution and thus the optical absorption indices in the quantum rings. By tuning the magnetic/electric fields and/or electron numbers in a quantum ring, one can change its optical properties significantly. Our theory provides a new way to control the multi-electron states and optical properties of a QR by hybrid modulations or by electrical means only.

  13. Single-chip ring resonator-based 1 x 8 optical beam forming network in CMOS-compatible waveguide technology

    NARCIS (Netherlands)

    Zhuang, L.; Roeloffzen, C.G.H.; Heideman, Rene; Borreman, A.; Meijerink, Arjan; van Etten, Wim

    2007-01-01

    Optical ring resonators (ORRs) are good candidates to provide continuously tunable delay in optical beam forming networks (OBFNs) for phased array antenna systems. Delay and splitting/combining elements can be integrated on a single optical chip to form an OBFN. A state-of-the-art ring resonator-

  14. Evaluation of Residual Stresses using Ring Core Method

    Directory of Open Access Journals (Sweden)

    Holý S.

    2010-06-01

    Full Text Available The method for measuring residual stresses using ring-core method is described. Basic relations are given for residual stress measurement along the specimen depth and simplified method is described for average residual stress estimation in the drilled layer for known principal stress directions. The estimation of calculated coefficients using FEM is described. Comparison of method sensitivity is made with hole-drilling method. The device for method application is described and an example of experiment is introduced. The accuracy of method is discussed. The influence of strain gauge rosette misalignment to the evaluated residual stresses is performed using FEM.

  15. Energy efficiency benefits of introducing optical switching in Data Center Networks

    DEFF Research Database (Denmark)

    Pilimon, Artur; Zeimpeki, Alexandra; Fagertun, Anna Manolova

    2017-01-01

    layers of the network topology. The analysis is based on network-level simulations using a transport network planning tool applied to small-scale setups of the considered DCNs. The obtained results show that introducing all-optical switching within the DCN leads to reduced power consumption in all......In this paper we analyze the impact of WDM-enhanced optical circuit switching on the power consumption of multiple Data Center Network (DCN) architectures. Traditional three-tier Tree, Fat-Tree and a ring-based structure are evaluated and optical switching is selectively introduced on different...... an optically switched core benefits most the ring-based network. For the latter, the core ring nodes need fewer long-reach transponders at the trunk interfaces and benefit from more efficient traffic grooming in the access part....

  16. Logic operations and data storage using vortex magnetization states in mesoscopic permalloy rings, and optical readout

    Energy Technology Data Exchange (ETDEWEB)

    Bowden, S R; Gibson, U J, E-mail: u.gibson@dartmouth.ed [Thayer School of Engineering, Dartmouth College, Hanover, NH 03755-8000 (United States)

    2010-01-01

    Optical coatings applied to one-half of thin film magnetic rings allow real-time readout of the chirality of the vortex state of micro- and nanomagnetic structures by breaking the symmetry of the optical signal. We use this technique to demonstrate data storage, operation of a NOT gate that uses exchange interactions between slightly overlapping rings, and to investigate the use of chains of rings as connecting wires for linking gates.

  17. Synthesis of the carbocyclic core of the cornexistins by ring-closing metathesis.

    Science.gov (United States)

    Clark, J Stephen; Marlin, Frederic; Nay, Bastien; Wilson, Claire

    2003-01-09

    An advanced intermediate in the synthesis of the phytotoxins cornexistin and hydroxycornexistin has been synthesized. Sequential palladium-mediated sp(2)-sp(3) fragment coupling and ring-closing diene metathesis have been used to construct the nine-membered carbocyclic core found in the natural products. [reaction--see text

  18. Optical coefficients in a semiconductor quantum ring: Electric field and donor impurity effects

    Science.gov (United States)

    Duque, C. M.; Acosta, Ruben E.; Morales, A. L.; Mora-Ramos, M. E.; Restrepo, R. L.; Ojeda, J. H.; Kasapoglu, E.; Duque, C. A.

    2016-10-01

    The electron states in a two-dimensional quantum dot ring are calculated in the presence of a donor impurity atom under the effective mass and parabolic band approximations. The effect of an externally applied electric field is also taken into account. The wavefunctions are obtained via the exact diagonalization of the problem Hamiltonian using a 2D expansion within the adiabatic approximation. The impurity-related optical response is analyzed via the optical absorption, relative refractive index change and the second harmonics generation. The dependencies of the electron states and these optical coefficients with the changes in the configuration of the quantum ring system are discussed in detail.

  19. Controlling the optical field chaos in storage ring free-electron lasers

    International Nuclear Information System (INIS)

    Wang Wenjie

    1995-01-01

    The controlling of optical field chaos in a storage ring free-electron laser oscillator is discussed by using a phenomenal model. A novel method (which is called the 'beating method') of controlling chaos in a nonlinear dynamical system described by non-autonomous ordinary differential equations was developed. The result of theoretical analysis and numerical simulation shows that the optical field chaos in a storage ring free-electron laser oscillator can be suppressed and a periodic laser intensity can be obtained when a weak periodic control field is added to the optical cavity. The validity of this method of eliminating chaos is confirmed by the fact that the leading Lyapunov characteristic exponent of the system changes from a positive real number to a negative one. A further research is carried out, and it is found that only when the period of the control field equals to an integral multiple of that of the gain modulation in the optical cavity can the optical field chaos be suppressed. This means that the 'beating method' of controlling chaos is a kind of resonant method. A way to determine the 'best beating position' in the phase trajectory has also been obtained

  20. Enhanced linear photonic nanojet generated by core-shell optical microfibers

    Science.gov (United States)

    Liu, Cheng-Yang; Yen, Tzu-Ping; Chen, Chien-Wen

    2017-05-01

    The generation of linear photonic nanojet using core-shell optical microfiber is demonstrated numerically and experimentally in the visible light region. The power flow patterns for the core-shell optical microfiber are calculated by using the finite-difference time-domain method. The focusing properties of linear photonic nanojet are evaluated in terms of length and width along propagation and transversal directions. In experiment, the silica optical fiber is etched chemically down to 6 μm diameter and coated with metallic thin film by using glancing angle deposition. We show that the linear photonic nanojet is enhanced clearly by metallic shell due to surface plasmon polaritons. The large-area superresolution imaging can be performed by using a core-shell optical microfiber in the far-field system. The potential applications of this core-shell optical microfiber include micro-fluidics and nano-structure measurements.

  1. Development of in-core measuring method using optical techniques

    International Nuclear Information System (INIS)

    Kakuta, Tsunemi; Shikama, Tatsuo; Narui, Minoru; Sagawa, Tsutomu.

    1994-01-01

    Since applying to more severe radiation environments in nuclear plants, e.g., in-core measuring systems, diagnostics for fusion reactors, radiation related subjects should be considered by more severe radiation and environmental conditions. Owing to this, preliminary studies of heavy neutron irradiation effects on optical fibers are conducted in the core region of fission reactor. Two kinds of SiO 2 core optical fibers, highly pure SiO 2 with OH content core and SiO 2 with fluorine doped core, were irradiated in the core region of Japan Material Testing Reactor (JMTR). Both fibers were irradiated with fast neutron (E>1.0 MeV) fluence of about 1.6x10 19 n/cm 2 and gamma-ray doses of 3.3x10 9 Gy. The optical absorption and the light-emission spectrum were measured in-situ along the irradiation. This paper mainly outlines the fundamental effects of neutron irradiation and discuss the possibility of neutron detection in the core region of reactor. (J.P.N.)

  2. Modelling and simulation of a thermally induced optical transparency in a dual micro-ring resonator.

    Science.gov (United States)

    Lydiate, Joseph

    2017-07-01

    This paper introduces the simulation and modelling of a novel dual micro-ring resonator. The geometric configuration of the resonators, and the implementation of a simulated broadband excitation source, results in the realization of optical transparencies in the combined through port output spectrum. The 130 nm silicon on insulator rib fabrication process is adopted for the simulation of the dual-ring configuration. Two titanium nitride heaters are positioned over the coupling regions of the resonators, which can be operated independently, to control the spectral position of the optical transparency. A third heater, centrally located above the dual resonator rings, can be used to red shift the entire spectrum to a required reference resonant wavelength. The free spectral range with no heater currents applied is 4.29 nm. For a simulated heater current of 7 mA (55.7 mW heater power) applied to one of the through coupling heaters, the optical transparency exhibits a red shift of 1.79 nm from the reference resonant wavelength. The ring-to-ring separation of approximately 900 nm means that it can be assumed that there is a zero ring-to-ring coupling field in this model. This novel arrangement has potential applications as a gas mass airflow sensor or a gas species identification sensor.

  3. Large core plastic planar optical splitter fabricated by 3D printing technology

    Science.gov (United States)

    Prajzler, Václav; Kulha, Pavel; Knietel, Marian; Enser, Herbert

    2017-10-01

    We report on the design, fabrication and optical properties of large core multimode optical polymer splitter fabricated using fill up core polymer in substrate that was made by 3D printing technology. The splitter was designed by the beam propagation method intended for assembling large core waveguide fibers with 735 μm diameter. Waveguide core layers were made of optically clear liquid adhesive, and Veroclear polymer was used as substrate and cover layers. Measurement of optical losses proved that the insertion optical loss was lower than 6.8 dB in the visible spectrum.

  4. Novel microwave photonic fractional Hilbert transformer using a ring resonator-based optical all-pass filter.

    Science.gov (United States)

    Zhuang, Leimeng; Khan, Muhammad Rezaul; Beeker, Willem; Leinse, Arne; Heideman, René; Roeloffzen, Chris

    2012-11-19

    We propose and demonstrate a novel wideband microwave photonic fractional Hilbert transformer implemented using a ring resonator-based optical all-pass filter. The full programmability of the ring resonator allows variable and arbitrary fractional order of the Hilbert transformer. The performance analysis in both frequency and time domain validates that the proposed implementation provides a good approximation to an ideal fractional Hilbert transformer. This is also experimentally verified by an electrical S21 response characterization performed on a waveguide realization of a ring resonator. The waveguide-based structure allows the proposed Hilbert transformer to be integrated together with other building blocks on a photonic integrated circuit to create various system-level functionalities for on-chip microwave photonic signal processors. As an example, a circuit consisting of a splitter and a ring resonator has been realized which can perform on-chip phase control of microwave signals generated by means of optical heterodyning, and simultaneous generation of in-phase and quadrature microwave signals for a wide frequency range. For these functionalities, this simple and on-chip solution is considered to be practical, particularly when operating together with a dual-frequency laser. To our best knowledge, this is the first-time on-chip demonstration where ring resonators are employed to perform phase control functionalities for optical generation of microwave signals by means of optical heterodyning.

  5. SBIR Final Report. Liquid Core Optical Scintillating Fibers

    International Nuclear Information System (INIS)

    Beetz, C.P.; Steinbeck, J.; Buerstler, R.

    2000-01-01

    This Phase I SBIR project focused on developing flexible scintillating liquid core optical fibers, with potential uses in high-energy calorimetry, tracking, preradiators, active targets or other fast detectors. Progress on the six tasks of the project is summarized. The technical developments involve three technology components: (1) highly flexible capillaries or tubes of relatively low n (index of refraction) to serve as cladding and liquid core containment; (2) scintillator (and clear) fluids of relatively high n to serve as a core-- these fluids must have a high light transmission and, for some applications, radiation hardness; (3) optical end plugs, plug insertion, and plug-cladding tube sealing technology to contain the core fluids in the tubes, and to transmit the light

  6. Discovery Of B Ring Propellers In Cassini UVIS, And ISS

    Science.gov (United States)

    Sremcevic, Miodrag; Stewart, G. R.; Albers, N.; Esposito, L. W.

    2012-10-01

    We present evidence for the existence of propellers in Saturn's B ring by combining data from Cassini Ultraviolet Imaging Spectrograph (UVIS) and Imaging Science Subsystem (ISS) experiments. We identify two propeller populations: (1) tens of degrees wide propellers in the dense B ring core, and (2) smaller, more A ring like, propellers populating the inner B ring. The prototype of the first population is an object observed at 18 different epochs between 2005 and 2010. The ubiquitous propeller "S" shape is seen both in UVIS occultations as an optical depth depletion and in ISS as a 40 degrees wide bright stripe in unlit geometries and dark in lit geometries. Combining the available Cassini data we infer that the object is a partial gap embedded in the high optical depth region of the B ring. The gap moves at orbital speed consistent with its radial location. From the radial separation of the propeller wings we estimate that the embedded body, which causes the propeller structure, is about 1.5km in size located at a=112,921km. The UVIS occultations indicate an asymmetric propeller "S" shape. Since the object is located at an edge between high and relatively low optical depth, this asymmetry is most likely a consequence of the strong surface mass density gradient. We estimate that there are possibly dozen up to 100 other propeller objects in Saturn's B ring. The location of the discovered body, at an edge of a dense ringlet within the B ring, suggests a novel mechanism for the up to now illusive B ring irregular large-scale structure of alternating high and low optical depth ringlets. We propose that this B ring irregular structure may have its cause in the presence of many embedded bodies that shepherd the individual B ring ringlets.

  7. In-gap corner states in core-shell polygonal quantum rings.

    Science.gov (United States)

    Sitek, Anna; Ţolea, Mugurel; Niţă, Marian; Serra, Llorenç; Gudmundsson, Vidar; Manolescu, Andrei

    2017-01-10

    We study Coulomb interacting electrons confined in polygonal quantum rings. We focus on the interplay of localization at the polygon corners and Coulomb repulsion. Remarkably, the Coulomb repulsion allows the formation of in-gap states, i.e., corner-localized states of electron pairs or clusters shifted to energies that were forbidden for non-interacting electrons, but below the energies of corner-side-localized states. We specify conditions allowing optical excitation to those states.

  8. In-gap corner states in core-shell polygonal quantum rings

    Science.gov (United States)

    Sitek, Anna; Ţolea, Mugurel; Niţă, Marian; Serra, Llorenç; Gudmundsson, Vidar; Manolescu, Andrei

    2017-01-01

    We study Coulomb interacting electrons confined in polygonal quantum rings. We focus on the interplay of localization at the polygon corners and Coulomb repulsion. Remarkably, the Coulomb repulsion allows the formation of in-gap states, i.e., corner-localized states of electron pairs or clusters shifted to energies that were forbidden for non-interacting electrons, but below the energies of corner-side-localized states. We specify conditions allowing optical excitation to those states.

  9. Development of optical packet and circuit integrated ring network testbed.

    Science.gov (United States)

    Furukawa, Hideaki; Harai, Hiroaki; Miyazawa, Takaya; Shinada, Satoshi; Kawasaki, Wataru; Wada, Naoya

    2011-12-12

    We developed novel integrated optical packet and circuit switch-node equipment. Compared with our previous equipment, a polarization-independent 4 × 4 semiconductor optical amplifier switch subsystem, gain-controlled optical amplifiers, and one 100 Gbps optical packet transponder and seven 10 Gbps optical path transponders with 10 Gigabit Ethernet (10GbE) client-interfaces were newly installed in the present system. The switch and amplifiers can provide more stable operation without equipment adjustments for the frequent polarization-rotations and dynamic packet-rate changes of optical packets. We constructed an optical packet and circuit integrated ring network testbed consisting of two switch nodes for accelerating network development, and we demonstrated 66 km fiber transmission and switching operation of multiplexed 14-wavelength 10 Gbps optical paths and 100 Gbps optical packets encapsulating 10GbE frames. Error-free (frame error rate optical packets of various packet lengths and packet rates, and stable operation of the network testbed was confirmed. In addition, 4K uncompressed video streaming over OPS links was successfully demonstrated. © 2011 Optical Society of America

  10. Linear all-optical signal processing using silicon micro-ring resonators

    DEFF Research Database (Denmark)

    Ding, Yunhong; Ou, Haiyan; Xu, Jing

    2016-01-01

    Silicon micro-ring resonators (MRRs) are compact and versatile devices whose periodic frequency response can be exploited for a wide range of applications. In this paper, we review our recent work on linear all-optical signal processing applications using silicon MRRs as passive filters. We focus...

  11. Mode structure in an optically pumped D2O far infrared ring laser

    International Nuclear Information System (INIS)

    Yuan, D.C.; Soumagne, G.; Siegrist, M.R.

    1989-07-01

    The mode structures in an optically pumped D 2 O far infrared ring laser and a corresponding linear resonator have been compared. While single mode operation can be obtained over the whole useful pressure range in the ring structure, this is only possible at pressures greater than 8 Torr in the linear resonator case. A numerical model predicts quite well the pulse shape, pressure dependence and influence of the resonator quality in the ring cavity. (author) 12 figs., 8 refs

  12. Design and implementation of a fiber optic link for a token ring local area network

    OpenAIRE

    Doran, Thomas J.

    1992-01-01

    Approved for public release; distribution is unlimited This thesis described the design and implementation of a fiber optic link for a token ring local area network (LAN). It features the use of fiber optic channels as the transmission medium between a computer system and a wiring concentrator to convert a physical ring design into a star-wired configuration. The LAN was controlled by the TMS380 LAN Adapter chipset, which provided all diagnostic and network management features to include...

  13. Large-area super-resolution optical imaging by using core-shell microfibers

    Science.gov (United States)

    Liu, Cheng-Yang; Lo, Wei-Chieh

    2017-09-01

    We first numerically and experimentally report large-area super-resolution optical imaging achieved by using core-shell microfibers. The particular spatial electromagnetic waves for different core-shell microfibers are studied by using finite-difference time-domain and ray tracing calculations. The focusing properties of photonic nanojets are evaluated in terms of intensity profile and full width at half-maximum along propagation and transversal directions. In experiment, the general optical fiber is chemically etched down to 6 μm diameter and coated with different metallic thin films by using glancing angle deposition. The direct imaging of photonic nanojets for different core-shell microfibers is performed with a scanning optical microscope system. We show that the intensity distribution of a photonic nanojet is highly related to the metallic shell due to the surface plasmon polaritons. Furthermore, large-area super-resolution optical imaging is performed by using different core-shell microfibers placed over the nano-scale grating with 150 nm line width. The core-shell microfiber-assisted imaging is achieved with super-resolution and hundreds of times the field-of-view in contrast to microspheres. The possible applications of these core-shell optical microfibers include real-time large-area micro-fluidics and nano-structure inspections.

  14. Novel microwave photonic fractional hilbert transformer using a ring resonator-based optical all-pass filter

    NARCIS (Netherlands)

    Zhuang, L.; Khan, M.R.H.; Beeker, Willem; Beeker, W.P.; Leinse, Arne; Heideman, Rene; Roeloffzen, C.G.H.

    2012-01-01

    We propose and demonstrate a novel wideband microwave photonic fractional Hilbert transformer implemented using a ring resonatorbased optical all-pass filter. The full programmability of the ring resonator allows variable and arbitrary fractional order of the Hilbert transformer. The performance

  15. Chalcogenide glass hollow core microstructured optical fibers

    Directory of Open Access Journals (Sweden)

    Vladimir S. eShiryaev

    2015-03-01

    Full Text Available The recent developments on chalcogenide glass hollow core microstructured optical fibers (HC-MOFs are presented. The comparative analysis of simulated optical properties for chalcogenide HC-MOFs of negative-curvature with different size and number of capillaries is given. The technique for the manufacture of microstructured chalcogenide preforms, which includes the assembly of the substrate glass tube and 8-10 capillaries, is described. Further trends to improve the optical transmission in chalcogenide NCHCFs are considered.

  16. Optical properties of an elliptic quantum ring: Eccentricity and electric field effects

    Science.gov (United States)

    Bejan, Doina; Stan, Cristina; Niculescu, Ecaterina C.

    2018-04-01

    We have theoretically studied the electronic and optical properties of a GaAs/AlGaAs elliptic quantum ring under in-plane electric field. The effects of an eccentric internal barrier -placed along the electric field direction, chosen as x-axis- and incident light polarization are particularly taken into account. The one-electron energy spectrum and wave functions are found using the adiabatic approximation and the finite element method within the effective-mass model. We show that it is possible to repair the structural distortion by applying an appropriate in-plane electric field, and the compensation is almost complete for all electronic states under study. For both concentric and eccentric quantum ring the intraband optical properties are very sensitive to the electric field and probe laser polarization. As expected, in the systems with eccentricity distortions the energy spectrum, as well as the optical response, strongly depends on the direction of the externally applied electric field, an effect that can be used as a signature of ring eccentricity. We demonstrated the possibility of generating second harmonic response at double resonance condition for incident light polarized along the x-axis if the electric field or/and eccentric barrier break the inversion symmetry. Also, strong third harmonic signal can be generated at triple resonance condition for a specific interval of electric field values when using y-polarized light.

  17. Folded Fabry-Perot quasi-optical ring resonator diplexer Theory and experiment

    Science.gov (United States)

    Pickett, H. M.; Chiou, A. E. T.

    1983-01-01

    Performance of folded Fabry-Perot quasi-optical ring resonator diplexers with different geometries of reflecting surfaces is investigated both theoretically and experimentally. Design of optimum surface geometry for minimum diffraction, together with the figure of merit indicating improvement in performance, are given.

  18. Beam Optics for FCC-ee Collider Ring

    CERN Document Server

    Oide, Katsunobu; Aumon, S; Benedikt, M; Blondel, A; Bogomyagkov, A V; Boscolo, M; Burkhardt, H; Cai, Y; Doblhammer, A; Haerer, B; Holzer, B; Koop, I; Koratzinos, M; Jowett, John M; Levichev, E B; Medina, L; Ohmi, K; Papaphilippou, Y; Piminov, P A; Shatilov, D N; Sinyatkin, S V; Sullivan, M; Wenninger, J; Wienands, U; Zhou, D; Zimmermann, F

    2017-01-01

    A beam optics scheme has been designed [ 1 ] for the Future Circular Collider- e + e − (FCC-ee). The main characteristics of the design are: beam energy 45 to 175 GeV, 100 km circumference with two interaction points (IPs) per ring, horizontal crossing angle of 30 mrad at the IP and the crab-waist scheme [ 2 ] with local chromaticity correction. The crab-waist scheme is implemented within the local chromaticity correction system without additional sextupoles, by reducing the strength of one of the two sextupoles for vertical chromatic correction at each side of the IP. So- called “tapering" of the magnets is applied, which scales all fields of the magnets according to the local beam energy to compensate for the effect of synchrotron radiation (SR) loss along the ring. An asymmetric layout near the interaction region reduces the critical energy of SR photons on the incoming side of the IP to values below 100 keV, while matching the geometry to the beam line of the FCC proton collider (FCC-hh) [ 3 ] as clos...

  19. Effects of rapid thermal annealing on the optical properties of strain-free quantum ring solar cells

    Science.gov (United States)

    2013-01-01

    Strain-free GaAs/Al0.33Ga0.67As quantum rings are fabricated by droplet epitaxy. Both photoresponse and photoluminescence spectra confirm optical transitions in quantum rings, suggesting that droplet epitaxial nanomaterials are applicable to intermediate band solar cells. The effects of post-growth annealing on the quantum ring solar cells are investigated, and the optical properties of the solar cells with and without thermal treatment are characterized by photoluminescence technique. Rapid thermal annealing treatment has resulted in the significant improvement of material quality, which can be served as a standard process for quantum structure solar cells grown by droplet epitaxy. PMID:23281811

  20. Hybrid Wavelength Routed and Optical Packet Switched Ring Networks for the Metropolitan Area Network

    DEFF Research Database (Denmark)

    Nord, Martin

    2005-01-01

    Increased data traffic in the metropolitan area network calls for new network architectures. This paper evaluates optical ring architectures based on optical packet switching, wavelength routing, and hybrid combinations of the two concepts. The evaluation includes overall throughput and fairness...... attractive when traffic is unbalanced....

  1. Bacterial biomass in warm-core Gulf Stream ring 82-B: mesoscale distributions, temporal changes and production

    Science.gov (United States)

    Ducklow, Hugh

    1986-11-01

    The distribution of bacterioplankton biomass and productivity in warm-core Gulf Stream ring 82-B generally corresponded to the physical and dynamical structure of the ring. Mean cell volumes were uniform for 4 months, but were larger by a factor of 2-3 in the high velocity (frontal) region (HVR) near the ring edge. As a result of this gradient and higher abundances, water column biomass and production were highest in the front, which appeared to be a local maximum in those properties. In this regard bacterioplankton contrasted strongly to phytoplankton, which exhibited strong local maxima at the center of the ring in June. In April when the water column inside the ring was isothermal to 450 m, bacterial biomass and production were low and uniform to 250 and 50 m, respectively. Bacterioplankton responded dramatically to the vernal restratification of the ring. In June when the surface layer was characterized by a strong pycnocline at 10-40 m, bacterial biomass and production often had strong subsurface maxima, and were 3 and 5 times greater than in April, respectively. Abundance exceeded 1.5 × 10 9 cells l -1 at ring center and exceeded 3 × 10 9 l -1 in the HVR. Turnover rates for the euphotic zone bacterioplankton as a whole were 0.24 d -1 in April, 0.56 d -1 in June, and 0.27 d -1 in August at ring center. Bacterial production averaged 12% of hourly primary production (range 1-32%), suggesting that bacteria control a significant and sometimes large portion of the carbon cycling in the euphotic zone. These data suggest that warm-core rings are sites of enhanced variability of bacterioplankton properties in the open sea. Furthermore, the data strongly support recent work showing that frontal zones are sites of locally enhanced bacterial biomass and production. In the ring system as a whole, the euphotic zone bacterioplankton biomass and production were comparable to and occasionally greater than the biomass and production of the >64 μm zooplankton, especially in

  2. Interband magneto-optical transitions in a layer of semiconductor nano-rings

    NARCIS (Netherlands)

    Voskoboynikov, O.; Wijers, Christianus M.J.; Liu, J.L.; Lee, C.P.

    2005-01-01

    We have developed a quantitative theory of the collective electromagnetic response of layers of semiconductor nano-rings. The response can be controlled by means of an applied magnetic field through the optical Aharonov-Bohm effect and is ultimately required for the design of composite materials. We

  3. Optical refractometer based on an asymmetrical twin-core fiber Michelson interferometer.

    Science.gov (United States)

    Zhou, Ai; Zhang, Yanhui; Li, Guangping; Yang, Jun; Wang, Yuzhuo; Tian, Fengjun; Yuan, Libo

    2011-08-15

    We report and demonstrate an optical refractometer based on a compact fiber Michelson interferometer. The Michelson interferometer is composed of an asymmetrical twin-core fiber containing a central core and a side core. By chemically etching a segment of the twin-core fiber until the side core is exposed, the effective index of the side core in the etched region is sensitive to the environmental refractive index, which leads to a shift of the transmission spectrum of the Michelson interferometer. The experimental results show that such a device has a refractive index resolution of more than 800 nm/refractive index unit in the range of 1.34-1.37. © 2011 Optical Society of America

  4. Novel ring resonator-based integrated photonic beamformer for broadband phased array receive antennas - part 1: design and performance analysis

    NARCIS (Netherlands)

    Meijerink, Arjan; Roeloffzen, C.G.H.; Meijerink, Roland; Zhuang, L.; Marpaung, D.A.I.; Bentum, Marinus Jan; Burla, M.; Verpoorte, Jaco; Jorna, Pieter; Huizinga, Adriaan; van Etten, Wim

    2010-01-01

    A novel optical beamformer concept is introduced that can be used for seamless control of the reception angle in broadband wireless receivers employing a large phased array antenna (PAA). The core of this beamformer is an optical beamforming network (OBFN), using ring resonator-based broadband

  5. Raman Probe Based on Optically-Poled Double-Core Fiber

    DEFF Research Database (Denmark)

    Brunetti, Anna Chiara; Margulis, Walter; Rottwitt, Karsten

    2012-01-01

    A Raman probe based on an optically-poled double-core fiber. In-fiber SHG allows for Raman spectroscopy of DMSO at 532nm when illuminating the fiber with 1064nm light. The fiber structure provides independent excitation and collection paths.......A Raman probe based on an optically-poled double-core fiber. In-fiber SHG allows for Raman spectroscopy of DMSO at 532nm when illuminating the fiber with 1064nm light. The fiber structure provides independent excitation and collection paths....

  6. RF-to-RF Characterization of a Phased Array Receive Antenna Steering System Using a Novel Ring Resonator-Based Integrated Photonic Beamformer

    NARCIS (Netherlands)

    Zhuang, L.; Burla, M.; Roeloffzen, C.G.H.; Meijerink, Arjan; Marpaung, D.A.I.; Khan, M.R.H.; van Etten, Wim; Leinse, Arne; Hoekman, M.; Heideman, Rene

    2009-01-01

    A novel ring resonator-based photonic beamformer has been developed for continuous and squint-free control of the reception angle of broadband phased array antenna systems. The core of the system is a ring resonator based optical beamforming network (OBFN) used for delay synchronization and coherent

  7. Optical properties of core-shell and multi-shell nanorods

    Science.gov (United States)

    Mokkath, Junais Habeeb; Shehata, Nader

    2018-05-01

    We report a first-principles time dependent density functional theory study of the optical response modulations in bimetallic core-shell (Na@Al and Al@Na) and multi-shell (Al@Na@Al@Na and Na@Al@Na@Al: concentric shells of Al and Na alternate) nanorods. All of the core-shell and multi-shell configurations display highly enhanced absorption intensity with respect to the pure Al and Na nanorods, showing sensitivity to both composition and chemical ordering. Remarkably large spectral intensity enhancements were found in a couple of core-shell configurations, indicative that optical response averaging based on the individual components can not be considered as true as always in the case of bimetallic core-shell nanorods. We believe that our theoretical results would be useful in promising applications depending on Aluminum-based plasmonic materials such as solar cells and sensors.

  8. Alignment of Duke free electron laser storage ring and optical beam delivery system

    International Nuclear Information System (INIS)

    Emamian, M.; Hower, N.

    1999-01-01

    Duke Free Electron Laser Laboratory (DFELL) hosts a 1.1 GeV electron beam storage ring facility which is capable of generating beams in the range of nearly monochromatic gamma rays to high peak power infra red (IR) laser. In this report specifications and procedures for alignment of OK-4 /Duke storage ring FEL wiggler and optical cavity mirrors will be discussed. The OK-4 FEL lasing has demonstrated a series of world record in the last few years. In August of this year the OK-4 FEL successfully commissioned to laser at 193.7 nm. Also in this article, alignment of the γ-ray and UV optical beam delivery system that is currently in progress will be described. (authors)

  9. Ge/Si core/shell quantum dots in alumina: tuning the optical absorption by the core and shell size

    Directory of Open Access Journals (Sweden)

    Nekić Nikolina

    2017-03-01

    Full Text Available Ge/Si core/shell quantum dots (QDs recently received extensive attention due to their specific properties induced by the confinement effects of the core and shell structure. They have a type II confinement resulting in spatially separated charge carriers, the electronic structure strongly dependent on the core and shell size. Herein, the experimental realization of Ge/Si core/shell QDs with strongly tunable optical properties is demonstrated. QDs embedded in an amorphous alumina glass matrix are produced by simple magnetron sputtering deposition. In addition, they are regularly arranged within the matrix due to their self-assembled growth regime. QDs with different Ge core and Si shell sizes are made. These core/shell structures have a significantly stronger absorption compared to pure Ge QDs and a highly tunable absorption peak dependent on the size of the core and shell. The optical properties are in agreement with recent theoretical predictions showing the dramatic influence of the shell size on optical gap, resulting in 0.7 eV blue shift for only 0.4 nm decrease at the shell thickness. Therefore, these materials are very promising for light-harvesting applications.

  10. Design of all-optical memory cell using EIT and lasing without inversion phenomena in optical micro ring resonators

    Science.gov (United States)

    Pasyar, N.; Yadipour, R.; Baghban, H.

    2017-07-01

    The proposed design of the optical memory unit cell contains dual micro ring resonators in which the effect of lasing without inversion (LWI) in three-level nano particles doped over the optical resonators or integrators as the gain segment is used for loss compensation. Also, an on/off phase shifter based on electromagnetically induced transparency (EIT) in three-level quantum dots (QDs) has been used for data reading at requested time. Device minimizing for integrated purposes and high speed data storage are the main advantages of the optical integrator based memory.

  11. Electrochemical performance and structure evolution of core-shell nano-ring α-Fe_2O_3@Carbon anodes for lithium-ion batteries

    International Nuclear Information System (INIS)

    Sun, Yan-Hui; Liu, Shan; Zhou, Feng-Chen; Nan, Jun-Min

    2016-01-01

    Core-shell nano-ring α-Fe_2O_3@Carbon (CSNR) composites with different carbon content (CSNR-5%C and CSNR-13%C) are synthesized using a hydrothermal method by controlling different amounts of glucose and α-Fe_2O_3 nano-rings with further annealing. The CSNR electrodes exhibit much improved specific capacity, cycling stability and rate capability compared with that of bare nano-ring α-Fe_2O_3 (BNR), which is attributed to the core-shell nano-ring structure of CSNR. The carbon shell in the inner and outer surface of CSNR composite can increase electron conductivity of the electrode and inhibit the volume change of α-Fe_2O_3 during discharge/charge processes, and the nano-ring structure of CSNR can buffer the volume change too. The CSNR-5%C electrode shows super high initial discharge/charge capacities of 1570/1220 mAh g"−"1 and retains 920/897 mAh g"−"1 after 200 cycles at 500 mA g"−"1 (0.5C). Even at 2000 mA g"−"1 (2C), the electrode delivers the initial capacities of 1400/900 mAh g"−"1, and still maintains 630/610 mAh g"−"1 after 200 cycles. The core-shell nano-rings opened during cycling and rebuilt a new flower-like structure consisting of α-Fe_2O_3@Carbon nano-sheets. The space among the nano-sheet networks can further buffer the volume expansion of α-Fe_2O_3 and facilitate the transportation of electrons and Li"+ ions during the charge/discharge processes, which increases the capacity and rate capability of the electrode. It is the first time that the evolution of core-shell α-Fe_2O_3@Carbon changing to flower-like networks during lithiation/de-lithiation has been reported.

  12. Electrochemical performance and structure evolution of core-shell nano-ring α-Fe2O3@Carbon anodes for lithium-ion batteries

    Science.gov (United States)

    Sun, Yan-Hui; Liu, Shan; Zhou, Feng-Chen; Nan, Jun-Min

    2016-12-01

    Core-shell nano-ring α-Fe2O3@Carbon (CSNR) composites with different carbon content (CSNR-5%C and CSNR-13%C) are synthesized using a hydrothermal method by controlling different amounts of glucose and α-Fe2O3 nano-rings with further annealing. The CSNR electrodes exhibit much improved specific capacity, cycling stability and rate capability compared with that of bare nano-ring α-Fe2O3 (BNR), which is attributed to the core-shell nano-ring structure of CSNR. The carbon shell in the inner and outer surface of CSNR composite can increase electron conductivity of the electrode and inhibit the volume change of α-Fe2O3 during discharge/charge processes, and the nano-ring structure of CSNR can buffer the volume change too. The CSNR-5%C electrode shows super high initial discharge/charge capacities of 1570/1220 mAh g-1 and retains 920/897 mAh g-1 after 200 cycles at 500 mA g-1 (0.5C). Even at 2000 mA g-1 (2C), the electrode delivers the initial capacities of 1400/900 mAh g-1, and still maintains 630/610 mAh g-1 after 200 cycles. The core-shell nano-rings opened during cycling and rebuilt a new flower-like structure consisting of α-Fe2O3@Carbon nano-sheets. The space among the nano-sheet networks can further buffer the volume expansion of α-Fe2O3 and facilitate the transportation of electrons and Li+ ions during the charge/discharge processes, which increases the capacity and rate capability of the electrode. It is the first time that the evolution of core-shell α-Fe2O3@Carbon changing to flower-like networks during lithiation/de-lithiation has been reported.

  13. Colloidal-Quantum-Dot Ring Lasers with Active Color Control.

    Science.gov (United States)

    le Feber, Boris; Prins, Ferry; De Leo, Eva; Rabouw, Freddy T; Norris, David J

    2018-02-14

    To improve the photophysical performance of colloidal quantum dots for laser applications, sophisticated core/shell geometries have been developed. Typically, a wider bandgap semiconductor is added as a shell to enhance the gain from the quantum-dot core. This shell is designed to electronically isolate the core, funnel excitons to it, and reduce nonradiative Auger recombination. However, the shell could also potentially provide a secondary source of gain, leading to further versatility in these materials. Here we develop high-quality quantum-dot ring lasers that not only exhibit lasing from both the core and the shell but also the ability to switch between them. We fabricate ring resonators (with quality factors up to ∼2500) consisting only of CdSe/CdS/ZnS core/shell/shell quantum dots using a simple template-stripping process. We then examine lasing as a function of the optical excitation power and ring radius. In resonators with quality factors >1000, excitons in the CdSe cores lead to red lasing with thresholds at ∼25 μJ/cm 2 . With increasing power, green lasing from the CdS shell emerges (>100 μJ/cm 2 ) and then the red lasing begins to disappear (>250 μJ/cm 2 ). We present a rate-equation model that can explain this color switching as a competition between exciton localization into the core and stimulated emission from excitons in the shell. Moreover, by lowering the quality factor of the cavity we can engineer the device to exhibit only green lasing. The mechanism demonstrated here provides a potential route toward color-switchable quantum-dot lasers.

  14. Integrated polymer micro-ring resonators for optical sensing applications

    OpenAIRE

    Girault , Pauline; Lorrain , Nathalie; Poffo , Luiz; Guendouz , Mohammed; Lemaitre , Jonathan; Carré , Christiane; Gadonna , Michel; Bosc , Dominique; Vignaud , Guillaume

    2015-01-01

    International audience; Micro-resonators (MR) have become a key element for integrated optical sensors due to their integration capability and their easy fabrication with low cost polymer materials. Nowadays, there is a growing need on MRs as highly sensitive and selective functions especially in the areas of food and health. The context of this work is to implement and study integrated micro-ring resonators devoted to sensing applications. They are fabricated by processing SU8 polymer as cor...

  15. First results for a FCC-hh ring optics design

    CERN Document Server

    Chance, Antoine; Payet, Jacques; Alemany Fernandez, Reyes; Holzer, Bernhard; Schulte, Daniel

    2015-01-01

    The first order considerations of the optics for the FCC-hh ring are presented. The arc cell is generated taking into account some general considerations like the whole circumference, maximum gradients and lengths of the elements in the cell. The integration of the insertion regions started. Three types of Dispersion Suppressors (DIS) are studied. The sensitivity of the arc parameters to these layout considerations is studied in more detail. An alternative layout is shown as well.

  16. A 130 GHz Electro-Optic Ring Modulator with Double-Layer Graphene

    Directory of Open Access Journals (Sweden)

    Lei Wu

    2017-02-01

    Full Text Available The optical absorption coefficient of graphene will change after injecting carriers. Based on this principle, a high-speed double-layer graphene electro-optic modulator with a ring resonator structure was designed in this paper. From the numerical simulations, we designed a modulator. Its optical bandwidth is larger than 130 GHz, the switching energy is 0.358 fJ per bit, and the driven voltage is less than 1.2 V. At the same time, the footprint of the proposed modulator is less than 10 microns squared, which makes the process compatible with the Complementary Metal Oxide Semiconductors (CMOS process. This will provide the possibility for the on-chip integration of the photoelectric device.

  17. Generation of tunable chain of three-dimensional optical bottle beams via focused multi-ring hollow Gaussian beam.

    Science.gov (United States)

    Philip, Geo M; Viswanathan, Nirmal K

    2010-11-01

    We report here the generation of a chain of three-dimensional (3-D) optical bottle beams by focusing a π-phase shifted multi-ring hollow Gaussian beam (HGB) using a lens with spherical aberration. The rings of the HGB of suitable radial (k(r)) and axial (k(z)) wave vectors are generated using a double-negative axicon chemically etched in the optical fiber tips. Moving the lens position with respect to the fiber tip results in variation of the semi-angle of the cones of wave vectors of the HGBs and their diameter, using which we demonstrate tunability in the size and the periodicity of the 3-D optical bottle beams over a wide range, from micrometers to millimeters. The propagation characteristics of the beams resulting from focusing of single- and multi-ring HGBs and resulting in a quasi-non-diffracting beam and a chain of 3-D optical bottle beams, respectively, are simulated using only the input beam parameters and are found to agree well with experimental results.

  18. Design and analysis of three-layer-core optical fiber

    Science.gov (United States)

    Zheng, Siwen; Liu, Yazhuo; Chang, Guangjian

    2018-03-01

    A three-layer-core single-mode large-mode-area fiber is investigated. The three-layer structure in the core, which is composed of a core-index layer, a cladding-index layer, and a depression-index layer, could achieve a large effective area Aeff while maintaining an ultralow bending loss without deteriorating cutoff behaviors. The single-mode large mode area of 100 to 330 μm2 could be achieved in the fiber. The effective area Aeff can be further enlarged by adjusting the layer parameters. Furthermore, the bending property could be improved in this three-layer-core structure. The bending loss could decrease by 2 to 4 orders of magnitude compared with the conventional step-index fiber with the same Aeff. These characteristics of three-layer-core fiber suggest that it can be used in large-mode-area wide-bandwidth high-capacity transmission or high-power optical fiber laser and amplifier in optical communications, which could be used for the basic physical layer structure of big data storage, reading, calculation, and transmission applications.

  19. Bimodality and the formation of Saturn's ring particles

    International Nuclear Information System (INIS)

    Gehrels, T.

    1980-01-01

    The F ring appears to have an outer and an inner rim, with only the latter observed by the imaging photopolarimeter (IPP) on the Pioneer Saturn spacecraft. The inside of the G ring, near 2.49 R/sub S/, may also be seen in the optical data. 1979S1 is red as well as dark. The light scattered through the B ring is noticeably red. The A ring has a dense outer rim. The Cassini Division and the French Division (Dollfus Division) have a dark gap near their centers. The C ring becomes weaker toward the center such that outer, middle, and inner C rings can be recognized. The Pioneer and earth-based observations are explained with a model for the B and A rings to some extent of a bimodal size distributions of particles; the larger ones may be original accretions, while small debris diffuses inward through the Cassini Division and the C ring. During the formation of the ring system, differential gravitation allowed only silicaceous grains of higher density (rho> or approx. =3 g cm -3 ) to coagulate. These serve as interstitial cores for snowy carbonaceous grains, between the times of accretion from interplanetary cometary grains and liberation by collision followed by diffusion inward to Saturn and final evaporation

  20. Continuous-wave singly resonant optical parametric oscillator placed inside a ring laser

    DEFF Research Database (Denmark)

    Abitan, Haim; Buchhave, Preben

    2003-01-01

    A cw singly resonant optical parametric oscillator (SRO) was built and placed inside the cavity of a ring laser. The system consists of a diode-end-pumped Nd:YVO4 ring laser with intracavity periodically poled lithium niobate as the nonlinear gain medium of the SRO. When the laser was operated...... in a unidirectional mode, we obtained more than 520 mW of signal power in one beam. When the laser was operated in a bidirectional mode, we obtained 600 mW of signal power (300 mW in two separate beams). The power and the spectral features of the laser in the unidirectional and bidirectional modes were measured while...... the laser was coupled with the SRO. The results show that it is preferable to couple a SRO with a unidirectional ring laser....

  1. Vortex rings in classical and quantum systems

    International Nuclear Information System (INIS)

    Barenghi, C F; Donnelly, R J

    2009-01-01

    The study of vortex rings has been pursued for decades and is a particularly difficult subject. However, the discovery of quantized vortex rings in superfluid helium has greatly increased interest in vortex rings with very thin cores. While rapid progress has been made in the simulation of quantized vortex rings, there has not been comparable progress in laboratory studies of vortex rings in a viscous fluid such as water. This article overviews the history and current frontiers of classical and quantum vortex rings. After introducing the classical results, this review discusses thin-cored vortex rings in superfluid helium in section 2, and recent progress in understanding vortex rings of very thin cores propagating in water in section 3. (invited paper)

  2. CIRS High-Resolution Thermal Scans and the Structure of Saturn's B Ring

    Science.gov (United States)

    Brooks, S. M.; Spilker, L. J.; Showalter, M.; Pilorz, S.; Edgington, S. G.

    2017-12-01

    The flyby of Titan on November 29, 2016, sent the Cassini spacecraft on a trajectory that would take it within 10,000 kilometers of Saturn's F ring multiple times before a subsequent Titan encounter on April 22, 2017, would send it on ballistic trajectory carrying it between Saturn's cloud tops and the planet's D ring for several flybys. This geometry has proven beneficial for high-resolution studies of the rings, not just because of Cassini's proximity to the rings, but also because of the spacecraft's high elevation angle above the rings, which reduces the foreshortening that tends to degrade resolution in the ring plane. We will report on several observations of Saturn's main rings at the high spatial resolutions enabled by the end-of-mission geometry, particulary the B ring, with the Composite Infrared Spectrometer onboard Cassini during the F-ring and proximal orbits. CIRS' three infrared detectors cover a combined spectral range of 10 to 1400 cm-1 (1 mm down to 7 microns). We focus on data from Focal Plane 1, which covers the 10 to 600 cm-1 range (1 mm to 16 microns). The apodized spectral resolution of the instrument can be varied from 15 cm-1 to 0.5 cm-1 (Flasar et al. 2004). FP1's wavelength range makes it well-suited to sensing thermal emission from objects at temperatures typical of Saturn's rings. Correlating ring optical depth with temperatures retrieved from scans of the face of the rings exposed to direct solar illumination (the lit face) and the opposite (unlit) face suggests differences in ring structure or particle transport between the lit and unlit sides of the rings in different regions of the B ring. Lit side temperatures in the core of the B ring range between 82 and 87 K; temperatures on the unlit side of the core vary from 66 K up to 74 K. Ferrari and Reffet (2013) and Pilorz et al. (2015) published thorough analyses of the thermal throughput across this optically thick ring. We will discuss these recent CIRS rings observations and their

  3. Nonlinear optics at the single-photon level inside a hollow core fiber

    DEFF Research Database (Denmark)

    Hofferberth, Sebastian; Peyronel, Thibault; Liang, Qiyu

    2011-01-01

    Cold atoms inside a hollow core fiber provide an unique system for studying optical nonlinearities at the few-photon level. Confinement of both atoms and photons inside the fiber core to a diameter of just a few wavelengths results in high electric field intensity per photon and large optical...

  4. Impurity-related nonlinear optical properties in delta-doped quantum rings: Electric field effects

    Energy Technology Data Exchange (ETDEWEB)

    Restrepo, R.L., E-mail: rrestre@gmail.com [Escuela de Ingeniería de Antioquia-EIA, Medellín (Colombia); Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Morales, A.L. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Martínez-Orozco, J.C. [Unidad Académica de Física, Universidad Autónoma de Zacatecas, CP 98060, Zacatecas (Mexico); Baghramyan, H.M.; Barseghyan, M.G. [Department of Solid State Physics, Yerevan State University, Al. Manookian 1, 0025 Yerevan (Armenia); Mora-Ramos, M.E. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Ave. Universidad 1001, CP 62209, Cuernavaca, Morelos (Mexico); Duque, C.A. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia)

    2014-11-15

    Using a variational procedure within the effective mass approximation, we have calculated the donor impurity binding energy for the ground (1s-like) and the excited (2p{sub z}-like) states as well as the impurity-related nonlinear optical absorption and relative changes in the refraction index in a GaAs single quantum ring with axial n-type delta-doping. The delta-like potential along the z-direction is an approximate model analytically described using a Lorentzian function with two parameters. Additionally we consider the application of an electric field along the z-direction. It is found that the changes in the geometry of the quantum ring, the change in the 2D impurity density of the delta-like doping, and different values of the electric field lead to a shifting of the resonant peaks of the optical responses spectrum.

  5. Impurity-related nonlinear optical properties in delta-doped quantum rings: Electric field effects

    International Nuclear Information System (INIS)

    Restrepo, R.L.; Morales, A.L.; Martínez-Orozco, J.C.; Baghramyan, H.M.; Barseghyan, M.G.; Mora-Ramos, M.E.; Duque, C.A.

    2014-01-01

    Using a variational procedure within the effective mass approximation, we have calculated the donor impurity binding energy for the ground (1s-like) and the excited (2p z -like) states as well as the impurity-related nonlinear optical absorption and relative changes in the refraction index in a GaAs single quantum ring with axial n-type delta-doping. The delta-like potential along the z-direction is an approximate model analytically described using a Lorentzian function with two parameters. Additionally we consider the application of an electric field along the z-direction. It is found that the changes in the geometry of the quantum ring, the change in the 2D impurity density of the delta-like doping, and different values of the electric field lead to a shifting of the resonant peaks of the optical responses spectrum

  6. UV-VUV FEL program at DUKE storage ring with OK-4 optical klystron

    International Nuclear Information System (INIS)

    Litvinenko, V.N.; Madey, J.M.J.; Vinokurov, N.A.

    1993-01-01

    A 1 GeV electron storage ring dedicated for UV-VUV FEL operation is under construction at the Duke University Free Electron Laser Laboratory. The UV-VUV-FEL project, based on the collaboration of the Duke FEL Laboratory and Budker Institute for Nuclear Physics is described. The main parameters of the DFELL storage ring, of the OK-4 optical klystron, and the experimental set-up are presented. The parameters of UV-VUV FEL are given and the possible future upgrades to this system are discussed

  7. Optical Fiber Sensors Based on Fiber Ring Laser Demodulation Technology.

    Science.gov (United States)

    Xie, Wen-Ge; Zhang, Ya-Nan; Wang, Peng-Zhao; Wang, Jian-Zhang

    2018-02-08

    A review for optical fiber sensors based on fiber ring laser (FRL) demodulation technology is presented. The review focuses on the principles, main structures, and the sensing performances of different kinds of optical fiber sensors based on FRLs. First of all, the theory background of the sensors has been discussed. Secondly, four different types of sensors are described and compared, which includes Mach-Zehnder interferometer (MZI) typed sensors, Fabry-Perot interferometer (FPI) typed sensors, Sagnac typed sensors, and fiber Bragg grating (FBG) typed sensors. Typical studies and main properties of each type of sensors are presented. Thirdly, a comparison of different types of sensors are made. Finally, the existing problems and future research directions are pointed out and analyzed.

  8. New value added to network services through software-defined optical core networking

    Science.gov (United States)

    Yamada, Akiko; Nakatsugawa, Keiichi; Yamashita, Shinji; Soumiya, Toshio

    2016-02-01

    If an optical core network can be handled flexibly, it can be used not only as network infrastructure but also as a temporary broadband resource when customers have to transfer a large volume of data quickly, which will in turn lead to new WAN services. We propose "software-defined optical core networking", which achieves flexible optical network control, meaning it virtualizes optical transport network/wavelength-division multiplexing resources and controls them with resources from other layers, such as Ether/MPLS. We developed a testbed system and verified that users could request broadband resources easily, and our controller could quickly set up an optical channel data unit path for the request.

  9. Dynamic optical resource allocation for mobile core networks with software defined elastic optical networking.

    Science.gov (United States)

    Zhao, Yongli; Chen, Zhendong; Zhang, Jie; Wang, Xinbo

    2016-07-25

    Driven by the forthcoming of 5G mobile communications, the all-IP architecture of mobile core networks, i.e. evolved packet core (EPC) proposed by 3GPP, has been greatly challenged by the users' demands for higher data rate and more reliable end-to-end connection, as well as operators' demands for low operational cost. These challenges can be potentially met by software defined optical networking (SDON), which enables dynamic resource allocation according to the users' requirement. In this article, a novel network architecture for mobile core network is proposed based on SDON. A software defined network (SDN) controller is designed to realize the coordinated control over different entities in EPC networks. We analyze the requirement of EPC-lightpath (EPCL) in data plane and propose an optical switch load balancing (OSLB) algorithm for resource allocation in optical layer. The procedure of establishment and adjustment of EPCLs is demonstrated on a SDON-based EPC testbed with extended OpenFlow protocol. We also evaluate the OSLB algorithm through simulation in terms of bandwidth blocking ratio, traffic load distribution, and resource utilization ratio compared with link-based load balancing (LLB) and MinHops algorithms.

  10. Integrated optics ring-resonator chemical sensor with polymer transduction layer

    Science.gov (United States)

    Ksendzov, A.; Homer, M. L.; Manfreda, A. M.

    2004-01-01

    An integrated optics chemical sensor based on a ring resonator with an ethyl cellulose polymer coating has been demonstrated. The measured sensitivity to isopropanol in air is 50 ppm-the level immediately useful for health-related air quality monitoring. The resonator was fabricated using SiO2 and SixNy materials. The signal readout is based on tracking the wavelength of a resonance peak. The resonator layout optimisation for sensing applications is discussed.

  11. Thermo-Optic Characterization of Silicon Nitride Resonators for Cryogenic Photonic Circuits

    NARCIS (Netherlands)

    Elshaari, A.W.A.; Esmaeil Zadeh, I.; Jöns, K.D.; Zwiller, Val

    2016-01-01

    In this paper, we characterize the Thermo-optic properties of silicon nitride ring resonators between 18 and 300 K. The Thermo-optic coefficients of the silicon nitride core and the oxide cladding are measured by studying the temperature dependence of the resonance wavelengths. The resonant modes

  12. Numerical investigation of a tunable band-pass plasmonic filter with a hollow-core ring resonator

    International Nuclear Information System (INIS)

    Setayesh, Amir; Mirnaziry, S Reza; Abrishamian, Mohammad Sadegh

    2011-01-01

    In this study, a compact nanoscale plasmonic filter which consists of two metal–insulator–metal (MIM) waveguides coupled to each other by a rectangular ring resonator is presented and investigated numerically. The propagating modes of surface plasmon polaritons (SPPs) are studied in this structure. By replacing a portion of the ring core with air, while the outer dimensions of the structure are kept constant, we illustrate the possibility of the redshift of resonant wavelengths in order to tune the resonance modes. This feature is useful for integrated circuits in which we have limitations on the outer dimensions of the filter structure and it is not possible to enlarge the dimension of the ring resonator to reach longer resonant wavelengths. The corresponding results are illustrated by the 2D finite-difference time-domain (FDTD) method. The proposed structure has potential applications in plasmonic integrated circuits and can be simply fabricated

  13. Numerical investigation of a tunable band-pass plasmonic filter with a hollow-core ring resonator

    Science.gov (United States)

    Setayesh, Amir; Mirnaziry, S. Reza; Sadegh Abrishamian, Mohammad

    2011-03-01

    In this study, a compact nanoscale plasmonic filter which consists of two metal-insulator-metal (MIM) waveguides coupled to each other by a rectangular ring resonator is presented and investigated numerically. The propagating modes of surface plasmon polaritons (SPPs) are studied in this structure. By replacing a portion of the ring core with air, while the outer dimensions of the structure are kept constant, we illustrate the possibility of the redshift of resonant wavelengths in order to tune the resonance modes. This feature is useful for integrated circuits in which we have limitations on the outer dimensions of the filter structure and it is not possible to enlarge the dimension of the ring resonator to reach longer resonant wavelengths. The corresponding results are illustrated by the 2D finite-difference time-domain (FDTD) method. The proposed structure has potential applications in plasmonic integrated circuits and can be simply fabricated.

  14. The Hi-Ring DCN Architecture

    DEFF Research Database (Denmark)

    Galili, Michael; Kamchevska, Valerija; Ding, Yunhong

    2016-01-01

    We will review recent work on the proposed hierarchical ring-based architecture (HiRing) proposed for data center networks. We will discuss the architecture and initial demonstrations of optical switching performance and time-domain synchronization......We will review recent work on the proposed hierarchical ring-based architecture (HiRing) proposed for data center networks. We will discuss the architecture and initial demonstrations of optical switching performance and time-domain synchronization...

  15. Dynamic nonlinear thermal optical effects in coupled ring resonators

    Directory of Open Access Journals (Sweden)

    Chenguang Huang

    2012-09-01

    Full Text Available We investigate the dynamic nonlinear thermal optical effects in a photonic system of two coupled ring resonators. A bus waveguide is used to couple light in and out of one of the coupled resonators. Based on the coupling from the bus to the resonator, the coupling between the resonators and the intrinsic loss of each individual resonator, the system transmission spectrum can be classified by three different categories: coupled-resonator-induced absorption, coupled-resonator-induced transparency and over coupled resonance splitting. Dynamic thermal optical effects due to linear absorption have been analyzed for each category as a function of the input power. The heat power in each resonator determines the thermal dynamics in this coupled resonator system. Multiple “shark fins” and power competition between resonators can be foreseen. Also, the nonlinear absorption induced thermal effects have been discussed.

  16. Distribution and growth of salps in a Kuroshio warm-core ring during summer 1987

    Science.gov (United States)

    Tsuda, Atsushi; Nemoto, Takahisa

    1992-03-01

    A salp bloom, accounting for 47% of the macrozooplankton wet weight in the upper 200 m, was observed in a Kuroshio warm-core ring and adjacent areas during September 1987. Although salps had wide distribution and high biomass in the ring and adjacent southern areas, they did not occur north of the northern ring front. Thalia democratica dominated in these areas and Salpa fusiformis was abundant at some stations. Salps were distributed only in the upper 200 m of the water column. The maximum abundance of T. democratica was in the surface mixed layer, 0-20 m. S. fusiformis was most abundant from 50 to 75 m. Diel vertical migration was observed only for solitary zooids of S. fusiformis. All other salps appeared only on the surface. The growth of aggregate zooids of T. democratica was investigated with the time-series sampling during a 28-h sampling period following a drifter. Several cohorts were identified in the length-frequency distributions. The average relative growth rate in length was 8.0% per hour. Carbon consumption by the T. democratica population, calculated from the derived growth rate, suggested that T. democratica was a major consumer of the primary production in the ring.

  17. Noise induced chaos in optically driven colloidal rings.

    Science.gov (United States)

    Roichman, Yael; Zaslavsky, George; Grier, David G.

    2007-03-01

    Given a constant flux of energy, many driven dissipative systems rapidly organize themselves into configurations that support steady state motion. Examples include swarming of bacterial colonies, convection in shaken sandpiles, and synchronization in flowing traffic. How simple objects interacting in simple ways self-organize generally is not understood, mainly because so few of the available experimental systems afford the necessary access to their microscopic degrees of freedom. This talk introduces a new class of model driven dissipative systems typified by three colloidal spheres circulating around a ring-like optical trap known as an optical vortex. By controlling the interplay between hydrodynamic interactions and fixed disorder we are able to drive a transition from a previously predicted periodic steady state to fully developed chaos. In addition, by tracking both microscopic trajectories and macroscopic collective fluctuations the relation between the onset of microscopic weak chaos and the evolution of space-time self-similarity in macroscopic transport properties is revealed. In a broader scope, several optical vortices can be coupled to create a large dissipative system where each building block has internal degrees of freedom. In such systems the little understood dynamics of processes like frustration and jamming, fluctuation-dissipation relations and the propagation of collective motion can be tracked microscopically.

  18. Mesoscale cavities in hollow-core waveguides for quantum optics with atomic ensembles

    Directory of Open Access Journals (Sweden)

    Haapamaki C.M.

    2016-08-01

    Full Text Available Single-mode hollow-core waveguides loaded with atomic ensembles offer an excellent platform for light–matter interactions and nonlinear optics at low photon levels. We review and discuss possible approaches for incorporating mirrors, cavities, and Bragg gratings into these waveguides without obstructing their hollow cores. With these additional features controlling the light propagation in the hollow-core waveguides, one could potentially achieve optical nonlinearities controllable by single photons in systems with small footprints that can be integrated on a chip. We propose possible applications such as single-photon transistors and superradiant lasers that could be implemented in these enhanced hollow-core waveguides.

  19. Integrated liquid-core optical fibers for ultra-efficient nonlinear liquid photonics.

    Science.gov (United States)

    Kieu, K; Schneebeli, L; Norwood, R A; Peyghambarian, N

    2012-03-26

    We have developed a novel integrated platform for liquid photonics based on liquid core optical fiber (LCOF). The platform is created by fusion splicing liquid core optical fiber to standard single-mode optical fiber making it fully integrated and practical - a major challenge that has greatly hindered progress in liquid-photonic applications. As an example, we report here the realization of ultralow threshold Raman generation using an integrated CS₂ filled LCOF pumped with sub-nanosecond pulses at 532 nm and 1064 nm. The measured energy threshold for the Stokes generation is 1nJ, about three orders of magnitude lower than previously reported values in the literature for hydrogen gas, a popular Raman medium. The integrated LCOF platform opens up new possibilities for ultralow power nonlinear optics such as efficient white light generation for displays, mid-IR generation, slow light generation, parametric amplification, all-optical switching and wavelength conversion using liquids that have orders of magnitude larger optical nonlinearities compared with silica glass.

  20. Isometric multimodal photoacoustic microscopy based on optically transparent micro-ring ultrasonic detection.

    Science.gov (United States)

    Dong, Biqin; Li, Hao; Zhang, Zhen; Zhang, Kevin; Chen, Siyu; Sun, Cheng; Zhang, Hao F

    2015-01-01

    Photoacoustic microscopy (PAM) is an attractive imaging tool complementary to established optical microscopic modalities by providing additional molecular specificities through imaging optical absorption contrast. While the development of optical resolution photoacoustic microscopy (ORPAM) offers high lateral resolution, the acoustically-determined axial resolution is limited due to the constraint in ultrasonic detection bandwidth. ORPAM with isometric spatial resolution along both axial and lateral direction is yet to be developed. Although recently developed sophisticated optical illumination and reconstruction methods offer improved axial resolution in ORPAM, the image acquisition procedures are rather complicated, limiting their capabilities for high-speed imaging and being easily integrated with established optical microscopic modalities. Here we report an isometric ORPAM based on an optically transparent micro-ring resonator ultrasonic detector and a commercial inverted microscope platform. Owing to the superior spatial resolution and the ease of integrating our ORPAM with established microscopic modalities, single cell imaging with extrinsic fluorescence staining, intrinsic autofluorescence, and optical absorption can be achieved simultaneously. This technique holds promise to greatly improve the accessibility of PAM to the broader biomedical researchers.

  1. Ring resonator-based single-chip 1x8 optical beam forming network in LPCVD waveguide technology

    NARCIS (Netherlands)

    Zhuang, L.; Roeloffzen, C.G.H.; Heideman, Rene; Borreman, A.; Meijerink, Arjan; van Etten, Wim; Koonen, A.M.J.; Leijtens, X.J.M.; van den Boom, H.P.A.; Verdurmen, E.J.M.; Molina Vázquez, J.

    2006-01-01

    Optical ring resonators (ORRs) are good candidates to provide continuously tunable delay in beam forming networks (BFNs) for phased array antenna systems. Delay and splitting/combining elements can be integrated on a single optical chip to form an OBFN. A state-of-the-art 1×8 OBFN chip has been

  2. VUV Optics Development for the Elettra Storage Ring FEL

    CERN Document Server

    Guenster, Stefan

    2004-01-01

    Vacuum ultraviolet optical components for the storage ring FEL at Elettra are under continuous development in the European research consortium EUFELE. Target of the project is the progress to shorter lasing wavelengths in the VUV spectral range. The current status allows lasing with oxide mirror systems down to 190 nm. The main obstacles for the development of optical coatings for shorter wavelengths is the high energetic background of the synchrotron radiation impinging onto the front mirror in the laser cavity. Investigations in single layer systems and multilayer stacks of oxide or fluoride materials demonstrate that fluoride mirrors reach highest reflectivity values down to 140 nm, and oxide coatings possess a satisfactory resistance against the high energetic background irradiation. However, pure oxide multilayer stacks exhibit significant absorption below 190 nm and pure fluoride stacks suffer from strong degradation effects under synchrotron radiation. A solution could be hybrid systems, combining fluo...

  3. Concentric circular ring and nanodisk optical antenna enhanced multispectral quantum dot infrared photodetector with spectral localization

    International Nuclear Information System (INIS)

    Zhang, Yingjie; Kemsri, Thitikorn; Li, Lin; Lu, Xuejun; Gu, Guiru

    2017-01-01

    In this paper, we report a concentric circular ring and nanodisk plasmonic optical antenna (POA) enhanced multispectral quantum dot infrared photodetector (QDIP). The circular ring and the nanodisk POA structures are designed to have plasmonic resonant wavelengths in the longwave infrared (LWIR) and the midwave infrared (MWIR) spectral regimes, respectively. The electric field ( E -field) distributions are simulated and show spectral localization due to the distinct plasmonic resonant wavelengths of the POA structures. The circular ring is found to enhance the E -fields in the nanodisk regions due to the mutual coupling. A concentric circular ring and nanodisk POA enhanced multispectral QDIP was fabricated and tested. Multispectral enhancement was observed. The enhancement is compared to that of a QDIP with only the circular ring POA structure. The experiment data agree with the simulation. The concentric circular ring and nanodisk POA provides a compact planar structure for multispectral QDIP enhancement. (paper)

  4. VUV optical ring resonator for Duke storage ring free electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Park, S.H.; Litvinenko, V.N.; Madey, J.M.J. [Duke Univ., Durham, NC (United States)] [and others

    1995-12-31

    The conceptual design of the multifaceted-mirror ring resonator for Duke storage ring VUV FEL is presented. The expected performance of the OK-4 FEL with ring resonator is described. We discuss in this paper our plans to study reflectivity of VUV mirrors and their resistivity to soft X-ray spontaneous radiation from OK-4 undulator.

  5. Tens of GHz Tantalum pentoxide-based micro-ring all-optical modulator for Si photonics

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Chung-Lun; Chi, Wen-Chun; Chiu, Yi-Jen; Lin, Yuan-Yao; Hung, Yung-Jr; Chu, Ann-Kuo [Department of Photonics, National Sun Yat-sen University, Kaohsiung, Taiwan (China); Hsieh, Cheng-Hsuan; Lin, Gong-Ru [Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei (China); Shih, Min-Hsiung [Department of Photonics and Institute of Electro-Optical Engineering, National Chiao Tung University, Hsinchu, Taiwan (China); Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan (China); Department of Physics, National Sun Yat-sen University, Kaohsiung, Taiwan (China); Lee, Chao-Kuei [Department of Photonics, National Sun Yat-sen University, Kaohsiung, Taiwan (China); Department of Physics, National Sun Yat-sen University, Kaohsiung, Taiwan (China)

    2017-03-15

    A tantalum pentoxide-based (Ta{sub 2}O{sub 5}-based) micro-ring all-optical modulator was fabricated. The refractive index inside the micro-ring cavity was modified using the Kerr effect by injecting a pumped pulse. The transmittance of the ring resonator was controlled to achieve all-optical modulation at the wavelength of the injected probe. When 12 GHz pulses with a peak power of 1.2 W were coupled in the ring cavity, the transmission spectrum of the Ta{sub 2}O{sub 5} resonator was red-shifted by 0.04 nm because of the Kerr effect. The relationship between the modulation depth and gap of the Ta{sub 2}O{sub 5} directional coupler is discussed. An optimized gap of 1100 nm was obtained, and a maximum buildup factor of 11.7 with 84% modulation depth was achieved. The nonlinear refractive index of Ta{sub 2}O{sub 5} at 1.55 μm was estimated as 3.4 x 10{sup -14} cm{sup 2}/W based on the Kerr effect, which is almost an order of magnitude higher than that of Si{sub 3}N{sub 4}. All results indicate that Ta{sub 2}O{sub 5} has potential for use in nonlinear waveguide applications with modulation speeds as high as tens of GHz. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Optical feedback in dfb quantum cascade laser for mid-infrared cavity ring-down spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Terabayashi, Ryohei, E-mail: terabayashi.ryouhei@h.mbox.nagoya-u.ac.jp; Sonnenschein, Volker, E-mail: volker@nagoya-u.jp; Tomita, Hideki, E-mail: tomita@nagoya-u.jp; Hayashi, Noriyoshi, E-mail: hayashi.noriyoshi@h.mbox.nagoya-u.ac.jp; Kato, Shusuke, E-mail: katou.shuusuke@f.mbox.nagoya-u.ac.jp; Jin, Lei, E-mail: kin@nuee.nagoya-u.ac.jp; Yamanaka, Masahito, E-mail: yamanaka@nuee.nagoya-u.ac.jp; Nishizawa, Norihiko, E-mail: nishizawa@nuee.nagoya-u.ac.jp [Nagoya University, Department of Quantum Engineering, Graduate School of Engineering (Japan); Sato, Atsushi, E-mail: atsushi.sato@sekisui.com; Nozawa, Kohei, E-mail: kohei.nozawa@sekisui.com; Hashizume, Kenta, E-mail: kenta.hashizume@sekisui.com; Oh-hara, Toshinari, E-mail: toshinari.ohara@sekisui.com [Sekisui Medical Co., Ltd., Drug Development Solutions Center (Japan); Iguchi, Tetsuo, E-mail: t-iguchi@nucl.nagoya-u.ac.jp [Nagoya University, Department of Quantum Engineering, Graduate School of Engineering (Japan)

    2017-11-15

    A simple external optical feedback system has been applied to a distributed feedback quantum cascade laser (DFB QCL) for cavity ring-down spectroscopy (CRDS) and a clear effect of feedback was observed. A long external feedback path length of up to 4m can decrease the QCL linewidth to around 50kHz, which is of the order of the transmission linewidth of our high finesse ring-down cavity. The power spectral density of the transmission signal from high finesse cavity reveals that the noise at frequencies above 20kHz is reduced dramatically.

  7. Phosphate-core silica-clad Er/Yb-doped optical fiber and cladding pumped laser.

    Science.gov (United States)

    Egorova, O N; Semjonov, S L; Velmiskin, V V; Yatsenko, Yu P; Sverchkov, S E; Galagan, B I; Denker, B I; Dianov, E M

    2014-04-07

    We present a composite optical fiber with a Er/Yb co-doped phosphate-glass core in a silica glass cladding as well as cladding pumped laser. The fabrication process, optical properties, and lasing parameters are described. The slope efficiency under 980 nm cladding pumping reached 39% with respect to the absorbed pump power and 28% with respect to the coupled pump power. Due to high doping level of the phosphate core optimal length was several times shorter than that of silica core fibers.

  8. Electrochemical performance and structure evolution of core-shell nano-ring α-Fe{sub 2}O{sub 3}@Carbon anodes for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yan-Hui, E-mail: sunyanhui0102@163.com; Liu, Shan; Zhou, Feng-Chen; Nan, Jun-Min

    2016-12-30

    Core-shell nano-ring α-Fe{sub 2}O{sub 3}@Carbon (CSNR) composites with different carbon content (CSNR-5%C and CSNR-13%C) are synthesized using a hydrothermal method by controlling different amounts of glucose and α-Fe{sub 2}O{sub 3} nano-rings with further annealing. The CSNR electrodes exhibit much improved specific capacity, cycling stability and rate capability compared with that of bare nano-ring α-Fe{sub 2}O{sub 3} (BNR), which is attributed to the core-shell nano-ring structure of CSNR. The carbon shell in the inner and outer surface of CSNR composite can increase electron conductivity of the electrode and inhibit the volume change of α-Fe{sub 2}O{sub 3} during discharge/charge processes, and the nano-ring structure of CSNR can buffer the volume change too. The CSNR-5%C electrode shows super high initial discharge/charge capacities of 1570/1220 mAh g{sup −1} and retains 920/897 mAh g{sup −1} after 200 cycles at 500 mA g{sup −1} (0.5C). Even at 2000 mA g{sup −1} (2C), the electrode delivers the initial capacities of 1400/900 mAh g{sup −1}, and still maintains 630/610 mAh g{sup −1} after 200 cycles. The core-shell nano-rings opened during cycling and rebuilt a new flower-like structure consisting of α-Fe{sub 2}O{sub 3}@Carbon nano-sheets. The space among the nano-sheet networks can further buffer the volume expansion of α-Fe{sub 2}O{sub 3} and facilitate the transportation of electrons and Li{sup +} ions during the charge/discharge processes, which increases the capacity and rate capability of the electrode. It is the first time that the evolution of core-shell α-Fe{sub 2}O{sub 3}@Carbon changing to flower-like networks during lithiation/de-lithiation has been reported.

  9. Erbium-doped fiber ring resonator for resonant fiber optical gyro applications

    Science.gov (United States)

    Li, Chunming; Zhao, Rui; Tang, Jun; Xia, Meijing; Guo, Huiting; Xie, Chengfeng; Wang, Lei; Liu, Jun

    2018-04-01

    This paper reports a fiber ring resonator with erbium-doped fiber (EDF) for resonant fiber optical gyro (RFOG). To analyze compensation mechanism of the EDF on resonator, a mathematical model of the erbium-doped fiber ring resonator (EDFRR) is established based on Jones matrix to be followed by the design and fabrication of a tunable EDFRR. The performances of the fabricated EDFRR were measured and the experimental Q-factor of 2 . 47 × 108 and resonant depth of 109% were acquired separately. Compared with the resonator without the EDF, the resonant depth and Q-factor of the proposed device are increased by 2.5 times and 14 times, respectively. A potential optimum shot noise limited resolution of 0 . 042∘ / h can be obtained for the RFOG, which is promising for low-cost and high precise detection.

  10. Design and implementation of optical switches based on nonlinear plasmonic ring resonators: Circular, square and octagon

    Science.gov (United States)

    Ghadrdan, Majid; Mansouri-Birjandi, Mohammad Ali

    2018-05-01

    In this paper, all-optical plasmonic switches (AOPS) based on various configurations of circular, square and octagon nonlinear plasmonic ring resonators (NPRR) were proposed and numerically investigated. Each of these configurations consisted of two metal-insulator-metal (MIM) waveguides coupled to each other by a ring resonator (RR). Nonlinear Kerr effect was used to show switching performance of the proposed NPRR. The result showed that the octagon switch structure had lower threshold power and higher transmission ratio than square and circular switch structures. The octagon switch structure had a low threshold power equal to 7.77 MW/cm2 and the high transmission ratio of approximately 0.6. Therefore, the octagon switch structure was an appropriate candidate to be applied in optical integration circuits as an AOPS.

  11. GRAVITATIONAL ACCRETION OF PARTICLES ONTO MOONLETS EMBEDDED IN SATURN's RINGS

    International Nuclear Information System (INIS)

    Yasui, Yuki; Ohtsuki, Keiji; Daisaka, Hiroshi

    2014-01-01

    Using a local N-body simulation, we examine gravitational accretion of ring particles onto moonlet cores in Saturn's rings. We find that gravitational accretion of particles onto moonlet cores is unlikely to occur in the C ring and probably difficult in the inner B ring as well provided that the cores are rigid water ice. Dependence of particle accretion on ring thickness changes when the radial distance from the planet and/or the density of particles is varied: the former determines the size of the core's Hill radius relative to its physical size, while the latter changes the effect of self-gravity of accreted particles. We find that particle accretion onto high-latitude regions of the core surface can occur even if the rings' vertical thickness is much smaller than the core radius, although redistribution of particles onto the high-latitude regions would not be perfectly efficient in outer regions of the rings such as the outer A ring, where the size of the core's Hill sphere in the vertical direction is significantly larger than the core's physical radius. Our results suggest that large boulders recently inferred from observations of transparent holes in the C ring are not formed locally by gravitational accretion, while propeller moonlets in the A ring would be gravitational aggregates formed by particle accretion onto dense cores. Our results also imply that the main bodies of small satellites near the outer edge of Saturn's rings may have been formed in rather thin rings

  12. GRAVITATIONAL ACCRETION OF PARTICLES ONTO MOONLETS EMBEDDED IN SATURN's RINGS

    Energy Technology Data Exchange (ETDEWEB)

    Yasui, Yuki; Ohtsuki, Keiji [Department of Earth and Planetary Sciences, Kobe University, Kobe 657-8501 (Japan); Daisaka, Hiroshi, E-mail: y.yasui@whale.kobe-u.ac.jp, E-mail: ohtsuki@tiger.kobe-u.ac.jp [Graduate School of Commerce and Management, Hitotsubashi University, Tokyo 186-8601 (Japan)

    2014-12-20

    Using a local N-body simulation, we examine gravitational accretion of ring particles onto moonlet cores in Saturn's rings. We find that gravitational accretion of particles onto moonlet cores is unlikely to occur in the C ring and probably difficult in the inner B ring as well provided that the cores are rigid water ice. Dependence of particle accretion on ring thickness changes when the radial distance from the planet and/or the density of particles is varied: the former determines the size of the core's Hill radius relative to its physical size, while the latter changes the effect of self-gravity of accreted particles. We find that particle accretion onto high-latitude regions of the core surface can occur even if the rings' vertical thickness is much smaller than the core radius, although redistribution of particles onto the high-latitude regions would not be perfectly efficient in outer regions of the rings such as the outer A ring, where the size of the core's Hill sphere in the vertical direction is significantly larger than the core's physical radius. Our results suggest that large boulders recently inferred from observations of transparent holes in the C ring are not formed locally by gravitational accretion, while propeller moonlets in the A ring would be gravitational aggregates formed by particle accretion onto dense cores. Our results also imply that the main bodies of small satellites near the outer edge of Saturn's rings may have been formed in rather thin rings.

  13. Optics Design and Performance of an Ultra-Low Emittance Damping Ring for the Compact Linear Collider

    CERN Document Server

    Korostelev, M S

    2006-01-01

    A high-energy (0.5-3.0 TeV centre of mass) electron-positron Compact Linear Collider (CLIC) is being studied at CERN as a new physics facility. The design study has been optimized for 3 TeV centre-of-mass energy. Intense bunches injected into the main linac must have unprecedentedly small emittances to achieve the design luminosity 1035cm-2s-1 required for the physics experiments. The positron and electron bunch trains will be provided by the CLIC injection complex. This thesis describes an optics design and performance of a positron damping ring developed for producing such ultra-low emittance beam. The linear optics of the CLIC damping ring is optimized by taking into account the combined action of radiation damping, quantum excitation and intrabeam scattering. The required beam emittance is obtained by using a TME (Theoretical Minimum Emittance) lattice with compact arcs and short period wiggler magnets located in dispersionfree regions. The damping ring beam energy is chosen as 2.42 GeV. The lattice featu...

  14. Optofluidic in-fiber interferometer based on hollow optical fiber with two cores.

    Science.gov (United States)

    Yuan, Tingting; Yang, Xinghua; Liu, Zhihai; Yang, Jun; Li, Song; Kong, Depeng; Qi, Xiuxiu; Yu, Wenting; Long, Qunlong; Yuan, Libo

    2017-07-24

    We demonstrate a novel integrated optical fiber interferometer for in-fiber optofluidic detection. It is composed of a specially designed hollow optical fiber with a micro-channel and two cores. One core on the inner surface of the micro-channel is served as sensing arm and the other core in the annular cladding is served as reference arm. Fusion-and-tapering method is employed to couple light from a single mode fiber to the hollow optical fiber in this device. Sampling is realized by side opening a microhole on the surface of the hollow optical fiber. Under differential pressure between the end of the hollow fiber and the microhole, the liquids can form steady microflows in the micro-channel. Simultaneously, the interference spectrum of the interferometer device shifts with the variation of the concentration of the microfluid in the channel. The optofluidic in-fiber interferometer has a sensitivity of refractive index around 2508 nm/RIU for NaCl. For medicine concentration detection, its sensitivity is 0.076 nm/mmolL -1 for ascorbic acid. Significantly, this work presents a compact microfluidic in-fiber interferometer with a micro-channel which can be integrated with chip devices without spatial optical coupling and without complex manufacturing procedure of the waveguide on the chips.

  15. Radiation resistance of GeO2-doped silica core optical fibers

    International Nuclear Information System (INIS)

    Shibata, Shuichi; Nakahara, Motohiro; Omori, Yasuharu

    1985-01-01

    Effects of hlogen addition to silica glass on the loss in optical fibers are examined by using halogen-free, chlorine-containing and fluorine-containing GeO 2 -doped silica core optical fibers. Measurements are made for dependence of induced loss in these optical fibers on various factors such as wavelength and total dose of gamma radiation as well as GeO 2 content. Ultraviolet absorption spectra are also observed. In addition, effects of halogens added to pure silica fibers are considered on the basis of Raman spectra of three different optical fibers (pure, F-doped, and F- and GeO 2 -codoped silica core). Thus, it is concluded that (1) addition of halogens (F and Cl) serves to decrease GeO defects and Ge(3) defects in GeO 2 -doped silica optical fibers ; (2) addition of halogens suppresses the increase in loss in GeO 2 -doped silica optical fibers induced by gamma radiation ; and (3) there are close relations between the increase in loss induced by gamma radiation and defects originally existing in the fibers. Effects of halogens added to GeO 2 -doped and pure silica optical fibers can be explained on the basis of the latter relations. (Nogami, K.)

  16. Reassessment of the Upper Fremont Glacier ice-core chronologies by synchronizing of ice-core-water isotopes to a nearby tree-ring chronology

    Science.gov (United States)

    Chellman, Nathan J.; McConnell, Joseph R.; Arienzo, Monica; Pederson, Gregory T.; Aarons, Sarah; Csank, Adam

    2017-01-01

    The Upper Fremont Glacier (UFG), Wyoming, is one of the few continental glaciers in the contiguous United States known to preserve environmental and climate records spanning recent centuries. A pair of ice cores taken from UFG have been studied extensively to document changes in climate and industrial pollution (most notably, mid-19th century increases in mercury pollution). Fundamental to these studies is the chronology used to map ice-core depth to age. Here, we present a revised chronology for the UFG ice cores based on new measurements and using a novel dating approach of synchronizing continuous water isotope measurements to a nearby tree-ring chronology. While consistent with the few unambiguous age controls underpinning the previous UFG chronologies, the new interpretation suggests a very different time scale for the UFG cores with changes of up to 80 years. Mercury increases previously associated with the mid-19th century Gold Rush now coincide with early-20th century industrial emissions, aligning the UFG record with other North American mercury records from ice and lake sediment cores. Additionally, new UFG records of industrial pollutants parallel changes documented in ice cores from southern Greenland, further validating the new UFG chronologies while documenting the extent of late 19th and early 20th century pollution in remote North America.

  17. Dependences of optical properties of spherical two-layered nanoparticles on parameters of gold core and material shell

    International Nuclear Information System (INIS)

    Pustovalov, V.K.; Astafyeva, L.G.; Zharov, V.P.

    2013-01-01

    Modeling of nonlinear dependences of optical properties of spherical two-layered gold core and some material shell nanoparticles (NPs) placed in water on parameters of core and shell was carried out on the basis of the extended Mie theory. Efficiency cross-sections of absorption, scattering and extinction of radiation with wavelength 532 nm by core–shell NPs in the ranges of core radii r 00 =5–40 nm and of relative NP radii r 1 /r 00 =1–8 were calculated (r 1 —radius of two-layered nanoparticle). Shell materials were used with optical indexes in the ranges of refraction n 1 =0.2–1.5 and absorption k 1 =0–3.5 for the presentation of optical properties of wide classes of shell materials (including dielectrics, metals, polymers, vapor shell around gold core). Results show nonlinear dependences of optical properties of two-layered NPs on optical indexes of shell material, core r 00 and relative NP r 1 /r 00 radii. Regions with sharp decrease and increase of absorption, scattering and extinction efficiency cross-sections with changing of core and shell parameters were investigated. These dependences should be taken into account for applications of two-layered NPs in laser nanomedicine and optical diagnostics of tissues. The results can be used for experimental investigation of shell formation on NP core and optical determination of geometrical parameters of core and shell of two-layered NPs. -- Highlights: • Absorption, scattering and extinction of two-layered nanoparticles are studied. • Shell materials change in wide regions of materials (metals, dielectrics, vapor). • Effect of sharp decrease and increase of optical characteristics is established. • Explanation of sharp decreasing and increasing optical characteristics is presented

  18. Thomson's Jumping Ring over a Long Coil

    Science.gov (United States)

    Jeffery, Rondo N.; Amiri, Farhang

    2018-01-01

    The classic jumping ring apparatus consists of a coil with an iron core that extends out of the coil. A copper or aluminum ring placed over the iron core jumps upward when AC power is applied to the coil. In this paper we will examine a modified design of the jumping ring apparatus, called the "long-coil design." It allows the ring to…

  19. A tangent-ring optical TWDM-MAN enabling three-level transregional reconfigurations and shared protections by multipoint distributed control

    Science.gov (United States)

    Gou, Kaiyu; Gan, Chaoqin; Zhang, Xiaoyu; Zhang, Yuchao

    2018-03-01

    An optical time-and-wavelength-division-multiplexing metro-access network (TWDM-MAN) is proposed and demonstrated in this paper. By the reuse of tangent-ring optical distribution network and the design of distributed control mechanism, ONUs needing to communicate with each other can be flexibly accessed to successfully make up three kinds of reconfigurable networks. By the nature advantage of ring topology in protection, three-level comprehensive protections covering both feeder and distribution fibers are also achieved. Besides, a distributed wavelength allocation (DWA) is designed to support efficient parallel upstream transmission. The analyses including capacity, congestion and transmission simulation show that this network has a great performance.

  20. Air-structured optical fibre drawn from a 3D-printed preform

    OpenAIRE

    Cook, Kevin; Canning, John; Leon-Saval, Sergio; Reid, Zane; Hossain, Md Arafat; Comatti, Jade-Edouard; Luo, Yanhua; Peng, Gang-Ding

    2016-01-01

    A structured optical fibre is drawn from a 3D-printed structured preform. Preforms containing a single ring of holes around the core are fabricated using filament made from a modified butadiene polymer. More broadly, 3D printers capable of processing soft glasses, silica and other materials are likely to come on line in the not-so distant future. 3D printing of optical preforms signals a new milestone in optical fibre manufacture.

  1. Environmental performance of an elliptical core polarization maintaining optical fiber for fiber optic gyro applications

    Science.gov (United States)

    Martinelli, Vincent P.; Squires, Emily M.; Watkins, James J.

    1994-03-01

    Corning has introduced a new polarization-maintaining optical fiber to satisfy customer requirements for a range of commercial and military FOG applications. This fiber has an elliptical core, matched-clad design, and is intended for operation in the 780 to 850 nm wavelength region. The fiber has a beat length less than 1.5 mm, attenuation rate less than 10 dB/km, and a typical coiled h-parameter less than 1.5 X 10-4 m-1 in the designated operating wavelength range. It has a cladding diameter of 80 micrometers and a coating diameter of 185 micrometers . The coating is an acrylate system, similar to that used in telecommunications optical fibers. We report on the performance of this elliptical core fiber for a variety of environmental exposures representative of an automotive application.

  2. Digitally tunable dual wavelength emission from semiconductor ring lasers with filtered optical feedback

    International Nuclear Information System (INIS)

    Khoder, Mulham; Verschaffelt, Guy; Nguimdo, Romain Modeste; Danckaert, Jan; Leijtens, Xaveer; Bolk, Jeroen

    2013-01-01

    We report on a novel integrated approach to obtain dual wavelength emission from a semiconductor laser based on on-chip filtered optical feedback. Using this approach, we show experiments and numerical simulations of dual wavelength emission of a semiconductor ring laser. The filtered optical feedback is realized on-chip by employing two arrayed waveguide gratings to split/recombine light into different wavelength channels. Semiconductor optical amplifiers are placed in the feedback loop in order to control the feedback strength of each wavelength channel independently. By tuning the current injected into each of the amplifiers, we can effectively cancel the gain difference between the wavelength channels due to fabrication and material dichroism, thus resulting in stable dual wavelength emission. We also explore the accuracy needed in the operational parameters to maintain this dual wavelength emission. (letter)

  3. Moving the boundary between wavelength resources in optical packet and circuit integrated ring network.

    Science.gov (United States)

    Furukawa, Hideaki; Miyazawa, Takaya; Wada, Naoya; Harai, Hiroaki

    2014-01-13

    Optical packet and circuit integrated (OPCI) networks provide both optical packet switching (OPS) and optical circuit switching (OCS) links on the same physical infrastructure using a wavelength multiplexing technique in order to deal with best-effort services and quality-guaranteed services. To immediately respond to changes in user demand for OPS and OCS links, OPCI networks should dynamically adjust the amount of wavelength resources for each link. We propose a resource-adjustable hybrid optical packet/circuit switch and transponder. We also verify that distributed control of resource adjustments can be applied to the OPCI ring network testbed we developed. In cooperation with the resource adjustment mechanism and the hybrid switch and transponder, we demonstrate that automatically allocating a shared resource and moving the wavelength resource boundary between OPS and OCS links can be successfully executed, depending on the number of optical paths in use.

  4. Design of a ring resonator-based optical beam forming network for phased array receive antennas

    NARCIS (Netherlands)

    van 't Klooster, J.W.J.R.; Roeloffzen, C.G.H.; Meijerink, Arjan; Zhuang, L.; Marpaung, D.A.I.; van Etten, Wim; Heideman, Rene; Leinse, Arne; Schippers, H.; Verpoorte, J.; Wintels, M.

    2008-01-01

    A novel squint-free ring resonator-based optical beam forming network (OBFN) for phased array antennas (PAA) is proposed. It is intended to provide broadband connectivity to airborne platforms via geostationary satellites. In this paper, we present the design of the OBFN and its control system. Our

  5. Hollow Core Optical Fiber Gas Lasers: Toward Novel and Practical Systems in Fused Silica

    Science.gov (United States)

    2017-05-18

    Hollow core Optically pumped Fiber Gas LASer’s (HOFGLAS’s) based on population inversion combine advantages of fiber lasers such as long interaction...polarization dependent fiber properties. Preliminary experiments were performed toward simultaneous lasing in the visible and near infrared; lasing in...words) Hollow core Optically pumped Fiber Gas LASer’s (HOFGLAS’s) based on population inversion combine advantages of fiber lasers such as long

  6. Compressible Vortex Ring

    Science.gov (United States)

    Elavarasan, Ramasamy; Arakeri, Jayawant; Krothapalli, Anjaneyulu

    1999-11-01

    The interaction of a high-speed vortex ring with a shock wave is one of the fundamental issues as it is a source of sound in supersonic jets. The complex flow field induced by the vortex alters the propagation of the shock wave greatly. In order to understand the process, a compressible vortex ring is studied in detail using Particle Image Velocimetry (PIV) and shadowgraphic techniques. The high-speed vortex ring is generated from a shock tube and the shock wave, which precedes the vortex, is reflected back by a plate and made to interact with the vortex. The shadowgraph images indicate that the reflected shock front is influenced by the non-uniform flow induced by the vortex and is decelerated while passing through the vortex. It appears that after the interaction the shock is "split" into two. The PIV measurements provided clear picture about the evolution of the vortex at different time interval. The centerline velocity traces show the maximum velocity to be around 350 m/s. The velocity field, unlike in incompressible rings, contains contributions from both the shock and the vortex ring. The velocity distribution across the vortex core, core diameter and circulation are also calculated from the PIV data.

  7. Chip-integrated optical power limiter based on an all-passive micro-ring resonator

    Science.gov (United States)

    Yan, Siqi; Dong, Jianji; Zheng, Aoling; Zhang, Xinliang

    2014-10-01

    Recent progress in silicon nanophotonics has dramatically advanced the possible realization of large-scale on-chip optical interconnects integration. Adopting photons as information carriers can break the performance bottleneck of electronic integrated circuit such as serious thermal losses and poor process rates. However, in integrated photonics circuits, few reported work can impose an upper limit of optical power therefore prevent the optical device from harm caused by high power. In this study, we experimentally demonstrate a feasible integrated scheme based on a single all-passive micro-ring resonator to realize the optical power limitation which has a similar function of current limiting circuit in electronics. Besides, we analyze the performance of optical power limiter at various signal bit rates. The results show that the proposed device can limit the signal power effectively at a bit rate up to 20 Gbit/s without deteriorating the signal. Meanwhile, this ultra-compact silicon device can be completely compatible with the electronic technology (typically complementary metal-oxide semiconductor technology), which may pave the way of very large scale integrated photonic circuits for all-optical information processors and artificial intelligence systems.

  8. A flexible tactile sensitive sheet using a hetero-core fiber optic sensor

    Science.gov (United States)

    Fujino, S.; Yamazaki, H.; Hosoki, A.; Watanabe, K.

    2014-05-01

    In this report, we have designed a tactile sensitive sheet based on a hetero-core fiber-optic sensor, which realize an areal sensing by using single sensor potion in one optical fiber line. Recently, flexible and wide-area tactile sensing technology is expected to applied to acquired biological information in living space and robot achieve long-term care services such as welfare and nursing-care and humanoid technology. A hetero-core fiber-optic sensor has several advantages such as thin and flexible transmission line, immunity to EMI. Additionally this sensor is sensitive to moderate bending actions with optical loss changes and is independent of temperature fluctuation. Thus, the hetero-core fiber-optic sensor can be suitable for areal tactile sensing. We measure pressure characteristic of the proposed sensitive sheet by changing the pressure position and pinching characteristic on the surface. The proposed tactile sensitive sheet shows monotonic responses on the whole sensitive sheet surface although different sensitivity by the position is observed at the sensitive sheet surface. Moreover, the tactile sensitive sheet could sufficiently detect the pinching motion. In addition, in order to realize the discrimination between pressure and pinch, we fabricated a doubled-over sensor using a set of tactile sensitive sheets, which has different kinds of silicon robbers as a sensitive sheet surface. In conclusion, the flexible material could be given to the tactile sensation which is attached under proposed sensitive sheet.

  9. Cassini revisited by the Cassini-Huygens probe: dynamical and photometric study of the rings with the ISS images

    International Nuclear Information System (INIS)

    Deau, Estelle

    2007-12-01

    core is roughly stable on a scale of one year, but is very unstable on a shorter spatial and temporal scales, which is explained by multiple interactions with the satellite Prometheus and the ephemeris satellites. May be that these satellites came from the core and re-interact with him. Additional observations are necessary to refine this theory. In a second part, we were interested in photometry of the Saturn's rings i.e. to the way that the ring particles reflect sunlight. We were interested on the one hand in the opposition effect, an intense brightness observed in the main rings for the first time in 1878 by Mueller at zero phase angle (the angle between the Sun, the rings and the observer), and which since was vainly explained by geometric optics theories (in particular by the means of the theory of shadow hiding). The use of models combining geometric optics and quantum optics (thanks to the theory of the coherent backscattering which allow to Philip Anderson to receive the Physics Nobel Prize in 1977) made it possible to understand a part of the opposition effect observed in the Saturn's rings. We show that five generally assertions on the shadow hiding and the coherent backscattering used by the community are false. Our study of the opposition surge caused by the coherent backscattering also showed than the taking into account of vectorial nature of light is necessary to understand this quantum phenomenon. In addition, we studied the overall photometric behaviour of the Saturn's rings by obtaining for the first time the full phase curves, going from 0 deg C to 180 deg C of phase angle, at several optical wavelengths. We showed that the rings have the widest range of albedo and anisotropy of all planetary objects joined together. This could be explained by size distributions, compositions and very different filling factors, which we determined thanks to some photometric models and which are in agreement with dynamic simulations and hydrodynamic analytical

  10. Development of a 3-dimensional calculation model of the Danish research reactor DR3 to analyse a proposal to a new core design called ring-core

    Energy Technology Data Exchange (ETDEWEB)

    Nonboel, E

    1985-07-01

    A 3-dimensional calculation model of the Danish research reactor DR3 has been developed. Demands of a more effective utilization of the reactor and its facilities has required a more detailed calculation tool than applied so far. A great deal of attention has been devoted to the treatment of the coarse control arms. The model has been tested against measurements with satisfying results. Furthermore the model has been used to analyse a proposal to a new core design called ring-core where 4 central fuel elements are replaced by 4 dummy elements to increase the thermal flux in the center of the reactor. (author)

  11. Optical techniques for in-core measurements

    International Nuclear Information System (INIS)

    Brichard, B.

    2007-01-01

    The in-situ measurement of dimensional changes is a key issue for advanced irradiation programs in Material Test Reactors. It is for example crucial to monitor the changes of the dimensions of nuclear fuel assemblies as well as those of mechanically stressed structural material samples during in-pile irradiations. Different techniques already exist to carry out such measurements but they all come with a number of drawbacks. SCK-CEN and CEA have therefore decided to share the development of a measurement system that was never applied before in the core of a nuclear reactor. It relies on optical dimensional measurements and brings along unprecedented non-intrusiveness combined with high resolution. A clear advantage in using compact optical sensors results in a more efficient occupation of the irradiation volume available for target testings as well as a significant reduction of the gamma-heating associated with the in-pile instrumentation. The objectives of these shared studies are to design, develop, test and qualify an in-pile dimensional measurement system based on optical techniques, with the goal to implement this system in future MTR irradiation experiments. In 2006, we focussed our activities on sensor analysis, selection of the sensor prototypes, procurement and first irradiation experiment

  12. Application of quantum-dot multi-wavelength lasers and silicon photonic ring resonators to data-center optical interconnects

    Science.gov (United States)

    Beckett, Douglas J. S.; Hickey, Ryan; Logan, Dylan F.; Knights, Andrew P.; Chen, Rong; Cao, Bin; Wheeldon, Jeffery F.

    2018-02-01

    Quantum dot comb sources integrated with silicon photonic ring-resonator filters and modulators enable the realization of optical sub-components and modules for both inter- and intra-data-center applications. Low-noise, multi-wavelength, single-chip, laser sources, PAM4 modulation and direct detection allow a practical, scalable, architecture for applications beyond 400 Gb/s. Multi-wavelength, single-chip light sources are essential for reducing power dissipation, space and cost, while silicon photonic ring resonators offer high-performance with space and power efficiency.

  13. Fast all-optical multistate flip-flop operation realized by a single self-sustained micro-ring laser memory cell

    International Nuclear Information System (INIS)

    Wang, Zhuoran; Yuan, Guohui

    2013-01-01

    We investigate all-optical multistate flip-flop operation realized by a single self-sustained micro-ring laser memory cell based on a time-domain multi-mode nonlinear model. Each state is written by the corresponding 100 ps-width input non-return-to-zero (NRZ) pulse carrying the directional and wavelength information, and the cell remains in the written state until another trigger arrives. The effects of key parameters including the detuning frequency and injection power ratio on the injection locking and flipping regions of different modes in both directions of the micro-ring device are studied. By optimizing the operation conditions, we simulate the minimal switching speed for each mode. The fast switching speed of less than 20 ps and up to ten mode flip-flop operation indicate that this single optical memory cell can support ten states at a data rate of at least 10 Gbps, which is particularly valuable for the realization of future all-optical networking and functional sub-system technology. (letter)

  14. Semiconductor ring lasers coupled by a single waveguide

    Science.gov (United States)

    Coomans, W.; Gelens, L.; Van der Sande, G.; Mezosi, G.; Sorel, M.; Danckaert, J.; Verschaffelt, G.

    2012-06-01

    We experimentally and theoretically study the characteristics of semiconductor ring lasers bidirectionally coupled by a single bus waveguide. This configuration has, e.g., been suggested for use as an optical memory and as an optical neural network motif. The main results are that the coupling can destabilize the state in which both rings lase in the same direction, and it brings to life a state with equal powers at both outputs. These are both undesirable for optical memory operation. Although the coupling between the rings is bidirectional, the destabilization occurs due to behavior similar to an optically injected laser system.

  15. High-Q contacted ring microcavities with scatterer-avoiding “wiggler” Bloch wave supermode fields

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yangyang, E-mail: yangyang.liu@colorado.edu; Popović, Miloš A., E-mail: milos.popovic@colorado.edu [Nanophotonic Systems Laboratory, Department of Electrical, Computer, and Energy Engineering, University of Colorado, Boulder, Colorado 80309 (United States)

    2014-05-19

    High-Q ring resonators with contacts to the waveguide core provide a versatile platform for various applications in chip-scale optomechanics, thermo-, and electro-optics. We propose and demonstrate azimuthally periodic contacted ring resonators based on multi-mode Bloch matching that support contacts on both the inner and outer radius edges with small degradation to the optical quality factor (Q). Radiative coupling between degenerate modes of adjacent radial spatial order leads to imaginary frequency (Q) splitting and a scatterer avoiding high-Q “wiggler” supermode field. We experimentally measure Qs up to 258 000 in devices fabricated in a silicon device layer on buried oxide undercladding and up to 139 000 in devices fully suspended in air using an undercut step. Wiggler supermodes are true modes of the microphotonic system that offer additional degrees of freedom in electrical, thermal, and mechanical design.

  16. Ring waves as a mass transport mechanism in air-driven core-annular flows.

    Science.gov (United States)

    Camassa, Roberto; Forest, M Gregory; Lee, Long; Ogrosky, H Reed; Olander, Jeffrey

    2012-12-01

    Air-driven core-annular fluid flows occur in many situations, from lung airways to engineering applications. Here we study, experimentally and theoretically, flows where a viscous liquid film lining the inside of a tube is forced upwards against gravity by turbulent airflow up the center of the tube. We present results on the thickness and mean speed of the film and properties of the interfacial waves that develop from an instability of the air-liquid interface. We derive a long-wave asymptotic model and compare properties of its solutions with those of the experiments. Traveling wave solutions of this long-wave model exhibit evidence of different mass transport regimes: Past a certain threshold, sufficiently large-amplitude waves begin to trap cores of fluid which propagate upward at wave speeds. This theoretical result is then confirmed by a second set of experiments that show evidence of ring waves of annular fluid propagating over the underlying creeping flow. By tuning the parameters of the experiments, the strength of this phenomenon can be adjusted in a way that is predicted qualitatively by the model.

  17. Ultra-fast all-optical plasmonic switching in near infra-red spectrum using a Kerr nonlinear ring resonator

    Science.gov (United States)

    Nurmohammadi, Tofiq; Abbasian, Karim; Yadipour, Reza

    2018-03-01

    In this paper, an all-optical plasmonic switch based on metal-insulator-metal (MIM) nanoplasmonic waveguide with a Kerr nonlinear ring resonator is introduced and studied. Two-dimensional simulations utilizing the finite-difference time-domain algorithm are used to demonstrate an apparent optical bistability and significant switching mechanisms (in enabled-low condition: T(ON/OFF) =21.9 and in enabled-high condition: T(ON/OFF) =24.9) of the signal light arisen by altering the pump-light intensity. The proposed all-optical switching demonstrates femtosecond-scale feedback time (90 fs) and then ultra-fast switching can be achieved. The offered all-optical switch may recognize potential significant applications in integrated optical circuits.

  18. The design of the optical components and gas control systems of the CERN Omega Ring Imaging Cerenkov Detector

    International Nuclear Information System (INIS)

    Apsimon, R.J.; Cowell, J.; Flower, P.S.

    1985-06-01

    A large Ring Imaging Cerenkov Detector (RICH) has been commissioned for use at the CERN Omega Spectrometer. The general design of the device is discussed, and the dependence of the attainable spatial resolution and range of particle identification on its optical parameters is illustrated. The construction and performance of the major optical components and gas systems of the detector are also described. (author)

  19. Self-gravitation in Saturn's rings

    International Nuclear Information System (INIS)

    Salo, H.; Lukkari, J.

    1982-01-01

    In a ring-shaped collisional system self-gravitation reduces the equilibrium values of the geometric and optical thickness. In Saturn's rings both effects are appreciable. The previously found discrepancy between the calculated profile and the observed profile of the rings is chiefly caused by the omission of self-gravitation. (Auth.)

  20. Optical self-injection mode-locking of semiconductor optical amplifier fiber ring with electro-absorption modulation—fundamentals and applications

    International Nuclear Information System (INIS)

    Chi, Yu-Chieh; Lin, Gong-Ru

    2013-01-01

    The optical self-injection mode-locking of a semiconductor optical amplifier incorporated fiber ring laser (SOAFL) with spectrally sliced multi-channel carriers is demonstrated for applications. The synthesizer-free SOAFL pulse-train is delivered by optical injection mode-locking with a 10 GHz self-pulsed electro-absorption modulator (EAM). Such a coupled optical and electronic resonator architecture facilitates a self-feedback oscillation with a higher Q-factor and lower phase/intensity noises when compared with conventional approaches. The theoretical model of such an injection-mode-locking SOAFL is derived to improve the self-pulsating performance of the optical return-to-zero (RZ) carrier, thus providing optimized pulsewidth, pulse extinction ratio, effective Q-factor, frequency variation and timing jitter of 11.4 ps, 9.1 dB, 4 × 10 5 , −1 bi-directional WDM transmission network with down-stream RZ binary phase-shift keying (RZ-BPSK) and up-stream re-modulated RZ on–off-keying (RZ-OOK) formats. Under BPSK/OOK bi-directional data transmission, the self-pulsed harmonic mode-locking SOAFL simultaneously provides four to six WDM channels for down-stream RZ-BPSK and up-stream RZ-OOK formats with receiving sensitivities of −17 and −15.2 dBm at a bit error rate of 10 −9 , respectively. (paper)

  1. Sol-gel processing to form doped sol-gel monoliths inside hollow core optical fiber and sol-gel core fiber devices made thereby

    Science.gov (United States)

    Shaw, Harry C. (Inventor); Ott, Melanie N. (Inventor); Manuel, Michele V. (Inventor)

    2002-01-01

    A process of fabricating a fiber device includes providing a hollow core fiber, and forming a sol-gel material inside the hollow core fiber. The hollow core fiber is preferably an optical fiber, and the sol-gel material is doped with a dopant. Devices made in this manner includes a wide variety of sensors.

  2. Core and shell sizing of small silver-coated nanospheres by optical extinction spectroscopy

    International Nuclear Information System (INIS)

    Schinca, D C; Scaffardi, L B

    2008-01-01

    Silver metal nanoparticles (Nps) are extensively used in different areas of research and technology due to their interesting optical, thermal and electric properties, especially for bare core and core-shell nanostructures with sizes smaller than 10 nm. Since these properties are core-shell size-dependent, size measurement is important in manipulating their potential functionalization and applications. Bare and coated small silver Nps fabricated by physical and chemical methods present specific characteristics in their extinction spectra that are potentially useful for sizing purposes. This work presents a novel procedure to size mean core radius smaller than 10 nm and mean shell thickness of silver core-shell Nps based on a comparative study of the characteristics in their optical extinction spectra in different media as a function of core radii, shell thickness and coating refractive index. From the regularities derived from these relationships, it can be concluded that plasmon full width at half-maximum (FWHM) is sensitive to core size but not to coating thickness, while plasmon resonance wavelength (PRW) is related to shell thickness and mostly independent of core radius. These facts, which allow sizing simultaneously both mean core radius and shell thickness, can also be used to size bare silver Nps as a special case of core-shell Nps with zero shell thickness. The proposed method was applied to size experimental samples and the results show good agreement with conventional TEM microscopy.

  3. Surface Plasmon Scattering in Exposed Core Optical Fiber for Enhanced Resolution Refractive Index Sensing.

    Science.gov (United States)

    Klantsataya, Elizaveta; François, Alexandre; Ebendorff-Heidepriem, Heike; Hoffmann, Peter; Monro, Tanya M

    2015-09-29

    Refractometric sensors based on optical excitation of surface plasmons on the side of an optical fiber is an established sensing architecture that has enabled laboratory demonstrations of cost effective portable devices for biological and chemical applications. Here we report a Surface Plasmon Resonance (SPR) configuration realized in an Exposed Core Microstructured Optical Fiber (ECF) capable of optimizing both sensitivity and resolution. To the best of our knowledge, this is the first demonstration of fabrication of a rough metal coating suitable for spectral interrogation of scattered plasmonic wave using chemical electroless plating technique on a 10 μm diameter exposed core of the ECF. Performance of the sensor in terms of its refractive index sensitivity and full width at half maximum (FWHM) of SPR response is compared to that achieved with an unstructured bare core fiber with 140 μm core diameter. The experimental improvement in FWHM, and therefore the detection limit, is found to be a factor of two (75 nm for ECF in comparison to 150 nm for the large core fiber). Refractive index sensitivity of 1800 nm/RIU was achieved for both fibers in the sensing range of aqueous environment (1.33-1.37) suitable for biosensing applications.

  4. Galois Corings and a Jacobson-Bourbaki type Correspondence

    OpenAIRE

    Cuadra, J.; Gomez-Torrecillas, J.

    2005-01-01

    The Jacobson-Bourbaki Theorem for division rings was formulated in terms of corings by Sweedler in 1975. Finiteness conditions hypotheses are not required in this new approach. In this paper we extend Sweedler's result to simple artinian rings using a particular class of corings, comatrix corings. A Jacobson-Bourbaki like correspondence for simple artinian rings is then obtained by duality.

  5. Centrifugal Deposited Au-Pd Core-Shell Nanoparticle Film for Room-Temperature Optical Detection of Hydrogen Gas.

    Science.gov (United States)

    Song, Han; Luo, Zhijie; Liu, Mingyao; Zhang, Gang; Peng, Wang; Wang, Boyi; Zhu, Yong

    2018-05-06

    In the present work, centrifugal deposited Au-Pd core-shell nanoparticle (NP) film was proposed for the room-temperature optical detection of hydrogen gas. The size dimension of 44, 48, 54, and 62 nm Au-Pd core-shell nanocubes with 40 nm Au core were synthesized following a solution-based seed-mediated growth method. Compared to a pure Pd NP, this core-shell structure with an inert Au core could decrease the H diffusion length in the Pd shell. Through a modified centrifugal deposition process, continues film samples with different core-shell NPs were deposited on 10 mm diameter quartz substrates. Under various hydrogen concentration conditions, the optical response properties of these samples were characterized by an intensity-based optical fiber bundle sensor. Experimental results show that the continues film that was composed of 62 nm Au-Pd core-shell NPs has achieved a stable and repeatable reflectance response with low zero drift in the range of 4 to 0.1% hydrogen after a stress relaxation mechanism at first few loading/unloading cycles. Because of the short H diffusion length due to the thinner Pd shell, the film sample composed of 44 nm Au-Pd NPs has achieved a dramatically decreased response/recovery time to 4 s/30 s. The experiments present the promising prospect of this simple method to fabricate optical hydrogen sensors with controllable high sensitivity and response rate at low cost.

  6. Leakage-free, guidance of light in hollow core optical fibers

    DEFF Research Database (Denmark)

    Libori, Stig E. Barkou; Broeng, Jes; Bjarklev, Anders Overgaard

    2000-01-01

    Summary form only given. Despite their tremendous success optical fibers of today are limited by the laws of total internal reflection. During the past five years, however, it has become increasingly evident, that a new operational principle of optical fibers is possible, namely guidance due to p...... design of the analyzed fiber is depicted. The central air hole corresponds to the core of the fiber, while the surrounding periodic air/silica region is the cladding structure. The fiber is assumed invariant in the longitudinal direction....

  7. Core–shell interaction and its impact on the optical absorption of pure and doped core-shell CdSe/ZnSe nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xinqin; Cui, Yingqi; Zeng, Qun; Yang, Mingli, E-mail: myang@scu.edu.cn [Institute of Atomic and Molecular Physics, Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610065 (China); Yu, Shengping [College of Chemistry and Environment Protection Engineering, Southwest University for Nationalities, Chengdu 610041 (China)

    2016-04-07

    The structural, electronic, and optical properties of core-shell nanoclusters, (CdSe){sub x}@(CdSe){sub y} and their Zn-substituted complexes of x = 2–4 and y = 16–28, were studied with density functional theory calculations. The substitution was applied in the cores, the shells, and/or the whole clusters. All these clusters are characterized by their core-shell structures in which the core-shell interaction was found different from those in core or in shell, as reflected by their bondlengths, volumes, and binding energies. Moreover, the core and shell combine together to compose a new cluster with electronic and optical properties different from those of separated individuals, as reflected by their HOMO-LUMO gaps and optical absorptions. With the substitution of Cd by Zn, the structural, electronic, and optical properties of clusters change regularly. The binding energy increases with Zn content, attributed to the strong Zn–Se bonding. For the same core/shell, the structure with a CdSe shell/core has a narrower gap than that with a ZnSe shell/core. The optical absorption spectra also change accordingly with Zn substitution. The peaks blueshift with increasing Zn concentration, accompanying with shape variations in case large number of Cd atoms are substituted. Our calculations reveal the core-shell interaction and its influence on the electronic and optical properties of the core-shell clusters, suggesting a composition–structure–property relationship for the design of core-shell CdSe and ZnSe nanoclusters.

  8. Optical Properties of a Quantum Dot-Ring System Grown Using Droplet Epitaxy.

    Science.gov (United States)

    Linares-García, Gabriel; Meza-Montes, Lilia; Stinaff, Eric; Alsolamy, S M; Ware, M E; Mazur, Y I; Wang, Z M; Lee, Jihoon; Salamo, G J

    2016-12-01

    Electronic and optical properties of InAs/GaAs nanostructures grown by the droplet epitaxy method are studied. Carrier states were determined by k · p theory including effects of strain and In gradient concentration for a model geometry. Wavefunctions are highly localized in the dots. Coulomb and exchange interactions are studied and we found the system is in the strong confinement regime. Microphotoluminescence spectra and lifetimes were calculated and compared with measurements performed on a set of quantum rings in a single sample. Some features of spectra are in good agreement.

  9. Pulse advancement and delay in an integrated optical two-port ring-resonator circuit: direct experimental observations

    NARCIS (Netherlands)

    Uranus, H.P.; Zhuang, L.; Roeloffzen, C.G.H.; Hoekstra, Hugo

    We report experimental observations of the negative-group-velocity (v_g) phenomenon in an integrated-optical two-port ring-resonator circuit. We demonstrate that when the v_g is negative, the (main) peak of output pulse appears earlier than the peak of a reference pulse, while for a positive v_g,

  10. New results from optical polarimetry of Saturn's rings

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, P E; Kemp, J C; King, R; Parker, T E; Barbour, M S [Oregon Univ., Eugene (USA). Dept. of Physics

    1980-01-10

    Linear polarimetry of Saturn's rings, obtained through the period of the 1979 opposition, is presented. The polarisation clearly correlates in direction with the plane containing the Sun, planet and Earth, but not the ring plane. The results are consistent with local scattering on the surface of individual ring bodies, covered with frost.

  11. Angle Dependent Optics of Plasmonic Core-Shell Nanoparticles

    Science.gov (United States)

    2018-02-21

    AFRL-AFOSR-JP-TR-2018-0014 Angle-Dependent Optics of Plasmonic Core-Shell Nanoparticles G.V. Pavan Kumar INDIAN INSTITUTE OF SCIENCE EDUCATION AND... EDUCATION AND RESEARCH 900, NCL Innovation Park, Dr Homi Bhabha Road, Pashan PUNE, 411008 IN 8.  PERFORMING ORGANIZATION      REPORT NUMBER 9...function of spherical co-ordinates: azimuthal and polar angles. Absorption, scattering and emission of light from nanoparticles, especially when they are

  12. The spatial distribution of silicoflagellates in the region of the Gulf Stream warm-core ring 82B: application to water mass tracer studies

    Science.gov (United States)

    Takahashi, Kozo; Blackwelder, Patricia L.

    1992-03-01

    To delineate potential water mass affinities, we investigated silicoflagellates from the region of Gulf Stream warm-core ring (WCR) 82B in the northwestern Atlantic. Silicoflagellates from 202 samples from N-S and an E-W transects across WCR 82B during late April were analysed. Shelf to Sargasso Sea transects, one completed in early May and the other in June 1982 were also examined. Eight to 11 vertical profiles to 200 m comprised each of the transects. Six taxa of silicoflagellates were found in the samples studied and a total of more than 8000 specimens were encountered. Three major taxa dominated standing stocks: Distephanus speculum, Dictyocha messanensis (intermediate-sized form) and D. mandrai. D. speculum, considered a cold-water taxon in the literature, showed a higher standing stock in the cooler high-velocity region (HVR) of the warm-core ring, continental shelf (SH) and slope (SL) waters. Fewer were present in the wanner ring center (RC), Gulf Stream (GS) and Sargasso Sea (SS). D. mandrai showed a similar distribution to that of D. speculum, but its preference for slightly warmer waters (>~10°C) was noted. In contrast, Dictyocha messanensis (intermediate-sized) and Distephanus pulchra, known to be warm-water taxa, were relatively abundant in the warm ring center. In contrast to standing stock data, ratios between cold- and warm-water taxa correlate well with temperature and salinity in the warm-core ring. Since these ratios are not effected by convective loss, they are excellent water mass tracers in this system. Distribution of the silicoflagellate taxa suggests that WCR82B April had a higher affinity with the Gulf Stream than the Sargasso Sea. Scores derived from factor analysis indicate that silicoflagellate species distributions are highly correlative with water masses. This was evident from correlations with temperature, salinity and with distance from ring center. Nutrients were generally not correlated with species data. This may be due to deep

  13. Tunable plasmonic filter with circular metal–insulator– metal ring ...

    Indian Academy of Sciences (India)

    The mechanism based on circular ring resonators with narrow gaps may provide a novel method for designing all-optical integrated components in optical communication and computing. Keywords. Metal–insulator–metal waveguide; surface plasmon; optical filters; ring resonator. PACS Nos 42.79.−e; 73.20.Mf; 78.20.Bh. 1.

  14. Demonstration of frequency control and CW diode laser injection control of a titanium-doped sapphire ring laser with no internal optical elements

    Science.gov (United States)

    Bair, Clayton H.; Brockman, Philip; Hess, Robert V.; Modlin, Edward A.

    1988-01-01

    Theoretical and experimental frequency narrowing studies of a Ti:sapphire ring laser with no intracavity optical elements are reported. Frequency narrowing has been achieved using a birefringent filter between a partially reflecting reverse wave suppressor mirror and the ring cavity output mirror. Results of CW diode laser injection seeding are reported.

  15. Effects of {gamma} and neutron irradiation on the optical absorption of pure silica core single-mode optical fibres from Nufern

    Energy Technology Data Exchange (ETDEWEB)

    Calderon, A. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Martinez-Rivero, C. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Matorras, F. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Rodrigo, T. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Sobron, M. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Vila, I. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Virto, A.L. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Alberdi, J. [CIEMAT, Particle Physics, Avda. Complutense 22, 28040, Madrid (Spain); Arce, P. [CIEMAT, Particle Physics, Avda. Complutense 22, 28040, Madrid (Spain); Barcala, J.M. [CIEMAT, Particle Physics, Avda. Complutense 22, 28040, Madrid (Spain); Calvo, E. [CIEMAT, Particle Physics, Avda. Complutense 22, 28040, Madrid (Spain); Ferrando, A. [CIEMAT, Particle Physics, Avda. Complutense 22, 28040, Madrid (Spain)]. E-mail: Antonio.Ferrando@ciemat.es; Josa, M.I. [CIEMAT, Particle Physics, Avda. Complutense 22, 28040, Madrid (Spain); Luque, J.M. [CIEMAT, Particle Physics, Avda. Complutense 22, 28040, Madrid (Spain); Molinero, A. [CIEMAT, Particle Physics, Avda. Complutense 22, 28040, Madrid (Spain); Navarrete, J. [CIEMAT, Particle Physics, Avda. Complutense 22, 28040, Madrid (Spain); Oller, J.C. [CIEMAT, Particle Physics, Avda. Complutense 22, 28040, Madrid (Spain); Valdivieso, P. [CIEMAT, Particle Physics, Avda. Complutense 22, 28040, Madrid (Spain); Yuste, C. [CIEMAT, Particle Physics, Avda. Complutense 22, 28040, Madrid (Spain); Fenyvesi, A. [Institute of Nuclear Research, ATOMKI, Debrecen (Hungary); Molnar, J. [Institute of Nuclear Research, ATOMKI, Debrecen (Hungary)

    2006-09-15

    A measurement of the optical absorption, induced by photon irradiation up to a dose of 0.9 MGy, in Nufern silica core single-mode optical fibres is presented. In addition, the fibres were irradiated with neutrons, up to a total fluence of 2x10{sup 14} cm{sup -2} and the induced optical absorption was evaluated for four different wavelengths: 630, 670, 681 and 785 nm.

  16. Effects of γ and neutron irradiation on the optical absorption of pure silica core single-mode optical fibres from Nufern

    International Nuclear Information System (INIS)

    Calderon, A.; Martinez-Rivero, C.; Matorras, F.; Rodrigo, T.; Sobron, M.; Vila, I.; Virto, A.L.; Alberdi, J.; Arce, P.; Barcala, J.M.; Calvo, E.; Ferrando, A.; Josa, M.I.; Luque, J.M.; Molinero, A.; Navarrete, J.; Oller, J.C.; Valdivieso, P.; Yuste, C.; Fenyvesi, A.; Molnar, J.

    2006-01-01

    A measurement of the optical absorption, induced by photon irradiation up to a dose of 0.9 MGy, in Nufern silica core single-mode optical fibres is presented. In addition, the fibres were irradiated with neutrons, up to a total fluence of 2x10 14 cm -2 and the induced optical absorption was evaluated for four different wavelengths: 630, 670, 681 and 785 nm

  17. Complex ABCD transformations for optical ring cavities with losses and gain

    International Nuclear Information System (INIS)

    Kudashov, V N; Radin, A M; Plachenov, A B

    1999-01-01

    Complex ABCD field transformations are investigated for inhomogeneous optical ring cavities with losses and gain. It is shown that the sets of eigenfunctions, corresponding to counterpropagating waves, are really biorthogonal: the functions in each of these sets are really orthogonal relative to one another, and have a complex weighting factor independent of the mode number. Bidirectional and unidirectional stability conditions are formulated for such cavities. These conditions are qualitatively different from those for loss-free cavities. A simple algorithm is proposed for the evaluation of the ABCD matrix for a medium with an arbitrary longitudinal inhomogeneity along the beam. (laser applications and other topics in quantum electronics)

  18. Valley- and spin-polarized oscillatory magneto-optical absorption in monolayer MoS2 quantum rings

    Science.gov (United States)

    Oliveira, D.; Villegas-Lelovsky, L.; Soler, M. A. G.; Qu, Fanyao

    2018-03-01

    Besides optical valley selectivity, strong spin-orbit interaction along with Berry curvature effects also leads to unconventional valley- and spin-polarized Landau levels in monolayer transition metal dichalcogenides (TMDCs) under a perpendicular magnetic field. We find that these unique properties are inherited to the magneto-optical absorption spectrum of the TMDC quantum rings (QRs). In addition, it is robust against variation of the magnetic flux and of the QR geometry. In stark contrast to the monolayer bulk material, the MoS2 QRs manifest themselves in both the optical valley selectivity and unprecedented size tunability of the frequency of the light absorbed. We also find that when the magnetic field setup is changed, the phase transition from Aharonov-Bohm (AB) quantum interference to aperiodic oscillation of magneto-optical absorption spectrum takes place. The exciton spectrum in a realistic finite thickness MoS2 QR is also discussed.

  19. Modeling of Thermal Phase Noise in a Solid Core Photonic Crystal Fiber-Optic Gyroscope.

    Science.gov (United States)

    Song, Ningfang; Ma, Kun; Jin, Jing; Teng, Fei; Cai, Wei

    2017-10-26

    A theoretical model of the thermal phase noise in a square-wave modulated solid core photonic crystal fiber-optic gyroscope has been established, and then verified by measurements. The results demonstrate a good agreement between theory and experiment. The contribution of the thermal phase noise to the random walk coefficient of the gyroscope is derived. A fiber coil with 2.8 km length is used in the experimental solid core photonic crystal fiber-optic gyroscope, showing a random walk coefficient of 9.25 × 10 -5 deg/√h.

  20. Modeling of absorption and scattering properties of core -shell nanoparticles for application as nanoantenna in optical domain

    Science.gov (United States)

    Devi, Jutika; Saikia, Rashmi; Datta, Pranayee

    2016-10-01

    The present paper describes the study of core-shell nanoparticles for application as nanoantenna in the optical domain. To obtain the absorption and extinction efficiencies as well as the angular distribution of the far field radiation pattern and the resonance wavelengths for these metal-dielectric, dielectric-metal and metal-metal core-shell nanoparticles in optical domain, we have used Finite Element Method based COMSOL Multiphysics Software and Mie Theory. From the comparative study of the extinction efficiencies of core-shell nanoparticles of different materials, it is found that for silica - gold core - shell nanoparticles, the resonant wavelength is greater than that of the gold - silver, silver-gold and gold-silica core - shell nanoparticles and also the radiation pattern of the silica-gold core-shell nanoparticle is the most suitable one from the point of view of directivity. The dielectric functions of the core and shell material as well as of the embedded matrix are extremely important and plays a very major role to tune the directivity and resonance wavelength. Such highly controllable parameters of the dielectric - metal core - shell nanoparticles make them suitable for efficient coupling of optical radiation into nanoscale structures for a broad range of applications in the field of communications.

  1. Modeling of absorption and scattering properties of core -shell nanoparticles for application as nanoantenna in optical domain

    International Nuclear Information System (INIS)

    Devi, Jutika; Datta, Pranayee; Saikia, Rashmi

    2016-01-01

    The present paper describes the study of core-shell nanoparticles for application as nanoantenna in the optical domain. To obtain the absorption and extinction efficiencies as well as the angular distribution of the far field radiation pattern and the resonance wavelengths for these metal-dielectric, dielectric-metal and metal-metal core-shell nanoparticles in optical domain, we have used Finite Element Method based COMSOL Multiphysics Software and Mie Theory. From the comparative study of the extinction efficiencies of core-shell nanoparticles of different materials, it is found that for silica - gold core - shell nanoparticles, the resonant wavelength is greater than that of the gold - silver, silver-gold and gold-silica core - shell nanoparticles and also the radiation pattern of the silica-gold core-shell nanoparticle is the most suitable one from the point of view of directivity. The dielectric functions of the core and shell material as well as of the embedded matrix are extremely important and plays a very major role to tune the directivity and resonance wavelength. Such highly controllable parameters of the dielectric - metal core - shell nanoparticles make them suitable for efficient coupling of optical radiation into nanoscale structures for a broad range of applications in the field of communications. (paper)

  2. TREE SELECTING AND TREE RING MEASURING IN DENDROCHRONOLOGICAL INVESTIGATIONS

    Directory of Open Access Journals (Sweden)

    Sefa Akbulut

    2004-04-01

    Full Text Available Dendrochronology is a method of dating which makes use of the annual nature of tree growth. Dendrochronology may be divided into a number of subfields, each of which covers one or more aspects of the use of tree ring data: dendroclimatology, dendrogeomorphology, dendrohydrology, dendroecology, dendroarchaelogy, and dendrogylaciology. Basic of all form the analysis of the tree rings. The wood or tree rings can aid to dating past events about climatology, ecology, geology, hydrology. Dendrochronological studies are conducted either on increment cores or on discs. It may be seen abnormalities on tree rings during the measurement like that false rings, missing rings, reaction wood. Like that situation, increment cores must be extracted from four different sides of each tree and be studied as more as on tree.

  3. Rotationally asymmetric multifocal IOL implantation with and without capsular tension ring: refractive and visual outcomes and intraocular optical performance.

    Science.gov (United States)

    Alió, Jorge L; Plaza-Puche, Ana B; Piñero, David P

    2012-04-01

    To ascertain whether the refractive, visual, and intraocular optical quality outcomes of a rotationally asymmetric multifocal intraocular lens (IOL) are enhanced by the use of a capsular tension ring. Ninety consecutive eyes from 53 patients (age range: 36 to 82 years) were divided into two groups: the no ring group comprised 43 eyes implanted with the multifocal rotationally asymmetric Lentis Mplus LS-312 (Oculentis GmbH) without a capsular tension ring; and the ring group comprised 47 eyes with the same IOL with a capsular tension ring. Distance and near visual acuity and refractive outcomes were evaluated pre- and postoperatively. Contrast sensitivity, intraocular aberrations, and defocus curve were evaluated postoperatively. Significant postoperative differences between groups were found in sphere, spherical equivalent refraction, and near addition (P<.02). Regarding defocus curve, significantly better visual acuity was present in eyes with the capsular tension ring for intermediate vision conditions (P<.05). Intraocular aberrometry did not differ significantly between groups (P<.09). Refractive predictability and intermediate visual outcomes with the Lentis Mplus LS-312 IOL improved significantly when implanted in combination with a capsular tension ring. Copyright 2012, SLACK Incorporated.

  4. Nonlinear estimation of ring-down time for a Fabry-Perot optical cavity.

    Science.gov (United States)

    Kallapur, Abhijit G; Boyson, Toby K; Petersen, Ian R; Harb, Charles C

    2011-03-28

    This paper discusses the application of a discrete-time extended Kalman filter (EKF) to the problem of estimating the decay time constant for a Fabry-Perot optical cavity for cavity ring-down spectroscopy (CRDS). The data for the estimation process is obtained from a CRDS experimental setup in terms of the light intensity at the output of the cavity. The cavity is held in lock with the input laser frequency by controlling the distance between the mirrors within the cavity by means of a proportional-integral (PI) controller. The cavity is purged with nitrogen and placed under vacuum before chopping the incident light at 25 KHz and recording the light intensity at its output. In spite of beginning the EKF estimation process with uncertainties in the initial value for the decay time constant, its estimates converge well within a small neighborhood of the expected value for the decay time constant of the cavity within a few ring-down cycles. Also, the EKF estimation results for the decay time constant are compared to those obtained using the Levenberg-Marquardt estimation scheme.

  5. Central regions of LIRGs: rings, hidden starbursts, Supernovae and star clusters

    International Nuclear Information System (INIS)

    Väisänen, Petri; Randriamanakoto, Zara; Escala, Andres; Kankare, Erkki; Mattila, Seppo; Reunanen, Juha; Kotilainen, Jari; Rajpaul, Vinesh; Ryder, Stuart; Zijlstra, Albert

    2012-01-01

    We study star formation (SF) in very active environments, in luminous IR galaxies, which are often interacting. A variety of phenomena are detected, such as central starbursts, circumnuclear SF, obscured SNe tracing the history of recent SF, massive super star clusters, and sites of strong off-nuclear SF. All of these can be ultimately used to define the sequence of triggering and propagation of star-formation and interplay with nuclear activity in the lives of gas rich galaxy interactions and mergers. In this paper we present analysis of high-spatial resolution integral field spectroscopy of central regions of two interacting LIRGs. We detect a nuclear 3.3 μm PAH ring around the core of NGC 1614 with thermal-IR IFU observations. The ring's characteristics and relation to the strong star-forming ring detected in recombination lines are presented, as well as a scenario of an outward expanding starburst likely initiated with a (minor) companion detected within a tidal feature. We then present NIR IFU observations of IRAS 19115-2124, aka the Bird, which is an intriguing triple encounter. The third component is a minor one, but, nevertheless, is the source of 3/4 of the SFR of the whole system. Gas inflows and outflows are detected in their nuclei locations. Finally, we briefly report on our on-going NIR adaptive optics imaging survey of several dozen LIRGs. We have detected highly obscured core-collapse SNe in the central kpc, and discuss the statistics of 'missing SNe' due to dust extinction. We are also determining the characteristics of hundreds of super star clusters in and around the core regions of LIRGs, as a function of host-galaxy properties.

  6. A 250-Mbit/s ring local computer network using 1.3-microns single-mode optical fibers

    Science.gov (United States)

    Eng, S. T.; Tell, R.; Andersson, T.; Eng, B.

    1985-01-01

    A 250-Mbit/s three-station fiber-optic ring local computer network was built and successfully demonstrated. A conventional token protocol was employed for bus arbitration to maximize the bus efficiency under high loading conditions, and a non-return-to-zero (NRS) data encoding format was selected for simplicity and maximum utilization of the ECL-circuit bandwidth.

  7. Numerical studies on a plasmonic temperature nanosensor based on a metal-insulator-metal ring resonator structure for optical integrated circuit applications

    Science.gov (United States)

    Al-mahmod, Md. Jubayer; Hyder, Rakib; Islam, Md Zahurul

    2017-07-01

    A nanosensor, based on a metal-insulator-metal (MIM) plasmonic ring resonator, is proposed for potential on-chip temperature sensing and its performance is evaluated numerically. The sensor components can be fabricated by using planar processes on a silicon substrate, making its manufacturing compatible to planar electronic fabrication technology. The sensor, constructed using silver as the metal rings and a thermo-optic liquid ethanol film between the metal layers, is capable of sensing temperature with outstanding optical sensitivity, as high as -0.53 nm/°C. The resonance wavelength is found to be highly sensitive to the refractive index of the liquid dielectric film. The resonance peak can be tuned according to the requirement of intended application by changing the radii of the ring resonator geometries in the design phase. The compact size, planar and silicon-based design, and very high resolutions- these characteristics are expected to make this sensor technology a preferred choice for lab-on-a-chip applications, as compared to other contemporary sensors.

  8. Characterization and optimization of an ultrasonic piezo-optical ring sensor

    International Nuclear Information System (INIS)

    Frankforter, Erik; Lin, Bin; Giurgiutiu, Victor

    2016-01-01

    A resonant piezo-optical ring sensor with both piezoelectric and fiber Bragg grating (FBG) sensing elements was assessed for ultrasonic wave detection. The ring sensor is an existing device that has been shown experimentally to exhibit a number of sensing features: omnidirectionality, mode selectivity, and frequency tunability. The present study uses finite element modeling to understand these features as a means to characterize and optimize the sensor. A combined vibration-wave propagation modeling approach was used, where the vibrational modeling provided a basis for understanding sensing features, and the wave propagation modeling provided predictive power for sensor performance. The sensor features corresponded to the fundamental vibrational mode of the sensor, particularly to the base motion of this mode. The vibrational modeling was also used to guide sensor optimization, with an emphasis on the FBG and piezoelectric sensing elements. It was found that sensor symmetry and nodes of extraneous resonance modes could be exploited to provide a single-resonance response. A series of pitch-catch guided wave experiments were performed on a thin aluminum plate to assess the optimized sensor configuration. Tuning curves showed a single-frequency response to a Lamb wave and mechanical filtering away from the dominant frequency; the sensor capability for mechanical amplification of a Lamb wave and mechanical amplification of a pencil-lead-break acoustic emission event were also demonstrated. (paper)

  9. Respiration and body movement analysis during sleep in bed using hetero-core fiber optic pressure sensors without constraint to human activity.

    Science.gov (United States)

    Nishyama, Michiko; Miyamoto, Mitsuo; Watanabe, Kazuhiro

    2011-01-01

    We describe respiration monitoring in sleep using hetero-core fiber optic pressure sensors. The proposed hetero-core fiber optic sensor is highly sensitive to macrobending as a result of the core diameter difference due to stable single-mode transmission. Pressure sensors based on hetero-core fiber optics were fabricated to have a high sensitivity to small pressure changes resulting from minute body motions, such as respiration, during sleep and large pressure changes, such as those caused by a rollover. The sensors are installed in a conventional bed. The pressure characteristic performance of all the fabricated hetero-core fiber optic pressure sensors is found to show a monotonic response with weight changes. A respiration monitoring test in seven subjects efficiently demonstrates the effective use of eight hetero-core pressure sensors installed in a bed. Additionally, even in the case of different body postures, such as lying on one's side, a slight body movement due to respiration is detected by the hetero-core pressure sensors.

  10. A fiber optic temperature sensor based on multi-core microstructured fiber with coupled cores for a high temperature environment

    Science.gov (United States)

    Makowska, A.; Markiewicz, K.; Szostkiewicz, L.; Kolakowska, A.; Fidelus, J.; Stanczyk, T.; Wysokinski, K.; Budnicki, D.; Ostrowski, L.; Szymanski, M.; Makara, M.; Poturaj, K.; Tenderenda, T.; Mergo, P.; Nasilowski, T.

    2018-02-01

    Sensors based on fiber optics are irreplaceable wherever immunity to strong electro-magnetic fields or safe operation in explosive atmospheres is needed. Furthermore, it is often essential to be able to monitor high temperatures of over 500°C in such environments (e.g. in cooling systems or equipment monitoring in power plants). In order to meet this demand, we have designed and manufactured a fiber optic sensor with which temperatures up to 900°C can be measured. The sensor utilizes multi-core fibers which are recognized as the dedicated medium for telecommunication or shape sensing, but as we show may be also deployed advantageously in new types of fiber optic temperature sensors. The sensor presented in this paper is based on a dual-core microstructured fiber Michelson interferometer. The fiber is characterized by strongly coupled cores, hence it acts as an all-fiber coupler, but with an outer diameter significantly wider than a standard fused biconical taper coupler, which significantly increases the coupling region's mechanical reliability. Owing to the proposed interferometer imbalance, effective operation and high-sensitivity can be achieved. The presented sensor is designed to be used at high temperatures as a result of the developed low temperature chemical process of metal (copper or gold) coating. The hermetic metal coating can be applied directly to the silica cladding of the fiber or the fiber component. This operation significantly reduces the degradation of sensors due to hydrolysis in uncontrolled atmospheres and high temperatures.

  11. Extremely sensitive multiple sensing ring PCF sensor for lower indexed chemical detection

    Directory of Open Access Journals (Sweden)

    Veerpal Kaur

    2017-09-01

    Full Text Available In this article, we have designed and analysed a photonic crystal fiber with multiple sensing ring in core for chemical and biochemical sensing applications. In this proposed design, three and four sensing ring describe in core which offers remarkable high sensitivity and spiral cladding pattern confines large fraction of power in core region and thus reduce the overall confinement loss. This novel proposed model exhibits simultaneously ultra high relative sensitivity 95.40%, 93.13% and minimum confinement loss 7.108×10−08, 2.47×10−08dB/km for four and three ring pattern. These sensing rings are filled with different sensing liquid. Multiple sensing rings as compared to multiple air holes are desirable feature from fabrication point of view. This proposed PCF design overcomes some experimental challenge such as PCF probe needs some displacement after filling the sensing liquid. These uniform circular sensing rings around the solid core overcome the losses and support better evanescent field matter interaction for sensing application. Multiple sensing rings as compared to multiple tiny air holes are desirable feature from fabrication point of view.

  12. Photonic crystal ring resonator based optical filters for photonic integrated circuits

    International Nuclear Information System (INIS)

    Robinson, S.

    2014-01-01

    In this paper, a two Dimensional (2D) Photonic Crystal Ring Resonator (PCRR) based optical Filters namely Add Drop Filter, Bandpass Filter, and Bandstop Filter are designed for Photonic Integrated Circuits (PICs). The normalized output response of the filters is obtained using 2D Finite Difference Time Domain (FDTD) method and the band diagram of periodic and non-periodic structure is attained by Plane Wave Expansion (PWE) method. The size of the device is minimized from a scale of few tens of millimeters to the order of micrometers. The overall size of the filters is around 11.4 μm × 11.4 μm which is highly suitable of photonic integrated circuits

  13. Experimental Study of Shock Generated Compressible Vortex Ring

    Science.gov (United States)

    Das, Debopam; Arakeri, Jaywant H.; Krothapalli, Anjaneyulu

    2000-11-01

    Formation of a compressible vortex ring and generation of sound associated with it is studied experimentally. Impulse of a shock wave is used to generate a vortex ring from the open end of a shock-tube. Vortex ring formation process has been studied in details using particle image Velocimetry (PIV). As the shock wave exits the tube it diffracts and expands. A circular vortex sheet forms at the edge and rolls up into a vortex ring. Far field microphone measurement shows that the acoustic pressure consists of a spike due to shock wave followed by a low frequency pressure wave of decaying nature, superimposed with high frequency pressure wave. Acoustic waves consist of waves due to expansion, waves formed in the tube during diaphragm breakage and waves associated with the vortex ring and shear-layer vortices. Unsteady evolution of the vortex ring and shear-layer vortices in the jet behind the ring is studied by measuring the velocity field using PIV. Corresponding vorticity field, circulation around the vortex core and growth rate of the vortex core is calculated from the measured velocity field. The velocity field in a compressible vortex ring differs from that of an incompressible ring due to the contribution from both shock and vortex ring.

  14. Two optical bistability domains in composites of metal nanoparticles with nonlinear dielectric core

    Energy Technology Data Exchange (ETDEWEB)

    Shewamare, Sisay, E-mail: sisayshewa20@yahoo.com [Department of Physics, Addis Ababa University, P.O. Box 1176, Addis Ababa (Ethiopia); Mal' nev, V.N., E-mail: vadimnmalnev@yahoo.com [Department of Physics, Addis Ababa University, P.O. Box 1176, Addis Ababa (Ethiopia)

    2012-12-15

    It is shown that the local field in metal spherical particles with a dielectric core in an external varying electric field has two maxima at two different frequencies. The second maximum becomes more important with an increment in the metal fraction. Due to the nonlinear dielectric function of the core, the composite of these inclusions may have two optically induced bistability domains at different frequencies. At rather high metal fraction, two bistability domains merge and form one entire bistability domain. The parameters of these domains are studied numerically. The paper focuses on the second bistability domain, which has not been discussed in the literature so far. This domain exists in a comparatively narrow frequency range and its onset fields are lower than those of the first bistability domain. The lowest bistability onset fields are obtained in the entire domain. This peculiarity of the optical induced bistability in the metal composite with small dielectric cores can be attractive for possible applications.

  15. Two optical bistability domains in composites of metal nanoparticles with nonlinear dielectric core

    International Nuclear Information System (INIS)

    Shewamare, Sisay; Mal'nev, V.N.

    2012-01-01

    It is shown that the local field in metal spherical particles with a dielectric core in an external varying electric field has two maxima at two different frequencies. The second maximum becomes more important with an increment in the metal fraction. Due to the nonlinear dielectric function of the core, the composite of these inclusions may have two optically induced bistability domains at different frequencies. At rather high metal fraction, two bistability domains merge and form one entire bistability domain. The parameters of these domains are studied numerically. The paper focuses on the second bistability domain, which has not been discussed in the literature so far. This domain exists in a comparatively narrow frequency range and its onset fields are lower than those of the first bistability domain. The lowest bistability onset fields are obtained in the entire domain. This peculiarity of the optical induced bistability in the metal composite with small dielectric cores can be attractive for possible applications.

  16. Influence of the core-hole effect on optical properties of magnesium oxide (MgO) near the Mg L-edge region.

    Science.gov (United States)

    Sinha, Mangalika; Modi, Mohammed H; Ghosh, Haranath; Yadav, P K; Gupta, R K

    2018-05-01

    The influence of the core-hole effect on optical properties of magnesium oxide (MgO) is established through experimental determination of optical constants and first-principles density functional theory studies. Optical constants (δ and β) of MgO thin film are measured in the spectral region 40-300 eV using reflectance spectroscopy techniques at the Indus-1 synchrotron radiation source. The obtained optical constants show strong core exciton features near the Mg L-edge region, causing significant mismatch with Henke's tabulated values. On comparing the experimentally obtained optical constants with Henke's tabulated values, an edge shift of ∼3.0 eV is also observed. Distinct evidence of effects of core exciton on optical constants (δ and β) in the near Mg L-edge absorption spectra are confirmed through first-principles simulations.

  17. Five-membered rings as diazo components in optical data storage devices: An ab initio investigation of the lowest singlet excitation energies

    DEFF Research Database (Denmark)

    Åstrand, P.-O.; Sommer-Larsen, P.; Hvilsted, Søren

    2000-01-01

    been investigated as diazo components for a potential use in optical das storage materials. It is found that the diazo compounds with two heterocyclic five-membered rings have pi --> pi* excitation energies corresponding to laser wavelengths in the region 450-500 nm whereas one five-membered ring...... and a phenyl group as diazo components results in wavelengths in the region 400-335 nm. (C) 2000 Published by Elsevier Science B.V....

  18. Interaction Region Design for a Ring-Ring LHeC

    CERN Document Server

    Thompson, L N S; Bernard, N R; Fitterer, M; Holzer, B; Klein, M; Kostka, P

    2011-01-01

    tively low energy and moderately high intensity provides high luminosity TeV-scale e-p collisions at one of the LHC interaction points, running simultaneously with existing experiments. Two designs are studied; an electron ring situated in the LHC tunnel, and an electron linac. The focus of this paper is on the ring design. Designing an e-p machine presents interesting accelerator physics and design challenges, particularly when considering the interaction region. These include coupled optics, beam separation and unconventional mini-beta focusing schemes. Designs are constrained by an array of interdependent factors, including beam-beam interaction, detector dimensions and acceptance, luminosity and synchrotron radiation. Methods of addressing these complex issues are discussed. The current designs for the LHeC Ring-Ring interaction region and long straight section are presented and discussed, in the context of the project goals and design challenges encountered. Future developments and work are also discusse...

  19. Beam optics simulation of rare-RI ring at RI beam factory in RIKEN

    International Nuclear Information System (INIS)

    Arai, I.; Ozawa, A.; Yasuda, Y.

    2009-01-01

    The cyclotron-like storage ring dedicated to Rare-RI Ring project consists of 6 magnetic sectors and 6 straight sections, having a circumference of 56.13 m. The magnetic sector works for both bending and focusing. The total circulation is assumed to be 1,000 turns. Over the momentum range from -1% to +1% in ∆p/p, the required isochronicity is 10 -6 while the beam emittance is several tens of π mm-mrad. To examine the design of cyclotron-like storage ring and fix its parameters, we have developed a high precision beam optics simulation. To achieve the precision as high as possible within a feasible computational time, we have adopted a geometrical tracking assuming a circular orbit for a small spatial segment. For that purpose, it is enough that the magnetic sector is divided into 150 sub-sectors in calculation. In each sub-sector, the magnetic field is given as a function of radial position but uniform around the vicinity of beam trajectory. The beam trajectory is evaluated in 4th order Runge-Kutta algorithm. Finally, we have achieved a precision of 10 -9 in ∆T/T and a computational time of 1.8 sec on a typical PC server for ray tracing of single particle undergoing a circulation of 1,000 turns. (author)

  20. Design studies for the electron storage ring EUTERPE

    Energy Technology Data Exchange (ETDEWEB)

    Boling, Xi

    1995-05-18

    The 400 MeV electron storage ring EUTERPE is under construction at Eindhoven University of Technology. The ring is to be used as an experimental tool for accelerator physics studies and synchroton radiation applications. The main task of the current research work is the electron optical design of the ring. Lattice design is a basis for machine design as a whole. Design aspects regarding the basic lattice, based on single particle dynamics, include determination of the equilibrium beam size and bunch length, design of achromatic bending sections, selection of tune values, correction of chromaticity, and minimization of the natural emittance in the ring. The basic lattice designed for the EUTERPE ring has a high flexibility so that different electron optical modes can be realized easily. In low energy storage rings with a high beam current, collective effects can cause a significant change in the bunch length, the transverse emittance and the beam lifetime. In order to ensure a good optical performance for the ring, the choice of suitable parameters concerning the vacuum and RF system are essential as far as collective effects are concerned. An estimation of the collective effects in the ring is given. The injector for EUTERPE is a 75 MeV racetrack microtron which is injected from a 10 MeV linac. In order to get sufficient beam current in the ring, a special procedure of continuous injection with an adjustable locally shifted closed orbit has been presented. Details of the injection procedure and numerical simulations are given. (orig./HSI).

  1. Design studies for the electron storage ring EUTERPE

    International Nuclear Information System (INIS)

    Xi Boling.

    1995-01-01

    The 400 MeV electron storage ring EUTERPE is under construction at Eindhoven University of Technology. The ring is to be used as an experimental tool for accelerator physics studies and synchroton radiation applications. The main task of the current research work is the electron optical design of the ring. Lattice design is a basis for machine design as a whole. Design aspects regarding the basic lattice, based on single particle dynamics, include determination of the equilibrium beam size and bunch length, design of achromatic bending sections, selection of tune values, correction of chromaticity, and minimization of the natural emittance in the ring. The basic lattice designed for the EUTERPE ring has a high flexibility so that different electron optical modes can be realized easily. In low energy storage rings with a high beam current, collective effects can cause a significant change in the bunch length, the transverse emittance and the beam lifetime. In order to ensure a good optical performance for the ring, the choice of suitable parameters concerning the vacuum and RF system are essential as far as collective effects are concerned. An estimation of the collective effects in the ring is given. The injector for EUTERPE is a 75 MeV racetrack microtron which is injected from a 10 MeV linac. In order to get sufficient beam current in the ring, a special procedure of continuous injection with an adjustable locally shifted closed orbit has been presented. Details of the injection procedure and numerical simulations are given. (orig./HSI)

  2. Donor impurity states and related optical response in a lateral coupled dot-ring system under applied electric field

    Energy Technology Data Exchange (ETDEWEB)

    Correa, J.D. [Departamento de Ciencias Básicas, Universidad de Medellín, Medellín (Colombia); Mora-Ramos, M.E. [Centro de Investigación en Ciencias, Instituto de Ciencias Básicas y Aplicadas, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001, CP 62209 Cuernavaca, Morelos (Mexico); Duque, C.A., E-mail: cduque@fisica.udea.edu.co [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia)

    2015-09-01

    A study on the effects of an externally applied electric field on the linear optical absorption and relative refractive index change associated with transitions between off-center donor impurity states in laterally coupled quantum dot-ring system is reported. Electron states are calculated within the effective mass and parabolic band approximations by means of an exact diagonalization procedure. The states and the optical response in each case show significant sensitivity to the geometrical distribution of confining energies as well as to the strength of the applied field.

  3. Donor impurity states and related optical response in a lateral coupled dot-ring system under applied electric field

    International Nuclear Information System (INIS)

    Correa, J.D.; Mora-Ramos, M.E.; Duque, C.A.

    2015-01-01

    A study on the effects of an externally applied electric field on the linear optical absorption and relative refractive index change associated with transitions between off-center donor impurity states in laterally coupled quantum dot-ring system is reported. Electron states are calculated within the effective mass and parabolic band approximations by means of an exact diagonalization procedure. The states and the optical response in each case show significant sensitivity to the geometrical distribution of confining energies as well as to the strength of the applied field

  4. Linear signal processing using silicon micro-ring resonators

    DEFF Research Database (Denmark)

    Peucheret, Christophe; Ding, Yunhong; Ou, Haiyan

    2012-01-01

    We review our recent achievements on the use of silicon micro-ring resonators for linear optical signal processing applications, including modulation format conversion, phase-to-intensity modulation conversion and waveform shaping.......We review our recent achievements on the use of silicon micro-ring resonators for linear optical signal processing applications, including modulation format conversion, phase-to-intensity modulation conversion and waveform shaping....

  5. Effect of low dose rate irradiation on doped silica core optical fibers

    International Nuclear Information System (INIS)

    Friebele, E.J.; Askins, C.G.; Gingerich, M.E.

    1984-01-01

    The optical attenuation induced in multimode doped silica core optical fiber waveguides by a year's exposure to low dose rate (1 rad/day) ionizing radiation was studied, allowing a characterization of fibers deployed in these environments and a determination of the permanent induced loss in the waveguides. Variations in the induced attenuation at 0.85 μm have been observed with changes in the dose rate between 1 rad/day and 9000 rads/min. These dose rate dependences have been found to derive directly from the recovery that occurs during the exposure; the recovery data predict little or no dose rate dependence of the damage at 1.3 μm. The low dose rate exposure has been found to induce significant permanent attenuation in the 0.7-1.7-μm spectral region in all fibers containing P in the core, whether doped uniformly across the diameter or constrained to a narrow spike on the centerline. Whereas permanent loss was induced at 0.85 μm in a P-free binary Ge-doped silica core fiber by the year's exposure, virtually no damage was observed at 1.3 μm

  6. Fabrication of Shatter-Proof Metal Hollow-Core Optical Fibers for Endoscopic Mid-Infrared Laser Applications

    Directory of Open Access Journals (Sweden)

    Katsumasa Iwai

    2018-04-01

    Full Text Available A method for fabricating robust and thin hollow-core optical fibers that carry mid-infrared light is proposed for use in endoscopic laser applications. The fiber is made of stainless steel tubing, eliminating the risk of scattering small glass fragments inside the body if the fiber breaks. To reduce the inner surface roughness of the tubing, a polymer base layer is formed prior to depositing silver and optical-polymer layers that confine light inside the hollow core. The surface roughness is greatly decreased by re-coating thin polymer base layers. Because of this smooth base layer surface, a uniform optical-polymer film can be formed around the core. As a result, clear interference peaks are observed in both the visible and mid-infrared regions. Transmission losses were also low for the carbon dioxide laser used for medical treatments as well as the visible laser diode used for an aiming beam. Measurements of bending losses for these lasers demonstrate the feasibility of the designed fiber for endoscopic applications.

  7. Core stress distribution of phase shifting multimode polymer optical fiber

    International Nuclear Information System (INIS)

    Furukawa, Rei; Matsuura, Motoharu; Nagata, Morio; Mishima, Kenji; Inoue, Azusa; Tagaya, Akihiro; Koike, Yasuhiro

    2013-01-01

    Poly-(methyl methacrylate-co-benzyl methacrylate) polarization-maintaining optical fibers are known for their high response to normal stress. In this report, responses to higher stress levels up to 0.45 MPa were investigated. The stress amplitude and direction in the fiber cross section were calculated and analyzed with a coincident mode-field obtained from the near-field pattern. The stress amplitude varies significantly in the horizontal direction and is considered to create multiple phases, explaining the measurement results. To investigate possible permanent deformation, the core yield point profile was analyzed. Although it largely exceeds the average applied stress, the calculated stress distribution indicates that the core could partially experience stress that exceeds the yield point

  8. Photophysical property of rhodamine-cored poly(amidoamine) dendrimers: Simultaneous effect of spirolactam ring-opening and PET process on sensing trivalent chromium ion

    International Nuclear Information System (INIS)

    Lei Yonglin; Su Yuanqiang; Huo Jichuan

    2011-01-01

    Two novel poly(amidoamine) (PAMAM) dendrimers, comprising rhodamine B unit in the core and 1-phenyl-3-methyl-5-pyrazolone unit at the periphery, have been synthesized and characterized. Both dendrimers displayed high selectivity and sensitivity towards Cr 3+ ion. As considering the potential of being applied as fluorescent sensors for Cr 3+ ion, we studied the complexes formed between the dendrimers and Cr 3+ ion. Different PAMAM dendrimers had different recognition mechanism towards Cr 3+ ion. For dendrimer G2, the recognition of Cr 3+ was mainly due to the ring-opening of spirolactam. However, it significantly depended on the simultaneous effect of ring-opening of spirolactam and photoinduced electron transfer (PET) in the case of dendrimer G3. - Highlights: → First synthesize two novel PAMAM simultaneously containing rhodamine and pyrazolone. → Novel dendrimer show high selectivity and sensitivity towards Cr 3+ . → Recognition Cr 3+ of dendrimer G2 is dominantly due to the ring-opening mechanism. → Sensing Cr 3+ of dendrimer G3 is dependent on simultaneous mechanisms of ring-opening and PET.

  9. Field distributions and particle optics in main bending dipoles of Oak Ridge Spallation Neutron Source accumulator ring

    International Nuclear Information System (INIS)

    Wang, J.G.

    2013-01-01

    The SNS accumulator ring employs 32 electro-magnetic dipoles to bend proton beams. The dipoles are typical sector magnets with relatively large aperture and short length. Thus, how to correctly treat magnetic fringe fields in the devices remains as a question. We have performed 3D computer simulations to study magnetic field distributions in the dipoles. Further, we have analyzed particle optics based on the space-dependent curvature and focusing functions in the magnets. The effect of magnetic fringe fields on the particle motion, especially the focusing/defocusing and dispersion, is investigated. The lens parameters, including the second-order aberrations, are derived and compared with the design hard-edge parameters used in the ring lattice calculations

  10. A Novel Mach-Zehnder Interferometer Using Eccentric-Core Fiber Design for Optical Coherence Tomography.

    Science.gov (United States)

    Xiong, Qiao; Tong, Xinglin; Deng, Chengwei; Zhang, Cui; Wang, Pengfei; Zheng, Zhiyuan; Liu, Fang

    2018-05-13

    A novel Mach-Zehnder interferometer using eccentric-core fiber (ECF) design for optical coherence tomography (OCT) is proposed and demonstrated. Instead of the commercial single-mode fiber (SMF), the ECF is used as one interference arm of the implementation. Because of the offset location of the eccentric core, it is sensitive to directional bending and the optical path difference (OPD) of two interference arms can be adjusted with high precision. The birefringence of ECF is calculated and experimentally measured, which demonstrates the polarization sensitivity of the ECF proposed in the paper is similar to that of SMF. Such a structure can replace the reference optical delay line to form an all-fiber passive device. A mirror is used as a sample for analyzing the ECF bending responses of the system. Besides, four pieces of overlapping glass slides as sample are experimentally measured as well.

  11. Multipoint fiber-optic laser-ultrasonic actuator based on fiber core-opened tapers.

    Science.gov (United States)

    Tian, Jiajun; Dong, Xiaolong; Gao, Shimin; Yao, Yong

    2017-11-27

    In this study, a novel fiber-optic, multipoint, laser-ultrasonic actuator based on fiber core-opened tapers (COTs) is proposed and demonstrated. The COTs were fabricated by splicing single-mode fibers using a standard fiber splicer. A COT can effectively couple part of a core mode into cladding modes, and the coupling ratio can be controlled by adjusting the taper length. Such characteristics are used to obtain a multipoint, laser-ultrasonic actuator with balanced signal strength by reasonably controlling the taper lengths of the COTs. As a prototype, we constructed an actuator that generated ultrasound at four points with a balanced ultrasonic strength by connecting four COTs with coupling ratios of 24.5%, 33.01%, 49.51%, and 87.8% in a fiber link. This simple-to-fabricate, multipoint, laser-ultrasonic actuator with balanced ultrasound signal strength has potential applications in fiber-optic ultrasound testing technology.

  12. An algorithm and a Tool for Wavelength Allocation in OMS-SP Ring Architecture

    DEFF Research Database (Denmark)

    Riaz, Muhammad Tahir; Pedersen, Jens Myrup; Madsen, Ole Brun

    2006-01-01

    OMS-SP ring is one of the well known architectures in Wavelength Division Multiplexing based optical fiber networks. The architecture supports a restorable full mesh in an optical fiber ring using multiple light wavelengths. The paper presents an algorithm to allocate wavelengths in the OMS-SP ri...... architecture. A tool is also introduced which implements the algorithm and assigns wavelengths. The proposed algorithm uses fewer number of wavelengths than the classical allocation method. The algorithm is described and results are presented.......OMS-SP ring is one of the well known architectures in Wavelength Division Multiplexing based optical fiber networks. The architecture supports a restorable full mesh in an optical fiber ring using multiple light wavelengths. The paper presents an algorithm to allocate wavelengths in the OMS-SP ring...

  13. Analysis of Few-Mode Multi-Core Fiber Splice Behavior Using an Optical Vector Network Analyzer

    DEFF Research Database (Denmark)

    Rommel, Simon; Mendinueta, Jose Manuel Delgado; Klaus, Werner

    2017-01-01

    The behavior of splices in a 3-mode 36-core fiber is analyzed using optical vector network analysis. Time-domain response analysis confirms splices may cause significant mode-mixing, while frequency-domain analysis shows splices may affect system level mode-dependent loss both positively and negativ......The behavior of splices in a 3-mode 36-core fiber is analyzed using optical vector network analysis. Time-domain response analysis confirms splices may cause significant mode-mixing, while frequency-domain analysis shows splices may affect system level mode-dependent loss both positively...

  14. Structural and optical properties of alloyed quaternary CdSeTeS core and CdSeTeS/ZnS core–shell quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Adegoke, Oluwasesan, E-mail: adegoke.sesan@mailbox.co.za [Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Lynnwood Road, Pretoria 0002 (South Africa); Nyokong, Tebello, E-mail: t.nyokong@ru.ac.za [Department of Chemistry, Rhodes University, Grahamstown 6140 (South Africa); Forbes, Patricia B.C., E-mail: patricia.forbes@up.ac.za [Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Lynnwood Road, Pretoria 0002 (South Africa)

    2015-10-05

    Highlights: • Alloyed quaternary CdSeTeS core quantum dots (QDs) were synthesized. • Passivation was carried out using a ZnS shell. • Quaternary CdSeTeS core exhibited unique optical properties over CdSeTe/ZnS. • CdSeTeS can be employed as a useful alternative to core/shell QDs. - Abstract: Synthesis of fluorescent alloyed quantum dots (QDs) with unique optical properties suitable for a wide array of chemical, physical and biological applications is of research interest. In this work, highly luminescent and photostable alloyed quaternary CdSeTeS core QDs of two different sizes were fabricated via the organometallic hot-injection synthetic route. Characterization of the nanocrystals were performed using TEM, XRD, UV/vis and fluorescence spectrophotometric techniques. We have demonstrated in this work that the well fabricated alloyed quaternary CdSeTeS core QDs possess unique optical properties that are advantageous over conventional core/shell systems. Formation of the CdSeTeS/ZnS core/shell with the desired optical properties comes with a number of challenges, hence the advantages of the quaternary alloyed core over the core/shell QDs are (i) avoidance of the challenging process of determining the proper shell thickness which can provide the desired optical properties in the core/shell system and (ii) avoidance of the lattice-induced mismatch between the core and the shell material which can either lead to incomplete exciton confinement or dislocation at the core/shell interface.

  15. Structure and optical properties of cored wurtzite (Zn,Mg)O heteroepitaxial nanowires

    International Nuclear Information System (INIS)

    Heo, Y.W.; Abernathy, C.; Pruessner, K.; Sigmund, W.; Norton, D.P.; Overberg, M.; Ren, F.; Chisholm, M.F.

    2004-01-01

    The synthesis, structure, and optical properties of one-dimensional heteroepitaxial cored (Zn,Mg)O semiconductor nanowires grown by a catalyst-driven molecular beam epitaxy technique are discussed. The structures form spontaneously in a Zn, Mg and O 2 /O 3 flux, consisting of a single crystal, Zn-rich Zn 1-x Mg x O(x 1-y Mg y O(y>>0.02) sheath. High resolution Z-contrast scanning transmission electron microscopy shows core diameters as small as 4 nm. The cored structure forms spontaneously under constant flux due to a bimodal growth mechanism in which the core forms via bulk like vapor-liquid-solid growth, while the outer sheath grows as a heteroepitaxial layer. Temperature-dependent photoluminescence shows a slight blueshift in the near band edge peak, which is attributed to a few percent Mg doping in the nanoscale ZnO core. The catalyst-driven molecular beam epitaxy technique provides for site-specific nanorod growth on arbitrary substrates

  16. A metropolitan optical network with support for multicasting in the optical domain

    NARCIS (Netherlands)

    Dey, D.; Koonen, A.M.J.; Bochove, van A.C.; Geuzebroek, D.; Salvador, M.R.; Berghmans, F.; Thienpont, H.; Danckaert, J.; Desmet, L.

    2001-01-01

    We present the FLAMINGO1 network architecture, an all-optical wavelength-and-timeslotted Metropolitan Optical Network based on a multiple-ring topology. A couple of important aspects of this architecture include all-optical packet switching at intermediate nodes on a ring and the ability to put IP

  17. A Metropolitan Optical Network with support for multicasting in the optical domain

    NARCIS (Netherlands)

    Dey, D.; Koonen, A.M.J.; van Bochove, A.C.; Geuzebroek, D.H.; Salvador, M.R.; Thienpont, H.; Berghmans, F.; Danckaert, J.; Desmet, L.

    2001-01-01

    We present the FLAMINGO1 network architecture, an all-optical wavelength-and-timeslotted Metropolitan Optical Network based on a multiple-ring topology. A couple of important aspects of this architecture include all-optical packet switching at intermediate nodes on a ring and the ability to put IP

  18. Controllable continuous evolution of electronic states in a single quantum ring

    Science.gov (United States)

    Chakraborty, Tapash; Manaselyan, Aram; Barseghyan, Manuk; Laroze, David

    2018-02-01

    An intense terahertz laser field is shown to have a profound effect on the electronic and optical properties of quantum rings where the isotropic and anisotropic quantum rings can now be treated on equal footing. We have demonstrated that in isotropic quantum rings the laser field creates unusual Aharonov-Bohm oscillations that are usually expected in anisotropic rings. Furthermore, we have shown that intense laser fields can restore the isotropic physical properties in anisotropic quantum rings. In principle, all types of anisotropies (structural, effective masses, defects, etc.) can evolve as in isotropic rings in our present approach. Most importantly, we have found a continuous evolution of the energy spectra and intraband optical characteristics of structurally anisotropic quantum rings to those of isotropic rings in a controlled manner with the help of a laser field.

  19. Selective detection of antibodies in microstructured polymer optical fibers

    DEFF Research Database (Denmark)

    Jensen, Jesper Bo Damm; Hoiby, P.E.; Emiliyanov, Grigoriy Andreev

    2005-01-01

    was applied to selectively capture either α-streptavidin or α-CRP antibodies inside these air holes. A sensitive and easy-to-use fluorescence method was used for the optical detection. Our results show that mPOF based biosensors can provide reliable and selective antibody detection in ultra small sample......We demonstrate selective detection of fluorophore labeled antibodies from minute samples probed by a sensor layer of complementary biomolecules immobilized inside the air holes of microstructured Polymer Optical Fiber (mPOF). The fiber core is defined by a ring of 6 air holes and a simple procedure...

  20. Inductive fault current limiter based on multiple superconducting rings of small diameter

    International Nuclear Information System (INIS)

    Osorio, M R; Cabo, L; Veira, J A; Vidal, F

    2004-01-01

    We present a fault current limiter prototype based on the use of a secondary comprised of an array of magnetic cores of small sections, each one of them with several superconducting rings. The main advantage of this configuration is that it is easier to make small diameter superconducting rings which, in addition, are more homogeneous and allow better refrigeration. We then present detailed measurements that show that, in addition to these advantages, this prototype offers the same limitation performances than when using a unique core and a superconducting ring with an equivalent area as the array of small section cores

  1. On the evolution of vortex rings with swirl

    International Nuclear Information System (INIS)

    Naitoh, Takashi; Okura, Nobuyuki; Gotoh, Toshiyuki; Kato, Yusuke

    2014-01-01

    A laminar vortex ring with swirl, which has the meridional velocity component inside the vortex core, was experimentally generated by the brief fluid ejection from a rotating outlet. The evolution of the vortex ring was investigated with flow visualizations and particle image velocimetry measurements in order to find the influence of swirling flow in particular upon the transition to turbulence. Immediately after the formation of a vortex ring with swirl, a columnar strong vortex along the symmetric axis is observed in all cases of the present experiment. Then the characteristic fluid discharging from a vortex ring with swirl referred to as “peeling off” appears. The amount of discharging fluid due to the “peeling off” increases with the angular velocity of the rotating outlet. We conjectured that the mechanism generating the “peeling off” is related to the columnar strong vortex by close observations of the spatio-temporal development of the vorticity distribution and the cutting 3D images constructed from the successive cross sections of a vortex ring. While a laminar vortex ring without swirl may develop azimuthal waves around its circumference at some later time and the ring structure subsequently breaks, the swirling flow in a vortex ring core reduces the amplification rate of the azimuthal wavy deformation and preserved its ring structure. Then the traveling distance of a vortex ring can be extended using the swirl flow under certain conditions

  2. On the evolution of vortex rings with swirl

    Energy Technology Data Exchange (ETDEWEB)

    Naitoh, Takashi, E-mail: naitoh.takashi@nitech.ac.jp [Department of Engineering Physics, Electronics and Mechanics, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Okura, Nobuyuki, E-mail: ohkura@meijo-u.ac.jp [Department of Vehicle and Mechanical Engineering, Meijo University, 1-501 Shiogamaguchi Tempaku-ku, Nagoya 468-8502 (Japan); Gotoh, Toshiyuki, E-mail: gotoh.toshiyuki@nitech.ac.jp [Department of Scientific and Engineering Simulation, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Kato, Yusuke [Controller Business Unit Engineering Division 1, Engineering Department 3, Denso Wave Incorporated, 1 Yoshiike Kusagi Agui-cho, Chita-gun Aichi 470-2297 (Japan)

    2014-06-15

    A laminar vortex ring with swirl, which has the meridional velocity component inside the vortex core, was experimentally generated by the brief fluid ejection from a rotating outlet. The evolution of the vortex ring was investigated with flow visualizations and particle image velocimetry measurements in order to find the influence of swirling flow in particular upon the transition to turbulence. Immediately after the formation of a vortex ring with swirl, a columnar strong vortex along the symmetric axis is observed in all cases of the present experiment. Then the characteristic fluid discharging from a vortex ring with swirl referred to as “peeling off” appears. The amount of discharging fluid due to the “peeling off” increases with the angular velocity of the rotating outlet. We conjectured that the mechanism generating the “peeling off” is related to the columnar strong vortex by close observations of the spatio-temporal development of the vorticity distribution and the cutting 3D images constructed from the successive cross sections of a vortex ring. While a laminar vortex ring without swirl may develop azimuthal waves around its circumference at some later time and the ring structure subsequently breaks, the swirling flow in a vortex ring core reduces the amplification rate of the azimuthal wavy deformation and preserved its ring structure. Then the traveling distance of a vortex ring can be extended using the swirl flow under certain conditions.

  3. A Study on the Plasmonic Properties of Silver Core Gold Shell Nanoparticles: Optical Assessment of the Particle Structure

    Science.gov (United States)

    Mott, Derrick; Lee, JaeDong; Thi Bich Thuy, Nguyen; Aoki, Yoshiya; Singh, Prerna; Maenosono, Shinya

    2011-06-01

    This paper reports a qualitative comparison between the optical properties of a set of silver core, gold shell nanoparticles with varying composition and structure to those calculated using the Mie solution. To achieve this, silver nanoparticles were synthesized in aqueous phase from a silver hydroxide precursor with sodium acrylate as dual reducing-capping agent. The particles were then coated with a layer of gold with controllable thickness through a reduction-deposition process. The resulting nanoparticles reveal well defined optical properties that make them suitable for comparison to ideal calculated results using the Mie solution. The discussion focuses on the correlation between the synthesized core shell nanoparticles with varying Au shell thickness and the Mie solution results in terms of the optical properties. The results give insight in how to design and synthesize silver core, gold shell nanoparticles with controllable optical properties (e.g., SPR band in terms of intensity and position), and has implications in creating nanoparticle materials to be used as biological probes and sensing elements.

  4. Magnetic ring for stripping enhancement

    International Nuclear Information System (INIS)

    Selph, F.

    1992-10-01

    A ring designed to recycle ions through a stripping medium offers the possibility for increasing output of the desired charge state by up to 4x. This could be a very important component of a Radioactive Nuclear Beam Facility. In order for such a ring to work effectively it must satisfy certain design conditions. These include achromaticity at the stripper, a dispersed region for an extraction magnet, and a number of first and higher order optics constraints which are necessary to insure that the beam emittance is not degraded unduly by the ring. An example is given of a candidate design of a stripping ring

  5. Realizing A Mid-Infrared Optically Pumped Molecular Gas Laser Inside Hollow-Core Photonic Crystal Fiber

    Science.gov (United States)

    2012-01-01

    structure resembling a star- of- David pattern can clearly be seen surrounding the hollow core region. The fiber’s hollow core is created by leaving out...O.R. Wood, An optically pumped CO2 laser. IEEE Journal of Quantum Electronics, 1972. 8(6): p. 598. 19. Schlossberg, H.R. and H.R. Fetterman

  6. A fiber-optic sensor based on no-core fiber and Faraday rotator mirror structure

    Science.gov (United States)

    Lu, Heng; Wang, Xu; Zhang, Songling; Wang, Fang; Liu, Yufang

    2018-05-01

    An optical fiber sensor based on the single-mode/no-core/single-mode (SNS) core-offset technology along with a Faraday rotator mirror structure has been proposed and experimentally demonstrated. A transverse optical field distribution of self-imaging has been simulated and experimental parameters have been selected under theoretical guidance. Results of the experiments demonstrate that the temperature sensitivity of the sensor is 0.0551 nm/°C for temperatures between 25 and 80 °C, and the correlation coefficient is 0.99582. The concentration sensitivity of the device for sucrose and glucose solutions was found to be as high as 12.5416 and 6.02248 nm/(g/ml), respectively. Curves demonstrating a linear fit between wavelength shift and solution concentration for three different heavy metal solutions have also been derived on the basis of experimental results. The proposed fiber-optic sensor design provides valuable guidance for the measurement of concentration and temperature.

  7. The Hi-Ring architecture for datacentre networks

    DEFF Research Database (Denmark)

    Galili, Michael; Kamchevska, Valerija; Ding, Yunhong

    2016-01-01

    This paper summarizes recent work on a hierarchical ring-based network architecture (Hi-Ring) for datacentre and short-range applications. The architecture allows leveraging benefits of optical switching technologies while maintaining a high level of connection granularity. We discuss results...

  8. A numerical study of viscous vortex rings using a spectral method

    Science.gov (United States)

    Stanaway, S. K.; Cantwell, B. J.; Spalart, Philippe R.

    1988-01-01

    Viscous, axisymmetric vortex rings are investigated numerically by solving the incompressible Navier-Stokes equations using a spectral method designed for this type of flow. The results presented are axisymmetric, but the method is developed to be naturally extended to three dimensions. The spectral method relies on divergence-free basis functions. The basis functions are formed in spherical coordinates using Vector Spherical Harmonics in the angular directions, and Jacobi polynomials together with a mapping in the radial direction. Simulations are performed of a single ring over a wide range of Reynolds numbers (Re approximately equal gamma/nu), 0.001 less than or equal to 1000, and of two interacting rings. At large times, regardless of the early history of the vortex ring, it is observed that the flow approaches a Stokes solution that depends only on the total hydrodynamic impulse, which is conserved for all time. At small times, from an infinitely thin ring, the propagation speeds of vortex rings of varying Re are computed and comparisons are made with the asymptotic theory by Saffman. The results are in agreement with the theory; furthermore, the error is found to be smaller than Saffman's own estimate by a factor square root ((nu x t)/R squared) (at least for Re=0). The error also decreases with increasing Re at fixed core-to-ring radius ratio, and appears to be independent of Re as Re approaches infinity). Following a single ring, with Re=500, the vorticity contours indicate shedding of vorticity into the wake and a settling of an initially circular core to a more elliptical shape, similar to Norbury's steady inviscid vortices. Finally, we consider the case of leapfrogging vortex rings with Re=1000. The results show severe straining of the inner vortex core in the first pass and merging of the two cores during the second pass.

  9. Compact 6 dB Two-Color Continuous Variable Entangled Source Based on a Single Ring Optical Resonator

    Directory of Open Access Journals (Sweden)

    Ning Wang

    2018-02-01

    Full Text Available Continuous-variable entangled optical beams at the degenerate wavelength of 0.8 μm or 1.5 μm have been investigated extensively, but separately. The two-color entangled states of these two useful wavelengths, with sufficiently high degrees of entanglement, still lag behind. In this work, we analyze the various limiting factors that affect the entanglement degree. On the basis of this, we successfully achieve 6 dB of two-color quadrature entangled light beams by improving the escape efficiency of the nondegenerate optical amplifier, the stability of the phase-locking servo system, and the detection efficiency. Our entangled source is constructed only from a single ring optical resonator, and thus is highly compact, which is suitable for applications in long-distance quantum communication networks.

  10. Radar imaging of Saturn's rings

    Science.gov (United States)

    Nicholson, Philip D.; French, Richard G.; Campbell, Donald B.; Margot, Jean-Luc; Nolan, Michael C.; Black, Gregory J.; Salo, Heikki J.

    2005-09-01

    We present delay-Doppler images of Saturn's rings based on radar observations made at Arecibo Observatory between 1999 and 2003, at a wavelength of 12.6 cm and at ring opening angles of 20.1°⩽|B|⩽26.7°. The average radar cross-section of the A ring is ˜77% relative to that of the B ring, while a stringent upper limit of 3% is placed on the cross-section of the C ring and 9% on that of the Cassini Division. These results are consistent with those obtained by Ostro et al. [1982, Icarus 49, 367-381] from radar observations at |B|=21.4°, but provide higher resolution maps of the rings' reflectivity profile. The average cross-section of the A and B rings, normalized by their projected unblocked area, is found to have decreased from 1.25±0.31 to 0.74±0.19 as the rings have opened up, while the circular polarization ratio has increased from 0.64±0.06 to 0.77±0.06. The steep decrease in cross-section is at variance with previous radar measurements [Ostro et al., 1980, Icarus 41, 381-388], and neither this nor the polarization variations are easily understood within the framework of either classical, many-particle-thick or monolayer ring models. One possible explanation involves vertical size segregation in the rings, whereby observations at larger elevation angles which see deeper into the rings preferentially see the larger particles concentrated near the rings' mid-plane. These larger particles may be less reflective and/or rougher and thus more depolarizing than the smaller ones. Images from all four years show a strong m=2 azimuthal asymmetry in the reflectivity of the A ring, with an amplitude of ±20% and minima at longitudes of 67±4° and 247±4° from the sub-Earth point. We attribute the asymmetry to the presence of gravitational wakes in the A ring as invoked by Colombo et al. [1976, Nature 264, 344-345] to explain the similar asymmetry long seen at optical wavelengths. A simple radiative transfer model suggests that the enhancement of the azimuthal

  11. An experimental study of the fabrication of polycarbonate optical waveguides

    Science.gov (United States)

    Chen, Jianguo; Zhang, Xiao-yang; Zhang, Tong; Zhu, Jing-song; Wu, Peng-qin; Zhou, Jing-lun; Fan, Jiang-feng; Yan, Hao-feng

    2008-12-01

    A novel polycarbonate (PC) was introduced to apply in the optical waveguide devices. PC has following distinct merits than common polycarbonate: good processability, high thermal stability up to 293 C° and high optical transparency. Optical properties of absorption behavior and propagation loss were investigated in slab waveguides, and low propagation losses of 0.335 dB/cm (@1550nm) and 0.197 dB/cm @632.8nm) have been achieved by using prismcoupler. Additionally, straight optical waveguide and MMI coupler of ring resonator were fabricated using ultraviolet (UV) cured resin Norland optical adhesive 61 (NOA61) as under or upper cladding layer and polycarbonate as waveguide core-layer material through conventional methods such as spin coating, photolithography and reactive ion etching (RIE). The process was studied in detail and the experimental results were given.

  12. Use of a reflective semiconductor optical amplifier and dual-ring architecture design to produce a stable multi-wavelength fiber laser

    International Nuclear Information System (INIS)

    Yeh, Chien-Hung; Chow, Chi-Wai; Lu, Shao-Sheng

    2014-01-01

    In this work, we propose and demonstrate a multi-wavelength laser source produced by utilizing a C-band reflective semiconductor optical amplifier (RSOA) with a dual-ring fiber cavity. Here, the laser cavity consists of an RSOA, a 1 × 2 optical coupler, a 2 × 2 optical coupler and a polarization controller. As a result, thirteen to eighteen wavelengths around the L band could be generated simultaneously when the bias current of the C-band RSOA was driven at 30–70 mA. In addition, the output stabilities of the power and wavelength are also discussed. (paper)

  13. Use of a reflective semiconductor optical amplifier and dual-ring architecture design to produce a stable multi-wavelength fiber laser

    Science.gov (United States)

    Yeh, Chien-Hung; Chow, Chi-Wai; Lu, Shao-Sheng

    2014-05-01

    In this work, we propose and demonstrate a multi-wavelength laser source produced by utilizing a C-band reflective semiconductor optical amplifier (RSOA) with a dual-ring fiber cavity. Here, the laser cavity consists of an RSOA, a 1 × 2 optical coupler, a 2 × 2 optical coupler and a polarization controller. As a result, thirteen to eighteen wavelengths around the L band could be generated simultaneously when the bias current of the C-band RSOA was driven at 30-70 mA. In addition, the output stabilities of the power and wavelength are also discussed.

  14. An in-fiber integrated optofluidic device based on an optical fiber with an inner core.

    Science.gov (United States)

    Yang, Xinghua; Yuan, Tingting; Teng, Pingping; Kong, Depeng; Liu, Chunlan; Li, Entao; Zhao, Enming; Tong, Chengguo; Yuan, Libo

    2014-06-21

    A new kind of optofluidic in-fiber integrated device based on a specially designed hollow optical fiber with an inner core is designed. The inlets and outlets are built by etching the surface of the optical fiber without damaging the inner core. A reaction region between the end of the fiber and a solid point obtained after melting is constructed. By injecting samples into the fiber, the liquids can form steady microflows and react in the region. Simultaneously, the emission from the chemiluminescence reaction can be detected from the remote end of the optical fiber through evanescent field coupling. The concentration of ascorbic acid (AA or vitamin C, Vc) is determined by the emission intensity of the reaction of Vc, H2O2, luminol, and K3Fe(CN)6 in the optical fiber. A linear sensing range of 0.1-3.0 mmol L(-1) for Vc is obtained. The emission intensity can be determined within 2 s at a total flow rate of 150 μL min(-1). Significantly, this work presents information for the in-fiber integrated optofluidic devices without spatial optical coupling.

  15. Study of the use of methanol-filled Er-doped suspended-core fibres in a temperature-sensing ring laser system

    International Nuclear Information System (INIS)

    Martín, J C; Berdejo, V; Vallés, J A; Sánchez-Martín, J A; Díez, A; Andrés, M V

    2013-01-01

    We report on an experimental/numerical investigation into the use of methanol-filled Er-doped suspended-core fibres (SCFs) in temperature-sensing ring laser systems. We have adopted a ring laser configuration that includes an Er-doped SCF as a temperature-dependent attenuator (TDA) with a step-index Er-doped fibre (EDF) as the laser active medium. The laser performance dependence on the temperature was measured both in continuous wave (CW) and transient regimes. CW laser output power and build-up time values are compared with those of similar laser systems based on other types of Er-doped PCFs or using other laser configurations. A notable variation of 0.73% °C −1 was achieved in CW operation. Then, by means of parameters obtained by numerically fitting the experimental results, the potential sensing performance of the laser configuration with an SCF as a TDA is studied. Moreover, two ring cavity laser configurations (with the SCF acting basically as an attenuator or also as the active media) are compared and the influence of the position of the coupler inside the ring cavity and the contribution of the erbium doping to improve the sensor features are analysed. The longer interaction lengths compatible with laser action using the Er-doped SCF as a TDA could provide variations of laser output power up to 8.6% °C −1 for 90 mW pump power and a 1 m methanol-filled SCF. (paper)

  16. Physics of quantum rings

    International Nuclear Information System (INIS)

    Fomin, Vladimir M.

    2014-01-01

    Presents the new class of materials of quantum rings. Provides an elemental basis for low-cost high-performance devices promising for electronics, optoelectronics, spintronics and quantum information processing. Explains the physical properties of quantum rings to cover a gap in scientific literature. Presents the application of most advanced nanoengineering and nanocharacterization techniques. This book deals with a new class of materials, quantum rings. Innovative recent advances in experimental and theoretical physics of quantum rings are based on the most advanced state-of-the-art fabrication and characterization techniques as well as theoretical methods. The experimental efforts allow to obtain a new class of semiconductor quantum rings formed by capping self-organized quantum dots grown by molecular beam epitaxy. Novel optical and magnetic properties of quantum rings are associated with non-trivial topologies at the nanoscale. An adequate characterization of quantum rings is possible on the basis of modern characterization methods of nanostructures, such as Scanning Tunneling Microscopy. A high level of complexity is demonstrated to be needed for a dedicated theoretical model to adequately represent the specific features of quantum rings. The findings presented in this book contribute to develop low-cost high-performance electronic, spintronic, optoelectronic and information processing devices based on quantum rings.

  17. How does the blue-ringed octopus (Hapalochlaena lunulata) flash its blue rings?

    Science.gov (United States)

    Mäthger, Lydia M; Bell, George R R; Kuzirian, Alan M; Allen, Justine J; Hanlon, Roger T

    2012-11-01

    The blue-ringed octopus (Hapalochlaena lunulata), one of the world's most venomous animals, has long captivated and endangered a large audience: children playing at the beach, divers turning over rocks, and biologists researching neurotoxins. These small animals spend much of their time in hiding, showing effective camouflage patterns. When disturbed, the octopus will flash around 60 iridescent blue rings and, when strongly harassed, bite and deliver a neurotoxin that can kill a human. Here, we describe the flashing mechanism and optical properties of these rings. The rings contain physiologically inert multilayer reflectors, arranged to reflect blue-green light in a broad viewing direction. Dark pigmented chromatophores are found beneath and around each ring to enhance contrast. No chromatophores are above the ring; this is unusual for cephalopods, which typically use chromatophores to cover or spectrally modify iridescence. The fast flashes are achieved using muscles under direct neural control. The ring is hidden by contraction of muscles above the iridophores; relaxation of these muscles and contraction of muscles outside the ring expose the iridescence. This mechanism of producing iridescent signals has not previously been reported in cephalopods and we suggest that it is an exceptionally effective way to create a fast and conspicuous warning display.

  18. Electron mobility limited by optical phonons in wurtzite InGaN/GaN core-shell nanowires

    Science.gov (United States)

    Liu, W. H.; Qu, Y.; Ban, S. L.

    2017-09-01

    Based on the force-balance and energy-balance equations, the optical phonon-limited electron mobility in InxGa1-xN/GaN core-shell nanowires (CSNWs) is discussed. It is found that the electrons tend to distribute in the core of the CSNWs due to the strong quantum confinement. Thus, the scattering from first kind of the quasi-confined optical (CO) phonons is more important than that from the interface (IF) and propagating (PR) optical phonons. Ternary mixed crystal and size effects on the electron mobility are also investigated. The results show that the PR phonons exist while the IF phonons disappear when the indium composition x < 0.047, and vice versa. Accordingly, the total electron mobility μ first increases and then decreases with indium composition x, and reaches a peak value of approximately 3700 cm2/(V.s) when x = 0.047. The results also show that the mobility μ increases as increasing the core radius of CSNWs due to the weakened interaction between the electrons and CO phonons. The total electron mobility limited by the optical phonons exhibits an obvious enhancement as decreasing temperature or increasing line electron density. Our theoretical results are expected to be helpful to develop electronic devices based on CSNWs.

  19. Micro-photoluminescence of GaAs/AlGaAs triple concentric quantum rings.

    Science.gov (United States)

    Abbarchi, Marco; Cavigli, Lucia; Somaschini, Claudio; Bietti, Sergio; Gurioli, Massimo; Vinattieri, Anna; Sanguinetti, Stefano

    2011-10-31

    A systematic optical study, including micro, ensemble and time resolved photoluminescence of GaAs/AlGaAs triple concentric quantum rings, self-assembled via droplet epitaxy, is presented. Clear emission from localized states belonging to the ring structures is reported. The triple rings show a fast decay dynamics, around 40 ps, which is expected to be useful for ultrafast optical switching applications.

  20. Verification Results of Safety-grade Optical Modem for Core Protection Calculator (CPC) in Korea Standard Nuclear Power Plant (KSNP)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jangyeol; Son, Kwangseop; Lee, Youngjun; Cheon, Sewoo; Cha, Kyoungho; Lee, Jangsoo; Kwon, Keechoon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    We confirmed that the coverage criteria for a safety-grade optical modem of a Core Protection Calculator is satisfactory using a traceability analysis matrix between high-level requirements and lower-level system test case data set. This paper describes the test environment, test components and items, a traceability analysis, and system tests as a result of system verification and validation based on Software Requirement Specifications (SRS) for a safety-grade optical modem of a Core Protection Calculator (CPC) in a Korea Standard Nuclear Power Plant (KSNP), and Software Design Specifications (SDS) for a safety-grade optical modem of a CPC in a KSNP. All tests were performed according to the test plan and test procedures. Functional testing, performance testing, event testing, and scenario based testing for a safety-grade optical modem of a Core Protection Calculator in a Korea Standard Nuclear Power Plant as a thirty-party verifier were successfully performed.

  1. Ion optics and beam dynamics optimization at the HESR storage ring for the SPARC experiments with highly charged heavy ions

    International Nuclear Information System (INIS)

    Kovalenko, Oleksandr

    2015-01-01

    The High-Energy Storage Ring (HESR) is a part of an upcoming International Facility for Antiproton and Ion Research (FAIR) at GSI in Darmstadt. A key part of a scientific program, along with antiproton physics, will be physics with highly-charged heavy ions. Phase-space cooled beams together with fixed internal target will provide an excellent environment for storage ring experiments at the HESR for the SPARC collaboration. Until recently, however, the existing ion optical lattice for the HESR was designed only for the experiments with antiproton beams. The thesis presents a new ion optical mode developed specifically for the operation of the HESR with highly charged heavy ions. The presence of the errors, such as beam momentum spread, magnetic field impurities or magnets misalignments, leads to disruption of beam dynamics: exciting of resonant motion and loss of beam stability. Within the paper, these effects are investigated with the help of numerical codes for particle accelerator design and simulation MAD-X and MIRKO. A number of correction techniques are applied to minimize the nonlinear impact on the beam dynamics and improve the experimental conditions. The application of the analytical and numerical tools is demonstrated in the experiment with uranium U 90+ beam at the existing storage ring ESR, GSI.

  2. Ion optics and beam dynamics optimization at the HESR storage ring for the SPARC experiments with highly charged heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Kovalenko, Oleksandr

    2015-06-24

    The High-Energy Storage Ring (HESR) is a part of an upcoming International Facility for Antiproton and Ion Research (FAIR) at GSI in Darmstadt. A key part of a scientific program, along with antiproton physics, will be physics with highly-charged heavy ions. Phase-space cooled beams together with fixed internal target will provide an excellent environment for storage ring experiments at the HESR for the SPARC collaboration. Until recently, however, the existing ion optical lattice for the HESR was designed only for the experiments with antiproton beams. The thesis presents a new ion optical mode developed specifically for the operation of the HESR with highly charged heavy ions. The presence of the errors, such as beam momentum spread, magnetic field impurities or magnets misalignments, leads to disruption of beam dynamics: exciting of resonant motion and loss of beam stability. Within the paper, these effects are investigated with the help of numerical codes for particle accelerator design and simulation MAD-X and MIRKO. A number of correction techniques are applied to minimize the nonlinear impact on the beam dynamics and improve the experimental conditions. The application of the analytical and numerical tools is demonstrated in the experiment with uranium U{sup 90+} beam at the existing storage ring ESR, GSI.

  3. Detection of temperature rise at 4.2K by using a dual-core optical fiber-an optical method to detect a quench of a superconducting magnet

    International Nuclear Information System (INIS)

    Tsukamoto, O.; Kokubun, Y.; Toyama, T.

    1986-01-01

    We performed an experiment to detect a temperature rise at cryogenic temperature using a dual-core optical fiber. This fiber has two single-mode optical cores in one fiber. We demonstrated that a temperature rise of 4 K was detectable at 4.2 K. The sensitivity of this method can be improved using a longer fiber. This method may be applicable as a quench detector for superconducting magnets. A quench detector using this optical method is immune from electromagnetic noise, free from troubles caused by break-down of electrical insulator, and has many advantages over a conventional quench detector measuring voltages of a magnet

  4. Linear and nonlinear magneto-optical properties of an off-center single dopant in a spherical core/shell quantum dot

    Science.gov (United States)

    Feddi, E.; Talbi, A.; Mora-Ramos, M. E.; El Haouari, M.; Dujardin, F.; Duque, C. A.

    2017-11-01

    Using the effective mass approximation and a variational procedure, we have investigated the nonlinear optical absorption coefficient and the relative refractive index changes associated to a single dopant confined in core/shell quantum dots considering the influences of the core/shell dimensions, externally applied magnetic field, and dielectric mismatch. The results show that the optical absorption coefficient and the coefficients of relative refractive index change depend strongly on the core/shell sizes and they are blue shifted when the spatial confinement increases so this effect is magnified by higher structural dimensions. Additionally, it is obtained that both studied optical properties are sensitive to the dielectric environment in such a way that their amplitudes are very affected by the local field corrections.

  5. CO2 laser-induced directional recrystallization to produce single crystal silicon-core optical fibers with low loss

    OpenAIRE

    Healy, Noel; Fokine, Michael; Franz, Yohann; Hawkins, Thomas; Jones, Maxwell; Ballato, John; Peacock, Anna C.; Gibson, Ursula J.

    2016-01-01

    Reduced losses in silicon-core fibers are obtained using CO2 laser directional recrystallization of the core. Single crystals with aspect ratios up to 1500:1 are reported, limited by the scan range of the equipment. This processing technique holds promise for bringing crystalline silicon-core fibers to a central role in nonlinear optics and signal processing applications.

  6. Ring interferometry

    CERN Document Server

    Malykin, Grigorii B; Zhurov, Alexei

    2013-01-01

    This monograph is devoted to the creation of a comprehensive formalism for quantitative description of polarized modes' linear interaction in modern single-mode optic fibers. The theory of random connections between polarized modes, developed in the monograph, allows calculations of the zero shift deviations for a fiber ring interferometer. The monograph addresses also the

  7. Antifouling leaching technique for optical lenses

    Science.gov (United States)

    Strahle, William J.; Perez, C. L.; Martini, Marinna A.

    1994-01-01

    The effectiveness of optical lenses deployed in water less than 100 m deep is significantly reduced by biofouling caused by the settlement of macrofauna, such as barnacles, hydroids, and tunicates. However, machineable porous plastic rings can be used to dispense antifoulant into the water in front of the lens to retard macrofaunal growth without obstructing the light path. Unlike coatings which can degrade the optical performance, antifouling rings do not interfere with the instrument optics. The authors have designed plastic, reusable cup-like antifouling rings to slip over the optical lenses of a transmissometer. These rings have been used for several deployments on shallow moorings in Massachusetts Bay, MA and have increased the time before fouling degrades optical characteristics

  8. New method to evaluate optical properties of core-shell nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Renteria-Tapia, V. [Universidad de Guadalajara, Ameca, Departamento de Ciencias Naturales y Exactas, Centro Universitario de Los Valles (Mexico); Franco, A., E-mail: alfredofranco@fisica.unam.mx; Garcia-Macedo, J. [Universidad Nacional Autonoma de Mexico, Departamento de Estado Solido, Instituto de Fisica (Mexico)

    2012-06-15

    A new method is presented to calculate, for metallic core-dielectric shell nanostructures, the local refractive index, resonance condition, maximum spectral shift, plasma wavelength, and the sensitivity of the wavelength maximum to variations in the refractive index of the environment. The equations that describe these properties are directly related to the surface plasmon peak position, refractive index of the shell, and to the surrounding medium. The method is based on the approach that a layered core dispersed in a dielectric environment (core-shell model) can be figured out as an uncoated sphere dispersed in a medium with a local refractive index (local refractive index model). Thus, in the Mie theory, the same spectral position of the surface plasmon resonance peak can be obtained by varying the volume fraction of the shell or by varying the local refractive index. The assumed equivalence between plasmon resonance wavelengths enable us to show that the local refractive index depends geometrically on the shell volume fraction. Hence, simple relationships between optical and geometrical properties of these core-shell nanostructures are obtained. Furthermore, good agreement is observed between the new relationships and experimental data corresponding to gold nanoparticles (radius = 7.5 nm) covered with silica shells (with thicknesses up to 29.19 nm), which insured that the equivalence hypothesis is correct.

  9. Fermi energy dependence of the optical emission in core/shell InAs nanowire homostructures

    Science.gov (United States)

    Möller, M.; Oliveira, D. S.; Sahoo, P. K.; Cotta, M. A.; Iikawa, F.; Motisuke, P.; Molina-Sánchez, A.; de Lima, M. M., Jr.; García-Cristóbal, A.; Cantarero, A.

    2017-07-01

    InAs nanowires grown by vapor-liquid-solid (VLS) method are investigated by photoluminescence. We observe that the Fermi energy of all samples is reduced by ˜20 meV when the size of the Au nanoparticle used for catalysis is increased from 5 to 20 nm. Additional capping with a thin InP shell enhances the optical emission and does not affect the Fermi energy. The unexpected behavior of the Fermi energy is attributed to the differences in the residual donor (likely carbon) incorporation in the axial (low) and lateral (high incorporation) growth in the VLS and vapor-solid (VS) methods, respectively. The different impurity incorporation rate in these two regions leads to a core/shell InAs homostructure. In this case, the minority carriers (holes) diffuse to the core due to the built-in electric field created by the radial impurity distribution. As a result, the optical emission is dominated by the core region rather than by the more heavily doped InAs shell. Thus, the photoluminescence spectra and the Fermi energy become sensitive to the core diameter. These results are corroborated by a theoretical model using a self-consistent method to calculate the radial carrier distribution and Fermi energy for distinct diameters of Au nanoparticles.

  10. A method for simultaneous linear optics and coupling correction for storage rings with turn-by-turn beam position monitor data

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xi [Brookhaven National Laboratory, Upton, Long Island, NY 11973 (United States); Huang, Xiaobiao, E-mail: xiahuang@slac.stanford.edu [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)

    2016-08-21

    We propose a method to simultaneously correct linear optics errors and linear coupling for storage rings using turn-by-turn (TbT) beam position monitor (BPM) data. The independent component analysis (ICA) method is used to isolate the betatron normal modes from the measured TbT BPM data. The betatron amplitudes and phase advances of the projections of the normal modes on the horizontal and vertical planes are then extracted, which, combined with dispersion measurement, are used to fit the lattice model. The fitting results are used for lattice correction. The method has been successfully demonstrated on the NSLS-II storage ring.

  11. A method for simultaneous linear optics and coupling correction for storage rings with turn-by-turn beam position monitor data

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xi [Brookhaven National Lab. (BNL), Upton, NY (United States); Huang, Xiaobiao [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2016-08-01

    We propose a method to simultaneously correct linear optics errors and linear coupling for storage rings using turn-by-turn (TbT) beam position monitor (BPM) data. The independent component analysis (ICA) method is used to isolate the betatron normal modes from the measured TbT BPM data. The betatron amplitudes and phase advances of the projections of the normal modes on the horizontal and vertical planes are then extracted, which, combined with dispersion measurement, are used to fit the lattice model. Furthermore, the fitting results are used for lattice correction. Our method has been successfully demonstrated on the NSLS-II storage ring.

  12. Development of the inductive ring susceptor technique for sustaining oxide melts

    International Nuclear Information System (INIS)

    Copus, E.R.

    1983-09-01

    A method for melting and sustaining large volumes of UO 2 has been developed at Sandia. This capability will greatly enhance reactor safety studies in the areas of ex-vessel interactions and degraded core retention by providing out-of-pile simulation for the decay heat process that is inherent to reactor core debris. The method, referred to as the Inductive Ring Susceptor Technique, melts UO 2 powder via inductively heated susceptor rings fashioned from highly conductive refractory metal. These rings are embedded in the non-conductive charge material. Placement of the rings is designed for optimum heat transfer and a controlled pool-type geometry. The technique has been demonstrated by a series of sustained oxide melt experiments

  13. Propellers in Saturn's rings

    Science.gov (United States)

    Sremcevic, M.; Stewart, G. R.; Albers, N.; Esposito, L. W.

    2013-12-01

    Theoretical studies and simulations have demonstrated the effects caused by objects embedded in planetary rings. Even if the objects are too small to be directly observed, each creates a much larger gravitational imprint on the surrounding ring material. These strongly depend on the mass of the object and range from "S" like propeller-shaped structures for about 100m-sized icy bodies to the opening of circumferential gaps as in the case of the embedded moons Pan and Daphnis and their corresponding Encke and Keeler Gaps. Since the beginning of the Cassini mission many of these smaller objects (~data from Cassini Ultraviolet Imaging Spectrograph (UVIS) and Imaging Science Subsystem (ISS) experiments. We show evidence that B ring seems to harbor two distinct populations of propellers: "big" propellers covering tens of degrees in azimuth situated in the densest part of B ring, and "small" propellers in less dense inner B ring that are similar in size and shape to known A ring propellers. The population of "big" propellers is exemplified with a single object which is observed for 5 years of Cassini data. The object is seen as a very elongated bright stripe (40 degrees wide) in unlit Cassini images, and dark stripe in lit geometries. In total we report observing the feature in images at 18 different epochs between 2005 and 2010. In UVIS occultations we observe this feature as an optical depth depletion in 14 out of 93 occultation cuts at corrotating longitudes compatible with imaging data. Combining the available Cassini data we infer that the object is a partial gap located at r=112,921km embedded in the high optical depth region of the B ring. The gap moves at Kepler speed appropriate for its radial location. Radial offsets of the gap locations in UVIS occultations are consistent with an asymmetric propeller shape. The asymmetry of the observed shape is most likely a consequence of the strong surface mass density gradient, as the feature is located at an edge between

  14. Growth of optical transmission loss at 850 nm in silica core optical fibers during fission reactor irradiation

    International Nuclear Information System (INIS)

    Shikama, T.; Narui, M.; Sagawa, T.

    1998-01-01

    Pure, OH-doped and F-doped silica core optical fibers were irradiated in a fission reactor at 400±10 K using an electric heater at a reactor power greater than 10 MW (20% of the full power). The temperature was not controlled well at the early stage of the reactor startup, when the temperature was about 320-340 K. The optical fibers were irradiated with a fast neutron (E>1 MeV) flux of 3.2 x 10 17 n/cm 2 s and a gamma dose rate of 3 x 10 3 Gy/s for 527 h. Optical transmission loss at 850 nm was measured in situ during irradiation. A prompt increase in optical transmission loss was observed as irradiation started, which was probably due to dynamic irradiation effects caused by short-lived and transient defects and is probably recoverable when irradiation ceases. After the prompt increase in optical transmission loss, a so-called radiation hardening was observed in fibers containing OH. Radiation hardening was also observed in 900 ppm OH-doped fiber at the second startup. The optical transmission loss increased linearly with irradiation dose, denoted as the accumulated loss, which we believe is due to irradiation-induced long-lived defects. Accumulated loss dominates radiation-induced optical transmission loss in a fission reactor irradiation. (orig.)

  15. Orthogonal linear polarization tunable-beat ring laser with a superluminescent diode

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Y.; Yoshino, T. [Department of Electronic Engineering, Faculty of Engineering, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376 (Japan)

    1997-09-01

    An orthogonal linear polarization operated ring laser with a superluminescent diode has been demonstrated to generate a tunable optical beat signal. The ring cavity contains a superluminescent diode as the optical gain medium, Faraday rotators, and a variable phase retarder (Babinet-Soleil compensator). By controlling the retarder, we changed the beat frequency in the range from a few tens of megahertz to 100 MHz. {copyright} 1997 Optical Society of America

  16. Isotope Reanalysis for 20th century: Reproduction of isotopic time series in corals, tree-rings, and tropical ice cores

    Science.gov (United States)

    Yoshimura, K.

    2012-04-01

    In the present study, an isotope-incorporated GCM simulation for AD1871 to AD2008 nudged toward the so-called "20th Century Reanalysis (20CR)" atmospheric fields is conducted. Beforehand the long-term integration, a method to downscale ensemble mean fields is proposed, since 20CR is a product of 56-member ensemble Kalman filtering data assimilation. The method applies a correction to one of the ensemble members in such a way that the seasonal mean is equal to that of the ensemble mean, and then the corrected member is inputted into the isotope-incorporated GCM (i.e., IsoGSM) with the global spectral nudging technique. Use of the method clearly improves the skill than the cases of using only a single member and of using the ensemble means; the skill becomes equivalent to when 3-6 members are directly used. By comparing with GNIP precipitation isotope database, it is confirmed that the 20C Isotope Reanalysis's performance for latter half of the 20th century is just comparable to the other latest studies. For more comparisons for older periods, proxy records including corals, tree-rings, and tropical ice cores are used. First for corals: the 20C Isotope Reanalysis successfully reproduced the δ18O in surface sea water recorded in the corals at many sites covering large parts of global tropical oceans. The comparison suggests that coral records represent past hydrologic balance information where interannual variability in precipitation is large. Secondly for tree-rings: δ18O of cellulose extracted from the annual rings of the long-lived Bristlecone Pine from White Mountain in Southern California is well reproduced by 20C Isotope Reanalysis. Similar good performance is obtained for Cambodia, too. However, the mechanisms driving the isotopic variations are different over California and Cambodia; for California, Hadley cell's expansion and consequent meridional shift of the submerging dry zone and changes in water vapor source is the dominant control, but in Cambodia

  17. Ring-shaped active mode-locked tunable laser using quantum-dot semiconductor optical amplifier

    Science.gov (United States)

    Zhang, Mingxiao; Wang, Yongjun; Liu, Xinyu

    2018-03-01

    In this paper, a lot of simulations has been done for ring-shaped active mode-locked lasers with quantum-dot semiconductor optical amplifier (QD-SOA). Based on the simulation model of QD-SOA, we discussed about the influence towards mode-locked waveform frequency and pulse caused by QD-SOA maximum mode peak gain, active layer loss coefficient, bias current, incident light pulse, fiber nonlinear coefficient. In the meantime, we also take the tunable performance of the laser into consideration. Results showed QD-SOA a better performance than original semiconductor optical amplifier (SOA) in recovery time, line width, and nonlinear coefficients, which makes it possible to output a locked-mode impulse that has a higher impulse power, narrower impulse width as well as the phase is more easily controlled. After a lot of simulations, this laser can realize a 20GHz better locked-mode output pulse after 200 loops, where the power is above 17.5mW, impulse width is less than 2.7ps, moreover, the tunable wavelength range is between 1540nm-1580nm.

  18. Ring insertions as light sources

    International Nuclear Information System (INIS)

    Green, G.K.

    1975-01-01

    Bending magnets can be inserted in the long straight sections of electron storage rings to produce synchrotron radiation. If the design is carefully proportioned, the bending magnets create only a small perturbation of the properties of the ring. The resulting spectra have favorable optical properties as sources for spectroscopy and diffraction studies. The characteristics of the source are discussed, and the geometrical requirements of the magnets are presented

  19. Stable optical soliton in the ring-cavity fiber system with carbon nanotube as saturable absorber

    Science.gov (United States)

    Li, Bang-Qing; Ma, Yu-Lan; Yang, Tie-Mei

    2018-01-01

    Main attention focuses on the theoretical study of the ring-cavity fiber laser system with carbon nanotubes (CNT) as saturable absorber (SA). The system is modelled as a non-standard Schrödinger equation with the coefficients blended real and imaginary numbers. New stable exact soliton solution is constructed by the bilinear transformation method for the system. The influences of the key parameters related to CNTs and SA on the optical pulse soliton are discussed in simulation. The soliton amplitude and phase can be tuned by choosing suitable parameters.

  20. Integration of an Optical Ring Resonator Biosensor into a Self-Contained Microfluidic Cartridge with Active, Single-Shot Micropumps

    Directory of Open Access Journals (Sweden)

    Sascha Geidel

    2016-09-01

    Full Text Available While there have been huge advances in the field of biosensors during the last decade, their integration into a microfluidic environment avoiding external tubing and pumping is still neglected. Herein, we show a new microfluidic design that integrates multiple reservoirs for reagent storage and single-use electrochemical pumps for time-controlled delivery of the liquids. The cartridge has been tested and validated with a silicon nitride-based photonic biosensor incorporating multiple optical ring resonators as sensing elements and an immunoassay as a potential target application. Based on experimental results obtained with a demonstration model, subcomponents were designed and existing protocols were adapted. The newly-designed microfluidic cartridges and photonic sensors were separately characterized on a technical basis and performed well. Afterwards, the sensor was functionalized for a protein detection. The microfluidic cartridge was loaded with the necessary assay reagents. The integrated pumps were programmed to drive the single process steps of an immunoassay. The prototype worked selectively, but only with a low sensitivity. Further work must be carried out to optimize biofunctionalization of the optical ring resonators and to have a more suitable flow velocity progression to enhance the system’s reproducibility.

  1. Application of optical scanning for measurements of castings and cores

    Directory of Open Access Journals (Sweden)

    M. Wieczorowski

    2010-01-01

    Full Text Available In the paper application of non destructive method for dimensional control of elements in initial phase of car manufacturing, at Volks-wagen Poznań foundry was presented. VW foundry in Poznań is responsible of series production of chill and dies castings made of light alloys using contemporary technologies. Castings have a complex shape: they are die castings of housings for steering columns and gravity chill castings of cylinder heads, for which cores are manufactured using both hot box and cold box method. Manufacturing capabilities of VW foundry in Poznań reach 26.000 tons of aluminum castings per year. Optical system ATOS at Volkswagen Poznań foundry is used to digitize object and determination of all dimensions and shapes of inspected object. This technology is applied in car industry, reverse engineering, quality analysis and control and to solve many similar tasks. System is based on triangulation: sensor head projects different fringes patterns onto a measured object while scanner observes their trajectories using two cameras. Basing on optical transform equations a processing unit automatically and with a great accuracy calculates 3D coordinates for every pixel of camera. Depending on camera reso-lution as an effect of such a scan we obtain a cloud of up to 4 million points for every single measurement. In the paper examples of di-mensional analysis regarding castings and cores were presented.

  2. Low Loss and Highly Birefringent Hollow-Core Photonic Crystal Fiber

    DEFF Research Database (Denmark)

    Roberts, P. John; Williams, D.P.; Mangan, Brian J.

    2006-01-01

    A hollow-core photonic crystal fiber design is proposed which enables both low-loss and polarization-maintained signal propagation. The design relies on an arrangement of antiresonant features positioned on the glass ring that surrounds the air core.......A hollow-core photonic crystal fiber design is proposed which enables both low-loss and polarization-maintained signal propagation. The design relies on an arrangement of antiresonant features positioned on the glass ring that surrounds the air core....

  3. 4.7 Gbit/s transmission over 50m long 1mm diameter multi-core plastic optical fiber

    NARCIS (Netherlands)

    Yang, H.; Tangdiongga, E.; Lee, S.C.J.; Okonkwo, C.M.; Boom, van den H.P.A.; Randel, S.; Koonen, A.M.J.

    2010-01-01

    We report, for the first time, 4.7 Gbit/s transmission over 50 m long 1 mm diameter multi-core step-index plastic optical fiber, employing discrete multitone techniques and low-cost optical transceiver. A spectral efficiency of 13 bit/s/Hz is demonstrated.

  4. Optic and electro-optic investigations on SmQ, SmCA* and L phases in highly chiral compounds

    International Nuclear Information System (INIS)

    Manai, M.; Gharbi, A.; Marcerou, J.P.; Nguyen, H.T.; Rouillon, J.C.

    2005-01-01

    Chiral molecules give rise to a large variety of mesophases. Well-known examples are cholesteric or ferroelectric smectic phases where the chirality tends to favor a macroscopic twist. Furthermore, the molecular core length (l) plays an important role on the range of the mesophases and on the temperature (T NI ) for the onset of orientational order. The tendency for T NI is to increase (going over 200 - bar C for some compounds) with increasing l. We report in this paper on a selection of compounds which have been designed in order to favor an anticlinic smectic ordering together with high chirality. As a common feature, they have a long rigid core with four benzene rings and a chiral chain (usually the same) at each end. They display a locally anisotropic liquid phase referred to as ''L phase'' in a large temperature range between T NI and the low temperature SmQ or SmC A * phase. Optical rotatory power (ORP), birefringence and electro-optic studies have been performed with these compounds

  5. Optical Backplane Based on Ring-Resonators: Scalability and Performance Analysis for 10 Gb/s OOK-NRZ

    Directory of Open Access Journals (Sweden)

    Giuseppe Rizzelli

    2014-05-01

    Full Text Available The use of architectures that implement optical switching without any need of optoelectronic conversion allows us to overcome the limits imposed by today’s electronic backplane, such as power consumption and dissipation, as well as power supply and footprint requirements. We propose a ring-resonator based optical backplane for router line-card interconnection. In particular we investigate how the scalability of the architecture is affected by the following parameters: number of line cards, switching-element round-trip losses, frequency drifting due to thermal variations, and waveguide-crossing effects. Moreover, to quantify the signal distortions introduced by filtering operations, the bit error rate for the different parameter conditions are shown in case of an on-off keying non-return-to-zero (OOK-NRZ input signal at 10 Gb/s.

  6. Quantized Self-Assembly of Discotic Rings in a Liquid Crystal Confined in Nanopores

    Science.gov (United States)

    Sentker, Kathrin; Zantop, Arne W.; Lippmann, Milena; Hofmann, Tommy; Seeck, Oliver H.; Kityk, Andriy V.; Yildirim, Arda; Schönhals, Andreas; Mazza, Marco G.; Huber, Patrick

    2018-02-01

    Disklike molecules with aromatic cores spontaneously stack up in linear columns with high, one-dimensional charge carrier mobilities along the columnar axes, making them prominent model systems for functional, self-organized matter. We show by high-resolution optical birefringence and synchrotron-based x-ray diffraction that confining a thermotropic discotic liquid crystal in cylindrical nanopores induces a quantized formation of annular layers consisting of concentric circular bent columns, unknown in the bulk state. Starting from the walls this ring self-assembly propagates layer by layer towards the pore center in the supercooled domain of the bulk isotropic-columnar transition and thus allows one to switch on and off reversibly single, nanosized rings through small temperature variations. By establishing a Gibbs free energy phase diagram we trace the phase transition quantization to the discreteness of the layers' excess bend deformation energies in comparison to the thermal energy, even for this near room-temperature system. Monte Carlo simulations yielding spatially resolved nematic order parameters, density maps, and bond-orientational order parameters corroborate the universality and robustness of the confinement-induced columnar ring formation as well as its quantized nature.

  7. Losses analysis of soft magnetic ring core under sinusoidal pulse width modulation (SPWM) and space vector pulse width modulation (SVPWM) excitations

    Science.gov (United States)

    Gao, Hezhe; Li, Yongjian; Wang, Shanming; Zhu, Jianguo; Yang, Qingxin; Zhang, Changgeng; Li, Jingsong

    2018-05-01

    Practical core losses in electrical machines differ significantly from those experimental results using the standardized measurement method, i.e. Epstein Frame method. In order to obtain a better approximation of the losses in an electrical machine, a simulation method considering sinusoidal pulse width modulation (SPWM) and space vector pulse width modulation (SVPWM) waveforms is proposed. The influence of the pulse width modulation (PWM) parameters on the harmonic components in SPWM and SVPWM is discussed by fast Fourier transform (FFT). Three-level SPWM and SVPWM are analyzed and compared both by simulation and experiment. The core losses of several ring samples magnetized by SPWM, SVPWM and sinusoidal alternating current (AC) are obtained. In addition, the temperature rise of the samples under SPWM, sinusoidal excitation are analyzed and compared.

  8. Dislocation core structures in (0001) InGaN

    International Nuclear Information System (INIS)

    Rhode, S. L.; Sahonta, S.-L.; Kappers, M. J.; McAleese, C.; Humphreys, C. J.; Horton, M. K.; Haigh, S. J.; Pennycook, T. J.; Dusane, R. O.; Moram, M. A.

    2016-01-01

    Threading dislocation core structures in c-plane GaN and In x Ga 1−x N (0.057 ≤ x ≤ 0.20) films were investigated by aberration-corrected scanning transmission electron microscopy. a-type dislocations are unaffected by alloying with indium and have a 5/7-atom ring core structure in both GaN and In x Ga 1−x N. In contrast, the dissociation lengths of (a + c)-type dislocations are reduced, and new 7/4/9-atom ring and 7/4/8/5-atom ring core structures were observed for the dissociated (a + c)-type dislocations in In x Ga 1−x N, which is associated with the segregation of indium near (a + c)-type and c-type dislocation cores in In x Ga 1−x N, consistent with predictions from atomistic Monte Carlo simulations.

  9. Overview of the design of core restraint systems

    International Nuclear Information System (INIS)

    Heinecke, J.

    1984-01-01

    The optimization of the core restraint system is an important condition for the safe and reliable operation of a fast breeder reactor. For KNK II which is under successful operation and SNR 300 all requirements for safety and operation have been met with help of a ring type system. For SNR 2 the decision between the ring type system and the free standing core has to be done in the near future. Within these considerations the advantages of a ring type restraint system of limiting deflections during operation and limiting of possible movements under seismic conditions have to be balanced against the somewhat more complicated structure of the ring type restraint system

  10. Linear and nonlinear optical absorption coefficients in GaAs/Ga1−xAlxAs concentric double quantum rings: Effects of hydrostatic pressure and aluminum concentration

    International Nuclear Information System (INIS)

    Baghramyan, H.M.; Barseghyan, M.G.; Kirakosyan, A.A.; Restrepo, R.L.; Duque, C.A.

    2013-01-01

    The linear and nonlinear intra-band optical absorption coefficients in GaAs/Ga 1−x Al x As two-dimensional concentric double quantum rings are investigated. Taking into account the combined effects of hydrostatic pressure and aluminum concentration the energies of the ground (n=1,l=0) and the first excited state (n=2,l=1) have been found using the effective mass approximation and the transfer matrix formalism. The energies of these states and the corresponding threshold energy of the intra-band optical transitions are examined as a function of hydrostatic pressure and aluminum concentration for different sizes of the structure. We also investigated the dependencies of the linear, nonlinear, and total optical absorption coefficients as functions of the incident photon energy for different values of hydrostatic pressure, aluminum concentration, sizes of the structure, and incident optical intensity. Its is found that the effects of the hydrostatic pressure and the aluminum concentration lead to a shifting of the resonant peaks of the intra-band optical spectrum. - Highlights: ► Linear and nonlinear intra-band absorption in quantum rings. ► Threshold energy strongly depends on the hydrostatic pressure. ► Threshold energy strongly depends on the stoichiometry and sizes of structure. ► Optical absorption is affected by the incident optical intensity.

  11. Label-free biosensing with high sensitivity in dual-core microstructured polymer optical fibers

    DEFF Research Database (Denmark)

    Markos, Christos; Yuan, Wu; Vlachos, Kyriakos

    2011-01-01

    We present experimentally feasible designs of a dual-core microstructured polymer optical fiber (mPOF), which can act as a highly sensitive, label-free, and selective biosensor. An immobilized antigen sensing layer on the walls of the holes in the mPOF provides the ability to selectively capture...

  12. Coupling between core and cladding modes in a helical core fiber with large core offset

    International Nuclear Information System (INIS)

    Napiorkowski, Maciej; Urbanczyk, Waclaw

    2016-01-01

    We analyzed the effect of resonant coupling between core and cladding modes in a helical core fiber with large core offset using the fully vectorial method based on the transformation optics formalism. Our study revealed that the resonant couplings to lower order cladding modes predicted by perturbative methods and observed experimentally in fibers with small core offsets are in fact prohibited for larger core offsets. This effect is related to the lack of phase matching caused by elongation of the optical path of the fundamental modes in the helical core. Moreover, strong couplings to the cladding modes of the azimuthal modal number much higher than predicted by perturbative methods may be observed for large core offsets, as the core offset introduces higher order angular harmonics in the field distribution of the fundamental modes. Finally, in contrast to previous studies, we demonstrate the existence of spectrally broad polarization sensitive couplings to the cladding modes suggesting that helical core fibers with large core offsets may be used as broadband circular polarizers. (paper)

  13. Metro-access integrated network based on optical OFDMA with dynamic sub-carrier allocation and power distribution.

    Science.gov (United States)

    Zhang, Chongfu; Zhang, Qiongli; Chen, Chen; Jiang, Ning; Liu, Deming; Qiu, Kun; Liu, Shuang; Wu, Baojian

    2013-01-28

    We propose and demonstrate a novel optical orthogonal frequency-division multiple access (OFDMA)-based metro-access integrated network with dynamic resource allocation. It consists of a single fiber OFDMA ring and many single fiber OFDMA trees, which transparently integrates metropolitan area networks with optical access networks. The single fiber OFDMA ring connects the core network and the central nodes (CNs), the CNs are on demand reconfigurable and use multiple orthogonal sub-carriers to realize parallel data transmission and dynamic resource allocation, meanwhile, they can also implement flexible power distribution. The remote nodes (RNs) distributed in the user side are connected by the single fiber OFDMA trees with the corresponding CN. The obtained results indicate that our proposed metro-access integrated network is feasible and the power distribution is agile.

  14. Quench detection of superconducting magnet by dual-core optical fiber

    International Nuclear Information System (INIS)

    Tsukamoto, O.; Kawai, K.; Kokubun, Y.; Takao, T.

    1988-01-01

    A quench-detecting technique using two single-mode optical cores in one fiber has been developed. The technique can detect quench from a temperature rise of 1.0 K at 4.2 K. An electromagnetic force-stress to the fiber did not deteriorate quench detection sensitivity. A quench detector using this method was immune from electromagnetic noise and free from troubles caused by high voltage tension. Problems arising when applying this method to a large scale magnet and possible improvements in the instrumentation are discussed

  15. Hybrid integrated single-wavelength laser with silicon micro-ring reflector

    Science.gov (United States)

    Ren, Min; Pu, Jing; Krishnamurthy, Vivek; Xu, Zhengji; Lee, Chee-Wei; Li, Dongdong; Gonzaga, Leonard; Toh, Yeow T.; Tjiptoharsono, Febi; Wang, Qian

    2018-02-01

    A hybrid integrated single-wavelength laser with silicon micro-ring reflector is demonstrated theoretically and experimentally. It consists of a heterogeneously integrated III-V section for optical gain, an adiabatic taper for light coupling, and a silicon micro-ring reflector for both wavelength selection and light reflection. Heterogeneous integration processes for multiple III-V chips bonded to an 8-inch Si wafer have been developed, which is promising for massive production of hybrid lasers on Si. The III-V layer is introduced on top of a 220-nm thick SOI layer through low-temperature wafer-boning technology. The optical coupling efficiency of >85% between III-V and Si waveguide has been achieved. The silicon micro-ring reflector, as the key element of the hybrid laser, is studied, with its maximized reflectivity of 85.6% demonstrated experimentally. The compact single-wavelength laser enables fully monolithic integration on silicon wafer for optical communication and optical sensing application.

  16. Quantitative optical extinction-based parametric method for sizing a single core-shell Ag-Ag2O nanoparticle

    International Nuclear Information System (INIS)

    Santillan, J M J; Scaffardi, L B; Schinca, D C

    2011-01-01

    This paper develops a parametric method for determining the core radius and shell thickness in small silver-silver-oxide core-shell nanoparticles (Nps) based on single particle optical extinction spectroscopy. The method is based on the study of the relationship between plasmon peak wavelength, full width at half maximum (FWHM) and contrast of the extinction spectra as a function of core radius and shell thickness. This study reveals that plasmon peak wavelength is strongly dependent on shell thickness, whereas FWHM and contrast depend on both variables. These characteristics may be used for establishing an easy and fast stepwise procedure to size core-shell NPs from single particle absorption spectrum. The importance of the method lies in the possibility of monitoring the growth of the silver-oxide layer around small spherical silver Nps in real time. Using the electrostatic approximation of Mie theory, core-shell single particle extinction spectra were calculated for a silver particle's core size smaller than about 20 nm and different thicknesses of silver oxide around it. Analysis of the obtained curves shows a very particular characteristic of the plasmon peak of small silver-silver-oxide Nps, expressed in the fact that its position is strongly dependent on oxide thickness and weakly dependent on the core radius. Even a very thin oxide layer shifts the plasmon peak noticeably, enabling plasmon tuning with appropriate shell thickness. This characteristic, together with the behaviour of FWHM and contrast of the extinction spectra can be combined into a parametric method for sizing both core and shell of single silver Nps in a medium using only optical information. In turn, shell thickness can be related to oxygen content in the Np's surrounding media. The method proposed is applied to size silver Nps from single particle extinction spectrum. The results are compared with full optical spectrum fitting using the electrostatic approximation in Mie theory. The method

  17. Optical studies of CdSe/HgSe and CdSe/Ag2Se core/shell nanoparticles embedded in gelatin

    International Nuclear Information System (INIS)

    Azhniuk, Yu M; Dzhagan, V M; Valakh, M Ya; Raevskaya, A E; Stroyuk, A L; Kuchmiy, S Ya; Zahn, D R T

    2008-01-01

    CdSe/HgSe and CdSe/Ag 2 Se core-shell nanoparticles are obtained by colloidal synthesis from aqueous solutions in the presence of gelatin. Optical absorption, luminescence, and Raman spectra of the nanoparticles obtained are measured. The variation of the optical spectra of CdSe/HgSe and CdSe/Ag 2 Se core-shell nanoparticles with the shell thickness is discussed. Sharp non-monotonous variation of the photoluminescence spectra at low shell coverage is observed.

  18. Dislocation core structures in (0001) InGaN

    Energy Technology Data Exchange (ETDEWEB)

    Rhode, S. L.; Sahonta, S.-L.; Kappers, M. J.; McAleese, C.; Humphreys, C. J. [Department of Materials Science and Metallurgy, University of Cambridge, Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Horton, M. K. [Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); Haigh, S. J. [School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom); SuperSTEM, STFC Daresbury Laboratories, Warrington WA4 4AD (United Kingdom); Pennycook, T. J. [SuperSTEM, STFC Daresbury Laboratories, Warrington WA4 4AD (United Kingdom); Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Dusane, R. O. [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai 400076 (India); Moram, M. A. [Department of Materials Science and Metallurgy, University of Cambridge, Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom)

    2016-03-14

    Threading dislocation core structures in c-plane GaN and In{sub x}Ga{sub 1−x}N (0.057 ≤ x ≤ 0.20) films were investigated by aberration-corrected scanning transmission electron microscopy. a-type dislocations are unaffected by alloying with indium and have a 5/7-atom ring core structure in both GaN and In{sub x}Ga{sub 1−x}N. In contrast, the dissociation lengths of (a + c)-type dislocations are reduced, and new 7/4/9-atom ring and 7/4/8/5-atom ring core structures were observed for the dissociated (a + c)-type dislocations in In{sub x}Ga{sub 1−x}N, which is associated with the segregation of indium near (a + c)-type and c-type dislocation cores in In{sub x}Ga{sub 1−x}N, consistent with predictions from atomistic Monte Carlo simulations.

  19. Energy spectra of quantum rings.

    Science.gov (United States)

    Fuhrer, A; Lüscher, S; Ihn, T; Heinzel, T; Ensslin, K; Wegscheider, W; Bichler, M

    2001-10-25

    Quantum mechanical experiments in ring geometries have long fascinated physicists. Open rings connected to leads, for example, allow the observation of the Aharonov-Bohm effect, one of the best examples of quantum mechanical phase coherence. The phase coherence of electrons travelling through a quantum dot embedded in one arm of an open ring has also been demonstrated. The energy spectra of closed rings have only recently been studied by optical spectroscopy. The prediction that they allow persistent current has been explored in various experiments. Here we report magnetotransport experiments on closed rings in the Coulomb blockade regime. Our experiments show that a microscopic understanding of energy levels, so far limited to few-electron quantum dots, can be extended to a many-electron system. A semiclassical interpretation of our results indicates that electron motion in the rings is governed by regular rather than chaotic motion, an unexplored regime in many-electron quantum dots. This opens a way to experiments where even more complex structures can be investigated at a quantum mechanical level.

  20. Cavity Ring-down Spectroscopic System And Method

    KAUST Repository

    Alquaity, Awad Bin Saud

    2015-05-14

    A system and method for cavity ring-down spectroscopy can include a pulsed quantum cascade laser, an optical ring-down cavity, a photodetector, and an oscilloscope. The system and method can produce pulse widths of less than 200 ns with bandwidths greater than 300 pm, as well as provide temporal resolution of greater than 10 .mu.s.

  1. Cavity Ring-down Spectroscopic System And Method

    KAUST Repository

    Alquaity, Awad Bin Saud; Farooq, Aamir

    2015-01-01

    A system and method for cavity ring-down spectroscopy can include a pulsed quantum cascade laser, an optical ring-down cavity, a photodetector, and an oscilloscope. The system and method can produce pulse widths of less than 200 ns with bandwidths greater than 300 pm, as well as provide temporal resolution of greater than 10 .mu.s.

  2. Optics design of Intrabeam Scattering dominated damping rings

    CERN Document Server

    Antoniou, Fanouria; Papaphilippou, Ioannis

    A e+/e- linear collider, the Compact Linear Collider (CLIC) is under design at CERN, aiming to explore the terascale particle physics regime. The collider has been optimized at 3 TeV center of mass energy and targets a luminosity of 1034 cm-2 s-1. In order to achieve this high luminosity, high intensity bunches with ultra low emittances, in all three planes, are required. The generation of ultra low emittance is achieved in the Damping Rings (DR) complex of the collider. The large input beam emittances, especially the ones coming from the positron source, and the requirement of ultra low emittance production in a fast repetition time of 20 ms, imply that the beam damping is done in two stages. Thus, a main-damping ring (DR) and a predamping ring (PDR) are needed, for each particle species. The high bunch brightness gives rise to several collective effects, with Intra-beam scattering (IBS) being the main limitation to the ultra-low emittance. This thesis elaborates the lattice design and non-linear optimizatio...

  3. Engineered SOI slot waveguide ring resonator V-shape resonance combs for refraction index sensing up to 1300nm/RIU (Conference Presentation)

    Science.gov (United States)

    Zhang, Weiwei; Serna, Samuel; Le Roux, Xavier; Vivien, Laurent; Cassan, Eric

    2016-05-01

    Bio-detection based on CMOS technology boosts the miniaturization of detection systems and the success on highly efficient, robust, accurate, and low coast Lab-on-Chip detection schemes. Such on chip detection technologies have covered healthy related harmful gases, bio-chemical analytes, genetic micro RNA, etc. Their monitoring accuracy is mainly qualified in terms of sensitivity and limit of the detection (LOD) of the detection system. In this context, recently developed silicon on insulator (SOI) optical devices have displayed highly performant detection abilities that LOD could go beyond 10-8RIU and sensitivity could exceeds 103nm/RIU. The SOI integrated optical sensing devices include strip/slotted waveguide consisting in structures like Mach-Zehnder interferometers (MZI), ring resonators (RR), nano cavities, etc. Typically, hollow core RR and nano-cavities could exhibit higher sensitivity due to their optical mode confinement properties with a partial localization of the electric field in low index sensing regions than devices based on evanescent field tails outside of the optical cores. Furthermore, they also provide larger sensing areas for surface functionalization to reach higher sensitivities and lower LODs. The state of art of hollow core devices, either based on Bragg gratings formed from a slot waveguide cavity or photonic crystal slot cavities, show sensitivities (S) up to 400nm/RIU and Figure of Merit (FOM) around 3,000 in water environment, FOM being defined as the inverse of LOD and precisely as FOM=SQ/λ, with λ the resonance wavelength and Q the quality factor of the considered resonator. Such high achieved FOMs in nano cavities are mainly due to their large Q factors around 15,000. While for mostly used RR, which do not require particular design strategies, relatively low Q factors around 1800 in water are met and moderate sensitivities about 300nm/RIU are found. In this work, we present here a novel slot ring resonator design to make

  4. Tests of the new STIC scintillator ring prototype, the photomultipliers and optic fibers cables of the 40 deg C counters

    International Nuclear Information System (INIS)

    Silva, Tatiana da

    1997-01-01

    This paper reports the tests performed on the semicircular prototype of the new scintillator ring with readings obtained by WLS optic fibers. The prototype intends to verify the light collecting and investigate a method for fiber gluing in a circular surface, without the appearing of air bubbles which may restrain the light transmission. Also the optic fiber cables and the photomultipliers used in the 40 deg C counters have been tested in order to verify the electromagnetic energy which may leak from failures in the barrel, aiming the hermeticity enhancement, and also the existence of any damaged cable

  5. A study of the outermost ring of Saturn

    International Nuclear Information System (INIS)

    Bobrov, M.S.

    1974-01-01

    The attention is called to the fact that the discovery by Feibelman (1967) of the rarefied outer ring of Saturn is confirmed by the observations of Kuiper (1972). It is proposed to designate this object as E-ring (exterior) in order to avoid confusion with the innermost, also rarefied, D-ring observed by Guerin (1970) and earlier by Barabashov and Semejkin (1933). The effects of the interaction of E-ring with inner Saturn's satellites are briefly discussed. The conclusion is drawn that in cosmogonic time scale these effects are small. It is also shown that the optical thickness of E-ring is lower than 1/20000; the available photometric estimations of the geometric thickness of A- and B-rings need not be corrected for the light scattering and absorption by E-ring. (Auth.)

  6. Optical aging observation in suspended core tellurite microstructured fibers under atmospheric conditions

    Science.gov (United States)

    Strutynski, C.; Mouawad, O.; Picot-Clémente, J.; Froidevaux, P.; Désévédavy, F.; Gadret, G.; Jules, J.-C.; Kibler, B.; Smektala, F.

    2017-11-01

    Tellurite glasses are good candidates for the development of broadband supercontinuum (SC) laser sources in the 1-5 μm range. At the moment, beside very few exceptions, SC generation in TeO2-based microstructured optical fibers (MOFs) is limited to 3 μm in the mid-infrared (MIR). We present here an observation of an optical aging occurring in six-hole suspended-core tellurite MOFs. When exposed to atmospheric conditions, such fibers show an alteration of their transmission between 3 and 4 μm. This aging phenomenon leads to the growth of strong additional losses in this wavelengths range over time. Impact of the transmission degradation on spectral broadening is studied through numerical simulations of SC generation.

  7. Leapfrogging of multiple coaxial viscous vortex rings

    International Nuclear Information System (INIS)

    Cheng, M.; Lou, J.; Lim, T. T.

    2015-01-01

    A recent theoretical study [Borisov, Kilin, and Mamaev, “The dynamics of vortex rings: Leapfrogging, choreographies and the stability problem,” Regular Chaotic Dyn. 18, 33 (2013); Borisov et al., “The dynamics of vortex rings: Leapfrogging in an ideal and viscous fluid,” Fluid Dyn. Res. 46, 031415 (2014)] shows that when three coaxial vortex rings travel in the same direction in an incompressible ideal fluid, each of the vortex rings alternately slips through (or leapfrogs) the other two ahead. Here, we use a lattice Boltzmann method to simulate viscous vortex rings with an identical initial circulation, radius, and separation distance with the aim of studying how viscous effect influences the outcomes of the leapfrogging process. For the case of two identical vortex rings, our computation shows that leapfrogging can be achieved only under certain favorable conditions, which depend on Reynolds number, vortex core size, and initial separation distance between the two rings. For the case of three coaxial vortex rings, the result differs from the inviscid model and shows that the second vortex ring always slips through the leading ring first, followed by the third ring slipping through the other two ahead. A simple physical model is proposed to explain the observed behavior

  8. Colloidal PbSe quantum dot-solution-filled liquid-core optical fiber for 1.55 μm telecommunication wavelengths

    International Nuclear Information System (INIS)

    Zhang, Lei; Zhang, Yu; Yu, William W; Gu, Pengfei; Wang, Yiding; Kershaw, Steve V; Wang, Yu; Rogach, Andrey L; Zhao, Yanhui; Jiang, Yongheng; Zhang, Tieqiang; Zhang, Hanzhuang

    2014-01-01

    We have studied the optical properties of PbSe colloidal quantum dot-solution filled hollow core multimode silica waveguides as a function of quantum dot-solution concentration, waveguide length, optical pump power and choice of organic solvent in order to establish the conditions to maximize near infrared spontaneous emission intensities. The optical performance was compared and showed good agreement with a simple three level system model for the quantum dots confined in an optical waveguide. Near infrared absorption-free solvent of tetrachlorethylene was confirmed to be a good candidate for the waveguide medium due to the enhancement of output intensity from the liquid-core fiber compared to the performance in toluene-based fiber. This approach demonstrates a useful method for early characterization of quantum dot materials in a waveguide test-bed with minimal material processing on the colloidal nanoparticles. (paper)

  9. Ring power balance observing plasma stability constraints

    International Nuclear Information System (INIS)

    Campbell, R.B.; Logan, B.G.

    1982-01-01

    Ring power balance is performed for an E-ring stabilized tandem mirror reactor, taking into account constraints imposed by plasma stability. The two most important criteria are the stability of the core interchange and hot electron interchange modes. The former determines the ring thickness, the latter determines the minimum hot electron temperature; both quantities are important for power balance. The combination of the hot electron interchange constraint and the fact that the barrier density is low places the operating point on the synchrotron dominated branch of power balance. The reference case considered here requires a reasonable 34 MW of heating power deposited in the rings. We also have examined the sensitivity of the required ring power on uncertainties in the numerical coefficients of the stability constraints. We have found that the heating power is strongly affected

  10. A broadening temperature sensitivity range with a core-shell YbEr@YbNd double ratiometric optical nanothermometer

    Science.gov (United States)

    Marciniak, L.; Prorok, K.; Francés-Soriano, L.; Pérez-Prieto, J.; Bednarkiewicz, A.

    2016-02-01

    The chemical architecture of lanthanide doped core-shell up-converting nanoparticles can be engineered to purposely design the properties of luminescent nanomaterials, which are typically inaccessible to their homogeneous counterparts. Such an approach allowed to shift the up-conversion excitation wavelength from ~980 to the more relevant ~808 nm or enable Tb or Eu up-conversion emission, which was previously impossible to obtain or inefficient. Here, we address the issue of limited temperature sensitivity range of optical lanthanide based nano-thermometers. By covering Yb-Er co-doped core nanoparticles with the Yb-Nd co-doped shell, we have intentionally combined temperature dependent Er up-conversion together with temperature dependent Nd --> Yb energy transfer, and thus have expanded the temperature response range ΔT of a single nanoparticle based optical nano-thermometer under single ~808 nm wavelength photo-excitation from around ΔT = 150 K to over ΔT = 300 K (150-450 K). Such engineered nanocrystals are suitable for remote optical temperature measurements in technology and biotechnology at the sub-micron scale.The chemical architecture of lanthanide doped core-shell up-converting nanoparticles can be engineered to purposely design the properties of luminescent nanomaterials, which are typically inaccessible to their homogeneous counterparts. Such an approach allowed to shift the up-conversion excitation wavelength from ~980 to the more relevant ~808 nm or enable Tb or Eu up-conversion emission, which was previously impossible to obtain or inefficient. Here, we address the issue of limited temperature sensitivity range of optical lanthanide based nano-thermometers. By covering Yb-Er co-doped core nanoparticles with the Yb-Nd co-doped shell, we have intentionally combined temperature dependent Er up-conversion together with temperature dependent Nd --> Yb energy transfer, and thus have expanded the temperature response range ΔT of a single nanoparticle

  11. Microcautery based on zinc metallic nanoparticles photodeposited on the core of an optical fiber

    Energy Technology Data Exchange (ETDEWEB)

    Zaca-Morán, P., E-mail: zmoran_placido@icloud.com [Departemento de Fisicoquímica de Materiales, Instituto de Ciencias, Universidad Autónoma de Puebla, 17 Nte 3417, Puebla 72050 (Mexico); Pastelín, C.F., E-mail: c_pastelin@yahoo.com.mx [Departemento de Biología y Toxicologia de la Reproducción, Instituto de Ciencias, Universidad Autónoma de Puebla, 14 Sur 6301, Puebla 72570 (Mexico); Morán, C., E-mail: carolina.moran@correo.buap.mx [Departemento de Biología y Toxicologia de la Reproducción, Instituto de Ciencias, Universidad Autónoma de Puebla, 14 Sur 6301, Puebla 72570 (Mexico); Pérez-Sánchez, G.F., E-mail: f_perez_s@hotmail.com [Departemento de Fisicoquímica de Materiales, Instituto de Ciencias, Universidad Autónoma de Puebla, 17 Nte 3417, Puebla 72050 (Mexico); Chávez, F., E-mail: fchr172@hotmail.com [Departemento de Fisicoquímica de Materiales, Instituto de Ciencias, Universidad Autónoma de Puebla, 17 Nte 3417, Puebla 72050 (Mexico)

    2017-01-15

    Highlights: • We demonstrate a microcautery implemented by an optical fiber with zinc nanoparticles photodeposited on its core. • We achieved a controllable heat “tip” via radiation intensity of a laser source. • We carried out cauterization and coagulation processes to induce hemostasis in blood vessels using rats. • The system is ideal to carry out micro cauterization processes. - Abstract: The experimental arrangement of a microcautery implemented by an optical fiber with zinc nanoparticles (ZnNPs) photodeposited on its core for the cauterization and coagulation in blood vessels hemostasis processes is presented. The interaction between a laser radiation source and the ZnNPS on the fiber core produces a controllable punctual heat source through the radiation intensity, which is capable of reaching a temperature up to 200 °C covering an area of approximately ten micrometers. By using three-to-four-month-old rats of CIIZ-V strain, we made several microcauterization experimental tests to stop blood flow. The findings show that the microcautery obliterates the smooth muscle of the blood vessels concatenating mutually to tissue in an average time of three seconds, at the same time, the blood elements responsible for the coagulation are thermally activated and thus the bleeding is stopped.

  12. Microcautery based on zinc metallic nanoparticles photodeposited on the core of an optical fiber

    International Nuclear Information System (INIS)

    Zaca-Morán, P.; Pastelín, C.F.; Morán, C.; Pérez-Sánchez, G.F.; Chávez, F.

    2017-01-01

    Highlights: • We demonstrate a microcautery implemented by an optical fiber with zinc nanoparticles photodeposited on its core. • We achieved a controllable heat “tip” via radiation intensity of a laser source. • We carried out cauterization and coagulation processes to induce hemostasis in blood vessels using rats. • The system is ideal to carry out micro cauterization processes. - Abstract: The experimental arrangement of a microcautery implemented by an optical fiber with zinc nanoparticles (ZnNPs) photodeposited on its core for the cauterization and coagulation in blood vessels hemostasis processes is presented. The interaction between a laser radiation source and the ZnNPS on the fiber core produces a controllable punctual heat source through the radiation intensity, which is capable of reaching a temperature up to 200 °C covering an area of approximately ten micrometers. By using three-to-four-month-old rats of CIIZ-V strain, we made several microcauterization experimental tests to stop blood flow. The findings show that the microcautery obliterates the smooth muscle of the blood vessels concatenating mutually to tissue in an average time of three seconds, at the same time, the blood elements responsible for the coagulation are thermally activated and thus the bleeding is stopped.

  13. Photonics-based microwave frequency measurement using a double-sideband suppressed-carrier modulation and an InP integrated ring-assisted Mach-Zehnder interferometer filter.

    Science.gov (United States)

    Fandiño, Javier S; Muñoz, Pascual

    2013-11-01

    A photonic system capable of estimating the unknown frequency of a CW microwave tone is presented. The core of the system is a complementary optical filter monolithically integrated in InP, consisting of a ring-assisted Mach-Zehnder interferometer with a second-order elliptic response. By simultaneously measuring the different optical powers produced by a double-sideband suppressed-carrier modulation at the outputs of the photonic integrated circuit, an amplitude comparison function that depends on the input tone frequency is obtained. Using this technique, a frequency measurement range of 10 GHz (5-15 GHz) with a root mean square value of frequency error lower than 200 MHz is experimentally demonstrated. Moreover, simulations showing the impact of a residual optical carrier on system performance are also provided.

  14. Controllable parabolic lensed liquid-core optical fiber by using electrostatic force.

    Science.gov (United States)

    Tang, Chun Yin; Zhang, Xuming; Chai, Yang; Hui, Long; Tao, Lili; Tsang, Yuen H

    2014-08-25

    For typical optical fiber system, an external lens accessory set is required to adjust the optical path of output light, which however is limited by the fixed parameter of the lens accessory setup. Considering spherical aberration in the imaging process and its small focusable spot size, a complicated lens combination is required to compensate the aberration. This paper has demonstrated a unique method to fabricate liquid-core lensed fibers by filling water and NOA61 respectively into hollow Teflon AF fibers and silicate fiber, the radius of curvature of the liquid lens can be controlled by adjusting the applied voltage on the core liquid and even parabolic shape lens can be produced with enough applied voltage. The experiment has successfully demonstrated a variation of focal length from 0.628 mm to 0.111 mm responding to the change of applied voltage from 0V to 3.2KV (L = 2mm) for the Teflon AF fiber, as well as a variation of focal length from 0.274 mm to 0.08 mm responding to the change of applied voltage from 0V to 3KV (L = 2mm) for the silicate fiber. Further simulation shows that the focused spot size can be reduced to 2 µm by adjusting the refractive index and fiber geometry. Solid state parabolic lensed fiber can be produced after NOA61 is solidified by the UV curing.

  15. Almagest, a new trackless ring finding algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Lamanna, G., E-mail: gianluca.lamanna@cern.ch

    2014-12-01

    A fast ring finding algorithm is a crucial point to allow the use of RICH in on-line trigger selection. The present algorithms are either too slow (with respect to the incoming data rate) or need the information coming from a tracking system. Digital image techniques, assuming limited computing power (as for example Hough transform), are not perfectly robust for what concerns the noise immunity. We present a novel technique based on Ptolemy's theorem for multi-ring pattern recognition. Starting from purely geometrical considerations, this algorithm (also known as “Almagest”) allows fast and trackless rings reconstruction, with spatial resolution comparable with other offline techniques. Almagest is particularly suitable for parallel implementation on multi-cores machines. Preliminary tests on GPUs (multi-cores video card processors) show that, thanks to an execution time smaller than 10 μs per event, this algorithm could be employed for on-line selection in trigger systems. The user case of the NA62 RICH trigger, based on GPU, will be discussed. - Highlights: • A new algorithm for fast multiple ring searching in RICH detectors is presented. • The Almagest algorithm exploits the computing power of Graphics processers (GPUs). • A preliminary implementation for on-line triggering in the NA62 experiment shows encouraging results.

  16. Core lifter

    Energy Technology Data Exchange (ETDEWEB)

    Pavlov, N G; Edel' man, Ya A

    1981-02-15

    A core lifter is suggested which contains a housing, core-clamping elements installed in the housing depressions in the form of semirings with projections on the outer surface restricting the rotation of the semirings in the housing depressions. In order to improve the strength and reliability of the core lifter, the semirings have a variable transverse section formed from the outside by the surface of the rotation body of the inner arc of the semiring aroung the rotation axis and from the inner a cylindrical surface which is concentric to the outer arc of the semiring. The core-clamping elements made in this manner have the possibility of freely rotating in the housing depressions under their own weight and from contact with the core sample. These semirings do not have weakened sections, have sufficient strength, are inserted into the limited ring section of the housing of the core lifter without reduction in its through opening and this improve the reliability of the core lifter in operation.

  17. Field-induced optically isotropic state in bent core nematic liquid crystals: unambiguous proof of field-induced optical biaxiality

    International Nuclear Information System (INIS)

    Elamain, Omaima; Komitov, Lachezar; Hegde, Gurumurthy; Fodor-Csorba, Katalin

    2013-01-01

    The behaviour of bent core (BC) nematic liquid crystals was investigated under dc applied electric field. The optically isotropic state of a sample containing BC nematic was observed under application of low dc electric fields. The quality of the dark state when the sample was inserted between two crossed polarizers was found to be superb and it did not change when rotating the sample between the polarizers. The coupling between the net molecular dipole moment and the applied dc electric field was considered as the origin of the out-of-plane switching of the BC molecules resulting in switching from the field-off bright state to the field-on dark state. The field-induced optically isotropic state is an unambiguous proof of the field-induced biaxiality in the BC nematic liquid crystal. A simple model explaining the appearance of the isotropic optical state in BC nematics and the switching of the sample slow axis between three mutually orthogonal directions under dc applied electric field is proposed. (paper)

  18. Ring-Resonator/Sol-Gel Interferometric Immunosensor

    Science.gov (United States)

    Bearman, Gregory; Cohen, David

    2007-01-01

    A proposed biosensing system would be based on a combination of (1) a sensing volume containing antibodies immobilized in a sol-gel matrix and (2) an optical interferometer having a ring resonator configuration. The antibodies would be specific to an antigen species that one seeks to detect. In the ring resonator of the proposed system, light would make multiple passes through the sensing volume, affording greater interaction length and, hence, greater antibody- detection sensitivity.

  19. Impact of geometrical parameters on the optical properties of negative curvature hollow-core fibers

    International Nuclear Information System (INIS)

    Alagashev, G K; Pryamikov, A D; Kosolapov, A F; Kolyadin, A N; Lukovkin, A Yu; Biriukov, A S

    2015-01-01

    We analyze the impact of geometrical parameters on such important optical characteristics of negative curvature hollow-core fibers (NCHCFs) as waveguide dispersion, waveguide losses and the structure of transmission bands. We consider both theoretically and experimentally the resonance effects and formation of band edges under bending in NCHCFs. (paper)

  20. Quantitative optical extinction-based parametric method for sizing a single core-shell Ag-Ag{sub 2}O nanoparticle

    Energy Technology Data Exchange (ETDEWEB)

    Santillan, J M J; Scaffardi, L B; Schinca, D C, E-mail: lucias@ciop.unlp.edu.ar [Centro de Investigaciones Opticas (CIOp), (CONICET La Plata-CIC) (Argentina)

    2011-03-16

    This paper develops a parametric method for determining the core radius and shell thickness in small silver-silver-oxide core-shell nanoparticles (Nps) based on single particle optical extinction spectroscopy. The method is based on the study of the relationship between plasmon peak wavelength, full width at half maximum (FWHM) and contrast of the extinction spectra as a function of core radius and shell thickness. This study reveals that plasmon peak wavelength is strongly dependent on shell thickness, whereas FWHM and contrast depend on both variables. These characteristics may be used for establishing an easy and fast stepwise procedure to size core-shell NPs from single particle absorption spectrum. The importance of the method lies in the possibility of monitoring the growth of the silver-oxide layer around small spherical silver Nps in real time. Using the electrostatic approximation of Mie theory, core-shell single particle extinction spectra were calculated for a silver particle's core size smaller than about 20 nm and different thicknesses of silver oxide around it. Analysis of the obtained curves shows a very particular characteristic of the plasmon peak of small silver-silver-oxide Nps, expressed in the fact that its position is strongly dependent on oxide thickness and weakly dependent on the core radius. Even a very thin oxide layer shifts the plasmon peak noticeably, enabling plasmon tuning with appropriate shell thickness. This characteristic, together with the behaviour of FWHM and contrast of the extinction spectra can be combined into a parametric method for sizing both core and shell of single silver Nps in a medium using only optical information. In turn, shell thickness can be related to oxygen content in the Np's surrounding media. The method proposed is applied to size silver Nps from single particle extinction spectrum. The results are compared with full optical spectrum fitting using the electrostatic approximation in Mie theory

  1. Adaptive matching of the iota ring linear optics for space charge compensation

    Energy Technology Data Exchange (ETDEWEB)

    Romanov, A. [Fermilab; Bruhwiler, D. L. [RadiaSoft, Boulder; Cook, N. [RadiaSoft, Boulder; Hall, C. [RadiaSoft, Boulder

    2016-10-09

    Many present and future accelerators must operate with high intensity beams when distortions induced by space charge forces are among major limiting factors. Betatron tune depression of above approximately 0.1 per cell leads to significant distortions of linear optics. Many aspects of machine operation depend on proper relations between lattice functions and phase advances, and can be i proved with proper treatment of space charge effects. We implement an adaptive algorithm for linear lattice re matching with full account of space charge in the linear approximation for the case of Fermilab’s IOTA ring. The method is based on a search for initial second moments that give closed solution and, at the same predefined set of goals for emittances, beta functions, dispersions and phase advances at and between points of interest. Iterative singular value decomposition based technique is used to search for optimum by varying wide array of model parameters

  2. Acousto-optic mode coupling excited by flexural waves in simplified hollow-core photonic crystal fibers

    International Nuclear Information System (INIS)

    Zhang, Hao; Qiu, Minghui; Wu, Zhifang; Dong, Hongguang; Liu, Bo; Miao, Yinping

    2013-01-01

    We have demonstrated the formation of an acoustic grating in a simplified hollow-core photonic crystal fiber, which consists of a hollow hexagonal core and six crown-like air holes, by applying flexural acoustic waves along the fiber axis. The dependence of the resonance wavelength on the applied acoustic frequency has been acquired on the basis of the theoretical calculation of the phase matching curve; it is in good agreement with our experimental observation of the transmission spectral evolution as the applied acoustic frequency varies. Experimental results show that the acoustic grating resonance peak possesses acoustic frequency and strain dependences of 728 nm MHz −1 and −6.98 pm με −1 , respectively, based on which high-performance acousto-optic tunable filters and fiber-optic strain sensors with high sensitivity could be achieved. And furthermore, the research work presented in this paper indicates that microbending rather than physical deformation is the main physical mechanism that leads to the formation of equivalent long-period gratings, which would be of significance for developing related grating devices based on simplified hollow-core photonic crystal fibers. (paper)

  3. Optical programmable metamaterials

    Science.gov (United States)

    Gong, Cheng; Zhang, Nan; Dai, Zijie; Liu, Weiwei

    2018-02-01

    We suggest and demonstrate the concept of optical programmable metamaterials which can configure the device's electromagnetic parameters by the programmable optical stimuli. In such metamaterials, the optical stimuli produced by a FPGA controlled light emitting diode array can switch or combine the resonance modes which are coupled in. As an example, an optical programmable metamaterial terahertz absorber is proposed. Each cell of the absorber integrates four meta-rings (asymmetric 1/4 rings) with photo-resistors connecting the critical gaps. The principle and design of the metamaterials are illustrated and the simulation results demonstrate the functionalities for programming the metamaterial absorber to change its bandwidth and resonance frequency.

  4. Optical Slot-Waveguide Based Biochemical Sensors

    Directory of Open Access Journals (Sweden)

    Carlos Angulo Barrios

    2009-06-01

    Full Text Available Slot-waveguides allow light to be guided and strongly confined inside a nanometer-scale region of low refractive index. Thus stronger light-analyte interaction can be obtained as compared to that achievable by a conventional waveguide, in which the propagating beam is confined to the high-refractive-index core of the waveguide. In addition, slot-waveguides can be fabricated by employing CMOS compatible materials and technology, enabling miniaturization, integration with electronic, photonic and fluidic components in a chip, and mass production. These advantages have made the use of slot-waveguides for highly sensitive biochemical optical integrated sensors an emerging field. In this paper, recent achievements in slot-waveguide based biochemical sensing will be reviewed. These include slot-waveguide ring resonator based refractometric label-free biosensors, label-based optical sensing, and nano-opto-mechanical sensors.

  5. Network connectivity enhancement by exploiting all optical multicast in semiconductor ring laser

    Science.gov (United States)

    Siraj, M.; Memon, M. I.; Shoaib, M.; Alshebeili, S.

    2015-03-01

    The use of smart phone and tablet applications will provide the troops for executing, controlling and analyzing sophisticated operations with the commanders providing crucial documents directly to troops wherever and whenever needed. Wireless mesh networks (WMNs) is a cutting edge networking technology which is capable of supporting Joint Tactical radio System (JTRS).WMNs are capable of providing the much needed bandwidth for applications like hand held radios and communication for airborne and ground vehicles. Routing management tasks can be efficiently handled through WMNs through a central command control center. As the spectrum space is congested, cognitive radios are a much welcome technology that will provide much needed bandwidth. They can self-configure themselves, can adapt themselves to the user requirement, provide dynamic spectrum access for minimizing interference and also deliver optimal power output. Sometimes in the indoor environment, there are poor signal issues and reduced coverage. In this paper, a solution utilizing (CR WMNs) over optical network is presented by creating nanocells (PCs) inside the indoor environment. The phenomenon of four-wave mixing (FWM) is exploited to generate all-optical multicast using semiconductor ring laser (SRL). As a result same signal is transmitted at different wavelengths. Every PC is assigned a unique wavelength. By using CR technology in conjunction with PC will not only solve network coverage issue but will provide a good bandwidth to the secondary users.

  6. Virtual Exploration of the Ring Systems Chemical Universe.

    Science.gov (United States)

    Visini, Ricardo; Arús-Pous, Josep; Awale, Mahendra; Reymond, Jean-Louis

    2017-11-27

    Here, we explore the chemical space of all virtually possible organic molecules focusing on ring systems, which represent the cyclic cores of organic molecules obtained by removing all acyclic bonds and converting all remaining atoms to carbon. This approach circumvents the combinatorial explosion encountered when enumerating the molecules themselves. We report the chemical universe database GDB4c containing 916 130 ring systems up to four saturated or aromatic rings and maximum ring size of 14 atoms and GDB4c3D containing the corresponding 6 555 929 stereoisomers. Almost all (98.6%) of these ring systems are unknown and represent chiral 3D-shaped macrocycles containing small rings and quaternary centers reminiscent of polycyclic natural products. We envision that GDB4c can serve to select new ring systems from which to design analogs of such natural products. The database is available for download at www.gdb.unibe.ch together with interactive visualization and search tools as a resource for molecular design.

  7. On the Magnitude and Orientation of Stress during Shock Metamorphism: Understanding Peak Ring Formation by Combining Observations and Models.

    Science.gov (United States)

    Rae, A.; Poelchau, M.; Collins, G. S.; Timms, N.; Cavosie, A. J.; Lofi, J.; Salge, T.; Riller, U. P.; Ferrière, L.; Grieve, R. A. F.; Osinski, G.; Morgan, J. V.; Expedition 364 Science Party, I. I.

    2017-12-01

    Shock metamorphism occurs during the earliest moments after impact. The magnitude and orientation of shock leaves recordable signatures in rocks, which spatially vary across an impact structure. Consequently, observations of shock metamorphism can be used to understand deformation and its history within a shock wave, and to examine subsequent deformation during crater modification. IODP-ICDP Expedition 364 recovered nearly 600 m of shocked target rocks from the peak ring of the Chicxulub Crater. Samples from the expedition were used to measure the magnitude and orientation of shock in peak ring materials, and to determine the mechanism of peak-ring emplacement. Here, we present the results of petrographic analyses of the shocked granitic target rocks of the Chicxulub peak ring; using universal-stage optical microscopy, back-scattered electron images, and electron back-scatter diffraction. Deformation microstructures in quartz include planar deformation features (PDFs), feather features (FFs), which are unique to shock conditions, as well as planar fractures and crystal-plastic deformation bands. The assemblage of PDFs in quartz suggest that the peak-ring rocks experienced shock pressures of 15 GPa throughout the recovered drill core, and that the orientation of FFs are consistent with the present-day orientation of the maximum principal stress direction during shock is close to vertical. Numerical impact simulations of the impact event were run to determine the magnitude and orientation of principal stresses during shock and track those orientations throughout crater formation. Our results are remarkably consistent with the geological data, and accurately predict both the shock-pressure magnitudes, and the final near-vertical orientation of the direction of maximum principal stress in the shock wave. Furthermore, analysis of the state of stress throughout the impact event can be used to constrain the timing of fracture and fault orientations observed in the core

  8. Infrared Spectroscopy Beamline Based on a Tabletop Storage Ring

    OpenAIRE

    Haque, Md. Monirul; Moon, Ahsa; Yamada, Hironari

    2012-01-01

    An optical beamline dedicated to the infrared (IR) spectroscopy has been constructed at MIRRORCLE, a tabletop storage ring. The beamline has been designed for the use of infrared synchrotron radiation (IRSR) emitted from a bending magnet of 156 mm bending radius with the acceptance angle of 355(H) × 138(V) mrad to obtain high flux. The IR emission is forced by an exactly circular optics, named photon storage ring (PhSR), placed around the electron orbit and is collected by a “magic mirror” as...

  9. Optical properties of supported core-shell and alloy silver/gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Hubenthal, Frank; Traeger, Frank [Universitaet Kassel (Germany)

    2008-07-01

    For many applications like surface enhanced Raman scattering in which the optical field enhancement associated with surface plasmon excitation is exploited, tunability of this collective resonance over a wide range is required. For this purpose we have prepared core-shell and alloy nanoparticles consisting of Ag and Au. The core-shell nanoparticles were made by subsequent deposition of Ag and Au atoms and vice versa on dielectric substrates followed by diffusion and nucleation. One of the most interesting among the numerous results is that the plasmon frequency can be tuned from 2.8 eV (442 nm) to 2.1 eV (590 nm) depending on the Au shell thickness. Subsequent annealing of the core-shell nanoparticles causes a shift of the resonance frequency to 2.6 eV. Theoretical modelling allows us to attribute this observation to the formation of alloy nanoparticles. Finally, we have measured the dephasing time T{sub 2} of the alloy nanoparticles by means of spectral hole burning. T{sub 2} amounts to 8.1{+-}1.6 fs, in good agreement with the dephasing time T{sub 2}=8.9 fs that is included in the dielectric function of the bulk.

  10. Lattices for antiproton rings

    International Nuclear Information System (INIS)

    Autin, B.

    1984-01-01

    After a description of the constraints imposed by the cooling of Antiprotons on the lattice of the rings, the reasons which motivate the shape and the structure of these machines are surveyed. Linear and non-linear beam optics properties are treated with a special amplification to the Antiproton Accumulator. (orig.)

  11. MULTI-CORE AND OPTICAL PROCESSOR RELATED APPLICATIONS RESEARCH AT OAK RIDGE NATIONAL LABORATORY

    Energy Technology Data Exchange (ETDEWEB)

    Barhen, Jacob [ORNL; Kerekes, Ryan A [ORNL; ST Charles, Jesse Lee [ORNL; Buckner, Mark A [ORNL

    2008-01-01

    High-speed parallelization of common tasks holds great promise as a low-risk approach to achieving the significant increases in signal processing and computational performance required for next generation innovations in reconfigurable radio systems. Researchers at the Oak Ridge National Laboratory have been working on exploiting the parallelization offered by this emerging technology and applying it to a variety of problems. This paper will highlight recent experience with four different parallel processors applied to signal processing tasks that are directly relevant to signal processing required for SDR/CR waveforms. The first is the EnLight Optical Core Processor applied to matched filter (MF) correlation processing via fast Fourier transform (FFT) of broadband Dopplersensitive waveforms (DSW) using active sonar arrays for target tracking. The second is the IBM CELL Broadband Engine applied to 2-D discrete Fourier transform (DFT) kernel for image processing and frequency domain processing. And the third is the NVIDIA graphical processor applied to document feature clustering. EnLight Optical Core Processor. Optical processing is inherently capable of high-parallelism that can be translated to very high performance, low power dissipation computing. The EnLight 256 is a small form factor signal processing chip (5x5 cm2) with a digital optical core that is being developed by an Israeli startup company. As part of its evaluation of foreign technology, ORNL's Center for Engineering Science Advanced Research (CESAR) had access to a precursor EnLight 64 Alpha hardware for a preliminary assessment of capabilities in terms of large Fourier transforms for matched filter banks and on applications related to Doppler-sensitive waveforms. This processor is optimized for array operations, which it performs in fixed-point arithmetic at the rate of 16 TeraOPS at 8-bit precision. This is approximately 1000 times faster than the fastest DSP available today. The optical core

  12. MULTI-CORE AND OPTICAL PROCESSOR RELATED APPLICATIONS RESEARCH AT OAK RIDGE NATIONAL LABORATORY

    International Nuclear Information System (INIS)

    Barhen, Jacob; Kerekes, Ryan A.; St Charles, Jesse Lee; Buckner, Mark A.

    2008-01-01

    High-speed parallelization of common tasks holds great promise as a low-risk approach to achieving the significant increases in signal processing and computational performance required for next generation innovations in reconfigurable radio systems. Researchers at the Oak Ridge National Laboratory have been working on exploiting the parallelization offered by this emerging technology and applying it to a variety of problems. This paper will highlight recent experience with four different parallel processors applied to signal processing tasks that are directly relevant to signal processing required for SDR/CR waveforms. The first is the EnLight Optical Core Processor applied to matched filter (MF) correlation processing via fast Fourier transform (FFT) of broadband Dopplersensitive waveforms (DSW) using active sonar arrays for target tracking. The second is the IBM CELL Broadband Engine applied to 2-D discrete Fourier transform (DFT) kernel for image processing and frequency domain processing. And the third is the NVIDIA graphical processor applied to document feature clustering. EnLight Optical Core Processor. Optical processing is inherently capable of high-parallelism that can be translated to very high performance, low power dissipation computing. The EnLight 256 is a small form factor signal processing chip (5x5 cm2) with a digital optical core that is being developed by an Israeli startup company. As part of its evaluation of foreign technology, ORNL's Center for Engineering Science Advanced Research (CESAR) had access to a precursor EnLight 64 Alpha hardware for a preliminary assessment of capabilities in terms of large Fourier transforms for matched filter banks and on applications related to Doppler-sensitive waveforms. This processor is optimized for array operations, which it performs in fixed-point arithmetic at the rate of 16 TeraOPS at 8-bit precision. This is approximately 1000 times faster than the fastest DSP available today. The optical core

  13. Three-ring filters increase the effective NA up to 1.46 in optical sectioning fluorescence microscopy

    International Nuclear Information System (INIS)

    Martinez-Corral, M; Ibanez-Lopez, C; Caballero, M T; Munoz-Escriva, L; Saavedra, G

    2003-01-01

    Single-photon fluorescence confocal microscopy techniques can be combined with the use of specific binary filters in order to increase their optical sectioning capability. We present a novel class of axially super-resolving binary pupil filters specially designed to reach this aim. These filters let us to obtain a relevant compression of the z-response together with the reduction of the photo-bleaching effect typically inherent to apodization techniques. The fact of joining both the three-ring filters we propose in the illumination path, and the confocal detection gives rise to an important effective increase of lenses of effective numerical aperture

  14. Limb malformations with associated congenital constriction rings in two unrelated Egyptian males, one with a disorganization-like spectrum and the other with a probable distinct type of septo-optic dysplasia.

    Science.gov (United States)

    Temtamy, Samia A; Aglan, Mona S; Ashour, Adel M; El-Badry, Tarek H

    2010-01-01

    In this report, we describe two unrelated Egyptian male infants with limb malformations and constriction rings. The first case is developing normally but has severe limb anomalies, congenital constriction rings, scoliosis because of vertebral anomalies, a left accessory nipple, a small tumor-like swelling on his lower back with tiny skin tubular appendages, a hypoplastic scrotum, and an anchored penis. The second case is developmentally delayed with limb malformations, congenital constriction rings, a lumbar myelomeningeocele, hemangioma, and tiny tubular skin appendages on the back. The patient also had bilateral optic atrophy. The constellation of features in our patients cannot be fully explained by the amniotic disruption complex. The first patient may represent an additional case of the human homolog of the mouse disorganization mutant. The presence of bilateral optic atrophy in the second case, although without an absent septum pellucidum nor other brain anomalies resembles the infrequently reported disorder of septo-optic dysplasia with limb anomalies. Both cases were sporadic and could be caused by a new dominant mutation because of the high paternal age of case 1 and the history of paternal occupational exposure to heat for both fathers. We draw attention to the phenotypic overlap between the disorganization-like syndrome and septo-optic dysplasia with limb anomalies.

  15. The Cryogenic Storage Ring CSR

    OpenAIRE

    von Hahn, Robert; Becker, Arno; Berg, Felix; Blaum, Klaus; Breitenfeldt, Christian; Fadil, Hisham; Fellenberger, Florian; Froese, Michael; George, Sebastian; Göck, Jürgen; Grieser, Manfred; Grussie, Florian; Guerin, Elisabeth A.; Heber, Oded; Herwig, Philipp

    2016-01-01

    An electrostatic cryogenic storage ring, CSR, for beams of anions and cations with up to 300 keV kinetic energy per unit charge has been designed, constructed, and put into operation. With a circumference of 35 m, the ion-beam vacuum chambers and all beam optics are in a cryostat and cooled by a closed-cycle liquid helium system. At temperatures as low as (5.5 ± 1) K inside the ring, storage time constants of several minutes up to almost an hour were observed for atomic and molecular, anion a...

  16. Fuel element reactivity worth in different rings of the IPR-R1 TRIGA reactor

    Energy Technology Data Exchange (ETDEWEB)

    Gomes do Prado Souza, Rose Mary

    2008-10-29

    The thermal power of the IPR-R1 TRIGA Reactor will be upgraded from 100 kW to 250 kW. Starting core: loaded with 59 aluminum cladded fuel elements; 1.34 $ excess reactivity; and 100 kW power. It is planned to go 2.5 times the power licensed, i.e., 250 kW. This forces to enlarge the reactivity level. Nuclear reactors must have sufficient excess reactivity to compensate the negative reactivity feedback effects caused by: the fuel temperature, fuel burnup, fission poisoning production, and to allow full power operation for predetermined period of time. To provide information for the calculation of the new core arrangement, the reactivity worth of some fuel elements in the core were measured as well as the determination of the core reactivity increase in the substitution of the original fuels, cladded with aluminium, for new ones, cladded with stainless steel. The reactivity worth of fuel element was measured from the difference in critical position of the control rods, calibrated by the positive period method, before and after the fuel element was withdrawn from the core. The magnitude of reactivity increase was determined when withdrawing the original Al-clad fuel (a little burned up) and the graphite elements, and inserting a fresh Al-clad fuel element, one by one. Experimental results indicated that to obtain enough reactivity excess to increase the rector power the addition of 4 new fuel elements in the core would be sufficient: - Substitution of 4 Al-clad fuel elements in ring C for fresh stainless steel clad fuel elements; - increase the reactivity {approx_equal} 4 x 6.5 = 26 cents; - The removed 4 Al-clad F. E. (a little burned up) put in the core periphery, ring F, replacing graphite elements; - add < 4 x 39 156 cents (39 cents was measured with a fresh F.E.). Neutron source was changed from position F7 to F8. Control and Safety rods were moved from ring D to C in order to increase their reactivity worth. Regulating rod was kept at the same position, F16. Four

  17. Characterization of the International Linear Collider damping ring optics

    Science.gov (United States)

    Shanks, J.; Rubin, D. L.; Sagan, D.

    2014-10-01

    A method is presented for characterizing the emittance dilution and dynamic aperture for an arbitrary closed lattice that includes guide field magnet errors, multipole errors and misalignments. This method, developed and tested at the Cornell Electron Storage Ring Test Accelerator (CesrTA), has been applied to the damping ring lattice for the International Linear Collider (ILC). The effectiveness of beam based emittance tuning is limited by beam position monitor (BPM) measurement errors, number of corrector magnets and their placement, and correction algorithm. The specifications for damping ring magnet alignment, multipole errors, number of BPMs, and precision in BPM measurements are shown to be consistent with the required emittances and dynamic aperture. The methodology is then used to determine the minimum number of position monitors that is required to achieve the emittance targets, and how that minimum depends on the location of the BPMs. Similarly, the maximum tolerable multipole errors are evaluated. Finally, the robustness of each BPM configuration with respect to random failures is explored.

  18. Influence of core diameter and length of polymer optical fiber on Brillouin scattering properties

    Science.gov (United States)

    Mizuno, Yosuke; Ishigure, Takaaki; Nakamura, Kentaro

    2012-02-01

    Brillouin scattering in perfluorinated graded-index polymer optical fibers (PFGI-POFs) is potentially useful in developing high-accuracy distributed temperature sensors with reduced strain sensitivity. In this study, we investigate, both experimentally and theoretically, the influence of the fiber core diameter and length on the Brillouin gain spectra (BGS) in PFGI-POFs. First, we show that smaller core diameter drastically enhances the Stokes power using PFGI-POFs with 62.5-μm and 120-μm core diameters, and discuss the Brillouin threshold power. Then, we demonstrate that the PFGI-POF length has little influence on the BGS when the length is longer than 50 m. We also predict that, at 1.55-μm wavelength, it is difficult to reduce the Brillouin threshold power of PFGI-POFs below that of long silica single-mode fibers even if their core diameter is sufficiently reduced to satisfy the single-mode condition. Finally, making use of the enhanced Stokes signal, we confirm the Brillouin linewidth narrowing effect.

  19. Multiple-Ring Digital Communication Network

    Science.gov (United States)

    Kirkham, Harold

    1992-01-01

    Optical-fiber digital communication network to support data-acquisition and control functions of electric-power-distribution networks. Optical-fiber links of communication network follow power-distribution routes. Since fiber crosses open power switches, communication network includes multiple interconnected loops with occasional spurs. At each intersection node is needed. Nodes of communication network include power-distribution substations and power-controlling units. In addition to serving data acquisition and control functions, each node acts as repeater, passing on messages to next node(s). Multiple-ring communication network operates on new AbNET protocol and features fiber-optic communication.

  20. THE MOLECULAR EMISSION OF THE IRRADIATED STAR-FORMING CORE AHEAD OF HH 80N

    International Nuclear Information System (INIS)

    Masque, Josep M.; Beltran, Maria T.; Estalella, Robert; Girart, Josep M.; Viti, Serena

    2009-01-01

    We present a Berkeley-Illinois-Maryland Association Array molecular survey of the star-forming core ahead of HH 80N, the optically obscured northern counterpart of the Herbig-Haro objects HH 80/81. Continuum emission at 1.4 mm and 8 μm is detected at the center of the core, which confirms the presence of an embedded very young stellar object in the core. All detected molecular species arise in a ringlike structure, which is most clearly traced by CS (2-1) emission. This molecular ring suggests that strong molecular depletion occurs in the inner part of the core (at a radius of ≅0.1 pc and densities higher than ∼5 x 10 4 cm -3 ). Despite the overall morphology and kinematic similarity between the different species, there is significant molecular differentiation along the ringlike structure. The analysis of the chemistry along the core shows that part of this differentiation may be caused by the UV irradiation of the nearby HH 80N object that illuminates the part of the core facing HH 80N, which results in an abundance enhancement of some of the detected species.

  1. Some uses of REPMM's in storage rings and colliders

    International Nuclear Information System (INIS)

    Spencer, J.E.

    1985-04-01

    Improvements for existing rings and techniques for building new rings composed entirely of passive, Rare Earth Permanent Magnet Multipoles (REPMM's) are considered using circular dipoles, quadrupoles and sextupoles. Over the past few years we have made such magnets using a single size SmCo 5 block with up to five easy-axis orientations. The final production scheme is modular in that magnets are built-up from quantized layers. All multipole layers are made in exactly the same way using algorithms differing only by the desired multipole symmetry. The method is simple, efficient and inexpensive and allows a ''do-it-yourself'' approach to constructing new magnetic elements. For rings these might include focusing optical klystrons, rotatable multipoles for diagnostics, correction or extraction, or possibly combined function systems for the unit cells. A high quality, low-beta, PMQ insertion which can change beta, tune and energy is described as well as the PMS's for the SD and SF elements of the North SLC damping ring. Because these sextupoles will be the first optical use of PM's in storage rings they are discussed in detail together with the advantages, problems and requirements of such applications. 8 refs., 4 figs

  2. Dislocation core structures in Si-doped GaN

    International Nuclear Information System (INIS)

    Rhode, S. L.; Fu, W. Y.; Sahonta, S.-L.; Kappers, M. J.; Humphreys, C. J.; Horton, M. K.; Pennycook, T. J.; Dusane, R. O.; Moram, M. A.

    2015-01-01

    Aberration-corrected scanning transmission electron microscopy was used to investigate the core structures of threading dislocations in plan-view geometry of GaN films with a range of Si-doping levels and dislocation densities ranging between (5 ± 1) × 10 8  and (10 ± 1) × 10 9  cm −2 . All a-type (edge) dislocation core structures in all samples formed 5/7-atom ring core structures, whereas all (a + c)-type (mixed) dislocations formed either double 5/6-atom, dissociated 7/4/8/4/9-atom, or dissociated 7/4/8/4/8/4/9-atom core structures. This shows that Si-doping does not affect threading dislocation core structures in GaN. However, electron beam damage at 300 keV produces 4-atom ring structures for (a + c)-type cores in Si-doped GaN

  3. Dislocation core structures in Si-doped GaN

    Energy Technology Data Exchange (ETDEWEB)

    Rhode, S. L., E-mail: srhode@imperial.ac.uk; Fu, W. Y.; Sahonta, S.-L.; Kappers, M. J.; Humphreys, C. J. [Department of Materials Science and Metallurgy, University of Cambridge, Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Horton, M. K. [Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); Pennycook, T. J. [SuperSTEM, STFC Daresbury Laboratories, Warrington WA4 4AD (United Kingdom); Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Dusane, R. O. [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai 400076 (India); Moram, M. A. [Department of Materials Science and Metallurgy, University of Cambridge, Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom)

    2015-12-14

    Aberration-corrected scanning transmission electron microscopy was used to investigate the core structures of threading dislocations in plan-view geometry of GaN films with a range of Si-doping levels and dislocation densities ranging between (5 ± 1) × 10{sup 8} and (10 ± 1) × 10{sup 9} cm{sup −2}. All a-type (edge) dislocation core structures in all samples formed 5/7-atom ring core structures, whereas all (a + c)-type (mixed) dislocations formed either double 5/6-atom, dissociated 7/4/8/4/9-atom, or dissociated 7/4/8/4/8/4/9-atom core structures. This shows that Si-doping does not affect threading dislocation core structures in GaN. However, electron beam damage at 300 keV produces 4-atom ring structures for (a + c)-type cores in Si-doped GaN.

  4. Optical control of spin-dependent thermal transport in a quantum ring

    Science.gov (United States)

    Abdullah, Nzar Rauf

    2018-05-01

    We report on calculation of spin-dependent thermal transport through a quantum ring with the Rashba spin-orbit interaction. The quantum ring is connected to two electron reservoirs with different temperatures. Tuning the Rashba coupling constant, degenerate energy states are formed leading to a suppression of the heat and thermoelectric currents. In addition, the quantum ring is coupled to a photon cavity with a single photon mode and linearly polarized photon field. In a resonance regime, when the photon energy is approximately equal to the energy spacing between two lowest degenerate states of the ring, the polarized photon field can significantly control the heat and thermoelectric currents in the system. The roles of the number of photon initially in the cavity, and electron-photon coupling strength on spin-dependent heat and thermoelectric currents are presented.

  5. Optical ferris wheel for ultracold atoms

    Science.gov (United States)

    Franke-Arnold, S.; Leach, J.; Padgett, M. J.; Lembessis, V. E.; Ellinas, D.; Wright, A. J.; Girkin, J. M.; Ohberg, P.; Arnold, A. S.

    2007-07-01

    We propose a versatile optical ring lattice suitable for trapping cold and quantum degenerate atomic samples. We demonstrate the realisation of intensity patterns from pairs of Laguerre-Gauss (exp(iℓө) modes with different ℓ indices. These patterns can be rotated by introducing a frequency shift between the modes. We can generate bright ring lattices for trapping atoms in red-detuned light, and dark ring lattices suitable for trapping atoms with minimal heating in the optical vortices of blue-detuned light. The lattice sites can be joined to form a uniform ring trap, making it ideal for studying persistent currents and the Mott insulator transition in a ring geometry.

  6. Control of Dispersion in Hollow Core Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Roberts, John

    2007-01-01

    The dispersion of hollow core photonic crystal fibers can be tailored by modifying a single ring of holes in the cladding. The dispersion can be lowered and flattened, or alternatively greatly increased, in a controlled manner.......The dispersion of hollow core photonic crystal fibers can be tailored by modifying a single ring of holes in the cladding. The dispersion can be lowered and flattened, or alternatively greatly increased, in a controlled manner....

  7. Ring cavity surface emitting semiconductor lasers

    International Nuclear Information System (INIS)

    Mujagic, E.

    2010-01-01

    Quantum cascade lasers (QCLs) are electrically driven semiconductor lasers, which have undergone a steady improvement since the first demonstration in 1994. These are now well established as reliable sources of coherent light in the mid-infrared (MIR) and terahertz (THz)range of the electromagnetic spectrum (3-300 μm). The rapid progress of this type of lasers is based on a high degree of freedom in tailoring the emission wavelength within a large variety of semiconductor heterostructure designs and materials. These properties have attracted the attention of various applications such as gas analysis, chemical sensing, spectral imaging and free-space telecommunication. In order to improve the selectivity, sensitivity and efficiency of today's sensor systems, high optical power, continuous wave and room temperature performance, single-mode operation and low divergence optical beams, are highly desirable qualities of a compact laser source in this field of research. Since all of these features cannot be provided by a conventional edge-emitting device at the same time, research has put focus on the development of surface emitting devices. Nowadays, the vertical cavity surface emitting lasers (VCSELs) are the most prominent representative for this type of light emitters. With its capability of producing narrow circular beams, the feasibility of two-dimensional arrays and on-wafer testing, such a coherent light source results in a reduction of the fabrication effort and production costs. Since the radiation in QCLs is strictly polarized normal to the epitaxial layer plane, fabrication of VCSELs based on QC structures is not viable. The subject of this work is the design and realization of 'ring cavity surface emitting lasers' (ring-CSELs). This type of lasers employs a circular ring cavity and a resonant distributed feedback (DFB) surface grating. Ring-CSELs were fabricated on the basis of MIR and THz QC structures, which cover a wavelength range from 4 μm to 93

  8. Interference of a thermal Tonks gas on a ring

    International Nuclear Information System (INIS)

    Das, Kunal K.; Girardeau, M.D.; Wright, E.M.

    2002-01-01

    A nonzero temperature generalization of the Fermi-Bose mapping theorem is used to study the exact quantum statistical dynamics of a one-dimensional gas of impenetrable bosons on a ring. We investigate the interference produced when an initially trapped gas localized on one side of the ring is released, split via an optical-dipole grating, and recombined on the other side of the ring. Nonzero temperature is shown not to be a limitation to obtaining high visibility fringes

  9. Linear and nonlinear optical absorption coefficients in GaAs/Ga{sub 1-x}Al{sub x}As concentric double quantum rings: Effects of hydrostatic pressure and aluminum concentration

    Energy Technology Data Exchange (ETDEWEB)

    Baghramyan, H.M. [Department of Solid State Physics, Yerevan State University, Al. Manookian 1, 0025 Yerevan (Armenia); Barseghyan, M.G., E-mail: mbarsegh@ysu.am [Department of Solid State Physics, Yerevan State University, Al. Manookian 1, 0025 Yerevan (Armenia); Kirakosyan, A.A. [Department of Solid State Physics, Yerevan State University, Al. Manookian 1, 0025 Yerevan (Armenia); Restrepo, R.L. [Escuela de Ingenieria de Antioquia, AA 7516 Medellin (Colombia); Duque, C.A. [Instituto de Fisica, Universidad de Antioquia, AA 1226 Medellin (Colombia)

    2013-02-15

    The linear and nonlinear intra-band optical absorption coefficients in GaAs/Ga{sub 1-x}Al{sub x}As two-dimensional concentric double quantum rings are investigated. Taking into account the combined effects of hydrostatic pressure and aluminum concentration the energies of the ground (n=1,l=0) and the first excited state (n=2,l=1) have been found using the effective mass approximation and the transfer matrix formalism. The energies of these states and the corresponding threshold energy of the intra-band optical transitions are examined as a function of hydrostatic pressure and aluminum concentration for different sizes of the structure. We also investigated the dependencies of the linear, nonlinear, and total optical absorption coefficients as functions of the incident photon energy for different values of hydrostatic pressure, aluminum concentration, sizes of the structure, and incident optical intensity. Its is found that the effects of the hydrostatic pressure and the aluminum concentration lead to a shifting of the resonant peaks of the intra-band optical spectrum. - Highlights: Black-Right-Pointing-Pointer Linear and nonlinear intra-band absorption in quantum rings. Black-Right-Pointing-Pointer Threshold energy strongly depends on the hydrostatic pressure. Black-Right-Pointing-Pointer Threshold energy strongly depends on the stoichiometry and sizes of structure. Black-Right-Pointing-Pointer Optical absorption is affected by the incident optical intensity.

  10. New Main Ring control system

    International Nuclear Information System (INIS)

    Seino, K.; Anderson, L.; Ducar, R.; Franck, A.; Gomilar, J.; Hendricks, B.; Smedinghoff, J.

    1990-03-01

    The Fermilab Main Ring control system has been operational for over sixteen years. Aging and obsolescence of the equipment make the maintenance difficult. Since the advent of the Tevatron, considerable upgrades have been made to the controls of all the Fermilab accelerators except the Main Ring. Modernization of the equipment and standardization of the hardware and software have thus become inevitable. The Tevatron CAMAC serial system has been chosen as a basic foundation in order to make the Main Ring control system compatible with the rest of the accelerator complex. New hardware pieces including intelligent CAMAC modules have been designed to satisfy unique requirements. Fiber optic cable and repeaters have been installed in order to accommodate new channel requirements onto the already saturated communication medium system. 8 refs., 2 figs

  11. Dosimetry of steady-state gamma rays or pulsed X rays using liquid-core optical waveguides

    International Nuclear Information System (INIS)

    Radak, B.B.; McLaughlin, W.L.; Simic, M.G.; Warasawas, W.

    1987-01-01

    A liquid-core optical waveguide (OWG) sensor of ionizing radiation can be used for dosimetry over broad absorbed-dose ranges, by means of a relatively simple experimental arrangement. The analyzing visible light from one of several narrow wavelength-band sources at the proximal end of the OWG is propagated efficiently through a tightly coiled waveguide containing a radiochromic solution. This solution constitutes the sensor and attenuates the measuring light according to the simple Beer-Lambert relationship, where increases in the optical absorbance, measured photometrically at the distal end of the OWG, are proportional to the concentrations of the radiation-induced absorbing species (dye molecules), which in turn are proportional to the absorbed dose in the sensor. When the analyzing light is of broad spectral distribution, the absorbance vs dose relationship becomes sublinear. The apparatus may be adapted either to the spectrophotometric measurement of absorbed dose rate or integrated absorbed dose during gamma radiolysis or to dosimetry in the pulse radiolysis or flash photolysis of radiation-stimulated chromophores. The OWG principle works with any transparent liquid or gel sensor held as the core material of a flexible plastic tubing, whose refractive index is less than that of the light-propagating core. (author)

  12. Adhesive liquid core optical fibers for crack detection and repairs in polymer and concrete matrices

    Science.gov (United States)

    Dry, Carolyn M.

    1995-04-01

    This work is an investigation into the feasibility of using liquid core optical fibers for the detection and self repair of cracking in cement or polymer materials generated by dynamic or static loading. These experiments rely on our current research sponsored by the National Science Foundation. It combines that work on the concept of internal adhesive delivery from hollow fibers for repair with nondestructive fiber optic analysis of the crack localization and volume within the same system. The need to monitor the internal state of civil structures and materials is great. Existing instrumentation techniques that mainly rely on magnetism, electricity, or stress gauges are limited if used for remote measurements in concrete or composites. They are sensitive to electrical magnetic noises and they degrade in the environment over time. Optical fibers are attractive because they are immune to electromagnetic interference and are sensitive over long distances. The combination of the ability to remotely measure crack occurrence in real time and determine the location and volume of crack damage in the matrix is unique in the field of optic sensors (or any sensors in general). The combination of this with crack repair, rebonding of any detached or broken fibers, and replenishment of liquid core chemicals, when necessary, make this a potentially powerful sensing and repair tool. Work on this research topic of the combination sponsored by the University of Illinois, looks very promising as a rapid innovative advance.

  13. Vernier effect-based multiplication of the Sagnac beating frequency in ring laser gyroscope sensors

    Science.gov (United States)

    Adib, George A.; Sabry, Yasser M.; Khalil, Diaa

    2018-02-01

    A multiplication method of the Sagnac effect scale factor in ring laser gyroscopes is presented based on the Vernier effect of a dual-coupler passive ring resonator coupled to the active ring. The multiplication occurs when the two rings have comparable lengths or integer multiples and their scale factors have opposite signs. In this case, and when the rings have similar areas, the scale factor is multiplied by ratio of their length to their length difference. The scale factor of the presented configuration is derived analytically and the lock-in effect is analyzed. The principle is demonstrated using optical fiber rings and semiconductor optical amplifier as gain medium. A scale factor multiplication by about 175 is experimentally measured, demonstrating larger than two orders of magnitude enhancement in the Sagnac effect scale factor for the first time in literature, up to the authors' knowledge.

  14. Self-healing ring-based WDM-PON

    Science.gov (United States)

    Zhou, Yang; Gan, Chaoqin; Zhu, Long

    2010-05-01

    In this paper, a survivable ring-based wavelength-division-multiplexing (WDM)-passive optical network (PON) for fiber protection is proposed. Protections for feeder fiber and distributed fiber are independent in the scheme. Optical line terminal (OLT) and optical network units (ONUs) can automatically switch to protection link when fiber failure occurs. Protection distributed fiber is not required in the scheme. Cost-effective components are used in ONUs to minimize costs of network. A simulation study is performed to demonstrate the scheme. Its result shows good performance of upstream and downstream signals.

  15. Cleaving of TOPAS and PMMA microstructured polymer optical fibers: Core-shift and statistical quality optimization

    DEFF Research Database (Denmark)

    Stefani, Alessio; Nielsen, Kristian; Rasmussen, Henrik K.

    2012-01-01

    We fabricated an electronically controlled polymer optical fiber cleaver, which uses a razor-blade guillotine and provides independent control of fiber temperature, blade temperature, and cleaving speed. To determine the optimum cleaving conditions of microstructured polymer optical fibers (m......POFs) with hexagonal hole structures we developed a program for cleaving quality optimization, which reads in a microscope image of the fiber end-facet and determines the core-shift and the statistics of the hole diameter, hole-to-hole pitch, hole ellipticity, and direction of major ellipse axis. For 125μm in diameter...

  16. Chromaticity correction in the TRISTAN phase I main ring with two types of insertion

    International Nuclear Information System (INIS)

    Wu, Yingzhi; Egawa, Kazumi.

    1984-07-01

    The TRISTAN main ring now under construction has four insertions. Besides the normal modes in which the four insertions have the same optics, the TRISTAN main ring will be operated in somewhat more complicated configurations with insertions having different optics. This report will consider chromaticity corrections using six families of sextupoles for the TRISTAN main ring with two different insertion types; opposite insertions have the same optics. The strength of correcting sextupoles is determined mainly using the W-correction method. The program PATRICIA is used to track the trajectories of test particles over 800 turns. The results show that the correction scheme adopted allows adequately large amplitudes of betatron and synchrotron oscillations. (author)

  17. Controllable Continuous evolution of electronic states in a single quantum ring

    OpenAIRE

    Chakraborty, Tapash; Manaselyan, Aram; Barseghyan, Manuk; Laroze, David

    2017-01-01

    Intense terahertz laser field is shown to have a profound effect on the electronic and optical properties of quantum rings, where the isotropic and anisotropic quantum rings can now be treated on equal footing. We have demonstrated that in isotropic quantum rings the laser field creates irregular AB oscillations that are usually expected in anisotropic rings. Further, we have shown for the first time that intense laser fields can restore the {\\it isotropic} physical properties in anisotropic ...

  18. Irregular Aharonov–Bohm effect for interacting electrons in a ZnO quantum ring

    International Nuclear Information System (INIS)

    Chakraborty, Tapash; Manaselyan, Aram; Barseghyan, Manuk

    2017-01-01

    The electronic states and optical transitions of a ZnO quantum ring containing few interacting electrons in an applied magnetic field are found to be very different from those in a conventional semiconductor system, such as a GaAs ring. The strong Zeeman interaction and the Coulomb interaction of the ZnO system, two important characteristics of the electron system in ZnO, exert a profound influence on the electron states and on the optical properties of the ring. In particular, our results indicate that the Aharonov–Bohm (AB) effect in a ZnO quantum ring strongly depends on the electron number. In fact, for two electrons in the ZnO ring, the AB oscillations become aperiodic, while for three electrons (interacting) the AB oscillations completely disappear. Therefore, unlike in conventional quantum ring topology, here the AB effect (and the resulting persistent current) can be controlled by varying the electron number. (paper)

  19. Exact suppression of depolarisation by beam-beam interaction in an electron ring

    International Nuclear Information System (INIS)

    Buon, J.

    1983-03-01

    It is shown that depolarisation due to beam-beam interaction can be exactly suppressed in an electron storage ring. The necessary ''spin matching'' conditions to be fulfilled are derived for a planar ring. They depend on the ring optics, assumed linear, but not on the features of the beam-beam force, like intensity and non-linearity. Extension to a ring equipped with 90 0 spin rotators is straightorward

  20. Asymmetric transmission in planar chiral split-ring metamaterials: Microscopic Lorentz-theory approach

    DEFF Research Database (Denmark)

    Novitsky, Andrey; Galynsky, Vladimir M.; Zhukovsky, Sergei

    2012-01-01

    The electronic Lorentz theory is employed to explain the optical properties of planar split-ring metamaterials. Starting from the dynamics of individual free carriers, the electromagnetic response of an individual split-ring meta-atom is determined, and the effective permittivity tensor...... of the metamaterial is calculated for normal incidence of light. Whenever the split ring lacks in-plane mirror symmetry, the corresponding permittivity tensor has a crystallographic structure of an elliptically dichroic medium, and the metamaterial exhibits optical properties of planar chiral structures. Its...... transmission spectra are different for right-handed versus left-handed circular polarization of the incident wave, so the structure changes its transmittance when the direction of incidence is reversed. The magnitude of this change is shown to be related to the geometric parameters of the split ring...

  1. INJECTION EFFICIENCY IN COMPTON RING NESTOR

    Directory of Open Access Journals (Sweden)

    P. I. Gladkikh

    2017-12-01

    Full Text Available NESTOR is the hard X-ray source that is under commissioning at NSC KIPT. NESTOR based on the Compton scattering of laser photons on relativistic electrons. The structure of the facility can be represented as the following components: a linear accelerator, a transport channel, a storage ring, and a laser-optical system. Electrons are stored in the storage ring for energy of 40-200 MeV. Inevitable alignment errors of magnetic elements are strongly effect on the beam dynamics in the storage ring. These errors lead to a shift of the equilibrium orbit relative to the ideal one. Significant shift of the equilibrium orbit could lead to loss of the beam on physical apertures. Transverse sizes of electron and laser beams are only few tens of microns at the interaction point. The shift of electron beam at the interaction point could greatly complicate the operation adjustment of storage ring without sufficient beam position diagnostic system. This article presents the simulation results of the efficiency of electron beam accumulation in the NESTOR storage ring. Also, this article is devoted to electron beam dynamics due to alignment errors of magnetic element in the ring.

  2. Silicon photonic micro-ring resonators to sense strain and ultrasound

    NARCIS (Netherlands)

    Westerveld, W.J.

    2014-01-01

    We demonstrated that photonic micro-ring resonators can be used in micro-machined ultrasound microphones. This might cause a breakthrough in array transducers for ultrasonography; first because optical multiplexing allows array interrogation via one optical fiber and second because the

  3. An auxiliary graph based dynamic traffic grooming algorithm in spatial division multiplexing enabled elastic optical networks with multi-core fibers

    Science.gov (United States)

    Zhao, Yongli; Tian, Rui; Yu, Xiaosong; Zhang, Jiawei; Zhang, Jie

    2017-03-01

    A proper traffic grooming strategy in dynamic optical networks can improve the utilization of bandwidth resources. An auxiliary graph (AG) is designed to solve the traffic grooming problem under a dynamic traffic scenario in spatial division multiplexing enabled elastic optical networks (SDM-EON) with multi-core fibers. Five traffic grooming policies achieved by adjusting the edge weights of an AG are proposed and evaluated through simulation: maximal electrical grooming (MEG), maximal optical grooming (MOG), maximal SDM grooming (MSG), minimize virtual hops (MVH), and minimize physical hops (MPH). Numeric results show that each traffic grooming policy has its own features. Among different traffic grooming policies, an MPH policy can achieve the lowest bandwidth blocking ratio, MEG can save the most transponders, and MSG can obtain the fewest cores for each request.

  4. Study on HANARO core conversion using U-Mo fuel

    International Nuclear Information System (INIS)

    Lee, K.H.; Lee, C.S.; Seo, C.G.; Park, S.J.; Kim, H.; Kim, C.K.

    2002-01-01

    Two types of fuel rods with different fuel meat diameter and uranium density are considered for HANARO core conversion with high density U-Mo fuel. Arranging standard fuels of 5.0 g U/cc and 6.35 mm in diameter at the inner ring of an assembly and reduced fuels of 4.3 g U/cc and 5.49 mm in diameter at the outer ring of an assembly flattens the assembly power distribution and avoids the increase of linear heat generation rate due to using higher uranium density and less number of fuel rods. The maximum linear heat generation rate is similar with the current reference core and four fuel sites at the outer core in the reflector tank is converted to the irradiation sites to suit more demand on fuel tests and radioisotope production at outer core sites. This new core has 32% longer fuel cycle than the current reference core. (author)

  5. Model calibration and beam control systems for storage rings

    International Nuclear Information System (INIS)

    Corbett, W.J.; Lee, M.J.; Ziemann, V.

    1993-04-01

    Electron beam storage rings and linear accelerators are rapidly gaining worldwide popularity as scientific devices for the production of high-brightness synchrotron radiation. Today, everybody agrees that there is a premium on calibrating the storage ring model and determining errors in the machine as soon as possible after the beam is injected. In addition, the accurate optics model enables machine operators to predictably adjust key performance parameters, and allows reliable identification of new errors that occur during operation of the machine. Since the need for model calibration and beam control systems is common to all storage rings, software packages should be made that are portable between different machines. In this paper, we report on work directed toward achieving in-situ calibration of the optics model, detection of alignment errors, and orbit control techniques, with an emphasis on developing a portable system incorporating these tools

  6. Top-down fabrication of vertical silicon nano-rings based on Poisson diffraction

    International Nuclear Information System (INIS)

    Ai Yujie; Huang Ru; Hao Zhihua; Wang Runsheng; Liu Changze; Fan Chunhui; Wang Yangyuan

    2011-01-01

    Vertical Si nano-rings with a uniform thickness of about 100 nm have been fabricated by conventional optical photolithography with a low cost based on Poisson diffraction. Moreover, the roughness of the Si nano-rings can be effectively reduced by sacrificial oxidation. In order to increase the density of the nano-rings, coaxial twin Si nano-rings have been fabricated by the Poisson diffraction method combined with the spacer technique. The thickness of both the inner and outer Si nano-rings is about 60 nm, and the gap between the twin nano-rings is about 100 nm.

  7. Rigorous simulations of a helical core fiber by the use of transformation optics formalism.

    Science.gov (United States)

    Napiorkowski, Maciej; Urbanczyk, Waclaw

    2014-09-22

    We report for the first time on rigorous numerical simulations of a helical-core fiber by using a full vectorial method based on the transformation optics formalism. We modeled the dependence of circular birefringence of the fundamental mode on the helix pitch and analyzed the effect of a birefringence increase caused by the mode displacement induced by a core twist. Furthermore, we analyzed the complex field evolution versus the helix pitch in the first order modes, including polarization and intensity distribution. Finally, we show that the use of the rigorous vectorial method allows to better predict the confinement loss of the guided modes compared to approximate methods based on equivalent in-plane bending models.

  8. A method for generating double-ring-shaped vector beams

    Science.gov (United States)

    Huan, Chen; Xiao-Hui, Ling; Zhi-Hong, Chen; Qian-Guang, Li; Hao, Lv; Hua-Qing, Yu; Xu-Nong, Yi

    2016-07-01

    We propose a method for generating double-ring-shaped vector beams. A step phase introduced by a spatial light modulator (SLM) first makes the incident laser beam have a nodal cycle. This phase is dynamic in nature because it depends on the optical length. Then a Pancharatnam-Berry phase (PBP) optical element is used to manipulate the local polarization of the optical field by modulating the geometric phase. The experimental results show that this scheme can effectively create double-ring-shaped vector beams. It provides much greater flexibility to manipulate the phase and polarization by simultaneously modulating the dynamic and the geometric phases. Project supported by the National Natural Science Foundation of China (Grant No. 11547017), the Hubei Engineering University Research Foundation, China (Grant No. z2014001), and the Natural Science Foundation of Hubei Province, China (Grant No. 2014CFB578).

  9. Ring laser frequency biasing mechanism

    International Nuclear Information System (INIS)

    McClure, R.E.

    1975-01-01

    A ring laser cavity including a magnetically saturable member for differentially phase shifting the contradirectional waves propagating in the laser cavity, the phase shift being produced by the magneto-optic interaction occurring between the light waves and the magnetization in the cavity forming component as the light waves are reflected therefrom is described

  10. Application of Negative Curvature Hollow-Core Fiber in an Optical Fiber Sensor Setup for Multiphoton Spectroscopy.

    Science.gov (United States)

    Popenda, Maciej Andrzej; Stawska, Hanna Izabela; Mazur, Leszek Mateusz; Jakubowski, Konrad; Kosolapov, Alexey; Kolyadin, Anton; Bereś-Pawlik, Elżbieta

    2017-10-06

    In this paper, an application of negative curvature hollow core fiber (NCHCF) in an all-fiber, multiphoton fluorescence sensor setup is presented. The dispersion parameter (D) of this fiber does not exceed the value of 5 ps/nm × km across the optical spectrum of (680-750) nm, making it well suited for the purpose of multiphoton excitation of biological fluorophores. Employing 1.5 m of this fiber in a simple, all-fiber sensor setup allows us to perform multiphoton experiments without any dispersion compensation methods. Multiphoton excitation of nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) with this fiber shows a 6- and 9-fold increase, respectively, in the total fluorescence signal collected when compared with the commercial solution in the form of a hollow-core photonic band gap fiber (HCPBF). To the author's best knowledge, this is the first time an NCHCF was used in an optical-fiber sensor setup for multiphoton fluorescence experiments.

  11. Modeling of anisotropic properties of double quantum rings by the terahertz laser field.

    Science.gov (United States)

    Baghramyan, Henrikh M; Barseghyan, Manuk G; Kirakosyan, Albert A; Ojeda, Judith H; Bragard, Jean; Laroze, David

    2018-04-18

    The rendering of different shapes of just a single sample of a concentric double quantum ring is demonstrated realizable with a terahertz laser field, that in turn, allows the manipulation of electronic and optical properties of a sample. It is shown that by changing the intensity or frequency of laser field, one can come to a new set of degenerated levels in double quantum rings and switch the charge distribution between the rings. In addition, depending on the direction of an additional static electric field, the linear and quadratic quantum confined Stark effects are observed. The absorption spectrum shifts and the additive absorption coefficient variations affected by laser and electric fields are discussed. Finally, anisotropic electronic and optical properties of isotropic concentric double quantum rings are modeled with the help of terahertz laser field.

  12. Free-space optics technology employed in an UMTS release 4 bearer independent core network access part

    Science.gov (United States)

    Bibac, Ionut

    2005-08-01

    The UMTS Bearer Independent Core Network program introduced the 3rd Generation Partnership Program Release 4 BICN architecture into the legacy UMTS TDM-switched network. BICN is the application of calI server archltecture for voice and circuit switched data, enabling the provisioning of traditional circuit-switched services using a packet-switched transport network. Today"s business climate has made it essential for service providers to develop a comprehensive networking strategy that means introduction of RCBICN networks. The R4-BICN solution to the evolution of the Core Network in UMTS will enable operators to significantly reduce the capital and operational costs of delivering both traditional voice sewices and new multimedia services. To build the optical backbone, which can support the third generation (3G) packetized infrastructure, the operators could choose a fibre connection, or they could retain the benefits of a wireless connectivity by using a FSO - Free Space Optical lmk, the only wireless technology available that is capable of achieving data rates up to 2.4 Gbit/s. FSO offers viable alternatives for both core transmission networks and for replacing microwaves links in NodeB - RNC access networks. The paper and presentation aim to demonstrate the manner in which FSO products and networks are employed into R4-BICN design solutions.

  13. Evidence for Break-Up of Clumps in Dynamically Stirred Regions of Saturn's Rings

    Science.gov (United States)

    Colwell, J. E.; Sega, D. N.; Jerousek, R. G.; Cooney, J. H.; Esposito, L. W.

    2017-12-01

    Stellar occultations of Saturn's rings observed by the Cassini Ultraviolet Imaging Spectrograph (UVIS) High Speed Photometer (HSP) record stellar brightness seen through the rings as photon counts that are described by Poisson counting statistics in the absence of intervening ring material. The variance in the data increases above counting statistics due to the discrete sizes of the ring particles, with larger particles leading to a larger variance at a given optical depth. We take advantage of the high spatial resolution and multiple viewing geometries of the UVIS occultations to study variations in particle size near and within strongly perturbed regions of Saturn's A ring, in particular the strong first order Lindblad resonances with Janus and the Mimas 5:3 Lindblad resonance and inner vertical resonance. The variance shows changes in the area-weighted particle size between peaks and troughs in the density waves as well as an overall decrease in particle size in the broad "halo" regions that bracket the strong Janus Lindblad resonances in the A ring. In addition we see a decrease in particle size at the location of the Mimas 5:3 bending wave wavetrain itself, and an increase in optical depth at the location of the wave when viewed from high elevation angles out of the ring plane. Taken together, these observations suggest that clumps of particles, perhaps the ubiquitous A ring self-gravity wakes, are disaggregated in the bending wave, even though standard bending wave theory does not predict enhanced collision velocities. We also examine the skewness, a higher order moment of the occultation data, that is diagnostic of asymmetries in the particle size distribution. We use Monte Carlo simulations of occultations to match the first three moments of the data (the signal mean, or equivalently the optical depth, the variance, and the skewness) to illustrate differences in ring particle size in these perturbed regions.

  14. Common pass decentered annular ring resonator

    Energy Technology Data Exchange (ETDEWEB)

    Holmes, D. A.; Waite, T. R.

    1985-04-30

    An optical resonator having an annular cylindrical gain region for use in a chemical laser or the like in which two ring-shaped mirrors having substantially conical reflecting surfaces are spaced apart along a common axis of revolution of the respective conical surfaces. A central conical mirror reflects incident light directed along said axis radially outwardly to the reflecting surface of a first one of the ring-shaped mirrors. The radial light rays are reflected by the first ring mirror to the second ring mirror within an annular cylindrical volume concentric with said common axis and forming a gain region. Light rays impinging on the second ring mirror are reflected to diametrically opposite points on the same conical mirror surfaces and back to the first ring mirror through the same annular cylindrical volume. The return rays are then reflected by the conical mirror surface of the first ring mirror back to the central conical mirror. The mirror surfaces are angled such that the return rays are reflected back along the common axis by the central mirror in a concentric annular cylindrical volume. A scraper mirror having a central opening centered on said axis and an offset opening reflects all but the rays passing through the two openings in an output beam. The rays passing through the second opening are reflected back through the first opening to provide feedback.

  15. Optical trapping and control of nanoparticles inside evacuated hollow core photonic crystal fibers

    Energy Technology Data Exchange (ETDEWEB)

    Grass, David, E-mail: david.grass@univie.ac.at; Fesel, Julian; Hofer, Sebastian G.; Kiesel, Nikolai; Aspelmeyer, Markus, E-mail: markus.aspelmeyer@univie.ac.at [Vienna Center for Quantum Science and Technology (VCQ), Faculty of Physics, University of Vienna, A-1090 Vienna (Austria)

    2016-05-30

    We demonstrate an optical conveyor belt for levitated nanoparticles over several centimeters inside both air-filled and evacuated hollow-core photonic crystal fibers (HCPCF). Detection of the transmitted light field allows three-dimensional read-out of the particle center-of-mass motion. An additional laser enables axial radiation pressure based feedback cooling over the full fiber length. We show that the particle dynamics is a sensitive local probe for characterizing the optical intensity profile inside the fiber as well as the pressure distribution along the fiber axis. In contrast to some theoretical predictions, we find a linear pressure dependence inside the HCPCF, extending over three orders of magnitude from 0.2 mbar to 100 mbar. A targeted application is the controlled delivery of nanoparticles from ambient pressure into medium vacuum.

  16. OPEX Savings Based on Energy Efficient Strategies in NREN Core Optical Networks

    DEFF Research Database (Denmark)

    Turus, Ioan; Fagertun, Anna Manolova; Kleist, Josva

    2014-01-01

    wavelengths and new circuits are established based on a predefined dimensioning plan. However, because of the continuous increase in the overall traffic demand (estimated to be between 30 % and 60 % per year [1] ) as well as due to the more and more heterogeneous behavior of the incoming requests...... in core optical networks. One proposal is to define differ ent operational states for the optoelectronic components – OFF, IDLE and ON – which correspond to different levels of energy consumption. Another solution is to use advanced transponder architectures (i.e. elastic or flexible transponders...

  17. Design of low energy ring(s)

    CERN Document Server

    Lachaize, Antoine

    During the last two years, several upgrades of the initial baseline scenario were studied with the aim of increasing the average intensity of ion beams in the accelerator chain of the Beta Beam complex. This is the reason why the Rapid Cycling Synchrotron (RCS) specifications were reconsidered many times [1], [2], [3].General considerations on the optical design were presented at the Beta Beam Task Meetings held at CERN and at Saclay in 2005 [4]. More detailed beam optics studies were performed during the next months. Lattices, RF system parameters, multi-turn injection scheme, fast extraction, closed orbit correction and chromaticity correction systems were proposed for different versions of the RCS [5], [6], [7].Finally, the RCS specifications have stabilized in November 2006 after the fourth Beta Beam Task Meeting when it was decided to fix the maximum magnetic rigidity of ion beams to 14.47 T.m (3.5 GeV equivalent proton energy) and to adopt a ring physical radius of 40 m in order to facilitate injectio...

  18. Lattice design of the integrable optics test accelerator and optical stochastic cooling experiment at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Kafka, Gene [Illinois Inst. of Technology, Chicago, IL (United States)

    2015-05-01

    The Integrable Optics Test Accelerator (IOTA) storage ring at Fermilab will serve as the backbone for a broad spectrum of Advanced Accelerator R&D (AARD) experiments, and as such, must be designed with signi cant exibility in mind, but without compromising cost e ciency. The nonlinear experiments at IOTA will include: achievement of a large nonlinear tune shift/spread without degradation of dynamic aperture; suppression of strong lattice resonances; study of stability of nonlinear systems to perturbations; and studies of di erent variants of nonlinear magnet design. The ring optics control has challenging requirements that reach or exceed the present state of the art. The development of a complete self-consistent design of the IOTA ring optics, meeting the demands of all planned AARD experiments, is presented. Of particular interest are the precise control for nonlinear integrable optics experiments and the transverse-to-longitudinal coupling and phase stability for the Optical Stochastic Cooling Experiment (OSC). Since the beam time-of- ight must be tightly controlled in the OSC section, studies of second order corrections in this section are presented.

  19. Measuring a Fiber-Optic Delay Line Using a Mode-Locked Laser

    Science.gov (United States)

    Tu, Meirong; McKee, Michael R.; Pak, Kyung S.; Yu, Nan

    2010-01-01

    The figure schematically depicts a laboratory setup for determining the optical length of a fiber-optic delay line at a precision greater than that obtainable by use of optical time-domain reflectometry or of mechanical measurement of length during the delay-line-winding process. In this setup, the delay line becomes part of the resonant optical cavity that governs the frequency of oscillation of a mode-locked laser. The length can then be determined from frequency-domain measurements, as described below. The laboratory setup is basically an all-fiber ring laser in which the delay line constitutes part of the ring. Another part of the ring - the laser gain medium - is an erbium-doped fiber amplifier pumped by a diode laser at a wavelength of 980 nm. The loop also includes an optical isolator, two polarization controllers, and a polarizing beam splitter. The optical isolator enforces unidirectional lasing. The polarization beam splitter allows light in only one polarization mode to pass through the ring; light in the orthogonal polarization mode is rejected from the ring and utilized as a diagnostic output, which is fed to an optical spectrum analyzer and a photodetector. The photodetector output is fed to a radio-frequency spectrum analyzer and an oscilloscope. The fiber ring laser can generate continuous-wave radiation in non-mode-locked operation or ultrashort optical pulses in mode-locked operation. The mode-locked operation exhibited by this ring is said to be passive in the sense that no electro-optical modulator or other active optical component is used to achieve it. Passive mode locking is achieved by exploiting optical nonlinearity of passive components in such a manner as to obtain ultra-short optical pulses. In this setup, the particular nonlinear optical property exploited to achieve passive mode locking is nonlinear polarization rotation. This or any ring laser can support oscillation in multiple modes as long as sufficient gain is present to overcome

  20. Tritiated thymidine incorporation and the growth of heterotrophic bacteria in warm core rings

    International Nuclear Information System (INIS)

    Ducklow, H.W.; Hill, S.M.

    1985-01-01

    The time-course of the incorporation rate of [methyl- 3 H]thymidine ([ 3 H]TdR) was established during 6-12 h incubations of natural bacterial populations sampled from the surface layers of warm core Gulf Stream rings. Parallel estimates of changes in cell numbers were made in order to examine the relationships between TdR incorporation and population growth for oceanic bacterial populations. Their results indicate that a conversion factor of 4 x 10 18 cells produced per mole of [ 3 H]TdR incorporated yielded estimates of bacterial production which were within a factor of 2 or 3 of production estimates derived from changes in cell numbers in seawater cultures. The authors observed a significant, direct relationship between the initial rates of TdR incorporation per cell and specific growth rates and conclude that initial short term (15-45 min) assays of TdR incorporation are a valuable tool for studying bacterial production in oceanic waters. In most incubations, the rate of TdR incorporation increased more rapidly than did cell numbers. Very large conversion factor values were derived from these data. The discrepancy between growth determined from TdR incorporation rates and total bacterial numbers in seawater cultures has not been observed in previous studies of coastal, estuarine, or lacustrine bacteria, but was a consistent feature of our studies on oceanic populations

  1. Ring Confidential Transactions

    Directory of Open Access Journals (Sweden)

    Shen Noether

    2016-12-01

    Full Text Available This article introduces a method of hiding transaction amounts in the strongly decentralized anonymous cryptocurrency Monero. Similar to Bitcoin, Monero is a cryptocurrency which is distributed through a proof-of-work “mining” process having no central party or trusted setup. The original Monero protocol was based on CryptoNote, which uses ring signatures and one-time keys to hide the destination and origin of transactions. Recently the technique of using a commitment scheme to hide the amount of a transaction has been discussed and implemented by Bitcoin Core developer Gregory Maxwell. In this article, a new type of ring signature, A Multilayered Linkable Spontaneous Anonymous Group signature is described which allows one to include a Pedersen Commitment in a ring signature. This construction results in a digital currency with hidden amounts, origins and destinations of transactions with reasonable efficiency and verifiable, trustless coin generation. The author would like to note that early drafts of this were publicized in the Monero Community and on the #bitcoin-wizards IRC channel. Blockchain hashed drafts are available showing that this work was started in Summer 2015, and completed in early October 2015. An eprint is also available at http://eprint.iacr.org/2015/1098.

  2. FBR core mock-up RAPSODIE I - experimental analysis

    International Nuclear Information System (INIS)

    Brochard, D.; Buland, P.; Gantenbein, F.

    1990-01-01

    The main phenomena which influence the LMFBR core response to a seismic excitation are the fluid structure interaction and the impacts between subassemblies. To study the core behaviour, seismic tests have been performed on the core mock-up RAPSODIE with and without fluid and restraint ring and for different levels of excitation. This paper summarizes the results of these tests. (author)

  3. Numerical simulation of fuel mixing with air in laminar buoyant vortex rings

    International Nuclear Information System (INIS)

    Prasad, M. Jogendra; Sundararajan, T.

    2016-01-01

    Highlights: • At large Reynolds number, small vortex ring is formed due to thin boundary layer. • At higher stroke to diameter ratio, larger vortex is formed which travels farther. • After formation, trailing stem transfers circulation and fuel to the ring by buoyancy. • Formation number of buoyant vortex ring is higher than that of non-buoyant ring. • Buoyant fuel puffs entrain more air than non-buoyant air-premixed fuel puffs. - Abstract: The formation and evolution of vortex rings consisting of methane-air mixtures have been numerically simulated for different stroke to diameter (L/D) ratios (1.5, 3.5 and 6), Reynolds numbers (1000 and 2000) and initial mixture compositions (fuel with 0%, 15% and 30% of stoichiometric air). The numerical simulations are first validated by comparing with the results of earlier computational studies and also with in-house data from smoke visualization studies. In pure methane case, buoyancy significantly aids the upward rise of the vortex ring. The increase of vortex core height with time is faster for larger L/D ratio, contributed mainly by the larger initial puff volume. The radial size of the vortex also increases rapidly with time during the formation stage; this is followed by a slight shrinkage when piston comes to a stop. Later, a slow radial growth of the ring occurs due to the entrainment of ambient air, except during vortex pinch-off. The boundary layer thickness δ_e at orifice exit decreases as Re"−"0"."5 at a fixed L/D ratio; this in turn, results in a vortex of smaller size and circulation level, at a relatively higher Reynolds number. For L/D values greater than the critical value, a trailing stem is formed behind the ring vortex which feeds circulation and fuel into the vortex ring in the later stages of vortex evolution. Mass fraction contours indicate that fuel-air mixing is more effective within the vortex than in the stem. Ambient air entrainment is larger at higher L/D ratio and lower Re, for the

  4. Ring vortex solitons in nonlocal nonlinear media

    DEFF Research Database (Denmark)

    Briedis, D.; Petersen, D.E.; Edmundson, D.

    2005-01-01

    We study the formation and propagation of two-dimensional vortex solitons, i.e. solitons with a phase singularity, in optical materials with a nonlocal focusing nonlinearity. We show that nonlocality stabilizes the dynamics of an otherwise unstable vortex beam. This occurs for either single...... or higher charge fundamental vortices as well as higher order (multiple ring) vortex solitons. Our results pave the way for experimental observation of stable vortex rings in other nonlocal nonlinear systems including Bose-Einstein condensates with pronounced long-range interparticle interaction....

  5. Electric currents induced by twisted light in Quantum Rings.

    Science.gov (United States)

    Quinteiro, G F; Berakdar, J

    2009-10-26

    We theoretically investigate the generation of electric currents in quantum rings resulting from the optical excitation with twisted light. Our model describes the kinetics of electrons in a two-band model of a semiconductor-based mesoscopic quantum ring coupled to light having orbital angular momentum (twisted light). We find the analytical solution, which exhibits a "circular" photon-drag effect and an induced magnetization, suggesting that this system is the circular analog of that of a bulk semiconductor excited by plane waves. For realistic values of the electric field and material parameters, the computed electric current can be as large as microA; from an applied perspective, this opens new possibilities to the optical control of the magnetization in semiconductors.

  6. Numerical Modeling of the Thomson Ring in Stationary Levitation Using FEM-Electrical Network and Newton-Raphson

    Directory of Open Access Journals (Sweden)

    Guzmán Juan

    2015-07-01

    Full Text Available There are a lot of applications of the Thomson ring: levitation of superconductor materials, power interrupters (used as actuator and elimination of electric arcs. Therefore, it is important the numerical modeling of Thomson ring. The aim of this work is to model the stationary levitation of the Thomson ring. This Thomson ring consists of a copper coil with ferromagnetic core and an aluminum ring threaded in the core. The coil is fed by a cosine voltage to ensure that the aluminum ring is in a stationary levitated position. In this situation, the state of the electromagnetic field is stable and can be used the phasor equations of the electromagnetic field. These equations are discretized using the Galerkin method in the Lagrange base space (finite element method, FEM. These equations are solved using the COMSOL software. A methodology is also described (which uses the Newton-Raphson method that obtains the separation between coil and aluminum ring. The numerical solutions of this separation are compared with experimental data. The conclusion is that the magnetic coupling of the aluminum ring on the coil can be neglected if the source voltage is high.

  7. A nonlinear plasmonic waveguide based all-optical bidirectional switching

    Science.gov (United States)

    Bana, Xiaoqiang; Pang, Xingxing; Li, Xiaohui; Hu, Bin; Guo, Yixuan; Zheng, Hairong

    2018-01-01

    In this paper, an all-optical switching with a nanometer coupled ring resonator is demonstrated based on the nonlinear material. By adjusting the light intensity, we implement the resonance wavelength from 880 nm to 940 nm in the nonlinear material structure monocyclic. In the bidirectional switch structure, the center wavelength (i.e. 880 nm) is fixed. By changing the light intensity from I = 0 to I = 53 . 1 MW /cm2, the function of optical switching can be obtained. The results demonstrate that both the single-ring cavity and the T-shaped double-ring structure can realize the optical switching effect. This work takes advantage of the simple structure. The single-ring cavity plasmonic switches have many advantages, such as nanoscale size, low pumping light intensity, ultrafast response time (femtosecond level), etc. It is expected that the proposed all-optical integrated devices can be potentially applied in optical communication, signal processing, and signal sensing, etc.

  8. Mid-infrared 1  W hollow-core fiber gas laser source.

    Science.gov (United States)

    Xu, Mengrong; Yu, Fei; Knight, Jonathan

    2017-10-15

    We report the characteristics of a 1 W hollow-core fiber gas laser emitting CW in the mid-IR. Our system is based on an acetylene-filled hollow-core optical fiber guiding with low losses at both the pump and laser wavelengths and operating in the single-pass amplified spontaneous emission regime. Through systematic characterization of the pump absorption and output power dependence on gas pressure, fiber length, and pump intensity, we determine that the reduction of pump absorption at high pump flux and the degradation of gain performance at high gas pressure necessitate the use of increased gain fiber length for efficient lasing at higher powers. Low fiber attenuation is therefore key to efficient high-power laser operation. We demonstrate 1.1 W output power at a 3.1 μm wavelength by using a high-power erbium-doped fiber amplifier pump in a single-pass configuration, approximately 400 times higher CW output power than in the ring cavity previously reported.

  9. Projectivity and flatness over the endomorphism ring of a finitely generated comodule

    International Nuclear Information System (INIS)

    Guedenon, T.

    2006-04-01

    Let k be a commutative ring, A a k-algebra, C an A- coring that is projective as a left A-module, *C the dual ring of C and Λ a right C-comodule that is finitely generated as a left *C-module. We give necessary and sufficient conditions for projectivity and flatness of a module over the endomorphism ring End C (Λ). If C contains a grouplike element, we can replace Λ with A. (author)

  10. Reconfiguration of the multiwavelength operation of optical fiber ring lasers by the modifiable intra-cavity induced losses of an in-fiber tip probe modal Michelson interferometer

    Science.gov (United States)

    Salceda-Delgado, G.; Martinez-Rios, A.; Sierra-Hernandez, J. M.; Rodríguez-Carreón, V. C.; Toral-Acosta, D.; Selvas-Aguilar, R.; Álvarez-Tamayo, R. I.; Castillo-Guzman, A. A.; Rojas-Laguna, R.

    2018-03-01

    A straightforward and versatile method for switching from single to different multiwavelength laser emission in ring cavity fiber lasers is proposed and demonstrated experimentally. The method is based on using the changeable interference pattern from an optical fiber modal Michelson interferometer as a wavelength selective filter into the ring cavity laser. The interferometer is constructed using a bi-conical tapered fiber and a single-mode fiber segment, with these being spliced together to form an optical fiber tip probe. When the length of the single-mode fiber piece is modified, the phase difference between the interfering modes of the interferometer causes a change in the interferometer free spectral range. As a consequence, the laser intra-cavity losses lead to gain competition, which allows us to adjust the number of simultaneously generated laser lines. A multiwavelength reconfiguration of the laser from one up to a maximum of eight emission lines was obtained, with a maximum SNR of around 47 dBm.

  11. Energy Efficient Routing Algorithms in Dynamic Optical Core Networks with Dual Energy Sources

    DEFF Research Database (Denmark)

    Wang, Jiayuan; Fagertun, Anna Manolova; Ruepp, Sarah Renée

    2013-01-01

    This paper proposes new energy efficient routing algorithms in optical core networks, with the application of solar energy sources and bundled links. A comprehensive solar energy model is described in the proposed network scenarios. Network performance in energy savings, connection blocking...... probability, resource utilization and bundled link usage are evaluated with dynamic network simulations. Results show that algorithms proposed aiming for reducing the dynamic part of the energy consumption of the network may raise the fixed part of the energy consumption meanwhile....

  12. Matrix and reservoir-type multipurpose vaginal rings for controlled release of dapivirine and levonorgestrel.

    Science.gov (United States)

    Boyd, Peter; Fetherston, Susan M; McCoy, Clare F; Major, Ian; Murphy, Diarmaid J; Kumar, Sandeep; Holt, Jonathon; Brimer, Andrew; Blanda, Wendy; Devlin, Brid; Malcolm, R Karl

    2016-09-10

    A matrix-type silicone elastomer vaginal ring providing 28-day continuous release of dapivirine (DPV) - a lead candidate human immunodeficiency virus type 1 (HIV-1) microbicide compound - has recently demonstrated moderate levels of protection in two Phase III clinical studies. Here, next-generation matrix and reservoir-type silicone elastomer vaginal rings are reported for the first time offering simultaneous and continuous in vitro release of DPV and the contraceptive progestin levonorgestrel (LNG) over a period of between 60 and 180days. For matrix-type vaginal rings comprising initial drug loadings of 100, 150 or 200mg DPV and 0, 16 or 32mg LNG, Day 1 daily DPV release values were between 4132 and 6113μg while Day 60 values ranged from 284 to 454μg. Daily LNG release ranged from 129 to 684μg on Day 1 and 2-91μg on Day 60. Core-type rings comprising one or two drug-loaded cores provided extended duration of in vitro release out to 180days, and maintained daily drug release rates within much narrower windows (either 75-131μg/day or 37-66μg/day for DPV, and either 96-150μg/day or 37-57μg/day for LNG, depending on core ring configuration and ignoring initial lag release effect for LNG) compared with matrix-type rings. The data support the continued development of these devices as multi-purpose prevention technologies (MPTs) for HIV prevention and long-acting contraception. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Improved Optical Fiber Chemical Sensors

    Science.gov (United States)

    Egalon, Claudio O.; Rogowski, Robert S.

    1994-01-01

    Calculations, based on exact theory of optical fiber, have shown how to increase optical efficiency sensitivity of active-core, step-index-profile optical-fiber fluorosensor. Calculations result of efforts to improve efficiency of optical-fiber chemical sensor of previous concept described in "Making Optical-Fiber Chemical Sensors More Sensitive" (LAR-14525). Optical fiber chemical detector of enhanced sensitivity made in several configurations. Portion of fluorescence or chemiluminescence generated in core, and launched directly into bound electromagnetic modes that propagate along core to photodetector.

  14. Core losses of ring-shaped (Fe{sub 0.75}B{sub 0.20}Si{sub 0.05}){sub 96}Nb{sub 4} bulk metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Bitoh, T; Ishikawa, T; Okumura, H, E-mail: teruo_bitoh@akita-pu.ac.jp [Department of Machine Intelligence and Systems Engineering, Faculty of Systems Science and Technology, Akita Prefectural University, Yurihonjo, 015-0055 (Japan)

    2011-01-01

    The soft magnetic properties of ring-shaped (Fe{sub 0.75}B{sub 0.20}Si{sub 0.05}){sub 96}Nb{sub 4} cast bulk metallic glass (BMG) with thickness of 0.3-1.0 mm have been investigated. The BMG specimens exhibit high relative permeability of (9-29)x10{sup 3} at 0.40 A/m and 50 Hz and low coercivity of 4.0 A/m. The core losses of the 0.3 mm thick BMG specimen are lower than those of commercial Fe-6.5 mass% Si steel (6.5Si) with the same thickness, and are comparable to those of the 0.10 mm thick 6.5Si. The low core losses of the BMG originate from the low coercivity and high electrical resistivity.

  15. Characterization of the coating and tablet core roughness by means of 3D optical coherence tomography.

    Science.gov (United States)

    Markl, Daniel; Wahl, Patrick; Pichler, Heinz; Sacher, Stephan; Khinast, Johannes G

    2018-01-30

    This study demonstrates the use of optical coherence tomography (OCT) to simultaneously characterize the roughness of the tablet core and coating of pharmaceutical tablets. OCT is a high resolution non-destructive and contactless imaging methodology to characterize structural properties of solid dosage forms. Besides measuring the coating thickness, it also facilitates the analysis of the tablet core and coating roughness. An automated data evaluation algorithm extracts information about coating thickness, as well as tablet core and coating roughness. Samples removed periodically from a pan coating process were investigated, on the basis of thickness and profile maps of the tablet core and coating computed from about 480,000 depth measurements (i.e., 3D data) per sample. This data enables the calculation of the root mean square deviation, the skewness and the kurtosis of the assessed profiles. Analyzing these roughness parameters revealed that, for the given coating formulation, small valleys in the tablet core are filled with coating, whereas coarse features of the tablet core are still visible on the final film-coated tablet. Moreover, the impact of the tablet core roughness on the coating thickness is analyzed by correlating the tablet core profile and the coating thickness map. The presented measurement method and processing could be in the future transferred to in-line OCT measurements, to investigate core and coating roughness during the production of film-coated tablets. Copyright © 2017. Published by Elsevier B.V.

  16. Using Tree-Ring Data to Develop Critical Scientific and Mathematical Thinking Skills in Undergraduate Students

    Science.gov (United States)

    Fiondella, F.; Davi, N. K.; Wattenberg, F.; Pringle, P. T.; Greidanus, I.; Oelkers, R.

    2015-12-01

    Tree-ring science provides an engaging, intuitive, and relevant entryway into understanding both climate change and environmental research. It also sheds light on the process of science--from inspiration, to fieldwork, to analysis, to publishing and communication. The basic premise of dendrochronology is that annual rings reflect year-to-year environmental conditions and that by studying long-lived trees we can learn about environmental and climatic conditions going back hundreds to thousands of years. Conceptually, this makes tree-ring studies accessible to students and faculty for a number of reasons. First, in order to collect their data, dendrochronologists often launch expeditions to stunningly picturesque and remote places in search of long-lived, climate sensitive trees. The exciting stories and images that scientists bring back from the field can help connect students to the studies, their motivation, and the data collected. Second, tree rings can be more easily explained as a proxy for climate than ice cores, speleothems and others. Most people have prior knowledge about trees and annual growth rings. It is even possible, for example, for non-expert audiences to see climate variability through time with the naked eye by looking at climate-sensitive tree cores. Third, tree rings are interdisciplinary and illustrate the interplay between the mathematical sciences, the biological sciences, and the geosciences—that is, they show that the biosphere is a fundamental component of the Earth system. Here, we present online, multi-media learning modules for undergraduates that introduce students to several foundational studies in tree-ring science. These include evaluating tree-ring cores from ancient hemlock trees growing on a talus slope in New Paltz, NY to learn about drought in the Northeastern US, evaluating long-term streamflow and drought of the Colorado River based on tree-ring records, and using tree-ring dating techniques to develop construction

  17. HYPERAUTOFLUORESCENT RING IN AUTOIMMUNE RETINOPATHY

    Science.gov (United States)

    LIMA, LUIZ H.; GREENBERG, JONATHAN P.; GREENSTEIN, VIVIENNE C.; SMITH, R. THEODORE; SALLUM, JULIANA M. F.; THIRKILL, CHARLES; YANNUZZI, LAWRENCE A.; TSANG, STEPHEN H.

    2015-01-01

    Purpose To report the presence of a hyperautofluorescent ring and corresponding spectral-domain optical coherence tomography (SD-OCT) features seen in patients with autoimmune retinopathy. Methods All eyes were evaluated by funduscopic examination, full-fleld electroretinography, fundus autofluorescence, and SD-OCT. Further confirmation of the diagnosis was obtained with immunoblot and immunohistochemistry testing of the patient’s serum. Humphrey visual fields and microperimetry were also performed. Results Funduscopic examination showed atrophic retinal pigment epithelium (RPE) associated with retinal artery narrowing but without pigment deposits. The scotopic and photopic full-field electroretinograms were nondetectable in three patients and showed a cone–rod pattern of dysfunction in one patient. Fundus autofluorescence revealed a hyperautofluorescent ring in the parafoveal region, and the corresponding SD-OCT demonstrated loss of the photoreceptor inner segment–outer segment junction with thinning of the outer nuclear layer from the region of the hyperautofluorescent ring toward the retinal periphery. The retinal layers were generally intact within the hyperautofluorescent ring, although the inner segment–outer segment junction was disrupted, and the outer nuclear layer and photoreceptor outer segment layer were thinned. Conclusion This case series revealed the structure of the hyperautofluorescent ring in autoimmune retinopathy using SD-OCT. Fundus autofluorescence and SD-OCT may aid in the diagnosis of autoimmune retinopathy and may serve as a tool to monitor its progression. PMID:22218149

  18. The Case for Massive and Ancient Rings of Saturn

    Science.gov (United States)

    Esposito, Larry W.

    2016-04-01

    Analysis of Voyager and Pioneer 11 results give a mass for Saturn's rings, M = 5 x 10-8 Msat. This is about the mass of Saturn's small moon Mimas. This has been interpreted as a lower limit to the ring mass (Esposito et al 1983), since the thickest parts of the rings were not penetrated by the stellar occultstion, and this calculation assumes an unvarying particle size throughout the rings. Because the rings are constantly bombarded by micrometeroids, their current composition of nearly pure water ice implies such low mass rings must have formed recently. The case is par-ticularly strong for Saturn's A ring, where the data are the best, implying the A ring is less than 10% of the age of the Saturn (Esposito 1986). Cassini results com-pound this problem. UVIS spectra are consistent with either young rings or rings about 10x as massive as the Voyager estimate (Elliott and Esposito (2011). CDA confirms the impacting mass flux is similar to that as-sumed for the pollution calculations (Kempf etal 2015). VIMS analysis of density wave signatures in the B ring gives a value of about 1/3 the Voyager value (Hedmann etal 2016). This VIMS result implies the rings are even younger! The problem is that young rings are very unlikely to be formed recently, meaning that we live in a very special epoch, following some unlikely recent origin… like disruption of a medium sized moon or capture of the fragments of a disrupted comet. This paradox (Charnoz etal 2009) is unre-solved. Alternative interpretations: To take the VIMS results at face value, Saturn's low mass rings must be very young. The optically thick B ring must be made of small, porous or fractal particles. This is hard to understand, since the particles are continually colliding every few hours and temporary aggregates will stir the collision velocities to higher values. An alternative is that we accept the higher mass interpretation of the Pioneer 11 results (Esposito etal 2008) using the granola bar model of Colwell

  19. Quantum mechanical design of efficient second-order nonlinear optical materials based on heteroaromatic imido-substituted hexamolybdates: first theoretical framework of POM-based heterocyclic aromatic rings.

    Science.gov (United States)

    Janjua, Muhammad Ramzan Saeed Ashraf

    2012-11-05

    This work was inspired by a previous report (Janjua et al. J. Phys. Chem. A 2009, 113, 3576-3587) in which the nonlinear-optical (NLO) response strikingly improved with an increase in the conjugation path of the ligand and the nature of hexamolybdates (polyoxometalates, POMs) was changed into a donor by altering the direction of charge transfer with a second aromatic ring. Herein, the first theoretical framework of POM-based heteroaromatic rings is found to be another class of excellent NLO materials having double heteroaromatic rings. First hyperpolarizabilities of a large number of push-pull-substituted conjugated systems with heteroaromatic rings have been calculated. The β components were computed at the density functional theory (DFT) level (BP86 geometry optimizations and LB94 time-dependent DFT). The largest β values are obtained with a donor (hexamolybdates) on the benzene ring and an acceptor (-NO(2)) on pyrrole, thiophene, and furan rings. The pyrrole imido-substituted hexamolybdate (system 1c) has a considerably large first hyperpolarizability, 339.00 × 10(-30) esu, and it is larger than that of (arylimido)hexamolybdate, calculated as 0.302 × 10(-30) esu (reference system 1), because of the double aromatic rings in the heteroaromatic imido-substituted hexamolybdates. The heteroaromatic rings act as a conjugation bridge between the electron acceptor (-NO(2)) and donor (polyanion). The introduction of an electron donor into heteroaromatic rings significantly enhances the first hyperpolarizabilities because the electron-donating ability is substantially enhanced when the electron donor is attached to the heterocyclic aromatic rings. Interposing five-membered auxiliary fragments between strong donor (polyanion) or acceptor (-NO(2)) groups results in a large computed second-order NLO response. The present investigation provides important insight into the NLO properties of (heteroaromatic) imido-substituted hexamolybdate derivatives because these compounds

  20. Near Infrared Characterization of Hetero-Core Optical Fiber SPR Sensors Coated with Ta2O5 Film and Their Applications

    Directory of Open Access Journals (Sweden)

    Kazuhiro Watanabe

    2012-02-01

    Full Text Available This paper describes the characteristics of optical fiber sensors with surface plasmon resonance (SPR at 1,310 nm in which the scattering loss of silica optical fiber is low. SPR operation in the infrared wavelength range is achieved by coating a thin tantalum pentaoxide (Ta2O5 film. The novelty of this paper lies in the verification of how the hetero-core scheme could be operated as a commercial base candidate in the sense of easy fabrication, sufficient mechanical strength, and significant sensitivity as a liquid detector under the basis of a low loss transmission network in the near infrared wavelength region. The effect of Ta2O5 layer thickness has been experimentally revealed in the wavelength region extending to 1,800 nm by using the hetero-core structured optical fiber. SPR characterizations have been made in the wavelength region 1,000–1,300 nm, showing the feasible operation at the near infrared wavelength and the possible practical applications. In addition, the technique developed in this work has been interestingly applied to a multi-point water-detection and a water-level gauge in which tandem-connected SPR sensors system using hetero-core structured fibers were incorporated. The detailed performance characteristics are also shown on these applications.

  1. Heterogeneous cores for fast breeder reactor

    International Nuclear Information System (INIS)

    Schroeder, R.; Spenke, H.

    1980-01-01

    Firstly, the motivation for heterogeneous cores is discussed. This is followed by an outline of two reactor designs, both of which are variants of the combined ring and island core. These designs are presented by means of figures and detailed tables. Subsequently, a description of two international projects at fast critical zero energy facilities is given. Both of them support the nuclear design of heterogeneous cores. In addition to a survey of these projects, a typical experiment is discussed: the measurement of rate distributions. (orig.) [de

  2. Micro–adhesion rings surrounding TCR microclusters are essential for T cell activation

    Science.gov (United States)

    Sakuma, Machie; Yokosuka, Tadashi

    2016-01-01

    The immunological synapse (IS) formed at the interface between T cells and antigen-presenting cells represents a hallmark of initiation of acquired immunity. T cell activation is initiated at T cell receptor (TCR) microclusters (MCs), in which TCRs and signaling molecules assemble at the interface before IS formation. We found that each TCR-MC was transiently bordered by a ring structure made of integrin and focal adhesion molecules in the early phase of activation, which is similar in structure to the IS in microscale. The micro–adhesion ring is composed of LFA-1, focal adhesion molecules paxillin and Pyk2, and myosin II (MyoII) and is supported by F-actin core and MyoII activity through LFA-1 outside-in signals. The formation of the micro–adhesion ring was transient but especially sustained upon weak TCR stimulation to recruit linker for activation of T cells (LAT) and SLP76. Perturbation of the micro–adhesion ring induced impairment of TCR-MC development and resulted in impaired cellular signaling and cell functions. Thus, the synapse-like structure composed of the core TCR-MC and surrounding micro–adhesion ring is a critical structure for initial T cell activation through integrin outside-in signals. PMID:27354546

  3. Water-Soluble CdTe/CdS Core/Shell Semiconductor Nanocrystals: How Their Optical Properties Depend on the Synthesis Methods

    Directory of Open Access Journals (Sweden)

    Brener R. C. Vale

    2016-10-01

    Full Text Available We conducted a comparative synthesis of water-soluble CdTe/CdS colloidal nanocrystalline semiconductors of the core/shell type. We prepared the CdS shell using two different methods: a one-pot approach and successive ionic layer adsorption and reaction (SILAR; in both cases, we used 3-mercaptopropionic acid (MPA as the surface ligand. In the one-pot approach, thiourea was added over the freshly formed CdTe dispersion, and served as the sulfur source. We achieved thicker CdS layers by altering the Cd:S stoichiometric ratio (1:1, 1:2, 1:4, and 1:8. The Cd:S ratios 1:1 and 1:2 furnished the best optical properties; these ratios also made the formation of surface defects less likely. For CdTe/CdS obtained using SILAR, we coated the surface of three differently sized CdTe cores (2.17, 3.10, and 3.45 nm with one to five CdS layers using successive injections of the Cd2+ and S2– ions. The results showed that the core size influenced the optical properties of the materials. The deposition of three to five layers over the surface of smaller CdTe colloidal nanocrystals generated strain effects on the core/shell structure.

  4. Evidence of Accretion in Saturn's F Ring (Invited)

    Science.gov (United States)

    Agnor, C. B.; Buerle, K.; Murray, C. D.; Evans, M. W.; Cooper, N. J.; Williams, G. W.

    2010-12-01

    Lying slightly outside the classical Roche radius and being strongly perturbed by the adjacent moons Prometheus and Pandora, Saturn's F ring represents a unique astrophysical laboratory for examining the processes of mass accretion and moonlet formation. Recent images from the Cassini spacecraft reveal optically thick clumps, capable of casting shadows, and associated structures in regions of the F ring following close passage by Prometheus. Here we examine the accretion environment of the F ring and Prometheus' role in moonlet formation and evolution. Using the observed structures adjacent to these clumps and dynamical arguments we estimate the masses of these clumps and find them comparable to that of ~10-20-km contiguous moonlets. Further, we show that Prometheus' perturbations on the F ring create regions of enhanced density and low relative velocity that may accelerate the accretion of clumps and moonlets.

  5. Terahertz pulse imaging for tree-ring analysis: a preliminary study for dendrochronology applications

    International Nuclear Information System (INIS)

    Jackson, J B; Mourou, M; Whitaker, J F; Labaune, J; Mourou, G A; Duling, I N III; Williamson, S L; Lavier, C; Menu, M

    2009-01-01

    Time-domain terahertz reflection imaging is presented as a novel method of measuring otherwise inaccessible tree rings in wooden cultural heritage for the purpose of tree-ring crossdating. Axial and lateral two-dimensional terahertz images of obscured ring patterns are statistically validated with respect to their corresponding optical photographs via adapted dendrochronological methods. Results are compared to similar analysis of x-ray images of a wood specimen

  6. Antiresonant guiding in a poly(methyl-methacrylate) hollow-core optical fiber

    DEFF Research Database (Denmark)

    Markos, Christos; Nielsen, Kristian; Bang, Ole

    2015-01-01

    Strong antiresonant reflecting optical waveguiding is demonstrated in a novel poly (methyl-methacrylate) (PMMA) hollow-core fiber. The transmission spectrum of the fiber was characterized using a supercontinuum source and it revealed distinct resonances with resonant dips as strong as ~20 d......B in the wavelength range 480-900 nm, where PMMA has low absorption. The total propagation loss of the fiber was measured to have a minimum of ~45 dB m-1 at around 500 nm. The thermal sensitivity of the fiber is 256 ± 16 pm °C-1, defined as the red-shift of the resonances per °C, which is three times higher than...... the sensitivity of polymer fiber Bragg gratings....

  7. Calculations of toroidal EXTRAP equilibria for different toroidal ring current configurations

    International Nuclear Information System (INIS)

    Drake, J.R.; Scheffel, J.

    1985-12-01

    EXTRAP is a concept in which a pure Z-pinch is generated along the axis of an octupole field. Experiments in a linear as well as in a sector geometry have demonstrated that the pinch becomes stable against instabilities for many Alfven times. The octupole field in EXTRAP is produced by four, external, current-carrying rings. In the toroidal geometry these rings must be supplemented by additional rings to compensate for the plasma loop force and transformer core leakage flux. Equilibrium studies are carried out for two basically ring designs. The studies are based on numerical equilibrium copmputations using the GOYA code. Sensitivity of the equilibrium to technical imperfections is also analyzed. (author)

  8. The theoretical and numerical models of the novel and fast tunable semiconductor ring laser

    Science.gov (United States)

    Zhu, Jiangbo; Zhang, Junwen; Chi, Nan; Yu, Siyuan

    2011-01-01

    Fast wavelength-tunable semiconductor lasers will be the key components in future optical packet switching networks. Especially, they are of great importance in the optical network nodes: transmitters, optical wavelength-routers, etc. In this paper, a new scheme of a next-generation fast tunable ring laser was given. Tunable lasers in this design have better wavelength tunability compared with others, for they are switched faster in wavelength and simpler to control with the injecting light from an external distributed Bragg-reflector(DBR). Then some discussion of the waveguide material system and coupler design of the ring laser were given. And we also derived the multimode rate equations corresponding to this scheme by analyzing some characteristics of the semiconductor ring cavity, directionality, nonlinear mode competition, optical injection locking, etc. We did MatLab simulation based on the new rate equations to research the process of mode competition and wavelength switching in the laser, and achieved the basic functions of a tunable laser. Finally some discussion of the impact of several key parameters was given.

  9. Optimization of the geometrical stability in square ring laser gyroscopes

    International Nuclear Information System (INIS)

    Santagata, R; Beghi, A; Cuccato, D; Belfi, J; Beverini, N; Virgilio, A Di; Ortolan, A; Porzio, A; Solimeno, S

    2015-01-01

    Ultra-sensitive ring laser gyroscopes are regarded as potential detectors of the general relativistic frame-dragging effect due to the rotation of the Earth. Our project for this goal is called GINGER (gyroscopes in general relativity), and consists of a ground-based triaxial array of ring lasers aimed at measuring the rotation rate of the Earth with an accuracy of 10 −14 rad s −1 . Such an ambitious goal is now within reach, as large-area ring lasers are very close to the required sensitivity and stability. However, demanding constraints on the geometrical stability of the optical path of the laser inside the ring cavity are required. Thus, we have begun a detailed study of the geometry of an optical cavity in order to find a control strategy for its geometry that could meet the specifications of the GINGER project. As the cavity perimeter has a stationary point for the square configuration, we identify a set of transformations on the mirror positions that allows us to adjust the laser beam steering to the shape of a square. We show that the geometrical stability of a square cavity strongly increases by implementing a suitable system to measure the mirror distances, and that the geometry stabilization can be achieved by measuring the absolute lengths of the two diagonals and the perimeter of the ring. (paper)

  10. Introducing Modified Degree 4 Chordal Rings with Two Chord Lengths

    DEFF Research Database (Denmark)

    Pedersen, Jens Myrup

    2007-01-01

    In this paper an analysis of modified degree 4 Chordal Rings with two chord lengths named CHRm is presented and compared to similar topologies: Chordal Rings, N2R and modified N2R. Formulas for approximating diameters and average path lengths are provided and verified, and it is shown...... that the distances in CHRm are significantly smaller than in traditional Chordal Rings and N2R, and also smaller than modified N2R for topologies with up to 1500 nodes. Despite the proposed CHRm being of degree 4, and the modified N2R of degree 3, CHRm may be better suited for the optical level of fiber rings, due...

  11. An optical liquid level sensor based on core-offset fusion splicing method using polarization-maintaining fiber

    Science.gov (United States)

    Lou, Weimin; Chen, Debao; Shen, Changyu; Lu, Yanfang; Liu, Huanan; Wei, Jian

    2016-01-01

    A simple liquid level sensor using a small piece of hydrofluoric acid (HF) etched polarization maintaining fiber (PMF), with SMF-PMF-SMF fiber structure based on Mach- Zehnder interference (MZI) mechanism is proposed. The core-offset fusion splicing method induced cladding modes interfere with the core mode. Moreover, the changing liquid level would influence the optical path difference of the MZI since the effective refractive indices of the air and the liquid is different. Both the variations of the wavelength shifts and power intensity attenuation corresponding to the liquid level can be obtained with a sensitivity of 0.4956nm/mm and 0.2204dB/mm, respectively.

  12. Chiral cavity ring down polarimetry: Chirality and magnetometry measurements using signal reversals.

    Science.gov (United States)

    Bougas, Lykourgos; Sofikitis, Dimitris; Katsoprinakis, Georgios E; Spiliotis, Alexandros K; Tzallas, Paraskevas; Loppinet, Benoit; Rakitzis, T Peter

    2015-09-14

    We present the theory and experimental details for chiral-cavity-ring-down polarimetry and magnetometry, based on ring cavities supporting counterpropagating laser beams. The optical-rotation symmetry is broken by the presence of both chiral and Faraday birefringence, giving rise to signal reversals which allow rapid background subtractions. We present the measurement of the specific rotation at 800 nm of vapors of α-pinene, 2-butanol, and α-phellandrene, the measurement of optical rotation of sucrose solutions in a flow cell, the measurement of the Verdet constant of fused silica, and measurements and theoretical treatment of evanescent-wave optical rotation at a prism surface. Therefore, these signal-enhancing and signal-reversing methods open the way for ultrasensitive polarimetry measurements in gases, liquids and solids, and at surfaces.

  13. Chiral cavity ring down polarimetry: Chirality and magnetometry measurements using signal reversals

    International Nuclear Information System (INIS)

    Bougas, Lykourgos; Sofikitis, Dimitris; Katsoprinakis, Georgios E.; Spiliotis, Alexandros K.; Rakitzis, T. Peter; Tzallas, Paraskevas; Loppinet, Benoit

    2015-01-01

    We present the theory and experimental details for chiral-cavity-ring-down polarimetry and magnetometry, based on ring cavities supporting counterpropagating laser beams. The optical-rotation symmetry is broken by the presence of both chiral and Faraday birefringence, giving rise to signal reversals which allow rapid background subtractions. We present the measurement of the specific rotation at 800 nm of vapors of α-pinene, 2-butanol, and α-phellandrene, the measurement of optical rotation of sucrose solutions in a flow cell, the measurement of the Verdet constant of fused silica, and measurements and theoretical treatment of evanescent-wave optical rotation at a prism surface. Therefore, these signal-enhancing and signal-reversing methods open the way for ultrasensitive polarimetry measurements in gases, liquids and solids, and at surfaces

  14. Multimode optical fiber

    Science.gov (United States)

    Bigot-Astruc, Marianne; Molin, Denis; Sillard, Pierre

    2014-11-04

    A depressed graded-index multimode optical fiber includes a central core, an inner depressed cladding, a depressed trench, an outer depressed cladding, and an outer cladding. The central core has an alpha-index profile. The depressed claddings limit the impact of leaky modes on optical-fiber performance characteristics (e.g., bandwidth, core size, and/or numerical aperture).

  15. Ultra-large bandwidth hollow-core guiding in all-silica bragg fibers with nano-supports

    DEFF Research Database (Denmark)

    Vienne, Guillaume; Xu, Yong; Jakobsen, Christian

    2004-01-01

    We demonstrate a new class of hollow-core Bragg fibers that are composed of concentric cylindrical silica rings separated by nanoscale support bridges. We theoretically predict and experimentally observe hollow-core confinement over an octave frequency range. The bandwidth of bandgap guiding in t...... in this new class of Bragg fibers exceeds that of other hollow-core fibers reported in the literature. With only three rings of silica cladding layers, these Bragg fibers achieve propagation loss of the order of 1 dB/m....

  16. Storage ring to investigate cold unidimensional atomic collisions

    International Nuclear Information System (INIS)

    Marcassa, L. G.; Caires, A. R. L.; Nascimento, V. A.; Dulieu, O.; Weiner, J.; Bagnato, V. S.

    2005-01-01

    In this paper we employ a circulating ring of trapped atoms, that we have named the atomotron, to study cold collisions. The atomotron is obtained from a conventional magneto-optical trap when the two pairs of normally retroreflecting Gaussian laser beams in the x-y plane are slightly offset. Circulating stable atomic orbits then form a racetrack geometry in this plane. The circulating atom flux behaves similarly to an atomic beam with an average tangential velocity much greater than the transverse components, and is therefore suitable for one-dimensional atomic collision studies. Using the atomotron, we have investigated the polarization dependence of ultracold photoassociation collisions between Rb atoms circulating in the racetrack. The ability to investigate collisions in ultracold circulating atomic rings reveals alignment and orientation properties that are averaged away in ordinary three-dimensional magneto-optical trap collision processes

  17. All-optically tunable waveform synthesis by a silicon nanowaveguide ring resonator coupled with a photonic-crystal fiber frequency shifter

    KAUST Repository

    Savvin, Aleksandr D.

    2011-03-01

    A silicon nanowaveguide ring resonator is combined with a photonic-crystal fiber (PCF) frequency shifter to demonstrate an all-optically tunable synthesis of ultrashort pulse trains, modulated by ultrafast photoinduced free-carrier generation in the silicon resonator. Pump-probe measurements performed with a 50-fs, 625-nm second-harmonic output of a Cr:forsterite laser, used as a carrier-injecting pump, and a 1.50-1.56-μm frequency-tunable 100-fs soliton output of a photonic-crystal fiber, serving as a probe, resolve tunable ultrafast oscillatory features in the silicon nanowaveguide resonator response. © 2010 Elsevier B.V. All rights reserved.

  18. All-optically tunable waveform synthesis by a silicon nanowaveguide ring resonator coupled with a photonic-crystal fiber frequency shifter

    KAUST Repository

    Savvin, Aleksandr D.; Melnikov, Vasily; Fedotov, Il'ya V.; Fedotov, Andrei B.; Perova, Tatiana S.; Zheltikov, Aleksei M.

    2011-01-01

    A silicon nanowaveguide ring resonator is combined with a photonic-crystal fiber (PCF) frequency shifter to demonstrate an all-optically tunable synthesis of ultrashort pulse trains, modulated by ultrafast photoinduced free-carrier generation in the silicon resonator. Pump-probe measurements performed with a 50-fs, 625-nm second-harmonic output of a Cr:forsterite laser, used as a carrier-injecting pump, and a 1.50-1.56-μm frequency-tunable 100-fs soliton output of a photonic-crystal fiber, serving as a probe, resolve tunable ultrafast oscillatory features in the silicon nanowaveguide resonator response. © 2010 Elsevier B.V. All rights reserved.

  19. METER-SIZED MOONLET POPULATION IN SATURN'S C RING AND CASSINI DIVISION

    International Nuclear Information System (INIS)

    Baillié, Kévin; Colwell, Joshua E.; Esposito, Larry W.; Lewis, Mark C.

    2013-01-01

    Stellar occultations observed by the Cassini Ultraviolet Imaging Spectrograph reveal the presence of transparent holes a few meters to a few tens of meters in radial extent in otherwise optically thick regions of the C ring and the Cassini Division. We attribute the holes to gravitational disturbances generated by a population of ∼10 m boulders in the rings that is intermediate in size between the background ring particle size distribution and the previously observed ∼100 m propeller moonlets in the A ring. The size distribution of these boulders is described by a shallower power-law than the one that describes the ring particle size distribution. The number and size distribution of these boulders could be explained by limited accretion processes deep within Saturn's Roche zone.

  20. Effects of magnetic core geometry on false detection in residual current sensor

    International Nuclear Information System (INIS)

    Colin, Bruno; Chillet, Christian; Kedous-Lebouc, Afef; Mas, Patrick

    2006-01-01

    Under high-supply current, residual circuit breakers are subject to abnormal tripping, caused by false residual currents. Geometric or magnetic anomalies in the circuit breaker ring core seem to be responsible for these abnormal currents. This paper studies a few anomalies (spiral shape effect, conductor eccentricity, lamination effect) and calculates different contributions using the finite element simulations. The results show that the ring core, made of thin wound magnetic tape, is particularly sensitive to primary conductor eccentricity

  1. Spatial-mode switchable ring fiber laser based on low mode-crosstalk all-fiber mode MUX/DEMUX

    Science.gov (United States)

    Ren, Fang; Yu, Jinyi; Wang, Jianping

    2018-05-01

    We report an all-fiber ring laser that emits linearly polarized (LP) modes based on the intracavity all-fiber mode multiplexer/demultiplexer (MUX/DEMUX). Multiple LP modes in ring fiber laser are generated by taking advantage of mode MUX/DEMUX. The all-fiber mode MUX/DEMUX are composed of cascaded mode-selective couplers (MSCs). The output lasing mode of the ring fiber laser can be switched among the three lowest-order LP modes by employing combination of a mode MUX and a simple N × 1 optical switch. The slope efficiencies, optical spectra and mode profiles are measured.

  2. Synthesis and optical properties of core-multi-shell CdSe/CdS/ZnS quantum dots: Surface modifications

    Science.gov (United States)

    Ratnesh, R. K.; Mehata, Mohan Singh

    2017-02-01

    We report two port synthesis of CdSe/CdS/ZnS core-multi-shell quantum dots (Q-dots) and their structural properties. The multi-shell structures of Q-dots were developed by using successive ionic layer adsorption and reaction (SILAR) technique. The obtained Q-dots show high crystallinity with the step-wise adjustment of lattice parameters in the radial direction. The size of the core and core-shell Q-dots estimated by transmission electron microscopy images and absorption spectra is about 3.4 and 5.3 nm, respectively. The water soluble Q-dots (scheme-1) were prepared by using ligand exchange method, and the effect of pH was discussed regarding the variation of quantum yield (QY). The decrease of a lifetime of core-multi-shell Q-dots with respect to core CdSe indicates that the shell growth may be tuned by the lifetimes. Thus, the study clearly demonstrates that the core-shell approach can be used to substantially improve the optical properties of Q-dots desired for various applications.

  3. Shape Sensing Using a Multi-Core Optical Fiber Having an Arbitrary Initial Shape in the Presence of Extrinsic Forces

    Science.gov (United States)

    Rogge, Matthew D. (Inventor); Moore, Jason P. (Inventor)

    2014-01-01

    Shape of a multi-core optical fiber is determined by positioning the fiber in an arbitrary initial shape and measuring strain over the fiber's length using strain sensors. A three-coordinate p-vector is defined for each core as a function of the distance of the corresponding cores from a center point of the fiber and a bending angle of the cores. The method includes calculating, via a controller, an applied strain value of the fiber using the p-vector and the measured strain for each core, and calculating strain due to bending as a function of the measured and the applied strain values. Additionally, an apparent local curvature vector is defined for each core as a function of the calculated strain due to bending. Curvature and bend direction are calculated using the apparent local curvature vector, and fiber shape is determined via the controller using the calculated curvature and bend direction.

  4. Magneto-Optic Field Coupling in Optical Fiber Bragg Gratings

    Science.gov (United States)

    Carman, Gregory P. (Inventor); Mohanchandra, Panduranga K. (Inventor); Emmons, Michael C. (Inventor); Richards, William Lance (Inventor)

    2016-01-01

    The invention is a magneto-optic coupled magnetic sensor that comprises a standard optical fiber Bragg grating system. The system includes an optical fiber with at least one Bragg grating therein. The optical fiber has at least an inner core and a cladding that surrounds the inner core. The optical fiber is part of an optical system that includes an interrogation device that provides a light wave through the optical fiber and a system to determine the change in the index of refraction of the optical fiber. The cladding of the optical fiber comprises at least a portion of which is made up of ferromagnetic particles so that the ferromagnetic particles are subject to the light wave provided by the interrogation system. When a magnetic field is present, the ferromagnetic particles change the optical properties of the sensor directly.

  5. Alignment for new Subaru ring

    International Nuclear Information System (INIS)

    Zhang, Ch.; Matsui, S.; Hashimoto, S.

    1999-01-01

    The New SUBARU is a synchrotron light source being constructed at the SPring-8 site. The main facility is a 1.5 GeV electron storage ring that provides light beam in the region from VUV to soft X-ray using SPring-8's 1 GeV linac as an injector. The ring, with a circumference of about 119 meters, is composed of six bending cells. Each bending cell has two normal dipoles of 34 degree and one inverse dipole of -8 degree. The ring has six straight sections: two very long straight sections for a 11-m long undulator and an optical klystron, four short straight sections for a 2.3-m undulator, a super-conducting wiggler, rf cavity and injection, etc. The magnets of the storage ring are composed of 12 dipoles (BMs), 6 invert dipoles (BIs), 56 quadrupoles and 44 sextupoles, etc. For the magnet alignment, positions of the dipoles (the BMs and BIs) are determined by network survey method. The multipoles, which are mounted on girders between the dipoles, are aligned with a laser-CCD camera system. This article presents the methodology used to position the different components and particularly to assure the precise alignment of the multipoles. (authors)

  6. Ag@ZnO core-shell nanoparticles study by first principle: The structural, magnetic and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Hai-Xia [Department of Physics, University of Science and Technology Beijing, Beijing 100083 (China); Wang, Xiao-Xu [Department of Physics, University of Science and Technology Beijing, Beijing 100083 (China); Beijing Computing Center, Beijing 100094 (China); Hu, Yao-Wen [Department of Physics, Tsinghua University, Beijing 100084 (China); Song, Hong-Quan; Huo, Jin-Rong; Li, Lu [Department of Physics, University of Science and Technology Beijing, Beijing 100083 (China); Qian, Ping, E-mail: ustbqianp@163.com [Department of Physics, University of Science and Technology Beijing, Beijing 100083 (China); Song, Yu-Jun [Department of Physics, University of Science and Technology Beijing, Beijing 100083 (China)

    2016-12-15

    Ag@ZnO core-shell nanoparticles of around 72 atoms have been investigated by the density functional theory, revealing proving for the first time that the core-shell structure exhibits a shrinkage phenomenon from outer shell in agreement with the other studies in literatures. Our calculations predict that the Ag@ZnO core-shell structure is a ferromagnetic spin polarized state, and the magnetism mainly stems from the spin splitting of 2p electrons of O atoms. In addition, the total and partial DOS of Ag@ZnO indicate that the nanostructure is a half-metallic nanoparticle and has the characters of the p-type semiconductor. Furthermore, the optical properties calculations show that the absorption edge of Ag@ZnO have a red shift and good photocatalysis compare to that of the bulk ZnO. These results of the Ag@ZnO core-shell structure obtain a well agreement with the experimental measurement. - Graphical abstract: Geometric structure of (a) Ag@ZnO core-shell nanostructure; (b) the core of Ag; (c) the shell of ZnO The core-shell nanoparticle Ag@ZnO contains Ag inner core of radius of 4 Å and ZnO outer shell with thickness of 2 Å. Ag@ZnO core-shell nanoparticles of around 72 atoms have been proved for the first time that the core-shell structure exhibit a shrinkage phenomenon from outer shell. Our calculations predict that the Ag@ZnO core-shell structure is a half-metallic nanoparticle and has the characters of the p-type semiconductor. The absorption edge of Ag@ZnO have a red shift and get good photo-catalysis compare to that of the bulk ZnO.

  7. Portable optical frequency standard based on sealed gas-filled hollow-core fiber using a novel encapsulation technique

    DEFF Research Database (Denmark)

    Triches, Marco; Brusch, Anders; Hald, Jan

    2015-01-01

    A portable stand-alone optical frequency standard based on a gas-filled hollow-core photonic crystal fiber is developed to stabilize a fiber laser to the 13C2H2 P(16) (ν1 + ν3) transition at 1542 nm using saturated absorption. A novel encapsulation technique is developed to permanently seal...

  8. Helicity conservation under quantum reconnection of vortex rings.

    Science.gov (United States)

    Zuccher, Simone; Ricca, Renzo L

    2015-12-01

    Here we show that under quantum reconnection, simulated by using the three-dimensional Gross-Pitaevskii equation, self-helicity of a system of two interacting vortex rings remains conserved. By resolving the fine structure of the vortex cores, we demonstrate that the total length of the vortex system reaches a maximum at the reconnection time, while both writhe helicity and twist helicity remain separately unchanged throughout the process. Self-helicity is computed by two independent methods, and topological information is based on the extraction and analysis of geometric quantities such as writhe, total torsion, and intrinsic twist of the reconnecting vortex rings.

  9. High Resolution BPM Upgrade for the ATF Damping Ring at KEK

    International Nuclear Information System (INIS)

    Eddy, N.; Briegel, C.; Fellenz, B.; Gianfelice-Wendt, E.; Prieto, P.; Rechenmacher, R.; Semenov, A.; Voy, D.; Wendt, M.; Zhang, D.; Terunuma, N.

    2011-01-01

    A beam position monitor (BPM) upgrade at the KEK Accelerator Test Facility (ATF) damping ring has been accomplished, carried out by a KEK/FNAL/SLAC collaboration under the umbrella of the global ILC R and D effort. The upgrade consists of a high resolution, high reproducibility read-out system, based on analog and digital down-conversion techniques, digital signal processing, and also implements a new automatic gain error correction schema. The technical concept and realization as well as results of beam studies are presented. The next generation of linear colliders require ultra-low vertical emittance of <2 pm-rad. The damping ring at the KEK Accelerator Test Facility (ATF) is designed to demonstrate this mission critical goal. A high resolution beam position monitor (BPM) system for the damping ring is one of the key tools for realizing this goal. The BPM system needs to provide two distnict measurements. First, a very high resolution (∼100-200nm) closed-orbit measurement which is averaged over many turns and realized with narrowband filter techniques - 'narrowband mode'. This is needed to monitor and steer the beam along an optimum orbit and to facilitate beam-based alignment to minimize non-linear field effects. Second, is the ability to make turn by turn (TBT) measurements to support optics studies and corrections necessary to achieve the design performance. As the TBT measurement necessitates a wider bandwidth, it is often referred to as 'wideband mode'. The BPM upgrade was initiated as a KEK/SLAC/FNAL collaboration in the frame of the Global Design Initiative of the International Linear Collider. The project was realized and completed using Japan-US funds with Fermilab as the core partner.

  10. Correlations and fixation of some elements in tree rings

    International Nuclear Information System (INIS)

    Goldberg, E.L.; Zolotarev, K.B.; Maksimovskaya, V.V.; Kondratyev, V.I.; Ovchinnikov, D.V.; Naurzbaev, M.M.

    2007-01-01

    High-resolution scanning with Synchrotron Radiation X-ray Fluorescence Analysis (SRXFA) was applied to investigate element distributions in tree rings. Two cores of Siberia Larch have been investigated with resolution 100-200 mkm. Two groups of elements in tree rings with different trends have been found. The members of the first group are Br, Zn, Cl, whose trends correlate with each other. Moreover, trends of Br, Zn, Cl in tree rings are similar to the trend of atmosphere precipitation in the region investigated. Other group of elements are represented by K, Ca, Sr, Mn, Fe, but their trends differ sufficiently from trend of elements of the first group. Extended fixation of elements in tree rings is observed for elements of the first group over the whole interval investigated (150 years). In contrast, elements of the second group mainly accumulate in external part of tree stem

  11. Medium-Ring Effects on the Endo/Exo Selectivity of the Organocatalytic Intramolecular Diels-Alder Reaction.

    Science.gov (United States)

    Hooper, Joel F; James, Natalie C; Bozkurt, Esra; Aviyente, Viktorya; White, Jonathan M; Holland, Mareike C; Gilmour, Ryan; Holmes, Andrew B; Houk, K N

    2015-12-18

    The intramolecular Diels-Alder reaction has been used as a powerful method to access the tricyclic core of the eunicellin natural products from a number of 9-membered-ring precursors. The endo/exo selectivity of this reaction can be controlled through a remarkable organocatalytic approach, employing MacMillan's imidazolidinone catalysts, although the mechanistic origin of this selectivity remains unclear. We present a combined experimental and density functional theory investigation, providing insight into the effects of medium-ring constraints on the organocatalyzed intramolecular Diels-Alder reaction to form the isobenzofuran core of the eunicellins.

  12. Serial imaging and structure-function correlates of high-density rings of fundus autofluorescence in retinitis pigmentosa.

    Science.gov (United States)

    Robson, Anthony G; Tufail, Adnan; Fitzke, Fred; Bird, Alan C; Moore, Anthony T; Holder, Graham E; Webster, Andrew R

    2011-09-01

    To document the evolution and functional and structural significance of parafoveal rings of high-density fundus autofluorescence (AF) in patients with retinitis pigmentosa and preserved visual acuity. Fifty-two patients with nonsyndromic retinitis pigmentosa or Usher syndrome, who had a parafoveal ring of high-density AF and a visual acuity of 20/30 or better, were ascertained. All had international standard full-field electroretinography and pattern electroretinography. Autofluorescence imaging was repeated in 30 patients after periods of up to 9.3 years. Of the 52 patients, 35 underwent optical coherence tomography. Progressive constriction of the ring was detected in 17 patients. Ring radius reduced by up to 40% at a mean rate of between 0.8% and 15.8% per year. In 1 patient, a small ring was replaced by irregular AF; visual acuity deteriorated over the same period. There was a high correspondence between the lateral extent of the preserved optical coherence tomography inner segment/outer segment band and the diameter of the ring along the same optical coherence tomographic scan plane (slope, 0.9; r = 0.97; P retina and preserved photopic function. Serial fundus AF may provide prognostic indicators for preservation of central acuity and potentially assist in the identification and evaluation of patients suitable for treatment aimed at preservation of remaining function.

  13. Antiresonant guiding in a poly(methyl-methacrylate) hollow-core optical fiber

    International Nuclear Information System (INIS)

    Markos, Christos; Nielsen, Kristian; Bang, Ole

    2015-01-01

    Strong antiresonant reflecting optical waveguiding is demonstrated in a novel poly (methyl-methacrylate) (PMMA) hollow-core fiber. The transmission spectrum of the fiber was characterized using a supercontinuum source and it revealed distinct resonances with resonant dips as strong as ∼20 dB in the wavelength range 480–900 nm, where PMMA has low absorption. The total propagation loss of the fiber was measured to have a minimum of ∼45 dB m −1 at around 500 nm. The thermal sensitivity of the fiber is 256 ± 16 pm °C −1 , defined as the red-shift of the resonances per °C, which is three times higher than the sensitivity of polymer fiber Bragg gratings. (paper)

  14. Green synthesis of CuInS2/ZnS core-shell quantum dots by facile solvothermal route with enhanced optical properties

    Science.gov (United States)

    Jindal, Shikha; Giripunje, Sushama M.; Kondawar, Subhash B.; Koinkar, Pankaj

    2018-03-01

    We report an eco-friendly green synthesis of highly luminescent CuInS2/ZnS core-shell quantum dots (QDs) with average particle size ∼ 3.9 nm via solvothermal process. The present study embodies the intensification of CuInS2/ZnS QDs properties by the shell growth on the CuInS2 QDs. The as-prepared CuInS2 core and CuInS2/ZnS core-shell QDs have been characterized using a range of optical and structural techniques. By adopting a low temperature growth of CuInS2 core and high temperature growth of CuInS2/ZnS core-shell growth, the tuning of absorption and photoluminescence emission spectra were observed. Optical absorption and photoluminescence spectroscopy probe the effect of ZnS passivation on the electronic structure of the CuInS2 dots. In addition, QDs have been scrutinized using ultra violet photoelectron spectroscopy (UPS) to explore their electronic band structure. The band level positions of CuInS2 and CuInS2/ZnS QDs suffices the demand of non-toxic acceptor material for electronic devices. The variation in electronic energy levels of CuInS2 core with the coating of wide band gap ZnS shell influence the removal of trap assisted recombination on the surface of the core. QDs exhibited tunable emission from red to orange region. These studies reveal the feasibility of QDs in photovoltaic and light emitting diodes.

  15. A novel survivable architecture for hybrid WDM/TDM passive optical networks

    Science.gov (United States)

    Qiu, Yang; Chan, Chun-Kit

    2014-02-01

    A novel tree-ring survivable architecture, which consists of an organization of a wavelength-division-multiplexing (WDM) tree from optical line terminal (OLT) to remote nodes (RNs) and a time division multiplexing (TDM) ring in each RN, is proposed for hybrid WDM/TDM passive optical networks. By utilizing the cyclic property of arrayed waveguide gratings (AWGs) and the single-ring topology among a group of optical network units (ONUs) in the remote node, not only the feeder and distribution fibers, but also any fiber failures in the RN rings are protected simultaneously. Five-Gbit/s transmissions under both normal working and protection modes were experimentally demonstrated and a traffic restoration time was successfully measured.

  16. Synthesis and Optical Properties of Thiol Functionalized CdSe/ZnS (Core/Shell Quantum Dots by Ligand Exchange

    Directory of Open Access Journals (Sweden)

    Huaping Zhu

    2014-01-01

    Full Text Available The colloidal photoluminescent quantum dots (QDs of CdSe (core and CdSe/ZnS (core/shell were synthesized at different temperatures with different growth periods. Optical properties (i.e., UV/Vis spectra and photoluminescent emission spectra of the resulting QDs were investigated. The shell-protected CdSe/ZnS QDs exhibited higher photoluminescent (PL efficiency and stability than their corresponding CdSe core QDs. Ligand exchange with various thiol molecules was performed to replace the initial surface passivation ligands, that is, trioctylphosphine oxide (TOPO and trioctylphosphine (TOP, and the optical properties of the surface-modified QDs were studied. The thiol ligand molecules in this study included 1,4-benzenedimethanethiol, 1,16-hexadecanedithiol, 1,11-undecanedithiol, biphenyl-4,4′-dithiol, 11-mercapto-1-undecanol, and 1,8-octanedithiol. After the thiol functionalization, the CdSe/ZnS QDs exhibited significantly enhanced PL efficiency and storage stability. Besides surface passivation effect, such enhanced performance of thiol-functionalized QDs could be due to cross-linked assembly formation of dimer/trimer clusters, in which QDs are linked by dithiol molecules. Furthermore, effects of ligand concentration, type of ligand, and heating on the thiol stabilization of QDs were also discussed.

  17. Integrated Telecom And Data Ring Network

    Science.gov (United States)

    Maaloe, Jens

    1985-08-01

    The NKT Tele-Ringnet is a combined digital telephone and data network based on a fibre optical ring topology. The purpose of NKT Tele-Ringnet is to carry telephone and data communication as a digital PABX does. However, the optical system is not based on individual lines to a central mother exchange. It is a ringnet with an 8 Mbit/s transmission rate interconnecting simple telephone concentrators. The advantage is that all the telephone and data traffic can be multidropped over a large campus. In addition the signals are carried by an optical dual fibre cable which has many advantages compared with conventional cobber cables, i.e. low attenuation, large noise immunity, no electromagnetic radiation, small size and low weight.

  18. Electro Optic Modulation In a Polymer Ringresonator

    Science.gov (United States)

    Leinse, A.; Driessen, A.; Diemeer, M. B. J.

    2004-05-01

    A thermo optic and electro optic (EO) tunable polymer ringresonator was realized and tested. The device consisted of a microring resonator made of the 4-dimethylamino-4‵-nitrostilbene (DANS) containing polymer and measurements were done on the through port of this device. The ring was used in a vertical coupling structure. The port waveguides were made of the photo-definable epoxy (SU8). The rings used had a diameter of 100 μm and thermo optic tuning of about 170 pm/°C was measured. EO modulation was measured for TE polarization.

  19. The Ring System of Saturn as Seen by Cassini-VIMS (Invited)

    Science.gov (United States)

    Filacchione, G.; Ciarniello, M.; Capaccioni, F.

    2015-08-01

    Since 2004 the Visual and Infrared Mapping Spectrometer (VIMS) aboard Cassini has acquired numerous hyperspectral mosaics in the 0.35-5.1 μm spectral range of Saturn's main rings in very different illumination and viewing geometries. These observations have allowed us to infer the ring particles physical properties and composition: water ice abundance is estimated through the 1.25-1.5-2.0 μm band depths, chromophores distribution is derived from visible spectral slopes while organic material is traced by the aliphatic compounds signature at 3.42 μm which appears stronger on CD and C ring than on A-B rings (Filacchione et al., 2014). Observed reflectance spectra are fitted with a spectrophotometric model based on Montecarlo ray-tracing with the scope to infer particles composition while disentangling photometric effects (caused by multiple scattering, opposition surge and forward scattering) which depend on illumination/viewing geometries. Spectral bond albedo for different regions of the rings has been best-fitted using Hapke's radiative transfer modeling (Ciarniello et al, 2011) by choosing different mixtures of water ice, tholin, and amorphous carbon particles populations. While tholin distribution seems to be fairly constant across the rings, the amorphous carbon appears anti-correlated with optical depth. Moreover, dark material contamination is less effective on densest regions, where the more intense rejuvenation processes occur, in agreement with the ballistic transport theory (Cuzzi and Estrada,1998). Finally, the 3.6 μm continuum peak wavelength is used to infer particles temperature, which is anti-correlated with the albedo and the optical depth (tau): low-albedo/low-tau C ring and CD have higher temperatures than A-B rings where albedo and tau are high. This trend matches direct temperature measurements by CIRS (Spilker et al., 2013).

  20. A facile method for preparing porous, optically active, magnetic Fe3 O4 @poly(N-acryloyl-leucine) inverse core/shell composite microspheres.

    Science.gov (United States)

    Liu, Dong; Deng, Jianping; Yang, Wantai

    2014-01-01

    The first synthesis of porous, optically active, magnetic Fe3 O4 @poly(N-acryloyl-leucine) inverse core/shell composite microspheres is reported, in which the core is constructed of chiral polymer and the shell is constructed of Fe3 O4 NPs. The microspheres integrate three significant concepts, "porosity", "chirality", and "magneticity", in one single microspheric entity. The microspheres consist of Fe3 O4 nanoparticles and porous optically active microspheres, and thus combine the advantages of both magnetic nanoparticles and porous optically active microspheres. The pore size and specific surface area of the microspheres are characterized by N2 adsorption, from which it is found that the composite microspheres possess a desirable porous structure. Circular dichroism and UV-vis absorption spectroscopy measurements demonstrate that the microspheres exhibit the expected optical activity. The microspheres also have high saturation magnetization of 14.7 emu g(-1) and rapid magnetic responsivity. After further optimization, these novel microspheres may potentially find applications in areas such as asymmetric catalysis, chiral adsorption, etc. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. F.B.R. Core mock-up RAPSODIE- I: Experimental analysis

    International Nuclear Information System (INIS)

    Brochard, D.; Buland, P.; Gantenbein, F.

    1990-01-01

    The main phenomena which influence the LMFBR core response to a seismic excitation are the fluid structure interaction and the impacts between subassemblies. To study the core behaviour, seismic tests have been performed on the core mock-up RAPSODIE with or without fluid and restraint ring and for different levels of excitation. This paper summarizes the results of these tests

  2. High-performance, scalable optical network-on-chip architectures

    Science.gov (United States)

    Tan, Xianfang

    The rapid advance of technology enables a large number of processing cores to be integrated into a single chip which is called a Chip Multiprocessor (CMP) or a Multiprocessor System-on-Chip (MPSoC) design. The on-chip interconnection network, which is the communication infrastructure for these processing cores, plays a central role in a many-core system. With the continuously increasing complexity of many-core systems, traditional metallic wired electronic networks-on-chip (NoC) became a bottleneck because of the unbearable latency in data transmission and extremely high energy consumption on chip. Optical networks-on-chip (ONoC) has been proposed as a promising alternative paradigm for electronic NoC with the benefits of optical signaling communication such as extremely high bandwidth, negligible latency, and low power consumption. This dissertation focus on the design of high-performance and scalable ONoC architectures and the contributions are highlighted as follow: 1. A micro-ring resonator (MRR)-based Generic Wavelength-routed Optical Router (GWOR) is proposed. A method for developing any sized GWOR is introduced. GWOR is a scalable non-blocking ONoC architecture with simple structure, low cost and high power efficiency compared to existing ONoC designs. 2. To expand the bandwidth and improve the fault tolerance of the GWOR, a redundant GWOR architecture is designed by cascading different type of GWORs into one network. 3. The redundant GWOR built with MRR-based comb switches is proposed. Comb switches can expand the bandwidth while keep the topology of GWOR unchanged by replacing the general MRRs with comb switches. 4. A butterfly fat tree (BFT)-based hybrid optoelectronic NoC (HONoC) architecture is developed in which GWORs are used for global communication and electronic routers are used for local communication. The proposed HONoC uses less numbers of electronic routers and links than its counterpart of electronic BFT-based NoC. It takes the advantages of

  3. Optimization and Simulation of Machining Parameters in Radial-axial Ring Rolling Process

    Directory of Open Access Journals (Sweden)

    Shuiyuan Tang

    2011-05-01

    Full Text Available Ring rolling is a complicated process, in which rolling parameters influence directly the quality of ring. It is a process method with high productivity and few waste of material, widely used in transportation industry including automotive, shipbuilding, aerospace etc. During the rolling process of large-sized parts, crinkle and hollows often appear on surface, due to inconsistence of rolling motions with the deformation of ring part. Based on radial-axial ring rolling system configuration, motions and forces in rolling process are analyzed, and a dynamic model is formulated. Error of ring's end flatness and roundness are defined as the characteristic parameters of ring quality. The relationship between core roller feed speed, drive roller speed, the upper taper roller feed speed, and quality of ring part are analyzed. The stress and strain of the part are simulated in the Finite Element Method by DEFORM software. The simulation results provide a reference for the definition of ring rolling process parameters. It is able to make the deformation of the part be consistent with the process parameters, and improve product quality considerably.

  4. Optical resonators and neural networks

    Science.gov (United States)

    Anderson, Dana Z.

    1986-08-01

    It may be possible to implement neural network models using continuous field optical architectures. These devices offer the inherent parallelism of propagating waves and an information density in principle dictated by the wavelength of light and the quality of the bulk optical elements. Few components are needed to construct a relatively large equivalent network. Various associative memories based on optical resonators have been demonstrated in the literature, a ring resonator design is discussed in detail here. Information is stored in a holographic medium and recalled through a competitive processes in the gain medium supplying energy to the ring rsonator. The resonator memory is the first realized example of a neural network function implemented with this kind of architecture.

  5. Transmission properties of hollow-core photonic bandgap fibers

    DEFF Research Database (Denmark)

    Falk, Charlotte Ijeoma; Hald, Jan; Petersen, Jan C.

    2010-01-01

    Variations in optical transmission of four types of hollow-core photonic bandgap fibers are measured as a function of laser frequency. These variations influence the potential accuracy of gas sensors based on molecular spectroscopy in hollow-core fibers.......Variations in optical transmission of four types of hollow-core photonic bandgap fibers are measured as a function of laser frequency. These variations influence the potential accuracy of gas sensors based on molecular spectroscopy in hollow-core fibers....

  6. BDK-doped core microstructured PMMA optical fiber for effective Bragg grating photo-inscription

    DEFF Research Database (Denmark)

    Hu, Xuehao; Woyessa, Getinet; Kinet, Damien

    2017-01-01

    An endlessly single-mode doped microstructured poly(methyl methacrylate) (PMMA) optical fiber is produced for effective fiber Bragg grating (FBG) photo-inscription by means of a 400 nm femtosecond pulsed laser and the phase mask technique. The fiber presents a uniform benzyl dimethyl ketal (BDK......) distribution in its core without drastic loss increase. It was produced using the selected center hole doping technique, and the BDK dopant acts as a photoinitiator. In this Letter, we report a rapidly growing process of the grating reflection band. For an 11 mW mean laser power, the FBG reflectivity reaches...

  7. Modulational instability and generation of pulse trains in asymmetric dual-core nonlinear optical fibers

    International Nuclear Information System (INIS)

    Ganapathy, R.; Malomed, Boris A.; Porsezian, K.

    2006-01-01

    Instability of continuous-wave (CW) states is investigated in a system of two parallel-coupled fibers, with a pumped (active) nonlinear dispersive core and a lossy (passive) linear one. Modulational instability (MI) conditions are found from linearized equations for small perturbations, the results being drastically different for the normal and anomalous group-velocity dispersion (GVD) in the active core. Simulations of the full system demonstrate that the development of the MI in the former regime leads to establishment of a regular or chaotic array of pulses, if the MI saturates, or a chain of well-separated peaks with continuously growing amplitudes if the instability does not saturate. In the anomalous-GVD regime, a chain of return-to-zero (RZ) peaks, or a single RZ peak emerge, also with growing amplitudes. The latter can be used as a source of RZ pulses for optical telecommunications

  8. Mode-Locked 1.5 um Semiconductor Optical Fiber Ring

    DEFF Research Database (Denmark)

    Pedersen, Niels Vagn; Jakobsen, Kaj Bjarne; Vaa, Michael

    1996-01-01

    The dynamics of a mode-locked SOA fiber ring are investigated experimentally and numerically. Generation of near transform-limited (time-bandwidth product = 0.7) 1.5 um 54 ps FWHM pulses with a peak power of 2.8 mW at a repetition rate of 960 MHz is demonstrated experimentally. The experimental r...

  9. Measuring Mechanical Properties Of Optical Glasses

    Science.gov (United States)

    Tucker, Dennis S.; Nichols, Ronald L.

    1989-01-01

    Report discusses mechanical tests measuring parameters of strength and fracture mechanics of optical glasses. To obtain required tables of mechanical properties of each glass of interest, both initial-strength and delayed-fracture techniques used. Modulus of rupture measured by well-known four-point bending method. Initial bending strength measured by lesser-known double-ring method, in which disk of glass supported on one face near edge by larger ring and pressed on its other face by smaller concentric ring. Method maximizes stress near center, making it more likely specimen fractures there, and thereby suppresses edge effects. Data from tests used to predict reliabilities and lifetimes of glass optical components of several proposed spaceborne instruments.

  10. Laser reflectometry of submegahertz liquid meniscus ringing.

    Science.gov (United States)

    Farahi, R H; Passian, A; Jones, Y K; Tetard, L; Lereu, A L; Thundat, T G

    2009-10-15

    Optical techniques that permit nondestructive probing of interfacial dynamics of various media are of key importance in numerous applications such as ellipsometry, mirage effect, and all-optical switching. Characterization of the various phases of microjet droplet formation yields important information for volume control, uniformity, velocity, and rate. The ringing of the meniscus and the associated relaxation time that occurs after droplet breakoff affect subsequent drop formation and is an indicator of the physical properties of the fluid. Using laser reflectometry, we present an analysis of the meniscus oscillations in an orifice of a piezoelectric microjet.

  11. Upgrading of the Munich reactor with a compact core

    International Nuclear Information System (INIS)

    Boening, K.; Glaeser, W.; Meier, J.; Rau, G.; Roehrmoser, A.; Zhang, L.

    1985-01-01

    An extremely small reactor core has been proposed for the project of substantial modernization of the FRM research reactor at Munich. According to the present status this 'compact core' will be a cylinder with a diameter of about 20 cm and 70 cm high. The new high-density U 3 Si/Al dispersion fuel of about 45% enrichment is contained in 20 concentric fuel plate rings. The compact core is surrounded by a large heavy-water tank which will incorporate the user installations (beam tubes and irradiation channels). However, the primary cooling circuit will contain light water which is not only more economic but also essential for the performance of the small core. An important optimization potential to decrease easily the power density peaks in the core is to reduce further the enrichment in those fuel plate rings where the neutron flux is particularly high. Two-dimensional neutron transport calculations show that such a core, containing about 7.5 kg 235 U, should have an effective multiplication factor of about 1.22 and an unperturbed but realistic maximum thermal neutron flux in the heavy water tank of 7 to 8x10 14 cm -2 .s -1 at 20 MW reactor power. (author)

  12. Investigation of tissue cellularity at the tip of the core biopsy needle with optical coherence tomography.

    Science.gov (United States)

    Iftimia, Nicusor; Park, Jesung; Maguluri, Gopi; Krishnamurthy, Savitri; McWatters, Amanda; Sabir, Sharjeel H

    2018-02-01

    We report the development and the pre-clinical testing of a new technology based on optical coherence tomography (OCT) for investigating tissue composition at the tip of the core biopsy needle. While ultrasound, computed tomography, and magnetic resonance imaging are routinely used to guide needle placement within a tumor, they still do not provide the resolution needed to investigate tissue cellularity (ratio between viable tumor and benign stroma) at the needle tip prior to taking a biopsy core. High resolution OCT imaging, however, can be used to investigate tissue morphology at the micron scale, and thus to determine if the biopsy core would likely have the expected composition. Therefore, we implemented this capability within a custom-made biopsy gun and evaluated its capability for a correct estimation of tumor tissue cellularity. A pilot study on a rabbit model of soft tissue cancer has shown the capability of this technique to provide correct evaluation of tumor tissue cellularity in over 85% of the cases. These initial results indicate the potential benefit of the OCT-based approach for improving the success of the core biopsy procedures.

  13. Damping Ring R&D at CESR-TA

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, David L. [Cornell Univ., Ithaca, NY (United States). Dept. of Physics

    2015-01-23

    , and that an instability associated with residual gas in the beam pipe would limit the intensity of the electron ring. It was also not clear whether the required very small beam size could be achieved. The results of this study are important contributions to the design of both the electron and positron damping rings in which all of those challenges are addressed and overcome. Our findings are documented in the ILC Technical Design Report, a document that represents the work of an international collaboration of scientists. Our contributions include design of the beam magnetic optics for the 3 km circumference damping rings, the vacuum system and surface treatments for electron cloud mitigation, the design of the guide field magnets, design of the superconducting damping wigglers, and new detectors for precision measurement of beam properties. Our study informed the specification of the basic design parameters for the damping rings, including alignment tolerances, magnetic field errors, and instrumentation. We developed electron cloud modelling tools and simulations to aid in the interpretation of the measurements that we carried out in the Cornell Electron-positron Storage Ring (CESR). The simulations provide a means for systematic extrapolation of our measurements at CESR to the proposed ILC damping rings, and ultimately to specify how the beam pipes should be fabricated in order to minimize the effects of the electron cloud. With the conclusion of this study, the design of the essential components of the damping rings is complete, including the development and characterization (with computer simulations) of the beam optics, specification of techniques for minimizing beam size, design of damping ring instrumentation, R&D into electron cloud suppression methods, tests of long term durability of electron cloud coatings, and design of damping ring vacuum system components.

  14. Synthesis of the C8’-epimeric thymine pyranosyl amino acid core of amipurimycin

    Directory of Open Access Journals (Sweden)

    Pramod R. Markad

    2016-08-01

    Full Text Available The C8’-epimeric pyranosyl amino acid core 2 of amipurimycin was synthesized from D-glucose derived alcohol 3 in 13 steps and 14% overall yield. Thus, the Sharpless asymmetric epoxidation of allyl alcohol 7 followed by trimethyl borate mediated regio-selective oxirane ring opening with azide, afforded azido diol 10. The acid-catalyzed 1,2-acetonide ring opening in 10 concomitantly led to the formation of the pyranose ring skeleton to give 2,7-dioxabicyclo[3.2.1]octane 12. Functional group manipulation in 12 gave 21 that on stereoselective β-glycosylation afforded the pyranosyl thymine nucleoside 2 – a core of amipurimycin.

  15. 1st International Conference on Fiber-Optic Rotation Sensors

    CERN Document Server

    Arditty, Hervé

    1982-01-01

    Currently there is considerable interest in the application of optical meth­ ods for the measurement of absolute rotation. Active approaches, so-called ring laser gyros, have been under serious development for at least 15 years. More recently, passive approaches using ring resonators or multi turn fiber interferometers have also demonstrated much pro~ise. The only previous conference devoted exclusively to optical rotation sensors, held in 1978 in San Diego, California, was organized by the Society of Photo-optical Instru­ mentation Engineers(S.P.I.E.J. Although the main emphasis at that conference was on ring laser gyros, a number of papers were also included that described the early development of fiber gyroscopes. Since then the field of fiber optic rotation sensors has grown so rapidly that a conference devoted primarily to this subject was needed. The First International Conference on Fiber-Optic Rotation Sensors was held at the Massachusetts Institute of Technology, Cambridge, Massachusetts, Nove~­ b...

  16. Effects of the gamma-ray irradiation on the optical absorption of pure silica core single-mode fibres in the visible and NIR range

    International Nuclear Information System (INIS)

    Calderon, A.; Calvo, E.; Figueroa, C.F.; Martinez-Rivero, C.; Matorras, F.; Rodrigo, T.; Sobron, M.; Vila, I.; Virto, A.L.; Arce, P.; Barcala, J.M.; Ferrando, A.; Josa, M.I.; Luque, J.M.; Molinero, A.; Navarrete, J.; Oller, J.C.; Yuste, C.

    2005-01-01

    Optical absorption induced by photon radiation was evaluated for several commercial pure silica core, single mode, optical fibres. The study was performed for three different wavelengths: 630, 670 and 785 nm. We have identified a fibre whose induced transmission loss stays below 1 dB/m after 300 kGy gamma-ray irradiation

  17. A new series of two-ring-based side chain liquid crystalline polymers: synthesis and mesophase characterization

    CSIR Research Space (South Africa)

    Reddy, GSM

    2013-05-01

    Full Text Available A new series of side chain liquid crystalline polymers containing a core, a butamethylenoxy spacer, ester groups, and terminal alkoxy groups were synthesised and their structures were confirmed. The core was constructed with two phenyl rings...

  18. 15N natural abundance in warm-core rings of the Gulf Stream: studies of the upper-ocean nitrogen cycle

    International Nuclear Information System (INIS)

    Altabet, M.A.

    1984-01-01

    An extensive study of 15 N natural abundance in particulate organic nitrogen (PON) from warm-core rings of the Gulf Stream was carried out to test its use as an in situ tracer of the marine nitrogen cycle. Ring 82-B exhibited large temporal changes in the delta 15 N of PON. It was found that delta 15 N values for euphotic zone PON were low in April before stratification and higher in June after stratification had occurred. Below 400 meters, in the permanent thermocline, the change was opposite going from very high values to ones similar to those at the surface. Examination of vertical profiles for delta 15 N in the upper 200 meters demonstrated that in stratified waters a delta 15 N minimum for PON occurs with both the top of the nitracline and a maximum in PON concentration. Often a minimum in C/N ratio also occurs at the depth of the delta 15 N minimum. A mathematical model of nitrogen flux into and out of the euphotic zone and associated isotopic fractionation qualitatively reproduced the observed patterns for the delta 15 N of PON, PON concentration and NO 3 - concentration. Levels of PON increased as a result of either increasing NO 3 - flux into the euphotic zone or increasing the residence time of PON in the euphotic zone. These results lend general support to current views regarding the nature and significance of the vertical fluxes of nitrogen in the upper-ocean and the hypotheses presented concerning the factors which control the delta 15 N of PON

  19. InP on SOI devices for optical communication and optical network on chip

    Science.gov (United States)

    Fedeli, J.-M.; Ben Bakir, B.; Olivier, N.; Grosse, Ph.; Grenouillet, L.; Augendre, E.; Phillippe, P.; Gilbert, K.; Bordel, D.; Harduin, J.

    2011-01-01

    For about ten years, we have been developing InP on Si devices under different projects focusing first on μlasers then on semicompact lasers. For aiming the integration on a CMOS circuit and for thermal issue, we relied on SiO2 direct bonding of InP unpatterned materials. After the chemical removal of the InP substrate, the heterostructures lie on top of silicon waveguides of an SOI wafer with a separation of about 100nm. Different lasers or photodetectors have been achieved for off-chip optical communication and for intra-chip optical communication within an optical network. For high performance computing with high speed communication between cores, we developed InP microdisk lasers that are coupled to silicon waveguide and produced 100μW of optical power and that can be directly modulated up to 5G at different wavelengths. The optical network is based on wavelength selective circuits with ring resonators. InGaAs photodetectors are evanescently coupled to the silicon waveguide with an efficiency of 0.8A/W. The fabrication has been demonstrated at 200mm wafer scale in a microelectronics clean room for CMOS compatibility. For off-chip communication, silicon on InP evanescent laser have been realized with an innovative design where the cavity is defined in silicon and the gain localized in the QW of bonded InP hererostructure. The investigated devices operate at continuous wave regime with room temperature threshold current below 100 mA, the side mode suppression ratio is as high as 20dB, and the fibercoupled output power is {7mW. Direct modulation can be achieved with already 6G operation.

  20. Status of the Cryogenic Storage Ring (CSR)

    Energy Technology Data Exchange (ETDEWEB)

    Menk, Sebastian; Becker, Arno; Berg, Felix; Blaum, Klaus; Fellenberger, Florian; Froese, Michael; Goullon, Johannes; Grieser, Manfred; Krantz, Claude; Lange, Michael; Laux, Felix; Repnow, Roland; Schornikov, Andrey; Hahn, Robert von; Wolf, Andreas [Max-Planck-Institut fuer Kernphysik (MPIK), 69117 Heidelberg (Germany); Spruck, Kaija [Institut fuer Atom- und Molekuelphysik Justus-Liebig-Universitaet, 35392 Giessen (Germany)

    2012-07-01

    A novel cryogenic storage ring is currently under construction at the MPIK. By electrostatic ion optical elements, the 35 m circumference Cryogenic Storage Ring will be able to store ions at energies of up to 300 keV per charge unit without any mass limitations. The CSR consists of a cryogenic ({proportional_to}5 K) beam pipe surrounded by two radiation shields (40 and 80 K) in a large outer, thermal insulation vacuum. Extreme vacuum (density {proportional_to}10{sup 3} cm{sup -3}) will be achieved by 2 K cryopumping as demonstrated in a prototype ion beam trap. The ion optics was completely assembled within the precision cryogenic mounting and shielding structure of the first corner. There, cooldown tests to {proportional_to}40 K were performed which confirmed the required sub-millimeter accuracy of the specially designed electrode positioning under large temperature changes. The high-voltage connections to the cryogenic electrodes were installed and breakdown tests will be reported. Based on the test results the beam pipe, electrode mounting and shielding structures are under final construction for mounting during 2012.

  1. Simulation of the Initial 3-D Instability of an Impacting Drop Vortex Ring

    DEFF Research Database (Denmark)

    Sigurdson, Lorenz; Wiwchar, Justin; Walther, Jens Honore

    2013-01-01

    , a Rayleigh centrifugal instability, or a vortex breakdown-type instability. Simulations which simply have a perturbed solitary ring result in an instability similar to that seen experimentally. Waviness of the core which would be expected from a Widnall instability is not visible. Adding an opposite......-signed secondary vortex ring or an image vortex ring to the initial conditions, to trigger a Rayleigh or breakdown respectively, does not appear to significantly change the instability from what is seen with a solitary ring. This suggests that a Rayleigh or vortex breakdown-type instability are not likely at work......Computational vortex particle method simulations of a perturbed vortex ring are performed to recreate and understand the instability seen in impacting water drop experiments. Three fundamentally different initial vorticity distributions are used to attempt to trigger a Widnall instability...

  2. Research on dual-parameter optical fiber sensor based on thin-core fiber and spherical structure

    Science.gov (United States)

    Tong, Zhengrong; Wang, Xue; Zhang, Weihua; Xue, Lifang

    2018-04-01

    A novel dual-parameter optical fiber sensor is proposed and experimentally demonstrated. The proposed sensor is based on a fiber in-line Mach-Zehnder interferometer, which is fabricated by sandwiching a section of thin-core fiber between two spherical structures made of single-mode fibers. The transmission spectrum exhibits the response of the interference between the core and the different cladding modes. Due to the different wavelength shifts of the two selected dips, the simultaneous measurement of temperature and the surrounding refractive index can be achieved. The measured temperature sensitivities are 0.067 nm/°C and 0.050 nm/°C, and the refractive index sensitivities are  -119.9 nm/RIU and  -69.71 nm/RIU, respectively. In addition, the compact size, simple fabrication and cost-effectiveness of the fiber sensor are also advantages.

  3. One pot synthesis of Pb S/Cu2S core-shell nanoparticles and their optical properties

    International Nuclear Information System (INIS)

    Serrano, T.; Gomez, I.

    2014-01-01

    The synthesis of Pb S/Cu 2 S core-shell nanoparticles with emission on the visible range and with improved luminescence properties was carried out by the colloidal solution-phase growth method by using simple stabilizers such as trisodium citrate and 3-mercaptopropionic acid. The core shell arrangement for particles with different crystalline structure was achieved, in addition this is the first report related to the synthesis Pb S/C 2 S core-shell system. The data obtained from absorption spectra, Pl spectra, and HRTEM image provided direct proof of the formation of Pb S core with size around 11 nm and Cu 2 S shell of 5 nm thickness. According to the UV-vis absorption and Pl spectrum the optical characteristics observed in the synthesized material correspond to a Pb S/Cu 2 S system that has a higher confinement effect than the pure Pb S nanoparticles. The Q Y was improved in 15% from Pb S/C 2 S nanoparticles. The estimated band (Homo-Lumo) alignment determined by C V measurements corresponds to a type-I core shell arrangement. The synthesized material was studied with different techniques. The size and dispersion of the particles were determined by ultraviolet-visible (UV-Vis), photoluminescence and quantum yield, Dynamic Light Scattering method and X-ray diffraction with copper radiation (λ = 0.15418 nm). (Author)

  4. Construction of 3D Arrays of Cylindrically Hierarchical Structures with ZnO Nanorods Hydrothermally Synthesized on Optical Fiber Cores

    Directory of Open Access Journals (Sweden)

    Weixuan Jing

    2014-01-01

    Full Text Available With ZnO nanorods hydrothermally synthesized on manually assembled arrays of optical fiber cores, 3D arrays of ZnO nanorod-based cylindrically hierarchical structures with nominal pitch 250 μm or 375 μm were constructed. Based on micrographs of scanning electron microscopy and image processing operators of MATLAB software, the 3D arrays of cylindrically hierarchical structures were quantitatively characterized. The values of the actual diameters, the actual pitches, and the parallelism errors suggest that the process capability of the manual assembling is sufficient and the quality of the 3D arrays of cylindrically hierarchical structures is acceptable. The values of the characteristic parameters such as roughness, skewness, kurtosis, correlation length, and power spectrum density show that the surface morphologies of the cylindrically hierarchical structures not only were affected significantly by Zn2+ concentration of the growth solution but also were anisotropic due to different curvature radii of the optical fiber core at side and front view.

  5. Seasonal variation of the radial brightness contrast of Saturn's rings viewed in mid-infrared by Subaru/COMICS

    Science.gov (United States)

    Fujiwara, Hideaki; Morishima, Ryuji; Fujiyoshi, Takuya; Yamashita, Takuya

    2017-03-01

    Aims: This paper investigates the mid-infrared (MIR) characteristics of Saturn's rings. Methods: We collected and analyzed MIR high spatial resolution images of Saturn's rings obtained in January 2008 and April 2005 with the COoled Mid-Infrared Camera and Spectrometer (COMICS) mounted on the Subaru Telescope, and investigated the spatial variation in the surface brightness of the rings in multiple bands in the MIR. We also composed the spectral energy distributions (SEDs) of the C, B, and A rings and the Cassini Division, and estimated the temperatures of the rings from the SEDs assuming the optical depths. Results: We found that the C ring and the Cassini Division were warmer than the B and A rings in 2008, which could be accounted for by their lower albedos, lower optical depths, and smaller self-shadowing effect. We also fonud that the C ring and the Cassini Division were considerably brighter than the B and A rings in the MIR in 2008 and the radial contrast of the ring brightness is the inverse of that in 2005, which is interpreted as a result of a seasonal effect with changing elevations of the Sun and observer above the ring plane. The reduced images (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/599/A29

  6. Tracing footprints of environmental events in tree ring chemistry using neutron activation analysis

    Science.gov (United States)

    Sahin, Dagistan

    experimental NAA were developed to ensure an acceptable accuracy and certainty in the elemental concentration measurements in tree-ring samples. Two independent analysis methods of NAA were used; the well known k-zero method and a novel method developed in this study, called the Multi-isotope Iterative Westcott (MIW) method. The MIW method uses reaction rate probabilities for a group of isotopes, which can be calculated by a neutronic simulation or measured by experimentation, and determines the representative values for the neutron flux and neutron flux characterization parameters based on Westcott convention. Elemental concentration calculations for standard reference material and tree-ring samples were then performed using the MIW and k-zero analysis methods of the NAA and the results were cross verified. In the computational part of this study, a detailed burnup coupled neutronic simulation was developed to analyze real-time neutronic changes in a TRIGA Mark III reactor core, in this study, the Penn State Breazeale Reactor (PSBR) core. To the best of the author`s knowledge, this is the first burnup coupled neutronic simulation with realistic time steps and full fuel temperature profile for a TRIGA reactor using Monte Carlo Utility for Reactor Evolutions (MURE) code and Monte Carlo Neutral-Particle Code (MCNP) coupling. High fidelity and flexibility in the simulation was aimed to replicate the real core operation through the day. This approach resulted in an enhanced accuracy in neutronic representation of the PSBR core with respect to previous neutronic simulation models for the PSBR core. An important contribution was made in the NAA experimentation practices employed in Dendrochemistry studies at the RSEC. Automated laboratory control and analysis software for NAA measurements in the RSEC Radionuclide Applications Laboratory was developed. Detailed laboratory procedures were written in this study comprising preparation, handling and measurements of tree-ring samples in

  7. MUSE-INGS ON AM1354-250: COLLISIONS, SHOCKS, AND RINGS

    Energy Technology Data Exchange (ETDEWEB)

    Conn, Blair C. [Gemini Observatory, Recinto AURA, Colina El Pino, Casilla 603, La Serena (Chile); Fogarty, L. M. R. [Sydney Institute for Astronomy, School of Physics, The University of Sydney, A28, Sydney, 2006 (Australia); Smith, Rory [Yonsei University, Graduate School of Earth System Sciences-Astronomy-Atmospheric Sciences, Yonsei-ro 50, Seoul 120-749 (Korea, Republic of); Candlish, Graeme N., E-mail: bconn@gemini.edu [Departamento de Astronomía, Universidad de Concepción, Casilla 160-C, Concepción (Chile)

    2016-03-10

    We present Multi Unit Spectroscopic Explorer observations of AM1354-250, confirming its status as a collisional ring galaxy that has recently undergone an interaction, creating its distinctive shape. We analyze the stellar and gaseous emission throughout the galaxy finding direct evidence that the gaseous ring is expanding with a velocity of ∼70 km s{sup −1} and that star formation is occurring primarily in H ii regions associated with the ring. This star formation activity is likely triggered by this interaction. We find evidence for several excitation mechanisms in the gas, including emission consistent with shocked gas in the expanding ring and a region of LINER-like emission in the central core of the galaxy. Evidence of kinematic disturbance in both the stars and gas, possibly also triggered by the interaction, can be seen in all of the velocity maps. The ring galaxy retains a weak spiral structure, strongly suggesting the progenitor galaxy was a massive spiral prior to the collision with its companion an estimated 140 ± 12 Myr ago.

  8. Tree-ring proxies of larch bud moth defoliation: latewood width and blue intensity are more precise than tree-ring width.

    Science.gov (United States)

    Arbellay, Estelle; Jarvis, Ingrid; Chavardès, Raphaël D; Daniels, Lori D; Stoffel, Markus

    2018-05-19

    Reconstructions of defoliation by larch bud moth (LBM, Zeiraphera diniana Gn.) based on European larch (Larix decidua Mill.) tree rings have unraveled outbreak patterns over exceptional temporal and spatial scales. In this study, we conducted tree-ring analyses on 105 increment cores of European larch from the Valais Alps, Switzerland. The well-documented history of LBM outbreaks in Valais provided a solid baseline for evaluating the LBM defoliation signal in multiple tree-ring parameters. First, we used tree-ring width measurements along with regional records of LBM outbreaks to reconstruct the occurrence of these events at two sites within the Swiss Alps. Second, we measured earlywood width, latewood width and blue intensity, and compared these parameters with tree-ring width to assess the capacity of each proxy to detect LBM defoliation. A total of six LBM outbreaks were reconstructed for the two sites between AD 1850 and 2000. Growth suppression induced by LBM was, on average, highest in latewood width (59%), followed by total ring width (54%), earlywood width (51%) and blue intensity (26%). We show that latewood width and blue intensity can improve the temporal accuracy of LBM outbreak reconstructions, as both proxies systematically detected LBM defoliation in the first year it occurred, as well as the differentiation between defoliation and non-defoliation years. This study introduces blue intensity as a promising new proxy of insect defoliation and encourages its use in conjunction with latewood width.

  9. Molecular transport network security using multi-wavelength optical spins.

    Science.gov (United States)

    Tunsiri, Surachai; Thammawongsa, Nopparat; Mitatha, Somsak; Yupapin, Preecha P

    2016-01-01

    Multi-wavelength generation system using an optical spin within the modified add-drop optical filter known as a PANDA ring resonator for molecular transport network security is proposed. By using the dark-bright soliton pair control, the optical capsules can be constructed and applied to securely transport the trapped molecules within the network. The advantage is that the dark and bright soliton pair (components) can securely propagate for long distance without electromagnetic interference. In operation, the optical intensity from PANDA ring resonator is fed into gold nano-antenna, where the surface plasmon oscillation between soliton pair and metallic waveguide is established.

  10. Small scale optics

    CERN Document Server

    Yupapin, Preecha

    2013-01-01

    The behavior of light in small scale optics or nano/micro optical devices has shown promising results, which can be used for basic and applied research, especially in nanoelectronics. Small Scale Optics presents the use of optical nonlinear behaviors for spins, antennae, and whispering gallery modes within micro/nano devices and circuits, which can be used in many applications. This book proposes a new design for a small scale optical device-a microring resonator device. Most chapters are based on the proposed device, which uses a configuration know as a PANDA ring resonator. Analytical and nu

  11. First design for the optics of the decay ring for the beta-beams

    International Nuclear Information System (INIS)

    Chance, A.; Payet, J.

    2006-03-01

    The aim of the beta-beams is to produce pure electronic neutrino and anti-neutrino highly energetic beams, coming from beta radioactive disintegration decay of the 18 Ne 10+ and 6 He 2+ , directed to experiment situated in the Frejus tunnel. The high ion intensities are stored in a ring, until the ions decay. The losses due to the decay of the radioactive ions are compensated with regular injections. These should be done in presence of the circulating beam. The new ions are injected at a different energy from the stored beam energy, the design of the ring must enable this type of injection and accept the injected and stored beams. In this note, we will focus on the study of the design of such a ring at the first and second orders. We have reached the constraint on the dispersion in the injection section: a horizontal dispersion superior to 10 m with β x = 20 m. We have put sextupoles in the arcs to correct the chromaticity. In the same time, we have compensated the third order resonances to have a large enough dynamic aperture. So the decay ring accepts injected and stored beams. In a top-down approach, the high stored intensities impose to take into account the space charge effects. However, due to the merging, the beam blows up after each injection in the longitudinal space charge, which imposes to include a momentum collimation section in the decay ring

  12. Hollow-core fibers for high power pulse delivery

    DEFF Research Database (Denmark)

    Michieletto, Mattia; Lyngsø, Jens K.; Jakobsen, Christian

    2016-01-01

    We investigate hollow-core fibers for fiber delivery of high power ultrashort laser pulses. We use numerical techniques to design an anti-resonant hollow-core fiber having one layer of non-touching tubes to determine which structures offer the best optical properties for the delivery of high power...... picosecond pulses. A novel fiber with 7 tubes and a core of 30 mu m was fabricated and it is here described and characterized, showing remarkable low loss, low bend loss, and good mode quality. Its optical properties are compared to both a 10 mu m and a 18 mu m core diameter photonic band gap hollow......-core fiber. The three fibers are characterized experimentally for the delivery of 22 picosecond pulses at 1032nm. We demonstrate flexible, diffraction limited beam delivery with output average powers in excess of 70W. (C) 2016 Optical Society of America...

  13. Analysis of Plasmonics Based Fiber Optic Sensing Structures

    Science.gov (United States)

    Moayyed, Hamed

    The work described in this PhD Thesis focuses on the post-processing of optical fibers and their enhancement as sensing element. Since the majority of sensors presented are based in Fabry-Perot interferometers, an historical overview of this category of optical fiber sensors is firstly presented. This review considers the works published since the early years, in the beginning of the 1980s, until the middle of 2015. The incorporation of microcavities at the tip of a single mode fiber was extensively studied, particularly for the measurement of nitrogen and methane gas pressure. These cavities were fabricated using hollow core silica tubes and a hollow core photonic crystal fiber. Following a different approach, the microcavities were incorporated between two sections of single mode fiber. In this case, the low sensitivity to temperature makes these microcavities highly desirable for the measurement of strain at high temperatures. Competences in post-processing techniques such as the chemical etching and the writing of periodical structures in the fiber core by means of an excimer or a femtosecond laser were also acquired in the course of the PhD programme. One of the works consisted in the design and manufacturing of a double clad optical fiber. The refractive index of the inner cladding was higher than the one of the outer cladding and the core. Thus, light was guided in the inner cladding instead of propagating in the core. This situation was overcome by applying chemical etching, thus removing the inner cladding. The core, surrounded by air, was then able to guide light. Two different applications were found for this fiber, as a temperature sensor and as an optical refractometer. In the last, the optical phase changes with the liquid refractive index. Two different types of fiber Bragg gratings were characterized in strain and temperature. Sensing structures obtained through the phase mask technique at the tip of an optical fiber were subjected to chemical

  14. Free electron laser on the ACO storage ring

    International Nuclear Information System (INIS)

    Elleaume, P.

    1984-06-01

    This dissertation presents the design and characteristics of a Free Electron Laser built on the electron storage ring ACO at Orsay. The weak optical gain available (approximately 0.1% per pass) necessitated the use of an optical klystron instead of an undulator and the use of mirror with extremely high reflectivity. The laser characteristics: spectra, micro and macro-temporal structures, transverse structure and power are presented. They are in very good agreement with a classical theory based on the Lorentz force and Maxwell equations [fr

  15. BDK-doped core microstructured PMMA optical fiber for effective Bragg grating photo-inscription.

    Science.gov (United States)

    Hu, Xuehao; Woyessa, Getinet; Kinet, Damien; Janting, Jakob; Nielsen, Kristian; Bang, Ole; Caucheteur, Christophe

    2017-06-01

    An endlessly single-mode doped microstructured poly(methyl methacrylate) (PMMA) optical fiber is produced for effective fiber Bragg grating (FBG) photo-inscription by means of a 400 nm femtosecond pulsed laser and the phase mask technique. The fiber presents a uniform benzyl dimethyl ketal (BDK) distribution in its core without drastic loss increase. It was produced using the selected center hole doping technique, and the BDK dopant acts as a photoinitiator. In this Letter, we report a rapidly growing process of the grating reflection band. For an 11 mW mean laser power, the FBG reflectivity reaches 83% in only 40 s.

  16. Grain alignment in starless cores

    International Nuclear Information System (INIS)

    Jones, T. J.; Bagley, M.; Krejny, M.; Andersson, B.-G.; Bastien, P.

    2015-01-01

    We present near-IR polarimetry data of background stars shining through a selection of starless cores taken in the K band, probing visual extinctions up to A V ∼48. We find that P K /τ K continues to decline with increasing A V with a power law slope of roughly −0.5. Examination of published submillimeter (submm) polarimetry of starless cores suggests that by A V ≳20 the slope for P versus τ becomes ∼−1, indicating no grain alignment at greater optical depths. Combining these two data sets, we find good evidence that, in the absence of a central illuminating source, the dust grains in dense molecular cloud cores with no internal radiation source cease to become aligned with the local magnetic field at optical depths greater than A V ∼20. A simple model relating the alignment efficiency to the optical depth into the cloud reproduces the observations well.

  17. Grain alignment in starless cores

    Energy Technology Data Exchange (ETDEWEB)

    Jones, T. J.; Bagley, M. [Minnesota Institute for Astrophysics, University of Minnesota, Minneapolis, MN 55455 (United States); Krejny, M. [Cree Inc., 4600 Silicon Dr., Durham, NC (United States); Andersson, B.-G. [SOFIA Science Center, USRA, Moffett Field, CA (United States); Bastien, P., E-mail: tjj@astro.umn.edu [Centre de recherche en astrophysique du Québec and Départment de Physique, Université de Montréal, Montréal (Canada)

    2015-01-01

    We present near-IR polarimetry data of background stars shining through a selection of starless cores taken in the K band, probing visual extinctions up to A{sub V}∼48. We find that P{sub K}/τ{sub K} continues to decline with increasing A{sub V} with a power law slope of roughly −0.5. Examination of published submillimeter (submm) polarimetry of starless cores suggests that by A{sub V}≳20 the slope for P versus τ becomes ∼−1, indicating no grain alignment at greater optical depths. Combining these two data sets, we find good evidence that, in the absence of a central illuminating source, the dust grains in dense molecular cloud cores with no internal radiation source cease to become aligned with the local magnetic field at optical depths greater than A{sub V}∼20. A simple model relating the alignment efficiency to the optical depth into the cloud reproduces the observations well.

  18. Optical Multidimensional Switching for Data Center Networks

    DEFF Research Database (Denmark)

    Kamchevska, Valerija

    2017-01-01

    . Software controlled switching using an on-chip integrated fiber switch is demonstrated and enabling of additional network functionalities such as multicast and optical grooming is experimentally confirmed. Altogether this work demonstrates the potential of optical switching technologies...... for the purpose of deploying optical switching within the network. First, the Hi-Ring data center architecture is proposed. It is based on optical multidimensional switching nodes that provide switching in hierarchically layered space, wavelength and time domain. The performance of the Hi-Ring architecture...... is evaluated experimentally and successful switching of both high capacity wavelength connections and time-shared subwavelengthconnections is demonstrated. Error-free performance is also achieved when transmitting 7 Tbit/s using multicore fiber, confirming the ability to scale the network. Moreover...

  19. Evaluation of the two-photon absorption characteristics of GaSb/GaAs quantum rings

    Energy Technology Data Exchange (ETDEWEB)

    Wagener, M. C.; Botha, J. R. [Department of Physics, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa); Carrington, P. J. [Department of Electronic and Electrical Engineering, University College London, London (United Kingdom); Krier, A. [Department of Physics, Lancaster University, Lancaster LA1 4YB (United Kingdom)

    2014-07-28

    The optical parameters describing the sub-bandgap response of GaSb/GaAs quantum rings solar cells have been obtained from photocurrent measurements using a modulated pseudo-monochromatic light source in combination with a second, continuous photo-filling source. By controlling the charge state of the quantum rings, the photoemission cross-sections describing the two-photon sub-bandgap transitions could be determined independently. Temperature dependent photo-response measurements also revealed that the barrier for thermal hole emission from the quantum rings is significantly below the quantum ring localisation energy. The temperature dependence of the sub-bandgap photo-response of the solar cell is also described in terms of the photo- and thermal-emission characteristics of the quantum rings.

  20. On the Design of Energy Efficient Optical Networks with Software Defined Networking Control Across Core and Access Networks

    DEFF Research Database (Denmark)

    Wang, Jiayuan; Yan, Ying; Dittmann, Lars

    2013-01-01

    This paper presents a Software Defined Networking (SDN) control plane based on an overlay GMPLS control model. The SDN control platform manages optical core networks (WDM/DWDM networks) and the associated access networks (GPON networks), which makes it possible to gather global information...... and enable wider areas' energy efficiency networking. The energy related information of the networks and the types of the traffic flows are collected and utilized for the end-to-end QoS provision. Dynamic network simulation results show that by applying different routing algorithms according to the type...... of traffic in the core networks, the energy efficiency of the network is improved without compromising the quality of service....

  1. Ring Theory

    CERN Document Server

    Jara, Pascual; Torrecillas, Blas

    1988-01-01

    The papers in this proceedings volume are selected research papers in different areas of ring theory, including graded rings, differential operator rings, K-theory of noetherian rings, torsion theory, regular rings, cohomology of algebras, local cohomology of noncommutative rings. The book will be important for mathematicians active in research in ring theory.

  2. Manufacture of rings of 08Kh18N10T sheet for internal structures of WWER type reactors

    International Nuclear Information System (INIS)

    Fojta, A.; Nitka, B.

    1984-01-01

    Technology is presented of the manufacture of rings for the jacket, shaft, core catcher and shaft bottom of WWER-440 reactors produced by Vitkovice Steel Works. The rings are manufactured from sheets of austenitic steel 08Kh18N10T. The materials and technology problems are discussed of sheet production, ring welding technology and annealing following welding. The plastic properties are assessed of the welded joints and problems are outlined of ring production for WWER-1000 reactors. (B.S.)

  3. Optical twisters

    DEFF Research Database (Denmark)

    Daria, Vincent R.; Palima, Darwin; Glückstad, Jesper

    2010-01-01

    singularity at the centre and produces a dark region surrounded by a ring-shaped light pattern. For LG-beams, the ring radius is proportional to the degree of helicity or topological charge of the beam. The beam we describe here is initially characterized with an apodized helical phase front at the outskirts....... Such beams can be applied to fundamental studies of light and atoms such as in quantum entanglement of the OAM, toroidal traps for cold atoms and for optical manipulation of microscopic particles....

  4. Coffee-ring effects in laser desorption/ionization mass spectrometry.

    Science.gov (United States)

    Hu, Jie-Bi; Chen, Yu-Chie; Urban, Pawel L

    2013-03-05

    This report focuses on the heterogeneous distribution of small molecules (e.g. metabolites) within dry deposits of suspensions and solutions of inorganic and organic compounds with implications for chemical analysis of small molecules by laser desorption/ionization (LDI) mass spectrometry (MS). Taking advantage of the imaging capabilities of a modern mass spectrometer, we have investigated the occurrence of "coffee rings" in matrix-assisted laser desorption/ionization (MALDI) and surface-assisted laser desorption/ionization (SALDI) sample spots. It is seen that the "coffee-ring effect" in MALDI/SALDI samples can be both beneficial and disadvantageous. For example, formation of the coffee rings gives rise to heterogeneous distribution of analytes and matrices, thus compromising analytical performance and reproducibility of the mass spectrometric analysis. On the other hand, the coffee-ring effect can also be advantageous because it enables partial separation of analytes from some of the interfering molecules present in the sample. We report a "hidden coffee-ring effect" where under certain conditions the sample/matrix deposit appears relatively homogeneous when inspected by optical microscopy. Even in such cases, hidden coffee rings can still be found by implementing the MALDI-MS imaging technique. We have also found that to some extent, the coffee-ring effect can be suppressed during SALDI sample preparation. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Optical trapping using cascade conical refraction of light.

    Science.gov (United States)

    O'Dwyer, D P; Ballantine, K E; Phelan, C F; Lunney, J G; Donegan, J F

    2012-09-10

    Cascade conical refraction occurs when a beam of light travels through two or more biaxial crystals arranged in series. The output beam can be altered by varying the relative azimuthal orientation of the two biaxial crystals. For two identical crystals, in general the output beam comprises a ring beam with a spot at its centre. The relative intensities of the spot and ring can be controlled by varying the azimuthal angle between the refracted cones formed in each crystal. We have used this beam arrangement to trap one microsphere within the central spot and a second microsphere on the ring. Using linearly polarized light, we can rotate the microsphere on the ring with respect to the central sphere. Finally, using a half wave-plate between the two crystals, we can create a unique beam profile that has two intensity peaks on the ring, and thereby trap two microspheres on diametrically opposite points on the ring and rotate them around the central sphere. Such a versatile optical trap should find application in optical trapping setups.

  6. Stability of Moonlets Embedded in Rings

    Science.gov (United States)

    Lewis, Mark C.; Burdon, C.

    2011-04-01

    Previous work on moonlets assumed that they were just a single indestructible spherical particle and focused primarily on the effects such a body would have on the surrounding ring material (Lewis and Stewart 2009, Icarus 199:387-412; Sremcevic et al. 2007, Nature 449:1019-1021). Both observations and numerical simulations of Saturn's small inner moons show them as very low density rubble piles (Porco et al. 2007, Science 318:1602). Unlike the small moons, moonlets embedded in the ring material will experience regular collisions with self gravity wakes tens of meters across. Even with a single spherical core, these collisions can lead to the shedding of significant amounts of accreted material. We describe numerical simulations in which we explore the parameters required for stability of moonlets embedded in the ring material. Because of their location well inside the Roche limit, these bodies require either higher densities or some internal strength in order to stay together. We explore how much strength is required for these moonlets to be stable against the regular impacts they sustain in that environment. This work was funded by NSF AAG award number 0907972.

  7. Numerical simulation of a passive twin-core fibre nonlinear coupler ring laser

    Czech Academy of Sciences Publication Activity Database

    Zhu, Y.; Hauderek, V. A.; Kaňka, Jiří; Rogers, A. J.

    1999-01-01

    Roč. 146, č. 4 (1999), s. 204-208 ISSN 1350-2433 Grant - others:EU COPERNICUS(XE) CIPA3510CT937882 Institutional research plan: CEZ:AV0Z2067918 Keywords : optical fibres * fibre lasers * optical solitons Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.826, year: 1999

  8. Hollow-core revolver fibre with a double-capillary reflective cladding

    Energy Technology Data Exchange (ETDEWEB)

    Kosolapov, A F; Alagashev, G K; Kolyadin, A N; Pryamikov, A D; Dianov, E M [Fiber Optics Research Center, Russian Academy of Sciences, Moscow (Russian Federation); Biryukov, A S; Bufetov, I A [Moscow Institute of Physics and Technology (State University), Dolgoprudnyi, Moscow Region (Russian Federation)

    2016-03-31

    We report the fabrication of the first hollow-core revolver fibre with a core diameter as small as 25 μm and an optical loss no higher than 75 dB km{sup -1} at a wavelength of 1850 nm. The decrease in core diameter, with no significant increase in optical loss, is due to the use of double nested capillaries in the reflective cladding design. A number of technical problems pertaining to the fabrication of such fibres are resolved. (fiber optics)

  9. Dislocations in AlGaN: Core Structure, Atom Segregation, and Optical Properties.

    Science.gov (United States)

    Massabuau, Fabien C-P; Rhode, Sneha L; Horton, Matthew K; O'Hanlon, Thomas J; Kovács, András; Zielinski, Marcin S; Kappers, Menno J; Dunin-Borkowski, Rafal E; Humphreys, Colin J; Oliver, Rachel A

    2017-08-09

    We conducted a comprehensive investigation of dislocations in Al 0.46 Ga 0.54 N. Using aberration-corrected scanning transmission electron microscopy and energy dispersive X-ray spectroscopy, the atomic structure and atom distribution at the dislocation core have been examined. We report that the core configuration of dislocations in AlGaN is consistent with that of other materials in the III-Nitride system. However, we observed that the dissociation of mixed-type dislocations is impeded by alloying GaN with AlN, which is confirmed by our experimental observation of Ga and Al atom segregation in the tensile and compressive parts of the dislocations, respectively. Investigation of the optical properties of the dislocations shows that the atom segregation at dislocations has no significant effect on the intensity recorded by cathodoluminescence in the vicinity of the dislocations. These results are in contrast with the case of dislocations in In 0.09 Ga 0.91 N where segregation of In and Ga atoms also occurs but results in carrier localization limiting non-radiative recombination at the dislocation. This study therefore sheds light on why InGaN-based devices are generally more resilient to dislocations than their AlGaN-based counterparts.

  10. DUST AND INFRARED IMAGING OF POLAR RING GALAXIES

    NARCIS (Netherlands)

    ARNABOLDI, M; FREEMAN, KC; SACKETT, PD; SPARKE, LS; CAPACCIOLI, M

    1995-01-01

    We have derived surface photometry for a sample of five polar ring(PR) galaxies in the optical (B and R bands) and in the near-IR (K band). Our preliminary results show that the morphology of these objects is heavily perturbed by dust, which sometimes completely hides the real distribution of the

  11. A ring system detected around the Centaur (10199) Chariklo.

    Science.gov (United States)

    Braga-Ribas, F; Sicardy, B; Ortiz, J L; Snodgrass, C; Roques, F; Vieira-Martins, R; Camargo, J I B; Assafin, M; Duffard, R; Jehin, E; Pollock, J; Leiva, R; Emilio, M; Machado, D I; Colazo, C; Lellouch, E; Skottfelt, J; Gillon, M; Ligier, N; Maquet, L; Benedetti-Rossi, G; Ramos Gomes, A; Kervella, P; Monteiro, H; Sfair, R; El Moutamid, M; Tancredi, G; Spagnotto, J; Maury, A; Morales, N; Gil-Hutton, R; Roland, S; Ceretta, A; Gu, S-h; Wang, X-b; Harpsøe, K; Rabus, M; Manfroid, J; Opitom, C; Vanzi, L; Mehret, L; Lorenzini, L; Schneiter, E M; Melia, R; Lecacheux, J; Colas, F; Vachier, F; Widemann, T; Almenares, L; Sandness, R G; Char, F; Perez, V; Lemos, P; Martinez, N; Jørgensen, U G; Dominik, M; Roig, F; Reichart, D E; LaCluyze, A P; Haislip, J B; Ivarsen, K M; Moore, J P; Frank, N R; Lambas, D G

    2014-04-03

    Hitherto, rings have been found exclusively around the four giant planets in the Solar System. Rings are natural laboratories in which to study dynamical processes analogous to those that take place during the formation of planetary systems and galaxies. Their presence also tells us about the origin and evolution of the body they encircle. Here we report observations of a multichord stellar occultation that revealed the presence of a ring system around (10199) Chariklo, which is a Centaur--that is, one of a class of small objects orbiting primarily between Jupiter and Neptune--with an equivalent radius of 124 ±  9 kilometres (ref. 2). There are two dense rings, with respective widths of about 7 and 3 kilometres, optical depths of 0.4 and 0.06, and orbital radii of 391 and 405 kilometres. The present orientation of the ring is consistent with an edge-on geometry in 2008, which provides a simple explanation for the dimming of the Chariklo system between 1997 and 2008, and for the gradual disappearance of ice and other absorption features in its spectrum over the same period. This implies that the rings are partly composed of water ice. They may be the remnants of a debris disk, possibly confined by embedded, kilometre-sized satellites.

  12. Nonlinear performance of asymmetric coupler based on dual-core photonic crystal fiber: Towards sub-nanojoule solitonic ultrafast all-optical switching

    Science.gov (United States)

    Curilla, L.; Astrauskas, I.; Pugzlys, A.; Stajanca, P.; Pysz, D.; Uherek, F.; Baltuska, A.; Bugar, I.

    2018-05-01

    We demonstrate ultrafast soliton-based nonlinear balancing of dual-core asymmetry in highly nonlinear photonic crystal fiber at sub-nanojoule pulse energy level. The effect of fiber asymmetry was studied experimentally by selective excitation and monitoring of individual fiber cores at different wavelengths between 1500 nm and 1800 nm. Higher energy transfer rate to non-excited core was observed in the case of fast core excitation due to nonlinear asymmetry balancing of temporal solitons, which was confirmed by the dedicated numerical simulations based on the coupled generalized nonlinear Schrödinger equations. Moreover, the simulation results correspond qualitatively with the experimentally acquired dependences of the output dual-core extinction ratio on excitation energy and wavelength. In the case of 1800 nm fast core excitation, narrow band spectral intensity switching between the output channels was registered with contrast of 23 dB. The switching was achieved by the change of the excitation pulse energy in sub-nanojoule region. The performed detailed analysis of the nonlinear balancing of dual-core asymmetry in solitonic propagation regime opens new perspectives for the development of ultrafast nonlinear all-optical switching devices.

  13. Numerical study on core damage and interpretation of in situ state of stress

    Energy Technology Data Exchange (ETDEWEB)

    Hakala, M. [Gridpoint Finland Oy (Finland)

    1999-06-01

    Core disking is a phenomenon where a diamond cored core sample will be sliced when released from a stressed host rock. Ring disking is a similar phenomenon which takes place during overcoring with a pilot hole. Because of the uniform shape and spacing of disk fracturing, it has the potential to be used for estimating the in situ state of stress. If this is feasible, it could be used in high stress states where the traditional stress measuring techniques are not valid or even possible. In this work the both the core disking and ring disking phenomena were studied based on the elastic bottom hole stress application developed and a series of fracture growth stability simulations. The results-showed that both phenomena are very complicated and site specific, but the spacing, shape, extent and initiation point are clearly stress state dependent. Throughout the work, guidelines for the in situ stress field interpretation method were developed and implemented for the borehole aligned orthogonal stress field and Poisson`s ratio of 0.25. Based on this study, the in situ state of stress can be estimated with acceptable accuracy if information on both core disking and ring disking is available. On the other hand, as an indirect method, there are no reasons to use it if direct measurements can be used. (orig.) 35 refs.

  14. Numerical study on core damage and interpretation of in situ state of stress

    International Nuclear Information System (INIS)

    Hakala, M.

    1999-06-01

    Core disking is a phenomenon where a diamond cored core sample will be sliced when released from a stressed host rock. Ring disking is a similar phenomenon which takes place during overcoring with a pilot hole. Because of the uniform shape and spacing of disk fracturing, it has the potential to be used for estimating the in situ state of stress. If this is feasible, it could be used in high stress states where the traditional stress measuring techniques are not valid or even possible. In this work the both the core disking and ring disking phenomena were studied based on the elastic bottom hole stress application developed and a series of fracture growth stability simulations. The results-showed that both phenomena are very complicated and site specific, but the spacing, shape, extent and initiation point are clearly stress state dependent. Throughout the work, guidelines for the in situ stress field interpretation method were developed and implemented for the borehole aligned orthogonal stress field and Poisson's ratio of 0.25. Based on this study, the in situ state of stress can be estimated with acceptable accuracy if information on both core disking and ring disking is available. On the other hand, as an indirect method, there are no reasons to use it if direct measurements can be used. (orig.)

  15. Summary of the AccNet-EuCARD Workshop on Optics Measurements, Corrections and Modelling for High-Performance Storage Rings “OMCM”, CERN, Geneva, 20-22 June 2011

    CERN Document Server

    Bartolini, R; Calaga, R; Einfeld, D; Giovannozzi, M; Koutchouk, J-P; Milardi, C; Safranek, J; Tomás, R; Wenninger, J; Zimmermann, F

    2012-01-01

    The LHC, its luminosity upgrade HL-LHC, its injectors upgrade LIU and other high performance storage rings around the world are facing challenging requirements for optics measurements, correction and modelling. This workshop aims to do a review of the existing techniques to measure and control linear and non-linear optics parameters. The precise optics determination has proven to be a key ingredient to improve the performance of the past and present accelerators. From 20 to 22 June 2011 an international workshop, “OMCM,” was held at CERN with the goal of assessing the limits of the present techniques and evaluating new paths for improvement. The OMCM workshop was sponsored and supported by CERN and by the European Commission under the FP7 “Research Infrastructures” project EuCARD, grant agreement no. 227579.

  16. Report of the eRHIC Ring-Ring Working Group

    Energy Technology Data Exchange (ETDEWEB)

    Aschenauer, E. C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Berg, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Blaskiewicz, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Brennan, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Fedotov, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Fischer, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Litvinenko, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Montag, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Palmer, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Parker, B. [Brookhaven National Lab. (BNL), Upton, NY (United States); Peggs, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ptitsyn, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ranjbar, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tepikian, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Trbojevic, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Willeke, F. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-10-13

    This report evaluates the ring-ring option for eRHIC as a lower risk alternative to the linac-ring option. The reduced risk goes along with a reduced initial luminosity performance. However, a luminosity upgrade path is kept open. This upgrade path consists of two branches, with the ultimate upgrade being either a ring-ring or a linac-ring scheme. The linac-ring upgrade could be almost identical to the proposed linac-ring scheme, which is based on an ERL in the RHIC tunnel. This linac-ring version has been studied in great detail over the past ten years, and its significant risks are known. On the other hand, no detailed work on an ultimate performance ring-ring scenario has been performed yet, other than the development of a consistent parameter set. Pursuing the ring-ring upgrade path introduces high risks and requires significant design work that is beyond the scope of this report.

  17. A Case Report of Early Gastric Signet Ring Cell Carcinoma

    African Journals Online (AJOL)

    2018-02-07

    gmail.com. How to cite this article: Akabah PS, Mocan S, Molnar C, Dobru D. Importance of optical diagnosis in early gastric cancer: A case report of early gastric signet ring cell carcinoma. Niger J Clin Pract 2017;20:1342-5.

  18. Monolithic optofluidic ring resonator lasers created by femtosecond laser nanofabrication.

    Science.gov (United States)

    Chandrahalim, Hengky; Chen, Qiushu; Said, Ali A; Dugan, Mark; Fan, Xudong

    2015-05-21

    We designed, fabricated, and characterized a monolithically integrated optofluidic ring resonator laser that is mechanically, thermally, and chemically robust. The entire device, including the ring resonator channel and sample delivery microfluidics, was created in a block of fused-silica glass using a 3-dimensional femtosecond laser writing process. The gain medium, composed of Rhodamine 6G (R6G) dissolved in quinoline, was flowed through the ring resonator. Lasing was achieved at a pump threshold of approximately 15 μJ mm(-2). Detailed analysis shows that the Q-factor of the optofluidic ring resonator is 3.3 × 10(4), which is limited by both solvent absorption and scattering loss. In particular, a Q-factor resulting from the scattering loss can be as high as 4.2 × 10(4), suggesting the feasibility of using a femtosecond laser to create high quality optical cavities.

  19. Simulation of optical soliton control in micro- and nanoring resonator systems

    CERN Document Server

    Daud, Suzairi; Ali, Jalil

    2015-01-01

    This book introduces optical soliton control in micro- and nanoring resonator systems. It describes how the ring resonator systems can be optimized as optical tweezers for photodetection by controlling the input power, ring radii and coupling coefficients of the systems. Numerous arrangements and configurations of micro and nanoring resonator systems are explained. The analytical formulation and optical transfer function for each model and the interaction of the optical signals in the systems are discussed. This book shows that the models designed are able to control the dynamical behaviour of generated signals.

  20. Interpretation of the Haestholmen in situ state of stress based on core damage observations

    International Nuclear Information System (INIS)

    Hakala, M.

    2000-01-01

    At the Haestholmen investigation site, direct in situ stress measurements, overcoring and hydraulic fracturing have been unsuccessful because of ring disking and horizontal hydraulic fracturing. Prior to this study, a detailed study on both core disking and ring disking was made, and based on those results an in situ state of stress interpretation method was developed. In this work this method is applied to the Haestholmen site. The interpretation is based on disk fracture type, spacing and shape. Also, the Hoek-Brown strength envelope and Poisson's ratio of intact rock are needed. The interpretation result is most reliable if both core disking and ring disking information at the same depth levels is available. A detailed core logging showed that ring disking is systematic below the -365 m level in the vertical overcoring stress measurement hole, HH-KR6. On the other hand, no representative core disking exists except for two points in two differently oriented subvertical boreholes HH-KR2 and HHKR7. Because the interpretation has to be based on ring disking only, upper and lower estimates for the vertical stress were set. These were gravitational and 67% of gravitational. Furthermore, the in situ stress state was assumed to be in horizontal and vertical planes, because the disking in vertical borehole HH-KR6 was not inclined. The interpretation resulted in a good estimate for the major horizontal stress but none of the horizontal stress rations ( 0.25, 0.5, 0.75 and 1.0 ) or vertical stress assumptions studied are clearly more probable the others. At the 500 m level the resulting maximum horizontal stress is 41 MPa. If a linear fit through the zero depth and zero stress point is applied, the maximum horizontal stress gradient is 0.0818 z MPa/m with a standard deviation between 5 and 12 per cent. The orientation of the major horizontal stress is 108 with standard deviation of 21 degrees. The interpreted major horizontal stress state also indicated that systematic

  1. The Mechanics of Peak-Ring Impact Crater Formation from the IODP-ICDP Expedition 364

    Science.gov (United States)

    Melosh, H.; Collins, G. S.; Morgan, J. V.; Gulick, S. P. S.

    2017-12-01

    The Chicxulub impact crater is one of very few peak-ring impact craters on Earth. While small (less than 3 km on Earth) impact craters are typically bowl-shaped, larger craters exhibit central peaks, which in still larger (more than about 100 km on Earth) craters expand into mountainous rings with diameters close to half that of the crater rim. The origin of these peak rings has been contentious: Such craters are far too large to create in laboratory experiments and remote sensing of extraterrestrial examples has not clarified the mechanics of their formation. Two principal models of peak ring formation are currently in vogue, the "nested crater" model, in which the peak ring originates at shallow depths in the target, and the "dynamic collapse" model in which the peak ring is uplifted at the base of a collapsing, over-steepened central peak and its rocks originate at mid-crustal depths. IODP-ICDP Expedition 364 sought to elucidate, among other important goals, the mechanics of peak ring formation in the young (66 Myr), fresh, but completely buried Chicxulub impact crater. The cores from this borehole now show unambiguously that the rocks in the Chicxulub peak ring originated at mid-crustal depths, apparently ruling out the nested crater model. These rocks were shocked to pressures on the order of 10-35 GPa and were so shattered that their densities and seismic velocities now resemble those of sedimentary rocks. The morphology of the final crater, its structure as revealed in previous seismic imaging, and the results from the cores are completely consistent with modern numerical models of impact crater excavation and collapse that incorporate a model for post-impact weakening. Subsequent to the opening of a ca. 100 km diameter and 30 km deep transient crater, this enormous hole in the crust collapsed over a period of about 10 minutes. Collapse was enabled by movement of the underlying rocks, which briefly behaved in the manner of a high-viscosity fluid, a brittle

  2. Mid-Infrared Observations of Possible Intergalactic Star Forming Regions in the Leo Ring

    Science.gov (United States)

    Giroux, Mark; Smith, B.; Struck, C.

    2011-05-01

    Within the Leo group of galaxies lies a gigantic loop of intergalactic gas known as the Leo Ring. Not clearly associated with any particular galaxy, its origin remains uncertain. It may be a primordial intergalactic cloud alternatively, it may be a collision ring, or have a tidal origin. Combining archival Spitzer images of this structure with published UV and optical data, we investigate the mid-infrared properties of possible knots of star formation in the ring. These sources are very faint in the mid-infrared compared to star forming regions in the tidal features of interacting galaxies. This suggests they are either deficient in dust, or they may not be associated with the ring.

  3. Low-Loss Hollow-Core Anti-Resonant Fibers With Semi-Circular Nested Tubes

    DEFF Research Database (Denmark)

    Habib, Selim; Bang, Ole; Bache, Morten

    2016-01-01

    Hollow-core fibers with a single ring of circular antiresonant tubes as the cladding provide a simple way of getting a negative-curvature hollow core, resulting in broadband low-loss transmission with little power overlap in the glass. These fibers show a significant improvement in loss performan...

  4. Strain and temperature characteristics of the LP11 mode based on a few-mode fiber Bragg grating and core-offset splicing

    Science.gov (United States)

    Jin, Wenxing; Xu, Yao; Jiang, Youchao; Wu, Yue; Yao, Shuzhi; Xiao, Shiying; Qi, Yanhui; Ren, Wenhua; Jian, Shuisheng

    2018-02-01

    We propose and demonstrate a ring fiber laser based on a few-mode fiber Bragg grating for strain and temperature sensing using only the LP11 mode. The core-offset splicing method is used to ensure effective coupling from the fundamental mode to the LP11 mode. A stable erbium-doped fiber laser operating as a single LP11 mode with a 3 dB linewidth of about 0.02 nm and an optical signal-to-noise ratio over 42 dB is achieved by appropriately adjusting the polarization controller between the optical circulator and the few-mode fiber Bragg grating. A high axial strain sensitivity of 0.8778 pm μ\\varepsilon-1 and a temperature sensitivity of 9.9214 pm °C-1 are achieved with the advantages of all-fiber, simple construction and easy control.

  5. One pot synthesis of Pb S/Cu{sub 2}S core-shell nanoparticles and their optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Serrano, T.; Gomez, I., E-mail: maria.gomez@uanl.edu.mx [Universidad Autonoma de Nuevo Leon, Facultad de Ciencias Quimicas, Laboratorio de Materiales, Pedro de Alba, Ciudad Universitaria, San Nicolas de los Garza, Nuevo Leon (Mexico)

    2014-07-01

    The synthesis of Pb S/Cu{sub 2}S core-shell nanoparticles with emission on the visible range and with improved luminescence properties was carried out by the colloidal solution-phase growth method by using simple stabilizers such as trisodium citrate and 3-mercaptopropionic acid. The core shell arrangement for particles with different crystalline structure was achieved, in addition this is the first report related to the synthesis Pb S/C{sub 2}S core-shell system. The data obtained from absorption spectra, Pl spectra, and HRTEM image provided direct proof of the formation of Pb S core with size around 11 nm and Cu{sub 2}S shell of 5 nm thickness. According to the UV-vis absorption and Pl spectrum the optical characteristics observed in the synthesized material correspond to a Pb S/Cu{sub 2}S system that has a higher confinement effect than the pure Pb S nanoparticles. The Q Y was improved in 15% from Pb S/C{sub 2}S nanoparticles. The estimated band (Homo-Lumo) alignment determined by C V measurements corresponds to a type-I core shell arrangement. The synthesized material was studied with different techniques. The size and dispersion of the particles were determined by ultraviolet-visible (UV-Vis), photoluminescence and quantum yield, Dynamic Light Scattering method and X-ray diffraction with copper radiation (λ = 0.15418 nm). (Author)

  6. Bent Shaped 1,3,4-Oxadiazole/Thiadiazole heterocyclic rings ...

    Indian Academy of Sciences (India)

    Two series of bent shaped 1,3,4-oxadiazole/thiadiazole heterocyclic ring containing liquid crystalline (LC) compounds were synthesized and characterized by FT-IR, 1H, 13C-NMR and ESI-Mass spectro-scopic techniques. Liquid crystal properties were investigated by polarized optical microscopy and differential scanning ...

  7. Simulation investigation of storage ring optical klystron spontaneous emission

    International Nuclear Information System (INIS)

    Xu Hongliang; Liu Jinying; He Duohui; Diao Caozheng; Jia Qika; Sun Baogen

    1998-01-01

    The spontaneous emission of TOK in Hefei storage ring was simulated with Monte Carlo method. Section one described the structure of the permanent magnet TOK and the magnet field of TOK. Section two simulated results, and simulated results illustrated how the energy spread and emittance of electron beam impose on the spectrum of spontaneous emission. And with help of simulated results, the causes of small modulation factor which was measured by experiment was discussed

  8. Design and commissioning of the photon monitors and optical transport lines for the advanced photon source positron accumulator ring

    International Nuclear Information System (INIS)

    Berg, W.; Yang, B.; Lumpkin, A.; Jones, J.

    1996-01-01

    Two photon monitors have been designed and installed in the positron accumulator ring (PAR) of the Advanced Photon Source. The photon monitors characterize the beam's transverse profile, bunch length, emittance, and energy spread in a nonintrusive manner. An optical transport line delivers synchrotron light from the PAR out of a high radiation environment. Both charge-coupled device and fast-gated, intensified cameras are used to measure the transverse beam profile (0.11 - 1 mm for damped beam) with a resolution of 0.06 mm. A streak camera (θ τ =I ps) is used to measure the bunch length which is in the range of 0.3-1 ns. The design of the various transport components and commissioning results of the photon monitors will be discussed

  9. Spatial optic multiplexer/diplexer

    International Nuclear Information System (INIS)

    Tremblay, P.L.

    1991-01-01

    An apparatus is described for simultaneous transmission of optic signals having different wavelengths over a single optic fiber. Multiple light signals are transmitted through optic fibers that are formed into a circumference surrounding a central core fiber. The multiple light signals are directed by a lens into a single receiving fiber where the light combines and is then focused into the central core fiber which transmits the light to a wavelength discriminating receiver assembly

  10. Cavity ring-down technique for measurement of reflectivity of high ...

    Indian Academy of Sciences (India)

    Laser & Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai 400 085,. India. *Corresponding author. E-mail: gsridhar@barc.gov.in. Abstract. A simple, accurate and reliable method for measuring the reflectivity of laser- ... Keywords. Cavity ring-down method; reflectivity measurement; optical resonator.

  11. Integrated optics ring-resonator chemical sensor for detection of air contamination

    Science.gov (United States)

    Manfreda, A. M.; Homer, M. L.; Ksendzov, A.

    2004-01-01

    We report a silicon nitride-based ring resonator chemical sensor with sensing polymer coating. Its sensitivity to isopropanol in air is at least 50 ppm - well under the permissible exposure level of 400 ppm.

  12. Intregrated optics ring-resonator chemical sensor for detection of air contamination

    Science.gov (United States)

    Ksendzov, Alexander; Homer, Margie L.; Manfreda, Allison M.

    2004-01-01

    We report a silicon nitride-based ring resonator chemical sensor with sensing polymer coating. Its sensitivity to isopropanol in air is at least 50 ppm - well under the permissible exposure level of 400 ppm.

  13. Injection seeded, diode pumped regenerative ring Nd:YAG amplifier for spaceborne laser ranging technology development

    Science.gov (United States)

    Coyle, D. Barry; Kay, Richard B.; Degnan, John J.; Krebs, Danny J.; Seery, Bernard D.

    1992-01-01

    A small, all solid state, regenerative ring amplifier designed as a prototype for space application is discussed. Novel features include dual side pumping of the Nd:YAG crystal and a triangular ring cavity design which minimizes the number of optical components and losses. The amplifier is relatively small (3 ns round trip time) even though standard optical elements are employed. The ring regeneratively amplifies a 100 ps single pulse by approximately 10(exp 5) at a repetition rate of 10 to 100 Hz. The amplifier is designed to be injection seeded with a pulsed, 100 ps laser diode at 1.06 microns, but another Nd:YAG laser system supplying higher pulse energies was employed for laboratory experiment. This system is a prototype laser oscillator for the Geoscience Laser Ranging System (GLRS) platform. Results on measurements of beam quality, astigmatism, and gain are given.

  14. Toward power scaling in an acetylene mid-infrared hollow-core optical fiber gas laser: effects of pressure, fiber length, and pump power

    Science.gov (United States)

    Weerasinghe, H. W. Kushan; Dadashzadeh, Neda; Thirugnanasambandam, Manasadevi P.; Debord, Benoît.; Chafer, Matthieu; Gérôme, Frédéric; Benabid, Fetah; Corwin, Kristan L.; Washburn, Brian R.

    2018-02-01

    The effect of gas pressure, fiber length, and optical pump power on an acetylene mid-infrared hollow-core optical fiber gas laser (HOFGLAS) is experimentally determined in order to scale the laser to higher powers. The absorbed optical power and threshold power are measured for different pressures providing an optimum pressure for a given fiber length. We observe a linear dependence of both absorbed pump energy and lasing threshold for the acetylene HOFGLAS, while maintaining a good mode quality with an M-squared of 1.15. The threshold and mode behavior are encouraging for scaling to higher pressures and pump powers.

  15. The behavior of the planetary rings under the Kozai Mechanism

    Science.gov (United States)

    Sucerquia, M. A.; Ramírez, C. V.; Zuluaga, J. I.

    2017-07-01

    Rings are one of the main feature of almost all giant planets in the Solar System. Even though thousands of exoplanets have been discovered to date, no evidence of exoplanetary rings have been found despite the effort made in the development and enhancing of techniques and methods for direct or indirect detection. In the transit of a ringed planet, the dynamic of the ring itself could play a meaningful role due to the so called Kozai Mechanism (KM) acting on each particle of it. When some specific initial conditions of the ring are fulfilled (as a ring inclination greater than ˜ 39°), KM generates short periodic changes in the inclination and eccentricity of each particle, leading to a meaningful characteristic collective behavior of the ring: it changes its width, inclination and optical depth. These changes induce periodic variations on the eclipsed area of the parent star, generating slight changes in the observed transit signal. Under this mechanism, light curves depths and shapes oscillate according to the fluctuations of the ring. To show this effect we have performed numerical simulations of the dynamic of a system of particles to asses the ring inclination and width variations over time. We have calculated the expected variations in the transit depth and finally, we have estimated the effect on the light curve of a hypothetical ringed exoplanet affected by the KM. The detection of this effect could be used as an alternative method to detect/confirm exoplanetary rings, and also it could be considered as a way to explain anomalous light curves patterns of exoplanets, as the case of KIC 8462852 star.

  16. Characterizing conical refraction optical tweezers

    Science.gov (United States)

    McDonald, C.; McDougall, C.; Rafailov, E.; McGloin, D.

    2014-12-01

    Conical refraction occurs when a beam of light travels through an appropriately cut biaxial crystal. By focussing the conically refracted beam through a high numerical aperture microscope objective, conical refraction optical tweezers can be created, allowing for particle manipulation in both Raman spots and in the Lloyd/Poggendorff rings. We present a thorough quantification of the trapping properties of such a beam, focussing on the trap stiffness and how this varies with trap power and trapped particle location. We show that the lower Raman spot can be thought of as a single-beam optical gradient force trap, while radiation pressure dominates in the upper Raman spot, leading to optical levitation rather than trapping. Particles in the Lloyd/Poggendorff rings experience a lower trap stiffness than particles in the lower Raman spot but benefit from rotational control.

  17. Direct correlations of structural and optical properties of three-dimensional GaN/InGaN core/shell micro-light emitting diodes

    Science.gov (United States)

    Sadat Mohajerani, Matin; Müller, Marcus; Hartmann, Jana; Zhou, Hao; Wehmann, Hergo-H.; Veit, Peter; Bertram, Frank; Christen, Jürgen; Waag, Andreas

    2016-05-01

    Three-dimensional (3D) InGaN/GaN quantum-well (QW) core-shell light emitting diodes (LEDs) are a promising candidate for the future solid state lighting. In this contribution, we study direct correlations of structural and optical properties of the core-shell LEDs using highly spatially-resolved cathodoluminescence spectroscopy (CL) in combination with scanning electron microscopy (SEM) and scanning transmission electron microscopy (STEM). Temperature-dependent resonant photoluminescence (PL) spectroscopy has been performed to understand recombination mechanisms and to estimate the internal quantum efficiency (IQE).

  18. A field-to-desktop toolchain for X-ray CT densitometry enables tree ring analysis.

    Science.gov (United States)

    De Mil, Tom; Vannoppen, Astrid; Beeckman, Hans; Van Acker, Joris; Van den Bulcke, Jan

    2016-06-01

    Disentangling tree growth requires more than ring width data only. Densitometry is considered a valuable proxy, yet laborious wood sample preparation and lack of dedicated software limit the widespread use of density profiling for tree ring analysis. An X-ray computed tomography-based toolchain of tree increment cores is presented, which results in profile data sets suitable for visual exploration as well as density-based pattern matching. Two temperate (Quercus petraea, Fagus sylvatica) and one tropical species (Terminalia superba) were used for density profiling using an X-ray computed tomography facility with custom-made sample holders and dedicated processing software. Density-based pattern matching is developed and able to detect anomalies in ring series that can be corrected via interactive software. A digital workflow allows generation of structure-corrected profiles of large sets of cores in a short time span that provide sufficient intra-annual density information for tree ring analysis. Furthermore, visual exploration of such data sets is of high value. The dated profiles can be used for high-resolution chronologies and also offer opportunities for fast screening of lesser studied tropical tree species. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Donor impurity-related linear and nonlinear optical absorption coefficients in GaAs/Ga1−xAlxAs concentric double quantum rings: Effects of geometry, hydrostatic pressure, and aluminum concentration

    International Nuclear Information System (INIS)

    Baghramyan, H.M.; Barseghyan, M.G.; Kirakosyan, A.A.; Restrepo, R.L.; Mora-Ramos, M.E.; Duque, C.A.

    2014-01-01

    The linear and nonlinear optical absorption associated with the transition between 1s and 2s states corresponding to the electron-donor-impurity complex in GaAs/Ga 1−x Al x As three-dimensional concentric double quantum rings are investigated. Taking into account the combined effects of hydrostatic pressure and the variation of the aluminum concentration, the energies of the ground and first excited s-like states of a donor impurity in such a system have been calculated using the effective mass approximation and a variational method. The energies of these states and the corresponding threshold energy of the optical transitions are examined as functions of hydrostatic pressure, aluminum concentration, radial impurity position, as well as the geometrical dimensions of the structure. The dependencies of the linear, nonlinear and total optical absorption coefficients as functions of the incident photon energy are investigated for different values of those mentioned parameters. It is found that the influences mentioned above lead to either redshifts or blueshifts of the resonant peaks of the optical absorption spectrum. It is particularly discussed the unusual property exhibited by the third-order nonlinear of becoming positive for photon energies below the resonant transition one. It is shown that this phenomenon is associated with the particular features of the system under study, which determine the values of the electric dipole moment matrix elements. -- Highlights: • Intra-band optical absorption associated to impurity states in double quantum rings. • Combined effects of hydrostatic pressure and aluminum concentration are studied. • The influences mentioned above lead to shifts of resonant peaks. • It is discussed an unusual property exhibited by the third-order nonlinear absorption

  20. Utilizing wheel-ring architecture for stable and selectable single-longitudinal-mode erbium fiber laser

    Science.gov (United States)

    Yeh, Chien-Hung; Yang, Zi-Qing; Huang, Tzu-Jung; Chow, Chi-Wai

    2018-03-01

    To achieve a steady single-longitudinal-mode (SLM) erbium-doped fiber (EDF) laser, the wheel-ring architecture is proposed in the laser cavity. According to Vernier effect, the proposed wheel-ring can produce three different free spectrum ranges (FSRs) to serve as the mode-filter for suppressing the densely multi-longitudinal-mode (MLM). Here, to complete wavelength-tunable EDF laser, an optical tunable bandpass filter (OTBF) is utilized inside the cavity for tuning arbitrarily. In addition, the entire output performances of the proposed EDF wheel-ring laser are also discussed and analyzed experimentally.