WorldWideScience

Sample records for core neutron characteristics

  1. Self-powered in-core neutron detector assembly with uniform perturbation characteristics

    International Nuclear Information System (INIS)

    Todt, W.H.; Playfoot, K.C.

    1979-01-01

    Disclosed is a self-powered in-core neutron detector assembly in which a plurality of longitudinally extending self-powered detectors have neutron responsive active portions spaced along a longitudinal path. A low neutron absorptive extension extends from the active portions of the spaced active portions of the detectors in symmetrical longitudinal relationship with the spaced active detector portions of each succeeding detector. The detector extension terminates with the detector assembly to provide a uniform perturbation characteristic over the entire assembly length

  2. Influence of core model parameters on the characteristics of neutron beams of the research reactor

    Directory of Open Access Journals (Sweden)

    N. A. Khafizova

    2013-12-01

    Full Text Available IRT MEPhI reactor is equipped with a number of facilities at horizontal experimental channels (HEC. Knowing of parameters influencing spatio-angular distribution of irradiation fields is essential for each application area. The research for neutron capture therapy (NCT facility at HEC of the reactor was made. Calculation methods have been used to estimate how the reactor core parameters influence neutron beam characteristics at the HEC output. The impact of neutron source model in Monte Carlo calculations by MCNP code on the parameters of neutron and secondary photon field at the output of irradiation beam tubes of research reactor is estimated. The study shows that specifying neutron source with fission reaction rate distribution in SDEF option gives almost the same results as criticality calculation considered the most accurate. Our calculations show that changes of the core operational parameters have insignificant influence on characteristics of neutron beams at HEC output.

  3. JOYO MK-II core characteristics database

    International Nuclear Information System (INIS)

    Tabuchi, Shiro; Aoyama, Takafumi; Nagasaki, Hideaki; Kato, Yuichi

    1998-12-01

    The experimental fast reactor JOYO served as the MK-II irradiation bed core for testing fuel and material for FBR development for 15 years from 1982 to 1997. During the MK-II operation, extensive data were accumulated from the core characteristics tests conducted in thirty-one duty operations and thirteen special test operations. These core management data and core characteristics data were compiled into a database. The code system MAGI has been developed and used for core management of JOYO MK-II, and the core characteristics and the irradiation test conditions were calculated using MAGI on the basis of three dimensional diffusion theory with seven neutron energy groups. The core management data include extensive data, which were recorded on CD-ROM for user convenience. The data are specifications and configurations of the core, and for about 300 driver fuel subassemblies and about 60 uninstrumented irradiation subassemblies are core composition before and after irradiation, neutron flux, neutron fluences, fuel and control rod burn-up, and temperature and power distributions. MK-II core characteristics and test conditions were stored in the database for post analysis. Core characteristics data include excess reactivities, control rod worths, and reactivity coefficients, e.g., temperature, power and burn-up. Test conditions include both measured and calculated data for irradiation conditions. (author)

  4. Evaluation of neutronic characteristics of STACY 80-cm-diameter cylindrical core fueled with 6% enriched uranyl nitrate solution

    International Nuclear Information System (INIS)

    Yanagisawa, Hiroshi; Sono, Hiroki

    2003-06-01

    For the examination of neutronic safety design of forthcoming experimental core configurations in the Static Experiment Critical Facility (STACY), neutronic characteristics of 80-cm-diameter cylindrical cores fueled with 6% enriched uranyl nitrate solution have been evaluated by computational analyses. In the analyses, the latest nuclear data library, JENDL-3.3, was used as neutron cross section data. The neutron diffusion and transport calculations were performed using a diffusion code, CITATION, in the SRAC code system and a continuous-energy Monte Carlo code, MVP. Critical level heights of the cores were obtained using such parameters as uranium concentration (up to 500 gU/l), free nitric acid concentration (up to 8 mol/l), and concentration of soluble neutron poisons, gadolinium and boron. It has been confirmed from the evaluation that all critical cores comply with safety criteria required in the STACY operation concerning excess reactivity, reactivity addition rates and shutdown margins by safety rods. (author)

  5. Development of concept and neutronic calculation method for large LMFBR core

    International Nuclear Information System (INIS)

    Shirakata, K.; Ishikawa, M.; Ikegami, T.; Sanda, T.; Kaneto, K.; Kawashima, M.; Kaise, Y.; Shirakawa, M.; Hibi, K.

    1991-01-01

    Presented in this paper is the state of the art of reactor physics R and Ds for the development of concept and neutronic calculation method for large Liquid Metal Fast Breeder Reactor (LMFBR) core. Physics characteristics of concepts for mixed oxide (MOX) fueled large FBR core were investigated by a series of benchmark critical experiments. Next, an adequacy and accuracy of the current neutronic calculation method was assessed by the experiments analyses, and then neutronic prediction accuracies by the method were evaluated for physics characteristics of the large core. Concerns on core development were discussed in terms of neutronics. (author)

  6. Nuclear characteristic simulation device for reactor core

    International Nuclear Information System (INIS)

    Arakawa, Akio; Kobayashi, Yuji.

    1994-01-01

    In a simulation device for nuclear characteristic of a PWR type reactor, there are provided a one-dimensional reactor core dynamic characteristic model for simulating one-dimensional neutron flux distribution in the axial direction of the reactor core and average reactor power based on each of inputted signals of control rod pattern, a reactor core flow rate, reactor core pressure and reactor core inlet enthalphy, and a three-dimensional reactor core dynamic characteristic mode for simulating three-dimensional power distribution of the reactor core, and a nuclear instrumentation model for calculating read value of the nuclear instrumentation disposed in the reactor based on the average reactor core power and the reactor core three-dimensional power distribution. A one-dimensional neutron flux distribution in the axial direction of the reactor core, a reactor core average power, a reactor core three-dimensional power distribution and a nuclear instrumentation read value are calculated. As a result, the three-dimensional power distribution and the power level are continuously calculated. Further, since the transient change of the three-dimensional neutron flux distribution is calculated accurately on real time, more actual response relative to a power monitoring device of the reactor core and operation performance can be simulated. (N.H.)

  7. Fuel composition effects on HYPER core characteristics

    International Nuclear Information System (INIS)

    Han, Chi Young; Kim, Yong Nam; Kim, Jong Kyung

    2001-01-01

    At KAERI(Korea Atomic Energy Research Institute), a subcritical transmutation reactor is under development, named HYPER(Hybrid Power Extraction Reactor). For the HYPER system, a pyrochemical process is being considered for fuel reprocessing. Separated from the separation process, the fuel contains not only TRU but also the considerable percentages of impurity such as uranium nuclides and lanthanides. The amount of these impurities depends on strongly the refining efficiency of the reprocessing and may change the core characteristics. This paper has analyzed fuel composition effects on th HYPER core characteristics. Assuming various recovery factors of uranium and lanthanides, some dynamic parameters have been evaluated which are the neutron spectrum, the neutron reaction balance, the reactivity coefficients, the effective delayed neutron fraction, and the effective neutron lifetime

  8. JOYO MK-II core characteristics database

    International Nuclear Information System (INIS)

    Ohkawachi, Yasushi; Maeda, Shigetaka; Sekine, Takashi; Aoyama, Takafumi

    2003-04-01

    The 'JOYO' MK-II core characteristics database was compiled and published in 1998. Comments and requests from many users led to the creation of a revised edition. The revisions include changes to the MAGI calculation code system to use the 70 group JFS-3-J3.2 constant set processed from the JENDL-3.2 library. Total control rod worth, reactor kinetic parameters and the MK-II core performance test results were included per user's requests. The core characteristics obtained from the 32 nd to 35 th operational cycles, which were conducted in the MK-III transition core, were newly added in this revised version. The MK-II core management data and core characteristics data were recorded to CD-ROM for user convenience. The Configuration Data' include the core arrangement and refueling record for each operational cycle. The 'Subassembly Library Data' include the atomic number density, neutron fluence, burn-up, integral power of 362 driver fuel subassemblies and 69 irradiation test subassemblies. The 'Output Data' contain the calculated neutron flux, gamma flux, power density, linear heat rate, coolant and fuel temperature distribution of all the fuel subassemblies at the beginning and end of each operational cycle. The 'Core Characteristics Data' include the measured excess reactivity, control rod worth calibration curve, and reactivity coefficients of temperature, power and burn-up. (author)

  9. Development of JOYO MK-II core characteristics database

    International Nuclear Information System (INIS)

    Tabuchi, Shiro; Aoyama, Takafumi

    2000-01-01

    The MK-II core of the experimental fast reactor JOYO served as the irradiation bed for testing fuels and materials for FBR development since 1982 for 15 years. During the MK-II operation, extensive data were accumulated from the core management calculations and characteristics tests conducted in thirty-one duty operations and thirteen special test operations. These core management data and core characteristics data were compiled into a database recorded on CD-ROM for user convenience. The calculated core management data are the text style data. The 'Configuration Data' include the history of the fuel exchange and core arrangement for each cycle. The Subassembly Library Data' include the atomic number density, neutron fluence, burn-up, integral power of about 300 fuel subassemblies, and 60 irradiation subassemblies. The 'Output Data' include the neutron fluxes, gamma fluxes, power density, linear heat rates, coolant and fuel temperature distributions of each core position at the beginning and end of each cycle. The measured core characteristics data, such as the excess reactivity, control rod worths, temperature coefficient, power coefficient, and burn-up coefficient are also included along with the measurement conditions. (J.P.N.)

  10. Neutronics calculation of RTP core

    Science.gov (United States)

    Rabir, Mohamad Hairie B.; Zin, Muhammad Rawi B. Mohamed; Karim, Julia Bt. Abdul; Bayar, Abi Muttaqin B. Jalal; Usang, Mark Dennis Anak; Mustafa, Muhammad Khairul Ariff B.; Hamzah, Na'im Syauqi B.; Said, Norfarizan Bt. Mohd; Jalil, Muhammad Husamuddin B.

    2017-01-01

    Reactor calculation and simulation are significantly important to ensure safety and better utilization of a research reactor. The Malaysian's PUSPATI TRIGA Reactor (RTP) achieved initial criticality on June 28, 1982. The reactor is designed to effectively implement the various fields of basic nuclear research, manpower training, and production of radioisotopes. Since early 90s, neutronics modelling were used as part of its routine in-core fuel management activities. The are several computer codes have been used in RTP since then, based on 1D neutron diffusion, 2D neutron diffusion and 3D Monte Carlo neutron transport method. This paper describes current progress and overview on neutronics modelling development in RTP. Several important parameters were analysed such as keff, reactivity, neutron flux, power distribution and fission product build-up for the latest core configuration. The developed core neutronics model was validated by means of comparison with experimental and measurement data. Along with the RTP core model, the calculation procedure also developed to establish better prediction capability of RTP's behaviour.

  11. Study of core support barrel vibration monitoring using ex-core neutron noise analysis and fuzzy logic algorithm

    International Nuclear Information System (INIS)

    Christian, Robby; Song, Seon Ho; Kang, Hyun Gook

    2015-01-01

    The application of neutron noise analysis (NNA) to the ex-core neutron detector signal for monitoring the vibration characteristics of a reactor core support barrel (CSB) was investigated. Ex-core flux data were generated by using a nonanalog Monte Carlo neutron transport method in a simulated CSB model where the implicit capture and Russian roulette technique were utilized. First and third order beam and shell modes of CSB vibration were modeled based on parallel processing simulation. A NNA module was developed to analyze the ex-core flux data based on its time variation, normalized power spectral density, normalized cross-power spectral density, coherence, and phase differences. The data were then analyzed with a fuzzy logic module to determine the vibration characteristics. The ex-core neutron signal fluctuation was directly proportional to the CSB's vibration observed at 8Hz and15Hzin the beam mode vibration, and at 8Hz in the shell mode vibration. The coherence result between flux pairs was unity at the vibration peak frequencies. A distinct pattern of phase differences was observed for each of the vibration models. The developed fuzzy logic module demonstrated successful recognition of the vibration frequencies, modes, orders, directions, and phase differences within 0.4 ms for the beam and shell mode vibrations.

  12. A Polyethylene Moderator Design for Auxiliary Ex-core Neutron Detector

    International Nuclear Information System (INIS)

    Lee, Hwan Soo; Shin, Ho Cheol; Bae, Seong Man

    2012-01-01

    The moderator of detector assembly in ENFMS (Excore Neutron Flux Monitoring System) plays a key role for slowing down from fast neutron to thermal neutron at outside of reactor vessel. Since neutron monitoring detector such as BF3, fission chamber detectors mostly responds to thermal neutron, moderator should be included to neutron detector assembly to detect more efficiently. Generally, resin has been used for moderator of detector in ENFMS of OPR1000 and APR1400, because resin has stable thermal resistance, availability and high neutron moderation characteristics due to the light atomic materials. In case of an auxiliary ex-core neutron detector, the polyethylene is suggested that polyethylene has a better moderator rather than resin, then, the amounts of moderator are reduced. This is important thing for auxiliary ex-core detector equipment at reactor, because the auxiliary equipment should affect minimally to another system. In this study, polyethylene moderator is designed for auxiliary ex-core neutron detector. To find out the optimal thickness of polyethylene moderator, preliminary simulation and experiments are performed. And sensitivity simulation for detector moderator at actual reactor is performed by DORT code

  13. Neutron spectrum effects on TRU recycling in Pb-Bi cooled fast reactor core

    International Nuclear Information System (INIS)

    Kim, Yong Nam; Kim, Jong Kyung; Park, Won Seok

    2003-01-01

    This study is intended to evaluate the dependency of TRU recycling characteristics on the neutron spectrum shift in a Pb-Bi cooled core. Considering two Pb-Bi cooled cores with the soft and the hard spectrum, respectively, various characteristics of the recycled core are carefully examined and compared with each other. Assuming very simplified fuel cycle management with the homogeneous and single region fuel loading, the burnup calculations are performed until the recycled core reached to the (quasi-) equilibrium state. The mechanism of TRU recycling toward the equilibrium is analyzed in terms of burnup reactivity and the isotopic compositions of TRU fuel. In the comparative analyses, the difference in the recycling behavior between the two cores is clarified. In addition, the basic safety characteristics of the recycled core are also discussed in terms of the Doppler coefficient, the coolant loss reactivity coefficient, and the effective delayed neutron fraction

  14. Self-powered in-core neutron detector assembly with uniform perturbation characteristics

    International Nuclear Information System (INIS)

    1981-01-01

    An in-core neutron detector assembly consisting of a number of longitudinally extending self-powered detectors is described. The uniform mechanical structures and materials are placed symmetrically at each active detector portion thus ensuring that local perturbation factors are uniform. (U.K.)

  15. Neutronic characteristics of FLWR in the transition phase changing from high conversion core to breeder core

    International Nuclear Information System (INIS)

    Akie, Hiroshi; Nakano, Yoshihiro; Okubo, Tsutomu

    2009-01-01

    Innovative Water Reactor for Flexible Fuel Cycle (FLWR) is a low moderation type boiling water reactor which can realize plutonium multiple recycling and breeding. For the introduction stage of FLWR, a high conversion (HC) type FLWR is proposed to keep technical continuity from current light water reactors. The HC core of FLWR has a less tight fuel lattice with lower coolant void fraction than the breeder (BR) type core. The HC type FLWR core is to be shifted to the BR core by only replacing the fuel assemblies of the same outer shape and size in the same reactor system. In the HC to BR transition phase of FLWR, there exist both types of fuel assemblies in the same core configuration. In the HC assembly, neutron spectrum is softer than in the BR assembly, and the axial fuel and blanket arrangement is different from the BR assembly. Due to these differences, there might appear a power peaking in the adjacent region between HC and BR assemblies. The power distribution in the HC + BR assemblies mixed core configuration is studied by performing assembly calculations and core calculations on a few assemblies local geometry and the whole core geometry. As a result, although a power peaking can be locally very large in the HC and BR assemblies adjacent regions, such local power peakings are shown to be effectively reduced by considering a rod-wise fuel enrichment distribution. In the whole core calculation, it seems possible to optimize the fuel assembly loading and shuffling pattern to avoid large power level mismatch between the assemblies. It is expected that FLWR can be shifted from HC type to BR type without major neutronic difficulties. (author)

  16. Dosimetry Characteristics of Coupled Fast-Thermal Core 'HERBE'

    International Nuclear Information System (INIS)

    Pesic, M.; Milosevic, M.; Milovanovic, S.

    1996-01-01

    The 'HERBE' is new coupled fast-thermal core, designed in 1991, at the 'RB' reactor in the 'Vinca' Institute. It is used for verification of designed oriented computer codes developed in the Institute, training and sample irradiation in fast neutron field. For the last purpose a vertical experimental channel (VCH) is placed in the central axis of the fast core. Neutron spectrum in the centre of the VCR is calculated in 44 energy groups. Space distributions of two energy group neutron flux in the 'HERBE' are measured using gold foils and converted into the neutron absorbed dose (in air and tissue) using group flux-dose conversion factors. Gamma absorption doses in the air in the centre of the VCH are measured using calibrated small ionisation chamber filled with air. Determined dose rates are related to the reactor power. The first preliminary irradiations of silicon diodes (designed for production of the neutron dosemeters) in the centre of the VCH of the 'HERBE' fast core are carried out in 1994 and 1995. This paper describes calculation methods and measurement techniques applied to determination of the irradiation performance and dosimetry characteristics of the 'HERBE' system. (author)

  17. The development of ex-core neutron flux monitoring system for integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. K.; Kwon, H. J.; Park, H. Y.; Koo, I. S

    2004-12-01

    Due to the arrangement of major components within the reactor vessel, the integral reactor has relatively long distance between the core support barrel and the reactor vessel when compared with the currently operating plants. So, a neutron flux leakage at the ex-vessel represents a relatively low flux level which may generate some difficulties in obtaining a wide range of neutron flux information including the source range one. This fact may have an impact upon the design and fabrication of an ex-core neutron flux detector. Therefore, it is required to study neutron flux detectors that are suitable for the installation location and characteristics of an integral reactor. The physical constraints of an integral reactor should be considered when one designs and develops the ex-core neutron flux monitoring detectors and their systems. As a possible installation location of the integral reactor ex-core neutron flux detector assembly, two candidate locations are considered, that is, one is between the core support barrel and the reactor vessel and the other is within the Internal Shielding Tank(IST). And, for these locations, some factors such as the environmental requirements and geometrical restrictions are investigated In the case of considering the inside of the IST as a ex-core neutron flux detector installation position, an electrical insulation problem and a low neutron flux measurement problem arose and when considering the inside of the reactor vessel, a detector's sensitivity variation problem, an electrical insulation problem, a detector's insertion and withdrawal problem, and a high neutron flux measurement problem were encountered. Through a survey of the detector installation of the currently operating plants and detector manufacturer's products, the proposed structure and specifications of an ex-core neutron flux detector are suggested. And, the joint ownership strategy for a proposed detector model is also depicted. At the end, by studying

  18. The development of ex-core neutron flux monitoring system for integral reactor

    International Nuclear Information System (INIS)

    Lee, J. K.; Kwon, H. J.; Park, H. Y.; Koo, I. S.

    2004-12-01

    Due to the arrangement of major components within the reactor vessel, the integral reactor has relatively long distance between the core support barrel and the reactor vessel when compared with the currently operating plants. So, a neutron flux leakage at the ex-vessel represents a relatively low flux level which may generate some difficulties in obtaining a wide range of neutron flux information including the source range one. This fact may have an impact upon the design and fabrication of an ex-core neutron flux detector. Therefore, it is required to study neutron flux detectors that are suitable for the installation location and characteristics of an integral reactor. The physical constraints of an integral reactor should be considered when one designs and develops the ex-core neutron flux monitoring detectors and their systems. As a possible installation location of the integral reactor ex-core neutron flux detector assembly, two candidate locations are considered, that is, one is between the core support barrel and the reactor vessel and the other is within the Internal Shielding Tank(IST). And, for these locations, some factors such as the environmental requirements and geometrical restrictions are investigated In the case of considering the inside of the IST as a ex-core neutron flux detector installation position, an electrical insulation problem and a low neutron flux measurement problem arose and when considering the inside of the reactor vessel, a detector's sensitivity variation problem, an electrical insulation problem, a detector's insertion and withdrawal problem, and a high neutron flux measurement problem were encountered. Through a survey of the detector installation of the currently operating plants and detector manufacturer's products, the proposed structure and specifications of an ex-core neutron flux detector are suggested. And, the joint ownership strategy for a proposed detector model is also depicted. At the end, by studying the ex-core

  19. Characteristic test of initial HTTR core

    International Nuclear Information System (INIS)

    Nojiri, Naoki; Shimakawa, Satoshi; Fujimoto, Nozomu; Goto, Minoru

    2004-01-01

    This paper describes the results of core physics test in start-up and power-up of the HTTR. The tests were conducted in order to ensure performance and safety of the high temperature gas cooled reactor, and was carried out to measure the critical approach, the excess reactivity, the shutdown margin, the control rod worth, the reactivity coefficient, the neutron flux distribution and the power distribution. The expected core performance and the required reactor safety characteristics were verified from the results of measurements and calculations

  20. Determination of neutron flux densities in WWR-S reactor core

    International Nuclear Information System (INIS)

    Tomasek, F.

    1989-04-01

    The method is described of determining neutron flux densities and neutron fluences using activation detectors. The basic definitions and relations for determining reaction rates, fluence and neutron flux as well as the characteristics of some reactions and of sitable activation detectors are reported. The flux densities were determined of thermal and fast neutrons and of gamma quanta in the WWR-S reactor core. The data measured in the period 1984-1987 are tabulated. Cross sections for the individual reactions were determined from spectra measurements processed using program SAND-II and cross section library ENDF-B IV. Neutron flux densities were also measured for the WWR-S reactor vertical channels. (E.J.). 10 figs., 8 tabs., 111 refs

  1. Toward whole-core neutron transport without spatial homogenization

    International Nuclear Information System (INIS)

    Lewis, E. E.

    2009-01-01

    , iteration between lattice and homogenized calculations yields two-dimensional whole-core results without homogenization error. In the third, planar lattice transport is synthesized with lower-order axial transport to obtain approximate three-dimensional results without planar homogenization. In all three, advances in the method of characteristics play a prominent role, and each rests on some form of equivalence intervention to preserve reaction rates and currents between lattice and homogenized calculations. The talk concludes with some conjectures concerning the potential of interface current, response matrix and related domain decomposition approaches as alternative paths toward achieving whole-core neutronics without homogenization. (author)

  2. Effective delayed neutron fraction and prompt neutron lifetime of Tehran research reactor mixed-core

    International Nuclear Information System (INIS)

    Lashkari, A.; Khalafi, H.; Kazeminejad, H.

    2013-01-01

    Highlights: ► Kinetic parameters of Tehran research reactor mixed-core have been calculated. ► Burn-up effect on TRR kinetics parameters has been studied. ► Replacement of LEU-CFE with HEU-CFE in the TRR core has been investigated. ► Results of each mixed core were compared to the reference core. ► Calculation of kinetic parameters are necessary for reactivity and power excursion transient analysis. - Abstract: In this work, kinetic parameters of Tehran research reactor (TRR) mixed cores have been calculated. The mixed core configurations are made by replacement of the low enriched uranium control fuel elements with highly enriched uranium control fuel elements in the reference core. The MTR P C package, a nuclear reactor analysis tool, is used to perform the analysis. Simulations were carried out to compute effective delayed neutron fraction and prompt neutron lifetime. Calculation of kinetic parameters is necessary for reactivity and power excursion transient analysis. The results of this research show that effective delayed neutron fraction decreases and prompt neutron lifetime increases with the fuels burn-up. Also, by increasing the number of highly enriched uranium control fuel elements in the reference core, the prompt neutron lifetime increases, but effective delayed neutron fraction does not show any considerable change

  3. A Monte-Carlo method for ex-core neutron response

    International Nuclear Information System (INIS)

    Gamino, R.G.; Ward, J.T.; Hughes, J.C.

    1997-10-01

    A Monte Carlo neutron transport kernel capability primarily for ex-core neutron response is described. The capability consists of the generation of a set of response kernels, which represent the neutron transport from the core to a specific ex-core volume. This is accomplished by tagging individual neutron histories from their initial source sites and tracking them throughout the problem geometry, tallying those that interact in the geometric regions of interest. These transport kernels can subsequently be combined with any number of core power distributions to determine detector response for a variety of reactor Thus, the transport kernels are analogous to an integrated adjoint response. Examples of pressure vessel response and ex-core neutron detector response are provided to illustrate the method

  4. Split core experiments; Part I. Axial neutron flux distribution measurements in the reactor core with a central horizontal reflector

    Energy Technology Data Exchange (ETDEWEB)

    Strugar, P; Raisic, N; Obradovic, D; Jovanovic, S [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1965-05-01

    A series of critical experiments were performed on the RB reactor in order to determine the thermal neutron flux increase in the central horizontal reflector formed by a split reactor core. The objectives of these experiments were to study the possibilities of improving the thermal neutron flux characteristics of the neutron beam in the horizontal beam tube of the RA research reactor. The construction of RA reactor enables to split the core in two, to form a central horizontal reflector in front of the beam tube. This is achieved by replacing 2% enriched uranium slugs in the fuel channel by dummy aluminium slugs. The purpose of the first series of experiments was to study the gain in thermal neutron component inside the horizontal reflector and the loss of reactivity as a function of the lattice pitch and central reflector thickness.

  5. In-core neutron flux measurements at PARR using self powered neutron detector

    International Nuclear Information System (INIS)

    Hussain, A.; Ansari, S.A.

    1989-10-01

    This report describes experimental reactor physics measure ments at PARR using the in-core neutron detectors. Rhodium self powered neutron detectors (SPND) were used in the PARR core and several measurements were made aimed at detector calibration, response time determination and neutron flux measurements. The detectors were calibrated at low power using gold foils and full power by the thermal channel. Based on this calibration it was observed that the detector response remains almost linear throughout the power range. The self powered detectors were used for on-line determination of absolute neutron flux in the core as well as the spatial distribution of neutron flux or reactor power. The experimental, axial and horizontal flux mapping results at certain locations in the core are presented. The total response time of rhodium detector was experimentally determined to be about 5 minutes, which agree well with the theoretical results. Because of longer response time of SPND of the detectors it is not possible to use them in the reactor protection system. (author). 10 figs

  6. Prompt Neutron Decay Constant Determination Of Silicide Transition Core Using Noise Method

    International Nuclear Information System (INIS)

    Jujuratisbela, Uju; Yulianto, Yusi Eko; Cahyana

    2001-01-01

    Chairman of BATAN had decided to replace the Oxide fuel element type of RSG-GAS into silicide element type step by step. The replacement will create core transitions. Kinetic characteristic of the transition cores have to be monitored in order to know the deviation of core behavior. For that reason, the kinetic parameters have to be measured. Prompt neutron decay constant (alpha) is one of the kinetic parameters that has to be monitored continuously in the transition cores. In order not to disturb the normal operation of reactor, alpha parameter should be measured by using noise analysis method. The voltage of neutron flux at power of 15 MW is connected to preamplifier and filter then to the Dynamic Signal Analyzer Version-2 and then the auto power spectral density (APSD) was determined by using Fast Fourier transform. From the APSD curve of each channel of JKT03, the cut off frequency of each channel can be determined by using linear regression technique such that the prompt neutron decay constant can be estimated

  7. Comparison study on in-core neutron detector for online neutron flux mapping of research and power reactor

    International Nuclear Information System (INIS)

    Zareen Khan Abdul Jalil Khan; Mohd Idris Taib; Izhar Abu Husin; Nurfarhana Ayuni

    2010-01-01

    This paper presents the comparison study on In-Core neutron detector using for online flux mapping of Research and Power reactor. Technical description of in-core neutron also taken into consideration to identify the different characterization of neutron detector and describe on Self Power neutron detector (SPND) for online neutron flux mapping. Able to provide information on the neutron flux distribution and understand how in-core neutron detector are being used in nuclear power plant including to enable to state the principles of neutron detector. (author)

  8. Fast neutron reactor core research at the C.E.A

    International Nuclear Information System (INIS)

    Chaudat, J.-P.

    1978-05-01

    This report covers all physical studies of fast neutron reactors carried out by the C.E.A., to povide basic data (multi-group cross sections) and computer methods which may be used to calculate nuclear power plant neutron properties with the precision required by the project. The approach adopted to establish the basic data used in all core calculations is described in greated detail: choice of a reference procedure for basic mode calculations (CARNAVAL set), choice of particular experimental programs to reduce uncertainties in connection with the formula set, adjustement of cross sections on integral parameters measured on critical experiments. The development of the formula set is closely connected with the project requirements; hence the set is modified with respect to the core characteristics of the power plant studied. Following an explanation of how the CARNAVAL III and IV formula sets -used for PHENIX and SUPER-PHENIX respectively- were derived, current studies for heterogeneous cores are described [fr

  9. Preliminary design characteristics of the RB fast-thermal core 'HERBE'

    International Nuclear Information System (INIS)

    Pesic, M.; Marinkovic, P.

    1989-01-01

    The 'RB' is zero power heavy water critical assembly designed in 1958 in Yugoslavia. The reactor operated using natural metal uranium, 2% enriched metal uranium, and 80% enriched UO 2 fuel of Soviet origin. A study of design of fast neutron fields began in 1976 and three fast neutron fields were designed up to 1983: the external neutron converter, the experimental fuel channel and the internal neutron converter, as the first step to fast-thermal coupled system. The preliminary design characteristics of the HERBE - a new fast - thermal core at the RB reactor are shown in this paper. (author)

  10. Benchmark calculations on nuclear characteristics of JRR-4 HEU core by SRAC code system

    International Nuclear Information System (INIS)

    Arigane, Kenji

    1987-04-01

    The reduced enrichment program for the JRR-4 has been progressing based on JAERI's RERTR (Reduced Enrichment Research and Test Reactor) program. The SRAC (JAERI Thermal Reactor Standard Code System for Reactor Design and Analysis) is used for the neutronic design of the JRR-4 LEU Core. This report describes the benchmark calculations on the neutronic characteristics of the JRR-4 HEU Core in order to validate the calculation method. The benchmark calculations were performed on the various kind of neutronic characteristics such as excess reactivity, criticality, control rod worth, thermal neutron flux distribution, void coefficient, temperature coefficient, mass coefficient, kinetic parameters and poisoning effect by Xe-135 build up. As the result, it was confirmed that these calculated values are in satisfactory agreement with the measured values. Therefore, the calculational method by the SRAC was validated. (author)

  11. Rotating neutron stars with exotic cores: masses, radii, stability

    Energy Technology Data Exchange (ETDEWEB)

    Haensel, P.; Bejger, M.; Fortin, M.; Zdunik, L. [Polish Academy of Sciences, N. Copernicus Astronomical Center, Warszawa (Poland)

    2016-03-15

    A set of theoretical mass-radius relations for rigidly rotating neutron stars with exotic cores, obtained in various theories of dense matter, is reviewed. Two basic observational constraints are used: the largest measured rotation frequency (716Hz) and the maximum measured mass (2M {sub CircleDot}). The present status of measuring the radii of neutron stars is described. The theory of rigidly rotating stars in general relativity is reviewed and limitations of the slow rotation approximation are pointed out. Mass-radius relations for rotating neutron stars with hyperon and quark cores are illustrated using several models. Problems related to the non-uniqueness of the crust-core matching are mentioned. Limits on rigid rotation resulting from the mass-shedding instability and the instability with respect to the axisymmetric perturbations are summarized. The problem of instabilities and of the back-bending phenomenon are discussed in detail. Metastability and instability of a neutron star core in the case of a first-order phase transition, both between pure phases, and into a mixed-phase state, are reviewed. The case of two disjoint families (branches) of rotating neutron stars is discussed and generic features of neutron-star families and of core-quakes triggered by the instabilities are considered. (orig.)

  12. Measurement and simulation of thermal neutron flux distribution in the RTP core

    Science.gov (United States)

    Rabir, Mohamad Hairie B.; Jalal Bayar, Abi Muttaqin B.; Hamzah, Na'im Syauqi B.; Mustafa, Muhammad Khairul Ariff B.; Karim, Julia Bt. Abdul; Zin, Muhammad Rawi B. Mohamed; Ismail, Yahya B.; Hussain, Mohd Huzair B.; Mat Husin, Mat Zin B.; Dan, Roslan B. Md; Ismail, Ahmad Razali B.; Husain, Nurfazila Bt.; Jalil Khan, Zareen Khan B. Abdul; Yakin, Shaiful Rizaide B. Mohd; Saad, Mohamad Fauzi B.; Masood, Zarina Bt.

    2018-01-01

    The in-core thermal neutron flux distribution was determined using measurement and simulation methods for the Malaysian’s PUSPATI TRIGA Reactor (RTP). In this work, online thermal neutron flux measurement using Self Powered Neutron Detector (SPND) has been performed to verify and validate the computational methods for neutron flux calculation in RTP calculations. The experimental results were used as a validation to the calculations performed with Monte Carlo code MCNP. The detail in-core neutron flux distributions were estimated using MCNP mesh tally method. The neutron flux mapping obtained revealed the heterogeneous configuration of the core. Based on the measurement and simulation, the thermal flux profile peaked at the centre of the core and gradually decreased towards the outer side of the core. The results show a good agreement (relatively) between calculation and measurement where both show the same radial thermal flux profile inside the core: MCNP model over estimation with maximum discrepancy around 20% higher compared to SPND measurement. As our model also predicts well the neutron flux distribution in the core it can be used for the characterization of the full core, that is neutron flux and spectra calculation, dose rate calculations, reaction rate calculations, etc.

  13. Measurements of neutron fluxes and cadmium ratio at equilibrium core in JRR-3M

    International Nuclear Information System (INIS)

    Ohtomo, Akitoshi; Sasajima, Fumio; Ishida, Takuya; Shigemoto, Masamitsu; Takahashi, Hidetake; Maejima, Takeshi; Sekine, Katsunori.

    1993-08-01

    Construction and characteristics tests of JRR-3M (Modified JRR-3) had been completed on October 1990, and the reactor reached to equilibrium core in July 1991. Measurements of neutron flux and cadmium ratio in Hydraulic irradiation facility (HR) and Pneumatic irradiation facility (PN) at 20 MW reactor power were carried out for the equilibrium core from May to August 1991 and for the latest core in April 1993. The results at the equilibrium core and the latest core are described in this paper. (author)

  14. Identifying functions for ex-core neutron noise analysis

    International Nuclear Information System (INIS)

    Avila, J.M.; Oliveira, J.C.

    1987-01-01

    A method of performing the phase analysis of signals arising from neutron detectors placed in the periphery of a pressurized water reactor is proposed. It consists in the definition of several identifying functions, based on the phases of cross power spectral densities corresponding to four ex-core neutron detectors. Each of these functions enhances the appearance of different sources of noise. The method, applied to the ex-core neutron fluctuation analysis of a French PWR, proved to be very useful as it allows quick recognition of various patterns in the power spectral densities. (orig.) [de

  15. Neutronic design of mixed oxide-silicide cores for the core conversion of rsg-gas reactor

    International Nuclear Information System (INIS)

    Sembiring, Tagor Malem; Tukiran; Pinem surian; Febrianto

    2001-01-01

    The core conversion of rsg-gas reactor from an all-oxide (U 3 O 8 -Al) core, through a series of mixed oxide-silicide core, to an all-silicide (U 3 Si 2 -Al) core for the same meat density of 2.96 g U/cc is in progress. The conversion is first step of the step-wise conversion and will be followed by the second step that is the core conversion from low meat density of silicide core, through a series of mixed lower-higher density of silicide core, to an all-higher meat density of 3.55 g/cc core. Therefore, the objectives of this work is to design the mixed cores on the neutronic performance to achieve safety a first full-silicide core for the reactor with the low uranium meat density of 2.96gU/cc. The neutronic design of the mixed cores was performed by means of Batan-EQUIL-2D and Batan-3DIFF computer codes for 2 and 3 dimension diffusion calculation, respectively. The result shows that all mixed oxide-silicide cores will be feasible to achieve safety a fist full-silicide core. The core performs the same neutronic core parameters as those of the equilibrium silicide core. Therefore, the reactor availability and utilization during the core conversion is not changed

  16. Strong Neutron Pairing in core+4n Nuclei.

    Science.gov (United States)

    Revel, A; Marqués, F M; Sorlin, O; Aumann, T; Caesar, C; Holl, M; Panin, V; Vandebrouck, M; Wamers, F; Alvarez-Pol, H; Atar, L; Avdeichikov, V; Beceiro-Novo, S; Bemmerer, D; Benlliure, J; Bertulani, C A; Boillos, J M; Boretzky, K; Borge, M J G; Caamaño, M; Casarejos, E; Catford, W N; Cederkäll, J; Chartier, M; Chulkov, L; Cortina-Gil, D; Cravo, E; Crespo, R; Datta Pramanik, U; Díaz Fernández, P; Dillmann, I; Elekes, Z; Enders, J; Ershova, O; Estradé, A; Farinon, F; Fraile, L M; Freer, M; Galaviz, D; Geissel, H; Gernhäuser, R; Golubev, P; Göbel, K; Hagdahl, J; Heftrich, T; Heil, M; Heine, M; Heinz, A; Henriques, A; Ignatov, A; Johansson, H T; Jonson, B; Kahlbow, J; Kalantar-Nayestanaki, N; Kanungo, R; Kelic-Heil, A; Knyazev, A; Kröll, T; Kurz, N; Labiche, M; Langer, C; Le Bleis, T; Lemmon, R; Lindberg, S; Machado, J; Marganiec, J; Movsesyan, A; Nacher, E; Najafi, M; Nilsson, T; Nociforo, C; Paschalis, S; Perea, A; Petri, M; Pietri, S; Plag, R; Reifarth, R; Ribeiro, G; Rigollet, C; Röder, M; Rossi, D; Savran, D; Scheit, H; Simon, H; Syndikus, I; Taylor, J T; Tengblad, O; Thies, R; Togano, Y; Velho, P; Volkov, V; Wagner, A; Weick, H; Wheldon, C; Wilson, G; Winfield, J S; Woods, P; Yakorev, D; Zhukov, M; Zilges, A; Zuber, K

    2018-04-13

    The emission of neutron pairs from the neutron-rich N=12 isotones ^{18}C and ^{20}O has been studied by high-energy nucleon knockout from ^{19}N and ^{21}O secondary beams, populating unbound states of the two isotones up to 15 MeV above their two-neutron emission thresholds. The analysis of triple fragment-n-n correlations shows that the decay ^{19}N(-1p)^{18}C^{*}→^{16}C+n+n is clearly dominated by direct pair emission. The two-neutron correlation strength, the largest ever observed, suggests the predominance of a ^{14}C core surrounded by four valence neutrons arranged in strongly correlated pairs. On the other hand, a significant competition of a sequential branch is found in the decay ^{21}O(-1n)^{20}O^{*}→^{18}O+n+n, attributed to its formation through the knockout of a deeply bound neutron that breaks the ^{16}O core and reduces the number of pairs.

  17. Effect of burnup history by moderator density on neutron-physical characteristics of WWER-1000 core

    International Nuclear Information System (INIS)

    Ovdiienko, I.; Kuchin, A.; Khalimonchuk, V.; Ieremenko, M.

    2011-01-01

    Results of assessment of burnup history effect by moderator density on neutron physical characteristics of WWER-1000 core are presented on example of stationary fuel loading with Russian design fuel assembly TWSA and AER benchmark for Khmelnitsky NPP that was proposed by TUV and SSTC NRC at nineteenth symposium. Assessment was performed by DYN3D code and cross section library sets generated by HELIOS code. Burnup history was taken into account by preparing of numerous cross section sets with different isotopic composition each of which was obtained by burning under different moderator density. For analysis of history effect 20 cross section sets were prepared for each fuel assembly corresponded to each of 20 axial layers of reactor core model for DYN3D code. Four fuel cycles were modeled both for stationary fuel loading with TWSA and AER benchmark for Khmelnitsky NPP to obtain steady value of error due to neglect of burnup history effect. Main attention of study was paid to effect of burnup history by moderator density to axial power distribution. Results of study for AER benchmark were compared with experimental values of axial power distribution for fuel assemblies of first, second, third and fourth year operation. (Authors)

  18. Core component vibration monitoring in BWRs using neutron noise

    International Nuclear Information System (INIS)

    Fry, D.N.; Robinson, J.C.; Kryter, R.C.; Cole, O.C.

    1975-01-01

    Neutron noise from in-core fission detectors in a BWR was investigated to determine its effectiveness as a monitor of mechanical vibrations of core components. In this study the general properties of BWR neutron noise were characterized, and a signal enhancement method was implemented to improve the measurement sensitivity. (auth)

  19. VHTR core modeling: coupling between neutronic and thermal-hydraulics

    International Nuclear Information System (INIS)

    Limaiem, I.; Damian, F.; Raepsaet, X.; Studer, E.

    2005-01-01

    Following the present interest in the next generation nuclear power plan (NGNP), Cea is deploying special effort to develop new models and qualify its research tools for this next generation reactors core. In this framework, the Very High Temperature Reactor concept (VHTR) has an increasing place in the actual research program. In such type of core, a strong interaction exists between neutronic and thermal-hydraulics. Consequently, the global core modelling requires accounting for the temperature feedback in the neutronic models. The purpose of this paper is to present the new neutronic and thermal-hydraulics coupling model dedicated to the High Temperature Reactors (HTR). The coupling model integrates a new version of the neutronic scheme calculation developed in collaboration between Cea and Framatome-ANP. The neutronic calculations are performed using a specific calculation processes based on the APOLLO2 transport code and CRONOS2 diffusion code which are part of the French reactor physics code system SAPHYR. The thermal-hydraulics model is characterised by an equivalent porous media and 1-D fluid/3-D thermal model implemented in the CAST3M/ARCTURUS code. The porous media approach involves the definition of both homogenous and heterogeneous models to ensure a correct temperature feedback. This study highlights the sensitivity of the coupling system's parameters (radial/axial meshing and data exchange strategy between neutronic and thermal-hydraulics code). The parameters sensitivity study leads to the definition of an optimal coupling system specification for the VHTR. Besides, this work presents the first physical analysis of the VHTR core in steady-state condition. The analysis gives information about the 3-D power peaking and the temperature coefficient. Indeed, it covers different core configurations with different helium distribution in the core bypass. (authors)

  20. Core characteristics on a hybrid type fast reactor system combined with proton accelerator

    International Nuclear Information System (INIS)

    Kowata, Yasuki; Otsubo, Akira

    1997-06-01

    In our study on a hybrid fast reactor system, we have investigated it from the view point of transmutation ability of trans-uranium (TRU) nuclide making the most effective use of special features (controllability, hard neutron spectrum) of the system. It is proved that a proton beam is superior in generation of neutrons compared with an electron beam. Therefore a proton accelerator using spallation reaction with a target nucleus has an advantage to transmutation of TRU than an electron one. A fast reactor is expected to primarily have a merit that the reactor can be operated for a long term without employment of highly enriched plutonium fuel by using external neutron source such as the proton accelerator. Namely, the system has a desirable characteristic of being possible to self-sustained fissile plutonium. Consequently in the present report, core characteristics of the system were roughly studied by analyses using 2D-BURN code. The possibility of self-sustained fuel was investigated from the burnup and neutronic calculation in a cylindrical core with 300w/cc of power density without considering a target material region for the accelerator. For a reference core of which the height and the radius are both 100 cm, there is a fair prospect that a long term reactor operation is possible with subsequent refueling of natural uranium, if the medium enriched (around 10wt%) uranium or plutonium fuels are fully loaded in the initial core. More precise analyses will be planed in a later fiscal year. (author)

  1. Results and interpretation of noise measurements using in-core self powered neutron detector strings at Unit 2 of the Paks Nuclear Power Plant

    International Nuclear Information System (INIS)

    Gloeckler, O.; Por, G.; Valko, J.

    1986-11-01

    In-core neutron noise and fuel assembly outlet temperature noise measurements were performed at Unit 2 of Paks Nuclear Power Plant. Characteristics of the reactor and the noise measuring equipment are briefly described. The in-core Rhodium emitter selfpowered neutron detector strings positioned axially above the other show high coherence and linear phase at low frequencies indicating a marked transport effect, not regularly measured in PWRs. The coherence between horizontally placed neutron detectors is small and the phase is zero. A transport effect of different nature is obtained between neutron detectors (in-core and ex-core) and fuel assembly outlet thermocouples. The observed characteristics depend on reactor and fuel assembly power in a way supporting interpretation in terms of coolant density and void content changes and power feedback effects. During routine analysis vibration of 1.1 Hz appeared as a strong peak in the power spectra. The control assembly that was responsible for the observed behaviour could be localized with high certainty. (author)

  2. Neutronic feasibility of an LMFBR super long-life core (SLLC)

    International Nuclear Information System (INIS)

    Kawashima, Masatoshi; Aoki, Katsutada; Arie, Kazuo; Tsuboi, Yasushi

    1988-01-01

    The LMFBR Super Long-Life Core (SLLC) concept has evolved over the last few years as one of the targets of innovative approaches for future FBR cost reduction. An idea for SLLC has been developed wherein the core lifetime is extended up to the plant life of about 30 years by applying the radially and axially multi-zoned core concept (the improved homogeneous core concept). The main purpose of the present study is placed on the evaluation of neutronic feasibility of the 1000 MWe class SLLC concept. The core size of the present SLLC, which is approximately 3 to 4 times as large as those of the current 1000 MWe core design, was determined by the limit of the maximum fast neutron fluence level, which was tentatively assumed to be 5-6x10 23 nvt as the target of the future development of advanced cladding materials. Emphasis is placed on the discussion of neutronic performances of cores with oxide fuels rather than metal or carbide fuels. The present study has shown that proper zoning of the different plutonium enrichment fuels at the initial core makes it possible to achieve small enough reactivity loss during 30-year burnup while satisfying mild variation of the subassembly power distributions using a higher fuel volume fraction of about 50%. Effects of important neutronic parameters on the core performances are also discussed. (orig.)

  3. Characteristics of self-powered neutron detectors used in power reactors

    International Nuclear Information System (INIS)

    Todt, W.H.

    1997-01-01

    Self-Powered Neutron Detectors have been used effectively as in-core flux monitors for over twenty-five years in nuclear power reactors world-wide. The basic properties of these radiation sensors are described including their nuclear, electrical and mechanical characteristics. Recommendations are given for the proper choice of the self-powered detector emitter to provide the proper response time and radiation sensitivity desired for use in an effective in-core radiation monitoring system. Examples are shown of specific self-powered detector designs which are being effectively used in in-core instrumentation systems for pressurised water, heavy water and graphite moderated light water reactors. Examples are also shown of the mechanical configurations of in-core assemblies of self-powered detectors combined with in-core thermocouples presently used in pressurised water and heavy water reactors worldwide. This paper is a summary of a new IEC standard to be issued in 1996 describing the characteristics and test methods of self-powered detectors used in nuclear power reactors. (author)

  4. Neutronics characteristics of micro-heterogeneous ThO2-UO2 PWR cores

    International Nuclear Information System (INIS)

    Zhao, X.; Driscoll, M.J.; Kazimi, S.

    2001-01-01

    A new fuel concept, axially-micro-heterogeneous ThO 2 -UO 2 fuel, where ThO 2 fuel pellets and UO 2 fuel pellets are stacked in separate layers in the fuel rods, is being studied at MIT as an option to reduce plutonium production in LWR fuel. Very interesting neutronic behavior is observed: (1) A reactivity increase of 3% to 4% at EOL for a given 235 U inventory which results in a 20-30% increase in average core discharge burnup; (2) For certain configurations, a ''burnable poison'' effect is observed. Analysis shows that these effects are achieved due to a combination of changes in self-shielding, local fissile worth, and conversion ratio, among which self-shielding is the dominant effect at the end of a reactivity-limited burnup. Other variations of micro-heterogeneous UO 2 -ThO 2 fuel including duplex pellets, checkerboard pin distribution, and checkerboard-axial combinations have also been investigated, and their neutronic performance compared. It is concluded that the axial fuel micro-heterogeneity provides the largest gain in reactivity-limited burnup. (author)

  5. Burnup-dependent core neutronics analysis of plate-type research reactor using deterministic and stochastic methods

    International Nuclear Information System (INIS)

    Liu, Shichang; Wang, Guanbo; Liang, Jingang; Wu, Gaochen; Wang, Kan

    2015-01-01

    Highlights: • DRAGON & DONJON were applied in burnup calculations of plate-type research reactors. • Continuous-energy Monte Carlo burnup calculations by RMC were chosen as references. • Comparisons of keff, isotopic densities and power distribution were performed. • Reasons leading to discrepancies between two different approaches were analyzed. • DRAGON & DONJON is capable of burnup calculations with appropriate treatments. - Abstract: The burnup-dependent core neutronics analysis of the plate-type research reactors such as JRR-3M poses a challenge for traditional neutronics calculational tools and schemes for power reactors, due to the characteristics of complex geometry, highly heterogeneity, large leakage and the particular neutron spectrum of the research reactors. Two different theoretical approaches, the deterministic and the stochastic methods, are used for the burnup-dependent core neutronics analysis of the JRR-3M plate-type research reactor in this paper. For the deterministic method the neutronics codes DRAGON & DONJON are used, while the continuous-energy Monte Carlo code RMC (Reactor Monte Carlo code) is employed for the stochastic one. In the first stage, the homogenizations of few-group cross sections by DRAGON and the full core diffusion calculations by DONJON have been verified by comparing with the detailed Monte Carlo simulations. In the second stage, the burnup-dependent calculations of both assembly level and the full core level were carried out, to examine the capability of the deterministic code system DRAGON & DONJON to reliably simulate the burnup-dependent behavior of research reactors. The results indicate that both RMC and DRAGON & DONJON code system are capable of burnup-dependent neutronics analysis of research reactors, provided that appropriate treatments are applied in both assembly and core levels for the deterministic codes

  6. Nuclear reactor ex-core startup neutron detector

    International Nuclear Information System (INIS)

    Wyvill, J.R.

    1980-01-01

    A sensitive ex-core neutron detector is needed to monitor the power level of reactors during startup. The neutron detector of this invention has a photomultiplier with window resistant to radiation darkening at the input end and an electrical connector at the output end. The photomultiplier receives light signals from a neutron-responsive scintillator medium, typically a cerium-doped lithium silicate glass, that responds to neutrons after they have been thermalized by a silicone resin moderator. Enclosing and shielding the photmultiplier, the scintillator medium and the moderator is a combined lead and borated silicone resin housing

  7. Online In-Core Thermal Neutron Flux Measurement for the Validation of Computational Methods

    International Nuclear Information System (INIS)

    Mohamad Hairie Rabir; Muhammad Rawi Mohamed Zin; Yahya Ismail

    2016-01-01

    In order to verify and validate the computational methods for neutron flux calculation in RTP calculations, a series of thermal neutron flux measurement has been performed. The Self Powered Neutron Detector (SPND) was used to measure thermal neutron flux to verify the calculated neutron flux distribution in the TRIGA reactor. Measurements results obtained online for different power level of the reactor. The experimental results were compared to the calculations performed with Monte Carlo code MCNP using detailed geometrical model of the reactor. The calculated and measured thermal neutron flux in the core are in very good agreement indicating that the material and geometrical properties of the reactor core are modelled well. In conclusion one can state that our computational model describes very well the neutron flux distribution in the reactor core. Since the computational model properly describes the reactor core it can be used for calculations of reactor core parameters and for optimization of RTP utilization. (author)

  8. Neutronic calculations of PARR-1 cores using LEU silicide fuel

    International Nuclear Information System (INIS)

    Arshad, M.; Bakhtyar, S.; Hayat, T.; Salahuddin, A.

    1991-08-01

    Detailed neutronic calculations have been carried out for different PARR-1 cores utilizing low enriched uranium (LEU) silicide fuel and operating at an upgraded power of 9 MW. The calculations include the search for critical loadings in open and stall ends of the pool, neutronic analysis of the first full equilibrium core and calculations cores. The burnup study of inventory have also been carried out. Further, the reactivity coefficients of the first full power operation core are evaluated for use in the accident analysis. 14 figs. (author)

  9. Characteristics of self-powered neutron detectors used in power reactors

    International Nuclear Information System (INIS)

    Todt, William H. Sr.

    1998-01-01

    Self-powered neutron detectors have been used effectively as in-core flux monitors for over twenty-five years in nuclear power reactors worldwide. This paper describes the basic properties of these radiation sensors including their nuclear, electrical and mechanical characteristics. Recommendations are given for the proper choice of the self-powered detector emitter to provide the proper response time and radiation sensitivity desired for use in an effective in-core radiation monitoring system. Examples are shown of specific self-powered detector designs, which are being effectively, used in in-core instrumentation systems for pressurized water, heavy water and graphite moderated light water reactors. Also examples are shown of the mechanical configurations of in-core assemblies of self-powered detectors combined with in-core thermocouples presently used in pressurized water and heavy water reactors worldwide. (author)

  10. Neutron energy spectrum flux profile of Ghana's miniature neutron source reactor core

    International Nuclear Information System (INIS)

    Sogbadji, R.B.M.; Abrefah, R.G.; Ampomah-Amoako, E.; Agbemava, S.E.; Nyarko, B.J.B.

    2011-01-01

    Highlights: → The total neutron flux spectrum of the compact core of Ghana's miniature neutron source reactor was studied. → Using 20,484 energy grids, the thermal, slowing down and fast neutron energy regions were studied. - Abstract: The total neutron flux spectrum of the compact core of Ghana's miniature neutron source reactor was understudied using the Monte Carlo method. To create small energy groups, 20,484 energy grids were used for the three neutron energy regions: thermal, slowing down and fast. The moderator, the inner irradiation channels, the annulus beryllium reflector and the outer irradiation channels were the region monitored. The thermal neutrons recorded their highest flux in the inner irradiation channel with a peak flux of (1.2068 ± 0.0008) x 10 12 n/cm 2 s, followed by the outer irradiation channel with a peak flux of (7.9166 ± 0.0055) x 10 11 n/cm 2 s. The beryllium reflector recorded the lowest flux in the thermal region with a peak flux of (2.3288 ± 0.0004) x 10 11 n/cm 2 s. The peak values of the thermal energy range occurred in the energy range (1.8939-3.7880) x 10 -08 MeV. The inner channel again recorded the highest flux of (1.8745 ± 0.0306) x 10 09 n/cm 2 s at the lower energy end of the slowing down region between 8.2491 x 10 -01 MeV and 8.2680 x 10 -01 MeV, but was over taken by the moderator as the neutron energies increased to 2.0465 MeV. The outer irradiation channel recorded the lowest flux in this region. In the fast region, the core, where the moderator is found, the highest flux was recorded as expected, at a peak flux of (2.9110 ± 0.0198) x 10 08 n/cm 2 s at 6.961 MeV. The inner channel recorded the second highest while the outer channel and annulus beryllium recorded very low flux in this region. The flux values in this region reduce asymptotically to 20 MeV.

  11. PWR core design, neutronics evaluation and fuel cycle analysis for thorium-uranium breeding recycle

    International Nuclear Information System (INIS)

    Bi, G.; Liu, C.; Si, S.

    2012-01-01

    This paper was focused on core design, neutronics evaluation and fuel cycle analysis for Thorium-Uranium Breeding Recycle in current PWRs, without any major change to the fuel lattice and the core internals, but substituting the UOX pellet with Thorium-based pellet. The fuel cycle analysis indicates that Thorium-Uranium Breeding Recycle is technically feasible in current PWRs. A 4-loop, 193-assembly PWR core utilizing 17 x 17 fuel assemblies (FAs) was taken as the model core. Two mixed cores were investigated respectively loaded with mixed reactor grade Plutonium-Thorium (PuThOX) FAs and mixed reactor grade 233 U-Thorium (U 3 ThOX) FAs on the basis of reference full Uranium oxide (UOX) equilibrium-cycle core. The UOX/PuThOX mixed core consists of 121 UOX FAs and 72 PuThOX FAs. The reactor grade 233 U extracted from burnt PuThOX fuel was used to fabrication of U 3 ThOX for starting Thorium-. Uranium breeding recycle. In UOX/U 3 ThOX mixed core, the well designed U 3 ThOX FAs with 1.94 w/o fissile uranium (mainly 233 U) were located on the periphery of core as a blanket region. U 3 ThOX FAs remained in-core for 6 cycles with the discharged burnup achieving 28 GWD/tHM. Compared with initially loading, the fissile material inventory in U 3 ThOX fuel has increased by 7% via 1-year cooling after discharge. 157 UOX fuel assemblies were located in the inner of UOX/U 3 ThOX mixed core refueling with 64 FAs at each cycle. The designed UOX/PuThOX and UOX/U 3 ThOX mixed core satisfied related nuclear design criteria. The full core performance analyses have shown that mixed core with PuThOX loading has similar impacts as MOX on several neutronic characteristic parameters, such as reduced differential boron worth, higher critical boron concentration, more negative moderator temperature coefficient, reduced control rod worth, reduced shutdown margin, etc.; while mixed core with U 3 ThOX loading on the periphery of core has no visible impacts on neutronic characteristics compared

  12. Development of SiC Neutron Detector Assembly to Measure the Neutron Flux of the Reactor Core

    Energy Technology Data Exchange (ETDEWEB)

    Park, Se Hwan; Park, June Sic; Shin, Hee Sung; Kim, Ho Dong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Yong Kyun [Hanyang University, Seoul (Korea, Republic of)

    2012-05-15

    At present, the conventional detector to measure the neutron at harsh environment is a Self Powered Neutron Detector (SPND). Rhodium(Rh)-103 is in the SPND. When neutron is incident on the Rhodium, the neutron capture reaction occurs, and the Rh-103 is converted to Rh-104. The Rh-104 is decayed to Pd-104 by {beta}-decay, and electrons are generated as the decay products. Because of the half life of Rh-104, approximately 5 minutes are required for the SPND output to reach the equilibrium condition. Therefore the on-line monitoring of the nuclear reactor state is limited if the neutron flux in the reactor core is monitored with the SPND. Silicon carbide (SiC) has the possibility to be developed as neutron detector at harsh environment, because the SiC can be operative at high temperature and high neutron flux conditions. Previously, the basic operation properties of the SiC detector were studied. Also, the radiation response of the SiC detector was studied at high neutron and gamma dose rate. The measurement results for an ex-core neutron flux monitor or a neutron flux monitor of the spent fuel were published. The SiC detector was also developed as neutron detector to measure the fissile material with active interrogation method. However, the studies about the development of SiC detector are still limited. In the present work, the radiation damage effect of the SiC detector was studied. The detector structure was determined based on the study, and a neutron detector assembly was made with the SiC detectors. The neutron and gamma-ray response of the detector assembly is presented in this paper. The detector assembly was positioned in the HANARO research reactor core, the performance test was done. The preliminary results are also included in this paper

  13. Application of Integral Ex-Core and Differential In-Core Neutron Measurements for Adjustment of Fuel Burn-Up Distributions in VVER-1000

    Science.gov (United States)

    Borodkin, Pavel G.; Borodkin, Gennady I.; Khrennikov, Nikolay N.

    2010-10-01

    The paper deals with calculational and semi-analytical evaluations of VVER-1000 reactor core neutron source distributions and their influence on measurements and calculations of the integral through-vessel neutron leakage. Time-integrated neutron source distributions used for DORT calculations were prepared by two different approaches based on a) calculated fuel burn-up (standard routine procedure) and b) in-core measurements by means of SPD & TC (new approach). Taking into account that fuel burn-up distributions in operating VVER may be evaluated now by analytical methods (calculations) only it is needed to develop new approaches for testing and correction of calculational evaluations. Results presented in this paper allow to consider a reverse task of alternative estimation of fuel burn-up distributions. The approach proposed is based on adjustment (fitting) of time-integrated neutron source distributions, and hence fuel burn-up patterns in some part of reactor core, on the base of ex-core neutron leakage measurement, neutron-physical calculation and in-core SPD & TC measurement data.

  14. Solving the uncommon nuclear reactor core neutronics problems

    International Nuclear Information System (INIS)

    Vondy, D.R.; Fowler, T.B.

    1983-01-01

    Calculational procedures have been implemented for solving importance and higher harmonic neutronics problems. Solutions are obtained routinely to support analysis of reactor core performance, treating up to three space coordinates with the multigroup diffusion theory approximation to neutron transport. The techniques used and some of the calculational difficulties are discussed

  15. Benchmark for Neutronic Analysis of Sodium-cooled Fast Reactor Cores with Various Fuel Types and Core Sizes

    International Nuclear Information System (INIS)

    Stauff, N.E.; Kim, T.K.; Taiwo, T.A.; Buiron, L.; Rimpault, G.; Brun, E.; Lee, Y.K.; Pataki, I.; Kereszturi, A.; Tota, A.; Parisi, C.; Fridman, E.; Guilliard, N.; Kugo, T.; Sugino, K.; Uematsu, M.M.; Ponomarev, A.; Messaoudi, N.; Lin Tan, R.; Kozlowski, T.; Bernnat, W.; Blanchet, D.; Brun, E.; Buiron, L.; Fridman, E.; Guilliard, N.; Kereszturi, A.; Kim, T.K.; Kozlowski, T.; Kugo, T.; Lee, Y.K.; Lin Tan, R.; Messaoudi, N.; Parisi, C.; Pataki, I.; Ponomarev, A.; Rimpault, G.; Stauff, N.E.; Sugino, K.; Taiwo, T.A.; Tota, A.; Uematsu, M.M.; Monti, S.; Yamaji, A.; Nakahara, Y.; Gulliford, J.

    2016-01-01

    One of the foremost Generation IV International Forum (GIF) objectives is to design nuclear reactor cores that can passively avoid damage of the reactor when control rods fail to scram in response to postulated accident initiators (e.g. inadvertent reactivity insertion or loss of coolant flow). The analysis of such unprotected transients depends primarily on the physical properties of the fuel and the reactivity feedback coefficients of the core. Within the activities of the Working Party on Scientific Issues of Reactor Systems (WPRS), the Sodium Fast Reactor core Feed-back and Transient response (SFR-FT) Task Force was proposed to evaluate core performance characteristics of several Generation IV Sodium-cooled Fast Reactor (SFR) concepts. A set of four numerical benchmark cases was initially developed with different core sizes and fuel types in order to perform neutronic characterisation, evaluation of the feedback coefficients and transient calculations. Two 'large' SFR core designs were proposed by CEA: those generate 3 600 MW(th) and employ oxide and carbide fuel technologies. Two 'medium' SFR core designs proposed by ANL complete the set. These medium SFR cores generate 1 000 MW(th) and employ oxide and metallic fuel technologies. The present report summarises the results obtained by the WPRS for the neutronic characterisation benchmark exercise proposed. The benchmark definition is detailed in Chapter 2. Eleven institutions contributed to this benchmark: Argonne National Laboratory (ANL), Commissariat a l'energie atomique et aux energies alternatives (CEA of Cadarache), Commissariat a l'energie atomique et aux energies alternatives (CEA of Saclay), Centre for Energy Research (CER-EK), Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Helmholtz Zentrum Dresden Rossendorf (HZDR), Institute of Nuclear Technology and Energy Systems (IKE), Japan Atomic Energy Agency (JAEA), Karlsruhe Institute of Technology (KIT

  16. JOYO MK-II core characteristics database. Update to JFS-3-J3.2R

    International Nuclear Information System (INIS)

    Ohkawachi, Yasushi; Maeda, Shigetaka; Sekine, Takashi

    2003-04-01

    The 'JOYO' MK-II core characteristics database was compiled and published in 1998. Comments and requests from many users led to the creation of a revised edition in 2001. The revisions include changes to the MAGI calculation code system to use the 70 group JFS-3-J3.2 constant set processed from the JENDL-3.2 library. However, after the database was published, it was recently found that there were errors in the process of making the group constant set JFS-3-J3.2, and it was revised at JFS-3-J3.2R. Then, the group constant set was updated at JFS-3-J3.2R in this database. The MK-II core management data nad core characteristics data were recorded on CD-ROM for user convenience. The structure of the database is the same as in the first edition. The 'Configuration Data' include the core arrangement and refueling record for each operational cycle. The 'Subassembly Library Data' include the atomic number density, neutron fluence, burn-up, integral power of 362 driver fuel subassemblies and 69 irradiation test subassemblies. The 'Output Data' contain the calculated neutron flux, gamma flux, power density, linear heat rate, coolant and fuel temperature distribution of all the fuel subassemblies at the beginning and end of each operational cycle. The 'Core Characteristics Data' include the measured excess reactivity, control rod worth calibration curve, and reactivity coefficients of temperature, power and burn-up. The effect of updating the group constant set, the calculation results of excess reactivity decreased by about 0.15Δk/kk', and the effects to other core characteristics were negligible. (author)

  17. Uncertainties in HTGR neutron-physical characteristics due to computational errors and technological tolerances

    International Nuclear Information System (INIS)

    Glushkov, E.S.; Grebennik, V.N.; Davidenko, V.G.; Kosovskij, V.G.; Smirnov, O.N.; Tsibul'skij, V.F.

    1991-01-01

    The paper is dedicated to the consideration of uncertainties is neutron-physical characteristics (NPC) of high-temperature gas-cooled reactors (HTGR) with a core as spherical fuel element bed, which are caused by calculations from HTGR parameters mean values affecting NPC. Among NPC are: effective multiplication factor, burnup depth, reactivity effect, control element worth, distribution of neutrons and heat release over a reactor core, etc. The short description of calculated methods and codes used for HTGR calculations in the USSR is given and evaluations of NPC uncertainties of the methodical character are presented. Besides, the analysis of the effect technological deviations in parameters of reactor main elements such as uranium amount in the spherical fuel element, number of neutron-absorbing impurities in the reactor core and reflector, etc, upon the NPC is carried out. Results of some experimental studies of NPC of critical assemblies with graphite moderator are given as applied to HTGR. The comparison of calculations results and experiments on critical assemblies has made it possible to evaluate uncertainties of calculated description of HTGR NPC. (author). 8 refs, 8 figs, 6 tabs

  18. CAREM 25: actual status of the core neutronic design. Calculation line

    International Nuclear Information System (INIS)

    Lecot, C.A.

    1990-01-01

    This work follows the one titled 'Criteria for the CAREM 25 reactor core design. Neutronic aspects' presented at this congress, gives in detail the typical values regarding the core defined at this point. Besides, the neutronic calculation line used for the CAREM 25 reactor design is presented. (Author) [es

  19. Structure and stability of warm cores in neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Ibanez Cabanell, J M [Departamento de Mecanica y Astronomia, Facultad de Matematicas, Burjasot-Valencia (Spain)

    1981-12-01

    Relativistic equations of structure are solved using Lamb's equations of state for warm neutron degenerate matter. The stability of isothermal cores in neutron stars is discussed and also the possible compatibility of the results obtained with experimental evidence is shown.

  20. A core design study for 'zero-sodium-void-worth' cores

    International Nuclear Information System (INIS)

    Kawashima, Masatoshi; Suzuki, Masao; Hill, R.N.

    1992-01-01

    Recently, a number of low sodium-void-worth metal-fueled core design concepts have been proposed; to provide for flexibility in transuranic nuclide management strategy, core designs which exhibit a wide range of breeding characteristics have been developed. Two core concepts, a flat annular (transuranic burning) core and an absorber-type parfait (transuranic self-sufficient) core, are selected for this study. In this paper, the excess reactivity management schemes applied in the two designs are investigated in detail. In addition, the transient effect of reactivity insertions on the parfait core design is assessed. The upper and lower core regions in the parfait design are neutronically decoupled; however, the common coolant channel creates thermalhydraulic coupling. This combination of neutronic and thermalhydraulic characteristics leads to unique behavior in anticipated transient overpower events. (author)

  1. Analysis the Response Function of the HTR Ex-core Neutron Detectors in Different Core Status

    International Nuclear Information System (INIS)

    Fan Kai; Li Fu; Zhou Xuhua

    2014-01-01

    Modular high temperature gas cooled reactor HTR-PM demonstration plant, designed by INET, Tsinghua University, is being built in Shidao Bay, Shandong province, China. HTR-PM adopts pebble bed concept. The harmonic synthesis method has been developed to reconstruct the power distributions on HTR-PM. The method based on the assumption that the neutron detector readings are mainly determined by the status of the core through the power distribution, and the response functions changed little when the status of the core changed. To verify the assumption, the influence factors to the ex-core neutron detectors are calculated in this paper, including the control rod position and the temperature of the core. The results shows that when the status of the core changed, the power distribution changed more remarkable than the response function, but the detector readings could change about 5% because of the response function changing. (author)

  2. Determination of prompt neutron decay constant of the AP-600 reactor core

    International Nuclear Information System (INIS)

    Surbakti, T.

    1998-01-01

    Determination of prompt neutron decay constant of the AP-600 reactor core has been performed using combination of two codes WIMS/D4 and Batan-2DIFF. The calculation was done at beginning of cycle and all of control rods pulled out. Cell generation from various kinds of core materials was done with 4 neutron energy group in 1-D transport code (WIMS/D4). The cell is considered for 1/4 fuel assembly in cluster model with square pitch arrange and then, the dimension of its unit cell is calculated. The unit cell consist of a fuel and moderator unit. The unit cell dimension as input data of WIMS/D4 code, called it annulus, is obtained from the equivalent unit cell. Macroscopic cross sections as output was used as input on neutron diffusion code Batan-2DIFF for core calculation as appropriate with three enrichment regions of the fuel of AP-600 core, namely 2, 2.5, and 3%. From result of diffusion code ( Batan-2DIFF) is obtained the value of delayed neutron fraction of 6.932E-03 and average prompt neutron life-time of 26.38 μs, so that the value of prompt neutron decay constant is 262.8 s-1. If it is compared the calculation result with the design value, the deviation are, for the design value of delayed neutron fraction is 7.5E-03, about 8% and the design value of average prompt neutron life time is 19.6 μs, about 34% respectively. The deviation because there are still unknown several core components of AP-600, so it didn't include in calculation yet

  3. Core design characteristics of the hyper system

    International Nuclear Information System (INIS)

    Yonghee, Kim; Won-Seok, Park; Hill, R.N.

    2003-01-01

    In Korea, an accelerator-driven system (ADS) called HYPER (Hybrid Power Extraction Reactor) is being studied for the transmutation of the radioactive wastes. HYPER is a 1000 MWth lead-bismuth eutectic (LBE)-cooled ADS. In this paper, the neutronic design characteristics of HYPER are described and its transmutation performances are assessed for an equilibrium cycle. The core is loaded with a ductless fuel assembly containing transuranics (TRU) dispersion fuel pins. In HYPER, a relatively high core height, 160 cm, is adopted to maximize the multiplication efficiency of the external source. In the ductless fuel assembly, 13 non-fuel rods are used as tie rods to maintain the mechanical integrity of assembly. As the reflector material, pure lead is used to improve the neutron economy and to minimise the generation of radioactive materials. In HYPER, to minimise the burn-up reactivity swing, a B 4 C burnable absorber is employed. For efficient depletion of the B-10 absorber, the burnable absorber is loaded only in the axially-central part (92 cm long) of the 13 tie rods of each assembly. In the current design, the amount of the B 4 C absorber was determined such that the burn-up reactivity swing is about 3.0% Δk. The long-lived fission products (LLFPs) 99 Tc and 129 I are also transmuted in the HYPER core such that their supporting ratios are equal to that of the TRUs. A heterogeneous LLFP transmutation in the reflector zone has been analysed in this work. A unique feature of the HYPER system is that it has an auxiliary core shutdown system, independent of the accelerator shutdown system. It has been shown that a cylindrical B 4 C absorber between the target and fuel blanket can drastically reduce the fission power even without shutting off the accelerator power. (author)

  4. Neutronic characteristics simulation of LMFBR of great size

    International Nuclear Information System (INIS)

    Kim, Y.C.

    1987-09-01

    The CONRAD experimental program to be executed on the critical mockup MASURCA in Cadarache and use all the european plutonium stock. The objectives of this program are to reduce the uncertainties on important project parameters such as the reactivity value of control rods, the flux distribution to valid calcul methods and data to use for new LMFBR conception (heterogeneous axial core by example) and to resolve the neutronic control problems for a LMFBR of great size. The present study has permitted to define this program and its physical characteristics [fr

  5. Design and fabrication of self-powered in-core neutron flux monitor assembly

    International Nuclear Information System (INIS)

    Chung, M.K.; Cho, S.W.; Kang, H.D.; Cho, K.K.; Cho, B.S.; Kang, S.S.

    1980-01-01

    This is the final report on the prototypical fabrication of an in-core neutron flux monitor detector assembly for a specific power reactor conducted by KAERI from July 1, 1978 to December 31, 1979. It is well known that power reactors require a large number of in-core neutron flux detector for reactor regulation and the structures of detector assemblies are different from reactor to reactor. Therefore, from the nature of this project, it should be noted here that the target model of the prototypical farbrication of an in-core neutron flux monitor detector assembly is a VFD-2 System for Wolsung CANDU. It is concluded that fabrication of in-core neutron flux monitor detector assembly for CANDU reactor is technically feasible and will bring economical benefit as much as 50 % of the unit price if they are fabricated in Korea by using partially materials which are available from local market. (author)

  6. Experimental investigation of the neutron physics characteristics of the Dalat Nuclear Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Huy, Ngo Quang; Thong, Ha Van [Nuclear Research Inst., Da Lat (Viet Nam)

    1994-10-01

    The investigation of the neutron physics characteristics of the Dalat Reactor has obtained the results as follows: 1/ The effective fraction of delayed photoneutrons and the extraneous neutron source left after reactor shut down are measured. 2/ The lowest power levels of critical states of the reactor are determined. 3/The perturbation effect is investigated when a water column or a plexiglass rod is substituted for a fuel element. 4/ The relative axial and radial distributions of the thermal neutrons measured and the geometrical parameters of the core such as the inhomogeneous coefficients, the buckling, the effective height and radius, the extrapolated distances are obtained. 4/ The thermal neutron distributions are measured around the old graphite reflector. (author). 10 refs., 10 figs., 2 tabs.

  7. Characterization of a Neutron Beam Following Reconfiguration of the Neutron Radiography Reactor (NRAD Core and Addition of New Fuel Elements

    Directory of Open Access Journals (Sweden)

    Aaron E. Craft

    2016-02-01

    Full Text Available The neutron radiography reactor (NRAD is a 250 kW Mark-II Training, Research, Isotopes, General Atomics (TRIGA reactor at Idaho National Laboratory, Idaho Falls, ID, USA. The East Radiography Station (ERS is one of two neutron beams at the NRAD used for neutron radiography, which sits beneath a large hot cell and is primarily used for neutron radiography of highly radioactive objects. Additional fuel elements were added to the NRAD core in 2013 to increase the excess reactivity of the reactor, and may have changed some characteristics of the neutron beamline. This report discusses characterization of the neutron beamline following the addition of fuel to the NRAD. This work includes determination of the facility category according to the American Society for Testing and Materials (ASTM standards, and also uses an array of gold foils to determine the neutron beam flux and evaluate the neutron beam profile. The NRAD ERS neutron beam is a Category I neutron radiography facility, the highest possible quality level according to the ASTM. Gold foil activation experiments show that the average neutron flux with length-to-diameter ratio (L/D = 125 is 5.96 × 106 n/cm2/s with a 2σ standard error of 2.90 × 105 n/cm2/s. The neutron beam profile can be considered flat for qualitative neutron radiographic evaluation purposes. However, the neutron beam profile should be taken into account for quantitative evaluation.

  8. The neutron beam intensity increase by in-core fuel management enhancement in multipurpose research reactors

    International Nuclear Information System (INIS)

    Martinc, R.; Vukadin, Z.; Konstantinovic, J.

    1986-01-01

    The exploitation characteristics of an existing multipurpose research reactor can be increased not only by great reconstruction, but also, to the considerable extent, by the in-core fuel management sophistication. The optimisation of the in-core fuel management procedure in such reactors is governed (among others) by the identified reactor utilisation goals, i.e. by weighting factors dedicated to different utilisation goals, which are often (regarding the in-core fuel management procedure) highly controversial. In this work the best solution for in-core fuel management is sought, with the highest weighting factor dedicated to the neutron beam usage, rather than sample irradiation in the reactor core. The term in-core fuel management includes: the core configuration, the locations of the fresh fuel inflow zone and spent fuel excite zone, and the fuel transfers between these two zones (author)

  9. Dispersion and decay of collective modes in neutron star cores

    OpenAIRE

    Kobyakov, D. N.; Pethick, C. J.; Reddy, S.; Schwenk, A.

    2017-01-01

    We calculate the frequencies of collective modes of neutrons, protons and electrons in the outer core of neutron stars. The neutrons and protons are treated in a hydrodynamic approximation and the electrons are regarded as collisionless. The coupling of the nucleons to the electrons leads to Landau damping of the collective modes and to significant dispersion of the low-lying modes. We investigate the sensitivity of the mode frequencies to the strength of entrainment between neutrons and prot...

  10. Solving the uncommon reactor core neutronics problems

    International Nuclear Information System (INIS)

    Vondy, D.R.; Fowler, T.B.

    1980-01-01

    The common reactor core neutronics problems have fundamental neutron space, energy spectrum solutions. Typically the most positive eigenvalue is associated with an all-positive flux for the pseudo-steady-state condition (k/sub eff/), or the critical state is to be effected by selective adjustment of some variable such as the fuel concentration. With sophistication in reactor analysis has come the demand for solutions of other, uncommon neutronics problems. Importance functionss are needed for sensitivity and uncertainty analyses, as for ratios of intergral reaction rates such as the fuel conversion (breeding) ratio. The dominant higher harmonic solution is needed in stability analysis. Typically the desired neutronics solution must contain negative values to qualify as a higher harmonic or to satisfy a fixed source containing negative values. Both regular and adjoint solutions are of interest as are special integrals of the solutions to support analysis

  11. Neutronic and thermo-hydraulic design of LEU core for Japan Research Reactor 4

    International Nuclear Information System (INIS)

    Arigane, Kenji; Watanabe, Shukichi; Tsuruta, Harumichi

    1988-04-01

    As a part of the Reduced Enrichment Research and Test Reactor (RERTR) program in JAERI, the enrichment reduction for Japan Research Reactor 4 (JRR-4) is in progress. A fuel element using a 19.75 % enriched UAlx-Al dispersion type with a uranium density of 2.2 g/cm 3 was designed as the LEU fuel and the neutronic and thermo-hydraulic performances of the LEU core were compared with those of the current HEU core. The results of the neutronic design are as follows: (1) the excess reactivity of the LEU core becomes about 1 % Δk/k less, (2) the thermal neutron flux in the fuel region decreases about 25 % on the average, (3) the thermal neutron fluxes in the irradiation pipes are almost the same and (4) the core burnup lifetime becomes about 20 % longer. The thermo-hydraulic design also shows that: (1) the fuel plate surface temperature decreases about 10 deg C due to the increase of the number of fuel plates and (2) the temperature margin with respect to the ONB temperature increases. Therefore, it is confirmed that the same utilization performance as the HEU core is attainable with the LEU core. (author)

  12. LAMBDA-hyperon superfluidity in neutron star cores

    CERN Document Server

    Takatsuka, T

    2000-01-01

    Superfluidity of LAMBDA hyperons in neutron star cores is investigated by a realistic approach to use reliable LAMBDA LAMBDA interactions and the effective mass of LAMBDA based on the G-matrix calculations. It is found that LAMBDA superfluid can exist at rho approx = (rho sub t approx rho sub d) with rho sub t approx = 2 rho sub 0 (rho sub 0 being the nuclear density) and rho sub d approx = (3 - 4.5)rho sub 0 , depending on hyperon core models.

  13. Neutron and thermal dynamics of a gaseous core fission reactor

    International Nuclear Information System (INIS)

    van Dam, H.; Kuijper, J.C.; Stekelenburg, A.J.C.; Hoogenboom, J.E.; Boersma-Klein, W.; Kistemaker, J.

    1989-01-01

    In this paper neutron kinetics and thermal dynamics of a Gaseous Core Fission Reactor with magnetical pumping are shown to have many unconventional aspects. Attention is focused on the properties of the fuel gas, the non-linear neutron kinetics and the energy balance in thermodynamical cycles

  14. Study on Reactor Physics Characteristic of the PWR Core Using UO2

    International Nuclear Information System (INIS)

    Tukiran Surbakti

    2009-01-01

    Study on reactor physics characteristic of the PWR core using UO 2 fuel it is necessary to be done to know the characteristic of geometry, condition and configuration of pin cell in the fuel assembly Because the geometry, configuration and condition of the pin cell in fuel core determine the loading strategy of in-core fuel management Calculation of k e ff is a part of the neutronic core parameter calculation to know the reactor physics characteristic. Generally, core calculation is done using computer code starts from modelling one unit fuel lattice cell, fuel assembly, reflector, irradiation facility and until core reactor. In this research, the modelling of pin cell and fuel assembly of the PWR 17 ×17 is done homogeneously. Calculation of the k-eff is done with variation of the fuel volume fraction, fuel pin diameter, fuel enrichment. The calculation is using by NITAWL and CENTRM, and then the results will be compared to KENOVI code. The result showed that the value of k e ff for pin cell and fuel assembly PWR 17 ×17 is not different significantly with homogenous and heterogenous models. The results for fuel volume fraction of 0.5; rod pitch 1.26 cm and fuel pin diameter of 9.6 mm is critical with burn up of 35,0 GWd/t. The modeling and calculation method accurately is needed to calculation the core physic parameter, but sometimes, it is needed along time to calculate one model. (author)

  15. Self powered neutron detectors as in-core detectors for Sodium-cooled Fast Reactors

    Science.gov (United States)

    Verma, V.; Barbot, L.; Filliatre, P.; Hellesen, C.; Jammes, C.; Svärd, S. Jacobsson

    2017-07-01

    Neutron flux monitoring system forms an integral part of the design of a Generation IV sodium cooled fast reactor. Diverse possibilities of detector system installation must be studied for various locations in the reactor vessel in order to detect any perturbations in the core. Results from a previous paper indicated that it is possible to detect changes in neutron source distribution initiated by an inadvertent withdrawal of outer control rod with in-vessel fission chambers located azimuthally around the core. It is, however, not possible to follow inner control rod withdrawal and precisely know the location of the perturbation in the core. Hence the use of complimentary in-core detectors coupled with the peripheral fission chambers is proposed to enable robust core monitoring across the radial direction. In this paper, we assess the feasibility of using self-powered neutron detectors (SPNDs) as in-core detectors in fast reactors for detecting local changes in the power distribution when the reactor is operated at nominal power. We study the neutron and gamma contributions to the total output current of the detector modelled with Platinum as the emitter material. It is shown that this SPND placed in an SFR-like environment would give a sufficiently measurable prompt neutron induced current of the order of 600 nA/m. The corresponding induced current in the connecting cable is two orders of magnitude lower and can be neglected. This means that the SPND can follow in-core power fluctuations. This validates the operability of an SPND in an SFR-like environment.

  16. Burnup dependent core neutronic calculations for research and training reactors via SCALE4.4

    International Nuclear Information System (INIS)

    Tombakoglu, M.; Cecen, Y.

    2001-01-01

    In this work, the full core modelling is performed to improve neutronic analyses capability for nuclear research reactors using SCALE4.4 code system. KENOV.a module of SCALE4.4 code system is utilized for full core neutronic analysis. The ORIGEN-S module is coupled with the KENOV.a module to perform burnup dependent neutronic analyses. Results of neutronic calculations for 1 st cycle of Cekmece TR-2 research reactor are presented. In particular, coupling of KENOV.a and ORIGEN-S modules of SCALE4.4 is discussed. The preliminary results of 2-D burnup dependent neutronic calculations are also given. These results are extended to burnup dependent core calculations of TRIGA Mark-II research reactors. The code system developed here is similar to the code system that couples MCNP and ORIGEN2.(author)

  17. Analysis of advanced sodium-cooled fast reactor core designs with improved safety characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Sun, K.

    2012-09-15

    Currently, the large majority of nuclear power plants are operated with thermal-neutron spectra and need regular fuel loading of enriched uranium. According to the identified conventional uranium resources and their current consumption rate, only about 100 years’ nuclear fuel supply is foreseen. A reactor operated with a fast-neutron spectrum, on the other hand, can induce self-sustaining, or even breeding, conditions for its inventory of fissile material, which effectively allow it, after the initial loading, to be refueled using simply natural or depleted uranium. This implies a much more efficient use of uranium resources. Moreover, minor actinides become fissionable in a fast-neutron spectrum, enabling full closure of the fuel cycle and leading to a minimization of long-lived radioactive wastes. The sodium-cooled fast reactor (SFR) is one of the most promising candidates to meet the Generation IV International Forum (GIF) declared goals. In comparison to other Generation IV systems, there is considerable design experience related to the SFR, and also more than 300 reactor years of practical operation. As a fast-neutron-spectrum system, the long-term operation of an SFR core in a closed fuel cycle will lead to an equilibrium state, where both reactivity and fuel mass flow stabilize. Although the SFR has many advantageous characteristics, it has one dominating neutronics drawback: there is generally a positive reactivity effect when sodium coolant is removed from the core. This so-called sodium void effect becomes even stronger in the equilibrium closed fuel cycle. The goal of the present doctoral research is to improve the safety characteristics of advanced SFR core designs, in particular, from the viewpoint of the positive sodium void reactivity effect. In this context, particular importance has been given to the dynamic core behavior under a hypothetical unprotected loss-of-flow (ULOF) accident scenario, in which sodium boiling occurs. The proposed

  18. Analysis of advanced sodium-cooled fast reactor core designs with improved safety characteristics

    International Nuclear Information System (INIS)

    Sun, K.

    2012-09-01

    Currently, the large majority of nuclear power plants are operated with thermal-neutron spectra and need regular fuel loading of enriched uranium. According to the identified conventional uranium resources and their current consumption rate, only about 100 years’ nuclear fuel supply is foreseen. A reactor operated with a fast-neutron spectrum, on the other hand, can induce self-sustaining, or even breeding, conditions for its inventory of fissile material, which effectively allow it, after the initial loading, to be refueled using simply natural or depleted uranium. This implies a much more efficient use of uranium resources. Moreover, minor actinides become fissionable in a fast-neutron spectrum, enabling full closure of the fuel cycle and leading to a minimization of long-lived radioactive wastes. The sodium-cooled fast reactor (SFR) is one of the most promising candidates to meet the Generation IV International Forum (GIF) declared goals. In comparison to other Generation IV systems, there is considerable design experience related to the SFR, and also more than 300 reactor years of practical operation. As a fast-neutron-spectrum system, the long-term operation of an SFR core in a closed fuel cycle will lead to an equilibrium state, where both reactivity and fuel mass flow stabilize. Although the SFR has many advantageous characteristics, it has one dominating neutronics drawback: there is generally a positive reactivity effect when sodium coolant is removed from the core. This so-called sodium void effect becomes even stronger in the equilibrium closed fuel cycle. The goal of the present doctoral research is to improve the safety characteristics of advanced SFR core designs, in particular, from the viewpoint of the positive sodium void reactivity effect. In this context, particular importance has been given to the dynamic core behavior under a hypothetical unprotected loss-of-flow (ULOF) accident scenario, in which sodium boiling occurs. The proposed

  19. Simulating Neutronic Core Parameters in a Research and Test Reactor

    International Nuclear Information System (INIS)

    Selim, H.K.; Amin, E.A.; Koutb, M.E.

    2011-01-01

    The present study proposes an Artificial Neural Network (ANN) modeling technique that predicts the control rods positions in a nuclear research reactor. The neutron, flux in the core of the reactor is used as the training data for the neural network model. The data used to train and validate the network are obtained by modeling the reactor core with the neutronic calculation code: CITVAP. The type of the network used in this study is the feed forward multilayer neural network with the backpropagation algorithm. The results show that the proposed ANN has good generalization capability to estimate the control rods positions knowing neutron flux for a research and test reactor. This method can be used to predict critical control rods positions to be used for reactor operation after reload

  20. Dispersion and decay of collective modes in neutron star cores

    Science.gov (United States)

    Kobyakov, D. N.; Pethick, C. J.; Reddy, S.; Schwenk, A.

    2017-08-01

    We calculate the frequencies of collective modes of neutrons, protons, and electrons in the outer core of neutron stars. The neutrons and protons are treated in a hydrodynamic approximation and the electrons are regarded as collisionless. The coupling of the nucleons to the electrons leads to Landau damping of the collective modes and to significant dispersion of the low-lying modes. We investigate the sensitivity of the mode frequencies to the strength of entrainment between neutrons and protons, which is not well characterized. The contribution of collective modes to the thermal conductivity is evaluated.

  1. Core excitations across the neutron shell gap in 207Tl

    Directory of Open Access Journals (Sweden)

    E. Wilson

    2015-07-01

    Full Text Available The single closed-neutron-shell, one proton–hole nucleus 207Tl was populated in deep-inelastic collisions of a 208Pb beam with a 208Pb target. The yrast and near-yrast level scheme has been established up to high excitation energy, comprising an octupole phonon state and a large number of core excited states. Based on shell-model calculations, all observed single core excitations were established to arise from the breaking of the N=126 neutron core. While the shell-model calculations correctly predict the ordering of these states, their energies are compressed at high spins. It is concluded that this compression is an intrinsic feature of shell-model calculations using two-body matrix elements developed for the description of two-body states, and that multiple core excitations need to be considered in order to accurately calculate the energy spacings of the predominantly three-quasiparticle states.

  2. Neutronic analysis of the ford nuclear reactor leu core

    International Nuclear Information System (INIS)

    Raza, S.S.; Hayat, T.

    1989-08-01

    Neutronic analysis of the ford nuclear reactor low enriched uranium core has been carried out to gain confidence in the com puting methodology being used for Pakistan Research Reactor-1 core conversion calculations. The computed value of the effective multiplication factor (Keff) is found to be in good agreement with that quoted by others. (author). 6 figs

  3. CORE SIM: A multi-purpose neutronic tool for research and education

    International Nuclear Information System (INIS)

    Demaziere, Christophe

    2011-01-01

    Highlights: → A highly flexible neutronic core simulator was developed. → The tool estimates the static neutron flux, the eigenmodes, and the neutron noise. → The tool was successfully validated via many benchmark cases. → The tool can be used for research and education. → The tool is freely available. - Abstract: This paper deals with the development, validation, and demonstration of an innovative neutronic tool. The novelty of the tool resides in its versatility, since many different systems can be investigated and different kinds of calculations can be performed. More precisely, both critical systems and subcritical systems with an external neutron source can be studied, and static and dynamic cases in the frequency domain (i.e. for stationary fluctuations) can be considered. In addition, the tool has the ability to determine the different eigenfunctions of any nuclear core. For each situation, the static neutron flux, the different eigenmodes and eigenvalues, the first-order neutron noise, and their adjoint functions are estimated, as well as the effective multiplication factor of the system. The main advantages of the tool, which is entirely MatLab based, lie with the robustness of the implemented numerical algorithms, its high portability between different computer platforms and operative systems, and finally its ease of use since no input deck writing is required. The present version of the tool, which is based on two-group diffusion theory, is mostly suited to investigate thermal systems. The definition of both the static and dynamic core configurations directly from the static macroscopic cross-sections and their fluctuations, respectively, makes the tool particularly well suited for research and education. Some of the many benchmark cases used to validate the tool are briefly reported. The static and dynamic capabilities of the tool are also demonstrated for the following configurations: a vibrating control rod, a perturbation traveling upwards

  4. Transient thermal-hydraulic/neutronic analysis in a VVER-1000 reactor core

    International Nuclear Information System (INIS)

    Seyed khalil Mousavian; Mohammad Mohsen Ertejaei; Majid Shahabfar

    2005-01-01

    Full text of publication follows: Nowadays, coupled thermal-hydraulic and three-dimensional neutronic codes in order to consider different feedback effects is state of the art subject in nuclear engineering researches. In this study, RELAP5/COBRA and WIMS/CITATION codes are implemented to investigate the VVER-1000 reactor core parameters during Large Break Loss of Coolant Accident (LB-LOCA). In a LB-LOCA, the primary side pressure, coolant density and fuel temperature strongly decrease but the cladding temperature experiences a strong peak. For this purpose, the RELAP5 Best Estimate (BE) system code is used to simulate the LB-LOCA analysis in VVER-1000 nuclear thermal-hydraulic loops. Also, the modified COBRA-IIIc software as a sub-channel analysis code is applied for modeling of VVER-1000 reactor core. Moreover, WIMS and CITATION as a cross section and 3-D neutron flux codes are coupled with thermal-hydraulic codes with the aim of consider the spatial effects through the reactor core. For this reason, suitable software is developed to link and speed up the coupled thermalhydraulic and three-dimensional neutronic calculations. This software utilizes of external coupling concept in order to integrate thermal-hydraulic and neutronic calculations. (authors)

  5. Two-component Superfluid Hydrodynamics of Neutron Star Cores

    Energy Technology Data Exchange (ETDEWEB)

    Kobyakov, D. N. [Institute of Applied Physics of the Russian Academy of Sciences, 603950 Nizhny Novgorod (Russian Federation); Pethick, C. J., E-mail: dmitry.kobyakov@appl.sci-nnov.ru, E-mail: pethick@nbi.dk [The Niels Bohr International Academy, The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen Ø (Denmark)

    2017-02-20

    We consider the hydrodynamics of the outer core of a neutron star under conditions when both neutrons and protons are superfluid. Starting from the equation of motion for the phases of the wave functions of the condensates of neutron pairs and proton pairs, we derive the generalization of the Euler equation for a one-component fluid. These equations are supplemented by the conditions for conservation of neutron number and proton number. Of particular interest is the effect of entrainment, the fact that the current of one nucleon species depends on the momenta per nucleon of both condensates. We find that the nonlinear terms in the Euler-like equation contain contributions that have not always been taken into account in previous applications of superfluid hydrodynamics. We apply the formalism to determine the frequency of oscillations about a state with stationary condensates and states with a spatially uniform counterflow of neutrons and protons. The velocities of the coupled sound-like modes of neutrons and protons are calculated from properties of uniform neutron star matter evaluated on the basis of chiral effective field theory. We also derive the condition for the two-stream instability to occur.

  6. Optimizing a three-element core design for the Advanced Neutron Source Reactor

    International Nuclear Information System (INIS)

    West, C.D.

    1995-01-01

    Source of neutrons in the proposed Advanced Neutron Source facility is a multipurpose research reactor providing 5-10 times the flux, for neutron beams, of the best existing facilities. Baseline design for the reactor core, based on the ''no new inventions'' rule, was an assembly of two annular fuel elements similar to those used in the Oak Ridge and Grenoble high flux reactors, containing highly enriched U silicide particles. DOE commissioned a study of the use of medium- or low-enriched U; a three-element core design was studied as a means to provide extra volume to accommodate the additional U compound required when the fissionable 235 U has to be diluted with 238 U to reduce the enrichment. This paper describes the design and optimization of that three-element core

  7. Neutron radiography (NRAD) reactor 64-element core upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Bess, John D. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-03-01

    The neutron radiography (NRAD) reactor is a 250 kW TRIGA (registered) (Training, Research, Isotopes, General Atomics) Mark II , tank-type research reactor currently located in the basement, below the main hot cell, of the Hot Fuel Examination Facility (HFEF) at the Idaho National Laboratory (INL). It is equipped with two beam tubes with separate radiography stations for the performance of neutron radiography irradiation on small test components. The interim critical configuration developed during the core upgrade, which contains only 62 fuel elements, has been evaluated as an acceptable benchmark experiment. The final 64-fuel-element operational core configuration of the NRAD LEU TRIGA reactor has also been evaluated as an acceptable benchmark experiment. Calculated eigenvalues differ significantly (approximately ±1%) from the benchmark eigenvalue and have demonstrated sensitivity to the thermal scattering treatment of hydrogen in the U-Er-Zr-H fuel.

  8. Calculation of the neutron noise induced by periodic deformations of a large sodium-cooled fast reactor core

    International Nuclear Information System (INIS)

    Zylbersztejn, F.; Tran, H.N.; Pazsit, I.; Filliatre, P.; Jammes, C.

    2014-01-01

    The subject of this paper is the calculation of the neutron noise induced by small-amplitude stationary radial variations of the core size (core expansion/compaction, also called core flowering) of a large sodium-cooled fast reactor. The calculations were performed on a realistic model of the European Sodium Fast Reactor (ESFR) core with a thermal output of 3600 MW(thermal), using a multigroup neutron noise simulator. The multigroup cross sections and their fluctuations that represent the core geometry changes for the neutron noise calculations were generated by the code ERANOS. The space and energy dependences of the noise source represented by the core expansion/compaction and the induced neutron noise are calculated and discussed. (authors)

  9. Monte Carlo neutronics analysis of the ANS reactor three-element core design

    International Nuclear Information System (INIS)

    Wemple, C.A.

    1995-01-01

    The advanced neutron source (ANS) is a world-class research reactor and experimental center for neutron research, currently being designed at the Oak Ridge National Laboratory (ORNL). The reactor consists of a 330-MW(fission) highly enriched uranium core, which is cooled, moderated, and reflected with heavy water. It was designed to be the preeminent ultrahigh neutron flux reactor in the world, with facilities for research programs in biology, materials science, chemistry, fundamental and nuclear physics, and analytical chemistry. Irradiation facilities are provided for a variety of isotope production capabilities, as well as materials irradiation. This paper summarizes the neutronics efforts at the Idaho National Engineering Laboratory in support of the development and analysis of the three-element core for the advanced conceptual design phase

  10. Vanadium Beta Emission Detectors for Reactor In-Core Neutron Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, I Oe; Soederlund, B

    1969-06-15

    In-core flux measurements are becoming increasingly important in both power reactors and test reactors. In particular power distribution measurements in large power reactors have to be performed with a great number of neutron detectors capable of withstanding high integrated flux values. This report presents a summary of the development and application of a new type of nuclear radiation sensor, a beta emission detector, for measurements at high neutron flux levels. The work has been carried out at the Section for Instrumentation and has been the basis for a type of neutron detector employed in the Marviken in-core system as well as for other types. The report describes the design and principle of operation, experiments and tests. Also included are the results and comments from a long-term irradiation of some detectors in the Halden reactor.

  11. Criteria design of the CAREM 25 reactor's core: neutronic aspects

    International Nuclear Information System (INIS)

    Lecot, C.A.

    1990-01-01

    The criteria that guided the design, from the neutronic point of view, of the CAREM reactor's core were presented. The minimum set of objectives and general criteria which permitted the design of the particular systems constituting the CAREM 25 reactor's core is detailed and stated. (Author) [es

  12. Study on development of virtual reactor core laboratory (1). Development of prototype coupled neutronic, thermal-hydraulic and structural analysis system

    International Nuclear Information System (INIS)

    Uto, Nariaki; Sugaya, Toshio; Tsukimori, Kazuyuki; Negishi, Hitoshi; Enuma, Yasuhiro; Sakai, Takaaki

    1999-09-01

    A study on development of virtual reactor core laboratory, which is to conduct numerical experiments representative of complicated physical phenomena in practical reactor core systems on a computational environment, has progressed at Japan Nuclear Cycle Development Institute (JNC). The study aims at systematic evaluation of these phenomena into which nuclear reactions, thermal-hydraulic characteristics, structural responses and fuel behaviors combine, and effective utilization of the obtained comprehension for core design. This report presents a production of a prototype computational system which is required to construct the virtual reactor core laboratory. This system is to evaluate reactor core performance under the coupled neutronic, thermal-hydraulic and structural phenomena, and is composed of two analysis tools connected by a newly developed interface program; 1) an existing space-dependent coupled neutronic and thermal-hydraulic analysis system arranged at JNC and 2) a core deformation analysis code. It acts on a cluster of several DEC/Alpha workstations. A specific library called MPI1 (Message Passing Interface 1) is incorporated as a tool for communicating among the analysis modules consisting of the system. A series of calculations for simulating a sequence of Unprotected Loss Of Heat Sink (ULOHS) coupled with rapid drop of some neutron absorber devices in a prototype fast reactor is tried to investigate how the system works. The obtained results show the core deformation behavior followed by the reactivity change that can be properly evaluated. The results of this report show that the system is expected to be useful for analyzing sensitivity of reactor core performance with respect to uncertainties of various design parameters and establishing a concept of passive safety reactor system, taking into account space distortion of neutron flux distribution during abnormal events as well as reactivity feedback from core deformation. (author)

  13. Monitoring core barrel motion by neutron noise diagnostics

    International Nuclear Information System (INIS)

    Por, G.

    1985-08-01

    The core barrel motion is detected by ionization chambers located around the reactor vessel. The method is based on the measurement of the neutron flux fluctuations. Calculations to determine the direction and the size of the motion are discussed. The identification of core barrel motion and its connection with the error of one of the main circulating pumps in the Rheinsberg nuclear power plant are described. Core barrel motion of 10 Hz with an amplitude less than 50 μm could be diagnozed at the Paks-1 reactor using the Dutch high accuracy evaluation system. (V.N.)

  14. Exchange of transverse plasmons and electrical conductivity of neutron star cores

    International Nuclear Information System (INIS)

    Shternin, P. S.

    2008-01-01

    We study the electrical conductivity in magnetized neutron star cores produced by collisions between charged particles. We take into account the ordinary exchange of longitudinal plasmons and the exchange of transverse plasmons in collisions between particles. The exchange of transverse plasmons is important for collisions between relativistic particles, but it has been disregarded previously when calculating the electrical conductivity. We show that taking this exchange into account changes the electrical conductivity, including its temperature dependence (thus, for example, the temperature dependence of the electrical resistivity along the magnetic field in the low-temperature limit takes the form R parallel ∝ T 5/3 instead of the standard dependence R parallel ∝ T 2 for degenerate Fermi systems). We briefly describe the effect of possible neutron and proton superfluidity in neutron star cores on the electrical conductivity and discuss various scenarios for the evolution of neutron star magnetic fields

  15. Measurement of the Effective Delayed Neutron Fraction in Three Different FR0-cores

    Energy Technology Data Exchange (ETDEWEB)

    Moberg, L; Kockum, J

    1972-06-15

    The effective delayed neutron fraction, beta{sub eff}, has been measured in the three cores 3, 5 and 8 of the fast zero-power reactor FR0. The variance-to-mean method, in which the statistical fluctuations of the neutron density in the reactor is studied, was used. A 3He-gas scintillator was placed in the reflector and used as a neutron detector. It was made more sensitive to fast neutrons by surrounding it with polythene. Its efficiency, expressed as the number of counts per fission in the reactor, was determined using fission chambers with known efficiency placed in the core. The space distribution of the fission rate in the core was determined by foil activation technique. The experimental results were compared with theoretical beta{sub eff}-values calculated with perturbation theory. The difference was about 3 % which is of the same order as the accuracy in the experimental values

  16. Method and apparatus for measuring thermal neutron characteristics

    International Nuclear Information System (INIS)

    Johnstone, C.W.

    1983-01-01

    The thermal neutron decay characteristics of an earth formation are measured by detecting indications of the thermal neutron concentration in the formation during a selected set of two measurement intervals following irradiation of the formation with a burst of fast neutrons. These measurement intervals may comprise a sequence of time gates following a delay after the neutron burst. The duration of the neutron bursts, of the delay between the burst and the start of the sequence, and of the individual time gates, may all be adjusted by a common, selected one of a finite number of scale factor values. The set of two measurement intervals is selected from among a number of possible sets as a function of a previously measured value of the decay characteristic. Each measurement interval set is used over only a specific range of decay characteristic values for which it has been determined, in accordance with a previously established relationship between the decay characteristic value and a function of the thermal neutron concentration measurements for the set, to afford enhanced statistical accuracy in the measured value of the decay characteristic. (author)

  17. Thermal-hydraulics and neutronics studies on the FP7 CP-ESFR oxide and carbide cores

    Energy Technology Data Exchange (ETDEWEB)

    Ammirabile, L.; Tsige-Tamirat, H. [European Commission, JRC, Inst. for Energy, Petten (Netherlands)

    2011-07-01

    In the framework of the the Collaborative Project on European Sodium Fast Reactor (CP-ESFR) two core designs that are currently being proposed for the 3600 MWth sodium-cooled reactor concept: one is based on oxide fuel and the other on carbide fuel. Using the European Safety Assessment Platform (ESAP), JRC-IE has conducted static calculation on neutronics (incl. reactivity coefficients) and thermal-hydraulic characteristics for both oxide and carbide reference cores. The quantities evaluated include: keff, coolant heat-up, void, and Doppler reactivity coefficients, axial and radial expansion reactivity coefficients, pin-by-pin calculated power profiles, average and peak channel temperatures. This paper presents the ESAP models applied in the study together with the relevant results for the oxide and carbide core. (author)

  18. Thermal-hydraulics and neutronics studies on the FP7 CP-ESFR oxide and carbide cores

    International Nuclear Information System (INIS)

    Ammirabile, L.; Tsige-Tamirat, H.

    2011-01-01

    In the framework of the the Collaborative Project on European Sodium Fast Reactor (CP-ESFR) two core designs that are currently being proposed for the 3600 MWth sodium-cooled reactor concept: one is based on oxide fuel and the other on carbide fuel. Using the European Safety Assessment Platform (ESAP), JRC-IE has conducted static calculation on neutronics (incl. reactivity coefficients) and thermal-hydraulic characteristics for both oxide and carbide reference cores. The quantities evaluated include: keff, coolant heat-up, void, and Doppler reactivity coefficients, axial and radial expansion reactivity coefficients, pin-by-pin calculated power profiles, average and peak channel temperatures. This paper presents the ESAP models applied in the study together with the relevant results for the oxide and carbide core. (author)

  19. Neutron measurements in the core and blankets of the reactor Rapsodie

    International Nuclear Information System (INIS)

    Gourdon, J.; Edeline, J.C.

    1968-01-01

    Beside a brief general discussion, the report contains all the core and blanket neutronic measurements. It covers successively the methods, the measurements themselves and the results. The later concern: spectral indexes, axial and radial fission rates, activation foil measurements and neutronic power determination. (authors) [fr

  20. Neutron flux measurement in the central channel (XC-1) of TRIGA 14 MW LEU core

    International Nuclear Information System (INIS)

    BARBOS, D.; BUSUIOC, P.; ROTH, Cs.; PAUNOIU, C.

    2008-01-01

    The TRIGA 14 MW reactor, operated by Institute for Nuclear Research Pitesti, Romania, is a pool type reactor, and has a rectangular shape which holds fuel bundles and is surrounded with beryllium reflectors. Each fuel bundle is composed of 25 nuclear fuel rods. The TRIGA 14 MW reactor was commissioned 28 years ago with HEU fuel rods. The conversion was gradually achieved, starting in February 1992 and completed in March 2006. The full conversion of the 14 MW TRIGA Research Reactor was completed in May 2006 and each step of the conversion was achieved by removal of HEU fuel, replaced by LEU fuel, accompanied by a large set of theoretical evaluation and physical measurements intended to confirm the performances of gradual conversion. After the core full conversion, a program of measurements and comparisons with previous results of core physics and measurements is underway, allowing data acquisition for normal operation, demonstration of safety and economics of the converted core. Neutron flux spectrum measurements in the XC in the XC-1 water 1 water-filled channel were performed using multi multi-foil activation techniques. The neutron spectra and flux are obtained by unfolding from measured reaction rates using SAND II computer code. The integral neutron flux value for LEU core is greater of 13% than for the standard HEU core. Also thermal neutron flux value for converted LEU core is smaller by 0.38% than for the standard HEU core. These differences appear because the foil activation detectors have been irradiated using a pneumatic rabbit having a diameter of 32 mm, whereas foil irradiations in standard HEU core has been performed with a pneumatic rabbit having a diameter of 14 mm, and therefore the neutron spectra in LEU core is less thermalized and the weight of fast neutron is greater

  1. Thermal neutron flux measurement using self-powered neutron detector (SPND) at out-core locations of TRIGA PUSPATI Reactor (RTP)

    Science.gov (United States)

    Ali, Nur Syazwani Mohd; Hamzah, Khaidzir; Mohamad Idris, Faridah; Hairie Rabir, Mohamad

    2018-01-01

    The thermal neutron flux measurement has been conducted at the out-core location using self-powered neutron detectors (SPNDs). This work represents the first attempt to study SPNDs as neutron flux sensor for developing the fault detection system (FDS) focusing on neutron flux parameters. The study was conducted to test the reliability of the SPND’s signal by measuring the neutron flux through the interaction between neutrons and emitter materials of the SPNDs. Three SPNDs were used to measure the flux at four different radial locations which located at the fission chamber cylinder, 10cm above graphite reflector, between graphite reflector and tank liner and fuel rack. The measurements were conducted at 750 kW reactor power. The outputs from SPNDs were collected through data acquisition system and were corrected to obtain the actual neutron flux due to delayed responses from SPNDs. The measurements showed that thermal neutron flux between fission chamber location near to the tank liner and fuel rack were between 5.18 × 1011 nv to 8.45 × 109 nv. The average thermal neutron flux showed a good agreement with those from previous studies that has been made using simulation at the same core configuration at the nearest irradiation facilities with detector locations.

  2. Neutron irradiation facility and its characteristics

    International Nuclear Information System (INIS)

    Oyama, Yukio; Noda, Kenji

    1995-01-01

    A neutron irradiation facility utilizing spallation reactions with high energy protons is conceived as one of the facilities in 'Proton Engineering center (PEC)' proposed at JAERI. Characteristics of neutron irradiation field of the facility for material irradiation studies are described in terms of material damage parameters, influence of the pulse irradiation, irradiation environments other than neutronics features, etc., comparing with the other sorts of neutron irradiation facilities. Some perspectives for materials irradiation studies using PEC are presented. (author)

  3. Sensitive and transportable gadolinium-core plastic scintillator sphere for neutron detection and counting

    Energy Technology Data Exchange (ETDEWEB)

    Dumazert, Jonathan; Coulon, Romain; Carrel, Frédérick; Corre, Gwenolé; Normand, Stéphane [CEA, LIST, Laboratoire Capteurs Architectures Electroniques, 91191 Gif-sur-Yvette (France); Méchin, Laurence [CNRS, UCBN, Groupe de Recherche en Informatique, Image, Automatique et Instrumentation de Caen, 14050 Caen (France); Hamel, Matthieu [CEA, LIST, Laboratoire Capteurs Architectures Electroniques, 91191 Gif-sur-Yvette (France)

    2016-08-21

    Neutron detection forms a critical branch of nuclear-related issues, currently driven by the search for competitive alternative technologies to neutron counters based on the helium-3 isotope. The deployment of plastic scintillators shows a high potential for efficient detectors, safer and more reliable than liquids, more easily scalable and cost-effective than inorganic. In the meantime, natural gadolinium, through its 155 and mostly 157 isotopes, presents an exceptionally high interaction probability with thermal neutrons. This paper introduces a dual system including a metal gadolinium core inserted at the center of a high-scale plastic scintillator sphere. Incident fast neutrons are thermalized by the scintillator shell and then may be captured with a significant probability by gadolinium 155 and 157 nuclei in the core. The deposition of a sufficient fraction of the capture high-energy prompt gamma signature inside the scintillator shell will then allow discrimination from background radiations by energy threshold, and therefore neutron detection. The scaling of the system with the Monte Carlo MCNPX2.7 code was carried out according to a tradeoff between the moderation of incident fast neutrons and the probability of slow neutron capture by a moderate-cost metal gadolinium core. Based on the parameters extracted from simulation, a first laboratory prototype for the assessment of the detection method principle has been synthetized. The robustness and sensitivity of the neutron detection principle are then assessed by counting measurement experiments. Experimental results confirm the potential for a stable, highly sensitive, transportable and cost-efficient neutron detector and orientate future investigation toward promising axes.

  4. Sensitive and transportable gadolinium-core plastic scintillator sphere for neutron detection and counting

    International Nuclear Information System (INIS)

    Dumazert, Jonathan; Coulon, Romain; Carrel, Frédérick; Corre, Gwenolé; Normand, Stéphane; Méchin, Laurence; Hamel, Matthieu

    2016-01-01

    Neutron detection forms a critical branch of nuclear-related issues, currently driven by the search for competitive alternative technologies to neutron counters based on the helium-3 isotope. The deployment of plastic scintillators shows a high potential for efficient detectors, safer and more reliable than liquids, more easily scalable and cost-effective than inorganic. In the meantime, natural gadolinium, through its 155 and mostly 157 isotopes, presents an exceptionally high interaction probability with thermal neutrons. This paper introduces a dual system including a metal gadolinium core inserted at the center of a high-scale plastic scintillator sphere. Incident fast neutrons are thermalized by the scintillator shell and then may be captured with a significant probability by gadolinium 155 and 157 nuclei in the core. The deposition of a sufficient fraction of the capture high-energy prompt gamma signature inside the scintillator shell will then allow discrimination from background radiations by energy threshold, and therefore neutron detection. The scaling of the system with the Monte Carlo MCNPX2.7 code was carried out according to a tradeoff between the moderation of incident fast neutrons and the probability of slow neutron capture by a moderate-cost metal gadolinium core. Based on the parameters extracted from simulation, a first laboratory prototype for the assessment of the detection method principle has been synthetized. The robustness and sensitivity of the neutron detection principle are then assessed by counting measurement experiments. Experimental results confirm the potential for a stable, highly sensitive, transportable and cost-efficient neutron detector and orientate future investigation toward promising axes.

  5. Self powered neutron detectors as in-core detectors for Sodium-cooled Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Verma, V., E-mail: vasudha.verma@physics.uu.se [Division of Applied Nuclear Physics, Uppsala University, Box 516, SE-75120 Uppsala (Sweden); CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St-Paul-lez-Durance (France); Barbot, L.; Filliatre, P. [CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St-Paul-lez-Durance (France); Hellesen, C. [Division of Applied Nuclear Physics, Uppsala University, Box 516, SE-75120 Uppsala (Sweden); Jammes, C. [CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St-Paul-lez-Durance (France); Svärd, S. Jacobsson [Division of Applied Nuclear Physics, Uppsala University, Box 516, SE-75120 Uppsala (Sweden)

    2017-07-11

    Neutron flux monitoring system forms an integral part of the design of a Generation IV sodium cooled fast reactor. Diverse possibilities of detector system installation must be studied for various locations in the reactor vessel in order to detect any perturbations in the core. Results from a previous paper indicated that it is possible to detect changes in neutron source distribution initiated by an inadvertent withdrawal of outer control rod with in-vessel fission chambers located azimuthally around the core. It is, however, not possible to follow inner control rod withdrawal and precisely know the location of the perturbation in the core. Hence the use of complimentary in-core detectors coupled with the peripheral fission chambers is proposed to enable robust core monitoring across the radial direction. In this paper, we assess the feasibility of using self-powered neutron detectors (SPNDs) as in-core detectors in fast reactors for detecting local changes in the power distribution when the reactor is operated at nominal power. We study the neutron and gamma contributions to the total output current of the detector modelled with Platinum as the emitter material. It is shown that this SPND placed in an SFR-like environment would give a sufficiently measurable prompt neutron induced current of the order of 600 nA/m. The corresponding induced current in the connecting cable is two orders of magnitude lower and can be neglected. This means that the SPND can follow in-core power fluctuations. This validates the operability of an SPND in an SFR-like environment. - Highlights: • Studied possibility of using SPNDs as in-core detectors in SFRs. • Study done to detect local power profile changes when reactor is at nominal power. • SPND with a Pt-emitter gives measurable prompt current of the order of 600 nA/m. • Dominant proportion of prompt response is maintained throughout the operation. • Detector signal gives dynamic information on the power fluctuations.

  6. Neutron activation for logging the distribution of gold in bore-hole cores

    International Nuclear Information System (INIS)

    Rahmanian, H.; Watterson, J.I.W.

    1992-01-01

    A new method for the non-destructive determination of gold in bore-hole cores has been developed using instrumental neutron activation analysis with a 252 Cf source. The procedure obtains the distribution and concentration of gold along the longitudinal axis of the core i.e. a log of the gold concentration. The accuracy of the method is comparable to fire assay at a level of 2 ppm and has a detection limit of 1 ppm under the conditions used. The assay of the gold is carried out by employing a novel variation of the conventional comparator method using gold wires as both standard and flux monitor. A method is described for logging gold in bore-hole cores using neutron activation with a 160 μg 252 Cf neutron source. The method has a limit of detection of about 1 ppm under the described conditions. (author)

  7. Characteristics of Fabricated SiC Neutron Detectors for Neutron Flux Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Han Soo; Ha, Jang Ho; Park, Se Hwan; Lee, Kyu Hong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Cheol Ho [Hanyang University, Seoul (Korea, Republic of)

    2011-05-15

    An SPND (Self-powered Neutron Detector) is commonly used for neutron detection in NPP (Nuclear Power Plant) by virtue of un-reactivity for gamma-rays. But it has a drawback, which is that it cannot detect neutrons in real time due to beta emissions (about > 48 s) after reactions between neutrons and {sup 103}Rh in an SPND. And Generation IV reactors such as MSR (Molten-salt reactor), SFR (Sodium-cooled fast reactor), and GFR (Gas-cooled fast reactor) are designed to compact size and integration type. For GEN IV reactor, neutron monitor also must be compact-sized to apply such reactor easily and much more reliable. The wide band-gap semiconductors such as SiC, AlN, and diamond make them an attractive alternative in applications in harsh environments by virtue of the lower operating voltage, faster charge-collection times compared with gas-filled detectors, and compact size.1) In this study, two PIN-type SiC semiconductor neutron detectors, which are for fast neutron detection by elastic and inelastic scattering SiC atoms and for thermal neutron detection by charged particle emissions of 6LiF reaction, were designed and fabricated for NPP-related applications. Preliminary tests such as I-V and alpha response were performed and neutron responses at ENF in HANARO research reactor were also addressed. The application feasibility of the fabricated SiC neutron detector as an in-core neutron monitor was discussed

  8. Start up physics tests of units 5 and 6 (WWER 1000) at Kozloduy NPP by comparison with the calculated neutron physics characteristics

    International Nuclear Information System (INIS)

    Antov, A.; Stoyanova, I.

    2008-01-01

    In conjunction with each refuelling shutdown of the reactor core, nuclear design calculations are performed to ensure that the reactor physics characteristics of the new core will be consistent with the safety limits. Prior to return to normal operation, a physics test program is required to determine if the operating characteristics of the core are consistent with the design predictions and to ensure that the core can be operated as designed. Successful completion of the physics test program is demonstrated when the test results agree with the predicted results within predetermined test criteria. Successful completion of the physics test program and successful completion of other tests, which are performed after each refuelling provides assurance that the plant can be operated as designed. The calculated neutron-physics characteristics values of Kozloduy NPP Unit 5 and Unit 6 (WWER 1000) obtained by the computer code package KASKAD are compared with the obtained results during the start up physics tests. The core fuel loading consists of 163 fuel assemblies (FAs). The calculated values are given according to actual experimental conditions of the reactor core during start up physics tests. The report includes comparisons between calculation results by code package KASKAD (BIPR7A) and experimental data values of main neutron-physics characteristics during start up physics tests in selected recent cycles of Kozloduy NPP Unit 5 and Unit 6. (authors)

  9. Start up physics tests of Units 5 and 6 (WWER-1000) at Kozloduy NPP by comparison with the calculated neutron physics characteristics

    International Nuclear Information System (INIS)

    Stoyanova, I.; Antov, A.

    2007-01-01

    In conjunction with each refuelling shutdown of the reactor core, nuclear design calculations are performed to ensure that the reactor physics characteristics of the new core will be consistent with the safety limits. Prior to return to normal operation, a physics test program is required to determine if the operating characteristics of the core are consistent with the design predictions and to ensure that the core can be operated as designed. Successful completion of the physics test program is demonstrated when the test results agree with the predicted results within predetermined test criteria. Successful completion of the physics test program and successful completion of other tests which are performed after each refuelling provides assurance that the plant can be operated as designed. The calculated neutron-physics characteristics values of Kozloduy NPP Unit 5 and Unit 6 (WWER 1000) obtained by the computer code package KASKAD are compared with the obtained results during the start up physics tests. The core fuel loading consists of 163 fuel assemblies. The calculated values are given according to actual experimental conditions of the reactor core during start up physics tests. The report includes comparisons between calculation results by code package KASKAD (BIPR7A) and experimental data values of main neutron-physics characteristics during start up physics tests in selected recent cycles of Kozloduy NPP Unit 5 and Unit 6 (Authors)

  10. Development of three methods for control rod position monitoring based on fixed in-core neutron detectors

    International Nuclear Information System (INIS)

    Peng, Xingjie; Li, Qing; Wang, Kan

    2015-01-01

    Highlights: • Three methods are utilized separately to unfold the control rod position from the fixed in-core neutron detector measurements. • Fixed in-core neutron detector measurements are simulated by neutronics code SMART. • Numerical results show that all these methods can unfold the control rod position accurately. • Two correction strategies are proposed to correct the simulated fixed in-core detector signals. - Abstract: Nuclear reactor core power distribution on-line monitoring system is very important in core surveillance, and this system should have the ability to indicate some abnormal conditions, such as the unacceptable control rod misalignment. In this study, the methodologies of radial basis function neural network (RBFNN), group method of data handling (GMDH) and Levenberg–Marquardt (LM) algorithm are utilized separately to unfold the control rod position from the fixed in-core neutron detector measurements. For using these methods, a large number of in-core detector signals corresponding to various known rod positions are needed. These data can be generated by an advanced core calculation code. In this study, the neutronics code SMART was used. The simulation results show that all these methods can unfold the control rod position accurately, and the performance comparison shows that the regularized RBFNN performs best. Two correction strategies are proposed to correct the simulated fixed in-core detector signals and improve the rod position monitoring accuracy when there are mismatches between actual physical factors and modeled physical factors

  11. DANDE: a linked code system for core neutronics/depletion analysis

    International Nuclear Information System (INIS)

    LaBauve, R.J.; England, T.R.; George, D.C.; MacFarlane, R.E.; Wilson, W.B.

    1985-06-01

    This report describes DANDE - a modular neutronics, depletion code system for reactor analysis. It consists of nuclear data processing, core physics, and fuel depletion modules, and allows one to use diffusion and transport methods interchangeably in core neutronics calculations. This latter capability is especially important in the design of small modular cores. Additional unique features include the capability of updating the nuclear data file during a calculation; a detailed treatment of depletion, burnable poisons as well as fuel; and the ability to make geometric changes such as control rod repositioning and fuel relocation in the course of a calculation. The detailed treatment of reactor fuel burnup, fission-product creation and decay, as well as inventories of higher-order actinides is a necessity when predicting the behavior of reactor fuel under increased burn conditions. The operation of the code system is made clear in this report by following a sample problem

  12. DANDE: a linked code system for core neutronics/depletion analysis

    International Nuclear Information System (INIS)

    LaBauve, R.J.; England, T.R.; George, D.C.; MacFarlane, R.E.; Wilson, W.B.

    1986-01-01

    This report describes DANDE - a modular neutronics, depletion code system for reactor analysis. It consists of nuclear data processing, core physics, and fuel depletion modules, and allows one to use diffusion and transport methods interchangeably in core neutronics calculations. This latter capability is especially important in the design of small modular cores. Additional unique features include the capability of updating the nuclear data file during a calculation; a detailed treatment of depletion, burnable poisons as well as fuel; and the ability to make geometric changes such as control rod repositioning and fuel relocation in the cource of a calculation. The detailed treatment of reactor fuel burnup, fission-product creation and decay, as well as inventories of higher-order actinides is a necessity when predicting the behavior of reactor fuel under increased burn conditions. The operation of the code system is illustrated in this report by two sample problems. 25 refs

  13. DANDE-a linked code system for core neutronics/depletion analysis

    International Nuclear Information System (INIS)

    LaBauve, R.J.; England, T.R.; George, D.C.; MacFarlane, R.E.; Wilson, W.B.

    1986-01-01

    This report describes DANDE-a modular neutronics, depletion code system for reactor analysis. It consists of nuclear data processing, core physics, and fuel depletion modules, and allows one to use diffusion and transport methods interchangeably in core neutronics calculations. This latter capability is especially important in the design of small modular cores. Additional unique features include the capability of updating the nuclear data file during a calculation; a detailed treatment of depletion, burnable poisons as well as fuel; and the ability to make geometric changes such as control rod repositioning and fuel relocation in the course of a calculation. The detailed treatment of reactor fuel burnup, fission-product creation and decay, as well as inventories of higher-order actinides is a necessity when predicting the behavior of the reactor fuel under increased burn conditions. The operation of the code system is illustrated in this report by two actual problems

  14. Cylindrization of a PWR core for neutronic calculations

    International Nuclear Information System (INIS)

    Santos, Rubens Souza dos

    2005-01-01

    In this work we propose a core cylindrization, starting from a PWR core configuration, through the use of an algorithm that becomes the process automated in the program, independent of the discretization. This approach overcomes the problem stemmed from the use of the neutron transport theory on the core boundary, in addition with the singularities associated with the presence of corners on the outer fuel element core of, existents in the light water reactors (LWR). The algorithm was implemented in a computational program used to identification of the control rod drop accident in a typical PWR core. The results showed that the algorithm presented consistent results comparing with an production code, for a problem with uniform properties. In our conclusions, we suggest, for future works, for analyzing the effect on mesh sizes for the Cylindrical geometry, and to compare the transport theory calculations versus diffusion theory, for the boundary conditions with corners, for typical PWR cores. (author)

  15. Increasing the neutron flux study for the TRR-II core design

    International Nuclear Information System (INIS)

    Chen, C.-H.; Yang, J.-T.; Chou, Y.-C.

    1999-01-01

    The maximum unperturbed thermal flux of the originally proposed core design, which is a 6x6 square arrangement with power level of 20 MW and has been presented at the 6th Meeting of IGORR, for the TRR-II reactor is about 2.0x10 14 n/cm 2 -sec. However, it is no longer satisfied the user's requirement, that is, it must reach at least 2.5x10 14 n/cm 2 -sec. In order to enhance the thermal neutron flux, one of the most effective ways is to increase the average power density. Therefore, two new designs with more compact cores are then proposed and studied. One is 5x6 rectangular arrangement with power of 20 MW; the other one is 5x5 square arrangement with power of 16 MW. It is for sure that both core designs can satisfy thermal hydraulic safety limits. The designed parameters related to neutronics are listed and compared fundamentally. According to our calculation, although both cores have similar average power density, the results show that the 5x6/20 MW design has the maximum unperturbed thermal flux in the D 2 O region about 2.7x10 14 n/cm 2 -sec, and the 5x5/16 MW design has 2.5x10 14 n/cm 2 -sec. The maximum thermal flux in the neighborhood of the longer side of the 5x6 core is about 7% higher than the one in the neighborhood of any side of the 5x5 core. This 'long-side effect' gives the 5x6/20 MW core design an advantage of the utilization of the thermal neutron flux in the D 2 O region. In addition, the 5x5 core is also more sensitive to the reactivity change on account of in-core irradiation test facilities. Therefore, under overall considerations the 5x6/20 MW core design is chosen for further detailed design. (author)

  16. Absolute measurement of neutron fluxes inside the reactor core

    International Nuclear Information System (INIS)

    Ajdacic, S. V.

    1964-10-01

    The subject of this work is the development and study of two methods of neutron measurements in nuclear reactors, the new method of high neutron flux measurements and the Li 6 -semiconductor neutron spectrometer. This work is presented in four sections: Section I. The introduction explains the need for neutron measurements in reactors. A critical survey is given of the existing methods of high neutron flux measurement and methods of fast neutron spectrum determination. Section II. Theoretical basis of the work of semiconductor counters and their most important characteristics are given. Section III. The main point of this section is in presenting the basis of the new method which the author developed, i.e., the long-tube method, and the results obtained by it, with particular emphasis on absolute measurement of high neutron fluxes. Advantages and limitations of this method are discussed in details at the end of this section. Section IV. A comparison of the existing semiconductor neutron spectrometers is made and their advantages and shortcomings underlined. A critical analysis of the obtained results with the Li 6 -semiconductor spectrometer with plane geometry is given. A new type of Li 6 -semiconductor spectrometer is described, its characteristics experimentally determined, and a comparison of it with a classical Li 6 -spectrometer made (author)

  17. Neutronics analysis on mini test fuel in the RSG-GAS core

    International Nuclear Information System (INIS)

    Tukiran S; Tagor M Sembiring

    2016-01-01

    Research on UMo fuel for research reactor has been developed. The fuel of research reactor is uranium molybdenum low enrichment with high density. For supporting the development of fuel fabrication, an neutronic analysis of mini fuel plates in the RSG-GAS core was performed. The aim of analysis is to determine the numbers of fuel cycles in the core to know the maximum fuel burn-up. The mini fuel plates of U_7Mo-Al and U_6Zr-Al with densities of 7.0 gU/cc and 5.2 gU/cc, respectively, will be irradiated in the RSG-GAS core. The size of both fuels, namely 630 x 70.75 x 1.30 mm were inserted to the 3 plates of dummy fuel. Before the fuel will be irradiated in the core, a calculation for safety analysis from neutronics and thermal-hydraulics aspects were required. However, in this paper, it will be discussed safety analysis of the U_7Mo-Al and U_6Zr-Al mini fuels from neutronic point of view. The calculation was done using WIMSD-5B and Batan-3DIFF codes. The result showed that both of the mini fuels could be irradiated in the RSG-GAS core with burn up less than 70 % within 12 cycles of operation without over limiting the safety margin. If it is compared, the power density of U_7Mo-Al mini fuel is bigger than U_6Zr-Al fuel. (author)

  18. Neutronics analysis of the TRIGA Mark II reactor core and its experimental facilities

    International Nuclear Information System (INIS)

    Khan, R.

    2010-01-01

    The neutronics analysis of the current core of the TRIGA Mark II research reactor is performed at the Atominstitute (ATI) of Vienna University of Technology. The current core is a completely mixed core having three different types of fuels i.e. aluminium clad 20 % enriched, stainless steel clad 20 % enriched and SS clad 70 % enriched (FLIP) Fuel Elements (FE(s)). The completely mixed nature and complicated irradiation history of the core makes the reactor physics calculations challenging. This PhD neutronics research is performed by employing the combination of two best and well practiced reactor simulation tools i.e. MCNP (general Monte Carlo N-particle transport code) for static analysis and ORIGEN2 (Oak Ridge Isotop Generation and depletion code) for dynamic analysis of the reactor core. The PhD work is started to develop a MCNP model of the first core configuration (March 1962) employing fresh fuel composition. The neutrons reaction data libraries ENDF/B-VI is applied taking the missing isotope of Samarium from JEFF3.1. The MCNP model of the very first core has been confirmed by three different local experiments performed on the first core configuration. These experiments include the first criticality, reactivity distribution and the neutron flux density distribution experiment. The first criticality experiment verifies the MCNP model that core achieves its criticality on addition of the 57th FE with a reactivity difference of about 9.3 cents. The measured reactivity worths of four FE(s) and a graphite element are taken from the log book and compared with MCNP simulated results. The percent difference between calculations and measurements ranges from 4 to 22 %. The neutron flux density mapping experiment confirms the model completely exhibiting good agreement between simulated and the experimental results. Since its first criticality, some additional 104-type and 110-type (FLIP) FE(s) have been added to keep the reactor into operation. This turns the current

  19. Some characteristics of a miniature neutron spectrometer

    International Nuclear Information System (INIS)

    Sekimoto, H.; Oishi, K.; Hojo, K.; Hojo, T.

    1984-01-01

    Some characteristics of an NE213 miniature spherical spectrometer for in-assembly fast-neutron spectrometry were measured. As the bubbling time changed, the pulse-height did not change appreciably, but the n-γ discrimination characteristics changed considerably. As the count rate changed, the pulse-height did not change appreciably, and the change of the n-γ discrimination characteristics was acceptable. The neutron response function was measured to be almost isotropic except for the backward direction. (orig.)

  20. Uncertainty evaluatins of CASMO-3/MASTER system for PWR core neutronics calculations

    International Nuclear Information System (INIS)

    Song, Jae Seung; Kim, Kang Seog; Lee, Kibog; Park, Jin Ha; Zee, Sung Quun

    1996-01-01

    Uncertainties in core neutronic calculations of CASMO-3/MASTER, which is a KAERI developed core nuclear design code system, were evaluated via comparisons with measured data. Comparisons were performed with plant measurement data from one Westinghouse type and one ABB-CE type plant and two Korean standard type plants. The CASMO-3/MASTER capability and levels of accuracy are concluded to be sufficient for the neutronics design including safety related parameters related with reactivity, power distributions, temperature and power coefficients, inverse boron worth and control bank worth

  1. A benchmark for coupled thermohydraulics system/three-dimensional neutron kinetics core models

    International Nuclear Information System (INIS)

    Kliem, S.

    1999-01-01

    During the last years 3D neutron kinetics core models have been coupled to advanced thermohydraulics system codes. These coupled codes can be used for the analysis of the whole reactor system. Although the stand-alone versions of the 3D neutron kinetics core models and of the thermohydraulics system codes generally have a good verification and validation basis, there is a need for additional validation work. This especially concerns the interaction between the reactor core and the other components of a nuclear power plant (NPP). In the framework of the international 'Atomic Energy Research' (AER) association on VVER Reactor Physics and Reactor Safety, a benchmark for these code systems was defined. (orig.)

  2. Absolute measurement of neutron fluxes inside the reactor core

    Energy Technology Data Exchange (ETDEWEB)

    Ajdacic, S V [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1964-10-15

    The subject of this work is the development and study of two methods of neutron measurements in nuclear reactors, the new method of high neutron flux measurements and the Li{sup 6}-semiconductor neutron spectrometer. This work is presented in four sections: Section I. The introduction explains the need for neutron measurements in reactors. A critical survey is given of the existing methods of high neutron flux measurement and methods of fast neutron spectrum determination. Section II. Theoretical basis of the work of semiconductor counters and their most important characteristics are given. Section III. The main point of this section is in presenting the basis of the new method which the author developed, i.e., the long-tube method, and the results obtained by it, with particular emphasis on absolute measurement of high neutron fluxes. Advantages and limitations of this method are discussed in details at the end of this section. Section IV. A comparison of the existing semiconductor neutron spectrometers is made and their advantages and shortcomings underlined. A critical analysis of the obtained results with the Li{sup 6}-semiconductor spectrometer with plane geometry is given. A new type of Li{sup 6}-semiconductor spectrometer is described, its characteristics experimentally determined, and a comparison of it with a classical Li{sup 6}-spectrometer made (author)

  3. Calculation of the ex-core neutron noise induced by fuel vibrations in PWRs

    International Nuclear Information System (INIS)

    Tran Hoai Nam; Cao Van Chung; Hoang Thanh Phi Hung; Hoang Van Khanh

    2015-01-01

    Calculation of the neutron noise induced by fuel assembly vibrations in two pressurized water reactor (PWR) cores has been performed to investigate the effect of cycle burnup on the properties of the ex-core detector noise. Pendular vibrations of individual fuel assemblies were assumed to occur at different locations in the core. The auto power spectra density (APSD) of the ex-core detector noise was evaluated with the assumption of stochastic vibrations along a random two-dimensional trajectory. The results show that no general monotonic variation of APSD was found. The increase of APSD occurs predominantly for peripheral assemblies. Assuming simultaneous vibrations of a number of fuel assemblies uniformly distributed over the core with the more realistic perturbation model, the effect of the peripheral assemblies will dominate and the increase of the amplitude of the ex-core neutron noise with burnup can be confirmed. (author)

  4. Measurement of the energy spectrum of the neutrons inside the neutron flux trap assembled in the center of the reactor core IPEN/MB-01

    Energy Technology Data Exchange (ETDEWEB)

    Bitelli, Ulysses d' Utra; Mura, Luiz Ernesto Credidio; Santos, Diogo Feliciano dos; Jerez, Rogerio; Mura, Luis Felipe Liamos, E-mail: ubitelli@ipen.br, E-mail: credidiomura@gmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    This paper presents the neutron energy spectrum in the central position of a neutron flux trap assembled in the core center of the research nuclear reactor IPEN/MB-01 obtained by an unfolding method. To this end, have been used several different types of activation foils (Au, Sc, Ti, Ni, and plates) which have been irradiated in the central position of the reactor core (setting number 203) at a reactor power level of 64.57 ±2.91 watts . The activation foils were counted by solid-state detector HPGe (gamma spectrometry). The experimental data of nuclear reaction rates (saturated activity per target nucleus) and a neutron spectrum estimated by a reactor physics computer code are the main input data to get the most suitable neutron spectrum in the irradiation position obtained through SANDBP code: a neutron spectra unfolding code that use an iterative adjustment method. The adjustment resulted in 3.85 ± 0.14 10{sup 9} n cm{sup -2} s{sup -1} for the integral neutron flux, 2.41 ± 0.01 10{sup 9} n cm{sup -2} s{sup -1} for the thermal neutron flux, 1.09 ± 0.02 10{sup 9} n cm{sup -2} s{sup -1} for intermediate neutron flux and 3.41± 0.02 10{sup 8} n cm{sup -2} s{sup -1} for the fast neutrons flux. These results can be used to verify and validate the nuclear reactor codes and its associated nuclear data libraries, besides show how much is effective the use of a neutron flux trap in the nuclear reactor core to increase the thermal neutron flux without increase the operation reactor power level. The thermal neutral flux increased 4.04 ± 0.21 times compared with the standard configuration of the reactor core. (author)

  5. Characteristics of the JRR-3M neutron guide tubes

    International Nuclear Information System (INIS)

    Suzuki, Masatoshi; Ichikawa, Hiroki; Kawabata, Yuji.

    1993-01-01

    Large scale neutron guide tubes have been installed in the upgraded JRR-3 (Japan Research Reactor No.3, JRR-3M). The total length of the guide tubes is 232m. The neutron fluxes and spectra were measured at the end of the neutron guide tubes. The neutron fluxes of thermal neutron guide tubes with characteristic wavelength of 2A are 1.2 x 10 8 n/cm 2 · s. The neutron fluxes of cold guide tubes are 1.4 x 10 8 n/cm 2 · s with characteristic wavelength of 4A and 2.0 x 10 8 n/cm 2 · s with 6A when the cold neutron source is operated. The neutron spectra measured by time-of-flight method agree well with their designed ones. (author)

  6. Optimization study for an epithermal neutron beam for boron neutron capture therapy at the University of Virginia Research Reactor

    International Nuclear Information System (INIS)

    Burns, T.D. Jr.

    1995-05-01

    The non-surgical brain cancer treatment modality, Boron Neutron Capture Therapy (BNCT), requires the use of an epithermal neutron beam. This purpose of this thesis was to design an epithermal neutron beam at the University of Virginia Research Reactor (UVAR) suitable for BNCT applications. A suitable epithermal neutron beam for BNCT must have minimal fast neutron and gamma radiation contamination, and yet retain an appreciable intensity. The low power of the UVAR core makes reaching a balance between beam quality and intensity a very challenging design endeavor. The MCNP monte carlo neutron transport code was used to develop an equivalent core radiation source, and to perform the subsequent neutron transport calculations necessary for beam model analysis and development. The code accuracy was validated by benchmarking output against experimental criticality measurements. An epithermal beam was designed for the UVAR, with performance characteristics comparable to beams at facilities with cores of higher power. The epithermal neutron intensity of this beam is 2.2 x 10 8 n/cm 2 · s. The fast neutron and gamma radiation KERMA factors are 10 x 10 -11 cGy·cm 2 /n epi and 20 x 10 -11 cGy·cm 2 /n epi , respectively, and the current-to-flux ratio is 0.85. This thesis has shown that the UVAR has the capability to provide BNCT treatments, however the performance characteristics of the final beam of this study were limited by the low core power

  7. Neutronics of a mixed-flow gas-core reactor

    International Nuclear Information System (INIS)

    Soran, P.D.; Hansen, G.E.

    1977-11-01

    The study was made to investigate the neutronic feasibility of a mixed-flow gas-core reactor. Three reactor concepts were studied: four- and seven-cell radial reactors and a seven-cell scallop reactor. The reactors were fueled with UF 6 (either U-233 or U-235) and various parameters were varied. A four-cell reactor is not practical nor is the U-235 fueled seven-cell radial reactor; however, the 7-cell U-233 radial and scallop reactors can satisfy all design criteria. The mixed flow gas core reactor is a very attractive reactor concept and warrants further investigation

  8. Influence of fuel vibration on PWR neutron noise associated with core barrel motion

    International Nuclear Information System (INIS)

    Sweeney, F.J.; March-Leuba, J.

    1984-01-01

    Ex-core neutron detector noise has been utilized to monitor core support barrel (CSB) vibrations. In order to observe long-term changes, noise signals at Sequoyah-1 were monitored continuously during the whole first fuel cycle and part of the second cycle. Results suggest that neutron noise measurements performed infrequently may not provide adequate surveillance of the CSB because it may be difficult to separate noise amplitude changes due solely to CSB motion from changes caused by fuel motion and burnup

  9. Neutronics conceptual design of the innovative research reactor core using uranium molybdenum fuel

    International Nuclear Information System (INIS)

    Tukiran S; Surian Pinem; Tagor MS; Lily S; Jati Susilo

    2012-01-01

    The multipurpose of research reactor utilization make many countries build the new research reactor. Trend of this reactor for this moment is multipurpose reactor type with a compact core to get high neutron flux at the low or medium level of power. The research newest. Reactor in Indonesia right now is already 25 year old. Therefore, it is needed to design a new research reactor, called innovative research reactor (IRR) and then as an alternative to replace the old research reactor. The aim of this research is to get the optimal configuration of equilibrium core with the acceptance criteria are minimum thermal neutron flux is 2.5E14 n/cm 2 s at the power level of 20 MW (minimum), length of cycle of more than 40 days, and the most efficient of using fuel in the core. Neutronics design has been performed for new fuel of U-9Mo-AI with various fuel density and reflector. Design calculation has been performed using WIMSD-5B and BATAN-FUEL computer codes. The calculation result of the conceptual design shows four core configurations namely 5x5, 5x7, 6x5 and 6x6. The optimalization result for equilibrium core of innovative research reactor is the 5x5 configuration with 450 gU fuel loading, berilium reflector, maximum thermal neutron flux at reflector is 3.33E14 n/cm 2 sand length of cycle is 57 days is the most optimal of IRR. (author)

  10. Measurements of neutron flux distributions in the core of the Ljubljana TRIGA Mark II Reactor

    International Nuclear Information System (INIS)

    Rant, J.; Ravnik, M.; Mele, I.; Dimic, V.

    2008-01-01

    Recently the Ljubljana TRIGA Mark II Reactor has been refurbished and upgraded to pulsed operation. To verify the core design calculations using TRIGAP and PULSTR1 codes and to obtain necessary data for future irradiation and neutron beam experiments, an extensive experimental program of neutron flux mapping and neutron field characterization was carried out. Using the existing neutron measuring thimbles complete axial and radial distributions in two radial directions were determined for two different core configurations. For one core configuration the measurements were also carried out in the pulsed mode. For flux distributions thin Cu (relative measurements) and diluted Au wires (absolute values) were used. For each radial position the cadmium ratio was determined in two axial levels. The core configuration was rather uniform, well defined (fresh fuel of a single type, including fuelled followers) and compact (no irradiation channels or gaps), offering unique opportunity to test the computer codes for TRIGA reactor calculations. The neutron flux measuring procedures and techniques are described and the experimental results are presented. The agreement between the predicted and measured power peaking factors are within the error limits of the measurements (<±5%) and calculations (±10%). Power peaking occurs in the B ring, and in the A ring (centre) there is a significant flux depression. (authors)

  11. Discrimination of ex-core neutron noise signatures using artificial neural networks

    International Nuclear Information System (INIS)

    Alguindigue, I.E.; Uhrig, R.E.; Cai, M.; Trenty, A.

    1993-01-01

    The vibratory behavior of the internals in a Pressurized Water Reactor, PWR, can be identified and monitored using ex-core neutron noise data from power detectors located at ionization chambers outside the vessel. The signatures collected from these sensors provide information regarding presence of contacts between the core barrel and the pressure vessel, and more importantly, a means of verifying the integrity of components in the system. This report describes a neural-network-based methodology for identifying the vibration mode of the core barrel, and for detecting a particular family of mechanical failures. Features are extracted from the neutron noise spectra and used for training neural network models to identify the different states of vibratory behavior typically exhibited by PWR'S. The technique was tested on data from twenty eight 900MW pressurized water reactors in France, and the results achieved are over 98% accurate

  12. Coupled neutronic core and subchannel analysis of nanofluids in VVER-1000 type reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zarifi, Ehsan; Sepanloo, Kamran [Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of). Reactor and Nuclear Safety School; Jahanfarnia, Golamreza [Islamic Azad Univ., Tehran (Iran, Islamic Republic of). Dept. of Nuclear Engineering, Science and Research Branch

    2017-05-15

    This study is aimed to perform the coupled thermal-hydraulic/neutronic analysis of nanofluids as the coolant in the hot fuel assembly of VVER-1000 reactor core. Water-based nanofluid containing various volume fractions of Al{sub 2}O{sub 3} nanoparticle is analyzed. WIMS and CITATION codes are used for neutronic simulation of the reactor core, calculating neutron flux and thermal power distribution. In the thermal-hydraulic modeling, the porous media approach is used to analyze the thermal behavior of the reactor core and the subchannel analysis is used to calculate the hottest fuel assembly thermal-hydraulic parameters. The derived conservation equations for coolant and conduction heat transfer equation for fuel and clad are discretized by Finite volume method and solved numerically using visual FORTRAN program. Finally the analysis results for nanofluids and pure water are compared together. The achieved results show that at low concentration (0.1 percent volume fraction) alumina is the optimum nanoparticles for normal reactor operation.

  13. Evaluation of neutronic characteristics of in-pile test reactor for fast reactor safety research

    Energy Technology Data Exchange (ETDEWEB)

    Uto, N.; Ohno, S.; Kawata, N. [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1996-09-01

    An extensive research program has been carried out at the Power Reactor and Nuclear Fuel Development Corporation for the safety of future liquid-metal fast breeder reactors to be commercialized. A major part of this program is investigation and planning of advanced safety experiments conducted with a new in-pile safety test facility, which is larger and more advanced than any of the currently existing test reactors. Such a transient safety test reactor generally has unique neutronic characteristics that require various studies from the reactor physics point of view. In this paper, the outcome of the neutronics study is highlighted with presenting a reference core design concept and its performance in regard to the safety test objectives. (author)

  14. Neutronics aspects associated to irregular lattices in sodium fast reactors cores

    International Nuclear Information System (INIS)

    Gentili, Michele

    2015-01-01

    The fuel assemblies of SFR cores (sodium fast reactors) are normally arranged in hexagonal regular lattices, whose compactness is ensured in nominal operating conditions by thermal expansion of assemblies pads disposed on the six assembly wrapper faces. During the reactor operations, thermal expansion phenomena and irradiation creep phenomena occur and they cause the fuel assemblies to bow and to deform both radially and axially. The main goal of this PhD is the understanding of the neutronic aspects and phenomena occurring in case of core and lattice deformations, as much as the design and implementation of deterministic neutronic calculation schemes and methods in order to evaluate the consequences for the core design activities and the safety analysis. The first part of this work is focused on the development of an analytical model with the purpose to identify the neutronic phenomena that are the main contributors to the reactivity changes induced by lattice and core deformations. A first scheme based on the spatial mesh projection method has been conceived and implemented for the ERANOS codes (BISTRO, H3D and VARIANT) and to the SNATCH solver. The second calculation scheme propose is based on mesh deformation: the computing mesh is deformed as a function of the assembly displacement field. This methodology has been implemented for the solver SNATCH, which normally allows the Boltzmann equation to be solved for a regular mesh. Finally, an iterative method has been developed in order to fulfill an a-priori estimation of the maximal reactivity insertion as a function of the postulated mechanical energy provided to the core, as much as the deformation causing it. (author) [fr

  15. Effects of moderation level on core reactivity and. neutron fluxes in natural uranium fueled and heavy water moderated reactors

    International Nuclear Information System (INIS)

    Khan, M.J.; Aslam; Ahmad, N.; Ahmed, R.; Ahmad, S.I.

    2005-01-01

    The neutron moderation level in a nuclear reactor has a strong influence on core multiplication, reactivity control, fuel burnup, neutron fluxes etc. In the study presented in this article, the effects of neutron moderation level on core reactivity and neutron fluxes in a typical heavy water moderated nuclear research reactor is explored and the results are discussed. (author)

  16. Neutronic analysis of the Three Mile Island Unit 2 ex-core detector response

    International Nuclear Information System (INIS)

    Malloy, D.J.; Chang, Y.I.

    1981-10-01

    A neutronic analysis has been made with respect to the ex-core neutron detector response during the TMI-2 incident. A series of transport theory calculations quantified the impact upon the detector count rate of various core and downcomer conditions. In particular, various combinations of coolant void content and spatial distributions were investigated to yield the resulting transmission of the photoneutron source to the detector. The impact of a hypothetical distributed source within the downcomer region was also examined in order to simulate the potential effect of the release of neutron producing fission products into the coolant. These results are then offered as potential explanations for the anomalous behavior of the detector during the period of approx. 20 minutes through approx. 3 hours following the reactor scram

  17. Influence of remaining fission products in low-decontaminated fuel on reactor core characteristics

    International Nuclear Information System (INIS)

    Ohki, Shigeo

    2002-07-01

    Design study of core, fuel and related fuel cycle system with low-decontaminated fuel has been performed in the framework of the feasibility study (F/S) on commercialized fast reactor cycle systems. This report summarizes the influence on core characteristics of remaining fission products (FPs) in low-decontaminated fuel related to the reprocessing systems nominated in F/S phase I. For simple treatment of the remaining FPs in core neutronics calculation the representative nuclide method parameterized by the FP equivalent coefficient and the FP volume fraction was developed, which enabled an efficient evaluation procedure. As a result of the investigation on the sodium cooled fast reactor with MOX fuel designed in fiscal year 1999, it was found that the pyrochemical reprocessing with molten salt (the RIAR method) brought the largest influence. Nevertheless, it was still within the allowable range. Assuming an infinite-times recycling, the alternations in core characteristics were evaluated as follows: increment of burnup reactivity by 0.5%Δk/kk', decrement of breeding ratio by 0.04, increment of sodium void reactivity by 0.1x10 -2 Δk/kk' and decrement of Doppler constant (in absolute value) by 0.7x10 -3 Tdk/dT. (author)

  18. Neutronic design of the RSG-GAS silicide core

    Energy Technology Data Exchange (ETDEWEB)

    Sembiring, T.M.; Kuntoro, I.; Hastowo, H. [Center for Development of Research Reactor Technology National Nuclear Energy Agency BATAN, PUSPIPTEK Serpong Tangerang, 15310 (Indonesia)

    2002-07-01

    The objective of core conversion program of the RSG-GAS multipurpose reactor is to convert the fuel from oxide, U{sub 3}O{sub 8}-Al to silicide, U{sub 3}Si{sub 2}-Al. The aim of the program is to gain longer operation cycle by having, which is technically possible for silicide fuel, a higher density. Upon constraints of the existing reactor system and utilization, an optimal fuel density in amount of 3.55 g U/cc was found. This paper describes the neutronic parameter design of the silicide equilibrium core and the design of its transition cores as well. From reactivity control point of view, a modification of control rod system is also discussed. All calculations are carried out by means of diffusion codes, Batan-EQUIL-2D, Batan-2DIFF and -3DIFF. The silicide core shows that longer operation cycle of 32 full power days can be achieved without decreasing the safety criteria and utilization capabilities. (author)

  19. Theoretical methods for neutronics calculations of core-blanket and core-reflector systems in fast reactors

    International Nuclear Information System (INIS)

    Corcuera, Roberto.

    1975-12-01

    The present work is a contribution to the neutronics calculational methods of fast neutron reactors. The first step is devoted to the analysis of the validity of the few-groups (of the order of 25) multigroup scheme, and of the transport-correction approximation for the treatment of the scattering anisotropy. This analysis includes both the reactor core, where the usual approximations are found to be satisfactory, and the reflector, where it turns out that the rapid variations of the neutron flux and of it's spectrum necessitate the improvement of the multigroup cross-sections' generation. Therefore, a zero-dimensional simple and accurate model for the average spectrum in the reflector is developed by the space-energy synthesis method. Finally using the Rayleigh-Ritz method, a model is developed in which the flux is spatially represented by an analytical function. This model is applied to the analysis of the sensitivity of reflector neutronics parameters to the variations of the cross sections [fr

  20. Sensitivity Analysis of Core Neutronic Parameters in Electron Accelerator-driven Subcritical Advanced Liquid Metal Reactor

    Directory of Open Access Journals (Sweden)

    Marziye Ebrahimkhani

    2016-02-01

    Full Text Available Calculation of the core neutronic parameters is one of the key components in all nuclear reactors. In this research, the energy spectrum and spatial distribution of the neutron flux in a uranium target have been calculated. In addition, sensitivity of the core neutronic parameters in accelerator-driven subcritical advanced liquid metal reactors, such as electron beam energy (Ee and source multiplication coefficient (ks, has been investigated. A Monte Carlo code (MCNPX_2.6 has been used to calculate neutronic parameters such as effective multiplication coefficient (keff, net neutron multiplication (M, neutron yield (Yn/e, energy constant gain (G0, energy gain (G, importance of neutron source (φ∗, axial and radial distributions of neutron flux, and power peaking factor (Pmax/Pave in two axial and radial directions of the reactor core for four fuel loading patterns. According to the results, safety margin and accelerator current (Ie have been decreased in the highest case of ks, but G and φ∗ have increased by 88.9% and 21.6%, respectively. In addition, for LP1 loading pattern, with increasing Ee from 100 MeV up to 1 GeV, Yn/e and G improved by 91.09% and 10.21%, and Ie and Pacc decreased by 91.05% and 10.57%, respectively. The results indicate that placement of the Np–Pu assemblies on the periphery allows for a consistent keff because the Np–Pu assemblies experience less burn-up.

  1. ZZ-PBMR-400, OECD/NEA PBMR Coupled Neutronics/Thermal Hydraulics Transient Benchmark - The PBMR-400 Core Design

    International Nuclear Information System (INIS)

    Reitsma, Frederik

    2007-01-01

    Description of benchmark: This international benchmark, concerns Pebble-Bed Modular Reactor (PBMR) coupled neutronics/thermal hydraulics transients based on the PBMR-400 MW design. The deterministic neutronics, thermal-hydraulics and transient analysis tools and methods available to design and analyse PBMRs lag, in many cases, behind the state of the art compared to other reactor technologies. This has motivated the testing of existing methods for HTGRs but also the development of more accurate and efficient tools to analyse the neutronics and thermal-hydraulic behaviour for the design and safety evaluations of the PBMR. In addition to the development of new methods, this includes defining appropriate benchmarks to verify and validate the new methods in computer codes. The scope of the benchmark is to establish well-defined problems, based on a common given set of cross sections, to compare methods and tools in core simulation and thermal hydraulics analysis with a specific focus on transient events through a set of multi-dimensional computational test problems. The benchmark exercise has the following objectives: - Establish a standard benchmark for coupled codes (neutronics/thermal-hydraulics) for PBMR design; - Code-to-code comparison using a common cross section library ; - Obtain a detailed understanding of the events and the processes; - Benefit from different approaches, understanding limitations and approximations. Major Design and Operating Characteristics of the PBMR (PBMR Characteristic and Value): Installed thermal capacity: 400 MW(t); Installed electric capacity: 165 MW(e); Load following capability: 100-40-100%; Availability: ≥ 95%; Core configuration: Vertical with fixed centre graphite reflector; Fuel: TRISO ceramic coated U-235 in graphite spheres; Primary coolant: Helium; Primary coolant pressure: 9 MPa; Moderator: Graphite; Core outlet temperature: 900 C.; Core inlet temperature: 500 C.; Cycle type: Direct; Number of circuits: 1; Cycle

  2. Neutronic characterization of cylindrical core of minor excess reactivity in the nuclear reactor IPEN/MB-01 from the measure of spatial and energetic distribution of neutron flux distribution

    International Nuclear Information System (INIS)

    Aredes, Vitor Ottoni Garcia

    2014-01-01

    In this work was conducted the mapping of the thermal and epithermal neutrons flux and the energy spectrum of the neutrons in the reactor core IPEN/MB-01 for a cylindrical core configuration with minor excess reactivity, which is 28 x 28 fuel rods arranged in north-south and east-west directions. The calibration of control rods for this configuration determined their excess reactivity. The lower excess reactivity in the core decreased neutron flux disturbance caused by the neutron absorbing rods , given that the nuclear reactor was operated with the rods almost completely removed . Was used the 'Activation Analysis Technique' with the thin foil activation detectors ( infinitely diluted and hyper-pure), of different materials that work in different energy ranges, to calculate the saturation activity, used for determining the neutron flux and in the SANDBP code as input for the calculation of the neutrons energy spectrum. To discriminate thermal and epithermal flux , was used the 'Cadmium RatioTechnique' . The activation detectors were distributed in a total of 140 radial and axial positions in the reactor core and 16 irradiation, with bare and covered with cadmium activation foils. A model of this configuration was simulated by MCNP-5 code to determine the cadmium correction factor and comparison of the results obtained experimentally. The cylindrical configuration desired, with 17% less fuel than the standard rectangular configuration (28 x 26 fuel rods), reached criticality with the control rods approximately 90% removed, which decreased considerably the disturbance in neutron flux. Given the highest power density of the 28 x 28 cylindrical core, the neutron flux increased by over 50% in the central regions of the core compared to the values of the 28 x 26 standard rectangular core. (author)

  3. Development of an asymmetric multiple-position neutron source (AMPNS) method to monitor the criticality of a degraded reactor core

    International Nuclear Information System (INIS)

    Kim, S.S.; Levine, S.H.

    1985-01-01

    An analytical/experimental method has been developed to monitor the subcritical reactivity and unfold the k/sub infinity/ distribution of a degraded reactor core. The method uses several fixed neutron detectors and a Cf-252 neutron source placed sequentially in multiple positions in the core. Therefore, it is called the Asymmetric Multiple Position Neutron Source (AMPNS) method. The AMPNS method employs nucleonic codes to analyze the neutron multiplication of a Cf-252 neutron source. An optimization program, GPM, is utilized to unfold the k/sub infinity/ distribution of the degraded core, in which the desired performance measure minimizes the error between the calculated and the measured count rates of the degraded reactor core. The analytical/experimental approach is validated by performing experiments using the Penn State Breazeale TRIGA Reactor (PSBR). A significant result of this study is that it provides a method to monitor the criticality of a damaged core during the recovery period

  4. How the RRR neutronic characteristics impact on the mechanical design

    International Nuclear Information System (INIS)

    Villarino, E.; Coquibus, K.

    2005-01-01

    This paper describes how the neutronic characteristics of a very demanding research reactor facility impact on the mechanical design of the reactor core. The Replacement Research Reactor (RRR) for the Australian Nuclear Science and Technology Organization is described making emphasis in the mechanical solutions to improve the core performance. The compact core is located inside a chimney, surrounded by heavy water contained in the Reflector Vessel. The whole assembly is at the bottom of the Reactor Pool, which is full of de-mineralized light water acting as coolant and moderator and biological shielding. The core is an array of sixteen plate-type Fuel Assemblies (FAs) and five absorber plates, which are called Control Plates (CP). The coolant is light water, which flows upwards. The final design of the core layout and control guide boxes was adopted to minimize the flux and PPF perturbation during the normal operation. The four lateral control plates are used mainly to shutdown the reactor and to compensate large reactivity transients. The central and cruciform regulating plate is used to compensate the reactivity change during the cycle operation. The regulating plate does minimize perturbation on PPF and irradiation fluxes. The design of the reflector tank fulfills all the flux requirements for the irradiation facilities and also the flux perturbation between irradiation facilities. (authors)

  5. Formulation of detector response function to calculate the power density profiles using in-core neutron detectors

    International Nuclear Information System (INIS)

    Ahmed, S. A.; Peter, J. K.; Semmler, W.; Shultis, J. K.

    2007-01-01

    By measuring neutron fluxes at different locations throughout a core, it's possible to derive the power-density profile P k (W cm - 3), at an axial depth z of fuel rod k. Micro-pocket fission detectors (MPFD) have been fabricated to perform such in-core neutron flux measurements. The purpose of this study is to develop a mathematical model to obtain axial power density distributions in the fuel rods from the in-core responses of the MPFDs

  6. Thermal-hydraulic and neutron-physical characteristics of a new SCWR fuel assembly

    International Nuclear Information System (INIS)

    Liu, X.J.; Cheng, X.

    2009-01-01

    A new fuel assembly design for a thermal supercritical water cooled reactor (SCWR) core is proposed. Compared to the existing fuel assemblies, the present fuel assembly has two-rows of fuel rods between the moderator channels, to achieve a more uniform moderation for all fuel rod cells, and subsequently, a more uniform radial power distribution. In addition, a neutron-kinetics/thermal-hydraulics coupling method is developed, to analyze the neutron-physical and thermal-hydraulic behavior of the fuel assembly designs. This coupling method is based on the sub-channel analysis code COBRA-IV for thermal-hydraulics and the neutron-kinetics code SKETCH-N for neutron-physics. Both the COBRA-IV code and the SKETCH-N code are accordingly modified. An interface is established for the data transfer between these two codes. This coupling method is applied to both the one-row fuel assemblies (previous design) and the two-row fuel assemblies (present design). The performance of the two types of fuel assemblies is compared. The results show clearly that the two-row fuel assembly has more favorable neutron-physical and thermal-hydraulic characteristics than the one-row fuel assembly. The effect of various parameters on the fuel assembly performance is discussed. The coupling method is proven to be well suitable for further applications to SCWR fuel assembly design analysis

  7. Core concepts for ''zero-sodium-void-worth core'' in metal fuelled fast reactor

    International Nuclear Information System (INIS)

    Chang, Y.I.; Hill, R.N.; Fujita, E.K.; Wade, D.C.; Kumaoka, Y.; Suzuki, M.; Kawashima, M.; Nakagawa, H.

    1991-01-01

    Core design options to reduce the sodium void worth in metal fueled LMRs are investigated. Two core designs which achieve a zero sodium void worth are analyzed in detail. The first design is a ''pancaked'' and annular core with enhanced transuranic burning capabilities; the high leakage in this design yields a low breeding ratio and small void worth. The second design is an axially multilayered annular core which is fissile self-sufficient; in this design, the upper and lower core regions are neutronically decoupled for reduced void worth while fissile self-sufficiency is achieved using internal axial blankets plus external radial and axial blanket zones. The neutronic performance characteristics of these low void worth designs are assessed here; their passive safety properties are discussed in a companion paper. 16 refs., 2 figs., 3 tabs

  8. Core concepts for 'zero-sodium-void-worth core' in metal fuelled fast reactor

    International Nuclear Information System (INIS)

    Chang, Y.I.; Hill, R.N.; Fujita, E.K.; Wade, D.C.; Kumaoka, Y.; Suzuki, M.; Kawashima, M.; Nakagawa, H.

    1991-01-01

    Core design options to reduce the sodium void worth in metal fuelled LMRs are investigated. Two core designs which achieve a zero sodium void worth are analyzed in detail. The first design is a 'pancaked' and annular core with enhanced transuranic burning capabilities; the high leakage in this design yields a low breeding ratio and small void worth. The second design is an axially multilayered annular core which is fissile self-sufficient; in this design, the upper and lower core regions are neutronically decoupled for reduced void worth while fissile self-sufficiency is achieved using internal axial blankets plus external radial and axial blanket-zones. The neutronic performance characteristics of these low void worth designs are assessed here; their passive safety properties are discussed in a companion paper. (author)

  9. CORE-COLLAPSE SUPERNOVA EQUATIONS OF STATE BASED ON NEUTRON STAR OBSERVATIONS

    International Nuclear Information System (INIS)

    Steiner, A. W.; Hempel, M.; Fischer, T.

    2013-01-01

    Many of the currently available equations of state for core-collapse supernova simulations give large neutron star radii and do not provide large enough neutron star masses, both of which are inconsistent with some recent neutron star observations. In addition, one of the critical uncertainties in the nucleon-nucleon interaction, the nuclear symmetry energy, is not fully explored by the currently available equations of state. In this article, we construct two new equations of state which match recent neutron star observations and provide more flexibility in studying the dependence on nuclear matter properties. The equations of state are also provided in tabular form, covering a wide range in density, temperature, and asymmetry, suitable for astrophysical simulations. These new equations of state are implemented into our spherically symmetric core-collapse supernova model, which is based on general relativistic radiation hydrodynamics with three-flavor Boltzmann neutrino transport. The results are compared with commonly used equations of state in supernova simulations of 11.2 and 40 M ☉ progenitors. We consider only equations of state which are fitted to nuclear binding energies and other experimental and observational constraints. We find that central densities at bounce are weakly correlated with L and that there is a moderate influence of the symmetry energy on the evolution of the electron fraction. The new models also obey the previously observed correlation between the time to black hole formation and the maximum mass of an s = 4 neutron star

  10. From the crust to the core of neutron stars on a microscopic basis

    Science.gov (United States)

    Baldo, M.; Burgio, G. F.; Centelles, M.; Sharma, B. K.; Viñas, X.

    2014-09-01

    Within a microscopic approach the structure of Neutron Stars is usually studied by modelling the homogeneous nuclear matter of the core by a suitable Equation of State, based on a many-body theory, and the crust by a functional based on a more phenomenological approach. We present the first calculation of Neutron Star overall structure by adopting for the core an Equation of State derived from the Brueckner-Hartree-Fock theory and for the crust, including the pasta phase, an Energy Density Functional based on the same Equation of State, and which is able to describe accurately the binding energy of nuclei throughout the mass table. Comparison with other approaches is discussed. The relevance of the crust Equation of State for the Neutron Star radius is particularly emphasised.

  11. Calculational investigations and analysis of characteristics of research reactor WWR-M as a source of neutrons for solution of scientific and applied tasks

    International Nuclear Information System (INIS)

    Vorona, P.M.; Razbudej, V.F.

    2010-01-01

    Calculational studies and analysis of the neutron fields of WWR-M research reactor of the Institute for Nuclear Research, National Academy of Sciences of Ukraine, as a basic nuclear facility for performing the fundamental and applied investigations and for experimentalindustrial production of radioisotope products for various spheres of application are carried out. The calculations are carried out by the method of statistic tests (Monte Carlo) applying the computer program MCNP-4C. The data on the spectra and the neutron flux density values at the 10 MW reactor power for all technological facilities designed for the works with neutrons: 19 vertical experimental channels for irradiation of specimens and 10 horizontal channels for beams extraction from the reactor are obtained. The effect of the neutron traps (water cavities) mounted in the core on the characteristics of the extracted from the reactor beams is demonstrated. Recommendations associated with optimization of the reactor core are adduced for amplification of its capabilities as a neutron source in experimental researches.

  12. Determination of the kinetic parameters of the CALIBAN metallic core reactor from stochastic neutron measurements

    Energy Technology Data Exchange (ETDEWEB)

    Casoli, P.; Authier, N.; Chapelle, A. [Commissariat a l' Energie Atomique et Aux Energies Alternatives, CEA, DAM, F-21120 Is sur Tille (France)

    2012-07-01

    Several experimental devices are operated by the Criticality and Neutron Science Research Dept. of the CEA Valduc Laboratory. One of these is the Caliban metallic core reactor. The purpose of this study is to develop and perform experiments allowing to determinate some of fundamental kinetic parameters of the reactor. The prompt neutron decay constant and particularly its value at criticality can be measured with reactor noise techniques such as Rossi-{alpha} and Feynman variance-to-mean methods. Subcritical, critical, and even supercritical experiments were performed. Fission chambers detectors were put nearby the core and measurements were analyzed with the Rossi-{alpha} technique. A new value of the prompt neutron decay constant at criticality was determined, which allows, using the Nelson number method, new evaluations of the effective delayed neutron fraction and the in core neutron lifetime. As an introduction of this paper, some motivations of this work are given in part 1. In part 2, principles of the noise measurements experiments performed at the CEA Valduc Laboratory are reminded. The Caliban reactor is described in part 3. Stochastic neutron measurements analysis techniques used in this study are then presented in part 4. Results of fission chamber experiments are summarized in part 5. Part 6 is devoted to the current work, improvement of the experimental device using He 3 neutron detectors and first results obtained with it. Finally, conclusions and perspectives are given in part 7. (authors)

  13. Influence of fuel assembly loading pattern and fuel burnups upon leakage neutron flux spectra from light water reactor core (Joint research)

    International Nuclear Information System (INIS)

    Kojima, Kensuke; Okumura, Keisuke; Kosako, Kazuaki; Torii, Kazutaka

    2016-01-01

    At the decommissioning of light water reactors (LWRs), it is important to evaluate an amount of radioactivity in the ex-core structures such as a reactor containment vessel, radiation shieldings, and so on. It is thought that the leakage neutron spectra in these radioactivation regions, which strongly affect the induced radioactivity, would be changed by different reactor core configurations such as fuel assembly loading pattern and fuel burnups. This study was intended to evaluate these effects. For this purpose, firstly, partial neutron currents on the core surfaces were calculated for some core configurations. Then, the leakage neutron flux spectra in major radioactivation regions were calculated based on the provided currents. Finally, influence of the core configurations upon the neutron flux spectra was evaluated. As a result, it has been found that the influence is small on the spectrum shapes of neutron fluxes. However, it is necessary to pay attention to the facts that intensities of the leakage neutron fluxes are changed by the configurations and that intensities and spectrum shapes of the leakage neutron fluxes are changed depending on the angular direction around the core. (author)

  14. An investigation of TRU recycling with various neutron spectrums

    International Nuclear Information System (INIS)

    Yong-Nam, Kim; Hong-Chul, Kim; Chi-Young, Han; Jong-Kyung, Kim; Won-Seok Park

    2003-01-01

    This study is intended to evaluate the dependency of TRU recycling characteristics on the neutron spectrum shift in a Pb-Bi cooled core. Considering two Pb-Bi cooled cores with the soft and the hard spectrum, respectively, various characteristics of the recycled core are carefully examined and compared with each other. Assuming very simplified fuel cycle management with the homogeneous and single batch fuel loading, the burn-up calculations are performed until the recycled core reached to the (quasi-) equilibrium state. The mechanism of TRU recycling toward the equilibrium is analysed in terms of burn-up reactivity and the isotopic compositions of TRU fuel. In the comparative analyses, the difference in the recycling behaviour between the two cores is clarified. In addition, the basic safety characteristics of the recycled core are also discussed in terms of the Doppler coefficient, the coolant loss reactivity coefficient, and the effective delayed neutron fraction. (author)

  15. Characterization of the Annular Core Research Reactor (ACRR Neutron Radiography System Imaging Plane

    Directory of Open Access Journals (Sweden)

    Kaiser Krista

    2016-01-01

    Full Text Available The Annular Core Research Reactor (ACRR at Sandia National Laboratories (SNL is an epithermal pool-type research reactor licensed up to a thermal power of 2.4 MW. The ACRR facility has a neutron radiography facility that is used for imaging a wide range of items including reactor fuel and neutron generators. The ACRR neutron radiography system has four apertures (65:1, 125:1, 250:1, and 500:1 available to experimenters. The neutron flux and spectrum as well as the gamma dose rate were characterized at the imaging plane for the ACRR's neutron radiography system for the 65:1, 125:1 and 250:1 apertures.

  16. Inference of core barrel motion from neutron noise spectral density. [PWR

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, J.C.; Shahrokhi, F.; Kryter, R.C.

    1977-03-15

    A method was developed for inference of core barrel motion from the following statistical descriptors: cross-power spectral density, autopower spectral density, and amplitude probability density. To quantify the core barrel motion in a typical pressurized water reactor (PWR), a scale factor was calculated in both one- and two-dimensional geometries using forward, variational, and perturbation methods of discrete ordinates neutron transport. A procedure for selection of the proper frequency band limits for the statistical descriptors was developed. It was found that although perturbation theory is adequate for the calculation of the scale factor, two-dimensional geometric effects are important enough to rule out the use of a one-dimensional approximation for all but the crudest calculations. It was also found that contributions of gamma rays can be ignored and that the results are relatively insensitive to the cross-section set employed. The proper frequency band for the statistical descriptors is conveniently determined from the coherence and phase information from two ex-core power range neutron monitors positioned diametrically across the reactor vessel. Core barrel motion can then be quantified from the integral of the band-limited cross-power spectral density of two diametrically opposed ex-core monitors or, if the coherence between the pair is greater than or equal to 0.7, from a properly band-limited amplitude probability density function. Wide-band amplitude probability density functions were demonstrated to yield erroneous estimates for the magnitude of core barrel motion.

  17. New neutron imaging using pulsed sources. Characteristics of a pulsed neutron source and principle of pulsed neutron imaging

    International Nuclear Information System (INIS)

    Kiyanagi, Yoshiaki

    2012-01-01

    Neutron beam is one of important tools to obtain the transmission image of an object. Until now, steady state neutron sources such as reactors are mainly used for this imaging purpose. Recently, it has been demonstrated that pulsed neutron imaging based on accelerator neutron sources can provide a real-space distribution of physical information of materials such as crystallographic structure, element, temperature, hydrogen bound state, magnetic field and so on, by analyzing wavelength dependent transmission spectrum, which information cannot be observed or difficult to obtain with a traditional imaging method using steady state neutrons. Here, characteristics of the pulsed neutron source and principle of the pulsed neutron imaging are explained as a basic concept of the new method. (author)

  18. Progress in the neutronic core conversion (HEU-LEU) analysis of Ghana research reactor-1.

    Energy Technology Data Exchange (ETDEWEB)

    Anim-Sampong, S.; Maakuu, B. T.; Akaho, E. H. K.; Andam, A.; Liaw, J. J. R.; Matos, J. E.; Nuclear Engineering Division; Ghana Atomic Energy Commission; Kwame Nkrumah Univ. of Science and Technology

    2006-01-01

    The Ghana Research Reactor-1 (GHARR-1) is a commercial version of the Miniature Neutron Source Reactor (MNSR) and has operated at different power levels since its commissioning in March 1995. As required for all nuclear reactors, neutronic and thermal hydraulic analysis are being performed for the HEU-LEU core conversion studies of the Ghana Research Reactor-1 (GHARR-1) facility, which is a commercial version of the Miniature Neutron Source Reactor (MNSR). Stochastic Monte Carlo particle transport methods and tools (MCNP4c/MCNP5) were used to fine-tune a previously developed 3-D MCNP model of the GHARR-1 facility and perform neutronic analysis of the 90.2% HEU reference and candidate LEU (UO{sub 2}, U{sub 3}Si{sub 2}, U-9Mo) fresh cores with varying enrichments from 12.6%-19.75%. In this paper, the results of the progress made in the Monte Carlo neutronic analysis of the HEU reference and candidate LEU fuels are presented. In particular, a comparative performance assessment of the LEU with respect to neutron flux variations in the fission chamber and experimental irradiation channels are highlighted.

  19. Fast measurements of the in-core coolant velocity in a BWR by neutron noise analysis

    International Nuclear Information System (INIS)

    Hagen, T.H.J.J. van der; Hoogenboom, J.E.

    1988-01-01

    A method to determine in-core coolant velocities from neutron noise within short time intervals has been developed. The accuracy of the method was determined by using a simulation set-up and by using signals of a twin self-powered neutron detector installed in the core of the Dodewaard BWR in the Netherlands. In-core coolant velocities can be estimated within 2.5 s with a standard deviation (due to statistics) less than 2.1%. The method is suitable for velocity monitoring as is shown by the application to a stepwise velocity change of the coolant in a model of a coolant channel of a BWR. The presented technique was applied to determine the variations of the coolant velocity in the Dodewaard core during normal operation and during pressure steps. Only minor variations of the coolant velocity were detected during normal reactor conditions. An increase of those variations with pressure lowering - indicating a lower thermal hydraulic stability - could be detected. A clear velocity response to pressure steps could be determined which was also reflected in the cross-spectrum of the velocity with the vessel pressure and with the in-core neutron flux. (author)

  20. Neutronic Design of KALIMER-600 Core with Moderator Rods

    International Nuclear Information System (INIS)

    Ser Gi Hong; Sang Ji Kim; Hoon Song; Yeong Il Kim

    2004-01-01

    Recently, the liquid-metal reactor research team of the Korea Atomic Energy Research Institute (KAERI) designed a 600 MWe sodium-cooled, metallic fueled fast reactor meeting the goals of Generation-IV, such as economics and proliferation resistance. In this paper, the core design analysis and its performance are reported. The core is designed to have a conversion ratio slightly larger than unity with no blanket assemblies in order not to produce an excess amount of high grade plutonium and to have no need for external feeds of fissile materials. To mitigate the sodium void reactivity of the fuel-self-sufficient core with no blanket assemblies, several design changes from a reference core are tried; reduction of the active core height, annular type cores with central dummy assemblies, and the use of moderator (BeO or ZrH 2 ) rods. As a result of the analysis, it is found that of the considered designs the use of moderator rods for the softening of the core neutron spectrum is the best choice for reducing the sodium void worth with the smallest changes from the reference fuel and assembly designs. The core analysis shows that the sodium void reactivity is reduced by ∼2$ in comparison with the reference core and the core has a much more negative fuel temperature reactivity feedback in comparison with the reference core. (authors)

  1. TORT/MCNP coupling method for the calculation of neutron flux around a core of BWR

    International Nuclear Information System (INIS)

    Kurosawa, M.

    2005-01-01

    For the analysis of BWR neutronics performance, accurate data are required for neutron flux distribution over the In-Reactor Pressure Vessel equipments taking into account the detailed geometrical arrangement. The TORT code can calculate neutron flux around a core of BWR in a three-dimensional geometry model, but has difficulties in fine geometrical modelling and lacks huge computer resource. On the other hand, the MCNP code enables the calculation of the neutron flux with a detailed geometry model, but requires very long sampling time to give enough number of particles. Therefore, a TORT/MCNP coupling method has been developed to eliminate the two problems mentioned above in each code. In this method, the TORT code calculates angular flux distribution on the core surface and the MCNP code calculates neutron spectrum at the points of interest using the flux distribution. The coupling method will be used as the DOT-DOMINO-MORSE code system. This TORT/MCNP coupling method was applied to calculate the neutron flux at points where induced radioactivity data were measured for 54 Mn and 60 Co and the radioactivity calculations based on the neutron flux obtained from the above method were compared with the measured data. (authors)

  2. TORT/MCNP coupling method for the calculation of neutron flux around a core of BWR.

    Science.gov (United States)

    Kurosawa, Masahiko

    2005-01-01

    For the analysis of BWR neutronics performance, accurate data are required for neutron flux distribution over the In-Reactor Pressure Vessel equipments taking into account the detailed geometrical arrangement. The TORT code can calculate neutron flux around a core of BWR in a three-dimensional geometry model, but has difficulties in fine geometrical modelling and lacks huge computer resource. On the other hand, the MCNP code enables the calculation of the neutron flux with a detailed geometry model, but requires very long sampling time to give enough number of particles. Therefore, a TORT/MCNP coupling method has been developed to eliminate the two problems mentioned above in each code. In this method, the TORT code calculates angular flux distribution on the core surface and the MCNP code calculates neutron spectrum at the points of interest using the flux distribution. The coupling method will be used as the DOT-DOMINO-MORSE code system. This TORT/MCNP coupling method was applied to calculate the neutron flux at points where induced radioactivity data were measured for 54Mn and 60Co and the radioactivity calculations based on the neutron flux obtained from the above method were compared with the measured data.

  3. Fast neutron detection at near-core location of a research reactor with a SiC detector

    Science.gov (United States)

    Wang, Lei; Jarrell, Josh; Xue, Sha; Tan, Chuting; Blue, Thomas; Cao, Lei R.

    2018-04-01

    The measurable charged-particle produced from the fast neutron interactions with the Si and C nucleuses can make a wide bandgap silicon carbide (SiC) sensor intrinsically sensitive to neutrons. The 4H-SiC Schottky detectors have been fabricated and tested at up to 500 °C, presenting only a slightly degraded energy resolution. The response spectrum of the SiC detectors were also obtained by exposing the detectors to external neutron beam irradiation and at a near-core location where gamma-ray field is intense. The fast neutron flux of these two locations are ∼ 4 . 8 × 104cm-2 ṡs-1 and ∼ 2 . 2 × 107cm-2 ṡs-1, respectively. At the external beam location, a Si detector was irradiated side-by-side with SiC detector to disjoin the neutron response from Si atoms. The contribution of gamma ray, neutron scattering, and charged-particles producing reactions in the SiC was discussed. The fast neutron detection efficiencies were determined to be 6 . 43 × 10-4 for the external fast neutron beam irradiation and 6 . 13 × 10-6 for the near-core fast neutron irradiation.

  4. Coupled neutronic/thermal-hydraulic analysis of the HPLWR three pass core

    International Nuclear Information System (INIS)

    Monti, Lanfranco; Starflinger, Joerg; Schulenberg, Thomas

    2008-01-01

    The High Performance Light Water Reactor is an innovative Gen-IV reactor cooled and moderated with water at supercritical pressure. The three pass core concept has been proposed to reduce peaking factors, i.e. hot-channel effects, and it further increases the core heterogeneity, which is mainly due to pronounced water density reduction. For this kind of nuclear reactor, the significant feedbacks - which exist between the properties of the components and the power generation rate - can not be neglected and require a coupled Neutronic/Thermal-Hydraulic analysis even for steady state conditions. The main goal of this paper is to present the developed tool for coupled analyses of the HPLWR. Two state-of-the-art codes have been chosen for Thermal-Hydraulic and Neutronic core analyses, namely TRACE and ERANOS, and they have been coupled with in an iterative procedure in which they are run in series until a steady state condition has been reached. In the simplifying assumptions of uniform enrichment distribution, zero burn-up and ignoring the effect of the control rods, the obtained steady state condition will be discussed and a core power map, flow rate redistribution as well as water and fuel temperature variations will be presented. (author)

  5. Neutronic analysis for core conversion (HEU–LEU of the low power research reactor using the MCNP4C code

    Directory of Open Access Journals (Sweden)

    Aldawahra Saadou

    2015-06-01

    Full Text Available Comparative studies for conversion of the fuel from HEU to LEU in the miniature neutron source reactor (MNSR have been performed using the MCNP4C code. The HEU fuel (UAl4-Al, 90% enriched with Al clad and LEU (UO2 12.6% enriched with zircaloy-4 alloy clad cores have been analyzed in this study. The existing HEU core of MNSR was analyzed to validate the neutronic model of reactor, while the LEU core was studied to prove the possibility of fuel conversion of the existing HEU core. The proposed LEU core contained the same number of fuel pins as the HEU core. All other structure materials and dimensions of HEU and LEU cores were the same except the increase in the radius of control rod material from 0.195 to 0.205 cm and keeping the outer diameter of the control rod unchanged in the LEU core. The effective multiplication factor (keff, excess reactivity (ρex, control rod worth (CRW, shutdown margin (SDM, safety reactivity factor (SRF, delayed neutron fraction (βeff and the neutron fluxes in the irradiation tubes for the existing and the potential LEU fuel were investigated. The results showed that the safety parameters and the neutron fluxes in the irradiation tubes of the LEU fuels were in good agreements with the HEU results. Therefore, the LEU fuel was validated to be a suitable choice for fuel conversion of the MNSR in the future.

  6. Tracking techniques for the characteristics method applied to the resolution of the neutrons transport equation in multi scale domains

    International Nuclear Information System (INIS)

    Fevotte, F.

    2008-01-01

    At the various stages of a nuclear reactor's life, numerous studies are needed to guaranty the safety and efficiency of the design, analyse the fuel cycle, prepare the dismantlement, and so on. Due to the extreme difficulty to take extensive and accurate measurements in the reactor core, most of these studies are numerical simulations. The complete numerical simulation of a nuclear reactor involves many types of physics: neutronics, thermal hydraulics, materials, control engineering, Among these, the neutron transport simulation is one of the fundamental steps, since it allows computation - among other things - of various fundamental values such as the power density (used in thermal hydraulics computations) or fuel burn-up. The neutron transport simulation is based on the Boltzmann equation, which models the neutron population inside the reactor core. Among the various methods allowing its numerical solution, much interest has been devoted in the past few years to the Method of Characteristics in unstructured meshes (MOC), since it offers a good accuracy and operates in complicated geometries. The aim of this work is to propose improvements of the calculation scheme bound on the two dimensions MOC, in order to decrease the needed resources number. (A.L.B.)

  7. Comparison of Magnetic Characteristics of Powder Magnetic Core and Evaluation of Motor Characteristics

    Science.gov (United States)

    Enomoto, Yuji; Ito, Motoya; Masaki, Ryozo; Yamazaki, Katsuyuki; Asaka, Kazuo; Ishihara, Chio; Ohiwa, Syoji

    A magnetic characteristic measurement, a motor characteristic forecast, and an experimental evaluation of various powder magnetic cores were performed aiming at a fixed quantity grasp when the powder magnetic core was applied to the motor core as the magnetic material. The manufacturing conditions were changed, and magnetic characteristic compares a direct current magnetization characteristic and an iron disadvantageous characteristic with the silicon steel board for a different powder magnetic core. Therefore, though some permeabilities are low, characteristics almost equal to those of a silicon steel board were obtained in the maximum saturation magnetic induction, which confirms that the powder magnetic core in disadvantageous iron in a certain frequency domain, and to confirm disadvantageous iron lowers. Moreover, it has been shown to obtain characteristics almost equal to the silicon steel board when compared in terms of motor efficiency, though some disadvantageous iron increases since the effect when applying to the motor is verified the silicon steel board and the comparison evaluation for the surface type permanent magnet motor.

  8. Criticality experiment for No.2 core of DF-VI fast neutron criticality facility

    International Nuclear Information System (INIS)

    Yang Lijun; Liu Zhenhua; Yan Fengwen; Luo Zhiwen; Chu Chun; Liang Shuhong

    2007-01-01

    At the completion of the DF-VI fast neutron criticality facility, its core changed, and it was restarted and a series of experiments and measurements were made. According to the data from 29 criticality experiments, the criticality element number and mass were calculated, the control rod reactivity worth were measured by period method and rod compensate method, reactivity worth of safety rod and safety block were measured using reactivity instrument; the reactivity worth of outer elements and radial distribution of elements were measured too. Based on all the measurements mentioned above, safety operation parameters for core 2 in DF-VI fast neutron criticality facility were conformed. (authors)

  9. Development of a coupled neutronic/thermal-hydraulic tool with multi-scale capabilities and applications to HPLWR core analysis

    International Nuclear Information System (INIS)

    Monti, Lanfranco; Starflinger, Joerg; Schulenberg, Thomas

    2011-01-01

    Highlights: → Advanced analysis and design techniques for innovative reactors are addressed. → Detailed investigation of a 3 pass core design with a multi-physics-scales tool. → Coupled 40-group neutron transport/equivalent channels TH core analyses methods. → Multi-scale capabilities: from equivalent channels to sub-channel pin-by-pin study. → High fidelity approach: reduction of conservatism involved in core simulations. - Abstract: The High Performance Light Water Reactor (HPLWR) is a thermal spectrum nuclear reactor cooled and moderated with light water operated at supercritical pressure. It is an innovative reactor concept, which requires developing and applying advanced analysis tools as described in the paper. The relevant water density reduction associated with the heat-up, together with the multi-pass core design, results in a pronounced coupling between neutronic and thermal-hydraulic analyses, which takes into account the strong natural influence of the in-core distribution of power generation and water properties. The neutron flux gradients within the multi-pass core, together with the pronounced dependence of water properties on the temperature, require to consider a fine spatial resolution in which the individual fuel pins are resolved to provide precise evaluation of the clad temperature, currently considered as one of the crucial design criteria. These goals have been achieved considering an advanced analysis method based on the usage of existing codes which have been coupled with developed interfaces. Initially neutronic and thermal-hydraulic full core calculations have been iterated until a consistent solution is found to determine the steady state full power condition of the HPLWR core. Results of few group neutronic analyses might be less reliable in case of HPLWR 3-pass core than for conventional LWRs because of considerable changes of the neutron spectrum within the core, hence 40 groups transport theory has been preferred to the

  10. Physical start up of the Dalat nuclear research reactor with the core configuration having a central neutron trap

    International Nuclear Information System (INIS)

    Pham Duy Hien; Ngo Quang Huy; Vu Hai Long; Tran Khanh Mai

    1994-01-01

    After the reactor has reached physical criticality with the core configuration exempt from central neutron trap on 1 November 1983, the core configuration with a central neutron trap has been arranged in the reactor and the reactor has reached physical criticality with this core configuration at 17h48 on 18 December 1983. The integral worths of different control rods are determined with accuracy. 2 refs., 24 figs., 18 tabs

  11. Analysis of neutron dose rates on RGTT200K core using MCNP5

    International Nuclear Information System (INIS)

    Suwoto; Zuhair

    2016-01-01

    The conceptual design of RGTT200K (High Temperature Gas-cooled Reactor of 200 MWth Cogeneration) is the non-annular cylindrical reactor core with TRISO kernel coated fuel particles in the form of balls called pebble and cooled by helium gas. The RGTT200K reactor core design adopts high temperature gas cooled reactor (HTGR) technology with inherent passive safety. The RGTT200K spherical fuel called pebble fuel containing thousand of TRISO-coated fuel particles of uranium oxide (UO 2 ) 10 % enriched. TRISO coating comprises four layers, namely: porous carbon buffer layer, inner pyrolytic carbon layer (IPyC, Inner Pyrolytic Carbon), silicon carbide layer (SiC) and a layer of pyrolytic carbon outer portion (OPyC, Outer Pyrolytic Carbon). Modeling and analysis of preliminary calculation of neutron dose rate on normal operating temperature (T kernel =1200K) and accident temperature (T kernel =1800K) of the RGTT200K core were performed using Monte Carlo MCNP5v1.2 code. The continuous energy nuclear data cross-sections was taken from ENDF/B-VII, JENDL-4 and JEFF-3.1 nuclear data files . Double heterogeneity model in TRISO-coated fuel particles kernel and the pebble of RGTT200K core. By utilizing EGS99304 code, the 640 amount of energy group structures (SAND-II neutron group structures) is used in the neutron fluxes and spectrum calculation in RGTT200K reactor. The RGTT200K reactor core is divided into 25 zones (5 zones in radial and 10 zones in axial directions), while the modeling of radiation and biological shielding reactor RGTT200K are used to determine of preliminary neutron dose rate emitted by the neutron source with tally cards are available in the MCNP5v1.2 code. The calculation result analyses of the neutron dose rate distributions are determined using a conversion factor of flux-to-dose taken from International Commission on Radiological Protection, ICRP. The preliminary calculations result show that the neutrons dose rate using ICRP-74 conversion factor for

  12. A benefit assessment of using in-core neutron detector signals in core protection calculator system (CPCS)

    International Nuclear Information System (INIS)

    Han, S.; Park, S.J.; Seong, P.H.

    1997-01-01

    A Core Protection Calculator System (CPCS) is a digital computer based safety system generating trip signals based on the calculation of Departure from Nucleate Boiling Ratio (DNBR) and Local Power Density (LPD). Currently, CPCS uses ex-core detector signals for core power calculation and it has some uncertainties. In this study, in-core detector signals which directly measure inside flux of core are applied to CPCS to get more accurate power distribution profile, DNBR and LPD. In order to improve axial power distribution calculation, piece-wise cubic Spline method is applied; from the 40 nodes of expanded signals, more accurate and detailed core information can be provided. Simulation is carried out to verify its applicability to power distribution calculation. Simulation result shows that the improved method reduces the calculational uncertainties significantly and it allows larger operational margin. It is also expected that no power reduction is required while Core Operating Limit Supervisory System (COLSS) is out-of-service due to reduced uncertainties when the improved method is applied. In this study, a quantitative economic benefit assessment of using in-core neutron detector signals is also carried out. (authors)

  13. A benefit assessment of using in-core neutron detector signals in core protection calculator system(CPCS)

    International Nuclear Information System (INIS)

    Han, Seung

    1996-02-01

    A Core Protection Calculator System(CPCS) is a digital computer based safety system generating trip signals based on the calculation of Departure from Nucleate Boiling Ratio(DNBR) and Local Power Density(LPD). Currently, CPCS uses ex-core detector signals for core power calculation and it has some uncertainties. In this study, In-core detector signals which directly measure inside flux of core are applied to CPCS to get more accurate power distribution profile, DNBR and LPD. In order to improve axial power distribution calculation, piecewise cubic spline method is applied: From the 40 nodes of expanded signals, more accurate and detailed core information can be provided. Simulation is carried out to verify its applicability to power distribution calculation. Simulation result shows that the improved method reduces the calculational uncertainties significantly and it allows larger operational margin. It is also expected that no power reduction is required while Core Operating Limit Supervisory System(COLSS) is out-of-service due to reduced uncertainties when the improved method is applied. In this study, a quantitative economic benefit assessment of using in-core neutron detector signals is also carried out

  14. Determination of the neutron fluence in the welding of the 'Core shroud' of the BWR reactor core

    International Nuclear Information System (INIS)

    Lucatero, M.A.; Xolocostli M, J.V.; Gomez T, A.M.; Palacios H, J.C.

    2006-01-01

    With the purpose of defining the inspection frequency, in function of the embrittlement of the materials that compose the welding of the 'Core Shroud' or encircling of the core of a BWR type reactor, is necessary to know the neutron fluence received for this welding. In the work the calculated values of neutron fluence accumulated maxim (E > 1 MeV) during the first 8 operation cycles of the reactor are presented. The calculations were carried out according to the NRC Regulatory Guide 1.190, making use of the DORT code, which solves the transport equation in discreet ordinate in two dimensions (xy, rΘ, and rz). The results in 3D were obtained applying the Synthesis method according to the guide before mentioned. Results are presented for the horizontal welding H3, H4, and H5, showing the corresponding curves to the fluence accumulated to the cycle 8 and a projection for the cycle 14 is presented. (Author)

  15. Neutronic characterization of cylindrical core of minor excess reactivity in the nuclear reactor IPEN/MB-01 from the measure of neutron flux distribution and its reactivity ratio

    Energy Technology Data Exchange (ETDEWEB)

    Bitelli, Ulysses d' Utra; Aredes, Vitor O.G.; Mura, Luiz E.C.; Santos, Diogo F. dos; Silva, Alexandre P. da, E-mail: ubitelli@ipen.br, E-mail: vitoraredes@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    When compared to a rectangular parallelepiped configuration the cylindrical configuration of a nuclear reactor core has a better neutron economy because in this configuration the probability of the neutron leakage is smaller, causing an increase in overall reactivity in the system to the same amount of fuel used. In this work we obtained a critical cylindrical configuration with the control rods 89.50% withdraw from the active region of the IPEN/MB-01 core. This is the cylindrical configuration minimum possible excess of reactivity. Thus we obtained a cylindrical configuration with a diameter of only 28 fuel rods with lowest possible excess of reactivity. For this purpose, 112 peripheral fuel rods are removed from standard reactor core (rectangular parallelepiped of 28x28 fuel rods). In this configuration the excesses of reactivity is approximated 279 pcm. From there, we characterize the neutron field by measuring the spatial distribution of the thermal and epithermal neutron flux for the reactor operating power of 83 watts measured by neutron noise analysis technique and 92.08± 0.07 watts measured by activation technique [10]. The values of thermal and epithermal neutron flux in different directions, axial, radial north-south and radial east-west, are obtained in the asymptotic region of the reactor core, away from the disturbances caused by the reflector and control bar, by irradiating thin gold foils infinitely diluted (1% Au - 99% Al) with and without (bare) cadmium cover. In addition to the distribution of neutron flux, the moderator temperature coefficient, the void coefficient, calibration of the control rods were measured. (author)

  16. Measurement of two-phase flow variables in a BWR by analysis of in-core neutron detector noise signals

    International Nuclear Information System (INIS)

    Stekelenburg, A.J.C.; Hagen, T.H.J.J. van der

    1996-01-01

    In this paper, the state of the art of the measurement of two-phase flow variables in a boiling water reactor (BWR) by analysis of in-core neutron detector noise signals is given. It is concluded that the neutronic processes involved in neutron noise are quite well understood, but that little is known about the density fluctuations in two-phase flow which are the main cause of the neutron noise. For this reason, the neutron noise measurements, like the well known two-detector velocity measurements, are still difficult to interpret. By analyzing neutron noise measurements in a natural circulation cooled BWR, it is illustrated that, once a theory on the density fluctuations is developed, two-phase flow can be monitored with a single in-core detector. (author). 70 refs, 4 figs

  17. Nuclear reactor with a fixed system of neutron poison, which can be burnt up, introduced into the reactor core

    International Nuclear Information System (INIS)

    Mueller, E.; Roegler, H.J.; Wickert, M.

    1985-01-01

    The fixed system consists of neutron poison which can be burnt up, in an uneven distribution, and with adjustable absorber rods for output control, which are driven into the reactor core from the side along the fuel elements. There is an excess of neutron poison which can be burnt up, overall, on the side of the reactor core away from the absorber rods. The reactor core is free of neutron poison which can be burnt up on the side where the absorber rods are driven in, so that the ratio of maximum to mean power density with reference to a possible absorber rod positions is less than for homogeneous distribution of the neutron poison which can be burnt up. (orig./HP) [de

  18. Neutron flux and power in RTP core-15

    Energy Technology Data Exchange (ETDEWEB)

    Rabir, Mohamad Hairie, E-mail: m-hairie@nuclearmalaysia.gov.my; Zin, Muhammad Rawi Md; Usang, Mark Dennis; Bayar, Abi Muttaqin Jalal; Hamzah, Na’im Syauqi Bin [Nuclear and reactor Physics Section, Nuclear Technology Center, Technical Support Division, Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia)

    2016-01-22

    PUSPATI TRIGA Reactor achieved initial criticality on June 28, 1982. The reactor is designed to effectively implement the various fields of basic nuclear research, manpower training, and production of radioisotopes. This paper describes the reactor parameters calculation for the PUSPATI TRIGA REACTOR (RTP); focusing on the application of the developed reactor 3D model for criticality calculation, analysis of power and neutron flux distribution of TRIGA core. The 3D continuous energy Monte Carlo code MCNP was used to develop a versatile and accurate full model of the TRIGA reactor. The model represents in detailed all important components of the core with literally no physical approximation. The consistency and accuracy of the developed RTP MCNP model was established by comparing calculations to the available experimental results and TRIGLAV code calculation.

  19. Characterization of the neutronic fields obtained by means of neutron traps inside the nuclear reactor core IPEN/MB-01

    International Nuclear Information System (INIS)

    Mura, Luiz Ernesto Credidio

    2011-01-01

    This paper presents the results of the neutron flux values obtained from the deployment of a Flux Trap of neutrons in the reactor core IPEN/MB-01. We analyzed several configurations of Flux Traps deployed in the reactor core IPEN/MB-01 in order to get elected to Flux Trap configuration more efficient. To characterize the neutron spectrum were irradiated in the center of the Flux Trap activation detectors of different materials (Au, Sc, In, Ti, Ni). The respective gamma spectroscopy of these elements after irradiation with and without cadmium cover, provided the experimental values of the nuclear reaction rates (saturation activity) by the target nuclei and their uncertainties used as input to the code SANDBP who calculated the energy spectrum of neutrons in the center of the 'Flux-Trap' in 50 energy groups, using the input spectra calculated at the irradiation position (center of the 'Flux Trap') by codes for Reactor Physics. The results found an increase in the thermal neutron flux in the center of the Flux Trap configuration 203 for the standard configuration (default) of about 350% without having the need to increase the reactor power. We also made comparisons between the spectra obtained by SANDBP deployed, compared to those calculated by MCNP-4C code and XSDRNPM. The spatial characterization of the thermal neutron flux is made with activation foils in the form of an infinitely dilute bulk alloy of 1% Au and 99% Al in some internal points of the configuration 203 (axially to Flux Trap a nd adjacent radial) and the results showed a significant increase in the magnitude of their values when compared to standard rectangular configuration. (author)

  20. Core of a fast neutron nuclear reactor

    International Nuclear Information System (INIS)

    Giacometti, Christian; Mougniot, J.-C.; Ravier, Jean.

    1974-01-01

    The fast neutron nuclear reactor described includes an internal area in fissile material completely enclosed in an area of fertile material forming the outside blanket. The internal fissile area is provided with housings exclusively filled with fertile material forming one or more inside blankets. In this core the internal blankets are shaped like rings vertically separating superimposed rings of fissile material. The blanket of material nearest to the periphery is circumscribed externally by a contour having an indented shape on its straight section so as to increase the contact area between this blanket and the external blanket [fr

  1. Nuclear detectors for in-core power-reactors

    International Nuclear Information System (INIS)

    Duchene, Jean; Verdant, Robert.

    1979-12-01

    Nuclear reactor control is commonly obtained through neutronic measurements, ex-core and in-core. In large size reactors flux instabilities may take place. For a good monitoring of them, local in-core power measurements become particularly useful. This paper intends to review the questions about neutronic sensors with could be used in-core. A historical account about methods is given first, from early power reactors with brief description of each system. Sensors presently used (ionization fission chambers, self-powered detectors) are then considered and also those which could be developped such as gamma thermometers. Their physical basis, main characteristics and operation modes are detailed. Preliminary tests and works needed for an extension of their life-time are indicated. As an example present irradiation tests at the CEA are then proposed. Two tables will help comparing the characteristics of each type in terms of its precise purpose: fuel monitoring, safety or power control. Finally a table summarizes the kind of sensors mounted on working power reactors and another one is a review of characteristics for some detectors from obtainable commercial sheets [fr

  2. Feasibility Study of Silver as Emitter of In-core Neutron Detector

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Chi Dong; Lee, Hyun Suk [UNIST, Ulsan (Korea, Republic of); Shin, Ho Cheol; Cha, Kyoon Ho [Korea Hydro and Nuclear Power Corporation, Daejeon (Korea, Republic of); Lee, Deok Jung [UNIST, Ulsan (Korea, Republic of)

    2016-05-15

    The rhodium SPND(rhodium self-powered neutron detectors) provides strong detector signals so that they can be easily detected, but there is an issue the rhodium emitter needs to be replaced frequently because of its fast depletion. As an alternative, the vanadium SPND was designed and evaluated by Lee et al., but it also has an issue the detector signal level is too low. In this work, another material, silver, was introduced as emitter material of in-core detectors because its neutron absorption cross section is bigger than that of vanadium and smaller than rhodium. The feasibility of silver was investigated in comparison with the rhodium and vanadium detectors. The SPND model was designed using a Monte Carlo code MCNP6 and ORIGEN-S in SCALE code package. A silver self-powered neutron detector (SPND) was introduced in this paper, and the feasibility of silver as an emitter material of in-core detectors was investigated. The comparisons with rhodium and vanadium emitters demonstrate that silver has 0.78 years longer lifetime than rhodium and 10 times stronger signal than vanadium. Since a cycle length is generally 1.5 years, silver can be used for three cycles whereas rhodium should be replaced after two cycles.

  3. Performance, Accuracy and Efficiency Evaluation of a Three-Dimensional Whole-Core Neutron Transport Code AGENT

    International Nuclear Information System (INIS)

    Jevremovic, Tatjana; Hursin, Mathieu; Satvat, Nader; Hopkins, John; Xiao, Shanjie; Gert, Godfree

    2006-01-01

    The AGENT (Arbitrary Geometry Neutron Transport) an open-architecture reactor modeling tool is deterministic neutron transport code for two or three-dimensional heterogeneous neutronic design and analysis of the whole reactor cores regardless of geometry types and material configurations. The AGENT neutron transport methodology is applicable to all generations of nuclear power and research reactors. It combines three theories: (1) the theory of R-functions used to generate real three-dimensional whole-cores of square, hexagonal or triangular cross sections, (2) the planar method of characteristics used to solve isotropic neutron transport in non-homogenized 2D) reactor slices, and (3) the one-dimensional diffusion theory used to couple the planar and axial neutron tracks through the transverse leakage and angular mesh-wise flux values. The R-function-geometrical module allows a sequential building of the layers of geometry and automatic sub-meshing based on the network of domain functions. The simplicity of geometry description and selection of parameters for accurate treatment of neutron propagation is achieved through the Boolean algebraic hierarchically organized simple primitives into complex domains (both being represented with corresponding domain functions). The accuracy is comparable to Monte Carlo codes and is obtained by following neutron propagation through real geometrical domains that does not require homogenization or simplifications. The efficiency is maintained through a set of acceleration techniques introduced at all important calculation levels. The flux solution incorporates power iteration with two different acceleration techniques: Coarse Mesh Re-balancing (CMR) and Coarse Mesh Finite Difference (CMFD). The stand-alone originally developed graphical user interface of the AGENT code design environment allows the user to view and verify input data by displaying the geometry and material distribution. The user can also view the output data such

  4. Instability of quark matter core in a compact newborn neutron star ...

    Indian Academy of Sciences (India)

    with moderately strong magnetic field strength, which populates only the electron's Landau levels, then in the β-equilibrium condition, the quark core is energetically much more unstable than the neutron matter of identical physical condition. Keywords. Landau diamagnetism; quark matter; quark star. PACS Nos 26.60.

  5. Neutronics analysis of Dalat Research Reactor

    International Nuclear Information System (INIS)

    Pham Van Lam; Luong Ba Vien; Le Vinh Vinh; Huynh Ton Nghiem; Nguyen Kien Cuong; Nguyen Manh Hung; Pham Hong Son; Tran Quoc Duong

    2006-01-01

    Many neutronics codes have been used to calculate for Dalat Research Reactor (DRR) from 1983 (the first critical of DRR in December, 1983). The purposes of all calculations are to know exactly many important parameters related to Reactor Physics and Neutron Physics in reactor core. The results from calculation play important role in core and fuel management for DRR. Especially basing on the results we can predict about fuel cycle, fuel burn up distribution and plan for using optimize remain fresh fuel assemblies of DRR. By using system neutronics code including transport codes, diffusion codes and Mote Carlo code, many characteristics of fuel assemblies and other parameters of whole core were received such as main features of VVR-M2 fuel assembly type, multiplication factor, neutron flux distribution, power distribution, burn up distribution, excess reactivity, control rods worth, neutron spectrum, temperature reactivity coefficient ect. In the paper, brief description all computer codes to being used in DRR and the calculation results from the codes above are presented. (author)

  6. Response characteristics of selected personnel neutron dosimeters

    International Nuclear Information System (INIS)

    McDonald, J.C.; Fix, J.J.; Hadley, R.T.; Holbrook, K.L.; Yoder, R.C.; Roberson, P.L.; Endres, G.W.R.; Nichols, L.L.; Schwartz, R.B.

    1983-09-01

    Performance characteristics of selected personnel neutron dosimeters in current use at Department of Energy (DOE) facilities were determined from their evaluation of neutron dose equivalent received after irradiations with specific neutron sources at either the National Bureau of Standards (NBS) or the Pacific Northwest Laboratory (PNL). The characteristics assessed included: lower detection level, energy response, precision and accuracy. It was found that when all of the laboratories employed a common set of calibrations, the overall accuracy was approximately +-20%, which is within uncertainty expected for these dosimeters. For doses above 80 mrem, the accuracy improved to better than 10% when a common calibration was used. Individual differences found in this study may reflect differences in calibration technique rather than differences in the dose rates of actual calibration standards. Second, at dose rates above 100 mrem, the precision for the best participants was generally below +-10% which is also within expected limits for these types of dosimeters. The poorest results had a standard deviation of about +-25%. At the lowest doses, which were sometimes below the lower detection limit, the precision often approached or exceeded +-100%. Third, the lower level of detection for free field 252 Cf neutrons generally ranged between 20 and 50 mrem. Fourth, the energy dependence study provided a characterization of the response of the dosimeters to neutron energies far from the calibration energy. 11 references, 22 figures, 26 tables

  7. Light neutron-rich hypernuclei from the importance-truncated no-core shell model

    Directory of Open Access Journals (Sweden)

    Roland Wirth

    2018-04-01

    Full Text Available We explore the systematics of ground-state and excitation energies in singly-strange hypernuclei throughout the helium and lithium isotopic chains — from HeΛ5 to HeΛ11 and from LiΛ7 to LiΛ12 — in the ab initio no-core shell model with importance truncation. All calculations are based on two- and three-baryon interaction from chiral effective field theory and we employ a similarity renormalization group transformation consistently up to the three-baryon level to improve the model-space convergence. While the absolute energies of hypernuclear states show a systematic variation with the regulator cutoff of the hyperon–nucleon interaction, the resulting neutron separation energies are very stable and in good agreement with available data for both nucleonic parents and their daughter hypernuclei. We provide predictions for the neutron separation energies and the spectra of neutron-rich hypernuclei that have not yet been observed experimentally. Furthermore, we find that the neutron drip lines in the helium and lithium isotopic chains are not changed by the addition of a hyperon. Keywords: Hypernuclei, Ab-initio methods, Neutron-rich nuclei, Neutron separation energies, Neutron drip line

  8. Characteristics of first loaded IG-110 graphite in HTTR core

    International Nuclear Information System (INIS)

    Sumita, Junya; Shibata, Taiju; Iyoku, Tatsuo; Sawa, Kazuhiro; Hanawa, Satoshi; Ishihara, Masahiro

    2006-10-01

    IG-110 graphite is a fine-grained isotropic and nuclear-grade graphite with excellent resistivity on both irradiation and corrosion and with high strength. The IG-110 graphite is used for the graphite components of High Temperature Engineering Test Reactor (HTTR) such as fuel and control rod guide blocks and support posts. In order to design and fabricate the graphite components in the HTTR, the Japan Atomic Energy Research Institute (the Japan Atomic Energy Agency at present) had established the graphite structural design code and design data on the basis of former research results. After the design code establishment, the IG-110 graphite components were fabricated and loaded in the HTTR core. This report summarized the characteristics of the first loaded IG-110 graphite as basic data for surveillance test, measuring material characteristics changed by neutron irradiation and oxidation. By comparing the design data, it was shown that the first loaded IG-110 graphite had excellent strength properties and enough safety margins to the stress limits in the design code. (author)

  9. Neutronics substantiation of possibility for conversion of the WWR-K reactor core to operation with low-enriched fuel

    International Nuclear Information System (INIS)

    Arinkin, F.M.; Gizatulin, Sh.H.; Zhantikin, T.M.; Koltochnik, S.N.; Takibaev, A.Zh.; Talanov, S.V.; Chakrov, P.V.; Chekushina, L.V.

    2002-01-01

    The studies are aimed to calculation and experimental justification of possibility for conversion of the WWR-R reactor core to low-enriched nuclear fuel (the 19.75-% enrichment in isotope U-235), resulting in reducing the risk of non-sanctioned proliferation of nuclear materials which can be used as weapons materials. The analysis of available published data, related to problem of reduction of enrichment in the fuel used in research thermal reactors, has been carried out. Basing on the analysis results, reference fuel compositions have been chosen, in particular, uranium dioxide (UO 2 ) in aluminum master form and the UA1 4 alloy. Preliminary calculations have shown that, with the WWR-K reactor core preserved existing critical characteristics (the fuel composition: UA1 4 ), the uranium concentration in the fuel element is to be increased by a factor of 2.0-2.2, being impossible technologically. The calculations have been performed by means of the Monte Carlo computational codes. The program of optimal conversion of the WWR-K reactor core to low-enriched fuel has been developed, including: development of calculation models of the reactor core, composed of various designs of fuel elements and fuel assemblies (FA), on a base of corresponding computational codes (diffusion, statistical, etc.); implementation of experiments in the zero-power reactor (critical assembly) with the WWR-C-type FA, in view of correction of the computational constants used in calculations; implementation of reactor core neutronics calculations, in view of selection of the U-235 optimal content in the low-enriched fuel elements and choice of FA reload strategy at the regime of reactor core after burning; determination of the fuel element specification; determination of the critical and operational loads for the reactor core composed of rod/tubular fuel elements; calculation of the efficiency of the protection control system effectors, optimization of its composition, number and locations in the

  10. Burnup Estimation of Rhodium Self-Powered Neutron Detector Emitter in VVER Reactor Core Using Monte Carlo Simulations

    OpenAIRE

    Khrutchinsky, А. А.; Kuten, S. A.; Babichev, L. F.

    2011-01-01

    Estimation of burn-up in a rhodium-103 emitter of self-powered neutron detector in VVER-1000 reactor core has been performed using Monte Carlo simulations within approximation of a constant neutron flux.

  11. Improvement of numerical analysis method for FBR core characteristics. 3

    International Nuclear Information System (INIS)

    Takeda, Toshikazu; Yamamoto, Toshihisa; Kitada, Takanori; Katagi, Yousuke

    1998-03-01

    As the improvement of numerical analysis method for FBR core characteristics, studies on several topics have been conducted; multiband method, Monte Carlo perturbation and nodal transport method. This report is composed of the following three parts. Part 1: Improvement of Reaction Rate Calculation Method in the Blanket Region Based on the Multiband Method; A method was developed for precise evaluation of the reaction rate distribution in the blanket region using the multiband method. With the 3-band parameters obtained from the ordinary fitting method, major reaction rates such as U-238 capture, U-235 fission, Pu-239 fission and U-238 fission rate distributions were analyzed. Part 2: Improvement of Estimation Method for Reactivity Based on Monte-Carlo Perturbation Theory; Perturbation theory based on Monte-Carlo perturbation theory have been investigated and introduced into the calculational code. The Monte-Carlo perturbation code was applied to MONJU core and the calculational results were compared to the reference. Part 3: Improvement of Nodal Transport Calculation for Hexagonal Geometry; A method to evaluate the intra-subassembly power distribution from the nodal averaged neutron flux and surface fluxes at the node boundaries, was developed based on the transport theory. (J.P.N.)

  12. Correlations among FBR core characteristics for various fuel compositions

    International Nuclear Information System (INIS)

    Maruyama, Shuhei; Ohki, Shigeo; Okubo, Tsutomu; Kawashima, Katsuyuki; Mizuno, Tomoyasu

    2012-01-01

    In the design of a fast breeder reactor (FBR) core for the light water reactor (LWR) to FBR transition stage, it is indispensable to grasp the effect of a wide range of fuel composition variations on the core characteristics. This study finds good correlations between burnup reactivity and safety parameters, such as the sodium void reactivity and Doppler coefficient, for various fuel compositions and determines the mechanisms behind these correlations with the aid of sensitivity analyses. It is clarified that the Doppler coefficient is actually correlated with the other core characteristics by considering the constraint imposed by the requirement of sustaining criticality on the fuel composition variations. These correlations make it easy to specify the various properties ranges for core reactivity control and core safety, which are important for core design in determining the core specifications and performance. They provide significant information for FBR core design for the transition stage. Moreover, as an application of the above-mentioned correlations, a simplified burnup reactivity index is developed for rapid and rational estimation of the core characteristic variations. With the use of this index and these correlations, the core characteristic variations can be estimated for various fuel compositions without repeating the core calculations. (author)

  13. Coupled full core neutron transport/CFD simulations of pressurized water reactors

    International Nuclear Information System (INIS)

    Kochunas, B.; Stimpson, S.; Collins, B.; Downar, T.; Brewster, R.; Baglietto, E.; Yan, J.

    2012-01-01

    Recently as part of the CASL project, a capability to perform 3D whole-core coupled neutron transport and computational fluid dynamics (CFD) calculations was demonstrated. This work uses the 2D/1D transport code DeCART and the commercial CFD code STAR-CCM+. It builds on previous CASL work demonstrating coupling for smaller spatial domains. The coupling methodology is described along with the problem simulated and results are presented for fresh hot full power conditions. An additional comparison is made to an equivalent model that uses lower order T/H feedback to assess the importance and cost of high fidelity feedback to the neutronics problem. A simulation of a quarter core Combustion Engineering (CE) PWR core was performed with the coupled codes using a Fixed Point Gauss-Seidel iteration technique. The total approximate calculation requirements are nearly 10,000 CPU hours and 1 TB of memory. The problem took 6 coupled iterations to converge. The CFD coupled model and low order T/H feedback model compared well for global solution parameters, with a difference in the critical boron concentration and average outlet temperature of 14 ppm B and 0.94 deg. C, respectively. Differences in the power distribution were more significant with maximum relative differences in the core-wide pin peaking factor (Fq) of 5.37% and average relative differences in flat flux region power of 11.54%. Future work will focus on analyzing problems more relevant to CASL using models with less approximations. (authors)

  14. Neutron characteristics of the Super-Phenix 1 reactor at Creys-Malville

    International Nuclear Information System (INIS)

    Giacometti, C.; Bouget, Y.H.; Hammer, P.; Lyon, F.; Salvatores, M.; Sicard, B.; Pipaud, J.Y.

    1980-01-01

    The paper describes the method used to determine the critical enrichments for the first loading of the Super-Phenix reactor and the correction factors (together with their uncertainties) applied to the data calculated from the CARNAVAL IV code. These enrichments must be chosen so as to conform to the planned operating conditions of the reactor: nominal power of the pressure vessels, lifetime of the in-pile assemblies. Allowance for uncertainties of neutronic origin and those associated with the fabrication of the fuel pins calls for an over-enrichment of the first loading by approximately 4 per cent. An analysis is made of the effects of this over-enrichment on the core characteristics, which have to remain compatible with the established limits. (author)

  15. Self powered neutron detectors

    International Nuclear Information System (INIS)

    Gopalan, C.S.; Ramachandra Rao, M.N.; Ingale, A.D.

    1976-01-01

    Two types of self powered neutron detectors used for in-core flux measurements are described. The characteristics of the various detectors, with emitters Rh, V, Co, Py are presented. Details about the fabrication of these detectors are given. (A.K.)

  16. Discussion about modeling the effects of neutron flux exposure for nuclear reactor core analysis

    International Nuclear Information System (INIS)

    Vondy, D.R.

    1986-04-01

    Methods used to calculate the effects of exposure to a neutron flux are described. The modeling of the nuclear-reactor core history presents an analysis challenge. The nuclide chain equations must be solved, and some of the methods in use for this are described. Techniques for treating reactor-core histories are discussed and evaluated

  17. Self-Powered Neutron and Gamma Detectors for In-Core Measurements

    International Nuclear Information System (INIS)

    Strindehag, O.

    1971-11-01

    The performance of various types of self-powered neutron and gamma detectors intended for control and power distribution measurements in water cooled reactors is discussed. The self-powered detectors are compared with other types of in-core detectors and attention is paid to such properties as neutron and gamma sensitivity, high-temperature performance, burn-up rate and time of response. Also treated are the advantages and disadvantages of using gamma detector data for power distribution calculations instead of data from neutron detectors. With regard to neutron-sensitive detectors, results from several long-term experiments with vanadium and cobalt detectors are presented. The results include reliability and stability data for these two detector types and the Co build-up in cobalt detectors. Experimental results which reveal the fast response of cobalt detectors are presented, and the use of cobalt detectors in reactor safety systems is discussed. Experience of the design and installation of complete flux probes, electronic units and data processing systems for power reactors is reported. The investigation of gamma-sensitive detectors includes detectors with emitters of lead, zirconium, magnesium and Inconel. Measured gamma sensitivities from calibrations both in a reactor and in a gamma cell are given, and the signal levels of self-powered neutron and gamma detectors when applied to power reactors are compared

  18. Self-Powered Neutron and Gamma Detectors for In-Core Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Strindehag, O

    1971-11-15

    The performance of various types of self-powered neutron and gamma detectors intended for control and power distribution measurements in water cooled reactors is discussed. The self-powered detectors are compared with other types of in-core detectors and attention is paid to such properties as neutron and gamma sensitivity, high-temperature performance, burn-up rate and time of response. Also treated are the advantages and disadvantages of using gamma detector data for power distribution calculations instead of data from neutron detectors. With regard to neutron-sensitive detectors, results from several long-term experiments with vanadium and cobalt detectors are presented. The results include reliability and stability data for these two detector types and the Co build-up in cobalt detectors. Experimental results which reveal the fast response of cobalt detectors are presented, and the use of cobalt detectors in reactor safety systems is discussed. Experience of the design and installation of complete flux probes, electronic units and data processing systems for power reactors is reported. The investigation of gamma-sensitive detectors includes detectors with emitters of lead, zirconium, magnesium and Inconel. Measured gamma sensitivities from calibrations both in a reactor and in a gamma cell are given, and the signal levels of self-powered neutron and gamma detectors when applied to power reactors are compared

  19. Spectrum measurements in the ZENITH plutonium core 7 using a neutron chopper

    Energy Technology Data Exchange (ETDEWEB)

    Barclay, F R; Cameron, I R; Pitcher, H H.W.; Symons, C R [General Reactor Physics Division, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)

    1964-05-15

    upwards through the core in the interstitial channels between the elements and then,after mixing with cooler nitrogen in a plenum above the core, flows down through channels in the side reflector. This heating system in principle permits independent variation of the core and side reflector temperatures. Although the plant is capable of operating at core temperatures of up to 800 deg. C, a restriction to 420 deg. C was imposed in the present experiments to avoid possible damage to the fuel. The theoretical treatment of the ZENITH plutonium cores relied on a calculation using the Winfrith DSN program to deal with the spatial and energy distribution of neutrons below 1.5 eV in the fuel cell. The comparison of the measured spectrum with that given by DSN provided a test of the method of calculation, and in particular of the graphite scattering model. The. detailed comparison with theory was complicated by the necessity of accounting adequately for the radial fine structure of the spectrum emergent from the source element, taking into consideration the spatial response function of the chopper and associated collimating system. Some consideration was given to the possibility of providing a source element of simpler geometry than the normal fuel element (e.g. a homogeneous cylindrical spine with fuel, absorber and moderator surrounded by an outer sleeve of graphite) but difficulty then arises in the specification of the fuel content of the spine region in order to match the absorption characteristics of the standard element. It was consequently decided to employ the normal heterogeneous source element and to use the theoretical model to predict the detailed structure of the emergent team. (author)

  20. Spectrum measurements in the ZENITH plutonium core 7 using a neutron chopper

    International Nuclear Information System (INIS)

    Barclay, F.R.; Cameron, I.R.; Pitcher, H.H.W.; Symons, C.R.

    1964-05-01

    upwards through the core in the interstitial channels between the elements and then,after mixing with cooler nitrogen in a plenum above the core, flows down through channels in the side reflector. This heating system in principle permits independent variation of the core and side reflector temperatures. Although the plant is capable of operating at core temperatures of up to 800 deg. C, a restriction to 420 deg. C was imposed in the present experiments to avoid possible damage to the fuel. The theoretical treatment of the ZENITH plutonium cores relied on a calculation using the Winfrith DSN program to deal with the spatial and energy distribution of neutrons below 1.5 eV in the fuel cell. The comparison of the measured spectrum with that given by DSN provided a test of the method of calculation, and in particular of the graphite scattering model. The. detailed comparison with theory was complicated by the necessity of accounting adequately for the radial fine structure of the spectrum emergent from the source element, taking into consideration the spatial response function of the chopper and associated collimating system. Some consideration was given to the possibility of providing a source element of simpler geometry than the normal fuel element (e.g. a homogeneous cylindrical spine with fuel, absorber and moderator surrounded by an outer sleeve of graphite) but difficulty then arises in the specification of the fuel content of the spine region in order to match the absorption characteristics of the standard element. It was consequently decided to employ the normal heterogeneous source element and to use the theoretical model to predict the detailed structure of the emergent team. (author)

  1. Dynamic behavior of homogeneous and heterogeneous LMFBR core-design concepts

    International Nuclear Information System (INIS)

    Chang, Y.I.; Henryson, H. II; Orechwa, Y.; Su, S.F.; Greenman, G.; Blomquist, R.

    1981-01-01

    The emphasis is placed on obtaining an understanding of the inherent difference between homogeneous and heterogeneous core configurations regarding neutronic characteristics related to the dynamic behavior. The space-time neutronic and thermal-hydraulic behavior was analyzed in detail for various core configurations by using the FX2-TH, a two-dimensional kinetics code with thermal-hydraulic feedback. In addition, the relationship between the flux tilt and the fundamental-to-first harmonic eigenvalue separation, and the sodium void reactivity in heterogeneous cores were also sutdied

  2. Modeling of the reactor core

    International Nuclear Information System (INIS)

    1999-01-01

    In order to improve technical - economical parameters fuel with 2.4% enrichment and burnable absorber is started to be used at Ignalina NPP. Using code QUABOX/CUBBOX the main neutronic - physical characteristics were calculated for selected reactor core conditions

  3. Analysis Of The Effect Of Fuel Enrichment Error On Neutronic Properties Of The RSG-GAS Core

    International Nuclear Information System (INIS)

    Saragih, Tukiran; Pinem, Surian

    2002-01-01

    The analysis of the fuel enrichment error effect on neutronic properties has been carried out. The fuel enrichment could be improperly done because of wrong fabrication. Therefore it is necessary to analyze the fuel enrichment error effect to determine how many percents the fuel enrichment maximum can be accepted in the core. The analysis was done by simulation method The RSG-GAS core was simulated with 5 standard fuels and 1 control element having wrong enrichment when inserted into the core. Fuel enrichment error was then simulated from 20%, 25% and 30% and the simulation was done using WIMSD/4 and Batan-2DIFF codes. The cross section of core material of the RSG-GAS was generated by WIMSD/4 code in 1-D, X-Y geometry and 10 energy neutron group. Two dimensions, diffusion calculation based on finite element method was done by using Batan-2DIFF code. Five fuel elements and one control element changed the enrichment was finally arranged as a new core of the RSG-Gas reactor. The neutronic properties can be seen from eigenvalues (k eff ) as well as from the kinetic properties based on moderator void reactivity coefficient. The calculated results showed that the error are still acceptable by k eff 1,097 even until 25% fuel enrichment but not more than 25,5%

  4. NEUTRONICS ANALYSIS ON MINI TEST FUEL IN THE RSG-GAS CORE

    Directory of Open Access Journals (Sweden)

    Tukiran Surbakti

    2016-03-01

    Full Text Available Abstract NEUTRONICS ANALYSIS ON MINI TEST FUEL IN THE RSG-GAS CORE. Research of UMo fuel for research reactor has been developing  right now. The fuel of  research reactor used is uranium low enrichment with high density. For supporting the development of fuel, an assessment of mini fuel in the RSG-GAS core was performed. The mini fuel are U7Mo-Al and U6Zr-Al with densitis of 7.0gU/cc and 5.2 gU/cc, respectively. The size of both fuel are the same namely 630x70.75x1.30 mm were inserted to the 3 plates of dummy fuel. Before being irradiated in the core, a calculation for safety analysis  from neutronics and thermohydrolics aspects were required. However, in this paper will discuss safety analysis of the U7Mo-Al and U6Zr-Al mini fuels from neutronic point of view.  The calculation was done using WIMSD-5B and Batan-3DIFF code. The result showed that both of the mini fuels could be irradiated in the RSG-GAS core with burn up less than 70 % within 12 cycles of operation without over limiting the safety margin. Power density of U7Mo-Al mini fuel bigger than U6Zr-Al fuel.   Key words: mini fuel, neutronics analysis, reactor core, safety analysis   Abstrak ANALISIS NEUTRONIK ELEMEN BAKAR UJI MINI DI TERAS RSG-GAS. Penelitian tentang bahan bakar UMo untuk reaktor riset terus berkembang saat ini. Bahan bakar reaktor riset yang digunakan adalah uranium pengkayaan rendah namun densitas tinggi.  Untuk mendukung pengembangan bahan bakar dilakukan uji elemen bakar mini di teras reakror RSG-GAS dengan tujuan menentukan jumlah siklus di dalam teras sehingga tercapai fraksi bakar maksimum. Bahan bakar yang diuji adalah U7Mo-Al dengan densitas 7,0 gU/cc dan U6Zr-Al densitas 5,2 gU/cc. Ukuran kedua bahan bakar uji tersebut adalah sama 630x70,75x1,30 mm dimasukkan masing masing kedalam 3 pelat dummy bahan bakar. Sebelum diiradiasi ke dalam teras reaktor maka perlu dilakukan perhitungan keselamatan baik secara neutronik maupun termohidrolik. Dalam makalah ini

  5. Fuel management and core design code systems for pressurized water reactor neutronic calculations

    International Nuclear Information System (INIS)

    Ahnert, C.; Arayones, J.M.

    1985-01-01

    A package of connected code systems for the neutronic calculations relevant in fuel management and core design has been developed and applied for validation to the startup tests and first operating cycle of a 900MW (electric) PWR. The package includes the MARIA code system for the modeling of the different types of PWR fuel assemblies, the CARMEN code system for detailed few group diffusion calculations for PWR cores at operating and burnup conditions, and the LOLA code system for core simulation using onegroup nodal theory parameters explicitly calculated from the detailed solutions

  6. Pilot Operation of Ex-core Neutron Sensors of Divers Shutdown System (DSS) Unit 2 Ignalina NPP

    International Nuclear Information System (INIS)

    Jakshtonis, Z.; Krivoshei, G.

    2006-01-01

    The Ignalina Safety Assessment, which was completed in December 1996, recommended the installation of a diverse shutdown system on the 2nd unit at Ignalina. During the PPR-2004 in the DSS project are created two independent shutdown systems by separating the absorber rods into two independent groups as follows: 1. One system (designated AZ) consists of the existing 24 BAZ rods and 49 AZ/BSM rods that together are used for reliable reactor shutdown (including Control and Protection System (CPS) circuit voiding accident). This system performs the emergency protection function. 2. The other system (designated BSM) comprises the remaining absorber rods and the 49 AZ/BSM rods. Thus 49 AZ/BSM rods are actuated from AZ initiating equipment as well as from BSM initiating equipment. The BSM system performs the normal reactor shutdown function and is able to ensure long-term maintenance of the reactor in the sub-critical state. Along with implementation of DSS was modernized existing Emergency Process Protection System, which was divided into two independent Sets of initiating equipment. The DSS is independent and diverse initiating equipment from the existing 1st Set equipment; with each set having its own independent in-core and ex-core sensors for measurement of neutron flux and process parameters. The 2nd Set of initiating equipment for measuring ex-core neutron flux, was modernized with new design of 4 Ex-Core detectors each have a single low level neutron flux detector and two high range neutron detectors. They are comprising: 1. A fission chamber which operates in pulse mode to cover the low flux levels. 2. A compensated ionisation chamber in current mode to operate at high flux level. This detector is doubled to give a measurement of the axial deviation. Two detectors are enough to produce the axial power deviation. The results of testing and analysis of pilot operation of ex-core neutron sensors of DSS will be shown on the Report. (author)

  7. Differential and integral characteristics of prompt fission neutrons in the statistical theory

    International Nuclear Information System (INIS)

    Gerasimenko, B.F.; Rubchenya, V.A.

    1989-01-01

    Hauser-Feshbach statistical theory is the most consistent approach to the calculation of both spectra and prompt fission neutrons characteristics. On the basis of this approach a statistical model for calculation of differential prompt fission neutrons characteristics of low energy fission has been proposed and improved in order to take into account the anisotropy effects arising at prompt fission neutrons emission from fragments. 37 refs, 6 figs

  8. Modelling characteristics of ferromagnetic cores with the influence of temperature

    International Nuclear Information System (INIS)

    Górecki, K; Rogalska, M; Zarȩbski, J; Detka, K

    2014-01-01

    The paper is devoted to modelling characteristics of ferromagnetic cores with the use of SPICE software. Some disadvantages of the selected literature models of such cores are discussed. A modified model of ferromagnetic cores taking into account the influence of temperature on the magnetizing characteristics and the core losses is proposed. The form of the elaborated model is presented and discussed. The correctness of this model is verified by comparing the calculated and the measured characteristics of the selected ferromagnetic cores.

  9. Characterization of the fast neutron irradiation facility of the Portuguese Research Reactor after core conversion

    International Nuclear Information System (INIS)

    Marques, J.G.; Sousa, M.; Santos, J.P.; Fernandes, A.C.

    2011-01-01

    The fast neutron irradiation facility of the Portuguese Research Reactor was characterized after the reduction in uranium enrichment and rearrangement of the core configuration. In this work we report on the determination of the hardness parameter and the 1 MeV equivalent neutron flux along the facility, in the new irradiation conditions, following ASTM E722 standard.

  10. Dynamic behaviour and neutron noise in molten salt reactors with circulating perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Pazsit, I.; Dykin, V. [Chalmers Univ. of Tech., Nuclear Engineering, Goteborg (Sweden)

    2014-07-01

    This paper concerns the calculation of the neutron noise induced in Molten Salt Reactors (MSR) by the random fluctuations in space and time of the molten fuel cross sections which travel together with the fuel and pass the core region. The effect of such fluctuations was already discussed in several publications. The novelty of the present paper is that it takes into account that in addition to the delayed neutron precursors, also the cross section perturbations themselves, whose passing through the core induces the in-core neutron noise, return to the core inlet via the external loop from the core exit. The corresponding theory is developed, and some quantitative investigations are made of the characteristics of the noise, which can be attributed to the recirculation of the perturbation to the core. It is shown that the effect of the returning of the perturbations, even though it is also associated with a temporal decay, has a much stronger effect on the neutron noise spectra than that of the recirculation of the delayed neutron precursors. (author)

  11. Dynamic behaviour and neutron noise in molten salt reactors with circulating perturbations

    International Nuclear Information System (INIS)

    Pazsit, I.; Dykin, V.

    2014-01-01

    This paper concerns the calculation of the neutron noise induced in Molten Salt Reactors (MSR) by the random fluctuations in space and time of the molten fuel cross sections which travel together with the fuel and pass the core region. The effect of such fluctuations was already discussed in several publications. The novelty of the present paper is that it takes into account that in addition to the delayed neutron precursors, also the cross section perturbations themselves, whose passing through the core induces the in-core neutron noise, return to the core inlet via the external loop from the core exit. The corresponding theory is developed, and some quantitative investigations are made of the characteristics of the noise, which can be attributed to the recirculation of the perturbation to the core. It is shown that the effect of the returning of the perturbations, even though it is also associated with a temporal decay, has a much stronger effect on the neutron noise spectra than that of the recirculation of the delayed neutron precursors. (author)

  12. Study on the neutron dosimetric characteristics of Tissue Equivalent Proportional Counter

    Energy Technology Data Exchange (ETDEWEB)

    Nunomiya, T.; Kim, E.; Kurosawa, T.; Taniguchi, S.; Nakamura, T. [Tohoku Univ., Sendai (Japan). Cyclotron and Radioisotope Center; Tsujimura, N.; Momose, T.; Shinohara, K. [Japan Nuclear Cycle Development Inst., Environment and Safety Division, Tokai Works, Tokai, Ibaraki (Japan)

    1999-03-01

    The neutron dosimetric characteristics of TEPC (Tissue Equivalent Proportional Counter) has been investigated under a cooperative study between Tohoku University and JNC since 1997. This TEPC is a spherical, large volume, single-wire proportional counter (the model LETSW-5, manufactured by Far West Technology, Inc.) and filled with a tissue equivalent gas in a spherical detector of the A-150 tissue equivalent plastic. The TEPC can measure the spectra of absorbed dose in LET and easily estimate the tissue equivalent dose to neutron. This report summarizes the dosimetric characteristics of TEPC to the monoenergetic neutrons with energy from 8 keV to 15 MeV. It is found that TEPC can estimate the ambient dose equivalent, H*(10), with an accuracy from 0.9 to 2 to the neutron above 0.25 MeV and TEPC has a good counting efficiency enough to measure neutron doses with low dose rate at the stray neutron fields. (author)

  13. Neutronic studies of the long life core concept: Part 1, Design and performance of 1000 MWe uranium oxide fueled low power density LMR cores

    International Nuclear Information System (INIS)

    Orechwa, Y.

    1987-04-01

    The parametric behavior of some key neutronic performance parameters for low power density LMR cores fueled with uranium oxide is investigated. The results are compared to reference homogeneous and heterogeneous cores with normal fuel management and Pu fueling. It can be concluded that with respect to minimizing the initial fissile mass and thereby economizing on the inventory costs and carrying charges, the superior neutron economy of the LMR fuel cycle is best exploited through normal fuel management with Pu recycling. In the once-through mode the LMR fuel cycle has disadvantages due to a higher fissile inventory and is not competitive with the LWR fuel cycle

  14. Measurement and analysis of neutron flux distribution of STACY heterogeneous core by position sensitive proportional counter. Contract research

    CERN Document Server

    Murazaki, M; Uno, Y

    2003-01-01

    We have measured neutron flux distribution around the core tank of STACY heterogeneous core by position sensitive proportional counter (PSPC) to develop the method to measure reactivity for subcritical systems. The neutron flux distribution data in the position accuracy of +-13 mm have been obtained in the range of uranium concentration of 50g/L to 210g/L both in critical and in subcritical state. The prompt neutron decay constant, alpha, was evaluated from the measurement data of pulsed neutron source experiments. We also calculated distribution of neutron flux and sup 3 He reaction rates at the location of PSPC by using continuous energy Monte Carlo code MCNP. The measurement data was compared with the calculation results. As results of comparison, calculated values agreed generally with measurement data of PSPC with Cd cover in the region above half of solution height, but the difference between calculated value and measurement data was large in the region below half of solution height. On the other hand, ...

  15. Effects of neutron spectrum and external neutron source on neutron multiplication parameters in accelerator-driven system

    International Nuclear Information System (INIS)

    Shahbunder, Hesham; Pyeon, Cheol Ho; Misawa, Tsuyoshi; Lim, Jae-Yong; Shiroya, Seiji

    2010-01-01

    The neutron multiplication parameters: neutron multiplication M, subcritical multiplication factor k s , external source efficiency φ*, play an important role for numerical assessment and reactor power evaluation of an accelerator-driven system (ADS). Those parameters can be evaluated by using the measured reaction rate distribution in the subcritical system. In this study, the experimental verification of this methodology is performed in various ADS cores; with high-energy (100 MeV) proton-tungsten source in hard and soft neutron spectra cores and 14 MeV D-T neutron source in soft spectrum core. The comparison between measured and calculated multiplication parameters reveals a maximum relative difference in the range of 6.6-13.7% that is attributed to the calculation nuclear libraries uncertainty and accuracy for energies higher than 20 MeV and also dependent on the reaction rate distribution position and count rates. The effects of different core neutron spectra and external neutron sources on the neutron multiplication parameters are discussed.

  16. Nuclear core catchers

    International Nuclear Information System (INIS)

    Golden, M.P.; Tilbrook, R.W.; Heylmun, N.F.

    1976-01-01

    A receptacle is described for taking the molten fragments of a nuclear reactor during a reactor core fusion accident. The receptacle is placed under the reactor. It includes at least one receptacle for the reactor core fragments, with a dome shaped part to distribute the molten fragments and at least one outside layer of alumina bricks around the dome. The characteristic of this receptacle is that the outer layer of bricks contains neutron poison rods which pass through the bricks and protrude in relation to them [fr

  17. Heterogeneous gas core reactor

    International Nuclear Information System (INIS)

    Han, K.I.

    1977-01-01

    Preliminary investigations of a heterogeneous gas core reactor (HGCR) concept suggest that this potential power reactor offers distinct advantages over other existing or conceptual reactor power plants. One of the most favorable features of the HGCR is the flexibility of the power producing system which allows it to be efficiently designed to conform to a desired optimum condition without major conceptual changes. The arrangement of bundles of moderator/coolant channels in a fissionable gas or mixture of gases makes a truly heterogeneous nuclear reactor core. It is this full heterogeneity for a gas-fueled reactor core which accounts for the novelty of the heterogeneous gas core reactor concept and leads to noted significant advantages over previous gas core systems with respect to neutron and fuel economy, power density, and heat transfer characteristics. The purpose of this work is to provide an insight into the design, operating characteristics, and safety of a heterogeneous gas core reactor system. The studies consist mainly of neutronic, energetic and kinetic analyses of the power producing and conversion systems as a preliminary assessment of the heterogeneous gas core reactor concept and basic design. The results of the conducted research indicate a high potential for the heterogeneous gas core reactor system as an electrical power generating unit (either large or small), with an overall efficiency as high as 40 to 45%. The HGCR system is found to be stable and safe, under the conditions imposed upon the analyses conducted in this work, due to the inherent safety of ann expanding gaseous fuel and the intrinsic feedback effects of the gas and water coolant

  18. Code of practice for in-core instrumentation for neutron fluence rate (flux) measurements in power reactors

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    This standard applies to in-core (on-line) neutron detectors and instrumentation which is designed for safety, information or control purposes. It also applies to components in so far as these components are contained within the primary envelope of the reactor. The detector types usually used are dc ionization chambers and self-powered neutron detectors

  19. Neutron sources and its dosimetric characteristics

    International Nuclear Information System (INIS)

    Vega C, H.R.; Manzanares A, E.; Hernandez D, V.M.; Mercado S, G.A.; Gallego D, E.; Lorente F, A.

    2005-01-01

    By means of Monte Carlo methods the spectra of the produced neutrons 252 Cf, 252 Cf/D 2 O, 241 Am Be, 239 Pu Be, 140 La Be, 239 Pu 18 O 2 and 226 Ra Be have been calculated. With the information of the spectrum it was calculated the average energy of the neutrons of each source. By means of the fluence coefficients to dose it was determined, for each one of the studied sources, the fluence factors to dose. The calculated doses were H, H * (10), H p,sIab (10, 0 0 ), E AP and E ISO . During the phase of the calculations the sources were modeled as punctual and their characteristics were determined to 100 cm in the hole. Also, for the case of the sources of 239 Pu Be and 241 Am Be, were carried out calculations modeling the sources with their respective characteristics and the dosimetric properties were determined in a space full with air. The results of this last phase of the calculations were compared with the experimental results obtained for both sources. (Author)

  20. Design comparisons of TRU burner cores with similar sodium void worth

    International Nuclear Information System (INIS)

    Sang Ji, Kim; Young Il, Kim; Young Jin, Kim; Nam Zin, Cho

    2001-01-01

    This study summarizes the neutronic performance and fuel cycle behavior of five geometrically-different transuranic (TRU) burner cores with similar low sodium void reactivity. The conceptual cores encompass core geometries for annular, two-region homogeneous, dual pin type, pan-shaped and H-shaped cores. They have been designed with the same assembly specifications and managed to have similar end-of-cycle sodium void reactivities and beginning-of-cycle peak power densities through the changes in the core size and configuration. The requirement of low sodium void reactivity is shown to lead each design concept to characteristic neutronics performance and fuel cycle behavior. The H-/pan-shaped cores allow the core compaction as well as higher rate of TRU burning. (author)

  1. Experimental studying the effects of horizontal experimental channels on the neutron field in the model of the TVR-M research reactor core

    International Nuclear Information System (INIS)

    Shvedov, O.V.; Aitov, G.M.; Balyuk, S.A.

    1989-01-01

    The effect of horizontal channels on the neutron field in the core of the TVR-M heavy-water cooled high-flux research reactor is experimentally studied. The experiments are carried out in a critical assembly using full-scale core model. The data are obtained characterizing soft and rigid effects of horizontal experimental channels on neutron field. The soft effect is connected with the total mass of experimental channels. It is practically uniform by the core azimuth and reveals itself in the decrease of neutron burst in the reflector, and, consequently in the decrease of neutron field distorsion in the external and middle fuel assembly rows. The rigid effect is conditioned by separate experimental channels located close to the core. It brings about local disturbance in the closest fuel assemblies. The data obtained are a part of experimental program on studying basis power distributions in the TVR-M reactor lattices. 2 refs.; 18 figs

  2. Beginning-of-life neutronic analysis of a 3000-MW(t) HTGR

    International Nuclear Information System (INIS)

    Vigil, J.C.

    1975-12-01

    The results of a study of safety-related neutronic characteristics for the beginning-of-life core of a 3000-MW(t) High-Temperature Gas-Cooled Reactor are presented. Emphasis was placed on the temperature-dependent reactivity effects of fuel, moderator, control poisons, and fission products. Other neutronic characteristics studied were gross and local power distributions, neutron kinetics parameters, control rod and other material worths and worth distributions, and the reactivity worth of a selected hypothetical perturbation in the core configuration. The study was performed for the most part using discrete-ordinates transport theory codes and neutron cross sections that were interpolated from a four-parameter nine-group library supplied by the HTGR vendor. A few comparison calculations were also performed using nine-group data generated with an independent cross-section processing code system. Results from the study generally agree well with results reported by the HTGR vendor

  3. Comparison of facility characteristics between SCTF Core-I and Core-II

    International Nuclear Information System (INIS)

    Adachi, Hiromichi; Iwamura, Takamichi; Sobajima, Makoto; Ohnuki, Akira; Abe, Yutaka; Murao, Yoshio.

    1990-08-01

    The Slab Core Test Facility (SCTF) was constructed to investigate two-dimensional thermal-hydraulics in the core and fluid behavior of carryover water out of the core including its feed-back effect to the core behavior mainly during the reflood phase of a large break loss-of-coolant accident (LOCA) of a pressurized water reactor (PWR). Since three simulated cores are used in the SCTF Test Program and the design of these three cores are slightly different one by one, repeatability test is required to justify a direct comparison of data obtained with different cores. In the present report, data of Test S2-13 (Run 618) obtained with SCTF Core-II were compared with those of Test S1-05 (Run 511) obtained with the Core-I, which were performed under the forced-flooding condition. Thermal-hydraulic behaviors in these two tests showed quite similar characteristics of both system behavior and two-dimensional core behaviors. Therefore, the test data obtained from the two cores can be compared directly with each other. After the turnaround of clad temperatures, however, some differences were found in upper plenum water accumulation and resultant two-dimensional core cooling behaviors such as quench front propagation from bottom to top of the core. (author)

  4. CONSUL code package application for LMFR core calculations

    Energy Technology Data Exchange (ETDEWEB)

    Chibinyaev, A.V.; Teplov, P.S.; Frolova, M.V. [RNC ' Kurchatovskiy institute' , Kurchatov sq.1, Moscow (Russian Federation)

    2008-07-01

    CONSUL code package designed for the calculation of reactor core characteristics has been developed at the beginning of 90's. The calculation of nuclear reactor core characteristics is carried out on the basis of correlated neutron, isotope and temperature distributions. The code package has been generally used for LWR core characteristics calculations. At present CONSUL code package was adapted to calculate liquid metal fast reactors (LMFR). The comparisons with IAEA computational test 'Evaluation of benchmark calculations on a fast power reactor core with near zero sodium void effect' and BN-1800 testing calculations are presented in the paper. The IAEA benchmark core is based on the innovative core concept with sodium plenum above the core BN-800. BN-1800 core is the next development step which is foreseen for the Russian fast reactor concept. The comparison of the operational parameters has shown good agreement and confirms the possibility of CONSUL code package application for LMFR core calculation. (authors)

  5. Light neutron-rich hypernuclei from the importance-truncated no-core shell model

    Science.gov (United States)

    Wirth, Roland; Roth, Robert

    2018-04-01

    We explore the systematics of ground-state and excitation energies in singly-strange hypernuclei throughout the helium and lithium isotopic chains - from He5Λ to He11Λ and from Li7Λ to Li12Λ - in the ab initio no-core shell model with importance truncation. All calculations are based on two- and three-baryon interaction from chiral effective field theory and we employ a similarity renormalization group transformation consistently up to the three-baryon level to improve the model-space convergence. While the absolute energies of hypernuclear states show a systematic variation with the regulator cutoff of the hyperon-nucleon interaction, the resulting neutron separation energies are very stable and in good agreement with available data for both nucleonic parents and their daughter hypernuclei. We provide predictions for the neutron separation energies and the spectra of neutron-rich hypernuclei that have not yet been observed experimentally. Furthermore, we find that the neutron drip lines in the helium and lithium isotopic chains are not changed by the addition of a hyperon.

  6. Optimization method development of the core characteristics of a fast reactor in order to explore possible high performance solutions (a solution being a consistent set of fuel, core, system and safety)

    International Nuclear Information System (INIS)

    Ingremeau, J.-J.X.

    2011-01-01

    In the study of any new nuclear reactor, the design of the core is an important step. However designing and optimising a reactor core is quite complex as it involves neutronics, thermal-hydraulics and fuel thermomechanics and usually design of such a system is achieved through an iterative process, involving several different disciplines. In order to solve quickly such a multi-disciplinary system, while observing the appropriate constraints, a new approach has been developed to optimise both the core performance (in-cycle Pu inventory, fuel burn-up, etc...) and the core safety characteristics (safety estimators) of a Fast Neutron Reactor. This new approach, called FARM (Fast Reactor Methodology) uses analytical models and interpolations (Meta-models) from CEA reference codes for neutronics, thermal-hydraulics and fuel behaviour, which are coupled to automatically design a core based on several optimization variables. This global core model is then linked to a genetic algorithm and used to explore and optimise new core designs with improved performance. Consideration has also been given to which parameters can be best used to define the core performance and how safety can be taken into account.This new approach has been used to optimize the design of three concepts of Gas cooled Fast Reactor (GFR). For the first one, using a SiC/SiCf-cladded carbide-fuelled helium-bonded pin, the results demonstrate that the CEA reference core obtained with the traditional iterative method was an optimal core, but among many other possibilities (that is to say on the Pareto front). The optimization also found several other cores which exhibit some improved features at the expense of other safety or performance estimators. An evolution of this concept using a 'buffer', a new technology being developed at CEA, has hence been introduced in FARM. The FARM optimisation produced several core designs using this technology, and estimated their performance. The results obtained show that

  7. A comparative neutronic analysis of KALIMER breeder core using Na or Pb-Bi coolant

    International Nuclear Information System (INIS)

    Yoo, J. W.; Kim, S. J.; Kim, Y. I.

    2000-01-01

    A comparative neutronic study has been conducted on KALIMER breeder core according to the replacement of sodium coolant by Pb-Bi coolant. Since the atomic weight of Pb and Bi is about 9 times heavier than that of Na, the energy loss by neutron colliding with Pb-Bi nucleus will be very small. Therefore, the reactor with Pb-Bi coolant will have a harder neutron spectrum than that with Na coolant. Consequently, the breeding ratio and burnup reactivity swing is expected to be enhanced. In addition, when Pb-Bi coolant is voided, a negative coolant void coefficient can be obtained by the net effects of smaller spectrum hardening and large neutron leakage. As a result, the breeding ratio was increased from 1.18 to 1.23 and burnup reactivity swing was reduced from 631 pcm to 150 pcm. When the coolant in the whole region of active core is voided, the coolant void coefficient was found to be -539 and -264 pcm at BOEC and EOEC, respectively. In the local voided case, the smaller coolant void coefficient was obtained than that of Na coolant. Accordingly, the use of Pb-Bi coolant in KALIMER gives an advantage of higher breeding ratio, smaller burnup reactivity swing and negative coolant void coefficient without any significant degradation of nuclear performance

  8. Neutronic Analysis and Radiological Safety of RSG-GAS Reactor on 300 Grams Uranium Silicide Core

    International Nuclear Information System (INIS)

    Pande Made Udiyani; Lily Suparlina; Rokhmadi

    2007-01-01

    As starting of usage silicide U 250 g fuel element in the core of RSG-GAS and will be continued with usage of silicide U 300 g fuel element, hence done beforehand neutronic analyse and radiological safety of RSG-GAS. Calculation done by ORIGEN2.1 code to calculate source term, and also by PC-COSYMA code to calculate radiological safety of radioactive dispersion from RSG-GAS. Calculation of radioactive dispersion done at condition of reactor is postulated be happened an accident of LOCA causing one fuel element to melt. Neutronic analysis indicate that silicide U 250 g full core shall to be operated beforehand during 625 MWD before converted to silicide U 300 g core. During operation of transition core with mixture of silicide U 250 g and 300 g, all parameter fulfill criterion of safety Designed Balance core of silicide U 300 g will be reached at the time of fifth full core. Result of calculation indicate that through mixture core of silicide U 250 and 300 g proposed can form silicide U 300 g balance core of reactor RSG-GAS safely. Calculation of radiology safety by deterministic for silicide U 300 g balance core, and accident postulation which is equal to core of silicide U 250 g yield output in the form of radiation activity (radionuclide concentration in the air and deposition on the ground), radiation dose (collective and individual), radiation effect (short- and long-range), which accepted by society in each perceived sector. Result of calculation indicated that dose accepted by society is not pass permitted boundary for public society if happened accident. (author)

  9. Metallic nanoshells with semiconductor cores: optical characteristics modified by core medium properties.

    Science.gov (United States)

    Bardhan, Rizia; Grady, Nathaniel K; Ali, Tamer; Halas, Naomi J

    2010-10-26

    It is well-known that the geometry of a nanoshell controls the resonance frequencies of its plasmon modes; however, the properties of the core material also strongly influence its optical properties. Here we report the synthesis of Au nanoshells with semiconductor cores of cuprous oxide and examine their optical characteristics. This material system allows us to systematically examine the role of core material on nanoshell optical properties, comparing Cu(2)O core nanoshells (ε(c) ∼ 7) to lower core dielectric constant SiO(2) core nanoshells (ε(c) = 2) and higher dielectric constant mixed valency iron oxide nanoshells (ε(c) = 12). Increasing the core dielectric constant increases nanoparticle absorption efficiency, reduces plasmon line width, and modifies plasmon energies. Modifying the core medium provides an additional means of tailoring both the near- and far-field optical properties in this unique nanoparticle system.

  10. Calculation of kinetic parameters of Caliban metallic core experimental reactor from stochastic neutron measurements

    Energy Technology Data Exchange (ETDEWEB)

    Casoli, P.; Authier, N.; Baud, J. [Commissariat a l' energie Atomique, Centre de Valduc, 21120 Is-sur-Tille (France)

    2009-07-01

    Several experimental devices are operated by the Criticality and Neutron Science Research Department of the CEA Valduc Laboratory. One of these is the metallic core reactor Caliban. The knowledge of the fundamental kinetic parameters of the reactor is very useful, indeed necessary, to the operator. The purpose of this study was to develop and perform experiments allowing to determinate some of these parameters. The prompt neutron decay constant and particularly its value at criticality can be measured with reactor noise techniques such as the interval-distribution, the Feynman variance-to-mean, and the Rossi-{alpha} methods. By introducing the Nelson number, the effective delayed neutron fraction and the average neutron lifetime can also be calculated with the Rossi-{alpha} method. Subcritical, critical, and even supercritical experiments were performed. With the Rossi-{alpha} technique, it was found that the prompt neutron decay constant at criticality was (6.02*10{sup 5} {+-} 9%). Experiments also brought out the limitations of the used experimental parameters. (authors)

  11. Measurement and analysis of neutron flux distribution of STACY heterogeneous core by position sensitive proportional counter. Contract research

    Energy Technology Data Exchange (ETDEWEB)

    Murazaki, Minoru; Uno, Yuichi; Miyoshi, Yoshinori [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    We have measured neutron flux distribution around the core tank of STACY heterogeneous core by position sensitive proportional counter (PSPC) to develop the method to measure reactivity for subcritical systems. The neutron flux distribution data in the position accuracy of {+-}13 mm have been obtained in the range of uranium concentration of 50g/L to 210g/L both in critical and in subcritical state. The prompt neutron decay constant, {alpha}, was evaluated from the measurement data of pulsed neutron source experiments. We also calculated distribution of neutron flux and {sup 3}He reaction rates at the location of PSPC by using continuous energy Monte Carlo code MCNP. The measurement data was compared with the calculation results. As results of comparison, calculated values agreed generally with measurement data of PSPC with Cd cover in the region above half of solution height, but the difference between calculated value and measurement data was large in the region below half of solution height. On the other hand, calculated value agreed well with measurement data of PSPC without Cd cover. (author)

  12. Evolution Characteristics of the Network Core in the Facebook

    OpenAIRE

    Liu, Jian-Guo; Ren, Zhuo-Ming; Guo, Qiang; Chen, Duan-Bing

    2014-01-01

    Statistical properties of the static networks have been extensively studied. However, online social networks are evolving dynamically, understanding the evolving characteristics of the core is one of major concerns in online social networks. In this paper, we empirically investigate the evolving characteristics of the Facebook core. Firstly, we separate the Facebook-link(FL) and Facebook-wall(FW) datasets into 28 snapshots in terms of timestamps. By employing the k-core decomposition method t...

  13. Neutronics methods, models, and applications at the Idaho National Engineering Laboratory for the advanced neutron source reactor three-element core design

    International Nuclear Information System (INIS)

    Wemple, C.A.; Schnitzler, B.G.; Ryskamp, J.M.

    1995-08-01

    A summary of the methods and models used to perform neutronics analyses on the Advanced Neutron Source reactor three-element core design is presented. The applications of the neutral particle Monte Carlo code MCNP are detailed, as well as the expansion of the static role of MCNP to analysis of fuel cycle depletion calculations. Results to date of these applications are presented also. A summary of the calculations not yet performed is also given to provide a open-quotes to-doclose quotes list if the project is resurrected

  14. The characteristic calibration of the plastic scintillation detector for neutron diagnostic

    CERN Document Server

    Chen Hong Su

    2002-01-01

    The author presents the characteristic of the plastic scintillation detector used for pulse neutron diagnostic. The detection efficiency and sensitivity of the detector to DT neutron have been calibrated by the K-400 accelerator and by the pulse neutron tube, separately. The detection efficiency from the experiment is in agreement with that from calculation in the range of experimental errors

  15. Loss characteristics of FLTD magnetic cores under fast pulsed voltage

    International Nuclear Information System (INIS)

    Wang Zhiguo; Sun Fengju; Qiu Aici; Jiang Xiaofeng; Liang Tianxue; Yin Jiahui; Liu Peng; Wei Hao; Zhang Pengfei; Zhang Zhong

    2012-01-01

    The test platform has been developed to generate exciting pulsed voltages with the rise time less than 30 ns. The loss characteristics of cores of 25 μm 2605TCA Metglas and 50 μm DG6 electrical steel were then studied. A characteristic parameter, the gradient of the voltage pulse applied per unit core area, is proposed to describe the exciting condition applied on magnetic cores. The loss of the DG6 core is about 4 times that of the 2605TCA core. Most loss of the DG6 core, about 75%, is due to eddy current. For the 2605TCA core, the percentage is about 28%. (authors)

  16. Higher order polynomial expansion nodal method for hexagonal core neutronics analysis

    International Nuclear Information System (INIS)

    Jin, Young Cho; Chang, Hyo Kim

    1998-01-01

    A higher-order polynomial expansion nodal(PEN) method is newly formulated as a means to improve the accuracy of the conventional PEN method solutions to multi-group diffusion equations in hexagonal core geometry. The new method is applied to solving various hexagonal core neutronics benchmark problems. The computational accuracy of the higher order PEN method is then compared with that of the conventional PEN method, the analytic function expansion nodal (AFEN) method, and the ANC-H method. It is demonstrated that the higher order PEN method improves the accuracy of the conventional PEN method and that it compares very well with the other nodal methods like the AFEN and ANC-H methods in accuracy

  17. Kalman filtering for rhodium self-powered neutron detectors

    International Nuclear Information System (INIS)

    Kantrowitz, M.L.

    1988-01-01

    Rhodium self-powered neutron detectors are utilized in many pressurized water reactors to determine the neutronic behavior within the core. In order to compensate for the inherent time delay associated with the response of these detectors, a dynamic compensation algorithm is currently used in Combustion Engineering plants to reconstruct the dynamic flux signal which is being sensed by the rhodium detectors. This paper describes a new dynamic compensation algorithm, based on Kalman filtering, which improves on the noise gain and response time characteristics of the algorithm currently used, and offers the possibility of utilizing the proven rhodium detector based fixed in-core detector system as an integral part of advanced core control and/or protection systems

  18. European benchmark on the ASTRID-like low-void-effect core characterization: neutronic parameters and safety coefficients - 15361

    International Nuclear Information System (INIS)

    Bortot, S.; Mikityuk, K.; Panadero, A.L.; Pelloni, S.; Alvarez-Velarde, F.; Lopez, D.; Fridman, E.; Cruzado, I.G.; Herranz, N.G.; Ponomarev, A.; Sciora, P.; Vasile, A.; Seubert, A.; Tsige-Tamirat, H.

    2015-01-01

    A neutronic benchmark was launched with the participation of 8 European institutions using 10 codes and 4 data libraries, in order to study the main characteristics of a low-void-effect sodium-cooled fast spectrum core similar to the one of ASTRID at End-Of-Cycle conditions. The first results of this exercise are presented in this paper. As a major outcome of the study, the negative reactivity effect ensuing from the total voiding of the core was unanimously confirmed. Moreover, the code-to-code comparison allowed identifying a number of issues that require further clarifications and improvements. Some of them are mentioned here. The power generation in the non-fuel regions of the core was calculated by only 2 codes and the resulting result discrepancies reach 100%. Unexpected large discrepancies (up to 100 pcm) were observed in the Doppler constants predictions. The deviation of the Doppler effect's temperature dependence from a logarithmic law is also worth additional analysis. A discrepancy between nuclear data libraries (particularly between JEFF 3.1 and ENDF/B-VII.0) was observed in particular for the prediction of the CR worth

  19. Nuclear characteristics of epoxy resin as a space environment neutron shielding

    Energy Technology Data Exchange (ETDEWEB)

    Adeli, Ruhollah [Nuclear Science and Technology Research Institute, Yazd (Iran, Islamic Republic of). Central Iran Research Complex; Shirmardi, Seyed Pezhman [Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of). Radiation Application Research School; Mazinani, Saideh [Amirkabir Nanotechnology Research Institute, Tehran (Iran, Islamic Republic of); Ahmadi, Seyed Javad [Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of). Nuclear Fuel Cycle Research School

    2017-03-15

    In recent years many investigations have been done for choosing applicable light neutron shielding in space environmental applications. In this study, we have considered the neutron radiation-protective characteristics of neat epoxy resin, a thermoplastic polymer material and have compared it with various candidate materials in neutron radiation protection such as Al 6061 alloy and Polyethylene. The aim of this investigation is the effect of type of moderator for fast neutron, notwithstanding neutron absorbers fillers. The nuclear interactions and the effective dose at shields have been studied with the Monte Carlo N-Particle transport code (MCNP), using variance reductions to reduce the relative error. Among the candidates, polymer matrix showed a better performance in attenuating fast neutrons and caused a lower neutron and secondary photon effective dose.

  20. Determination of the neutron activation profile of core drill samples by gamma-ray spectrometry.

    Science.gov (United States)

    Gurau, D; Boden, S; Sima, O; Stanga, D

    2018-04-01

    This paper provides guidance for determining the neutron activation profile of core drill samples taken from the biological shield of nuclear reactors using gamma spectrometry measurements. Thus, it provides guidance for selecting a model of the right form to fit data and using least squares methods for model fitting. The activity profiles of two core samples taken from the biological shield of a nuclear reactor were determined. The effective activation depth and the total activity of core samples along with their uncertainties were computed by Monte Carlo simulation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. FBR type reactor core

    International Nuclear Information System (INIS)

    Tamiya, Tadashi; Kawashima, Katsuyuki; Fujimura, Koji; Murakami, Tomoko.

    1995-01-01

    Neutron reflectors are disposed at the periphery of a reactor core fuel region and a blanket region, and a neutron shielding region is disposed at the periphery of them. The neutron reflector has a hollow duct structure having a sealed upper portion, a lower portion opened to cooling water, in which a gas and coolants separately sealed in the inside thereof. A driving pressure of a primary recycling pump is lowered upon reduction of coolant flow rate, then the liquid level of coolants in the neutron reflector is lowered due to imbalance between the driving pressure and a gas pressure, so that coolants having an effect as a reflector are eliminated from the outer circumference of the reactor core. Therefore, the amount of neutrons leaking from the reactor core is increased, and negative reactivity is charged to the reactor core. The negative reactivity of the neutron reflector is made greater than a power compensation reactivity. Since this enables reactor scram by using an inherent performance of the reactor core, the reactor core safety of an LMFBR-type reactor can be improved. (I.N.)

  2. Coupled 3D neutron kinetics and thermalhydraulic characteristics of the Canadian supercritical water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hummel, David William, E-mail: hummeld@mcmaster.ca; Novog, David Raymond

    2016-03-15

    Highlights: • A coupled spatial kinetics and thermalhydraulics model of the PT-SCWR was created. • Positive power excursions were demonstrated during accident-like transients. • The reactor will inherently self-shutdown in such transients with some delay. • A fast-acting shutdown system would limit the consequences of the power pulse. - Abstract: The Canadian Supercritical Water-cooled Reactor concept, as an evolution of the CANada Deuterium Uranium (CANDU) reactor, includes both pressure tubes and a low temperature heavy water moderator. The current Pressure Tube type SCWR (PT-SCWR) concept features 64-element fuel assemblies placed within High Efficiency Re-entrant Channels (HERCs) that connect to core inlet and outlet plena. Among current SCWR concepts the PT-SCWR is unique in that the HERC separates multiple coolant and moderator regions, giving rise to coupled neutronic-thermalhydraulic feedbacks beyond those present in CANDU or contemporary Light Water Reactors. The objective of this work was thus to model the coupled neutronic-thermal hydraulic properties of the PT-SCWR to establish the impact of these multiple regions on the core's transient behavior. To that end, the features of the PT-SCWR were first modeled with the neutron transport code DRAGON to create a database of homogenized and condensed cross-sections and thermalhydraulic feedback coefficients. These were used as input to a core-level neutron diffusion model created with the code DONJON. The behavior of the primary heat transport system was modeled with the thermalhydraulic system code CATHENA. A procedure was developed to couple the outputs of DONJON and CATHENA, facilitating three-dimensional spatial neutron kinetics and coupled thermalhydraulic analysis of the PT-SCWR core. Several postulated transients were initiated within the coupled model by changing the core inlet and outlet boundary conditions. Decreasing coolant density around the fuel was demonstrated to produce positive

  3. Systematic thermal reduction of neutronization in core-collapse supernovae

    International Nuclear Information System (INIS)

    Fantina, A.F.; Donati, P.; Pizzochero, P.M.

    2009-01-01

    We investigate to what extent the temperature dependence of the nuclear symmetry energy can affect the neutronization of the stellar core prior to neutrino trapping during gravitational collapse. To this end, we implement a one-zone simulation to follow the collapse until β-equilibrium is reached and the lepton fraction remains constant. Since the strength of electron capture on the neutron-rich nuclei associated to the supernova scenario is still an open issue, we keep it as a free parameter. We find that the temperature dependence of the symmetry energy consistently yields a small reduction of deleptonization, which corresponds to a systematic effect on the shock wave energetics: the gain in dissociation energy of the shock has a small yet non-negligible value of about 0.4 foe (1 foe=10 51 erg) and this result is almost independent from the strength of nuclear electron capture. The presence of such a systematic effect and its robustness under changes of the parameters of the one-zone model are significant enough to justify further investigations with detailed numerical simulations of supernova explosions.

  4. A High Temperature-Tolerant and Radiation-Resistant In-Core Neutron Sensor for Advanced Reactors. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Lei [The Ohio State Univ., Columbus, OH (United States); Miller, Don [The Ohio State Univ., Columbus, OH (United States)

    2015-01-23

    The objectives of this project are to develop a small and reliable gallium nitride (GaN) neutron sensor that is capable of withstanding high neutron fluence and high temperature, isolating gamma background, and operating in a wide dynamic range. The first objective will be the understanding of the fundamental materials properties and electronic response of a GaN semiconductor materials and device in an environment of high temperature and intense neutron field. To achieve such goal, an in-situ study of electronic properties of GaN device such as I-V, leakage current, and charge collection efficiency (CCE) in high temperature using an external neutron beam will be designed and implemented. We will also perform in-core irradiation of GaN up to the highest yet fast neutron fluence and an off-line performance evaluation.

  5. A High Temperature-Tolerant and Radiation-Resistant In-Core Neutron Sensor for Advanced Reactors. Final report

    International Nuclear Information System (INIS)

    Cao, Lei; Miller, Don

    2015-01-01

    The objectives of this project are to develop a small and reliable gallium nitride (GaN) neutron sensor that is capable of withstanding high neutron fluence and high temperature, isolating gamma background, and operating in a wide dynamic range. The first objective will be the understanding of the fundamental materials properties and electronic response of a GaN semiconductor materials and device in an environment of high temperature and intense neutron field. To achieve such goal, an in-situ study of electronic properties of GaN device such as I-V, leakage current, and charge collection efficiency (CCE) in high temperature using an external neutron beam will be designed and implemented. We will also perform in-core irradiation of GaN up to the highest yet fast neutron fluence and an off-line performance evaluation.

  6. Pulsed neutron uranium borehole logging with prompt fission neutrons

    International Nuclear Information System (INIS)

    Bivens, H.M.; Smith, G.W.; Jensen, D.H.

    1976-01-01

    The gross count natural gamma log normally used for uranium borehole logging is seriously affected by disequilibrium. Methods for the direct measurement of uranium, such as neutron logging, which are not affected by disequilibrium have been the object of considerable effort in recent years. This paper describes a logging system for uranium which uses a small accelerator to generate pulses of 14 MeV neutrons to detect and assay uranium by the measurement of prompt fission neutrons in the epithermal energy range. After an initial feasibility study, a prototype logging probe was built for field evaluation which began in January 1976. Physical and operational characteristics of the prototype probe, the neutron tube-transformer assembly, and the neutron tube are described. In logging operations, only the epithermal prompt fission neutrons detected between 250 microseconds to 2500 microseconds following the excitation neutron pulse are counted. Comparison of corrected neutron logs with the conventional gross count natural gamma logs and the chemical assays of cores from boreholes are shown. The results obtained with this neutron probe clearly demonstrate its advantages over the gross count natural gamma log, although at this time the accuracy of the neutron log assay is not satisfactory under some conditions. The necessary correction factors for various borehole and formation parameters are being determined and, when applied, should improve the assay accuracy

  7. Determination of PWR core water level using ex-core detectors signals

    International Nuclear Information System (INIS)

    Bernal, Alvaro; Abarca, Agustin; Miro, Rafael; Verdu, Gumersindo

    2013-01-01

    The core water level provides relevant neutronic and thermalhydraulic information of the reactor such as power, k eff and cooling ability; in fact, core water level monitoring could be used to predict LOCA and cooling reduction which may deal with core damage. Although different detection equipment is used to monitor several parameters such as the power, core water level monitoring is not an evident task. However, ex-core detectors can measure the fast neutrons leaking the core and several studies demonstrate the existence of a relationship between fast neutron leakage and core water level due to the shielding effect of the water. In addition, new ex-core detectors are being developed, such as silicon carbide semiconductor radiation detectors, monitoring the neutron flux with higher accuracy and in higher temperatures conditions. Therefore, a methodology to determine this relationship has been developed based on a Monte Carlo calculation using MCNP code and applying variance reduction with adjoint functions based on the adjoint flux obtained with the discrete ordinates code TORT. (author)

  8. Performance Test of BF3 Neutron Detection System

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yu Sun; Shin, Ho Cheol [KHNP-CRI, Daejeon (Korea, Republic of); Cho, Jin Bok; Oh, Sae Hyun; Ryou, Seok Jean [USERS, Daejeon (Korea, Republic of)

    2015-10-15

    The neutron detecting system of First-of-a-kind plant such an APR1400 at Shin Kori should have been verified in the condition of low operating temperature and pressure of the primary coolant system before receiving the operation license. Auxiliary Ex-core Neutron Flux Monitoring System (AENFMS) is supposed to be installed using BF3 neutron detector in Shin Kori plant. The performance test of AENFMS was conducted to measure neutron sensitivity, moderation ratio and count rate in the same condition with Ex-core Neutron Flux Monitoring System (ENFMS) of APR1400 to verify its detection characteristics in compliance with the functional requirement. Performance test has been conducted for AENFMS of APR1400 to verify BF3 neutron sensitivity, moderation ration of PE, expecting neutron signal count rate from AENFMS, possible extending cable length from detector to pre-amplifier. As a result of measurement, the neutron sensitivity of 34.246±0.168(95%CI)cps/nv, moderation ratio of 11.343±0.039(95%CI) and AENFMS expecting count rate related to ENFMS of 17.8 times are acceptable in compliance with functional requirement, respectively.

  9. Three-dimensional model of the thermo-hydrodynamic neutron interaction in the core of water reactors (stationary states)

    International Nuclear Information System (INIS)

    Mastrangelo, Victor.

    1977-01-01

    A thermo-hydrodynamic neutron interaction model for permanent working conditions is developed in the case of closed circuits (boiling water reactors) and open circuits (pressurized water reactors). Two numerical convergence acceleration methods are then worked out for the resolution of linear problems by successive iterations. A physical study is devoted to the convergence of the thermo-hydrodynamic neutron interaction process. The model developed is applied to the calculation of the power distribution for the core of a 980 MWe BWR-6 type boiling water power station and to the study of normal and accidental working configurations of the pressurized water core of a 900 MWe PWR-CP1 unit [fr

  10. A computationally simple model for determining the time dependent spectral neutron flux in a nuclear reactor core

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, E.A. [Department of Mechanical Engineering, University of Texas, Austin, TX (United States); Deinert, M.R. [Theoretical and Applied Mechanics, Cornell University, 219 Kimball Hall, Ithaca, NY 14853 (United States)]. E-mail: mrd6@cornell.edu; Cady, K.B. [Theoretical and Applied Mechanics, Cornell University, 219 Kimball Hall, Ithaca, NY 14853 (United States)

    2006-10-15

    The balance of isotopes in a nuclear reactor core is key to understanding the overall performance of a given fuel cycle. This balance is in turn most strongly affected by the time and energy-dependent neutron flux. While many large and involved computer packages exist for determining this spectrum, a simplified approach amenable to rapid computation is missing from the literature. We present such a model, which accepts as inputs the fuel element/moderator geometry and composition, reactor geometry, fuel residence time and target burnup and we compare it to OECD/NEA benchmarks for homogeneous MOX and UOX LWR cores. Collision probability approximations to the neutron transport equation are used to decouple the spatial and energy variables. The lethargy dependent neutron flux, governed by coupled integral equations for the fuel and moderator/coolant regions is treated by multigroup thermalization methods, and the transport of neutrons through space is modeled by fuel to moderator transport and escape probabilities. Reactivity control is achieved through use of a burnable poison or adjustable control medium. The model calculates the buildup of 24 actinides, as well as fission products, along with the lethargy dependent neutron flux and the results of several simulations are compared with benchmarked standards.

  11. Family and infant characteristics associated with timing of core and non-core food introduction in early childhood

    OpenAIRE

    Schrempft, Stephanie; van Jaarsveld, Cornelia H.M.; Fisher, Abigail; Wardle, Jane

    2013-01-01

    Objective To identify family and infant characteristics associated with timing of introduction of two food types: core foods (nutrient-dense) and non-core foods (nutrient-poor) in a population-based sample of mothers and infants. Method Participants were 1861 mothers and infants from the Gemini twin birth cohort (one child per family). Family and infant characteristics were assessed when the infants were around 8 months old. Timing of introducing core and non-core foods was assessed at 8 and ...

  12. One-speed neutron transport in spheres with totally absorbing cores

    International Nuclear Information System (INIS)

    Sjoestrand, N.G.

    1988-01-01

    Stationary and time-dependent transport of neutrons of one speed has been studied in spheres with totally absorbing cores. For stationary, critical reactors the number of secondaries per collision has been calculated numerically for various inner and outer radii. In the time-dependent case, the decay constant has been calculated for spherical shells of different inner radii and thicknesses. For a fixed ratio between shell thickness and inner radius, the curve of the decay constant versus shell thickness crosses the Corngold limit in the same way as the curve for a homogeneous sphere. When the ratio goes to zero the curve approaches that for an infinite slab. The behaviour is discussed in view of a new result from collision theory, viz. that the following condition must be fulfilled for a body at the point where the decay constant curve crosses the Corngold limit: the average exit distance of the neutrons is equal to the mean free path for scattering

  13. ARCADIAR - A New Generation of Coupled Neutronics / Core Thermal- Hydraulics Code System at AREVA NP

    International Nuclear Information System (INIS)

    Curca-Tivig, Florin; Merk, Stephan; Pautz, Andreas; Thareau, Sebastien

    2007-01-01

    Anticipating future needs of our customers and willing to concentrate synergies and competences existing in the company for the benefit of our customers, AREVA NP decided in 2002 to develop the next generation of coupled neutronics/ core thermal-hydraulic (TH) code systems for fuel assembly and core design calculations for both, PWR and BWR applications. The global CONVERGENCE project was born: after a feasibility study of one year (2002) and a conceptual phase of another year (2003), development was started at the beginning of 2004. The present paper introduces the CONVERGENCE project, presents the main feature of the new code system ARCADIA R and concludes on customer benefits. ARCADIA R is designed to meet AREVA NP market and customers' requirements worldwide. Besides state-of-the-art physical modeling, numerical performance and industrial functionality, the ARCADIA R system is featuring state-of-the-art software engineering. The new code system will bring a series of benefits for our customers: e.g. improved accuracy for heterogeneous cores (MOX/ UOX, Gd...), better description of nuclide chains, and access to local neutronics/ thermal-hydraulics and possibly thermal-mechanical information (3D pin by pin full core modeling). ARCADIA is a registered trademark of AREVA NP. (authors)

  14. Neutron dynamics of fast-spectrum dedicated cores for waste transmutation

    International Nuclear Information System (INIS)

    Massara, S.

    2002-04-01

    Among different scenarios achieving minor actinide transmutation, the possibility of double strata scenarios with critical, fast spectrum, dedicated cores must be checked and quantified. In these cores, the waste fraction has to be at the highest level compatible with safety requirements during normal operation and transient conditions. As reactivity coefficients are poor in such critical cores (low delayed neutron fraction and Doppler feed-back, high coolant void coefficient), their dynamic behaviour during transient conditions must be carefully analysed. Three nitride-fuel configurations have been analysed: two liquid metal-cooled (sodium and lead) and a particle-fuel helium-cooled one. A dynamic code, MAT4 DYN, has been developed during the PhD thesis, allowing the study of loss of flow, reactivity insertion and loss of coolant accidents, and taking into account two fuel geometries (cylindrical and spherical) and two thermal-hydraulics models for the coolant (incompressible for liquid metals and compressible for helium). Dynamics calculations have shown that if the fuel nature is appropriately chosen (letting a sufficient margin during transients), this can counterbalance the bad state of reactivity coefficients for liquid metal-cooled cores, thus proving the interest of this kind of concept. On the other side, the gas-cooled core dynamics is very badly affected by the high value of the helium void coefficient (which is a consequence of the choice of a hard spectrum), this effect being amplified by the very low thermal inertia of particle-fuel design. So, a new kind of concept should be considered for a helium-cooled fast-spectrum dedicated core. (authors)

  15. Characteristics of neutron irradiation facility and dose estimation method for neutron capture therapy at Kyoto University research reactor institute

    International Nuclear Information System (INIS)

    Kobayashi, T.; Sakurai, Y.; Kanda, K.

    2001-01-01

    The neutron irradiation characteristics of the Heavy Water Neutron Irradiation Facility (HWNIF) at the Kyoto University Research Reactor Institute (KIJRRI) for boron neutron capture therapy (BNCT), is described. The present method of dose measurement and its evaluation at the KURRI, is explained. Especially, the special feature and noticeable matters were expounded for the BNCT with craniotomy, which has been applied at present only in Japan. (author)

  16. Neutronic characterization of cylindrical core of minor excess reactivity in the nuclear reactor IPEN/MB-01 from the measure of spatial and energetic distribution of neutron flux distribution; Caracterizacao do nucleo cilindrico de menor excesso de reatividade do reator IPEN/MB-01, pela medida da distribuicao espacial e energetica do fluxo de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Aredes, Vitor Ottoni Garcia

    2014-07-01

    In this work was conducted the mapping of the thermal and epithermal neutrons flux and the energy spectrum of the neutrons in the reactor core IPEN/MB-01 for a cylindrical core configuration with minor excess reactivity, which is 28 x 28 fuel rods arranged in north-south and east-west directions. The calibration of control rods for this configuration determined their excess reactivity. The lower excess reactivity in the core decreased neutron flux disturbance caused by the neutron absorbing rods , given that the nuclear reactor was operated with the rods almost completely removed . Was used the 'Activation Analysis Technique' with the thin foil activation detectors ( infinitely diluted and hyper-pure), of different materials that work in different energy ranges, to calculate the saturation activity, used for determining the neutron flux and in the SANDBP code as input for the calculation of the neutrons energy spectrum. To discriminate thermal and epithermal flux , was used the 'Cadmium RatioTechnique' . The activation detectors were distributed in a total of 140 radial and axial positions in the reactor core and 16 irradiation, with bare and covered with cadmium activation foils. A model of this configuration was simulated by MCNP-5 code to determine the cadmium correction factor and comparison of the results obtained experimentally. The cylindrical configuration desired, with 17% less fuel than the standard rectangular configuration (28 x 26 fuel rods), reached criticality with the control rods approximately 90% removed, which decreased considerably the disturbance in neutron flux. Given the highest power density of the 28 x 28 cylindrical core, the neutron flux increased by over 50% in the central regions of the core compared to the values of the 28 x 26 standard rectangular core. (author)

  17. Neutronic simulation of a research reactor core of (232Th, 235U)O2 fuel using MCNPX2.6 code

    International Nuclear Information System (INIS)

    Feghhi, Seyed Amir Hossein; Rezazadeh, Marzieh; Kadi, Yacine; ); Tenreiro, Claudio; Aref, Morteza; Gholamzadeh, Zohreh

    2013-01-01

    The small reactor design for the remote and less developed areas of the user countries should have simple features in view of the lack of infra-structure and resources. Many researchers consider long core life with no on-site refuelling activity as a primary feature for the small reactor design. Long core life can be achieved by enhancing internal conversion rate of fertile to fissile materials. For that purpose, thorium cycle can he adopted because a high fissile production rate of 233 U converted from 232 Th can be expected in the thermal energy region. A simple nuclear reactor core arranged 19 assemblies in hexagonal structure, using thorium-based fuel and heavy water as coolant and moderator was simulated using MCNPX2.6 code, aiming an optimized critical assembly. Optimized reflector thickness and gap between assemblies were determined to achieve minimum neutron leakage and void reactivity. The result was a more compact core, where assemblies were designed having 19-fuel pins in 1.25 pitch-to-diameter ratio. Optimum reflector thickness of 15 cm resulted in minimal neutron leakage in view of economic limitations. A 0.5 cm gap between assembles achieved more safety and 2.2 % enrichment requirements. The present feasibility study suggests a thermal core of acceptable neutronic parameters to achieve a simple and safe core. (author)

  18. Evolution characteristics of the network core in the Facebook.

    Directory of Open Access Journals (Sweden)

    Jian-Guo Liu

    Full Text Available Statistical properties of the static networks have been extensively studied. However, online social networks are evolving dynamically, understanding the evolving characteristics of the core is one of major concerns in online social networks. In this paper, we empirically investigate the evolving characteristics of the Facebook core. Firstly, we separate the Facebook-link(FL and Facebook-wall(FW datasets into 28 snapshots in terms of timestamps. By employing the k-core decomposition method to identify the core of each snapshot, we find that the core sizes of the FL and FW networks approximately contain about 672 and 373 nodes regardless of the exponential growth of the network sizes. Secondly, we analyze evolving topological properties of the core, including the k-core value, assortative coefficient, clustering coefficient and the average shortest path length. Empirical results show that nodes in the core are getting more interconnected in the evolving process. Thirdly, we investigate the life span of nodes belonging to the core. More than 50% nodes stay in the core for more than one year, and 19% nodes always stay in the core from the first snapshot. Finally, we analyze the connections between the core and the whole network, and find that nodes belonging to the core prefer to connect nodes with high k-core values, rather than the high degrees ones. This work could provide new insights into the online social network analysis.

  19. Investigation of primary cooling water chemistry following the partial meltdown of Pu-Be neutron source in Tehran Research Reactor Core (TRR)

    Energy Technology Data Exchange (ETDEWEB)

    Aghoyeh, Reza Gholizadeh [School of Research and Development of Nuclear Reactors and Accelerators, Nuclear Science and Technology Research Institute (NSTRI), Atomic Energy Organization of Iran (AEOI), P.O. Box: 14155-1339, Tehran (Iran, Islamic Republic of); Khalafi, Hossein, E-mail: hkhalafi@aeoi.org.i [School of Research and Development of Nuclear Reactors and Accelerators, Nuclear Science and Technology Research Institute (NSTRI), Atomic Energy Organization of Iran (AEOI), P.O. Box: 14155-1339, Tehran (Iran, Islamic Republic of)

    2011-03-15

    Research highlights: Effect of Pu-Be neutron source meltdown in core on reactor water chemistry. Water chemistry of primary cooling before, during and after of above incident was compared. Training importance. Management of nuclear incident and accident. - Abstract: Effect of Pu-Be neutron source meltdown in core on reactor water chemistry was main aim of this study. Leaving the neutron source in the core after reactor power exceeds a few hundred Watts was the main reason for its partial meltdown. Water chemistry of primary cooling before, during and after of above incident was compared. Activity of some radio-nuclides such as Ba-140, La-140, I-131, I-132, Te-132 and Xe-135 increased. Other radio-nuclides such as Nd-147, Xe-133, Sr-91, I-133 and I-135 are also detected which were not existed before this incident.

  20. Modeling and analysis of neutron noise from an ex-core detector at a pressurized water reactor

    International Nuclear Information System (INIS)

    Wood, R.T.; Perez, R.B.

    1991-01-01

    Two applications of a noise diagnostic methodology were performed using ex-core neutron detector data from a pressurized water reactor (PWR). A feedback dynamics model of the neutron power spectral density (PSD) was derived from a low-order whole-plant physical model made stochastic using the Langevin technique. From a functional fit to plant data, the response of the dynamic system to changes in important physical parameters was evaluated by a direct sensitivity analysis. In addition, changes in monitored spectra were related to changes in physical parameters and detection thresholds using common surveillance discriminants were determined. A resonance model was developed from perturbation theory to give the ex-core neutron detector response for small in-core mechanical motions in terms of a pole-strength factor, a resonance asymmetry (or skewness) factor, a vibration damping factor, and a frequency of vibration. The mechanical motion parameters for several resonances were determined by a functional fit of the model to plant data taken at various times during a fuel cycle and were tracked to determine trends that indicated vibrational changes of reactor internals. In addition, the resonance model gave the ability to separate the resonant components of the PSD after the parameters had been identified. As a result, the behavior of several vibration peaks were monitored over a fuel cycle. 9 refs., 6 figs., 1 tab

  1. Investigation of space-energy effects in the reactivity measurement by neutron noise with ex-core detectors in a reflected LWR

    International Nuclear Information System (INIS)

    Lescano, V.H.; Behringer, K.

    1981-11-01

    Practical application of the zero-crossing correlation method for measuring slightly subcritical reactivities in a swimming pool reactor required the use of detector locations in the reflector zone near to the core boundary. Experimental investigations of neutron-noise cross-power spectra showed significant deviations from the point reactor model at higher frequencies (> 100 Hz). Nevertheless, the use of the point reactor model was found to be an useful approach in the analysis of the zero-crossing correlation method yielding results which agreed well with those obtained from the rod-drop method. The theoretical part of the work is concerned with a space-dependent model calculation in two-group diffusion theory to support the experimental findings. The model calculation can explain the trends observed in the neutron-noise spectra as well as the applicability of the point reactor model to the zero-crossing correlation method. To obtain better insight, the calculations have been extended to neutron-noise spectra when one or both detectors are located in the core zone. In the case of a large core and widely spaced detectors, with at least one detector in the core zone, a sink frequency appears in the spectra. This effect is well-known in coupled-core kinetics. (Auth.)

  2. Comparison of the Reactor Core Characteristics of the AHR and the OPAL

    International Nuclear Information System (INIS)

    Seo, Chul Gyo; Lee, Byung Chul; Park, C.; Chae, Hee Taek

    2008-09-01

    The AHR (Advanced HANARO research Reactor) was designed using the experiences from the design, operation and utilization of HANARO. Its neutronic performance was compared to that of the OPAL with a 20 MW power which started its operation recently in Australia. As the OPAL does not have any in-core irradiation hole, a modified core model of the AHR, in which an in-core irradiation hole was changed into a fuel channel, was used for the comparison. For a clean, unperturbed core condition with all fresh fuels in the core and no irradiation holes in the reflector region, the maximum thermal neutron flux (E n 14 n/cm 2 s and that in the OPAL reaches 3.96x10 14 n/cm 2 s in the reflector region. The maximum flux in the AHR is 10.3% higher than that in the OPAL. The thermal flux region above 4.0x10 14 n/cm 2 s is widely distributed in the reflector of the AHR, but is not observed at all in the reflector of the OPAL. The uranium loading of the AHR core is 45.7 kgU, which is 16.3% higher than the 39.3 kgU of OPAL. For a clean core state, the excess reactivity of the AHR is higher than that of the OPAL. The assembly-average discharge burnup in the OPAL is estimated to be 49.1%U-235 whereas that in the AHR is 62.4%U-235. The difference for the discharge burnup is significant. For the conditions with the same cycle length of 30 days, the number of fuel assemblies consumed in the AHR is only 3/4 that of the OPAL

  3. Comparison of the Reactor Core Characteristics of the AHR and the OPAL

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Chul Gyo; Lee, Byung Chul; Park, C.; Chae, Hee Taek

    2008-09-15

    The AHR (Advanced HANARO research Reactor) was designed using the experiences from the design, operation and utilization of HANARO. Its neutronic performance was compared to that of the OPAL with a 20 MW power which started its operation recently in Australia. As the OPAL does not have any in-core irradiation hole, a modified core model of the AHR, in which an in-core irradiation hole was changed into a fuel channel, was used for the comparison. For a clean, unperturbed core condition with all fresh fuels in the core and no irradiation holes in the reflector region, the maximum thermal neutron flux (E{sub n}<0.625 eV) in the AHR reaches 4.41x10{sup 14} n/cm{sup 2} s and that in the OPAL reaches 3.96x10{sup 14} n/cm{sup 2}s in the reflector region. The maximum flux in the AHR is 10.3% higher than that in the OPAL. The thermal flux region above 4.0x10{sup 14} n/cm{sup 2}s is widely distributed in the reflector of the AHR, but is not observed at all in the reflector of the OPAL. The uranium loading of the AHR core is 45.7 kgU, which is 16.3% higher than the 39.3 kgU of OPAL. For a clean core state, the excess reactivity of the AHR is higher than that of the OPAL. The assembly-average discharge burnup in the OPAL is estimated to be 49.1%U-235 whereas that in the AHR is 62.4%U-235. The difference for the discharge burnup is significant. For the conditions with the same cycle length of 30 days, the number of fuel assemblies consumed in the AHR is only 3/4 that of the OPAL.

  4. Measurement of thermal neutron flux spatial distribution in the IEA-R1 reactor core

    International Nuclear Information System (INIS)

    D'Utra Bitelli, U.

    1993-01-01

    This work presents the spatial thermal neutron flux in IEA-R1 reactor obtained by activation foils methods. These measurements were made in 27 fuel elements of the reactor core (165 B configuration). The results are important to compare with theoretical values, power calibration and safety analysis. (author)

  5. Determination of the neutrons energy spectrum in the central thimble of the reactor core TRIGA Mark III

    International Nuclear Information System (INIS)

    Parra M, M. A.; Luis L, M. A.; Raya A, R.; Cruz G, H. S.

    2013-10-01

    This work presents the measurement of the neutrons spectrum in energies in the central thimble of the reactor TRIGA Mark III to a power of 1 MW in stationary state, with the core in the center of the pool. To achieve this objective, several thin sheets were irradiated (one at the time) in the same position of the core. The activation probes were selected in such a way that covered the energy range (1 x 10 -10 to 20 MeV) of the neutrons spectrum in the reactor core, for this purpose thin sheets were used of 197 Au, 58 Ni, 115 In, 24 Mg, 27 Al, 58 Fe, 59 Co and 63 Cu. After the irradiation, the high energy gamma emissions of the activated thin sheets were measured by means of gamma spectrometry, in a counting system of high resolution, with a Hyper pure Germanium detector, obtaining this way the activity induced in the thin sheets whose magnitude is proportional to the intensity of the neutrons flow, this activity together to a theoretical initial spectrum are the main entrance data of the computational code SANDBP (Hungarian version of the code Sand-II) that uses the unfolding method for the calculation of the spectrum. (Author)

  6. Tracking techniques for the characteristics method applied to the resolution of the neutrons transport equation in multi scale domains; Techniques de tracage pour la methode des caracteristiques appliquee a la resolution de l'equation du transport des neutrons en domaines multi-dimensionnels

    Energy Technology Data Exchange (ETDEWEB)

    Fevotte, F. [CEA Saclay, Dept. Modelisation de Systemes et Structures (DEN/DANS/DM2S/SERMA), 91 - Gif sur Yvette (France)

    2008-07-01

    At the various stages of a nuclear reactor's life, numerous studies are needed to guaranty the safety and efficiency of the design, analyse the fuel cycle, prepare the dismantlement, and so on. Due to the extreme difficulty to take extensive and accurate measurements in the reactor core, most of these studies are numerical simulations. The complete numerical simulation of a nuclear reactor involves many types of physics: neutronics, thermal hydraulics, materials, control engineering, Among these, the neutron transport simulation is one of the fundamental steps, since it allows computation - among other things - of various fundamental values such as the power density (used in thermal hydraulics computations) or fuel burn-up. The neutron transport simulation is based on the Boltzmann equation, which models the neutron population inside the reactor core. Among the various methods allowing its numerical solution, much interest has been devoted in the past few years to the Method of Characteristics in unstructured meshes (MOC), since it offers a good accuracy and operates in complicated geometries. The aim of this work is to propose improvements of the calculation scheme bound on the two dimensions MOC, in order to decrease the needed resources number. (A.L.B.)

  7. Characteristics of core sampling from crumbing Paleozoic rock

    Energy Technology Data Exchange (ETDEWEB)

    Barabashkin, I I; Edelman, Y A; Filippov, V N; Lychev, V N

    1981-01-01

    The results of analysis of core sampling using standard core sampling tools with small and medium inside diameter are cited. It is demonstrated that when using these tools loss of core in Paleozoic deposits promising with regard to oil and gas content does not exceed 25 - 30%. The use of a new core sampling tool with a large inside diameter which includes drill bits of different types and a core lifter ''Krembriy'' SKU-172/100 made it possible to increase core removal approximately 52%. A representative core from a highly crumbling and vesicular rock belinging to groups III - IV in terms of difficulty of core sampling was obtained first. A description of a new core sampling tool is given. The characteristics of the technology of its use which promote preservation of the core are cited. Means of continued improvement of this tool are noted.

  8. Direct URCA-processes in neutron star quark core with strong magnetic field.

    Directory of Open Access Journals (Sweden)

    Belyaev Vasily

    2017-01-01

    In evaluations, the strength of magnetic field corresponds to the case, where the quarks of medium occupy a lot of Landau levels, while the electrons are in ground Landau level. The analytical dependence of neutrino emissivity on chemical potentials of quarks and electrons, temperature and magnetic field strength is obtained and briefly discussed. The result could be important in application to a massive strongly magnetized neutron star with quark core.

  9. Neutron Environment Characterization of the Central Cavity in the Annular Core Research Reactor *

    Directory of Open Access Journals (Sweden)

    Parma Edward J.

    2016-01-01

    Full Text Available Characterization of the neutron environment in the central cavity of the Sandia National Laboratories' Annular Core Research Reactor (ACRR is important in order to provide experimenters with the most accurate spectral information and maintain a high degree of fidelity in performing reactor experiments. Characterization includes both modeling and experimental efforts. Building accurate neutronic models of the ACRR and the central cavity “bucket” environments that can be used by experimenters is important in planning and designing experiments, as well as assessing the experimental results and quantifying uncertainties. Neutron fluence characterizations of two bucket environments, LB44 and PLG, are presented. These two environments are used frequently and represent two extremes in the neutron spectrum. The LB44 bucket is designed to remove the thermal component of the neutron spectrum and significantly attenuate the gamma-ray fluence. The PLG bucket is designed to enhance the thermal component of the neutron spectrum and attenuate the gamma-ray fluence. The neutron characterization for each bucket was performed by irradiating 20 different activation foil types, some of which were cadmium covered, resulting in 37 different reactions at the peak axial flux location in each bucket. The dosimetry results were used in the LSL-M2 spectrum adjustment code with a 640-energy group MCNP-generated trial spectrum, self-shielding correction factors, the SNLRML or IRDFF dosimetry cross-section library, trial spectrum uncertainty, and trial covariance matrix, to generate a least-squares adjusted neutron spectrum, spectrum uncertainty, and covariance matrix. Both environment character-izations are well documented and the environments are available for use by experimenters.

  10. The neutronic and fuel cycle performance of interchangeable 3500 MWth metal and oxide fueled LMRs

    International Nuclear Information System (INIS)

    Fujita, E.K.; Wade, D.C.

    1990-01-01

    This study summarizes the neutronic and fuel cycle analysis performed at Argonne National Laboratory for an oxide and a metal fueled 3500 MWth LMR. These reactor designs formed the basis for a joint US/European study of LMR ATWS events. The oxide and metal core designs were developed to meet reactor performance specifications that are constrained by requirements for core loading interchangeability and for a small burnup reactivity swing. Differences in the computed performance parameters of the oxide and metal cores, arising from basic differences in their neutronic characteristics, are identified and discussed. It is shown that metal and oxide cores designed to the same ground rules exhibit many similar performance characteristics; however, they differ substantially in reactivity coefficients, control strategies, and fuel cycle options. 12 refs., 2 figs., 12 tabs

  11. Performance of the MTR core with MOX fuel using the MCNP4C2 code

    International Nuclear Information System (INIS)

    Shaaban, Ismail; Albarhoum, Mohamad

    2016-01-01

    The MCNP4C2 code was used to simulate the MTR-22 MW research reactor and perform the neutronic analysis for a new fuel namely: a MOX (U 3 O 8 &PuO 2 ) fuel dispersed in an Al matrix for One Neutronic Trap (ONT) and Three Neutronic Traps (TNTs) in its core. Its new characteristics were compared to its original characteristics based on the U 3 O 8 -Al fuel. Experimental data for the neutronic parameters including criticality relative to the MTR-22 MW reactor for the original U 3 O 8 -Al fuel at nominal power were used to validate the calculated values and were found acceptable. The achieved results seem to confirm that the use of MOX fuel in the MTR-22 MW will not degrade the safe operational conditions of the reactor. In addition, the use of MOX fuel in the MTR-22 MW core leads to reduce the uranium fuel enrichment with 235 U and the amount of loaded 235 U in the core by about 34.84% and 15.21% for the ONT and TNTs cases, respectively. - Highlights: • Re-cycling of the ETRR-2 reactor by MOX fuel. • Increase the number of the neutronic traps from one neutronic trap to three neutronic trap. • Calculation of the criticality safety and neutronic parameters of the ETRR-2 reactor for the U 3 O 8 -Al original fuel and the MOX fuel.

  12. Possibilities of instrumental neutron activation and X-ray fluorescence analyses of sedimentary-magmatic metamorphosed rocks from deep borehole drill cores

    International Nuclear Information System (INIS)

    Gurevich, A.L.; Drynkin, V.I.; Lejpunskaya, D.I.

    1977-01-01

    The possibilities for instrumental neutron-activation and X-ray fluorescence analyses of rocks of metamorphized sedimentary magmatic complexes have been studied with the aid of deep-hole core. The principal characteristics of the conditions of irradiation and of sample measurement ensuring the determination of the content of 26 elements are presented. The use of X-ray fluorescence analysis enables one to determine additionally the content of stron-tium and niobium. Standard specimens of the composition of rocks and complex reference compounds based on phenol formaldehyde resins are used as metrolo.o.ical auxiliaries in the calibration system and in evaluating the correctness of the techniques of instrumental neutron activation and fluorescence analysis. The ranges of the contents to be determined, the sensitivity and relative standard deviation are given. The contribution from the nonuniformity of the specimens to the summary error of element determination is estimated. It is shown that the accuracy and error of analyses are within the allowable range

  13. Calibration issues for neutron diagnostics

    International Nuclear Information System (INIS)

    Sadler, G.J.; Adams, J.M.; Barnes, C.W.

    1997-10-01

    In order for ITER to meet its operational and programmatic goals, it will be necessary to measure a wide range of plasma parameters. Some of the required parameters e.g., neutron yield, fusion power and power density, ion temperature profile in the core plasma, and characteristics of confined and escaping alpha particle populations are best measured by fusion product diagnostic techniques. To make these measurements, ITER will have dedicated diagnostic systems, including radial and vertical neutron cameras, neutron and gamma ray spectrometers, internal and external fission chambers, a neutron activation system, and diagnostics for confined and escaping alpha particles. Engineering integration of many of these systems is in progress, and other systems are under investigation. This paper summarizes the present state of design of fusion product diagnostic systems for ITER and discusses expected measurement capability

  14. Neutron pair and proton pair transfer reactions between identical cores in the sulfur region

    International Nuclear Information System (INIS)

    Mermaz, M.C.

    1995-12-01

    Optical model and exact finite range distorted-wave Born approximation analyses were performed on neutron pair exchange between identical cores for 32 S and 34 S nuclei and on proton pair exchange between identical cores for 30 Si and 32 S. The extracted spectroscopic factors were compared with theoretical ones deduced from Hartree-Fock calculations on these pair of nuclei. The enhancement of the experimental cross sections with respect to the theoretical ones strongly suggests evidence for a nuclear Josephson effect. (author). 15 refs., 5 figs., 3 tabs

  15. Eigenvalue-dependent neutron energy spectra: Definitions, analyses, and applications

    International Nuclear Information System (INIS)

    Cacuci, D.G.; Ronen, Y.; Shayer, Z.; Wagschal, J.J.; Yeivin, Y.

    1982-01-01

    A general qualitative analysis of spectral effects that arise from solving the kappa-, α-, γ-, and sigma-eigenvalue formulations of the neutron transport equation for nuclear systems that deviate (to first order) from criticality is presented. Hierarchies of neutron spectra softness are established and expressed concisely in terms of the newly introduced spatialdependent local spectral indices for the core and for the reflector. It is shown that each hierarchy is preserved, regardless of the nature of the specific physical mechanism that cause the system to deviate from criticality. Qualitative conclusions regarding the general behavior of the spectrum-dependent integral spectral indices and ICRs corresponding to the kappa-, α-, γ-, and sigma-eigenvalue formalisms are also presented. By defining spectral indices separately for the core and for the reflector, it is possible to account for the characteristics of neutron spectra in both the core and the reflector. The distinctions between the spectra in the core and in the reflector could not have been accounted for by using a single type of spectral index (e.g., a spectral index for the entire system or a spectral index solely for the core)

  16. Prompt-period measurement of the Annular Core Research Reactor prompt neutron generation time

    International Nuclear Information System (INIS)

    Coats, R.L.; Talley, D.G.; Trowbridge, F.R.

    1994-07-01

    The prompt neutron generation time for the Annular Core Research Reactor was experimentally determined using a prompt-period technique. The resultant value of 25.5 μs agreed well with the analytically determined value of 24 μs. The three different methods of reactivity insertion determination yielded ±5% agreement in the experimental values of the prompt neutron generation time. Discrepancies observed in reactivity insertion values determined by the three methods used (transient rod position, relative delayed critical control rod positions, and relative transient rod and control rod positions) were investigated to a limited extent. Rod-shadowing and low power fuel/coolant heat-up were addressed as possible causes of the discrepancies

  17. Influence of FA pin power minimisation on neutron-physical core characteristics

    International Nuclear Information System (INIS)

    Mikolas, P.

    2005-01-01

    The influence of optimisation of radial fuel enrichment profilation in fuel assembly of Gd-2 type on lowering its pin power non-uniformity and subsequent lowering of F dH in WWER-440 cores are described in this paper (Author)

  18. Microscopic (n,γ) rates with astrophysical relevance near the N = 50 neutron core

    International Nuclear Information System (INIS)

    Dutta, Saumi; Gangopadhyay, G.; Bhattacharyya, Abhijit

    2016-01-01

    The weak s-process component, that takes place in He core and C-burning shell of massive stars, produces elements in the mass range 56 < A < 90 from iron up to Sr-Y-Mo region. Neutron capture rates are crucial in the study of weak s-process nucleosynthesis via classical or model-based network calculations. The nuclei in the vicinity of shell closures have very small capture cross sections and hence, act as bottlenecks to the reaction chain. The (n,γ) rates of s-only isotopes are crucial to test the validity of local approximation. Precise neutron capture rates have also consequences for s-process branching analysis that can predict various constraints about the astrophysical medium. The neutron capture rates are also important for p-process study. The rates of the (γ, n) reactions can be deduced from (n,γ) rates via detailed balance. The nuclei, for which experimental data do not exist, a good theoretical model can predict the values

  19. On Use of Multi-Chambered Fission Detectors for In-Core, Neutron Spectroscopy

    Science.gov (United States)

    Roberts, Jeremy A.

    2018-01-01

    Presented is a short, computational study on the potential use of multichambered fission detectors for in-core, neutron spectroscopy. Motivated by the development of very small fission chambers at CEA in France and at Kansas State University in the U.S., it was assumed in this preliminary analysis that devices can be made small enough to avoid flux perturbations and that uncertainties related to measurements can be ignored. It was hypothesized that a sufficient number of chambers with unique reactants can act as a real-time, foilactivation experiment. An unfolding scheme based on maximizing (Shannon) entropy was used to produce a flux spectrum from detector signals that requires no prior information. To test the method, integral, detector responses were generated for singleisotope detectors of various Th, U, Np, Pu, Am, and Cs isotopes using a simplified, pressurized-water reactor spectrum and fluxweighted, microscopic, fission cross sections, in the WIMS-69 multigroup format. An unfolded spectrum was found from subsets of these responses that had a maximum entropy while reproducing the responses considered and summing to one (that is, they were normalized). Several nuclide subsets were studied, and, as expected, the results indicate inclusion of more nuclides leads to better spectra but with diminishing improvements, with the best-case spectrum having an average, relative, group-wise error of approximately 51%. Furthermore, spectra found from minimum-norm and Tihkonov-regularization inversion were of lower quality than the maximum entropy solutions. Finally, the addition of thermal-neutron filters (here, Cd and Gd) provided substantial improvement over unshielded responses alone. The results, as a whole, suggest that in-core, neutron spectroscopy is at least marginally feasible.

  20. Whole core pin-by-pin coupled neutronic-thermal-hydraulic steady state and transient calculations using COBAYA3 code

    International Nuclear Information System (INIS)

    Jimenez, J.; Herrero, J. J.; Cuervo, D.; Aragones, J. M.

    2010-10-01

    Nowadays coupled 3-dimensional neutron kinetics and thermal-hydraulic core calculations are performed by applying a radial average channel approach using a meshing of one quarter of assembly in the best case. This approach does not take into account the subchannels effects due to the averaging of the physical fields and the loose of heterogeneity in the thermal-hydraulic model. Therefore the models do not have enough resolution to predict those subchannels effects which are important for the fuel design safety margins, because it is in the local scale, where we can search the hottest pellet or the maximum heat flux. The Polytechnic University of Madrid advanced multi-scale neutron-kinetics and thermal-hydraulics methodologies being implemented in COBAYA3 include domain decomposition by alternate core dissections for the local 3-dimensional fine-mesh scale problems (pin cells/subchannels) and an analytical nodal diffusion solver for the coarse mesh scale coupled with the thermal-hydraulic using a model of one channel per assembly or per quarter of assembly. In this work, we address the domain decomposition by the alternate core dissections methodology applied to solve coupled 3-dimensional neutronic-thermal-hydraulic problems at the fine-mesh scale. The neutronic-thermal-hydraulic coupling at the cell-subchannel scale allows the treatment of the effects of the detailed thermal-hydraulic feedbacks on cross-sections, thus resulting in better estimates of the local safety margins at the pin level. (Author)

  1. Critical experiments of JMTRC MEU cores

    International Nuclear Information System (INIS)

    Nagaoka, Y.; Takeda, K.; Shimakawa, S.; Koike, S.; Oyamada, R.

    1984-01-01

    The JMTRC, the critical facility of the Japan Materials Testing Reactor (JMTR), went critical on August 29, 1983, with 14 medium enriched uranium (MEU, 45%) fuel elements. Experiments are now being carried out to measure the change in various reactor characteristics between the previous HEU core and the new MEU fueled core. This paper describes the results obtained thus far on critical mass, excess reactivity, control rod worths and flux distribution, including preliminary neutronics calculations for the experiments using the SRAC code. (author)

  2. Self-powered neutron detector

    International Nuclear Information System (INIS)

    Goldstein, N.P.; Todt, W.H.

    1976-01-01

    A self-powered neutron detector is detailed wherein a thin conductive layer of low neutron cross section, high density material is disposed about an emitter core of material which spontaneously emits radiation on neutron capture. The high density material is absorptive of beta radiation emitted by decay of the emitter core activation product, but is substantially transmissive to the high average energy prompt electrons emitted by the emitter core material. (author)

  3. Interfacing high-fidelity core neutronics models to whole plant models

    International Nuclear Information System (INIS)

    McEllin, M.

    1999-01-01

    Until recently available computer power dictated that whole-plant models of nuclear power stations have typically employed simple models of the reactor core which can not match the fidelity of safety-qualified 2-group, 3D neutronics models. As a result the treatment of situations involving strong coupling between the core and the rest of the plant has inevitably been somewhat approximate, requiring conservative modelling assumptions, or manual iteration between cases, to bound worse case scenarios. Such techniques not only place heavy demands on the engineers involved, they may also result in potentially unnecessary operational constraints. Hardware is today no longer the limiting factor, but the cost of developing and validating high-quality software is now such that it appears attractive to build new systems with a wider simulation scope by using existing stand-alone codes as sub-components. This is not always as straightforward as it might at first appear. This paper illustrates some of the pitfalls, and discusses more sophisticated and robust strategies. (author)

  4. Thermal and fast neutron distribution determination in the IPR-R1 reactor core; Levantamento das distribuicoes dos fluxos de neutrons termicos e rapidos no nucleo do reator IPR-R1

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, R R.R.

    1985-06-01

    The work is aimed at obtaining a physical method for neutron flux distribution determination within the reactor core, in order to analyze the project of power increase in the TRIGA IPR-R1 reactor at the Nuclebras Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), located in Belo Horizonte, Minas Gerais, Brazil. The experimental process utilizes the neutron activation technique in impurities of stainless steel welding rods 700 mm long, set in acrylic supports. These rods provide simultaneous information on the thermal and fast neutron fluxes through capture and threshold reactions. The process of detection and counting of activation products utilizes a high resolution Ge (Li) detector and a mechanical scanning device, designed and manufactured at CDTN for burn-up measurements of irradiated fuel elements. Besides its simplicity, the method presents the advantage of substituting high purity imported materials by one easily obtained that also furnishes simultaneous information on the thermal and fast neutron fluxes. Furthermore, values for the absolute thermal neutron flux a long the whole core height are obtained. The procedure consists of the assessment of the thermal neutron flux in a fixed point by means of a conventional detector, and then establishing the correspondence of this measurement with the response of the stainless steel rods. (author). 30 refs, 39 figs, 9 tabs.

  5. Computational Modeling of a Time-Independent, Heterogeneous Reactor Core Using Simplified Discrete Ordinates Neutron Transport Techniques

    National Research Council Canada - National Science Library

    Labowski, Kristofer

    2001-01-01

    The Linear Characteristic (LC) method on rectangular boxoid meshes is a discrete ordinate neutron transport technique that uses both zeroth and first moments of the angular neutron flux to construct a relatively accurate...

  6. Fast reactor core design studies to cope with TRU fuel composition changes in the LWR-to-FBR transition period

    International Nuclear Information System (INIS)

    Kawashima, Katsuyuki; Maruyama, Shuhei; Ohki, Shigeo; Mizuno, Tomoyasu

    2009-01-01

    As part of the Fast Reactor Cycle Technology Development Project (FaCT Project), sodium-cooled fast reactor core design efforts have been made to cope with the TRU fuel composition changes expected during LWR-to-FBR transition period, in which a various kind of TRU fuel compositions are available depending on the characteristics of the LWR spent fuels and a way of recycling them. A 750 MWe mixed-oxide fuel core is firstly defined as a FaCT medium-size reference core and its neutronics characteristics are determined. The core is a high internal conversion type and has an average burnup of 150 GWD/T. The reference TRU fuel composition is assumed to come from the FBR equilibrium state. Compared to the LWR-to-FBR transition period, the TRU fuels in the FBR equilibrium period are multi-recycled through fast reactors and have a different composition. An available TRU fuel composition is determined by fast reactor spent fuel multi-recycling scenarios. Then the FaCT core corresponding to the TRU fuel with different compositions is set according to the TRU fuel composition changes in LWR-to-FBR transition period, and the key core neutronics characteristics are assessed. It is shown that among the core neutronics characteristics, the burnup reactivity and the safety parameters such as sodium void reactivity and Doppler coefficient are significantly influenced by the TRU fuel composition changes. As a result, a general characteristic in the FaCT core design to cope with TRU fuel composition changes is grasped and the design envelopes are identified in terms of the burnup reactivity and the safety parameters. (author)

  7. Determination of the energy spectrum of the neutrons in the central thimble of the reactor core TRIGA Mark III

    International Nuclear Information System (INIS)

    Parra M, M. A.

    2014-01-01

    This thesis presents the neutron spectrum measurements inside the core of the TRIGA Mark III reactor at 1 MW power in steady-state, with the bridge placed in the center of the swimming pool, using several metallic threshold foils. The activation detectors are inserted in the Central Thimble of the reactor core, all the foils are irradiated in the same position and irradiation conditions (one by one). The threshold detectors are made of different materials such as: Au 197 , Ni 58 , In 115 , Mg 24 , Al 27 , Fe 58 , Co 59 and Cu 63 , they were selected to cover the full range the energies (10 -10 to 20 MeV) of the neutron spectrum in the reactor core. After the irradiation, the activation detectors were measured by means of spectrometry gamma, using a high resolution counting system with a hyper pure Germanium crystal, in order to obtain the saturation activity per target nuclide. The saturation activity is one of the main input data together with the initial spectrum, for the computational code SANDBP (hungarian version of the code SAND-II), which through an iterative adjustment, gives the calculated spectrum. The different saturation activities are necessary for the unfolding method, used by the computational code SANDBP. This research work is very important, since the knowledge of the energetic and spatial distribution of the neutron flux in the irradiation facilities, allows to characterize properly the irradiation facilities, just like, to estimate with a good precision various physics parameters of the reactor such as: neutron fluxes (thermal, intermediate and fast), neutronic dose, neutron activation analysis (NAA), spectral indices (cadmium ratio), buckling, fuel burnup, safety parameters (reactivity, temperature distribution, peak factors). In addition, the knowledge of the already mentioned parameters can give a best use of reactor, optimizing the irradiations requested by the users for their production process or research projects. (Author)

  8. Advanced neutron source reactor conceptual safety analysis report, three-element-core design: Chapter 15, accident analysis

    International Nuclear Information System (INIS)

    Chen, N.C.J.; Wendel, M.W.; Yoder, G.L.; Harrington, R.M.

    1996-02-01

    In order to utilize reduced enrichment fuel, the three-element-core design for the Advanced Neutron Source has been proposed. The proposed core configuration consists of inner, middle, and outer elements, with the middle element offset axially beneath the inner and outer elements, which are axially aligned. The three-element-core RELAP5 model assumes that the reactor hardware is changed only within the core region, so that the loop piping, heat exchangers, and pumps remain as assumed for the two-element-core configuration. To assess the impact of changes in the core region configuration and the thermal-hydraulic steady-state conditions, the safety analysis has been updated. This report gives the safety margins for the loss-of-off-site power and pressure-boundary fault accidents based on the RELAP5 results. AU margins are greater for the three-element-core simulations than those calculated for the two-element core

  9. Controlling interface characteristics by adjusting core-shell structure

    International Nuclear Information System (INIS)

    Chang, H.Y.; Cheng, S.Y.; Sheu, C.I.

    2004-01-01

    Most grain boundary layer ceramics comprise semiconductive/conductive grains and insulated grain boundaries. Such a structure can be theoretically regarded as a shell (grain boundary layer) surrounds a core (conductive or semiconductive grain). The core-shell structure of titanium (Ti)-strontium titanate (ST) is composed of three zones - ST, non-stoichiometric strontium-titanium oxide and Ti, in order from shell to core. It was successfully prepared using a hydrothermal method. The Ti-ST core-shell structure was sintered in a reducing atmosphere and then annealed in air to achieve the metal-insulator-metal structure (MIM structure). The resulting MIM structure, annealed in air, changes with the oxygen stoichiometry of the ST shell (insulator layer) at various temperatures, which is thus used to tune its electrical characteristics. The characteristics exhibit nonlinear behavior. Accordingly, the thickness of the insulator layer can be adjusted in various annealing atmospheres and at various temperatures to develop various interfacial devices, such as varistors, capacitors and thermistors, without the use of complex donor/acceptor doping technology

  10. A study on the core characteristics of the fact breed reactor

    International Nuclear Information System (INIS)

    Cho, M.; Ryu, K.G.; Soh, D.S.; Kim, Y.C.; Lee, K.W.; Kim, Y.I.; Lim, J.C.; Oh, K.B.

    1983-01-01

    In order to investigate equilibrium core characteristics of a large LMFBR, nuclear-thermal hydraulic and safety-related characteristics are considered for the equilbrium core of Super-Phenix 1. Using the nuclear computational system for a large LMFBR (KAERI-26G cross section library/1DX/2DB), bias factor of the effective multiplication factor, refueling pattern and enrichments of refueled fuel assemblies are determined. Nuclear characteristics such as criticality, power distribution, and breeding gain are also obtained for the initial core to the equilibrium core. Based on the assembly power distribution of the equilibrium core, coolant flow distributions are determined with the use of THI3D code. Temperature fields within the core assemblies and pressure drop across the core assemblies are also analyzed. In addition, the subchannel analysis of the hottest assembly under the steady state is performed with COBRA-IV-I code. Finally, transient behaviors of reactivity, power, and temperature due to the loss of flow accident without scram are considered and the boiling initiation time of coolant in the fuel assembly is determined for the equilibrium core with SACO code. (Author)

  11. Measurements of the neutron energy spectra in the core of IPEN/MB-01 reactor

    International Nuclear Information System (INIS)

    Martins, Fernando Prat Goncalves

    2006-01-01

    This work presents the neutron spectrum measurements in the Reactor IPEN/MB-01 using very thin activation detectors in the metallic form, in reactor core, in moderator region. An articulated device allows that the foils are inserted in the central position of reactor core, ensuring that all the foils are irradiated in the same position. The activation detectors of different materials such Au 197 , Mg 24 , Ti 4 '8, In 115 , Sc 45 and others, were selected to cover a large range of neutron spectrum. After the irradiation, the activation detectors were submitted to a spectrometry gamma by using a system of counting with high purity Germanium, to obtain the saturation activity per target nuclide. The saturation activity is one of the main data of input of unfolding code SANDBP, that through an iterative adjustment, modify the spectrum that better agree with the dataset of code input, composition mainly for measure reaction rate per target nuclide and a initial input spectrum, calculated for Hammer-Technion code, supplying a solution spectrum. (author)

  12. A detailed neutronics comparison of the university of Florida training reactor (UFTR) current HEU and proposed LEU cores

    International Nuclear Information System (INIS)

    Dionne, B.; Haghighat, A.; Yi, C.; Smith, R.; Ghita, G.; Manalo, K.; Sjoden, G.; Huh, J.; Baciak, J.; Mock, T.; Wenner, M.; Matos, J.; Stillman, J.

    2006-01-01

    For over 35 years, the UFTR highly-enriched core has been safely operated. As part of the Reduced Enrichment for Research and Test Reactors Program, the core is currently being converted to low-enriched uranium fuel. The analyses presented in this paper were performed to verify that, from a neutronic perspective, a proposed low-enriched core can be operated as safely and as effectively as the highly-enriched core. Detailed Monte Carlo criticality calculations are performed to determine: i) Excess reactivity for different core configurations, ii) Individual integral blade worth and shutdown margin, iii) Reactivity coefficients and kinetic parameters, and iv) Flux profiles and core six-factor formula parameters. (authors)

  13. Neutronic analysis of a reference LEU core for Pakistan research reactor using oxide fuel

    International Nuclear Information System (INIS)

    Akhtar, K.M.; Qazi, M.K.; Bokhari, I.H.; Khan, L.A.; Pervez, S.

    1988-07-01

    Neutronic analysis of a 10 MW reference core for PARR, having 28 fresh LEU fuel elements arranged in a 6x5 configuration has been carried out using standard computer codes WIMS-D, EXTERMINATOR-II, and CITATION. Total nuclear power peaking of 3.2 has bee found to occur in the fuel plate adjacent to the water filled central flux trap at the depth of 43.8 cm from the top of the active core. Replacement of water in central flux trap with an aluminum block, having a 50 mm diameter water filled irradiation channel changes the flux profiles in fuel, core side flux trap and reflector. The thermal flux in the central flux trap decreases by about 53%. Therefore some of the fuel elements will have to be removed and the new configuration has to be analysed to determine the first operating core. However, after achieving some burn-up and confirmation from thermal hydraulic analysis, the core configuration analysed, will be the final working core. (orig./A.B.)

  14. Two-dimensional DORT discrete ordinates X-Y geometry neutron flux calculations for the Halden Heavy Boiling Water Reactor core configurations

    Energy Technology Data Exchange (ETDEWEB)

    Slater, C.O.

    1990-07-01

    Results are reported for two-dimensional discrete ordinates, X-Y geometry calculations performed for seven Halden Heavy Boiling Water Reactor core configurations. The calculations were performed in support of an effort to reassess the neutron fluence received by the reactor vessel. Nickel foil measurement data indicated considerable underprediction of fluences by the previously used multigroup removal- diffusion method. Therefore, calculations by a more accurate method were deemed appropriate. For each core configuration, data are presented for (1) integral fluxes in the core and near the vessel wall, (2) neutron spectra at selected locations, (3) isoflux contours superimposed on the geometry models, (4) plots of the geometry models, and (5) input for the calculations. The initial calculations were performed with several mesh sizes. Comparisons of the results from these calculations indicated that the uncertainty in the calculated fluxes should be less than 10%. However, three-dimensional effects (such as axial asymmetry in the fuel loading) could contribute to much greater uncertainty in the calculated neutron fluxes. 7 refs., 22 figs., 11 tabs.

  15. Development of an inconel self powered neutron detector for in-core reactor monitoring

    Science.gov (United States)

    Alex, M.; Ghodgaonkar, M. D.

    2007-04-01

    The paper describes the development and testing of an Inconel600 (2 mm diameter×21 cm long) self-powered neutron detector for in-core neutron monitoring. The detector has 3.5 mm overall diameter and 22 cm length and is integrally coupled to a 12 m long mineral insulated cable. The performance of the detector was compared with cobalt and platinum detectors of similar dimensions. Gamma sensitivity measurements performed at the 60Co irradiation facility in 14 MR/h gamma field showed values of -4.4×10 -18 A/R/h/cm (-9.3×10 -24 A/ γ/cm 2-s/cm), -5.2×10 -18 A/R/h/cm (-1.133×10 -23 A/ γ/cm 2-s/cm) and 34×10 -18 A/R/h/cm (7.14×10 -23 A/ γ/cm 2-s/cm) for the Inconel, Co and Pt detectors, respectively. The detectors together with a miniature gamma ion chamber and fission chamber were tested in the in-core Apsara Swimming Pool type reactor. The ion chambers were used to estimate the neutron and gamma fields. With an effective neutron cross-section of 4b, the Inconel detector has a total sensitivity of 6×10 -23 A/nv/cm while the corresponding sensitivities for the platinum and cobalt detectors were 1.69×10 -22 and 2.64×10 -22 A/nv/cm. The linearity of the detector responses at power levels ranging from 100 to 200 kW was within ±5%. The response of the detectors to reactor scram showed that the prompt response of the Inconel detector was 0.95 while it was 0.7 and 0.95 for the platinum and cobalt self-powered detectors, respectively. The detector was also installed in the horizontal flux unit of 540 MW Pressurised Heavy Water Reactor (PHWR). The neutron flux at the detector location was calculated by Triveni code. The detector response was measured from 0.02% to 0.07% of full power and showed good correlation between power level and detector signals. Long-term tests and the dynamic response of the detector to shut down in PHWR are in progress.

  16. Development of an inconel self powered neutron detector for in-core reactor monitoring

    International Nuclear Information System (INIS)

    Alex, M.; Ghodgaonkar, M.D.

    2007-01-01

    The paper describes the development and testing of an Inconel600 (2 mm diameterx21 cm long) self-powered neutron detector for in-core neutron monitoring. The detector has 3.5 mm overall diameter and 22 cm length and is integrally coupled to a 12 m long mineral insulated cable. The performance of the detector was compared with cobalt and platinum detectors of similar dimensions. Gamma sensitivity measurements performed at the 60 Co irradiation facility in 14 MR/h gamma field showed values of -4.4x10 -18 A/R/h/cm (-9.3x10 -24 A/γ/cm 2 -s/cm), -5.2x10 -18 A/R/h/cm (-1.133x10 -23 A/γ/cm 2 -s/cm) and 34x10 -18 A/R/h/cm (7.14x10 -23 A/γ/cm 2 -s/cm) for the Inconel, Co and Pt detectors, respectively. The detectors together with a miniature gamma ion chamber and fission chamber were tested in the in-core Apsara Swimming Pool type reactor. The ion chambers were used to estimate the neutron and gamma fields. With an effective neutron cross-section of 4b, the Inconel detector has a total sensitivity of 6x10 -23 A/nv/cm while the corresponding sensitivities for the platinum and cobalt detectors were 1.69x10 -22 and 2.64x10 -22 A/nv/cm. The linearity of the detector responses at power levels ranging from 100 to 200 kW was within ±5%. The response of the detectors to reactor scram showed that the prompt response of the Inconel detector was 0.95 while it was 0.7 and 0.95 for the platinum and cobalt self-powered detectors, respectively. The detector was also installed in the horizontal flux unit of 540 MW Pressurised Heavy Water Reactor (PHWR). The neutron flux at the detector location was calculated by Triveni code. The detector response was measured from 0.02% to 0.07% of full power and showed good correlation between power level and detector signals. Long-term tests and the dynamic response of the detector to shut down in PHWR are in progress

  17. Thermal-hydraulic and neutronic analysis of pressurized water reactor cores

    International Nuclear Information System (INIS)

    Alves, C.H.

    1982-01-01

    A computational code, named CANAL2, was developed for the simulation of the steady-state and transient behaviour of a Pressurized Water Reactor core. The conservation equations for the control volumes are obtained by area-averaging of the two-fluid model conservation equations and reducing them to the drift-flux model formulation. The resulting equations are aproximated by finite differences and solved by a marching-type numerical scheme. The model takes into account the exchange of mass, momentum and energy between adjacent subchannels of a fuel bundle. Turbulent mixing and diversion crossflow are considered. Correlations are provided for several heat trans and flow regimes and selected according to the local conditons. During transients core power can be evaluated by a point-Kinetics model. Fuel and coolant temperatures are feedback to the neutronics. The heat conduction equation is solved in the fuel using the Crank-Nicolson scheme. Temperature-dependent correlations are provided for the fuel and cladding thermal conductivities. Several runs were made with the code CANAL2 using the available experimental and calculated data in the open literature. Results indicate that CANAL2 is a good calculational tool for the thermal-hydraulics of PWR cores. A few refinements will make the code useful for design. (Author) [pt

  18. Investigation of the response characteristics of OSL albedo neutron dosimeters in a 241AmBe reference neutron field

    Science.gov (United States)

    Liamsuwan, T.; Wonglee, S.; Channuie, J.; Esoa, J.; Monthonwattana, S.

    2017-06-01

    The objective of this work was to systematically investigate the response characteristics of optically stimulated luminescence Albedo neutron (OSLN) dosimeters to ensure reliable personal dosimetry service provided by Thailand Institute of Nuclear Technology (TINT). Several batches of InLight® OSLN dosimeters were irradiated in a reference neutron field generated by the in-house 241AmBe neutron irradiator. The OSL signals were typically measured 24 hours after irradiation using the InLight® Auto 200 Reader. Based on known values of delivered neutron dose equivalent, the reading correction factor to be used by the reader was evaluated. Subsequently, batch homogeneity, dose linearity, lower limit of detection and fading of the OSLN dosimeters were examined. Batch homogeneity was evaluated to be 0.12 ± 0.05. The neutron dose response exhibited a linear relationship (R2=0.9974) within the detectable neutron dose equivalent range under test (0.4-3 mSv). For this neutron field, the lower limit of detection was between 0.2 and 0.4 mSv. Over different post-irradiation storage times of up to 180 days, the readings fluctuated within ±5%. Personal dosimetry based on the investigated OSLN dosimeter is considered to be reliable under similar neutron exposure conditions, i.e. similar neutron energy spectra and dose equivalent values.

  19. Analysis of resonance oscillation of the neutron flow in a BWR-core

    International Nuclear Information System (INIS)

    Storm, J.

    1987-09-01

    This is a thesis which has been made within the institution of automatic control in Lund. Two programs, 'Blackie' and 'Test' have been written in Fortran. These two programs are to be used for the evaluation of ASEA-ATOMs resonance test in different nuclear reactors. In these tests the condition of the reactor becomes more and more unstable because the coolant flow decreases at the same time as the power gradually increases. This leads to resonance in the neutron flow. This flow is measured by detectors placed in different parts of the reactor core. 'Blackie' receives and stores the values sampled by the detectors. The same program also carries out a Fourier analysis. Amplitudes and phase angles from the different oscillations are calculated. These results are then used as inputs for 'Test'. 'Test' is a plotting program. It draws the reactor and plots arrows where the detectors are situated. The size and direction of the arrows are measurements of the amplitudes and phase angles of the neutron flow oscillations. From these arrow diagrams you can come to conclusions about the oscillations in the neutron flow and how the affect the reactor. (author)

  20. Synergism of the method of characteristic, R-functions and diffusion solution for accurate representation of 3D neutron interactions in research reactors using the AGENT code system

    International Nuclear Information System (INIS)

    Hursin, Mathieu; Xiao Shanjie; Jevremovic, Tatjana

    2006-01-01

    This paper summarizes the theoretical and numerical aspects of the AGENT code methodology accurately applied for detailed three-dimensional (3D) multigroup steady-state modeling of neutron interactions in complex heterogeneous reactor domains. For the first time we show the fine-mesh neutron scalar flux distribution in Purdue research reactor (that was built over forty years ago). The AGENT methodology is based on the unique combination of the three theories: the method of characteristics (MOC) used to simulate the neutron transport in two-dimensional (2D) whole core heterogeneous calculation, the theory of R-functions used as a mathematical tool to describe the true geometry and fuse with the MOC equations, and one-dimensional (1D) higher-order diffusion correction of 2D transport model to account for full 3D heterogeneous whole core representation. The synergism between the radial 2D transport and the 1D axial transport (to take into account the axial neutron interactions and leakage), called the 2D/1D method (used in DeCART and CHAPLET codes), provides a 3D computational solution. The unique synergism between the AGENT geometrical algorithm capable of modeling any current or future reactor core geometry and 3D neutron transport methodology is described in details. The 3D AGENT accuracy and its efficiency are demonstrated showing the eigenvalues, point-wise flux and reaction rate distributions in representative reactor geometries. The AGENT code, comprising this synergism, represents a building block of the computational system, called the virtual reactor. Its main purpose is to perform 'virtual' experiments and demonstrations of various mainly university research reactor experiments

  1. Conceptual design study of LMFBR core with carbide fuel

    International Nuclear Information System (INIS)

    Tezuka, H.; Hojuyama, T.; Osada, H.; Ishii, T.; Hattori, S.; Nishimura, T.

    1987-01-01

    Carbide fuel is a hopeful candidate for demonstration FBR(DFBR) fuel from the plant cost reduction point of view. High thermal conductivity and high heavy metal content of carbide fuel lead to high linear heat rate and high breeding ratio. We have analyzed carbide fuel core characteristics and have clarified the concept of carbide fuel core. By survey calculation, we have obtained a correlation map between core parameters and core characteristics. From the map, we have selected a high efficiency core whose features are better than those of an oxide core, and have obtained reactivity coefficients. The core volume and the reactor fuel inventory are approximately 20% smaller, and the burn-up reactivity loss is 50% smaller compared with the oxide fuel core. These results will reduce the capital cost. The core reactivity coefficients are similar to the conventional oxide DFBR's. Therefore the carbide fuel core is regarded as safe as the oxide core. Except neutron fluence, the carbide fuel core has better nuclear features than the oxide core

  2. Measurement and calculation of spatial and energetic neutron flux in the IEA-R1 reactor core

    International Nuclear Information System (INIS)

    Bittelli, U.D.

    1988-01-01

    This work presents spatial and energetic flux distribution measured in the IEA-R1 reactor core. The thermal neutron flux was measured by gold activation foils (bare and covered with cadmium) in the fuel element number 108 (reaction: 197 Au(n,γ) 198 Au) at 451W overall reactor power. The fast neutron flux was measured by indium activation foils (reaction: 115 In(n,n') 115m In) in the fuel elements number 94 at 4510W overall reactor power. The neutron energy spectrum was adjusted by SAND II code with the data produced by the irradiation of seven activation detectors in the fuel element number 94 at 4510 W overall reactor power. The following reactions were used: 58 Fe(n,γ) 59 Fe, 232 Th(n,γ) 233 Th, 197 Au(n,γ) 198 Au, 59 Co(n,γ) 60 Co, 54 Fe(n,p) 54 Mn, 24 Mg(n,p) 24 Na, 47 Ti(n,p) 47 Sc, 48 Ti(n,p) 48 Sc and 115 In(n,n') 115m In. The experimental results compared to those obtained by CITATION (spatial distribution flux) and HAMMER (energetic distribution flux) code, showed good agreement. The results presented in this work are a good contribution for a better knowledge of spatial and energetic neutron flux distribution in the IEA-R1 reactor core, besides that the experimental procedure is easily applicable to another situations. (autor) [pt

  3. Design characteristics of a three-component AEOI Neutriran Albedo Neutron Personnel Dosimeter

    International Nuclear Information System (INIS)

    Sohrabi, M.; Katouzi, M.

    1991-01-01

    In establishing a national personnel neutron dosimetry service in Iran, different parameters of the AEOI Neutriran Albedo Neutron Personnel Dosimeter (NANPD) have been optimized. A NANPD was designed with three dosimetry components to measure (a) direct thermal neutrons, (b) direct fast neutrons and (C) direct neutrons by the detection of the albedo neutrons reflected from the body. The dosimeter consists of one or more Lexan polycarbonate and/or CR-39 foils and two 10 B (n,α) 7 Li converters in a cadmium cover so arranged as to efficiently measure the three neutron dose components separately. The boron converter thickness, its position relative to the beam direction and its distance from the PC foil were studied and the results were incorporated into the design. The dose response of the dosimeter, its lower detection limit as well as the correction factors related to the field neutrons and albedo neutrons were also determined for a 238 Pu-Be, an 241 Am-Be and a 252 Cf sources. In this paper, the dosimeter design and its dosimetric characteristics are presented and discussed. (author)

  4. Application of AC servo motor on the in-core neutron flux instrumentation system

    International Nuclear Information System (INIS)

    Du Xiaoguang; Wang Mingtao

    2010-01-01

    The application of ac servo motor in the In-Core Neutron Flux Instrumentation System is described. The hardware component of ac servo motor control system is different from the dc motor control system. The effect of two control system on the instrumentation system is compared. The ac servo motor control system can improve the accuracy of the motion control, optimize the speed control and increase the reliability. (authors)

  5. Relationship Of Core Job Characteristics To Job Satisfaction And ...

    African Journals Online (AJOL)

    In order to clarify the conceptual and empirical distinction between job satisfaction and job involvement constructs, this study investigates the relationship between construction workers core job characteristics, job satisfaction and job involvement. It also investigates the mediating role of job satisfaction between core job ...

  6. Neutron stars

    International Nuclear Information System (INIS)

    Irvine, J.M.

    1978-01-01

    The subject is covered in chapters entitled: introduction (resume of stellar evolution, gross characteristics of neutron stars); pulsars (pulsar characteristics, pulsars as neutron stars); neutron star temperatures (neutron star cooling, superfluidity and superconductivity in neutron stars); the exterior of neutron stars (the magnetosphere, the neutron star 'atmosphere', pulses); neutron star structure; neutron star equations of state. (U.K.)

  7. Nuclear and activation characteristics of materials in 14.1-MeV and 2.5-MeV neutron field

    International Nuclear Information System (INIS)

    Seki, Yasushi; Takeyasu, Yuuichi.

    1988-11-01

    The nuclear and activation characteristics of various materials and elements of interest in terms of fusion reactor design are calculated and the results are graphically shown. The elements and materials are placed in a simple geometry modelling a blanket and shield of a fusion reactor. The neutrons with 14.1-MeV and 2.5-MeV energy are generated from the region represented as D-T and D-D plasma, respectively. The following activation characteristics after neutron irradiation are shown for each material and element; 1. Time evolution of induced activity, 2. Time evolution of decay heat, 3. Delayed gamma-ray dose distribution, 4. Decay heat distribution. In addition to the above activation characteristics, nuclear characteristics during the neutron irradiation, e.g. neutron energy spectra, neutron and gamma-ray flux distribution, nuclear heating distributions, and neutron and gamma-ray dose rate are also shown. (author)

  8. Core calculations of JMTR

    Energy Technology Data Exchange (ETDEWEB)

    Nagao, Yoshiharu [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    1998-03-01

    In material testing reactors like the JMTR (Japan Material Testing Reactor) of 50 MW in Japan Atomic Energy Research Institute, the neutron flux and neutron energy spectra of irradiated samples show complex distributions. It is necessary to assess the neutron flux and neutron energy spectra of an irradiation field by carrying out the nuclear calculation of the core for every operation cycle. In order to advance core calculation, in the JMTR, the application of MCNP to the assessment of core reactivity and neutron flux and spectra has been investigated. In this study, in order to reduce the time for calculation and variance, the comparison of the results of the calculations by the use of K code and fixed source and the use of Weight Window were investigated. As to the calculation method, the modeling of the total JMTR core, the conditions for calculation and the adopted variance reduction technique are explained. The results of calculation are shown. Significant difference was not observed in the results of neutron flux calculations according to the difference of the modeling of fuel region in the calculations by K code and fixed source. The method of assessing the results of neutron flux calculation is described. (K.I.)

  9. Neutron sources and its dosimetric characteristics; Fuentes de neutrones y sus caracteristicas dosimetricas

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H.R.; Manzanares A, E.; Hernandez D, V.M.; Mercado S, G.A. [Universidad Autonoma de Zacatecas, A.P. 336, 98000 Zacatecas (Mexico); Gallego D, E.; Lorente F, A. [Universidad Politecnica de Madrid, C/Jose Gutierrez Abascal 2, E-28006 Madrid (Spain)

    2005-07-01

    By means of Monte Carlo methods the spectra of the produced neutrons {sup 252} Cf, {sup 252} Cf/D{sub 2}O, {sup 241} Am Be, {sup 239} Pu Be, {sup 140} La Be, {sup 239} Pu{sup 18}O{sub 2} and {sup 226} Ra Be have been calculated. With the information of the spectrum it was calculated the average energy of the neutrons of each source. By means of the fluence coefficients to dose it was determined, for each one of the studied sources, the fluence factors to dose. The calculated doses were H, H{sup *}(10), H{sub p,sIab} (10, 0{sup 0}), E{sub AP} and E{sub ISO}. During the phase of the calculations the sources were modeled as punctual and their characteristics were determined to 100 cm in the hole. Also, for the case of the sources of {sup 239} Pu Be and {sup 241} Am Be, were carried out calculations modeling the sources with their respective characteristics and the dosimetric properties were determined in a space full with air. The results of this last phase of the calculations were compared with the experimental results obtained for both sources. (Author)

  10. Reference neutron radiations. Part 1: Characteristics and methods of production

    International Nuclear Information System (INIS)

    2001-01-01

    ISO 8529 consists of the following parts, under the general title Reference neutron radiations: Part 1: Characteristics and methods of production; Part 2: Calibration fundamentals of radiation protection devices related to the basic quantities characterizing the radiation field; Part 3: Calibration of area and personal dosimeters and determination of response as a function of energy and angle of incidence. This Part 1. of ISO 8529 specifies the reference neutron radiations, in the energy range from thermal up to 20 MeV, for calibrating neutron-measuring devices used for radiation protection purposes and for determining their response as a function of neutron energy. Reference radiations are given for neutron fluence rates of up to 1x10 9 m 2 s-1 , corresponding, at a neutron energy of 1 MeV, to dose-equivalent rates of up to 100 mSv h -1 . This part of ISO 8529 is concerned only with the methods of producing and characterizing the neutron reference radiations. The procedures for applying these radiations for calibrations are described in ISO 8529-2 and ISO 8529-3. The reference radiations specified are the following: neutrons from radionuclide sources, including neutrons from sources in a moderator; neutrons produced by nuclear reactions with charged particles from accelerators; neutrons from reactors. In view of the methods of production and use of them, these reference radiations are divided, for the purposes of this part of ISO 8529, into the following two separate sections. In clause 4, radionuclide neutron sources with wide spectra are specified for the calibration of neutron measuring devices. These sources should be used by laboratories engaged in the routine calibration of neutron-measuring devices, the particular design of which has already been type tested. In clause 5, accelerator-produced monoenergetic neutrons and reactor-produced neutrons with wide or quasi monoenergetic spectra are specified for determining the response of neutron-measuring devices

  11. Effects of neutron source ratio on nuclear characteristics of D-D fusion reactor blankets and shields

    International Nuclear Information System (INIS)

    Nakashima, Hideki; Nakao, Yasuyuki; Ohta, Masao

    1978-01-01

    An examination is made of the dependence shown by the nuclear characteristics of the blanket and shield of D-D fusion reactors on S sub( d d)/S sub( d t), the ratio between the 2.45 MeV neutrons resulting from the D-D reaction and those of 14.06 MeV from the D-T reaction. Also, an estimate is presented of this neutron source ratio S sub( d d)/S sub( d t) for the case of D-D reactors, taken as an example. It is shown that an increase of S sub( d d)/S sub( d t) reduces the amount of nuclear heating per unit source neutron, while at the same time improving the shielding characteristics. This is accountable to lowering of the energy and penetrability of incident neutrons into the blanket brought about by the increase of S sub( d d)/S sub( d t). The value of S sub( d d)/S sub( d t) in a steady state D-D fusioning plasma core is estimated to be 1.46 -- 1.72 for an ion temperature ranging from 60 -- 180 keV. The reductions obtained on H sub( t)sup( b) (total heating in the blanket), H sub( t)sup( m g)/H sub( t)sup( b) (shielding indicator = ratio between total heating in superconducting magnet and that in the blanket) and phi sup( m g)/phi sup( w) (ratio of fast neutron fluxes between that at the magnet inner surface and that at the first wall inner surface) brought about by increasing S sub( d d)/S sub( d t) from unity to the value cited above do not differ to any appreciable extent, whichever is adopted among the design models considered here, the differences being at most about 10, 15 and 25%, respectively, for these three parameters. These results would broaden the validity of the conclusion derived in the previous paper for the case of S sub( d d)/S sub( d t) = 1.0, that the blanket-shield concept would appear to be the most suitable for D-D fusion reactors. (author)

  12. Neutron sources and their characteristics

    International Nuclear Information System (INIS)

    McCall, R.C.; Swanson, W.P.

    1979-03-01

    The significant sources of photoneutrons within a linear-accelerator treatment head are identified and absolute estimates of neutron production per treatment dose are given for typical components. It is found that the high-Z materials within the treatment head do not significantly alter the neutron fluence but do substantially reduce the average energy of the transmitted spectrum. Reflection of neutrons from the concrete treatment room contribute to the neutron fluence, but not substantially to the patient integral dose, because of a further reduction in average energy. The ratio of maximum fluence to the treatment dose at the same distance is given as a function of electron energy. This ratio rises with energy to an almost constant value of 2.1 x 10 5 neutrons cm -2 rad -1 at electron energies above about 25 MeV. Measured data obtained at a variety of accelerator installations are presented and compared with these calculations. Reasons for apparent deviations are suggested. Absolute depth-dose and depth-dose-equivalent distributions for realistic neutron spectra that occur at therapy installations are calculated, and a rapid falloff with depth is found. The ratio of neutron integral absorbed dose to leakage photon absorbed dose is estimated to be 0.04 and 0.2 for 14 to 25 MeV incident electron energy, respectively. Possible reasons are given for lesser neutron production from betatrons than from linear accelerators. Possible ways in which neutron production can be reduced are discussed

  13. 3D Monte-Carlo transport calculations of whole slab reactor cores: validation of deterministic neutronic calculation routes

    International Nuclear Information System (INIS)

    Palau, J.M.

    2005-01-01

    This paper presents how Monte-Carlo calculations (French TRIPOLI4 poly-kinetic code with an appropriate pre-processing and post-processing software called OVNI) are used in the case of 3-dimensional heterogeneous benchmarks (slab reactor cores) to reduce model biases and enable a thorough and detailed analysis of the performances of deterministic methods and their associated data libraries with respect to key neutron parameters (reactivity, local power). Outstanding examples of application of these tools are presented regarding the new numerical methods implemented in the French lattice code APOLLO2 (advanced self-shielding models, new IDT characteristics method implemented within the discrete-ordinates flux solver model) and the JEFF3.1 nuclear data library (checked against JEF2.2 previous file). In particular we have pointed out, by performing multigroup/point-wise TRIPOLI4 (assembly and core) calculations, the efficiency (in terms of accuracy and computation time) of the new IDT method developed in APOLLO2. In addition, by performing 3-dimensional TRIPOLI4 calculations of the whole slab core (few millions of elementary volumes), the high quality of the new JEFF3.1 nuclear data files and revised evaluations (U 235 , U 238 , Hf) for reactivity prediction of slab cores critical experiments has been stressed. As a feedback of the whole validation process, improvements in terms of nuclear data (mainly Hf capture cross-sections) and numerical methods (advanced quadrature formulas accounting validation results, validation of new self-shielding models, parallelization) are suggested to improve even more the APOLLO2-CRONOS2 standard calculation route. (author)

  14. 3D Monte-Carlo transport calculations of whole slab reactor cores: validation of deterministic neutronic calculation routes

    Energy Technology Data Exchange (ETDEWEB)

    Palau, J M [CEA Cadarache, Service de Physique des Reacteurs et du Cycle, Lab. de Projets Nucleaires, 13 - Saint-Paul-lez-Durance (France)

    2005-07-01

    This paper presents how Monte-Carlo calculations (French TRIPOLI4 poly-kinetic code with an appropriate pre-processing and post-processing software called OVNI) are used in the case of 3-dimensional heterogeneous benchmarks (slab reactor cores) to reduce model biases and enable a thorough and detailed analysis of the performances of deterministic methods and their associated data libraries with respect to key neutron parameters (reactivity, local power). Outstanding examples of application of these tools are presented regarding the new numerical methods implemented in the French lattice code APOLLO2 (advanced self-shielding models, new IDT characteristics method implemented within the discrete-ordinates flux solver model) and the JEFF3.1 nuclear data library (checked against JEF2.2 previous file). In particular we have pointed out, by performing multigroup/point-wise TRIPOLI4 (assembly and core) calculations, the efficiency (in terms of accuracy and computation time) of the new IDT method developed in APOLLO2. In addition, by performing 3-dimensional TRIPOLI4 calculations of the whole slab core (few millions of elementary volumes), the high quality of the new JEFF3.1 nuclear data files and revised evaluations (U{sup 235}, U{sup 238}, Hf) for reactivity prediction of slab cores critical experiments has been stressed. As a feedback of the whole validation process, improvements in terms of nuclear data (mainly Hf capture cross-sections) and numerical methods (advanced quadrature formulas accounting validation results, validation of new self-shielding models, parallelization) are suggested to improve even more the APOLLO2-CRONOS2 standard calculation route. (author)

  15. Neutronic feasibility of PWR core with mixed oxide fuels in the Republic of Korea

    International Nuclear Information System (INIS)

    Kim, Y.J.; Joo, H.K.; Jung, H.G.; Sohn, D.S.

    1997-01-01

    Neutronic feasibility of a PWR core with mixed oxide (MOX) fuels has been investigated as part of the feasibility study for recycling spent fuels in Korea. A typical 3-loop PWR with 900 MWe capacity is selected as reference plant to develop equilibrium core designs with low-leakage fuel management scheme, while incorporating various MOX loading. The fuel management analyses and limited safety analyses show that, safely stated, MOX recycling with 1/3 reload fraction can be accommodated for both annual and 18 month fuel cycle schemes in Korean PWRs, without major design modifications on the reactor systems. (author). 12 refs, 4 figs, 3 tabs

  16. Core-Shell Structured Electro- and Magneto-Responsive Materials: Fabrication and Characteristics

    Directory of Open Access Journals (Sweden)

    Hyoung Jin Choi

    2014-11-01

    Full Text Available Core-shell structured electrorheological (ER and magnetorheological (MR particles have attracted increasing interest owing to their outstanding field-responsive properties, including morphology, chemical and dispersion stability, and rheological characteristics of shear stress and yield stress. This study covers recent progress in the preparation of core-shell structured materials as well as their critical characteristics and advantages. Broad emphasises from the synthetic strategy of various core-shell particles to their feature behaviours in the magnetic and electric fields have been elaborated.

  17. On the possible use of the MASURCA reactor as a flexible, high-intensity, fast neutron beam facility

    Science.gov (United States)

    Dioni, Luca; Jacqmin, Robert; Sumini, Marco; Stout, Brian

    2017-09-01

    In recent work [1, 2], we have shown that the MASURCA research reactor could be used to deliver a fairly-intense continuous fast neutron beam to an experimental room located next to the reactor core. As a consequence of the MASURCA favorable characteristics and diverse material inventories, the neutron beam intensity and spectrum can be further tailored to meet the users' needs, which could be of interest for several applications. Monte Carlo simulations have been performed to characterize in detail the extracted neutron (and photon) beam entering the experimental room. These numerical simulations were done for two different bare cores: A uranium metallic core (˜30% 235U enriched) and a plutonium oxide core (˜25% Pu fraction, ˜78% 239Pu). The results show that the distinctive resonance energy structures of the two core leakage spectra are preserved at the channel exit. As the experimental room is large enough to house a dedicated set of neutron spectrometry instruments, we have investigated several candidate neutron spectrum measurement techniques, which could be implemented to guarantee well-defined, repeatable beam conditions to users. Our investigation also includes considerations regarding the gamma rays in the beams.

  18. Operational characteristics of the CALIBAN fast pulse reactor

    International Nuclear Information System (INIS)

    Cortella, J.; Reberol, R.; Vanel, M.

    1976-01-01

    CALIBAN is a FPR operated at CEA-Valduc Center since 1971. It has been designed as a fast neutron irradiation source and its environment is specific for this utilization. To date, it delivered more than 400 bursts and the fuel integrated about 5.10 19 fissions. The main characteristics are: - cylindirical core 113 kg U 235 - Mo 10% alloy - integrated dose in a burst in the central 2.5cm diam cavity:3.10 14 n.cm -2 - integrated dose in a burst outside of the core:5.10 13 n.cm -2 - pulse width:50μs A special effort was made in measuring the spectrometric and dosimetric neutron and gamma characteristics. Some results will be presented here. (auth.)

  19. Fresh-Core Reload of the Neutron Radiography (NRAD) Reactor with Uranium(20)-Erbium-Zirconium-Hydride Fuel

    Energy Technology Data Exchange (ETDEWEB)

    John D. Bess; Thomas L. Maddock; Margaret A. Marshall; Leland M. Montierth

    2011-03-01

    The neutron radiography (NRAD) reactor is a 250 kW TRIGA® (Training, Research, Isotopes, General Atomics) Mark II , tank-type research reactor currently located in the basement, below the main hot cell, of the Hot Fuel Examination Facility (HFEF) at the Idaho National Laboratory (INL). It is equipped with two beam tubes with separate radiography stations for the performance of neutron radiography irradiation on small test components. The 60-fuel-element operational core configuration of the NRAD LEU TRIGA reactor has been evaluated as an acceptable benchmark experiment. The initial critical configuration developed during the fuel loading process, which contains only 56 fuel elements, has not been evaluated as it is very similar to the evaluated core configuration. The benchmark eigenvalue is 1.0012 ± 0.0029. Calculated eigenvalues differ significantly (~±1%) from the benchmark eigenvalue and have demonstrated sensitivity to the thermal scattering treatment of hydrogen in the U-Er-Zr-H fuel.

  20. Fresh-Core Reload of the Neutron Radiography (NRAD) Reactor with Uranium(20)-Erbium-Zirconium-Hydride Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Bess, John D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Maddock, Thomas L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Marshall, Margaret A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Montierth, Leland M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zhang, Ning [Idaho National Lab. (INL), Idaho Falls, ID (United States); Phillips, Ann Marie [Idaho National Lab. (INL), Idaho Falls, ID (United States); Schreck, Kenneth A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Briggs, J. Blair [Idaho National Lab. (INL), Idaho Falls, ID (United States); Woolstenhulme, Eric W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bolin, John M. [General Atomics, San Diego, CA (United States); Veca, Anthony [General Atomics, San Diego, CA (United States); McKnight, Richard D. [Argonne National Lab. (ANL), Argonne, IL (United States); Lell, Richard M. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-03-01

    The neutron radiography (NRAD) reactor is a 250 kW TRIGA® (Training, Research, Isotopes, General Atomics) Mark II , tank-type research reactor currently located in the basement, below the main hot cell, of the Hot Fuel Examination Facility (HFEF) at the Idaho National Laboratory (INL). It is equipped with two beam tubes with separate radiography stations for the performance of neutron radiography irradiation on small test components. The 60-fuel-element operational core configuration of the NRAD LEU TRIGA reactor has been evaluated as an acceptable benchmark experiment. The initial critical configuration developed during the fuel loading process, which contains only 56 fuel elements, has not been evaluated as it is very similar to the evaluated core configuration. The benchmark eigenvalue is 1.0012 ± 0.0029. Calculated eigenvalues differ significantly (~±1%) from the benchmark eigenvalue and have demonstrated sensitivity to the thermal scattering treatment of hydrogen in the U-Er-Zr-H fuel.

  1. Compilation of neutron flux density spectra and reaction rates in different neutron fields

    International Nuclear Information System (INIS)

    Ertek, C.

    1979-07-01

    Upon the recommendation of International Working Group of Reactor Radiation Measurements (IWGRRM), the compilation of neutron flux density spectra and the reaction rates obtained by activation and fission foils in different neutron fields is presented. The neutron fields considered are as follows: 1/E; iron block; LWR core and pressure vessel; LMFBR core and blanket; CTR first wall and blanket; fission spectrum

  2. Experimental determination of residual stress by neutron diffraction in a boiling water reactor core shroud

    International Nuclear Information System (INIS)

    Payzant, A.; Spooner, S.; Zhu, Xiaojing; Hubbard, C.R.

    1996-01-01

    Residual strains in a 51 mm (2-inch) thick 304L stainless steel plate have been measured by neutron diffraction and interpreted in terms of residual stress. The plate, measuring (300 mm) in area, was removed from a 6m (20-ft.) diameter unirradiated boiling water reactor core shroud, and included a multiple-pass horizontal weld which joined two of the cylindrical shells which comprise the core shroud. Residual stress mapping was undertaken in the heat affected zone, concentrating on the outside half of the plate thickness. Variations in residual stresses with location appeared consistent with trends expected from finite element calculations, considering that a large fraction of the residual hoop stress was released upon removal of the plate from the core shroud cylinder

  3. Parallelization characteristics of a three-dimensional whole-core code DeCART

    International Nuclear Information System (INIS)

    Cho, J. Y.; Joo, H.K.; Kim, H. Y.; Lee, J. C.; Jang, M. H.

    2003-01-01

    Neutron transport calculation for three-dimensional amount of computing time but also huge memory. Therefore, whole-core codes such as DeCART need both also parallel computation and distributed memory capabilities. This paper is to implement such parallel capabilities based on MPI grouping and memory distribution on the DeCART code, and then to evaluate the performance by solving the C5G7 three-dimensional benchmark and a simplified three-dimensional SMART core problem. In C5G7 problem with 24 CPUs, a speedup of maximum 22 is obtained on IBM regatta machine and 21 on a LINUX cluster for the MOC kernel, which indicates good parallel performance of the DeCART code. The simplified SMART problem which need about 11 GBytes memory with one processors requires about 940 MBytes, which means that the DeCART code can now solve large core problems on affordable LINUX clusters

  4. Excitation of neutron flux waves in reactor core transients

    International Nuclear Information System (INIS)

    Carew, J.F.; Neogy, P.

    1983-01-01

    An analysis of the excitation of neutron flux waves in reactor core transients has been performed. A perturbation theory solution has been developed for the time-dependent thermal diffusion equation in which the absorption cross section undergoes a rapid change, as in a PWR rod ejection accident (REA). In this analysis the unperturbed reactor flux states provide the basis for the spatial representation of the flux solution. Using a simplified space-time representation for the cross section change, the temporal integrations have been carried out and analytic expressions for the modal flux amplitudes determined. The first order modal excitation strength is determined by the spatial overlap between the initial and final flux states, and the cross section perturbation. The flux wave amplitudes are found to be largest for rapid transients involving large reactivity perturbations

  5. Cronos 2: a neutronic simulation software for reactor core calculations

    International Nuclear Information System (INIS)

    Lautard, J.J.; Magnaud, C.; Moreau, F.; Baudron, A.M.

    1999-01-01

    The CRONOS2 software is that part of the SAPHYR code system dedicated to neutronic core calculations. CRONOS2 is a powerful tool for reactor design, fuel management and safety studies. Its modular structure and great flexibility make CRONOS2 an unique simulation tool for research and development for a wide variety of reactor systems. CRONOS2 is a versatile tool that covers a large range of applications from very fast calculations used in training simulators to time and memory consuming reference calculations needed to understand complex physical phenomena. CRONOS2 has a procedure library named CPROC that allows the user to create its own application environment fitted to a specific industrial use. (authors)

  6. Activities of research-reactor-technology project in FNCA from FY2005 to FY2007. Sharing neutronics calculation technique for core management and utilization of research reactors

    International Nuclear Information System (INIS)

    2010-07-01

    RRT project (Research-Reactor-Technology Project) was carried out with the theme of 'sharing neutronics calculation technique for core management and utilization of research reactors' in the framework of FNCA (Forum for Nuclear Cooperation in Asia) from FY2005 to FY2007. The objective of the project was to improve and equalize the level of neutronics calculation technique for the reactor core management among participating countries to assure the safe and stable operation of research reactors and the promotion of the effective utilization. Neutronics calculation codes, namely SRAC code system and MVP code, were adopted as common codes. Participating countries succeeded in applying the common codes to analyzing the core of each domestic research reactor. Some participating countries succeeded in applying the common codes to analyzing for utilization of own research reactors. Activities of RRT project have improved and equalized the level of neutronics calculation technique among participating countries. (author)

  7. Estimation of subcriticality by neutron source multiplication method

    International Nuclear Information System (INIS)

    Sakurai, Kiyoshi; Suzaki, Takenori; Arakawa, Takuya; Naito, Yoshitaka

    1995-03-01

    Subcritical cores were constructed in a core tank of the TCA by arraying 2.6% enriched UO 2 fuel rods into nxn square lattices of 1.956 cm pitch. Vertical distributions of the neutron count rates for the fifteen subcritical cores (n=17, 16, 14, 11, 8) with different water levels were measured at 5 cm interval with 235 U micro-fission counters at the in-core and out-core positions arranging a 252 C f neutron source at near core center. The continuous energy Monte Carlo code MCNP-4A was used for the calculation of neutron multiplication factors and neutron count rates. In this study, important conclusions are as follows: (1) Differences of neutron multiplication factors resulted from exponential experiment and MCNP-4A are below 1% in most cases. (2) Standard deviations of neutron count rates calculated from MCNP-4A with 500000 histories are 5-8%. The calculated neutron count rates are consistent with the measured one. (author)

  8. Molten salt reactors: reactor cores

    International Nuclear Information System (INIS)

    1983-01-01

    In this critical analysis of the MSBR I project are examined the problems concerning the reactor core. Advantages of breeding depend essentially upon solutions to technological problems like continuous reprocessing or graphite behavior under neutron irradiation. Graphite deformation, moderator unloading, control rods and core instrumentation require more studies. Neutronics of the core, influence of core geometry and salt composition, fuel evolution, and thermohydraulics are reviewed [fr

  9. Study of Fuel Rods Axial Enrichment Distribution Effect on the Neutronic Parameters of the Reactor Core

    International Nuclear Information System (INIS)

    Pazirandeh, A.; Nasiri, S. H.

    2012-01-01

    Optimization of the fuel burn up is an important issue in nuclear reactor fuel management and technology. Radial enrichment distribution in the reactor core is a conventional method and axial enrichment is constant along the fuel rod. In this article, the effects of axial enrichment distribution variation on neutronic parameters of PWR core are studied. The axial length of the core is divided into ten sections, considering axial enrichment variation and leaving the existing radial enrichment distribution intact. This study shows that the radial and axial power peaking factors are decreased as compared with the typical conventional core. In addition, the first core lifetime lasts 30 days longer than normal PWR core. Moreover, at the same time boric acid density is 0.2 g/kg at the beginning of the cycle. The flux shape is also flat at the beginning of the cycle for the proposed configuration of the axially enrichment distribution.

  10. Investigation on the neutron beam characteristics for boron neutron capture therapy with 3D and 2D transport calculations

    International Nuclear Information System (INIS)

    Kodeli, I.; Diop, C.M.; Nimal, J.C.

    1994-01-01

    In the framework of future Boron Neutron Capture Therapy (BNCT) experiments, where cells and animals irradiations are planned at the research reactor of Strasbourg University, the feasibility to obtain a suitable epithermal neutron beam is investigated. The neutron fluence and spectra calculations in the reactor are performed using the 3D Monte Carlo code TRIPOLI-3 and the 2D SN code TWODANT. The preliminary analysis of Al 2 O 3 and Al-Al 2 O 3 filters configurations are carried out in an attempt to optimize the flux characteristics in the beam tube facility. 7 figs., 7 refs

  11. Coupled neutronics and thermal hydraulics of high density cores for FRM II

    Energy Technology Data Exchange (ETDEWEB)

    Breitkreutz, Harald

    2011-03-04

    According to the 'Verwaltungsvereinbarung zwischen Bund und Land vom 30.5.2003' and its updating on 13.11.2010, the Forschungs-Neutronenquelle Heinz Maier-Leibnitz, Frm II, has to convert its fuel element to an uranium enrichment which is significantly lower than the current 93%, in case this is economically reasonable and doesn't impact the reactor performance immoderate. In the framework of this conversion, new calculations regarding neutronics and thermal hydraulics for the anticipated core configurations have to be made. The computational power available nowadays allows for detailed 3D calculations, on the neutronic as well as on the thermal hydraulic side. In this context, a new program system, 'X{sup 2}', was developed. It couples the Monte Carlo code McnpX, the computational fluid dynamics code Cfx and the burn-up code sequence MonteBurns. The codes were modified and extended to meet the requirements of the coupled calculation concept. To verify the new program system, highly detailed calculations for the current fuel element were made and compared to simulations and measurements that were performed in the past. The results strengthen the works performed so far and show that the original, conservative approach overestimates all critical thermal hydraulic values. Using the CFD software, effects like the impact of the combs that fix the fuel plates and the pressure drop at the edges of the fuel plates were studied in great detail for the first time. Afterwards, a number of possible new fuel elements with lower enrichment, based on disperse and monolithic UMo (uranium with 8 wt.-% Mo) were analysed. A number of straight-forward conversion scenarios was discussed, showing that a further compaction of the fuel element, an extended cycle length or an increased reactor power is needed to compensate the flux loss, which is caused by the lower enrichment. This flux loss is in excess of 7%. The discussed new fuel elements include a 50

  12. Coupled neutronics and thermal hydraulics of high density cores for FRM II

    International Nuclear Information System (INIS)

    Breitkreutz, Harald

    2011-01-01

    According to the 'Verwaltungsvereinbarung zwischen Bund und Land vom 30.5.2003' and its updating on 13.11.2010, the Forschungs-Neutronenquelle Heinz Maier-Leibnitz, Frm II, has to convert its fuel element to an uranium enrichment which is significantly lower than the current 93%, in case this is economically reasonable and doesn't impact the reactor performance immoderate. In the framework of this conversion, new calculations regarding neutronics and thermal hydraulics for the anticipated core configurations have to be made. The computational power available nowadays allows for detailed 3D calculations, on the neutronic as well as on the thermal hydraulic side. In this context, a new program system, 'X 2 ', was developed. It couples the Monte Carlo code McnpX, the computational fluid dynamics code Cfx and the burn-up code sequence MonteBurns. The codes were modified and extended to meet the requirements of the coupled calculation concept. To verify the new program system, highly detailed calculations for the current fuel element were made and compared to simulations and measurements that were performed in the past. The results strengthen the works performed so far and show that the original, conservative approach overestimates all critical thermal hydraulic values. Using the CFD software, effects like the impact of the combs that fix the fuel plates and the pressure drop at the edges of the fuel plates were studied in great detail for the first time. Afterwards, a number of possible new fuel elements with lower enrichment, based on disperse and monolithic UMo (uranium with 8 wt.-% Mo) were analysed. A number of straight-forward conversion scenarios was discussed, showing that a further compaction of the fuel element, an extended cycle length or an increased reactor power is needed to compensate the flux loss, which is caused by the lower enrichment. This flux loss is in excess of 7%. The discussed new fuel elements include a 50% enriched disperse UMo core with

  13. Development of an inconel self powered neutron detector for in-core reactor monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Alex, M. [Electronics Division, BARC, Mumbai (India)]. E-mail: maryalex@barc.gov.in; Ghodgaonkar, M.D. [Electronics Division, BARC, Mumbai (India)

    2007-04-21

    The paper describes the development and testing of an Inconel600 (2 mm diameterx21 cm long) self-powered neutron detector for in-core neutron monitoring. The detector has 3.5 mm overall diameter and 22 cm length and is integrally coupled to a 12 m long mineral insulated cable. The performance of the detector was compared with cobalt and platinum detectors of similar dimensions. Gamma sensitivity measurements performed at the {sup 60}Co irradiation facility in 14 MR/h gamma field showed values of -4.4x10{sup -18} A/R/h/cm (-9.3x10{sup -24} A/{gamma}/cm{sup 2}-s/cm), -5.2x10{sup -18} A/R/h/cm (-1.133x10{sup -23} A/{gamma}/cm{sup 2}-s/cm) and 34x10{sup -18} A/R/h/cm (7.14x10{sup -23} A/{gamma}/cm{sup 2}-s/cm) for the Inconel, Co and Pt detectors, respectively. The detectors together with a miniature gamma ion chamber and fission chamber were tested in the in-core Apsara Swimming Pool type reactor. The ion chambers were used to estimate the neutron and gamma fields. With an effective neutron cross-section of 4b, the Inconel detector has a total sensitivity of 6x10{sup -23} A/nv/cm while the corresponding sensitivities for the platinum and cobalt detectors were 1.69x10{sup -22} and 2.64x10{sup -22} A/nv/cm. The linearity of the detector responses at power levels ranging from 100 to 200 kW was within {+-}5%. The response of the detectors to reactor scram showed that the prompt response of the Inconel detector was 0.95 while it was 0.7 and 0.95 for the platinum and cobalt self-powered detectors, respectively. The detector was also installed in the horizontal flux unit of 540 MW Pressurised Heavy Water Reactor (PHWR). The neutron flux at the detector location was calculated by Triveni code. The detector response was measured from 0.02% to 0.07% of full power and showed good correlation between power level and detector signals. Long-term tests and the dynamic response of the detector to shut down in PHWR are in progress.

  14. Cooling of Accretion-Heated Neutron Stars

    Science.gov (United States)

    Wijnands, Rudy; Degenaar, Nathalie; Page, Dany

    2017-09-01

    We present a brief, observational review about the study of the cooling behaviour of accretion-heated neutron stars and the inferences about the neutron-star crust and core that have been obtained from these studies. Accretion of matter during outbursts can heat the crust out of thermal equilibrium with the core and after the accretion episodes are over, the crust will cool down until crust-core equilibrium is restored. We discuss the observed properties of the crust cooling sources and what has been learned about the physics of neutron-star crusts. We also briefly discuss those systems that have been observed long after their outbursts were over, i.e, during times when the crust and core are expected to be in thermal equilibrium. The surface temperature is then a direct probe for the core temperature. By comparing the expected temperatures based on estimates of the accretion history of the targets with the observed ones, the physics of neutron-star cores can be investigated. Finally, we discuss similar studies performed for strongly magnetized neutron stars in which the magnetic field might play an important role in the heating and cooling of the neutron stars.

  15. Primary Damage Characteristics in Metals Under Irradiation in the Cores of Thermal and Fast Reactors

    International Nuclear Information System (INIS)

    Pechenkin, V.A.

    2012-01-01

    For an analysis and forecasting of radiation-induced phenomena in structural materials of WWERs, PWRs and BN reactors the fast neutron fluence is usually used (for structural materials of the reactor cores and internals the fluence of neutrons with energy > 0.1 MeV, for WWER and PWRs vessel steels the fluence of neutrons with energy > 0.5 MeV in Russia and East Europe, and with energy > 1.0 MeV in USA and France). Displacements per atom (dpa) seem to be a more appropriate correlation parameter, because it allows comparing the results of materials irradiation in different neutron energy spectra or with different types of particles (neutrons, ions, fast electrons). Energy spectra of primary knocked atoms (PKA) and 'effective' dpa, which are introduced to take into account the point defect recombination during the relaxation stage of a displacement cascade, can be still better representation of the effect of irradiation on material properties. In this work the results of calculating dose rates (dpa/s, NRT-model), PKA energy spectra and PKA mean energies in metals under irradiation in the cores of Russian reactors WWER-440, WWER-1000 (both power thermal reactors) and BN-600 (power fast reactor) and BR-10 (test fast reactor) are presented. In all the reactors Fe and Zr are considered, with addition of Ti and W in BN-600. 'Effective' dose rates in these metals are calculated. Limitations and uncertainties in the standard dpa formulation (the NRT-dpa) are discussed. IPPE activities in the fields related to the TM subject are considered

  16. Physics study of D-D/D-T neutron driven experimental subcritical assembly

    International Nuclear Information System (INIS)

    Sinha, Amar

    2015-01-01

    An experimental program to design and study external source driven subcritical assembly has been initiated at BARC. This program is aimed at understanding neutronic characteristics of accelerator driven system at low power level. In this series, a zero-power, sub-critical assembly driven by a D-D/D-T neutron generator has been developed. This system is modular in design and it is first in the series of subcritical assemblies being designed. The subcritical core consists of natural uranium fuel with high density polyethylene as moderator and beryllium oxide as reflector. The subcritical core is coupled to Purnima Neutron Generator. Preliminary experiments have been carried out for spatial flux measurement and reactivity estimation using pulsed neutron source (PNS) techniques. Further experiments are being planned to measure the reactivity and other kinetic parameters using noise methods. This facility would also be used for carrying out studies on effect of source importance and measurement of source multiplication factor k s and external neutron source efficiency φ* in great details. Some experiments with D-D and D-T neutrons have been presented. (author)

  17. Gravitational waves from axisymmetric rotating stellar core collapse to a neutron star in full general relativity

    International Nuclear Information System (INIS)

    Shibata, Masaru; Sekiguchi, Yu-ichirou

    2004-01-01

    Axisymmetric numerical simulations of rotating stellar core collapse to a neutron star are performed in the framework of full general relativity. The so-called Cartoon method, in which the Einstein field equations are solved in Cartesian coordinates and the axisymmetric condition is imposed around the y=0 plane, is adopted. The hydrodynamic equations are solved in cylindrical coordinates (on the y=0 plane in Cartesian coordinates) using a high-resolution shock-capturing scheme with maximum grid size (2500,2500). A parametric equation of state is adopted to model collapsing stellar cores and neutron stars following Dimmelmeier, Font, and Mueller. It is found that the evolution of the central density during the collapse, bounce, and formation of protoneutron stars agrees well with that in the work of Dimmelmeier, Font, and Mueller in which an approximate general relativistic formulation is adopted. This indicates that such an approximation is appropriate for following axisymmetric stellar core collapses and the subsequent formation of protoneutron stars. Gravitational waves are computed using a quadrupole formula. It is found that the waveforms are qualitatively in good agreement with those by Dimmelmeier, Font, and Mueller. However, quantitatively, two waveforms do not agree well. The possible reasons for the disagreement are discussed

  18. Nuclear reactor neutron shielding

    Science.gov (United States)

    Speaker, Daniel P; Neeley, Gary W; Inman, James B

    2017-09-12

    A nuclear reactor includes a reactor pressure vessel and a nuclear reactor core comprising fissile material disposed in a lower portion of the reactor pressure vessel. The lower portion of the reactor pressure vessel is disposed in a reactor cavity. An annular neutron stop is located at an elevation above the uppermost elevation of the nuclear reactor core. The annular neutron stop comprises neutron absorbing material filling an annular gap between the reactor pressure vessel and the wall of the reactor cavity. The annular neutron stop may comprise an outer neutron stop ring attached to the wall of the reactor cavity, and an inner neutron stop ring attached to the reactor pressure vessel. An excore instrument guide tube penetrates through the annular neutron stop, and a neutron plug comprising neutron absorbing material is disposed in the tube at the penetration through the neutron stop.

  19. An axially and radially two-zoned large liquid-metal fast breeder reactor core concept

    International Nuclear Information System (INIS)

    Kamei, T.; Arie, K.; Moriki, Y.; Suzuki, M.; Yamaoka, M.

    1985-01-01

    A new core concept that has advantages over conventional homogeneous cores in neutronics characteristics such as power peaking factor, burnup reactivity loss, and reactivity response to the movement of control rods in earthquakes has been evolved. Two options of the new core concept are feasible. One is the so-called axially heterogeneous core, with the internal blanket placed at the lower part of the core. The other concept is similar to the conventional homogeneous core, but has two different plutonium-enriched zones in the axial as well as in the radial direction, so it is a hybrid type of the conventional homogeneous core and the axially heterogeneous core. The new design concept is described and the way that the core characteristics are improved by the chosen key parameters is shown

  20. Characteristics of uranium oxide cathode for neutron streak camera

    International Nuclear Information System (INIS)

    Niki, H.; Itoga, K.; Yamanaka, M.; Yamanaka, T.; Yamanaka, C.

    1986-01-01

    In laser fusion research, time-resolved neutron measurements require 20ps resolution in order to obtain the time history of the D-T burn. Uranium oxide was expected to be a sensitive material as a cathode of a neutron streak camera because of its large fission cross section. The authors report their measurements of some characteristics of the uranium oxide cathode connected to a conventional streak tube. 14 MeV neutron signal were observed as the bright spots on a TV monitor using a focus mode opration. Detection efficiency was ∼ 1 x 10 -6 for 1 μm thick cathode. Each signal consisted of more than several tens of components, which were corresponding to the secondary electrons dragged out from the cathode by a fission fragment. Time resolution is thought to be limited mainly by the transit time spread of the secondary electrons. 14ps resolution was obtained by a streak mode operation for a single fission event

  1. Coupled 3D-neutronics / thermal-hydraulics analysis of an unprotected loss-of-flow accident for a 3600 MWth SFR core

    International Nuclear Information System (INIS)

    Sun, K.; Chenu, A.; Mikityuk, K.; Krepel, J.; Chawla, R.

    2012-01-01

    The core behaviour of a large (3600 MWth) sodium-cooled fast reactor (SFR) is investigated in this paper with the use of a coupled TRACE/PARCS model. The SFR neutron spectrum is characterized by several performance advantages, but also leads to one dominating neutronics drawback - a positive sodium void reactivity. This implies a positive reactivity effect when sodium coolant is removed from the core. In order to evaluate such feedback in terms of the dynamics, a representative unprotected loss-of-flow (ULOF) transient, i.e. flow run-down without SCRAM in which sodium boiling occurs, is analyzed. Although analysis of a single transient cannot allow general conclusions to be drawn, it does allow better understanding of the underlying physics and can lead to proposals for improving the core response during such an accident. The starting point of this study is the reference core design considered in the framework of the Collaborative Project on the European Sodium Fast Reactor (CP-ESFR). To reduce the void effect, the core has been modified by introducing an upper sodium plenum (along with a boron layer) and by reducing the core height-to-diameter ratio. For the ULOF considered, a sharp increase in core power results in melting of the fuel in the case of the reference core. In the modified core, a large dryout leads to melting of the clad. It seems that, for the hypothetical event considered, fuel failure cannot be avoided with just improvement of the neutronics design; therefore, thermal-hydraulics optimization has been considered. An innovative assembly design is proposed to prevent sodium vapour blocking the fuel channel. This results in preventing a downward propagation of the sodium boiling to the core center, thus limiting it to the upper region. Such a void map introduces a negative coolant density reactivity feedback, which dominates the total reactivity change. As a result, the power level and the fuel temperature are effectively reduced, and a large dryout

  2. Coupled 3D-neutronics / thermal-hydraulics analysis of an unprotected loss-of-flow accident for a 3600 MWth SFR core

    Energy Technology Data Exchange (ETDEWEB)

    Sun, K. [Paul Scherrer Institut PSI, 5232 Villigen PSI (Switzerland); Ecole Polytechnique Federale de Lausanne EPFL, 1015 Lausanne (Switzerland); Chenu, A. [Ecole Polytechnique Federale de Lausanne EPFL, 1015 Lausanne (Switzerland); Mikityuk, K.; Krepel, J. [Paul Scherrer Institut PSI, 5232 Villigen PSI (Switzerland); Chawla, R. [Paul Scherrer Institut PSI, 5232 Villigen PSI (Switzerland); Ecole Polytechnique Federale de Lausanne EPFL, 1015 Lausanne (Switzerland)

    2012-07-01

    The core behaviour of a large (3600 MWth) sodium-cooled fast reactor (SFR) is investigated in this paper with the use of a coupled TRACE/PARCS model. The SFR neutron spectrum is characterized by several performance advantages, but also leads to one dominating neutronics drawback - a positive sodium void reactivity. This implies a positive reactivity effect when sodium coolant is removed from the core. In order to evaluate such feedback in terms of the dynamics, a representative unprotected loss-of-flow (ULOF) transient, i.e. flow run-down without SCRAM in which sodium boiling occurs, is analyzed. Although analysis of a single transient cannot allow general conclusions to be drawn, it does allow better understanding of the underlying physics and can lead to proposals for improving the core response during such an accident. The starting point of this study is the reference core design considered in the framework of the Collaborative Project on the European Sodium Fast Reactor (CP-ESFR). To reduce the void effect, the core has been modified by introducing an upper sodium plenum (along with a boron layer) and by reducing the core height-to-diameter ratio. For the ULOF considered, a sharp increase in core power results in melting of the fuel in the case of the reference core. In the modified core, a large dryout leads to melting of the clad. It seems that, for the hypothetical event considered, fuel failure cannot be avoided with just improvement of the neutronics design; therefore, thermal-hydraulics optimization has been considered. An innovative assembly design is proposed to prevent sodium vapour blocking the fuel channel. This results in preventing a downward propagation of the sodium boiling to the core center, thus limiting it to the upper region. Such a void map introduces a negative coolant density reactivity feedback, which dominates the total reactivity change. As a result, the power level and the fuel temperature are effectively reduced, and a large dryout

  3. Neutron activation analysis of core and drill cutting samples from geothermal well drilling

    International Nuclear Information System (INIS)

    Miller, G.E.

    1986-01-01

    Samples of sandstones and shales were analysed by instrumental neutron activation analysis for a total of 30 elements. Three irradiation and five counting periods were employed. Solutions and National Bureau of Standards Reference Materials were used for comparison. The samples were obtained from drill cuttings (with a few core samples) from drillings in the Salton Sea geothermal field of California. These determinations form part of a major study to establish elemental variation as a function of mineral variation as depth and temperature in the well vary. The overall goal is to examine mineral alteration and/or element migration under typical geothermal conditions. The techniques involve typical compromises between maximizing precision for individual element determinations and the amount of time and effort that can be expended, as it is desired to examine large numbers of samples. With the limitations imposed by the reactor flux available at the U.C.Irvine TRIGA reactor, the detectors available, and time factors, most precisions are acceptable for geological comparison purposes. Some additional measurements were made by delayed-neutron counting methods to compare with uranium determinations made by conventional instrumental neutron activation analysis methods. (author)

  4. Description and performance characteristics for the neutron Coincidence Collar for the verification of reactor fuel assemblies

    International Nuclear Information System (INIS)

    Menlove, H.O.

    1981-08-01

    An active neutron interrogation method has been developed for the measurement of 235 U content in fresh fuel assemblies. The neutron Coincidence Collar uses neutron interrogation with an AmLi neutron source and coincidence counting the induced fission reaction neutrons from the 235 U. This manual describes the system components, operation, and performance characteristics. Applications of the Coincidence Collar to PWR and BWR types of reactor fuel assemblies are described

  5. Research program in reactor core diagnostics with neutron noise methods: Stage 3. Final report

    International Nuclear Information System (INIS)

    Pazsit, I.; Garis, N.S.; Karlsson, J.; Racz, A.

    1997-09-01

    Stage 3 of the program has been executed 96-04-12. The long term goal is to develop noise methods for identification and localization of perturbations in reactor cores. The main parts of the program consist of modelling the noise source, calculation of the space- and frequency dependent transfer function, calculation of the neutron noise via a convolution of the transfer function of the system and the noise source, i.e. the perturbation, and finally finding an inversion or unfolding procedure to determine noise source parameters from the neutron noise. Most previous work is based on very simple (analytical) reactor models for the calculation of the transfer function as well as analytical unfolding methods. The purpose of this project is to calculate the transfer function in a more realistic model as well as elaborating powerful inversion methods that do not require analytical transfer functions. The work in stage 3 is described under the following headlines: Further investigation of simplified models for the calculation of the neutron noise; Further investigation of methods based on neural networks; Further investigation of methods for detecting the vibrations and impacting of detectors; Application of static codes for determination of the neutron noise using the adiabatic approximation

  6. Advanced Small-Safe Long-Life Lead Cooled Reactor Cores for Future Nuclear Energy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Hyeong; Hong, Ser Gi [Kyung Hee University, Seoul (Korea, Republic of)

    2014-10-15

    One of the reasons for use of the lead or lead-bismuth alloy coolants is the high boiling temperature that avoids the possibility of coolant voiding. Also, these coolants are compatible with air, steam, and water. Therefore, intermediate coolant loop is not required as in the sodium cooled reactors 3. Lead is considered to be more attractive coolant than lead-bismuth alloy because of its higher availability, lower price, and much lower amount of polonium activity by factor of 104 relatively to lead. On the other hand, lead has higher melting temperature of 601K than that of lead-bismuth (398K), which narrows the operating temperature range and also leads to the possibility of freezing and blockage in fresh cores. Neutronically, the lead and lead-bismuth have very similar characteristics to each other. The lead-alloy coolants have lower moderating power and higher scattering without increasing moderation for neutrons below 0.5MeV, which reduces the leakage of the neutrons through the core and provides an excellent reflecting capability for neutrons. Due to the above features of lead or lead-alloy coolants, there have been lots of studies on the small lead cooled core designs. In this paper, small-safe long-life lead cooled reactor cores having high discharge burnup are designed and neutronically analyzed.. The cores considered in this work rates 110MWt (36.7MWe). In this work, the long-life with high discharge burnup was achieved by using thorium or depleted uranium blanket loaded in the central region of the core. Also, we considered a reference core having no blanket for the comparison. This paper provides the detailed neutronic analyses for these small long-life cores and the detailed analyses of the reactivity coefficients and the composition changes in blankets. The results of the core design and analyses show that our small long-life cores can be operated without refueling over their long-lives longer than 45EFPYs (Effective Full Power Year). In this work

  7. LMR design concepts for transuranic management in low sodium void worth cores

    International Nuclear Information System (INIS)

    Hill, R.N.

    1991-01-01

    The fuel cycle processing techniques and hard neutron spectrum of the integral Fast Reactor (IFR) metal fuel cycle have favorable characteristics for the management of transuranics; and the wide range of breeding characteristics available in metal fuelled cores provides for flexibility in transuranic management strategy. Previous studies indicate that most design options which decrease the breeding ratio also allow a decrease in sodium void worth; therefore, low void worths are achievable in transuranic burning (low breeding ratio) core designs. This paper describes numerous trade studies assessing various design options for a low void worth transuranic burner core. A flat annular core design appears to be a promising concept; the high leakage geometry yields a low breeding ratio and small sodium void worth. To allow flexibility in breeding characteristics, alternate design options which achieve fissile self-sufficiency are also evaluated. A self-sufficient core design which is interchangeable with the burner core and maintains a low sodium void worth is developed. (author)

  8. Accelerator driven sub-critical core

    Science.gov (United States)

    McIntyre, Peter M; Sattarov, Akhdiyor

    2015-03-17

    Systems and methods for operating an accelerator driven sub-critical core. In one embodiment, a fission power generator includes a sub-critical core and a plurality of proton beam generators. Each of the proton beam generators is configured to concurrently provide a proton beam into a different area of the sub-critical core. Each proton beam scatters neutrons within the sub-critical core. The plurality of proton beam generators provides aggregate power to the sub-critical core, via the proton beams, to scatter neutrons sufficient to initiate fission in the sub-critical core.

  9. An Adaptation of the HELIOS/MASTER Code System to the Analysis of VHTR Cores

    International Nuclear Information System (INIS)

    Noh, Jae Man; Lee, Hyun Chul; Kim, Kang Seog; Kim, Yong Hee

    2006-01-01

    KAERI is developing a new computer code system for an analysis of VHTR cores based on the existing HELIOS/MASTER code system which was originally developed for a LWR core analysis. In the VHTR reactor physics, there are several unique neutronic characteristics that cannot be handled easily by the conventional computer code system applied for the LWR core analysis. Typical examples of such characteristics are a double heterogeneity problem due to the particulate fuels, the effects of a spectrum shift and a thermal up-scattering due to the graphite moderator, and a strong fuel/reflector interaction, etc. In order to facilitate an easy treatment of such characteristics, we developed some methodologies for the HELIOS/MASTER code system and tested their applicability to the VHTR core analysis

  10. Neutron spectra characteristics for the intense neutron source, INS

    International Nuclear Information System (INIS)

    Battat, M.; Dierckx, R.; Emigh, C.R.

    1977-01-01

    The Intense Neutron Source, INS, facility is presently under construction at the Los Alamos Scientific Laboratory. Its purpose is to provide a broad base for research work related to the radiation effects produced by 14-MeV neutrons from a D-T burn of a fusion reactor. The INS facility produces a D-T burn-like reaction from the collision of an intense tritium-ion beam with a supersonic jet target of deuterium gas. The reaction produces a typical D-T 14-MeV neutron spectrum. By adding a fission blanket surrounding the D-T ''burn,'' the neutron spectral shape may be tailored to match almost perfectly the anticipated first-wall spectra from presently proposed fusion reactors. With a blanket in place, the total production of neutrons can be as large as 3 x 10 16 n/s and experimental volumes of the order of 1000 cm 3 can be available at flux levels greater than 0.6 x 10 14 n/cm 2 s

  11. New measurement system for on line in core high-energy neutron flux monitoring in materials testing reactor conditions

    International Nuclear Information System (INIS)

    Geslot, B.; Filliatre, P.; Barbot, L.; Jammes, C.; Breaud, S.; Oriol, L.; Villard, J.-F.; Vermeeren, L.; Lopez, A. Legrand

    2011-01-01

    Flux monitoring is of great interest for experimental studies in material testing reactors. Nowadays, only the thermal neutron flux can be monitored on line, e.g., using fission chambers or self-powered neutron detectors. In the framework of the Joint Instrumentation Laboratory between SCK-CEN and CEA, we have developed a fast neutron detector system (FNDS) capable of measuring on line the local high-energy neutron flux in fission reactor core and reflector locations. FNDS is based on fission chambers measurements in Campbelling mode. The system consists of two detectors, one detector being mainly sensitive to fast neutrons and the other one to thermal neutrons. On line data processing uses the CEA depletion code DARWIN in order to disentangle fast and thermal neutrons components, taking into account the isotopic evolution of the fissile deposit. The first results of FNDS experimental test in the BR2 reactor are presented in this paper. Several fission chambers have been irradiated up to a fluence of about 7 x 10 20 n/cm 2 . A good agreement (less than 10% discrepancy) was observed between FNDS fast flux estimation and reference flux measurement.

  12. New measurement system for on line in core high-energy neutron flux monitoring in materials testing reactor conditions

    Science.gov (United States)

    Geslot, B.; Vermeeren, L.; Filliatre, P.; Lopez, A. Legrand; Barbot, L.; Jammes, C.; Bréaud, S.; Oriol, L.; Villard, J.-F.

    2011-03-01

    Flux monitoring is of great interest for experimental studies in material testing reactors. Nowadays, only the thermal neutron flux can be monitored on line, e.g., using fission chambers or self-powered neutron detectors. In the framework of the Joint Instrumentation Laboratory between SCK-CEN and CEA, we have developed a fast neutron detector system (FNDS) capable of measuring on line the local high-energy neutron flux in fission reactor core and reflector locations. FNDS is based on fission chambers measurements in Campbelling mode. The system consists of two detectors, one detector being mainly sensitive to fast neutrons and the other one to thermal neutrons. On line data processing uses the CEA depletion code DARWIN in order to disentangle fast and thermal neutrons components, taking into account the isotopic evolution of the fissile deposit. The first results of FNDS experimental test in the BR2 reactor are presented in this paper. Several fission chambers have been irradiated up to a fluence of about 7 × 1020 n/cm2. A good agreement (less than 10% discrepancy) was observed between FNDS fast flux estimation and reference flux measurement.

  13. New measurement system for on line in core high-energy neutron flux monitoring in materials testing reactor conditions

    Energy Technology Data Exchange (ETDEWEB)

    Geslot, B.; Filliatre, P.; Barbot, L.; Jammes, C.; Breaud, S.; Oriol, L.; Villard, J.-F. [CEA, DEN, Cadarache, SPEx/LDCI, F-13108 Saint-Paul-lez-Durance (France); Vermeeren, L. [SCK-CEN, Boeretang 200, B-2400 Mol (Belgium); Lopez, A. Legrand [CEA, DEN, Saclay, SIREN/LECSI, F-91400 Saclay (France)

    2011-03-15

    Flux monitoring is of great interest for experimental studies in material testing reactors. Nowadays, only the thermal neutron flux can be monitored on line, e.g., using fission chambers or self-powered neutron detectors. In the framework of the Joint Instrumentation Laboratory between SCK-CEN and CEA, we have developed a fast neutron detector system (FNDS) capable of measuring on line the local high-energy neutron flux in fission reactor core and reflector locations. FNDS is based on fission chambers measurements in Campbelling mode. The system consists of two detectors, one detector being mainly sensitive to fast neutrons and the other one to thermal neutrons. On line data processing uses the CEA depletion code DARWIN in order to disentangle fast and thermal neutrons components, taking into account the isotopic evolution of the fissile deposit. The first results of FNDS experimental test in the BR2 reactor are presented in this paper. Several fission chambers have been irradiated up to a fluence of about 7 x 10{sup 20} n/cm{sup 2}. A good agreement (less than 10% discrepancy) was observed between FNDS fast flux estimation and reference flux measurement.

  14. Reactor core structure

    International Nuclear Information System (INIS)

    Higashinakagawa, Emiko; Sato, Kanemitsu.

    1992-01-01

    Taking notice on the fact that Fe based alloys and Ni based alloys are corrosion resistant in a special atmosphere of a nuclear reactor, Fe or Ni based alloys are applied to reactor core structural components such as fuel cladding tubes, fuel channels, spacers, etc. On the other hand, the neutron absorption cross section of zirconium is 0.18 barn while that of iron is 2.52 barn and that of nickel is 4.6 barn, which amounts to 14 to 25 times compared with that of zirconium. Accordingly, if the reactor core structural components are constituted by the Fe or Ni based alloys, neutron economy is lowered. Since it is desirable that neutrons contribute to uranium fission with least absorption to the reactor core structural components, the reactor core structural components are constituted with the Fe or Ni based alloys of good corrosion resistance only at a portion in contact with reactor water, that is, at a surface portion, while the main body is constituted with zircalloy in the present invention. Accordingly, corrosion resistnace can be kept while keeping small neutron absorption cross section. (T.M.)

  15. Neutronic investigations of an equilibrium core for a tight-lattice light water reactor

    International Nuclear Information System (INIS)

    Broeders, C.H.M.

    1992-01-01

    Calculation procedures and first results concerning the neutronic design of an equilibrium core of an advanced pressurized water reactor (APWR) with mixed oxide fuel in a compact light water moderated triangular lattice are presented. Principle and qualification of the cell burnup calculations with the KARBUS program are briefly discussed. The fuel assembly design with single control rod positions filled with control rod material or coolant water requires special transport theory calculations, which are performed with a one-dimensional supercell model. The macroscopic fuel assembly cross section data is collected in a special library to be used in a new calculational procedure, ARCOSI, for multi-cycle reactor core simulations. Its first application for a reference design resulted in an equilibrium configuration with moderator density reactivity coefficients which are satisfactory as regards safety. (orig.) [de

  16. Core Characteristics Deterioration due to Plastic Deformation

    Science.gov (United States)

    Kaido, Chikara; Arai, Satoshi

    This paper discusses the effect of plastic deformation at core manufacturing on the characteristics of cores where non-oriented electrical steel sheets are used as core material. Exciting field and iron loss increase proportionally to plastic deformation in the case of rPeddy currents increase because plastic deformations of crystalline grains are distributed and then the flux distribution is induced. In the case of rP>20, the deterioration tend to saturate, and the increases in magnetic field and iron loss are 1000 to 1500A/m and 2 to 4W/kg. They are related to grain size, and high grade with larger grain may have lager field increase and smaller iron loss increase. Anomalous eddy current losses scarcely increase in this region. In actual motors, the plastic deformation affects iron loss increase although exciting current increases a little.

  17. Operational characteristics of hybrid-type SFCL with closed and open cores

    International Nuclear Information System (INIS)

    Cho, Y.S.; Lee, N.Y.; Choi, H.S.; Chung, D.C.; Lim, S.H.

    2007-01-01

    We investigated the operational characteristics of the hybrid-type superconducting fault current limiter (SFCL) with the closed and the open cores, which induced the variation of the magnetic flux between the primary and the secondary windings. The experimental set-up of the hybrid-type SFCL with the closed and the open cores were prepared and the experimental analyses for the current limiting characteristics were performed. The peak value of the fault current in the hybrid-type SFCL with the open core was higher than that of the closed core at the first cycle after fault occurrence. However, in the case of the hybrid-type SFCL with the open core, the limiting current level after fault occurrence was decreased less than that of the hybrid-type SFCL with the closed core, because the magnetic leakage reluctance of the open core was higher than that of the closed core. The quench time (T q ) and the arrival time (T a ) for the peak voltage (V SC ) in the hybrid-type SFCL with the closed core were faster than that of the hybrid-type SFCL with the open core due to the increase of the mutual flux. We verified that the consumption power in the hybrid-type SFCL with the open core was larger owing to the increase of leakage flux by the reduction of mutual inductance between primary and secondary windings

  18. Neutronics of pulsed spallation neutron sources

    CERN Document Server

    Watanabe, N

    2003-01-01

    Various topics and issues on the neutronics of pulsed spallation neutron sources, mainly for neutron scattering experiments, are reviewed to give a wide circle of readers a better understanding of these sources in order to achieve a high neutronic performance. Starting from what neutrons are needed, what the spallation reaction is and how to produce slow-neutrons more efficiently, the outline of the target and moderator neutronics are explained. Various efforts with some new concepts or ideas have already been devoted to obtaining the highest possible slow-neutron intensity with desired pulse characteristics. This paper also reviews the recent progress of such efforts, mainly focused on moderator neutronics, since moderators are the final devices of a neutron source, which determine the source performance. Various governing parameters for neutron-pulse characteristics such as material issues, geometrical parameters (shape and dimensions), the target-moderator coupling scheme, the ortho-para-hydrogen ratio, po...

  19. Measurement and analysis of reaction rate distributions of cores with spectrum shifter region

    International Nuclear Information System (INIS)

    Matsuura, Shigekazu; Shiroya, Seiji; Unesaki, Hironobu; Takeda, Toshikazu; Aizawa, Otohiko; Kanda, Keiji.

    1995-01-01

    A study for the neutronic characteristics of the spectrum-controlled neutron irradiation fields using various reflector materials was performed. Spectrum shifter regions were constructed in the upper reflector region of the solid moderated core (B-Core) of the Kyoto University Critical Assembly (KUCA). Beryllium, graphite and aluminum were selected as the loading materials for the spectrum shifter. Two tight-pitch lattice cores with different moderator-to-fuel volume ratio (V m /V f ) of 0.97 and 0.65 have been used. Axial reaction rate distributions of gold, nickel and indium wires were measured, and the spectrum index was defined as the Cd ratio of the gold wire and the ratio of gold reaction rate to nickel reaction rate. Using the conventional design calculation procedure, the experimental and calculated reaction rate and spectrum index show several disagreements. Detailed treatment of the neutron streaming effect, heterogeneous cell structure and depression factor are shown to be necessary for improving the agreement between experimental and calculated values. (author)

  20. Change of neutron flow sensors effectiveness in the course of reactor experiments

    International Nuclear Information System (INIS)

    Kurpesheva, A.M.; Kotov, V.M.; Zhotabaev, Zh.R.

    2007-01-01

    Full text: IGR reactor is a reactor of thermal capacity type. During the operation, uranium-graphite core can be heated up to 1500 deg. C and reactivity can be changed considerably. Core dimensions are comparatively small. Amount of control rods, providing required reactivity, is not big as well. Increasing of core temperature leads to the rise of neutrons path length in its basic material - graphite. Change of temperature is not even. All this causes the non-conservation of neutron flows ratio in irradiated sample and in the place of reactor power sensors installation. Deviations in this ratio were registered during the number of reactor experiments. Empiric corrections can be introduced in order to decrease influence of change of neutron flow effectiveness upon provision of required parameters of investigated matters load. However, dependence of these corrections upon many factors can lead to the increasing of instability of process control. Previous experiment-calculated experiments showed inequality of neutron field in the place of sensors location (up to tens of percent), low effectiveness of experimental works, carried out without access to the individual reactor laying elements. Imperfection during the experiment was an idea of possibility to connect distribution of out of reactor neutron flow and control rods position. Subsequent analysis showed that for the development of representative phenomenon model it is necessary to take into account reactor operation dynamic subject to unevenness of heating of individual laying parts. Elemental calculations showed that temperature laying effects in the change of neutron outer field are great. Algorithm of calculations for the change of outer filed and field of investigated fabrication includes calculation of neutron-physic reactor characteristics interlacing with calculations of thermal-physic reactor characteristics, providing correlation of temperature fields for neutron-physic calculations. In the course of such

  1. Determination of the neutron fluence in the welding of the 'Core shroud' of the BWR reactor core; Determinacion de la fluencia neutronica en las soldaduras del 'core shroud' del nucleo de un reactor BWR

    Energy Technology Data Exchange (ETDEWEB)

    Lucatero, M A; Xolocostli M, J V; Gomez T, A M; Palacios H, J C [ININ, 52750 Ocoyoacac, Estado de mexico (Mexico)

    2006-07-01

    With the purpose of defining the inspection frequency, in function of the embrittlement of the materials that compose the welding of the 'Core Shroud' or encircling of the core of a BWR type reactor, is necessary to know the neutron fluence received for this welding. In the work the calculated values of neutron fluence accumulated maxim (E > 1 MeV) during the first 8 operation cycles of the reactor are presented. The calculations were carried out according to the NRC Regulatory Guide 1.190, making use of the DORT code, which solves the transport equation in discreet ordinate in two dimensions (xy, r{theta}, and rz). The results in 3D were obtained applying the Synthesis method according to the guide before mentioned. Results are presented for the horizontal welding H3, H4, and H5, showing the corresponding curves to the fluence accumulated to the cycle 8 and a projection for the cycle 14 is presented. (Author)

  2. Characteristics of rotating target neutron source and its use in radiation effects studies

    International Nuclear Information System (INIS)

    Van Konynenburg, R.A.; Barschall, H.H.; Booth, R.; Wong, C.

    1975-07-01

    The Rotating Target Neutron Source (RTNS) at Lawrence Livermore Laboratory is currently the most intense source of DT fusion neutrons available for the study of radiation effects in materials. This paper will present a brief description of the machine, outline the history of its development and discuss its performance characteristics and its application to CTR materials research. (U.S.)

  3. Transport theory calculation for a heterogeneous multi-assembly problem by characteristics method with direct neutron path linking technique

    International Nuclear Information System (INIS)

    Kosaka, Shinya; Saji, Etsuro

    2000-01-01

    A characteristics transport theory code, CHAPLET, has been developed for the purpose of making it practical to perform a whole LWR core calculation with the same level of calculational model and accuracy as that of an ordinary single assembly calculation. The characteristics routine employs the CACTUS algorithm for drawing ray tracing lines, which assists the two key features of the flux solution in the CHAPLET code. One is the direct neutron path linking (DNPL) technique which strictly connects angular fluxes at each assembly interface in the flux solution separated between assemblies. Another is to reduce the required memory storage by sharing the data related to ray tracing among assemblies with the same configuration. For faster computation, the coarse mesh rebalance (CMR) method and the Aitken method were incorporated in the code and the combined use of both methods showed the most promising acceleration performance among the trials. In addition, the parallelization of the flux solution was attempted, resulting in a significant reduction in the wall-clock time of the calculation. By all these efforts, coupled with the results of many verification studies, a whole LWR core heterogeneous transport theory calculation finally became practical. CHAPLET is thought to be a useful tool which can produce the reference solutions for analyses of an LWR (author)

  4. Neutronic feasibility design of a small long-life HTR

    International Nuclear Information System (INIS)

    Ding Ming; Kloosterman, Jan Leen

    2011-01-01

    Highlights: ► We propose the neutronic feasibility design of a small, long lifetime and transportable HTR. ► Comparison of cylindrical, annular and scatter cores of the small block-type HTR. ► The design of the scatter core effectively reduces the number of the fuel block and increases the lifetime and burnup of the reactor. - Abstract: Small high temperature gas-cooled reactors (HTRs) have the advantages of transportability, modular construction and flexible site selection. This paper presents the neutronic feasibility design of a 20 MWth U-Battery, which is a long-life block-type HTR. Key design parameters and possible reactor core configurations of the U-Battery were investigated by SCALE 5.1. The design parameters analyzed include fuel enrichment, the packing fraction of TRISO particles, the radii of fuel compacts and kernels, and the thicknesses of top and bottom reflectors. Possible reactor core configurations investigated include five cylindrical, two annular and four scatter reactor cores for the U-Battery. The neutronic design shows that the 20 MWth U-Battery with a 10-year lifetime is feasible using less than 20% enriched uranium, while the negative values of the temperature coefficients of reactivity partly ensure the inherent safety of the U-Battery. The higher the fuel enrichment and the packing fraction of TRISO particles are, the lower the reactivity swing during 10 years will be. There is an optimum radius of fuel kernels for each value of the fuel compact design parameter (i.e., radius) and a specific fuel lifetime. Moreover, the radius of fuel kernels has a small influence on the infinite multiplication factor of a typical fuel block in the range of 0.2–0.25 mm, when the radius of fuel compacts is 0.6225 cm and the lifetime of the fuel block is 10 years. The comparison of the cylindrical reactor cores with the non-cylindrical ones shows that neutron under-moderation is a basic neutronic characteristic of the reactor core of the U

  5. Base neutron noise in PWRs

    International Nuclear Information System (INIS)

    Kosaly, G.; Albrecht, R.W.; Dailey, D.J.; Fry, D.N.

    1981-01-01

    Considerable activity has been devoted in recent years to the use of neutron noise for investigation of problems in pressurized-water reactors (PWRs). The investigators have found that neutron noise provides an effective way to monitor reactor internal vibrations such as vertical and lateral core motion; core support barrel and thermal shield shell modes, bending modes of fuel assemblies, and control rod vibrations. However, noise analysts have also concluded that diagnosis of a problem is easier if baseline data for normal plant operation is available. Therefore, the authors have obtained ex-core neutron noise signatures from eight PWRs to determine the similarity of signatures between plants and to build a base of data to determine the sources of neutron noise and thus the potential diagnostic information contained in the data. It is concluded that: (1) ex-core neutron noise contains information about the vibration of components in the pressure vessel; (2) baseline signature acquisition can aid understanding of plant specific vibration frequencies and provide a bases for diagnosis of future problems if they occur; and (3) abnormal core support barrel vibration can most likely be detected over and above the plant-to-plant signature variation observed thus far

  6. Development of Neutron Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Hee; Lee, J. S.; Seong, B. S. (and others)

    2007-06-15

    Neutron spectrometers which are used in the basic researches such as physics, chemistry and materials science and applied in the industry were developed at the horizontal beam port of HANARO reactor. In addition, the development of core components for neutron scattering and the upgrade of existing facilities are also performed. The vertical neutron reflectometer was fabricated and installed at ST3 beam port. The performance test of the reflectometer was completed and the reflectometer was opened to users. The several core parts and options were added in the polarized neutron spectrometer. The horizontal neutron reflectometer from Brookhaven National Laboratory was moved to HANARO and installed, and the performance of the reflectometer was examined. The HIPD was developed and the performance test was completed. The base shielding for TAS was fabricated. The soller collimator, Cu mosaic monochromator, Si BPC monochromator and position sensitive detector were developed and applied in the neutron spectrometer as part of core component development activities. In addition, the sputtering machine for mirror device are fabricated and the neutron mirror is made using the sputtering machine. The FCD was upgraded and the performance of the FCD are improved over the factor of 10. The integration and upgrade of the neutron detection system were also performed.

  7. Footprint Characteristics of Cosmic-Ray Neutron Sensors for Soil Moisture Monitoring

    Science.gov (United States)

    Schrön, Martin; Köhli, Markus; Zreda, Marek; Dietrich, Peter; Zacharias, Steffen

    2015-04-01

    Cosmic-ray neutron sensing is a unique and an increasingly accepted method to monitor the effective soil water content at the field scale. The technology is famous for its low maintenance, non-invasiveness, continuous measurement, and most importantly, for its large footprint. Being more representative than point data and finer resolved than remote-sensing products, cosmic-ray neutron derived soil moisture products provide unrivaled advantage for mesoscale hydrologic and land surface models. The method takes advantage of neutrons induced by cosmic radiation which are extraordinarily sensitive to hydrogen and behave like a hot gas. Information about nearby water sources are quickly mixed in a domain of tens of hectares in air. Since experimental determination of the actual spatial extent is hardly possible, scientists have applied numerical models to address the footprint characteristics. We have revisited previous neutron transport simulations and present a modified conceptual design and refined physical assumptions. Our revised study reveals new insights into probing distance and water sensitivity of detected neutrons under various environmental conditions. These results sharpen the range of interpretation concerning the spatial extent of integral soil moisture products derived from cosmic-ray neutron counts. Our findings will have important impact on calibration strategies, on scales for data assimilation and on the interpolation of soil moisture data derived from mobile cosmic-ray neutron surveys.

  8. On-line core monitoring system based on buckling corrected modified one group model

    International Nuclear Information System (INIS)

    Freire, Fernando S.

    2011-01-01

    Nuclear power reactors require core monitoring during plant operation. To provide safe, clean and reliable core continuously evaluate core conditions. Currently, the reactor core monitoring process is carried out by nuclear code systems that together with data from plant instrumentation, such as, thermocouples, ex-core detectors and fixed or moveable In-core detectors, can easily predict and monitor a variety of plant conditions. Typically, the standard nodal methods can be found on the heart of such nuclear monitoring code systems. However, standard nodal methods require large computer running times when compared with standards course-mesh finite difference schemes. Unfortunately, classic finite-difference models require a fine mesh reactor core representation. To override this unlikely model characteristic we can usually use the classic modified one group model to take some account for the main core neutronic behavior. In this model a course-mesh core representation can be easily evaluated with a crude treatment of thermal neutrons leakage. In this work, an improvement made on classic modified one group model based on a buckling thermal correction was used to obtain a fast, accurate and reliable core monitoring system methodology for future applications, providing a powerful tool for core monitoring process. (author)

  9. Neutronics of pulsed spallation neutron sources

    International Nuclear Information System (INIS)

    Watanabe, Noboru

    2003-01-01

    Various topics and issues on the neutronics of pulsed spallation neutron sources, mainly for neutron scattering experiments, are reviewed to give a wide circle of readers a better understanding of these sources in order to achieve a high neutronic performance. Starting from what neutrons are needed, what the spallation reaction is and how to produce slow-neutrons more efficiently, the outline of the target and moderator neutronics are explained. Various efforts with some new concepts or ideas have already been devoted to obtaining the highest possible slow-neutron intensity with desired pulse characteristics. This paper also reviews the recent progress of such efforts, mainly focused on moderator neutronics, since moderators are the final devices of a neutron source, which determine the source performance. Various governing parameters for neutron-pulse characteristics such as material issues, geometrical parameters (shape and dimensions), the target-moderator coupling scheme, the ortho-para-hydrogen ratio, poisoning, etc are discussed, aiming at a high performance pulsed spallation source

  10. The online simulation of core physics in nuclear power plant

    International Nuclear Information System (INIS)

    Zhao Qiang

    2005-01-01

    The three-dimensional power distribution in core is one of the most important status variables of nuclear reactor. In order to monitor the 3-D in core power distribution timely and accurately, the online simulation system of core physics was designed in the paper. This system combines core physics simulation with the data, which is from the plant and reactor instrumentation. The design of the system consists of the hardware part and the software part. The online simulation system consists of a main simulation computer and a simulation operation station. The online simulation system software includes of the real-time simulation support software, the system communication software, the simulation program and the simulation interface software. Two-group and three-dimensional neutron kinetics model with six groups delayed neutrons was used in the real-time simulation of nuclear reactor core physics. According to the characteristics of the nuclear reactor, the core was divided into many nodes. Resolving the neutron equation, the method of separate variables was used. The input data from the plant and reactor instrumentation system consist of core thermal power, loop temperatures and pressure, control rod positions, boron concentration, core exit thermocouple data, Excore detector signals, in core flux detectors signals. There are two purposes using the data, one is to ensure that the model is as close as the current actual reactor condition, and the other is to calibrate the calculated power distribution. In this paper, the scheme of the online simulation system was introduced. Under the real-time simulation support system, the simulation program is being compiled. Compared with the actual operational data, the elementary simulation results were reasonable and correct. (author)

  11. ORR core re-configuration measurements to increase the fast neutron flux in the Magnetic Fusion Energy (MFE) experiments

    International Nuclear Information System (INIS)

    Hobbs, R.W.; Stinnett, R.M.; Sims, T.M.

    1985-06-01

    A study has been made of the relative increases obtainable in the fast neutron flux in the Magnetic Fusion Energy (MFE) experiment positions by reconfiguring the current ORR core. The study was made at the request of the MFE program to examine the percentage increase possible in the current displacement per atom (dpa) rate (assumed proportional to the fast flux). The principle methods investigated to increase the fast flux consisted of reducing the current core size (number of fuel elements) to increase the core average power density and arrangement of the fuel elements in the reduced-size core to tilt the core power distribution towards the MFE positions. The study concluded that fast fluxes in the E-3 core position could be increased by approximately 15 to 20% over current values and in E-5 by approximately 45 to 55%

  12. Measurements of actinide-fission product yields in Caliban and Prospero metallic core reactor fission neutron fields

    Energy Technology Data Exchange (ETDEWEB)

    Casoli, P.; Authier, N. [CEA, Centre de Valduc, 21120 Is-sur-Tille (France); Laurec, J.; Bauge, E.; Granier, T. [CEA, Centre DIF, 91297 Arpajon (France)

    2011-07-01

    In the 1970's and early 1980's, an experimental program was performed on the facilities of the CEA Valduc Research Center to measure several actinide-fission product yields. Experiments were, in particular, completed on the Caliban and Prospero metallic core reactors to study fission-neutron-induced reactions on {sup 233}U, {sup 235}U, and {sup 239}Pu. Thick actinide samples were irradiated and the number of nuclei of each fission product was determined by gamma spectrometry. Fission chambers were irradiated simultaneously to measure the numbers of fissions in thin deposits of the same actinides. The masses of the thick samples and the thin deposits were determined by mass spectrometry and alpha spectrometry. The results of these experiments will be fully presented in this paper for the first time. A description of the Caliban and Prospero reactors, their characteristics and performances, and explanations about the experimental approach will also be given in the article. A recent work has been completed to analyze and reinterpret these measurements and particularly to evaluate the associated uncertainties. In this context, calculations have also been carried out with the Monte Carlo transport code Tripoli-4, using the published benchmarked Caliban description and a three-dimensional model of Prospero, to determine the average neutron energy causing fission. Simulation results will be discussed in this paper. Finally, new fission yield measurements will be proposed on Caliban and Prospero reactors to strengthen the results of the first experiments. (authors)

  13. Characteristics of GaAs MESFET inverters exposed to high energy neutrons

    International Nuclear Information System (INIS)

    Bloss, W.L.; Yamada, W.E.; Young, A.M.; Janousek, B.K.

    1988-01-01

    GaAs MESFET circuits have been exposed to high energy neutrons with fluences ranging from 1x10/sup 14/ n/cm/sup 2/ to 2x10/sup 15/ m/cm/sup 2/. Discrete transistors, inverters, and ring oscillators were characterized at each fluence. While the MESFETs exhibit significant threshold voltage shifts and transconductance and saturation current degradation over this range of neutron fluences, the authors have observed improvement in the DC characteristics of Schottky Diode FET Logic (SDFL) inverters. This unusual result has been successfully simulated using device parameters extracted from FETs damaged by exposure to high energy neutrons. Although the decrease in device transconductance results in an increase in inverter gate delay, as reflected in ring oscillator frequency measurements, the authors conclude that GaAs ICs fabricated from this logic family will remain functional after exposure to extreme neutron fluences. This is a consequence of the observed improvement in inverter noise margin evident in both measured and simulated circuit performance

  14. Dosimetry techniques of thermal neutrons and {gamma} radiation in reactor cores; Techniques de dosimetrie des neutrons thermiques et du rayonnement {gamma} dans les piles

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, J; Draganic, I; Hering, H [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-07-01

    Chemical studies under radiation done in the reactor cores require to be followed by dosimetry. When the irradiations are done in the reflector, one can limit to the measure of the {gamma} and the neutron radiation. For the dosimetry of the {gamma} radiation, a dosimeter of ferrous sulfate is convenient until doses of about 10{sup 6} rep. The use of aired oxalic acid solutions permits to reach 10{sup 7} rep. The dosimetry of thermal neutrons has been made with solutions of cobalt sulphate or paper filter impregnated with this salt. The total chemical effect of the {gamma} and of the slow neutrons radiation is obtained with solutions of ferrous sulfate added with lithium sulphate. (M.B.) [French] Les etudes de chimie sous radiation faites dans les piles exigent d'etre suivies par dosimetrie. Lorsque les irradiations sont effectues dans le reflecteur, on peut se limiter a doser le rayonnement {gamma} et les neutrons. Pour la dosimetrie du rayonnement {gamma}, un dosimetre a sulfate ferreux convient jusqu'a des doses d'environ 10{sup 6} rep. L'emploi de solutions aerees d'acide oxalique permet d'atteindre 10{sup 7} rep. La dosimetrie des neutrons thermiques a ete faite avec des solutions de sulfate de cotalt ou du papier filtre impregne de ce sel. L'effet chimique total du rayonnement {gamma} et des neutrons lents est obtenu avec des solutions de sulfate ferreux additionne de sulfate de lithium. (M.B.)

  15. Characteristics of a Portable Neutron Generator

    International Nuclear Information System (INIS)

    Jin, Jeong-Tae; Oh, Byung-Hoon; Chang, Dae-Sik; In, Sang-Yeol; Huh, Sung-Ryul; Hong, Kwang-Pyo

    2015-01-01

    Neutron generators can be excellent tools for materials analysis, explosive material detection, nuclear weapon detection, and high quality radiography. D + D : 3He + n (2.5 MeV) D + T : 4He + n (14 MeV) Recent commercial neutron generators, fast neutron yield from 10 7 to 10 11 n/s, are produced by several companies and research groups around the world. But limited life time, high price, and frequent troubles make it difficult to develop related application systems by domestic companies or research groups. To remove such problems, it is necessary to develop our own domestic neutron generators. In this presentation, the design and experimental results on the developed small neutron generator are summarized. Experiments on deuterium beam extraction and fast neutron measurement by injecting deuterium beams on a drive-in target are executed. The stable deuterium beam of the energy higher than 100 keV was achieved by introducing metal cover which reduces the effect of metal-vacuum-insulator triple junction. The neutron flux of 5 n/s is measured by RadEye GN gamma Neutron (Thermo scientific) detector with about 200 mm distance and insertion of 40 mm PE plate between neutron source and the detector. The precise detector calibration is not carried out yet, so more detailed experimental results will be summarized at the presentation

  16. Characteristics of a Portable Neutron Generator

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Jeong-Tae; Oh, Byung-Hoon; Chang, Dae-Sik; In, Sang-Yeol; Huh, Sung-Ryul; Hong, Kwang-Pyo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Neutron generators can be excellent tools for materials analysis, explosive material detection, nuclear weapon detection, and high quality radiography. D + D : 3He + n (2.5 MeV) D + T : 4He + n (14 MeV) Recent commercial neutron generators, fast neutron yield from 10{sup 7} to 10{sup 11} n/s, are produced by several companies and research groups around the world. But limited life time, high price, and frequent troubles make it difficult to develop related application systems by domestic companies or research groups. To remove such problems, it is necessary to develop our own domestic neutron generators. In this presentation, the design and experimental results on the developed small neutron generator are summarized. Experiments on deuterium beam extraction and fast neutron measurement by injecting deuterium beams on a drive-in target are executed. The stable deuterium beam of the energy higher than 100 keV was achieved by introducing metal cover which reduces the effect of metal-vacuum-insulator triple junction. The neutron flux of 5 n/s is measured by RadEye GN gamma Neutron (Thermo scientific) detector with about 200 mm distance and insertion of 40 mm PE plate between neutron source and the detector. The precise detector calibration is not carried out yet, so more detailed experimental results will be summarized at the presentation.

  17. Ciclon: A neutronic fuel management program for PWR's consecutive cycles

    International Nuclear Information System (INIS)

    Aragones, J.M.

    1977-01-01

    The program description and user's manual of a new computer code is given. Ciclon performs the neutronic calculation of consecutive reload cycles for PWR's fuel management optimization. Fuel characteristics and burnup data, region or batch sizes, loading schemes and state of previously irradiated fuel are input to the code. Cycle lengths or feed enrichments and burnup sharing for each region or batch are calculate using different core neutronic models and printed or punched in standard fuel management format. (author) [es

  18. Three dimensional neutronic/thermal-hydraulic coupled simulation of MSR in transient state condition

    International Nuclear Information System (INIS)

    Zhou, Jianjun; Zhang, Daling; Qiu, Suizheng; Su, Guanghui; Tian, Wenxi; Wu, Yingwei

    2015-01-01

    Highlights: • Developed a three dimensional neutronic/thermal-hydraulic coupled transient analysis code for MSR. • Investigated the neutron distribution and thermal-hydraulic characters of the core under transient condition. • Analyzed three different transient conditions of inlet temperature drop, reactivity jump and pump coastdown. - Abstract: MSR (molten salt reactor) use liquid molten salt as coolant and fuel solvent, which was the only one liquid reactor of six Generation IV reactor types. As a liquid reactor the physical property of reactor was significantly influenced by fuel salt flow and the conventional analysis methods applied in solid fuel reactors are not applicable for this type of reactors. The present work developed a three dimensional neutronic/thermal-hydraulic coupled code investigated the neutronics and thermo-hydraulics characteristics of the core in transient condition based on neutron diffusion theory and numerical heat transfer. The code consists of two group neutron diffusion equations for fast and thermal neutron fluxes and six group balance equations for delayed neutron precursors. The code was separately validated by neutron benchmark and flow and heat transfer benchmark. Three different transient conditions was analyzed with inlet temperature drop, reactivity jump and pump coastdown. The results provide some valuable information in design and research this kind of reactor

  19. Three dimensional neutronic/thermal-hydraulic coupled simulation of MSR in transient state condition

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jianjun [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xianning Road, 28, Xi’an 710049, Shaanxi (China); College of Mechanical and Power Engineering, China Three Gorges University, No 8, Daxue road, Yichang, Hubei 443002 (China); Zhang, Daling, E-mail: dlzhang@mail.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xianning Road, 28, Xi’an 710049, Shaanxi (China); Qiu, Suizheng; Su, Guanghui; Tian, Wenxi; Wu, Yingwei [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xianning Road, 28, Xi’an 710049, Shaanxi (China)

    2015-02-15

    Highlights: • Developed a three dimensional neutronic/thermal-hydraulic coupled transient analysis code for MSR. • Investigated the neutron distribution and thermal-hydraulic characters of the core under transient condition. • Analyzed three different transient conditions of inlet temperature drop, reactivity jump and pump coastdown. - Abstract: MSR (molten salt reactor) use liquid molten salt as coolant and fuel solvent, which was the only one liquid reactor of six Generation IV reactor types. As a liquid reactor the physical property of reactor was significantly influenced by fuel salt flow and the conventional analysis methods applied in solid fuel reactors are not applicable for this type of reactors. The present work developed a three dimensional neutronic/thermal-hydraulic coupled code investigated the neutronics and thermo-hydraulics characteristics of the core in transient condition based on neutron diffusion theory and numerical heat transfer. The code consists of two group neutron diffusion equations for fast and thermal neutron fluxes and six group balance equations for delayed neutron precursors. The code was separately validated by neutron benchmark and flow and heat transfer benchmark. Three different transient conditions was analyzed with inlet temperature drop, reactivity jump and pump coastdown. The results provide some valuable information in design and research this kind of reactor.

  20. Thermal-hydraulic characteristics of double flat core HCLWR

    International Nuclear Information System (INIS)

    Sugimoto, Jun; Iwamura, Takamichi; Okubo, Tsutomu; Murao, Yoshio

    1989-02-01

    A thermal-hydraulic characteristics of double flat core high conversion light water reactor (HCLWR) is described. The concept of flat core proposed by Ishiguro et al. is to achieve negative void reactivity coefficient in tight lattice core, and at the same time, high conversion ratio and high burnup can be obtainable. The proposed double flat core HCLWR, based on these physical advantages and the consideration of safety assurance, aims at efficient use of the pressure vessel space to produce comparable thermal output as current 3-loop PWRs. The present work revealed the following items concerning the thermalhydraulic feasibility of the double flat core HCLWR: (1) Main thermal-hydraulic parameters of the plant can be almost the same as current PWRs, showing the use of PWR standard components without major modifications except in core region. (2) Heat removal from the fuel rod in a steady operational condition has enough margin to the critical heat flux (CHF) limit, which is evaluated with the existing CHF correlations. (3) The calculation by REFLA code shows that the maximum cladding temperature in LOCA-reflood is estimated to be far lower than the licensing criteria. It is therefore considered that the proposed double flat core HCLWR is feasible from the point of thermal-hydraulics. Since the available data base has certain applicational limit to the very short core as the present double flat core HCLWR, further detailed assessment is required. (author)

  1. Quark Deconfinement in Rotating Neutron Stars

    Directory of Open Access Journals (Sweden)

    Richard D. Mellinger

    2017-01-01

    Full Text Available In this paper, we use a three flavor non-local Nambu–Jona-Lasinio (NJL model, an improved effective model of Quantum Chromodynamics (QCD at low energies, to investigate the existence of deconfined quarks in the cores of neutron stars. Particular emphasis is put on the possible existence of quark matter in the cores of rotating neutron stars (pulsars. In contrast to non-rotating neutron stars, whose particle compositions do not change with time (are frozen in, the type and structure of the matter in the cores of rotating neutron stars depends on the spin frequencies of these stars, which opens up a possible new window on the nature of matter deep in the cores of neutron stars. Our study shows that, depending on mass and rotational frequency, up to around 8% of the mass of a massive neutron star may be in the mixed quark-hadron phase, if the phase transition is treated as a Gibbs transition. We also find that the gravitational mass at which quark deconfinement occurs in rotating neutron stars varies quadratically with spin frequency, which can be fitted by a simple formula.

  2. Investigation and analysis of neutron emission characteristics in Denaplasma focus facility

    International Nuclear Information System (INIS)

    Goodarzi, Sh.; Amrollahi, R.; Babazadeh, A.; Nasiri, A.

    2003-01-01

    Since the first experiments with plasma focus facilities in 1960' s. These devices are known as intense sources of neutron when the working gas contains deuterium with a proper density. Most of the emitted neutrons are produced by D-D reactions, but the mechanism of these reactions in not still clear completely. In this paper, the results of experimental investigations of neutron emission characteristics in D ena p lasma focus facility (Filipov type, 90 kJ, 25 kV) over a range of discharge voltages and pressures are presented. Out working gases are D 2 and D 2+%1 Kr, two different conic and flat insert anodes were employed. We have simultaneously measured the total emission in our experiments for analyzing the neutron generation mechanism in this device. We have found the upper and lower pressure limits and the optimum pressure for neutron generation, and we have observed the double pluses structure of neutron signal for the first time in this device. Form the experimental results, it seems that both thermonuclear and no thermonuclear mechanisms are always present in neutron generation, but their contribution in the total yield is strongly dependent on experimental conditions (initial pressure, discharge voltage, gas admixture, etc.). It was found that the range of variation of total neutron yield and neutron emission anisotropy factor for experiments with D + %1 Kr is wider than experiments with D 2, and the best neutron emission results belongs to discharges in D 2 + %1 Kr with a conic insert anode. By employing D 2 + %1 Kr with a conic insert anode, and varying pressure between 0.3-2 torr at a discharge voltage of 16 kV, it can be deduced that in low pressures ( n ∝ I α ρ ∝E α / 2 was found about 3.62 for D 2 + %1 Kr and 3 for D 2

  3. A study on the linearity characteristics of neutron power measurement system for Hanaro

    International Nuclear Information System (INIS)

    Kang, Tai Ki; Kim, Young Ki; Lee, Byung Chul; Park, Sang Jun

    1999-06-01

    It is briefly described the general principles of neutron detection and the method of neutron measurement in the nuclear reactor which neutron flux varies widely and gamma radiation also exists. Wide-range Fission Chamber System which is excellent in electrical and mechanical performances has been selected for neutron power measurement system for Hanaro. The linearity characteristics of neutron power signals is a critical factor of the reliability in reactor power control. In particular , the linearity of the log power signal, which covers 10 decade form 10 -8 %FP to 200 %FP was a matter of primary concern during commissioning. In case of the linear power signal for reactor control at high power condition, the output signals were additionally analyzed in connection with the reactor thermal power and the delayed neutron signal from the primary pipe as well as the output signal from the compensated ion chamber as a reference signal. (author). 13 refs., 7 tabs., 33 figs

  4. A study on the linearity characteristics of neutron power measurement system for Hanaro

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Tai Ki; Kim, Young Ki; Lee, Byung Chul; Park, Sang Jun

    1999-06-01

    It is briefly described the general principles of neutron detection and the method of neutron measurement in the nuclear reactor which neutron flux varies widely and gamma radiation also exists. Wide-range Fission Chamber System which is excellent in electrical and mechanical performances has been selected for neutron power measurement system for Hanaro. The linearity characteristics of neutron power signals is a critical factor of the reliability in reactor power control. In particular , the linearity of the log power signal, which covers 10 decade form 10 {sup -8} %FP to 200 %FP was a matter of primary concern during commissioning. In case of the linear power signal for reactor control at high power condition, the output signals were additionally analyzed in connection with the reactor thermal power and the delayed neutron signal from the primary pipe as well asthe output signal from the compensated ion chamber as a reference signal. (author). 13 refs., 7 tabs., 33 figs.

  5. Reactivity And Neutron Flux At Silicide Fuel Element In The Core Of RSG-GAS

    International Nuclear Information System (INIS)

    Hamzah, Amir

    2000-01-01

    In order to 4.8 and 5.2 gr U/cm exp 3 loading of U 3 Si 2 --Al fuel plates characterization, he core reactivity change and neutron flux depression had been done. Control rod calibration method was used to reactivity change measurement and neutron flux distribution was measured using foil activation method. Measurement of insertion of A-type of testing fuel element with U-loading above cannot be done due to technical reason, so the measurement using full type silicide fuel element of 2.96 gr U/cm exp 3 loading. The reactivity change measurement result of insertion in A-9 and C-3 is + 2.67 cent. The flux depression at silicide fuel in A-9 is 1.69 times bigger than oxide and in C-3 is 0.68 times lower than oxide

  6. Combined analysis of neutron and photon flux measurements for the Jules Horowitz reactor core mapping

    Energy Technology Data Exchange (ETDEWEB)

    Fourmentel, D.; Villard, J. F.; Lyoussi, A. [DEN Reactor Studies Dept., French Nuclear Energy and Alternative Energies Commission, CEA Cadarache, 13108 Saint Paul-Lez-Durance (France); Reynard-Carette, C. [Laboratoire Chimie Provence LCP UMR 6264, Univ. of Provence, Centre St. Jerome, 13397 Marseille Cedex 20 (France); Bignan, G.; Chauvin, J. P.; Gonnier, C.; Guimbal, P.; Malo, J. Y. [DEN Reactor Studies Dept., French Nuclear Energy and Alternative Energies Commission, CEA Cadarache, 13108 Saint Paul-Lez-Durance (France); Carette, M.; Janulyte, A.; Merroun, O.; Brun, J.; Zerega, Y.; Andre, J. [Laboratoire Chimie Provence LCP UMR 6264, Univ. of Provence, Centre St. Jerome, 13397 Marseille Cedex 20 (France)

    2011-07-01

    We study the combined analysis of nuclear measurements to improve the knowledge of the irradiation conditions in the experimental locations of the future Jules Horowitz Reactor (JHR). The goal of the present work is to measure more accurately neutron flux, photon flux and nuclear heating in the reactor. In a Material Testing Reactor (MTR), nuclear heating is a crucial parameter to design the experimental devices to be irradiated in harsh nuclear conditions. This parameter drives the temperature of the devices and of the samples. The numerical codes can predict this parameter but in-situ measurements are necessary to reach the expected accuracy. For this reason, one objective of the IN-CORE program [1] is to study the combined measurements of neutron and photon flux and their cross advanced interpretation. It should be reminded that both neutron and photon sensors are not totally selective as their signals are due to neutron and photon interactions. We intend to measure the neutron flux by three different kinds of sensors (Uranium Fission chamber, Plutonium Fission chamber and Self Powered Neutron Detector), the photon flux by two different sensors (Ionization chamber and Self Powered Gamma Detector) and the nuclear heating by two different ones (Differential calorimeter and Gamma Thermometer). For the same parameter, we expect that the use of different kinds of sensors will allow a better estimation of the aimed parameter by mixing different spectrum responses and different neutron and gamma contributions. An experimental test called CARMEN-1 is scheduled in OSIRIS reactor (CEA Saclay - France) at the end of 2011, with the goal to map irradiation locations in the reactor reflector to get a first validation of the analysis model. This article focuses on the sensor selection for CARMEN-1 experiment and to the way to link neutron and photon flux measurements in view to reduce their uncertainties but also to better assess the neutron and photon contributions to nuclear

  7. Combined analysis of neutron and photon flux measurements for the Jules Horowitz reactor core mapping

    International Nuclear Information System (INIS)

    Fourmentel, D.; Villard, J. F.; Lyoussi, A.; Reynard-Carette, C.; Bignan, G.; Chauvin, J. P.; Gonnier, C.; Guimbal, P.; Malo, J. Y.; Carette, M.; Janulyte, A.; Merroun, O.; Brun, J.; Zerega, Y.; Andre, J.

    2011-01-01

    We study the combined analysis of nuclear measurements to improve the knowledge of the irradiation conditions in the experimental locations of the future Jules Horowitz Reactor (JHR). The goal of the present work is to measure more accurately neutron flux, photon flux and nuclear heating in the reactor. In a Material Testing Reactor (MTR), nuclear heating is a crucial parameter to design the experimental devices to be irradiated in harsh nuclear conditions. This parameter drives the temperature of the devices and of the samples. The numerical codes can predict this parameter but in-situ measurements are necessary to reach the expected accuracy. For this reason, one objective of the IN-CORE program [1] is to study the combined measurements of neutron and photon flux and their cross advanced interpretation. It should be reminded that both neutron and photon sensors are not totally selective as their signals are due to neutron and photon interactions. We intend to measure the neutron flux by three different kinds of sensors (Uranium Fission chamber, Plutonium Fission chamber and Self Powered Neutron Detector), the photon flux by two different sensors (Ionization chamber and Self Powered Gamma Detector) and the nuclear heating by two different ones (Differential calorimeter and Gamma Thermometer). For the same parameter, we expect that the use of different kinds of sensors will allow a better estimation of the aimed parameter by mixing different spectrum responses and different neutron and gamma contributions. An experimental test called CARMEN-1 is scheduled in OSIRIS reactor (CEA Saclay - France) at the end of 2011, with the goal to map irradiation locations in the reactor reflector to get a first validation of the analysis model. This article focuses on the sensor selection for CARMEN-1 experiment and to the way to link neutron and photon flux measurements in view to reduce their uncertainties but also to better assess the neutron and photon contributions to nuclear

  8. Small angle neutron scattering study of nano sized microstructure in Fe-Cr ODS steels for gen IV in-core applications.

    Science.gov (United States)

    Han, Young-Soo; Mao, Xiadong; Jang, Jinsung

    2013-11-01

    The nano-sized microstructures in Fe-Cr oxide dispersion strengthened steel for Gen IV in-core applications were studied using small angle neutron scattering. The oxide dispersion strengthened steel was manufactured through hot isostatic pressing with various chemical compositions and fabrication conditions. Small angle neutron scattering experiments were performed using a 40 m small angle neutron scattering instrument at HANARO. Nano sized microstructures, namely, yttrium oxides and Cr-oxides were quantitatively analyzed by small angle neutron scattering. The yttrium oxides and Cr-oxides were also observed by transmission electron microscopy. The microstructural analysis results from small angle neutron scattering were compared with those obtained by transmission electron microscopy. The effects of the chemical compositions and fabrication conditions on the microstructure were investigated in relation to the quantitative microstructural analysis results obtained by small angle neutron scattering. The volume fraction of Y-oxide increases after fabrication, and this result is considered to be due to the formation of non-stochiometric Y-Ti-oxides.

  9. Development of core design/analysis technology for integral reactor; verification of SMART nuclear design by Monte Carlo method

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang Hyo; Hong, In Seob; Han, Beom Seok; Jeong, Jong Seong [Seoul National University, Seoul (Korea)

    2002-03-01

    The objective of this project is to verify neutronics characteristics of the SMART core design as to compare computational results of the MCNAP code with those of the MASTER code. To achieve this goal, we will analyze neutronics characteristics of the SMART core using the MCNAP code and compare these results with results of the MASTER code. We improved parallel computing module and developed error analysis module of the MCNAP code. We analyzed mechanism of the error propagation through depletion computation and developed a calculation module for quantifying these errors. We performed depletion analysis for fuel pins and assemblies of the SMART core. We modeled a 3-D structure of the SMART core and considered a variation of material compositions by control rods operation and performed depletion analysis for the SMART core. We computed control-rod worths of assemblies and a reactor core for operation of individual control-rod groups. We computed core reactivity coefficients-MTC, FTC and compared these results with computational results of the MASTER code. To verify error analysis module of the MCNAP code, we analyzed error propagation through depletion of the SMART B-type assembly. 18 refs., 102 figs., 36 tabs. (Author)

  10. Optimization of neutronic characteristics of U3Si2 low enrichment fuel elements for a new design of IEA-R1 reactor core

    International Nuclear Information System (INIS)

    Mai, L.A.; Maiorino, J.R.; Gouvea, E.A.

    1989-01-01

    This work shows a study of neutronic optimization of U 3 Si 2 -Al low enrichment fuel element. This study has a goal to propose a optimized Core to be used in the research reactor IEA-R1. The external dimensions of the fuel element were maintained as constraints and the loss of reactivity along fuel life-time was defined as 'objective function', and it has been minimized by varying the fuel element dimensions. Cell calculations were made with HAMMER-TECH /3/ Code, for burnups up to 50% of U-235 initial mass. The Computer values of the objective function for several combinations of fuel element dimensions were fitted by a surface using the SAS system /9/, and it has been minimized by a Harwell subroutine /10/. (author) [pt

  11. Annual report of STACY operation in FY.2000. Experiments on neutron-interacting systems with two slab-shaped core tanks and 10% enriched uranyl nitrate solution. 2. Contract research

    Energy Technology Data Exchange (ETDEWEB)

    Onodera, Seiji; Hirose, Hideyuki; Izawa, Kazuhiko [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    2001-09-01

    Criticality experiments on neutron-interacting systems have been performed since FY.1999 at STACY (Static Experiment Critical Facility) in NUCEF (Nuclear Fuel Cycle Safety Engineering Research Facility). In the experiments two slab-shaped core tanks and 10% enriched uranyl nitrate solution were used. The dimension of the core tanks is 35 cm in thickness, 70 cm in width and 150 cm in height. In FY.2000, the reactivity effect of neutron-isolating materials, such as polyethylene and concrete, and neutron absorbers made of hafnium and cadmium, which were placed between those two core tanks, was determined by the experiments. This report summarizes the data on the operation and the fuel management for the 57 experiments conducted in FY.2000. (author)

  12. Neutronics characteristics of space power reactors

    International Nuclear Information System (INIS)

    Little, W.; Barner, J.

    1986-01-01

    The objective of the paper is to describe the neutronic characteristics of a range of possible space reactor designs, and indicate the relative advantages and disadvantages of the various designs. Fuel designs to be considered are cermets (i.e., ceramic particles embedded in a metal matrix) consisting of UO 2 or Nn ceramic particles in matrices of Nb, Mo, Ta, or W. These cermet fuels are compared to a UN pin-type design. UN was selected for the reference fuel material since it has a somewhat higher density than UO 2 (i.e., 14.32 versus 10.96 gm/cc), which allows a lower minimum critical mass for both ceramic and cermet designs

  13. Stability and accuracy of 3D neutron transport simulations using the 2D/1D method in MPACT

    International Nuclear Information System (INIS)

    Collins, Benjamin; Stimpson, Shane; Kelley, Blake W.; Young, Mitchell T.H.; Kochunas, Brendan; Graham, Aaron; Larsen, Edward W.; Downar, Thomas; Godfrey, Andrew

    2016-01-01

    A consistent “2D/1D” neutron transport method is derived from the 3D Boltzmann transport equation, to calculate fuel-pin-resolved neutron fluxes for realistic full-core Pressurized Water Reactor (PWR) problems. The 2D/1D method employs the Method of Characteristics to discretize the radial variables and a lower order transport solution to discretize the axial variable. This paper describes the theory of the 2D/1D method and its implementation in the MPACT code, which has become the whole-core deterministic neutron transport solver for the Consortium for Advanced Simulations of Light Water Reactors (CASL) core simulator VERA-CS. Several applications have been performed on both leadership-class and industry-class computing clusters. Results are presented for whole-core solutions of the Watts Bar Nuclear Power Station Unit 1 and compared to both continuous-energy Monte Carlo results and plant data.

  14. Stability and accuracy of 3D neutron transport simulations using the 2D/1D method in MPACT

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Benjamin, E-mail: collinsbs@ornl.gov [Oak Ridge National Laboratory, One Bethel Valley Rd., Oak Ridge, TN 37831 (United States); Stimpson, Shane, E-mail: stimpsonsg@ornl.gov [Oak Ridge National Laboratory, One Bethel Valley Rd., Oak Ridge, TN 37831 (United States); Kelley, Blake W., E-mail: kelleybl@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Young, Mitchell T.H., E-mail: youngmit@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Kochunas, Brendan, E-mail: bkochuna@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Graham, Aaron, E-mail: aarograh@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Larsen, Edward W., E-mail: edlarsen@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Downar, Thomas, E-mail: downar@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Godfrey, Andrew, E-mail: godfreyat@ornl.gov [Oak Ridge National Laboratory, One Bethel Valley Rd., Oak Ridge, TN 37831 (United States)

    2016-12-01

    A consistent “2D/1D” neutron transport method is derived from the 3D Boltzmann transport equation, to calculate fuel-pin-resolved neutron fluxes for realistic full-core Pressurized Water Reactor (PWR) problems. The 2D/1D method employs the Method of Characteristics to discretize the radial variables and a lower order transport solution to discretize the axial variable. This paper describes the theory of the 2D/1D method and its implementation in the MPACT code, which has become the whole-core deterministic neutron transport solver for the Consortium for Advanced Simulations of Light Water Reactors (CASL) core simulator VERA-CS. Several applications have been performed on both leadership-class and industry-class computing clusters. Results are presented for whole-core solutions of the Watts Bar Nuclear Power Station Unit 1 and compared to both continuous-energy Monte Carlo results and plant data.

  15. On the determination of boiling water reactor characteristics by noise analysis

    International Nuclear Information System (INIS)

    Kleiss, J.

    1983-01-01

    In boiling water reactors the main noise source is the boiling process in the core and the most important variable is the neutron flux, thus the effect of the steam bubbles on the neutron flux is studied in detail. An experiment has been performed in a small subcritical reactor to measure the response of a neutron detector to the passage of a single air bubble. A mathematical model for the description of the response was tested and the results agree very well with the experiment. Noise measurements in the Dodewaard boiling water reactor are discussed. The construction of a twin self-powered neutron detector, developed to perform steam velocity measurements in the core is described. The low-frequency part of the neutron noise characteristics is considered. The transfer functions exhibit a good agreement with ones obtained by independent means: control rod step experiments and model calculations. (Auth.)

  16. Determination of the level of water in the core of reactors PWR using neutron detectors signal ex core; Determinacion del nivel del agua del nucleo de reactores PWR usando la senal de detectores neutronicos excore

    Energy Technology Data Exchange (ETDEWEB)

    Bernal, A.; Abarca, A.; Miro, R.; Verdu, G.

    2014-07-01

    The level of water from the core provides relevant information of the neutronic and thermal hydraulic of the reactor as the power, k EFF and cooling capacity. In fact, this level monitoring can be used for prediction of LOCA and reduction of cooling that can cause damage to the core. There are several teams that measure a variety of parameters of the reactor, as opposed to the level of the water of the core. However, the detectors 'excore' measure fast neutrons which escape from the core and there are studies that demonstrate the existence of a relationship between them and the water level of the kernel due to the water shield. Therefore, a methodology has been developed to determine this relationship, using the Monte Carlo method using the MCNP code and apply variance reduction techniques based on the attached flow that is obtained using the method of discrete ordinates using code TORT. (Author)

  17. The determination of neutron energy spectrum in reactor core C1 of reactor VR-1 Sparrow

    Energy Technology Data Exchange (ETDEWEB)

    Vins, M. [Department of Nuclear Reactors, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University, V Holesovickach 2, 180 00 Prague 8 (Czech Republic)], E-mail: vinsmiro@seznam.cz

    2008-07-15

    This contribution overviews neutron spectrum measurement, which was done on training reactor VR-1 Sparrow with a new nuclear fuel. Former nuclear fuel IRT-3M was changed for current nuclear fuel IRT-4M with lower enrichment of 235U (enrichment was reduced from former 36% to 20%) in terms of Reduced Enrichment for Research and Test Reactors (RERTR) Program. Neutron spectrum measurement was obtained by irradiation of activation foils at the end of pipe of rabit system and consecutive deconvolution of obtained saturated activities. Deconvolution was performed by computer iterative code SAND-II with 620 groups' structure. All gamma measurements were performed on Canberra HPGe. Activation foils were chosen according physical and nuclear parameters from the set of certificated foils. The Resulting differential flux at the end of pipe of rabit system agreed well with typical spectrum of light water reactor. Measurement of neutron spectrum has brought better knowledge about new reactor core C1 and improved methodology of activation measurement. (author)

  18. Neutron flux distribution inside the cylindrical core of minor excess of reactivity in the IPEN/MB-01 reactor and comparison with citation code and MCNP- 5 code

    International Nuclear Information System (INIS)

    Aredes, Vitor Ottoni; Bitelli, Ulysses d'Utra; Mura, Luiz Ernesto C.; Santos, Diogo Feliciano dos; Lima, Ana Cecilia de Souza

    2015-01-01

    This study aims to determine the distribution of thermal neutron flux in the IPEN/MB-01 nuclear reactor core assembled with cylindrical core configuration of minor excess of reactivity with 568 fuel rods (28 fuel rods in diameter). The thermal neutron flux at the positions of irradiation derive from the method of reaction rate using gold foils. The experiment consists in inserting gold activations foils with and without cadmium coverage (cadmium boxes with 0.0502 cm thickness) in several positions throughout the active core. After irradiation, activity induced by nuclear reaction rates over gold foils is assessed by gamma ray spectrometry using a high-purity germanium (HPGe) detector. Experimental results are compared to those derived from calculations performed using a three dimensional CITATION diffusion code and MCNP-5 code and a proper nuclear data library. While calculated neutron flux data shows good agreement with experimental values in regions with little disturbance in the neutron flux, also showing that in the region of the reflectors of neutrons and near the control rods, the diffusion theory is not very precise. The average value of thermal neutron flux obtained experimentally compared to the calculated value by CITATION code and MCNP-5 code respectively show a difference of 1.18% and 0.84% at a nuclear power level of 74.65 ± 3.28 % watts. The average measured value of thermal neutron flux is 4.10 10 8 ± 5.25% n/cm 2 s. (author)

  19. Neutron flux distribution inside the cylindrical core of minor excess of reactivity in the IPEN/MB-01 reactor and comparison with citation code and MCNP- 5 code

    Energy Technology Data Exchange (ETDEWEB)

    Aredes, Vitor Ottoni; Bitelli, Ulysses d' Utra; Mura, Luiz Ernesto C.; Santos, Diogo Feliciano dos; Lima, Ana Cecilia de Souza, E-mail: ubitelli@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    This study aims to determine the distribution of thermal neutron flux in the IPEN/MB-01 nuclear reactor core assembled with cylindrical core configuration of minor excess of reactivity with 568 fuel rods (28 fuel rods in diameter). The thermal neutron flux at the positions of irradiation derive from the method of reaction rate using gold foils. The experiment consists in inserting gold activations foils with and without cadmium coverage (cadmium boxes with 0.0502 cm thickness) in several positions throughout the active core. After irradiation, activity induced by nuclear reaction rates over gold foils is assessed by gamma ray spectrometry using a high-purity germanium (HPGe) detector. Experimental results are compared to those derived from calculations performed using a three dimensional CITATION diffusion code and MCNP-5 code and a proper nuclear data library. While calculated neutron flux data shows good agreement with experimental values in regions with little disturbance in the neutron flux, also showing that in the region of the reflectors of neutrons and near the control rods, the diffusion theory is not very precise. The average value of thermal neutron flux obtained experimentally compared to the calculated value by CITATION code and MCNP-5 code respectively show a difference of 1.18% and 0.84% at a nuclear power level of 74.65 ± 3.28 % watts. The average measured value of thermal neutron flux is 4.10 10{sup 8} ± 5.25% n/cm{sup 2}s. (author)

  20. A Neutronic Feasibility Study of an OPR-1000 Core Design with Boron-bearing Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung Hoon; Park, Sang Yoon; Lee, Chung Chan; Yang, Yong Sik [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    In Westinghouse plants, boron is mainly used as a form of the integral fuel burnable absorber (IFBA) with a thin coating of zirconium diboride (ZrB{sub 2}) or wet annular burnable absorber (WABA) with a hollow Al{sub 2}O{sub 3}+B{sub 4}C pellet. In OPR-1000, on the other hand, gadolinia is currently employed as a form of an admixture which consists of Gd{sub 2}O{sub 3} of 6∼8 w/o and UO{sub 2} of natural uranium. Recently, boron-bearing UO{sub 2} fuel (BBF) with the high density of greater than 94%TD has been developed by using a low temperature sintering technique. In this paper, the feasibility of replacing conventional gadolinia-bearing UO{sub 2} fuel (GBF) in OPR-1000 with newly developed boron-bearing fuel is evaluated. Neutronic feasibility study to utilize the BBF in OPR-1000 core has been performed. The results show that the OPR-1000 core design with the BBF is feasible and promising in neutronic aspects. Therefore, the use of the BBF in OPR-1000 can reduce the dependency on the rare material such as gadolinium. However, the burnout of the {sup 10}B isotope results in helium gas, so fuel performance related study with respect to helium generation is needed.

  1. Neutron flux determination at the IPR-R1 Triga Mark I neutron beam extractor

    International Nuclear Information System (INIS)

    Zangirolami, Dante Marco; Maretti Junior, Fausto; Ferreira, Andrea Vidal

    2009-01-01

    The IPR-R1 Triga Mark I Reactor located at the CDTN/CNEN, Belo Horizonte, Brazil, has been operating since November of 1960. In this work, measurements of thermal and epithermal neutron flux along the IPR-R1 neutron beam extractor were performed by neutron activation of reference materials using the two foils method. The obtained results were compared with results from two previous works: an experimental measurement done in a previous reactor core configuration and a numerical work made by Monte Carlo simulation using the actual reactor core configuration. The main purpose of this work is to update the measured data to the actual reactor core configuration. (author)

  2. One-dimensional nodal neutronics routines for the TRAC-BD1 thermal-hydraulics program

    International Nuclear Information System (INIS)

    Nigg, D.W.

    1983-09-01

    Nuclear reactor core transient neutronic behavior is currently modeled in the TRAC-BD1 code using a point-reactor kinetics formulation. This report describes a set of subroutines based on the Analytic Nodal Method that were written to provide TRAC-BD1 with a one-dimensional space-dependent neutronics capability. Use of the routines is illustrated with several test problems. The results of these problems show that the Analytic Nodal neutronics routines have desirable accuracy and computing time characteristics and should be a useful addition to TRAC-BD1

  3. Feasibility study of Self Powered Neutron Detectors in Fast Reactors for detecting local change in neutron flux distribution

    International Nuclear Information System (INIS)

    Jammes, Christian; Filliatre, Philippe; Verma, Vasudha; Hellesen, Carl; Jacobsson Svard, Staffan

    2015-01-01

    Neutron flux monitoring system forms an integral part of the design of a Generation IV sodium cooled fast reactor system. Diverse possibilities of detector systems installation have to be investigated with respect to practicality and feasibility according to the detection parameters. In this paper, we demonstrate the feasibility of using self powered neutron detectors as in-core detectors in fast reactors for detecting local change in neutron flux distribution. We show that the gamma contribution from fission products decay in the fuel and activation of structural materials is very small compared to the fission gammas. Thus, it is possible for the in-core SPND signal to follow changes in local neutron flux as they are proportional to each other. This implies that the signal from an in-core SPND can provide dynamic information on the neutron flux perturbations occurring inside the reactor core. (authors)

  4. Feasibility study of Self Powered Neutron Detectors in Fast Reactors for detecting local change in neutron flux distribution

    Energy Technology Data Exchange (ETDEWEB)

    Jammes, Christian; Filliatre, Philippe [CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St Paul-Lez-Durance, (France); Verma, Vasudha; Hellesen, Carl; Jacobsson Svard, Staffan [Division of Applied Nuclear Physics, Uppsala University, SE-75120 Uppsala, (Sweden)

    2015-07-01

    Neutron flux monitoring system forms an integral part of the design of a Generation IV sodium cooled fast reactor system. Diverse possibilities of detector systems installation have to be investigated with respect to practicality and feasibility according to the detection parameters. In this paper, we demonstrate the feasibility of using self powered neutron detectors as in-core detectors in fast reactors for detecting local change in neutron flux distribution. We show that the gamma contribution from fission products decay in the fuel and activation of structural materials is very small compared to the fission gammas. Thus, it is possible for the in-core SPND signal to follow changes in local neutron flux as they are proportional to each other. This implies that the signal from an in-core SPND can provide dynamic information on the neutron flux perturbations occurring inside the reactor core. (authors)

  5. High-spin isomers in 212Rn in the region of triple neutron core-excitations

    Science.gov (United States)

    Dracoulis, G. D.; Lane, G. J.; Byrne, A. P.; Davidson, P. M.; Kibédi, T.; Nieminen, P.; Watanabe, H.; Wilson, A. N.

    2008-04-01

    The level scheme of 212Rn has been extended to spins of ∼ 38 ℏ and excitation energies of about 13 MeV using the 204Hg(13C, 5n)212Rn reaction and γ-ray spectroscopy. Time correlated techniques have been used to obtain sensitivity to weak transitions and channel selectivity. The excitation energy of the 22+ core-excited isomer has been established at 6174 keV. Two isomers with τ = 25 (2) ns and τ = 12 (2) ns are identified at 12211 and 12548 keV, respectively. These are the highest-spin nuclear isomers now known, and are attributed to configurations involving triple neutron core-excitations coupled to the aligned valence protons. Semi-empirical shell-model calculations can account for most states observed, but with significant energy discrepancies for some configurations.

  6. High-spin isomers in 212Rn in the region of triple neutron core-excitations

    International Nuclear Information System (INIS)

    Dracoulis, G.D.; Lane, G.J.; Byrne, A.P.; Davidson, P.M.; Kibedi, T.; Nieminen, P.; Watanabe, H.; Wilson, A.N.

    2008-01-01

    The level scheme of 212 Rn has been extended to spins of ∼38h and excitation energies of about 13 MeV using the 204 Hg( 13 C, 5n) 212 Rn reaction and γ-ray spectroscopy. Time correlated techniques have been used to obtain sensitivity to weak transitions and channel selectivity. The excitation energy of the 22 + core-excited isomer has been established at 6174 keV. Two isomers with τ=25(2) ns and τ=12(2) ns are identified at 12211 and 12548 keV, respectively. These are the highest-spin nuclear isomers now known, and are attributed to configurations involving triple neutron core-excitations coupled to the aligned valence protons. Semi-empirical shell-model calculations can account for most states observed, but with significant energy discrepancies for some configurations

  7. CORTAP: a coupled neutron kinetics-heat transfer digital computer program for the dynamic simulation of the high temperature gas cooled reactor core

    International Nuclear Information System (INIS)

    Cleveland, J.C.

    1977-01-01

    CORTAP (Core Transient Analysis Program) was developed to predict the dynamic behavior of the High Temperature Gas Cooled Reactor (HTGR) core under normal operational transients and postulated accident conditions. CORTAP is used both as a stand-alone component simulation and as part of the HTGR nuclear steam supply (NSS) system simulation code ORTAP. The core thermal neutronic response is determined by solving the heat transfer equations for the fuel, moderator and coolant in an average powered region of the reactor core. The space independent neutron kinetics equations are coupled to the heat transfer equations through a rapidly converging iterative technique. The code has the capability to determine conservative fuel, moderator, and coolant temperatures in the ''hot'' fuel region. For transients involving a reactor trip, the core heat generation rate is determined from an expression for decay heat following a scram. Nonlinear effects introduced by temperature dependent fuel, moderator, and coolant properties are included in the model. CORTAP predictions will be compared with dynamic test results obtained from the Fort St. Vrain reactor owned by Public Service of Colorado, and, based on these comparisons, appropriate improvements will be made in CORTAP

  8. Overview of neutronic fuel assembly design and in-core fuel management

    International Nuclear Information System (INIS)

    Porsch, D.; Charlier, A.; Meier, G.; Mougniot, J.C.; Tsuda, K.

    2000-01-01

    The civil and military utilization of nuclear power results in stockpiles of spent fuel and separated plutonium. Recycling of the recovered plutonium in Light Water Reactors (LWR) is currently practiced in Belgium, France, Germany, and Switzerland, in Japan it is in preparation. Modern MOX fuel, with its optimized irradiation and reprocessing behavior, was introduced in 1981. Since then, about 1700 MOX fuel assemblies of different mechanical and neutronic design were irradiated in commercial LWRs and reached fuel assembly averaged exposures of up to 51.000 MWd/t HM. MOX fuel assemblies reloaded in PWR have an average fissile plutonium content of up to 4.8 w/o. For BWR, the average fissile plutonium content in actual reloads is 3.0 w/o. Targets for the MOX fuel assembly design are the compatibility to uranium fuel assemblies with respect to their mechanical fuel rod and fuel assembly design, they should have no impact on the flexibility of the reactor operation, and its reload should be economically feasible. In either cycle independent safety analyses or individually for each designed core it has to be demonstrated that recycling cores meet the same safety criteria as uranium cores. The safety criteria are determined for normal operation and for operational as well as design basis transients. Experience with realized MOX core loadings confirms the reliability of the applied modern design codes. Studies for reloads of advanced MOX assemblies in LWRs demonstrate the feasibility of a future development of the thermal plutonium recycling. New concepts for the utilization of plutonium are under consideration and reveal an attractive potential for further developments on the plutonium exploitation sector. (author)

  9. Neutronic characteristics of coupled moderator proposed in integrated model

    International Nuclear Information System (INIS)

    Teshigawara, Makoto; Meigo, Shin-ichiro; Sakata, Hideaki; Kai, Tetsuya; Harada, Masahide; Ikeda, Yujiro; Watanabe, Noboru

    2001-05-01

    A pulsed spallation source for the materials science and the life science is currently developing for its construction in the High Intensity Proton Accelerator Project proposed jointly by the Japan Atomic Energy Research Institute (JAERI) and the High Energy Accelerator Research Organization (KEK). This report presents the analytical results of the neutronic characteristics of the coupled moderator based on the analytical results obtained by using an integrated model which has established on the extensive neutronic and technical study. Total heat deposition in a hydrogen (H 2 ) moderator working as the main moderator was about 420 W/MW. Maximum nuclear heat density in the H 2 moderator was about 1 W/cm 3 /MW. Also total heat deposition in a premoderator was about 9.2 kW/MW. The heat density of the premoderator was comparable to that of the moderator vessel made of aluminum alloy. The heat density of the premoderator and the moderator vessel is about 1.2-2 times higher than that of the hydrogen moderator. The temperature from 300 K to 400 K of the premoderator did not affect on neutron intensity of the H 2 moderator. This suggested an engineering advantage on the thermal and hydraulic design. 6000 or 7000 type of a aluminum alloy was considered from the viewpoint of the neutron beam transmission. The proton beams scattered by the proton beam window did not affect on the nuclear heating in the H 2 moderator. The heat deposition in the H 2 moderator and the neutron intensity of the H 2 moderator did not depend on the proton beam profile but it did on the distance between the proton beam and the moderator. (author)

  10. Neutron irradiation effects on silicon detectors structure, electrical and mechanical characteristics

    International Nuclear Information System (INIS)

    Rabinovich, E.; Golan, G.; Axelevich, A.; Inberg, A.; Oksman, M.; Rosenwaks, I.; Lubarsky, G.; Seidman, A.; Croitoru, N.; Rancoita, P.G.; Rattaggi, M.

    1999-01-01

    Neutron irradiation effects on (p-n) and Schottky-junction silicon detectors were studied. It was shown that neutron interactions with monocrystalline silicon create specific types of microstructure defects with morphology differing according to the level of neutron fluences (Φ). The isolated dislocation loops, formed by interstitial atoms were observed in microstructure images for 10 10 ≤ Φ ≤ 10 12 n/cm 2 . A strong change in the dislocation loops density and a cluster formation was observed for Φ ≥ 10 13 n/cm 2 . A drastic silicon damage was found for fluences over 10 14 n/cm 2 . These fluences created zones enriched with all types of dislocations, covering more than 50 % of the total surface area. A mechanical fragility appeared in that fluence range in a form of microcracks. 10 14 n/cm 2 appears to be a critical value of neutron irradiation because of the radiation damage described above and because the characteristics I f -V f of silicon detectors can be differentiated from those obtained at low fluences. (A.C.)

  11. Axisymmetric core collapse simulations using characteristic numerical relativity

    International Nuclear Information System (INIS)

    Siebel, Florian; Mueller, Ewald; Font, Jose A.; Papadopoulos, Philippos

    2003-01-01

    We present results from nonrotating axisymmetric stellar core collapse simulations in general relativity. Our hydrodynamics code has proved robust and accurate enough to allow for a detailed analysis of the global dynamics of the collapse. Contrary to traditional approaches based on the 3+1 formulation of the gravitational field equations, our framework uses a foliation based on a family of outgoing light cones, emanating from a regular center, and terminating at future null infinity. Such a coordinate system is well adapted to the study of interesting dynamical spacetimes in relativistic astrophysics such as stellar core collapse and neutron star formation. Perhaps most importantly this procedure allows for the extraction of gravitational waves at future null infinity, along with the commonly used quadrupole formalism for the gravitational wave extraction. Our results concerning the gravitational wave signals show noticeable disagreement when those are extracted by computing the Bondi news at future null infinity on the one hand and by using the quadrupole formula on the other hand. We have a strong indication that for our setup the quadrupole formula on the null cone does not lead to physical gravitational wave signals. The Bondi gravitational wave signals extracted at infinity show typical oscillation frequencies of about 0.5 kHz

  12. Whole core neutronics modeling of a TRIGA reactor using integral transport theory

    International Nuclear Information System (INIS)

    Schwinkendorf, K.N.; Toffer, H.

    1990-01-01

    An innovative analysis approach for performing whole core reactor physics calculations for TRIGA reactors has been employed recently at the Westinghouse Hanford Company. A deterministic transport theory model with sufficient geometric complexity to evaluate asymmetric loading patterns was used. Calculations of this complexity have been performed in the past using Monte Carlo simulation, such as the MCNP code. However, the Monte Carlo calculations are more difficult to prepare and require more computer time. On the Hanford Site CRAY XMP-18 computer, the new methods required less than one-third of the central processing unit time per calculation as compared to an MCNP calculation using 100,000 neutron histories

  13. The advanced neutron source three-element-core fuel grading

    International Nuclear Information System (INIS)

    Gehin, J.C.

    1995-01-01

    The proposed Advanced Neutron Source (ANS) pre-conceptual design consists of a two-element 330 MW f nuclear reactor fueled with highly-enriched uranium and is cooled, moderated, and reflected with heavy water. Recently, the ANS design has been changed to a three-element configuration in order to permit a reduction of the enrichment, if required, while maintaining or improving the thermal-hydraulic margins. The core consists of three annular fuel elements composed of involute-shaped fuel plates. Each fuel plate has a thickness of 1.27 mm and consists of a fuel meat region Of U 3 Si 2 -Al (50% enriched in one case that was proposed) and an aluminum filler region between aluminum cladding. The individual plates are separated by a 1.27 mm coolant channel. The three element core has a fuel loading of 31 kg of 235 U which is sufficient for a 17-day fuel cycle. The goal in obtaining a new fuel grading is to maximize important temperature margins. The limits imposed axe: (1) Limit the temperature drop over the cladding oxide layer to less than 119 degrees C to avoid oxide spallation. (2) Limit the fuel centerline temperature to less than 400 degrees C to avoid fuel damage. (3) Limit the cladding wall temperature to less than the coolant. incipient-boiling temperature to avoid coolant boiling. Other thermal hydraulic conditions, such as critical heat flux, are also considered

  14. Chooz-B1, the new Electricite de France PWR: calculation scheme of neutron leakages from the reactor cavity

    International Nuclear Information System (INIS)

    Champion, G.; Thiriet, A.; Vergnaud, T.; Bourdet, L.; Nimal, J.C.; Brandicourt, G.

    1987-04-01

    A new calculation scheme has been set up to assess the neutron field characteristics inside French PWR. In order to take into account multiple neutron scattering and the complexity of the reactor geometry, the use of Monte-Carlo methods have been heavily increased. They are coupled with classical SN.-methods. The main goal aimed at was to find out the neutron field characteristics at the level of the reactor pit openings. These radiation reference sources will be used to check the neutron shielding efficiencies. The new calculation scheme has been applied to CHOOZ-B1, the first unit of the new N4 program. The former results have been compared with the measurement results related to PALUEL-I and II PWR, two units of the previous P4 program. Although the core and the geometry are not entirely similar, it is possible to check with confidence the calculation results along the vessel and at the core midplane level with the measurement results at the same locations. It appears that they are in good agreement. Consequently, the new calculation scheme appears reliable

  15. Improvement of core monitoring code cecor by the virtual segmentation of the self powered neutron detector loaded at Korean Standard Nuclear Plant

    International Nuclear Information System (INIS)

    Choi, T.; Jung, Y.S.

    2006-01-01

    Full text: Full text: Korean Standard Nuclear Plant uses Self Powered Neutron Detectors (SPNDs) to measure the neutron flux in the reactor core. The SPND's height is 40 cm and is located axially at the five different positions and 45 radial places. The design code simulated a reactor core is calculated by segmentation of the core. The segmentation is called as 'node', of which size is normally 20 cm. The axial height of the detector is larger than that of the node, and the larger detector's height maybe product some error on the axially complex shape. The analysis with the detector's signals showed some errors at the non-cosine axial flux shape. In order to reduce the errors for the shape, we tried to divide the detector by introducing the virtual boundary in the detector. Then, each axially 5 detectors had two virtual segmentations respectively and the detector's signal was divided by the inputs. So the more virtual detector's signals were gotten, the more accurate axial shape was produced. The result with virtual segmentations in a detector gave less deviation than the case without virtual segmentation (the current model). After the middle of cycle at the initial core specially, the axial neutron flux shape is changed to the saddle type one. The current model gave some error in Root Mean Square (RMS) between the measured value and the calculated one. The virtual segmentation model gave the better agreement at that time

  16. Neutron dosimeter

    International Nuclear Information System (INIS)

    Bartko, J.; Schoch, K.F. Jr.; Congedo, T.V.; Anderson, S.L. Jr.

    1989-01-01

    This patent describes a nuclear reactor. It comprises a reactor core; a thermal shield surrounding the reactor core; a pressure vessel surrounding the thermal shield; a neutron dosimeter positioned outside of the thermal shield, the neutron dosimeter comprising a layer of fissile material and a second layer made of a material having an electrical conductivity which permanently varies as a function of its cumulative ion radiation dose; and means, outside the pressure vessel and electrically connected to the layer of second material, for measuring electrical conductivity of the layer of second material

  17. Core physics design calculation of mini-type fast reactor based on Monte Carlo method

    International Nuclear Information System (INIS)

    He Keyu; Han Weishi

    2007-01-01

    An accurate physics calculation model has been set up for the mini-type sodium-cooled fast reactor (MFR) based on MCNP-4C code, then a detailed calculation of its critical physics characteristics, neutron flux distribution, power distribution and reactivity control has been carried out. The results indicate that the basic physics characteristics of MFR can satisfy the requirement and objectives of the core design. The power density and neutron flux distribution are symmetrical and reasonable. The control system is able to make a reliable reactivity balance efficiently and meets the request for long-playing operation. (authors)

  18. Applications and characteristics of imaging plates as detector in neutron radiography at SINQ

    CERN Document Server

    Kolbe, H; Gunia, W; Körner, S

    1999-01-01

    Imaging plate technique is a commonly accepted method in many fields as in medicine, biology and physics for detection of the distribution of beta- and gamma-radiation or X-rays on large areas. Recently a new type of imaging plate sensitive to neutrons has been developed. The storage layer is doped with gadolinium, which, after absorption of neutrons, produces radiation detectable by the same sensitive crystals used in conventional imaging plates. At the spallation neutron source, SINQ, at the Paul Scherrer Institut (CH) some of the characteristics of the neutron radiography station in combination with the imaging plate technique were investigated. The intensity distribution of the source was measured to check the accuracy for quantification of the image data. Also, the reproducibility of results obtained by this detection system was stated. For a test object, the high selectivity for different neutron absorption is demonstrated at details with low contrast. The obtainable spatial resolution was determined re...

  19. Characteristics of SiC neutron sensor spectrum unfolding process based on Bayesian inference

    Energy Technology Data Exchange (ETDEWEB)

    Cetnar, Jerzy; Krolikowski, Igor [Faculty of Energy and Fuels AGH - University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow (Poland); Ottaviani, L. [IM2NP, UMR CNRS 7334, Aix-Marseille University, Case 231 -13397 Marseille Cedex 20 (France); Lyoussi, A. [CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St-Paul-Lez-Durance (France)

    2015-07-01

    This paper deals with SiC detector signal interpretation in neutron radiation measurements in mixed neutron gamma radiation fields, which is called the detector inverse problem or the spectrum unfolding, and it aims in finding a representation of the primary radiation, based on the measured detector signals. In our novel methodology we resort to Bayesian inference approach. In the developed procedure the resultant spectra is unfolded form detector channels reading, where the estimated neutron fluence in a group structure is obtained with its statistical characteristic comprising of standard deviation and correlation matrix. In the paper we present results of unfolding process for case of D-T neutron source in neutron moderating environment. Discussions of statistical properties of obtained results are presented as well as of the physical meaning of obtained correlation matrix of estimated group fluence. The presented works has been carried out within the I-SMART project, which is part of the KIC InnoEnergy R and D program. (authors)

  20. Neutronic characteristics of linear-assembly breed-and-burn reactors

    International Nuclear Information System (INIS)

    Petroski, Robert; Forget, Benoit; Forsberg, Charles

    2012-01-01

    Highlights: ► Simple models used to characterize general behavior of linear-assembly B and B reactors. ► Diffusion theory model developed to explain axial distributions, height vs. reactivity. ► Neutron excess concept reformulated to include linear-assembly B and B reactors. ► Designed model of B and B reactor started using melt-refined B and B reactor used fuel. ► Computed doubling time of fuel cycle requiring no chemical separations. - Abstract: Linear-assembly breed-and-burn (B and B) reactors are B and B reactors that use axially connected assemblies similar to conventional LWR or fast reactor fuel assemblies. Methods for analyzing linear-assembly B and B reactors and their fuel cycles are developed and applied. General neutronic characteristics of linear-assembly B and B reactors are analyzed, including the effects that burnup, shuffling sequence, and radial and axial size have on equilibrium-cycle k-effective. The mechanisms that give rise to a highly peaked axial burnup distribution are explained, and a method for predicting peak burnup vs. k-effective based on infinite-medium depletion calculations is developed. Next, the neutron excess concept from previous studies of B and B reactors is extended to apply to linear-assembly B and B reactors, which allows the amount of starter fuel needed to establish a given equilibrium cycle to be calculated. Several example applications of the neutron excess formulation are given. First, an example model of a linear-assembly B and B reactor is analyzed to find the neutron excess cost of an equilibrium cycle. Second, simple one-dimensional models are used to predict the neutron excess value obtainable from different starter fuel configurations. Finally, these ideas are applied to design a fuel cycle consisting of linear-assembly B and B reactors and fuel recycling via a melt refining process. The neutron excess concept is used to design an appropriate starter fuel configuration made from melt refined fuel, which

  1. Moderator temperature coefficient in BWR core

    International Nuclear Information System (INIS)

    Naito, Yoshitaka

    1977-01-01

    Temperature dependences of infinite multiplication factor k sub(infinity) and neutron leakage from the core must be examined for estimation of moderator temperature coefficient. Temperature dependence on k sub(infinity) has been investigated by many researchers, however, the dependence on neutron leakage of a BWR with cruciformed control rods has hardly been done. Because there are difficulties and necessity on calculations of three space dimensional and multi-energy groups neutron distribution in a BWR core. In this study, moderator temperature coefficients of JPDR-II (BWR) core were obtained by calculation with DIFFUSION-ACE, which is newly developed three-dimensional multi-group computer code. The results were compared with experimental data measured from 20 to 275 0 C of the moderator temperature and the good agreement was obtained between calculation and measurement. In order to evaluate neutron leakage from the core, the other two calculations were carried out, adjusting criticality by uniform absorption rate and by material buckling. The former underestimated neutron leakage and the latter overestimated it. Discussion on the results shows that in order to estimate the temperature coefficient of BWR, neutron leakage must be evaluated precisely, therefore the calculation at actual pattern of control rods is necessary. (auth.)

  2. Analysis of neutronic parameters of AP1000 core for 18 month and 16/20 month cycle schemes using CASMO4E and SIMULATE-3 codes

    International Nuclear Information System (INIS)

    Nawaz Amjad; Yoshikawa, Hidekazu; Ming Yang

    2015-01-01

    AP1000 reactor is designed for 18 month of operating cycle. The core can also be used for 16/20 months of operating cycle. This study is performed to analyze and compare the neutronic parameters of typical AP1000 reactor core for 18 month and 16/20 month alternate cycle lengths. CASMO4E and SIMULATE-3 code package is used for the analysis of initial and equilibrium cores. The key reactor physics safety parameters were analyzed including power peaking factors, core radial and axial power distribution and core reactivity feedback coefficients. Moreover, the analysis of fuel depletion, fission product buildup and burnable poison behaviour with burnup is also analyzed. Full 2-D fuel assembly model in CASMO4E and full 3-D core model in SIMULATE-3 is employed to examine core performance and safety parameters. In order to evaluate the equilibrium core neutronic parameters, the equilibrium core model is attained by performing burnup analysis from initial to equilibrium cycle, where optimized transition core design is obtained so that the power peaking factors remain within designed limits. The MTC for higher concentration of critical boron concentrations is slightly positive at lower moderator temperatures. However, it remains negative at operating temperature ranges. The radial core relative power distribution indicates that low leakage capability of initial and equilibrium cores is reduced at EOC. (author)

  3. Applications of a lead pile coupled with fast reactor core of Yayoi as an intermediate energy neutron standard field

    International Nuclear Information System (INIS)

    Kosako, Toshiso; Nakazawa, Masaharu; Sekiguchi, Akira; Wakabayashi, Hiroaki.

    1976-10-01

    Intermediate neutron column of YAYOI reactor is here evaluated as an intermediate energy neutron standard field which provides a base of the measurements of various reaction rates in that energy region, including detector calibration and Doppler coefficient determination. The experiments were performed using YAYOI's core as a fast neutron source by coupling with the large lead pile, which is a 160 ton's octagon of 2.5 m high and with a thickness of about 2.5 m face to face distance. Spatial variation of the neutron flux in the lead pile was estimated by gold activation foils, and the neutron spectrum by sandwich foils, a helium-3 proportional counter and a proton recoil counter. The calculated results were obtained using one and two- dimensional discrete ordinate code, ANISN and TWOTRAN II. Through comparison of experiment with calculation, it became clear that the neutron field at the central block has simple energy spectrum and stable spatial distribution of the neutron flux, the absolute of which was 5.0 x 10 4 (n/cm 2 /sec/Watt) at the representative energy of 1 KeV. The energy spectrum of the position and the spatial dependent neutron flux in the lead pile are both represented by the semiempirical formula, which must be useful both for evaluation of experimental data and for future applications. (auth.)

  4. Determining the magnetically nonlinear characteristics of a three phase core-type power transformer

    International Nuclear Information System (INIS)

    Dolinar, Matjaz; Stumberger, Gorazd; Polajzer, Bostjan; Dolinar, Drago

    2006-01-01

    This paper presents nonlinear iron core model of a three-phase, three-limb power transformer which is given by the current-dependant characteristics of flux linkages. The magnetically nonlinear characteristics are determined by controlled magnetic excitation of all three limbs which allows to take into account the variable magnetic-cross couplings between different coils placed on limbs, caused by saturation. The corresponding partial derivatives of measured flux linkage characteristics are used in the transformer circuit model as a magnetically nonlinear iron core model in order to analyze the behaviour of a nonsymmetrically excited transformer. Numerical results using transformer model with the determined iron core model agree very well with the measured results

  5. Introduction to neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Lattimer, James M. [Dept. of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800 (United States)

    2015-02-24

    Neutron stars contain the densest form of matter in the present universe. General relativity and causality set important constraints to their compactness. In addition, analytic GR solutions are useful in understanding the relationships that exist among the maximum mass, radii, moments of inertia, and tidal Love numbers of neutron stars, all of which are accessible to observation. Some of these relations are independent of the underlying dense matter equation of state, while others are very sensitive to the equation of state. Recent observations of neutron stars from pulsar timing, quiescent X-ray emission from binaries, and Type I X-ray bursts can set important constraints on the structure of neutron stars and the underlying equation of state. In addition, measurements of thermal radiation from neutron stars has uncovered the possible existence of neutron and proton superfluidity/superconductivity in the core of a neutron star, as well as offering powerful evidence that typical neutron stars have significant crusts. These observations impose constraints on the existence of strange quark matter stars, and limit the possibility that abundant deconfined quark matter or hyperons exist in the cores of neutron stars.

  6. Neutronic Analysis of the RSG-GAS Compact Core without CIP Silicide 3.55 g U/cc and 4.8 g U/cc

    International Nuclear Information System (INIS)

    Jati S; Lily S; Tukiran S

    2004-01-01

    Fuel conversion from U 3 O 8 -Al to U 3 Si 2 -Al 2.96 g U/cc density in the RSG-GAS core had done successfully step by step since 36 th core until 44 th core. So that, since the 45 th core until now (48 th core) had been using full of silicide 2.96 g U/cc. Even though utilization program of silicide fuel with high density (3.55 g U/cc and 4.8 g U/cc) and optimize operation of RSG-GAS core under research. Optimalitation of core with increasing operation cycle have been analyzing about compact core. The mean of compact core is the RSG-GAS core with decrease number of IP or CIP position irradiation. In this research, the neutronic calculation to cover RSG-GAS core and RSG-GAS core without CIP that are using U 3 Si 2 -Al 2.96 g U/cc, 3.55 g U/cc and 4.8 g U/cc had done. Two core calculation done at 15 MW power using SRAC-ASMBURN code. The calculation result show that fuel conversion from 2.96 g U/cc density to 3.55 g U/cc and 4.8 g U/cc will increasing cycle length for both RSG-GAS core and RSG-GAS compact core without CIP. However, increasing of excess reactivity exceeded from nominal value of first design that 9.2%. Change of power peaking factor is not show significant value and still less than 1.4. Core fuelled with U 3 Si 2 -Al 4.8 g U/cc density have maximum discharge burn-up which exceeded from licensing value (70%). RSG-GAS compact core without CIP fuelled U 3 Si 2 -Al 2.96 g U/cc have longer cycle operation then RSG-GAS core and fulfil limitation neutronic parameter at the first design value. (author)

  7. Simulation software of 3-D two-neutron energy groups for ship reactor with hexagonal fuel subassembly

    International Nuclear Information System (INIS)

    Zhang Fan; Cai Zhangsheng; Yu Lei; Gui Xuewen

    2005-01-01

    Core simulation software for 3-D two-neutron energy groups is developed. This software is used to simulate the ship reactor with hexagonal fuel subassembly after 10, 150 and 200 burnup days, considering the hydraulic and thermal feedback. It accurately simulates the characteristics of the fast and thermal neutrons and the detailed power distribution in a reactor under normal and abnormal operation condition. (authors)

  8. Full core reactor analysis: Running Denovo on Jaguar

    Energy Technology Data Exchange (ETDEWEB)

    Jarrell, J. J.; Godfrey, A. T.; Evans, T. M.; Davidson, G. G. [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831 (United States)

    2012-07-01

    Fully-consistent, full-core, 3D, deterministic neutron transport simulations using the orthogonal mesh code Denovo were run on the massively parallel computing architecture Jaguar XT5. Using energy and spatial parallelization schemes, Denovo was able to efficiently scale to more than 160 k processors. Cell-homogenized cross sections were used with step-characteristics, linear-discontinuous finite element, and trilinear-discontinuous finite element spatial methods. It was determined that using the finite element methods gave considerably more accurate eigenvalue solutions for large-aspect ratio meshes than using step-characteristics. (authors)

  9. Neutronic safety parameters of the BN-600 type reactor with hybrid core. Diffusion and transport approach. R-Z homogeneous media

    International Nuclear Information System (INIS)

    Cherny, V.; Danilytchev, A.; Korobeinikov, V.; Korobeinikova, L.; Stogov, V.

    2000-01-01

    The present paper includes the results of neutronic safety calculations of the BN-600 hybrid core benchmark problem. Results presented include: multiplication factors, Doppler coefficients, fuel and structure density coefficients, expansion coefficients, power distribution, beta-effective values, reaction rate distributions

  10. Monitor for reactor neutron detector

    International Nuclear Information System (INIS)

    Shirakami, Hisayuki; Shibata, Masatoshi

    1992-01-01

    The device of the present invention judges as to whether a neutron detector is normal or not while considering the change of indication value depending on the power change of a reactor core. That is, the device of the present invention comprises a standard value setting device for setting the standard value for calibrating the neutron detector and an abnormality judging device for comparing the standard value with a measured value of the neutron detector and judging the abnormality when the difference is greater than a predetermined value. The measured value upon initialization of each of the neutron detectors is determined as a quasi-standard value. An average value of the difference between the measured value and the quasi-standard value of a plurality of effective neutron detectors at a same level for the height of the reactor core is multiplied to a power rate based on the reactor core power at a position where the neutron detector is disposed upon calibration. The value obtained by adding the multiplied value and the quasi-standard value is determined as a standard value. The abnormality judging device compares the standard value with the measured value of the neutron detector and, if the difference is greater than a predetermined value, the neutron detector is determined as abnormal. As a result, judgement can be conducted more accurately than conventional cases. (I.S.)

  11. The wide range in-core neutron measurement system used in the Windscale AGR concluding experiments

    International Nuclear Information System (INIS)

    Goodings, A.; Budd, J.; Wilson, I.

    1982-06-01

    The Windscale AGR concluding experiments included a comparison of theoretical and experimental power transients and required measurements of neutron flux as a function of position and time within the reactor core. These measurements were specified to cover a working range as wide as possible and had to be made against the in-core gamma background of up to 4 x 10 7 R(hr) - 1 . The detectors were required to operate in special channels cooled by reactor inlet CO 2 and the overall system needed a response time such that it could follow transients with doubling times down to 2s with an accuracy of 2 or 3%. These problems were solved by the use of gas ion fission chambers operating in the current fluctuation or ''Campbelling'' mode. Their neutron to gamma sensitivity ratio was optimised by the use of unusually low filling pressures and they were fitted with special ''trilaminax'' mineral insulated cables to minimise the effects of electrical interference at the 100 kHz channel centre frequency. Ten detectors were built and nine were installed in the reactor, three in each of three special stringers at different radial positions. All were processed and tested for operation at 350 deg. C and their fissile coatings (430 μg cm - 1 of natural uranium) were matched to give individual neutron sensitivities with a population spread better than +- 6% about the mean. The mean absolute sensitivities were determined to about +- 5% against manganese foils in the NESTOR reactor at AEE Winfrith. The detectors were complemented by special signal processing channels which provided current fluctuation sensitivity and appropriate output signals to the experiment data acquisition system. These channels also permitted dc measurement of chamber current for more precise flux determination near reactor full power

  12. Neutron and X-ray Tomography (NeXT) system for simultaneous, dual modality tomography

    Science.gov (United States)

    LaManna, J. M.; Hussey, D. S.; Baltic, E.; Jacobson, D. L.

    2017-11-01

    Dual mode tomography using neutrons and X-rays offers the potential of improved estimation of the composition of a sample from the complementary interaction of the two probes with the sample. We have developed a simultaneous neutron and 90 keV X-ray tomography system that is well suited to the study of porous media systems such as fuel cells, concrete, unconventional reservoir geologies, limestones, and other geological media. We present the characteristic performance of both the neutron and X-ray modalities. We illustrate the use of the simultaneous acquisition through improved phase identification in a concrete core.

  13. New aspects of the QCD phase transition in proto-neutron stars and core-collapse supernovae

    International Nuclear Information System (INIS)

    Hempel, Matthias; Heinimann, Oliver; Liebendörfer, Matthias; Friedrich-Karl, Thielemann; Yudin, Andrey; Iosilevskiy, Igor

    2017-01-01

    The QCD phase transition from hadronic to deconfined quark matter is found to be a so-called “entropic” phase transition, characterized, e.g., by a negative slope of the phase transition line in the pressure-temperature phase diagram. In a first part of the present proceedings it is discussed that entropic phase transitions lead to unusual thermal properties of the equation of state (EoS). For example one finds a loss of pressure (a “softening”) of the proto-neutron star EoS with increasing entropy. This can lead to a novel, hot third family of compact stars, which exists only in the early proto-neutron star phase. Such a hot third family can trigger explosions of core-collapse supernovae. However, so far this special explosion mechanism was found to be working only for EoSs which are not compatible with the 2 M ⊙ constraint for the neutron star maximum mass. In a second part of the proceeding it is discussed which quark matter parameters could be favorable for this explosion mechanism, and have sufficiently high maximum masses at the same time. (paper)

  14. Factors affecting neutron measurements and calculations. Part F. Water content in granite

    International Nuclear Information System (INIS)

    Iwatani, Kazuo; Hasai, Hiromi; Shizuma, Kiyoshi; Hoshi, Masaharu; Endo, Satoru; Oka, Takamitsu; Imanaka, Tetsuji

    2005-01-01

    As part of the DS02 studies to reevaluate neutrons from the atomic bomb, we cored rock samples from a pillar of Motoyasu Bridge, located at a distance of 128 m from the hypocenter in Hiroshima, and measured the depth profile of induced 152 Eu radioactivity in the rock (Hasai et al. 1987). By use of the MCNP neutron transport calculation code, the depth profile of 152 Eu in the rock was calculated, assuming a neutron distribution at the given location around the pillar based on the DS86 calculations. The depth profile was then compared with the distribution of measurements (Endo et al. 1999). For the calculation, it is necessary to know the major components of the rock. It is also necessary to estimate the water content correctly, since the cross section of hydrogen-neutron reactions is large, and neutron moderation effects of hydrogen are significant. For this purpose, the basic characteristics of water content in rock were studied, based on a few characteristic experiments to estimate the water content, which was then used in neutron transport calculations. The following describes our concepts and methods. (author)

  15. Determination of the neutron fluence in the welding of the 'Core shroud' of the BWR reactor core; Determinacion de la fluencia neutronica en las soldaduras del 'core shroud' del nucleo de un reactor BWR

    Energy Technology Data Exchange (ETDEWEB)

    Lucatero, M.A.; Xolocostli M, J.V.; Gomez T, A.M.; Palacios H, J.C. [ININ, 52750 Ocoyoacac, Estado de mexico (Mexico)]. e-mail: mal@nuclear.inin.mx

    2006-07-01

    With the purpose of defining the inspection frequency, in function of the embrittlement of the materials that compose the welding of the 'Core Shroud' or encircling of the core of a BWR type reactor, is necessary to know the neutron fluence received for this welding. In the work the calculated values of neutron fluence accumulated maxim (E > 1 MeV) during the first 8 operation cycles of the reactor are presented. The calculations were carried out according to the NRC Regulatory Guide 1.190, making use of the DORT code, which solves the transport equation in discreet ordinate in two dimensions (xy, r{theta}, and rz). The results in 3D were obtained applying the Synthesis method according to the guide before mentioned. Results are presented for the horizontal welding H3, H4, and H5, showing the corresponding curves to the fluence accumulated to the cycle 8 and a projection for the cycle 14 is presented. (Author)

  16. Neutron detection in an atomic reactor core using semi-conductors; Detection des neutrons par semi-conducteur dans un coeur de reacteur atomique

    Energy Technology Data Exchange (ETDEWEB)

    Divoux, F [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1968-07-01

    In this paper, the first part describes the principle of nuclear particle detection by means of semiconductor diodes and the general application of these. The second part describes fabrication of the device used to estimate thermic neutron fluxes in core of a swimming pool type reactor. The useful volume (2.9 mm thickness) is in the light water moderator, between combustible elements plates. The results, principally obtained in the core of Siloette reactor at the 'Centre d'Etudes Nucleaires de Grenoble' at low power, are mentioned in the third part. Flux maps have been set and comparison between converter's products: Bore 10, Lithium 6, Uranium 235 is made. (author) [French] Dans ce rapport, une premiere partie porte sur la description du principe de detection des particules nucleaires par diodes a semi-conducteur et sur l'application generale de celles-ci. Une deuxieme partie s'attache a decrire la fabrication du materiel utilise pour evaluer les flux de neutrons thermiques dans un coeur de reacteur type pile piscine. L'espace de mesure (2,9 mm d'epaisseur) se situe entre les plaques des elements combustibles, dans le moderateur eau legere. Les resultats, obtenus principalement dans le coeur du reacteur Siloette du Centre d'Etudes Nucleaires de Grenoble aux basses puissances de fonctionnement, sont rapportes dans la troisieme partie. Des cartes de flux ont ete dressees et une comparaison est faite entre les produits 'convertisseurs' suivants: Bore 10, Lithium 6, Uranium 235. (auteur)

  17. Transport coefficients in neutron star cores in BHF approach. Comparison of different nucleon potentials

    Science.gov (United States)

    Shternin, P. S.; Baldo, M.; Schulze, H.-J.

    2017-12-01

    Thermal conductivity and shear viscosity of npeµ matter in non-superfluid neutron star cores are considered in the framework of Brueckner-Hartree-Fock many-body theory. We extend our previous work (Shternin et al 2013 PRC 88 065803) by analysing different nucleon-nucleon potentials and different three-body forces. We find that the use of different potentials leads up to one order of magnitude variations in the values of the nucleon contribution to transport coefficients. The nucleon contribution dominates the thermal conductivity, but for all considered models the shear viscosity is dominated by leptons.

  18. Theory of deep inelastic neutron scattering: Hard-core perturbation theory

    International Nuclear Information System (INIS)

    Silver, R.N.

    1988-01-01

    Details are presented of a new many-body theory for deep inelastic neutron scattering (DINS) experiments to measure momentum distributions in quantum fluids and solids. The high-momentum and energy-transfer scattering law in helium is shown to be a convolution of the impulse approximation with a final-state broadening function which depends on the scattering phase shifts and the radial distribution function. The predicted broadening satisfies approximate Y scaling, is neither Lorentzian nor Gaussian, and obeys the f, ω 2 , and ω 3 sum rules. The derivation uses a combination of Liouville perturbation theory, projection superoperators, and semiclassical methods which I term ''hard-core perturbation theory.'' A review is presented of the predictions of prior theories for DINS experiments in relation to the present work. A subsequent paper will present massive numerical predictions and a discussion of DINS experiments on superfluid 4 He

  19. Safety characteristics of the US advanced liquid metal reactor core

    International Nuclear Information System (INIS)

    Magee, P.M.; Dubberley, A.E.; Gyorey, G.L.; Lipps, A.J.; Wu, T.

    1991-01-01

    The U.S. Advanced Liquid Metal Reactor (ALMR) design employs innovative, passive features to provide an unprecedented level of public safety and the ability to demonstrate this safety to the public. The key features employed in the core design to produce the desired passive safety characteristics are: a small core with a tight restraint system, the use of metallic U-Pu-Zr fuel, control rod withdrawal limiters, and gas expansion modules. In addition, the reactor vessel and closure are designed to have the capability to withstand, with large margins, the maximum possible core disruptive accident without breach and radiological release. (author)

  20. Method and device for optimizing the measurements of the damping characteristics of therman neutrons

    International Nuclear Information System (INIS)

    Jacobson, L.A.; Johnstone, C.W.

    1978-01-01

    The borehole probe consists of a pulsed neutron generator and two detectors installed at different distances from the generator. The decay or damping characteristics of the thermal neutrons in a ground formation are measured by picking up indications of the concentration of thermal neutrons in the formation during a set of two measuring intervals offer irradiation. These measuring intervals consist of a sequence of discrete time gates. The time gates are subdivided into groups of progressive periods of time. The time delay between the pulses and the beginning of the sequence is adjusted by means of a selected scale factor value. (DG) [de

  1. Development of in-core measurements in the reactor KS-150

    International Nuclear Information System (INIS)

    Rana, S.B.

    1977-01-01

    Mapping of the neutron flux density distribution and of the neutron fluence distribution in the KS-150 reactor core was carried out using an in-core measuring system. The system allows the in-service monitoring of important operating properties of the reactor core and fuel elements and consists of a mapping fuel element assembly with built-in SPN detectors, of transmission paths and a computer facility. The measurement of the neutron flux, neutron fluence and temperature fields in the reactor core was carried out during the power start-up of the reactor using self-powered DPZ-1 detectors. The obtained data are given and the axial distribution of neutron flux is graphically represented for different values of burnup at the same configuration of regulating rods, as is the axial distribution of neutron fluence for different configurations of the regulating rods during operation, and the in-service neutron fluence distribution. The maximal fuel temperature of 500.2 degC was found at a distance of 291.2 cm from the upper boundary of the reactor core, at a neutron flux of 1.46x10 14 n/cm 2 s. In comparison with other methods, this method proved easy and quick, the results reliable, reactivity perturbance negligible and the fuel element cost increase a negligible 4%. Neutron flux mapping using in-core self-powered detectors will be performed on a wider scale. (J.P./J.O.)

  2. Fundamentals of 3-D Neutron Kinetics and Current Status

    International Nuclear Information System (INIS)

    Aragones, J.M.

    2008-01-01

    This lecture includes the following topics: 1) A summary of the cell and lattice calculations used to generate the neutron reaction data for neutron kinetics, including the spectral and burnup calculations of LWR cells and fuel assembly lattices, and the main nodal kinetics parameters: mean neutron generation time and delayed neutron fraction; 2) the features of the advanced nodal methods for 3-D LWR core physics, including the treatment of partially inserted control rods, fuel assembly grids, fuel burnup and xenon and samarium transients, and excore detector responses, that are essential for core surveillance, axial offset control and operating transient analysis; 3) the advanced nodal methods for 3-D LWR core neutron kinetics (best estimate safety analysis, real-time simulation); and 4) example applications to 3-D neutron kinetics problems in transient analysis of PWR cores, including model, benchmark and operational transients without, or with simple, thermal-hydraulics feedback.

  3. Neutron flux calculation and fluence in the encircling of the core and vessel of a reactor BWR

    International Nuclear Information System (INIS)

    Martinez C, E.

    2011-01-01

    One of the main objectives related to the safety of any nuclear power plant, including the nuclear power plant of Laguna Verde is to ensure the structural integrity of reactor pressure vessel. To identify and quantify the damage caused by neutron irradiation in the vessel of any nuclear reactor, it is necessary to know both the neutron flux and the neutron fluence that the vessel has been receiving during its operation lifetime, and that the damage observed by mechanical testing are products of microstructural effects induced by neutron irradiation; therefore, it is important the study and prediction of the neutron flux in order to have a better understanding of the damage that these materials are receiving. The calculation here described uses the DORT code, which solves the neutron transport equation in discrete ordinates in two dimensions (x-y, r-θ and r-z), according to a regulatory guide, it should make an approximation of the neutron flux in three dimensions by the so called synthesis method. It is called in that way because it achieves a representation of 3 Dimensional neutron flux combining or summarizing the fluxes calculated by DORT r-θ, r-z and r. This work presents the application of synthesis method, according to Regulatory Guide 1190, to determine the 3 Dimensional fluxes in internal BWR reactor using three different spatial meshes. The results of the neutron flux and fluence, using three different meshes in the directions r, θ and z were compared with results reported in the literature obtaining a difference not larger than 9.61%, neutron flux reached its maximum, 1.58 E + 12 n/cm 2 s, at a height H 4 (239.07 cm) and angle 32.236 o in the core shroud and 4.00 E + 09 n/cm 2 s at a height H 4 and angle 35.27 o in the inner wall of the reactor vessel, positions that are consistent to within ±10% over the ones reported in the literature. (Author)

  4. Effects of core models and neutron energy group structures on xenon oscillation in large graphite-moderated reactors

    International Nuclear Information System (INIS)

    Yamasita, Kiyonobu; Harada, Hiroo; Murata, Isao; Shindo, Ryuichi; Tsuruoka, Takuya.

    1993-01-01

    Xenon oscillations of large graphite-moderated reactors have been analyzed by a multi-group diffusion code with two- and three-dimensional core models to study the effects of the geometric core models and the neutron energy group structures on the evaluation of the Xe oscillation behavior. The study clarified the following. It is important for accurate Xe oscillation simulations to use the neutron energy group structure that describes well the large change in the absorption cross section of Xe in the thermal energy range of 0.1∼0.65 eV, because the energy structure in this energy range has significant influences on the amplitude and the period of oscillations in power distributions. Two-dimensional R-Z models can be used instead of three-dimensional R-θ-Z models for evaluation of the threshold power of Xe oscillation, but two-dimensional R-θ models cannot be used for evaluation of the threshold power. Although the threshold power evaluated with the R-θ-Z models coincides with that of the R-Z models, it does not coincide with that of the R-θ models. (author)

  5. Improving the neutronic characteristics of a boiling water reactor by using uranium zirconium hydride fuel instead of uranium dioxide fuel

    Energy Technology Data Exchange (ETDEWEB)

    Galahom, Ahmed Abdelghafar [Higher Technological Institute, Ramadan (Egypt)

    2016-06-15

    The present work discusses two different models of boiling water reactor (BWR) bundle to compare the neutronic characteristics of uranium dioxide (UO{sub 2}) and uranium zirconium hydride (UZrH{sub 1.6}) fuel. Each bundle consists of four assemblies. The BWR assembly fueled with UO{sub 2} contains 8 × 8 fuel rods while that fueled with UZrH{sub 1.6} contains 9 × 9 fuel rods. The Monte Carlo N-Particle Transport code, based on the Mont Carlo method, is used to design three dimensional models for BWR fuel bundles at typical operating temperatures and pressure conditions. These models are used to determine the multiplication factor, pin-by-pin power distribution, axial power distribution, thermal neutron flux distribution, and axial thermal neutron flux. The moderator and coolant (water) are permitted to boil within the BWR core forming steam bubbles, so it is important to calculate the reactivity effect of voiding at different values. It is found that the hydride fuel bundle design can be simplified by eliminating water rods and replacing the control blade with control rods. UZrH{sub 1.6} fuel improves the performance of the BWR in different ways such as increasing the energy extracted per fuel assembly, reducing the uranium ore, and reducing the plutonium accumulated in the BWR through burnup.

  6. Infiltration characteristics of non-aqueous phase liquids in undisturbed loessal soil cores.

    Science.gov (United States)

    Wang, Yunqiang; Shao, Ming'an

    2009-01-01

    The widespread contamination of soils and aquifers by non-aqueous phase liquids (NAPL), such as crude oil, poses serious environmental and health hazards globally. Understanding the infiltration characteristics of NAPL in soil is crucial in mitigating or remediating soil contamination. The infiltration characteristics of crude and diesel oils into undisturbed loessal soil cores, collected in polymethyl methacrylate cylindrical columns, were investigated under a constant fluid head (3 cm) of either crude oil or diesel oil. The infiltration rate of both crude and diesel oils decreased exponentially as wetting depth increased with time. Soil core size and bulk density both had significant effects on NAPL infiltration through the undisturbed soil cores; a smaller core size or a greater bulk density could reduce oil penetration to depth. Compacting soil in areas susceptible to oil spills may be an effective stratage to reduce contamination. The infiltration of NAPL into soil cores was spatially anisotropic and heterogeneous, thus recording the data at four points on the soil core is a good stratage to improve the accuracy of experimental results. Our results revealed that crude and diesel oils, rather than their components, have a practical value for remediation of contaminated loessal soils.

  7. Fission multipliers for D-D/D-T neutron generators

    International Nuclear Information System (INIS)

    Lou, T.P.; Vujic, J.L.; Koivunoro, H.; Reijonen, J.; Leung, K.-N.

    2003-01-01

    A compact D-D/D-T fusion based neutron generator is being designed at the Lawrence Berkeley National Laboratory to have a potential yield of 10 12 D-D n/s and 10 14 D-T n/s. Because of its high neutron yield and compact size (∼20 cm in diameter by 4 cm long), this neutron generator design will be suitable for many applications. However, some applications required higher flux available from nuclear reactors and spallation neutron sources operated with GeV proton beams. In this study, a subcritical fission multiplier with k eff of 0.98 is coupled with the compact neutron generators in order to increase the neutron flux output. We have chosen two applications to show the gain in flux due to the use of fission multipliers--in-core irradiation and out-of-core irradiation. For the in-core irradiation, we have shown that a gain of ∼25 can be achieved in a positron production system using D-T generator. For the out-of-core irradiation, a gain of ∼17 times is obtained in Boron Neutron Capture Therapy (BNCT) using a D-D neutron generator. The total number of fission neutrons generated by a source neutron in a fission multiplier with k eff is ∼50. For the out-of-core irradiation, the theoretical maximum net multiplication is ∼30 due to the absorption of neutrons in the fuel. A discussion of the achievable multiplication and the theoretical multiplication will be presented in this paper

  8. Compilation of Existing Neutron Screen Technology

    Directory of Open Access Journals (Sweden)

    N. Chrysanthopoulou

    2014-01-01

    Full Text Available The presence of fast neutron spectra in new reactors is expected to induce a strong impact on the contained materials, including structural materials, nuclear fuels, neutron reflecting materials, and tritium breeding materials. Therefore, introduction of these reactors into operation will require extensive testing of their components, which must be performed under neutronic conditions representative of those expected to prevail inside the reactor cores when in operation. Due to limited availability of fast reactors, testing of future reactor materials will mostly take place in water cooled material test reactors (MTRs by tailoring the neutron spectrum via neutron screens. The latter rely on the utilization of materials capable of absorbing neutrons at specific energy. A large but fragmented experience is available on that topic. In this work a comprehensive compilation of the existing neutron screen technology is attempted, focusing on neutron screens developed in order to locally enhance the fast over thermal neutron flux ratio in a reactor core.

  9. Measurements of the neutron energy spectra in the core of IPEN/MB-01 reactor; Medida do espectro de energia dos neutrons no nucleo do reator IPEN/MB-01

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Fernando Prat Goncalves

    2006-07-01

    This work presents the neutron spectrum measurements in the Reactor IPEN/MB-01 using very thin activation detectors in the metallic form, in reactor core, in moderator region. An articulated device allows that the foils are inserted in the central position of reactor core, ensuring that all the foils are irradiated in the same position. The activation detectors of different materials such Au{sup 197}, Mg{sup 24}, Ti{sup 4}'8, In{sup 115}, Sc{sup 45} and others, were selected to cover a large range of neutron spectrum. After the irradiation, the activation detectors were submitted to a spectrometry gamma by using a system of counting with high purity Germanium, to obtain the saturation activity per target nuclide. The saturation activity is one of the main data of input of unfolding code SANDBP, that through an iterative adjustment, modify the spectrum that better agree with the dataset of code input, composition mainly for measure reaction rate per target nuclide and a initial input spectrum, calculated for Hammer-Technion code, supplying a solution spectrum. (author)

  10. Measurements of the neutron energy spectra in the core of IPEN/MB-01 reactor; Medida do espectro de energia dos neutrons no nucleo do reator IPEN/MB-01

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Fernando Prat Goncalves

    2006-07-01

    This work presents the neutron spectrum measurements in the Reactor IPEN/MB-01 using very thin activation detectors in the metallic form, in reactor core, in moderator region. An articulated device allows that the foils are inserted in the central position of reactor core, ensuring that all the foils are irradiated in the same position. The activation detectors of different materials such Au{sup 197}, Mg{sup 24}, Ti{sup 4}'8, In{sup 115}, Sc{sup 45} and others, were selected to cover a large range of neutron spectrum. After the irradiation, the activation detectors were submitted to a spectrometry gamma by using a system of counting with high purity Germanium, to obtain the saturation activity per target nuclide. The saturation activity is one of the main data of input of unfolding code SANDBP, that through an iterative adjustment, modify the spectrum that better agree with the dataset of code input, composition mainly for measure reaction rate per target nuclide and a initial input spectrum, calculated for Hammer-Technion code, supplying a solution spectrum. (author)

  11. Options for the Delft advanced neutron source

    International Nuclear Information System (INIS)

    Gibcus, H.P.M.; Leege, P.F.A. de; Labohm, F.; Vries, J.W. de; Verkooijen, A.H.M.; Valko, J.; Feltes, W.; Heinecke, J.

    2003-01-01

    Results of feasibility studies are presented for options for an advanced neutron source for the Delft reactor including upgrading the HOR, a 2 MW pool-type research reactor at the Delft University of Technology. The primary utilisation of the HOR focuses on beam research applications with neutrons and positrons. The aim of being scientifically competitive in that research area requires a thermal neutron flux level of at least 1x10 14 n/cm 2 /s. The feasibility of an accelerator driven neutron source and upgrading the present core to a super compact core for reaching this goal has been investigated at large from a safety and operational point of view. For the upgraded core, a 3x3 fuel assembly arrangement and beryllium reflected at all sides was chosen. Figures on the system performance, including the merits of a cold neutron source application feeding the neutron guide system, are presented. (author)

  12. Nuclear characteristics evaluation for Kyoto University Research Reactor with low-enriched uranium core

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Ken; Unesaki, Hironobu [Kyoto University Research Reactor Institute, Kumatori-cho Sennan-gun Osaka (Japan)

    2008-07-01

    A project to convert the fuel of Kyoto University Research Reactor (KUR) from highly enriched uranium (HEU) to low-enriched uranium (LEU) is in progress as a part of RERTR program. Prior to the operation of LEU core, the nuclear characteristics of the core have been evaluated to confirm the safety operation. In the evaluation, nuclear parameters, such as the excess reactivity, shut down margin control rod worth, reactivity coefficients, were calculated, and they were compared with the safety limits. The results of evaluation show that the LEU core is able to satisfy the safety requirements for operation, i.e. all the parameters satisfy the safety limits. Consequently, it was confirmed that the LEU fuel core has the proper nuclear characteristics for the safety operation. (authors)

  13. Simulation of Thermal, Neutronic and Radiation Characteristics in Spent Nuclear Fuel and Radwaste Facilities

    International Nuclear Information System (INIS)

    Poskas, P.; Bartkus, G.

    1999-01-01

    The overview of the activities in the Division of Thermo hydro-mechanics related with the assessment of thermal, neutronic and radiation characteristics in spent nuclear fuel and radwaste facilities are performed. Also some new data about radiation characteristics of the RBMK-1500 spent nuclear fuel are presented. (author)

  14. Validation of the simulator neutronics model

    International Nuclear Information System (INIS)

    Gregory, M.V.

    1984-01-01

    The neutronics model in the SRP reactor training simulator computes the variation with time of the neutron population in the reactor core. The power output of a reactor is directly proportional to the neutron population, thus in a very real sense the neutronics model determines the response of the simulator. The geometrical complexity of the reactor control system in SRP reactors requires the neutronics model to provide a detailed, 3D representation of the reactor core. Existing simulator technology does not allow such a detailed representation to run in real-time in a minicomputer environment, thus an entirely different approach to the problem was required. A prompt jump method has been developed in answer to this need

  15. Comparison between different flux traps assembled in the core of the nuclear reactor IPEN/MB-01 by measuring of the thermal and epithermal neutron fluxes using activation foils

    International Nuclear Information System (INIS)

    Mura, Luiz Ernesto Credidio; Bitelli, Ulysses d'Utra; Mura, Luis Felipe Liambos; Carluccio, Thiago; Andrade, Graciete Simoes de

    2011-01-01

    The production of radioisotopes is one of the most important applications of nuclear research reactors. This study investigated a method called Flux Trap, which is used to increase the yield of production of radioisotopes in nuclear reactors. The method consists in the rearrangement of the fuel rods to allow the increase of the thermal neutron flux in the irradiation region inside the reactor core, without changing the standard reactor power level. Various configurations were assembled with the objective of finding the configuration with the highest thermal neutron flux in the region of irradiation. The method of activation analysis was used to measure the thermal neutron flux and determine the most efficient reactor core configuration . It was found that there was an increase in the thermal neutron flux of 337% in the most efficient configuration, which demonstrates the effectiveness of the method. (author)

  16. Progress and Overview on Neutronics Modelling Development in RTP

    International Nuclear Information System (INIS)

    Mohamad Hairie Rabir; Muhammad Rawi Mohamed Zin; Julia Abdul Karim

    2016-01-01

    Reactor calculation and simulation are significantly important to ensure safety and better utilization of a research reactor. The Malaysian PUSPATI TRIGA Reactor (RTP) achieved initial criticality on June 28, 1982. The reactor is designed to effectively implement the various fields of basic nuclear research, manpower training, and production of radioisotopes. Since early 90s, neutronics modelling were used as part of its routine in-core fuel management activities. The are several computer codes have been used in RTP since then, based on 1D neutron diffusion, 2D neutron diffusion and 3D Monte Carlo neutron transport method. This paper describes current progress and overview on neutronics modelling development in RTP. Several important parameters were analysed such as k_e_f_f, reactivity, neutron flux, power distribution, B_e_f_f, and fission product build-up for the latest core configuration. The developed core neutronics model was validated by means of comparison with experimental and measurement data. Along with the RTP core model, the calculation procedure also developed to establish better prediction capability of RTP behaviour. (author)

  17. Intrinsically secure fast reactors with dense cores

    International Nuclear Information System (INIS)

    Slessarev, Igor

    2007-01-01

    Secure safety, resistance to weapons material proliferation and problems of long-lived wastes remain the most important 'painful points' of nuclear power. Many innovative reactor concepts have been developed aimed at a radical enhancement of safety. The promising potential of innovative nuclear reactors allows for shifting accents in current reactor safety 'strategy' to reveal this worth. Such strategy is elaborated focusing on the priority for intrinsically secure safety features as well as on sure protection being provided by the first barrier of defence. Concerning the potential of fast reactors (i.e. sodium cooled, lead-cooled, etc.), there are no doubts that they are able to possess many favourable intrinsically secure safety features and to lay the proper foundation for a new reactor generation. However, some of their neutronic characteristics have to be radically improved. Among intrinsically secure safety properties, the following core parameters are significantly important: reactivity margin values, reactivity feed-back and coolant void effects. Ways of designing intrinsically secure safety features in fast reactors (titled hereafter as Intrinsically Secure Fast Reactors - ISFR) can be found in the frame of current reactor technologies by radical enhancement of core neutron economy and by optimization of core compositions. Simultaneously, respecting resistance to proliferation, by using non-enriched fuel feed as well as a core breeding gain close to zero, are considered as the important features (long-lived waste problems will be considered in a separate paper). This implies using the following reactor design options as well as closed fuel cycles with natural U as the reactor feed: ·Ultra-plate 'dense cores' of the ordinary (monolithic) type with negative total coolant void effects. ·Modular type cores. Multiple dense modules can be embedded in the common reflector for achieving the desired NPP total power. The modules can be used also independently (as

  18. Neutronic and mechanical design of the reactor core of the Opus system

    Energy Technology Data Exchange (ETDEWEB)

    Raepsaet, X.; Pascal, S. [CEA Saclay, Dept. Modelisation de Systemes et Structures (DEN/DM2S), 91 - Gif sur Yvette (France)

    2007-07-01

    Since a few years now, Cea decided to maintain a waking state in its space nuclear activities by carrying out some conceptual studies of embarked nuclear power systems in the range of 100-500 kWe. Results stemming from these ongoing studies are gathered in the project OPUS -Optimized Propulsion Unit System-. This nuclear power system relies on a fast gas-cooled reactor concept coupled either to a Brayton cycle or to a more ambitious energy conversion system using a Hirn cycle to dramatically reduce the size of the radiator. The OPUS reactor core consists of an arrangement of enriched graphite elements of hexagonal cross-section. Their length is equal to the core diameter (48 cm). Coated fuel particles containing enriched (93%) uranium are embedded in these fuel elements. Each fuel element is designed with a centered axial channel through which flows the working fluid: a mixture of helium and xenon gas. This reactor is expected to have an operating life of over 2000 days at full power. In fact the main questions remain on the fuel element manufacturing and on the mechanical design (type and size of particles, packing fraction in the matrix, final core diameter and mass). Especially, the nuclear reactor has been defined considering the possible synergies with the next generation of terrestrial nuclear reactor (International Generation IV Forum). Based on relatively short-term technologies, the same reactor is designed to cover a wide range of power: 100 to 500 kWe without core design modification. The final reactor design presented in this paper is the result of a coupled analysis between the thermomechanical and the neutronic aspects.

  19. Coupled neutronics/thermal-hydraulics and safety characteristics of liquid-fueled molten salt reactors

    International Nuclear Information System (INIS)

    Qiu, Suizheng; Zhang, Dalin; Liu, Minghao; Liu, Limin; Xu, Rongshuan; Gong, Cheng; Su, Guanghui

    2016-01-01

    Molten salt reactor (MSR) as one candidate of the Generation IV advanced nuclear power systems is attracted more attention in China due to its top ranked fuel cycle and thorium utilization. The MSRs are characterized by using liquid-fuel, which offers complicated coupling problem of neutronics and thermal hydraulics. In this paper, the fundamental model and numerical method are established to calculate and analyze the safety characteristics for liquid-fuel MSRs. The theories and methodologies are applied to the MOSART concept. The liquid-fuel flow effects on neutronics, reactivity coefficients and three operation parameters' influences at steady state are obtained, which provide the basic information for safety analysis. The unprotected loss of flow transient is calculated, the results of which shows the inherent safety characteristics of MOSART due to its strong negative reactivity feedbacks.

  20. Coupled neutronics/thermal-hydraulics and safety characteristics of liquid-fueled molten salt reactors

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Suizheng; Zhang, Dalin; Liu, Minghao; Liu, Limin; Xu, Rongshuan; Gong, Cheng; Su, Guanghui [Xi' an Jiaotong Univ. (China). State Key Laboratory of Multiphase Flow in Power Engineering

    2016-05-15

    Molten salt reactor (MSR) as one candidate of the Generation IV advanced nuclear power systems is attracted more attention in China due to its top ranked fuel cycle and thorium utilization. The MSRs are characterized by using liquid-fuel, which offers complicated coupling problem of neutronics and thermal hydraulics. In this paper, the fundamental model and numerical method are established to calculate and analyze the safety characteristics for liquid-fuel MSRs. The theories and methodologies are applied to the MOSART concept. The liquid-fuel flow effects on neutronics, reactivity coefficients and three operation parameters' influences at steady state are obtained, which provide the basic information for safety analysis. The unprotected loss of flow transient is calculated, the results of which shows the inherent safety characteristics of MOSART due to its strong negative reactivity feedbacks.

  1. Online monitoring of fast neutron (DT/DD) at Purnima neutron generator

    International Nuclear Information System (INIS)

    Bishnoi, S.; Patel, T.; Shukla, M.; Adhikari, P.S.; Sinha, A.

    2012-01-01

    A neutron generator (NG) at Purnima Labs, BARC has been developed for DT accelerator driven zero power subcritical (ADSS) system. Subcritical core of ADSS will be coupled to the NG for benchmarking experiments. Kinetic parameters of ADSS such as K-source, flux, power etc depends on this external neutron source strength injected to the core. However the neutron emission rate of NG does not remain stable throughout its operation. In view of this a reliable, precise and online monitoring of NG's neutron emission rate is required. An online neutron monitoring system based on associated particle method has been designed, developed and installed at NG. The monitoring unit consists of an ion implanted planar silicon detector, placed inside the drift tube of NG at an angle with respect to D + beam direction. A series of experiments were carried out with increasing neutron yield to optimize the position of detector such that it has sufficient counting statistics and minimum pileup. A complementary calibration procedure for validating these results based on activation technique was also carried out with standard Cu foil. The reaction rate monitored with online monitor and foil activation technique were compared, their variations with the predicted (theoretical) results were within 16%. This paper deals with the development and performance of online neutron monitoring system for DT and DD neutrons

  2. Neutronic analysis of the conversion of HEU to LEU fuel for a 5-MW MTR core

    International Nuclear Information System (INIS)

    Pazirandeh, A.; Bartsch, G.

    1987-01-01

    In recent years, due to cessation of highly enriched uranium (HEU) fuel supply, practical steps have been taken to substitute HEU fuel in almost all research reactors by medium-enriched uranium or low-enriched uranium (LEU) fuels. In this study, a neutronic calculation of a 5-MW research reactor core fueled with HEU (93% 235 U) is presented. In order to assess the performance of the core with the LEU ( 235 U loadings were examined. The core consists of 22 standard fuel elements (SFEs) and 6 control fuel elements (CFEs). Each fuel elements has 18 curved plates of which two end plates are dummies. Initial 235 U content is 195 g 235 U/SFE and 9.7 g 235 U/CFE or /PFE. In all calculations the permitted changes to the fuel elements are (a) 18 active plates per SFE, (b) fuel plates assumed to be flat, and (c) 8 or 9 active plates per CFE

  3. Neutron spectrum perturbations due to scattering materials and their effect on the average neutron energy, the spectral index, and the hardness parameter

    International Nuclear Information System (INIS)

    Wright, H.L.; Meason, J.L.; Wolf, M.; Harvey, J.T.

    1976-01-01

    Measurements have been performed on the perturbing effect of a number of scattering materials by the 'free-field' neutron leakage spectrum from a Godiva Type Critical Assembly (White Sands Missile Range Fast Burst Reactor). The results of these measurements are interpreted in relation to some of the general parameters characterizing a neutron environment, namely, the average neutron energy >10 KeV, the spectral index and the hardness parameter. Three neutron spectrum measurements have been performed, each under different experimental configurations of scattering materials. Results from these measurements show the following with relation to the spectral index: (1) The neutron environment on the core surface and at 12-inches from the core surface (free-field) yield a spectral index of 6.8, (2) The neutron environment behind a 4.75-inch Plexiglas plate yield 4.6 for the spectral index and (3) The neutron environment behind a 2-inch aluminum plate yield 6.7 for the spectral index. It is concluded that the core surface and the 12-inch from core surface neutron environment are identical with the 'free-field' neutron environment at 20-inches when considering only those neutrons with energy >10 KeV. On the other hand, it appears that the 4.75 inches of Plexiglas severely perturbs the 'free-field' neutron environment, i.e., a much harder neutron spectrum >10 KeV. In the situation where 2-inches of aluminum is used as the perturbing medium, essentially no change in the neutron spectrum >10 KeV is noted

  4. Development of in-core measuring method using optical techniques

    International Nuclear Information System (INIS)

    Kakuta, Tsunemi; Shikama, Tatsuo; Narui, Minoru; Sagawa, Tsutomu.

    1994-01-01

    Since applying to more severe radiation environments in nuclear plants, e.g., in-core measuring systems, diagnostics for fusion reactors, radiation related subjects should be considered by more severe radiation and environmental conditions. Owing to this, preliminary studies of heavy neutron irradiation effects on optical fibers are conducted in the core region of fission reactor. Two kinds of SiO 2 core optical fibers, highly pure SiO 2 with OH content core and SiO 2 with fluorine doped core, were irradiated in the core region of Japan Material Testing Reactor (JMTR). Both fibers were irradiated with fast neutron (E>1.0 MeV) fluence of about 1.6x10 19 n/cm 2 and gamma-ray doses of 3.3x10 9 Gy. The optical absorption and the light-emission spectrum were measured in-situ along the irradiation. This paper mainly outlines the fundamental effects of neutron irradiation and discuss the possibility of neutron detection in the core region of reactor. (J.P.N.)

  5. Neutron flux measurements in PUSPATI Triga Reactor

    International Nuclear Information System (INIS)

    Gui Ah Auu; Mohamad Amin Sharifuldin Salleh; Mohamad Ali Sufi.

    1983-01-01

    Neutron flux measurement in the PUSPATI TRIGA Reactor (PTR) was initiated after its commissioning on 28 June 1982. Initial measured thermal neutron flux at the bottom of the rotary specimen rack (rotating) and in-core pneumatic terminus were 3.81E+11 n/cm 2 sec and 1.10E+12n/cm 2 sec respectively at 100KW. Work to complete the neutron flux data are still going on. The cadmium ratio, thermal and epithermal neutron flux are measured in the reactor core, rotary specimen rack, in-core pneumatic terminus and thermal column. Bare and Cadmium covered gold foils and wires are used for the above measurement. The activities of the irradiated gold foils and wires are determined using Ge(Li) and hyperpure germinium detectors. (author)

  6. Determination of the neutrons energy spectrum in the central thimble of the reactor core TRIGA Mark III; Determinacion del espectro de energia de los neutrones en el dedal central del nucleo del reactor TRIGA Mark III

    Energy Technology Data Exchange (ETDEWEB)

    Parra M, M. A.; Luis L, M. A. [Universidad Autonoma Metropolitana, Unidad Azcapotzalco, Division de Ciencias Basicas, Av. San Pablo No. 180, Col. Reynosa Tamaulipas, 02200 Mexico D. F. (Mexico); Raya A, R.; Cruz G, H. S., E-mail: roberto.raya@inin.gob.mx [ININ, Departamento del Reactor, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2013-10-15

    This work presents the measurement of the neutrons spectrum in energies in the central thimble of the reactor TRIGA Mark III to a power of 1 MW in stationary state, with the core in the center of the pool. To achieve this objective, several thin sheets were irradiated (one at the time) in the same position of the core. The activation probes were selected in such a way that covered the energy range (1 x 10{sup -10} to 20 MeV) of the neutrons spectrum in the reactor core, for this purpose thin sheets were used of {sup 197}Au, {sup 58}Ni, {sup 115}In, {sup 24}Mg, {sup 27}Al, {sup 58}Fe, {sup 59}Co and {sup 63}Cu. After the irradiation, the high energy gamma emissions of the activated thin sheets were measured by means of gamma spectrometry, in a counting system of high resolution, with a Hyper pure Germanium detector, obtaining this way the activity induced in the thin sheets whose magnitude is proportional to the intensity of the neutrons flow, this activity together to a theoretical initial spectrum are the main entrance data of the computational code SANDBP (Hungarian version of the code Sand-II) that uses the unfolding method for the calculation of the spectrum. (Author)

  7. Time-of-flight neutron spectra measurements in Zenith

    Energy Technology Data Exchange (ETDEWEB)

    Barclay, F R; Coates, M S; Diment, K M; Durrani, S A; Gayther, D B; Poole, M J; Reed, D L

    1962-01-15

    Neutron spectra in the second core loading of ZENITH have been measured using a neutron chopper. Spectra at two positions in the reactore core were obtained over a range of temperatures extending to 650 deg C.

  8. Effect of neutron radiation on mechanical properties of permanent near core structures

    International Nuclear Information System (INIS)

    Tavassoli, A.A.

    1988-01-01

    Several hundred specimens have been tested in order to assess the effects of low dose neutron radiation ( 0 C and ductility and toughness are primary design concerns, the changes provoked, by doses up to 1.3 dpa, in overall mechanical properties of welded joints are small. For upper core structure, where the operating temperature is about 550 0 C and fatigue and creep resistance are major design needs, the changes induced, through formation of up to about 2 appm helium, in conventional fatigue properties or fatigue with short hold times are negligible. With increasing hold time, intergranular rupture in irradiated specimens is enhanced but the limited number of tests does not allow definite conclusions to be drawn. 53 refs, 3 tabs, 9 figs

  9. Collapsing stellar cores and supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Epstein, R J [Nordisk Inst. for Teoretisk Atomfysik, Copenhagen (Denmark); Noorgaard, H [Nordisk Inst. for Teoretisk Atomfysik, Copenhagen (Denmark); Chicago Univ., IL (USA). Enrico Fermi Inst.); Bond, J R [Niels Bohr Institutet, Copenhagen (Denmark); California Inst. of Tech., Pasadena (USA). W.K. Kellogg Radiation Lab.)

    1979-05-01

    The evolution of a stellar core is studied during its final quasi-hydrostatic contraction. The core structure and the (poorly known) properties of neutron rich matter are parametrized to include most plausible cases. It is found that the density-temperature trajectory of the material in the central part of the core (the core-center) is insensitive to nearly all reasonable parameter variations. The central density at the onset of the dynamic phase of the collapse (when the core-center begins to fall away from the rest of the star) and the fraction of the emitted neutrinos which are trapped in the collapsing core-center depend quite sensitively on the properties of neutron rich matter. We estimate that the amount of energy Ecm which is imparted to the core-mantle by the neutrinos which escape from the imploded core-center can span a large range of values. For plausible choices of nuclear and model parameters Ecm can be large enough to yield a supernova event.

  10. Validation experiments of nuclear characteristics of the fast-thermal system HERBE

    International Nuclear Information System (INIS)

    Pesic, M.; Zavaljevski, N.; Marinkovic, P.; Stefanovis, D.; Nikolic, D.; Avdic, S.

    1992-01-01

    In 1988/90 a coupled fast-thermal system HERBE at RB reactor, based on similar facilities, is designed and realized. Fast core of HERBE is built of natural U fuel in RB reactor center surrounded by the neutron filter and neutron converter located in an independent Al tank. Fast zone is surrounded by thermal neutron core driver. Designed nuclear characteristics of HERBE core are validated in the experiments described in the paper. HERBE cell parameters were calculated with developed computer codes: VESNA and DENEB. HERBE system criticality calculation are performed with 4G 2D RZ computer codes GALER and TWENTY GRAND, 1D multi-group AVERY code and 3D XYZ few-group TRITON computer code. The experiments for determination of critical level, dρ/dH, and reactivity of safety rods are accomplished in order to validate calculation results. Specific safety experiment is performed in aim to determine reactivity of flooded fast zone in possible accident. A very good agreements with calculation results are obtained and the validation procedures are presented. It is expected that HERBE will offer qualitative new opportunities for work with fast neutrons at RB reactor including nuclear data determination. (author)

  11. Calibration of the nuclear power channels for the cylindrical configuration of the IPEN/MB-01 reactor obtained from the measurements of the spatial neutron flux distribution in the reactor core through the irradiation of gold foils

    Energy Technology Data Exchange (ETDEWEB)

    Bitelli, Ulysses d' Utra; Silva, Alexandre F. Povoa da; Mura, Luiz Ernesto Credidio; Aredes, Vitor Ottoni Garcia; Santos, Diogo Feliciano dos, E-mail: ubitelli@ipen.br, E-mail: alexpovoa@yahoo.com.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    The activation foil is one of the most used techniques to obtain and compare nuclear parameters from the nuclear data libraries, given by a gamma spectrometry system. Through the measurements of activity induced in the foils, it is possible to determine the neutron flux profile exactly where it has been irradiated. The power level operation of the reactor is a parameter directly proportional to the average neutron flux in the core. The objective of this work is to obtain, for a cylindrical configuration, the power generation through a spatial thermal neutron flux distribution in the core of IPEN/MB-01 Reactor, by irradiating gold foils positioned symmetrically into the core. They are put in a Lucite plate which will not interfere in the analysis of the neutron flux, because of its low microscopic absorption cross section for the analyzed neutrons. The foils are irradiated with and without cadmium covered small plates, to obtain the thermal and epithermal neutron flux, through specific equations. The correlation between the average power neutron flux, as a result of the foil's irradiation, and the average power digital neutron flux of the nuclear power channels, allows the calibration of the nuclear channels of the reactor. This same correlation was done in 2008 with the reactor in a rectangular configuration, which resulted in a specific calibration of the power level operation. This calibration cannot be used in the cylindrical configuration, because the nuclear parameters could change, which may lead to a different neutron profile. Furthermore, the precise knowledge of the power neutron flux in the core also validates the mathematics used to calculate the power neutron flux. (author)

  12. Fresh-Core Reload of the Neutron Radiography (NRAD) Reactor with Uranium(20)-Erbium-Zirconium-Hydride Fuel

    Energy Technology Data Exchange (ETDEWEB)

    John D. Bess; Thomas L. Maddock; Margaret A. Marshall; Leland M. Montierth

    2013-03-01

    The neutron radiography (NRAD) reactor is a 250 kW TRIGA® (Training, Research, Isotopes, General Atomics) Mark II , tank-type research reactor currently located in the basement, below the main hot cell, of the Hot Fuel Examination Facility (HFEF) at the Idaho National Laboratory (INL). It is equipped with two beam tubes with separate radiography stations for the performance of neutron radiography irradiation on small test components. The initial critical configuration developed during the fuel loading process, which contains only 56 fuel elements, has been evaluated as an acceptable benchmark experiment. The 60-fuel-element operational core configuration of the NRAD LEU TRIGA reactor has also been evaluated as an acceptable benchmark experiment. Calculated eigenvalues differ significantly (~±1%) from the benchmark eigenvalue and have demonstrated sensitivity to the thermal scattering treatment of hydrogen in the U-Er-Zr-H fuel.

  13. 300 kWt core conceptual model thermal/hydraulic characteristics

    International Nuclear Information System (INIS)

    Moody, E.

    1971-01-01

    The 300 kW(t), 199 element NASA-Lewis/AEC core conceptual model, has been analyzed to determine it's thermal-hydraulic characteristics using the GEOM-3 code. Stack-ups of tolerances and fuel rod asymmetry patterns were used to ascertain cross element Δ T's. Both zoned and uniform spacing were analyzed with a somewhat lower fuel temperature and cross element ΔT found for zoned spacing. With the models considered, the core design appears adequate to limit thermal gradients to approximately 32 0 F. Bypass flow should be controlled to prevent excessive edge element ΔT's. 11 references. (U.S.)

  14. Occurrence of hyperson superfluidity in neutron star cores

    International Nuclear Information System (INIS)

    Takatsuka, Tatsuyuki; Nishizaki, Shigeru; Yamamoto, Yasuo; Tamagaki, Ryozo

    2006-01-01

    Superfluidity of Λ and Σ - admixed in neutron star (NS) cores is investigated realistically for hyperon (Y)-mixed NS models obtained using a G-matrix-based effective interaction approach. Numerical results for the equation of state (EOS) with the mixing ratios of the respective components and the hyperon energy gaps including the temperature dependence are presented. These are meant to serve as physical inputs for Y-cooling calculations of NSs. By paying attention to the uncertainties of the EOS and the YY interactions, it is shown that both Λ and Σ - are superfluid as soon as they appear although the magnitude of the critical temperature and the density region where superfluidity exists depend considerably on the YY pairing potential. Considering momentum triangle condition and the occurrence of superfluidity, it is found that a so-called hyperon cooling'' (neutrino-emission from direct Urca process including Y) combined with Y-superfluidity may be able to account for observations of the colder class of NSs. It is remarked that Λ-hyperons play a decisive role in the hyperon cooling scenario. Some comments are given regarding the consequences of the less attractive ΛΛ interaction recently suggested by the ''NAGARA event'' 6 ΛΛ He. (author)

  15. Infiltration characteristics of non-aqueous phase liquids in undisturbed loessal soil cores

    Institute of Scientific and Technical Information of China (English)

    WANG Yunqiang; SHAO Ming'an

    2009-01-01

    The widespread contamination of soils and aquifers by non-aqueous phase liquids (NAPL), such as crude oil, poses serious environmental and health hazards globally. Understanding the infiltration characteristics of NAPL in soil is crucial in mitigating or remediating soil contamination. The infiltration characteristics of crude and diesel oils into undisturbed loessal soil cores, collected in polymethyl methacrylate cylindrical columns, were investigated under a constant fluid head (3 cm) of either crude oil or diesel oil. The infiltration rate of both crude and diesel oils decreased exponentially as wetting depth increased with time. Soil core size and bulk density both had a significant effect on NAPL infiltration through the undisturbed soil cores; a smaller core size or a greater bulk density both reduced oil penetration to depth. Compacting soil in areas susceptible to oil spills may be an effective way to reduce contamination. The infiltration of NAPL into soil cores was spatially anisotropic and heterogeneous, thus recording the data at four points on the soil core is a good way to improve the accuracy of experimental results. Our results provided information about crude and diesel oils, rather than their components, and may have practical value for remediation of contaminated loessal soils.

  16. Development of 2-D/1-D fusion method for three-dimensional whole-core heterogeneous neutron transport calculations

    International Nuclear Information System (INIS)

    Lee, Gil Soo

    2006-02-01

    To describe power distribution and multiplication factor of a reactor core accurately, it is necessary to perform calculations based on neutron transport equation considering heterogeneous geometry and scattering angles. These calculations require very heavy calculations and were nearly impossible with computers of old days. From the limitation of computing power, traditional approach of reactor core design consists of heterogeneous transport calculation in fuel assembly level and whole core diffusion nodal calculation with assembly homogenized properties, resulting from fuel assembly transport calculation. This approach may be effective in computation time, but it gives less accurate results for highly heterogeneous problems. As potential for whole core heterogeneous transport calculation became more feasible owing to rapid development of computing power during last several years, the interests in two and three dimensional whole core heterogeneous transport calculations by deterministic method are increased. For two dimensional calculation, there were several successful approaches using even parity transport equation with triangular meshes, S N method with refined rectangular meshes, the method of characteristics (MOC) with unstructured meshes, and so on. The work in this thesis originally started from the two dimensional whole core heterogeneous transport calculation by using MOC. After successful achievement in two dimensional calculation, there were efforts in three-dimensional whole-core heterogeneous transport calculation using MOC. Since direct extension to three dimensional calculation of MOC requires too much computing power, indirect approach to three dimensional calculation was considered.Thus, 2D/1D fusion method for three dimensional heterogeneous transport calculation was developed and successfully implemented in a computer code. The 2D/1D fusion method is synergistic combination of the MOC for radial 2-D calculation and S N -like methods for axial 1

  17. Noise analysis of the Dodewaard boiling water reactor: characteristics and time history

    International Nuclear Information System (INIS)

    Veer, J.H.C. v.d.; Kema, N.V.

    1982-01-01

    Reactor noise measurements have been performed in the Dodewaard BWR since the eighth fuel cycle (1978). Analysis of the noise characteristics of the ex-core neutron detectors are reported. As a result characteristics of the global component of the boiling noise and the influence of oscillatory effects in reactor pressure control and steam flow rate are described. The influence of power feedback effects on the detection of global noise at low frequencies is given using point kinetic reactor theory. Results are reported on the behaviour of the neutron noise characteristics during one fuel cycle and on the behaviour from fuel cycle 8 to 11. (author)

  18. Gas cooled fast reactor benchmarks for JNC and Cea neutronic tools assessment

    International Nuclear Information System (INIS)

    Rimpault, G.; Sugino, K.; Hayashi, H.

    2005-01-01

    In order to verify the adequacy of JNC and Cea computational tools for the definition of GCFR (gas cooled fast reactor) core characteristics, GCFR neutronic benchmarks have been performed. The benchmarks have been carried out on two different cores: 1) a conventional Gas-Cooled fast Reactor (EGCR) core with pin-type fuel, and 2) an innovative He-cooled Coated-Particle Fuel (CPF) core. Core characteristics being studied include: -) Criticality (Effective multiplication factor or K-effective), -) Instantaneous breeding gain (BG), -) Core Doppler effect, and -) Coolant depressurization reactivity. K-effective and coolant depressurization reactivity at EOEC (End Of Equilibrium Cycle) state were calculated since these values are the most critical characteristics in the core design. In order to check the influence due to the difference of depletion calculation systems, a simple depletion calculation benchmark was performed. Values such as: -) burnup reactivity loss, -) mass balance of heavy metals and fission products (FP) were calculated. Results of the core design characteristics calculated by both JNC and Cea sides agree quite satisfactorily in terms of core conceptual design study. Potential features for improving the GCFR computational tools have been discovered during the course of this benchmark such as the way to calculate accurately the breeding gain. Different ways to improve the accuracy of the calculations have also been identified. In particular, investigation on nuclear data for steel is important for EGCR and for lumped fission products in both cores. The outcome of this benchmark is already satisfactory and will help to design more precisely GCFR cores. (authors)

  19. Neutron stars, magnetic fields, and gravitational waves

    International Nuclear Information System (INIS)

    Lamb, F.K.

    2001-01-01

    The r-modes of rapidly spinning young neutron stars have recently attracted attention as a promising source of detectable gravitational radiation. These neutron stars are expected to have magnetic fields ∼ 10 12 G. The r-mode velocity perturbation causes differential motion of the fluid in the star; this is a kinematic effect. In addition, the radiation-reaction associated with emission of gravitational radiation by r-waves drives additional differential fluid motions; this is a dynamic effect. These differential fluid motions distort the magnetic fields of neutron stars and may therefore play an important role in determining the structure of neutron star magnetic fields. If the stellar field is ∼ 10 16 (Ω/Ω B ) G or stronger, the usual r-modes are no longer normal modes of the star; here Ω and Ω B are the angular velocities of the star and at which mass shedding occurs. Much weaker magnetic fields can prevent gravitational radiation from amplifying the r-modes or damp existing r-mode oscillations on a relatively short timescale by extracting energy from the modes faster than gravitational wave emission can pump energy into them. The onset of proton superconductivity in the cores of newly formed magnetic neutron stars typically increases the effect on the r-modes of the magnetic field in the core by many orders of magnitude. Once the core has become superconducting, magnetic fields of the order of 10 12 G or greater are usually sufficient to damp r-modes that have been excited by emission of gravitational radiation and to suppress any further emission. A rapid drop in the strength of r-mode gravitational radiation from young neutron stars may therefore signal the onset of superconductivity in the core and provide a lower bound on the strength of the magnetic field there. Hence, measurements of r-mode gravitational waves from newly formed neutron stars may provide valuable diagnostic information about magnetic field strengths, cooling processes, and the

  20. Neutronics simulations on hypothetical power excursion and possible core melt scenarios in CANDU6

    International Nuclear Information System (INIS)

    Kim, Yonghee

    2015-01-01

    LOCA (Loss of coolant accident) is an outstanding safety issue in the CANDU reactor system since the coolant void reactivity is strongly positive. To deal with the LOCA, the CANDU systems are equipped with specially designed quickly-acting secondary shutdown system. Nevertheless, the so-called design-extended conditions are requested to be taken into account in the safety analysis for nuclear reactor systems after the Fukushima accident. As a DEC scenario, the worst accident situation in a CANDU reactor system is a unprotected LOCA, which is supposed to lead to a power excursion and possibly a core melt-down. In this work, the hypothetical unprotected LOCA scenario is simulated in view of the power excursion and fuel temperature changes by using a simplified point-kinetics (PK) model accounting for the fuel temperature change. In the PK model, the core reactivity is assumed to be affected by a large break LOCA and the fuel temperature is simulated to account for the Doppler effect. In addition, unlike the conventional PK simulation, we have also considered the Xe-I model to evaluate the impact of Xe during the LOCA. Also, we tried to simulate the fuel and core melt-down scenario in terms of the reactivity through a series of neutronics calculations for hypothetical core conditions. In case of a power excursion and possible fuel melt-down situation, the reactor system behavior is very uncertain. In this work, we tried to understand the impacts of fuel melt and relocation within the pressure vessel on the core reactivity and failure of pressure and calandria tubes. (author)

  1. Cavity temperature and flow characteristics in a gas-core test reactor

    Science.gov (United States)

    Putre, H. A.

    1973-01-01

    A test reactor concept for conducting basic studies on a fissioning uranium plasma and for testing various gas-core reactor concepts is analyzed. The test reactor consists of a conventional fuel-element region surrounding a 61-cm-(2-ft-) diameter cavity region which contains the plasma experiment. The fuel elements provide the neutron flux for the cavity region. The design operating conditions include 60-MW reactor power, 2.7-MW cavity power, 200-atm cavity pressure, and an average uranium plasma temperature of 15,000 K. The analytical results are given for cavity radiant heat transfer, hydrogen transpiration cooling, and uranium wire or powder injection.

  2. Progress made by Framatome in neutron flux mapping technology

    International Nuclear Information System (INIS)

    Mourlevat, J.L.

    1999-01-01

    A fixed in-core system based on self-powered neutron detectors (SPNDs) could improve the power distribution measurement accuracy and hence improve core operating margin knowledge. For that purpose, Framatome has tested rhodium neutron detectors as fixed in-core sensors. Two such in-core strings were installed during tie summer of 1997 at Golfech Unit 2, for a three-year experiment. (author)

  3. Neutron flux parameters for k{sub 0}-NAA method at the Malaysian nuclear agency research reactor after core reconfiguration

    Energy Technology Data Exchange (ETDEWEB)

    Yavar, A.R. [School of Applied Physics, Faculty of Science and Technology, University Kebangsaan Malaysia (UKM), Bangi, Selangor 43600 (Malaysia); Sarmani, S. [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, University Kebangsaan Malaysia (UKM), Bangi, Selangor 43600 (Malaysia); Wood, A.K. [Analytical Chemistry Application Group, Industrial Technology Division, Malaysian Nuclear Agency (MNA), Bangi, Kajang, Selangor 43000 (Malaysia); Fadzil, S.M. [School of Applied Physics, Faculty of Science and Technology, University Kebangsaan Malaysia (UKM), Bangi, Selangor 43600 (Malaysia); Masood, Z. [Analytical Chemistry Application Group, Industrial Technology Division, Malaysian Nuclear Agency (MNA), Bangi, Kajang, Selangor 43000 (Malaysia); Khoo, K.S., E-mail: khoo@ukm.m [School of Applied Physics, Faculty of Science and Technology, University Kebangsaan Malaysia (UKM), Bangi, Selangor 43600 (Malaysia)

    2011-02-15

    The Malaysian Nuclear Agency (MNA) research reactor, commissioned in 1982, is a TRIGA Mark II swimming pool type reactor. When the core configuration changed in June 2009, it became essential to re-determine such neutron flux parameters as thermal to epithermal neutron flux ratio (f), epithermal neutron flux shape factor ({alpha}), thermal neutron flux ({phi}{sub th}) and epithermal neutron flux ({phi}{sub epi}) in the irradiation positions of MNA research reactor in order to guarantee accuracy in the application of k{sub 0}-neutron activation analysis (k{sub 0}-NAA).The f and {alpha} were determined using the bare bi-isotopic monitor and bare triple monitor methods, respectively; Au and Zr monitors were utilized in present study. The results for four irradiation positions are presented and discussed in the present work. The calculated values of f and {alpha} ranged from 33.49 to 47.33 and -0.07 to -0.14, respectively. The {phi}{sub th} and the {phi}{sub epi} were measured as 2.03 x 10{sup 12} (cm{sup -2} s{sup -1}) and 6.05 x 10{sup 10} (cm{sup -2} s{sup -1}) respectively. These results were compared to those of previous studies at this reactor as well as to those of reactors in other countries. The results indicate a good conformity with other findings.

  4. High energy resolution characteristics on 14MeV neutron spectrometer for fusion experimental reactor

    Energy Technology Data Exchange (ETDEWEB)

    Iguchi, Tetsuo [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab.; Takada, Eiji; Nakazawa, Masaharu

    1996-10-01

    A 14MeV neutron spectrometer suitable for an ITER-like fusion experimental reactor is now under development on the basis of a recoil proton counter telescope principle in oblique scattering geometry. To verify its high energy resolution characteristics, preliminary experiments are made for a prototypical detector system. The comparison results show reasonably good agreement and demonstrate the possibility of energy resolution of 2.5% in full width at half maximum for 14MeV neutron spectrometry. (author)

  5. Coupling of the 3D neutron kinetic core model DYN3D with the CFD software ANSYS-CFX

    International Nuclear Information System (INIS)

    Grahn, Alexander; Kliem, Sören; Rohde, Ulrich

    2015-01-01

    Highlights: • Improved thermal hydraulic description of nuclear reactor cores. • Possibility of three-dimensional flow phenomena in the core, such as cross flow, flow reversal, flow around obstacles. • Simulation at higher spatial resolution as compared to system codes. - Abstract: This article presents the implementation of a coupling between the 3D neutron kinetic core model DYN3D and the commercial, general purpose computational fluid dynamics (CFD) software ANSYS-CFX. In the coupling approach, parts of the thermal hydraulic calculation are transferred to CFX for its better ability to simulate the three-dimensional coolant redistribution in the reactor core region. The calculation of the heat transfer from the fuel into the coolant remains with DYN3D, which incorporates well tested and validated heat transfer models for rod-type fuel elements. On the CFX side, the core region is modeled based on the porous body approach. The implementation of the code coupling is verified by comparing test case results with reference solutions of the DYN3D standalone version. Test cases cover mini and full core geometries, control rod movement and partial overcooling transients

  6. EPRTM Reactor neutron instrumentation

    International Nuclear Information System (INIS)

    Pfeiffer, Maxime; SALA, Stephanie

    2013-06-01

    The core safety during operation is linked, in particular, to the respect of criteria related to the heat generated in fuel rods and to the heat exchange between the rods and the coolant. This local power information is linked to the power distribution in the core. In order to evaluate the core power distribution, the EPR TM reactor relies on several types of neutron detectors: - ionization chambers located outside the vessel and used for protection and monitoring - a fixed in-core instrumentation based on Cobalt Self Powered Neutron Detectors used for protection and monitoring - a mobile reference in-core instrumentation based on Vanadium aero-balls This document provides a description of this instrumentation and its use in core protection, limitation, monitoring and control functions. In particular, a description of the detectors and the principles of their signal generation is supplied as well as the description of the treatments related to these detectors in the EPR TM reactor I and C systems (including periodical calibration). (authors)

  7. Neutron Stars: Laboratories for Fundamental Physics Under ...

    Indian Academy of Sciences (India)

    DEBADES BANDYOPADHYAY

    2017-09-07

    Sep 7, 2017 ... Abstract. We discuss different exotic phases and components of matter from the crust to the core of neutron stars based on theoretical models for equations of state relevant to core collapse supernova simulations and neutron star merger. Parameters of the models are constrained from laboratory ...

  8. Reactor core performance calculating device

    International Nuclear Information System (INIS)

    Tominaga, Kenji; Bando, Masaru; Sano, Hiroki; Maruyama, Hiromi.

    1995-01-01

    The device of the present invention can calculate a power distribution efficiently at high speed by a plurality of calculation means while taking an amount of the reactor state into consideration. Namely, an input device takes data from a measuring device for the amount of the reactor core state such as a large number of neutron detectors disposed in the reactor core for monitoring the reactor state during operation. An input data distribution device comprises a state recognition section and a data distribution section. The state recognition section recognizes the kind and amount of the inputted data and information of the calculation means. The data distribution section analyzes the characteristic of the inputted data, divides them into a several groups, allocates them to each of the calculation means for the purpose of calculating the reactor core performance efficiently at high speed based on the information from the state recognition section. A plurality of the calculation means calculate power distribution of each of regions based on the allocated inputted data, to determine the power distribution of the entire reactor core. As a result, the reactor core can be evaluated at high accuracy and at high speed irrespective of the whole reactor core or partial region. (I.S.)

  9. Neutron Albedo

    CERN Document Server

    Ignatovich, V K

    2005-01-01

    A new, algebraic, method is applied to calculation of neutron albedo from substance to check the claim that use of ultradispersive fuel and moderator of an active core can help to gain in size and mass of the reactor. In a model of isotropic distribution of incident and reflected neutrons it is shown that coherent scattering on separate grains in the case of thermal neutrons increases transport cross section negligibly, however it decreases albedo from a wall of finite thickness because of decrease of substance density. A visible increase of albedo takes place only for neutrons with wave length of the order of the size of a single grain.

  10. SHREDI, Neutron Flux and Neutron Activation in 2-D Shields by Removal Diffusion

    International Nuclear Information System (INIS)

    Daneri, A.; Toselli, G.

    1976-01-01

    1 - Nature of physical problem solved: SHREDI is a removal - diffusion neutron shielding code. The program computes neutron fluxes and activations in bidimensional sections (x,y or r,z) of the shield. It is also possible to consider shielding points with the same y or z coordinate (mono-dimensional problems). 2 - Method of solution: The integrals which define the removal fluxes are computed in some shield points by means of a particular algorithm based on the Simpson's and trapezoidal rules. For the diffusion calculation the finite difference method is used. The removal sources are interpolated in all diffusion points by Chebyshev polynomials. 3 - Restrictions on the complexity of the problem: Maxima: number of removal energy groups NGR = 40; number of diffusion energy groups NGD = 40; number of the reactor core and shield materials NCMP = 50; number of core mesh points in r (or x) direction for integral calculation = 75; number of core mesh points in z (or y) direction for integral calculation = 75; number of core mesh points in theta (or z) direction for integral calculation = 75; number of shield mesh points for the neutron flux calculation in r (or x) direction NPX = 200; number of shield mesh points for the neutron flux calculation in z (or y) direction NPY = 200; n.b. (NPX * NPY) le 12000

  11. Comparison of HEU and LEU neutron spectra in irradiation facilities at the Oregon State TRIGA® Reactor

    International Nuclear Information System (INIS)

    Schickler, R.A.; Marcum, W.R.; Reese, S.R.

    2013-01-01

    Highlights: • The Oregon State TRIGA ® Reactor neutron spectra is characterized herein. • Neutron spectra between highly enriched uranium and low enriched uranium cores are compared. • Discussion is given as to differences between HEU and LEU core spectra results and impact on experiments. -- Abstract: In 2008, the Oregon State TRIGA ® Reactor (OSTR) was converted from highly enriched uranium (HEU) fuel lifetime improvement plan (FLIP) fuel to low-enriched uranium (LEU) fuel. This effort was driven and supported by the Department of Energy's (DoE's) Reduced Enrichment for Research and Test Reactors (RERTR) program. The basis behind the RERTR program's ongoing conversion effort is to reduce the nuclear proliferation risk of civilian research and test reactors. The original intent of the HEU FLIP fuel was to provide fuel to research reactors that could be utilized for many years before a necessary refueling cycle. As a research reactor, the OSTR provides irradiation facilities for a variety of applications, such as activation analysis, fission-track dating, commercial isotope production, neutron radiography, prompt gamma characterization, and many others. In order to accurately perform these research functions, several studies had been conducted on the HEU FLIP fuel core to characterize the neutron spectra in various experimental facilities of the OSTR (Tiyapun, 1997; Ashbaker, 2005). As useful as these analyses were, they are no longer valid due to the change in fuel composition and the resulting alteration of core performance characteristics. Additionally, the core configuration (fuel reconfiguration) was altered between the HEU and LEU cores. This study characterizes the neutron spectra in various experimental facilities within and around the current LEU core. It also compares the spectra to that which was yielded in the HEU core through use of Monte Carlo n-Particle 5 (MCNP5) and experimental adjustment via a least-squares technique. The quantification of

  12. Neutron spectra in two beam ports of the TRIGA Mark III reactor

    International Nuclear Information System (INIS)

    Vega C, H. R.; Hernandez D, V. M.; Aguilar, F.; Paredes, L.; Rivera M, T.

    2013-10-01

    The neutron spectra have been measured in two beam ports, radial and tangential, of the TRIGA Mark III nuclear reactor from the National Institute of Nuclear Research. Measurements were carried out with the core with mixed fuel (Leu 8.5/20 and Flip Heu 8.5/70). Two reactor powers, 5 and 10 W, were used during neutron spectra measurements using a Bonner sphere spectrometer with a 6 Lil(Eu) scintillator and 2, 3, 5, 8, 10 and 12 inches-diameter high density polyethylene spheres. The neutron spectra were unfolded using the NSDUAZ unfolding code; from each spectrum the total neutron flux, the neutron mean energy and the neutron ambient dose equivalent dose were determined. Measured spectra show fission (E≥ 0.1 MeV), epithermal (from 0.4 eV up to 0.1 MeV) and thermal neutrons (E≤ 0.4 eV). For both reactor powers the spectra in the radial beam port have similar features which are different to the neutron spectrum characteristics in the tangential beam port. (Author)

  13. Neutron spectra in two beam ports of the TRIGA Mark III reactor

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H. R.; Hernandez D, V. M. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98060 Zacatecas (Mexico); Aguilar, F.; Paredes, L. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Rivera M, T., E-mail: fermineutron@yahoo.com [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Unidad Legaria, Av. Legaria 694, 11500 Mexico D. F. (Mexico)

    2013-10-15

    The neutron spectra have been measured in two beam ports, radial and tangential, of the TRIGA Mark III nuclear reactor from the National Institute of Nuclear Research. Measurements were carried out with the core with mixed fuel (Leu 8.5/20 and Flip Heu 8.5/70). Two reactor powers, 5 and 10 W, were used during neutron spectra measurements using a Bonner sphere spectrometer with a {sup 6}Lil(Eu) scintillator and 2, 3, 5, 8, 10 and 12 inches-diameter high density polyethylene spheres. The neutron spectra were unfolded using the NSDUAZ unfolding code; from each spectrum the total neutron flux, the neutron mean energy and the neutron ambient dose equivalent dose were determined. Measured spectra show fission (E≥ 0.1 MeV), epithermal (from 0.4 eV up to 0.1 MeV) and thermal neutrons (E≤ 0.4 eV). For both reactor powers the spectra in the radial beam port have similar features which are different to the neutron spectrum characteristics in the tangential beam port. (Author)

  14. Reactor core fuel management

    International Nuclear Information System (INIS)

    Silvennoinen, P.

    1976-01-01

    The subject is covered in chapters, entitled: concepts of reactor physics; neutron diffusion; core heat transfer; reactivity; reactor operation; variables of core management; computer code modules; alternative reactor concepts; methods of optimization; general system aspects. (U.K.)

  15. Characteristics of Core Thermal-Hydraulic Design of SMART-P

    International Nuclear Information System (INIS)

    Hwang, Dae-Hyun; Seo, Kyong-Won; Kim, Tae-Wan; Lee, Chung-Chan

    2006-01-01

    The SMART (System-Integrated Modular Advanced ReacTor) is an integral-type advanced light water reactor which is purposed to be utilized as an energy source for sea water desalination as well as a small scale power generation. A prototype of this reactor, named SMART-P, has been studied at KAERI in order to demonstrate the relevant technologies incorporated in the SMART design. Due to the closed-channel type fuel assemblies and low mass velocity in the reactor core, the thermal hydraulic design features of SMART-P revealed fairly different characteristics in comparison with existing PWRs. The allowable operating region of the core, from the aspect of the thermal integrity of the fuel, should be primarily limited by two design parameters; critical heat flux (CHF) and fuel temperature. The occurrence of CHF may cause a sudden increase of the cladding temperature which eventually results in the fuel failure. The fuel temperature limit is relevant to a fuel failure mechanism such as a fuel centerline melting or a phase change of metallic fuels. Two phase flow instability is also an important design parameter since a flow oscillation may trigger a CHF or mechanical vibration of the channel. The characteristics of important thermal-hydraulic design parameters have been investigated for the SMART-P core with the closed-channel type fuel assemblies which contained non-square arrayed SSF (Self-sustained Square Finned) fuel rods

  16. Reactor Core Design and Analysis for a Micronuclear Power Source

    Directory of Open Access Journals (Sweden)

    Hao Sun

    2018-03-01

    Full Text Available Underwater vehicle is designed to ensure the security of country sea boundary, providing harsh requirements for its power system design. Conventional power sources, such as battery and Stirling engine, are featured with low power and short lifetime. Micronuclear reactor power source featured with higher power density and longer lifetime would strongly meet the demands of unmanned underwater vehicle power system. In this paper, a 2.4 MWt lithium heat pipe cooled reactor core is designed for micronuclear power source, which can be applied for underwater vehicles. The core features with small volume, high power density, long lifetime, and low noise level. Uranium nitride fuel with 70% enrichment and lithium heat pipes are adopted in the core. The reactivity is controlled by six control drums with B4C neutron absorber. Monte Carlo code MCNP is used for calculating the power distribution, characteristics of reactivity feedback, and core criticality safety. A code MCORE coupling MCNP and ORIGEN is used to analyze the burnup characteristics of the designed core. The results show that the core life is 14 years, and the core parameters satisfy the safety requirements. This work provides reference to the design and application of the micronuclear power source.

  17. CMADR acceleration and its convergence analysis of the method of characteristics for neutron transport calculation

    International Nuclear Information System (INIS)

    Young, Ryong Park; Nam, Zin Cho

    2005-01-01

    As the nuclear reactor core becomes more complex, heterogeneous, and geometrically irregular, the method of characteristics (MOC) is gaining its wide use in the neutron transport calculations. However, the long computing times require good acceleration methods. In this paper, the concept of coarse-mesh angular dependent re-balance (CMADR) acceleration is described and applied to the MOC calculation in x-y-z (z-infinite, uniform) geometry. The method is based on the angular dependent re-balance factors defined only on the coarse-mesh boundaries; a coarse-mesh consists of several fine meshes that may be heterogeneous and of mixed geometries with irregular or unstructured mesh shapes. In addition, the coarse-mesh boundaries may not coincide with the structural interfaces of the problem and can be chosen artificially for convenience. CMADR acceleration is tested on several test problems and the results show that CMADR is very effective in reducing the number of iterations and computing times of MOC calculations. Fourier analysis is also provided to investigate convergence of the CMADR method analytically and the results show that CMADR acceleration is unconditionally stable. (authors)

  18. Generalized Thermohydraulics Module GENFLO for Combining With the PWR Core Melting Model, BWR Recriticality Neutronics Model and Fuel Performance Model

    International Nuclear Information System (INIS)

    Miettinen, Jaakko; Hamalainen, Anitta; Pekkarinen, Esko

    2002-01-01

    Thermal hydraulic simulation capability for accident conditions is needed at present in VTT in several programs. Traditional thermal hydraulic models are too heavy for simulation in the analysis tasks, where the main emphasis is the rapid neutron dynamics or the core melting. The GENFLO thermal hydraulic model has been developed at VTT for special applications in the combined codes. The basic field equations in GENFLO are for the phase mass, the mixture momentum and phase energy conservation equations. The phase separation is solved with the drift flux model. The basic variables to be solved are the pressure, void fraction, mixture velocity, gas enthalpy, liquid enthalpy, and concentration of non-condensable gas fractions. The validation of the thermohydraulic solution alone includes large break LOCA reflooding experiments and in specific for the severe accident conditions QUENCH tests. In the recriticality analysis the core neutronics is simulated with a two-dimensional transient neutronics code TWODIM. The recriticality with one rapid prompt peak is expected during a severe accident scenario, where the control rods have been melted and ECCS reflooding is started after the depressurization. The GENFLO module simulates the BWR thermohydraulics in this application. The core melting module has been developed for the real time operator training by using the APROS engineering simulators. The core heatup, oxidation, metal and fuel pellet relocation and corium pool formation into the lower plenum are calculated. In this application the GENFLO model simulates the PWR vessel thermohydraulics. In the fuel performance analysis the fuel rod transient behavior is simulated with the FRAPTRAN code. GENFLO simulates the subchannel around a single fuel rod and delivers the heat transfer on the cladding surface for the FRAPTRAN. The transient boundary conditions for the subchannel are transmitted from the system code for operational transient, loss of coolant accidents and

  19. Updated neutron spectrum characterization of SNL baseline reactor environments

    International Nuclear Information System (INIS)

    Griffin, P.J.; Kelly, J.G.; Vehar, D.W.

    1994-04-01

    This document provides SAND-II and MANIPULATE output listings from calculations used to derive the new spectrum-averaged integral parameters that were reported in volume 1. When used in conjunction with volume 1, this document provides an audit trail for the neutron radiation field characterization and supports current quality assurance initiatives. This document provides detailed information on the neutron spectrum characteristics of the primary Sandia National Laboratories' (SNL) reactor environments. The information in this volume is not intended for the casual user of the SNL reactor facilities. This detailed characterization of the neutron and gamma environments at the Sandia Pulsed Reactor (SPR) and the Annular Core Research Reactor (ACRR) is provided to aid the users who wish to convert the information given in the Radiation Metrology Laboratory (RML) dosimetry reports into other (non-silicon) measures of neutron damage. The spectra provided in these appendices can be used as a source term for Monte Carlo radiation transport calculations to study the impact of experimenter's test package on the neutron environment

  20. Characteristics of polyethylene-moderated 252Cf neutron sources

    International Nuclear Information System (INIS)

    Alejnikov, V.E.; Beskrovnaya, L.G.; Florko, B.V.

    2000-01-01

    Polyethylene-moderated 252 Cf neutron sources were designed to produce neutron reference fields' spectra that simulate the spectra observed in the workplaces within nuclear reactors and accelerators. The paper describes the neutron sources and fields. Neutron spectra were calculated by Monte Carlo method and compared with experimental data